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Preface

Fast Software Encryption (FSE) 2006 is the 13th in a series of workshops on
symmetric cryptography. It has been sponsored for the last five years by the
International Association for Cryptologic Research (IACR), and previous FSE
workshops have been held around the world:

1993 Cambridge, UK 1994 Leuven, Belgium 1996 Cambridge, UK
1997 Haifa, Israel 1998 Paris, France 1999 Rome, Italy
2000 New York, USA 2001 Yokohama, Japan 2002 Leuven, Belgium
2003 Lund, Sweden 2004 New Delhi, India 2005 Paris, France

The FSE workshop is devoted to research on fast and secure primitives for
symmetric cryptography, including the design and analysis of block ciphers,
stream ciphers, encryption schemes, analysis and evaluation tools, hash func-
tions, and message authentication codes.

This year more than 100 papers were submitted to FSE for the first time.
After an extensive review by the Program Committee, 27 papers were presented
at the workshop. Of course, the program would not have been complete without
the invited speaker, and the presentation by Eli Biham on the early history of
differential cryptanalysis was particularly appreciated by workshop attendees.

We are very grateful to the Program Committee and to all the external
reviewers for their hard work. Each paper was refereed by at least three re-
viewers, with papers from Program Committee members receiving at least five
reviews. The local Organizing Committee at Graz worked very hard and we par-
ticularly thank Melanie Blauensteiner, Christophe De Cannière, Sharif Ibrahim,
Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Michaela
Tretter-Dragovic for their generous efforts and strong support. In Paris we are
indebted to Henri Gilbert and Helena Handschuh, who shared their valuable
experience from FSE 2005, and to Côme Berbain and Olivier Billet for proof-
reading and preparing the FSE pre-proceedings.

To close, we thank the IACR secretariat, Kevin McCurley, and Shai Halevi for
their help with the registration process and we thank the IACR for their support
of FSE. We are grateful to K.U. Leuven for their web-based review software and
we thank both France Telecom and Siemens, Munich for their financial support
of FSE 2006.

Matt Robshaw France Telecom R&D FSE 2006 Program Chair
Vincent Rijmen Graz University of Technology FSE 2006 General Chair
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Cryptanalysis of Achterbahn

Thomas Johansson1, Willi Meier2,�, and Frédéric Muller3

1 Department of Information Technology, Lund University
P.O. Box 118, 221 00 Lund, Sweden

thomas@it.lth.se
2 FH Aargau, 5210 Windisch, Switzerland

w.meier@fh-aargau.ch
3 HSBC-France

Frederic.Muller@m4x.org

Abstract. We present several attacks against the Achterbahn stream
cipher, which was proposed to the eSTREAM competition. We can break
the reduced and the full version with complexity of 255 and 261 steps.

Extensions of our attacks are also described to break modified versions
of the Achterbahn stream cipher, which were proposed following the
publication of preliminary cryptanalysis results.

These attacks highlight some problems in the design principle of
Achterbahn, i.e., combining the outputs of several nonlinear (but small)
shift registers using a nonlinear (but rather sparse) output function.

1 Introduction

The European project ECRYPT recently decided to launch a competition to
identify new stream ciphers that might be suitable for widespread adoption.
This project is called eSTREAM [3] and received 35 submissions, some of which
have already been broken.

Among these new algorithms, a challenging new design is Achterbahn [5]. It
is a relatively simple, hardware-oriented stream cipher, using a secret key of
80 bits. In this paper, we present several attacks which break the cipher faster
than a brute force attack. Our results provide new directions to break stream
ciphers built by combination of several small, but nonlinear shift registers, like
Achterbahn.

2 Description of Achterbahn

2.1 General Structure

Achterbahn uses 8 small non-linear registers, denoted by R1, . . . , R8. Their size
ranges from 22 to 31 bits (see Table 1). The total size of the internal state is

� The second author is supported by Hasler Foundation www.haslerfoundation.ch
under project number 2005.

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 1–14, 2006.
c© International Association for Cryptologic Research 2006



2 T. Johansson, W. Meier, and F. Muller

Table 1. Length of non-linear registers in Achterbahn

Register Length

R1 22
R2 23
R3 25
R4 26
R5 27
R6 28
R7 29
R8 31

211 bits. At the t-th clock cycle, each register produces one output bit, denoted
respectively by y1(t), . . . , y8(t). Then, the t-th output bit z(t) of the stream
cipher Achterbahn is produced by the filtering function F as

z(t) = F (y1(t), y2(t), y3(t), y4(t), y5(t), y6(t), y7(t), y8(t))
= y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t)⊕

y5(t)y7(t)⊕ y6(t)y7(t)⊕ y6(t)y8(t)⊕ y5(t)y6(t)y7(t)⊕ y6(t)y7(t)y8(t).

We can observe that F is a sparse polynomial of degree 3. There are only 3 mono-
mials of degree 2 and 2 monomials of degree 3. In the full version of Achterbahn,
the input of F is not directly the output of each register, but a key-dependent
combination of several consecutive outputs1. In the reduced version of Achter-
bahn, the input of F is directly the output of each register.

Each register is clocked similarily to a Linear Feedback Shift Register (LFSR),
except that the feedback bit is not a linear function, but a polynomial of degree
4. Details of this clocking are not relevant in our attack. We refer to the original
description of Achterbahn for more details [5].

2.2 Initialization

The internal state of Achterbahn is initialized from a secret key K of size 80 bits
and from an initialization vector IV of length 80 bits.

First, the state of each register is loaded with a certain number of key bits (this
number depends on the register length). Then, the rest of the key, followed by the
IV, is introduced sequentially in each register. More precisely, this introduction
consists simply in XORing the auxiliary input to the feedback bit during the
register update. At some point, one bit in the register is forced to 1 to prevent
the all-zero state. Before the encryption starts, several extra clockings are applied
for diffusion purpose.

1 The number of consecutive outputs involved in this linear combination varies from
6 for R1 to 10 for R8.
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2.3 Evolutions of Achterbahn

In September 2005, some preliminary cryptanalysis results were announced on
the eSTREAM website [6]. These results allow to break the reduced version of
Achterbahn with 256 computation steps and the full version with complexity of
273 computation steps.

After the publication of these results, the designers of Achterbahn proposed
to modify the output filter F of Achterbahn in order to strengthen the cipher [4].
This is a natural idea, given the nature of the published attacks. The first sugges-
tion, that we will refer to as Achterbahn-v2 in this paper, uses a new combining
function F ′ instead of F , where

F ′(y1(t), . . . , y8(t)) = F (y1(t), . . . , y8(t))⊕ y5(t)y6(t)⊕ y5(t)y8(t)⊕ y7(t)y8(t).

Another alternative suggested in [4] is to replace F by F ′′ defined as

F ′′(y1(t), . . . , y8(t)) = y1(t)⊕ y2(t)⊕ y3(t)⊕
∑

4≤i<j≤8

yi(t)yj(t)⊕∑
4≤i<j<k≤8

yi(t)yj(t)yk(t)⊕
∑

4≤i<j<k<l≤8

yi(t)yj(t)yk(t)yl(t).

We refer to Achterbahn-v3 for the cipher instantiated with F ′′.

3 Weaknesses of Achterbahn’s Design

3.1 General Observations About the Design

Combination of several small Linear Feedback Shift Registers (LFSR) is a well-
known method for building stream ciphers. The output of the registers are gen-
erally combined with a function F , in order to produce one keystream bit (see
Figure 1). A popular example is the algorithm E0 [1], which is used in the Blue-
tooth technology2. Unfortunately such constructions have some problems, that

...
LFSR number n

keystream bit

F

LFSR number 1

Fig. 1. Stream Cipher built by Combination of LFSR’s

originate from the linearity of the LFSR’s. For instance, correlation attacks [8,9]
exploit linear approximations of the function F to attack the whole stream

2 E0 has the particularity that the function F uses a small auxiliary memory.
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cipher. Another method is algebraic attacks [2] that take advantage of low degree
polynomial equations satisfied by F .

Criteria that should be satisfied by the boolean function F , in order to counter
such attacks have been widely studied. However there appears to be limitations
that cannot easily be removed. To improve the designs, it is often suggested
to replace linear registers by nonlinear registers. This idea is the bottomline of
Achterbahn’s design.

3.2 Linear Complexity of Achterbahn

If the linear registers of Figure 1 are replaced by nonlinear registers, one may
expect to counter many problems arising from the linearity of LFSR’s. A usual
tool to analyze such constructions is the linear complexity. For a binary se-
quence, it is defined as the length of the shortest LFSR that could generate the
sequence.

For a LFSR of length n bits, the linear complexity of its output sequence
is L = n, provided its feedback polynomial is properly chosen. For a nonlinear
register, it is not always easy to compute the linear complexity of its output
sequence, but clearly it cannot exceed its period. In the case of Achterbahn, the
keystream bit b is computed by

b = F (y1, . . . , y8).

Then, it is well-known that the linear complexity of the keystream sequence is
at most

L = F (L1, . . . , L8),

where Li denotes the linear complexity of each single register and F is now seen
as a polynomial on the integers, with its coefficients ∈ {0, 1}. This observation
shows that it would be insecure to combine the small nonlinear regis-
ters using a linear function. Indeed, in this case, the linear complexity L of
Achterbahn would be bounded by 8 × 231 since 31 is the length of the largest
register.

For Achterbahn, F is not linear, but its algebraic degree is 3. The original
paper [5] does not contain an exact proof of the linear complexity of the 8 non-
linear registers, but it is reasonable to assume that Li � 2ni where ni denotes
the length of register Ri. With this assumption, the linear complexity of Achter-
bahn’s outputs is :

L ≤ 228 × 229 × 231 = 288.

If we apply the Berlekamp-Massey algorithm [7], we can expect to distinguish
this sequence if we analyze 289 known output bits. Since the running time of
Berlekamp-Massey is about L2, this attack is way above the complexity of a
brute-force attack.



Cryptanalysis of Achterbahn 5

3.3 Ideas for Improvement

These observations about the linear complexity were taken into account by the
designers of Achterbahn (see page 20 of [5]). However, we should also consider
that several refinements are possible :

– The output function is sparse. Indeed z(t) is computed by a simple filter,
which is almost linear. For instance, when y6(t) = 0, only one nonlinear
term remains. If y5(t) is also equal to 0, the output function becomes purely
linear.

– Each single register has a small period. This is unavoidable due to the
small size of each register (31 bits for the largest one, R8).

– Each register is autonomous. Therefore when we guess its initial state, we
know its content at all stages of the encryption.

Our idea is to guess the initial state of two registers (R5 and R6). Then we
select particular positions in the output sequence, for which

y5 = y6 = 0.

All nonlinear terms in F cancel out, so the linear complexity of this subsequence
is much smaller than for the whole Achterbahn. Finally, we test if several parity
checks, resulting from the low linear complexity are satisfied or not. Hence, we
can determine when the initial guess on R5 and R6 is correct.

Several tricks are needed in order for the attack to work properly. In particular,
it is important to find low-weight parity checks. The details of this attack are
given in the next section. Attacks in the same vein can also be mounted in the
case of Achterbahn-v2 and Achterbahn-v3.

4 Cryptanalysis of Reduced Achterbahn

4.1 Preliminary

Our starting point is to observe that when y5(t) = 0 and y6(t) = 0, the output
function becomes purely linear, so

z(t) = l(t) = y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t).

Although its period is rather large, l(t) has a very low linear complexity L
as pointed out in Section 3.2. Indeed, L is bounded by

L ≤ 2n1 + 2n2 + 2n3 + 2n4 � 226.

By definition, l can be generated by a LFSR of length L, so it will satisfy
some parity checks involving L consecutive bits at most. Actually, it can be
demonstrated that sparse parity checks are satisfied, which will prove to be
crucial in the rest of our attack.
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4.2 Construction of Sparse Parity Checks

We denote by Ti the period of register Ri. From [5], we can see that

T1 = 222 − 1,

T2 = 223 − 1,

T3 = 225 − 1,

T4 = 226 − 1.

Let

ll(t) = l(t)⊕ l(t + T1).

Because the period of the first register is T1, this expression does not contain
any term in y1. Similarly, define

lll(t) = ll(t)⊕ ll(t + T2),
llll(t) = lll(t)⊕ lll(t + T3).

Here llll(t) contains no term in y2 or y3, so it is a combination of bits coming
from the register R4 only. Thus it satisfies

llll(t) = llll(t + T4).

In other terms, we have the following relation on the bits l(i),

0 = l(t) + l(t + T1) + l(t + T2) + l(t + T3) + l(t + T4)

+ l(t + T1 + T2) + l(t + T1 + T3) + l(t + T1 + T4)

+ l(t + T2 + T3) + l(t + T2 + T4) + l(t + T3 + T4)

+ l(t + T1 + T2 + T3) + l(t + T1 + T2 + T4) + l(t + T1 + T3 + T4)

+ l(t + T2 + T3 + T4) + l(t + T1 + T2 + T3 + T4).

This is the basic parity check on l(t) that we will use in our attack. We can
observe that it is the XOR of 16 different bits from the sequence l(i). They all
belong to a time interval of length

Tmax = T1 + T2 + T3 + T4 = 113246204 � 226.75.

Such parity checks are satisfied by the keystream sequence, under certain con-
straints on the outputs of the registers R5 and R6 (several bits y5(i) and y6(i)
must be equal to 0).

We split the attack in two phases. First, we precompute particular states of
R5 and R6 for which z(t) = l(t). Then we look at a given keystream sequence
and test when the parity check is satisfied. This information is used to identify
one of the precomputed states of R5 and R6.
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4.3 Precomputation

The goal of the precomputation step is to identify particular state values of R5
and R6 for which the parity checks will be satisfied. For that, we need y5(t) and
y6(t) to be both equal to 0 for the 16 positions that appear in the previous parity
check. Consider the case of register R5 first. We are looking for states of R5 at
time t such that the corresponding outputs satisfy :

y5(t) = 0,

y5(t + T1) = 0,

y5(t + T2) = 0,

y5(t + T3) = 0,

y5(t + T4) = 0,

y5(t + T1 + T2) = 0,

y5(t + T1 + T3) = 0,

y5(t + T1 + T4) = 0,

y5(t + T2 + T3) = 0,

y5(t + T2 + T4) = 0,

y5(t + T3 + T4) = 0,

y5(t + T1 + T2 + T3) = 0,

y5(t + T1 + T2 + T4) = 0,

y5(t + T1 + T3 + T4) = 0,

y5(t + T2 + T3 + T4) = 0,

y5(t + T1 + T2 + T3 + T4) = 0.

If we enumerate the 227 possible states of R5 and clock the register Tmax times,
we can find all states that satisfy the above equations3. The expected number
of solutions is

227 × 2−16 = 211,

since there are 16 binary constraints to satisfy simultaneously. The complexity
of this stage is about 227 × Tmax = 253.75. It is possible to do it more efficiently
if we store the whole sequence of outputs from R5, but this step will prove not
to be the bottleneck of our attack. Similarly, we can find 212 states of R6 that
satisfy the same 16 constraints. The corresponding time complexity is 254.75. To
summarize, we can enumerate

212 × 211 = 223

favorable states for the registers R5 and R6. We store these 223 states in an
auxiliary table.
3 We could envisage degenerated registers, for which these equations can never occur

simultaneously. However, this is not the case in Achterbahn, and such degenerations
would probably lead to other types of attacks.
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In addition, for each favorable state, we clock R5 and R6 until we reach
another favorable state. In the auxiliary table, we store the distance from each
favorable state to the next one. This information will be useful in the next
section. In average, we need 232 clockings per favorable state, resulting in a time
complexity of 223 × 232 = 255 steps.

4.4 Identification

We suppose that we are given a certain sequence of 240 keystream bits. To
simplify what follows, we start by computing the parity checks on the keystream
bits,

pc(t) = z(t) + z(t + T1) + z(t + T2) + z(t + T3) + z(t + T4)

+ z(t + T1 + T2) + z(t + T1 + T3) + z(t + T1 + T4)

+ z(t + T2 + T3) + z(t + T2 + T4) + z(t + T3 + T4)

+ z(t + T1 + T2 + T3) + z(t + T1 + T2 + T4) + z(t + T1 + T3 + T4)

+ z(t + T2 + T3 + T4) + z(t + T1 + T2 + T3 + T4),

for t = 0 . . . 240 − Tmax.
It is very likely that R5 and R6 are in a favorable state, for at least one of

the first 232 positions in the sequence. We call t0 such a position. Then we must
have pc(t0) = 0. This is only one bit of information, which is not sufficient to
identify a favorable state.

Therefore, we enumerate all positions t0 from 0 to 232 and all the 223 favorable
states. Suppose we have pc(t0) = 0 (otherwise we discard immediately the can-
didate). Then we use the auxiliary table to search for the next favorable state.
Suppose the table says it will occur at the position t1 > t0. Then we jump to
the position t1 in the keystream sequence and check if pc(t1) = 0. If it is not the
case, we discard this candidate. Otherwise, we iterate the process.

Since we have 240 keystream bits and the distance between two favorable
states is about 232, we might be able to iterate up to 28 = 256 times the process
with success. This is sufficient to identify a favorable state, while a false alarm
is very unlikely.

With our ”early abort” strategy, we need to test only an average of 2 parity
checks for each of the 232× 223 = 255 candidates. So the time complexity of this
phase is about 256 steps.

4.5 Retrieving the Key

We have identified the value of the state of R5 and R6 at a certain position t0
in the output sequence. We would like to retrieve the key from this information,
so a natural idea is to backtrack the updating of these registers. This is easy to
do until we reach the initial state, since the update is invertible.

Next, we want to backtrack the initialization process of Achterbahn. Dur-
ing the extra clockings for diffusion and during the IV introduction, there is no
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difficulty to backtrack, since we can always predict the feedback bit. Unfortu-
nately, we can no longer backtrack during the phase where the key was
introduced.

Then, our idea is to perform a meet-in-the-middle attack. We split the
key in two halves of 40 bits each. On the one hand, we guess the first 40 bits
from the key and predict the state of R5 and R6 after the introduction of these
40 bits. On the other hand, we guess the last 40 bits from the key and backtrack
the introduction of these bits from the known state of R5 and R6. We search for
a match between the two lists of 240 elements4.

We should observe 240×240×2−55 � 225 matches since the lengthes of R5 and
R6 sum up to 55 bits. Each of them provides a key candidate, which is easy to
test by producing several keystream bits. To summarize, from one known state
of R5 and R6, we can retrieve the secret key with time and memory complexity
of 240.

4.6 Analysis

Both the precomputation and the identification phase of our attack have a time
complexity of about 256 steps. In addition, we need to store about 240 (parity
checks of) keystream bits and an auxiliary table of size 223 after the precompu-
tation phase.

The key recovery phase can be achieved using different trade-offs between
time and memory. It is possible to do it with time and memory of 240. But a
more reasonable trade-off could be with time 250 and memory 230.

4.7 Cryptanalysis of Full Achterbahn

If we want to attack the full Achterbahn, we must take into account the key-
dependent linear combination used to compute the outputs of each register. This
additional feature preserves the period of each registers, as well as the properties
of the function F , so the observations on parity checks are unchanged. However,
when looking for the favorable states of R5 and R6, we must guess in addition
the 8 + 9 = 17 key-dependent taps.

Depending on our guess on these key-dependent taps, we obtain a different
set of favorable states. Therefore we must repeat 217 times the second phase of
our attack, and the whole complexity for attacking the full Achterbahn is about
273 computation steps.

5 Another Cryptanalysis of Achterbahn

In this section, we propose another attack technique against Achterbahn, based
on approximating its output function by a linear expression.

4 One bit is forced to 1 in each register to avoid the “all zero” state. The update is
therefore not invertible, but we can easily guess the value of the erased bit, which
has a negligible impact on the time complexity.
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5.1 Linear Approximations of the Output Function

Reconsider Achterbahn’s output function given in Section 2,

z(t) = F (y1(t), y2(t), y3(t), y4(t), y5(t), y6(t), y7(t), y8(t))
= y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t)⊕

y5(t)y7(t)⊕ y6(t)y7(t)⊕ y6(t)y8(t)⊕ y5(t)y6(t)y7(t)⊕ y6(t)y7(t)y8(t).

We use the notation l(t) = y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t) to refer to the linear part
of F . it is easy to observe that F verifies the following linear approximations,

z(t) = l(t)⊕ y5(t) with probability 10/16,

z(t) = l(t)⊕ y6(t) with probability 12/16,

z(t) = l(t)⊕ y7(t) with probability 12/16,

z(t) = l(t)⊕ y8(t) with probability 10/16.

In particular, we focus on the second approximation,

z(t) = l(t)⊕ y6(t), (1)

with probability 12
16 = 0.75 = 0.5 (1 + 0.5). Therefore the bias of this linear

approximation is ε = 0.5.

5.2 Using the Sparse Parity Checks

Similarly to Section 4.2, we can construct parity checks satisfied by the sequence
of bits l(t) ⊕ y6(t). Such a parity check will involve 32 keystream bits (instead
of 16 like in Section 4.2) distant from at most

Tmax = T1 + T2 + T3 + T4 + T6 = 381681659 � 228.51

positions. This parity check is not directly satisfied by the output sequence of
Achterbahn since l(t) ⊕ y6(t) is only an approximation of the output function.
However we can sum up 32 times the linear approximation (1) over different
values of t, which has the effect of multiplying the biases. Therefore, the parity
check is satisfied by the sequence z(t) with probability

0.5
(
1 + ε32) = 0.5

(
1 +

1
232

)
.

Therefore if we consider a sequence of 264 output bits and evaluate all the parity
checks, we will detect this bias. This allows to distinguish Achterbahn’s outputs
from truly random sequences. In addition, this attack is not affected if we add
key-dependent taps to each register, so its complexity is the same for the reduced
and for the full Achterbahn.
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5.3 Guessing One Register

A natural extension of the previous distinguishing attack consists in guessing the
initial content of register R1 (there are 223 candidates). Then, we can eliminate
the term y1(t) in the previous linear approximation. Consequently, the weight
of the parity check drops from 32 to 16, bringing the bias from 2−32 to 2−16.

For the correct guess, we detect a bias by looking at 232 keystream bits,
while there is no bias for incorrect guesses. Once the correct guess has been
identified, it is straightforward to repeat the process to target other registers.
To summarize, this attack costs about 255 computation steps and requires 232

keystream bits. For the full Achterbahn, the number of guesses for R1 is 229

instead of 223 increasing the complexity of the key recovery from 255 to 261.

6 The Case of Achterbahn-v2

6.1 Time-Memory Trade-Off

We reconsider the attack described in Section 4 in order to break the reduced
version of Achterbahn-v2. Because of the linear complexity arguments, one can
still construct the sparse parity checks satisfied by the linear part l(t) (F and
F ′ have both the same linear part). The criteria chosen by the designers is that
it is no longer possible to cancel out the nonlinear part

nl(t) = z(t)⊕ l(t) (2)

by guessing 2 registers only, like for the “basic” Achterbahn. However, nl(t)
depends only on the initial state of the registers R5, R6, R7 and R8, which rep-
resents 27 + 28 + 29 + 31 = 115 unknown bits. So we can apply the usual
time-memory-data trade-off for stream ciphers :

– Precomputation step: Pick at random 257.5 initial states for the registers
R5, R6, R7 and R8 Then evaluate the parity check of Section 4.2 on the
sequence of nl(t) bits. We do this for 115 parity checks and we store the
resulting vector of 115 bits in a table. Finally, the 257.5 entries of this table
are sorted according to the stored value.

– Identification step: Analyze a sequence of 257.5 keystream bits and for
each encountered position, evaluate the first 115 parity checks.

The parity check evaluated on the z(t) bits is equal to the parity check evaluated
on the nl(t) bits, since it cancels out on the l(t) bits (see relation (2)). Therefore,
when we find a match, we learn the state of R5, R6, R7 and R8 during the
encryption process. It turns out that a match is indeed expected here, due to
the birthday paradox.

Besides, it is clear that the state of the 4 remaining registers, R1, R2, R3 and
R4 as well as the secret key could be further retrieved, with an analysis similar
to the one described in Section 4. We estimate the cost of this attack to 257.5 in
time and data complexity.
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There is a technical detail to mention. Evaluating each parity check (in the pre-
computation step) requires to handle some nl(t) bits which are located Tmax �
226.75 positions apart. To deal with this, we suggest to first compute the contri-
bution of each separate register to the parity checks, for each possible state. This
requires about Tmax × 231 � 257.75 steps for the longest register, i.e., R8. Then
for each of the 257.5 candidates, evaluating the 115 parity checks just requires
several table look-ups and several XOR’s. Arguably, the basic step in our attack
costs about as much as testing one key in an exhaustive search.

This attack applies to the “reduced” Achterbahn-v2. Considering the case of
the “full” Achterbahn-v2, we observe that each register has an “extra” entropy of
8, 9 or 10 bits, due to the secret feed-forward. This sums up to 36 new unknowns.
An exhaustive search over these unknowns is impossible, since it would bring the
complexity above exhaustive search. Hence, we propose an alternative strategy
in order to break the full Achterbahn-v2.

6.2 Breaking the Full Achterbahn-v2

We propose a different extension of the attack of Section 4. The modification is
that we target positions where y5(t) = y6(t) = 1 instead of 0. For these selected
positions,

F ′(y1(t), . . . , y8(t)) = y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t)⊕ y7(t) = λ(t)

So F ′ is reduced to a linear term λ(t) with 5 terms (instead of 4 terms like l(t))
We view the bit y1(t)⊕y2(t) as the output of a single register with period T1 ·T2,
so again we can write sparse parity checks of weight 16, involving terms located

Tmax = T1 · T2 + T3 + T4 + T7 � 245

positions apart. Tmax is now much larger than previously, but as already pointed
out in Section 4.3 the precomputation of “favorable” states for the register R5 (or
for R6) can be done without clocking it Tmax times (T5 clockings are sufficient,
taking into account its periodicity). Similarily, the increase of Tmax does not
change the time complexity of the identification step described in Section 4.4.

To summarize, the full Achterbahn-v2 can be attacked with the same com-
plexity as the attack against the full Achterbahn described in Section 4.7, except
that the data complexity is increased to Tmax = 245+240 � 245 known keystream
bits.

7 The Case of Achterbahn-v3

Achterbahn-v3 has a new output function F ′′ which is not as sparse as its pre-
decessors. However, F ′′ is approximable by a sparse linear function. Then the
attack proposed in Section 5 can be applied. First, we observe that

z(t) = F ′′(y1(t) . . . y8(t)) = y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t),
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with probability 9
16 = 0.5 · (1 + 1

8 ). Then we apply the attack of Section 5 with
the register-guessing trick. We guess the initial state of register R1 (complexity
222), then we evaluate the parity check (of weight 8 since only 3 terms remain).
The resulting bias is

ε =
(

1
8

)8

= 2−24,

so 248 keystream bits are needed to detect the correct initial state of R1. The
time complexity of this attack is 222× 248 = 270 for the reduced Achterbahn-v3.
For the full Achterbahn-v3, there is an auxiliary factor of 26 to take into account
for the secret feed-forward.

8 Conclusion

We proposed several attacks against Achterbahn and its modified versions.
Table 2 summarizes all these cryptanalysis results. In spite of the nonlinear
update, the fact that all registers are small and autonomous allows us to envis-
age several new attacks. Our idea is first to observe that a linear output function
would give a low linear complexity and therefore an easily brekable cipher. Then
we suggest to approximate the output function by a linear expression, and we
build parity checks that the linearized version of Achterbahn should satisfy.

Table 2. Summary of cryptanalysis results against Achterbahn

Type of Attack Technique Target Complexity Data

Key recovery (Sec. 4) Linear Complexity reduced Achterbahn 256 240

full Achterbahn 273 240

Distinguisher (Sec. 5) Linear Approx. reduced Achterbahn 264 264

full Achterbahn 264 264

Key recovery (Sec. 5) Linear Approx. reduced Achterbahn 255 232

full Achterbahn 261 232

Key recovery (Sec. 6) Time-Memory reduced Achterbahn-v2 257.5 257.5

Linear Complexity full Achterbahn-v2 273 245

Key recovery (Sec. 7) Linear Approx. reduced Achterbahn-v3 270 248

full Achterbahn-v3 276 248

Following the publication of some preliminary results, the designers of Achter-
bahn suggested to modify the output filter. However, we pointed out that some
attacks of the same nature are still possible. It is interesting to notice that our
attacks are independent of the feedback of the nonlinear registers, so it illustrates
some problems of the design itself, rather than an unfortunate instantiation.
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Abstract. Grain [11] is a lightweight stream cipher proposed by M. Hell,
T. Johansson, and W. Meier to the eSTREAM call for stream cipher
proposals of the European project ECRYPT [5]. Its 160-bit internal
state is divided into a LFSR and an NFSR of length 80 bits each. A
filtering boolean function is used to derive each keystream bit from the
internal state. By combining linear approximations of the feedback func-
tion of the NFSR and of the filtering function, it is possible to derive
linear approximation equations involving the keystream and the LFSR
initial state. We present a key recovery attack against Grain which re-
quires 243 computations and 238 keystream bits to determine the 80-bit
key.

Keywords: Stream cipher, Correlation attack, Walsh transform.

1 Introduction

Stream ciphers are symmetric encryption algorithms based on the concept of
pseudorandom keystream generator. In the typical case of a binary additive
stream cipher, the key and an additional parameter named initialization vector
(IV) are used to generate a binary sequence called keystream which is bitwise
combined with the plaintext to provide the ciphertext. Although it seems rather
difficult to construct a very fast and secure stream cipher, some efforts to achieve
this have recently been deployed. The NESSIE project [24] launched in 1999 by
the European Union did not succeed in selecting a secure enough stream cipher.
Recently, the European Network of Excellence in Cryptology ECRYPT launched
a call for stream cipher proposals named eSTREAM [5]. The candidate stream
ciphers were submitted in May 2005. Those candidates are divided into software
oriented and hardware oriented ciphers.
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Hardware oriented stream ciphers are specially designed so that their im-
plementation requires a very small number of gates. Such ciphers are useful in
mobile systems, e.g. mobile phones or RFID, where minimizing the number of
gates and power consumption is more important than very high speed.

One of the new hardware candidates submitted to eSTREAM is a stream
cipher named Grain [11] which was developed by M. Hell, T. Johansson, and
W. Meier1 as an alternative to stream ciphers like GSM A5/1 or Bluetooth E0.
It uses a 80-bit key and a 64-bit initialization vector to fill in an internal state of
size 160 bits divided into a nonlinear feedback shift register (NFSR) and a linear
feedback shift register (LFSR) of length 80 bits each. At each clock pulse, one
keystream bit is produced by selecting some bits of the LFSR and of the NFSR
and applying a boolean function. It is well known that LFSR sequences satisfy
several statistical properties one would expect from a random sequence, but do
not offer any security. Their combination with NFSR sequences is expected to
improve the security. However, NFSR based constructions have not yet been as
well studied as LFSR based constructions. The claimed security level of Grain is
280, and it was conjectured by the authors of Grain that there exists no attack
significantly faster than exhaustive search.

In this paper, we describe two key recovery attacks against Grain. The pro-
posed attacks exploit linear approximations of the output function. The first
one requires 255 operations, 249 bits of memory, and 251 keystream bits, and
the second one requires 243 operations, 242 bits of memory, and 238 keystream
bits.

This paper is organized as follows. We first describe the Grain stream cipher
(Section 2) and we derive some linear approximations involving the LFSR and
the keystream (Section 3). We then present two techniques for recovering the
initial state of the LFSR (Section 4). Finally, we present a technique allowing
to recover the initial state of the NFSR once we know the LFSR initial state
(Section 5).

2 Description of Grain

Grain [11] is based upon three main building blocks: an 80-bit linear feedback
shift register, an 80-bit nonlinear feedback shift register, and a nonlinear filtering
function. Grain is initialized with the 80-bit key K and the 64-bit initialization
value IV . The cipher output is an L-bit keystream sequence (zt)t=0,...,L−1.

The current LFSR content is denoted by Y t = (yt, yt+1, . . . , yt+79). The LFSR
is governed by the linear recurrence:

yt+80 = yt+62 ⊕ yt+51 ⊕ yt+38 ⊕ yt+23 ⊕ yt+13 ⊕ yt.

1 The design of Grain was also submitted and recently accepted for publication in the
International Journal of Wireless and Mobile Computing, Special Issue on Security
of Computer Network and Mobile Systems.
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The current NFSR content is denoted by Xt = (xt, xt+1, . . . , xt+79). The
NFSR feedback is disturbed by the output of the LFSR, so that the NFSR
content is governed by the recurrence:

xt+80 = yt ⊕ g(xt, xt+1, . . . , xt+79),

where the expression of nonlinear feedback function g is given by

g(xt, xt+1, . . . , xt+79) = xt+63 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+33 ⊕ xt+28

⊕ xt+21 ⊕ xt+15 ⊕ xt+9 ⊕ xt ⊕ xt+63xt+60 ⊕ xt+37xt+33

⊕ xt+15xt+9 ⊕ xt+60xt+52xt+45 ⊕ xt+33xt+28xt+21

⊕ xt+63xt+45xt+28xt+9 ⊕ xt+60xt+52xt+37xt+33

⊕ xt+63xt+60xt+21xt+15 ⊕ xt+63xt+60xt+52xt+45xt+37

⊕ xt+33xt+28xt+21xt+15xt+9

⊕ xt+52xt+45xt+37xt+33xt+28xt+21.

The cipher output bit zt is derived from the current LFSR and NFSR states
as the exclusive or of the masking bit xt and a nonlinear filtering function h as
follows:

zt = xt ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63)
= h′(yt+3, yt+25, yt+46, yt+64, xt, xt+63)
= xt ⊕ xt+63pt ⊕ qt,

where pt and qt are the functions of yt+3, yt+25, yt+46, yt+64 given by:

pt = 1⊕ yt+64 ⊕ yt+46(yt+3 ⊕ yt+25 ⊕ yt+64),
qt = yt+25 ⊕ yt+3yt+46(yt+25 ⊕ yt+64)⊕ yt+64(yt+3 ⊕ yt+46).

The boolean function h is correlation immune of the first order. As noticed
in [11], “this does not preclude that there are correlations of the output of h(x) to
sums of inputs”, but the designers of Grain appear to have expected the NFSR
masking bit xt to make it impractical to exploit such correlations.

The key and IV setup consists of loading the key bits in the NFSR, loading
the 64-bit IV followed by 16 ones in the LFSR, and clocking the cipher 160
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times in a special mode where the output bit is fed back into the LFSR and the
NFSR. Once the key and IV have been loaded, the keystream generation mode
described above is activated and the keystream sequence (zt) is produced.

3 Deriving Linear Approximations of the LFSR Bits

3.1 Linear Approximations Used to Derive the LFSR Bits

The purpose of the attack is, based on a keystream sequence (zt)t=0...L−1 corre-
sponding to an unknown key K and a known IV value, to recover the key K. The
initial step of the attack is to derive a sufficient number N of linear approxima-
tion equations involving the 80 bits of the initial LFSR state Y 0 = (y0, . . . , y79)
(or equivalently a sufficient number N of linear approximation equations involv-
ing bits of the sequence (yt)) to recover the value of Y 0. Hereafter, as will be
shown in Section 5, the initial NFSR state X0 and the key K can then be easily
recovered.

The starting point for the attack consists in noticing that though the NFSR
feedback function g is balanced, the function g′ given by g′(Xt) = g(Xt)⊕ xt is
unbalanced. We have:

Pr{g′(Xt) = 1} =
522
1024

=
1
2

+ εg′ ,

where εg′ = 5
512 . It is useful to notice that the restriction of g′ to input values Xt

such that xt+63 = 0 is totally balanced and that the imbalance of the function
g′ is exclusively due to the imbalance of the restriction of g′ to input values Xt

such that xt+63 = 1.
If one considers one single output bit zt, the involvement of the masking bit

xt in the expression of zt makes it impossible to write any useful approximate
relation involving only the Y t bits. But if one considers the sum zt ⊕ zt+80 of
two keystream bits output at a time interval equal to the NFSR length 80, the
xt⊕xt+80 contribution of the corresponding masking bits is equal to g′(Xt)⊕yt,
and is therefore equal to yt with probability 1

2 + εg′ . As for the other terms
of zt ⊕ zt+80, they can be approximated by linear functions of the bits of the
sequence (yt). In more details:

zt ⊕ zt+80 = g′(Xt)⊕ yt ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63)
⊕ h(yt+83, yt+105, yt+126, yt+144, xt+143).

To find linear approximations of the term h(yt+3, yt+25, yt+46, yt+64, xt+63),
we can restrict our search, since the restriction of g′(Xt) to input values such
that xt+63 = 0 is balanced, to input values such that xt+63 = 1, which amounts
to finding linear approximations of pt ⊕ qt.

We found a set of two best linear approximations for this function, namely:

L1 = {yt+3 ⊕ yt+25 ⊕ yt+64 ⊕ 1; yt+25 ⊕ yt+46 ⊕ yt+64 ⊕ 1}.

Each of the approximations of L1 is valid with a probability 1
2 +ε1, where ε1 = 1

4 .
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Now the term h(yt+83, yt+105, yt+126, yt+144, xt+143) is equal to either qt+80 or
pt+80⊕qt+80, with a probability 1

2 for both expressions. We found a set of 8 best
simultaneous linear approximations for these two expressions, namely:

L2 = { yt+83 ⊕ yt+144 ⊕ 1; yt+83 ⊕ yt+105 ⊕ yt+126 ⊕ yt+144 ⊕ 1;
yt+83 ⊕ yt+126 ⊕ yt+144; yt+83 ⊕ yt+105 ⊕ yt+126;
yt+83 ⊕ yt+105; yt+83 ⊕ yt+105 ⊕ yt+144 ⊕ 1;
yt+105 ⊕ yt+144; yt+105 ⊕ yt+126 ⊕ yt+144 ⊕ 1; }.

Each of the 8 approximations of L2 has an average probability ε2 = 1
8 of being

valid.
Thus, we have found 16 linear approximations of zt ⊕ zt+80, namely all the

linear expressions of the form

yt ⊕ l1(yt+3, yt+25, yt+46, yt+64)⊕ l2(yt+83, yt+105, yt+126, yt+144),

where l1 ∈ L1 and l2 ∈ L2. Each of these approximations is valid with a proba-
bility 1

2 + ε, where ε is derived from εg′ , ε1, and ε2 using the Piling-up Lemma:

ε =
1
2
· 22 · εg′ · ε1 · ε2 =

5
4096

� 2−9.67.

The extra multiplicative factor of 1
2 takes into account the fact that the con-

sidered approximations are only valid when xt+63 = 1. The LFSR derivation
attacks of Section 4 exploit these 16 linear approximations.

3.2 Generalisation of the Attack Method

In this Section, we try to generalise the previous approximation method. The
purpose is not to find better approximations than those identified in Section 3.1,
but to derive some design criteria on the boolean functions g and h′. However
in the previous approximation, we used the fact that the bias of g depends
on the value of xt+63, so that the approximations of g and h′ are not correct
independently. We do not take this phenomenon into account in this Section.
Therefore, we only provide a simplified picture of potential generalised attacks.

The function g(Xt, Y t) operates on w(g) = wL(g) + wN (g) variables taken
from the LFSR and the NFSR, where wL(g) is the number of variables taken
from the LFSR and wN (g) the number of variables taken from the NFSR. Let
the function Ag(Xt, Y t) be a linear approximation of the function g, i.e.

Ag(Xt, Y t) =
wN (g)−1⊕

i=0

dixt+φg(i) ⊕
wL(g)−1⊕

j=0

cjyt+ψg(j), cj , di ∈ F2, (1)

such that the distance between g(·) and Ag(·) defined by:

dg = �{x ∈ Fw(g)
2 : Ag(x) �= g(x)} > 0,
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is strictly larger than zero. Then, we have

Pr{Ag(x) �= g(x)} =
1

2w(g) dg,

i.e.
Pr{Ag(x) + g(x) = 0} = 1/2 + εg,

where the bias is:
εg = 1/2− 2−w(g)dg.

Similarly, the function h′(Xt, Y t) can also be approximated by some linear
expressions of the form:

Ah′(Xt, Y t) =
wN (h′)−1⊕

i=0

kixt+φh′ (i) ⊕
wL(h′)−1⊕

j=0

ljyt+ψh′ (j), kj , li ∈ F2. (2)

Recall, zt
p
= Ah′(·)t with some probability p. Knowing the expressions (1) and

(2), one can sum up together wN (Ag(·)) expressions of Ah′(·) at different times t,
in such a way that all terms Xt will be eliminated (just because the terms Xt

will be cancelled due to the parity check function Ag(·), leaving the terms Y t

and noise variables only). Note also that any linear combination of Ah′(·) is a
linear combination of the keystream bits zt.

The sum of wN (Ag(·)) approximations Ah′(·) will introduce wN (Ag(·)) inde-
pendent noise variables due to the approximation at different time instances.
Moreover, the cancellation of the terms Xt in the sum will be done by the par-
ity check property of the approximation Ag(·). If the function Ah′(·) contains
wN (Ah′) terms from Xt, then the parity cancellation expression Ag(·) will be
applied wN (Ah′) times. Each application of the cancellation expression Ag(·) will
introduce another noise variable due to the approximation Ng : g(·) → Ag(·).
Therefore, the application of the expression Ag(·) wN (Ah′) times will introduce
wN (Ah′) additional noise variables Ng. Accumulating all above and following the
Piling-up Lemma, the final correlation of such a sum (of the linear expression
on Y t) is given by the following Theorem.

Theorem 1. There always exists a linear relation in terms of bits from the state
of the LFSR and the keystream, which have the bias:

ε = 2(wN (Ah′ )+wN (Ag)−1) · εwN (Ah′ )
g · εwN (Ag)

h′ ,

where Ag(·) and Ah′(·) are linear approximations of the functions g(·) and h′(·),
respectively, and:

Pr{Ag(·) = g(·)} = 1/2 + εg, Pr{Ah′(·) = h′(·)} = 1/2 + εh′ .

This theorem gives us a criteria for a proper choice of the functions g(·) and
h′(·). The biases εg and εh′ are related to the nonlinearity of these boolean
functions, and the values wN (Ag) and wN (Ah′) are related to the correlation
immunity property; however, there is a well-known trade-off between these two
properties [27]. Unfortunately, in the case of Grain the functions g(·) and h′(·)
were improperly chosen.
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4 Deriving the LFSR Initial State

In the former Section, we have shown how to derive an arbitrary number N of
linear approximation equations in the n = 80 initial LFSR bits, of bias ε � 2−9.67

each, from a sufficient number of keystream bits. Let us denote these equations
by:

n−1⊕
i=0

αj
i · yi = bj, j = 1, . . . , N.

In this Section we show how to use these relations to derive the initial LFSR
state Y 0. This can be seen as a decoding problem, up to the fact that the code
length is not fixed in advance and one has to find an optimal trade-off between
the complexities of deriving a codeword (i.e. collecting an appropriate number
of linear approximation equations) and decoding this codeword.

An estimate of the number N of linear approximation equations needed for
the right value of the unknown to maximize the indicator

I = �

{
j ∈ {1, . . . , N}

∣∣∣∣ n−1⊕
i=0

αj
i · yi = bj

}
,

or at least to be very likely to provide say one of the two or three highest values
of I, can be determined as follows.

Under the heuristic assumption that for the correct (respectively incorrect)
value of Y 0, I is the sum of N independent binary variables xi distributed
according to the Bernoulli law of parameters p = Pr{xi = 1} = 1

2 − ε and
q = Pr{xi = 0} = 1

2 + ε (resp. the Bernoulli law of parameters Pr{xi = 1} = 1
2

and Pr{xi = 0} = 1
2 , mean value μ = 1

2 , and standard deviation σ = 1
2 ), N can

be derived by introducing a threshold of say T = N(1
2 + 3ε

4 ) for I and requiring:
(i) that the probability that I is larger than T for an incorrect value of Y 0 is less
than a suitably chosen false alarm probability pfa; (ii) that the probability that
I is lower than T for the correct value is less than a non detection probability
pnd of say 1%. For practical values of pfa, the first condition is by far the most
demanding. Setting the false alarm rate to pfa = 2−n ensures that the number
of false alarms is less than 1 in average.

Due to the Central Limit Theorem, xi−Nμ√
Nσ

is distributed according to the
normal law, so that:

Pr

{
1
N

∑
xi − μ >

3ε

4

}
= Pr

{∑
xi −Nμ√

Nσ
>

3
√

Nε

4σ

}
(3)

can be approximated by 1√
2π

∫ +∞
λ

e−
t2
2 dt, where λ = 3

√
Nε
2 . Consequently, if N

is selected in such a way that 3
√

Nε
2 = λ, i.e.

N =
(

2λ

3ε

)2

,
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where λ is given by:

1√
2π

∫ +∞

λ

e−
t2
2 dt = pfa = 2−n,

then inequality 3 is satisfied.
A naive LFSR derivation method would consist of collecting N approximate

equations, computing the indicator I independently for each of the 2n possible
values of Y 0 and retaining those Y 0 candidates leading to a value of I larger than
the N(1

2 + 3ε
4 ) threshold. This method would require a low number of keystream

bits (say N+80
16 ) but the resulting complexity N · 280 would be larger than the

one of exhaustive key search.
In the rest of this Section, we show that much lower complexities can be

obtained by using the fast Walsh transform algorithm and a few extra filtering
techniques in order to speed up computations of correlation indicators. Former
examples of applications of similar Fast Fourier Transform techniques in order
to significantly decrease the total complexity of correlation attacks can be found
in [4] [9] [16].

4.1 Use of the Fast Walsh Transform to Speed Up Correlation
Computations

Basic Method. Let us consider the following problem. Given a sufficient num-
ber M of linear approximation equations of bias ε involving m binary variables
y0 to ym−1, how to efficiently determine these m variables? Let us denote these
M equations by

∑m−1
i=0 αj

i · yj = bj, j = 1, . . . , M . For a sufficiently large value
of M , one can expect the right value of (y0, . . . , ym−1) to be the one maximizing
the indicator:

I(y0, . . . , ym−1) = �

{
j ∈ {1, . . . , M}

∣∣∣∣ m−1∑
i=0

αj
i · yj = bj

}
=

M

2
+

1
2
· S(y0, . . . , ym−1),

where:

S(y0, . . . , ym−1) = �

{
j ∈ {1, . . . , M}

∣∣∣∣ m−1∑
i=0

αj
i · yi = bj

}

− �

{
j ∈ {1, . . . , M}

∣∣∣∣ m−1∑
i=0

αj
i · yi �= bj

}
.

Equivalently one can expect (y0, . . . , ym−1) to be the value which maximizes
the indicator S(y0, . . . , ym−1). Instead of computing all of 2m values of
S(y0, . . . , ym−1) independently, one can derive these values in a combined way
using fast Walsh transform computations in order to save time.
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Let us recall the definition of the Walsh transform. Given a real function of m
binary variables f(x1, . . . , xm−1), the Walsh transform of f is the real function
of m binary variables F = W (f) defined by:

F (u0, . . . , um−1) =
∑

x0,...,xm−1∈{0,1}m

f(x0, . . . , xm−1)(−1)u0x0+...+um−1xm−1 .

Let us define the function s(α0, . . . , αm−1) by:

�
{
j ∈ {1, . . . , M}

∣∣ (αj
0, . . . , α

j
m−1) = (α0, . . . , αm−1) ∧ bj = 1

}
− �
{
j∈{1, . . . , M}

∣∣ (αj
0, . . . , α

j
m−1)=(α0, . . . , αm−1)∧ bj =0

}
.

The function s can be computed in M steps. Moreover, it is easy to check
that the Walsh transform of s is S, i.e.

∀(y0, . . . , ym−1) ∈ {0, 1}m, W (s)(y0, . . . , ym−1) = S((y0, . . . , ym−1)).

Therefore, the computational cost of the estimation of all the 2m values of S
using fast Walsh transform computations is M + m · 2m; the required memory
is 2m.

Improved Hybrid Method. More generally, if m1 < m, one can use the
following hybrid method between exhaustive search and Walsh transform in
order to save space.

For each of the 2m−m1 values of (ym1 , . . . , ym−1), define the associated restric-
tion S′ of S as the m1 bit boolean function given by:

S′(y0, . . . , ym1−1) = �

{
j ∈ {1, . . . , M}

∣∣∣∣ m1−1∑
i=0

αj
i · yi =

m∑
i=m1

αj
i · yi ⊕ bj

}

− �

{
j ∈ {1, . . . , M}

∣∣∣∣ m1−1∑
i=0

αj
i · yi �=

m∑
i=m1

αj
i · yi ⊕ bj

}
.

It is easy to see that if we define s′(α0, . . . , αm1−1) as

�

{
j ∈ {1, . . . , M}

∣∣∣∣ (αj
0, . . . , α

j
m1−1) = (α0, . . . , αm1−1) ∧

m∑
i=m1

αj
i · yi ⊕ bj = 1

}

−�

{
j ∈ {1, . . . , M}

∣∣∣∣ (αj
0, . . . , α

j
m1−1)=(α0, . . . , αm1−1) ∧

m∑
i=m1

αj
i · yi ⊕ bj =0

}
,

then S′ is the Walsh transform of s′.
Therefore, the computational cost of the estimation of all the 2m values of S

using this method is 2m−m1(M + m1 · 2m1). If we compare this with the former
basic Walsh transform method, we see that the required memory decreases from
2m to 2m1 , whereas the time complexity increase remains negligible as long as
m1 << log2(M).
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4.2 First LFSR Derivation Technique

In order to reduce the LFSR derivation complexity when compared with the
naive method of complexity N · 2n, we can exploit more keystream to produce
more linear approximation equations in the unknowns y0 to yn−1, and retain only
those equations involving the m < n variables y0 to ym−1, i.e. which coefficients
in the n−m variables ym to yn−1 are equal to 0.

Thus a fraction of about 2m−n of the relations are retained and we have to
collect about N2n−m approximate relations to retain N relations. This requires
a number of keystream bits of:

N2n−m + 80
16

.

As seen in the former Section, once the relations have been filtered, the com-
putational cost of the derivation of the values of these m variables using fast
Walsh transform computations is about m2m for the basic method, and more
generally 2m−m1(N + m12m1) if fast Walsh transform computations are applied
to a restricted set of m1 < m variables.

Thus, the overall time complexity of this method is:

N2n−m + m2m,

and more generally:

N2n−m + 2m−m1(N + m12m1).

Once the m variables y0 to ym−1 have been recovered, one can either reiterate
the same technique for other choices of the m unknown variables, which increases
the complexity by a factor of less than 2 if m ≥ n

2 , or test each of the 2n−m

candidates in the next step of the attack (NFSR and key derivation).
An estimate of the number N of equations needed is given by

N =
(

2λ

3ε

)2

,

where λ is determined by the condition 1√
2π

∫ +∞
λ e−

t2
2 dt = 2−m. This condition

ensures that the expected number of false alarm is less than 1.
The minimal complexity is obtained for m = 49. For this parameter value, we

have λ = 7.87 and N = 224. The attack complexity is about 255, the number of
keystream bits needed is around 251, and the memory needed is about 249.

4.3 Second LFSR Derivation Technique

An alternative method is to derive new linear approximation equations (of lower
bias) involving m < n unknown variables y0 to ym−1 by combining the R avail-
able approximate equations of bias ε pairwise, and retaining only those pairs of
relations for which the n − m last coefficients collide. One obtains in this way
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about N ′ = R2 · 2m−n−1 new affine equations in y0 to ym−1, of bias ε′ = 2ε2.
The allocation of the m variables maximizing the number of satisfied equations
can be found by fast Walsh computations as explained in the former Section.

The number N ′ of relations needed is about
( 2λ

3ε′
)2

, where λ is determined

by the condition 1√
2π

∫ +∞
λ

e−
t2
2 dt = 2−m. The required number R of relations

of bias ε is therefore R = (N ′2n−m+1)
1
2 , and the number of keystream bits

needed is about R+80
16 . The complexity of the derivation of the N ′ relations is

max(R, N ′) = max((N ′2n−m+1)
1
2 , N ′).

Once the N ′ relations have been derived, the computational cost of the deriva-
tion of the values of these m variables using fast Walsh transform computations
is about m · 2m for the basic method, and more generally if fast Walsh trans-
form computations are applied to a restricted set of m1 < m variables it costs
2m−m1(N ′ + m1 · 2m1).

Thus the total complexity of the derivation of the m LFSR bits is:

max((N ′2n−m+1)
1
2 , N ′) + m2m,

and more generally:

max((N ′2n−m+1)
1
2 , N ′) + 2m−m1(N ′ + m12m1).

The minimal complexity is obtained for m = 36. For this parameter value, we
have λ = 6.65 and N ′ = 241. The attack complexity is about 243, the number of
keystream bits needed is about 238 and the memory required is about 242.

5 Recovering the NFSR Initial State and the Key

Once the initial state of the LFSR has been recovered, we want to recover the ini-
tial state (x0, . . . , x79) of the NFSR. Fortunately, the knowledge of the LFSR re-
moves the nonlinearity of the output function and we can express each keystream
bit zi by one of the following four equations depending on the initial state of the
LFSR:

zi = xi, zi = xi ⊕ 1,
zi = xi ⊕ x63+i, zi = xi ⊕ x63+i ⊕ 1.

Since functions p and q underlying h are balanced, each equation has the
same occurrence probability. We are going to use the non linearity of the out-
put function to recover the initial state of the NFSR by writing the equations
corresponding to the first keystream bits.

The 16 first equations are linear equations involving only bits of the initial
state of the NFSR because 63 + i is lower than 80.

To recover all the bits of the initial state, we introduce a technique which
consists of building chains of keystream bits. The equations for keystream bits
z17 to z79 involve either one bit of the NFSR (zi = xi or zi = xi ⊕ 1) or two
bits (zi = xi ⊕ x63+i or zi = xi ⊕ x63+i ⊕ 1). An equation involving only one
bit allows us to instantly recover the value of the corresponding bit of the initial



26 C. Berbain, H. Gilbert, and A. Maximov

state. This can be considered as a chain of length 0. On the other hand, an
equation involving two bits does not allow this because we do not know the
value of x63+i (for i > 16).

However, by considering not only the equations for zi but also all the equation
for zk·63+i for k ≥ 1, we can cancel the bits we do not know and retrieve the value
of xi. With probability 1

2 , the equation for z63+i involves one single unknown
bit. Then it provides the value of x63+i and consequently the value of xi. Here
the chain is of length 1, since we have to consider one extra equation to retrieve
xi. The equation for z63+i can also involve two bits with probability 1

2 . Then we
have to consider the equation of z2·63+i, which can also either involve only one bit
(we have a chain of length 2) or two bits and we have to consider more equations
to solve. Each equation has a probability 1

2 to involve 1 or 2 bits. Consequently
the probability that a chain is of length n is 1

2n+1 and the probability that a
chain is of length strictly larger than n is 1

2n+1 .
We want to recover the values of x17, . . . , x79. We have to build 64 different

chains. Let us consider L = 63 ·n bits of keystream. The probability that one of
the chains is of length larger than n is less than = 64 · 2−n−1 and therefore less
than 2−n+5. If we want this probability to be bounded by 2−10, then n > 15 and
L > 945 suffices. Consequently a few thousands of keystream bits are required
to retrieve the initial state of the NFSR and the complexity of the operation is
bounded by 64 · n.

Since the internal state transition function associated to the special key and
IV setup mode is one to one, the key can be efficiently derived from the NFSR
and LFSR states at the beginning of the keystream generation by running this
function backward.

6 Simulations and Results

To confirm that our cryptanalysis is correct, we ran several experiments. First
we checked the bias ε of Section 3.1 by running the cipher with a known initial
state of both the LFSR and the NFSR, computing the linear approximations,
and counting the number of fulfilled relations for a very large number of relations.
For instance we found that one linear approximation is satisfied 19579367 times
out of 39060639, which gives an experimental bias of 2−9.63, to be compared
with the theoretical bias ε = 2−9.67.

To check the two proposed LFSR reconstruction methods of Section 4, we
considered a reduced version of Grain in order to reduce the memory and time
required by the attack on a single computer: we shortened the LFSR by a factor
of 2. We used an LFSR of size 40 with a primitive feedback polynomial and we
reduced by two the distances for the tap entries of function h: we selected taps
number 3, 14, 24, and 33, instead of 3, 25, 46, and 64 for Grain.

The complexity of the first technique for the actual Grain is 255 which is out
of reach of a single PC. For our reduced version, the complexity given by the
formula of Section 4.2 is only 235. We exploited the 16 linear approximations
to derive relations colliding on the first 11 bits. Consequently the table of the
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Walsh transform is only of size 229. We used 15612260 � 223 relations, which
corresponds to a false alarm probability of 2−29. Our implementation needed
around one hour to recover the correct value of the LFSR internal state on a
computer with a Intel Xeon processor running at 2.5 GHz with 3 GB of memory.
The Walsh transform computation took only a few minutes.

For the actual Grain, the second technique requires only 243 operations which
is achievable by a single PC. However it also requires 242 of memory which
corresponds to 350 GB of memory. We do not have such an amount of memory
but for the reduced version the required memory is only 229. Since the complexity
given by the formula of Section 4.3 is dominated by the required number of
relations to detect the bias, our simulation has a complexity close to 243. In
practice, we obtained a result after 4 days of computation on the same computer
as above and 2.5 · 1012 � 241 relations where considered and allowed to recover
the correct LFSR initial state.

Finally, we implemented the method of Section 5 to recover the NFSR. Given
the correct initial state of the LFSR, and the first thousand keystream bits,
our program recovers the initialization of the NFSR in a few seconds for a large
number of different initializations of both the known LFSR and unknown NFSR.
We also confirmed the failure probability assessed in Section 5 for this method
(which corresponds to the occurrence probability of at least one chain of length
larger than 15).

7 Conclusion

We have presented a key-recovery attack against Grain which requires 243 com-
putations, 242 bits of memory, and 238 keystream bits. This attack suggests that
the following slight modifications of some of the Grain features might improve
its strength:

– Introduce several additional masking variables from the NFSR in the key-
stream bit computation.

– Replace the nonlinear feedback function g in such a way that the associated
function g′ be balanced (e.g. replace g by a 2-resilient function). However
this is not necessarily sufficient to thwart all similar attacks.

– Modify the filtering function h in order to make it more difficult to approx-
imate.

– Modify the function g and h to increase the number of inputs.

Following recent cryptanalysis of Grain including the key recovery attack re-
ported here and distinguishing attacks based on the same kind of linear approx-
imations as those presented in Section 3 [19] [26], the authors of Grain proposed
a tweaked version of their algorithm [12], where the functions g and h′ have
been modified. This novel version of Grain appears to be much stronger and is
immune against the statistical attacks presented in this paper.

We would like to thank Matt Robshaw and Olivier Billet for helpful
comments.
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Abstract. DECIM is a hardware oriented stream cipher with an 80-bit
key and a 64-bit IV. In this paper, we point out two serious flaws in
DECIM. One flaw is in the initialization of DECIM. It allows to recover
about half of the key bits bit-by-bit when one key is used with about 220

random IVs; only the first two bytes of each keystream are needed in the
attack. The amount of computation required in the attack is negligible.
Another flaw is in the keystream generation algorithm of DECIM. The
keystream is heavily biased: any two adjacent keystream bits are equal
with probability about 1

2 + 2−9. A message could be recovered from the
ciphertext if that message is encrypted by DECIM for about 218 times.
DECIM with an 80-bit key and an 80-bit IV is also vulnerable to these
attacks.

1 Introduction

DECIM [1] is a stream cipher that has been submitted to the ECRYPT stream
cipher project [4]. The main feature of DECIM is the use of the ABSG decimation
mechanism [1], an idea similar to the shrinking generator [3,6]. Another excellent
feature is that a 32-bit buffer is used in DECIM to ensure that at each step
DECIM generates one output bit.

In this paper, we point out two flaws in DECIM, one in the initialization
algorithm, and another one in the keystream generation algorithm. The flaw in
the initialization allows for any easy key recovery from the keystreams when one
key is used with about 220 random IVs. The flaw in the keystream generation
algorithm results in a heavy bias in the keystream, hence the cipher is vulnerable
to a broadcast attack.

In Sect. 2 we describe the DECIM cipher. Section 3 presents an key recovery
attack on DECIM. The key recovery attack on DECIM is improved in Sect. 4.
The broadcast attack on DECIM is described in Sect. 5. Section 6 shows that
DECIM with an 80-bit IV is also vulnerable to the attacks. Section 7 concludes
this paper.
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2 Stream Cipher DECIM

DECIM uses the ABSG decimation mechanism in the keystream generation in
order to achieve high security and design simplicity. The keystream generation
process and the key/IV setup are illustrated in Sect. 2.1 and 2.2, respectively.

2.1 Keystream Generation

The keystream generation diagram of DECIM is given in Fig. 1. DECIM has a
regularly clocked LFSR which is defined by the feedback polynomial

P (X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 +
X131 + X94 + X77 + X46 + X17 + X16 + X5 + 1

over GF (2). The related recursion is given as

s192+n = s187+n ⊕ s176+n ⊕ s175+n ⊕ s146+n ⊕ s115+n ⊕ s98+n ⊕ s61+n

⊕ s60+n ⊕ s37+n ⊕ s36+n ⊕ s23+n ⊕ s4+n ⊕ s3+n ⊕ sn .

At each stage, two bits are generated from the LFSR as follows:

yt,1 = f(st+1, st+32, st+40, st+101, st+164, st+178, st+187) ,

yt,2 = f(st+6, st+8, st+60, st+116, st+145, st+181, st+191) ,

where the Boolean function f is defined as

f(xi1 , ..., xi7) =
∑

1≤j<k≤7

xij xik
.

The binary sequence y consists of all the yt,1 and yt,2 as

y = y0,1y0,2y1,1y1,2 · · · yt,1yt,2 · · ·

The keystream sequence z is generated from the binary sequence y through the
ABSG decimation algorithm. The sequence y is split into subsequences of the
form (b̄, bi, b̄), with i ≥ 0 and b ∈ {0, 1}; b̄ denotes the complement of b in {0, 1}.
For every subsequence (b̄, bi, b̄), the output bit is b for i = 0, and b̄ otherwise.
The ABSG algorithm is given below

Input: (y0, y1, ...)
Set: i ← 0; j ← 0;
Repeat the following steps:

e ← yi, zj ← yi+1, i ← i + 1;
while (yi = ē) i ← i + 1;
i ← i + 1; output zj ; j ← j + 1;

Remarks. The above description of the ABSG and the pseudo-code of ABSG are
quoted from [1]. However the outputs of the pseudo-code are the complements
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Fig. 1. Keystream Generation Diagram of DECIM [1]

of that of the ABSG algorithm. Anyway, this difference has no effect on the
security of DECIM. In the rest of the paper, we assume that the DECIM uses
the pseudo-code of ABSG given above.

DECIM is designed to output one bit every two stages. A 32-bit buffer is used
to ensure that the probability that there is no output bit is extremely small
(2−89).

2.2 Initialization

The secret key K is an 80-bit key. The 64-bit IV is expanded to an 80-bit vector
by adding zeros from position 64 up to position 79. The initial value of the LFSR
state is loaded as follows

si =

⎧⎨⎩
Ki ∨ IVi for 0 ≤ i ≤ 55
Ki−56 ∧ IVi−56 for 56 ≤ i ≤ 111
Ki−112 ⊕ IVi−112 for 112 ≤ i ≤ 191

The LFSR is clocked 192 times. After the t-th clocking, yt,1 and yt,2 are XORed
to the xt,192 as

st+192 = st+192 ⊕ yt,1 ⊕ yt,2 .

Then one of two permutations π1 and π2 is applied to permute 7 elements st+5,
st+31, st+59, st+100, st+144, st+177, st+186. Two bits yt,1 and yt,2 are input to the
ABSG, if the output of the ABSG is 1, then π1 is applied; if the output of the
ABSG is 0 or if there is no output, then π2 is applied. The two permutations
are defined as

π1 = (1 6 3)(4 5 2 7), π2 = (1 4 7 3 5 2 6) .
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3 Key Recovery Attack on DECIM

In this section, we develop attacks to recover the secret key of DECIM. This
non-optimized attack applies when the same secret key is used with a number of
random IVs, and the first 3 bytes of each keystream are known. The optimized
attack is given in the next section.

3.1 The Effects of the Permutations π1 and π2

The two permutations in the initialization stage of DECIM provide high non-
linearity to the initialization process. However, the permutations also cause some
bits in the LFSR to be updated in an improper way. This has a very negative
impact on the security of DECIM.

The permutation π1 is poorly designed. In order to investigate the effects of
this permutation, we analyze a weak version by assuming that only this per-
mutation is used in the initialization process, i.e., we replace π2 with π1. The
values of 140 elements in the LFSR (s5,s6,. . . ,s58, and s100,s101,. . . ,s185) would
never be updated by the initialization process. For example, s21 would always
become s192+6. The details are given below. We trace the bit s21, after 16 steps
it becomes s16+5 due to the shift of the LFSR. Then it becomes s16+177 due to
the permutation π1. After 33 steps, it becomes s49+144 due to the shift of the
LFSR. Then it becomes s49+31 due to the permutation π1. After 26 steps, it
becomes s75+5 due to the shift of the LFSR. Then it becomes s75+177 due to the
permutation π1. This process repeats and at the end of the initialization process,
it becomes s192+6.

The first bit of the keystream is given as y192,2; it is computed as y192,2 =
f(s192+6, s192+8, s192+60, s192+116, s192+145, s192+181, s192+191). By tracing the
bits of the LFSR during the initialization process, we know that s192+6 ⇐ s21,
s192+8 ⇐ s23, s192+116 ⇐ s132, s192+145 ⇐ s160, s192+181 ⇐ s33. If every key and
IV pair is randomly generated, then according to the loading of the key and IV,
we know that s21, s23, and s33 take value 1 with probability 0.75. Thus according
to the definition of the function f , the value of y192,2 is 0 with probability 0.582.
So the first bit of the keystream is heavily biased. It shows that the effect of the
permutation π1 is terrible.

In DECIM, there are two permutations, π1 and π2. They are chosen according
to the output of ABSG: π1 is chosen with probability 1

3 , π2 with probability 2
3 .

Due to these two permutations, the number of bits that are not updated by the
initialization process is reduced to 54.5 (obtained by running 216 random key
and IV pairs). It shows that the permutations π1 and π2 which are chosen by
the output of ABSG have a negative impact on the security of DECIM.

3.2 Recovering K21

In the initialization process, we monitor the bit s21. s21 becomes s192+6 with
probability 1

27 . If s192+6 takes the value 0, and all the other bits in the LFSR at
the 192-th step are distributed uniformly, then the value of the first bit of the
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keystream is 0 with probability q0 = 56
128 . If s192+6 is takes the value 1, and all

the other bits of the LFSR at the 192-th step are distributed uniformly, then
the value of the first bit of the keystream is 0 with probability q1 = 72

128 . Denote
the probability that the value of the first keystream bit is 0 when s21 = 0 as p0,
and the probability that the value of the first keystream bit is 0 when s21 = 1
as p1. Then Δp = p1 − p0 = 1

27 × (q1 − q0) = 2−7.75. In an experiment we chose
220 random IVs for s21 = 0, and another 220 random IVs for s21 = 1, and we
found that Δp = 2−7.99. The experimental result confirms that the theoretical
result Δp = 2−7.75 is correct.

The above property can be applied to recover K21 as follows. Suppose that the
same key is used with N random IVs to generate keystreams. For the keystreams
with IV21 = 0, we compute the probability that the value of the first bit is
0, and denote this probability as p′0. For the keystreams with IV21 = 1, we
compute the probability that the value of the first bit is 0, and denote this
probability as p′1. If p′1 > p′0, we decide that K21 = 0; otherwise, K21 = 1. For
N = (Δp

2 )−2× 2 = 218.5, the attack can determine the value of K21 with success
rate 0.977.

3.3 Recovering K22K23 . . . K30

By tracing the bits in the initialization process, we notice that each s22+i is
mapped to s192+7+i with probability 1

27 for 0 ≤ i ≤ 8 (each of them is only
mapped by π1 at st+5). We know that s22+i = K22+i ∨ IV22+i , and s192+7+i,
s192+9+i are used in the generation of y193+i,2 for 0 ≤ i ≤ 10. In this section, we
show that the key bits K22K23K24 . . . K30 can be recovered from the keystream.

An attack similar to that given in Sect. 3.2 can be applied to recover the value
of K23 from the first keystream bits generated from 218.5 IVs.

In order to determine the values of K22 and K24, we observe the second bit of
the keystream. Due to the disturbance of the ABSG, y193,2 becomes the second
keystream bit with probability 0.5. Thus Δp′ = 0.5 ×Δp = 2−8.75. To recover
K22 and K24, we need 220.5 IVs in order to obtain a success probability of 0.977.

In order to determine the value of K25, we observe the second and third bits of
the keystream. y194,2 becomes the second bit of the keystream with probability
1
8 , and becomes the third bit of the keystream with probability 1

4 . Thus Δp′′ =
1
2×(1

4 + 1
8 )×Δp = 2−10.165. To recover K25, we need 222.3 IVs in order to obtain

a success probability of 0.977.
We omit the details of recovering K26 · · ·K29. To recover K30, we observe the

fifth, sixth and seventh bits of the keystream. y199,2 would become one of these
three bits with probability 77

256 . Thus Δp′′′ = 1
3×

77
256×Δp = 2−11.068. To recover

K29, we need 223.5514 IVs in order to obtain the success rate 0.977.

3.4 Recovering K9K10 . . . K19

By tracing the bits in the initialization process, we notice that each s9+i is
mapped to s192+166+i with probability 1

27 for 0 ≤ i ≤ 10 (each of them is only
mapped by π1 at st+5). We know that s9+i = K9+i ∨ IV9+i, and s192+166+i is
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used in the generation of y194+i,1 for 0 ≤ i ≤ 10. The attacks given in this section
are similar to those given above. We only illustrate how to recover K9 and K19.

In order to determine the value of K9, we observe the second bit of the
keystream. y194,1 becomes the second bit of the keystream with probability 1

4 .
Thus Δp(4) = 1

4 × Δp = 2−9.75. To recover K9, we need 222.5 IVs in order to
obtain a success probability of 0.977.

In order to determine the value of K19, we observe the 8-th, 9-th and 10-th
bits of the keystream. y204,1 becomes one of these three bits with probability
0.25966. Thus Δp(5) = 1

3 × 0.25966 × Δp = 2−11.28. To recover K19, we need
223.98 IVs in order to obtain a success probability of 0.977.

3.5 Recovering K32K33 . . . K46

By tracing the bits in the initialization process, we notice that each s144+i is
mapped to s192+16+i with probability 1

27 for 0 ≤ i ≤ 14 (each of them is only
mapped by π1 at st+5). We know that s144+i = K32+i ⊕ IV32+i, and s192+16+i

is used in the generation of y200+i,1 for 0 ≤ i ≤ 14.
Since for s144+i (0 ≤ i ≤ 14), the key bits are XORed with the IV bits, the

attack is slightly modified. For example, if the probability of 0 in the keystream
for IV32 = 0 is higher than the probability of 0 in the keystream for IV32 = 1,
then we predict that K32 = 0; otherwise, K32 = 1. We only illustrate how to
recover K32 and K46.

In order to determine the value of K32, we observe the sixth, seventh and
eighth bits of the keystream. y200,2 becomes one of these three bits with prob-
ability 0.28027. Thus Δp(6) = 1

3 × 0.28027×Δp = 2−11.17. To recover K32, we
need 223.755 IVs in order to obtain a success probability of 0.977.

In order to determine the value of K46, we assume that starting from the
fourth bit of the sequence y, each bit becomes the output with probability 1

3 .
Then y214,2 becomes one of the 12th, 13th, . . . , 18th bits of the keystream with
probability 0.16637. Thus Δp(7) = 1

7 × 0.16637×Δp = 2−13.145. To recover K29,
we need 226.482 IVs in order to obtain a success probability of 0.977.

The attacks given in this section recover 36 bits of the secret key with about
226 random IVs. For each IV, only the first 3 bytes of the keystream are needed
in the attack.

4 Improving the Key Recovery Attack

In the above attacks, we deal with the bits affected only by π1 at st+5 during
the initialization (the bits affected by π2 are not considered in the attack). In
order to improve the attack, we have used a computer program to trace all the
possibilities for each bit si (0 ≤ i ≤ 175) during the initialization process to
find out the distribution of that bit at the end of initialization. Then we have
searched the optimal attack for that bit. We have performed the experiment,
and found that 44 key bits can be recovered with less than 220 IVs, and only the
first 2 bytes of the keystream are required in the attack. The experiment results
are given in Table 1 in Appendix A.
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5 The Keystream of DECIM Is Heavily Biased

The nonlinear function f in DECIM is extremely simple. However this Boolean
function is balanced but not 1-resilent. Unfortunately the ABSG decimation
mechanism and the buffer in the output function fail to eliminate the bias ex-
isting in the output of f , hence the keystream is heavily biased.

5.1 The Keystream Is Biased

We start with analyzing the function f

f(xi1 , ..., xi7) =
∑

1≤j<k≤7

xij xik
.

If any bit of the input of f is equal to 1, then f outputs a ‘1’ with probability
72
128 ; otherwise it outputs a ‘1’ with probability 56

128 . Thus for f(xi1 , ..., xi7 ) and
f(x′

i1 , ..., x
′
i7 ), if one bit of one input is always equal to one bit of another input

(i.e., xia = x′
ib

where 0 ≤ a, b ≤ 7), then the outputs related to these two inputs
would be equal with probability ( 56

128 )2 + ( 72
128 )2 = 65

128 .
Note that yt,1 and yt,2 are computed as follows

yt,1 = f(st+1, st+32, st+40, st+101, st+164, st+178, st+187) ,

yt,2 = f(st+6, st+8, st+60, st+116, st+145, st+181, st+191) .

Denote A = {1, 32, 40, 101, 164, 178, 187}, B = {6, 8, 60, 116, 145, 181, 191}, and
denote each element of A by ai, and each element of B by bi (1 ≤ i ≤ 7). Then
yt,1 = yt+ai−aj ,1 and yt,2 = yt+bi−bj ,2 with probability 65

128 for 1 ≤ i, j ≤ 7 and
i �= j. And yt+bi−aj ,1 = yt,2 with probability 65

128 for 1 ≤ i, j ≤ 7. It shows that
the binary sequence y is heavily biased.

The heavily biased sequence y is used as input to the ABSG decimation
algorithm. It results in a heavily biased output. In the attack, we are interested in
those biases in y that would not be significantly reduced by the ABSG Algorithm.
Thus we will analyze the bias of (yt+3,1, yt,2), (yt+4,1, yt,2) and (yt,2, yt+2,2) to
find out how they affect the randomness of the output of ABSG.

For example, we analyze the effect of the bias of (yt+3,1, yt,2). yt+3,1 = yt,2 with
probability 65

128 . Denote the i-th bit of the sequence y by yi. Thus yi = yi+5 with
probability 129

256 . (yi, yi+5) would affect the bias of the output of the ABSG in two
approaches. One approach is that (yi, yi+5) becomes (zj , zj+2) with probability
1
4 (case 1: yi = yi−1, yi+2 �= yi+1 and yi+3 = yi+2; case 2: yi �= yi−1, yi+1 = yi−1
and yi+3 = yi+2). Thus for this approach, the bias of (yi, yi+5) causes zj = zj+2
with probability 513

1024 . Another approach is that if yi = yi−1 and yi+2 = yi+1,
then (yi, yi+4) becomes (zj , zj+2). Note that yi+4 = yi−1 with probability 129

256 ,
so zj = zj+2 with probability 129

256 . This approach happens with probability 1
4 .

Thus the bias of (yi, yi+5) causes zj = zj+2 with probability 513
1024 . Combining

these two approaches, we know that zj = zj+2 with probability 257
512 .

We continue analyzing the above example since the output of ABSG deci-
mation algorithm should pass through the buffer before becoming keystream.
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By analyzing the ABSG decimation algorithm and the buffer, we notice that
if (yi, yi+5) becomes zj = zj+2 after the ABSG decimation algorithm, then it
becomes z′k = z′k+1 with probability 0.6135 after passing through the buffer; if
(yi, yi+4) becomes zj = zj+2 after the ABSG decimation algorithm, then it be-
comes z′k = z′k+1 with probability 0.5189 after passing through the buffer. Thus
after passing through the buffer, the two approaches lead to z′k = z′k+1 with
probability 1

2 + 0.6135× 1
1024 + 0.5189× 1

1024 = 1
2 + 2−9.82.

A similar analysis can be applied to the biases resulting from (yt+4,1, yt,2) and
(yt,2, yt+2,2). The bias of (yt,2, yt+2,2) would cause z′k = z′k+1 with probability
about 1

2 + 2−10.84, and the bias of (yt+4,1, yt,2) would cause z′k = z′k+1 with
probability about 1

2 + 2−11.73.
Combining the effects of (yt+3,1, yt,2), (yt+4,1, yt,2) and (yt,2, yt+2,2), the bias

of z′k = z′k+1 is about 1
2 + 2−9.82 + 2−10.84 + 2−11.73 = 1

2 + 2−9.00.
Now we verify the above analysis with an experiment. We have generated

about 230 keystream bits from DECIM and found that z′k = z′k+1 is about
1
2 + 2−8.67. The experimental result shows that the theoretical result is close to
that obtained from the experiment.

5.2 Broadcast Attack

Due to the bias in the keystream, part of the message could be recovered from
the ciphertexts if the same message is encrypted many times using DECIM with
random key and IV pairs. A similar attack has been applied to RC4 by Mantin
and Shamir [5].

Suppose that one message bit is encrypted N times, and each keystream bit
is 0 with probability 1

2 + Δp with Δp > 0. Denote the number of ‘0’ in the
ciphertext bits by n0. If n0 > N

2 , we conclude that the message bit is equal to
‘0’; otherwise, we conclude that the message bit is equal to ‘1’. For N = Δp−2,
the message bit is recovered with a success probability of 0.977.

Thus if one message is encrypted about 218 times with different keys and IVs,
the message could be recovered from the ciphertexts.

6 Attacks on DECIM with 80-bit IV

The keystream generation algorithm of DECIM with an 80-bit IV is the same as
DECIM with a 64-bit IV. Thus DECIM with an 80-bit IV still generates heavily
biased keystream and it is vulnerable to the broadcast attack.

The initialization process of DECIM with an 80-bit IV is slightly different
from the 64-bit IV version. The key and IV are loaded into the LFSR as

si =

⎧⎨⎩0 for 0 ≤ i ≤ 31
Ki−32 ⊕ IVi−32 for 32 ≤ i ≤ 111
Ki−112 for 112 ≤ i ≤ 191

Similar to the attack given in Sect. 4, we have carried out an experiment to
compute the IVs required to recover each bit. With 221 IVs, 41 bits of the secret
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key could be recovered. Only the first 2 bytes of the keystream are required in
the attack. The experiment results are given in Table 2 in Appendix A.

7 Conclusion

In this paper, we have developed two attacks against the stream cipher DECIM.
The key could be recovered easily from the keystream with about 220 random
IVs. And the keystream of DECIM is heavily biased. The results indicate that
DECIM is very weak.

Recently, the designers of DECIM have proposed DECIM v2 [2]. DECIM v2
is much simpler than DECIM. The initialization of DECIM v2 uses 768 steps
of the keystream generation algorithm with the output bit being XORed to the
LFSR. The filter is changed and f is one-resilient. DECIM v2 is not vulnerable
to the attacks presented in this paper.
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A The Number of IVs Required to Break DECIM

Table 1 gives the number of IVs required to break DECIM with a 64-bit IV. 44
key bits can be recovered with less than 220 IVs. Table 2 gives the number of
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Table 1. Number of IVs required to recover the key bits (64-bit IV)

Affected Bits Amount of
IVs (Log2)

Affected Bits Amount of
IVs (Log2)

K0 s112 ⇒ s192+60 18.95 K1 s57 ⇒ s192+122 20.83
K2 s58 ⇒ s192+116 18.80 K3 s115 ⇒ s192+104 20.46
K4 s116 ⇒ s192+105 21.41 K5 s117 ⇒ s192+106 21.54
K6 s118 ⇒ s192+107 21.67 K7 s119 ⇒ s192+108 21.72
K8 s120 ⇒ s192+145 21.21 K9 s121 ⇒ s192+110 21.92
K10 s10 ⇒ s192+116 17.69 K11 s11 ⇒ s192+117 19.62
K12 s68 ⇒ s192+6 18.88 K13 s69 ⇒ s192+7 20.82
K14 s70 ⇒ s192+8 18.82 K15 s127 ⇒ s192+116 16.66
K16 s128 ⇒ s192+117 18.70 K17 s17 ⇒ s192+6 16.92
K18 s18 ⇒ s192+7 18.82 K19 s19 ⇒ s192+8 16.80
K20 s20 ⇒ s192+9 18.73 K21 s21 ⇒ s192+6 18.59
K22 s22 ⇒ s192+7 20.67 K23 s23 ⇒ s192+8 18.70
K24 s80 ⇒ s192+146 20.80 K25 s25 ⇒ s192+116 17.97
K26 s138 ⇒ s192+6 17.79 K27 s139 ⇒ s192+7 19.87
K28 s140 ⇒ s192+8 17.86 K29 s141 ⇒ s192+9 19.67
K30 s142 ⇒ s192+10 21.46 K31 s31 ⇒ s192+182 18.36
K32 s32 ⇒ s192+183 20.70 K33 s33 ⇒ s192+113 20.97
K34 s34 ⇒ s192+114 21.03 K35 s91 ⇒ s192+116 19.95
K36 s36 ⇒ s192+116 15.55 K37 s37 ⇒ s192+117 17.56
K38 s94 ⇒ s192+145 18.94 K39 s39 ⇒ s192+104 19.62
K40 s152 ⇒ s192+60 16.43 K41 s153 ⇒ s192+116 17.90
K42 s154 ⇒ s192+117 19.93 K43 s43 ⇒ s192+108 20.61
K44 s156 ⇒ s192+145 16.90 K45 s157 ⇒ s192+146 18.96
K46 s46 ⇒ s192+35 20.45 K47 s47 ⇒ s192+6 16.68
K48 s160 ⇒ s192+145 18.68 K49 s161 ⇒ s192+181 15.59
K50 s162 ⇒ s192+182 17.59 K51 s51 ⇒ s192+116 15.62
K52 s52 ⇒ s192+117 17.64 K53 s53 ⇒ s192+118 19.47
K54 s54 ⇒ s192+119 20.05 K55 s55 ⇒ s192+120 20.61
K56 s168 ⇒ s192+76 22.27 K57 s169 ⇒ s192+103 18.43
K58 s170 ⇒ s192+104 18.17 K59 s171 ⇒ s192+105 18.93
K60 s172 ⇒ s192+106 19.11 K61 s173 ⇒ s192+107 19.24
K62 s174 ⇒ s192+108 19.42 K63 s175 ⇒ s192+109 19.58

IVs required to break DECIM with an 80-bit IV. 41 key bits can be recovered
with less than 221 IVs. Only the first 2 bytes of the keystream are required in
the attack, and the amount of computation required in the attacks is negligible.

We explain Table 1 with K0 as an example. K0 is related to s112 since s112 =
K0 ⊕ IV0. s112 is mapped to s192+60 with probability 0.0318 (this probability
is obtained by tracing s112 through the initialization process). Thus K0 could
be recovered by observing the first bits of the keystreams. About 218.95 IVs are
required to achieve a success probability of 0.977.
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Table 2. Number of IVs required to recover the key bits (80-bit IV)

Affected Bits Amount of
IVs (Log2)

Affected Bits Amount of
IVs (Log2)

K0 s32 ⇒ s192+183 20.70 K1 s33 ⇒ s192+113 20.97
K2 s34 ⇒ s192+114 21.03 K3 s35 ⇒ s192+115 21.13
K4 s36 ⇒ s192+116 15.55 K5 s37 ⇒ s192+117 17.56
K6 s38 ⇒ s192+118 19.43 K7 s39 ⇒ s192+104 19.62
K8 s40 ⇒ s192+105 20.37 K9 s41 ⇒ s192+121 20.30
K10 s42 ⇒ s192+107 20.48 K11 s43 ⇒ s192+108 20.61
K12 s44 ⇒ s192+109 20.77 K13 s45 ⇒ s192+34 20.70
K14 s46 ⇒ s192+35 20.45 K15 s47 ⇒ s192+6 16.68
K16 s48 ⇒ s192+7 18.72 K17 s49 ⇒ s192+8 16.68
K18 s50 ⇒ s192+9 18.66 K19 s51 ⇒ s192+116 15.62
K20 s52 ⇒ s192+117 17.64 K21 s53 ⇒ s192+118 19.47
K22 s54 ⇒ s192+119 20.05 K23 s55 ⇒ s192+120 20.61
K24 s56 ⇒ s192+121 20.63 K25 s57 ⇒ s192+122 20.83
K26 s58 ⇒ s192+116 18.80 K27 s59 ⇒ s192+12 23.00
K28 s60 ⇒ s192+13 23.41 K29 s61 ⇒ s192+14 23.66
K30 s62 ⇒ s192+15 23.78 K31 s63 ⇒ s192+16 24.09
K32 s64 ⇒ s192+17 24.00 K33 s65 ⇒ s192+18 24.19
K34 s66 ⇒ s192+19 24.22 K35 s67 ⇒ s192+5 23.44
K36 s68 ⇒ s192+6 18.88 K37 s69 ⇒ s192+7 20.82
K38 s70 ⇒ s192+8 18.82 K39 s71 ⇒ s192+60 16.77
K40 s72 ⇒ s192+61 18.75 K41 s73 ⇒ s192+62 20.59
K42 s74 ⇒ s192+63 21.11 K43 s75 ⇒ s192+64 21.71
K44 s76 ⇒ s192+65 21.67 K45 s77 ⇒ s192+66 21.85
K46 s78 ⇒ s192+67 21.81 K47 s79 ⇒ s192+145 18.82
K48 s80 ⇒ s192+146 20.80 K49 s81 ⇒ s192+70 22.05
K50 s82 ⇒ s192+71 22.18 K51 s83 ⇒ s192+72 22.40
K52 s84 ⇒ s192+73 22.43 K53 s85 ⇒ s192+74 22.42
K54 s86 ⇒ s192+75 22.43 K55 s87 ⇒ s192+76 22.55
K56 s88 ⇒ s192+154 24.02 K57 s89 ⇒ s192+155 24.04
K58 s90 ⇒ s192+156 24.15 K59 s91 ⇒ s192+116 19.95
K60 s92 ⇒ s192+117 21.97 K61 s93 ⇒ s192+118 23.77
K62 s94 ⇒ s192+145 18.94 K63 s95 ⇒ s192+146 20.91
K64 s96 ⇒ s192+147 22.79 K65 s97 ⇒ s192+148 23.33
K66 s98 ⇒ s192+149 23.77 K67 s99 ⇒ s192+150 23.64
K68 s100 ⇒ s192+63 22.65 K69 s101 ⇒ s192+4 23.12
K70 s102 ⇒ s192+65 23.66 K71 s103 ⇒ s192+178 23.80
K72 s104 ⇒ s192+179 23.77 K73 s105 ⇒ s192+145 20.94
K74 s106 ⇒ s192+181 18.24 K75 s107 ⇒ s192+182 19.97
K76 s108 ⇒ s192+183 21.81 K77 s109 ⇒ s192+6 20.86
K78 s110 ⇒ s192+7 22.83 K79 s111 ⇒ s192+8 20.94
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Abstract. We study a recently proposed design approach of Feistel
structure which employs diffusion matrices in a switching way. At ASI-
ACRYPT 2004, Shirai and Preneel have proved that large numbers of
S-boxes are guaranteed to be active if a diffusion matrix used in a round
function is selected among multiple matrices. However the optimality of
matrices required by the proofs sometimes pose restriction to find ma-
trices suitable for actual blockciphers. In this paper, we extend their
theory by replacing the condition of optimal mappings with general-type
mappings, consequently the restriction is eliminated. Moreover, by com-
bining known lower bounds for usual Feistel structure, we establish a
method to estimate the guaranteed number of active S-boxes for arbi-
trary round numbers. We also demonstrate how the generalization en-
ables us to mount wide variety of diffusion mappings by showing concrete
examples.

Keywords: blockcipher, Feistel structure, optimal diffusion mappings.

1 Introduction

A Feistel structure is one of the most widely used and best studied structures
for the design of blockciphers. It was proposed by H. Feistel in the early 1970s;
subsequently the structure was adopted in the well-known blockcipher DES [6,7].
During the 30-year of modern blockcipher research history, extensive studies
have been made on Feistel structure [10, 13, 16]. Currently, many well-known
blockciphers employ the design of Feistel structures [1, 12, 15, 17].

On the other hand, an optimal diffusion which is a linear function with the
maximum branch number is widely regarded in the recent blockcipher research;
the concept is used in the design of AES/Rijndael and many other cryptographic
primitives [2, 17, 14, 5]. However the effect of an optimal diffusion especially in
Feistel structure is still needed to be studied.

In 2004, Shirai and Shibutani proposed a novel design concept of Feistel struc-
ture which employs plural optimal diffusion matrices in a switching manner.
In their design approach, a diffusion matrix in the round function is switched
among multiple matrices in a predefined order [21]. We call the matrix switching
technique Diffusion Switching Mechanism (DSM for short) in this paper. Then,
Shirai and Preneel has first shown the theoretical explanation of the effects of the
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DSM [19]. They proved that the immunity against both differential and linear
cryptanalysis would be strengthened due to the fact that difference and linear
mask cancellation in characteristics caused by a small number of active S-boxes
will never occur.

The theory of the DSM opened a new line of research on the Feistel structure.
However the optimality condition for matrices in their result sometimes pose
restriction to find various matrices suitable for actual blockciphers. For example,
our experimental result showed that there are no 8 × 8 matrices over GF (28)
satisfying both the optimality and certain practically favorable conditions.

In this paper, we generalize the DSM theory by eliminating the conditions of
diffusion mappings. This generalization enables us to estimate the guaranteed
number of active S-boxes for any types of diffusion mappings if we get knowledge
of branch numbers of the mappings. Let a minimum differential branch number
among all diffusion matrices used in the Feistel structure be BD

1 , and let a
smallest differential and a linear branch number of diffusion matrices composed
of two alternate (i.e. i-th and i + 2-th) rounds be BD

2 , BL
2 , respectively, and

three alternate (i, i + 2, i + 4-th) rounds differential branch number be BD
3 .

Then, we prove novel extended result on the numbers of active S-boxes such that
R(BD

1 +BD
2 ) differential active S-boxes for 6R-round, R(2BD

1 +BD
3 ) for 9R-round

and RBL
2 linear active S-boxes for 3R-round are theoretically guaranteed.

In addition, we show how to estimate the lower bound of number of active
S-boxes for arbitrary number of rounds. Kanda has already shown the results
on lower bound of the number of active S-boxes for single matrix based ordinary
Feistel structure [9]. By combining our results and Kanda’s results, lower bounds
for any number of rounds can be calculated in a simple manner. Consequently,
we can make use of the proved lower bounds for designing Feistel ciphers which
hold desirable expected immunity against differential attack and linear attack [4].
We also confirm effects of the generalization by showing concrete example 8× 8
matrices for a 128-bit block Feistel structure.

This paper is organized as follows: in Sect. 2, we introduce some definitions
used in this paper. Previous works including ODM-MR design approach are
shown in Sect. 3. We prove in Sect. 4 the extended theorems regarding Diffusion
Switching Mechanism (DSM for short) as our main contribution. In Sect. 5, we
discuss the new design approach by presenting some examples and numerical
values. Finally Sect. 6 concludes the paper.

2 Preliminaries

In this paper, we treat a typical type of Feistel structure, which is called a
balanced Feistel. It is defined as follows [16].

Definition 1. (Balanced Feistel structure)
Let b be a block size, r be a number of rounds, and k be a size of round key.
Let ki ∈ {0, 1}k (1 ≤ i ≤ r) be round keys provided by a certain key schedul-
ing algorithm and xi ∈ {0, 1}b/2 be intermediate data, and let Fi : {0, 1}b/2 ×
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{0, 1}k → {0, 1}b/2 be an F-function at the i-th round. The algorithm of a bal-
anced Feistel structure is defined as : (1) Input x0, x1 ∈ {0, 1}b/2, (2) Calculate
xi+1 = Fi(xi, ki)⊕ xi−1 (1 ≤ i ≤ r), (3) Output xr , xr+1 ∈ {0, 1}b/2.

Then we define SP-type F-functions which are special constructions of a F-
function [18, 9].

Definition 2. (SP-type F-functions)
Let a length of a round key k = b/2. Let m be the number of S-boxes in a round,
and n be the size of the S-boxes, with mn = b/2. Let si,j : {0, 1}n → {0, 1}n

be the j-th S-box in the i-th round, and let Si : {0, 1}b/2 → {0, 1}b/2 be the
function generated by concatenating m S-boxes in parallel in the i-th round.
Let Pi : {0, 1}b/2 → {0, 1}b/2 be the linear Boolean function. Then SP-type F-
functions are defined as Fi(xi, ki) = Pi(Si(xi ⊕ ki)).

Note that we denote the intermediate variables zi = Si(xi ⊕ ki) in this paper.

Definition 3. ((m,n,r)-SPFS)
An (m, n, r)-SPFS is defined as an r-round Feistel structure with SP-type round
function using m n-bit S-boxes, and for which all si,j, Pi are bijective. An mn×
mn matrix Mi (1 ≤ i ≤ r) over GF (2) denotes a matrix representation of a
linear Boolean function Pi where Pi(x) = Mix.

Remark 1. Because of the bijectivity of S-boxes and linear function P in
(m, n, r)-SPFS, all F-functions are bijective.

We also give definitions of bundle weight and branch number [5].

Definition 4. (bundle weight)
Let x ∈ {0, 1}pn represented as x = [x0x1 . . . xp−1] where xi ∈ {0, 1}n, then the
bundle weight wn(x) is defined as

wn(x) = �{xi|xi �= 0} .

Definition 5. (Branch Number)
Let P : {0, 1}pn → {0, 1}qn. The branch number of P is defined as

Brn(P ) = min
a�=0

{wn(a) + wn(P (a))} .

Remark 2. The maximum branch number is Brn(P ) = q +1. If a linear function
has a maximum branch number, it is called an optimal diffusion mapping [2].
It is known that an optimal diffusion mapping can be obtained from maximum
distance separable (MDS) codes [5].

3 Previous Work

The precise estimation of the lower bound of the number of active S-boxes of
blockciphers has been known as one of the practical means to evaluate strength of
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ciphers, because the lower bound can be used to estimate weight distributions of
differential and linear characteristics [11,3,1,18,9,5]. It is shown that the weight
distribution is connected with the bound of the expected differential probability
or the linear hull probability by Daemen and Rijmen [4].

Recently, Shirai and Preneel proved the following corollary which can be used
to estimate the lower number of active S-boxes of a specially designed Feistel
structure [21, 19].

Definition 6. Let p be a positive integer, and A, B be p × p square matrices.
Then [A|B] denotes a p× 2p matrix obtained by concatenating A and B. Simi-
larly, the three matrices case is defined for [A|B|C].

Corollary 1. Let E be an (m,n,r)-SPFS blockcipher where r ≥ 6.
If [Mi|Mi+2|Mi+4] and [tM−1

j |tM−1
j+2] are optimal diffusion mappings for any i, j

(1 ≤ i ≤ r − 4, 1 ≤ j ≤ r − 2), respectively, any 3R consecutive rounds (R ≥ 2)
in E guarantee at least R(m + 1) differential and linear active S-boxes.

The design approach is called ODM-MR (Optimal Diffusion Mappings across
Multiple Rounds) design approach. To apply the corollary to practical Feistel
structures, we need to use at least three different matrices [19]. For example, let
A0, A1, A2 be the matrices which satisfy the following conditions.

1. Choose nm × nm matrices A0, A1, A2 over GF (2) satisfying the following
optimal diffusion conditions:
(a) Brn([A0|A1|A2]) = m + 1 ,
(b) Brn([tA−1

0 |tA−1
1 ]) = Brn([tA−1

1 |tA−1
2 ]) = Brn([tA−1

2 |tA−1
0 ]) = m + 1 .

2. Set these three matrices as M2i+1 = M2r−2i = A i mod 3, for 0 ≤ i < r in an
2r-round Feistel structure (m, n, 2r)-SPFS (Fig.1).

A0 A2 A1 A1 A2 A0 A0 A2 A1 A1 A2 A0

Fig. 1. Example Allocation of Matrices A0, A1, A2

The corollary states that the (m, n, 2r)-SPFS with the above settings guar-
antees 2(m + 1), 3(m + 1) and 4(m + 1) differential and linear active S-boxes in
6, 9 and 12 consecutive rounds, respectively. Fig. 2 illustrates the statement.

In this way, using multiple diffusion matrices in a switching way for round
functions makes Feistel structure stronger against differential attack and linear
attack. In this paper, we call the new design concept a Diffusion Switching
Mechanism (DSM) in general. From now on, we will extend the DSM to treat
not only optimal diffusion matrices but also any general type matrices.
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6-round: 2(m + 1) active S-boxes are guaranteed

6-round: 2(m + 1) active S-boxes are guaranteed

9-round: 3(m + 1) active S-boxes are guaranteed

12-round: 4(m + 1) active S-boxes are guaranteed

round
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Fig. 2. Guaranteed Active S-boxes by ODM-MR design

4 DSM for General Matrices

In this section, we show the extended theory of the DSM theoretically1. The
following two subsections are devoted to proving three theorems. To ease the
proofs, we first introduce an additional definition.

Definition 7. Consider differential characteristics or linear characteristics. Let
Di and Li denote the number of differential and linear active S-boxes in the i-th
round, respectively. These values are determined by the differences Δxi, Δzi or
by the linear masks Γxi, Γ zi. Since all S-boxes are bijective, we have the following
relations,

Di = wn(Δxi) = wn(Δzi) , Li = wn(Γxi) = wn(Γzi) ,

where wn(·) is the bundle weight as defined in Definition 4.

Remark 3. If we have a nonzero input difference for an (m, n, r)-SPFS, we obtain
the following conditions:

(d0) Di = 0 ⇒ Di−2 �= 0, Di−1 �= 0, Di+1 �= 0, Di+2 �= 0 ,
(d1) Di = 0 ⇒ Di−1 = Di+1 .

Similarly, if a nonzero input mask is given, we have

(l0) Li = 0 ⇒ Li−2 �= 0, Li−1 �= 0, Li+1 �= 0, Li+2 �= 0 ,
(l1) Li = 0 ⇒ Li−1 = Li+1 .

4.1 Proofs for the Lower Bound of Differential Active S-Boxes

In this section we prove Theorem 1 and Theorem 2; the proof is based on three
lemmata. Firstly we define a concept of minimum branch numbers for three
types of matrices.
1 The composition of the extended version of proofs almost follows that of proofs for

ODM-MR [19].
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Definition 8. For an (m, n, r)-SPFS, minimum branch numbers BD
1 , BD

2 and
BD

3 are defined as follows.

BD
1 = min

1≤i≤r
(Brn(Mi)) ,

BD
2 = min

1≤i≤r−2
(Brn([Mi|Mi+2])) ,

BD
3 = min

1≤i≤r−4
(Brn([Mi|Mi+2|Mi+4])) .

Obviously, the following inequality holds.

BD
1 ≥ BD

2 ≥ BD
3 . (1)

Note that these values can be derived from any given set of diffusion mappings
Mi (1 ≤ i ≤ r). Introducing these values into the proofs means that the con-
straint of optimal diffusion mappings will disappear. This is an essence of our
generalization.

Firstly, Lemma 1 shows relations between Di of (m, n, r)-SPFS and BD
1 .

Lemma 1. Let E be an (m, n, r)-SPFS blockcipher, then E has the following
condition (d2).

(d2) Di+1 �= 0 ⇒ Di + Di+1 + Di+2 ≥ BD
1 .

Proof. From the relation between the differences Δzi+1,Δxi and Δxi+2 in a 3
consecutive rounds, we obtain the following equation.

Mi+1Δzi+1 = Δxi ⊕Δxi+2 .

Since Mi has a branch number at least BD
1 we have

wn(Δzi+1) �= 0 ⇒ wn(Δzi+1) + wn(Δxi ⊕Δxi+2) ≥ BD
1 . (2)

Eq. (2) and the inequality wn(Δxi)+wn(Δxi+2) ≥ wn(Δxi⊕Δxi+2) yield (d2).
��

Remark 4. By combining Remark 3 and (d2), we obtain additional underlying
conditions (d3) and (d4).

(d3) Di = 0 ⇒ Di+1 + Di+2 ≥ BD
1 ,

(d4) Di+2 = 0 ⇒ Di + Di+1 ≥ BD
1 .

Eq. (d3) and (d4) mean that if a k-th round has no active S-boxes, any 2 con-
secutive rounds next to the k-th round always contain more than BD

1 active
S-boxes.

Next, we show the property of (m, n, r)-SPFS for two matrices case.

Lemma 2. Let E be an (m, n, r)-SPFS blockcipher, E has the following condi-
tions (d5), (d6).

(d5) Di+4 = 0 ⇒ Di + Di+1 + Di+3 ≥ BD
2 ,

(d6) Di = 0 ⇒ Di+1 + Di+3 + Di+4 ≥ BD
2 .
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Proof. From the relation between 5-round differences,

Mi+1Δzi+1 ⊕Mi+3Δzi+3 = Δxi ⊕Δxi+4 .

Then,

[Mi+1|Mi+3]
(

Δzi+1
Δzi+3

)
= Δxi ⊕Δxi+4 .

Since [Mi+1|Mi+3] has a branch number at least BD
2 , and from Remark 3, we

see that wn(Δzi+1) = 0 and wn(Δzi+3) = 0 will never occur simultaneously, we
obtain

wn(Δzi+1) + wn(Δzi+3) + wn(Δxi ⊕Δxi+4) ≥ BD
2 .

Assuming the cases Δxi = 0 or Δxi+4 = 0, we directly obtain (d5) and (d6). ��

By using the previously obtained conditions (d0)− (d6), we show the following
theorem for differential active S-boxes.

Theorem 1. Let E be an (m, n, r)-SPFS blockcipher, any 6 consecutive rounds
in E guarantee at least BD

1 + BD
2 differential active S-boxes.

Proof. Consider the total number of active S-boxes in 6 consecutive rounds from
the i-th round,

i+5∑
k=i

Dk = Di + Di+1 + Di+2 + Di+3 + Di+4 + Di+5 .

If Di+1 �= 0 and Di+4 �= 0, the condition (d2) guarantees that Di+Di+1+Di+2 ≥
BD

1 and Di+3 + Di+4 + Di+5 ≥ BD
1 . Therefore we obtain

∑i+5
k=i Dk ≥ 2BD

1 .
If Di+1 = 0,

i+5∑
k=i

Dk = Di + Di+2 + Di+3 + Di+4 + Di+5 .

From (d1),
i+5∑
k=i

Dk = 2 ·Di+2 + Di+3 + Di+4 + Di+5

= (Di+2 + Di+3) + (Di+2 + Di+4 + Di+5) .

From (d3) and (d6),
i+5∑
k=i

Dk ≥ BD
1 + BD

2 .

The case of Di+4 = 0 is proved similarly from (d1), (d4) and (d5). Combining
with (1), we have shown that any 6 consecutive rounds in E guarantee at least
BD

1 + BD
2 differential active S-boxes. ��

Immediately, we obtain the following corollary.
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Corollary 2. Let E be an (m, n, r)-SPFS blockcipher. Any 6R consecutive
rounds in E guarantee at least R(BD

1 + BD
2 ) differential active S-boxes.

The result is compatible with ODM-MR by substituting m + 1 for BD
1 and BD

2 .
Next, we show the property of (m, n, r)-SPFS for three matrices case.

Lemma 3. Let E be an (m, n, r)-SPFS blockcipher. E satisfies the following
condition (d7).

(d7) Di = Di+6 = 0 ⇒ Di+1 + Di+3 + Di+5 ≥ BD
3 .

Proof. First, from the difference relation in 7 consecutive rounds, we obtain

Mi+1Δzi+1 ⊕Mi+3Δzi+3 ⊕Mi+5Δzi+5 = Δxi ⊕Δxi+6 .

Then,

[Mi+1|Mi+3|Mi+5]

⎛⎝Δzi+1
Δzi+3
Δzi+5

⎞⎠ = Δxi ⊕Δxi+6 .

Since [Mi+1|Mi+3|Mi+5] has a branch number at least BD
3 , and from Re-

mark 3, wn(Δzi+1), wn(Δzi+3), and wn(Δzi+5) cannot be simultaneously 0, we
get that

wn(Δzi+1) + wn(Δzi+3) + wn(Δzi+5) + wn(Δxi ⊕Δxi+6) ≥ BD
3 .

By assuming Δxi = 0 and Δxi+6 = 0, we derive the condition (d7). ��
From the additional condition (d7), we derive the following theorem.

Theorem 2. Let E be an (m, n, r)-SPFS blockcipher. Any 9 consecutive rounds
in E guarantee at least 2BD

1 + BD
3 differential active S-boxes.

Proof. Consider the total number of active S-boxes in 9 consecutive rounds,
i+8∑
k=i

Dk = Di + Di+1 + Di+2 + Di+3 + Di+4 + Di+5 + Di+6 + Di+7 + Di+8 .

If Di+1 �= 0 then Di + Di+1 + Di+2 ≥ BD
1 from (d2), and Lemma 1 guarantees

that the sum of the remaining 6 consecutive rounds
∑i+8

k=i+3 Dk ≥ BD
1 + BD

2 .
Consequently

∑i+8
k=i Dk ≥ 2BD

1 +BD
2 . Similarly, if Di+7 �= 0, at least 2BD

1 +BD
2

active S-boxes are guaranteed.
If Di+1 = Di+7 = 0, we obtain

i+8∑
k=i

Dk = Di + Di+2 + Di+3 + Di+4 + Di+5 + Di+6 + Di+8 .

From (d1),
i+8∑
k=i

Dk = 2 ·Di+2 + Di+3 + Di+4 + Di+5 + 2 ·Di+6

= (Di+2 + Di+3) + (Di+2 + Di+4 + Di+6) + (Di+5 + Di+6) .
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From (d3), (d7) and (d4),

i+8∑
k=i

Dk ≥ BD
1 + BD

3 + BD
1 = 2BD

1 + BD
3 .

Combining with (1), we have shown that any 9 consecutive rounds in E guarantee
at least 2BD

1 + BD
3 differential active S-boxes. ��

Immediately, we obtain the following corollary.

Corollary 3. Let E be an (m, n, r)-SPFS blockcipher. Any 9R consecutive
rounds in E guarantee at least R(2BD

1 + BD
3 ) differential active S-boxes.

The result is compatible with ODM-MR by substituting m + 1 for BD
1 and BD

3 .

4.2 Proofs for the Lower Bound of Linear Active S-Boxes

In this subsection, we will show the proof of the guaranteed number of linear
active S-boxes of (m, n, r)-SPFS.

Definition 9. For an (m, n, r)-SPFS, minimum branch number BL
2 is defined

as follows.
BL

2 = min
1≤i≤r−2

(Brn([tM−1
i |tM−1

i+2])) .

Theorem 3. Let E be an (m, n, r)-SPFS blockcipher. Any 3 consecutive rounds
in E has at least BL

2 linear active S-boxes.

Proof. From the 3-round linear mask relation,

Γxi+1 = tM−1
i Γzi ⊕ tM−1

i+2Γzi+2 .

Then,

Γxi+1 = [tM−1
i |tM−1

i+2]
(

Γzi

Γzi+2

)
.

Since [tM−1
i |tM−1

i+2] has a branch number at least BL
2 , and from Remark 3,

wn(Γzi) and wn(Γzi+2) cannot be simultaneously 0, we obtain

wn(Γzi) + wn(Γxi+1) + wn(Γzi+2) ≥ BL
2 .

By using the notion of Li, this implies,

(l1) Li + Li+1 + Li+2 ≥ BL
2 .

��

As a result, we obtain the following corollary.

Corollary 4. Let E be an (m, n, r)-SPFS blockcipher. Any 3R consecutive
rounds in E guarantee at least RBL

2 linear active S-boxes.

The result is compatible with ODM-MR by substituting m + 1 for BL
2 in the

corollary 1.
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5 Discussion

5.1 Comparison of the Results

The statement of the corollaries 2 and 3 are independently applicable. Therefore,
it is possible that the both of these corollaries may produce different lowrbounds
for the same round numbers.

For example, consider an (m, n, 18R)-SPFS, 3R(BD
1 +BD

2 ) and 2R(2BD
1 +BD

3 )
differential active S-boxes are lower bounded by the corollary 2 and 3, re-
spectively. Letting two parameters of diffusion matrices α = BD

1 − BD
2 and

β = BD
2 −BD

3 , we obtain the gap of these lower bounds as,

3R(BD
1 + BD

2 )− 2R(2BD
1 + BD

3 ) = R(2(BD
2 −BD

3 )− (BD
1 −BD

2 ))
= R(2β − α)

If α = 2β, these lower bounds always coincide. If α �= 2β, different lower
bounds are produced at the 18R-th rounds. In such a case, we had better choose
a larger lower bound and use it to adjust lower bounds for the rounds after the
18-th rounds to get more precise estimation.

5.2 Interpolation for Skipped Rounds

The corollaries 2, 3 and 4 are not able to provide lower bounds for any num-
ber of rounds, because they are valid for only multiples of 3, 6, or 9 rounds.
Besides these corollaries, we use known results for Feistel structure to interpo-
late guaranteed lower bounds of the rounds which are not indicated by these
corollaries.

Firstly the following trivial conditions are described explicitly.

(1-round cond.) Di ≥ 0, Li ≥ 0 .

(2-round cond.) Di + Di+1 ≥ 1 , Li + Li+1 ≥ 1 .

Kanda has proved inequalities for 3 and 4-round for the single matrix based
normal Feistel structure, which can be converted into our settings as follows [9].

(3-round cond.) Di + Di+1 + Di+2 ≥ 2 .

(4-round cond.) Di + Di+1 + Di+2 + Di+3 ≥ BD
1 .

Additionally, we use the following 5-round condition. The proof will be appeared
in the appendix A.

(5-round cond.) Di + Di+1 + Di+2 + Di+3 + Di+4 ≥ BD
1 + 1 .

We make use of these lower bounds for less than 5 consecutive rounds for
differential active S-boxes and less than 2 consecutive rounds for linear active
S-boxes to obtain the lower bounds for arbitrary round numbers.
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5.3 Example Choice of Matrices

Here, we will demonstrate how to apply the generalized DSM theory to concrete
Feistel structure to enhance the immunity against differential attack and linear
attack by illustrating example matrices.

Let A0, A1 and A2 be 8 × 8 matrices over GF (28) with irreducible polynomial
x8 + x4 + x3 + x2 + 1 = 0 as follows:

A0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 9 2 5 8 1 4 1

1 1 9 2 5 8 1 4

4 1 1 9 2 5 8 1

1 4 1 1 9 2 5 8

8 1 4 1 1 9 2 5

5 8 1 4 1 1 9 2

2 5 8 1 4 1 1 9

9 2 5 8 1 4 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 6 8 9 6 9 5 1

1 1 6 8 9 6 9 5

5 1 1 6 8 9 6 9

9 5 1 1 6 8 9 6

6 9 5 1 1 6 8 9

9 6 9 5 1 1 6 8

8 9 6 9 5 1 1 6

6 8 9 6 9 5 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 6 4 8 4 5 8 9

9 1 6 4 8 4 5 8

8 9 1 6 4 8 4 5

5 8 9 1 6 4 8 4

4 5 8 9 1 6 4 8

8 4 5 8 9 1 6 4

4 8 4 5 8 9 1 6

6 4 8 4 5 8 9 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that we chose the matrix A0 from Whirlpool hashing function’s diffusion
matrix for reference 2 [8].

Let A′
0, A

′
1 and A′

2 be 64 × 64 matrices over GF (2) which are equivalent to
A0, A1 and A2, respectively. These matrices have the following properties 3.

1. Br8(A′
0) = Br8(A′

1) = Br8(A′
2) = 9 ,

2. Br8([A′
0|A′

1]) = Br8([A′
1|A′

2]) = Br8([A′
2|A′

0]) = 8 ,
3. Br8([A′

0|A′
1|A′

2]) = 8 ,
4. Br8([tA′−1

0 |tA′−1
1 ]) = Br8([tA′−1

1 |tA′−1
2 ]) = Br8([tA′−1

2 |tA′−1
0 ]) = 8 .

Property 1 indicates that each matrix is an optimal diffusion mapping itself
since the branch number is column number plus 1, but the properties 2-4 in-
dicate the combined matrices made from these matrices are not optimal. Our
experiment shows that there are no set of matrices satisfying the optimality of
property 2-4 within the following searching space.

– Irreducible polynomial is x8 + x4 + x3 + x2 + 1 = 0,
– Each element of matrices is in hex values {1,2,3,..,e,f} ∈ GF (28). They

can be represented as at most 4-bit value.

Note that the searching space applied in finding the Whirlpool’s diffusion matrix
by the designers is subset of our searching space, and the smallness of the matrix
elements is considered to contribute efficient implementations [20, 2].

Since we could not prepare optimal matrices in this setting, now we can make
use of the previously obtained generalized theorems for Feistel structures using
the above non-optimal matrices.

2 The matrix is transposed so as to adjust our form y = Mx not y = xM .
3 The notion Br8 is defined in section 2.



52 T. Shirai and K. Shibutani

5.4 Feistel Structures Using 2 or 3 Matrices in DSM

We consider two types of Feistel structures which belong to (8, 8, 2r)-SPFS. One
is using two matrices, the other is using three matrices. These both structures
can be used for 128-bit blockciphers due to m = n = 8. In appendix B, we will
show the cases for 64-bit block Feistel structure as well.

Let F128A be an (8, 8, 2r)-SPFS which employs matrices A0 and A1 as M2i+1
= M2r−2i = A i mod 2 for 0 ≤ i < r (see Fig 3 when r = 6).

A0 A1 A1 A0 A0 A1 A1 A0 A0 A1 A1 A0

Fig. 3. Allocation of Matrices A0, A1 in F128A

Let F128B be an (8, 8, 2r)-SPFS which employs matrices A0, A1 and A2 as
M2i+1 = M2r−2i = A i mod 3 for 0 ≤ i < r (see Fig 4 when r = 6).

A0 A2 A1 A1 A2 A0 A0 A2 A1 A1 A2 A0

Fig. 4. Allocation of Matrices A0, A1, A2 in F128B

In the above situation, we know that in F128A, BD
1 = 9, BD

2 = 8, BL
2 = 8,

and the corollaries 2, 4 and conditions in Sect.5.2 are effective. On the other
hand, in F128B, BD

1 = 9, BD
2 = 8, BD

3 = 8, BL
2 = 8, and the corollaries 2, 3, 4

and conditions in Sect.5.2 are effective.
The results of the guaranteed number of active S-boxes for F128A and F128B

with other additional information are shown in the Table 1. Columns labeled
by ’Dif.’ and ’Lin.’ contain lower bounds of differential and linear active S-
boxes, respectively. Additionally, we show the lower bounds for the weights of
the characteristics, which is simply calculated by multiplying the lower bound
and a index number of maximum differential or linear probability of S-boxes [4].
The considered S-boxes here have the maximum differential probability 2−6 and
2−5, maximal linear probability 2−6 and 2−4.39 for reference4.

These weights of characteristics can be used to practically estimate the
strength of the cipher against differential attack and linear attack [4]. In this
case, the weight value should be larger than 128 with reasonable margin, for
example 10-round F128A and 9-round F128B using 2−6 S-box and 12-round
F128A, F128B using the second S-box seem to hold minimum security. The dif-
ference between F128A and F128B is only the value of lower bound for 9-round
4 The value 2−6 is known best probability, 2−5 and 2−4.39 are experimentally obtained

values that can be achieved by randomly chosen S-boxes in reasonable trials [4].
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Table 1. Lower Bounds of Number of Active S-boxes and Weights of Characteristics

F128A F128B
Dif. DPmax DPmax Lin. LPmax LPmax speed Dif. Lin. speed

round 2−6 2−5 2−6 2−4.39
(cycles/byte) (cycles/byte)

1 0 0 0 0 0 0 - 0 0 -
2 1 6 5 1 6 4.39 - 1 1 -
3 2 12 10 8 48 35.12 - 2 8 -
4 9 54 45 8 48 35.12 - 9 8 -
5 10 60 50 9 54 39.51 - 10 9 -
6 17 102 85 16 96 70.24 - 17 16 -
7 17 102 85 16 96 70.24 - 17 16 -
8 18 108 90 17 102 74.63 - 18 17 -
9 19 114 95 24 144 105.36 - 26 24 -
10 26 156 130 24 144 105.36 11.38 26 24 11.65
11 27 162 135 25 150 109.75 - 27 25 -
12 34 204 170 32 192 140.48 13.60 34 32 14.11
13 34 204 170 32 192 140.48 - 34 32 -
14 35 210 175 33 198 144.87 15.75 35 33 16.37
15 36 216 180 40 240 175.6 - 36 40 -
16 43 258 215 40 240 175.6 17.93 43 40 18.70
17 44 264 220 41 246 179.99 - 44 41 -
18 51 306 255 48 288 210.72 19.88 52 48 20.64

and 18-round of differential active S-boxes. It implies that if 9-rounds immunity
against differential attack is important, usage of 3 matrices should be taken into
consideration.

Additionally, we mention a software implementation aspect. Software per-
formance (in cycles per byte) of a moderately optimized C implementation of
the F128A and F128B are measured on AMD Athlon64 4000+ (2.41GHz) with
Windows XP Professional x64 Edition and Visual Studio .NET 2003. To use the
lookup-table based implementation suitable for a 64-bit CPU, F128A requires a
32KB table (8 × 8-bit input × 64-bit output × 2 matrices) and F128B requires
a 48KB table (3 matrices) [2]. Though they need large tables, we confirm that
they achieve practically enough speed in this environment.

From the above observation, it is revealed that our novel results can be used
to theoretically estimate the strength of Feistel structures using DSM.

6 Conclusion

We provide extended theory for the guaranteed number of active S-boxes of Feis-
tel structure with DSM, which is realized by replacing the condition of optimal
mappings with general mappings. As a result, we established a simple tool to
evaluate any rounds of Feistel structures using DSM which employs arbitrary
types of diffusion matrices. The effects of the novel result are confirmed by eval-
uating certain Feistel structures with concrete example matrices.
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Appendix A

Here, we show the proof for the condition presented in the section 5.
By simply replacing the branch number symbol of the Kanda’s Corollary 1

in [9] with our symbol BD
1 , we obtain

Corollary 5. The minimum number of differential active S-boxes in any four
consecutive rounds satisfies

(i) Di + Di+1 + Di+2 + Di+3 ≥ BD
1 if and only if Di = Di+3 = 0 ,

(ii) Di + Di+1 + Di+2 + Di+3 ≥ BD
1 + 1 in the other cases.

Using the above corollary, we show the following lemma.

Lemma 4. The minimum number of differential active S-boxes in any 5 con-
secutive rounds satisfies

Di + Di+1 + Di+2 + Di+3 + Di+4 ≥ BD
1 + 1 .

Proof. If Di �= 0 or Di+3 �= 0, the inequality (ii) of the corollary 5 directly
implies the above inequality. If Di = Di+3 = 0, (i) implies Di+1 + Di+2 ≥ BD

1 .
By combining trivial condition Di+3+Di+4 ≥ 1, the desired condition is obtained
immediately. ��

Appendix B

Let A0, A1 and A2 be 4 × 4 matrices over GF (28) with irreducible polynomial
x8 + x4 + x3 + x + 1 = 0 as follows.

A0 =

⎛⎜⎜⎝
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎞⎟⎟⎠ , A1 =

⎛⎜⎜⎝
1 6 8 4

4 1 6 8

8 4 1 6

6 8 4 1

⎞⎟⎟⎠ , A2 =

⎛⎜⎜⎝
1 9 4 a

a 1 9 4

4 a 1 9

9 4 a 1

⎞⎟⎟⎠ .
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Table 2. Lower Bounds of Number of Active S-boxes and Weights of Characteristics

F64A F64B
Dif. DPmax DPmax Lin. LPmax LPmax speed Dif. Lin. speed

round 2−6 2−5 2−6 2−4.39
(cycles/byte) (cycles/byte)

1 0 0 0 0 0 0 - 0 0 -
2 1 6 5 1 6 4.39 - 1 1 -
3 2 12 10 5 30 21.95 - 2 5 -
4 5 30 25 5 30 21.95 - 5 5 -
5 6 36 30 6 36 26.34 - 6 6 -
6 10 60 50 10 60 43.9 - 10 10 -
7 10 60 50 10 60 43.9 - 10 10 -
8 11 66 55 11 66 48.29 - 11 11 -
9 12 72 60 15 80 65.85 - 15 15 -
10 15 80 75 15 80 65.85 17.52 15 15 17.53
11 16 86 80 16 86 70.24 - 16 16 -
12 20 120 100 20 120 87.8 20.52 20 20 20.52
13 20 120 100 20 120 87.8 - 20 20 -
14 21 126 105 21 126 92.19 23.66 21 21 23.66
15 22 132 110 25 130 109.75 - 25 25 -
16 25 150 125 25 130 109.75 26.17 25 25 26.17
17 26 156 130 26 136 114.14 - 26 26 -
18 30 180 150 30 180 131.7 29.03 30 30 29.03

Let A′
0, A

′
1 and A′

2 be 32 × 32 matrices over GF (2) which are equivalent to
A0, A1 and A2, respectively. These matrices have the following branch number
properties.

1. Br8(A′
0) = Br8(A′

1) = Br8(A′
2) = 5 ,

2. Br8([A′
0|A′

1]) = Br8([A′
1|A′

2]) = Br8([A′
2|A′

0]) = 5 ,
3. Br8([A′

0|A′
1|A′

2]) = 5 ,
4. Br8([tA′−1

0 |tA′−1
1 ]) = Br8([tA′−1

1 |tA′−1
2 ]) = Br8([tA′−1

2 |tA′−1
0 ]) = 5 .

Contrary to the 8 × 8 matrices cases, all of these conditions indicate that
the branch numbers are optimal. Note that we chose the matrix A0 is from
AES/Rijndael’s diffusion matrix for reference [5].

Let F64A and F64B be a (4, 8, 2r)-SPFS which employs the matrices A0, A1
and A2 same as in F128A and F128B, respectively. F64A and F64B can be used
for 64-bit blockciphers. The lower bounds of active S-boxes indicated by our
theory and weight of the characteristics are shown in Table 2.

We evaluate software performance (in cycles per byte) of a moderately op-
timized C implementation of the F64A and F64B are measured on an AMD
Athlon64 4000+ (2.41GHz) with Windows XP Professional x64 Edition and Vi-
sual Studio .NET 2003 (same as Table 1 environment). We confirmed that they
achieve practically enough speed in this environment. Moreover we expect that
F64A and F64B can be implemented efficiently on 32-bit processors, because
they require smaller tables than F128A and F128B do.
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1 Introduction

1.1 Motivations

While all well-known block ciphers are pseudo-random permutation families of
some set {0, 1}n where n = 64 or 128, there exists some applications where a
pseudo-random permutation of an arbitrary set is needed. For example, if one
wants to add an encryption layer within a system that stores its data in decimal
value, this encryption layer should encrypt decimal numbers without any expan-
sion, and this is not possible if a binary encoding of these numbers is encrypted
by a standard block cipher. Another example appears in some public-key cryp-
tography protocols, where one assumes the existence of some ideal permutation
or of some ideal cipher, that permutes elements of a set of cardinality other than
2n, for example the set of points of an elliptic curve.

Moreover, while there are many studies on the cryptographic properties of
boolean functions, and some studies on the cryptographic properties of addition
modulo 2n, no published results really looks into the generalization of these bi-
nary properties to the case where the characteristic is � > 2. A general framework
for differential and linear cryptanalysis for arbitrary characteristic may bring a
new insight into the understanding of these attacks.
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1.2 Previous Work

Black and Rogaway [3] have described how to design block ciphers that permute
arbitrary domains. Hence our problem already has a solution. However, their
techniques are modes of use of conventional ciphers, and we prefer to study the
feasibility of ad hoc designs.

The generalization of differential cryptanalysis to any abelian group is classi-
cal, and this generalization appears in the study of ciphers using addition modulo
2n [10,16,11] but also more exotic operations like the ⊗ in IDEA [10] or multi-
plication in Multiswap [4]. Nyberg [13] wrote one of the few papers that study
S-boxes over Fp with respect to differential cryptanalysis1. The generalization
of linear cryptanalysis is a new result, the only similar work being the Z4-linear
cryptanalysis by Parker and Raddum [15].

Our toy cipher we describe is based on a straightforward adaptation of Rijn-
dael [6], which is a typical example of key-alternating cipher [8].

1.3 Our Setting

To study the differential cryptanalysis of a function f : G → G′, we need to
provide both G and G′ with a structure of abelian group. The number of elements
in these groups will be denoted q and q′. The minimal integer � such that all
elements of these groups are of �-torsion (i.e. �.G = �.G′ = {0}) will be called
the characteristic of f and be a key parameter for linear cryptanalysis. We will
investigate more deeply the prime case, where G = G′ = Fp.

1.4 Outline of the Paper

Sections 2 and 3 explain how differential and linear cryptanalysis are generalized.
We give definitions and basic properties, then we show that piling-up theorems
exist, and therefore these techniques can be used to evaluate the security of
a whole cipher, based on the study of its non-linear components. We also show
that in the prime case, optimality is equivalent to f being a degree 2 polynomial.
Finally, we give an estimation of the non-linearity of a random function, with
respect to differential cryptanalysis.

In section 4 we describe our cipher TOY100. We explain the design criteria.
Because our toy cipher has non-prime characteristic � = 100, some technical
difficulties appear in the study of the linear part of the cipher. We solve the
problem for our specific example. Section 5 is a security analysis of TOY100.

2 Differential Cryptanalysis

2.1 Definition

Introduced by Biham and Shamir in [2], differential cryptanalysis is one of the
most useful techniques in modern cryptanalysis. The idea is to encrypt pairs of
1 But there is a small mistake in its proposition 7.
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plaintexts having a fixed difference, and to observe the differences between the
pairs of ciphertexts.

We recall that in our setting f is a function from G to G′, abelian groups of
cardinality q and q′. Let us define a q× q′ matrix Δ that describes the action of
f over differences by Δ(f)a,b = #{x|f(x + a)− f(x) = b}.

The complexity of an attack by differential cryptanalysis is of order 1/DP (f)
where the differential probability DP (f) = D(f)/q is defined by:

D(f) = max
(a,b)∈G×G′\{(0,0)}

Δ(f)a,b.

The exact value of D(f) being too expensive to compute, one usually computes
the exact values for the elementary functions used in f and combine these values
using piling-up theorems.

2.2 Properties Valid for Any Group

Differential probability for the inverse. If f : G → G is bijective, then
Δ(f−1) = tΔ(f) and therefore D(f−1) = D(f).

Proof. If f(x + a)− f(x) = b, then f−1(y) + a = f−1(y + b) with y = f(x). ��

Parallel execution. If f is the parallel execution of functions f1 and f2, then its
differential properties are easily deduced from the differential properties of f1 and
f2. More precisely, if we define f over G1 ×G2 by f(x, y) = (f1(x), f2(y)), then
Δ(f)(a1,a2),(b1,b2) = Δ(f1)a1,b1Δ(f2)a2,b2 and D(f) = max(q2D(f1), q1D(f2)).

Sequential execution. If f is the sequential execution of two functions, the
differential properties cannot be directly combined, because the image of a uni-
form distribution of input pairs with fixed difference does not necessarily have
uniform distribution for all output pairs with given difference. The distribution
can be made uniform by adding a random key, and ciphers using this design are
named Markov ciphers [10]. In this setting, we compose the function f : G → G′,
the translation in G′ that we name ADD KEY, and the function g : G′ → G′′

to obtain hK = g ◦ADD KEY(K) ◦ f .

Theorem 1
DP (hK) ≈ DP (f)DP (g)

if the following hypothesis hold:

– Stochastic equivalence. Δ(hK) does not depend heavily on K;
– Dominant characteristic for (a, c).

∑
b Δ(f)a,bΔ(g)b,c ≈ maxb Δ(f)a,bΔ(g)b,c.

– Independence. maxb Δ(f)a,bΔ(g)b,c ≈ maxb,b′ Δ(f)a,bΔ(g)b′,c.

Proof. Let φa(x, K) = (x, f(x) + K, f(x + a)− f(x)). The restriction of φa to
the set of solutions (x, K) of the equation hK(x+a)−hK(x) = c is a one-to-one
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mapping to the set of solutions (x, y, b) of the pair of equations g(y+b)−g(y) = c
and f(x+ a)− f(x) = b. Therefore the following formula over Δ matrices holds:∑

K∈G′
Δ(hK) = Δ(f)Δ(g).

Under the first hypothesis, D(hK) ≈ 1
q′ max(a,b) �=(0,0)

(
Δ(f)Δ(g)

)
a,b

. Now we
apply the second hypothesis to a pair (a, b) for which D(hK) ≈ 1

q′
(
Δ(f)Δ(g)

)
a,b

,
and then we apply the third hypothesis. ��

Lower bound. If D(f) = 1 then f is not bijective.

Proof. For any non-zero a,
∑

b∈G Δ(f)a,b = q, therefore all elements of the a-th
row of Δ(f) are equal to 1 and in particular Δ(f)a,0. ��

2.3 The Case of Fp

All functions in Fp can be interpolated by a polynomial which is unique if its
degree is less than p. The degree of f has some impact on D(f).

Proposition 1. (i)D(f) D(f) = p is equivalent to f linear or constant.
(ii) D(f) = p− 1 is impossible.
(iii) If f has degree d ≥ 2, then D(f) ≤ d− 1. In particular, if f is of degree 2,

then D(f) = 1.
(iv) For all d between 2 and p − 1, there are polynomials of degree d, such as

D(f) = d− 1.

Proof. (i): Let a �= 0 and b be such that Δ(f)a,b = p. Then f(x) = a−1bx+f(0).
(ii): Let a �= 0 and b be such that Δ(f)a,b = p− 1. There exists b′ �= b such that
Δ(f)a,b′ = 1. But 0 =

∑
x∈G f(x + a)− f(x) = (p− 1)b + b′ = b′ − b.

(iii): f(x + a)− f(x)− b is a polynomial of degree d− 1, so it has at most d− 1
roots.
(iv): We want to find f such that f(x + 1) − f(x) is a polynomial with d − 1
distinct roots. First, we choose any polynomial with d− 1 distinct roots then we
write the equality between the coefficients. We obtain a triangular system with
a non-zero diagonal, which implies it is invertible. ��

Conjecture for the lower bound

Conjecture 1. If D(f) = 1, then the degree of f is 2.

If we define the differential dfa(x) = f(x + a) − f(x), it has the property of
being a zero-sum function i.e.

∑
x∈G dfa(x) = 0. The hypothesis D(f) = 1 of our

conjecture is equivalent to ∀a �= 0, dfa is bijective.
In spite of this simple formulation, and a computer-aided verification that it

is true for p ≤ 19, we could not prove this conjecture. However, if the following
lemma holds, then this conjecture is true, as shown in appendix A.5.

Lemma 1 (Key lemma). If ϕ : Fp → Z satisfies
∑

y∈Fp
ϕ(y)2 = p − 1, and

∀x �= 0,
∑

y∈Fp
ϕ(y)ϕ(x + y) = −1 then ∀x, ϕ(x) ∈ {0,±1}.
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Average value. To find functions with high degree but low D(f), we can try
random functions. The following theorem evaluates the average value of D(f) and
its proof (in appendix A.1) contains upper bounds on the number of functions
with low or high D(f).

Theorem 2. Let us define z(p) = �Γ−1(p/(6 log p))� − 1 where as usual Γ (z +
1) = z!, then

lim
p→∞

Pr[z(p) ≤ D(f) ≤ 3z(p)] = 1

It is possible to decrease the constant 3 to 2 (the proof will be in the full version
of the paper). There is no reason that prevents this result to be applied to Z/qZ,
except perhaps the human’s lack of taste for lengthy computations. However, it
is impossible to have really precise results on this subject, unless one can explicit
the dependence between the differentials of a function. Assuming independence
is the usual way to deal with this problem (see for example [8]), but it is not
true for small p.

2.4 The Case of Z/qZ

The case where G is isomorphic to Z/qZ cannot be seen as a generalization of
the prime case for two reasons:

– there exist many functions that cannot be interpolated by polynomials
– even when this interpolation exists, the form of canonical interpolations is

tricky to define

The following theorem, proven in appendix A.2, shows that polynomials are a
negligible fraction of the functions over Z/qZ. For example, over Z/100Z there
are 2 · 1012 polynomials and 10200 functions.

Theorem 3. (i) Let q = p2 with p prime. Then the number of distinct polyno-
mials over Z/qZ is equal to p3p.

(ii) Let q = q1q2, with q1, q2 coprime. Then the number of distinct polymials over
Z/qZ is the product of this number over Z/q1Z and Z/q2Z.

If q = q1q2, with q1, q2 coprime, and if f is a polynomial, then its differential
properties need only to be studied over Z/q1Z and over Z/q2Z, as proved in
the following theorem. If it is not a polynomial, such a decomposition is not
possible.

Theorem 4. Let f ∈ Z/qZ[X ] and for i = 1, 2 fi ∈ Z/qiZ defined by fi(x) =
f(x) (mod qi). Then D(f) = D(f1)D(f2).

Proof. z → (z mod q1, z mod q2) is an isomorphism. ��
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3 Linear Cryptanalysis

3.1 Definition

Linear cryptanalysis is a known-plaintext attack that was discovered just after
differential cryptanalysis [18,17,12]. It is based on the study of linear approxima-
tions of the cipher. Linear cryptanalysis has been defined for boolean functions:
a linear approximation of a function f is described by two masks (a, b) which
select respectively bits of the input and of the output. If we denote by 〈a|x〉
the dot product of a and x, then linear approximations are given by comparing
〈a|x〉 − 〈b|f(x)〉 for random x and 〈a|x〉 − 〈b|y〉 for random x and y.

Linear cryptanalysis can be generalized to the study of the functions f : G →
G′, if there is some integer q such that all elements of both groups are of �-torsion.
This condition implies that both G and G′ are isomorphic to a product of cyclic
groups of order dividing �. Under this condition and using this isomorphism, we
can define scalar products over G and G′ with output in Z/�Z, denoted 〈·|·〉.
And finally we define the scalar product on G×G′ by 〈a, b|x, y〉 = 〈a|x〉 − 〈b|y〉.
The generalization of linear cryptanalysis can be done using two approaches.

Bias from random behavior. For any pair (a, b) ∈ (G, G′), let us define the dis-
tribution vector Λ0(f)a,b = (#{x ∈ G | 〈a, b|x, f(x)〉 = u})u∈Z/
Z. The random
behavior is given by Sa,b;u = 1

q′ #{(x, y) ∈ G×G′ | 〈a, b|x, y〉 = u}.
Therefore, if we define the bias ΛS(f)a,b;u = Λ0(f)a,b;u − Sa,b;u, then all ele-

ments of this matrix sum up to zero
∑

u ΛS(f)a,b;u = 0 and its greatest term is
a measure of non-linearity.

L(f) = max
a,b�=0,u

(ΛS(f)a,b;u)2

The complexity of the attack is expected to be of order 1/LP (f), where the
linear potential LP (f) = L(f)/q2.

Dual of differential cryptanalysis. The other approach generalizes the duality
between differential and linear cryptanalysis, as it has been done for example by
Chabaud and Vaudenay [5]. First, we need to define the characteristic function
of f , which is θf : G×G′ → {0, 1} such that θf (x, y) = 1 iff y = f(x). We also
define the convolutional product of two functions by (f∗g)(a) =

∑
x f(x)g(a+x).

As in Chabaud-Vaudenay, we can prove that (θf ∗ θf )(a, b) = Δa,b.
Let us choose a �-th root2 of unity ξ ∈ C and define the transform of φ : X →

Y by φ̂(a) =
∑

x φ(x)ξ〈a|x〉. Note that φ̂(−a) and φ̂(a) are complex conjugates,

that ˆ̂
φ(x) = #Y.φ(−x), and also that (̂φ ∗ φ) = |φ̂|2 and therefore is real-valued.

By duality, we define λ(f)a,b = ̂(θf ∗ θf )(a, b) and λ(f) = max(a,b) �=(0,0) λ(f)a,b.

2 Replacing −1 by a �-th root of unity is not a new idea. For example, it appeared as
footnote 4 of [1]. The fact that it is a different approach than computing the bias
was probably not noticed.
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Links between both approaches. In the binary case (i.e. � = 2) we have ξ = −1
and L(f)a,b;1 = −L(f)a,b;0 therefore θ̂f (a, b) = 2L(f)a,b;0 and λ(f) = 4L(f).
When � �= 2, no such simple relation exists. For example, in Z/7Z, let us take
f(x) = x6 + x3 and g(x) = x6 + x3 + x2. Then L(f) = L(g) = 9 but λ(f) =
39.96 · · · while λ(g) = 26.19 · · · . The list of all possible values for Z/5Z and
Z/7Z is in appendix A.4.

Both approaches give some insight into the security of a cipher. However, in the
following, we mainly consider the measure of bias, which is easier to implement
as a concrete cryptanalysis.

3.2 Properties Valid for Any Group

Main properties of Sa,b;u. When a, b are fixed, Sa,b;u is either 0 or another
fixed value denoted Sa,b. The set Ta,b = {u|Sa,b;u �= 0} is a subgroup of Z/�Z,
and q′ = Sa,b #Ta,b.

Proof. If 〈a, b|x0, y0〉 = u0 and 〈a, b|x1, y1〉 = u1, then 〈a, b|x0 + x1, y0 + y1〉 =
u0 + u1. Therefore, the sets of solutions of the equations 〈a, b|x, y〉 = u can be
translated one to another. ��

The inverse. If f : G → G is bijective, then ΛS(f−1)a,b;u = ΛS(f)a,b;−u and
therefore L(f−1) = L(f).

Parallel execution. If f is the parallel execution of functions f1 and f2 of same
characteristic, then bias matrices are combined by convolution. More precisely,
if we define f over G1×G2 by f(x, y) = (f1(x), f2(y)), then Λ0(f)(a1,a2),(b1,b2) =
Λ0(f1)a1,b1 ∗Λ0(f2)a2,b2 . If the sets Ta1,b1 and Ta2,b2 are equal, then this formula
also applies to ΛS .

Proof. Note that the hypothesis on the sets Tai,bi is mandatory. A simple coun-
terexample is G1 = G2 = Z/100Z, f1(x) = 2x, f2(x) = x, a1 = 5, a2 = 10,
b1 = b2 = 0 and 〈.|.〉 is the usual multiplication over Z/100Z.

To prove the formula for Λ0, we decompose 〈a, b|x, f(x)〉 = u into its com-
ponents 〈a1, b1|x1, f1(x1)〉 = v and 〈a2, b2|x2, f2(x2)〉 = u − v. Then we use the
following facts: SG1×G2

a,b;u =
∑

v SG1
a1,b1;u−vS

G2
a2,b2;v and

∑
v∈Ta,b

ΛG(f)a,b;v = 0. ��

Sequential execution. As for the differential cryptanalysis, we suppose we
have a Markov cipher. In this case, the following theorem, proven in appendix A.3
allows us to approximate the value of LP (hK), for hK = g ◦ADD KEY(K) ◦ f :

Theorem 5 (Piling-up for LP )

LP (hK) ≈ LP (f)LP (g)

if the following hypothesis hold:
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– Stochastic equivalence. ΛS(hK)a,c;u+〈b|K〉 does not depend heavily on K;
– Dominant trail and independence.

max
a,b,c,u

Ta,b=Tb,c

∣∣∣∣∣∑
v

ΛS(f)a,b;u−vΛS(g)b,c;v

∣∣∣∣∣ ≈ max
a,bf ,bg,c,u,v

∣∣ΛS(f)a,bf ;u−vΛS(g)bg,c;v
∣∣

Piling-up λ(f). This other approach also has composition results. For exam-
ple, we prove in appendix A.3 a piling-up lemma that shows that under some
appropriate hypothesis, λ(hK)/q2 ≈ λ(f)/q2λ(g)/q′

2.

3.3 The Case of Fp

Functions over Fp that have optimal resistance against linear cryptanalysis have
degree 2.

Theorem 6. Let G be a group of cardinality p, with p prime. If L(f) = 1, then
f can be interpolated by a polynomial of degree 2.

Proof. Let us work in PG(2, p), the projective plane over Fp. Let

E(f) = {x, f(x), 1|x ∈ Fp} ∪ (0, 1, 0).

E(f) is a p + 1-arc, i.e. a set of p + 1 points, no three of which are collinear.
According to the corollary of theorem 10.4.1, p.236, of [9], a p+1-arc in PG(2, p)
with p odd, is a conic. So

E(f) = {(x0, x1, x2)|a00x
2
0 + a11x

2
1 + a22x

2
2 + a01x0x1 + a02x0x2 + a12x1x2 = 0}

But (0, 1, 0) ∈ E(f), therefore a11 = 0.
And (a01,−a00, 0) ∈ E(f), therefore (a01,−a00, 0) ≡ (0, 1, 0). Therefore a01 = 0.
If a12 = 0, (0, f(0), 1) ∈ E(f) implies {(0, y, 1)|y ∈ Fp} ⊂ E(f). Therefore a12 is
not null and f is described by a degree 2 polynomial. ��

3.4 Relation with the Linear Cryptanalysis over Z/4Z

Matthew Parker and Haavard Raddum have suggested a generalization of linear
cryptanalysis over Z/4Z in [15]. Their method allows better approximations of
the S-boxes but the combination of those approximations is less efficient than
in classical linear cryptanalysis. Their method is a very particular case of ours,
where a 2n-bit string is seen as an element of (Z/4Z)n.

4 A Toy Cipher: TOY100

4.1 High-Level Description

In this section we aim at showing that it is possible to design a secure and
efficient block cipher that does not use words of n bits as a block.
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The structure of the cipher is quite similar to Rijndael [6,7]. It works on
blocks of 32 decimal digits, with keys of the same size. It is composed of 11
identical rounds, followed by a slightly different final round. A block A is divided
in 16 subblocks, each subblock being a number between 0 and 99. A block is
represented as a 4 × 4 matrix A = (ai,j)i,j∈{0,...,3}, of which each element is a
subblock. Round r (r = 0 . . . 10) is made out of the application of a key addition
layer σ[Kr] which adds modulo 100 a subkey to each subblock, followed by the
parallel application, denoted γ, of a certain S-box to each subblock, and finally
a linear function θ that mixes the subblocks. The last round has a final key
addition instead of the linear layer, so it is written as σ[K11] ◦ γ ◦ σ[K12].

4.2 Our Choice of Components

The S-Box. The S-box was chosen to satisfy D(f) ≤ 5 and L(f) ≤ 52. An
iteration of RC4-100 consists, being given an array of 100 numbers, and two
pointers i, j, to increment i, add t[i] to j (modulo 100) then exchange t[i] and t[j].
Starting from the permutation identity, i = 1, j = 0, we checked the permutation
every 100 iterations until we find a permutation satisfying the criteria on D(f)
and L(f). The permutation found is the 3 409 672th, after 340 967 200 iterations
of RC4-100.

This function has D(f) = 5, L(f) = 52 and λ(f) = 734.122 · · ·

0 1 2 3 4 5 6 7 8 9
0 0 67 12 32 30 53 34 37 71 38
10 42 94 58 95 78 35 6 22 36 81
20 61 93 43 72 25 27 15 69 90 47
30 1 91 84 86 24 79 66 40 10 33
40 59 8 11 48 28 76 73 82 39 51
50 45 13 97 74 9 7 52 88 62 96
60 23 29 3 4 75 56 5 64 17 49
70 68 77 80 55 85 92 44 21 98 50
80 20 31 65 83 19 57 41 70 18 99
90 89 60 46 26 63 14 87 16 54 2

The Diffusion Function. The diffusion function θ is composed of two similar
parts, MixColumns and MixRows.
First, we define a function Mix that takes 4 subblocks as an input:

Mix

⎛⎜⎜⎝
a1
a2
a3
a4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a4 + a1 + a2
a1 + a2 + a3
a2 + a3 + a4
a3 + a4 + a1

⎞⎟⎟⎠
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Mix is bijective and its inverse is:

Mix−1

⎛⎜⎜⎝
a1
a2
a3
a4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
S − a3
S − a4
S − a1
S − a2

⎞⎟⎟⎠
with S = (a1 + a2 + a3 + a4)/3.

MixColumns (resp. MixRows) consists in applying Mix to each column (resp.
row). Note that MixColumns and MixRows commute.

We define the subblock weight of a block B as the number of non-zero sub-
blocks, and we denote it as SW (B). The branch number is a measure of the
efficiency of a diffusion layer.

Definition 1. The branch number of a diffusion function f , BN(f) is defined
as:

BN(f) = min
B �=0

(SW (B) + SW (f(B))

Proposition 2
BN(θ) = 6

Proof. The first step of the proof enumerates the cases where there are one or
two non-zero subblocks in the input B, and show that there will be at least six
non-zero subblocks in θ(B); it is the same for θ−1(B). We conclude by observing
that if b21 = b22 = b23 = 50 and the other subblocks of B are 0, then C = θ(B)
is such that c12 = c22 = c32 = 50 and the other subblocks are 0. ��

The Key Schedule. The key expansion is very similar to the one of AES. As
always, additions are modulo 100. The first round key K0 is the key itself. For
the following rounds, we iterate as follows:

kr+1
0,j = kr

0,j + S(kr
3,(j+1) mod 4) + 3r (j ∈ {0, 1, 2, 3})

kr+1
i,j = kr

i,j + kr+1
i−1,j (i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3})

5 Security Analysis of TOY100

5.1 Differential Cryptanalysis

The best differentials we found rely on the following property of the linear layer:⎡⎢⎢⎣
δ −δ 0 0
−δ δ 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ θ−→

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 δ −δ
0 0 −δ δ

⎤⎥⎥⎦ (1)
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We estimated the probability of these differentials for n = 2, 3, 4, 5, 6. That is to
say, we computed

max
Δ0,Δn∈{1,...,99}

∑
Δ1,...,Δn−1∈{1,...,99}

Π(Δ0 → Δ1)2 · ... ·Π(Δn−1 → Δn)2

108n
, (2)

where Π(Δi → Δj) := Δ(f)Δi,Δj ·Δ(f)−Δi,−Δj . Remark that our choice of the
linear transform makes the“modified difference distribution table”Π particularly
important. There is always some “interaction”between the linear transform and
the S-box regarding resistance against differential (and linear) cryptanalysis, but
it is rarely so explicit.

Our results are given in Table 1. Note that the probabilities given are only
lower bounds, as other characteristics exist for the same differential; however
they have more active S-boxes, so we expect their contribution to the overall
probability to be small. Such n-round differential can be used in an attack on
n+1 rounds. This way we can attack up to 6 (and maybe 7) rounds. Details are
given in appendix B.1.

Table 1. Estimated probability for the best n-round differential

# Rounds n Best Probability
2 4.05 · 10−11

3 2.83 · 10−16

4 2.61 · 10−21

5 2.72 · 10−26

6 3.47 · 10−31

5.2 Linear Cryptanalysis

The best linear characteristic we found relies on the same type of observation as
the one used for differential cryptanalysis.

Namely, θ transforms mask

⎡⎢⎢⎣
α −α 0 0
−α α 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ into mask

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 α −α
0 0 −α α

⎤⎥⎥⎥⎥⎦ .

The piling-up lemma can be iterated, so for an (n + 1)-round characteristic
we have ∑

K1,...,Kn∈ (Z/100Z)16
ΛS(hK1,...,Kn)a,c;u+b1K1+...+bnKn

=
∑

v1,...,vn∈Z/100Z

ΛS(ρn+1)a,bn;u−v1−...−vn ·
ΛS(ρn)bn,bn−1;vn · . . . · ΛS(ρ1)b1,c;v1

(3)

where ρi = γ · θ (i �= n + 1) and ρn+1 = γ.
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This equation holds under the hypothesis that

Sa,bn = Sbn,bn−1 = ... = Sb1,c. (4)

Informally, equation (3) gives the average bias taken over all n-tuples of round
keys (the first and last round keys are not considered here; they only contribute
to the linear equation by a constant, which is unknown). Note that for the
equation to be useful for linear cryptanalysis, it is required that the characteristic
roughly equally holds for all keys. This hypothesis is common; it is known as
hypothesis of stochastic equivalence [10,14]. We computed the maximum of (3)
over all possible (n + 3)-uples (a, b1, ..., bn, c; u), for various numbers of rounds.
The maxima we found correspond to a = b1 = ... = bn = c = 10 and u = 0. We
note that condition (4) is satisfied. Detailed figures are given in Appendix B.2.
Taking the first and last round keys into consideration, the corresponding linear
approximation for n + 1 rounds of the cipher is

10 · (c33 + c44 − c34 − c43)− 10 · (p11 + p22 − p12 − p21)

=
�n+1

2 ∑
i=0

10(k2i
11 + k2i

22 − k2i
12 − k2i

21) +
�n+1

2 �∑
i=1

10(k2i−1
33 + k2i−1

44 − k2i−1
34 − k2i−1

43 ),

(5)

if r is odd; c33 + c44 − c34 − c43 must be replaced by c11 + c22 − c12 − c21 if it is
even.

5.3 Structural Attacks

The diffusion layer of our cipher operates on well-aligned blocks, which could
make it vulnerable to structural attacks. We explored truncated differential,
impossible differential, and square attacks. The best such attack we found is a
square-like attack, which can be used for a practical cryptanalysis of up to 4
rounds of TOY100. Details are given in appendix B.3.

6 Conclusion

In this paper we extended usual block cipher theory over Zn
2 to a more general

framework in which the input and output spaces are arbitrary abelian groups.
We studied quite extensively how differential and linear cryptanalysis apply in
this context. We observe that many concepts, such as differential and linear
parameters of a function or piling-up lemmas, can be generalized. Moreover,
constructing a cipher by using the classical key-alternating paradigm still seems
to be appropriate.

However several problems remain unsolved. The link between the differential
parameter D(f) and linear parameters L(f) and λ(f) should be investigated.
Constructing functions with good such parameters, without using some kind of
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random search, is an open problem as well. A formalization of the “special role”
of elements of small characteristic is also a goal for further research. Finally, our
toy cipher would deserve a more consequent cryptanalytic effort.
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A Proofs

A.1 Average Value of D(f) in the Prime Case

We prove theorem 2.
We note f<−1>(y) the preimage of y and we define the function bp (biggest

preimage) as bp(f) = maxy #f<−1>(y).
If df1 = dg1, then f − g is a constant. Moreover, bp(df1) ≤ D(f). Therefore,

the function f → (df1, f(0)) is injective from the set of functions with D(f) < k
to the product of the set of functions with bp < k by G.

We define Ck,p as
(

p
k

)
(p− 1)p−k.

Using the precedent remark and lemma 2 just below, we deduce that:

Pr[D(f) < k] ≤ p1−p#{f | bp(f) < k} ≤ p(1− Ck,p

pp
)p

z(p) satisfies z(p)! ≤ p
6 log p

< (z(p) + 1)!

Then Cz(p),p ∼ pp

ez(p)!

For p big enough, we have
Cz(p),p

pp ≥ 2 log p/p and therefore

lim
p→∞

Pr[D(f) < z(p)] = 0

If D(f) > 3z(p) there is an x such that bp(dfx) > 3z(p). But knowing x, dfx,
and f(0) determines uniquely f .

Therefore Pr[D(f) > 3z(p)] ≤ p2−p#{f | bp(f) > 3z(p)}.
Using lemma 2 just below, we obtain that Pr[D(f) > 3z(p)] ≤ p3−pC3z(p),p.
Using Stirling’s formula, we deduce:

lim
p→∞

Pr[D(f) > 3z(p)] = 0.
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Lemma 2. #{f | bp(f) = k} ≤ pCk,p and #{f | bp(f) < k} ≤ pp(1− Ck,p

pp )p.

Proof. First, we remark that #{f | the cardinality of the preimage of i = k} =
Ck,p

(i) If bp(f) = k then it exists i ∈ G such as #f<−1>(i) = k. We conclude using
the above remark and the fact that the cardinality of an union is upper-bounded
by the sum of cardinalities.

(ii) If bp(f) < k then for all y we have #{x | f(x) = y} < k, and also
#{f |#f<−1>(y) < k} ≤ pp −#{f |#f<−1>(y) = k} ≤ pp(1− Ck,p

pp ).

Those events are anti-correlated, i.e. if an element has a small preimage, then
the probability that the other elements have also a small preimage is smaller. So
we can bound the global probablity by the product of probabilities.

Therefore

#{f | bp(f) < k} ≤ pp

(
1− Ck,p

pp

)p

. ��

A.2 Counting Polynomial over Z/qZ

We prove theorem 3.

(i): Let P be a polynomial over Z/qZ. We can write P in the form: P (X) =
A(X)(Xp − X)2 + B(X)p(Xp − X) + C(X)(Xp − X) + pD(X) + E(X) with
A, B, C, D, E polynomials such as B, C, D, E have degree at most p − 1 and
coefficients between 0 and p− 1.

We want to prove that

∀x ∈ Z/qZ P (x) = 0 (mod p2) ⇔ C = D = E = 0

Only the direct sense is difficult. Clearly, E = 0 because the equation is also
true modulo p. We remark that Q(xp + y) = Q(y) (mod p).

Then, we have P (p + y) = C(y)(yp − y) − pC(y) + pD(y) (mod p2). And
0 = P (P + y)− P (y) = −pC(y) (mod p2). Therefore C = 0 and D = 0.

(ii) We define the function φ from Z/qZ[X ] to Z/q1Z[X ]×Z/q2Z[X ] as φ(P ) =
(P1, P2) such that Pi(x) = P (x) (mod qi). The function φ is well-defined and
bijective.

A.3 Piling-Up for Linear Cryptanalysis

Piling-up for bias-based approach. We prove theorem 5.
Let φa,c(x, K) = (x, f(x) + K, 〈a, c|x, hK(x)〉). For any b, φa,c is a bijection

from the set of solutions (x, K) of the equation 〈a, c|x, hK(x)〉 = u + 〈b|K〉
onto the set of solutions (x, y, v) of the equations 〈a, b|x, f(x)〉 = u − v and
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〈b, c|y, g(y)〉 = v. Therefore, for any b, we have a sort of generalized matrix prod-
uct

∑
K Λ0(hK) = Λ0(f)Λ0(g) where the elements of these matrix are multiplied

by convolution with respect to u. More precisely,∑
K∈G′

Λ0(hK)a,c;u+〈b|K〉 =
∑

v

Λ0(f)a,b;u−vΛ0(g)b,c;v.

We will prove now that the formula remains true translated to ΛS , for any b
such that Ta,b = Tb,c. Both sides are zero if u /∈ Ta,b, therefore we suppose that
u ∈ Ta,b.

First, we recall that
∑

v∈Ta,b
ΛS(f)a,b;v = 0. On one hand, we compute∑

v Λ0(f)a,b;u−vSb,c;v =
∑

v∈Tb,c
Λ0(f)a,b;u−vSb,c = q′ Sb,c, and also, because

Ta,b is a group and 〈c|y〉 ∈ Ta,b, we compute
∑

K Sa,c;u+〈b|K〉 =
∑

v Sa,b;v#{y |
〈c|y〉 = u− v} = Sa,b

∑
v∈Ta,b

#{y | 〈c|y〉 = u− v} = q′ Sa,b.
Therefore ∑

K∈G′
ΛS(hK)a,c;u+〈b|K〉 =

∑
v

ΛS(f)a,b;u−vΛS(g)b,c;v.

We need the additional hypothesis that there exists some b such that Ta,b =
Tb,c. This is true if G = G′ = G′′, because 〈a, a + c|x, y〉 = 〈a + c, c|x− y, x〉 and
therefore Ta,a+c = Ta+c,c. It follows that:

LP (hK) = max
a,c,u

(
ΛS(hK)a,c;u

q

)2

≈ max
a,b,c,u

Ta,b=Tb,c

(∑
v ΛS(f)a,b;u−vΛS(g)b,c;v

qq′

)2

≈ max
a,bf ,bg,c,u,v

(
ΛS(f)a,bf ;u−v

q

ΛS(g)bg,c;v

q′

)2

= LP (f)LP (g)

Piling-up for duality-based approach. λ(hK)a,c =
∑

x,z Δ(hK)x,zξ
〈a,c|x,z〉.

If Δ(hK) does not depend heavily on K, then Δ(hK)x,z ≈ 1
q′
∑

y Δ(f)x,yΔ(g)y,z.

If
y

Δ(f)x,yΔ(g)y,zξ
〈a,b|x,y〉ξ〈b,c|y,z〉 ≈ 1

q′
yf ,yg

Δ(f)x,yf Δ(g)yg,zξ〈a,b|x,yf〉ξ〈b,c|yg,z〉,

then λ(hK)a,c ≈
∑
x,z

1
q′

1
q′
∑

yf ,yg
Δ(f)x,yf

Δ(g)yg,zξ
〈a,b|x,yf〉ξ〈b,c|yg,z〉 which means

that λ(hK)a,c ≈ 1
q′2 λ(f)a,bλ(g)b,c and therefore

λ(hK)
q2 ≈ λ(f)

q′2
λ(g)
q2

A.4 A List of all Triples D(f), L(f), λ(f) for Small Values of p.

This is a table of all possible values for non affine functions and for p = 5
and 7:
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p D L λ example

5

1 1 5 x2

2 4 9.472 · · · x4 + 2x2

2 4 13.090 · · · x3

3 4 16.708 · · · x4 + x2

3 9 19.472 · · · x4

7

1 1 7 x2

2 4 13.097 · · · x6 + x4 + 6x2

2 9 14 x4

2 4 14.185 · · · x6 + 6x4 + x2

2 9 14.454 · · · x5 + x2

2 4 14.603 · · · x6 + x4

3 4 14.603 · · · x6 + 3x4

2 4 15.207 · · · x6 + x5 + 4x2

2 4 16.899 · · · x6 + x2

3 4 16.899 · · · x6 + 5x5 + x4 + x3

2 9 17.048 · · · x6 + x5 + x3 + 5x2

3 9 17.048 · · · x6 + 3x4 + 2x3

2 9 17.234 · · · x6 + x4 + x3 + 3x2

3 4 17.234 · · · x6 + 5x2

3 4 18.256 · · · x6 + 3x3 + x2

3 9 18.256 · · · x6 + x4 + 3x3

2 4 18.591 · · · x5 + x4

3 4 18.591 · · · x5 + 2x2

3 9 18.591 · · · x5 + x4 + 2x3

2 9 19.076 · · · x6 + 5x3 + 5x2

2 4 19.195 · · · x6 + 2x4 + 5x2

3 4 19.195 · · · x6 + 2x5 + x4 + x3

3 9 19.195 · · · x6 + 2x5 + 4x3

2 4 21.640 · · · x6 + 2x5 + x3 + x2

3 4 21.640 · · · x6 + 2x3 + x2

p D L λ example

7

2 4 22.476 · · · x3

3 9 22.878 · · · x6 + 4x5 + x3 + x2

4 9 22.878 · · · x6 + +2x4 + 2x3

2 4 23.481 · · · x6 + 3x3

2 4 23.481 · · · x6 + 2x5 + x4 + 2x2

2 4 24.689 · · · x6 + 2x5 + 3x4

3 4 24.689 · · · x6 + 2x4 + x3 + x2

4 4 24.689 · · · x6 + 3x5 + x3

3 9 24.921 · · · x6 + 3x4 + 6x2

4 9 24.921 · · · x6 + 3x3 + 3x2

3 9 25.591 · · · x4 + x3

4 9 25.591 · · · x5 + 3x3 + x2

3 9 26.195 · · · x6 + x4 + x3

3 4 26.799 · · · x6 + 2x5

4 16 29.207 · · · x6 + 3x4 + x3

3 4 30.183 · · · x4 + 3x2

4 4 30.183 · · · x5

3 9 31.689 · · · x6 + 2x4 + x2

4 9 31.689 · · · x6 + 2x5 + x4 + 4x2

4 16 32.256 · · · x6 + x4 + 2x3 + 5x2

3 4 32.628 · · · x6 + 2x3

4 4 32.628 · · · x6 + 3x5 + x2

3 9 35.073 · · · x6 + x4 + x3 + x2

4 9 35.073 · · · x6 + 2x5 + 2x3

4 16 39.024 · · · x5 + x3

3 9 39.963 · · · x6 + x3

5 9 39.963 · · · x6 + x5 + 5x3

5 16 41.169 · · · x6 + x4 + x2

5 25 44.481 · · · x6

A.5 In the Prime Case, D(f) = 1 ⇒ L(f) = 1

We will use the following lemma, for which we did not find a proof.

Lemma 1 (Key lemma). If ϕ : Fp → Z satisfies ∀x �= 0, (ϕ ∗ ϕ)(x) = −1,
and (ϕ ∗ ϕ)(0) = p− 1 then ∀x, ϕ(x) ∈ {0,±1}.

Let us fix f , a, and b. We denote η(u) = ΛS(f)a,b;u and σ = η ∗ η. Note
that

∑
u Sa,b;uξu = 0 and therefore θ̂f (a, b) =

∑
u η(u)ξu and also λ(f)a,b =∑

u,v η(u)η(v)ξu−v =
∑

v η(v)2 +
∑(
+1)/2

u=1 (ξu + ξ−u)σ(u) which is a real
number.

In general, the lower bound for D(f) is q/q′; if this lower bound is reached,
then the matrix Δ(f) if fully known: Δ(f)a�=0,b = q/q′, Δ(f)0,b�=0 = 0, and
Δ(f)0,0 = q, and therefore we can completely compute its transform: λ(f)a,b�=0 =
q, λ(f)a�=0,0 = 0, and λ(f)0,0 = q2.



74 L. Granboulan, É. Levieil, and G. Piret

Now, let us look at the case where G = G′ = Fp. If f is a polynomial of degree
2, we can check that D(f) = L(f) = 1. We want to prove that D(f) = 1 ⇒
L(f) = 1.

Let us suppose that D(f) = 1, then the duality implies that λ(f)a,b�=0 = p.
However, λ(f)a,b =

∑
v η(v)2+

∑
−1
u=1 σ(u)ξu. Since η(v) is an integer, the second

sum is also an integer. Because the (ξu)u=1...
−2 are linearly independent over Q,
the fact that

∑
u�=0 σ(u)ξu is an integer implies that all σ(u) are equal to some

common value σ. Therefore
∑

v η(v)2 = p + σ.
We also know that

∑
v η(v) = 0 and therefore 0 = (

∑
v η(v))2 =

∑
v η(v)2 +

2
∑

u σ(u) = p(σ + 1) and we proved that σ = −1 and σ(0) = p− 1.
We apply the key lemma to the function η, which means that ΛS(f)a,b;u =

{0,±1}, and therefore L(f) = 1.

B Security Analysis of TOY100

B.1 Differential Cryptanalysis

A Key Recovery Attack. The attack uses the differential described in Sec-
tion 5.1, followed by one round of key guess. More precisely, the differential is
followed by σ[Kn] · γ · σ[Kn+1]. The attack goes as follows:

(i) Encrypt N plaintext pairs (P, P + Δ0).
(ii) The corresponding ciphertext pairs that actually follow the differential are

equal on 12 words (of which the position is fixed). Consider only the pairs
satisfying this condition.

(iii) The key guess is performed on the 4 words of the last round key for which
the difference is non zero. A counter is set for each candidate. It is incre-
mented when the difference before the last S-box layer corresponding to
the candidate is θ(Δn).

(iv) After enough pairs have been considered, the most counted candidate is
selected. The remaining key material is retrieved using a similar attack or
by exhaustive key search.

Let T0 denote the event that 12 words of the output difference are 0, as specified
in step 2 of the attack. Let D be the event that the differential is followed. We
consider the 5-round differential, with D := Pr[D] � 3 · 10−26. Then we have

Pr[T0] = Pr[T0|D] · Pr[D] + Pr[T0|¬D] · Pr[¬D]

� 1 · 3 · 10−26 + 10−24 · (1− 3 · 10−26)

� 10−24

(6)

The right 4-subblock subkey will be counted N ·D � 3 ·10−26 ·N times. A wrong
4-subblock subkey will be counted N · P [T0] · 100−4 � 10−32 ·N times. Hence
the SNR of the attack is 3 · 106, and the subkey can be recovered using less than
2/D = 2/3 · 1026 pairs. The best way to retrieve the remaining part of the key
is exhaustive search.
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Applying the same attack for one more round is probably possible, but almost
requires the whole codebook. To the best of our investigations, more complex
variants of the attack do not significantly improve its efficiency.

Another Property of the Linear Layer. The following property of the linear
layer, which corresponds to the branch number bound, seems promising:⎡⎢⎢⎣

0 0 0 0
50 50 50 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ θ−→

⎡⎢⎢⎣
0 50 0 0
0 50 0 0
0 50 0 0
0 0 0 0

⎤⎥⎥⎦ (7)

However this pattern can be used only if Δ(f)50,50 is big enough. For the function
we selected it is 0. We note here the particular role played by Δ(f)50,50. The
existence of such “specially important” elements in the matrix Δ(f) is related to
the fact that we are working over a ring. Other elements of small characteristic
can be important as well for the same kind of reason. In Table 2 we give elements
of Δ(f) corresponding to input and output differences which are multiple of 25;
we observe that all of them are small.

Table 2. Values of Δ(f)a,b when a and b have small characteristic

(a, b) Δ(f)a,b

(25,25) 0
(25,50) 0
(25,75) 0
(50,25) 1
(50,50) 0
(50,75) 1
(75,25) 0
(75,50) 0
(75,75) 0

B.2 Linear Cryptanalysis

The following linear equation (equation 5 in section 5.2)

10 · (c33 + c44 − c34 − c43)− 10 · (p11 + p22 − p12 − p21)

=
�n+1

2 ∑
i=0

10(k2i
11 + k2i

22 − k2i
12 − k2i

21) +
�n+1

2 �∑
i=1

10(k2i−1
33 + k2i−1

44 − k2i−1
34 − k2i−1

43 ),

holds with probability 1/10 for a random permutation, and with probability
1/10 + ε for TOY100 parameterized by a random key, where |ε| is given in
Table 3. Therefore it can be used to build a distinguisher, by identifying the
value of 10 · (c33 + c44 − c34 − c43) − 10 · (p11 + p22 − p12 − p21) occurring the
most often, and comparing its frequency of apparition to a certain threshold, in
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Table 3. Estimated bias for the best (n + 1)-round linear characteristic

# Rounds n + 1 Best Bias
2 2.49 · 10−6

3 8.78 · 10−9

4 3.10 · 10−11

5 1.09 · 10−13

6 3.86 · 10−16

order to distinguish both probability distributions. The data complexity of the
attack is O(ε−2). This distinguisher can be used in a key-recovery attack, by
performing key guesses on the first and/or last round key. Up to 7 rounds of the
cipher can be attacked this way, and we are close to an attack on 8 rounds. The
data and time complexity are O(ε−2).

Finally, we note that relying on property (7) to build a characteristic is not
possible, as our S-box satisfies ΛS(f)50,50;0 = ΛS(f)50,50;50 = 0.

B.3 A Square-Like Attack

Our square-like attack aims at the cipher

P (i) σ[K1]·γ·θ−−−−−−→ A(i) σ[K2]·γ·θ−−−−−−→ B(i) σ[K3]·γ−−−−−→ C(i) θ−→ D(i) σ[K4]−−−−→ E(i) γ·σ[K5]−−−−−→ F (i)

It exploits batches of 1004 plaintexts with the following structure:

P (i) =

⎡⎢⎢⎢⎣
p
(i)
11 p

(i)
12 p

(i)
13 p

(i)
14

p
(i)
21 p

(i)
22 p

(i)
23 p

(i)
24

p
(i)
31 p

(i)
32 p

(i)
33 p

(i)
34

p
(i)
41 p

(i)
42 p

(i)
43 p

(i)
44

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
a(i) b(i) κ κ

c(i) d(i) κ κ
κ κ κ κ
κ κ κ κ

⎤⎥⎥⎦ ,

where (a(i), b(i), c(i), d(i)) takes every possible value. As the value of constants
does not matter for our attack, all κ’s denote constants that are not necessarily
equal.
Let us define:

Srs(x) := S(x + k1
rs)

m(i) := S11(a(i)) + S12(b(i))
n(i) := S21(c(i)) + S22(d(i))
o(i) := S11(a(i)) + S21(c(i))
p(i) := S12(b(i)) + S22(d(i))
x(i) := m(i) + n(i) = o(i) + p(i)



Pseudorandom Permutation Families over Abelian Groups 77

After the first round σ[k1] · γ · θ the data become:⎡⎢⎢⎣
x(i) x(i) p(i) o(i)

x(i) x(i) p(i) o(i)

n(i) n(i) S22(d(i)) S21(c(i))
m(i) m(i) S12(b(i)) S11(a(i))

⎤⎥⎥⎦+

⎡⎢⎢⎣
κ κ κ κ
κ κ κ κ
κ κ κ κ
κ κ κ κ

⎤⎥⎥⎦
It is then easy to see that the state B(i) after the second round σ[k2] · γ · θ is
such that b

(i)
11 , b

(i)
12 , b

(i)
21 , b

(i)
22 are still active (i.e. take every value equally often).

This property is preserved after passing through σ[k3] · γ. In order to push the
distinguisher further, we use the following property of θ again:

D(i) = θ(C(i)) ⇒ d
(i)
33 + d

(i)
44 − d

(i)
34 − d

(i)
43 = c

(i)
11 + c

(i)
22 − c

(i)
12 − c

(i)
21 (8)

So we have ∑
1≤i≤1004

e
(i)
33 + e

(i)
44 − e

(i)
34 − e

(i)
43

=
∑

1≤i≤1004

(d(i)
33 + k4

33) + (d(i)
44 + k4

44)− (d(i)
34 + k4

34)− (d(i)
43 + k4

43)

=
∑

1≤i≤1004

d
(i)
33 + d

(i)
44 − d

(i)
34 − d

(i)
43

=
∑

1≤i≤1004

c
(i)
11 + c

(i)
22 − c

(i)
12 − c

(i)
21

=
∑

1≤i≤1004

c
(i)
11 +

∑
1≤i≤1004

c
(i)
22 −

∑
1≤i≤1004

c
(i)
12 −

∑
1≤i≤1004

c
(i)
21 = 0,

where the last equality results from the fact that c
(i)
11 , c

(i)
12 , c

(i)
21 and c

(i)
22 are active.

By guessing 4 words k5
33, k

5
34, k

5
43, k

5
44 of the last round key we can check this

property. The probability of a false alarm is 1/100, so about 4 batches of 1004

plaintexts are necessary to retrieve this part of the key. Besides it is clear that
our analysis holds for any “square of four words” of the plaintext. Hence we
can retrieve the remaining 12 subblocks using the same method. The global
complexity is about 16 · 1004 chosen plaintexts. The offline work is of the same
order of magnitude.
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Abstract. We demonstrate an efficient method for computing a Gröbner
basis of a zero-dimensional ideal describing the key-recovery problem from
a single plaintext/ciphertext pair for the full AES-128. This Gröbner ba-
sis is relative to a degree-lexicographical order. We investigate whether the
existence of this Gröbner basis has any security implications for the AES.
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1 Introduction

Gröbner bases are standard representations of polynomial ideals that possess
several useful properties:

– given a Gröbner basis of an ideal I ⊂ R, we can efficiently decide whether a
polynomial f ∈ R lies in I

– for suitable term orders (e.g. lexicographical orders), the variety of the ideal
can be efficiently computed; this yields solutions for the polynomial system
induced by the ideal.

Usually, the Gröbner basis of a set of polynomials is computed using either
a variant of Buchberger’s algorithm [3] or using Faugere’s F4 [10] or F5 [11]
algorithm. These algorithms involve polynomials reductions which are costly.
In general the time and the space complexity of these algorithms is difficult to
predict. For polynomials in a large number of variables, these algorithms quickly
become infeasible.

Rijndael, the block cipher that has been selected as the Advanced Encryption
Standard (AES) in 2001, has become the industry-wide standard block cipher by
now. Its design, the wide-trail strategy, is considered state of the art. However,
Rijndael has from the beginning been critized for its mathematical simplicity
and rich algebraic structure [15,13,8]. On the other hand this criticism has not
yet substantiated into an attack; quite to the contrary, claims of an algebraic
attack using XSL [8] have recently been debunked [6].

For the Rijndael block cipher, two algebraic representations in the form of mul-
tivariate polynomial systems of equations have been proposed so far. Courtois
and Pieprzyk have demonstrated how to obtain overdefined systems of quadratic
� Supported by a stipend of the Marga und Kurt-Möllgaard-Stiftung.
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equations over GF (2), while Murphy and Robshaw have constructed an embed-
ding for the AES called Big Encryption System (BES) for which a system of
overdefined quadratic equations over GF (28) exists [16].

A representation considering the output of the S-Box as a polynomial expres-
sion of the input over GF (28) has thus far been neglected because the polyno-
mials in this case are of relatively high degree. Using this representation we can
describe the key recovery problem for the AES cipher with a key length of 128
bits as a system of 200 polynomial equations of degree 254 and 152 linear equa-
tions. In this paper we will show that by choosing an appropriate term order and
by applying linear operations only, we can generate a Gröbner basis for AES-128
from this system without a single polynomial reduction.

The structure of this paper is as follows: in Section 2 we establish the notation
used in this paper, in Section 3 we explain how to construct the Gröbner basis
for Rijndael, in Section 4 we study the cryptanalytic importance of our result.
Finally we summarize the impact of our result in Section 5 and conclude.

2 Notation

We assume the reader to be familiar with the description of AES as given in
[17]. In the following we restrict ourselves to AES-128, i.e. Rijndael with a block
and key size of 128 bits.

We will deviate from the standard representation by using a column vector
instead of a matrix for the internal state and the round keys. The elements in the
column vector are identified with the elements of the matrix in a column-wise
fashion by the following map:

ϕ :F 4×4→F 16,

⎛⎜⎝ s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

⎞⎟⎠ �→(s0,0, s1,0, . . . , s0,1, s1,1, . . .)
T (1)

Furthermore we define the 16 × 16 matrix P to be the permutation matrix
that achieves the exchange of elements in the column vector that is equivalent
to transposing the state matrix.

The above notation allows us to express the diffusion performed by the
MixColumns and ShiftRows operations as a single matrix multiplication.

Let xi,j denote the variable referring to the ith component of the state vector
after the jth round execution. By this definition the variables xi,0 are called
plaintext variables, correspondingly xi,10 are called ciphertext variables. All other
variables xi,j are called intermediate state variables; variables ki,j are called key
variables. We will also refer to ki,0 as cipher key variables.

The field F is the finite field GF (28) as defined for Rijndael. The polynomial
ring R is defined as

R := F [xi,j , ki,j : {0 ≤ i ≤ 15, 0 ≤ j ≤ 10}]
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3 Construction of the Gröbner Basis

In this section we will explain how to construct a degree lexicographical Gröbner
basis describing the AES key recovery problem step by step. To accomplish this
task we will first give a very minimal introduction to Gröbner bases; just enough
to follow this paper. We kindly refer the inclined reader to [9] and [2] for a more
gentle introduction to the topic.

3.1 Gröbner Bases

Some confusion regularly arises out of the expressions term and monomial. One
school calls a product of variables a term and the product of said term and a
coefficient a monomial; notably this is done in [2]. The other camp, e.g. the
authors of [9], uses term and monomial in an interchanged fashion. We adopt
the conventions of [2].

For a given ideal there usually exists more than one Gröbner basis. These are
relative to a so called term order, which we shall now define:

Definition 1 (Term order). A term order ≤ is a linear order on the set of
terms T (R) such that

1. 1 ≤ t for all terms t ∈ T (R)
2. for all terms s, t1, t2 ∈ T (R) whenever t1 ≤ t2 then st1 ≤ st2

The maximum element of the set of terms of a polynomial p under a fixed
term order ≤ shall be referred to as the head term of p, short HT(p).

We will now introduce two useful and widely used term orders. First, however,
we define two technicalities: For a term t = ve1

1 ve2
2 · · · vek

k ∈ T (R) we define the
exponent vector of t to be ε(t) = (e1, e2, . . . , ek) ∈ Nk

0 . The total degree of the
term t then is deg(t) =

∑k
i=1 ei.

Example 1 (lexicographical term order). For terms s, t we define s <lex t iff there
exists an i with 1 ≤ i ≤ k such that the first i− 1 components of ε(s) and ε(t)
are equal but the ith component of ε(s) is smaller than the ith component of
ε(t).

Example 2 (degree lexicographical term order). For terms s, t we define s <dlex t
iff either deg(s) < deg(t) or if deg(s) = deg(t) and s <lex t.

Remark 1. Note that there is more than one lexicographical order and more
than one degree lexicographical term order. Different orderings on the variables
induce different term orders!

The formal definition of a Gröbner basis does not give much insight about how
to construct one:

Definition 2 (Gröbner basis). Let I be an ideal of R. A set of polynomials
{g1, . . . , gm} ⊂ I is a Gröbner basis if the following holds:

〈HT (g1), . . . , HT (gm)〉 = 〈{HT (p) : p ∈ I}〉
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The first Buchberger criterion [4] is a basic test that is used in most implemen-
tations of Buchberger’s algorithm to avoid “useless” polynomial reductions. The
following theorem follows almost instantaneously from this criterion and gives an
important hint how a Gröbner basis can be attained without knowing anything
about polynomial reductions.

Theorem 1. Let G be a set of polynomials and H = {HT (f) : f ∈ G}. If all
elements in H are pairwise prime, then G is a Gröbner basis.

Proof. See [5].

A zero-dimensional ideal is an ideal that has a finite number of solutions over
the closure of the field. It usually is advantageous to have this property for
Gröbner basis computations. By using Corollary 6.56 of [2] we can determine
whether an ideal I is zero-dimensional. Below we state a reduced version of this
corollary:

Lemma 1. Let I be a proper ideal of F [x1, . . . , xn]. Then the following asser-
tions are equivalent:

– dim(I) = 0
– There exists a term order ≤ such that for each 1 ≤ i ≤ n there is gi ∈ I with

HT(gi) = xνi

i for some 0 ≤ νi ∈ N.

3.2 The S-Box

The S-Box used in Rijndael can be interpolated as a sparse polynomial over F :

σ : F → F, x �→ 05x254 + 09x253 + F9x251 + 25x247 + F4x239+
B5x223 + B9x191 + 8Fx127 + 63

(2)

whilst the interpolation polynomial of the inverse S-Box

σ−1 : F → F, x �→
254∑
i=0

cix
i (3)

is dense. This polynomial is given in Appendix A.

3.3 The Linear Transformation

The linear transformation of AES consists of two operations, ShiftRows and
MixColumns. We can perform the linear transform by multiplying the state col-
umn vector with a 16× 16-matrix D from the left. In the following, we calculate
D; however at the start of each round we apply the transposition matrix P since
it makes expressing the operations as matrices easier. At the end we multiply
with the matrix P to undo the initial transposition.

A matrix that shifts the elements of a 1× 4 row vector cyclically by an offset
t is of the following form:

DSRt =
(
Δi,(j−t) mod 4

)
∈ F 4×4 (4)
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where Δi,j is the Kronecker delta. The ShiftRows operation is equivalent to
multiplying by the matrix DSR:

DSR =

⎛⎜⎜⎝
DSR0 0 0 0

0 DSR1 0 0
0 0 DSR2 0
0 0 0 DSR3

⎞⎟⎟⎠ ∈ F 16×16 (5)

The MixColumns operation is applied to each row of the internal state. We
use the matrix DMC to transform the column vector equivalently:

DMC =

⎛⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞⎟⎟⎠⊗ I4 ∈ F 16×16 (6)

where ⊗ denotes the tensor product. Concatenation of the two operations in
the diffusion layer is achieved by multiplying the above matrices, yielding the
matrix D:

D = P ·DMC ·DSR · P (7)

The diffusion layer of the last round is missing the MixColumns transformation;
it will be described by the matrix D̃:

D̃ = P ·DSR · P (8)

This enables us to obtain the following vectorial representation of a system of
16 polynomial equations that holds for rounds 1 ≤ j ≤ 9 of the cipher:⎛⎜⎝ σ(x0,(j−1) + k0,(j−1))

...
σ(x15,(j−1) + k15,(j−1))

⎞⎟⎠+ D−1

⎛⎜⎝ x0,j

...
x15,j

⎞⎟⎠ = 0 (9)

For the last round we need to take the simplified diffusion layer and the final
key addition into account:⎛⎜⎝ σ (x0,9 + k0,9)

...
σ (x15,9 + k15,9)

⎞⎟⎠+ D̃−1

⎛⎜⎝ x0,10 + k0,10
...

x15,10 + k15,10

⎞⎟⎠ = 0 (10)

Choosing any degree lexicographical term order, either a term x254
i,j or a term

k254
i,j occurs as head term of each polynomial. We take note that none of the

head terms is a power of a plaintext nor of a ciphertext variable. Moreover all
of the head terms are pairwise prime. The variable order chosen will influence
whether the head term is a power of a key variable or of an intermediate state
variable.
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3.4 The Key Schedule

In order to obtain a Gröbner basis of both the cipher and the key scheduling
polynomials, we need to set up the key scheduling in a slightly different way.
Usually, the key scheduling expresses the elements of the round subkey of round
1 ≤ j ≤ 10 as a vector of polynomials in the key variables of the previous round
as follows: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0,j

k1,j

k2,j

k3,j

k4,j

...
k15,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0,j−1
k1,j−1
k2,j−1
k3,j−1
k4,j−1

...
k15,j−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ(k15,j−1)
σ(k12,j−1)
σ(k13,j−1)
σ(k14,j−1)

k0,j

...
k11,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γj−1
0
0
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

where the γ0, . . . , γ9 are the round constants. To make all head terms pairwise
prime (see also Section 3.5 on the term order chosen), we we have to proceed in
reverse order: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ−1(k0,j + k0,j−1 + γj−1)
σ−1(k1,j + k1,j−1)
σ−1(k2,j + k2,j−1)
σ−1(k3,j + k3,j−1)

k4,j + k4,j−1
...

k15,j + k15,j−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k15,j−1
k12,j−1
k13,j−1
k14,j−1

k0,j

...
k11,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 (12)

3.5 Choosing a Suitable Variable Order

The plaintext and ciphertext polynomials simply are of the form

xi,0 + pi pi ∈ F, 0 ≤ i ≤ 15 (13)

respectively
xi,0 + ci ci ∈ F, 0 ≤ i ≤ 15. (14)

Let A be the union of the left-hand side of equations (9), (10) and (12) for all
rounds 1 ≤ j ≤ 10 as well as the plaintext and ciphertext polynomials. Ordering
the variables as follows makes all head terms pairwise prime:

1. plaintext variables: x0,0 < . . . < x15,0
2. ciphertext variables: x0,10 < . . . < x15,10
3. key variables of all rounds in natural order: k0,0 < k1,0 < . . . < k15,10
4. intermediate state variables in their natural order

The degree lexicographical term order with the above variable order will be
in the following be referred to as <A. By Theorem 1, the set of polynomials A
is a Gröbner basis relative to this term order! Moreover, checking Lemma 1 we
verify that this ideal is zero-dimensional.
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4 Exploiting the Gröbner Basis

In the previous section we have shown how to obtain a zero-dimensional Gröbner
basis A for AES-128. In this section we explore the cryptanalytic impact of this
finding. To this end, we investigate the complexity of a Gröbner basis conversion
algorithm, find an invariant under the elimination of variables and explain why
the näıve way of applying the ideal membership test does not work for guessing
parts of the round key.

4.1 Complexity of Gröbner Basis Conversions

An obvious question is whether the Gröbner basis we have computed in the
previous section can be efficiently converted to a different, more suitable order,
i.e. a lexicographical order or an elimination order [1].

Two algorithms and variations of them are known for performing Gröbner
basis conversions, the FGLM algorithm [12] and the Gröbner Walk [7]. While
the FGLM algorithm as described in [12] only works for zero-dimensional ideals,
the Gröbner Walk naturally also works for ideals of positive dimension. Since we
have established that A is zero-dimensional, we are in a position to use FGLM
and give an estimate for its time complexity below.

An important characteristic of the ideal is the vector space dimension of
the residue class ring obtained when factoring the polynomial ring R by the
ideal I:

Definition 3. Let R := F [x1, . . . , xn]. Then the F -space dimension of the ideal
I ⊂ R shall be denoted by dim(R/I).

From Lemma 6.51 and Proposition 6.52 in [2] it is straightforward to deduce the
following lemma:

Lemma 2. Let ≤ be a term order on T (R) and G a Gröbner basis of I w.r.t.
≤. Then

dim(R/I) = # {t ∈ T (R) : s � t for all s ∈ HT(I)}
= # {t ∈ T (R) : s � t for all s ∈ HT(G)}

Applying the lemma to a Gröbner basis with univariate head terms yields the
following corollary:

Corollary 1. Let G = {g1, . . . , gn} be a Gröbner basis for the ideal
I ⊂ F [x1, . . . , xn] with head terms xd1

1 , . . . , xdn
n . Then dim(R/I) = d1 · · · · · dn.

This result is sufficient to give a bound on the complexity of the Gröbner basis
conversion using FGLM. The following theorem is a slightly rephrased version of
Theorem 5.1 in [12]:

Theorem 2. Let F be a finite field and R = F [x1, . . . , xn]. Furthermore G1 ⊂ R
is the Gröbner basis relative to a term order <1 of an ideal I, and D = dim(R/I).
We can then convert G1 into a Gröbner basis G2 relative to a term order <2 in
O(nD3) field operations.
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From Corollary 1 we conclude that the vector space dimension of the ideal gen-
erated by the Gröbner basis A is way too big for the FGLM algorithm be useful
for cryptanalytic purposes in this case:

dim(R/A) = 254200 ≈ 21598 (15)

For the Gröbner Walk, the running time strongly depends on the source and the
target term order. It is an open problem to give bounds on the time and space
complexity for this algorithm. The only bounds known are local bounds, namely
for adjacent term orders, due to Kalkbrener [14].

4.2 Elimination of Variables

In this section we establish that the dimension of the vector space of the ideal
remains invariant when eliminating certain variables. We first prove the following
more general statement:

Proposition 1. Let I ′ be a zero-dimensional ideal of R′ := F [x1, . . . , xn], I an
ideal of R := R′[xn+1] and I ′ = I ∩R′. Then dimR/I = dimR′/I ′ iff there exists
a polynomial g ∈ R′ such that xn+1 + g ∈ I.

Proof. W.l.o.g. we fix a lexicographical term ordering such that xn+1 is the
greatest variable. Let RT(I) and RT(I ′) be defined as follows:

RT(I) = {t ∈ T (R) : s � t for all s ∈ HT(I)}
RT(I ′) = {t ∈ T (R′) : s � t for all s ∈ HT(I ′)} ⊂ RT(I)

By Lemma 2, dimK(R/I) = #RT(I) holds. Thus it is sufficient to prove that
#RT(I) = #RT(I ′). Since xn+1 � t for t ∈ T (R′), the equality RT(I) = RT(I ′)
holds iff xn+1 ∈ HT(I), i.e. exists a g ∈ R′ for which xn+1 + g ∈ I. �

Corollary 2. For the set of polynomials A the dimension dim(R/I) is invariant
under the elimination of all variables except the round key variables ki,0 with
0 ≤ i ≤ 15 and ki,j with 0 ≤ i ≤ 3, 1 ≤ j ≤ 9.

Proof. By induction using Proposition 1.

So even eliminating a significant amount of variables does not reduce the com-
plexity of converting the Gröbner basis to a term order suitable for key recovery.

4.3 Taking the Field Equations into Account

Let R = F [x1, . . . , xn] be a polynomial ring over finite field F = GF (2m) with
q = 2m elements. For every element τ ∈ F the relation τq = τ holds; the equations

xq
i + xi = 0 (16)

are commonly called field equations. The set of roots of each of these equations is
the set of all elements of the field F . By adjoining the set of all field polynomials
F — the left-hand side of Equation 16 — to the set of polynomials A, we
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eliminate all points of the variety that only exist in the closure but not in the
ground field. The resulting set does not form a Gröbner basis, however.

What we have to do is to compute the intersection of two varieties; this is
usually achieved by computing the Gröbner basis of the sum of the corresponding
ideals. We have a set of polynomials A, describing AES which is a Gröbner basis
relative to the order <A, and a second set of polynomials F , which also forms
a Gröbner basis relative to the same order. It is however unclear how to exploit
the Gröbner basis property of the input.

4.4 Testing Keys

Gröbner bases were invented to solve the ideal membership problem. So why are
we not able to simply test whether a linear polynomial of the form

ki + C, C ∈ F (17)

— with C being a key variable guess — lies in the ideal? After all, this would
allow us to determine the key piecementally by guessing each byte.

Several problems present themselves here. First of all, the polynomial system
has solutions over the closure of the ground field, which means that we have to
test for a polynomial

g = p ·
∏

(ki + Cj)tj , tj ∈ N0, Cj ∈ F

instead, where the Cj denote candidate values for the key variable and p is a
product of irreducible non-linear polynomials. Moreover the dimension of the
ideal again plays an important role here: it is an upper bound on the number
of solutions of the corresponding polynomial system in the closure of the field.
Hence the degree of g is expected to be very large.

5 Implications

As far as the authors are aware at the time of writing this paper, the existence
of the above Gröbner basis has no security implications for AES. We conjecture
that methods similar to the one presented in this paper can be used to produce
total-degree Gröbner bases for many other iterated block ciphers – however we
like to point out that because of the high algebraic structure of Rijndael, it
makes for an excellent example.

6 Conclusion

We have demonstrated that by choosing a particular variable order, degree lexi-
cographical Gröbner bases for AES-128 can be constructed without polynomial
reductions. We have analyzed the implications of this finding and have shown
that several obvious approaches do not translate into a successful cryptanaly-
sis. It is an open problem whether the results contained in this paper can be
leveraged into an attack.



A Zero-Dimensional Gröbner Basis for AES-128 87

Acknowledgments

The third author acknowledges several insightful discussions with Frederik
Armknecht.

References

1. David Bayer and Michael Stillman. On the complexity of computing syzygies.
Journal of Symbolic Computation, 6(2/3):135–147, 1988.

2. Thomas Becker and Volker Weispfenning. Gröbner Bases – A Computational Ap-
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A Polynomial Interpolation of the Inverse S-Box of
Rijndael

σ−1 : F → F

x �→ 05x254+CFx253+B3x252+16x251+55x250+C0x249+7Ax248+01x247+

22x246+D8x245+6Bx244+A6x243+1Fx242+0Dx241+BCx240+49x239+

85x238+B4x237+1Bx236+5Ex235+BDx234+18x233+1Dx232+6Dx231+

C5x230+23x229+09x228+43x227+68x226+80x225+6Cx224+CCx223+

42x222+9Fx221+0Fx220+D2x219+3Bx218+2Cx217+5Fx216+BEx215+

AEx214+E4x213+93x212+8Bx211+CBx210+65x209+C0x208+1Ex207+

8Ex206+32x205+1Dx204+A5x203+76x202+A9x201+2Cx200+13x199+

05x198+60x197+FDx196+1Bx195+ABx194+64x193+C1x192+A8x191+

7Fx190+55x189+DBx188+ECx187+20x186+C4x185+DBx184+7Ex183+

92x182+80x181+A3x180+59x179+91x178+91x177+81x176+4Ex175+

11x174+DDx173+4Ex172+D3x171+E3x170+19x169+E7x168+03x167+

24x166+45x165+DAx164+EAx163+87x162+2Dx161+23x160+82x159+

38x158+B7x157+9Ex156+B3x155+2Ax154+3Ex153+1Cx152+ECx151+

C3x150+45x149+EDx148+D5x147+2Ax146+8Dx145+EDx144+37x143+

26x142+E0x141+BCx140+58x139+E2x138+6Cx137+24x136+55x135+

C7x134+AAx133+09x132+4Fx131+82x130+CAx129+10x128+EEx127+

1Ax126+2Ex125+40x124+27x123+81x122+92x121+B1x120+02x119+

8Bx118+87x117+7Fx116+B0x115+6Fx114+53x113+08x112+CBx111+

03x110+B0x109+DFx108+1Fx107+A7x106+A2x105+FEx104+8Ex103+

A8x102+E1x101+71x100+FFx99+55x98+5Ax97+1Dx96+9Dx95+

BFx94+E8x93+BAx92+6Bx91+72x90+E3x89+04x88+D9x87+

38x86+D3x85+B9x84+16x83+52x82+18x81+19x80+3Ex79+

9Ex78+03x77+56x76+A6x75+71x74+03x73+E4x72+86x71+

F5x70+B0x69+05x68+D1x67+10x66+E2x65+E5x64+CBx63+

B1x62+F2x61+8Ex60+C7x59+0Cx58+A7x57+BFx56+46x55+

0Bx54+01x53+C5x52+A3x51+50x50+77x49+EAx48+05x47+

65x46+8Ex45+89x44+D4x43+6Dx42+D3x41+75x40+65x39+

13x38+2Fx37+86x36+AFx35+7Cx34+7Bx33+85x32+C8x31+

E8x30+04x29+7Bx28+CFx27+2Fx26+8Ax25+9Ax24+3Dx23+

CFx22+21x21+39x20+D9x19+29x18+73x17+F6x16+23x15+

40x14+1Bx13+B2x12+C0x11+6Dx10+85x9+1Cx8+8Ax7+

2Cx6+BBx5+90x4+1Ex3+7Ex2+F3x1+52
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Abstract. HAVAL is a cryptographic hash function with variable di-
gest size proposed by Zheng, Pieprzyk and Seberry in 1992. It has three
variants, 3-, 4-, and 5-pass HAVAL. Previous results on HAVAL sug-
gested only practical collision attacks for 3-pass HAVAL. In this paper,
we present collision attacks for 4 and 5 pass HAVAL. For 4-pass HAVAL,
we describe two practical attacks for finding 2-block collisions, one with
243 computations and the other with 236 computations. In addition, we
show that collisions for 5-pass HAVAL can be found with about 2123

computations, which is the first attack more efficient than the birthday
attack.

Keywords: Hash function, collision, differential path, message
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1 Introduction

The hash function HAVAL was proposed by Zheng, Pieprzyk and Seberry at
Auscrypt ’92 [11]. It has a similar structure as the well-known hash functions such
as MD4 [3] and MD5 [4]. In Asiacrypt ’03, Rompay et al. gave a collision attack
for 3-pass HAVAL with complexity 229 computations [1]. The fastest attack on
3-pass HAVAL was presented by X.Y.Wang et al. [5], and it can find a collision
with time complexity less than 27 computations. In SCN 2004, Y.Yoshida et al.
showed that the compression functions of full 4-pass and 5-pass HAVAL are not
random and can be distinguished from a truly random function [2].

In this paper, we use the method of modular differential to analyze the full 4-
pass and 5-pass HAVAL. This method was presented early in 1997 by X.Y.Wang
[10], and formalized in Eurocrypt ’05 [6,7]. This type of cryptanalysis is powerful
to break the most prevailing hash functions such as MD4 [6], MD5 [7], SHA-0 [8]
and SHA-1 [9].
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In this paper, we provide two practical attacks for 4-pass HAVAL, with 243 and
236 HAVAL computations, respectively. In addition, we give the first theoretical
attack for 5-pass HAVAL with a complexity less than 2123 computations.

The rest of the paper is organized as follows: in Section 2, we give a brief de-
scription of HAVAL algorithm. In section 3, we introduce some basic conclusions
and notations used in our paper. The attack details are described in Sections 4,
5, and 6. Section 7 concludes the paper.

2 Description of HAVAL

In this section we provide a brief description of HAVAL. Since the structure of
4-pass and 5-pass version of HAVAL are essentially the same, here we only give
the description of 4-pass HAVAL. We use modified and simplified notations than
those in the original paper [11], and omit all non-relevant parts.

Although HAVAL supports digest sizes of 128, 160, 192, 224, and 256 bits,
the main algorithm computes 256-bit digests and the other sizes are supported
by post-processing the 256-bit hash value. Therefore for our purposes we may
consider HAVAL as a hash function with output size of 256 bits.

HAVAL is a Merkle-Damg̊ard hash function, which uses a compression func-
tion to digest messages. The compression function H of HAVAL takes a 1024-bit
message and a 256-bit initial value as input, and produces 256-bit hash value as
output. The message is represented as 32 message words, m0, m1, . . . , m31, each
consisting of 32 bits. The 256-bit initial value (or chaining value) is represented
as the following 8 words, a0, b0, . . . , and h0:

a0 = 0x243f6a88, b0 = 0x85a308d3, c0 = 0x13198a2e, d0 = 0x03707344,
e0 = 0xa4093822, f0 = 0x299f31d0, g0 = 0x082efa98, h0 = 0xec4e6c89.

4-pass HAVAL uses the following four boolean functions:

Pass Function
1 f1(x6, x5, x4, x3, x2, x1, x0) = x0 ⊕ x0x3 ⊕ x1x3 ⊕ x2x4 ⊕ x5x6

2 f2(x6, x5, x4, x3, x2, x1, x0) = x1x3⊕x4⊕x1x4⊕x0x5⊕x2x5⊕x1x2x5⊕
x1x6 ⊕ x0x1x6 ⊕ x2x6

3 f3(x6, x5, x4, x3, x2, x1, x0) = x2x3⊕x0x4⊕x5⊕x1x6⊕x0x2x6⊕x5x6

4 f4(x6, x5, x4, x3, x2, x1, x0) = x0x1 ⊕ x3 ⊕ x0x3 ⊕ x0x4 ⊕ x0x2x4 ⊕
x0x5 ⊕ x1x2x5 ⊕ x4x5 ⊕ x0x6 ⊕ x2x6 ⊕ x5x6 ⊕ x0x5x6

In HAVAL, the boolean functions are applied bitwisely to 32-bit input vari-
ables to produce 32-bit output values.

4-Pass HAVAL Compression Function. Given a 1024-bit message block
M = (m0, m1, ..., m31), the compressing process is as follows:
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1. Let (aa, bb, cc, dd, ee, ff, gg, hh) be the input of compressing process for M .
Initialize chaining variables (a, b, c, d, e, f , g, h) as (aa, bb, cc, dd, ee, ff,
gg, hh).

2. Perform the following 128 steps:
For j=1, 2, 3, and 4

For i = 0 to 31
p := fj(g, f, e, d, c, b, a)
r := (p ! 7) + (h ! 11) + mord(j,i) + kj,i

h := g, g := f , f := e, e := d, d := c, c := b, b := a, a := r
The operation in each step employs a constant kj,i(See ref.[11]). ! s rep-
resents the s bit rotation to the right. + denotes addition modulo 232. The
orders of message words in each pass can refer to [11].

3. Add a, b, c, d, e, f , g, h respectively to the input value, i.e.,
aa := a + aa, bb := b + bb, ... ..., hh := h + hh

4. H(M) = hh‖gg‖ff‖ee‖dd‖cc‖bb‖aa, where ‖ denotes the bit concatenation.

3 Some Basic Conclusions and Notations

In this section, we give several properties of the four boolean functions f1, f2,
f3, f4.

Proposition. Let y1 = f1(x6, x5, x4, x3, x2, x1, x0), and y1,xi = f1(x6, ..., xi+1,
¬xi, ..., x0), where ¬xi is the complement of the bit xi. Then

1. y1=y1,x0 ⇐⇒ x3=1.
y1 = x0 and y1,x0 = ¬x0 ⇐⇒ x3 = 0 and x1x3 ⊕ x5x6 ⊕ x2x4 = 0.
y1 = ¬x0 and y1,x0 = x0 ⇐⇒ x3 = 0 and x1x3 ⊕ x5x6 ⊕ x2x4 = 1.

2. y1=y1,x1 ⇐⇒ x3=0.
y1 = x1 and y1,x1 = ¬x1 ⇐⇒ x3 = 1 and x5x6 ⊕ x2x4 ⊕ x0x3 ⊕ x0 = 0.
y1 = ¬x1 and y1,x1 = x1 ⇐⇒ x3 = 1 and x5x6 ⊕ x2x4 ⊕ x0x3 ⊕ x0 = 1.

3. y1=y1,x2 ⇐⇒ x4=0.
y1 = x2 and y1,x2 = ¬x2 ⇐⇒ x4 = 1 and x1x3 ⊕ x5x6 ⊕ x0x3 ⊕ x0 = 0.
y1 = ¬x2 and y1,x2 = x2 ⇐⇒ x4 = 1 and x1x3 ⊕ x5x6 ⊕ x0x3 ⊕ x0 = 1.

4. y1=y1,x3 ⇐⇒ x0 ⊕ x1=0.
y1 = x3 and y1,x3 = ¬x3 ⇐⇒ x0 ⊕ x1 = 1 and x5x6 ⊕ x2x4 ⊕ x0 = 0.
y1 = ¬x3 and y1,x3 = x3 ⇐⇒ x0 ⊕ x1 = 1 and x5x6 ⊕ x2x4 ⊕ x0 = 1.

5. y1=y1,x4 ⇐⇒ x2=0.
y1 = x4 and y1,x4 = ¬x4 ⇐⇒ x2 = 1 and x1x3 ⊕ x5x6 ⊕ x0x3 ⊕ x0 = 0.
y1 = ¬x4 and y1,x4 = x4 ⇐⇒ x2 = 1 and x1x3 ⊕ x5x6 ⊕ x0x3 ⊕ x0 = 1.

6. y1=y1,x5 ⇐⇒ x6=0.
y1 = x5 and y1 = ¬y1,x5 ⇐⇒ x6 = 1 and x1x3 ⊕ x2x4 ⊕ x0x3 ⊕ x0 = 0.
y1 = ¬x5 and y1 = y1,x5 ⇐⇒ x6 = 1 and x1x3 ⊕ x2x4 ⊕ x0x3 ⊕ x0 = 1.

7. y1=y1,x6 ⇐⇒ x5=0.
y1 = x6 and y1 = ¬y1,x6 ⇐⇒ x5 = 1 and x3x1 ⊕ x2x4 ⊕ x0x3 ⊕ x0 = 0.
y1 = ¬x6 and y1 = y1,x6 ⇐⇒ x5 = 1 and x3x1 ⊕ x2x4 ⊕ x0x3 ⊕ x0 = 1.

Here, xi ∈ {0, 1} (0 ≤ i ≤ 6).
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It is easy to deduce the similar properties of the other three functions f2, f3
and f4. We omit them because of the limited pages.

Notations. In order to describe our attack conveniently, we define some
notations.

1. M = (mi)i<32 and M ′ = (m′
i)i<32 denote a collection of 32 words

respectively.
2. Δmi = m′

i −mi, Δai = a′
i − ai, ..., Δhi = h′

i − hi, Δpi = p′i − pi denote the
modular differences of two variables.

3. ai, bi, ci, di, ei, fi, gi, hi and a′
i, b′i, c′i, d′i, e′i, f ′

i , g′i, h′
i denote the chain-

ing variables after the i-th step corresponding to the message blocks M
and M ′ respectively. According to the HAVAL algorithm, we know
that bi = ai−1, ci = ai−2, di = ai−3, ei = ai−4, fi = ai−5, gi = ai−6,
hi = ai−7.

4. xi,j denotes the j-th bit of 32-bit word xi. For example, ai,j is the j-th bit
of ai.

5. xi[j] is the value obtained by modifying the jth bit of xi from 0 to 1 (hence
this notation implicitly states that xi,j = 0. Similarly, xi[−j] is the value
obtained by modifying the jth bit of xi from 1 to 0.

6. xi[±j1,±j2, . . . ,±jk] is shorthand for xi[±j1][±j2] . . . [±jk], i.e., modifying
xi at bit positions j1, . . . , jk according to the ± signs.

4 The Attack Against 4-Pass HAVAL with One Message
Word Difference

Our collision attack can be divided into three phases: 1. Choose a appropriate
message difference and deduce the differential path according to the specified
message difference. 2. Determine the corresponding chaining variable conditions.
3. Fulfill the message modification to guarantee that a portion of the conditions
hold.

We have obtained two collision attacks for 4-pass HAVAL. Both methods
find two-block collisions, i.e., collision pairs consisting of two 2048-bit messages
M0‖M1 and M ′

0‖M ′
1. Since both attacks use essentially the same methodology,

we will briefly give an outline for the first attack in this section, and then give
more detailed exposition for the second attack in the next section.

In the first method, message differences are given only on the message word
m5 with difference 231. That is, for both blocks M0 and M1, we have

Δmi = m′
i −mi =

{
231 if i = 5,
0 otherwise.
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In the first block, the difference introduced at step 6 by m5 is propagated
until step 33, where m5 is again used and the first inner collision is produced.
The message word m5 is again used at step 95, near the end of the pass 3. From
step 95 to step 122, the differences are propagated so that at each step only one
chaining variable difference is active. At step 123, the message word m5 is again
used and from then two chaining variables are active at each step, ending up as
a near-collision with two active variables.

In the second block, the initial differences produced by the first block, as well
as the one introduced by m5 at step 6 is again eliminated at step 33. From
step 95 to the end of the second block, the differences propagate in a similar
fashion as in the first block, except that all the signs are reversed. Therefore at
the end of the second block the output differences cancel the input difference
of the second block, producing a two-block collision. The differential paths are
given in Table 4 and Table 5. Due to space constraint, we will omit the tables
for sufficient conditions for the differential paths.

Using the message modification technique, explained in Section 5.3, we may
satisfy all the conditions in the first pass with probability 1. Therefore the prob-
ability for the third and fourth passes is the success probability of the whole
algorithm, which can be estimated to be greater than 2−43. In Table 1 we pro-
vide an example of a collision pair we found.

Note that the message word m5 appears at step 33, the beginning of the
second pass, and it again appears at step 95, almost at the end of the third pass,
which gives a long stretch of steps without differences.

Table 1. A collision pair for 4-pass HAVAL. H is the common hash value with little-
endian and no message padding.

M0 00000000 00000000 00000000 00000080 00000000 00000080 00000080 00000000
00000000 00000000 00002000 0000e0ff 0000e0ff 00000000 0080f3ff 00c0ecff
0040ecff 0040ffff 0080feff 0080feff 0080ffff 00fcffff 00000000 00fcffff
00fcffff 00fcffff 00000000 00fcffff 00000000 00000000 40070000 d9dc1fdc

M1 0000e87f 0000f8ff 0020f0ff 000100ff 00ff0174 000ff0f2 c001e484 00daf1fb
c01706fa 80eff3f9 00d6f1ff 80f7ff1f f7fffd40 00000000 00200028 0000003e
00002088 000020a0 00007ef9 00000008 00c045ba 00003bc0 003cfcfc 007c1f03
00bc81fe 00c4ddfb 003cfeff 00000000 00000000 00000200 3f000000 a095d965

M0 00000000 00000000 00000000 00000080 00000000 00000000 00000080 00000000
00000000 00000000 00002000 0000e0ff 0000e0ff 00000000 0080f3ff 00c0ecff
0040ecff 0040ffff 0080feff 0080feff 0080ffff 00fcffff 00000000 00fcffff
00fcffff 00fcffff 00000000 00fcffff 00000000 00000000 40070000 d9dc1fdc

M1 0000e87f 0000f8ff 0020f0ff 000100ff 00ff0174 000ff072 c001e484 00daf1fb
c01706fa 80eff3f9 00d6f1ff 80f7ff1f f7fffd40 00000000 00200028 0000003e
00002088 000020a0 00007ef9 00000008 00c045ba 00003bc0 003cfcfc 007c1f03
00bc81fe 00c4ddfb 003cfeff 00000000 00000000 00000200 3f000000 a095d965

H 481a1bf8 04defc01 a62b7444 63979a59 93e9b12d b20d82bd 7e626c25 22db74ca
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5 The Attack against 4-Pass HAVAL with Two Message
Word Differences

5.1 Choosing the Differential Path

For this second attack, we have found another differential path using differences
at message words m8 and m16. In the first block, we will use Δm8 = 213 and
Δm16 = −22, and in the second block Δm8 = −213 and Δm16 = 22.

The differential path for the first block consists of two inner collisions in steps
9–48 and steps 71–79, and a near-collision (steps 117–128). The path for the
second block has similar structure.

The main difference between this attack and the attack described in Section 4
is that, in the current attack we also use the advanced message modification
technique, which will be explained in Subsection 5.3. This enables us to correct
more conditions in the second pass. Therefore here we can afford to have our
first inner collision to stretch further into the second pass by using two message
word differences. Hence we select ΔM0 and ΔM1 to ensure that in this path the
differences of 3–4 rounds happen with high probability.

5.2 Deriving the Sufficient Conditions for Collision Path

In this section, we derive a set of sufficient conditions, summarized in Table 8,
which ensures the collision path to hold. We give an example explaining how to
deduce the set of sufficient conditions.

In step 9 of the differential path presented in Table 6, the message difference
Δm8 = 213 produces the changed variable a9[−14, 15]. The difference a9[−14]
doesn’t produce any more bit differences between step 10 and step 16, and the
difference a9[15] is used to produce the difference a15[−8,−9,−10, 11] in step 15.

1. In step 9, a′
9 = a9[−14, 15] iff a9,14 = 1 and a9,15 = 0.

2. In step 10, (a9[−14, 15], a8, a7, a6, a5, a4, a3, a2)
→ (a10, a9[−14, 15], a8, a7, a6, a5, a4, a3).

From 1 of Proposition , a′
10 = a10 iff a6,14 = 1 and a6,15 = 1.

3. In step 11, (a10, a9[−14, 15], a8, a7, a6, a5, a4, a3)
→ (a11, a10, a9[−14, 15], a8, a7, a6, a5, a4).

From 2 of Proposition , a′
11 = a11 iff a7,14 = 0 and a7,15 = 0.

4. In step 12, (a11, a10, a9[−14, 15], a8, a7, a6, a5, a4)
→ (a12, a11, a10, a9[−14, 15], a8, a7, a6, a5).

From 3 of Proposition , a′
12 = a12 iff a7,14 = 0 and a7,15 = 0.

5. In step 13, (a12, a11, a10, a9[−14, 15], a8, a7, a6, a5)
→ (a13, a12, a11, a10, a9[−14, 15], a8, a7, a6).

From 4 of Proposition , a′
13 = a13 iff a12,14⊕a11,14 = 0 and a12,15⊕a11,15 = 0.

6. In step 14, (a13, a12, a11, a10, a9[−14, 15], a8, a7, a6)
→ (a14, a13, a12, a11, a10, a9[−14, 15], a8, a7).

From 5 of Proposition , a′
14 = a14 iff a11,14 = 0 and a11,15 = 0.
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7. In step 15, (a14, a13, a12, a11, a10, a9[−14, 15], a8, a7)
→ (a15[−8,−9,−10, 11], a14, a13, a12, a11, a10, a9[−14, 15], a8).

From 6 of Proposition , a′
15 = a15[−8,−9,−10, 11] iff

a15,8 = 1, a15,9 = 1, a15,10 = 1, a15,11 = 0, a8,14 = 0, a8,15 = 1 and
a13,15a11,15 ⊕ a12,15a10,15 ⊕ a14,15a11,15 ⊕ a14,15 = 0.

8. In step 16, (a15[−8,−9,−10, 11], a14, a13, a12, a11, a10, a9[−14, 15], a8)
→ (a16[4], a15[−8,−9,−10, 11], a14, a13, a12, a11, a10, a9[−14, 15]).

From 6 of Proposition , a′
16 = a16[4] iff a16,4 = 0, a10,14 = 0, a10,15 = 0,

a12,8 = 1, a12,9 = 1, a12,10 = 1, a12,11 = 0 and
a14,11a12,11 ⊕ a10,11a9,11 ⊕ a13,11a11,11 = 0.

There are 25 equations in steps 9–16. We can simplify the above 25 conditions
and classify them into two types:

– Conditions with exact form
After a little simplification, there are 24 conditions with exact form, i.e., of
form ai = 0 or ai = 1:

a16,4 = 0, a6,14 = 1, a6,15 = 1, a7,14 = 0, a7,15 = 0, a8,14 = 0, a8,15 = 1,

a9,14 =1, a9,15 =0, a10,14 =0, a10,15 =0, a11,14 =0, a11,15 =0, a12,8 =1,

a12,9 =1, a12,10 =1, a12,11 =0, a12,14 =0, a12,15 =0, a14,15 =0, a15,8 =1,

a15,9 = 1, a15,10 = 1, a15,11 = 0

a12,14 = 0 is derived from two equations: a11,14 ⊕ a12,14 = 0 and a11,14 = 0.
a12,15 = 0 is derived from two equations: a11,15 ⊕ a12,15 = 0 and a11,15 = 0.
a14,15 = 0 is deduced by the following three equations: a13,15a11,15 ⊕ a12,15
a10,15 ⊕ a14,15a11,15 ⊕ a14,15 = 0, a11,15 = 0, and a12,15 = 0.

– Conditions expressed as multi-variable equations:
There is only one condition which is expressed as a multi-variable equation:

a10,11a9,11 ⊕ a13,11a11,11 = 0 (1)

Each equation with the first form holds with probability 1
2 , and the equation

(1) holds with probability 5
8 . So the total probability for the 9-16 step differential

is 5
227 .
Similarly, we can determine all the other conditions which result in the differ-

ential paths in Table 6 and Table 7. Summing up all these sufficient conditions,
we obtain Table 8 and Table 9.

5.3 Message Modification

We modify M0 and M1 so that almost all conditions in Table 8 and 9 hold. The
modification include the basic modification and advanced modification
techniques.
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Basic Modification. The basic modification is a simple message modification
used to ensure all the conditions in the first round (step 1-32) hold. For example,
given a message M0 = (mi)i<32, we compute a6 and correct a6 to satisfy the
two conditions in Table 8 by setting a6 = a6 ∨ 0x6000, then update m5 as:

m5 = a6 − (f(b0, a0, a1, a2, a3, a4, a5) ! 7)− (c0 ! 11)

It is easy to correct all the conditions from step 1 to step 32 of the differential
paths in Table 8 and Table 9.

Advanced Message Modification. We correct some more conditions in round
2 by the advanced modification. If the condition on ai,j is wrong, we change
the j-th bit of the corresponding message m and some other message words
which produce a partial collision in the first round. A sample for correcting
a34,4 is given in Table 2. We define this kind of corrected condition as rectifiable
condition.

Table 2. The message modification for correcting a34,4

step mi the modified mi new variable value conditions
8 m7 m7 ← m7 + 210 a8[11], a7, a6, a5, a4, a3, a2, a1 a8,11 = 0
9 m8 a9, a8[11], a7, a6, a5, a4, a3, a2 a5,11 = 1
10 m9 a10, a9, a8[11], a7, a6, a5, a4, a3 a6,11 = 0
11 m10 a11, a10, a9, a8[11], a7, a6, a5, a4 a6,11 = 0
12 m11 a12, a11, a10, a9, a8[11], a7, a6, a5 a11,11 ⊕ a10,11 = 0
13 m12 a13, a12, a11, a10, a9, a8[11], a7, a6 a10,11 = 0
14 m13 a14, a13, a12, a11, a10, a9, a8[11], a7 a7,11 = 0
15 m14 m14 ← m14 − 23 a15, a14, a13, a12, a11, a10, a9, a8[11] a9,11 = 1,

a13,11a11,11 ⊕ a12,11a10,11

⊕a14,11a11,11 ⊕ a14,11 = 0
16 m15 m15 ← m15 + 231 a16, a15, a14, a13, a12, a11, a10, a9

In the first block, the rectifiable conditions are as follows:
a34,4, a34,14, a35,4, a35,14, a35,25, a36,14, a36,25, a37,25, a37,14, a37,4, a38,25, a39,25,

a40,25.
In the second block, the rectifiable conditions are as follows:
a34,4, a34,14, a35,4, a35,14, a35,25, a36,14, a36,25, a37,4, a37,14, a37,25, a38,25, a40,25.
By the two types of modification, there are 8 remaining conditions in Table 8,

and 9 conditions in Table 9 that need to be satisfied.

5.4 Complexity Evaluation

In order to calculate the attack complexity, we need to estimate the probabilities
of two truncated differentials, one is from step 1 to step 64, the other is from
step 65 to step 128. After message modification, we know that the 1-64 step
differential of the first block holds with probability 2−8 and that of the second
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block with probability 2−9. What is left is to calculate the probability that all
the equations in rounds 3-4 hold concurrently for both blocks.

Complexity Evaluation for the First Block
There are total 22 equations in rounds 3-4 for the first block. In order to deduce
their probability, we divide these equations into three equation systems.

Equation System 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = a71,14

0 = a69,14a65,14 ⊕ a67,14

0 = a66,14

0 = a73,14a67,14 ⊕ a70,14

0 = a72,14

0 = a75,14

1 = a70,14

0 = a77,14a75,14 ⊕ a76,14 ⊕ a72,14

The equation system 1 ensures the differential characteristics from step 71 to
79 in Table 6 hold.

There are two solutions for the 11 variables, so the equation system 1 holds
with probability 2−10.

Equation System 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = a117,14

0 = a115,14a113,14 ⊕ a112,14a111,14 ⊕ a116,14 ⊕ a112,14 ⊕ a113,14

⊕ a111,14 ⊕ a114,14

0 = a116,14a113,14 ⊕ a118,14

0 = a118,14a114,14 ⊕ a119,14a115,14 ⊕ a113,14

1 = a120,14

0 = a121,14a119,14 ⊕ a116,14 ⊕ a121,14

0 = a121,14a120,14 ⊕ a122,14a116,14 ⊕ a122,14 ⊕ a118,14 ⊕ a116,14

a123,14a118,14 ⊕ a118,14 ⊕ a123,14 ⊕ a121,14

The equation system 2 guarantees the differential characteristics from step 117
to 124 hold.

It is easy to show that there are 32 solutions for 13 variables which imply that
the equation system 2 holds with probability 2−8.
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Equation System 3⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = a125,3

0 = a123,3a121,3 ⊕ a120,3a119,3 ⊕ a124,3 ⊕ a120,3 ⊕ a121,3 ⊕ a119,3 ⊕ a122,3

0 = a124,3a121,3 ⊕ a126,3

1 = a127,3

0 = a126,3a122,3 ⊕ a121,3

0 = a122,3a121,3 ⊕ a126,3 ⊕ a122,3 ⊕ a123,3 ⊕ a121,3 ⊕ a124,3

The equation system 3 ensures the differential characteristics in steps 125-128
hold.

Similarly, the equation system 3 has 7 solutions with 9 variables which the
probability is 7

29 .

Additional Conditions for Near Collision
Our attack is to find collisions with two blocks, so the output difference for the
first block should be (0,−22, 0, 22, 0, 0, 0, 0) with no bit carries which results in
two other conditions on outputs bb0 and dd0. For the second block, the differential
path needs two conditions in IVs which come from two conditions on aa0 and
cc0 in the first block. So the additional four conditions for the first block are as
follows:

aa0,3 = 0, bb0,3 = 1, cc0,3 = 0, dd0,3 = 0

where

aa0 = a0 + a128, bb0 = b0 + a127, cc0 = c0 + a126, dd0 = d0 + a125

It is noted that the four input words in the second block aa0, bb0, cc0, dd0 are
also the output words in the first block.

Considering 8 conditions left after the message modification, the probability
for the differential path in the first block is about

1
28 ·

1
210 ·

1
28 ·

7
29 ·

1
24 ≈

1
236 .

Complexity Evaluation for the Second Block
For the second block, given a message M1, after the modifications, M1 and M ′

1
generate the differential in Table 7 with the probability

1
29 ·

1
210 ·

1
28 ·

7
29 ≈

1
233

The two differential paths corresponding to two blocks consist of a collision
for 4 pass HAVAL, and the time complexity for the attack is about 236 HAVAL
computations.
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5.5 Collision Search Algorithm

Summarizing the above technique details, we give an overview of the collision
search algorithm.

1. Searching the first block M0.

(a) Choose a 1024-bit message M0 = (xi)i<31 randomly and modify its first
30 words by the basic modification technique such that the conditions
in steps 6-30 of Table 8 are satisfied.

(b) Modify x30 and x31 to correct the conditions in steps 31-32 of Table 8
by the basic modification technique.

(c) Apply the advanced modification to make the 13 rectifiable conditions
to hold in round 2.

(d) Compute H(M0) = (aa0, bb0, cc0, dd0, ee0, ff0, gg0, hh0) and
H(M ′

0) = (aa′
0, bb

′
0, cc

′
0, dd′0, ee

′
0, ff ′

0, gg′0, hh′
0).

If H(M ′
0)−H(M0) = ΔH1 , aa0,3 = 0, bb0,3 = 1, cc0,3 = 0 and dd0,3 = 0

hold , output M0 and M ′
0. Otherwise, select another x30 and x31 ran-

domly and go to step (b).

2. Searching the second block M1 by the similar method as M0.

Using our search algorithm, it takes roughly 8 hours to find a 4-pass collision
on a standard notebook PC, and we give a collision example in Table 3.

Table 3. A collision for 4-pass HAVAL. H is the common hash value with little-endian
and no message padding.

M0 1c6574fd b56fff65 0feff335 d7404793 095e0c30 dcc386ab 86e85ecd eb730b21
0ba01f27 8e3e84e2 39e35d80 afdf0ea8 23a57ffb 903fbb44 24e03671 d63ffe68
375e43b1 2dd81090 f408a2c5 ecc32b28 43f17d20 062e68d3 b9d1bd80 f0572c76
e3d648b1 184ebe01 92def272 f43fe3d4 6bde4810 fc5666f3 17eec0a9 24b1dda8

M1 7a329389 28a58673 3b7f4890 6cbb79b7 c33fac13 65ad0193 60d345c4 fa126a11
476dcbe0 5d582432 6f782165 e8875939 dc262382 ea5d1608 23893c79 d396a5c5
ff8d6cfb 73d43ab1 ac0b2882 a4642004 69ac7042 1cec975e a0c5a43a f7fa309a
661e6061 aad0c8f0 684e80da d8540f60 960f8720 257a61c5 87eb3f8c 98c490a3

M ′
0 1c6574fd b56fff65 0feff335 d7404793 095e0c30 dcc386ab 86e85ecd eb730b21

0ba03f27 8e3e84e2 39e35d80 afdf0ea8 23a57ffb 903fbb44 24e03671 d63ffe68
375e43ad 2dd81090 f408a2c5 ecc32b28 43f17d20 062e68d3 b9d1bd80 f0572c76
e3d648b1 184ebe01 92def272 f43fe3d4 6bde4810 fc5666f3 17eec0a9 24b1dda8

M ′
1 7a329389 28a58673 3b7f4890 6cbb79b7 c33fac13 65ad0193 60d345c4 fa126a11

476dabe0 5d582432 6f782165 e8875939 dc262382 ea5d1608 23893c79 d396a5c5
ff8d6cff 73d43ab1 ac0b2882 a4642004 69ac7042 1cec975e a0c5a43a f7fa309a

661e6061 aad0c8f0 684e80da d8540f60 960f8720 257a61c5 87eb3f8c 98c490a3
H 9dcc0bd8 009a1246 4e0b128c 1193ec10 86ddc85e a90ea714 8c95871c 946cabf1
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6 The Attack Against 5-Pass HAVAL

We adopt the similar notations for the description of 5-pass HAVAL and its
details can refer to [11].

A one-block collision for 5-pass HAVAL is found with probability higher than
the birthday attack. Similar to section 3, it’s easy to deduce the properties of
the five round functions. We choose a message difference ΔM = (Δmi)i<32 with
Δmi = 0, i �= 8 and Δm8 = −1.

The collision differential path is given in Table 10 and 11. A set of sufficient
conditions for the collision path are listed in Table 12 and 13. Given any 1024-
bit message M , after the message modification, M and M ′ produce a partial
collision from step 9 to step 71 with probability higher than 2−40. Utilizing the
same method as in Section 5.4, it is easy to prove that the second partial collision
from step 117 to step 142 holds with probability 2−83. So M and M ′ consist of
a collision with probability about 2−123, and the resulting attack is faster than
the birthday attack.

7 Conclusion

In this paper, we describe two practical attacks on 4-pass HAVAL with prob-
ability 2−43 and 2−36 respectively, and also give a theoretical attack on 5-pass
HAVAL which is faster than birthday attack.

Acknowledgement. We would like to thank Orr Dunkelman for his valuable
comments and suggestions for this paper.
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Appendix: Tables

Table 4. A differential path for the first block of 4-pass HAVAL, for 243 attack. Here
m′

5 = m5 + 231.

Step i m′
i−1 Δai Outputs for M ′

0

6 m′
5 231 a6[32], a5, a4, a3, a2, a1, a0, a−1

7 m6 a7, a6[32], a5, a4, a3, a2, a1, a0

. . . . . . . . . . . .
13 m12 a13, a12, a11, a10, a9, a8, a7, a6[32]
14 m13 220 a14[−21, 22], a13, a12, a11, a10, a9, a8, a7

15 m14 a15, a14[−21, 22], a13, a12, a11, a10, a9, a8

16 m15 a16, a15, a14[−21, 22], a13, a12, a11, a10, a9

17 m16 a17, a16, a15, a14[−21, 22], a13, a12, a11, a10

18 m17 −214 a18[15, 16, 17, −18], a17, a16, a15, a14[−21, 22], a13, a12, a11

19 m18 a19, a18[15, 16, 17, −18], a17, a16, a15, a14[−21, 22], a13, a12

. . . . . . . . . . . .
24 m23 a24, a23, a22, a21, a20, a19, a18[15, 16, 17, −18], a17

25 m24 210 a25[11], a24, a23, a22, a21, a20, a19, a18[15, 16, 17, −18]
. . . . . . . . . . . .
32 m31 a32, a31, a30, a29, a28, a27, a26, a25[11]
33 m′

5 a33, a32, a31, a30, a29, a28, a27, a26

. . . . . . . . . . . .
95 m′

5 231 a95[−32], a94, a93, a92, a91, a90, a89, a88

. . . . . . . . . . . .
102 m7 a102, a101, a100, a99, a98, a97, a96, a95[−32]
103 m28 −220 a103[−21], a102, a101, a100, a99, a98, a97, a96

. . . . . . . . . . . .
110 m25 a110, a109, a108, a107, a106, a105, a104, a103[−21]
111 m19 −29 a111[−10], a110, a109, a108, a107, a106, a105, a104

. . . . . . . . . . . .
118 m27 a118, a117, a116, a115, a114, a113, a112, a111[−10]
119 m12 −230 a119[−31], a118, a117, a116, a115, a114, a113, a112

120 m9 a120, a119[−31], a118, a117, a116, a115, a114, a113

121 m1 a121, a120, a119[−31], a118, a117, a116, a115, a114

122 m29 a122, a121, a120, a119[−31], a118, a117, a116, a115

123 m′
5 231 a123[32], a122, a121, a120, a119[−31], a118, a117, a116

124 m15 a124, a123[32], a122, a121, a120, a119[−31], a118, a117

125 m17 a125, a124, a123[32], a122, a121, a120, a119[−31], a118

126 m10 a126, a125, a124, a123[32], a122, a121, a120, a119[−31]
127 m16 −219 a127[−20], a126, a125, a124, a123[32], a122, a121, a120

128 m13 a128, a127[−20], a126, a125, a124, a123[32], a122, a121



102 H. Yu et al.

Table 5. A differential path for the second block of 4-pass HAVAL, up to step 95, for
243 attack. From step 95, the path is the same as in the Table 4 except the signs.

Step m′

i−1 Δai Outputs for M ′

1

0 aa0, bb0[−20], cc0, dd0, ee0, ff 0[32], gg0, hh0

1 m0 a1, aa0, bb0[−20], cc0, dd0, ee0, ff 0[32], gg0
2 m1 a2, a1, aa0, bb0[−20], cc0, dd0, ee0, ff 0[32]
3 m2 220 a3[21], a2, a1, aa0, bb0[−20], cc0, dd0, ee0

4 m3 a4, a3[21], a2, a1, aa0, bb0[−20], cc0, dd0

5 m4 a5, a4, a3[21], a2, a1, aa0, bb0[−20], cc0

6 m′

5 231 a6[32], a5, a4, a3[21], a2, a1, aa0, bb0[−20]
7 m6 −28−224 a7[−9, 25, 26, 27,−28], a6[32], a5, a4, a3[21], a2, a1, aa0

8 m7 −217 a8[18, 19, 20,−21], a7[−9, 25, ...,−28], a6[32], a5, a4, a3[21], a2, a1

9 m8 −211 a9[12, 13,−14], a8[18, ...,−21], a7[−9, 25, ...,−28], a6[32], a5, a4,
a3[21], a2

10 m9 26 a10[−7, 8], a9[12, 13,−14], a8[18, ...,−21], a7[−9, 25, ...,−28],
a6[32], a5, a4, a3[21]

11 m10 29 a11[10], a10[−7, 8], a9[12, 13,−14], a8[18, ...,−21],
a7[−9, 25, ...,−28], a6[32], a5, a4

12 m11 a12, a11[10], a10[−7, 8], a9[12, 13,−14], a8[18, ...,−21],
a7[−9, 25, ...,−28], a6[32], a5

13 m12 a13, a12, a11[10], a10[−7, 8], a9[12, 13,−14], a8[18, ...,−21],
a7[−9, 25, ...,−28], a6[32]

14 m13 a14, a13, a12, a11[10], a10[−7, 8], a9[12, 13,−14], a8[18, ...,−21],
a7[−9, 25, ...,−28]

15 m14 −229 a15[−30], a14, a13, a12, a11[10], a10[−7, 8], a9[12, 13,−14],
a8[18, ...,−21]

16 m15 a16, a15[−30], a14, a13, a12, a11[10], a10[−7, 8], a9[12, 13,−14]
17 m16 a17, a16, a15[−30], a14, a13, a12, a11[10], a10[−7, 8]
18 m17 227 a18[−28, 29], a17, a16, a15[−30], a14, a13, a12, a11[10]
19 m18 230 a19[31], a18[−28, 29], a17, a16, a15[−30], a14, a13, a12

20 m19 a20, a19[31], a18[−28, 29], a17, a16, a15[−30], a14, a13

21 m20 a21, a20, a19[31], a18[−28, 29], a17, a16, a15[−30], a14

22 m21 −222 a22[23, ..., 26,−27], a21, a20, a19[31], a18[−28, 29], a17, a16,
a15[−30]

23 m22 221 a23[22], a22[23, ...,−27], a21, a20, a19[31], a18[−28, 29], a17, a16

24 m23 −214 a24[15, ..., 18,−19], a23[22], a22[23, ...,−27], a21, a20, a19[31],
a18[−28, 29], a17

25 m24 210 a25[11], a24[15, ...,−19], a23[22], a22[23, ...,−27], a21, a20, a19[31],
a18[−28, 29]

26 m25 a26, a25[11], a24[15, ...,−19], a23[22], a22[23, ...,−27], a21, a20,
a19[31]

... ... ... ...
31 m30 a31, a30, a29, a28, a27, a26, a25[11], a24[15, ...,−19]
32 m31 a32, a31, a30, a29, a28, a27, a26, a25[11]
33 m′

5 a33, a32, a31, a30, a29, a28, a27, a26

... ... ... ...
95 m′

5 231 a95[32], a94, a93, a92, a91, a90, a89, a88
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Table 6. A differential path for the first block of 4-pass HAVAL, for 236 attack. Here
m′

8 = m8 + 213, m′
16 = m16 − 22.

step i m′
i−1 Δai Outputs for M ′

0

9 m′
8 213 a9[−14, 15], a8, a7, a6, a5, a4, a3, a2

10 m9 a10, a9[−14, 15], a8, a7, a6, a5, a4, a3

11 m10 a11, a10, a9[−14, 15], a8, a7, a6, a5, a4

12 m11 a12, a11, a10, a9[−14, 15], a8, a7, a6, a5

13 m12 a13, a12, a11, a10, a9[−14, 15], a8, a7, a6

14 m13 a14, a13, a12, a11, a10, a9[−14, 15], a8, a7

15 m14 27 a15[−8, −9, −10, 11], a14, a13, a12, a11, a10, a9[−14, 15], a8

16 m15 23 a16[4], a15[−8, −9, −10, 11], a14, a13, a12, a11, a10, a9[−14, 15]
17 m′

16 228 a17[29], a16[4], a15[−8, −9, −10, 11], a14, a13, a12, a11, a10

18 m17 a18, a17[29], a16[4], a15[−8, −9, −10, 11], a14, a13, a12, a11

19 m18 a19, a18, a17[29], a16[4], a15[−8, −9, −10, 11], a14, a13, a12

20 m19 a20, a19, a18, a17[29], a16[4], a15[−8, −9, −10, 11], a14, a13

21 m20 a21, a20, a19, a18, a17[29], a16[4], a15[−8, −9, −10, 11], a14

22 m21 a22, a21, a20, a19, a18, a17[29], a16[4], a15[−8, −9, −10, 11]
23 m22 221 a23[22], a22, a21, a20, a19, a18, a17[29], a16[4]
24 m23 −214 + 224 a24[15, 16, 17, −18, 25], a23[22], a22, a21, a20, a19, a18, a17[29]
25 m24 a25, a24[15, 16, 17, −18, 25], a23[22], a22, a21, a20, a19, a18

26 m25 a26, a25, a24[15, 16, 17, −18, 25], a23[22], a22, a21, a20, a19

27 m26 a27, a26, a25, a24[15, 16, 17, −18, 25], a23[22], a22, a21, a20

28 m27 a28, a27, a26, a25, a24[15, 16, 17, −18, 25], a23[22], a22, a21

29 m28 a29, a28, a27, a26, a25, a24[15, 16, 17, −18, 25], a23[22], a22

30 m29 a30, a29, a28, a27, a26, a25, a24[15, 16, 17, −18, 25], a23[22]
31 m30 a31, a30, a29, a28, a27, a26, a25, a24[15, 16, 17, −18, 25]
32 m31 −23 + 213 a32[−4, 14], a31, a30, a29, a28, a27, a26, a25

... ... ... ...
39 m7 a39, a38, a37, a36, a35, a34, a33, a32[−4, 14]
40 m′

16 −224 a40[−25], a39, a38, a37, a36, a35, a34, a33

... ... ... ...
47 m4 a47, a46, a45, a44, a43, a42, a41, a40[−25]
48 m′

8 a48, a47, a46, a45, a44, a43, a42, a41

... ... ... ...
71 m′

8 213 a71[14], a70, a69, a68, a67, a66, a65, a64

... ... ... ...
78 m30 a78, a77, a76, a75, a74, a73, a72, a71[14]
79 m′

16 a79, a78, a77, a76, a75, a74, a73, a72

... ... ... ...
117 m′

8 213 a117[14], a116, a115, a114, a113, a112, a111, a110

... ... ... ...
124 m15 a124, a123, a122, a121, a120, a119, a118, a117[14]
125 m17 22 a125[3], a124, a123, a122, a121, a120, a119, a118

126 m10 a126, a125[3], a124, a123, a122, a121, a120, a119

127 m′
16 −22 a127[−3], a126, a125[3], a124, a123, a122, a121, a120

128 m13 a128, a127[−3], a126, a125[3], a124, a123, a122, a121
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Table 7. A differential path for the second block of 4-pass HAVAL, for 236 attack.
Here, m′

8 = m8 − 213, m′
16 = m16 + 22.

Step m′

i−1 Δai Output for M ′

1

0 aa0, bb0[−3], cc0, dd0[3], ee0, ff0, gg0, hh0

1 m0 a1, aa0, bb0[−3], cc0, dd0[3], ee0, ff0, gg0

2 m1 a2, a1, aa0, bb0[−3], cc0, dd0[3], ee0, ff0

3 m2 a3, a2, a1, aa0, bb0[−3], cc0, dd0[3], ee0

4 m3 a4, a3, a2, a1, aa0, bb0[−3], cc0, dd0[3]
5 m4 223 a5[24], a4, a3, a2, a1, aa0, bb0[−3], cc0

6 m5 a6, a5[24], a4, a3, a2, a1, aa0, bb0[−3]
7 m6 −223 a7[−24], a6, a5[24], a4, a3, a2, a1, aa0

8 m7 a8, a7[−24], a6, a5[24], a4, a3, a2, a1

9 m′

8 −213 a9[14, 15, 16, 17, 18, 19, 20,−21], a8, a7[−24], a6, a5[24], a4, a3, a2

10 m9 a10, a9[14, 15, 16, 17, 18, 19, 20,−21], a8, a7[−24], a6, a5[24], a4, a3

11 m10 a11, a10, a9[14, 15, 16, 17, 18, 19, 20,−21], a8, a7[−24], a6, a5[24], a4

12 m11 a12, a11, a10, a9[14, 15, 16, 17, 18, 19, 20,−21], a8, a7[−24], a6, a5[24]
13 m12 a13, a12, a11, a10, a9[14, 15, 16, 17, 18, 19, 20,−21], a8, a7[−24], a6

14 m13 a14, a13, a12, a11, a10, a9[14, 15, 16, 17, 18, 19, 20,−21], a8, a7[−24]
15 m14 27 a15[−8,−9,−10, 11], a14,..., a9[14, 15, 16, 17, 18, 19, 20,−21], a8

16 m15 −23 a16[−4], a15[−8,−9,−10, 11],..., a10, a9[14, 15, 16, 17, 18, 19, 20,−21]
17 m′

16 228 a17[29], a16[−4], a15[−8,−9,−10, 11], a14, a13, a12, a11, a10

. . . . . . . . . . . .
22 m21 a22, a21, a20, a19, a18, a17[29], a16[−4], a15[−8,−9,−10, 11]
23 m22 221 a23[22], a22, a21, a20, a19, a18, a17[29], a16[−4]
24 m23 214-224 a24[−15,−16,−17, 18,−25], a23[22], a22, a21, a20, a19, a18, a17[29]
. . . . . . . . . . . .
31 m30 a31, a30, a29, a28, a27, a26, a25, a24[−15,−16,−17, 18,−25]
32 m31 23-213 a32[4,−14], a31, a30, a29, a28, a27, a26, a25

... ... ... ...
39 m7 a39, a38, a37, a36, a35, a34, a33, a32[4,−14]
40 m′

16 224 a40[25], a39, a38, a37, a36, a35, a34, a33

... ... ... ...
47 m4 a47, a46, a45, a44, a43, a42, a41, a40[25]
48 m′

8 a48, a47, a46, a45, a44, a43, a42, a41

... ... ... ...
71 m′

8 −213 a71[−14], a70, a69, a68, a67, a66, a65, a64

... ... ... ...
78 m30 a78, a77, a76, a75, a74, a73, a72, a71[−14]
79 m′

16 a79, a78, a77, a76, a75, a74, a73, a72

... ... ... ...
117 m′

8 −213 a117[−14], a116, a115, a114, a113, a112, a111, a110

... ... ... ...
124 m15 a124, a123, a122, a121, a120, a119, a118, a117[−14]
125 m17 −22 a125[−3], a124, a123, a122, a121, a120, a119, a118

126 m10 a126, a125[−3], a124, a123, a122, a121, a120, a119

127 m′

16 22 a127[3], a126, a125[−3], a124, a123, a122, a121, a120

128 m13 a128, a127[3], a126, a125[−3], a124, a123, a122, a121
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Table 8. A set of sufficient conditions on ai for the differential path given in Table 6

Step i ai Conditions of the chaining variable in each step
6 a6 a6,14 = 1, a6,15 = 1
7 a7 a7,14 = 0, a7,15 = 0
8 a8 a8,14 = 0, a8,15 = 1
9 a9 a9,14 = 1, a9,15 = 0
10 a10 a10,11 = 0, a10,14 = 0, a10,15 = 0
11 a11 a11,4 = 0, a11,14 = 0, a11,15 = 0
12 a12 a12,8 = 1, a12,9 = 1, a12,10 = 1, a12,11 = 0, a12,14 = 0, a12,15 = 0,
13 a13 a13,4 = 0, a13,8 = 0, a13,9 = 0, a13,10 = 0, a13,11 = 0
14 a14 a14,4 = 0, a14,8 = 0, a14,9 = 0, a14,10 = 0, a14,11 = 0, a14,15 = 0, a14,29 = 1
15 a15 a15,4 = 0, a15,8 = 1, a15,9 = 1, a15,10 = 1, a15,11 = 0, a15,29 = 0
16 a16 a16,4 = 0, a16,8 = 0, a16,9 = 0, a16,10 = 0, a16,11 = 0, a16,29 = 1
17 a17 a17,4 = 1, a17,8 = 0, a17,9 = 0, a17,10 = 0, a17,11 = 0, a17,22 = 1, a17,29 = 0
18 a18 a18,4 = 0, a18,8 = 0, a18,9 = 0, a18,10 = 0, a18,11 = 0, a18,22 = 1, a18,25 = 1,

a18,29 = 0
19 a19 a19,4 = 0, a19,25 = 1, a19,29 = 0
20 a20 a20,22 = 0, a20,29 = 0
21 a21 a21,15 = 1, a21,16 = 1, a21,17 = 1, a21,18 = 1, a21,22 = 0, a21,25 = 0
22 a22 a22,4 = 1, a22,15 = 0, a22,16 = 0, a22,17 = 0, a22,18 = 0, a22,22 = 0, a22,25 = 0,

a22,29 = 0
23 a23 a23,15 = 0, a23,16 = 0, a23,17 = 0, a23,18 = 0, a23,22 = 0, a23,25 = 0
24 a24 a24,15 = 0, a24,16 = 0, a24,17 = 0, a24,18 = 1, a24,22 = 0, a24,25 = 0
25 a25 a25,15 = 0, a25,16 = 0, a25,17 = 0, a25,18 = 1, a25,22 = 0, a25,25 = 0
26 a26 a26,15 = 0, a26,16 = 0, a26,17 = 0, a26,18 = 0, a26,22 = 0, a26,25 = 0
27 a27 a27,4 = 0, a27,14 = 0, a27,15 = 0, a27,16 = 0, a27,17 = 0, a27,18 = 0, a27,25 = 0
28 a28 a28,4 = 0, a28,14 = 0
29 a29 a29,4 = 0, a29,14 = 0
30 a30 a30,4 = 0, a30,14 = 0, a30,18 = 0
31 a31 a31,4 = 0, a31,14 = 0
32 a32 a32,4 = 1, a32,14 = 0
34 a34 a34,4 = 0, a34,14 = 0
35 a35 a35,4 = 1, a35,14 = 1 a35,25 = 0
36 a36 a36,4 = 0, a36,14 = 0, a36,25 = 0
37 a37 a37,4 = 1, a37,14 = 1, a37,25 = 0
38 a38 a38,4 = 1, a38,14 = 1, a38,25 = 0
39 a39 a39,25 = 0
40 a40 a40,25 = 1
42 a42 a42,25 = 0
43 a43 a43,25 = 1
44 a44 a44,25 = 0
45 a45 a45,25 = 1
46 a46 a46,25 = 1
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Table 9. A set of sufficient conditions on ai for the differential path given in Table 7

Step Conditions of the chaining variable in each step
0 IV s aa0,3 = 0, bb0,3 = 1, cc0,3 = 0, dd0,3 = 0
1 a1 a1,3 = 0
2 a2 a2,3 = ee0,3, a2,24 = 1
3-5 a3 a3,24 = 0, a4,24 = 1, a5,24 = 0
6 a6 a6,14 = 1, a6,15 = 1, a6,16 = 1, a6,17 = 1, a6,18 = 1, a6,19 = 1, a6,20 = 1,

a6,21 = 1, a6,24 = 0
7 a7 a7,14 = 0, a7,15 = 0, a7,16 = 0, a7,17 = 0, a7,18 = 0, a7,19 = 0, a7,20 = 0,

a7,21 = 0, a7,24 = 1
8 a8 a8,14 = 0, a8,15 = 1, a8,16 = 0, a8,17 = 0, a8,18 = 0, a8,19 = 0, a8,20 = 1,

a8,21 = 0, a8,24 = 0
9 a9 a9,11 = 1, a9,14 = 0, a9,15 = 0, a9,16 = 0, a9,17 = 0, a9,18 = 0, a9,19 = 0,

a9,20 = 0, a9,21 = 1, a9,24 = 0
10 a10 a10,4 = 1, a10,11 = 1, a10,14 = 0, a10,15 = 0, a10,16 = 0, a10,17 = 0, a10,18 = 0,

a10,19 = 0, a10,20 = 0, a10,21 = 0, a10,24 = 1
11 a11 a11,4 = 1, a11,14 = 0, a11,15 = 0, a11,16 = 0, a11,17 = 0, a11,18 = 0, a11,19 = 0,

a11,20 = 0, a11,21 = 0
12 a12 a12,8 = 1, a12,9 = 1, a12,10 = 1, a12,14 = 0, a12,15 = 0, a12,16 = 0, a12,17 = 0,

a12,18 = 0, a12,19 = 0, a12,20 = 1, a12,21 = 0
13 a13 a13,4 = 0, a13,8 = 0, a13,9 = 0, a13,10 = 0, a13,11 = 0
14 a14 a14,4 = 0, a14,8 = 0, a14,9 = 0, a14,10 = 0, a14,11 = 0, a14,15 = 0, a14,20 = 0,

a14,29 = 1
15 a15 a15,4 = 0, a15,8 = 1, a15,9 = 1, a15,10 = 1, a15,11 = 0, a15,29 = 0
16 a16 a16,4 = 1, a16,8 = 0, a16,9 = 0, a16,10 = 0, a16,11 = 0, a16,29 = 1
17 a17 a17,4 = 1, a17,8 = 0, a17,9 = 0, a17,10 = 0, a17,11 = 0, a17,29 = 0
18 a18 a18,4 = 0, a18,8 = 0, a18,9 = 0, a18,10 = 0, a18,11 = 0, a18,22 = 0, a18,29 = 0
19 a19 a19,4 = 0, a19,25 = 0, a19,29 = 0
20 a20 a20,22 = 0, a20,29 = 0
21 a21 a21,15 = 1, a21,16 = 1, a21,17 = 1, a21,18 = 1, a21,22 = 0, a21,25 = 0
22 a22 a22,4 = 0, a22,15 = 0, a22,16 = 0, a22,17 = 0, a22,18 = 0, a22,22 = 0, a22,25 = 0,

a22,29 = 0
23 a23 a23,15 = 0, a23,16 = 0, a23,17 = 0, a23,18 = 0, a23,22 = 0, a23,25 = 0
24 a24 a24,15 = 1, a24,16 = 1, a24,17 = 1, a24,18 = 0, a24,22 = 0, a24,25 = 1
25 a25 a25,15 = 0, a25,16 = 0, a25,17 = 0, a25,18 = 1, a25,22 = 0, a25,25 = 0
26 a26 a26,15 = 0, a26,16 = 0, a26,17 = 0, a26,18 = 0, a26,22 = 0, a26,25 = 0
27 a27 a27,4 = 0, a27,14 = 0, a27,15 = 0, a27,16 = 0, a27,17 = 0, a27,18 = 0, a27,25 = 0
28-29 a28 a28,4 = 0, a28,14 = 0, a29,4 = 0, a29,14 = 0
30 a30 a30,4 = 0, a30,14 = 0, a30,18 = 1
31-32 a31 a31,4 = 0, a31,14 = 0, a32,4 = 0, a32,14 = 1
34-35 a34 a34,4 = 0, a34,14 = 0, a35,4 = 1, a35,14 = 1, a35,25 = 0
36 a36 a36,4 = 0, a36,14 = 0, a36,25 = 0
37 a37 a37,4 = 1, a37,14 = 1, a37,25 = 0
38-39 a38 a38,4 = 1, a38,14 = 1, a38,25 = 0, a39,25 = 0
40-46 a40 a40,25 = 0, a42,25 = 0, a43,25 = 1, a44,25 = 0, a45,25 = 1, a46,25 = 1
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Table 10. A differential path for the 5-pass HAVAL. Here m′
8 = m8 − 1.

Step m′

i−1 Δai Outputs for M ′

9 m′

8 −1 a9[1, 2, 3, 4,−5], a8, a7, a6, a5, a4, a3, a2

10 m9 a10, a9[1, 2, 3, 4,−5], a8, a7, a6, a5, a4, a3

11 m10 −228 a11[29,−30], a10, a9[1, 2, 3, 4,−5], a8, a7, a6, a5, a4

12 m11 a12, a11[29,−30], a10, a9[1, 2, 3, 4,−5], a8, a7, a6, a5

13 m12 a13, a12, a11[29,−30], a10, a9[1, 2, 3, 4,−5], a8, a7, a6

14 m13 221 a14[22], a13, a12, a11[29,−30], a10, a9[1, 2, 3, 4,−5], a8, a7

15 m14 a15, a14[22], a13, a12, a11[29,−30], a10, a9[1, 2, 3, 4,−5], a8

16 m15 a16, a15, a14[22], a13, a12, a11[29,−30], a10, a9[1, 2, 3, 4,−5]
17 m16 −214 a17[15,−16], a16, a15, a14[22], a13, a12, a11[29,−30], a10

18 m17 a18, a17[15,−16], a16, a15, a14[22], a13, a12, a11[29,−30]
19 m18 a19, a18, a17[15,−16], a16, a15, a14[22], a13, a12

20 m19 −27 − 217 a20[8, 9,−10,−18], a19, a18, a17[15,−16], a16, a15, a14[22], a13

21 m20 a21, a20[8, 9,−10,−18], a19, a18, a17[15,−16], a16, a15, a14[22]
22 m21 210 a22[11], a21, a20[8, 9,−10,−18], a19, a18, a17[15,−16], a16, a15

23 m22 22 a23[3], a22[11], a21, a20[8, 9,−10,−18], a19, a18, a17[15,−16], a16

24 m23 2 a24[2], a23[3], a22[11], a21, a20[8, 9,−10,−18], a19, a18, a17[15,−16]
25 m24 −23 − 226 a25[−4,−27], a24[2], a23[3], a22[11], a21, a20[8, 9,−10,−18], a19, a18

26 m25 a26, a25[−4,−27], a24[2], a23[3], a22[11], a21, a20[8, 9,−10,−18], a19

27 m26 a27, a26, a25[−4,−27], a24[2], a23[3], a22[11], a21, a20[8, 9,−10,−18]
28 m27 −26 + 219 a28[−7, 20], a27, a26, a25[−4,−27], a24[2], a23[3], a22[11], a21

29 m28 a29, a28[−7, 20], a27, a26, a25[−4,−27], a24[2], a23[3], a22[11]
30 m29 231 a30[32], a29, a28[−7, 20], a27, a26, a25[−4,−27], a24[2], a23[3]
31 m30 223 a31[24], a30[32], a29, a28[−7, 20], a27, a26, a25[−4,−27], a24[2]
32 m31 222 a32[23], a31[24], a30[32], a29, a28[−7, 20], a27, a26, a25[−4,−27]
33 m5 a33, a32[23], a31[24], a30[32], a29, a28[−7, 20], a27, a26

34 m14 −215 a34[−16], a33, a32[23], a31[24], a30[32], a29, a28[−7, 20], a27

35 m26 a35, a34[−16], a33, a32[23], a31[24], a30[32], a29, a28[−7, 20]
36 m18 −227 a36[−28], a35, a34[−16], a33, a32[23], a31[24], a30[32], a29

37 m11 a37, a36[−28], a35, a34[−16], a33, a32[23], a31[24], a30[32]
38 m28 a38, a37, a36[−28], a35, a34[−16], a33, a32[23], a31[24]
39 m7 212 a39[13], a38, a37, a36[−28], a35, a34[−16], a33, a32[23]
40 m16 25 + 211 a40[6, 12], a39[13], a38, a37, a36[−28], a35, a34[−16], a33

41 m0 a41, a40[6, 12], a39[13], a38, a37, a36[−28], a35, a34[−16]
42 m23 230 a42[31], a41, a40[6, 12], a39[13], a38, a37, a36[−28], a35

43 m20 223 a43[24], a42[31], a41, a40[6, 12], a39[13], a38, a37, a36[−28]
44 m22 a44, a43[24], a42[31], a41, a40[6, 12], a39[13], a38, a37

45 m1 a45, a44, a43[24], a42[31], a41, a40[6, 12], a39[13], a38

46 m10 a46, a45, a44, a43[24], a42[31], a41, a40[6, 12], a39[13]
47 m4 2 a47[2], a46, a45, a44, a43[24], a42[31], a41, a40[6, 12]
48 m′

8 a48, a47[2], a46, a45, a44, a43[24], a42[31], a41

49 m30 a49, a48, a47[2], a46, a45, a44, a43[24], a42[31]
50 m3 219 a50[20], a49, a48, a47[2], a46, a45, a44, a43[24]
51 m21 a51, a50[20], a49, a48, a47[2], a46, a45, a44

52 m9 a52, a51, a50[20], a49, a48, a47[2], a46, a45
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Table 11. A differential path for the 5-pass HAVAL(continued from Table 10)

53 m17 a53, a52, a51, a50[20], a49, a48, a47[2], a46

54 m24 a54, a53, a52, a51, a50[20], a49, a48, a47[2]
55 m29 222 a55[23], a54, a53, a52, a51, a50[20], a49, a48

56 m6 a56, a55[23], a54, a53, a52, a51, a50[20], a49

57 m19 215 a57[16], a56, a55[23], a54, a53, a52, a51, a50[20]
58 m12 a58, a57[16], a56, a55[23], a54, a53, a52, a51

59 m15 a59, a58, a57[16], a56, a55[23], a54, a53, a52

60 m13 a60, a59, a58, a57[16], a56, a55[23], a54, a53

61 m2 a61, a60, a59, a58, a57[16], a56, a55[23], a54

62 m25 a62, a61, a60, a59, a58, a57[16], a56, a55[23]
63 m31 211 a63[12], a62, a61, a60, a59, a58, a57[16], a56

64 m27 a64, a63[12], a62, a61, a60, a59, a58, a57[16]
65 m19 a65, a64, a63[12], a62, a61, a60, a59, a58

66 m9 a66, a65, a64, a63[12], a62, a61, a60, a59

67 m4 a67, a66, a65, a64, a63[12], a62, a61, a60

68 m20 a68, a67, a66, a65, a64, a63[12], a62, a61

69 m28 a69, a68, a67, a66, a65, a64, a63[12], a62

70 m17 a70, a69, a68, a67, a66, a65, a64, a63[12]
71 m′

8 a71, a70, a69, a68, a67, a66, a65, a64

. . . . . . . . .
117 m′

8 −1 a117[1, −2], a116, a115, a114, a113, a112, a111, a110

118 m27 a118, a117[1, −2], a116, a115, a114, a113, a112, a111

119 m12 a119, a118, a117[1, −2], a116, a115, a114, a113, a112

120 m9 a120, a119, a118, a117[1, −2], a116, a115, a114, a113

121 m1 a121, a120, a119, a118, a117[1, −2], a116, a115, a114

122 m29 a122, a121, a120, a119, a118, a117[1, −2], a116, a115

123 m5 a123, a122, a121, a120, a119, a118, a117[1, −2], a116

124 m15 −226 a124[27, 28, 29, −30], a123, a122, a121, a120, a119, a118, a117[1, −2]
125 m17 a125, a124[27, 28, 29, −30], a123, a122, a121, a120, a119, a118

126 m10 222 a126[23], a125, a124[27, 28, 29, −30], a123, a122, a121, a120, a119

127 m16 −215 a127[−16], a126[23], a125, a124[27, 28, 29, −30], a123, a122, a121, a120

128 m13 a128, a127[−16], a126[23], a125, a124[27, 28, 29, −30], a123, a122, a121

129 m27 a129, a128, a127[−16], a126[23], a125, a124[27, 28, 29, −30], a123, a122

130 m3 a130, a129, a128, a127[−16], a126[23], a125, a124[27, 28, 29, −30], a123

131 m21 a131, a130, a129, a128, a127[−16], a126[23], a125, a124[27, 28, 29, −30]
132 m26 a132, a131, a130, a129, a128, a127[−16], a126[23], a125

133 m17 a133, a132, a131, a130, a129, a128, a127[−16], a126[23]
134 m11 211 a134[12], a133, a132, a131, a130, a129, a128, a127[−16]
135 m20 a135, a134[12], a133, a132, a131, a130, a129, a128

136 m29 a136, a135, a134[12], a133, a132, a131, a130, a129

137 m19 a137, a136, a135, a134[12], a133, a132, a131, a130

138 m0 a138, a137, a136, a135, a134[12], a133, a132, a131

139 m12 a139, a138, a137, a136, a135, a134[12], a133, a132

140 m7 a140, a139, a138, a137, a136, a135, a134[12], a133

141 m13 a141, a140, a139, a138, a137, a136, a135, a134[12]
142 m′

8 a142, a141, a140, a139, a138, a137, a136, a135
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Table 12. A set of sufficient conditions on ai for the differential path given in Table 10
and 11, up to the first inner collision

Step Conditions of the chaining variable in each step
5 a5,1 = 0, a5,2 = 0, a5,3 = 0, a5,4 = 1, a5,5 = 0
6 a6,1 = 0, a6,2 = 0, a6,3 = 0, a6,4 = 0, a6,5 = 0
7
8 a8,1 = 0, a8,2 = 0, a8,3 = 0, a8,4 = 0, a8,5 = 0, a8,29 = 0, a8,30 = 0
9 a9,1 = 0, a9,2 = 0, a9,3 = 0, a9,4 = 1, a9,5 = 0, a9,29 = 0, a9,30 = 0
10 a10,1 = 0, a10,2 = 0, a10,3 = 0, a10,4 = 0, a10,5 = 0, a10,22 = 0, a10,29 = 0
11 a11,22 = 0, a11,29 = 1, a11,30 = 0
12 a12,1 = 0, a12,2 = 0, a12,3 = 0, a12,4 = 0, a12,5 = 0, a12,29 = 0, a12,30 = 1
13 a13,1 = 1, a13,2 = 1, a13,3 = 1, a13,4 = 1, a13,5 = 1, a13,15 = 1, a13,16 = 0,

a13,22 = 0, a13,29 = 0, a13,30 = 0
14 a14,15 = 0, a14,16 = 0, a14,22 = 0
15 a15,22 = 0, a15,29 = 0, a15,30 = 0
16 a16,8 = 0, a16,9 = 0, a16,10 = 1, a16,15 = 0, a16,16 = 0, a16,18 = 0, a16,29 = 1,

a16,30 = 1
17 a17,8 = 0, a17,9 = 0, a17,10 = 0, a17,15 = 0, a17,16 = 1, a17,18 = 0, a17,22 = 0
18 a18,2 = 1,a18,11 = 0, a18,15 = 0, a18,16 = 0, a18,22 = 1
19 a19,3 = 0,a19,8 = 0, a19,9 = 0, a19,10 = 0, a19,11 = 0, a19,18 = 0
20 a20,2 = 0, a20,3 = 0, a20,8 = 0, a20,9 = 0, a20,10 = 0, a20,15 = 0, a20,16 = 0,

a20,18 = 0
21 a21,2 = 1, a21,8 = 0, a21,9 = 0, a21,10 = 0, a21,11 = 0, a21,15 = 1, a21,16 = 1,

a21,18 = 0
22 a22,2 = 0, a22,3 = 0, a22,4 = 0, a22,11 = 0, a22,27 = 0
23 a23,2 = 0, a23,3 = 0, a23,4 = 1, a23,8 = 0, a23,9 = 1, a23,10 = 0, a23,11 = 0,

a23,18 = 0, a23,27 = 1
24 a24,2 = 0, a24,3 = 0, a24,4 = 0, a24,7 = 0, a24,8 = 1, a24,9 = 1, a24,10 = 1,

a24,18 = 1, a24,20 = 0,a24,27 = 0
25 a25,2 = 0, a25,4 = 1, a25,7 = 0, a25,11 = 0, a25,20 = 0, a25,27 = 1
26 a26,3 = 0, a26,4 = 0, a26,11 = 1, a26,23 = 1, a26,27 = 0
27 a27,2 = 0, a27,3 = 1, a27,7 = 0, a27,20 = 0, a27,32 = 0
28 a28,2 = 1, a28,4 = 0, a28,7 = 1, a28,20 = 0, a28,23 = 1, a28,24 = 0,a28,27 = 0,

a28,32 = 0
29 a29,4 = 1, a29,7 = 0, a29,20 = 0, a29,23 = 1, a29,24 = 1, a29,27 = 1, a29,32 = 0
30 a30,7 = 0, a30,16 = 0, a30,20 = 0, a30,23 = 1, a30,24 = 0, a30,32 = 0
31 a31,7 = 0, a31,16 = 1, a31,20 = 0, a31,23 = 0, a31,23 = 0, a31,24 = 0, a31,32 = 0
32 a32,16 = 0, a32,23 = 0, a32,24 = 1, a32,28 = 0, a32,32 = 1
33 a33,16 = 0, a33,23 = 1, a33,24 = 1, a33,28 = 1, a33,32 = 0
34 a34,13 = 0, a34,16 = 1, a34,24 = 0, a34,28 = 0
35 a35,16 = 1, a35,23 = 0, a35,24 = 1, a35,28 = 0
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Table 13. (Continued from Table 12)

Step Conditions of the chaining variable in each step
36 a36,12 = 0, a36,13 = 0, a36,16 = 1, a36,23 = 1, a36,28 = 1, a36,32 = 1
37 a37,6 = 1, a37,12 = 1, a37,13 = 1, a37,16 = 0, a37,28 = 1, a37,31 = 0
38 a38,6 = 0, a38,12 = 0, a38,13 = 0, a38,16 = 1, a38,24 = 0, a38,28 = 1
39 a39,6 = 0, a39,12 = 0, a39,13 = 0, a39,28 = 0, a39,31 = 0
40 a40,6 = 0, a40,12 = 0, a40,13 = 1, a40,24 = 0, a40,28 = 1, a40,31 = 1
41 a41,6 = 1, a41,12 = 1, a41,13 = 1, a41,24 = 1, a41,31 = 0
42 a42,2 = 1, a42,6 = 1, a42,12 = 1, a42,13 = 0, a42,24 = 0, a42,31 = 0
43 a43,6 = 0, a43,12 = 1, a43,13 = 1, a43,24 = 0,a43,31 = 1
44 a44,2 = 0, a44,6 = 1, a44,12 = 1, a44,24 = 1, a44,31 = 1
45 a45,2 = 1, a45,20 = 1, a45,24 = 1, a45,31 = 0
46 a46,2 = 0, a46,24 = 0, a46,31 = 1
47 a47,2 = 0, a47,20 = 0, a47,24 = 1
48 a48,2 = 1, a48,20 = 0
49 a49,2 = 1, a49,20 = 0
50 a50,2 = 0, a50,20 = 0
51 a51,2 = 1, a51,20 = 1, a51,23 = 0
52 a52,16 = 1,a52,20 = 1, a52,23 = 0
53 a53,20 = 0, a53,23 = 0
54 a54,20 = 1, a54,16 = 0, a54,23 = 0
55 a55,16 = 1, a55,23 = 0
56 a56,16 = 0, a56,23 = 1
57 a57,16 = 0, a57,23 = 1
58 a58,16 = 1, a58,23 = 0
59 a59,12 = 1, a59,16 = 1, a59,23 = 1
60 a60,12 = 0, a60,16 = 0
61 a61,12 = 0, a61,16 = 1
62 a62,12 = 0
63 a63,12 = 0
64 a64,12 = 1
65 a65,12 = 0
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Abstract. We describe a collision-finding attack on 16 rounds of the
Tiger hash function requiring the time for about 244 compression func-
tion invocations. This extends to a collision-finding attack on 17 rounds
of the Tiger hash function in time of about 249 compression function invo-
cations. Another attack generates circular near-collisions, for 20 rounds
of Tiger with work less than that of 249 compression function invocations.
Since Tiger has only 24 rounds, these attacks may raise some questions
about the security of Tiger. In developing these attacks, we adapt the
ideas of message modification attacks and neutral bits, developed in the
analysis of MD4 family hashes, to a completely different hash function
design.
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1 Introduction

In the past two years, a flood of cryptanalytic results [5,6,7,8,9,2,3] has washed
away most of the practical hash functions used so far. Design-wise, all these
hash functions (including MD5, RIPEMD, SHA0, and SHA1) descend from
MD4. This has led to a growing interest into alternative hash function designs,
which had been mostly overlooked by cryptanalysts so far. One such alterna-
tive construction is Tiger, designed by Anderson and Biham in 1996 [1]. Like
the MD4-descendants, Tiger iterates an internal compression function for hash-
ing arbitrarily long1 messages. Tiger’s compression function, however, is very
different from the compression functions of the MD4 family.

Because the compression functions are so different internally, the attacks
against the MD4 family would appear unlikely to be directly useful in attack-
ing Tiger. Our analysis bears this out to some extent–the message modification
techniques we use differ in important ways from those in [5,6,7,8]. However, we
use message modification against Tiger for the same broad purpose as it is used
in [7,8]–to control the differences in the first few rounds by the choice of message
1 Tiger appears to restrict messages to 264 bits maximum, based on the size of the

message length field.
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values, despite having the message differences forced on us by our analysis of
the message schedule. Further, the use of neutral parts of the message in [2] is
directly applicable to our approach in attacking Tiger. In some sense, this is a
hopeful sign; it implies that we may hope to take the attack techniques devel-
oped against the MD4 family, and apply them, in suitably altered form, to hash
functions built on entirely different lines.

Below, we describe a collision-finding attack on Tiger reduced to 16 rounds.
As the full Tiger operates on 24 rounds, this attack gets through two thirds
of Tiger, with work equivalent to 244 compression function invocations. Tiger
produces a 192-bit hash, so a collision should ideally take 296 such invocations.

We describe how to extend this attack to 17 rounds of Tiger, increasing the
work to no more than 249 compression function invocations.

Also, we describe an attack to choose two input chaining values with a small
(namely, six bit) Hamming distance, which generates a near-colliding compres-
sion function outputs with the same Hamming distance – following, in fact,
the same differential pattern as the input. In this sence, we describe our near-
collisions as circular. (One could also describe them as pseudo-near-collisions.)
This third attack gets through more than 80 % of Tiger (20 / 24 rounds), with
work equivalent to less than 249 compression function invocations. An ideal 192-
bit hash should need approximately√

2192/
(

192
6

)
≈ 280 compression function invocations

for near-collisions with six bits of Hamming distance, instead of < 249.
The remainder of this paper is organized as follows. Section 2 provides a

description of Tiger, in sufficient detail to follow our attacks. Section 3 provides
an overview over the collision attack and describes some of the details. Sections
4 and 5 deal with the core of the attack: the message modification technique.
Section 6 introduces techniques to extend our attack to more than 16 rounds.
These are demonstrated by a collision attack against 17 rounds of Tiger, and by
a circular near-collision attack against 20 rounds. Section 7 briefly discusses the
security of Tiger, and outlines some lessons learned from the attack.

2 High-Level Description of Tiger

Tiger’s compression function is based on applying an internal “block cipher like”
function, which takes a 192-bit “plaintext” and a 512-bit key to compute a 192-
bit “ciphertext”. The “block cipher like” function is applied according to the
Davies-Meyer construction: a 512-bit message block is used as a key to encrypt
the 192-bit chaining value, and then the input chaining value is fed forward to
make the whole function non-invertible. In the remainder of this section, we will
describe Tiger in sufficient detail to follow the course of our attack. Note that
if, for any given input chaining value, we can generate two different messages
yielding the same output chaining value, then we have found a collision for Tiger.
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Tiger was designed with 64-bit architectures in mind. Accordingly, we will
denote a 64-bit unsigned integer as a “word”. We will represent a word as a
hexadecimal number. Tiger uses arithmetic operations (addition, subtraction
and multiplication by small constants), bit-wise XOR, NOT, logical shift opera-
tions and S-Box applications. The arithmetic operations over words are modulo
264. The chaining value is represented internally as three 64-bit words, the mes-
sage block as eight 64-bit words.

Thus, three words A, B, C describing the input chaining value and eight mes-
sage words X0, . . . , X7 are fed into the compression function, which generates
three words A′, B′, C′ describing the output chaining value. The compression
function’s final output A′′, B′′, C′′ is generated by the feedforward function

A′′ := A⊕A′,

B′′ := B −B′, and
C′′ := C + C′.

2.1 The Tiger Round Function

In the terminology of [4], Tiger’s block cipher like function is a “target-heavy
unbalanced Feistel cipher”. The block is broken into three words, labeled A, B,
and C. Each round, a message word X is XORed into C:

C := C ⊕X.

Then A and B are modified:

A := A− even(C),
B := B + odd(C),
B := B × (const),

with a round-dependent constant (const) ∈ {5, 7, 9}. The results are then shifted
around, so that A,B,C becomes B,C,A. See Figure 1.

i−1

Ai CiBi

Bi−1 XiA

(const)

even
odd

Ci−1

Fig. 1. The round function of Tiger
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For the definition of even and odd, consider the word C being split into eight
bytes C[0], . . . , C[7], with the most significant byte C[0]. The functions even
and odd employ four S-Boxes T1, . . . , T4 : {0, 1}8 → {0, 1}64 as follows:

even(C) := T1(C[0])⊕ T2(C[2])⊕ T3(C[4])⊕ T4(C[6]) and
odd(C) := T1(C[7])⊕ T2(C[5])⊕ T3(C[3])⊕ T4(C[1]).

The “even bytes” and the “odd bytes” of a word W are defined as

W [even] = (W [0], W [2], W [4], W [6]) ∈ ({0, 1}8)4 and
W [odd] = (W [7], W [5], W [3], W [1]) ∈ ({0, 1}8)4.

The round function spreads changes around very quickly – a one-bit difference
introduced into C in the first round will change about half the bits of the block
by the end of the third round. Tiger seems to be much better at this than the
members of the MD4 family.

It is easy to produce local collisions for the Tiger round function, using some
pattern (α, β, 0, α′). Here, α is an input difference to the even bytes of the S-
boxes, β is an XOR difference which is expected to cancel out the result of
that difference on the even function, and α′ is α multiplied by (const), being
expected to cancel out the original introduced change of α. However, local col-
lisions of this form are surprisingly hard to use in attacks on more than eight
rounds of Tiger – the key schedule seems to be quite effective at destroying such
patterns.

2.2 The Key Schedule

Tiger consists of 24 rounds. Each round uses one message word Xi as its round
key. The first eight round keys X0, . . . , X7 are identical to the 512-bit cipher
key (or rather, to the 512-bit message block). The remaining 16 round keys are
generated by applying the key schedule function:

(X8, . . . , X15) := KeySchedule(X0, . . . , X7)
(X16, . . . , X23) := KeySchedule(X8, . . . , X15)

The key schedule uses logical shifts on words, denoted by # and !, e.g.,

– 1111 5555 9999 FFFF # 5 = 222A AAB3 333F FFE0, and
– 222A AAB3 333F FFE0 ! 9 = 0011 1555 5999 9FFF.

Further, it uses the bit-wise NOT function, e.g. for X = EEEE AAAA6666 0000,
the negation of X is X = 1111 5555 9999 FFFF. The key schedule modifies its
input (x0, . . . , x7) in two passes:
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first pass second pass
1. x0 := x0 − (x7 ⊕ Const1) 9. x0 := x0 + x7
2. x1 := x1 ⊕ x0 10. x1 := x1 − (x0 ⊕ (x7 # 19))
3. x2 := x2 + x1 11. x2 := x2 ⊕ x1
4. x3 := x3 − (x2 ⊕ (x1 # 19)) 12. x3 := x3 + x2
5. x4 := x4 ⊕ x3 13. x4 := x4 − (x3 ⊕ x2 ! 23))
6. x5 := x5 + x4 14. x5 := x5 ⊕ x4
7. x6 := x6 − (x5 ⊕ (x4 ! 23)) 15. x6 := x6 + x5
8. x7 := x7 ⊕ x6 16. x7 := x7 − (x6 ⊕ Const2)

The final values (x0, . . . , x7) are used as the key schedule output. The constants
are Const1 = A5A5 . . . A5A5 and Const2 = 0123 . . . CDEF.

3 The Attack

We propose a differential attack on Tiger in three parts. Throughout the attack,
we are switching between XOR-differences and additive differences. In general,
switching between differences holds with some nonzero probability; for example,
an additive difference of 1 can be represented as an XOR difference of 1, with
probability 1/2 of being correct.

3.1 Conventions

Transforming one type of difference into another is typically probabilistic, but
for some values, it has probability one.

– If X − Y = 2i, then Pr[X ⊕ Y = 2i] = 1/2. The exception is i = 63, where
Pr[X ⊕ Y = 2i] = 1.

– Let I := 263. Switching between the additive difference I and the XOR-
difference I succeeds with probability 1. In other words, when dealing with
a difference I, we need not care what type of difference this actually is. Our
attack will make extensive use of this simple fact.

– Note that a difference I in a word W remains the same, even if W is mul-
tiplied by some odd constant (const), as done in the Tiger compression
function.

We start counting rounds by 0, and we write Xi for the message word input
of the i-th round, and Ai, Bi, Ci for the output of round i – which just happens
to be the input chaining values for round i + 1. Accordingly, the chaining value
input for the round 0 (the first round) is A−1, B−1, C−1.

The differences in message words are most usefully seen as XOR-differences,
since the message word (or the “round key”) Xi is XORed into the state. Additive
differences are what we need to know when dealing with the two target words in
the round (the two words that get altered), because the arithmetic differences
are all mod 264. For the S-box inputs in the message modification step, XOR
differences are most useful.
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We will use the following notation for the differences which occur in some
word W :

– Δ+(W ) = W −W ∗ mod 264 for additive differences and
– Δ⊕(W ) = W ⊕W ′ for word-wise differences.

3.2 Outline of the Attack

The attack can be broken into three pieces:

1. Differential characteristic (I, I, I, I, 0, 0, 0, 0)→ (I, I, 0, 0, 0, 0, 0, 0) in the key
schedule.

2. Differential characteristic (I, I, 0) → (0, 0, 0) in rounds 6-9 of the round
function. (Because the message words in rounds 10-15 are unchanged, this
leads to a collision after 16 rounds.)

3. Message modification to force the difference in the round function after round
6 to (I, I, 0).

3.3 Key Schedule Differences

Consider a difference of the form (I, I, I, I, 0, 0, 0, 0) in the message words. The
first pass of the key schedule turns this into an intermediate difference pattern
(I, 0, I, 0, 0, 0, 0, 0). The second pass turns this into (I, I, 0, 0, 0, 0, 0, 0). This is
the differential pattern we will use for our attack; it holds with probability one,
and covers the expanded message words used for rounds 0-15.

The colliding messages will differ only in the high order bits of their first four
words. The expanded message words will differ for rounds 8-9, only in their high
order bits. Expanded message words 10-15 will have no differences. This means
that if the states of the compression functions processing the two messages are
equal after round 9, they will remain equal until the end of round 15, yielding a
16-round collision.

3.4 Round Function Differences

Given the key schedule differential characteristic above, we can specify a differ-
ential characteristic for the round function from the end of round 6 to the end
of round 9, going from (I, I, 0) → (0, 0, 0) by canceling with the differences in
rounds 8-9. The expanded message words from rounds 10-15 have no differences,
and thus a collision after round 9 becomes a collision for 16 rounds of Tiger.
Figure 2 shows this characteristic.

3.5 Message Modification

The main difficulty of the attack is in the message modification step. Recall that
our target difference at the end of round 6 is

Δ+(A6) = I, Δ+(B6) = I, Δ+(C6) = 0.

Independently from the choice of message words, we know Δ+(C5) and Δ+(C4).
Also, since Δ+(X6) = 0, we need Δ+(C5) = Δ+(B6) = I. Similarly, we know
the relationship Δ+(C4) = I + Δ+(odd(B6)).
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(A )6 (B )6 (C )6

(C )9(B )9(A )9

00II

I 0 I

I0 0 I

I

0 0 0

Fig. 2. Probability one characteristic from round 6-9

4 Local Message Modification by Meeting in the Middle

Assume we know inputs (Ai−1, Bi−1, Ci−1) and (A∗
i−1, B∗

i−1, C∗
i−1), and some

XOR differences in the message words Xi and Xi+1. We want to force some
additive difference Δ+(Ci+1) to δ∗ = Ci+1 − C∗

i+1. As depicted in Figure 3,
the difference Δ+(Ci+1) depends on Δ+(Bi−1), the additive output difference of
the odd function from round i, and the additive output difference of the even
function from round i + 1.

4.1 Plain Message Modifications

First consider the even function, which, after computing Bi+1 := Ci ⊕ Xi+1,
evaluates as

even(Bi+1) := T1(Bi+1[0])⊕ T2(Bi+1[2])⊕ T3(Bi+1[4])⊕ T4(Bi+1[6]).

For any nonzero XOR difference between words Bi+1 and B∗
i+1, we expect about

232 different additive output differences of the form δeven = even(Bi+1) −
even(B∗

i+1). Similarly, when we consider the odd function

odd(Bi) := T1(Bi[7])⊕ T2(Bi[5])⊕ T3(Bi[3])⊕ T4(Bi[1]),

we expect close to 232 different additive output differences of the form δodd =
odd(Bi)− odd(B∗

i ).
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i−1

Ai CiBi

Bi−1 Xi

Ai+1 Bi+1

Xi+1

Ci+1

A

(const)

even
odd

Ci−1

(const)

even
odd

Fig. 3. The information flow from Bi−1 to Ci+1

Thus, if the differences in Bi+1[even] and in Bi[odd] both are nonzero, we
can apply a meet-in-the-middle (MITM) approach to force

(Δ+(Bi−1) + δodd)× const− δeven = δ∗

– Store the 232 candidates for δodd in a table.
– For all 232 candidates for δeven, test if δodd exists with

δeven = (Δ+(Bi−1) + δodd)× (const)− δ∗,

or rather
δodd = (δeven + δ∗)/(const)−Δ+(Bi−1) (1)

(note that since (const) is odd, division by (const) mod 264 is well-defined).

This technique takes some 232 evaluations of each of the functions even and
odd, which is equivalent to about 228 evaluations of the compression function
– and, of course, some 232 units of storage space.

We estimate that for given Δ+(Bi−1) and δ∗, the meet-in-the-middle approach
succeeds with a probability close to 1/2. In the attack scenario, we will repeat the
approach with another Δ+(Bi−1) or another target difference δ∗, if necessary.

Assume Xi[even] has been fixed and the MITM delivered δeven and δodd
satisfying Equation 1. We can now determine value for Bi+1[even] and Bi[odd]
which will produce the desired differences, and thus will map the input differ-
ence to the output difference as required. During the MITM step, each candi-
date additive difference for δeven is produced by one or more specific values of
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Bi+1[even], and likewise, each value of δodd is produced by one or more specific
values of Bi[odd].

Finally, we are able to compute 64 local message bits:

Xi[odd] := Ci−1[odd]⊕Bi[odd] and
Xi+1[even] := Ci[even]⊕Bi+1[even].

Note that Ci has been defined by fixing Xi[even].
In the attacks below, we use two variations on these ideas.

4.2 Message Modification to Get an XOR Difference

In step 3 of the attack below, we need a specific XOR difference in C3. However,
the meet-in-the-middle technique above takes an additive difference, not an XOR
difference, as input. Our solution to this is to throw brute force computation at
the problem: For a desired XOR difference of Hamming weight k, we simply go
through the meet-in-the-middle search for each additive difference which could
be produced by the XOR difference, until we run out of choices or find an additive
difference which both matches and yields the desired XOR difference when we
compute it forward.

An additive difference which can lead to a given k-bit XOR difference has
about a 2−k probability of doing so2 This means we expect to need to try about
2k additive differences which are consistent with the k-bit XOR difference before
we succeed in finding a match. Since each MITM step succeeds in finding a
matching additive difference about half the time, we will need to do a total
of 2k+1 MITM steps. However, we can optimize this in a simple way, by only
redoing one side of the MITM search for each new targeted additive difference.
The expected work is thus bounded by 228+k.

4.3 Message Modification with Constraints

Two of the MITM steps (steps 4 and 5) in the attack below must live with
constraints on the selection of message bits. The constraints come from the
transition between an XOR difference in C3 and an additive difference in B4.
Since the XOR difference has k bits active, and the additive difference is con-
sistent with only one set of values for those bits, k bits of message word X4 are
constrained3.

Constrained message modification is relatively simple: Instead of searching
over 232 possible additive differences from each side, we search over a smaller

2 A k-bit XOR difference has either 2k or 2k−1 additive differences consistent with
it. For a flipped bit in position j, this represents the choice of whether to add or
subtract 2j . A flipped high order bit always matches both +263 and −263 in mod
264 arithmetic.

3 For example, an XOR difference of 1 is consistent with an additive difference of
either -1 or +1. If the low bit in C3 is 0, the low bit in C∗

3 will be 1, and reaching
an additive difference of -1 will require fixing the low bit of X4 to 1.
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number, with the constrained bits of the message fixed to their required values.
For the sake of simplicity, we assume that k/2 bits are constrained in the even
bytes, and k/2 in the odd bytes. However, the probability of success is decreased
in a corresponding way; with only 228 choices from one side, and 232 from the
other, we expect about a 2−4 probability of a match. Thus, we expect to have
to repeat an MITM search with 4 constrained bits about 16 times.

5 The Global Message Modification Scenario

0. Do a one-time precomputation to find a additive difference L with a low
Hamming weight corresponding XOR difference which we can cancel out by
our choice of the even bytes of X6. (Note that the specific value of X6 is
not determined yet; we are simply ensuring that this additive difference will
permit a choice of X6 that will cancel the resulting difference out.) This costs
227 Tiger-16 hash function equivalents, and we expect it to yield an additive
difference which is consistent with an 8-bit XOR difference4.

1. Choose X0 and X1[even] to ensure that C0 and C1 have useful (that is,
nonzero in both the even and odd bytes) differences. Note that at the end
of this step, we know Δ⊕(C1) and Δ⊕(C2). We use these in the next step.
The work here is negligible.

2. Choose X1[odd] and X2[even] to ensure that C2 has a useful difference. Note
that at the end of this step, we know Δ⊕(C2). We use this XOR difference
in the next step. The work here is negligible.

3. Do a message modification step to get XOR difference Δ⊕ in C3 which is
consistent with the additive difference L. This is described above. The ex-
pected work here is about 236 Tiger-16 hash equivalents, and we determine
X2[odd], X3[even].

4. Do a constrained meet in the middle step, choosing X3[odd], X4[even] to
get ΔC4 = I. We expect there to be four constrained bits, meaning that
we expect to have to try this 16 times before we get a match. Each failed
attempt requires that we go back to step 2. We thus expect to spend about
24236 = 240 Tiger-16 equivalents completing this step of the attack.

5. Do a constrained meet in the middle step, choosing X4[odd], X5[even] to
force ΔC5 = I. As before, we expect this to be constrained by four bits,
and thus to need to be repeated 16 times. Each failure requires that we go
back to step 2. This step thus is expected to be completed after doing about
24240 = 244 Tiger-16 hash equivalents of work.

6. Given the value of C5, we use the results of step 0’s search to determine the
value for the even bytes of X6. This is negligible work, and never fails.

4 We expect this because in a set of 232 random 64-bit integers, we expect about one
with a Hamming weight of 8, since 64-bit integers with Hamming weight 8 make up
about 2−32 of all 64-bit integers. In this case, a 9-bit XOR difference where one of
the active bits is the high-order bit gives identical results in the remainder of the
attack.
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The result of this is an additive difference in the output of of I, 0, I in the
output of round 7. With probability one, this cancels out with the key schedule
characteristic, leading to a 16-round collision.

5.1 Neutral Bits

The above attack has specified message words X0,1,2,3,4 and the even bytes of
message words X5,6. This leaves an enormous number of bits of the message
which can be varied without interfering with the 16-round collision. After having
found the collision, we may freely determine the values for the odd bytes of X5,6
and all of X7. The above attack thus finds 2128 16-round collisions for Tiger.

For example, consider varying the bytes of X
[
5odd]. This alters the output of

the odd function in round 5, and thus the value of A6. However, since there is no
difference active in the odd bytes of B5, changing the input to the odd function in
round 5 adds the same change to A6 and A∗

6. This leaves the additive difference
in A6 unchanged, which means that the same difference in the even function in
round 6 will cancel it out. Similarly, a change to the odd bytes of X5 changes
the value of B5, but doesn’t change the additive difference B∗

5 − B5, as it adds
the same amount to both. The same kind of analysis applies to all the neutral
bits.

5.2 Free Bits

The attack also imposes almost no constraints on X0,1 or the even bytes of X2.
We need control of about 12 of those bits during the attack. A natural thing
to do is to choose X0,1 freely at the beginning of the attack in any way that is
convenient, and then use the even bytes of X2 to provide multiple trials for the
message modification steps.

6 Going Beyond 16 Rounds

In this section, we will apply the 16-round collision finding technique from above
as some subroutine, to attack more rounds of Tiger. Make the following two
assumptions

1. The round keys X8, . . . , X15 observe the characteristic (I, I, I, I, 0, 0, 0, 0).
2. The input difference (Δ+(A7), Δ+(B7), Δ+(C7)) to round eight is (0, 0, 0).

If both assumptions hold, we can apply the 16-round technique from above to
compute an “intermediate-message” (X8, . . . , X15), such that we get a collision
after round 23. As the key schedule is invertible, the “real message” (X0, . . . , X7)
can easily be computed by by running the key schedule backwards.

6.1 A Round Key Differential

Set I∗ := I ! 23 = 240 and I∗∗ := I ′∗ ! 23 = 217. Assume that the eight mes-
sage words observe the differential characteristic (I, I, 0, 0, I + I∗, I + I∗, I∗ +
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I∗∗, 0). With the probability ≈ 1/16, we expect the first pass through the
message schedule turns this characteristic into (I, 0, 0, 0, I + I∗, 0, 0, 0). If this
happens, then we expect the second pass to produce our target characteristic
(I, I, I, I, 0, 0, 0, 0) with probability 1/2.

To summarise, we expect the differential characteristic

(I, I, 0, 0, I + I∗, I + I∗, I∗ + I∗∗, 0) −→ (I, I, I, I, 0, 0, 0, 0) (2)

to hold with a probability of about 1/32. We have verified this experimentically.
(Actually, our results seem to indicate a slightly better probability of approxi-
mately 1/28. But for simplicity, we use 1/32 = 2−5 for our analysis.)

6.2 Attacking 17 Rounds of Tiger

Now we describe an attack on 17 rounds of Tiger, namely rounds 7 to 23:

1. Given the initial value (A6, B6, C6), choose the message word X7 and apply
one round of Tiger to get (A7, B7, C7).

2. Apply the 16-round attack to get a message (X8, . . . , X14, X15) colliding with
(X8, . . . , X14, X15) + (I, I, I, I, 0, 0, 0, 0).
Recall that (X8, . . . , X14, X15) contains 128 neutral bits, including all the 64
bits of X15. I.e., any choice of X15 will produce a collision.

3. Now run the key schedule backwards to get (X0, . . . , X7). As X7 has already
been chosen, we have to observe a little twist here: Given X7, . . . , X14, but
ignoring X15, we compute the remaining seven message words X0, . . . , X6 as
explained below.

4. Now we check our differential characteristic (2). If it holds, we have found a
17-round collision for rounds 7 to 23 and are done.
Else, we go back to the first step.

On the average, the characteristic (2) holds at least one in 32 = 25 times. Thus,
the attack on 17 rounds of Tiger takes the time of about

25 ∗ 244 = 249

compression function invocations.

What about step 3 of the attack, i.e., running the key schedule back-
wards? Given X7 and X8, . . . , X14, we have to compute X0, . . . , X6. We write
Y0, . . . , Y7 for the output of the first key schedule pass when computing

(X8, . . . , X14, X
∗
15) = KeySchedule(X0, . . . , X7).

(Note that we actually know X8, . . . , X14, while X∗
15 is unknown.)

Inverting steps 11–15 of the second pass is straightforward:

Y6 := X14 −X13

Y5 := X13 ⊕X12

Y4 := X12 + (X11 ⊕ (X10 ! 23))
Y3 := X11 −X10

Y2 := X10 ⊕X9
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We get the value Y7 by inverting step 8 of the first pass:

Y7 := X7 ⊕ Y6

Finally, we can invert those steps of second pass which depend on Y7:

Y6 := X9 + (X8 ⊕ (Y7 # 19))
Y0 := X8 − Y7

Inverting steps 1 to 7 of the first pass is quite similar.

6.3 Circular Near-Collisions for 20 Rounds of Tiger

Now we go even further, to 20 rounds of Tiger, at the cost of dealing with
a weaker attack model. Instead of a collision-attack, we provide circular near-
collisions with small Hamming weight (Hamming weight 6). We attack rounds
4 to 23 (i.e., all but the first four rounds). Hence, we denote the input chaining
values by A3, B3, C3. The attack works as follows:

1. Arbitrarily choose the chaining values A7, B7, C7 for round 8.
2. Employ the 16-round attack, to find message words X8, . . . , X15 such that

the output after round 23 collides.
3. Run the key schedule backwards, to compute the “real” message words

X0, . . . , X7.
If the characteristic (2) does not hold, go back to step 2.

4. Run the rounds 7, 6, 5, and 4 backwards to compute the initial values
A3, B3, C3. The differences in the message words induce the same differences
in the initial values, namely

Δ⊕(A3) = I + I∗ = Δ⊕(B3) and Δ⊕(C3) = I∗ + I∗∗.

5. The feedforward destroys the collision, of course. But with very high prob-
ability, it leaves us with a low Hamming weight near-collision. With proba-
bility 2−3 the feedforward output follows the same differential pattern than
the input chaining values:

Δ⊕(A23) = I + I∗ = Δ⊕(B23) and Δ⊕(C23) = I∗ + I∗∗.

If it doesn’t follow this pattern, then randomly vary the neutral bits in
X13,14,15 until it does hold. We expect to need to try about 23 = 8 sets of
neutral bits for this.

Similarly to Section 6.2, we expect to iterate the 16-round attack no more than
25 times, on the average. In total, we expect a running time of about 249 Tiger-
20 equivalents. Varying the neutral bits in the last step adds negligible cost.
Thus, the Tiger-20 near-collision attack costs less work than iterating Tiger-20
240 times.
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7 Conclusions and Open Questions

In this paper, we have developed collision attacks:

– an attack against 16 rounds of Tiger, requiring work equivalent to about 244

compression function computations and
– an attack gainst 17 rounds of Tiger, being no more than 32 times slower –

work equivalent to about 244 compression function computations.

These attacks heavily use message modification techniques.
We have further exploited this technique for a near-collision attack (with

adversarially chosen input chaining values) against the last 20 rounds of Tiger,
also for about 249 compression function computations worth of work. These
near-collisions are circular, i.e., the input and the output chaining values have
identical differences (with a Hamming weight of 6).

7.1 The Security of Tiger

All of our results are based on message modification techniques, which mean
that we choose both the XOR differences in the message, and also specific values
for most or all of the message bits. This constrains the attack in many ways.
For example, we can see no way to adapt our current techniques to collisions
against an application using 16-round Tiger in the HMAC construction–our lack
of knowledge of the chaining values would make our approach impossible.

Second-preimage attacks on a single compression function computation also
appear to be very difficult using our techniques. Both the difference between the
colliding message blocks and the specific values of the messages are constrained
by our attack; it appears to be very difficult to “work backward” from a speci-
fied message block with some hash output to a colliding message block. Second
preimages are trivial to find for up to 8 rounds, and appear possible to find for
up to 11 rounds using local collisions, but we have not investigated this line of
attack in much detail yet.

We are more concerned with the possibility of extending the collision attack to
more rounds. As Tiger has only 24 rounds, attaking 16–20 rounds is threatening.
A relatively small improvement might make the attack techniques applicable to
the full hash function. We definitely do not believe that the attack techniques
presented here have been fully exploited in the current attack.

We point out that pseudo-collisions and near-collisions can be more than just
certificational weaknesses. Some of the attacks against ciphers from the MD4 fam-
ily employ pseudo- and near-collisions in attack scenarios with more than one mes-
sage block, to find plain collisions for the hash function itself (see, e.g., [6]).

7.2 What We’ve Learned About Tiger

We draw two broad lessons from the analysis so far. First, we believe that
Tiger has too few rounds. Message modification techniques allow us to almost
completely control what happens in the first third of the hash function at
present, allowing us to place differences in the remaining rounds almost without
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constraint. Second, the use of large S-boxes and mixing between addition and
XOR operations is an excellent strategy for building a block cipher, but it works
very differently inside a hash function. Large S-boxes tend to have a large set
of equally good differentials, but which differential will pass the next round de-
pends on the value of the internal state of the hash function; the attacker facing
a block cipher with such large S-boxes must guess which differential to try; the
attacker facing a hash function can often choose those values to make his differ-
ential work, or at least look inside the state of the hash function to determine
the best differential path to try.

7.3 Applicability of the Tools of the MD4 Family Attacks

We have also seen some overlap in the tools used to attack the MD4 family, and
our results on reduced-round Tiger. Broadly, we analyze the message expansion
for the hash function, and form a differential characteristic which, if entered
after round 7, will lead to a collision in the full hash function. We then use
message modification to force the hash states processing a pair of messages with
our desired difference onto this differential characteristic after round 7. This is
quite similar to the techniques used in [7] and [8], though without (yet) the
use of advanced message modification techniques. Similarly, a variation on the
neutral bit techniques of [2] are used to make our 20-round pseudo-near-collision
attack more efficient. While the details of using these attack tools are different
for Tiger, the high level similarities in approach suggest that we may be learning
generally useful attack techniques against hash functions from the recent results
on the MD4 family of hash functions.
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Abstract. This is the first article analyzing the security of SHA-256
against fast collision search which considers the recent attacks by Wang
et al. We show the limits of applying techniques known so far to SHA-256.
Next we introduce a new type of perturbation vector which circumvents
the identified limits. This new technique is then applied to the unmodified
SHA-256. Exploiting the combination of Boolean functions and modular
addition together with the newly developed technique allows us to derive
collision-producing characteristics for step-reduced SHA-256, which was
not possible before. Although our results do not threaten the security of
SHA-256, we show that the low probability of a single local collision may
give rise to a false sense of security.

1 Introduction

After recent cryptanalytic results on MD5 [19], SHA-1 [2,14,18] and similar
hash functions, the resistance of members of the SHA-2 family (i.e. SHA-224,
SHA-256, SHA-384 and SHA-512) [12] against recent attacks is an important
issue.

While SHA-1 and MD5 are currently the most commonly used hash functions
worldwide, the direct successor of SHA-1, SHA-256 is in many cases considered
to be an upgrade option. However, SHA-256 did not receive as much cryptana-
lytic scrutiny from the cryptographic community as other hash functions. Even
though the underlying design principle did not change since MD4, SHA-256 needs
to be considered separately. It is expected to be much stronger than SHA-1, but
several questions concerning its collision resistance need to be answered:

– Are the currently known techniques applicable to SHA-256? Which ones and
to what extent?

– What about new techniques which are specifically designed to be applied to
SHA-256?

In this article, we give preliminary answers to these questions. To put our
contribution into perspective, we first survey existing approaches and previous
results.
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1.1 Outline of Existing Approaches

The basic approach for efficient collision search of the predecessors of SHA-256,
SHA-0 and SHA-1, can be described as follows:

1. Identify local collisions in the state-update transformation.
2. Search for low-weight perturbation vectors by searching for low-weight ex-

panded messages. In the approach by Chabaud and Joux [4] the perturbation
vectors need to satisfy some additional properties which were dropped later
on by Wang et al. [18] by using more complicated techniques.

3. Build the difference vector by interleaving the local collisions as described by
the perturbation vector. Note that in [14] and [13] an approach is described
which combines the three steps above.

4. The complexity of the collision search attack is related to the probability
with which the characteristic described by these interleaved local collisions
is followed.

5. By adjusting message bits for the chosen characteristic and allowing small
variations in the characteristic, the computational effort for the collision
search is decreased.

1.2 Survey of Existing Results on SHA-256

Being standardized by NIST in 2000 [12], the first published independent analysis
of members of the SHA-2 family was done by Gilbert and Handschuh [6]. They
show that there exists a 9-step local collision with probability 2−66. Later on,
the result was improved by Hawkes et al. [7]. By considering modular differences,
they give a new maximal probability of 2−39.

In [9] SHA-256 is analyzed in encryption mode. Attacks based on related-key
assumptions for up to 37 steps are presented there. In [21], all modular additions
are replaced by XOR. For this variant, a search for pseudo-collisions which is
faster than brute force search for up to 34 steps faster is described.

In [11] a variant of SHA-256 is analyzed where all Σ and σ are removed. The
conclusion is that collisions can be found much faster than by brute force search
for this variant. Additionally, some low-weight expanded message differences
for a GF(2)-linearized message expansion are given. The work shows that the
approach used by Chabaud and Joux [4] in their analysis of SHA-0 is extensible
to that particular variant of SHA-256.

1.3 Our Contribution

So far, nobody described ways to do collision search attacks for the unmodified
SHA-256 or step-reduced variants thereof. After a short description of SHA-256
in Sect. 2, we address this issue in several ways.

First we analyze the message expansion of SHA-256 and show that its prop-
erties prevent the efficient extension of the techniques used by Chabaud and
Joux [4] on SHA-0 or by Wang et al. in the analysis of SHA-1 [18] (see Sect. 3.1).
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Table 1. Notation

notation description
Ai . . . Hi state variables at step i of the compression function
A ⊕ B bit-wise XOR of state variable A and B
A + B addition of state variable A and B modulo 232

A′ XOR difference in state variable A
Mt input message word t (32 bits), t ≥ 1
Wt expanded input message word t (32 bits), t ≥ 1

ROTRn(A) bit-rotation of A by n positions to the right
SHRn(A) bit-shift of A by n positions to the right

N number of steps of the compression function

To illustrate our point, we define a variant SHA-256-3R, where the shift op-
eration in the message expansion is replaced by a rotation. We show how to use
low-weight perturbation vectors in a collision search for this variant in Sect. 3.2.

Next we focus on the unmodified SHA-256. To overcome the limitations we
identified before, we introduce the idea to drop the requirement of having a
perturbation vector which is a valid expanded message. In Sect. 3.3, we develop
a way to derive this new type of perturbation vector for SHA-256, which can be
used to find collision-producing characteristics with high probability. The price
we have to pay is an increase of the search space for this new type of perturbation
vector.

Some heuristics, which were developed in the case of SHA-1 to reduce the
search space, do not apply to SHA-256. In Sect. 3.4 we describe a new way to
reduce the search space.

As an example, a 19-step collision for unmodified SHA-224 is presented in
Sect. 3.5, including a detailed description of the characteristic being used. There
are two lessons to be learned from this example. Firstly, compared to indepen-
dently multiplying probabilities for local collisions, interleaving them dramati-
cally increases their overall probability. This contrasts with observations on older
members of the SHA family. Secondly, techniques that exploit the combination
of Boolean functions and modular addition in the state update are shown to be
applicable in this example of a SHA-224 collision.

Additionally, we briefly survey methods to speed up the collision search for
SHA-256 in Sect. 4. These methods and refinements thereof are subsequently
used in some examples. These examples include the fast generation of 18-step
collisions and 22-step pseudo-collisions with non-zero message difference on a
standard PC.

2 Description of SHA-256

In the remainder of this article we use the notation given in Table 1. A complete
description of SHA-256 can be found in [12]. We briefly review parts of the
specification needed subsequently.
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SHA-256 is an iterated cryptographic hash function based on a compression
function that updates the eight 32-bit state variables A, . . . , H according to the
values of 16 32-bit words M0, . . . , M15 of the message. The compression function
consists of 64 identical steps as presented in Fig. 1. The step transformation
employs the bitwise Boolean functions fMAJ and fIF , and two GF(2)-linear
functions

Σ0(x) = ROTR2(x)⊕ROTR13(x)⊕ROTR22(x) ,

Σ1(x) = ROTR6(x)⊕ROTR11(x)⊕ROTR25(x) .

The i-th step uses a fixed constant Ki and the i-th word Wi of the expanded
message. The message expansion works as follows. An input message is padded
and split into 512-bit message blocks. Let ME denote the message expansion
function. ME takes as input a vector M with 16 coordinates and outputs a
vector W with N coordinates. The coordinates Wi of the expanded vector are
generated from the initial message M according to the following formula:

Wi =

{
Mi for 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i < N

. (1)

Taking a value for N different to 64 results in a step-reduced (or extended)
variant of the hash function. The functions σ0(x) and σ1(x) are defined as fol-
lows: σ0(x) = ROTR7(x)⊕ROTR18(x)⊕SHR3(x) and σ1(x) = ROTR17(x)⊕
ROTR19(x) ⊕ SHR10(x).

Fig. 1. One step of the state update transformation of SHA-256

3 Finding Collision Producing Characteristics for
Step-Reduced SHA-256

Finding collision-producing characteristics for SHA-256 with a high probability
is difficult. While searching for high probability characteristics, GF (2)-linear
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approximations that hold with high probability are useful. In the case of the
addition mod 232, bit-wise XOR of the inputs has probability 1 for the LSB and
probability 0.5 for all other bits. In the case of the Boolean functions fIF and
fMAJ , several approximations are possible which all hold with probability 0.5.
Superficially comparing the results in [7] and [6]1 would lead to the preliminary
conclusion that the notion of modular differences instead of XOR differences
offers a significant advantage. However, we argue that this is not the case. Using
the XOR differences as presented in [6] and looking at possible characteristics
for a local collision, we estimate that the probability of a single local collision
(depending on the bit position of the perturbation) can be higher than 2−39. This
is by assuming unknown state variables at the beginning of the local collision.
Since this compares favorably with the best results known so far, we will stick
to XOR differences..

Compared to SHA-1, where the corresponding probabilities are between 2−2

and 2−5, the probability for a local collision in SHA-256 is still very low. However,
we will show by means of an example, that by interleaving several local collisions
to build a collision-producing characteristic, the combined probability is much
higher than the product of the single probabilities. This effect also occurs in the
case of SHA-1 [18], but with much less impact on the overall complexity of the
attack. However, before we arrive there, we need to discuss how to find suitable
ways for interleaving these local collisions.

3.1 Why Existing Approaches Do Not Work

In this section we discuss to which extent the methods that are used in the
analysis of SHA-0 and SHA-1 are applicable to SHA-256 as well. A very high-
level description of the so-called perturbation-correction method to find collisions
for SHA-0 and SHA-1 used in [4,18] could be the following:

1. Find a vector d such that the perturbation vector d′ = ME(d) has a low
Hamming weight.

2. Determine the correction vectors c′u which ensure that the expanded mes-
sage difference e′ = d′ +

∑
u c′u results in a collision for the linearized hash

function. The mapping from d′ to the c′u depends on the properties of the
state update transformation alone.

3. Determine the vectors cu such that c′u = ME(cu). Construct the message
difference as e = d +

∑
u cu.

4. Determine M and M∗ such that the differences in the real hash function
follow the characteristic built for the linearized hash functions. We will refer
to this characteristic as L-characteristic.

For all the hash functions of the SHA family, the vectors c′u can be computed
as c′u = Rru ◦ Tu(d′). The map Rru(x′) rotates every coordinate of the vec-
tor x′ over the constant amount ru. The map Tu(x′) translates the coordinates
of the vector x′ over u positions to the right, dropping the leftmost u coor-
dinates and filling in u zeroes on the left. The values (u, ru) depend on the
1 Probability of 2−39 vs. 2−66 for a single local collision in SHA-256.
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state update transformation. For instance, for the case of SHA-1, the values are
(1, 5), (2, 0), (3,−2), (4,−2) and (5,−2).

The message expansion of a hash function is not surjective. We call x′ a valid
expanded message if there exists a value x such that x′ = ME(x). Additional
conditions can be imposed on d in order to ensure that the vectors c′u are valid
expanded messages. In particular, we need the two following conditions.

Condition 1: Rru(ME(d)) needs to be a valid expanded message, for all values
ru that occur.

Condition 2: Tu(ME(d)) needs to be a valid expanded message, for all values
u that occur.

It can easily be verified that for the message expansion of SHA-1, Condition 1
is satisfied for all d and for all ru. Condition 2 can be satisfied by ensuring that
“the backwards expanded difference equals zero in the first 5 steps” [4].

For the case of SHA-256 with linearized message expansion (all modular ad-
ditions are replaced by XOR), Condition 2 can easily be satisfied by requiring
that the backwards expanded difference equals zero in the first 8 steps. Contrary
to SHA-1, satisfying Condition 1 imposes severe restrictions on d.

It has been observed before [13,14] that the perturbation-correction method
imposes overly strict requirements. Indeed, instead of requiring that d′ and each
of the c′u are valid expanded messages, it suffices to demand that the sum e′ =
d′+

∑
u c′u is a valid expanded message. For SHA-1, this observation doesn’t lead

to improved results. However, for SHA-256, it does as we will show in Sect. 3.3.
We show that for SHA-256, Condition 1 cannot always be met by proving the

following Theorem.

Theorem 1. For SHA-256, not all perturbation vectors d satisfying Condition
1 lead to a perturbation-correction vector e′ which is a valid expanded message.

The proof is given in Appendix A and shows first that this holds for a variant
of SHA-256 with linearized message expansion and then extends this result to
unmodified SHA-256.

The implication of this result is as follows: when we try to extend the standard
perturbation-correction method, which is at the core of every analysis of SHA-
0 and SHA-1 including those of Wang et al., to analyze SHA-256, we cannot
prevent the fact that there will be unwanted differences due to the message
expansion. For later reference, we term them “ghost differences of type 2”.

Theorem 1 also shows that the additional degrees of freedom we have due
to the GF (2) non-linearity of the message expansion are not sufficient to al-
ways correct this undesired behavior. In other words, by applying the standard
perturbation-correction method, we are facing impossible differentials in the mes-
sage expansion.

Implications of Theorem 1 on the collision search complexity. The
major improvement of Wang et al., which eventually lead to the break of SHA-1,
was the ability to deal with a different kind of ghost-difference. By dropping
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Condition 2, unwanted differences appear in the first 5 steps of SHA-1. We term
them “ghost differences of type 1”. In the following, we expand on that.

In the case of SHA-1 [18], the (near-)collision-producing characteristic is ac-
tually a concatenation of a low-probability general characteristic with a high
probability L-characteristic. By means of the general characteristic in the first
steps, these “ghost differences of type 1” are incorporated. This general char-
acteristic has a very low probability, but this fact is compensated by message
modification, which “bypasses” the probability of the chosen characteristic for
more than 20 steps.

What would happen if we drop Condition 2 in the case of SHA-256? The
“ghost differences of type 1” as described above will now appear up to step 8.
However, starting from step 17 until step N, there will also be “ghost differences
of type 2”. Even if it would be possible to incorporate them in an even more
complex general characteristic covering all N steps, the impact of this approach
on the attack complexity would be severe.

The attack complexity is determined by the probability with which the part
of the characteristic is followed that is not covered by message modification
techniques. Since the low-probability general characteristic needs to be followed
for all steps now, message modification cannot prevent its influence on the attack
complexity anymore. It is by no means clear that such a general characteristic
for all N steps of SHA-256 is even possible. Even if it is, the probability to
follow this general characteristic up to step N is likely to be prohibitively low.
Therefore, an other approach will be needed.

3.2 A Short Detour: SHA-256-3R

We show that by making a small change in SHA-256, the basic perturbation-
correction approach can be applied again. We name this variant SHA-256-3R and
change the message expansion of SHA-256 in the following way: The functions
σ0(x) and σ1(x) are replaced by the following:

σ0(x) = ROTR7(x) ⊕ROTR18(x)⊕ROTR3(x)
σ1(x) = ROTR17(x) ⊕ROTR19(x)⊕ ROTR10(x)

SHR is replaced by ROTR which has the effect that Condition 1 imposes
no restrictions anymore. Table 2 gives us the starting point for our analysis. It
shows a remarkably low-weight perturbation vector which satisfies the following
requirements. Firstly, the last 8 perturbation words are all-zero, which means
that we can finish all the needed corrections. Secondly, the backwards expansion
is all-zero for the first 8 steps which prevents “ghost differences of type 1” in
our perturbation-correction vector. These requirements are enough to build a
collision-producing characteristic which is constructed by interleaved local colli-
sions as described by the perturbation vector. It is given in Appendix B. Note
that this characteristic is an L-characteristic.

Most of the local collisions will be completed within the first 16 steps. The
last local collision will be completed at step 27. Due to the small change in the
message expansion, we do not have any “ghost differences of type 2”. Showing
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Table 2. Low-weight expanded message for the XOR-linearized 31-step message ex-
pansion of SHA-256 which can be used as a perturbation vector for SHA-256-3R

d′
i

i = 1 80000000 i = 11 0
i = 2 11002000 i = 12 0
i = 3 80000000 i = 13 0
i = 4 14044aa8 i = 14 0
i = 5 00205000 i = 15 0
i = 6 0 i = 16 0
i = 7 0 i = 17 0a020000
i = 9 0 i = 18 0
i = 9 11002000 i = 19 80000000
i = 10 80000000 i = 20 . . . 31 0

this fulfills the purpose of this detour, hence we stop the analysis of this L-
characteristic of SHA-256-3R here.

3.3 Extending the Rijmen-Oswald Approach to Unmodified
SHA-256

In the next two subsections, we show that despite the findings in the previous
section it is still possible to find perturbation vectors of low-weight which lead
to collision-producing characteristics. It will turn out that these perturbation
vectors are no longer valid expanded messages by themselves. Thus we will have
a new type of perturbation vector for SHA-256.

The approach to find such a new type of perturbation vector for SHA-256
is outlined below. The underlying idea is originally proposed in [14] and ex-
tended in [13]. Basically, it works as follows. First, we build a linearized version
of the message expansion and the state update transformation. Then, we con-
struct a generator matrix G which describes all possible state variables that
result in a collision for this linearized version. By searching for low-weight code-
words(see [3,10,15]) in the linear code described by G, we are actually searching
for L-characteristics with high probability.

In the case of SHA-256, the dimension of G is 512 × (9 ∗ 32 ∗ N) where N
denotes the number of steps. Note that we can cut the parts representing the
state variables B, C, D, F, G, H and thus reducing the length of the code without
loosing information. However, without a way to reduce the size of the code and
not excluding low-weight codewords, a search for L-characteristics with high
probability is not feasible.

3.4 Reducing the Search Space to Find Useful L-Characteristics

In the analysis of SHA-1 [2,8,14,18], it was possible to reduce the search space for
perturbation vectors or general collision producing characteristics by applying
the following observation. Low-weight expanded messages for SHA-1 have the
property that non-zero bits occur in bands, i.e. the non-zero values are concen-
trated on a few bit positions in every word. This can be explained by the weak
avalanche effect of the SHA-1 message expansion. This heuristic does not apply
to SHA-256. The functions Σ0, Σ1, σ0 and σ1 effectively prevent such a structure
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in L-characteristics. Therefore, the search space and hence the size of the code
needs to be reduced by other means.

Another way of looking at the search for low-weight codewords in the code
describing L-characteristics is as follows. Searching for low-weight codewords
maps to searching for low-weight solutions in a homogeneous system of equations
in GF(2). Actually, the corresponding check matrix H of the code described by
G is a representation of the coefficients of this system. The variables refer to
all message bits and state variable bits in the linearized variant. The system of
equations described by H is under-defined, i.e. there are more variables than
equations.

Forcing bits to zero or one can also be seen as adding new equations, where we
simply set this bit to that particular value. The generator matrix G as described
in 3.3 gives us 512 degrees of freedom, which means we can add up to 511
equations to H . By forcing those bits to zero which we expect to be zero in an
L-characteristic, we eventually arrive at a system of equations where it is feasible
to search for low-weight solutions. Note that this is a rather rough way to reduce
the search space which does not work for larger number of steps N .

3.5 Example of a Collision-Producing L-Characteristic for 19-Step
SHA-224

In Table 3, we give an L-characteristic of a 1-near-collision for 19 steps of
SHA-256 which is a 19-step collision for SHA-224 at the same time. Note that the
only difference between SHA-224 and SHA-256 is that at the output, the right-
most 32 bits are discarded. By applying the techniques described in Sect.3.4, we
reduced the size of the code to 64, which led to our results.

The perturbation vector which is used as a building block for this character-
istic is the vector A′ in Table 3. The perturbation vector is not a valid expanded
message. Note that this perturbation vector can be word-wise rotated without
loosing its property of leading to a perturbation-correction vector which is al-

Table 3. Example of a 19-step SHA-224 collision. All-zero differences are denoted by
a single 0 to improve readability.

Step W’ A’ B’ C’ D’ E’ F’ G’ H’
1-4 0 0 0 0 0 0 0 0 0
05 85009008 85009008 0 0 0 85009008 0 0 0
06 a14cae12 a1442610 85009008 0 0 02000802 85009008 0 0
07 0 0 a1442610 85009008 0 084c4120 02000802 85009008 0
08 8200a8a8 00000020 0 a1442610 85009008 00000020 084c4120 02000802 85009008
09 85009008 85009008 00000020 0 a1442610 01008008 00000020 084c4120 02000802
10 0 0 85009008 00000020 0 02000802 01008008 00000020 084c4120
11 0 0 0 85009008 00000020 0 02000802 01008008 00000020
12 0 00000020 0 0 85009008 0 0 02000802 01008008
13 0 0 00000020 0 0 84001000 0 0 02000802
14 00088802 0 0 00000020 0 0 84001000 0 0
15 0 0 0 0 00000020 0 0 84001000 0
16 0 0 0 0 0 00000020 0 0 84001000
17 0 0 0 0 0 0 00000020 0 0
18 0 0 0 0 0 0 0 00000020 0
19 0 0 0 0 0 0 0 0 00000020
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ways a valid difference between expanded message. Thus, we can rotate our
L-characteristic to maximize the number of MSBs involved such that the proba-
bility of this L-characteristic is maximized. The first perturbations start at step
5, and there are 23 of them in total. The local collision for SHA-256 as originally
described in [6] needs 24 single-bit differences in the message. Using this as an
upper bound, we would expect up to 552 single-bit differences in the expanded
messages. Note that the actual value 37, the weight of the message difference, is
far below this upper bound.

In this particular example, more than 200 conditions on the state variables
need to be met to follow the given L-characteristic. Assuming random inde-
pendent trials, each perturbation would on average contribute a factor of 2−10

instead of about 2−40 to the overall probability. Hence, the fact that a single
local collision in SHA-256 has a comparatively low probability may give a false
feeling of security. Note that the actual collision search complexity can be further
reduced by techniques mentioned in Sect. 4.

3.6 Adjustments to Circumvent Impossible Characteristics

In this section we take a closer look at the presented L-characteristic. The best
probabilities for local collisions are achieved by approximating the differential
behavior of the functions fMAJ and fIF by 0. On average, both approximations
hold with probability 0.5. However, in certain cases, the probability for this
approximation is 0.

Translating these properties into the sequence of states of the SHA-256 com-
pression function gives rise to the following observations.

Observation 1. Whenever we have 3 non-zero differences in consecutive vari-
ables of the state (A′

r, A
′
r+1, A

′
r+2) at the same bit position, the chosen linear

approximation fails to predict any subsequent difference.

Observation 2. Whenever we have 2 non-zero differences followed by one zero
differences in consecutive variables of the state (E′

r, E
′
r+1, E

′
r+2) at the same

bit position, the chosen linear approximation fails to predict any subsequent
difference.

In order to prevent these cases, we would need to exclude all of them from our
search space. However by doing this, low-weight solutions might be excluded. By
using the degrees of freedom we have in our characteristic, i.e. various ways in
which differences can propagate through the Boolean functions and the modular
addition, we observe the following. It turns out to be possible to circumvent
these impossible characteristics by choosing a slightly different characteristic for
the same differential. Note that a similar strategy was used in the analysis of
SHA-1 [2,18].

This suggests that the additional complexity of the SHA-256 state update
transformation does not prevent us from using a similar approach. To illustrate
this property, we take the 19-step L-characteristic presented in the previous
subsection. Indeed, we have a single case of two consecutive words which have a
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difference at the same bit position. This happens in E7 and E8 at bit position 5.
Thus Observation 2 applies. The result is that the function fIF accepts (0, 1, 1)
as input difference at bit position 5 in step 9. Hence the output of fIF will flip
with probability 1.

The easiest way to cancel out this additional difference is by using other
differences in the same step. At the output of Σ1, we have a difference in bit
4. By a simple carry extension we can produce a change in the carry caused by
this difference. The result will be that in contrast to the prediction of our L-
characteristic, the difference in bit 4 will cause bit 5 to flip as well. However, this
additional difference due to the carry extension will now cancel the additional
difference at the output of fIF in this step. Eventually, the path described by
the L-characteristic can be followed without the need to circumvent additional
impossible characteristics.

4 Increasing the Performance of Collision Search for
SHA-256

In this section we briefly cover ways to speed up the collision search for members
of the SHA-2 family once a suitable characteristic is found. For their predecessors
SHA-1 and MD5, two competing approaches can be found in the literature.
One approach has been termed message modification. It was first introduced
in [16,19]. A variant of the technique was also used in the most recent analysis
of SHA-0 [20] and SHA-1 [17,18].

The second approach was introduced in [1] and later on applied in [2]. It
extends the idea of [5] to the hash function SHA-0. So-called neutral bits in the
input message are used to circumvent the probabilistic behavior of the first steps
of SHA-0. Within certain limits, both approaches can be extended to the case
of SHA-256. Subsequently, we briefly discuss to which extent this is possible.

In the first 16 steps of SHA-256, the conditions on the state variables can be
directly rewritten to conditions on the message words. The procedure can be
described as follows:

AN+1 = f1(AN , . . . , HN ) + KN + WN

EN+1 = f2(AN , . . . , HN ) + KN + WN

(2)

Next, adjust AN+1 and EN+1 accordingly to meet the conditions derived for the
characteristic. Then calculate

WN = AN+1 − f1(AN , . . . , HN )−KN

WN = EN+1 − f2(AN , . . . , HN )−KN

(3)

Note that by applying these formulas, each new message word is calculated twice.
Hence it is possible that changes in the message bits contradict each other. In
these cases, adjusting message words which are input in the steps before the
contradiction occurs is necessary. A high-level algorithm to deal with this issue
is given below.
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Algorithm 1. Way to fulfill contradicting conditions in SHA-256
Require: Contradicting Conditions in Ai and Ei

Ensure: Condition in Ai and Ei are fulfilled
Fulfill Condition in Ei by adjusting Wi as described in Equation (3).
while Condition in Ai is not fulfilled or any previously fulfilled conditions are affected
do

Go back to step x ∈ {0 . . . i − 1} and check if Wx can be adjusted such that the
condition in Ai is fulfilled

end while

Note that such methods were not needed in any of the predecessors of the
SHA-2 family, because there can be no contradictions in fulfilling conditions in
the first 16 steps.

In order to illustrate the technique, let’s assume that by applying the simple
message modification rules described by (2) we are getting a contradiction in
bit 4 of W6. We set this bit such that the condition on state variable E6 is met
(Step 1). In order to fulfill the condition on state variable A6 (i.e. bit 4 should
have opposite value) we simply go back one step and flip bit 4 in W5 (Step 3).
That way, bit 4 in A5 is flipped. However A5 is not directly influencing A6, but
via Σ0 and the fMAJ -function. The effect is twofold.

– Firstly, depending on the other inputs of the fMAJ -function, the output
might not change. In this case, B5 or C5 need to be updated by going back
and adjusting the input word at the respective step. In general, every message
word before the step where the contradiction occurred might be a candidate
for message modification. However, the risk that other conditions are affected
by these adjustments increases with the number of backward-steps.

– Secondly, due to Σ0, three other bit positions are also affected with every
message word adjustment. These might in turn affect other conditions and
might even cancel out the desired effect of the flipped bit at the input via
carry propagation.

If it turns out that it cannot be prevented that other conditions are affected with
these adjustments, another choice in step 2 needs to be made.

To sum up, compared to SHA-1 or MD4/MD5, message modification is more
complex due to the fact that two state variables are updated at the same time.
After step 16, chances that existing conditions are affected by message modi-
fication increase. In the Appendices C and D we show simple examples of the
application of these techniques. Table 4 summarizes them.

Table 4. Summary of examples

function steps type local collisions probability
SHA-256-3R 31 collision 25 -
SHA-256 18 collision 1 ∼ 1 using neutral bits
SHA-224 19 collision 23 < 2−200 before message modification
SHA-256 19 1-near-collision 23 < 2−200 before message modification
SHA-256 22 pseudo-collision - ∼ 1 using neutral bits
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5 Conclusions and Future Work

When the attack techniques that were used successfully against SHA-1, are ap-
plied to SHA-256, several problems arise. Firstly, the shift operations in the
message expansion of SHA-256 severely limit the usefulness of the perturbation-
correction approach. To circumvent this obstacle, we introduced a new type of
perturbation vector. We showed that it is still possible to find low-weight dif-
ference vectors that may result in a collision, but the search space increases
dramatically. In order to find collisions for versions with more than 20 steps, we
need new heuristics to reduce the search space.

Secondly, the increased Hamming weight of the difference and the presence
of two nonlinear Boolean functions in each step make it very difficult to avoid
consecutive ones in the inputs of the Boolean functions. Hence we have to deal
with the fact that the linear approximations for these functions often won’t hold.
We have presented some ideas on how to deal with this problem.

Thirdly, the very low probability for one local collision in SHA-256 may give
rise to a false feeling of security. We have shown with examples that the interleav-
ing of local collisions results in many canceled differences. Hence the probability
of n interleaved local collisions is typically significantly larger than the probabil-
ity of one local collision, raised to the power n. We need to develop better ways
of estimating this probability.
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A Proof of Theorem 1

Before proofing Theorem 1, we need the following Observation.

Observation 3. Let (V’,X’,Y’,Z’) be the XOR-difference of 4 inputs of an ad-
dition mod 2n. Let R’ denote the XOR-difference of the result of this addition.
∀j: 32 > j > i where the following situation occurs:

V ′
i = X ′

i = Y ′
i = Z ′

i = R′
i

the following relation must hold:

V ′
i+1 ⊕X ′

i+1 ⊕ Y ′
i+1 ⊕ Z ′

i+1 ⊕R′
i+1 = R′

i

Now we can give a constructive proof for Theorem 1.

Proof. Let’s first consider the case of a GF(2)-linearized variant of ME, MElin.
In order to proof Theorem 1 for this variant, it suffices to show that for a
particular d, the vector e′ is not a valid expanded message.

We choose d to be the perturbation vector shown in Table 2. Note that A′ con-
tains the perturbation vector in this table. Vector 17 of e’ (the sum of the pertur-
bations and corrections for W17) is 1b022000. However, applying the recurrence
relation for the SHA-256 message expansion, W17 turns out to be 8b022000. For
the GF(2)-linearized variant of the SHA-256 message expansion in Equation 1,
the proof would already be finished. Let’s now consider unmodified SHA-256.

We can build up on the previously proved part on the linearized variant, but
need to consider the additional degrees of freedom we have due to carries. Here
we need to show that no two expansions of messages m and m∗ can exist such
that W17 ⊕W ∗

17 = 1b022000.
W ′

17 can be rewritten as (V +X +Y +Z)⊕ (V ∗ +X∗ +Y ∗ +Z∗) Considering
the recurrence relation given in Equation 1 and inserting the value from Table 2
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we get V ′ = σ1(W15) = 81609048, X ′ = W10 = 04f61081, Y ′ = σ0(W2) =
8e94a0c9, Z ′ = W1 = 80000000.

Now we apply Observation 3 and see that we get the following contradiction
at bit-position 32(MSB). We have V ′

31 = X ′
31 = Y ′

31 = Z ′
31 = R′

31 = 0, thus
we require V ′

32 ⊕ X ′
32 ⊕ Y ′

32 ⊕ Z ′
32 ⊕ R′

32 = 0′ which is not the case. Thus we
have shown that even by using the additional degrees of freedom in the message
expansion(i.e. the carry effect), we can never arrive at the desired difference
1b022000 in W17. ��

B L-Characteristic for a 31-Step Collision of SHA-256-3R

The L-characteristic for 31-step SHA-256-3R including the message difference
used in Sect. 3.2 is given in Table 5.

Table 5. L-characteristic for a 31-step collision in SHA-256-3R

Step W’ A’ B’ C’ D’ E’ F’ G’ H’
01 00000001 00000001 0 0 0 00000001 0 0 0
02 66284480 22004000 00000001 0 0 62084400 00000001 0 0
03 8c2760a2 00000001 22004000 00000001 0 0981008b 62084400 00000001 0
04 95c7e0f6 28089550 00000001 22004000 00000001 68009150 0981008b 62084400 00000001
05 e9732fd2 0040a000 28089550 00000001 22004000 829685b1 68009150 0981008b 62084400
06 5be0be03 0 0040a000 28089550 00000001 20906a04 829685b1 68009150 0981008b
07 11b2513e 0 0 0040a000 28089550 00000001 20906a04 829685b1 68009150
08 6c2091d0 0 0 0 0040a000 28089550 00000001 20906a04 829685b1
09 4e794ee2 22004000 0 0 0 2240e000 28089550 00000001 20906a04
10 09ec2102 00000001 22004000 0 0 0981008b 2240e000 28089550 00000001
11 bdcf75a7 0 00000001 22004000 0 40080400 0981008b 2240e000 28089550
12 ad02b460 0 0 00000001 22004000 0 40080400 0981008b 2240e000
13 2240e000 0 0 0 00000001 22004000 0 40080400 0981008b
14 092d4192 0 0 0 0 00000001 22004000 0 40080400
15 44280480 0 0 0 0 0 00000001 22004000 0
16 0 0 0 0 0 0 0 00000001 22004000
17 36044000 14040000 0 0 0 14040000 0 0 00000001
18 175330fb 0 14040000 0 0 1501a070 14040000 0 0
19 4e869ebe 00000001 0 14040000 0 00000001 1501a070 14040000 0
20 44280480 0 00000001 0 14040000 40080400 00000001 1501a070 14040000
21 910e2130 0 0 00000001 0 14040000 40080400 00000001 1501a070
22 175330fa 0 0 0 00000001 0 14040000 40080400 00000001
23 00000001 0 0 0 0 00000001 0 14040000 40080400
24 44280480 0 0 0 0 0 00000001 0 14040000
25 14040000 0 0 0 0 0 0 00000001 0
26 0 0 0 0 0 0 0 0 00000001
27 00000001 0 0 0 0 0 0 0 0

28-31 0 0 0 0 0 0 0 0 0

C Example of an 18-Step Collision for SHA-256

In Table 7 we give an example of an 18-step collision for SHA-256. We used a
combination of the message modification technique described in Sect. 4 and the
search for neutral bits to

– find the first 18-step collision in much less than a minute
– generate millions of them by using a large set of 2-neutral bits



142 F. Mendel et al.

The L-characteristic for this 18-step collision in SHA-256 including the mes-
sage difference is given in Table 6. Since there are no conditions on the IVs,
every IV including the standard-IV can be used. By adding more steps to this
characteristic, near-collisions for more than 18-step can be derived in a straight-
forward manner. Note however that the weight of the difference at the output
will be higher than one, thus a 1-near-collision as presented in Sect. 3.5 cannot
be derived that way.

Table 6. L-characteristic of an 18-step collision in SHA-256

Step W’ A’ B’ C’ D’ E’ F’ G’ H’
01-03 0 0 0 0 0 0 0 0 0
04 80000000 80000000 0 0 0 80000000 0 0 0
05 22140240 0 80000000 0 0 20040200 80000000 0 0
06 42851098 0 0 80000000 0 0 20040200 80000000 0
07 0 0 0 0 80000000 0 0 20040200 80000000
08 80000000 0 0 0 0 80000000 0 0 20040200
09 22140240 0 0 0 0 0 80000000 0 0
10 0 0 0 0 0 0 0 80000000 0
11 0 0 0 0 0 0 0 0 80000000
12 80000000 0 0 0 0 0 0 0 0

13-18 0 0 0 0 0 0 0 0 0

Table 7. Example of an 18-step collision using the standard IV

i Mi

1-8 02679857 0183b9a1 005de4f5 0266ee0c 0d1442f0 06373a71 c445dec2 12542ec1
9-16 0982b61a 205a614c 2495a094 166ae4ac 15917909 1178f05a 0aae5a46 178058c6

D Pseudo-collisions for the Compression Function of
SHA-256

We give an example of a pseudo-collision for the compression function of step-
reduced SHA-256. The attacker has more freedom in such a setting: In addition
to choose different messages M and M∗, he is also allowed to choose different
IVs for the compression function. The goal is to find (M, M∗, IV, IV ∗) such that
compress(M, IV ) = compress(M∗, IV ∗). Note that this type of pseudo-collision
is different from the one described in [21].

The difference to Sect. 3.3 is that we have more degrees of freedom since we do
not require the starting difference to be all-zero. To derive the actual collision,
we used the same techniques as in Appendix C.

Note that this serves as an example. More steps can be achieved by extending
the given characteristic in the backwards direction. In the example of a pseudo-
collision given in Table 9, we need a different IV. IVnew = IVstandard ⊕ IVCorr.
IVCorr is given in Table 10. The corresponding L-characteristic is given in Ta-
ble 8. The required difference in the IV for this pseudo-collision is given in this
table as well. Note that this L-characteristic is similar to the 23-step related-key
characteristic used in [9].
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Table 8. L-characteristic for a 22-step pseudo-collision in SHA-256

Step W’ A’ B’ C’ D’ E’ F’ G’ H’
IV’ 0 00000200 0 0 50090088 0 0 20880000 10080080
01 0 0 00000200 0 0 40010008 0 0 20880000
02 0 0 0 00000200 0 0 40010008 0 0
03 0 0 0 0 00000200 0 0 40010008 0
04 0 0 0 0 0 00000200 0 0 40010008
05 0 0 0 0 0 0 00000200 0 0
06 0 0 0 0 0 0 0 00000200 0
07 0 0 0 0 0 0 0 0 00000200
08 00000200 0 0 0 0 0 0 0 0

09-22 0 0 0 0 0 0 0 0 0

Table 9. 22-step Pseudo-Collision with M ′ �= 0

i Mi

1-8 39b1309b 048a8b67 02e0fc89 1dd4b937 02784cbd 1527473f 0134eb90 023f18aa
9-16 008a6849 063fbdbc 2e06da49 0f2e9e2a 085d407e 1686fa83 03ad81fe 091da09b

Table 10. IV Correction for 22-step Pseudo-Collision with M ′ �= 0

i IVCorr

1-5 DCBD1A68 00000000 00000000 00000080 60810000
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Abstract. In this paper we present new and more accurate estimates of the biases
of the linear approximation of the FSM of the stream cipher SNOW 2.0. Based on
improved bias estimates we also find a new linear distinguisher with bias 2−86.9

that is significantly stronger than the previously found ones by Watanabe et al.
(2003) and makes it possible to distinguish the output keystream of SNOW 2.0 of
length 2174 words from a truly random sequence with workload 2174. This attack
is also stronger than the recent distinguishing attack by Maximov and Johansson
(2005). We also investigate the diffusion properties of the MixColumn transfor-
mation used in the FSM of SNOW 2.0 and present some evidence why much
more efficient distinguishers may not exist.

Keywords: Stream cipher, SNOW 2.0, linear masking method, modular addition.

1 Introduction

Key stream generators are widely used in practise for random number generation and
data encryption as stream ciphers. The history of this type of cryptographic primitive
has not always been glorious. Most recently, algebraic cryptanalysis method has been
successfully applied to a number of stream ciphers. On the other hand, there is no sci-
entific evidence that stream ciphers are inherently less secure than block ciphers. To
strengthen the scientific foundations of the security of stream ciphers the ECRYPT
NoE launched in November 2004 a new multi-year project eSTREAM, the ECRYPT
Stream Cipher Project, to identify new stream ciphers that might become suitable for
widespread adoption [8].

In this paper new results of the strength of the stream cipher SNOW 2.0 against linear
approximation are presented. SNOW 2.0 was proposed by Ekdahl and Johansson in [3]
as a strengthened version of SNOW 1.0, which was a NESSIE candidate. Currently
SNOW 2.0 is considered as one of the most efficient stream ciphers. It is used for
benchmarking the performance of stream ciphers by the eSTREAM project. SNOW 2.0
has also been taken as a starting point for the ETSI project on a design of a new UMTS
encryption algorithm [4].

Linear methods have been widely used to analyse stream ciphers. In addition to the
traditional methods such as linear complexity and correlation analysis, attacks based on
linear cryptanalysis method have been succesfully launched against stream ciphers. One
of the reasons why SNOW 1.0 was rejected by the NESSIE project was its vulnerability
against a distinguishing attack using linear cryptanalysis [2,3].

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 144–162, 2006.
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Distinguishing attacks using linear cryptanalysis (linear masking) were previously
applied to SNOW 2.0 by Watanabe et al., to see if the designers of the algorithm learnt
their lesson [11]. An efficient distinguisher can be used to detect statistical bias in the
key stream, and in some cases, also derive the key or initial state of the key stream
generator. In this paper we show that the estimates of the strength of the linear approxi-
mations given in [11] were not accurate. Their best masking was estimated to have bias
2−112.25, while the true value is closer to 2−107.26. Further we find a linear masking of
the FSM of SNOW 2.0 with bias 2−86.89. Using this masking a distinguishing attack on
SNOW 2.0 can be given which requires 2179 bits of the key stream and 2174 operations.
This attack also superceeds the attack by Maximov an Johansson in [7].

The paper is structured as follows. In Section 2 we present the details of SNOW
2.0 as needed in the investigations of this paper. Section 3 explains the linear masking
method on SNOW 2.0 and summarises our results. In Section 4 we analyse assumptions
under which the bias values in [11] were computed, and show that the assumptions do
not hold. We also give examples of large deviations from correct values and investigate
the behaviour of linear approximation of modular addition with three inputs. The main
too is an algorithm for computing the correlations for modular addition with an arbitrary
number of inputs, which we present in Annex A. In Section 5 we present our observa-
tions about the structure of SNOW 2.0 and other results from mask searches. Finally, in
Section 6 we give some results about resistance against linear distinguishing attacks for
SNOW 3G, which is a modification of SNOW 2.0 by ETSI SAGE intended to become
a second encryption algorithm for the UMTS system. A draft version of SNOW 3G can
be found in [4]. The description of the final version of SNOW 3G and rationale of its
design can be found in the design and development report [5].

2 The Stream Cipher SNOW 2.0

The structure of SNOW 2.0 is depicted in Figure 1. The running engine is a linear
feedback shift register (LFSR) consisting of 16 words of length 32 bits each. The LFSR
is defined over GF (232) with feedback polynomial

αx16 + x14 + α−1x5 + 1 ∈ GF (232)[x]

where α ∈ GF (232) is a root of the polynomial

x4 + β23x3 + β245x2 + β48x + β239 ∈ GF (28)[x]

and β is a root of the polynomial

x8 + x7 + x5 + x3 + 1 ∈ GF (2)[x].

The bitwise xor of two 32-bit blocks is denoted by⊕ and addition modulo 232 is denoted
by �. The LFSR feeds into a finite state machine (FSM). The FSM has two 32-bit
registers R1 and R2. The state of the LFSR at time t is denoted by (st+15, . . . , st). The
input to the FSM is st+15 and st+5 and the output Ft of the FSM is calculated as

Ft = (st+15 � R1t)⊕R2t,
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for all t ≥ 0, where we have denoted by R1t and R2t the contents of the registers R1
and R2, respectively, at time t. Then the output zt of the keystream generator is given as

zt = Ft ⊕ st.

The contents of R1 is updated as st+5 � R2t and the contents of R2 is updated as
S(R1t) where the transformation S is composed of four parallel AES S-boxes followed
by the AES MixColumn transformation. For the purposes of this paper only the details
of the LFSR and the FSM are needed. For a complete description of SNOW 2.0 we
refer to the paper [3] by Ekdahl and Johansson.

Fig. 1. SNOW 2.0

3 The Linear Masking Method on SNOW 2.0

3.1 Linear Masking of the FSM

We denote F2 = GF (2). Let n be a non-negative integer. Given two vectors x =
(an−1, . . . , a0) and y = (bn−1, . . . , b0) ∈ Fn

2 , let x·y denote the standard inner product
x·y = an−1bn−1⊕. . .⊕a0b0. A constant vector which is used to compute inner product
with inputs (outputs) of a function is called a linear input (output) mask of the function.
Given a linear mask Γ ∈ Fn

2 and an element α ∈ Fn
2 , we denote by Γα the linear mask,

which satisfies the following equality

Γα · x = Γ · αx, for all x ∈ Fn
2 ,

where the product αx is taken in GF (232). Let m and n be positive integers. Given a
functional dependency F : Fn

2 → Fm
2 , a linear input mask Λ ∈ Fn

2 and a linear output
mask Γ ∈ Fm

2 , the strength of the linear approximate relation Γ · F (x) = Λ · x, for
x ∈ Fn

2 , is measured using its correlation

corF (Λ, Γ ) = cor(Γ · F (x)⊕ Λ · x)
= 2−n(#{x ∈ Fn

2 : Γ · F (x)⊕ Λ · x = 0} −#{x ∈ Fn
2 : Γ · F (x)⊕ Λ · x = 1}).

For the purposes of this paper we use a derived value εF (Λ, Γ ) = |corF (Λ, Γ )/2| and
call it the bias of the linear approximate relation Γ · F (x) = Λ · x.
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Fig. 2. Linear masking of SNOW 2.0

The linear masking method was applied to SNOW 2.0 in [11]. The linear approx-
imation of the FSM of SNOW 2.0 used in [11] is depicted in Figure 2 in a slightly
generalised form. In [11], it was always assumed that the output masks Γ at time t and
Λ time t + 1 are equal, for all t ≥ 0. In case when they are allowed to be different, it
is straightforward to verify that the main distinguishing equation, [11], Equation (12),
takes the following form

Γ · (zt+16 ⊕ zt+2)⊕ Γα · zt ⊕ Γα−1 · zt+11 ⊕
Λ · (zt+17 ⊕ zt+3)⊕ Λα · zt+1 ⊕ Λα−1 · zt+12 = 0, (1)

for all t ≥ 0. This relation is obtained by using the approximation depicted in Figure 2
four times: firstly, two times with the mask pair Γ, Λ at time t + 2 and t + 16, then once
with the mask pair Γα, Λα at time t, and finally once with the mask pair Γα−1, Λα−1

at time t+11. Given the biases, these four approximations can be combined and the total
bias value computed using the Piling Up Lemma [6]. Similarly as in [11] we denote by
εFSM(Λ, Γ ) the bias of the linear approximate relation of Figure 2. Hence the total bias
ε(Λ, Γ ) of the linear distinguisher (1) is calculated as

ε(Λ, Γ ) = 8εFSM(Λ, Γ )2εFSM (Λα, Γα)εFSM (Λα−1, Γα−1).

We also introduce a new mask Φ, see Figure 2, whose role will be explained in
subsection 4.2.

3.2 Our Results

We implemented a new wider mask search over the FSM SNOW 2.0 to achieve more
accurate and improved estimates of the total bias of the linear distinguisher (1). In
particular,
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– we allow output masks Γ and Λ be different; and
– we improve the accuracy of the estimates of the bias values.

The effect of the first change turns out not to be significant. Suitable candidates for
Γ were searched by first identifying Γ such that it performs reasonably well with Λ in
the linear approximation. Here algorithms from [10] were used. Still, for a given Λ, the
total bias of the distinguisher of Equation (1) is usually higher with Γ = Λ than with
any Γ �= Λ. In some cases higher biases where obtained with Γ �= Λ but the achieved
bias values were far from the best. Two show that such cases exist we give an example
in Table 1.

Table 1. Two masks Λ with higher bias with Γ �= Λ

Λ Γ ε(Λ, Γ )
0x04400240 0x04400240 0
0x04400240 0x04400360 2−122.29

0x08400280 0x08400280 2−140.67

0x08400280 0x084003a0 2−124.41

Table 2. The mask Λ = Γ with the highest bias 2−86.89 for the linear distinguisher (1)

mask value εF SM

Λ 0x00018001 2−15.496

Λα 0xc7000180 2−27.676

Λα−1 0x0180015c 2−31.221

Table 3. Improved estimates of the biases for the best mask in [11]

mask value εF SM εF SM

estimate in [11] our estimate
Λ 0x0303600c 2−27.61 2−24.48

Λα 0x0c030360 2−27.61 2−24.49

Λα−1 0x03600c63 2−32.42 2−36.82

The strongest linear approximation of the FSM of SNOW 2.0 found in our search is
using the distinguisher (1) with Λ = Γ = 0x00018001. The values of the biases of
the linear approximation of the FSM are given in Table 2. They result in the total bias
value of 2−86.89. This value is significantly higher than the bias value 2−112.25 achieved
using the best linear mask 0x0303600 reported in [11]. The difference of results is
due to the fact that Watanabe et al., used different and less accurate estimates of bias
values as will be explained in more detail in Section 4. In Table 3 we give the new and
more accurate bias values for the best mask in [11] which show that its strength was
originally underestimated. Our new estimate of the total bias is 2−107.26.

We also looked at other linear approximations of SNOW 2.0 FSM than the one de-
picted in Figure 1. These will be discussed in Section 5.
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4 Improved Approximation Over Dependent Functions

In [11] the biases of the linear approximations of the FSM were calculated under the
assumption that all linear approximations over various nonlinear functions involved in
the approximation depicted in Figure 2, the S-box ensemble S and the three additions
modulo 232, are independent. Such an assumption is often reasonable in practise since
there is no evidence of dependency although it is not possible to prove the opposite
either. However, in the linear approximation of the FSM of SNOW 2.0, see Figure 2,
there are two cases where combinations of two subsequent approximations are strongly
dependent. The first such case is when one approximates over two subsequent additions
modulo 232, that is, the output from the first addition is an input to the second addition.
We will show in the next subsection that this must be handled as addition modulo 232

with three inputs and not as two independent additions with two inputs. The second case
is due to the fact that the value in register R1 is both an input to the modular addition
� and an input to the S-box ensemble S.

4.1 Linear Approximation Over Two Subsequent Modular Additions

In this section we investigate the behaviour of two consecutive modular additions with
two inputs each, where the output from the first addition is input to the second one.
Clearly such a composition is equivalent to one modular addition with three inputs.
Previously, results and algorithms for computing biases of linear approximations have
been presented only for the case with two inputs, see [10]. The basic algorithm for com-
puting the bias for given input and output masks can be straightforwardly generalised to
the case with an arbitrary finite number of inputs, and is given in Annex A. Our results
show that the behaviour of modular addition under linear approximation depends to a
large extent on the number of inputs. As a first result we demonstrate in Table 4 the
reasons why the best linear mask found by us was not found by Watanabe et al. We
denote by ε+ the bias of linear approximation of modulo 232 addition with two inputs
and by ε++ the same value with three inputs using the same given mask value for all
input and output masks. The value 2ε2+ in the middle is the one used in [11] in place
of ε++.

Table 4. Biases of linear approximation of addition with 2 inputs and 3 inputs for the best mask

mask value ε+ 2ε2+ ε++

Λ 0x00018001 2−2 2−3 2−2.58

Λα 0xc7000180 2−26 2−51 2−6.75

Λα−1 0x0180015c 2−7 2−13 2−7.71

It is also interesting to observe how differently linear approximation with one-bit
masks behave over modular addition. In the two input case, the strength of the lin-
ear approximation degrades when moving towards the most significant bits. For addi-
tion with three inputs the bias values are almost the same in all positions as shown in
Table 5. Moreover, we observed that linear approximation over modular addition with
three inputs is more flexible and gives better bias values also when not all input masks
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Table 5. Biases of linear approximation of addition with 2 inputs and 3 inputs for some 1-bit
masks

mask value ε+ ε++

0x00000010 2−5 2−2.61

0x00000100 2−9 2−2.59

0x00001000 2−13 2−2.58

0x00010000 2−17 2−2.58

0x00100000 2−21 2−2.58

0x01000000 2−25 2−2.58

are the same. The same holds in general for very sparse masks. Therefore we made an
exhaustive search over all masks Λ with at most five non-zero bits. The results are given
in Section 5.

4.2 Linear Approximation Over Composition of Different Functions

The modular addition � and an input to the S-box ensemble S have the contents of
register R1 as common inputs. Since S is invertible, we can compose these functions
as follows:

f : y, z �→ S−1(y) � z,

for all y that are output from the S-box ensemble and for all z = st+15. The task is to
compute the correlation between the following linear combination of inputs and linear
combination of outputs

cor(Γ · f(y, z)⊕ Γ · z ⊕ Λ · y).

By applying a well-known theorem about correlations over composed functions, see
e.g. [9], Theorem 3, we get that the correlation can be computed as a sum of partial
correlations over all intermediate linear masks Φ as follows:

cor(Γ · f(y, z)⊕ Γ · z ⊕ Λ · y)

=
∑
Φ

cor(Γ · (w � z)⊕ Φ · w ⊕ Γ · z)cor(Φ · S−1(y)⊕ Λ · y) (2)

=
∑
Φ

cor(Γ · (w � z)⊕ Φ · w ⊕ Γ · z)cor(Φ · x⊕ Λ · S(x)).

Considering the addition modulo 232 and the S-box ensemble S as independent func-
tions is equivalent of taking just one term in the sum (2). Moreover, in [11] this one
term was selected with Φ = Λ = Γ . We observed that this may cause large devi-
ations from the true value. On the other hand, including all terms of the sum would
mean unnecessarily large amount of work. It turns out that including all terms with
cor(Γ · (w � z) ⊕ Φ · w ⊕ Γ · z) ≥ 2−24 yields sufficiently accurate estimates of the
total correlation over the composed function. To search for all such linear masks Φ we
used the algorithms by Wallén [10] (see Annex A). This explains the role of the linear
mask Φ in Figure 2.
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5 More Searches

5.1 Reducing the Number of Active S-Boxes

One strategy to increase the total bias of the linear approximation would be to limit the
number of active S-boxes in the S-box ensemble S. Given an output mask Λ of S let
us denote by Ω the mask such that Ω · x = Λ ·Mx, for all 32-bit values x, where M
denotes the MixColumn transformation of the AES. Our best mask Λ = 0x00018001
corresponds to the mask Ω = 0x0041c01. It means that only three S-boxes are active
in the approximation of the FSM. However, in linear approximation with Λα and Λα−1

all four S-boxes are active. This means that in our best approximation of relation (1) the
total number of active S-boxes is 14.

The MixColumn transformation is known to have good diffusion properties, more
precicely, the total number of nonzero octets in (Ω, Λ) mask pairs is at least five. For
linear approximation of SNOW 2.0 the diffusion properties of MixColumn must be in-
vestigated in combination with multiplication by α and α−1. More precisely, it would
be interesting to know exactly how many S-boxes at least are involved in the linear ap-
proximation (1). For this purpose, we studied all masks Λ such that the corresponding Ω
has at most two non-zero octets. For each such Λ we computed the masks Λα and Λα−1

and their related Ω-masks, for which the number of non-zero octets was determined. Fi-
nally the total number of non-zero octets involved in the four FSM approximations in (1)
was computed for each Λ. The same search was performed also for all Λ such that the
input mask to M corresponding to Λα (Λα−1, respectively) has at most two non-zero
octets. The minimum number of active S-boxes was found to be 7, and there are four
masks Λ having this property. They are 0x64ad5846, 0xad584664, 0x55bcc50d
and 0x0d55bcc5, and their respective one-octet input masks to MixColumn M are:
0xd7000000, 0x000000d7, 0x00210000 and 0x00002100. However, none of
these four masks Λ has a second mask Γ with a non-zero total bias over approximation
(1). This follows from the results of a wider search we explain next.

We made a comprehensive search over all masks Λ such that the input mask Ω to
M has at most two non-zero octets. This means limiting the search for such masks Λ
that in approximation over the S-box-ensemble S at most two S-boxes are active. For
any such Λ there was no Γ such that the linear approximate relation (1) would have a
non-zero bias. This is obviously a strength in the structure of SNOW 2.0. We can only
give a heuristic explanation of the reasons why this happens. Assume Λ is such that
only two S-boxes are active. Then one can find an approximation over the FSM with
a pretty good bias. Then Γ typically has two or three nonzero octets. Four non-zero
octets may be possible in theory (we could not find any examples) but then in two of
the octets only the least or the most significant bit is non-zero. In other words, the mask
is sparse. Also when modified by α (or α−1) the sparse structure is preserved. On the
other hand, when Λ is modified by α (or α−1) then almost always all four S-boxes will
be active, and consequenty, the mask Φ has four nonzero octets. Therefore in about all
cases, if not all, the mask Γα and the mask Φ that fits over the S-box ensemble with Λα
have different structure. The same holds for the approximation of the FSM with Γα−1
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and Λα−1. Since both of them should work to make the entire approximation work, the
chances are negligible.

5.2 Sparse Masks

As explained above we were not able to significantly reduce the number of S-boxes that
are active in the linear approximate relation (1). On the other hand, we observed that the
modular addition with three inputs can be efficiently approximated using sparse masks.
This is also well exemplified by the best linear distinguisher we found, which is based
on a three-bit linear mask. Motivated by this observation we made a complete search
over all masks Λ with at most five non-zero bits, allowing as in all our searches the
mask Γ to be different from Λ. For one and two-bit masks there were no results. For the
three-bit masks it turned out that we already found the best one. The best masks with
four or five nonzero bits and their respective bias values are given in Table 6. The total
bias of the linear distinguisher (1) with the four-bit mask Λ = Γ = 0x40100060 is
2−89.95, and with the five-bit mask Λ = Γ = 0x00040701 it is 2−89.25.

Table 6. The best four-bit and five-bit linear masks Λ

mask value εF SM

Λ 0x40100060 2−18.49

Λα 0x02401000 2−26.94

Λα−1 0x10006029 2−29.02

Λ 0x00040701 2−18.72

Λα 0x75000407 2−27.47

Λα−1 0x04070100 2−27.35

5.3 Three-Round Distinguisher

Also other more complex distinguishers were investigated. In particular, we looked at
the distiguisher which involves output at time t − 1, t and t + 1, two instances of the
S-box ensemble S and five (or four, if Π = 0) modular additions � out of which two
collapse into one addition with three inputs, see Figure 4 in Annex B. The resulting lin-
ear approximative relation is given in equation (3) in Annex B. Such a three-round dis-
tinguisher could compete with the two-round one only if the number of active S-boxes
could be significantly reduced. However, this does not seem to be possible, for the same
reason why the two-round distinguisher does not have non-zero bias with small num-
ber of active S-boxes as explained above in Section 5.1. Moreover, in approximations
for (3), approximation over the latter S-box ensemble involves at least seven active S-
boxes. The absolute minimum for the first S-box ensemble is four active S-boxes. Since
the largest achievable bias of linear approximation over the AES S-box is 2−4 we get
a theoretical upperbound of 210(2−4)11 = 2−34 to the bias of (3) for SNOW 2.0. The
largest bias for the approximation (3) we have seen in practise is 2−202.17. In this case,
the masks Γ , Π and Λ had 2,3 and 4 non-zero octets, respecively. In the first S-box
ensemble, totally 6 S-boxes were active, and in the second S-box ensemble 10 S-boxes
were active.
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6 Linear Distinguishers for SN0W 3G

During its still relatively short lifetime SNOW 2.0 has gained confidence as demon-
strated by the fact that it has been selected as a starting point for a few new designs,
see [8]. Most prominently, a draft for a new encryption algorithm for the UMTS system
was recently made public in [5]. It is called SNOW 3G in and is depicted in Figure 3.
This design preserves all features of SNOW 2.0, e.g. S1 = S, but adds a third regis-
ter R3 to the FSM and a transform denoted by S2. The function S2 has been selected
to strengthen the FSM against algebraic cryptanalysis as response to the concerns ex-
pressed in [1,5].

Fig. 3. SNOW 3G

The first, later rejected, choice for S2 was a non-bijective 32-to-32-bit S-box [4]. It
was constructed from a single eight-to-one bit Boolean function V 8 by selecting for
each output bit a set of eight input bits. Then the output bit value is computed from the
selected input bits using V 8. The input sets are selected in such a way that any two sets
has at most three bits in common. The Boolean function V 8 is not balanced, hence S2
is not a bijection.

The simplest distinguisher for this version of SNOW 3G is obtained by using linear
masking over two and half rounds of the FSM and it is depicted in Figure 5. The linear
approximate relation is the same as in (1). In addition to the linear distinguisher depicted
in Figure 2 it involves approximations over S2, where the input mask is all-zero. The
mask search is very similar to the two round distinguisher for SNOW 2.0. We just need
to add the bias of approximation over S2 to it. Hence it is no surprise that the best Λ,
Γ pair we found for this distinguisher is the same as for SNOW 2.0, that is, Λ = Γ =
0x00018001. The total bias of the linear approximation of Figure 5 is 2−137.01.

In the final version of SNOW 3G the transformation S2 is otherwise identical to S1
but the AES S-box is replaced by a bijective mapping derived from a Dickson polyno-
mial. This S-box has maximum linear bias of 2−3. A three-round linear distinguisher
for SNOW 3G is depicted in Figure 6. We showed in Section 5.3 that the minimum
number of S-boxes in the approximations over S2 is at least seven. The same holds for
the second instance of S1. However, the input and output masks of the first instance of
S1 are not modified by α or α−1. Nevertheless, at least four active S-boxes are needed.
Hence there are always at least eleven active AES S-boxes and seven active S2 S-boxes,
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giving an upper bound of 217(2−4)11(2−3)7 = 2−48 to the bias of any three-round lin-
ear approximation of SNOW 3G. This bound is not tight. The true bias values will
most likely be significantly reduced due to the biases of linear approximations over the
modular additions.

7 Conclusions

It is well known that the Piling Up Lemma cannot be applied to combine linear ap-
proximations over consecutive functions in cipher constructions unless there is some
evidence that the output from the first function is practically independent of the input
to the second function. We showed that in [11] the Piling Up Lemma was used in case
where the output from the first function is identical to the input to the second function.
We showed not only how to compute correctly the estimates of the bias values but also
implemented wide mask searches to find new and significantly stronger distinguishers
that escaped the searches by Watanabe et al.

Some mask searches that were limited to certain types of linear masks failed to pro-
duce any results with non-zero bias. For example, we could demonstrate that it is impos-
sible to significantly reduce the number of active S-boxes when approximating over the
S-box ensemble S of SNOW 2.0. The same holds to other more complex distinguishers
of SNOW 2.0 as well as to the recently presented new SNOW variant SNOW 3G, and
is preserved as long as the feedback polynomial does not have a low degree multiple,
which is a trinomial or a four-term polynomial with only two different coefficients. This
gives some evidence about the strength of the SNOW design against cryptanalysis using
the linear masking method.
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A Linear Approximation of Addition Modulo 2n

A.1 Notation

We identify the integers in {0, . . . , 2n − 1} with the vectors in Fn
2 by the natural

correspondence that identifies the integer whose binary expansion is
∑n−1

i=0 ai2i with
the vector (an−1, . . . , a1, a0). Given k n-bit integers x(h), h = 1, . . . , k, the sum
(x(1) + · · · + x(k)) mod 2n carries over to a function from (Fn

2 )k to Fn
2 . Addition

in F2 and Fn
2 is always denoted by ⊕.

For vectors x = (an−1, . . . , a0) and y = (bn−1, . . . , b0) ∈ Fn
2 , let x · y denote

the standard inner product x · y = an−1bn−1 ⊕ · · · ⊕ a0b0. For k tuples of vectors
in Fn

2 , x(1), . . . , x(k) and y(1), . . . , y(k), we set (x(1), . . . , x(k)) · (y(1), . . . , y(k)) =
x(1) · y(1) ⊕ · · · ⊕ x(k) · y(k). A linear approximation of the sum modulo 2n with k
inputs is an approximate relation of the form

u · (x(1) � · · ·� x(k)) = (x(1), . . . , x(k)) · (w(1), . . . , w(k))

where u ∈ Fn
2 and w(h) ∈ Fn

2 , h = 1, . . . , k are the mask vectors. The strength of the
approximation is measured by the correlation

cor(u; w(1), . . . , w(k))
= 2Pr[u · (x(1) � . . . � x(k)) = (x(1), . . . , x(k)) · (w(1), . . . , w(k))]− 1,

where the probability is taken over uniformly distributed x(1), . . . , x(k).

A.2 Linear Representation

We will derive a linear representation for the correlation of linear approximations of
addition modulo 2n. Towards this end, we write the linear approximation with mask
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vectors u = (un−1, . . . , u0) and w(1), . . . , w(k), where w(h) = (w(h)
n−1, . . . , w

(h)
0 ),

as a word zn−1 . . . z1, z0 over the alphabet {0, . . . , 2k+1 − 1}, where zi = ui2k +∑k
h=1 w

(h)
i 2h−1. We will then show that there are 2k+1 k × k matrices over rationals,

a row vector L and a column vector C such that

cor(u; w(1), . . . , w(k)) = LAzn−1 . . . Az1Az0C,

for all n and all linear approximations (u; w(1), . . . , w(k)) of addition modulo 2n of k
n-bit integers. We say that the matrices L, Ar, r = 0, . . . , 2k+1−1, and C form a linear
representation of the correlation with dimension k.

For a vector x ∈ Fn
2 (or integer x ∈ {0, . . . , 2n − 1}), we let wH(x) denote the

Hamming weight of x, that is, wH(x) is a non-negative integer less than or equal to n,
which is the number of non-zero components of x.

Theorem 1. Let k > 1 be a fixed integer. Let L be the row vector of dimension k with
all entries equal to 1, and let C be the column vector of dimension k with a single 1 in
row 0 and zero otherwise. Let A0, . . . , A2k+1−1 be the k × k matrices

(Ar)d,c = 2−k(|{x ∈ Fk
2 : u · g(x, c) = x · v, f(x, c) = d}| −

|{x ∈ Fk
2 : u · g(x, c) �= x · v, f(x, c) = d}|),

where

r = u2k +
k∑

h=1

vh2h−1, v = (v1, . . . , vk), x = (x1, . . . , xk),

c, d ∈ {0, . . . , k − 1},
f : {0, . . . , k − 1}2 → {0, . . . , k − 1}, f(x, c) = �(wH(x) + c)/2�,
g : {0, . . . , k − 1}2 → {0, 1}, g(x, c) = (wH(x) + c) mod 2.

Let n ≥ 1 be an integer and let (u; w(1), . . . , w(k)) be a linear approximation of
addition modulo 2n with k inputs. Let z = zn−1 . . . z1, z0 be the word associated with
the approximation. We then have

cor(u; w(1), . . . , w(k)) = LAzn−1 · · ·Az1Az0C.

Note that the functions f and g are the carry and sum functions for the basic school-
book method for adding k integers in binary.

Proof. We denote by (x(1), . . . , x(k)) the n-bit integers that are added modulo 2n. We
use the simple school-book method. We set the first carry bit c0 = 0. Then the carries
ci and the sum bits si at each step i = 0, . . . , n− 1 are computed as follows

si = g((x(1)
i , . . . , x

(k)
i ), ci),

ci+1 = f((x(1)
i , . . . , x

(k)
i ), ci)
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We set b0 = 0 and, for all j = 1, . . . , n, let

bj =
j−1⊕
i=0

(uisi ⊕ w
(1)
i x

(1)
i ⊕ · · · ⊕ w

(k)
i x

(k)
i ).

Let P (z, j) be the column vector

P (z, j)c = Pr[bj = 0, cj = c]−Pr[bj = 1, cj = c]

for j = 0, . . . , n and c = 0, . . . , k − 1. Let M(z, i) be the k × k matrix

M(z, i)d,c = Pr[(uisi ⊕ w
(1)
i x

(1)
i ⊕ · · · ⊕ w

(k)
i x

(k)
i ) = 0 and ci+1 = d | ci = c]−

Pr[(uisi ⊕ w
(1)
i x

(1)
i ⊕ · · · ⊕ w

(k)
i x

(k)
i ) = 1 and ci+1 = d | ci = c],

for i = 0, . . . , n− 1. Then we have

k−1∑
c=0

M(z, i)d,cP (z, i)c = P (z, i + 1)d,

and thus

P (z, i + 1) = M(z, i)P (z, i).

Note that

P (z, 0)0 = Pr[b0 = 0, c0 = 0]−Pr[b0 = 1, c0 = 0] = 1, and

P (z, 0)c = Pr[b0 = 0, c0 = c]−Pr[b0 = 1, c0 = c] = 0, for c �= 0.

At the other end we have

LP (z, n) =
k−1∑
c=0

(Pr[bn = 0, cn = c]−Pr[bn = 1, cn = c])

= Pr[bn = 0]−Pr[bn = 1] = cor(u; w(1), . . . , w(k))

as desired. Since Azi = M(z, i), it follows that

cor(u; w(1), . . . , w(k)) = LAzn−1 · · ·Az1Az0C. ��

The correlation of a linear approximation of addition modulo 2n with k inputs can thus
be computed by doing n multiplications of a k × k matrix and a column vector, and
n additional additions. For a fixed k, this is a linear -time algorithm, and for small k
efficient in practice. Note that the number of matrices to be stored in memory is 2k+1.
We remark that an analogous method can be used to compute the differential probability
of addition modulo 2n with k inputs.
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Using Theorem 1 we get the following matrices for k = 3.

A0 =
1
8

⎛⎝4 1 0
4 6 4
0 1 4

⎞⎠ ,

A1 = A2 = A4 = −A8 =
1
8

⎛⎝ 2 1 0
−2 0 2
0 −1 −2

⎞⎠ ,

A3 = A5 = A6 = −A9 = −A10 = −A12 =
1
8

⎛⎝0 1 0
0 −2 0
0 1 0

⎞⎠ ,

A7 = −A11 = −A13 = −A14 =
1
8

⎛⎝−2 1 0
2 0 −2
0 −1 2

⎞⎠ , and

A15 =
1
8

⎛⎝4 −1 0
4 −6 4
0 −1 4

⎞⎠ .

A.3 Searching for Masks for a Given Correlation

In this section, we briefly describe the method used to search for all relevant masks
for addition modulo 2n with two inputs. Using Theorem 1, we get a linear repre-
sentation L′, A′

0, . . . , A′
7, C of dimension 2 for the correlation of linear approxi-

mations of addition modulo 2n with two inputs. The matrix A′
0 has the Jordan form

diag(1, 1/2) = H2A
′
0H

−1
2 , where H2 =

(
1 1
1 −1

)
is the 2×2 Hadamard matrix. We get a

new linear representation by making the change of basis L = R′H−1
2 , Ai = H2AiH

−1
2

and C = H2C
′. This gives the matrices L =

(
1 0
)
, C =

(
1 1
)t

,

A0 =
1
2

(
2 0
0 1

)
, A1 = A2 = −A4 =

1
2

(
0 0
1 0

)
,

A7 =
1
2

(
0 2
1 0

)
, −A3 = A5 = A6 =

1
2

(
0 0
0 1

)
.

Let e0 =
(
1 0
)

and e1 =
(
0 1
)
. Then e0A0 = e0, e0A7 = e1, e0Ai = 0 for i �= 0, 7,

e1A0 = e1A5 = e1A6 = 1
2e1, e1A1 = e1A2 = e1A7 = 1

2e0, e1A3 = − 1
2e1 and

e1A4 = − 1
2e0. It follows that the computation of LAwn−1 · · ·Aw0C by multiplication

from left to right can be described by the following automaton.

start �� �������	e0

0
��

7 ��

1,2,3,4,5,6
��

�������	e1

0,3,5,6

��


����
1,2,4,7

��

�������	0

0,...,7

��
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When reading w from left to right, if the automaton ends up in state 0, LAwn−1 · · ·Aw0

C = 0. If the automaton ends up in state e0 or e1, LAwn−1 · · ·Aw0C = ±2−k, where
k is the number of transitions marked by a solid arrow, and the sign is determined by
the number of occurrences of {3, 4}: LAwn−1 · · ·Aw0C > 0 if and only if the number
of occurrences is even. For example, when w = 736208, we have the state transitions

�������	e0
7 �� �������	e1

3 �� �������	e1
6 �� �������	e1

2 �� �������	e0
0 �� �������	e0

and thus LA7A3A6A2A0 = −2−3. Clearly, LAwn−1 · · ·Aw0C = 0 if and only if w
matches the regular expression(

0 + 7(0 + 3 + 5 + 6)∗(1 + 2 + 4 + 7)
)∗(1 + 2 + 3 + 4 + 5 + 6)Σ∗ ,

where Σ = 0 + 1 + · · ·+ 7.
Let S0(n, k) and S1(n, k) denote the formal languages

S0(n, k) = {w | |w| = n, e0Awn−1 · · ·Aw0 = ±2−ke0} and

S1(n, k) = {w | |w| = n, e0Awn−1 · · ·Aw0 = ±2−ke1}

for n > 0. Then S0(n, k) + S1(n, k) is the set of words of length n > 0 corresponding
to linear approximations of addition with two inputs that have correlation ±2−k. The
languages are clearly given recursively by (juxtaposition denotes concatenation, and +
denotes union)

S0(n, k) = S0(n− 1, k)0 + S1(n− 1, k − 1)(1 + 2 + 4 + 7) and

S1(n, k) = S0(n− 1, k)7 + S1(n− 1, k − 1)(0 + 3 + 5 + 6)

for all 0 ≤ k < n. The base cases are S0(1, 0) = 0 and S1(1, 0) = 7. If k < 0 or
k ≥ n, S0(n, k) = S1(n, k) = ∅.

These recursive descriptions immediately give an efficient algorithm for finding all
input and output masks for addition with a given correlation. Moreover, one or two of
the three masks can optionally be fixed. Using generating functions, it is also straight-
forward to determine the distribution of the correlation coefficients—that is, count the
number of input/output masks with a given correlation. These results where proved
using different methods in [10].

Unfortunately, there does not seem to be any simple way to obtain the same results
for addition with three inputs, since it seems impossible to obtain an equally simple
linear representation with a change of basis.

B Other Linear Distinguishers—Figures and Equations

B.1 A Three-Round Linear Distinguisher for SNOW 2.0

A three-round linear distinguisher for SNOW 2.0 is depicted in Figure 4 and the corre-
sponding linear approximate relation is given by equation (3).

Γ · (zt+15 ⊕ zt+1)⊕ Γα · zt−1 ⊕ Γα−1 · zt+10 ⊕
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Fig. 4. Linear masking of SNOW 2.0 over three rounds

Π · (zt+16 ⊕ zt+2)⊕Πα · zt ⊕Πα−1 · zt+11 ⊕
Λ · (zt+17 ⊕ zt+3)⊕ Λα · zt+1 ⊕ Λα−1 · zt+12 = 0. (3)

B.2 A Two-and-Half-Round Linear Distinguisher for SNOW 3G with
Non-bijective S2

In this distinguisher it is assumed that the linear masking by Λ of the output from S2
is approximated by zero, see Figure 5. Then the linear approximate relation of this
distinguisher is identical to (1).

B.3 A Three-Round Linear Distinguisher for SNOW 3G

The resulting linear approximate relation involving keystream terms zi only, is the same
as (3). This can be seen as follows. Let x denote the input to the first (in time) instance

Fig. 5. Linear masking of SNOW 3G with non-bijective S2
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of S1, y denote the input to S2, and w the input to the second instance of S1. In addition
to the mask values given in Figure 6 we denote by Δ and Ψ the input and output masks
for the first S1, Θ the input mask to the second S1, and finally, by Σ1, Σ2 and Σ3
the three masks used to mask st+14, st+15 and st+16, respectively. Then we have the
following approximate relations:

Ψ · S1(x) = Δ · x (4)

Φ · S2(y) = Γ · y
Λ · S1(w) = Θ · w
Γ · (st+14 � x) = Σ1 · st+14 ⊕Δ · x
Π · (st+15 � w) = Σ2 · st+15 ⊕Θ · w
Λ · (st+16 � S1(x) � (st+5 ⊕ S2(y)))
= Σ3 · st+16 ⊕ (Φ⊕Π) · S1(x)⊕ Φ · (st+15 ⊕ S2(y)).

The three auxiliary variables x, y and w cancel due to the following three equalities:

x � st+14 = y ⊕ zt−1 ⊕ st−1

z � st+15 = S1(x)⊕ zt ⊕ st−1

S1(x) � (S2(y)⊕ st+5)) � st+16 = S1(w)⊕ zt+1 ⊕ st+1

Then we have:

Γ · (zt−1 ⊕ st−1)⊕Π · (zt ⊕ st)⊕ Λ · (zt+1 ⊕ st+1)
⊕Σ1 · st+14 ⊕Σ2 ⊕ st+15 ⊕Σ3 · st+16 ⊕ Φ · st+5 = 0,

or what is the same:

Γ · zt−1 ⊕⊕Π · zt ⊕ Λ · zt+1

= Γ · st−1)⊕Π · st ⊕ Λ · st+1 ⊕Σ1 ⊕ Φ · st+5 · st+14 ⊕Σ2 ⊕ st+15 ⊕Σ3 · st+16.

Fig. 6. Linear masking of SNOW 3G
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This equation is used four times. First two times for t = t + 2 and t = t + 16. Then
once with t = t and with all zi and si variables multiplied by α. Finally, the equation
is used for t = t + 11 with all zi and si variables multiplied by α−1. Since the αst ⊕
st+2 ⊕ α−1st+11 ⊕ st+16 = 0, for all t, the si variables cancel and we get:

Γ · zt+1 ⊕Π · zt+2 ⊕ Λ · zt+3 ⊕ Γ · zt+15 ⊕Π · zt+16 ⊕ Λ · zt+17 ⊕ Γ · αzt−1

⊕Π · αzt ⊕ Λ · αzt+1 ⊕ Γ · α−1zt+10 ⊕Π · α−1zt+11 ⊕ Λ · α−1zt+12 = 0

which is the same as (3). When all si variables are multiplied by α the approximations
over invidual functions take the following forms:

Ψ · S1(x) = Δ · x
Φα · S2(y) = Γα · y
Λα · S1(z) = Θ · z
Γα · (st+14 � x) = Σ1α · st+14 ⊕Δ · x
Πα · (st+15 � z) = Σ2α · st+15 ⊕Θ · z
Λα · (st+16 � S1(x) � (st+5 ⊕ S2(y)))
= Σ3α · st+16 ⊕ (Φα ⊕Πα) · S1(x)⊕ Φα · (st+15 ⊕ S2(y)).

To get approximations with multiplication by α−1 just replace α by α−1. In both
cases the masks Ψ , Δ and Θ can be chosen independently of the masks denoted using
the same symbol for approximations (4).
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Abstract. The main application of stream ciphers is online-encryption
of arbitrarily long data, for example when transmitting speech data be-
tween a Bluetooth headset and a mobile GSM phone or between the
phone and a GSM base station. Many practically used and intensively
discussed stream ciphers such as the E0 generator used in Bluetooth and
the GSM cipher A5/1 consist of a small number of linear feedback shift
registers (LFSRs) that transform a secret key x ∈ {0, 1}n into an out-
put keystream of arbitrary length. In 2002, Krause proposed a Binary
Decision Diagram (BDD) based attack on this type of ciphers, which in
the case of E0 is the best short-keystream attack known so far. How-
ever, BDD-attacks generally require a large amount of memory. In this
paper, we show how to substantially reduce the memory consumption
by divide-and-conquer strategies and present the first comprehensive ex-
perimental results for the BDD-attack on reduced versions of E0, A5/1
and the self-shrinking generator.

Keywords: Stream cipher, cryptanalysis, BDD, Bluetooth E0, GSM
A5/1, self-shrinking generator.

1 Introduction

The main purpose of LFSR-based keystream generators is online encryption of
bitstreams p ∈ {0, 1}∗ that have to be sent over an insecure channel, e.g., for
encrypting speech data to be transmitted from and to a mobile phone over the air
interface. The output keystream y ∈ {0, 1}∗ of the generator is bitwise XORed
to the plaintext stream p in order to obtain the ciphertext stream c ∈ {0, 1}∗,
i.e., ci = pi ⊕ yi for all i. Based on a secret initial state x ∈ {0, 1}n, which has
to be exchanged between sender and legal receiver in advance, the receiver can
compute the keystream y from x in the same way as the sender computed it and
decrypt the message using the above rule.

We consider the special type of LFSR-based keystream generators that consist
of a linear bitstream generator with a small number of Linear Feedback Shift
Registers (LFSRs) and a non-linear compression function C : {0, 1}∗ → {0, 1}∗.
From the secret key x, the LFSRs produce an internal bitstream z ∈ {0, 1}∗,
which is then transformed into the output keystream y via y = C(z). Practical
examples for this design include the E0 generator, which is used as a building

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 163–178, 2006.
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block for the cipher used in the Bluetooth standard for short-range wireless
communication [4], the A5/1 generator from the widely used GSM standard for
mobile telephones [5], and the self-shrinking generator [14].

Currently, the best attacks on E0 in terms of time and memory requirements
are algebraic attacks [1,6] and correlation attacks [12,11], but both types rely
on the rather unrealistic assumption that a large amount of output keystream
is available. The correlation attacks presented in [12,11] additionally depend on
the linearity of the key-schedule and other specific properties of the Bluetooth
encryption system that could easily be altered in future versions of the cipher.
Particularly, in [2] it was shown that small changes of the cipher design could
completely avert the correlation attack in [12] and significantly worsen the effi-
ciency of algebraic attacks on E0.

The attack by Krause [10], which we consider in this paper, is a generic at-
tack in the sense that it does not depend on specific design properties of the
respective cipher. It only relies on the assumptions that the generator’s output
behaves pseudorandomly and that the test whether a given internal bitstream
z produces a sample keystream can be represented in a Free Binary Decision
Diagram (FBDD) of size polynomial in the length of z. In the case of E0, the
BDD-attack can easily be extended to an attack on the whole Bluetooth cipher.
Another major advantage of the attack is that it reconstructs the secret key
from the shortest information-theoretically possible prefix of the keystream; in
the case of E0 and A5/1, the first keystream frame already suffices to obtain
all the information that is needed to compute the initial state, whereas both
algebraic attacks and correlation attacks depend on the unrealistic number of
at least 223 available keystream frames. In fact, the BDD-attack is the best
short-keystream attack on E0 that is known so far.

Unlike both algebraic and correlation attacks, BDD-attacks can also be ap-
plied to irregularly clocked keystream generators like the A5/1 generator, for
which the BDD-attack is one of the best generic attacks that do not depend on
special properties of the GSM encryption system.

However, one drawback of the BDD-attack is its high memory consumption.
We will approach this problem by presenting various efficiently parallelizable
divide-and-conquer strategies (DCS) for E0 and A5/1 that substantially reduce
the memory requirements and allow us to tackle much larger keylengths with
fixed computational resources. In the case of E0, our DCS lowers the attack’s
memory requirements by a factor of 225 and additionally yields a slight theoret-
ical improvement of the theoretical runtime. Hence, we obtain the best attack
on E0 under realistic assumptions.

In [10], the application of the basic BDD-based attack to E0, A5/1 and the
self-shrinking generator were already theoretically described, but with rather
pessimistic assumptions on the time and space requirements. We present the first
comprehensive experimental results for the BDD-attack on reduced versions of
these ciphers, showing that the performance in practice does not substantially
deviate from the theoretical figures.
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This paper is organized as follows. In Sect. 2, we introduce some notations, give
an overview of Binary Decision Diagrams and their algorithmic properties, and
review the original BDD-based attack presented in [10]. The impact of the BDD-
attack on the keystream generators E0, A5/1 and the self-shrinking generator
are described together with their basic definitions in Sect. 3. Section 4 introduces
our divide-and-conquer strategies for the attacks on E0 and A5/1, and Sect. 5
presents our experimental results. Finally, Sect. 6 concludes the paper.

2 Preliminaries

2.1 LFSR-Based Keystream Generators

In order to establish a consistent notation, we restate the definitions of linear
feedback shift registers, linear bitstream generators and LFSR-based keystream
generators and their basic properties.

Definition 1. A Linear Feedback Shift Register (LFSR) of length n with a coef-
ficient vector c=(c1, . . . , cn) ∈ {0, 1}n takes an initial state x=(x0, . . . , xn−1) ∈
{0, 1}n as input and produces a bitstream l(x) = l0(x), l1(x), . . . , li(x), . . . accord-
ing to

li(x) :=
{

xi for 0 ≤ i ≤ n− 1⊕n−1
k=0 ck+1 · li−n+k(x) for i > n− 1

.

Note that each output bit of an LFSR is a linear combination of the initial state
bits and that for each position i, there exists a subset D(i) ⊆ {0, . . . , n−1} such
that li(x) =

⊕
j∈D(i) xj . We call D(i) the domain of i.

In practice, an LFSR is implemented in hardware with n binary register cells
that are connected by a feedback channel.

Definition 2. A Linear Bitstream Generator L consists of k ≥ 1 parallel LFSRs
Lr of length nr, r ∈ {0, . . . , k−1}, and n0+. . .+nk−1 = n. L produces a bitstream
L(x) = L0(x), L1(x), . . . , Li(x), . . . where

Li(x) := l
r(i)
s(i)

(
xr(i)

)
where

r(i) = i mod k
s(i) = i div k

,

i.e., the i-th output bit of L corresponds to the s(i)-th output bit of LFSR Lr(i).
The initial states xp of the LFSRs Lp, p ∈ {0, . . . , k − 1}, form the initial state
x ∈ {0, 1}n of L. For i ≥ 1, we denote by L≤i(x) the i-extension of x, i.e., the
first i output bits L0(x), . . . , Li−1(x) that L produces from x.

Definition 3. An LFSR-based (k, l)-keystream generator (or (k, l)-combiner)
K = (L, C) consists of a linear bitstream generator L with k LFSRs and a non-
linear compression function C : {0, 1}∗ → {0, 1}∗ with l memory bits. From
the secret key x ∈ {0, 1}n that L is initialized with, K computes an internal
bitstream z = L(x) and transforms z into the output keystream via y = C(z)
= y0, y1, . . . , yi, . . .. The compression function C computes the keystream in an
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online manner, i.e., there exists a function δ : IN → IN with δ(i) < δ(j) for i < j,
such that yi = C(z0, . . . , zδ(i)−1), i.e., yi only depends on the first δ(i) bits of z.
Moreover, C reads the internal bits in the order in which they are produced by
the LFSRs, i.e., for s > 0 and all r ∈ {0, . . . , k−1}, Lk·s+r(x) is not read before
Lk·(s−1)+r(x).

We call a number i ≥ 1 a key position in L(x) if Li(x) corresponds to one
of the x-bits and a non-key position otherwise. Correspondingly, we denote by
KP (i) the set of key positions in {0, . . . , i−1} and by KB(z) ∈ {0, 1}|KP (i)| the
bits at the key positions in L(x). Let nmin denote the maximum i for which all
i′ ≤ i are key positions and nmax the minimum i for which all i′ > i are non-key
positions.

In the context of the previous definitions, we can characterize the well-known
regularly clocked combiners with memory (or shortly regular (k, l)-combiners),
which consist of k LFSRs and an l-bit memory unit, in the following way.

Definition 4. We call an LFSR-based (k, l)-keystream generator regular, if yi

only depends on the internal bits (zki, . . . , z(k+1)i−1), i.e., the (i + 1)-st output
bits of the LFSRs, and the state of the memory bits in iteration i.

Definition 5. Let γ denote the best-case compression ratio γ ∈ (0, 1], i.e., γm
is the maximum number of keybits that C produces from internal bitstreams of
length m. For a randomly chosen and uniformly distributed internal bitstream
Z(m) ∈ {0, 1}m and a random keystream Y , we define the average information
that Y reveals about Z(m) as α := 1

mI
(
Z(m), Y

)
∈ (0, 1].1

For a randomly chosen and uniformly distributed internal bitstream z ∈ {0, 1}m,
the probability of the keybits C(z) being a prefix of a given keystream y ∈ {0, 1}∗
can be expressed as

Probz [C(z) is prefix of y] =
�γm�∑
i=0

Probz∈{0,1}m [|C(z)| = i] · Probz∈{0,1}m,|C(z)|=i[C(z) = (y0, . . . , yi−1)] .

Concerning this probability, we will make the following assumption.

Assumption 1 (Independence Assumption). For all m ≥ 1, a randomly
chosen, uniformly distributed internal bitstream z ∈ {0, 1}m, and all keystreams
y ∈ {0, 1}∗, we have Probz[C(z)is prefix of y] = pC(m), i.e., the probability of
C(z) being a prefix of y is the same for all y.

As shown in [10], Assumption 1 yields α = − 1
m log2 pC(m).

From a straightforward calculation (c.f. [10] for details), we obtain

Observation 1. For a regular (k, l)-combiner, it is α = γ = 1
k .

Finally, we assume the keystream y to behave pseudorandomly.
1 Recall that for two random variables A and B, the value I(A,B) = H(A)−H(A|B)

defines the information that B reveals about A.
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Assumption 2 (Pseudorandomness Assumption). For all keystreams y
and all m ≤ &α−1n' it holds that Probz [C(z) is prefix of y] ≈ Probx[C(L≤m(x))
is prefix of y], where z and x denote randomly chosen, uniformly distributed el-
ements of {0, 1}m and {0, 1}|KP (m)|, respectively.

Note that a severe violation of Assumption 2 would imply a vulnerability of K
via a correlation attack.

2.2 Binary Decision Diagrams (BDDs)

We briefly review the definitions of Binary Decision Diagrams and those algo-
rithmic properties that are used in the BDD-based attack.

Definition 6. A Binary Decision Diagram (BDD) over a set of variables Xn =
{x1, . . . , xn} is a directed, acyclic graph G = (V, E) with E ⊆ V × V × {0, 1}.
Each inner node v has exactly two outgoing edges, a 0-edge (v, v0, 0) and a 1-edge
(v, v1, 1) leading to the 0-successor v0 and the 1-successor v1, respectively. A BDD
contains exactly two nodes with outdegree 0, the sinks s0 and s1. Each inner node
v is assigned a label v.label ∈ Xn, whereas the two sinks are labeled s0.label = 0
and s1.label = 1. There is exacly one node with indegree 0, the root of the BDD.
We define the size of a BDD to be the number of nodes in G, i.e., |G| := |V |. Each
node v ∈ V represents a Boolean Function fv ∈ Bn = {f |f : {0, 1}n → {0, 1}} in
the following manner: For an input a = (a1, . . . , an) ∈ {0, 1}n, the computation
of fv(a) starts in v. In a node with label xi, the outgoing edge with label ai is
chosen, until one of the sinks is reached. The value fv(a) is then given by the
label of this sink.

Definition 7. For a BDD G over Xn, let G−1(1) ⊆ {0, 1}n denote the set of
inputs accepted by G, i.e., all inputs a ∈ {0, 1}n such that froot(v) = 1.

Definition 8. An oracle graph G0 = (V, E) over a set of variables Xn =
{x1, . . . , xn} is a modified BDD that contains only one sink s, labeled ∗, and
for all xi ∈ Xn and all paths P from the root in G to the sink, there exists at
most one node in P that is labeled xi.

Definition 9. A Free Binary Decision Diagram with respect to an oracle graph
G0 (a G0-FBDD for short) over a set of variables Xn = {x1, . . . , xn} is a BDD
in which the following property holds for all inputs a ∈ {0, 1}n. Let the list G0(a)
contain the variables from Xn in the order in which they are tested on the path
defined by a in G0. Similarly, let the list G(a) contain the variables from Xn

in the order of testing in G. If xi and xj are both contained in G(a), then they
occur in G(a) in the same order as in G0(a). We call a BDD G an FBDD, if
there exists an oracle graph G0 such that G is a G0-FBDD.

Figure 1 shows examples for an oracle graph G0 and a G0-FBDD.

Definition 10. An FBDD G is called Ordered Binary Decision Diagram
(OBDD) if there exists an oracle graph G0 such that G is a G0-FBDD and
G0 is degenerated into a linear list.
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Fig. 1. An oracle graph G0 over {z0, . . . , z3} and a G0-FBDD

FBDDs possess several algorithmic properties that will prove useful in our
context. Let G0 denote an oracle graph over Xn = {x1, . . . , xn} and let the
G0-FBDDs Gf , Gg and Gh represent Boolean functions f, g, h : {0, 1}n →
{0, 1}. Then, there exists an algorithm MIN that computes in time O(|Gf |) the
(uniquely determined) minimal G0-FBDD G of size |G| ≤ n · |G−1

f (1)| that repre-
sents f . In time O(|G0|·|Gf |·|Gg |·|Gh|), we can compute a minimal G0-FBDD G
with |G| ≤ |G0| · |Gf | · |Gg| · |Gh| that represents the function f ∧g∧h. Addition-

ally, it is possible to enumerate all elementes in G−1
f (1) in time O

(
n · |G−1

f (1)|
)
.

We refer the reader to [18] for details on the corresponding algorithms.

2.3 BDD-Based Attack

The original BDD-based attack in [10], which we are going to describe in this
section, assumes a known-plaintext scenario, i.e., the attacker manages to obtain
a few plaintext-ciphertext pairs (p1, c1), . . . , (pt, ct) ∈ {0, 1}2. Since the ci were
computed as ci = pi ⊕ yi based on the output y0, . . . , yt ∈ {0, 1} of an LFSR-
based keystream generator K = (L, C), he can compute the first t keybits as
yi = pi⊕ci. From this prefix of the keystream, he wants to reconstruct the secret
initial state x of L.

We observe that for any internal bitstream z ∈ {0, 1}m that yields a prefix of
the observed keystream-piece y, the following conditions must hold.

Condition 1. z is an m-extension of the key bits in z, i.e., L≤m(KB(z)) = z.

Condition 2. C(z) is a prefix of y.

We call any z of length m that satisfies these conditions an m-candidate. The idea
is now to start with m = nmin and to dynamically compute the m-candidates
for m > nmin, until only one m-candidate is left. The smallest m for which this
will be most likely the case follows directly from the following Lemma.

Lemma 1. Under Assumption 2, it holds for all keystreams y and all m ≤
&α−1n' that |{x ∈ {0, 1}n : C(L≤m(x)) is prefix of y}| ≈ 2n∗−αm ≤ 2n−αm,
where n∗ = |KP (m)|. Hence, there exist approximately 2n−αm m-candidates.
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Lemma 1 implies that there will be only one m-candidate for m ≥ &α−1n'. The
key bits in this m-candidate form the secret initial state that the attacker is
looking for.

In order to compute and represent the intermediate m-candidates efficiently,
we use the following BDD-based approach. For m ≥ 1, let GC

m denote the
oracle graph over {z0, . . . , zm−1} that determines for each internal bitstream
z = (z′0, . . . , z

′
m−1) ∈ {0, 1}m the order in which the bits of z are read by the

compression function C. Bitstreams z fulfilling conditions 1 and 2 will be rep-
resented in the minimal GC

m-FBDDs Rm and Qy
m, respectively. Then, the GC

m-
FBDD P y

m = MIN(Qy
m ∧Rm) accepts exactly the m-candidates.

The cost of this strategy essentially depends on the sizes of the intermediate
results P y

m, which can be determined as follows.

Assumption 3 (FBDD Assumption). For all m ≥ nmin, it holds that |GC
m| ∈

mO(1), |Qm| ∈ mO(1), and |Rm| ≤ |GC
m|2m−n∗

.

Lemma 2. If K fulfills Assumption 3, then

|P y
m| ≤ max

1≤m≤�α−1n�

{
min

{
p(m) · 2m−n∗

, m · 2n∗−αm
}}

≤ p(m) · 2r∗(m) ,

where p(m) = |GC
m|2 · |Qy

m| and r∗(m) = 1−α
1+αn∗.

From this bound on |P y
m|, one can straightforwardly derive the time, space and

data requirements of the BDD-based attack.

Theorem 1. Let K = (L, C) be an LFSR-based keystream generator with initial
state x ∈ {0, 1}n, information ratio α and best-case compression ratio γ. If K
fulfills the Independence Assumption, the Pseudorandomness Assumption and
the FBDD Assumption, an initial state x̃ with C(L(x̃)) = y for a given keystream
y = C(L(x)) can be computed in time and with space nO(1)2

1−α
1+α n from the first

&γα−1n' consecutive bits of y.

3 Applications

We now survey the impact of the basic BDD-attack on the self-shrinking gener-
ator, the E0 generator, and the A5/1 generator and compare it to other attacks
on these ciphers.

The self-shrinking generator was introduced by Meier and Staffelbach [14]. It
consists of only one LFSR and no memory. [10] showed that for the self-shrinking
Generator, we have α ≈ 0.2075 and γ = 0.5 as well as |Qm| ≤ m2 for m ≥ 1.

Corollary 1. From a prefix of length &2.41n' of a keystream y = C(L(x))
produced by a self-shrinking generator of keylength n, an initial state x̃ with
C(L(x̃)) = y can be computed in time and with space nO(1)20.6563n.

This is the best short-keystream attack on the self-shrinking generator known
so far. It slightly improves the bounds of 20.75n and 20.694n that were obtained
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in [14] and [19], respectively. The long-keystream attack in [15] needs at least
20.3n keystream bits in order to compute the initial state in less than 20.6563n

polynomial-time operations.
The E0 keystream generator from the short-range wireless communication

standard Bluetooth [4] is a regular (4, 4)-combiner with key length 128; its LFSRs
have lengths 39, 33, 31, 25. Therefore, we have α = γ = 1

4 , and [10] showed that
|Qm| ≤ 32m. Hence, we obtain from Theorem 1:

Corollary 2. From a prefix of length n of a keystream y = C(L(x)) produced by
an E0 keystream generator of keylength n, an initial state x̃ with C(L(x̃)) = y
can be computed in time and with space nO(1)20.6n = nO(1)276.8 for n = 128.

The attack on E0 by Fluhrer and Lucks [8] trades off time and necessary key-
stream bits. For the minimum number of 132 available keystream bits the attack
needs 284 polynomial time operations. The best currently known long-keystream
attacks against E0 are algebraic attacks [1] and correlation attacks [12,11]. These
attacks all need a large amount of keystream (228 to 239 in the case of correlation
attacks), and even in terms of time and memory requirements, [11] is the only
feasible attack among them.

The A5/1 generator is used in the GSM standard for mobile telephones. Ac-
cording to [5], who obtained its design by reverse engineering, the generator
consists of 3 LFSRs R0, R1, R2 of lengths n0, n1, n2, respectively, and a clock
control ensuring that the keybits do not linearly depend on the initial states of
the LFSRs. For each r ∈ {0, 1, 2}, a register cell qNr , N r ∈ {&nr

2 ' − 1, &nr

2 '}, is
selected in LFSR Rr as input for the clock control. The GSM standard uses the
parameters (n0, n1, n2) = (19, 22, 23) and (N0, N1, N2) = (11, 12, 13).

In order to write the generator in a K = (L, C) fashion, we simulate its
linear bitstream generator by six LFSRs L0, . . . , L5. L0, L1, and L2 are used
exclusively for producing the keybits and correspond to R0, R1 and R2 in the
original generator, and the control values are computed from the outputs of L3,
L4 and L5, which correspond to L0, L1 and L2 shifted by N0, N1 and N2.

In [10], it was shown that in the case of A5/1, α = 0.2193 and γ = 1
4 as well

as |GC
m| ∈ O(m3) and |Qm| ∈ O(m4). Plugging these values into the statement

of Theorem 1 yields

Corollary 3. From a prefix of length &1.14n' of a keystream y = C(L(x)) pro-
duced by an A5/1 keystream generator of keylength n, an initial state x̃ with
C(L(x̃)) = y can be computed in time and with space nO(1)20.6403n = nO(1)241

for n = 64.

We note that since &1.14n' = 73 and the framelength in GSM is 114 Bits for
each direction, we only need the first frame, i.e., the first around 4.6 milliseconds
of a conversation in order to reconstruct the initial state.

The first short-keystream attack on A5/1 was given by Golić in [9] and needs
242 polynomial time operations. Afterwards, several long-keystream attacks on
A5/1 were proposed. [3] presents an attack that breaks A5/1 from 215 known
keystream bits within minutes after a preprocessing step of 248 operations. Due
to exploits of the linearity of the initialization procedure, the attack described
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in [7] and its refinement in [13] manage to break the cipher within minutes,
requiring only few seconds of conversation and little computational resources.

4 Divide-and-Conquer Strategies

One obvious disadvantage of BDD-based attacks is the high memory consump-
tion that is essentially determined by the size of the intermediate results P y

m.
For an LFSR-based keystream generator with keylength n, one possible ap-
proach to this problem is to divide the search space, more precisely the set
Bn = {0, 1}n of possible initial states of L, into segments and to apply BDD-
based attacks to the segments individually. We denote a segmentation of Bn by
the pair (f, T ), where T is the finite set of segment labels and f : {0, 1}∗ → T a
partial function that assigns a segment to each possible internal bitstream. For
a given keystream y and each t ∈ T , we perform a BDD-based search on the set
Bt

n = {x ∈ Bn|f(L(x)) = t} in order to find an initial state x̃ ∈ Bt
n such that

C(L(x̃)) = y.
Similarly to the general attack described in the previous section, we denote

by Qy,t
m the minimal GC

0 -FBDD that decides whether C(z) = y and f(z) = t,
and by Rt

m the minimal GC
m-FBDD that accepts for f(z) = t exactly those

internal bitstreams z that are m-extensions of KB(z). Moreover, let St
m be the

minimal GC
m-FBDD that decides for f(z) = t whether zm−1 = Lm−1(KB(z))

and define P y,t
m := MIN(Qy,t

m ∧Rt
m). We can then apply the same algorithm for

dynamically computing P y,t
nmin

, P y,t
nmin+1, . . . as in the original case. Consequently,

we obtain nO(1)2w∗
as time and space requirements for the BDD-based search

on Bt
n, with w∗ computed analogously to r∗ in Lemma 2. For the overall attack,

i.e., performing the BDD-based search on Bt
n for all t ∈ T , we get a memory

consumption in the order of nO(1)2w∗
and a runtime of nO(1) · |T | · 2w∗

if the
attacks are executed sequentially. Since the Bt

n are disjoint, the overall attack is
efficiently parallelizable, and the |T | factor can be further reduced.

We note that in general, we will only gain from a divide-and-conquer strategy
(DCS) if |T | is not too large and w∗ ≤ r∗. For the latter to be the case, the |Qy,t

m |
have to be negligibly small and |Rt

m| must be significantly smaller than |Rm|.
We consider now DCS that define a subset V ⊆ KP (nmax) of the initial state

bits of L to be constant. We call a position m ≥ 1 a V -determined position if
m ∈ V or if its domain D(m) is a subset of V . For an internal bitstream z, let
t ∈ {0, 1}|V | denote the values of z at the positions in V . Then, the segmentation
of Bn is given by (fV , T (V )), where fV (z) = t and T (V ) = {0, 1}|V |.

The FBDDs Qy,t
m can be obtained from Qy

m by setting constant the vari-
ables that correspond to the V -determined positions. Hence, |Qy,t

m | ≤ |Qy
m|.

Moreover, since the test whether zm−1 = Lm−1(KB(z)) can be omitted for the
V -determined positions, we have |Rt

m| ≤ |GC
m|2r(m,V ), where r(m, V ) denotes

the number of non-V -determined positions in {nmin + 1, . . . , m}. Note that the
original attack corresponds to the case V = ( and therefore r(m, V ) ≤ m− n∗,
hence |Rt

m| ≤ |Rm|.
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4.1 DCS for Regular (k, l)-Combiners

We consider two examples that are applicable to regular (k, l)-combiners like the
E0 keystream generator.

First, we define V to contain exactly the positions of the first s output bits
of each LFSR. In the worst case, there are no V -determined positions besides
the positions in V . We only need to consider the assignments to the positions in
V that are consistent with y. By Lemma 1, we have |T (V )| ≈ |{0, 1}(1−α)ks| =
2(k−1)s. For t ∈ T (V ), the effort of a BDD-based search of the corresponding seg-
ment is equivalent to the effort for the original BDD-attack on a (k, l)-combiner
of keylength (n− ks), i.e., w∗ = k−1

k+1 (n− ks). For the overall runtime, we obtain

nO(1) · 2(k−1)s+ k−1
k+1 (n−ks) ∈ nO(1)2

k−1
k+1 n+ k−1

k+1 s ,

which is by a factor of 2
k−1
k+1 s worse than the original attack . On the other hand,

the required memory is reduced by a factor of 2
k−1
k+1 ks.

As a second example, we choose as V the set of all key positions that belong
to the shortest LFSR in L, which we assume w.l.o.g. to be the LFSR L0. Let
n0 ≤ n

k be the length of L0. Then, T (V ) = {0, 1}n0 is the set of all possible
initial states of L0. Since every k-th position of an internal bitstream z is V -
determined, w∗ corresponds to the performance of the original BDD-attack on
a (k− 1, l) combiner of keylength n−n0, i.e., w∗ = k−2

k (n− n0). For the overall
runtime, we obtain 2n0+ k−2

k (n−n0). It is easy to see that for n0 ≤ n
k+1 , we have

n0 +
k − 2

k
(n− n0) ≤

k − 1
k + 1

n ,

i.e., for sufficiently small n0, we even obtain a runtime improvement in addition
to the significantly reduced space requirements. In the case of the original E0,
we have n0 = 25 ≤ 25.6 = 128

4+1 . Hence, we obtain

Lemma 3. For the E0 keystream generator with keylength n = 128, choosing V
to be the set of all key positions that belong to the shortest LFSR yields a runtime
of the BDD-based attack of nO(1)225+ 1

2103 = 276.5 and a memory consumption
of 251.5.

Compared to the original BDD-attack, we have improved the memory consump-
tion by a factor of about 225 and the runtime by a factor of 20.3.

4.2 DCS for the A5/1 Generator

In the following, we compute the information rate of the A5/1 generator with
respect to a family of choices for the set V , particularly those defined by setting
one or several LFSRs or half-LFSRs to be constant. As stated in Sect. 3, in
the unmodified definition of the A5/1 generator, each of the three LFSRs is
divided into two, approximately equally long halfs, a value-half consisting of the
output cell and the cells between output and clock-control cell and a control
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half consisting of the clock-control cell and the rest of the register. Since the
value-LFSRs and the control-LFSRs in the modified setting correspond to the
value-halfs and the control-halfs in the unmodified case, setting constant LFSRs
or half-LFSRs in the original definition is equivalent to fixing the corresponding
LFSRs in the modified case.

For all natural i ≥ 1, let us denote by Yi and Zi the random variables corre-
sponding to the i-th output bit and the number of internal bits processed for the
production of the i-th output bit, respectively, taken over the probability space
of all random internal bitstreams. In all cases, Yi and Zi will fulfill the following
conditions.

– For all i > 1, Zi is independent of Z1, . . . , Zi−1, and Yi is independent of
Y1, . . . , Yi−1.

– It holds that Pr[Yi = 0] = Pr[Yi = 1] = 1
2 .

– There are natural numbers a > b > c and probabilities p, q and r = 1−p− q
such that Pr[Zi = a] = p, Pr[Zi = b] = q, and Pr[Zi = c] = r.

Let us denote the situation that Yi and Zi fulfill the above conditions as case
[(p, a), (q, b), (r, c)]. It can be easily checked that the unrestricted A5/1 generator
corresponds to case [(1/4, 6), (3/4, 4), (0, 0)]. We will see below that all generators
derived from the A5/1 generator by setting constant one or more of the six
LFSRs correspond to [(p, a), (q, b), (r, c)] for some p, q, r, a, b, c. In these cases, we
can compute the information rate α with the help of the following Theorem.

Theorem 2. In the case [(p, a), (q, b), (r, c)], the information rate equals α,
where t = 2α is the unique positive real solution of pta + qtb + rtc − 2 = 0.

A proof for Theorem 2 can be found in Appendix A. Note that for the special
case [(1, k), 0, 0] the information rate is 1/k.

In the following, we compute the information rates for restrictions of type
(v1v2v3|c1c2c3) ∈ {0, 1}6, which means that those value-substreams i for which
vi = 1 and control-substreams j for which cj = 1 are set constant. Note that
the unrestricted case corresponds to (000|000). We do not consider the case of 5
constant internal substreams as computing the remaining unknown half-LFSR
from a given keystream can be done in linear time.

For symmerty reasons, the number of remaining cases resulting from setting
constant 1,2,3,4 substreams can be reduced. Firstly, it is easy to see that for all
permutations π of {1, 2, 3} it holds that restriction (v1v2v3|c1c2c3) is equivalent
to restiction (vπ(1), vπ(2)vπ(3)|cπ(1)cπ(2)cπ(3)). Furthermore, observe that with re-
spect to restriction (v|c), v, c ∈ {0, 1}3, the number of internal bits Z(u, V, C)
processed for the production of the next output bit assuming the current values
in the control-substreams are u ∈ {0, 1}3 equals

Z(u, v, c) =
∑

i,ci=0

fi(u) +
∑

i,vi=0

fi(u) , (1)

where for i ∈ {1, 2, 3} the Boolean function fi : {0, 1}3 → {0, 1} is defined to
output 1 on u iff the i-th LFSR will be clocked w.r.t. u, i.e.,

fi(u) = (ui ⊕ ui+1 mod 3 ⊕ 1) ∨ (ui ⊕ ui+2 mod 3 ⊕ 1) .



174 M. Krause and D. Stegemann

Relation (1) implies that for all v, c, u ∈ {0, 1}3 and i ∈ {1, 2, 3}, it holds that
Z(u, v, c) = Z(u, v′, c′), where v′, c′ are obtained from v, c by exchanging the
i-th component. Hence, restriction (v|c) is equivalent to restriction (v′|c′). It
follows that the relevant cases are the restrictions (000|100), (100|100), (100|010),
(100|110), (000|111), (100|111) and (110|110).

The information rates for these cases are summarized in Table 1. The com-
putation of the values can be found in Appendix B.

Table 1. Information rates α

log |T | restriction α w∗
2
3n (100|111) 0.6430 0.2173n

(110|110) 0.6113 0.2412n
1
2n (000|111) 0.4386 0.3902n

(100|110) 0.4261 0.4024n
1
3n (000|110) 0.3271 0.507n

(100|100) 0.3215 0.5134n
1
6n (000|100) 0.2622 0.584n

0 (000|000) 0.2193 0.6403n

5 Experimental Results

In order to provide a fast implementation of the FBDD algorithms, an FBDD-
library was developed based on the publicly available OBDD package CUDD
(see [17]). The experiments were conducted on a standard Linux PC with a 2.7
GHz Intel Xeon processor and 4 GB of RAM. All implementation was done in
C using the gcc-compiler version 3.3.5.

Since the runtime of the cryptanalysis fundamentally depends on the maxi-
mum size of the intermediate FBDDs P y

m, we investigate how much experimen-
tally obtained values of |P y

m| deviate from the theoretical figures.
We first consider the basic BDD-based attack. For the self-shrinking gener-

ator, the E0 generator and the A5/1 generator, we analyzed several thousands
of reduced instances with random primitive feedback polynomials and random
initial states for various keylengths. For each considered random generator, we
computed the actual maximum BDD-size of the intermediate results

Pmax(n) = max
1≤m≤�α−1n�

{|P y
m|} ,

the theoretical upper bound

P t
max(n) = max

1≤m≤�α−1n�

{
min

{
p(m) · 2m−n∗

, m · 2n∗−αm
}}

that was obtained in Lemma 2, as well as the quotient q(n) = log(Pmax(n))
log(P t

max(n)) .
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Similarly, we tested for E0 and A5/1 the divide-and-conquer strategy of
setting constant the shortest LFSR (s1), and we considered fixing the first
s = n0

2 ≤ n
8 bits of each of the four LFSRs in E0 (s2), where n0 denotes

the length of the shortest LFSR. Since the q-values did not noticeably decrease
with increasing n in all our simulations, we estimate the attack’s performance in
dependence of n by multiplying the theoretical figures by 2q(n). Particularly, we
can obtain conjectures about the attack’s performance on real-life instances of
E0 and A5/1 by replacing n with the actual keylengths. Table 2 shows the results
of these computations along with details about the conducted experiments.

On average, the attack based on DCS s1 took 87 minutes for E0 with n = 37
and 54 minutes for A5/1 with n = 30. The longest keylengths that we were
able to tackle with the resources described at the beginning of this section were
n = 46 for E0 and n = 37 for A5/1. These attacks used up almost all of the
available memory and took 60.5 and 25.1 hours to complete on average.

Table 2. Performance of the BDD-based attack in practice

generator DCS keylength avg no. of estimated practical performance
interval q(n) samples Time Space

E0 − [19, 37] 0.85 2000 20.51n 265.28 20.51n 265.28

E0 s1 [19, 37] 0.95 2700 20.475(n+n0) 272.68 20.475(n−n0) 248.93

E0 s2 [19, 37] 0.9 2700 20.54n+0.27n0 275.87 20.54n−1.08n0 242.12

A5/1 − [15, 30] 0.9 3000 20.5763n 236.88 20.5763n 236.88

A5/1 s1 [19, 37] 0.77 2400 20.3953n+0.77n0 239.93 20.3953n 225.30

SSG − [10, 35] 0.8 3300 20.525n 20.525n

6 Conclusion

In this paper, we have presented the first comprehensive experimental results
for the BDD-based attack on the self-shrinking generator, the E0 and the A5/1.
Our analysis shows that the performance of the BDD-attack on these generators
in practice will not substantially drop below the theoretical upper bounds. We
introduced divide-and-conquer strategies based on setting constant several initial
state bits of the LFSRs and confirmed experimentally that in this way, the
memory consumption of the attack may be reduced at the expense of slightly
increasing the runtime. We have only applied a few examples of DCS to the E0
and the A5/1 generator. In [16], an additional DCS for E0 is reported which
lowers the memory requirements to about 223 while increasing the runtime to
O(283). It is an interesting open question if there exist more efficient strategies
that are able to simultaneously reduce the runtime by a significant amount.
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A Proof of Theorem 2

In order to prove Theorem 2, we need the following technical result that was
proved in [10].
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Lemma 4. For all natural N ≥ 1, probabilities p ∈ (0, 1) and real β > 0 it holds
that

∑N
i=0

(
N
i

)
pi(1− p)N−i2βi =

(
1− p + p2β

)N
.

Since we can obtain the information rate α from α = − 1
m log2 pC(m), we now

compute the probability pC(m) = Probz [C(z) is prefix of y] for the cases that
parts of the LFSRs are set constant.

Case [(p, a), (q, b), (r, c)] implies that on all random internal bitstreams of
length m, m divisible by a, at least m/a output bits are produced. The num-
ber of internal bits remaining from m internal bits after the production of m/a
output bits can be computed as

m− aU − bV − c
(m

a
− U − V

)
=

a− c

a
m− (a− c)U − (b − c)V ,

where U and V denote the number of output bits among the first m/a output bits
for which a, resp. b internal bits are processed. Note that U is (p, m/a)-binomially
distributed and that V , under the condition that U = i, is (q/(q + r), m/a− i)-
binomially distributed. We obtain the following relation for pC(m).

pC(m) = 2−
m
a

m
a∑

i=0

m
a −i∑
j=0

Pr[U = i, V = j]p
(

a− c

a
m− (a− c)i− (b− c)j

)
,i.e.,

2−αm = 2−
m
a

m
a∑

i=0

(m
a

i

)
pi(1 − p)

m
a −i

m
a −i∑
j=0

(m
a − i

j

)(
q

q + r

)j (
r

q + r

)m
a −i−j

· 2−α( a−c
a m−(a−c)i−(b−c)j) ,i.e.,

2(1−aα+(a−c)α) m
a =

m
a∑

i=0

(m
a

i

)
pi(1− p)

m
a −i · 2(a−c)αi

m
a −i∑
j=0

(m
a − i

j

)(
q

1− p

)j (
r

1− p

)m
a −i−j

· 2(b−c)αj .

Now, we apply Lemma 4 to the inner sum and obtain

2(1−nα) m
a =

m
a∑

i=0

(m
a

i

)
pi(1 − p)

m
a −i · 2(a−c)αi ·

(
r

1− p
+

q

1− p
2(b−c)α

)m
a −i

.

Setting s = r
1−p + q

1−p2(b−c)α, we get

(
2

s2cα

)m
a

=

m
a∑

i=0

(m
a

i

)
pi(1−p)

m
a −i·2((a−c)α−log(s))i =

(
1− p + p2(a−c)α−log(s)

)m
a

.
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Consequently, setting t = 2α, we obtain

2
stc

= 1− p + p
ta−c

s
⇔ 2 = (1− p)stc + pta.

s = r
1−p + q

1−p tb−c implies 2 = rtc + qtb + pta, which yields the Theorem.

B Computation of α for the Considered DCS for A5/1

In order to compute the remaining α values, we only need to compute the cor-
responding cases of the form [(p, a), (q, b), (r, c)] for the given restrictions on the
LFSRs.

We first consider the restriction (100|100). If the actual content of the output
cells of the two non-constant control substreams is 00 or 11, then 4 internal
bits will be processed, otherwise 2 internal bits will be processed. Hence, the
corresponding case is [(1/2, 4), (1/2, 2), 0] and therefore α ≈ 0.3215.

Under restriction (100|010), 4 internal bits will be processed if the actual
content of the output cell of the constant control substream is b ∈ {0, 1} and
the actual content of the two non-constant control substreams is bb. If it is bb̄
then 2, and in all remaining cases 3 internal bits will be processed. Therefore,
the corresponding case is [(1/4, 4), (1/2, 3), (1/4, 2)] and α ≈ 0.3271.

If we assume restriction (110|110), 2 internal bits will be processed if the
assignments to the output cells of the constant control substreams is 01 or 10 or
if all 3 output cells of the control-substreams coincide. If the assignment to the
output cells of the constant control substreams is bb for some b ∈ {0, 1} and the
random assignment to the remaining control is output cell is ¬b, then the next
output bit depends only on the constant assignments, and no internal bit will be
processed. This implies that, in contrast to the above cases, pC(m) and α are not
independent of the constant substreams and the given keystream. Therefore, we
compute only the average information rate over all possible assignments to the
constant control and output substreams. According to the above observation,
the probability that 2 internal bits are processed for the next output bit is 3/4,
and the probability that 0 internal bits are processed for the next ouput bit is
1/4. In total, we obtain [(3/4, 4), (1/4, 0), 0] and therefore α ≈ 0.6113.

We can handle the remaining cases with similar arguments.
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Abstract. The security of hash functions has recently become one of
the hottest topics in the design and analysis of cryptographic primitives.
Since almost all the hash functions used today (including the MD and
SHA families) have an iterated design, it is important to study the gen-
eral security properties of such functions. At Crypto 2004 Joux showed
that in any iterated hash function it is relatively easy to find exponential
sized multicollisions, and thus the concatenation of several hash functions
does not increase their security. However, in his proof it was essential
that each message block is used at most once. In 2005 Nandi and Stin-
son extended the technique to handle iterated hash functions in which
each message block is used at most twice. In this paper we consider the
general case and prove that even if we allow each iterated hash function
to scan the input multiple times in an arbitrary expanded order, their
concatenation is not stronger than a single function. Finally, we extend
the result to tree-based hash functions with arbitrary tree structures.

Keywords: Hash functions, iterated hash functions, tree based hash
functions, multicollisions, cryptanalysis.

1 Introduction

The recent discovery of major flaws in almost all the hash functions proposed so
far ([18], [5], [1]) made the analysis of the security properties of these functions
extremely important. Some researchers (e.g., Jutla and Patthak [6]) proposed
clever ways to strengthen the internal components of standard hash functions in
order to make them provably resistant against some types of attacks. A differ-
ent line of research (which was extensively studied and formalized in Preneel’s
pioneering work [11]) considered the structural properties of various types of
hash functions, assuming that the primitive operations (such as compression
functions on fixed length inputs) are perfectly secure. This is similar to the
structural study of various modes of operation of encryption schemes, ignoring
their internal details.

One of the most surprising results in this area was the recent discovery by
Joux [5] of an efficient attack on Iterated Concatenated (IC) hash functions. An
iterated hash function has a constant size state, which is mixed with a constant
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size input by a compression function f to generate the next state. A message of
unbounded size is hashed by dividing it into a sequence of message blocks, and
providing them one by one to the compression function. The initial state is a
fixed IV, and the last state is the output of the hash function. A concatenated
hash function starts from several IV’s, applies a different compression function
to the original message in each chain, and concatenates the final states of all the
chains to get a longer output. To prove that multiple chains of compression func-
tions are not much stronger than a single chain, Joux showed how to generate a
2k−multicollision (i.e., 2k different messages which are all mapped to the same
output value by the hash function) with complexity k2

n
2 . This is only slightly

larger than the 2
n
2 complexity of finding one pairwise collision in the underlying

compression function via the birthday paradox, and much smaller than the 2k2n

complexity of finding such a multicollision in a random non-iterated hash func-
tion. He then showed how to use multicollisions in F1 in order to find collisions in
the concatenated hash function F1(M)‖F2(M) with complexity O(n2

n
2 ), which

is much smaller than the 2n complexity of the birthday paradox applied to the
2n−bit concatenated state. Other possible applications of multicollisions are in
the MicroMint micropayment scheme [14] and in distinguishing iterated hash
functions from random functions.

1IV

2IV

3IV

1m 2m 1m 2m

2m 1m 1m 2m

2m 1m

3f

2m

3f

1m

1h

2h

3h

1f

2f 2f 2f 2f

3f3f

1f1f1f

Fig. 1. An example of an ICE hash function, where the output is h1‖h2‖h3

One of the simplest ways to overcome Joux’s multicollision attack is to use
message expansion which forces the iterated hash function to process each mes-
sage block more than once. For example, the hash function can scan the original
message blocks forwards, then backwards, then the even numbered blocks, and
finally the odd numbered blocks, before producing the output. In addition, a
concatenated hash function can use a different expanded order with each com-
pression function, before concatenating their outputs (see Fig 1). We can assume
that the expansion phase increases the total number of message blocks by at most
a constant factor s, since higher expansion rates (e.g., quadratic) will make it too
expensive to hash long messages, and thus lead to impractical constructions. We
call such a generalized scheme an Iterated Concatenated and Expanded (ICE)
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hash function. Joux’s original technique could not handle such functions, since a
pair of message blocks which create a collision in a compression function at one
point is very unlikely to create another collision later when they are mixed with
a different state.

This difficulty was partially resolved in 2005 by Nandi & Stinson [10]. They
considered the special case of ICE hash functions in which each message block
is used at most twice in the expanded message, and extended Joux’s original
technique in a highly specialized way to handle this slightly larger class of hash
functions.

In this paper we consider the general case of an arbitrary expansion rate s,
and show how to find in any ICE hash function whose individual compression
functions have n−bit states an O(2n) sized multicollision, using messages whose
length is polynomial in n for any constant s. This shows that the Joux mul-
ticollision technique is much more powerful and the ICE hash construction is
considerably less secure than originally believed.

1.1 Outline of This Paper

The new proof technique is based on careful analysis of the structural properties
of sets of words of the form M ′ = mα1mα2 ...mαe which can be derived from
the original message M = m1m2...ml by replicating and reordering the message
blocks mi during the expansion phase, when e ≤ sl. The proof is quite involved,
and uses a series of combinatorial lemmas. To make it easier to follow, we first
give an overview of the various steps.

The first step is to show that the case of expansion by a total factor s can
be reduced to the case of an expansion in which each message block appears at
most q = 2s times. The next step of the proof is to reduce such expanded words
to the form π1(M)‖π2(M)...‖πk(M) where k ≤ q and each πi is a permutation
which contains each message block exactly once. We then show how to construct
arbitrarily large multicollisions when the expanded sequence consists of k suc-
cessive permutations of the message blocks. Finally we show how to use such
multicollisions in order to find collisions in the concatenation of several hash
functions defined by different sequences.

In section 2 we deal with expansion schemes which can be represented as a se-
quence of permutations. Section 3 generalizes the proof to any ICE hash function
with a constant expansion rate. Section 4 shows how to construct multicollisions
when the iterative compression structure is replaced by a tree-like compression
scheme. Section 5 summarizes our results and presents some open problems.

2 The Successive Permutations Case

Throughout the paper we denote the set of the first l integers by L = {1, 2, ..., l}
where l = |M | is the length of the original (unexpanded) message. Where no
message is clear from the context, l can be an arbitrary integer. We start by
proving a useful lemma:
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Lemma 1. Let B and C be two permuted sequences of the elements of L. Divide
B into k consecutive groups of the same size ( l

k ) and name the groups B1, ..., Bk,
and divide C into k consecutive groups of the same size ( l

k ) and name the groups
C1, ..., Ck. Then for x > 0 and l ≥ k3x there exists a perfect matching of Bi’s
and Cj’s such that Bi

⋂
Cj ≥ x.

Proof. We will use the fact that B and C are partitioned into a small number
of large disjoint sets, which are likely to have large intersections. We construct
the following bipartite graph: V = {B1, ..., Bk, C1, ..., Ck} and (Bi, Cj) ∈ E iff
Bi

⋂
Cj ≥ x. According to Hall’s matching theorem it is enough to show that

any subset of Bi’s of size t has at least t neighbors in C, in order to prove that
there exists a perfect matching between B and C. Without loss of generality,
let A = B1

⋃
...
⋃

Bt be all the elements from a subset of Bi’s. Assume for the
sake of contradiction that this subset has at most t − 1 neighbors in C. This
means that at most t − 1 Cj ’s intersect these Bi’s with an intersection of x or
more. The maximal number of elements from A which are ‘covered’ by these
elements is (t− 1) l

k . In addition there are k − t + 1 Ci’s which intersect each of
the Bi’s in A by less than x. Since there are t Bi’s in A, the maximal number
of elements in A covered by the remaining Ci’s is less than (k − t + 1)tx. So
the total number of elements in A covered by any element from C is less than
(t−1) l

k +(k− t+1)tx. However, the total number of elements in A is t l
k . Taking

l ≥ k3x we have t l
k ≥ txk2 ≥ (t− 1)xk2 + (k − t + 1)tx for any t. Thus we have

a contradiction (not all the elements of A are ‘covered’) and we conclude that
any subset of t Bi’s must have at least t neighbors among the Cj ’s. Hence the
conditions from Hall’s theorem are fulfilled and there exists a perfect matching
between the Bi’s and the Cj ’s. ��

Definition 1. An interval I = [i1, i2] is a continuous set of indices 1 ≤ i1 ≤
i2 ≤ l. Then for any sequence α of elements from L, α[I] denotes the subsequence
of α defined by (αi1 , αi1+1, ..., αi2 ).

Definition 2. Let α be some sequence over L and let X ⊆ L α|X is constructed
as follows: First we take β to be the subsequence of α containing only elements
from X. Then we set all consecutive appearances of the same value to a single
appearance. For example, if α = 1, 2, 3, 3, 2, 4, 2, 3 and X = {2, 3} then we first
set β = 2, 3, 3, 2, 2, 3 and then set α|X = 2, 3, 2, 3.

We now state another useful lemma.

Lemma 2. Let α be a sequence over L and let X be a subset of elements of L.
If we can construct a 2k Joux multicollision against the hash function based on
α|X then we can construct a 2k Joux multicollision against the hash function
based on α.

Proof. Let h0 be the initial hash value. In a Joux multicollision, starting from
the initial hash we have a series of intermediate hash values (h1, h2, ..., hk) such
that hi is reachable from hi−1 by two different choices for the relevant message
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Fig. 2. The Joux multicollision in α|X = 2, 3, 2, 3 (top part) and in α = 1, 2, 3, 3, 2, 4,
2, 3 (bottom part, where X = {2, 3}). Notice how the message blocks are different
in α|X and in α and that all message blocks not in X are set to a constant value.
The dotted and solid lines describe the two collision paths in the final 2-collision when
n = 2.

blocks. Now let J1, J2, .., Jk be the indices of the intervals of message blocks
used for the Joux multicollision such that F (hi−1, M(Ji)) = hi where M(Ji) is
the sequence of message blocks corresponding to the indices in the interval Ji.
The interval Ji in α|X corresponds to an interval Ii in the original sequence α
such that α[Ii]|X = α|X [Ji]. Now starting from J1, we have that there are at
least 2

n
2 different messages that can be constructed by changing the message

blocks indexed by the indices in J1, since I1 includes all of those indices, we can
set all other message blocks to a fixed constant and varying only the message
blocks indexed by J1, construct a collision in F (h0, I

i
1) = h′

1 with I0
1 and I1

1 .
The same goes for J2 and I2 and so on until Jk and Ik. The important thing to
notice is that even when the possible combinations that are used in Ji are not
all the combinations, i.e. there are some restrictions stemming from previous
use of the message blocks, we still have at least 2

n
2 possible combinations in

Ji (which is sufficient for finding a collision with high probability among the
different intermediate hash values) and therefore also in Ii. At the culmination
of this process we have constructed a 2k Joux multicollision in the hash function
based on α. ��

To ease the understanding of the general case of successive permutations, we first
give a proof for the special case of 3 successive permutations α = π1(L)‖π2(L)‖π3
(L) which is the simplest case which is not treated in [10]. We start by taking a
message M of length k3n2

4 . We now look at the message blocks π2(L) and group
them into consecutive groups of size k n2

4 . We call the first group B1 and the last
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group Bk where 2k is the size of the multi-collision we are constructing. Similarly
we group the message blocks π3(L) into consecutive groups of the same size and
name the groups C1, ..., Ck. We use lemma 1 in order to pair each Bi with a
unique Cj such that Bi

⋂
Cj ≥ n2

4 . We now choose from each pair n2

4 message
block indices from the intersection and call the union of all the intersections
active indices, the rest of the message block indices will be called inactive indices.
Note that since π2 and π3 are permutations, each active index occurs in a single
pair of Bi and Cj . Let X be the set of all the active indices. According to
lemma 2 it suffices to show that we can construct a 2k Joux multicollision in
β = α|X . We construct a Joux multicollision on the message blocks indexed by
the first part of β (which is taken from π1(L)), starting from the initial IV. We
then construct a multicollision on the message blocks indexed by the section of
β which is taken from π2(L) using intervals containing n

2 message blocks each.
Finally we construct a multicollision in the message blocks indexed by the section
of β which is taken from π3(L) by using intervals containing n2

4 message blocks
(which correspond to the Ci’s). Notice that the final stage of the construction
works because the elements in a specific Ci are all contained in the same interval
Bj (and in no other Bt) and thus do not affect the intermediate hash values
outside this interval. While the basic idea of using larger and larger blocks in
not new (for example, it was used by Joux [5] to compute preimages in generic
hash functions), our results generalize the technique and show its real power.

)(1 M )(2 M )(3 M

1B
2B 3B 1C 2C 3C

Fig. 3. Multicollision in 3 successive permutations. The dotted lines represent the
matching between the Bi’s and the Cj ’s. The solid lines show the collisions built along
the way. The collisions in the leftmost section are collisions over single message blocks.
The collisions in the middle section are over intervals containing n

2 message blocks.
The collisions in the rightmost section are over intervals containing n2

4 message blocks.
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We now prove the general case of successive permutations, by using messages
whose length is polynomial in n for any constant expansion rate s.

Theorem 1. Let α be a sequence of the form π1(L)‖π2(L)...‖πq(L). We can
construct a 2k Joux multicollision against the hash function based on α whenever
l = |M | ≥ k3n3(q−3)+2.

Proof. We start by dividing the last two permutation copies, πq−1(L) and πq(L),
into k equal length intervals each. We then find a perfect matching between the
two sets of intervals as in the 3 permutations case. However, this time we seek
an intersection of size n3(q−3)+2. After we have our new set of active indices X
(which is the disjoint union of the indices from all the intersections), we turn
to look at α|X . In this new sequence we examine the permutations πq−2(L) and
πq−1(L). We divide them into kn intervals of equal length and use our lemma
to find a perfect matching with an intersection size of n3(q−4)+2. We then divide
the permutations πq−3(L) and πq−2(L) into kn2 intervals and find a perfect
matching with an intersection size of n3(q−5)+2. We continue downsizing our list
of active indices in the same manner until we have found a perfect matching
with an intersection size of n2 between π3(L) and π2(L). The size of X , the set
of active indices, starts with |X | = k3n3(q−3)+2. After the first step we have
kn3(q−3)+2 remaining active indices, after the second step we have kn segments,
each with n3(q−4)+2, and after q − 2 steps we have an intersection size of n2 for
each of the knq−3 segments.

The next stage is to build a Joux 2k multicollision in the hash function based
on β = α|X where X is the final (smallest) set of indices. As in the three
permutations case, we start by constructing a Joux multicollision on the π1(L)
part of the sequence. We then use intervals of n message blocks to construct a
multicollision in the π2(L) part and in general use intervals of size ni−1 in the
i-th permutation. Since we have k blocks of size nq−1 in the last permutation,
the process terminates with a 2k multicollision in the hash function based on β.
Using lemma 2, we get a 2k multicollision in the hash function based on α as
required. ��

3 Solving the General Case

We now show how to reduce the general case to the successive permutations
case. First we state some definitions and prove a useful lemma.

Definition 3. Let α be a sequence over L:

freq(x, α) = |{i : αi = x}| (1)

freq(α) = max{freq(x, α) : x ∈ L} (2)
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Definition 4. Let T = t1, ..., tt be a (not necessary contiguous) sequence of
indices in α. Then :

α[T ] = αt1 , ..., αtt (3)

In particular if T = [t1, t2] is an interval then the definition coincides with
definition 1.

Definition 5. Given any subsequence α[T ] of α, we define

S(α[T ]) = |{x ∈ L : freq(x, α[T ]) ≥ 1}| (4)

Definition 6. A set of disjoint intervals I1, ..., Ij is called independent over α if
there exists a set of distinct elements x1, ..., xj in α such that all the appearances
of xi in α are in α[Ii].

We will call a set x1, ..., xj of distinct elements in α independent if there exist
independent intervals I1, ..., Ij such that all appearances of xi are in α[Ii].

Definition 7. Ind(α) is the largest j such that there exists a set I1, ..., Ij which
is independent over α.

For example α = 1, 2, 1, 3, 2, 4, 2, 4 has Ind(α) = 3 by taking the independent
elements 1, 3, 4. We can see for example that the smallest interval containing all
the appearances of 4 does not contain either 1 or 3. However, we cannot chose
1, 2, 3, 4 as independent elements since they are interleaved in α.

Definition 8. A left-end interval is an interval of the form I = [1, i] for some
integer i.

In Nandi and Stinson’s paper[10] the authors proved and used the following
lemma (translated into our notation):

Lemma 3. Let α be a sequence of elements from L with freq(α) ≤ 2 and
S(α) = l. Suppose that l ≥ MN . Then at least one of the following holds:

1. Ind(α) ≥ M , or
2. there exists a left-end interval I such that Ind(α[I]) ≥ N .

The generalization we wish to prove in order to handle arbitrary ICE hash
functions is as follows:

Lemma 4. Let α be a sequence of elements from L with freq(α) ≤ q and S(α) =
l. Suppose that l ≥ MN . Then at least one of the following holds:

1. Ind(α) ≥ M , or
2. there exists a left-end interval I and a subset X ⊆ L s.t. freq(β) ≤ q − 1

and S(β) ≥ N
q−1 where β = α[I]|X .

Proof. The proof follows the same general lines as in [10], and uses induction on
l. For the left-end interval I = [1, N ] either freq(α[I]) ≤ q− 1 or there exists an
element x1, which appears q times in the sequence α[I]. If the former holds then
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we have N elements in α[I] and each one of them can occur at most q− 1 times,
and thus the number of distinct elements S(α[I]) is at least N

q−1 . We set X = L

and β = α[I]|X = α[I] and we are done. So we assume that there exists an
element x1, which appears q times in the sequence α[I]. We remove all elements
from α which appear in α[I] and call the new sequence α1 = α[I1] for some set
of indices I1.

Note that S(α1) ≥ MN −N = (M − 1)N since we have removed at most N
distinct elements from α. By the induction hypothesis, either Ind(α1) ≥ M−1 or
there exists a left-end interval J and a subset X of L such that freq(β[J ]) ≤ q−1
and S(β[J ]) ≥ N

q−1 where β = α[J ]|X . In the latter case we simply take X and
β as provided from the lemma and set the interval I to be the shortest left-end
interval containing J . In the former case let I2, ..., IM be an independent set of
intervals over α1 containing the independent indices x2, .., xM . These intervals
can be mapped to independent intervals J2, ..., JM over α where Ji is the minimal
interval containing all the occurrences of xi for i = 2, .., M . Notice that x1 /∈ Ji

for i = 2..M since all appearances of x1 are before the first index of α1 so we
can add an interval J1 = 1..N to the list of independent intervals and now we
have that Ind(α) ≥ M as required. ��

Now we prove one final lemma before turning to prove our main theorem. We
want to prove by induction on q the following claim:

Lemma 5. For any integer x, given a sequence α with freq(α) ≤ q and S(α)
large enough, we can find a subset of indices X, |X | ≥ x such that α|X is in the
form of up to q successive permutations over the same set of indices X.

Proof. Let fq(x) be the minimal alphabet size of a sequence α with freq(α) ≤ q
that ensures that there is a subset of indices X , |X | ≥ x such that α|X is in the
form of successive permutations. We will prove that fq(x) ≤ Cqx

Dq , for some
constants Cq, Dq which increase with q.

We start by claiming that f1(x) = x (i.e., C1 = D1 = 1), since any sequence
α with S(α) = x and freq(α) = 1 is a single permutation of all the indices
that occur in α. For notational purposes we will define f0(x) = 0 for all x. Now
assume that we have proven the inequality fk(x) ≤ CkxDk for all k < q. Given
a sequence α such that S(α) ≥ x(q − 1)fq−1(f1(x) + f2(x) + ... + fq−1(x)), we
apply lemma 4 with M = x and N = (q− 1)fq−1(f1(x) + f2(x) + ... + fq−1(x)).
There are now two cases. In the first we have Ind(α) ≥ x, and let X be the set
of all independent indices. By definition we have |X | = Ind(α) ≥ x and α|X is a
single permutation of the indices in X (since freq(α|X) = 1). In the second case
we have a left-end interval I and a subset X ′ such that freq(α[I]|X′) ≤ q − 1
and S(α[I]|X′) ≥ N

q−1 = fq−1(f1(x) + ... + fq−1(x)). Now using the inductive
hypothesis on α[I]|X′ we get a subset X ′′ such that |X ′′| ≥ f1(x) + ... + fq−1(x)
and α[I]|X′′ is in successive permutations form with at most q−1 permutations.
Using the pigeonhole principle we see that there must exist an 0 ≤ i ≤ q−1 such
that at least fi(x) indices appear exactly i times in the remainder of α|X′′ . We
set X ′′′ to be that subset of indices and apply our induction hypothesis on the
remainder of α|X′′′ (after the interval I). We remain with a subset X , |X | ≥ x
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such that α|X is in successive permutations form with at most i permutations.
Now notice that each index appeared at most q times in α so the number of
permutations is at most q. We have shown that

fq(x) ≤ x(q − 1)fq−1(f1(x) + f2(x) + ... + fq−1(x)) (5)
≤ x(q − 1)fq−1((q − 1)fq−1(x)) (6)

≤ x(q − 1)fq−1((q − 1)Cq−1x
Dq−1) (7)

≤ x(q − 1)Cq−1(q − 1)Dq−1C
Dq−1
q−1 xD2

q−1 = Cqx
Dq (8)

for Cq = (q − 1)Dq−1+1C
Dq−1+1
q−1 and Dq = D2

q−1 + 1. This proves the induction
hypothesis for q. ��

Finally we put all the building blocks together to prove the theorem:

Theorem 2. Let α be any sequence over L with |α| ≤ sl (where l = |L| and s
is the constant expansion factor). Then we can compute a 2k multicollision in
the hash function based on α with time complexity O(poly(n, k)2

n
2 ).

Proof. We start with a sequence α over L of length at most sl. There must
be a subset of l

2 indices, each appearing at most q = 2s times in α. Since
otherwise we would have more than l

2 indices each appearing at least 2s times,
giving more than l

22s = sl elements in the sequence. Let X be the set of these
indices. According to lemma 2 it is enough to show that we can construct a Joux
multicollision against the hash function based on α|X . Notice that freq(α|X) ≤
q. We now apply lemma 5 and we get a subset X ′, |X ′| ≥ k3n3(q−3)+2 such
that α|X′ is in successive permutations form and freq(α|X′ ) ≤ q. According to
theorem 1, we can now construct a 2k multicollision in the hash function based
on α|X′ and according to lemma 2, we can construct a multicollision in the hash
function based on α. ��

3.1 Constructing a Collision in an ICE Hash Function

Constructing a collision in a concatenation of two iterated and expanded func-
tions is done by following the recipe presented by Joux. We first construct a 2

n
2

multicollision in the first function and then rely on the birthday paradox to find
a collision among the 2

n
2 values of the second hash function on the messages used

in the multicollision. However, generalizing the result for 3 or more functions is
not as easy.

As you recall the intermediate hash values of an iterated and expanded hash
function based on a sequence α are calculated by hi = f(hi−1, mαi). However, we
have not used in our proof the fact that the compression function f is the same
in each step. In fact, we do not need this fact and can generalize the calculation
of the intermediate hash values to hi = f(i, hi−1, mαi). We will now show how to
construct a collision in an ICE hash function based on three sequences α1, α2, α3
and corresponding hash functions F1, F2, F3. The construction we show is easily
generalized to an arbitrary number of hash functions.
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We will look at the sequence α = α1‖α2. The first step is to find a set X such
that α2|X is in successive permutations form. We then find a subset X ′ ⊆ X
such that α1|X′ is in successive permutations form. Notice that α2|X′ will still
be in successive permutations form. We now construct a 2

n
2 Joux multicollision

in the sequence α|X′ which is also in successive permutations form (as the con-
catenation of two such sequences). The important point is that the sequence
of intervals I1, ..., Ik which form the multicollision, does not have any interval
which spans the border between α1 and α2. Taking this sequence of intervals
we can now construct a 2

n
2 simultaneous multicollision in the hash functions

F1 and F2. With such a large multicollision we can find with high probability
a pair of messages which hash to the same value also under F3. Thus we have
found a collision in the ICE hash function F1(M)‖F2(M)‖F3(M) with com-
plexity O(poly(n)2

n
2 ) instead of the expected 2

3n
2 from the birthday paradox.

A simple extension of the idea can handle the concatenation of any constant
number of hash functions.

4 Tree Based Hash Functions

We now turn our attention to a more general model for constructing hash func-
tions which we call TCE (Tree based, Concatenated, and Expanded). As in the
iterated case we will base our analysis on the model presented in [10]. A tree
based hash function uses a binary tree G = (V, E) where the leaves are at the
top and the root at the bottom. The leaves are labeled by message block indices
or constant values. Given a message M , FG(M) is computed as follows: the la-
bel for each non-leaf x is computed by applying the compression function f to
the two nodes directly above x. The label of the root is the output of the hash
function. Note that tree based hash functions include iterated hash functions
as a special case, by using trees with a single IV to root path, and hanging all
the messages blocks off this path. In [10] the authors treated the special case in
which every index appears at most twice in the leaves of the tree. We generalize
this result to any constant number of appearances.

Definition 9. Let v ∈ V be a vertex in G, W (v) is the set of all leaves in the
subtree rooted at v.

Definition 10. If v is a leaf then ρ(v) is its label (the index of the corresponding
message block), and ρ(v1, ..., vk) is the sequence ρ(v1)...ρ(vk).

In the following definitions we redefine some of the notations used in the iterated
case to apply to trees. When using the definitions we will sometimes abuse
notation and use interchangeably a tree G and its root r. For example we write
Ind(v) when meaning Ind(G′) where G′ is the subtree rooted at v.

Definition 11. Let r be the root of G. An independent vertex sequence is an
ordered sequence of vertices v1, ..., vk such that there exists a sequence of leaves
w1, ..., wk satisfying the following conditions:
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Fig. 4. A example of a TCE

1. All appearances of ρ(wi) are in ρ(W (vi))
2. j < i =⇒ ρ(wi) /∈ ρ(W (vj))
3. vk = r

The maximal length of an independent vertex sequence in G is denoted Ind(G).

Definition 12. Let r be the root of G.

1. S(G) is the number of distinct labels in ρ(W (r))
2. freq(G) = freq(ρ(W (r))) where ρ(W (r)) is treated as a sequence.

Definition 13. Let G be a tree with a whose leaves are labeled by elements from
L and let X ⊆ L. G|X is the pruned tree resulting from the following process:

1. Delete from G all the original leaves which have labels not in X.
2. Repeatedly delete from G any newly created leaf which is unlabeled.

Before we start the technical proof, we will give an overview of what is coming
and show the correspondence between the proof of the tree-based case and the
proof of the iterated case. As in the previous proof, we first want to reduce the
general case to a case equivalent to the successive permutations case.

Definition 14. A tree G is in ‘successive permutations’ form (with r ‘permuta-
tions’) if we have a set of vertices v1, ..., vr s.t. S(v1) = ... = S(vr) = S(G) and
Ind(W (vi) \

⋃
j<i W (vj)) = S(G).

Each vertex vi corresponds to a permutation in the iterated case, and contains
in its leaves all the variables. Furthermore, if we look at the subtree rooted
at vi and remove all smaller subtrees rooted at vj , then we can construct an
independent sequence using all the indices with the root at vi. The definition is
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best understood if we think about the iterated case as a special case of a tree
with a single path from IV to the root.

The next step is to show that we can construct a multicollision in this special
tree structure. The proof will be very similar to the one in the iterated case but
with one additional component. In a tree we have to ensure that when taking a
set of indices and trying to get a collision by changing their values, they actually
have a common root which is compatible with the other groups of indices. We
will later prove a lemma to this effect, and use it to prove the tree version of
lemma 4 and then the tree version of lemma 5.
We start by proving the reduction from the general case to the ‘successive per-
mutations’ case.

Lemma 6. Given a tree G with S(G) ≤ 2MN and freq(G) ≤ q, at least one
of the following claims is true:

1. Ind(G) ≤ M or
2. there exists a node v and a subset X such that freq(G|X(v)) ≤ q − 1 and

S(G|X(v)) ≤ N

Proof. We extend the proof of a similar lemma from [10]. We first note that
in any binary tree G such that S(G) ≥ 2N , there exists a vertex v such that
N ≤ S(v) ≤ 2N . We now prove the result by induction on l = S(G). For the
basis of the induction we take M = 1 and we have that Ind(G) ≥ 1 is always
true. Now assume that we have proved the lemma for all values less than l. Since
S(G) ≥ 2MN ≥ 2N we know from the observation above that there exists a
vertex v such that N ≤ S(v) ≤ 2N . Now if freq(v) ≤ q − 1 then we are done,
since we set X = L and we have that S(G|X(v)) ≥ N and freq(G|X(v)) ≤ q−1.
Otherwise we have an element x1 such that x1 appears q times in ρ(W (v)). We
define G′ = G \ {v} (removing the subtree rooted at v) and set X to be ρ(G′).
S(G′) ≥ 2MN − 2N = 2(M − 1)N , so by the induction hypothesis we have that
either Ind(G′) ≥ M − 1 or there exists v′ and X ′ such that S(G′|X′(v′)) ≥ N
and freq(G′|X′(v′)) ≤ q−1. If the later happens then we simply set X = X ′ and
v = v′ and we are done. Otherwise we have an independent sequence x2, ..., xM

in G′ but since x1 appears only in W (v), we can add x1 to our list of independent
indices and have Ind(G) ≥ M . ��

One of the differences between the iterated case and the tree case is that in a
tree it is not sufficient to find a group of message blocks which can be varied
independently in order to find a collision. In a tree these blocks must have a
common root in which the collision will be formed. In the following lemma we
prove that we can always find suitable groups of message blocks in the tree.

Lemma 7. Given a tree G s.t. freq(G) = 1 and S(G) ≥ (2k − 1)x we can
find k distinct nodes, v1, ..., vk, such that W (vi) � W (vj) whenever i > j, and
S(W (vi) \

⋃
j<i W (vj)) ≥ x.

Proof. We prove the claim by induction on k. For k = 1 we have a tree G
with freq(G) = 1 and S(G) ≥ x, and setting v1 to the root of G satisfies
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the lemma. Now we assume that we have proved the lemma for all positive
integers less than k. Given a tree G with S(G) ≥ (2k − 1)x ≥ 2x we find a
node v′ with x ≤ S(v′) ≤ 2x. Let G′ be the subtree rooted at v′ and let the
tree G′′ = G \G′ be the result of removing all nodes of G′ from G. Notice that
S(G′) ≥ 2(k− 1)x− 2x = (2(k− 1)− 1)x. Using the induction hypothesis on G′′

we have k − 1 vertices v2, ..., vk such that W (vi) � W (vj) whenever i > j and
S(W (vi) \

⋃
j<i W (vj)) ≥ x. Now setting v1 = v′ we get a full set v1, ..., vk as

required since S(G′) ≥ x. ��

Theorem 3. Given a tree based hash function FG based on the tree G, we can
find a 2k multicollision whenever G is in ‘successive permutations’ form and
S(G) ≥ 2

q(q−1)
2 k3n3(q−3)+2.

Proof. The idea of the proof is the same as in the iterated case, the only difference
is that we have to make sure that when choosing a group of message blocks, they
indeed have a common root (high enough in the tree) where they can form a
collision. The main step in the iterated case was finding a perfect matching
between two permutations. In the tree case we also need to make sure that each
segment of indices has a common root which doesn’t interfere with the other
segments of indices. After finding the first matching, we have to find k distinct
nodes as in lemma 7 in each ‘permutation’ copy. We start by finding such a
sequence in the first ‘permutation’ copy, and this reduces the number of active
indices by a multiplicative factor of 2. From the remaining indices we need to
find a vertex sequence in each of the other ‘permutation’ copies such that all
the variables will be the same. This way we lose a total factor of 2q for the q
‘permutations’. In the second step we have kn segments in the matching. This
time however we don’t care what happens in the last permutation since we only
need the larger structure of k segments. So this time we lose a factor of 2q−1

to make sure that all the segments of indices have the required common roots.
Continuing for the q − 1 steps we see that we lose a factor of 2

q(q−1)
2 . So the

required size of S(G) is the same as in the iterated case except for a factor of
2

q(q−1)
2 . Once we have S(G) ≥ 2

q(q−1)
2 k3n3(q−3)+2 we can carry out the same

construction as in the iterated case, where between the steps we use lemma 7 to
ensure that the remaining indices have the required structure.

As in the iterated case we need a lemma saying that it is ok to set unselected
message blocks to constants.

Lemma 8. Let G be a tree over L, and let X be a subset of indices. If we can
construct a 2k Joux multicollision against the hash function based on G|X then
we can construct a 2k Joux multicollision against the hash function based on G.

The proof of this lemma follows the same lines as in the iterated case. We have
one more lemma to prove in order to create all the building blocks needed for
the general case.

Lemma 9. Given a tree G with freq(G) ≤ q we can find a subset of indices X
such that G|X is in the form of ‘successive permutations’.
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The proof is practically the same as in the sequential case and is omitted here
due to space limitations. The only difference is that lemma 6 is used instead of
lemma 4. We can now sketch the proof for the general case.

Theorem 4. Given a tree based hash function FG based on the tree G. We can
find a 2k multicollision whenever there exists a constant q such that freq(G) ≤ q
and S(G) ≥ polyq(n, k) in time complexity O(poly(n, k)2

n
2 ).

Proof. We start with a tree G over L with freq(G) ≤ q. We now apply lemma
9 and we get a subset X , |X | ≥ 2

q(q−1)
2 k3n3(q−3) such that G|X is in ‘successive

permutations’ form and freq(G|X′) ≤ q. We can now construct a 2k Joux mul-
ticollision in the hash function based on G|X′ and according to lemma 8, we can
construct a Joux multicollision in the hash function based on G. ��

Due to space limitations we omit the full description of finding a collision in
a TCE hash function, which is a concatenation of the outputs of several trees.
However we can use a procedure analogous to the one used in the iterated case
to show that we can find a collision in a general TCE hash function in time
O(poly(n)2

n
2 ).

5 Summary

We have shown that a large class of natural hash functions (ICE and its gen-
eralization TCE) is vulnerable to a multicollision attack, and we hope that the
techniques developed here will help in creating multicollision attacks against
even more complicated types of hash functions. For example, a different type of
message expansion which would be interesting to examine can use linear mixing
of the message blocks, instead of pure repetition of the message blocks. Other
research directions are to find other countermeasures against the Joux multicolli-
sion attack such as the scheme suggested by Lucks [9], or finding additional uses
of multicollisions as building blocks in more general attacks as in [5], [7] and [8].
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Abstract. This paper describes a new software-efficient 256-bit hash
function, FORK-256. Recently proposed attacks on MD5 and SHA-1
motivate a new hash function design. It is designed not only to have
higher security but also to be faster than SHA-256. The performance of
the new hash function is at least 30% better than that of SHA-256 in
software. And it is secure against any known cryptographic attacks on
hash functions.

Keywords: 256-bit Hash Function, FORK-256.

1 Introduction

For cryptographic hash function, the following properties are required:

– preimage resistance: it is computationally infeasible to find any input
which hashes to any pre-specified output.

– second preimage resistance: it is computationally infeasible to find any
second input which has the same output as any specified input.

– collision resistance: it is computationally infeasible to find a collision, i.e.
two distinct inputs that hash to the same result.

For an ideal hash function with an m-bit output, finding a preimage or a second
preimage requires about 2m operations and the fastest way to find a collision is
a birthday attack which needs approximately 2m/2 operations.

Most dedicated hash functions which have iterative process use the Merkle-
Damg̊ard construction [6,10] in order to hash inputs of arbitrary length. They
work as follows. Let HASH be a hash function. The message M is padded to
a multiple of the block length and subsequently divided into n blocks M0, · · · ,
Mn−1. Then HASH can be described as follows:

CV0 = IV ; CVi+1 = COMP(CVi, Mi), 0 ≤ i ≤ n− 1; HASH(M) = CVn,

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 195–209, 2006.
c© International Association for Cryptologic Research 2006
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where COMP is the compression function of HASH, CVi’s are chaining variables,
and IV is a fixed initial value.

The most popular method of designing compression functions of dedicated
hash functions is a serial successive iteration of a small step function, as like
round functions of block ciphers. Many hash functions such as MD4 [12], MD5
[13], HAVAL [19], SHA-family [11], etc., follow that idea. Attacks on hash func-
tions have been focused on vanishing the difference of intermediate values caused
by the difference of messages. On the other hand, a hash function has been
considered secure if it is computationally hard to vanish such difference in its
compression function. Usually, the lower the probability of the differential char-
acteristic is, the harder the attack is. Therefore a step function is regarded as
a good candidate if it causes a good avalanche effect in the serial structure. A
function which has a good diffusion property can not be so light in general.
However, most step functions have been developed to be light for efficiency. This
may be why MD4-type hash functions including SHA-1 are vulnerable to Wang
et al.’s collision-finding attack [15,16,17,18].

RIPEMD-family [9] has somewhat different approach for designing a secure
hash function. The attacker who tries to break members of RIPEMD-family
should aim simultaneously at two ways where the message difference passes.
This design strategy is still successful because so far there is not any effec-
tive attack on RIPEMD-family except the first proposal of RIPEMD. However,
RIPEMD-family have heavier compression functions than hash functions with
serial structure. For example, the first proposal of RIPEMD consists of two lines
of MD4. Total number of steps is twice as many as that of MD4. Also, the
number of steps of RIPEMD-160 is almost twice as many as that of SHA-0.

In this paper, we propose a new dedicated hash function FORK-256. Accord-
ing to the above observation, we determined the design goals (of compression
function) as follows.

– It should have a 256-bit output because the security of 2128 operations is
recommended for symmetric key cryptography as the computing power in-
creases.

– Its structure should be resistant against known attacks including Wang et
al.’s attack [1,2,3,4,5,7,8,14,15,16,17,18].

– The performance should be as competitive as that of SHA-256.

2 Description of FORK-256

In this section, we will describe FORK-256. These are basic notations used in
FORK-256.

� : addition mod 232

⊕ : XOR (eXclusive OR)
A≪s : s-bit left rotation for a 32-bit string A
|A|512 : the number of 512-bit blocks in a string A
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2.1 Construction of FORK-256

FORK-256 employs Merkle-Damg̊ard construction with the compression func-
tion FORK256COMP(·, ·) and the padding method PAD(·) as follows: For the
initial value CV0 = IV and the message M ,

FORK256HASH(CV0, M)
n ← |PAD(M)|512;
Partition |PAD(M)|512 into n 512-bit blocks M0, · · · , Mn−1;
For i = 0 to n− 1 {

CVi+1 ← FORK256COMP(CVi, M);
}
Return CVn;

2.2 Message Block Length and Padding

The message block length of the compression function FORK256COMP is 512-bit.
PAD pads a message by appending a single bit 1 next to the least significant bit
of the message, followed by zero or more bit 0’s until the length of the message
is 448 modulo 512, and then appends to the message the 64-bit original message
length modulo 264.

2.3 Structure of FORK-256 Compression Function

Fig. 1 depicts the outline of the compression function FORK256COMP. The
name ‘FORK’ was originated from the figure. FORK256COMP hashes a 512-bit
string to a 256-bit string. It consists of four parallel branch functions, BRANCH1,
BRANCH2, BRANCH3, and BRANCH4. Let CVi = (CVi[0], CVi[1], · · · , CVi[7])
where CVi[j] is a 32-bit word. The initial value CV0 is set as follows:

CV0[0] = 0x6a09e667 CV0[1] = 0xbb67ae85
CV0[2] = 0x3c6ef372 CV0[3] = 0xa54ff53a
CV0[4] = 0x510e527f CV0[5] = 0x9b05688c
CV0[6] = 0x1f83d9ab CV0[7] = 0x5be0cd19

Let us see the computing procedure of the i-th iteration of FORK256COMP.
The message block Mi is partitioned to 16 32-bit Words (Mi[0], · · ·Mi[15]). Let
R

(s)
j = (R(s)

j [0], · · · , R
(s)
j [7]) for 1 ≤ j ≤ 4 and 0 ≤ s ≤ 8 where each R

(s)
j [t] is

a 32-bit word for 0 ≤ t ≤ 7. R
(8)
j is the output of BRANCHj on the inputs CVi

and Mi, for 1 ≤ j ≤ 4 and computed as follows:

R
(8)
j = BRANCHj(CVi, Mi), for 1 ≤ j ≤ 4

where R
(s)
j ’s are used in computation of BRANCHj for 1 ≤ j ≤ 4 and 0 ≤

s ≤ 7. Consequently, CVi+1 = (CVi+1[0], · · · , CVi+1[7]) is the output of the i-th
iteration of FORK256COMP and computed as follows:

CVi+1[t] = CVi[t] � ((R(8)
1 [t] � R

(8)
2 [t])⊕ (R(8)

3 [t] � R
(8)
4 [t])), for 0 ≤ t ≤ 7.
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Fig. 1. Outline of the FORK-256 compression function, FORK256COMP
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Fig. 2. Step function of FORK-256, STEP (0 ≤ s ≤ 7, 1 ≤ j ≤ 4)

2.4 Branch Function

Each BRANCHj for 1 ≤ j ≤ 4 is computed on the inputs CVi and Mi as follows:

BRANCHj(CVi, Mi)
R

(0)
j ← CVi;

For s = 0 to 7 {
R

(s+1)
j ← STEP(R(s)

j , Mi[σj(2s)], Mi[σj(2s + 1)], δ[ρj(2s)], δ[ρj(2s + 1)]);
Return R

(8)
j ;
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Message Word Ordering. Each BRANCHj for 1 ≤ j ≤ 4 uses the message
words Mi[0], · · · , Mi[15] with different order σj .

Table 1. Message word ordering

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ2(s) 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1
σ3(s) 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3
σ4(s) 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6

Constants. FORK256COMP totally uses sixteen constants:

δ[0] = 0x428a2f98 δ[1] = 0x71374491
δ[2] = 0xb5c0fbcf δ[3] = 0xe9b5dba5
δ[4] = 0x3956c25b δ[5] = 0x59f111f1
δ[6] = 0x923f82a4 δ[7] = 0xab1c5ed5
δ[8] = 0xd807aa98 δ[9] = 0x12835b01
δ[10] = 0x243185be δ[11] = 0x550c7dc3
δ[12] = 0x72be5d74 δ[13] = 0x80deb1fe
δ[14] = 0x9bdc06a7 δ[15] = 0xc19bf174

These constants are used in each BRANCHj with different order ρj for 1 ≤ j ≤ 4.

Table 2. Constant ordering

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ρ1(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ρ2(s) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ρ3(s) 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
ρ4(s) 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

Step Function. In the s-th step of BRANCHj for 1 ≤ j ≤ 4 and 0 ≤ s ≤ 7,
STEP outputs R

(s+1)
j on the inputs R

(s)
j , Mi[σj(2s)], Mi[σj(2s + 1)], δ[ρj(2s)],

and δ[ρj(2s + 1)], and R
(s+1)
j is computed as follows (See Fig. 2):

R
(s+1)
j [0] = R

(s)
j [7] � g(R(s)

j [4] � Mi[σj(2s + 1)])≪21

⊕ f(R(s)
j [4] � Mi[σj(2s + 1)] � δ[ρj(2s + 1)])≪17,

R
(s+1)
j [1] = R

(s)
j [0] � Mi[σj(2s)] � δ[ρj(2s)],

R
(s+1)
j [2] = R

(s)
j [1] � f(R(s)

j [0] � Mi[σj(2s)])

⊕ g(R(s)
j [0] � Mi[σj(2s)] � δ[ρj(2s)]),
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R
(s+1)
j [3] = R

(s)
j [2] � f(R(s)

j [0] � Mi[σj(2s)])≪5

⊕ g(R(s)
j [0] � Mi[σj(2s)] � δ[ρj(2s)])≪9,

R
(s+1)
j [4] = R

(s)
j [3] � f(R(s)

j [0] � Mi[σj(2s)])≪17

⊕ g(R(s)
j [0] � Mi[σj(2s)] � δ[ρj(2s)])≪21,

R
(s+1)
j [5] = R

(s)
j [4] � Mi[σj(2s + 1)] � δ[ρj(2s + 1)],

R
(s+1)
j [6] = R

(s)
j [5] � g(R(s)

j [4] � Mi[σj(2s + 1)])

⊕ f(R(s)
j [4] � Mi[σj(2s + 1)] � δ[ρj(2s + 1)]),

R
(s+1)
j [7] = R

(s)
j [6] � g(R(s)

j [4] � Mi[σj(2s + 1)])≪9

⊕ f(R(s)
j [4] � Mi[σj(2s + 1)] � δ[ρj(2s + 1)])≪5,

where f and g are nonlinear functions as follows:

f(x) = x � (x≪7 ⊕ x≪22),
g(x) = x⊕ (x≪13 � x≪27).

3 Design Strategy

3.1 Motivation for Our Proposal

In 2004, Wang et al.’s attacks on MD4, MD5, HAVAL, and RIPEMD [15,16] and
SHA-0/1 [17,18] brought a big impact on the field of symmetric key cryptography
including hash function. However, RIPEMD-128/160 are the algorithms which
are still secure against their attacks. No attacks on them are found so far.

They were designed to have two parallel lines, which is different from MD4,
MD5 and SHA-family. This makes an attacker take into account two lines si-
multaneously. However, since each line needs almost same operation of MD5
and SHA algorithms, its efficiency was degenerated almost half of them. This
motivates our design. We use four lines instead of two.

In order to overcome disadvantage of RIPEMD algorithms, we manage to
reduce operations for step functions of each line. The message reordering of each
branch is deliberately designed to be resistant against Wang et al.’s attack and
differential attacks. The function f and g in each step are chosen to have good
avalanche effects.

3.2 Design Principle

Structure. The compression function FORK256COMP consists of 4 Branches.
In the security aspect, we can give the security against known attacks with the
different message ordering in branches. For example, RIPEMD, which consists
of 2 branches, was fully attacked by Wang et al. [15] because RIPEMD has the
same message ordering in 2 branches. On the other hand, in case of RIPEMD-
128/160, there is no attack result because RIPEMD-128/160 have different
message ordering in branches. In the implementation aspect, FORK-256 can
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be implemented efficiently because the message ordering is simpler than the
message expansion such as that of SHA-256.

Constants. Each BRANCHj uses 16 different constants δ[t] for 0 ≤ t ≤ 15. By
using constants we pursue the goal to disturb the attacker who tries to find a
good differential characteristic with a relatively high probability. So, we prefer
the constants which represent the first 32 bits of the fractional parts of the cube
roots of the first sixteen four prime numbers.

Nonlinear Functions. The nonlinear functions f and g of FORK256COMP
output one word on the input of one word, and their outputs are XORed or
added modulo 232 to the multiple words in the chaining variables. Due to this
property, f and g propagate the difference of a message word to the chaining
variables.

Shift Rotations in Nonlinear Functions. If the addition is changed into
the bitwise xor operation in f and g, nonlinear functions are generalized as
x⊕ (x≪s1 ⊕x≪s2). We consider all 465(= 31

2 ) cases for s1 and s2 and want to
define shift rotations satisfying the following 7 conditions. HW(w) denotes the
Hamming Weight of a 32-bit word w. Let x be an input of f or g and let y be
f(x) or g(x).

– The branch number of f and g is 4.
– If HW(x) = 2, then HW(y) ≥ 4.
– If HW(x) = 3, then HW(y) ≥ 3.
– If HW(x) = 4, then HW(y) ≥ 4.
– If HW(y) = 1, then HW(x) ≥ 17.
– If HW(y) = 2, then HW(x) ≥ 14.
– The interval of shift rotations are greater than or equal to 4.

We determined the shift rotations such that f and g satisfy the above conditions.

Message Word Ordering. We adopt the message word ordering instead of
the message word extension. If an attacker constructs an intended differential
characteristics for one branch function, the ordering of message words will cause
unintended differential patterns in the other branch functions. This is the core
part of the security in the compression function. We considered the following
four conditions in defining the message word ordering.

– Balance of upper (step 0∼3) and lower (step 4∼7) parts : each word should
be applied twice to upper and lower parts, respectively.

– Balance of left and right parts : each word should be applied twice to left
and right parts, respectively.

– Balance of sums of indices:
• Each word should be applied four times and indexed by 0∼15.
• Total sum of indices is 480. Therefore, the average of sum of indices

applied to each word is 30.
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• We searched the ordering so that the sum of indices corresponding to
each word is around 25∼35.

– Conditions which do not have same differential patterns in all branches:
• Specific differential pattern used at a branch may be applied to other

branches.
• Therefore, except the case of giving a same difference to all words, we

try to find an ordering such that there is no same differential patterns
in all branches.

Shift Rotations and Rank. In the step function, 5 and 17, the values of
shift rotation, are fixed. Then we search all the case and find candidate values
(corresponding to 9 and 21) so that the rank of the linearly-changed step function
is maximized. The maximum of the rank is 252. Finally we select 9 and 21
among candidate values so that differences generated from the outputs of f and
g functions do not overlap when a message word inserted at a step function has
an one-bit difference.

4 Security Analysis of FORK-256

4.1 Collision-Finding Attack

We can analyze the collision-finding attacker’s behavior in the aspect of message
difference. Let ΔR

(8)
j be the output difference of BRANCHj for 1 ≤ j ≤ 4.

Usually, the attacker expects the following event for finding collisions:

(ΔR
(8)
1 [t] � ΔR

(8)
2 [t])⊕ (ΔR

(8)
3 [t] � ΔR

(8)
4 [t]) = 0, for 0 ≤ t ≤ 7.

For this, he can take several strategies:

1. The attacker constructs a differential characteristic with high probability for
a branch function, say BRANCH1, and then expects that ΔR

(8)
3 [t]�ΔR

(8)
4 [t]�

ΔR
(8)
2 [t] is equal to ΔR

(8)
1 [t] for 0 ≤ t ≤ 7.

2. The attacker constructs two distinct differential characteristics, and expects
that ΔR

(8)
1 = −ΔR

(8)
2 and ΔR

(8)
3 = −ΔR

(8)
4 for 0 ≤ t ≤ 7.

3. The attacker inserts the message difference which yields same message differ-
ence pattern in four branches, and expects that same differential character-
istic occurs simultaneously in four branches. Then the output difference of
the compression function vanishes if the hamming weight of the output dif-
ference of each branch is small. This is because the final output is generated
with using ⊕ and � by turns.

Let us see the first strategy. If we assume that the outputs of each branch
function is random, the probability of the event is almost close to 2−256. It is
also difficult for the attacker to mount any attack following the second strategy
because he should find such differential pattern of the message words.
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Third strategy is relatively easy for the attacker to perform. For example, if
he inserts the same difference to all the message words, then the same message
difference pattern occurs in every branches. However, the message word reorder-
ing was designed so that the third strategy is satisfied only if the attacker inserts
the same difference to all the message words. Under the assumption that every
step is independent, we can compute the upper bound of the probability that
such kind of differential characteristic occurs, which frustrates the attacker.

4.2 Attacks Using Inner Collision Patterns

When the attacker inserts the differences to the message words, the event that
the difference of the intermediate value becomes zero often occurs. It is called
inner collision. We call a differential characteristic which causes an inner collision
with a probability, inner collision pattern.

Note that an inner collision is not a real collision, but the notion of inner
collision pattern is important in cryptanalysis of hash function because it can be
repeatedly used to yield a real collision with a high probability. The main idea of
attacks on SHA-0 and SHA-1 is also the repetition of an inner collision pattern.
So, in hash functions with a serial structure it is related to the resistance against
collision-finding attack how many time an inner collision can be repeated.

Let us focus on only one branch function. We omit the subscript index in the
variables. We can construct 5-step inner collision pattern easily. Let ΔR(s)[t] be
the difference of R(s)[t], and let ΔM [σ(i)] be the difference of M [σ(i)]. Table 3
and 4 show two among 5-step inner collision patterns in one branch function,
which we found. They holds with the probability 2−40, respectively.

If we apply these patterns to BRANCH1, the output difference ΔR
(8)
1 will be

zero with the probability 2−40. As mentioned in the previous subsection, however,
it is hard to use the pattern for the attack on FORK-256 because the following
events seldom occurs: either that the computation of the output differences of

Table 3. Case 1. 5-step inner collision pattern in a branch: The numbers in the entries
of the table denotes the bits in which the difference is 1

s 0 1 2 3 4
ΔM [σ(2s)] 31

ΔM [σ(2s + 1)] 1,6,15,16,20,23 3,4,8,11,21,26 6,12,21,26 31
ΔR(s)[0]
ΔR(s)[1] 31
ΔR(s)[2] 6,12,21,26 31
ΔR(s)[3] 3,4,8,11,21,26 6,12,21,26 31
ΔR(s)[4] 1,6,15,16 3,4,8,11,20,23 6,12,21,26,21,26 31
ΔR(s)[5]
ΔR(s)[6]
ΔR(s)[7]
Prob. 2−10 2−16 2−10 2−4 1
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Table 4. Case 2. 5-step inner collision pattern in a branch: The numbers in the entries
of the table denotes the bits in which the difference is 1

s 0 1 2 3 4
ΔM [σ(2s)] 1,6,15,16,20,23 3,4,8,11,21,26 6,12,21,26 31

ΔM [σ(2s + 1)] 31
ΔR(s)[0] 1,6,15,16,20,23 3,4,8,11,21,26 6,12,21,26 31
ΔR(s)[1]
ΔR(s)[2]
ΔR(s)[3]
ΔR(s)[4]
ΔR(s)[5] 31
ΔR(s)[6] 6,12,21,26 31
ΔR(s)[7] 3,4,8,11,21,26 6,12,21,26 31
Prob. 2−10 2−16 2−10 2−4 1

the other branches is zero or that the other branches have the same differential
pattern in the message words as BRANCH1.

5 Efficiency and Performance

In this section we compare the total number of operations and the performance
of FORK-256 and SHA-256. The total number of operations is compared in the
Table 5.

Table 5. Number of operations used in FORK-256 and SHA-256

operation FORK-256 SHA-256
addition (+) 472 600

bitwise operation (⊕,∧, ∨) 328 1024
shift (�, �) - 96

shift rotation (≪, ≫) 512 576

Table 6. Performance of FORK-256 and SHA-256

FORK-256 SHA-256
environment Mbps Cycle/Byte Mbps Cycle/Byte

Pen3/WinXP/VC 192.010 31.413 132.469 44.581
Pen4/WinXP/VC 521.111 28.755 318.721 46.372

Table 6 shows the performance of FORK-256 and SHA-256 in the two environ-
ments. The environments are denoted by CPU/OS/Compiler and the following
notations are used in description of environments for simplicity.
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Pen3 : Pentium III, 801 MHz
Pen4 : Pentium IV, 2.0 GHz

WinXP : Microsoft Windows XP Professional ver 2002
VC : Microsoft Visual C++ Ver 6.0

6 Summary

In this paper we have proposed a new dedicated 256-bit hash function FORK-
256. The main features are the followings;

– The structure of the compression function consists of 4 parallel branch func-
tions.

– Nonlinear functions f and g are quite different from the boolean functions
which have been used in existing hash functions, and updates multiple words.

– The ordering of the message words is simple but well organized such that it
is very difficult for any attacker to find good inner collision patterns.

According to our security analysis, FORK-256 looks resistant against existing
attacks including Wang et al.’s attack, but we encourage the readers to give any
further security analysis. Finally, our performance test shows that the perfor-
mance of FORK-256 is faster than that of SHA-256, and we expect that the
difference between the performance of FORK-256 and SHA-256 would increase
after optimization.
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A Source Code

unsigned int delta[16] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174
};

#define ROL(x, n) ( ( (x) << n ) | ( (x) >> (32-n) ) )

#define f(x) (x + (ROL(x,7)^ROL(x,22)))

#define g(x) (x ^ (ROL(x,13)+ROL(x,27)))

#define step(A,B,C,D,E,F,G,H,M1,M2,D1,D2) \
temp1 = E+M2; \
temp2 = g(temp1); temp3 = f(temp1+D2); \
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H = (H + ROL(temp2,21)) ^ ROL(temp3,17); \
G = (G + ROL(temp2,9)) ^ ROL(temp3,5); \
F = (F + temp2) ^ temp3; \
E = temp1 +D2; \
temp1 = A+M1; \
temp2 = f(temp1); temp3 = g(temp1+D1); \
D = (D + ROL(temp2,17)) ^ ROL(temp3,21); \
C = (C + ROL(temp2,5)) ^ ROL(temp3,9); \
B = (B + temp2) ^ temp3; \
A = temp1 + D1;

static void FORK256_Compression_Function(unsigned int *CV, unsigned
int *M) {

unsigned long R1[8],R2[8],R3[8],R4[8];
unsigned long temp1, temp2, temp3;

R1[0] = R2[0] = R3[0] = R4[0] = CV[0];
R1[1] = R2[1] = R3[1] = R4[1] = CV[1];
R1[2] = R2[2] = R3[2] = R4[2] = CV[2];
R1[3] = R2[3] = R3[3] = R4[3] = CV[3];
R1[4] = R2[4] = R3[4] = R4[4] = CV[4];
R1[5] = R2[5] = R3[5] = R4[5] = CV[5];
R1[6] = R2[6] = R3[6] = R4[6] = CV[6];
R1[7] = R2[7] = R3[7] = R4[7] = CV[7];

// BRANCH1(CV,M)
step(R1[0],R1[1],R1[2],R1[3],R1[4],R1[5],R1[6],R1[7],M[0],M[1],delta[0],delta[1]);
step(R1[7],R1[0],R1[1],R1[2],R1[3],R1[4],R1[5],R1[6],M[2],M[3],delta[2],delta[3]);
step(R1[6],R1[7],R1[0],R1[1],R1[2],R1[3],R1[4],R1[5],M[4],M[5],delta[4],delta[5]);
step(R1[5],R1[6],R1[7],R1[0],R1[1],R1[2],R1[3],R1[4],M[6],M[7],delta[6],delta[7]);
step(R1[4],R1[5],R1[6],R1[7],R1[0],R1[1],R1[2],R1[3],M[8],M[9],delta[8],delta[9]);
step(R1[3],R1[4],R1[5],R1[6],R1[7],R1[0],R1[1],R1[2],M[10],M[11],delta[10],delta[11]);
step(R1[2],R1[3],R1[4],R1[5],R1[6],R1[7],R1[0],R1[1],M[12],M[13],delta[12],delta[13]);
step(R1[1],R1[2],R1[3],R1[4],R1[5],R1[6],R1[7],R1[0],M[14],M[15],delta[14],delta[15]);

// BRANCH2(CV,M)
step(R2[0],R2[1],R2[2],R2[3],R2[4],R2[5],R2[6],R2[7],M[14],M[15],delta[15],delta[14]);
step(R2[7],R2[0],R2[1],R2[2],R2[3],R2[4],R2[5],R2[6],M[11],M[9],delta[13],delta[12]);
step(R2[6],R2[7],R2[0],R2[1],R2[2],R2[3],R2[4],R2[5],M[8],M[10],delta[11],delta[10]);
step(R2[5],R2[6],R2[7],R2[0],R2[1],R2[2],R2[3],R2[4],M[3],M[4],delta[9],delta[8]);
step(R2[4],R2[5],R2[6],R2[7],R2[0],R2[1],R2[2],R2[3],M[2],M[13],delta[7],delta[6]);
step(R2[3],R2[4],R2[5],R2[6],R2[7],R2[0],R2[1],R2[2],M[0],M[5],delta[5],delta[4]);
step(R2[2],R2[3],R2[4],R2[5],R2[6],R2[7],R2[0],R2[1],M[6],M[7],delta[3],delta[2]);
step(R2[1],R2[2],R2[3],R2[4],R2[5],R2[6],R2[7],R2[0],M[12],M[1],delta[1],delta[0]);

// BRANCH3(CV,M)
step(R3[0],R3[1],R3[2],R3[3],R3[4],R3[5],R3[6],R3[7],M[7],M[6],delta[1],delta[0]);
step(R3[7],R3[0],R3[1],R3[2],R3[3],R3[4],R3[5],R3[6],M[10],M[14],delta[3],delta[2]);
step(R3[6],R3[7],R3[0],R3[1],R3[2],R3[3],R3[4],R3[5],M[13],M[2],delta[5],delta[4]);
step(R3[5],R3[6],R3[7],R3[0],R3[1],R3[2],R3[3],R3[4],M[9],M[12],delta[7],delta[6]);
step(R3[4],R3[5],R3[6],R3[7],R3[0],R3[1],R3[2],R3[3],M[11],M[4],delta[9],delta[8]);
step(R3[3],R3[4],R3[5],R3[6],R3[7],R3[0],R3[1],R3[2],M[15],M[8],delta[11],delta[10]);
step(R3[2],R3[3],R3[4],R3[5],R3[6],R3[7],R3[0],R3[1],M[5],M[0],delta[13],delta[12]);
step(R3[1],R3[2],R3[3],R3[4],R3[5],R3[6],R3[7],R3[0],M[1],M[3],delta[15],delta[14]);

// BRANCH4(CV,M)
step(R4[0],R4[1],R4[2],R4[3],R4[4],R4[5],R4[6],R4[7],M[5],M[12],delta[14],delta[15]);
step(R4[7],R4[0],R4[1],R4[2],R4[3],R4[4],R4[5],R4[6],M[1],M[8],delta[12],delta[13]);
step(R4[6],R4[7],R4[0],R4[1],R4[2],R4[3],R4[4],R4[5],M[15],M[0],delta[10],delta[11]);
step(R4[5],R4[6],R4[7],R4[0],R4[1],R4[2],R4[3],R4[4],M[13],M[11],delta[8],delta[9]);
step(R4[4],R4[5],R4[6],R4[7],R4[0],R4[1],R4[2],R4[3],M[3],M[10],delta[6],delta[7]);
step(R4[3],R4[4],R4[5],R4[6],R4[7],R4[0],R4[1],R4[2],M[9],M[2],delta[4],delta[5]);
step(R4[2],R4[3],R4[4],R4[5],R4[6],R4[7],R4[0],R4[1],M[7],M[14],delta[2],delta[3]);
step(R4[1],R4[2],R4[3],R4[4],R4[5],R4[6],R4[7],R4[0],M[4],M[6],delta[0],delta[1]);
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// output
CV[0] = CV[0] + ((R1[0] + R2[0]) ^ (R3[0] + R4[0]));
CV[1] = CV[1] + ((R1[1] + R2[1]) ^ (R3[1] + R4[1]));
CV[2] = CV[2] + ((R1[2] + R2[2]) ^ (R3[2] + R4[2]));
CV[3] = CV[3] + ((R1[3] + R2[3]) ^ (R3[3] + R4[3]));
CV[4] = CV[4] + ((R1[4] + R2[4]) ^ (R3[4] + R4[4]));
CV[5] = CV[5] + ((R1[5] + R2[5]) ^ (R3[5] + R4[5]));
CV[6] = CV[6] + ((R1[6] + R2[6]) ^ (R3[6] + R4[6]));
CV[7] = CV[7] + ((R1[7] + R2[7]) ^ (R3[7] + R4[7]));

}

B Test Vector

Message M (1 block)
4105ba8c d8423ce8 ac484680 07ee1d40 bc18d07a 89fc027c 5ee37091 cd1824f0

878de230 dbbaf0fc da7e4408 c6c05bc0 33065020 7367cfc5 f4aa5c78 e1cbc780

Output of Compression Function CV1
ebcc5b3d d3715534 a6a7a68a e6022b02 49c676ed 639a34b0 b8d978c2 cfdf1a2b

Intermediate Values

BRANCH1

R
(0)
1 = 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

R
(1)
1 = 574faabb ed99d08b 55559509 ca832197 cc3e5d3d 9a87d3f8 a53a7eff e5b76844

R
(2)
1 = 15b6cd3d b958ed0a bc5ec9da 0685ff8e eecd75a9 bde25622 730387f0 8cd537f4

R
(3)
1 = b37a2f3c 0b266012 421e26a6 c78f6e0b 1cd85800 d2ba8a16 7449f6c0 0f8c7a01

R
(4)
1 = 31be4596 a49d2271 6ee14e1a e33ff108 11f5f01a 950cdbc5 5dcd1a2a 32aa199f

R
(5)
1 = 62fd9d8b 9153d25e 4a23586e 9b599483 cf29e3af 00343c17 f33f23cb 9c903e62

R
(6)
1 = d36228e4 61ad6751 fe55bb69 94720b3c 8a810aa7 eaf6bd32 737155e2 b96a93e9

R
(7)
1 = 7a779e32 7926d678 3aec6bdd 0e208057 c349f555 7ec78c6a 91ebeb68 1fc96600

R
(8)
1 = 85c3c25b 0afe0151 60d37e53 93df1ad6 390f9cea 66b1ae49 71de5de6 17ae42cd

BRANCH2

R
(0)
2 = 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

R
(1)
2 = 09a80c1a 20503453 b7ce65dc 686c5844 8f7b750a ceb620a6 e84808f4 13a2716f

R
(2)
2 = e21fd29c 514719d8 47c2c8b0 116c12a7 42ddee6f ddf4c37a 3b2884ee 1b6552ca

R
(3)
2 = 608f85bc beba328f da492019 ce8cc5ac e939ee3d 418db835 0d4088c0 a4515753

R
(4)
2 = 9d819935 7b00fdfd d9947c55 0dfccfd7 817088d7 7d5a694f 8da6b62e 3b63944f

R
(5)
2 = f22fa55e f4e63e8a 2516289f 77d9b888 dc500533 8717db40 6158e3e7 0e922286

R
(6)
2 = 13ca89c4 8d2671db afbc022b 9580fdfe 356e2f63 9fa2ca0a d2199dee 455937e5

R
(7)
2 = b8d0fc67 5c63d5fa d2b45236 fad40792 759b52ab b8475022 1cf6c001 6a0cf5f2

R
(8)
2 = 08283ecb 5d0e9118 da92c996 9316c47c 26167358 9067bf2b 33a76294 a2c36255

BRANCH3

R
(0)
3 = 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

R
(1)
3 = 46f81ba6 a8594fe8 f0348c97 749c040f 8e6801dc f27bf2a8 275472bf 0866407e

R
(2)
3 = 56a9eac1 0b2c3b53 0e98c271 ec010b6c 448475b5 38d35a23 455b10c5 4c819e3b
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R
(3)
3 = 38cd29dc 2402cc77 48018a70 26a5dcf2 3da527e9 2a237e90 2f4dc6a8 33bd5b6f

R
(4)
3 = a28f637c bfa479ad 68059737 374a7e75 b5e5b8c6 02eafaad 15799680 ae2d5da0

R
(5)
3 = 64607852 7bd31a3d a54f54b2 4013d658 1fbcbc0a 4a0633d8 972027f7 40a519ed

R
(6)
3 = b27cf46d 9b38bd95 fb3978fd d52a18c8 1cdbd155 cb7c23f8 d3ce2cdd 5e6705b2

R
(7)
3 = 317ce148 bd57a8e7 d3b60337 f0dd8789 1a925421 d09fe955 c626a195 8d38ed5d

R
(8)
3 = 72ec7187 cb5b0fa4 59b04096 55b45924 d54c20ad be5c7808 ec104b46 08d57f3d

BRANCH4

R
(0)
4 = 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

R
(1)
4 = ce371d88 8fe1ef8a f4e6891a dd47fbec 8655e369 45b09413 8d2e660f 968ed897

R
(2)
4 = 015a57e3 1937b7e4 d82e18fe 374895df 3e1357d6 8ec27797 81e87c75 627d168a

R
(3)
4 = f2619dce 0757a521 b3dc348f a91771d4 00a58535 d4259025 37fc2a18 c5a9d37a

R
(4)
4 = dc4ebcd3 3dd1182b acb226cd 3ed1c4a9 f6191a1b d9e93bf6 62752a33 d29d946e

R
(5)
4 = ad2c36d3 767c5cb7 8d977401 ebd447de a0e6e49b 7bb3bcf8 d7b3eadc 71c2d2a4

R
(6)
4 = b871dbb2 c23dea2a aebfcf21 6de34a20 41d677c5 a7203d0c 14c00db6 d5b6d5ce

R
(7)
4 = a6072510 3b4afc71 e74b9db3 5120200b b1167426 2036afe2 ddcd1ac5 096735bb

R
(8)
4 = 99420469 a4aa2522 f7aeb45b 10939176 d252137f 81312948 50c01427 c0ba68f3
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Abstract. In this article, it is discussed how to construct a compres-
sion function with 2n-bit output using a component function with n-bit
output. The component function is either a smaller compression func-
tion or a block cipher. Some constructions are presented which compose
collision-resistant hash functions: Any collision-finding attack on them is
at most as efficient as the birthday attack in the random oracle model
or in the ideal cipher model. A new security notion is also introduced,
which we call indistinguishability in the iteration, with a construction
satisfying the notion.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It satisfies preimage resistance, second-
preimage resistance and collision resistance. It is one of the most important
primitives in cryptography [19]. For simplicity, a cryptographic hash function is
called a hash function in this article.

A hash function usually consists of iteration of a compression function with
fixed input/output length. This type of hash function is called an iterated hash
function. There has been an interest in constructing a compression function
from component functions with smaller output length. Many schemes have been
presented following the approach [4,10,11,13,14,15,17,20]. It is typical for con-
structions using block ciphers. For example, suppose that AES is used for con-
struction. The block length of AES is 128 bits, and a hash function with 128-bit
output is no longer secure against the birthday attack. Thus, it is desired to
construct a compression function with larger output length.

In this article, we study how to construct a compression function with 2n-
bit output using a component function with n-bit output. A hash function with
such a compression function is called a double-block-length (DBL) hash function
(as opposed to a single-block-length (SBL) hash function, where the compression
function has n-bit output). The component function may be either a block cipher
or a smaller compression function.

We first discuss constructions using a smaller compression function. We focus
on the constructions formalized by Nandi [22]. In his formalization, the com-
pression function is of the form F (x) = (f(x), f(p(x))), where f is a component

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 210–225, 2006.
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compression function and p is a permutation such that both p and p−1 are easy
to compute. We show that any collision-finding attack on a hash function with
the compression function F is at most as efficient as the birthday attack if f is
a random oracle and p satisfies some properties. Our properties for p are easy
to be satisfied; for example, they are satisfied by the permutation p(x) = x⊕ c,
where ⊕ is bit-wise addition and c is a non-zero constant.

Similar results are in fact already obtained by Nandi [21], whose analysis ac-
tually applies to a broader range of hash functions than our analysis. However,
our results are sharper. We give a significantly better upper bound on the prob-
ability of finding a collision as a function of the number of queries made by the
adversary.

A new security notion for a compression function is also introduced, which
we call indistinguishability in the iteration. It is really weaker than the notion
proposed in [5]. However, it may be valuable in practice. Loosely speaking, a
compression function F (x) = (f(x), f(p(x))) where f is a random oracle is called
indistinguishable in the iteration if F cannot be distinguished from a random
oracle in the iterated hash function. We give sufficient conditions on p for F to
be indistinguishable in the iteration.

Second, we discuss constructions using a block cipher. A compression function
composed of a block cipher is presented and its collision resistance is analyzed.
We show that any collision-finding attack on a hash function composed of the
compression function is at most as efficient as the birthday attack if the block
cipher used is ideal. A block cipher is ideal if it is assumed to be a keyed invertible
random permutation. The compression function presented in this article is quite
simple but has not been explicitly discussed previously.

In [10], it is shown that a collision-resistant hash function can be easily com-
posed of a compression function using two distinct block ciphers. It is well-known
that two distinct block ciphers can be obtained from a block cipher by fixing, for
example, one key bit by 0 and 1. However, it is preferable in practice that fixing
key bits is avoided. Moreover, fixing one bit may not be sufficient and more bits
may be required to be fixed. Our new construction does not involve any fixing
of key bits by constants.

The technique in [3] is used in the security proofs in this article. However,
the analysis is more complicated than the one in [3] since the relation of two
component-compression-function/block-cipher calls in a compression function
need to be taken into account.

The rest of this article is organized as follows. Section 2 includes notations,
definitions and a brief review of the related works. Section 3 discusses compres-
sion functions composed of a smaller compression function, including the results
on collision resistance and our new notion of indistinguishability in the iteration.
Section 4 exhibits a block-cipher-based compression function whose associated
hash function has optimal collision resistance; the proof of collision resistance
is given in the appendix. Section 5 gives a concluding remark which mentions a
recent collision attack on the scheme in Sect. 4.
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2 Preliminaries

2.1 Iterated Hash Function

A hash function H : {0, 1}∗ → {0, 1}
 usually consists of a compression function
F : {0, 1}
×{0, 1}
′ → {0, 1}
 and a fixed initial value h0 ∈ {0, 1}
. An input m
is divided into the �′-bit blocks m1, m2, . . . , ml. Then,

hi = F (hi−1, mi)

is computed successively for 1 ≤ i ≤ l and hl = H(m). H is called an iterated
hash function.

Before being divided into the blocks, unambiguous padding is applied to the
input. The length of the padded input is a multiple of �′. In this article, Merkle-
Damg̊ard strengthening [6,20] is assumed for padding. Thus, the last block con-
tains the length of the input.

2.2 Random Oracle Model and Ideal Cipher Model

Random Oracle Model. Let F n′,n = {f | f : {0, 1}n′ → {0, 1}n}. In the
random oracle model, the function f is assumed to be randomly selected from
F n′,n. The computation of f is simulated by the following oracle.

The oracle f first receives an input xi as a query. Then, it returns a randomly
selected output yi if the query has never been asked before. It keeps a table of
pairs of queries and replies, and it returns the same reply to the same query.

Ideal Cipher Model. A block cipher with the block length n and the key
length κ is called an (n, κ) block cipher. Let e : {0, 1}κ × {0, 1}n → {0, 1}n be
an (n, κ) block cipher. Then, e(k, ·) is a permutation for every k ∈ {0, 1}κ, and
it is easy to compute both e(k, ·) and e(k, ·)−1.

Let Bn,κ be the set of all (n, κ) block ciphers. In the ideal cipher model,
e is assumed to be randomly selected from Bn,κ. The encryption e and the
decryption e−1 are simulated by the following two oracles.

The encryption oracle e first receives a pair of a key and a plaintext as a
query. Then, it returns a randomly selected ciphertext. On the other hand, the
decryption oracle e−1 first receives a pair of a key and a ciphertext as a query.
Then, it returns a randomly selected plaintext. The oracles e and e−1 share a
table of triplets of keys, plaintexts and ciphertexts, (ki, xi, yi)’s, which are pro-
duced by the queries and the corresponding replies. Referring to the table, they
select a reply to a new query under the restriction that e(k, ·) is a permutation
for every k. They also add the triplet produced by the query and the reply to
the table.

2.3 DBL Hash Function

An iterated hash function whose compression function is composed of a block
cipher is called a single-block-length (SBL) hash function if its output length is
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equal to the block length of the block cipher. It is called a double-block-length
(DBL) hash function if its output length is twice larger than the block length.

Let F be a compression function composed of a block cipher. For an iterated
hash function composed of F , the rate r defined below is often used as a measure
of efficiency:

r =
|mi|

(the number of block-cipher calls in F )× n
.

In this article, we also call an iterated hash function a DBL hash function if
its compression function F is composed of a smaller compression function f and
its output length is twice larger than the output length of f .

2.4 Related Work

Knudsen and Preneel studied the schemes to construct secure compression func-
tions with longer outputs from secure ones based on error-correcting codes
[13,14,15]. It is an open question whether optimally collision-resistant compres-
sion functions are constructed by their schemes. A hash/compression function
is optimally collision-resistant if any attack to find its collision is at most as
efficient as the birthday attack.

Our work is largely motivated by the recent works by Lucks [18] and Nandi [22].
Nandi generalized the results by Lucks and by Hirose [10]. He discussed how to
construct DBL hash functions and presented optimally collision-resistant ones.
However, their security analysis is not so sharp as ours, which is mentioned in
Sect. 1.

Coron, Dodis, Malinaud and Puniya [5] discussed how to construct a random
oracle with arbitrary input length given a random oracle with fixed input length.

As is reviewed in the following, there are many papers on hash functions
composed of block ciphers.

Preneel, Govaerts and Vandewalle [25] discussed the security of SBL hash
functions against several generic attacks. They considered SBL hash functions
with compression functions represented by hi = e(k, x)⊕ z, where e is an (n, n)
block cipher, k, x, z ∈ {hi−1, mi, hi−1⊕mi, c} and c is a constant. They concluded
that 12 out of 64(= 43) hash functions are secure against the attacks. However,
they did not provide any formal proofs.

Black, Rogaway and Shrimpton [3] presented a detailed investigation of prov-
able security of SBL hash functions given in [25] in the ideal cipher model. The
most important result in their paper is that 20 hash functions including the 12
mentioned above is optimally collision-resistant.

Knudsen, Lai and Preneel [16] discussed the insecurity of DBL hash functions
with the rate 1 composed of (n, n) block ciphers. Hohl, Lai, Meier and Waldvo-
gel [11] discussed the security of compression functions of DBL hash functions
with the rate 1/2. On the other hand, the security of DBL hash functions with
the rate 1 composed of (n, 2n) block ciphers was discussed by Satoh, Haga and
Kurosawa [26] and by Hattori, Hirose and Yoshida [8]. These works presented
no construction for DBL hash functions with optimal collision resistance.
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Many schemes with the rates less than 1 were also presented. Merkle [20]
presented three DBL hash functions composed of DES with the rates at most
0.276. They are optimally collision-resistant in the ideal cipher model. MDC-2
and MDC-4 [4] are also DBL hash functions composed of DES with the rates
1/2 and 1/4, respectively. Lai and Massey proposed the tandem/abreast Davies-
Meyer [17]. They consist of an (n, 2n) block cipher and their rates are 1/2. It is
an open question whether the four schemes are optimally collision-resistant or
not.

Hirose [10] presented a large class of DBL hash functions with the rate 1/2,
which are composed of (n, 2n) block ciphers. They were shown to be optimally
collision-resistant in the ideal cipher model. However, his construction requires
two independent block ciphers, which makes the results less attractive.

Nandi, Lee, Sakurai and Lee [23] also proposed an interesting construction
with the rate 2/3. However, they are not optimally collision-resistant. Knudsen
and Muller [12] presented some attacks against it and illustrated its weaknesses,
none of which contradicts the security proof in [23].

Black, Cochran and Shrimpton [2] showed that it is impossible to construct
a highly efficient block-cipher-based hash function provably secure in the ideal
cipher model. A block-cipher-based hash function is highly efficient if it makes
exactly one block-cipher call for each message block and all block-cipher calls
use a single key.

Gauravaram, Millan and May proposed a new approach based on iterated
halving to design a hash function with a block cipher [7].

3 DBL Hash Function in the Random Oracle Model

3.1 Compression Function

In this section, we consider the DBL hash functions with compression functions
given in the following definition.

Definition 1. Let F : {0, 1}2n × {0, 1}b → {0, 1}2n be a compression function
such that (gi, hi) = F (gi−1, hi−1, mi), where gi, hi ∈ {0, 1}n and mi ∈ {0, 1}b. F
consists of f : {0, 1}2n × {0, 1}b → {0, 1}n and a permutation p : {0, 1}2n+b →
{0, 1}2n+b as follows:{

gi = FU (gi−1, hi−1, mi) = f(gi−1, hi−1, mi)
hi = FL(gi−1, hi−1, mi) = f(p(gi−1, hi−1, mi)) .

p satisfies the following properties:

– It is easy to compute both p and p−1,
– p(p(·)) is an identity permutation,
– p has no fixed points, that is, p(gi−1, hi−1, mi) �= (gi−1, hi−1, mi) for any

(gi−1, hi−1, mi).
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3.2 Collision Resistance

We will analyze the collision resistance of DBL hash functions composed of F
under the assumption that f is a random oracle.

Two queries to the oracle f are required to compute the output of F for
an input. For this compression function, a query to f for FU or FL uniquely
determines the query to f for the other since p is a permutation. Moreover, for
every w ∈ {0, 1}2n+b, f(w) and f(p(w)) are only used to compute F (w) and
F (p(w)), and w �= p(w) from the properties for p in Definition 1. Thus, it is
reasonable to assume that a pair of queries w and p(w) to f are asked at a time.

Definition 2. A pair of distinct inputs w, w′ to F are called a matching pair if
w′ = p(w). Otherwise, they are called a non-matching pair.

Notice that w′ = p(w) iff w = p(w′) since p(p(·)) is an identity permutation.

Definition. Insecurity is quantified by success probability of an optimal re-
source-bounded adversary. The resource is the number of the queries to f in the
random oracle model.

For a set S, let z ←R S represent random sampling from S under the uniform
distribution. For a probabilistic algorithm M, let z ←R M mean that z is an
output of M and its distribution is based on the random choices of M.

Let H be a DBL hash function composed of a compression function F in De-
finition 1. The following experiment FindColHF(A, H) is introduced to quantify
the collision resistance of H . The adversary A with the oracle f is a collision-
finding algorithm of H .

FindColHF(A, H)
f ←R F 2n+b,n;
(m, m′) ←R Af;
if m �= m′ ∧H(m) = H(m′) return 1; else return 0;

FindColHF(A, H) returns 1 iff A finds a collision. Let Advcoll
H (A) be the

probability that FindColHF(A, H) returns 1. The probability is taken over the
uniform distribution on F 2n+b,n and random choices of A.

Definition 3. For q ≥ 1, let

Advcoll
H (q) = max

A

{
Advcoll

H (A)
}

,

where A makes at most q pairs of queries to f in total.

Without loss of generality, it is assumed that A does not ask the same query
twice. A can keep pairs of queries and their corresponding answers by himself.

Analysis. The following theorem shows the collision resistance of a hash func-
tion composed of F in Definition 1.
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Theorem 1. Let H be a hash function composed of a compression function F
specified in Definition 1. Then, for every 1 ≤ q ≤ 2n,

Advcoll
H (q) ≤

( q

2n

)2
+

q

2n
.

Proof. Let A be a collision-finding algorithm of H with the oracle f . A asks q
pairs of queries to f in total. Suppose that A finds a colliding pair m, m′ of H .
Then, it is easy to find a colliding pair of inputs for F without any additional
queries to the oracle. Moreover, a pair of inputs to F are either matching or
non-matching, so are the colliding pair of inputs for F .

For 2 ≤ j ≤ q, let Cj be the event that a colliding pair of non-matching inputs
are found for F with the j-th pair of queries. Namely, it is the event that

(f(wj), f(p(wj)) ∈ {(f(wj′ ), f(p(wj′ ))), (f(p(wj′ )), f(wj′ ))}

for some j′ < j, where wj and p(wj) are the j-th pair of queries. Since both
f(wj) and f(p(wj)) are randomly selected by the oracle,

Pr[Cj ] ≤
2(j − 1)

22n
.

Let C be the event that a colliding pair of non-matching inputs are found for F
with q pairs of queries. Then,

Pr[C] = Pr[C2 ∨ C3 ∨ · · · ∨ Cq] ≤
q∑

j=2

Pr[Cj ] ≤
( q

2n

)2
.

For 1 ≤ j ≤ q, let Cm
j be the event that a colliding pair of matching inputs

are found for F with the j-th pair of queries, that is, f(wj) = f(p(wj)). Thus,

Pr[Cm
j ] =

1
2n

.

Let Cm be the event that a colliding pair of matching inputs are found for F
with q pairs of queries. Then,

Pr[Cm] = Pr[Cm
1 ∨ Cm

2 ∨ · · · ∨ Cm
q ] ≤

q∑
j=1

Pr[Cm
j ] =

q

2n
.

Thus, if q ≤ 2n, then

Advcoll
H (A) ≤ Pr[C ∨ Cm] ≤ Pr[C] + Pr[Cm] ≤

( q

2n

)2
+

q

2n
,

which holds for any A. ��

From Theorem 1, any constant probability of success in finding a collision of H
requires Ω(2n) queries.

A better bound can be obtained with more restricted permutations.
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Theorem 2. Let H be a hash function composed of a compression function
F specified in Definition 1. Suppose that the permutation p is represented by
p(g, h, m) = (pcv(g, h), pm(m)), where pcv : {0, 1}2n → {0, 1}2n and pm : {0, 1}b

→ {0, 1}b. Suppose that pcv has no fixed points and that pcv(g, h) �= (h, g) for
any (g, h). Then, for every 1 ≤ q ≤ 2n,

Advcoll
H (q) ≤ 3

( q

2n

)2
.

Proof. Let A be a collision-finding algorithm of H with the oracle f . A asks q
pairs of queries to f in total. Suppose that A finds a colliding pair m, m′ of H .
Then, it is easy to find a colliding pair of inputs for F without any additional
queries. Moreover, a pair of inputs to F are either matching or non-matching,
so are the colliding pair of inputs for F .

Let C be the event that a colliding pair of non-matching inputs are found for
F with q pairs of queries. Then, as in the proof of Theorem 1,

Pr[C] ≤
( q

2n

)2
.

Suppose that a colliding pair of matching inputs are obtained for F from the
collision of H found by A. Let (g, h, m) and (g′, h′, m′) be the colliding pair.
Then, (g, h) = pcv(g′, h′) (and (g′, h′) = pcv(g, h)). (g, h) and (g′, h′) are both
outputs of F , or at most one of them is the initial value (g0, h0) of H since
(g, h) �= (g′, h′). Thus, a pair of inputs w and w′ are also found for F from the
collision of H such that F (w) = pcv(F (w′)) or F (w) = pcv(g0, h0).

Suppose that (g, h) = F (w) and (g′, h′) = F (w′). Then, a pair of w and w′

are non-matching since (g, h) = pcv(g′, h′) �= (h′, g′).
For 1 ≤ j ≤ q, let Ĉm

j be the event that, for the j-th pair of queries wj and
p(wj),

F (wj) ∈ {pcv(g0, h0)} ∪
⋃

1≤j′<j

{pcv(F (wj′ )), pcv(F (p(wj′ )))}

or

F (p(wj)) ∈ {pcv(g0, h0)} ∪
⋃

1≤j′<j

{pcv(F (wj′ )), pcv(F (p(wj′ )))} .

Thus,

Pr[Ĉm
j ] ≤ 2(2j − 1)

22n
.

Let Ĉm = Ĉm
1 ∨ · · · ∨ Ĉm

q . Then,

Pr[Ĉm] ≤
q∑

j=1

Pr[Ĉm
j ] ≤

q∑
j=1

2(2j − 1)
22n

= 2
( q

2n

)2
.
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Thus,

Advcoll
H (A) ≤ Pr[C ∨ Ĉm] ≤ Pr[C] + Pr[Ĉm] ≤ 3

( q

2n

)2
,

for 1 ≤ q ≤ 2n, which holds for any A. ��

For q < 2n−1, Theorem 2 gives a smaller upper bound than Theorem 1. The
difference between their upper bounds is significant. For example, let n = 128
and q = 280. Then, the upper bound of Theorem 1 is about 2−48, while the
upper bound of Theorem 2 is less than 2−94.

Example 1. Here is an example of the permutation p satisfying the conditions
given in Theorem 2:

p(g, h, m) = (g ⊕ c1, h⊕ c2, m) ,

where c1 and c2 are distinct constants in {0, 1}n.

3.3 Indistinguishability in the Iteration

We introduce a new security notion which is called indistinguishability in the
iteration.

Definition. Let F be a compression function specified in Definition 1. The
following experiment DistinguishCF(A, F ) is introduced to quantify the indis-
tinguishability in the iteration of F . The adversary A is a distinguishing al-
gorithm of F . A has an oracle O. In this experiment, a randomly chosen bit
d ∈ {0, 1} is given to O first. If d = 1, then O chooses f ∈ F 2n+b,n randomly
in advance. Then, O returns F (w) = (f(w), f(p(w))) to each query w from A.
If d = 0, then O chooses R ∈ F 2n+b,2n randomly in advance. Then, O returns
R(w) to each query w from A. A makes a chosen message attack and tries to
tell whether O uses F or R. However, A is only allowed to select his j-th query
wj = (w(1)

j , w
(2)
j , w

(3)
j ) from{

(w(1), w(2), w(3))

∣∣∣∣∣ (w(1), w(2)) ∈
j−1⋃

=0

(v(1)

 , v

(2)

 ) ∧ w(3) ∈ {0, 1}b

}
,

where (v(1)

 , v

(2)

 ) is O’s answer to the �-th query for � ≥ 1 and (v(1)

0 , v
(2)
0 ) is some

fixed initial value of a hash function H . F is assumed to be used only in the
iteration of H .

DistinguishCF(A, F )
d ←R {0, 1};
d′ ←R AO(d);
if d = d′ return 1; else return 0;

Let Succind-it
F (A) be the probability that DistinguishCF(A, F ) returns 1.

Without loss of generality, it can be assumed that Succind-it
F (A) ≥ 1/2 because
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the probability that d = d′ is 1/2 even if A chooses d′ randomly. It can also be
assumed that A does not ask the same query twice. Let

Advind-it
F (A) def= Succind-it

F (A)− 1/2 .

Definition 4. For q ≥ 1, let

Advind-it
F (q) = max

A

{
Advind-it

F (A)
}

,

where A makes at most q queries to O.

As long as Advind-it
F (q) is small enough, the compression function F behaves like

a random function in the iterated hash function. The following theorem presents
an upper bound on Advind-it

F (q) with additional restriction on the permutation
p.

Theorem 3. Let F be a compression function specified in Definition 1. Suppose
that the permutation p is represented by p(g, h, m) = (pcv(g, h), pm(m)), where
pcv : {0, 1}2n → {0, 1}2n and pm : {0, 1}b → {0, 1}b. Suppose that pcv has no
fixed points. Then, for every 1 ≤ q ≤ 2n,

Advind-it
F (q) ≤ 1

2

( q

2n

)2
.

Proof. Let A be the optimal distinguishing algorithm for F which makes q
queries. Let wj be A’s j-th query to O and T = {wj | 1 ≤ j ≤ q} ∩ {p(wj) | 1 ≤
j ≤ q}. Suppose that d = 1. Then, O returns F (wj) = (f(wj), f(p(wj))) for wj .
If T = φ, then F is completely indistinguishable from R. It is because each one
of f(wj) and f(p(wj)) for 1 ≤ j ≤ q appears only once and it is chosen randomly
by O.

Let Empty be the event that T = φ. Then,

Succind-it
F (A) = Pr[d = d′] = Pr[d = d′ ∧ Empty] + Pr[d = d′ ∧ ¬Empty]

= Pr[d = d′ |Empty] Pr[Empty] + Pr[d = d′ | ¬Empty] Pr[¬Empty]

≤ 1
2

+ Pr[¬Empty] .

Let vj be the initial value if j = 0 and the answer of O to the j-th query by
A if j ≥ 1. For 1 ≤ j ≤ q, let C′

j be the event that vj ∈ {pcv(v
) | 0 ≤ � ≤ j − 1}.
Then,

Pr[C′
j ] ≤

j

22n
.

For 1 ≤ q ≤ 2n,

Pr[¬Empty] ≤ Pr[C′
1 ∨ · · · ∨ C′

q−1] ≤
q−1∑
j=1

Pr[C′
j ] ≤

1
2

( q

2n

)2

which implies that Advind-it
F (q) ≤ (q/2n)2/2. ��
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4 DBL Hash Function in the Ideal Cipher Model

4.1 Compression Function

In this section, the collision resistance of a DBL hash function composed of a
compression function using a block cipher is analyzed. The compression function
specified in the following definition is considered.

Definition 5. Let F : {0, 1}2n × {0, 1}b → {0, 1}2n be a compression function
such that (gi, hi) = F (gi−1, hi−1, mi), where gi, hi ∈ {0, 1}n and mi ∈ {0, 1}b. F
consists of a (n, n + b) block cipher e as follows:{

gi = FU (gi−1, hi−1, mi) = e(hi−1‖mi, gi−1)⊕ gi−1
hi = FL(gi−1, hi−1, mi) = e(hi−1‖mi, gi−1 ⊕ c)⊕ gi−1 ⊕ c ,

where ‖ represents concatenation and c ∈ {0, 1}n − {0n} is a constant.

The compression function in Definition 5 is also shown in Fig. 1. It is one of
the compression functions specified in Definition 1 and its f and p are specified
as follows:

f(gi−1, hi−1, mi) = e(hi−1‖mi, gi−1)⊕ gi−1 ,

p(gi−1, hi−1, mi) = (gi−1 ⊕ c, hi−1, mi) .

e

e

mi

gi−1

hi−1

gi

hic

Fig. 1. A compression function considered in Sect. 4.2

F requires two invocations of e to produce an output. However, these two
invocations need only one key scheduling of e. If F is implemented using the
AES with 192-bit key-length, then n = 128, b = 64 and the rate is 1/4. If
implemented using the AES with 256-bit key-length, then n = b = 128 and the
rate is 1/2.

4.2 Collision Resistance

Let F be a compression function specified in Definition 5. Two queries to the
oracles e and e−1 in total are required to compute the output of F for an input.
It is easy to see from Fig. 1 that a query to e or e−1 and the corresponding reply
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for FU (FL) uniquely determine the query to e for FL (FU ). Moreover, these
two queries are only used to compute the outputs of F for a matching pair of
inputs. Thus, it is assumed that a pair of queries to e, e−1 required to compute
an output of F are asked at a time.

Definition. The following experiment FindColHF(A, H) is similar to the one
in Sect. 3 except that the adversary A is a collision-finding algorithm with the
oracles e, e−1.

FindColHF(A, H)
e ←R Bn,n+b;

(m, m′) ←R Ae,e−1
;

if m �= m′ ∧H(m) = H(m′) return 1; else return 0;

Let Advcoll
H (A) be the probability that FindColHF(A, H) returns 1. The prob-

ability is taken over the uniform distribution on Bn,n+b and random choices ofA.

Definition 6. For q ≥ 1, let

Advcoll
H (q) = max

A

{
Advcoll

H (A)
}

,

where A makes at most q pairs of queries to e, e−1 in total.

Without loss of generality, it is assumed thatA asks at most only once on a triplet
of a key, a plaintext and a ciphertext obtained by a query and the corresponding
reply.

Analysis. The following theorem shows the collision resistance of a hash func-
tion composed of F in Definition 5.

Theorem 4. Let H be a hash function composed of the compression function F
specified in Definition 5. Then, for every 1 ≤ q ≤ 2n−2,

Advcoll
H (q) ≤ 3

( q

2n−1

)2
.

The proof of Theorem 4 is given in the appendix.

5 Concluding Remark

In this article, some plausible constructions have been proposed for DBL hash
functions.

Recently, Pramstaller and Rijmen presented a collision attack on the scheme
in Sect. 4 with DESX as an underlying block cipher [24]. Their result does not
contradict Theorem 4. It is a warning that we should be careful when we choose
an underlying block cipher. It also shows a limitation of the random oracle/ideal
cipher model. Related topics are discussed in [1,9].

Acknowledgements. The author would like to thank the anonymous reviewers
for their helpful comments.
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A Proof of Theorem 4

Let A be a collision-finding algorithm of H with oracles e, e−1. A asks q pairs
of queries to e, e−1 in total.

Since gi = e(hi−1‖mi, gi−1)⊕ gi−1, gi depends both on the plaintext and the
ciphertext of e and one of them is fixed by a query and the other is determined
randomly by the answer from the oracle. Thus, gi is randomly determined by
the answer. hi is also randomly determined by the other answer.

Let (k1,j‖k2,j , xj , yj) and (k1,j‖k2,j, xj ⊕ c, zj) be the triplets of e obtained by
the j-th pair of queries and the corresponding answers.

For every 2 ≤ j ≤ q, let Cj be the event that a colliding pair of non-matching
inputs are found for F with the j-th pair of queries. Namely, it is the event that,
for some j′ < j,

F (xj , k1,j , k2,j) = F (xj′ , k1,j′ , k2,j′) or F (xj′ ⊕ c, k1,j′ , k2,j′)

or

F (xj ⊕ c, k1,j , k2,j) = F (xj′ , k1,j′ , k2,j′ ) or F (xj′ ⊕ c, k1,j′ , k2,j′ ) ,
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which is equivalent to

(yj ⊕ xj , zj ⊕ xj ⊕ c)=(yj′ ⊕ xj′ , zj′ ⊕ xj′ ⊕ c) or (zj′ ⊕ xj′ ⊕ c, yj′ ⊕ xj′ ) .

Thus,

Pr[Cj ] ≤
2(j − 1)

(2n − (2j − 2))(2n − (2j − 1))
≤ 2(j − 1)

(2n − (2j − 1))2
.

Let C be the event that a colliding pair of non-matching inputs are found for F
with q pairs of queries. Then,

Pr[C] ≤
q∑

j=2

Pr[Cj ] ≤
q∑

j=2

2(j − 1)
(2n − (2j − 1))2

.

Suppose that a colliding pair of matching inputs are obtained for F from the
collision of H found by A. Let (g, h, m) and (g′, h′, m′) be the colliding pair of
F . Then, (g, h) = (g′⊕ c, h′). (g, h) and (g′, h′) are both outputs of F or at most
one of them is the initial value (g0, h0) of H . Thus, a pair of inputs w and w′

are also found for F from the collision of H such that

(FU (w), FL(w)) = (FU (w′)⊕ c, FL(w′)) or (g0 ⊕ c, h0) .

Suppose that (FU (w), FL(w)) = (FU (w′)⊕ c, FL(w′)). Then, a pair of w and
w′ are non-matching since

(FU (w), FL(w)) = (FU (w′)⊕ c, FL(w′)) �= (FL(w′), FU (w′)) .

For 1 ≤ j ≤ q, let (k1,j‖k2,j, xj , yj) and (k1,j‖k2,j , xj ⊕ c, zj) be the pair of
triplets of e obtained by the j-th pair of queries and the corresponding answers.
Let Ĉm

j be the event that F (xj , k1,j , k2,j) ∈ V or F (xj ⊕ c, k1,j , k2,j) ∈ V , where

V = {(g0 ⊕ c, h0)} ∪
⋃

1≤j′<j

{(FU (xj′ , k1,j′ , k2,j′ )⊕ c, FL(xj′ , k1,j′ , k2,j′))} ∪

⋃
1≤j′<j

{(FU (xj′ ⊕ c, k1,j′ , k2,j′)⊕ c, FL(xj′ ⊕ c, k1,j′ , k2,j′))} .

Thus,

Pr[Ĉm
j ] ≤ 2(2j − 1)

(2n − (2j − 2))(2n − (2j − 1))
≤ 2(2j − 1)

(2n − (2j − 1))2
.

Let Ĉm = Ĉm
1 ∨ · · · ∨ Ĉm

q . Then,

Pr[Ĉm] ≤
q∑

j=1

Pr[Ĉm
j ] ≤

q∑
j=1

2(2j − 1)
(2n − (2j − 1))2

.
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Thus, if q ≤ 2n−2, then

Advcoll
H (A) ≤ Pr[C ∨ Ĉm] ≤ Pr[C] + Pr[Ĉm]

≤
q∑

j=2

2(j − 1)
(2n − (2j − 1))2

+
q∑

j=1

2(2j − 1)
(2n − (2j − 1))2

≤
q∑

j=1

6j − 4
(2n − (2j − 1))2

≤ 3q2 − q

(2n−1)2
≤ 3

( q

2n−1

)2

which holds for any A. ��
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Abstract. We propose message authentication codes (MACs) that com-
bine a block cipher and an additional (keyed or unkeyed) permutation.
Our MACs are provably secure if the block cipher is pseudorandom and
the additional permutation has a small differential probability. We also
demonstrate that our MACs are easily implemented with AES and its
4-round version to obtain MACs that are provably secure and 1.4 to 2.5
times faster than the previous MAC modes of AES such as the CBC-
MAC-AES.

Keywords: MAC, Block cipher, AES, Differentially-uniform permu-
tation.

1 Introduction

Message Authentication Codes (MACs) are symmetric cryptographic functions
that ensure the authenticities of messages. The CBC-MAC and its variants (such
as EMAC [4], XCBC [8], and OMAC [16]) are well-known modes for block ciphers
to provide MACs. They are provably secure and efficient; they operate at almost
the same throughput as that of the underlying block cipher. However, what can
we do if we want a MAC that is faster than these MAC modes to keep the
additional implementation as small as possible? In other words, can we have a
block cipher based MAC faster than the CBC-MAC?

In this paper, we give a solution to this problem. We propose MACs that
combine a block cipher and its component, typically a reduced-round version
of the block cipher. These kinds of MACs can easily be implemented on any
platform where the block cipher has already been implemented. The additional
program size would be quite small. A similar approach called ALRED [11] was
recently proposed by Daemen and Rijmen. It was interesting because of its effi-
ciency (in terms of authentication tag generation and preprocessing). It was also
shown that ALRED was secure against some attacks. Compared to ALRED,
our schemes are secure in a stronger security model: if one can distinguish our
MACs from uniform random function, then the underlying block cipher can be
distinguished from uniform random permutation. A MAC with this property is
called a provably secure MAC.

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 226–241, 2006.
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Formally, our MACs combine an n-bit block pseudorandom function (PRF)
and an n-bit auxiliary permutation (AXP), which is an unkeyed or keyed per-
mutation. AXPs are naturally expected to be faster than the block cipher, since
they do not need to be cryptographically strong: they are only required to be
ε-differentially-uniform, i.e., their maximum differential probability (MDP) or
maximum expected differential probability (MEDP) is at most ε. Since we have
assumed that the AXP is derived from the block cipher we intend to use, not
all block ciphers can be used for our MACs. However, a keyed permutation with
small MEDP can be obtained as a reduced-round of well-designed block ciphers,
since such permutations are essential components of the block ciphers that are
secure against differential cryptanalysis. For example, the MEDP of the 4-round
AES with independent round keys is very small [26,18] and thus our proposals
can be securely implemented using AES and 4-round AES.

We propose two approaches. They have different characteristics regarding the
amount of preprocessing, memory consumption, and the speed for long and short
messages. The first approach is based on the modified tree hash (MTH), which
was proposed by Boesgaard et al. [9]. It was an improvement on the well-known
tree hash [10,27]. Although they used the Length Annotation (LA) [19] to handle
variable message lengths, we demonstrate that this is redundant. Removing LA
from MTH improves efficiency, particularly for short messages.

The second uses chaining of the block cipher and the AXP. This is similar to
the CBC-MAC, but the block cipher is only called for every d message blocks,
where d is a parameter that determines the amount of preprocessing and MAC
speed. This scheme is provably secure if the AXP is ε-differentially-uniform (for
small ε) and satisfies an additional weak condition.

If our MACs are built using AES and its 4-round, we have MACs 1.4 to 2.5
times faster than the CBC-MAC-AES, depending on the scheme we use. The
key length is short (one block cipher key, K, or K and an additional one-block
key), and only one block cipher keyscheduling is needed. Their preprocessing
times are moderate (log-order of the message length for the first approach, and
constant for the second). We also show a software implementation of our MACs
and comparisons between other MACs.

2 Preliminaries

Notations. {0, 1} is denoted by Σ and n-bit space is denoted by Σn. (Σn)≤m

denotes the set of binary sequences whose lengths are multiples of n and at
most nm. (Σn)+ is the set of all binary sequences whose lengths are multiples
of n, and Σ∗ is the set of all finite-length binary sequences. If X is distributed
independently and uniformly over set X , we write X ∈U X . If F is a keyed
function with domain X , and range Y, and key K ∈U K, then we write F :
X → Y and there is function f : K × X → Y such that Pr[F (x) = y] =
|{k ∈ K : f(k, x) = y}|/|K|. If we want to emphasize that F ’s key is K, FK is
written and if K is fixed to k, then Fk denotes function f(k, ∗). Keyed and fixed
functions are written by upper and lower case letters, respectively.
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Definition 1. Keyed function F ∈U {f : Σn → Σm} is called an n-bit to m-bit
uniformly random function (URF) and denoted by Rn,m. If F is uniform over all
n-bit permutations, it is called an n-bit uniformly random permutation (URP)
and denoted by Pn. Specifically, R∗,n denotes the Variable-Input-Length (VIL)-
URF such that R∗,n ∈U {f : Σ∗ → Σn}. Here, VIL means that it accepts inputs
of all lengths.

We express the elements of field GF(2n) by the n-bit coefficient vectors of the
polynomials in the field. We alternatively represent n-bit coefficient vectors by
integers 0, 1, . . . , 2n − 1, e.g., 2 corresponds to the coefficient vector (00 . . . 010)
and 1 denotes (00 . . . 01), i.e., the identity element.

Definition 2. Let f be a permutation on group X and FK be a keyed permuta-
tion on X with key K ∈U K. The maximum differential probability (MDP) for
f , denoted by MDP(f), is maxa�=0,b Pr(f(X) − f(X + a) = b), where X ∈U X .
Similarly, the maximum expected differential probability (MEDP) of FK is de-
fined as MEDP(FK) def= maxa�=0,b Pr(FK(X) − FK(X + a) = b), which can also
be written as maxa�=0,b

∑
k∈K Pr(Fk(X)− Fk(X + a) = b)/|K|.

If X is a field with characteristic 2 (say, GF(2n)), then the addition and sub-
traction in Def. 2 correspond to the bitwise XOR operation, i.e., ⊕. In this case,
MDP is always no less than 2/2n. However, this does not hold true for MEDP.

Definition 3. Let H be a keyed function: (Σn)≤l → Σn. The maximum colli-
sion probability of H for a pair of m-block and m′-block input is defined as

CollH(m, m′) def= max
x∈(Σn)m,x′∈(Σn)m′ ,x �=x′

Pr(H(x) = H(x′)), where m, m′ ≤ l.

If the collision probability is no more than ε for all possible inputs, it is called
an ε-almost universal (ε-AU) hash function.

Security Notions. We used a standard security notion for symmetric cryptog-
raphy [5,6,13].

Definition 4. Let F and G be two keyed functions. Let us assume that the
oracle has implemented H, which is identical to one of F or G. An adversary,
A, guesses if H is F or G using Chosen-plaintext attack (CPA). The maximum
CPA-advantage in distinguishing F from G is defined as

AdvcpaF,G(q, t, σ) def= max
A:(q,t,σ)-CPA

∣∣Pr(AF = 1)− Pr(AG = 1)
∣∣, (1)

where AF = 1 denotes that A’s guess is 1, which indicates one of F or G, and
(q, t, σ)-CPA denotes a CPA that uses q queries with time complexity t, and
the total length of q queries is at most σn bits. Instead of σ, we can use ρ,
which denotes the maximum length (in n-bit block) of each query, to limit the
adversary’s resources. We omit σ and ρ if F and G have fixed input length, since
they have been determined from q in this case. Also, we omit t if we consider
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attacks without computational restrictions. Especially, if F : Σm → Σn we have
AdvprfF (q, t) def= AdvcpaF,Rm,n

(q, t). Similarly, if F is an n-bit keyed permutation, then

AdvprpF (q, t) def= AdvcpaF,Pn
(q, t). Finally, if F is a VIL keyed function:Σ∗ → Σn,

then AdvvilprfF (q, t, κ) def= AdvcpaF,R∗,n
(q, t, κ), where κ is σ or ρ.

If AdvcpaF,Rm,n
(q, t) is small for any sufficiently large q and t, F is called the pseudo-

random function (PRF) [13]. The pseudorandom permutation (PRP) and VIL-
PRF are defined similarly. As a VIL-PRF is also a secure VIL-MAC (e.g., see
Proposition 2.7 of [5]), we focus on building VIL-PRFs.

3 Basic Idea

Let g be a (possibly keyed) function with n-bit domain and X be an n-bit random
variable. Then, g⊕X denotes a function such that g⊕X(a) = g(a ⊕ X). All our
MACs are based on the following function.

Lemma 1. We define the Add-Permute-Add (APA) function: (Σn)≤2 → Σn as
follows.

APAK,F (x) =

{
x if x ∈ Σn,

F⊕K(x1)⊕ x2 if x = (x1, x2) ∈ (Σn)2,
(2)

where K ∈U Σn and F is an n-bit (keyed or fixed) permutation. Then, APAK,F

is ε-AU if F ’s MEDP (for the case of keyed permutation) or MDP (for the case
of fixed permutation) is at most ε.

Proof. Let x = (x1, x2) and x′ = (x′
1, x

′
2) be two different inputs to APAK,F .

If x1 �= x′
1, then the output collision means F⊕K(x1) ⊕ F⊕K(x′

1) = x2 ⊕ x′
2,

which cannot occur with a probability larger than ε. If x1 = x′
1, which implies

x2 �= x′
2, then clearly the collision probability is zero. Moreover, the probability

of x1 = F⊕K(x′
1)⊕x′

2 is 1/2n, since F is invertible. Thus, the maximum collision
probability is at most ε.

An example of a permutation with small MDP is the following.

Example 1. Let inv be an n-bit permutation such that inv(x) = x−1 for x �= 0
and inv(0) = 0, where x−1 satisfies x · x−1 = 1. Then, MDP(inv) = 4/2n [25].

As this example shows, a fixed permutation with small MDP does exist. However,
this cannot be efficiently implemented if input is large (say, more than 32-bit). In
contrast, a keyed permutation with small MEDP is more practical. For example,
the 4-round AES with independent round keys has an MEDP of less than 2−113

[18]. In later sections, this fact enables us to implement our MACs using AES.
As stated in the Introduction, all our MACs combine an n-bit block cipher,

EK , and an n-bit additional keyed or fixed permutation, which is called the
auxiliary permutation (AXP). If the AXP has a key, we denote it by GU , where
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key U ∈U U . The sequence of m AXPs are denoted by G = (GU1 , . . . , GUm).
We will abbreviate GUi to Gi unless it is confusing. Hereafter, we will usually
assume that the AXP is a keyed permutation. Since a fixed permutation can be
seen as a keyed permutation with a single-point key space, this provides general
descriptions of our schemes.

4 Building Variable Input Length Universal Hash

4.1 Modified Tree Hash

As Lemma 1 shows, a double input length AU hash function can be built using
one invocation of a differentially-uniform permutation and an n-bit random key.
The simplest way to expand the input length of this AU hash is using the well-
known tree hash. The original tree hash proposed by Wegman and Carter [27]
required some redundant calls of AU hash when the length of an input was not
2ln for some positive integer l. An improvement to remove these redundant calls
was proposed by Boesgaard et al., which is as follows.

Definition 5. (Modified Tree Hash (MTH) [9], the binary case)
Let H = (H1, H2, . . . , ) be an infinite sequence of keyed functions: (Σn)2 → Σn.
Let x = (x1, . . . , xm) ∈ (Σn)m. For all i ≥ 1, let LHi be a function defined as:

LHi(x) =

{
Hi(x1, x2)‖Hi(x3, x4)‖ . . . ‖Hi(xm−1, xm) if m mod 2 = 0,

Hi(x1, x2)‖Hi(x3, x4)‖ . . . ‖Hi(xm−2, xm−1)‖xm if m mod 2 = 1.

The output of the modified tree hash using H for input x is

MTHH(x) = LHb
◦ LHb−1 ◦ · · · ◦ LH1(x),where b = &log2 m'.

Here, ◦ denotes the serial composition (i.e., F2 ◦ F1(x) = F2(F1(x))).

Collision Probability of MTH. The collision probability of MTH for equal
length inputs was proved [9]. To handle inputs with unequal lengths, Boesgaard
et al. suggested using a technique called the Length Annotation (LA), i.e., ap-
pending the length information of x to MTHH(x). However, we here prove that
LA is not needed, if some additional conditions are satisfied.

Lemma 2. In Def. 5, if each Hi is independent ε-AU and satisfies Pr(Hi(x) =
y) = 1/2n for any x ∈ (Σn)2 and y ∈ Σn, then

CollMTHH(m, m′) ≤ max{&log2 m', &log2 m′'} · ε, for any (m, m′). (3)

Moreover, if Hi = APAKi,GUi
and Ki and Ui are independent and random, then

Eq. (3) holds, where ε is the MEDP of GUi and 1/2n ≤ ε.

Proof. Let us prove the first claim. We start with the case for inputs with equal
lengths. Let us abbreviate max2c−1<i≤2c CollMTHH(i, i) to p=

c . Clearly p=
0 = 0

and p=
1 ≤ ε hold. Assume the claim holds for c = i − 1 for some i ≥ 1. Let
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x = (x1, . . . , xm) and x′ = (x′
1, . . . , x

′
m) be two m-block inputs where 2i−1 <

m ≤ 2i. Let S, T , and V denote MTHH(x1, . . . , x2i−1), MTHH(x2i−1+1, . . . , xm),
and MTHH(x), respectively. For x′, S′, T ′, and V ′ are similarly defined. If the
first 2i−1-block prefixes of x and x′ are identical, then P (S = S′) = 1 and we
have

P (V = V ′) ≤ P (T = T ′, S = S′)+P (V = V ′|T �= T ′, S = S′) ≤ (i−1)ε+ε = iε,

where the last inequality follows from the assumption and the fact that each Hi

is independent. If the first 2i−1-block prefixes are different, we have

P (V = V ′) ≤ P (S = S′) + P (V = V ′|S �= S′) ≤ (i− 1)ε + ε = iε.

Thus, we have p=
i ≤ iε. Let p �=

c be the maximum collision probability for two
inputs that have unequal lengths and their lengths are at most 2c blocks. Then,
p �=
1 ≤ ε follows from the condition of Hi (note that 1/2n ≤ ε). Let us assume

p �=
i−1 ≤ (i−1)ε holds. Let x = (x1, . . . , xm) and x′ = (x′

1, . . . , x
′
m′) where m < m′

and 2i−1 < m′ ≤ 2i. If m < 2i−1, the computation of V from (S′, T ′) involves
the key (for some Hi), K̃, that never appears in the computation of V . If we fix
keys other than K̃, the collision of MTHH(x) and MTHH(x′) is equivalent to the
event that Hi(s, t) = v for some (s, t, v, i), thus occuring with probability 1/2n.
If m > 2i−1, then we prove the collision probability is at most iε in a similar
way to the case of equal length. Therefore we have p �=

i ≤ iε and the first claim is
proved. The second claim follows from the first claim and Lemma 1.

If LA is used, then more AU hash function calls are needed to obtain an n-bit
hash value from (length(x)||MTHH(x)). Therefore, removing LA contributes to
faster speed (particularly for short messages) and shorter key length.

4.2 Periodic CBC Hash

The MTH is ideally fast, as its theoretical throughput is almost the same as
that of the AXP. However, the amounts of preprocessing and working memories
required are proportional to b, where 2b is the maximum message block length.
This implies that MTH is not well suited to constrained (e.g., low-power and/or
memory) environments. This problem is common to all tree-based MAC func-
tions. In this section, we focus on building AU hash functions that accept any
long block inputs with a small constant amount of preprocessing and memory.
Interestingly, our proposal is an iterative procedure similar to the CBC-MAC.
Since this is iterative, only a small constant working memory is needed for any
input in (Σn)+, as in the CBC-MAC.

For i = 1, 2, . . . , m, let Fi be an n-bit block keyed function and Z be an n-
bit random variable. Let x = (x1, . . . , xm+1). We define two keyed functions:
(Σn)+ → Σn such that

Ch[F1, . . . , Fm](x) def= xm+1 ⊕ Fm(xm ⊕ Fm−1(. . . F2(x2 ⊕ F1(x1)) . . . ), and

Ch[F1, . . . , Fm|Z](x) def= Ch[F1, . . . , Fm](x′), where x′ = (x1 ⊕ Z, x2, . . . , xm+1),
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Fig. 1. PC-MAC with d = 2. System surrounded by dotted lines denotes PCH2[EK , G].

i.e., CBC-MAC-like chaining. If the input is longer than (m + 1) blocks, the
chaining is iterated using (F1, . . . , Fm), and they terminate as soon as the last
input block is XORed. Here, the CBC-MAC[F ] corresponds to F ◦ Ch[F ]. For
one block input x = x1, the output is itself, i.e., x1.

Definition 6. Let EK be an n-bit block cipher. For d ≥ 0, let G = (G1, . . . , Gd)
be the sequence of d AXPs G = (G1, . . . , Gd) (recall that GUi has been abbreviated
to Gi). We call d the interval. We assume that (d − 1) n-bit keys, denoted by
Kxor

1 , . . . , Kxor
d−1, are available. The Periodic CBC Hash (PCH) with interval d

is a keyed function: (Σn)+ → Σn defined as

PCHd[EK ,G] def= Ch[EK , G1, G
⊕Kxor

1
2 , . . . , G

⊕Kxor
d−1

d ].

Here, PCHd[EK ,G] terminates as soon as the last input block is XORed.

See Fig. 1 for an example of PCH. If d = 1, then no Kxor
i is used and EK and

G1 are called alternately.

Collision Probability of PCH. For any inputs in (Σn)+, the collision prob-
ability of the PCH is small if the AXP has a small differential probability and a
small self-differential probability, which is defined as follows.

Definition 7. The maximum self-differential probability (MSDP) of a permuta-
tion on group X , f , is defined as MSDP(f) def= maxa∈X Pr[X−f(X) = a], where
X ∈U X . For a keyed permutation, the maximum expected SDP (MESDP) is
similarly defined.

Let Kaux = (Kxor
1 , . . . , Kxor

d−1, U1, . . . , Ud), where Ui ∈ U is the key for Gi. Kaux

is the key of G⊕ def= (G1, G
⊕Kxor

1
2 , . . . , G

⊕Kxor
d−1

d ) and distributed over Kaux
def=

(Σn)d−1 × Ud. This determines the operation between two consecutive block
cipher calls in PCH. The collision probability of PCH is proved as follows.

Lemma 3. If Kaux ∈U Kaux, and MEDP(Gi) ≤ εdp and MESDP(Gi) ≤ εsdp
for i = 1, . . . , d, then,

CollPCHd[R,G](m, m′) ≤ dεdp + εsdp +
(l + l′)2 + 2

2n+1 , (4)

where G = (G1, . . . , Gd), and R is the n-bit URF, and l = & m
d+1' and l′ = & m′

d+1'.
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Proof. Let x = (x1, . . . , xm) and x′ = (x′
1, . . . , x

′
m′) be two distinct inputs for

PCHd[R,G] with m ≤ m′ and let V = PCHd[R,G](x), V ′ = PCHd[R,G](x′).
Let Yi and Zi (Y ′

i and Z ′
i) be the i-th input and output of R for x (for x′). For

example, when d = 1, then Y1 = x1, Z1 = R(Y1), and Y2 = x3 ⊕ G1(x2 ⊕ Z1).
Here, if m− 1 = c(d + 1) for some positive integer c, then Yc+1 corresponds to
PCHd[R,G](x) and Zc+1 does not exist. We also assume that the block length
of the longest common prefix (LCP) between x and x′ is mlcp. That is, xi = x′

i

for i = 1, . . . , mlcp < m and xmlcp+1 �= x′
mlcp+1 or mlcp = m (if m < m′). If

x1 �= x′
1, the LCP is empty and has a length of 0. Let llcp = &mlcp

d+1 ' (this means
that Yi = Y ′

i for i = 1, . . . , llcp with probability 1).
Let D be an event where Yα, Y ′

β , 1 ≤ α ≤ l, 1 ≤ β ≤ l′ are distinct, except for
the trivial collisions Yγ = Y ′

γ for γ = 1, . . . , llcp. In addition, let Dlcp denote an
event where Yi �= Yj (and Y ′

i �= Y ′
j ) for 1 ≤ i < j ≤ llcp. If the LCP is empty, we

define Pr(Dlcp) = 1. Clearly Dlcp is a subevent of D. For any 1 ≤ i ≤ j ≤ d + 1,
we have

CollCh[G⊕|Rnd](i, j) ≤

⎧⎪⎨⎪⎩
(i− 1)εdp ≤ dεdp if i = j,

εsdp if (i, j) = (1, 2),
1
2n otherwise,

(5)

where Rnd ∈U Σn. In Eq. (5), the first case follows from simple inductive analy-
sis. For the second, note that the collision means Rnd⊕x1 = x′

2⊕G1(Rnd⊕x′
1),

which occurs with probability (at most) εsdp. The third follows from the fact
that the output for the longer input always includes Kxor

j , which does not ap-
pear in the other output, and that all AXPs are invertible. Here, we show that
the probabilities of D and Dlcp are negligible, where D is the negation of D.

Lemma 4. For any kaux ∈ Kaux, we have

Pr(Dlcp) = Pr(Dlcp|Kaux = kaux) ≤
llcp−1∑
i=1

i

2n
≤ llcp

2

2n+1 , and (6)

Pr(D) ≤ dεdp +
(l + l′)2

2n+1 . (7)

The proof of Lemma 4 is in Appendix A. Next, let us analyze the collision
probability of PCHd[R,G]. Let xlast be the last m− 1 mod (d + 1) blocks of x.
Then, V = Ch[G⊕|Zl](xlast) if xlast is not empty (i.e., m− 1 mod (d + 1) ≥ 1),
and V = Yl otherwise. x′

last is similarly defined for x′. First, we assume that
l = l′ = llcp does not hold true. Then, the occurrence of D means that Zl and
Zl′ are independent and uniformly random even if Kaux is fixed. Thus, we have

Pr(V =V ′) ≤
∑

kaux∈Kaux

Pr(V =V ′|Kaux = kaux, D) · Pr(Kaux = kaux|D) + Pr(D),

≤ 1
2n

∑
kaux∈Kaux

Pr(Kaux = kaux|D) + dεdp +
(l + l′)2

2n+1 ≤ dεdp +
(l + l′)2 + 2

2n+1 , (8)
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unless both xlast and x′
last are empty. If both are empty, then Pr(V = V ′) ≤ P (D)

holds. Next, let us assume l = l′ = llcp holds true. In this case, D is equivalent
to Dlcp and at least one of xlast or x′

last is not empty (otherwise we have x =
x′), and Zl (= Z ′

l′) is independent and random if Dlcp is given. If both xlast
and x′

last are not empty, then Pr(V = V ′|Dlcp) equals Pr(Ch[G⊕|Zl](xlast) =
Ch[G⊕|Zl](x′

last)|Dlcp). Here, note that Dlcp (or Dlcp) gives no information on
Kaux, since Eq. (6) implies P (Kaux = kaux|Dlcp) = P (Kaux = kaux) for all kaux.
From these observations and Eq. (5), and Lemma 4, we have

Pr(V = V ′) ≤ Pr(V =V ′|Dlcp)+Pr(Dlcp) ≤ max{dεdp, εsdp, 1/2n}+
llcp

2

2n+1 . (9)

It is easy to see that Eq. (9) also holds even if one of xlast or x′
last is empty. Thus,

Eq. (9) holds when l = l′ = llcp. We conclude the proof by combining Eqs. (8)
and (9).

Relation Between MDP (MEDP) and MSDP (MESDP). It seems that
every permutation with a small MDP has a small MSDP, though we have not
formally proved this for now. For instance, the inv permutation in Ex. 1 has
MSDP 3/2n. A more useful fact is that any n-bit keyed permutation that contains
an independent key-addition layer has MESDP 1/2n, as the output is completely
random and independent of the input.

5 Complete Description of Our MACs and Their
Securities

The following lemma, proved by Black and Rogaway [8], demonstrates that a
VIL-PRF: Σ∗→Σn can be built with an AU hash: (Σn)+→Σn and n-bit PRFs.

Lemma 5. (Lemma 2 of [8]) Let H : (Σn)+ → Σn and R, R′ be two indepen-
dent n-bit URFs. We define CW3[H, R, R′](x) = R(H(x)) if the length of x, |x|,
is a multiple of n, and R′(H(x ‖ 10l)) otherwise, where |x| mod n = n − l − 1
and 10i denotes an i-bit sequence (100 . . .0). Then,

AdvvilprfCW3[H,R,R′](q, σ) ≤ max
q,m1,...,mq, q

s=1 ms=σ

⎧⎨⎩ ∑
1≤i<j≤q

CollH(mi, mj)

⎫⎬⎭ (10)

holds. In Eq. (10), if σ is substituted with ρ, then the maximum is taken for all
(q, m1, . . . , mq) such that ms ≤ ρ for all s = 1, . . . , q.

The Hash-to-MAC (actually Hash-to-PRF) conversion described in Lemma 5
requires two additional n-bit PRFs and thus requires two additional block cipher
keyschedulings in practice. However, these keyschedulings can be removed using
the idea of tweakable block ciphers [21]. This technique was used to propose
the XCBC [8], TMAC [20], and OMAC [16]. In converting our hashing schemes
into MACs, we also employed the tweaking technique. Here, we present complete
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Preprocessing Let L be EK(0).
Let U = (U1, . . . , Ub) be the first b|U| bits of EK(1) · · · EK(a).
Let H = (H1, . . . , Hb), where Hi = APAEK(i+a),GUi

.
Tag Computation Input message x ∈ Σ∗.

Let Tag = CW3[MTHH, E⊕L·u
K , E⊕L·u2

K ](x).
Output (x, Tag).

Fig. 2. MT-MACb[EK |GU ]. Key of MAC is K, AXP is GU , and a = b|U|/n�.

Preprocessing Let U = (U1, . . . , Ud) be the first d|U| bits of
E⊕L

K (0) · · · E⊕L
K (â − 1), and let G = (G1, . . . , Gd).

Let Kxor
j−â+1 be E⊕L

K (j) for j = â, . . . , â + d − 2.
Tag Computation Input message x ∈ Σ∗.

Let Tag = CW3[PCHd[EK ,G], E⊕L·u
K , E⊕L·u2

K ](x).
Output (x,Tag).

Fig. 3. PC-MACd[EK , L|GU ]. Key of MAC is (K, L), AXP is GU , and â = d|U|/n�.

descriptions of our MACs. The first is based on the MTH and called the MT-
MAC. It uses a block cipher EK and an AXP, GU , and the maximum message
length is n2b bits. See Fig. 2 for the details of MT-MAC. In Fig. 2, i+a indicates
usual integer addition, and u is an element of GF(2n) that is not 0 or 1 and
L · u denotes the multiplication on GF(2n). It can be implemented with shift
and conditional XOR (e.g., see [16]). The second is based on PCH and called
the PC-MAC. The PC-MAC is shown in Fig. 3.

The security of MT-MAC is proved as follows. The proof is in Appendix B.

Theorem 1. Let c = &b|U|/n'+ b + 1. Then,

AdvvilprfMT-MACb[EK |GU ](q, t, σ) ≤ AdvprpEK
(σ + c, t′) +

(σ + c)2

2n
+ εdpσ

2,

where t′ = t + O(σ) and εdp = MEDP(GU ).

The security proof of PC-MAC can be similarly obtained, which is as follows.

Theorem 2. Let c = &d|U|/n'+ d, where d is the interval parameter. Then,

AdvvilprfPC-MACd[EK ,L|GU ](q, t, ρ) ≤ AdvprpEK
(ρq+c, t′)+

2.5(ρq + c)2

2n
+(dεdp+εsdp)

q2

2
,

where t′ = t + O(ρq), and εdp = MEDP(GU ), and εsdp = MESDP(GU ).

The proof of Theorem 2 is in Appendix C.

Security Parameter. In Theorem 2, we used ρ instead of σ, although using σ
is generally more preferable than using ρ (see discussion in [15]). If we are forced
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Fig. 4. The simplified 4-round AES. Each Ki is independent and random.

to use σ, the bound of a PC-MAC’s CPA-advantage would be O(σ2q2/2n), which
seems a bit too loose. It would be nice if we could obtain a smaller bound for
the collision probability to obtain a tight security analysis using σ.

Key Length. The PC-MAC uses two keys, the first for the block cipher and
the second to make the block cipher tweakable. It is natural to ask whether this
can be reduced to one block cipher key without introducing another block cipher
keyscheduling. For example, is it secure to let L = EK(0), just like in the OMAC
or MT-MAC? Unfortunately, we do not have a clear answer for now, but at least
we found a counterexample if some generalization was applied to the PC-MAC1.
Nevertheless, we think that a small change can provide a one-key version of the
PC-MAC. This is still a problem that needs to be solved.

6 AES-Based Implementation

In this section, we consider the implementation of our MACs using AES. As
mentioned earlier, the 4-round AES with independent round keys has MEDP
2−113 [18]. Also, MESDP is exactly 2−128, since the 4-round AES contains an
independent key-addition layer (see end of Sect. 4.2). Here, the addition of the
first round key and the last diffusion layer can be omitted, since they do not
affect the differential and self-differential probabilities. Let us denote the sim-
plified 4-round AES in Fig. 4 by 4rAES. If our MACs are implemented with
AES and 4rAES, then the securities of the resulting MT-MAC and PC-MAC
can be proved by Theorems 1 and 2 with n = 128, |U| = 384, εdp = 2−113, and
εsdp = 2−128.

Some Comparisons. Compared with the previous MAC modes of AES, for
example OMAC-AES, our AES-based MACs are faster (MT-MAC is about 2.5
times faster, and PC-MAC is about 1.4 to 2.5 times faster, depending on the
interval). Both use the AES encryption, and do not require the AES decryption.
Their program sizes are almost the same. Both provide stateless (i.e., no counter

1 For example, even if L · u is substituted with inv(L ⊕ u) (note that inv is defined in
Ex. 1), OMAC will still be secure, as it satisfies the condition for the “OMAC-family”
(see [16] for details). However, if L = EK(0), and the AXP is the inv permutation,
and the above substitution is applied to the PC-MAC with interval 1, then the tag
for the 3-block input (0, u, x2) is EK(x2) for any x2, i.e., direct access to EK is
possible. This means the complete break of the MAC.
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Table 1. Summary of AES-based MACs. ”Rounds” denotes average AES rounds to
process one message block, and ”Preproc.” denotes AES encryption blocks needed in
preprocessing.

MAC Max.Message Length Rounds Preproc. Key size Type
MT-MACb[AES|4rAES] n2b 4 4b + 1 128 Tree

PC-MACd[AES, L|4rAES] Infinite 4 + 6
d+1 4d − 1 256 Iterative

OMAC-AES Infinite 10 1 128 Iterative

or nonce is used) provably secure VIL-MACs. The computational assumptions
we need are the same (i.e., the pseudorandomness of the AES). Drawbacks of
our MACs are the amount of preprocessing and slightly-degraded security: many
CBC-MAC variants have 64-bit security, i.e., they are secure if q (or σ, ρ) # 264,
while ours have about 56-bit security. We have summarized the properties of our
AES-based MACs below. For comparison, the OMAC-AES is also shown. Table 1
shows only average speed estimates for long messages. However, our MACs are
at least as fast as OMAC-AES for any short messages, since the AES rounds
needed by our MACs are no more than 10 ·m, when the input is m-block and
this holds for all m ≥ 1.

It may be rather difficult to perform a rigorous comparison between our MACs
and the state-of-art CW-MACs, such as UMAC [19], (the MAC part of ) GCM
[24], and Poly1305 [7], as they use customized functions that can not be derived
from AES. For example, CW-MACs are roughly 3 to 5 (or more) times faster than
the MAC modes using the optimized AES on software (e.g., see [3]). Therefore
our MACs may not be as fast as them on software. Also, some CW-MACs
have much shorter keyscheduling time than ours. However, ours can be easily
implemented for any platform where an implementation of AES is available.
There are many studies on efficient AES implementations for various software
and hardware (e.g., see [1]), and we can directly benefit from them. For other
comparison items, both provide provably secure VIL-MACs (some CW-MACs
are stateful) based on the pseudorandomness of the AES.

The Pelican MAC [12] is an instantiation of the ALRED using AES and its 4-
round with all zero round keys. It is similar (but not identical) to the PC-MAC.
This is not surprising because the ALRED and the PC-MAC share the same
motivation. The Pelican MAC is about 2.5 times faster than the CBC-MAC,
thus almost the same speed as that of the MT-MAC or PC-MAC with a long

Table 2. Comparison of AES-based MAC speed on software

MAC Tag computation (cycle/byte) Preprocessing (cycles)
MT-MAC (b = 32) 12.5 53777 (estimate)
PC-MAC (d = 1) 18.5 1651
PC-MAC (d = 5) 14.4 8311
PC-MAC (d = 17) 13.1 28444
OMAC 25.1 821
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interval. Compared to our MACs, the Pelican MAC’s preprocessing time is very
short (only one block encryption). From the preliminary analysis of the ALRED
construction [11], the Pelican MAC’s security was proved against attacks that
did not invoke internal collisions. In addition, no attack better than the brute
force search has not been found for the moment. However, it is still unclear
whether the Pelican MAC is a provably secure (i.e., secure against all attacks)
VIL-MAC based on the pseudorandomness of the AES.

These comparisons are rough and might be insufficient. As a future work item,
we want to do a more comprehensive and quantitative comparison to clarify the
effectiveness of our approach.

Implementations. We also implemented our AES-based MACs on software. We
used the public-domain C code written by Rijmen et al.[2]. Our implementation
was naive and almost no optimization was performed. We did a speed comparison
on a Pentium III 1Ghz, where raw AES encryption ran at about 25 cycle/byte.
We can see from Table 2 that our MACs did not achieve the theoretical limit (i.e.,
2.5 times faster than OMAC-AES). This is because some overhead was involved
in both AES and 4rAES, such as byte/word conversion. The effect overhead has
may change according to the platform and AES implementation.
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A Proof of Lemma 4

We assumed that LCP was not empty and llcp < l (i.e., Yllcp+1 and Y ′
llcp+1 exist).

If we fix Kaux to kaux, then the operation that accepts Zi and outputs Yi+1 (i.e.,
Ch[G⊕]) is a deterministic n-bit permutation defined by kaux and some d + 1
input blocks. It is not hard to see that Pr(Dlcp|Kaux = kaux) is exactly the same
as the output collision probability of the OFB mode of R, for all kaux ∈ Kaux
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and inputs. Then, Eq. (6) follows from this observation and a simple collision
analysis. Next, let us prove Eq. (7). Consider the following collision events. (I):
Yllcp+1 = Y ′

llcp+1 and (II):Yllcp+1 = Yi, Y
′
llcp+1 = Yi for i = 1, . . . , llcp. Here,

Yllcp+1 and Y ′
llcp+1 are two outputs of Ch[G⊕|Zllcp ] with different inputs. Since

Zllcp is independent and uniformly random if Dlcp is given, we can use Eq. (5)
and obtain Pr(Yllcp+1 = Y ′

llcp+1|Dlcp) ≤ dεdp. Moreover, Pr(Yllcp+1 = Yi|Dlcp)
(or Pr(Y ′

llcp+1 = Yi|Dlcp)) is 1/2n for i = 1, . . . , llcp, since Yllcp+1 and Y ′
llcp+1 are

permutations of Zllcp . If no collision events of types (I) and (II) have occurred,
Zllcp+1 and Z ′

llcp+1 are independent and completely random, no matter what
Kaux is. This implies that other collision events consisting of D|Dlcp occur with
probability 1/2n. Consequently, all collision events consisting of D|Dlcp occur
with probability 1/2n except for the event Yllcp+1 = Y ′

llcp+1. By counting these
events and using Eq. (6), we have

Pr(D) ≤ Pr(Dlcp) + Pr(D|Dlcp),

≤ llcp
2

2n+1 + dεdp +
1
2n

((
l + l′ − llcp

2

)
−
(

llcp
2

)
− 1
)
≤ dεdp +

(l + l′)2

2n+1 .

For other cases (e.g., the LCP is empty or llcp = l), the above bound also holds
true. This proves Eq. (7).

B Proof of Theorem 1

Let Q be CW3[MTHH, R, R′], where H̃ = (H̃1, H̃2, . . . , H̃b) consists of H̃i =
APAKi,GUi

and {Ũi, K̃i}i=1,...,b are independent of each other, and R, R′ are

independent n-bit URFs. From Lemmas 2 and 5, we have

AdvvilprfQ (q, σ) ≤ εdp · qσ ≤ εdpσ2. (11)

Then, we use the following lemma.

Lemma 6. Let R be an n-bit URF. Let TE1 : Σn×Σ → Σn, where TE1(x, 0) =
R⊕L·u(x) and TE1(x, 1) = R⊕L·u2(x) for L = R(0). Consider the following two
games, Gm1 and Gm2. In Gm1, one can access TE1 and R(c1), R(c2), . . . , R(ca)
where c1, c2, . . . , ca are distinct and fixed constants and ci �= 0 for all i. In Gm2,
one can access the URF: Σn×Σ → Σn and a (an)-bit independent and random
sequence. Then, AdvcpaGm1,Gm2(q)

2 is at most q2

2n+1 + (a+1)q
2n .

Proof. (Sketch) Let Si be the i-th input to R in Gm1, i.e., Si equals xi⊕L·u if the
i-th query is (xi, 0) and xi⊕L ·u2 if the i-th query is (xi, 1). Let ai be the event
that S1, S2, . . . , Si are distinct and Sj �∈ {0, c1, . . . , ca} for j = 1, . . . , i. Then,
using the methodology of Maurer [23], AdvcpaGm1,Gm2(q) is at most the probability

2 This should be interpreted as the maximum CPA-advantage in distinguishing two
games using q queries with no computational restriction, where a query is in Σn ×Σ.
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of aq for all (both adaptive and non-adaptive) adversaries using q queries when
Gm1 is considered. All collision events consisting of aq have probability 1/2n or
0. By counting the number of collision events and using the union bound, we
conclude the proof.

From Lemma 6, we have AdvcpaQ,MT-MACb[R|GU ](q, σ) ≤ σ2

2n+1 + (c+1)σ
2n . From this

observation and Eq. (11), we have

AdvvilprfMT-MACb[R|GU ](q, σ) ≤ AdvcpaQ,MT-MACb[R|GU ](q, σ)+ εdpσ
2 +

σ2

2n+1 +
(c + 1)σ

2n
.

(12)
Distinguishing MT-MACb[R|GU ] from MT-MACb[EK |GU ] with (q, t, σ) implies
distinguishing R from EK with σ + c queries and t′ = t+O(σ) time. Combining
this observation and Eq. (12) and the standard PRF/PRP switching lemma (e.g.,
see Lemma 1 of [8]) proves the theorem.

C Proof of Theorem 2

Let Q be CW3[PCHd[R,G], R′, R′′] where three n-bit URFs R, R′, and R′′ are
independent and the auxiliary key Kaux is generated by the counter mode of
another URF, R′′′, i.e., Kaux ∈U Kaux. Combining Lemmas 5 and 3, we have

AdvvilprfQ (q, ρ) ≤ max
q,m1,...,mq,ms≤ρ

∑
1≤i<j≤q

dεdp + εsdp +
(& mi

d+1'+ & mj

d+1')2 + 2
2n+1

≤
(

dεdp + εsdp +
2ρ2 + 1

2n

)
q2

2
. (13)

Then, the following lemma is used. It is similar to Lemma 4.1 of [15].

Lemma 7. Let R be the n-bit URF. Consider the following two games, Gm1 and
Gm2. In Gm1, one can access TE2 : Σn × {0, 1, 2, 3} → Σn where TE2(x, 0) =
R(x), and TE2(x, i) = R⊕L·u(i−1)

(x) for i = 1, 2, 3, and L ∈U Σn. In Gm2, one
can access the URF compatible with TE2. Then, AdvcpaGm1,Gm2(q) is at most q2

2n+1 .

As the proof of Lemma 7 is a simple extension of the proof of Lemma 6, we have
omitted it here. Note that PC-MACd[R, L|GU ] invokes R at most ρq + c times.
From this observation and Lemma 7, it is clear that AdvcpaPC-MACd[R,L|GU ],Q(q, ρ)

is at most (c+ρq)2

2n+1 . From this and Eq. (13), we have

AdvvilprfPC-MACd[R,L|GU ](q, ρ) ≤ (c + ρq)2

2n+1 +
(

dεdp + εsdp +
2ρ2 + 1

2n

)
q2

2
, and

AdvvilprfPC-MACd[EK ,L|GU ](q, t, ρ) ≤ AdvprfEK
(ρq + c, t′) + AdvvilprfPC-MACd[R,L|GU ](q, ρ)

(14)

where t′ = t + O(ρq). Combining Eq. (14) with the PRF/PRP switching lemma
concludes the proof.
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Abstract. The ground-breaking results of Wang et al. have attracted
a lot of attention to the collision resistance of hash functions. In their
articles, Wang et al. give input differences, differential paths and the
corresponding conditions that allow to find collisions with a high proba-
bility. However, Wang et al. do not explain how these paths were found.
The common assumption is that they were found by hand with a great
deal of intuition.

In this article, we present an algorithm that allows to find paths in
an automated way. Our algorithm is successful for MD4. We have found
over 1000 differential paths so far. Amongst them, there are paths that
have fewer conditions in the second round than the path of Wang et al.
for MD4. This makes them better suited for the message modification
techniques that were also introduced by Wang et al.

Keywords: collision search, differential path, MD4.

1 Introduction

The cryptanalysis of hash functions has become a hot topic within the cryp-
tographic community over the last two years. Especially the ground breaking
results of Wang et al. have drawn significant attention towards the security
claims that were made for commonly used hash functions.

During the last two years, most hash functions have succumbed to the attacks
of Wang et al. At first, the hash functions MD4 (as well as RIPEMD) and MD5
were analyzed by Wang et al. in [WLF+05] and [WY05]. Based on the techniques
that have been introduced in these two papers, more advanced attacks on SHA-0
and SHA-1 have been published some time later in [WYY05b] and [WYY05a].
In all articles published by Wang et al. so far, only little details about the way in
which the differences and the conditions were determined, have been published.
Except for the article of Hawkes et al. [HPR04] that provides some musings on
the techniques used for MD5, the PhD thesis of Magnus Daum [Dau05] and an
ECRYPT deliverable [ABB+05] that both provide some high level discussions
of the techniques of Wang et al., we are not aware of any other article that
gives insights into the techniques of Wang et al. In particular, there exist, to
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our knowledge, no insights about the techniques that Wang et al. used to find
so-called differential paths, i.e. to find the specific sequence of differences over a
given number of steps that produces a local collision.

It is therefore easy to motivate and to explain the aim of the research that
we present in this paper. We have tried to come up with an algorithm that
finds differential paths in an automated way. As target for our path-searching-
algorithm we picked MD4. The reason for choosing MD4 is also easily motivated;
it is the simplest of the well known hashing algorithms and it is the basis for
many other algorithms such as MD5, RIPEMD, SHA-0 and SHA-1.

Our algorithm is successful: given a difference for the input message it com-
putes differential paths for MD4 in an automated way. Among the differential
paths that we have found so far, there are paths that are even slightly better
than the path that Wang et al. reported in their original article. Our path has
less conditions in the second round.

This article is organized as follows. In Sect. 2 we briefly review the attack
by Wang et al. on MD4. In Sect. 3, we introduce the notation that we use to
describe our algorithm. In Sect. 4, we explain our algorithm and in Sect. 5, we
report on the results that we have obtained with it. We conclude this article in
Sect. 6. There are several appendices to this article. They give more information
about our algorithm and the best path that we found with it.

2 The Wang et al. Approach

In this section we outline the approach by Wang et al. based on the example of
the MD4 hash function. We first review the working principle of MD4 and then
we focus on the attack of Wang et al.

2.1 The MD4 Hash Function

The MD4 algorithm hashes an input of arbitrary length to a 128-bit value. The
algorithm proceeds as follows. The input message M is modified by a specific
padding rule to a message with a length that is a multiple of 512. Then, the
padded message is subjected to the MD4 compression function. The compression
function consists of three rounds having 16 steps each. Each round uses a different
Boolean function fi: in the first round it is the IF function, in the second round
it is the MAJ (majority) function and in the third round it is the XOR function.

In every step in MD4, a 32-bit variable ri is updated according to the rule
given in (1). Later in this article, we use the notation that the j-th bit of ri

is denoted by ri,j . In (1), the operator + denotes the addition modulo 232 and

Table 1. The order of message words in MD4

i wi

0. . . 15 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
16. . . 31 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15
32. . . 47 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
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the operator ≪ si denotes a circular left shift (rotation) by si positions. The
variable mwi defines a message word and the variable ki defines a round constant.
The order of accessing the message words is given in Tab.1.

ri = (ri-4 + fi(ri-1, ri-2, ri-3) + mwi + ki) ≪ si, 0 ≤ i ≤ 47. (1)

The number of bit positions si in a rotation is either {3, 7, 11, 19} in the first
round, {3, 5, 9, 13} in the second round, or it is {3, 9, 11, 15} in the third round.
The initial values are in hexadecimal notation:

(r-4, r-3, r-2, r-1) = (0x67452301, 0x10325476, 0x98badcfe, 0xefcdab89)

These initial values are used to initialize the four 32-bit chaining variables
(A, B, C, D). After 48 steps, the values (r44, r45, r46, r47) are added to the chain-
ing variables (A, B, C, D). If all message blocks have been processed, then the
hash value of the input message is determined by the concatenation of the four
chaining variables.

2.2 Selecting an Input Difference

In the first step of the Wang et al. attack, one determines the difference Δ
between the two input messages M and M ′ (i.e. the input difference). In contrast
to Dobbertin’s attack [Dob98] on MD4, Wang et al. do not aim on producing one
local collision within MD4 but two. The idea is to have one local collision in the
third round that is easily fulfilled and to have another local collision over some
steps in the first two rounds. The local collision in the third round determines
the input difference (see [Sch06] for further details).

Differential Properties of the XOR Function. There are two simple ob-
servations that are the foundation for producing the local collision in the third
round in the Wang et al. attack. The first observation is that an input differ-
ence of 231 (mod 232) implies that only the 31st bit in the message words differ.
The second observation is that if two input values of the XOR function have a
difference of 231, then this difference is canceled.

Differential Properties of the Update Rule in the Third Round. In the
third round of MD4, the function fi in the update rule (1) is the XOR function.
We look at step i and assume hereby that there are no differences in the four
previous steps. Choosing the message difference to be 231−si in step i, causes
the difference after the i-th step to be 231. In the (i + 1)-st step, the difference
of 231 propagates through the XOR function. In order to cancel it, we choose
the difference of mwi+1 to be 231 (also −231 would work). Because the difference
from the i-th step also goes into the XOR function in the (i + 2)-nd step, it
is clever to set the difference of mwi+1 to be 231 + 231−si+1 . In this way we
cancel the 231 difference in the (i + 1)-st step and insert a +231−si+1 difference
that becomes a 231 difference after the rotation by si+1 bit positions. In the
(i + 2)-nd step, we have on two inputs of the XOR function a difference of 231,
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Table 2. Propagation of differences in the third round of MD4 according to the update
rule ri = (ri-4 + XOR(ri-3, ri-2, ri-1) + mwi + ki) ≪ si

Step Δri-4 Δri-3 Δri-2 Δri-1 Δri Δmwi

i 0 0 0 0 231 231−si

i+1 0 0 0 231 231 231 + 231−si

i+2 0 0 231 231 0 0
i+3 0 231 231 0 0 0
i+4 231 231 0 0 0 0
i+5 231 0 0 0 0 231

i+6 0 0 0 0 0 0

which cancel each other. Hence, the difference after the (i + 2)-nd step is zero.
The same argument holds for step i + 3. In step i + 4, the input ri+1 of the
XOR function has difference 231, hence it propagates and gets canceled by ri in
the addition. Consequently, in the (i + 5)-th step, there is the 231 difference in
ri+1 value that needs to be canceled. This can be done by inserting the same
difference in mwi+5 . This differential behavior is summarized in Tab. 2. One can
choose the starting step i for this local collision. The choice of i determines in
which message words the differences are introduced. This in turn determines the
length of the differential path that describes the local collision over the steps
in the first two rounds. We can also choose the sign of the differences. The
choice i = 35 leads to Δm1 = 231, Δm2 = 231 + 228 and Δm12 = 216. As
indicated before, we may choose other signs for the differences: the differences
Δm1 = 231, Δm2 = 231− 228 and Δm12 = −216 also lead to a local collision. In
our experiments, this particular choice of i turned out to be the best choice.

2.3 Finding a Differential Path

The second crucial step is to find a so-called differential path that cancels the
differences between steps 1 and 24. In the articles of Wang et al. such paths
were given. However, no insight was provided how these paths were found. It
is therefore assumed that the paths were found by hand. This means, that a
great deal of intuition by the researchers was needed to determine the paths.
The main contribution of this article is the automated search algorithm, which
is described in Sect. 4.

2.4 Message Modification

The result of the second step is a differential path and the conditions on the inter-
mediate values that are needed to fulfill the path. These conditions can be trans-
lated into equations for the message words that allow to pre-fulfill the conditions.
In the third and last step of the attack, one applies different message modification
techniques to the message in order to pre-fulfill as many conditions as possible.

Different message modification techniques were introduced by Wang et al.
There is the single-step message modification technique, which allows to
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pre-fulfill all conditions that occur in the first round. The second technique is the
multi-step message modification and allows to pre-fulfill some conditions in the
second round. Other ideas for message modification techniques are the so-called
advanced multi-step message modification techniques [WLF+05] and techniques
that have been mentioned in [ABB+05]. The number of conditions that cannot
be pre-fulfilled determines the overall complexity of the attack.

The main difference between the single-step and the multi-step message mod-
ifications is that the singe-step modifications always succeed. This means that
all conditions that occur in the first round can be pre-fulfilled whereas this is
not the case for the conditions in the second round. Consequently, it is desirable
for a path search algorithm to look for paths that have most conditions in the
first round of MD4.

3 Notation

This section details the notation that we will use in the remainder of this article.
Furthermore we discuss the carry expansion of signed differences and the differ-
ential properties of the functions IF and MAJ. The input messages are denoted
by M = (m0, m1, ..., m15) and M ′ = (m′

0, m
′
1, ..., m

′
15). The intermediate steps

in MD4 are computed according to (1) and the results are typically represented
by the variable ri.

3.1 Signed Differences

We follow the idea by Wang et al. and use signed differences. Because we only
use signed differences, we will often refer to them simply as differences.

Definition 1. The signed difference Δx between two 32-bit words x and x′ is
defined bitwise by

Δx = x′ − x = (δx31, ..., δx0) with δxj = x′
j − xj ∈ {-1, 0, 1}, 0 ≤ j ≤ 31

We use the following abbreviation for Δx:

Δx = Δ[d1, d2, ..., dw] where di =

{
-j if δxj = -1
j if δxj = 1

Definition 2. For a given difference Δ[d1, d2, . . . , dw], the value |di| defines a
bit position. The value w is the Hamming weight of the difference. The value Δ[]
denotes the zero difference.

A nonzero difference Δx = x′ − x already determines the values of the corre-
sponding bits in x (and therefore in x′):

Δx = Δ[d1, d2, ..., dw] ⇒ x|di| =

{
0 if sign(di) = 1
1 if sign(di) = -1

The difference Δx also imposes conditions on the value x.
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Example 1. The difference Δx can be represented as follows:

Δx =x′ − x = Δ[-27, 15, -3]
=(0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0),

and it implies that x27 = 1, x15 = 0, x3 = 1 and x′
27 = 0, x′

15 = 1, x′
3 = 0.

Remark. Because we use signed bit differences in our differential analysis, we
need to be able to add and rotate signed bit differences throughout each step. For
a detailed definition of these operations see [Dau05] or [Sch06]. We only provide
one simple case and one example here.

Lemma 1. When adding two signed bit differences Δx = Δ[dx1] and Δy =
Δ[dy1] with hamming weight 1 the following four cases can occur:

Δ[dx1] + Δ[dy1] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ[] if dx1 = -dy1

Δ[dx1 + 1] if dx1 = dy1 and sign(dx1) = 1
Δ[-(|dx1|+ 1)] if dx1 = dy1 and sign(dx1) = -1

Δ[dx1, dy1] otherwise

A difference at position 32 is always discarded. When adding signed bit differ-
ences with Hamming weight w > 1 a signed carry effect may occur. To rotate a
signed bit difference Δx = Δ[dx1, dx2, ..., dxw] each element is rotated as follows:

Δ[dxi] ≪ s = Δ[dyi] where dyi =

{
dxi + s mod 32 if sign(dxi) = 1

-(|dxi|+ s mod 32) if sign(dxi) = -1

Example 2. We look at the sum of Δx = Δ[31, 27, 16, 15, 4] and of Δy =
Δ[31, -27, 15, -3]. Carries at positions 15, 16 and 31 occur. The carry that comes
from position 31 is discarded.

Δx + Δy = Δ[31, 27, 16, 15, 4] + Δ[31, -27, 15, -3] = Δ[17, 4, -3]
Δx ≪ s = Δ[31, -27, 15, -3] ≪ 5 = Δ[20, -8, 4, -0]

3.2 Carry Expansion of Signed Differences

Because the representation of signed differences is redundant, every (nonzero)
element di of a signed difference can be expanded as described in the following.
Note that differences at position 32 are discarded.

Δ[d1, ..., di, ..., dw] =

{
Δ[d1, ..., -di, ..., dw] + Δ[di + 1] if sign(di) = 1

Δ[d1, ..., -di, ..., dw] + Δ[-(|di|+ 1)] if sign(di) = -1

This step can be applied recursively on the resulting signed difference, and on the
previous signed difference but for a different bit position. We call the number of
expansion steps for each element di additional carries. A specific representation
is achieved by imposing conditions on the difference.
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Example 3. In this example the difference Δx = Δ[-11, 9] is expanded, where
the maximum number of expansion steps performed in each recursion branch,
and thus the number of additional carries, is 2 and where the expanded element
is marked with

←−
di :

Δx → Δ[-11,
←−
9 ] → Δ[-11,

←−
10, -9] → Δ[-10, -9]

→ Δ[-
←−
11, 10, -9] → Δ[-12, 11, 10, -9]

→ Δ[-
←−
11, 9] → Δ[-

←−
12, 11, 9] → Δ[-13, 12, 11, 9]

→ Δ[-12,
←−
11, 9] → Δ[-12, 11, 10, -9]

Hence, all representations for Δx with a maximum carry expansion of two, sorted
by their Hamming weight, are:

Δx = Δ[-11, 9] = Δ[-10, -9]
= Δ[-11, 10, -9] = Δ[-12, 11, 9]
= Δ[-12, 11, 10, -9] = Δ[-13, 12, 11, 9]

An expanded signed difference can be reduced to an equivalent difference with
minimum weight again. However, this is not true if the difference is rotated
between expansion and reduction.

Example 4. This example shows that the weight of an expanded difference can-
not be reduced to a difference with equal weight, if the expanded part is rotated
over position 31:

Δ[12] ≪ 19 = Δ[13, -12] ≪ 19 = Δ[-31, 0] �= Δ[31] = Δ[12] ≪ 19

3.3 Properties of the Functions IF and MAJ

In this section we discuss the propagation of signed differences through the
functions IF and MAJ. In order to control the propagation of differences through
these functions, we need to impose conditions on the input values. Table 5 (see
App. A) shows all cases and conditions that allow to achieve a specific output
difference of these functions.

For the IF function, the majority of input cases can be manipulated. However,
consecutive ones in the input differences have to be avoided if a zero output
difference is desired. For the MAJ function, we can only influence the output
difference if the number of input differences is exactly one. Table 5 shows that
the input difference of the IF function can be flipped if δx is not zero. Therefore,
it can be assumed that in the first two rounds a zero output difference is possible
by imposing conditions in most cases.

4 Our Algorithm for the Differential-Path Search

In Sect. 2.2, we have selected the input difference ΔM as Δm1 = 231 = Δ[31],
Δm2 = 231 − 228 = Δ[31, -28] and Δm12 = -216 = Δ[-16]. These differences
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are introduced in steps 1, 2 and 12 of round one and in steps 19, 20 and 24 of
round two. Thus, in order to derive a differential path for MD4, the differences
between step 0 and 24 have to cancel each other. The complexity of a brute-force
search through all possible paths is too high. To reduce the search space of our
algorithm, we have tried to avoid any uncontrolled propagation of differences
through the function fi (see Sect. 3.3) or by carry propagation (see Sect. 3.2). In
order to reduce the resulting number of conditions, low weight signed differences
are used by default.

The algorithm consists of three major parts which are the target differences
computation (see Sect. 4.1), the cancelation search (see Sect. 4.2), and the cor-
rection step (see Sect. 4.3). An overview of the algorithm is given in Fig. 4 (see
App. B).

In the first part, the target output difference for the function fi is determined
for every step. Therefore, the message differences are computed backward and
forward to derive the so-called correction and disturbance differences. They are
then combined to define the target differences.

During the cancelation search, all variations of the elements of the target
differences are considered. Note, that this is done for every step of MD4. The
elements of the target differences need to be canceled by using the properties of
the function fi. To achieve an output difference for fi at a specific bit position,
the input differences Δri-1, Δri-2 and Δri-3 need to be expanded. Finally, the
conditions for each step are derived.

In the correction step, impossible output differences are resolved without
searching for a new differential path first. If some contradictions cannot be cor-
rected, additional differences are added to the target differences. These distur-
bance differences, which we typically derived by hand, distribute the conditions
such that a new differential path without contradictions can be found.

4.1 Target Differences Computation

The goal of an algorithm for finding a differential path is to cancel out all differ-
ences that are introduced by the message words. Because one of the four state
variables is updated in one step, a message difference can be canceled every
fourth step. Hence, a message difference introduced in step i can be canceled by
introducing an opposite difference in all steps (i± 4k). To know where to intro-
duce a difference and to determine its position and sign, the message differences
are compute backward and forward (see Fig. 1 left). To reduce the complexity,
no propagation through the function fi or by a carry expansion is considered
while deriving the target differences.

Disturbance Differences. Δdi are simply derived by forward computing the
message differences:

Δdi = Δdi−4 ≪ si−4 + Δmwi

with i := {0, 1, ..., 24} and Δd-4 = Δd-3 = Δd-2 = Δd-1 = 0
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Fig. 1. Left: Forward and backward computation of the message differences to get a
target difference for each step. Right: Fulfilling the target difference using the input
differences of the function fi.

Correction Differences. Δci are backward computed message differences. Us-
ing the correction differences it can be determined where to introduce a differ-
ence, which in turn can cancel a message difference in a subsequent step:

Δci = (Δci+4 + Δmwi+4) ≫ si

with i := {20, 19, ..., 0} and Δc24 = Δc23 = Δc22 = Δc21 = 0

Target differences are the merged correction and disturbance differences of
each step. A target difference Δti in step i is the target output difference of the
function fi. This difference is known to cancel a message difference in a previous
or later step. The target differences are defined by the sum of the disturbance
and correction differences (2). Table 6 shows the target differences of steps 0−24.

Δti = −(Δdi + Δci) (2)

4.2 Cancelation Search

In this section we describe how to find candidates for differential paths. The
main concept is to cancel the target differences in each step using the function
fi. The search is performed recursively over all steps i = {0, ..., 24}. In order to
cancel an element of the target difference we use carry expansions.

Variation of Target Difference Elements. It is not known in advance which
elements of the target differences should be canceled in what step. Therefore, in
every step i all variations of the elements of the target difference Δti have to be
considered. These variations are simply called target variations in the remainder.
If the target difference Δti has Hamming weight w then there are 2w possibilities
to cancel elements of the target difference (see Tab. 3).
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Carry Expansions. The target variations need to be canceled by the function
fi (see Fig. 1 right). A non-zero output difference of the function fi is only
possible, if a non-zero input difference at the same bit position is available. This
is usually not the case. Therefore, the input differences of the function fi are
expanded. Note, that there are again many possibilities to achieve a specific bit
position. Each element of the target variation could be canceled by any carry
expansion of any input difference of fi (see Tab. 3). To limit the complexity
of the search algorithm, a predefined maximum length for each of the carry
expansions (usually 3) is used. Besides limiting the search space, low weight
differences reduce the number of conditions as well.

Table 3. This table shows all target variations of Δti = Δ[-29, 20, -17] and all carry
expansions of Δri-1 = Δ[19, -17], Δri-2 = Δ[16] and Δri-3 = Δ[14, -7] with a maximum
length of 2. Each target variation may be canceled by any carry expansion of these
inputs of fi(ri-1, ri-2, ri-3).

Δti Δri-1 Δri-2 Δri-3
Δ[-29, 20, -17] Δ[19, -17] Δ[16] Δ[14, -7]
Δ[-29, 20 ] Δ[18, 17] Δ[17, -16] Δ[15, -14, -7]
Δ[-29, -17] Δ[20, -19, -17] Δ[18, -17, -16] Δ[14, -8, 7]
Δ[-29 ] Δ[19, -18, 17] Δ[15, -14, -8, 7]
Δ[ 20, -17] Δ[20, -19, -18, 17] Δ[16, -15, -14, -7]
Δ[ 20 ] Δ[21, -20, -19, -17] Δ[14, -9, 8, 7]
Δ[ -17]
Δ[ ]

Cancel Possibilities. In this step it is determined which target variation can
be achieved by which carry expansion. To achieve one specific target variation,
all combinations of the inputs Δri-1, Δri-2 and Δri-3 of fi can be tried. How-
ever, a target variation can only be met by an input difference, if they share at
least the same bit positions. Because most inputs of fi cannot meet this require-
ment anyway, the search space can be significantly reduced by considering only
combinations that are possible using this principle.

In every step i of the hash function, we first start with the difference Δri-1 of
fi and try to meet all target variations by carry expanding Δri-1. Some targets
will not be met at all, whereas others can be met with several expansions of
Δri-1 (see Ex. 5). Note, that it cannot be determined whether a specific output
difference of the function fi is indeed possible until all of its inputs are fixed.
Therefore, it is first assumed that the desired target can be canceled and verified
in a later step. The input difference with the lowest weight is used by default.

Example 5. This example shows all cancel possibilities for all variations of the
target difference Δti = Δ[-29, 20, -17]. In this example the expansions of the
input ri-1 = Δ[19, -17] are considered. A target variation containing a difference
at position 29 cannot be achieved by any input difference listed, whereas the zero
target variation can be achieved by all input differences.
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Δri−1 = Δ[19, -17] = Δ[18, 17] = Δ[20, -19, -17] = Δ[19, -18, 17]
= Δ[21, -20, -19, -17] = Δ[20, -19, -18, 17]

Δti = Δ[-29, 20, -17] =⇒ not possible
Δti = Δ[-29, 20 ] =⇒ not possible
Δti = Δ[-29, -17] =⇒ not possible
Δti = Δ[-29 ] =⇒ not possible
Δti = Δ[ 20, -17] =⇒ Δ[20, -19, -17]
Δti = Δ[ 20 ] =⇒ Δ[20, -19, -17], Δ[20, -19, -18, 17]
Δti = Δ[ -17] =⇒ Δ[19, -17], Δ[20, -19, -17], Δ[21, -20, -19, -17]
Δti = Δ[ ] =⇒ all expansions of Δri−1

Already canceled elements of a target difference are removed from the target
and the remaining elements are canceled in a later step. All possible target
variations are examined recursively. Thus, the message differences are tried to
be canceled in all steps i± 4k. After having processed Δri-1, we continue with
Δri-2 and Δri-3. Note, that Δri-2 and Δri-3 may have already been used to
cancel a previous target. Further expansions are only possible if they do not
contradict these cancelations. For example, the expansion Δ[18, 17] → Δ[19, -17]
is not possible if Δ[18] has already been used to cancel a target in a previous
step.

Deriving the Conditions. The used carry expansions of the input differences
finally determine the conditions. Only after we have fixed all three input dif-
ferences of fi, we can determine whether a certain output difference is really
possible. This is often not the case. However, one of the other cancel possibilities
can be tried. In addition, in many cases a previously set condition can contradict
with a newly set condition and further expansions need to be tried.

After examining all possible expansions there are usually some contradictions
left. A path with at least one contradiction is called an impossible path. To reduce
the complexity, the search in a branch with too many contradictions is aborted.
The result of the cancelation search are a number of paths from step 0 to step 24
that have a zero differences in step 24, but may still have a few contradictions.

4.3 Correction Step

In the correction step, contradictions within impossible paths are corrected. In
such impossible paths a specific target difference cannot be met in some step or
a zero output difference of the function fi cannot be achieved. As a consequence,
these additional (disturbance) differences induced by the contradictions need to
be canceled in some other step.

Correction by Solving Contradictions. To cancel these additional distur-
bances, they are computed forward and backward through the already deter-
mined differential path. As we only need to correct a few new disturbances,
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0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1  .  .  .  .  .  .
1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1  .  . -1 0  .  .  .  .  .  .
2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0  .  . 0  .  . 1 0  .  .  .  .  .  .
3  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0  .  . 1  .  . 0 1  .  .  .  .  .  .
4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1 -1 -1 0  .  . 1  .  . 1  .  .  .  .  .  .  .
5  .  .  .  .  .  .  .  .  .  . -1  .  . -1  . 0 1 1 1  .  .  .  .  .  .  .  .  .  .  .  .  .
6  .  .  .  .  .  .  .  .  .  . 0  .  . 1  . 0 0 0 0  .  .  .  .  .  .  .  .  .  .  .  .  .
7  .  .  .  .  .  .  .  .  .  . 0  . -1 0  . 0 1 1  .  .  .  .  .  .  .  .  .  .  .  .  .
8  .  .  .  .  .  .  . -1 -1 -1 1 -1 0 1  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
9  .  . -1  .  .  .  . 0 1 1 1 1 0  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

10  .  . 1  .  .  .  . 0 0 0 0 0 1  .  . 1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
11  .  . 0  .  . -1 -1 0 1 0 1 1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
12  .  . 1 -1 -1 1 0  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
13  .  . 0 1 1 0 0  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
14  .  . 1 0 0 1 1  .  . 1  .  .  .  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
15 -1  . -1 -1 -1 -1 -1  .  .  .  .  .  .  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
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19 -1  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
20 1  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
21 -2  .  . -2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
22 -1  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
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Fig. 2. This figure shows the conditions for a specific differential path. Most differences
are rotated with low values. Thus, conditions do not spread (different shades show
different rotation values) and so contradictions are more likely to occur although the
number of conditions, which is 119, is small. A value of c = 0 or c = 1 requires ri,j = c
for a specific bit j and step i. A negative value c or c requires the respective bit to be
ri,j = ri-|c|,j or ri,j �= ri-|c|,j . The entry marked by # denotes a contradiction.

longer carry expansions can be allowed. However, this does not always work be-
cause further contradictions may occur which are even harder to resolve. The
reason is, that in the case of MD4 the conditions and differences stick together
throughout the whole differential path (see Fig. 2).

Correction by Dispersion Differences. Typically, differences propagate from
the least significant bit in the first few steps to the most significant bit in the last
steps (see Fig. 2). The reason for this propagation is that the rotation values si

are very similar for most differences. In order to spread the differences and thus
the conditions, dispersion differences (Δpi) are introduced in steps with a high
rotation value, i.e. s3 = 19. This high rotation allows the dispersion differences
to spread within only a few steps. The dispersion differences are then used in
the following steps to cancel differences in areas with a low condition density.
The dispersion difference Δp3 = Δ[6], which we determined by hand, leads to a
differential path without contradictions (see Fig. 3).
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5 Experiments and Results

In our experiments we tried carry expansions with different lengths and different
dispersion differences. It turned out that at least in one step, a carry expansion of
length three is needed. We further noticed that increasing the maximum length
of the carry expansions up to 10 does not lead to less contradictions when using
no dispersion differences. During the evaluation of different parameters, we were
able to produce over 1000 (similar) differential paths without contradictions so
far. One run of our algorithm takes only a couple of minutes. For example, using
the disturbance difference Δp3 = Δ[6] and a maximum carry expansion of 3,
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Fig. 3. In our path, differences and conditions are spread by introducing a dispersion
difference in step i = 3 which has a high rotation value (s3 = 19). This dispersion
difference causes new conditions, which are marked by a box in this figure. Because
of introducing a new difference, the number of conditions is higher (146). However, no
contradictions appear.

Table 4. One collision of MD4 using our differential path

M0 9de70013 4b5611b3 d2ce37bb d3fbfd91 25bb4551 42d059f8 41b1bd57 19ed222e
4c9c5258 20df2cbf d868c1a8 314acd01 e4aca811 5089a823 bb1912b1 2b61d489

M ′
0 9de70013 cb5611b3 42ce37bb d3fbfd91 25bb4551 42d059f8 41b1bd57 19ed222e

4c9c5258 20df2cbf d868c1a8 314acd01 e4aba811 5089a823 bb1912b1 2b61d489
H0 877bd941 14da836a 0af87c2e 143a4028
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13871 possibilities to cancel the elements of the target differences have been
tried. 208 possibilities result in a zero differences in step 24 but have at least
2 contradictions. To correct the contradictions of these paths, 140068 different
cancel possibilities to achieve the respective target differences were examined.
Finally, 324 paths with no contradiction could be found. The overall number of
steps performed was 1964131.

With respect to the message modification, the best of our paths is the one
shown in Fig. 3. It has the smallest number of conditions in the second round.
Remember that conditions in the first round can be easily pre-fulfilled by the
single-step message modification technique. Further, most differences occur in
the first few steps of the second round and are thus also easily pre-fulfilled. Our
path has 146 conditions with only 22 conditions in round two and 2 conditions
in round three. In contrast, the path of Wang et al. has 122+2 conditions where
25 conditions occur in round two and 2 conditions occur in round three. The two
additional conditions were found by [NSKO05]. Fig. 3 shows all conditions in our
path in a graphical manner. Further details about the conditions are provided
in App. D and an example of a collision is given in Tab. 4.

6 Conclusions

In this article, we have introduced an algorithm that finds differential paths for
the first 24 steps of MD4 in an automated way. Our algorithm is successful:
given a difference for the input message, it computes differential paths for MD4.
Among the differential paths that we have found so far, there are paths that have
fewer conditions in the second round than the path of Wang et al. This is an
advantage with respect to the message modification techniques; the complexity
of a collision attack based on our path is therefore lower.

The techniques that we have used are not very specific for MD4. The forward-
backward computation for instance, which is performed in the first part of our
algorithm, can be applied in general to determine the target differences. The
cancelation search is general in the sense that we try out all carry expansions
up to a certain length starting from the simplest one. The use of dispersion dif-
ferences must be carefully considered for other algorithms where the conditions
might be more distributed anyway. In addition, the approach of trying the sim-
plest differences first, and only enlarging the search space if necessary, is also
algorithm independent.

Summing up, we have made the first successful step towards an automated
search for differential paths, which is the crucial part of Wang et al.’s attacks.
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A Differential Characteristic of IF and MAJ

Table 5. Signed differential characteristic of the IF and MAJ function, with necessary
conditions, probability 1 or “-” if the desired output is not possible

δxδyδz δIF = 0 δIF = 1 δIF = -1 δMAJ = 0 δMAJ = 1 δMAJ = -1
0 0 0 1 - - 1 - -
0 0 1 x = 1 x = 0 - x = y x �= y -
0 0 -1 x = 1 - x = 0 x = y - x �= y

0 1 0 x = 0 x = 1 - x = z x �= z -
0 1 1 - 1 - - 1 -
0 1 -1 - x = 1 x = 0 1 - -
0 -1 0 x = 0 - x = 1 x = z - x �= z
0 -1 1 - x = 0 x = 1 1 - -
0 -1 -1 - - 1 - - 1
1 0 0 y = z y = 1, z = 0 y = 0, z = 1 y = z y �= z -
1 0 1 y = 0 y = 1 - - 1 -
1 0 -1 y = 1 - y = 0 1 - -
1 1 0 z = 1 z = 0 - - 1 -
1 1 1 - 1 - - 1 -
1 1 -1 1 - - - 1 -
1 -1 0 z = 0 - z = 1 1 - -
1 -1 1 1 - - - 1 -
1 -1 -1 - - 1 - - 1
-1 0 0 y = z y = 0, z = 1 y = 1, z = 0 y = z - y �= z
-1 0 1 y = 1 y = 0 - 1 - -
-1 0 -1 y = 0 - y = 1 - - 1
-1 1 0 z = 0 z = 1 - 1 - -
-1 1 1 - 1 - - 1 -
-1 1 -1 1 - - - - 1
-1 -1 0 z = 1 - z = 0 - - 1
-1 -1 1 1 - - - - 1
-1 -1 -1 - - 1 - - 1
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B Overview of Our Algorithm

D
er

iv
in

g 
th

e
C

on
di

tio
ns

T
ar

ge
t

D
iff

er
en

ce
s

t i

C
ar

ry
E

xp
an

si
on

of
r i-

1

C
ar

ry
E

xp
an

si
on

of
r i-

2

C
ar

ry
E

xp
an

si
on

of
r i-

3

C
an

ce
l

P
os

si
bi

lit
ie

s
fo

r
r i-

1

C
an

ce
l

P
os

si
bi

lit
ie

s
fo

r
r i-

2

C
an

ce
l

P
os

si
bi

lit
ie

s
fo

r
r i-

3

V
ar

ia
tio

n 
of

T
ar

ge
t

D
iff

er
en

ce
E

le
m

en
ts

C
or

re
ct

io
n

D
iff

er
en

ce
s

  c
i

D
is

tu
rb

an
ce

D
iff

er
en

ce
s

d i

M
es

sa
ge

D
iff

er
en

ce
s

  m
i

S
ol

vi
ng

C
on

tr
ad

ic
tio

ns
D

is
pe

rs
io

n
D

iff
er

en
ce

s 
  p

i

N
o

C
on

tr
ad

ic
tio

ns
le

ft?

D
iff

er
en

tia
l P

at
h

fo
un

d

C
an

ce
la

tio
n 

S
ea

rc
h

C
or

re
ct

io
n 

S
te

p

D
er

iv
in

g
th

e 
T

ar
ge

t D
iff

er
en

ce
s

P
ro

ce
ed

 fo
r 

ea
ch

 s
te

p 
i

P
ro

ce
ed

 fo
r 

ea
ch

 D
iff

er
en

tia
l P

at
h

F
ig

.4
.

A
n

ov
er

vi
ew

of
th

e
di

ffe
re

nt
ia

l
pa

th
se

ar
ch

al
go

ri
th

m
.

T
ra

pe
zo

id
s

re
pr

es
en

t
ex

pa
ns

io
ns

an
d

re
st

ri
ct

io
ns

of
th

e
se

ar
ch

sp
ac

e.



Searching for Differential Paths in MD4 259

C The Target Differences

Table 6. Deriving the target differences Δti by forward computation of the distur-
bance differences Δdi, and backward computation of the correction differences Δci for
all message differences of step 0 − 24. The differences caused by m12 of step 12 are
highlighted.

step Δmwi si Δdi Δci Δti

0 3 Δ[16, 13, -10, -7] Δ[-16, -13, 10, 7]
1 Δ[31] 7 Δ[31] Δ[-31]
2 Δ[31, -28] 11 Δ[31, -28] Δ[-31, 28]
3 19 Δ[-4] Δ[4]
4 3 Δ[19, 16, -13, -10] Δ[-19, -16, 13, 10]
5 7 Δ[6] Δ[-6]
6 11 Δ[10, -7] Δ[-10, 7]
7 19 Δ[-23] Δ[23]
8 3 Δ[22, 19, -16, -13] Δ[-22, -19, 16, 13]
9 7 Δ[13] Δ[-13]

10 11 Δ[21, -18] Δ[-21, 18]
11 19 Δ[-10] Δ[10]
12 Δ[-16] 3 Δ[-16] Δ[25, 22, -19] Δ[-25, -22, 19, 16]
13 7 Δ[20] Δ[-20]
14 11 Δ[-29, 0] Δ[29, -0]
15 19 Δ[-29] Δ[29]
16 3 Δ[-19] Δ[28, 25, -22] Δ[-28, -25, 22, 19]
17 5 Δ[27] Δ[-27]
18 9 Δ[11, -8] Δ[-11, 8]
19 Δ[-16] 13 Δ[-16] Δ[16]
20 Δ[31] 3 Δ[31, -22] Δ[28, -25] Δ[-31, -28, 25, 22]
21 5 Δ[0] Δ[-0]
22 9 Δ[20, -17] Δ[-20, 17]
23 11 Δ[-29] Δ[29]
24 Δ[31, -28] 3 Δ[31, -28, -25, 2] Δ[-31, 28, 25, -2]
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D Detailed Description of Our Path

Table 7. Differential characteristic of our differential path for MD4

Step ri si mwi Δmwi Δfi Δri

0 r0 3 m0

1 r1 7 m1 Δ[31] Δ[6]
2 r2 11 m2 Δ[31, -28] Δ[10, -7]
3 r3 19 m3 Δ[6] Δ[25]
4 r4 3 m4

5 r5 7 m5 Δ[16, -15, -14, -13]
6 r6 11 m6 Δ[23, -22, -21, -18]
7 r7 19 m7 Δ[23] Δ[12, 10]
8 r8 3 m8 Δ[23, -22, 16] Δ[26, -25, 19]
9 r9 7 m9 Δ[23, -22, -21, -20]
10 r10 11 m10 Δ[-21] Δ[-29]
11 r11 19 m11 Δ[-31, 29, 0]
12 r12 3 m12 Δ[-16] Δ[-22] Δ[29, -28, -25, 22, -20, 19]
13 r13 7 m13 Δ[-20]
14 r14 11 m14 Δ[29]
15 r15 19 m15 Δ[19, -18, 16]
16 r16 3 m0 Δ[19] Δ[31, -28, 25]
17 r17 5 m4

18 r18 9 m8

19 r19 13 m12 Δ[-16] Δ[31]
20 r20 3 m1 Δ[31] Δ[-31, 28]
21 r21 5 m5

22 r22 9 m9

23 r23 13 m13 Δ[-31]
24 r24 3 m2 Δ[31, -28]
... ...
35 r35 15 m12 Δ[-16] Δ[-31]
36 r36 3 m2 Δ[31, -28] Δ[-31] Δ[-31]
37 r37 9 m10

38 r38 11 m6

39 r39 15 m14

40 r40 3 m1 Δ[31]
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Table 8. Conditions for our differential path

Step Conditions for ri

0 r0,6 = r-1,6

1 r1,6 = 0, r1,7 = r0,7, r1,10 = r0,10

2 r2,6 = 1, r2,7 = 1, r2,10 = 0, r2,25 = r1,25

3 r3,6 = 1, r3,7 = 0, r3,10 = 0, r3,25 = 0
4 r4,7 = 1, r4,10 = 1, r4,13 = r3,13, r4,14 = r3,14, r4,15 = r3,15, r4,16 = r3,16,

r4,23 = 0, r4,25 = 0
5 r5,13 = 1, r5,14 = 1, r5,15 = 1, r5,16 = 0, r5,18 = r4,18, r5,21 = r4,21, r5,22 = r4,22,

r5,23 = 1, r5,25 = 1
6 r6,10 = r5,10, r6,12 = r5,12, r6,13 = 0, r6,14 = 0, r6,15 = 0, r6,16 = 0, r6,18 = 1,

r6,21 = 1, r6,22 = 1, r6,23 = 0
7 r7,10 = 0, r7,12 = 0, r7,13 = 1, r7,14 = 1, r7,15 = 1, r7,16 = 0, r7,18 = 0, r7,19 = r6,19,

r7,21 = 0, r7,22 = 1, r7,23 = 1, r7,25 = r6,25, r7,26 = r6,26

8 r8,10 = 0, r8,12 = 0, r8,18 = 1, r8,19 = 0, r8,20 = r7,20, r8,21 = 1, r8,22 = 1, r8,23 = 1,
r8,25 = 1, r8,26 = 0, r8,29 = 0

9 r9,10 = 1, r9,12 = 1, r9,19 = 0, r9,20 = 1, r9,21 = 1, r9,22 = 1, r9,23 = 0, r9,25 = 0,
r9,26 = 0, r9,29 = 0

10 r10,0 = r9,0, r10,19 = 1, r10,20 = 0, r10,21 = 0, r10,22 = 0, r10,23 = 0, r10,25 = 1,
r10,26 = 1, r10,29 = 1, r10,31 = r9,31

11 r11,0 = 0, r11,19 = r10,19, r11,20 = 1, r11,21 = 1, r11,22 = 0, r11,23 = 1,
r11,25 = r10,25, r11,28 = r10,28, r11,29 = 0, r11,31 = 1

12 r12,0 = 0, r12,19 = 0, r12,20 = 1, r12,22 = 0, r12,25 = 1, r12,28 = 1, r12,29 = 0,
r12,31 = 0

13 r13,0 = 1, r13,19 = 0, r13,20 = 0, r13,22 = 0, r13,25 = 0, r13,28 = 0, r13,31 = 1
14 r14,16 = r13,16, r14,18 = r13,18, r14,19 = 1, r14,20 = 1, r14,22 = 1, r14,25 = 1,

r14,28 = 1, r14,29 = 1
15 r15,16 = 0, r15,18 = 1, r15,19 = 0, r15,25 = r14,25, r15,28 = r14,28, r15,31 = r14,31

16 r16,16 = r14,16, r16,18 = r14,18, r16,19 = r14,19, r16,25 = 0, r16,28 = 1, r16,31 = 0
17 r17,16 = r16,16, r17,18 = r16,18, r17,19 = r16,19, r17,25 = r15,25, r17,28 = r15,28,

r17,31 = r15,31

18 r18,25 = r17,25, r18,28 = r17,28, r18,31 = r17,31

19 r19,28 = r18,28, r19,31 = 0
20 r20,28 = 0, r20,31 = 1
21 r21,28 = r19,28

22 r22,28 = r21,28, r22,31 = r18,31

23
24

The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.
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Abstract. MD5 is a well-known and widely-used cryptographic hash
function. It has received renewed attention from researchers subsequent
to the recent announcement of collisions found by Wang et al. [16]. To
date, however, the method used by researchers in this work has been
fairly difficult to grasp.

In this paper we conduct a study of all attacks on MD5 starting from
Wang. We explain the techniques used by her team, give insights on
how to improve these techniques, and use these insights to produce an
even faster attack on MD5. Additionally, we provide an “MD5 Toolkit”
implementing these improvements that we hope will serve as an open-
source platform for further research.

Our hope is that a better understanding of these attacks will lead to
a better understanding of our current collection of hash functions, what
their strengths and weaknesses are, and where we should direct future
efforts in order to produce even stronger primitives.

Keywords: Cryptographic Hash Functions, Differential Cryptanalysis,
MD5.

1 Introduction

Background. MD5 was the last in a succession of cryptographic hash func-
tions designed by Ron Rivest in the early 1990s. It is a widely-used well-known
128-bit iterated hash function, used in various applications including SSL/TLS,
IPSec, and many other cryptographic protocols. It is also commonly-used in
implementations of timestamping mechanisms, commitment schemes, and
integrity-checking applications for online software, distributed filesystems, and
random-number generation. It is even used by the Nevada State Gaming Au-
thority to ensure slot-machine ROMs have not been tampered with.

Cryptographic hash functions like MD5 do not have a sound mathematical
security definition, but instead rely on the following “intuitive” notions of secu-
rity: for a hash function h with domain D and range R, we require the following
three properties.1

1 For a more complete discussion of hash function security definitions, see [12].

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 262–277, 2006.
c© International Association for Cryptologic Research 2006
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Pre-image Resistance: For a given y ∈ R, it should be “computationally
infeasible” to find an x ∈ D such that h(x) = y.

Second Pre-image Resistance: For a given x ∈ D, it should be “computa-
tionally infeasible” to find a distinct x′ ∈ D such that h(x) = h(x′).

Collision Resistance: It should be “computationally infeasible” to find dis-
tinct x, x′ ∈ D such that h(x) = h(x′).

In all attacks described in this paper, the focus is on violating the last re-
quirement above: that is, we wish to find collisions in MD5.

In 1993 B. den Boer and A. Bosselaers [4] found two messages that collided
under MD5 with two different IVs. In 1996 H. Dobbertin [5] published an attack,
without details, that found a collision in MD5 with a chosen IV different from
MD5’s. Finally, at CRYPTO 2004, a team of researchers from the Shandong
University in Jinan China, led by Xiaoyun Wang, announced collisions in MD5 as
well as collisions in a host of other hash functions including MD4, RIPEMD, and
HAVAL-128. Their findings were published at EUROCRYPT in 2005 [15, 16].
The same team presented two papers at the 2005 CRYPTO conference detailing
applications of their methods to the hash functions SHA0 and SHA1, with a
generated collision for SHA0, and a description on how to obtain collisions in
SHA1. Given the variety of hash functions attacked by this team, it seems likely
that their approach may prove effective against all cryptographic hashes in the
MD family, including all variants of SHA. It therefore seems worthwhile to seek
a complete understanding of how this approach works, how it can be improved,
and how it can be generalized.

In Wang’s short talk at the CRYPTO rump session, few details were given. She
presented a brief general overview of the attacks, including the exact differentials
for the pairs of colliding message blocks, along with several example collisions
and estimations of the time complexity for each attack. In the interim, between
her talk and the publication of the team’s papers [15, 16], much interest was
generated in finding the methods used by the Chinese researchers, and several
papers were published on the subject [6, 8, 9]. Unfortunately, some key details of
the attacks are omitted from the EUROCRYPT papers, and there are several
discrepancies between the analysis done in [6, 9] and the results presented by the
Chinese team.

Our Contributions. This paper attempts to consolidate and summarize all
relevant knowledge of the attacks on MD5 from the works cited above [6, 8, 9, 15,
16], then additionally offer new insights and further improvements to this body
of work. Specifically:

– We fully explain the “multi-message modification” technique invented by
Wang.

– We offer new insights on how to find other differential paths.
– We use the above insights to demonstrate how to satisfy several more con-

ditions in round 2 of the MD5 computation, thereby significantly speeding
up the search for collisions.
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– We demonstrate new methods for decreasing the search complexity when
finding collisions.

– We provide an “MD5 Toolkit” that uses the above optimizations to produce
MD5 collisions faster than any other known implementation; it also serves
as a platform for testing further improvements and new ideas.

Along the way, we correct many of the errors made by previous authors
in their published analyses, and we use what, we believe, is an improvement
in notation. Also, in contrast to the other publications above, we provide full
source code implementing our methods as an “MD5 Toolkit.” Our hope is that
this toolkit will serve as a useful device for researchers wishing to explore fur-
ther techniques in this line of work. For example, making further code opti-
mizations or search optimizations, adding further conditions, or searching for
differential paths in an automated way. The MD5 Toolkit can be found at
http://www.cs.colorado.edu/~jrblack/md5toolkit.tar.gz.

Our ultimate goal as a research community is to understand as best we can
the way these iterated hash functions work, and the best known attacks against
them. Our hope is that the observations offered here, along with the specific
improvements we make for MD5 collision-finding, will lead to progress along
these lines.

Overview of the Paper. We begin by covering the notation used throughout
the paper. Section 3 reviews the specification of MD5. We then give a high-level
overview of the attacks and touch on the motivation and theory behind the
attacks in section 4. Then we move on to the details of the attack in section 5.

The remainder of the paper is devoted to detailing our insights and improve-
ments. Specific to MD5, we offer improvements that reduce the best-known time
complexity [9] by roughly a factor of three. The methods used by the Chinese
team require an expected 237 MD5 computations to find the first block pair of
the colliding messages, and an expected 230 MD5 computations to find the sec-
ond block pair. Klima [9] improved the attack so that an expected 233 and 224

MD5 computations are needed to find the first and second message block pairs,
respectively, although Klima did not implement his improved attack for finding
the second block pair. Our method improves the attack so that an expected 230

MD5 computations are required to find the first block pair, and we implement
Klima’s code for finding the second block pair.

The Wang team reported that the example collision they found for the first
block took about an hour on an IBM supercomputer, and the second block pair
was found in 15 seconds to 5 minutes on the same computer. Our code produces
both blocks in an average of 11 minutes on a commodity PC.

Latest Results. Since the publication of our paper, more progress has been
made in attacking MD5. The HashClash project[14] implements Wang’s at-
tack using parallel computing resources to produce collisions in under 1 minute.
Klima [7] has invented a new technique called “tunneling” also resulting in code
that produces collisions in under a minute.
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2 Notation

All indices start at 0. This is in contrast to the notation used in the Wang et al.
papers, as well as [6, 9]. Thus, for a 4-byte unsigned integer x, the bits are labeled
from 0 to 31, with 0 referring to the least significant bit. Let {0, 1}n denote the
set of all binary strings of length n. For an alphabet Σ, let Σ∗ denote the set of
all strings with elements from Σ. Let Σ+ = Σ∗−{ε} where ε denotes the empty
string. For strings s, t, let s ‖ t denote the concatenation of s and t. For a binary
string s let |s| denote the length of s. For a string s where |s| is a multiple of
n, let |s|n denote |s|/n. Given binary strings s, t such that |s| = |t|, let s⊕ t
denote the bitwise XOR of s and t. For a string M such that |M | is a multiple
of n, |M |n = k, then we will use the notation M = (M0, M1, M2, . . . , Mk−1)
such that |M0| = |M1| = |M2| = . . . = |Mk−1| = n. We will also use the
notation M = (m0, m2, . . . , mk−1) such that |m0| = |m2| = . . . = |mk−1| = n.
This latter notation is used when n = |mi| = 32. The former notation will be
used when n = |Mi| = 512. We may think of M as a k-tuple if it is convenient
(hence the vector notation). Generally, the symbol M will be used for members
of ({0, 1}512)+. For a set S of the form {Ai : a ≤ i ≤ b}, we will sometimes
denote S as Aa:b.

XOR Differential vs. Subtraction Differential. These methods use a
combination of the XOR differential and the subtraction differential, but with
an emphasis on the subtraction differential. That is, for two integers x, x′ ∈
[0, 231 − 1], consider the function ΔX(x, x′) = x⊕x′. This defines the XOR dif-
ferential for x, x′. Alternatively, define ΔS(x, x′) as x′ − x mod 232. This is the
subtraction differential. The Chinese authors supply two columns of differentials
in their tables of differentials for each step. One column contains the subtrac-
tion differential. Another contains what is essentially the XOR differential, but
there is extra information included to indicate bit differences. For example, let
ΔS(x, x′) = 22. There are many possibilities for ΔX(x, x′) such as these three
examples.

– ΔX(x, x′) = 0x00000004 (there is only one bit different between x and x′,
in index 2)

– ΔX(x, x′) = 0x0000000c (bit 3 is set in x′ but is not set in x, bit 2 is not
set in x′ but is set in x)

– ΔX(x, x′) = 0x0000fffc (bit 15 is set in x′ but is not set in x, bits 2 through
14 are not set in x′ but are set in x

The differential used in [15, 16] captures this type of information by the following
notation. Let x be in [0, 231 − 1]. Then x′ = x[a1, a2, . . . , an,−b1,−b2, . . . ,−bm]
denotes x′ = x + 2a1 + 2a2 + · · · + 2an − 2b1 − 2b2 · · · − 2bm mod 232. From
this information one can compute both ΔX(x, x′) and ΔS(x, x′) if and only if
for every index i for which x and x′ differ i ∈ {a1, a2, . . . , an, b1, b2, . . . , bm}.
The complete differential tables in the full version of this paper [1] use this
specialized differential, but with the above property so that both ΔX and ΔS

may be computed.
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3 The MD5 Algorithm

The following is a brief description of MD5 using the notation that is used
to describe the attacks later in this paper. We omit message padding in this
description since it has no effect on our attacks. The full specification for MD5
can be found in [11].

MD5 is a hash function in the Merkle-Damg̊ard paradigm [2, 10], where the
security of the hash function reduces to the security of its compression function.
The MD5 compression function, which we denote as MD5c, accepts as input a
128-bit chaining value CV which we break into four 32-bit values cv0, cv1, cv2, cv4
and a 512-bit message block M and outputs a 128-bit chaining value CV ′. For-
mally, MD5c : {0, 1}128 × {0, 1}512 → {0, 1}128. Let H0 ∈ {0, 1}128 and let
M = (M0, M1, . . . , Mk) for some k ≥ 0 and |Mi| ∈ {0, 1}512 for 0 ≤ i ≤ k.
Then MD5(M) is computed as follows. Let Hi+1 = MD5c(Hi, Mi) for 0 ≤ i ≤ k.
MD5(M) is defined as Hk+1.

3.1 The Compression Function MD5c

We now detail the compression function used in MD5. There are 64 intermediate
values produced, which we will call step values and denote by Qi for 0 ≤ i < 64.
The step values are computed in the following fashion:

Ti ← Φi(Qi−1, Qi−2, Qi−3) + Qi−4 + wi + yi

Qi ← Qi−1 + (Ti ≪ si)

Where si, yi are step-dependent constants and wi is the i-th block of the initial
message expansion. For 0 ≤ i < 64, wi = mj for some 0 ≤ j < 16. The exact
message expansion can be found in [11]. By ‘x+y’ we mean the addition of x and y
modulo 232, and by ‘x ≪ y’ we mean the circular left shift of x by y bit positions
(similarly, ‘x ≫ y’ denotes the circular right shift of x by y bit positions).

The Φ function is defined in the following manner:

Φi(x, y, z) = F (x, y, z) = (x ∧ y) ∨ (¬x ∧ z), 0 ≤ i ≤ 15
Φi(x, y, z) = G(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z), 16 ≤ i ≤ 31
Φi(x, y, z) = H(x, y, z) = x⊕ y ⊕ z, 32 ≤ i ≤ 47
Φi(x, y, z) = I(x, y, z) = y ⊕ (x ∨ ¬z), 48 ≤ i ≤ 63

Q−1, . . . , Q−4 are determined by the chaining values to MD5 so that

Q−4 ← cv0, Q−3 ← cv3, Q−2 ← cv2, Q−1 ← cv1

The chaining values are initially set to, in big endian byte order,

cv0 ← 0x01234567, cv1 ← 0x89abcdef

cv2 ← 0xfedcba98, cv3 ← 0x76543210

After all 64 steps are computed, MD5c computes

cv′0 ← cv0 + Q60, cv′1 ← cv1 + Q63, cv′2 ← cv2 + Q62, cv′3 ← cv3 + Q61

and outputs CV ′ ← cv′0 ‖ cv′1 ‖ cv′2 ‖ cv′3.
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Because of their importance later, we repeat some of our notation and termi-
nology: for each message block, MD5c has four rounds, each of which computes
16 step values (for a total of 64).

4 High-Level Overview

Define δ0 as (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0) and δ1 as (0, 0, 0, 0, 231,
0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0). Let M = (M0, M1) be a 1024-bit string such that
|M0| = |M1| = 512. For any such M let M ′

0 = M0 + δ0, M ′
1 = M1 + δ1 and

M ′ = (M ′
0, M

′
1) where addition is done component-wise modulo 232.

The Wang attacks describe a way of efficiently finding 1024-bit strings M
such that MD5(M) = MD5(M ′). They do this by tracking the differences in
the step values during the computation of MD5(M) and MD5(M ′). Formally,
let Qi denote the output of the i-th round of the MD5 compression function
upon input M and let Q′

i denote the output of the i-th round of MD5 upon
input M ′. Then [16] supplies 128 values (64 for the first block and 64 for the
second block) ai, 0 ≤ i < 128 such that if their methods find an M such that
MD5(M) = MD5(M ′), then Q′

i − Qi = ai for all Qi computed during the
computation of MD5c(M0) and MD5c(M ′

0) and Q′
i − Qi = ai+64 for all Qi

computed during the computation of MD5c(M1) and MD5c(M ′
1). We will call

the values Q′
i−Qi differentials. The ai are the correct or prescribed differentials.

Additionally, four extra values are given in [16] that specify the differentials for
the intermediate chaining values, or the outputs of MD5c(M0) and MD5c(M ′

0).
It is not described in [16] or elsewhere how they chose the values for ai, but

in the next subsection we conjecture some ideas on their derivation. Regardless,
Wang et al. detail methods for efficiently finding such M by determining condi-
tions on the Qi such that if those conditions are satisfied then the differentials
hold with high probability ([16] mistakenly labels the conditions as ‘sufficient’).
Very little information is given in [16] as to how the conditions on the Qi are
obtained, but an excellent analysis is given by Hawkes, Paddon, and Rose in [6].

Wang’s method for finding an M of the correct form can be described in
pseudocode as the following:

Algorithm Find Collision
while collision found is false do:

1. Use random seeds and deterministic methods to find M which satisfies most
conditions on Qi

2. Compute all Qi and Q′
i to check to see if differentials are correct

3. if (rest of differentials hold) then collision found ← true
else collision found ← false

end do
return M



268 J. Black, M. Cochran, and T. Highland

x y z Δx ⇒ Δy ⇒ Δz ⇒
ΔF ΔF ΔF

0 0 0
√

0 0 1
√ √

0 1 0
√ √

0 1 1
√

1 0 0
√

1 0 1
√ √

1 1 0
√ √

1 1 1
√

x y z Δx ⇒ Δy ⇒ Δz ⇒
ΔG ΔG ΔG

0 0 0
√

0 0 1
√

0 1 0
√ √

0 1 1
√ √

1 0 0
√ √

1 0 1
√ √

1 1 0
√

1 1 1
√

Fig. 1. Output differences for F = Φi, 0 ≤ i < 16 and G = Φi, 16 ≤ i < 32

We also note here that the above pseudocode is actually done once for each
block of M . First a 512-bit block M0 is found that satisfies all first-block differ-
entials, then block M1 is found.

4.1 Finding the Differentials and Conditions

Generating Message Differentials. The derivation of the message and
step value differentials used by Wang remains unexplained. We attempt here to
conjecture how these were derived, although we stress that this is pure specula-
tion and guesswork.

We begin by noting the following three things:

– The Φ function for round three is just the bitwise XOR of the inputs and
is therefore linear - any change in one of the inputs necessarily changes
the output in the same bits (formally, for any six 32-bit unsigned integers
u, v, w, x, y, z, H(x⊕u, y⊕ v, z⊕w) = H(u, v, w)⊕H(x, y, z)). On a related
note, as can be seen in figure 1, Φi for 0 ≤ i < 32 has some ‘absorbing’
properties. That is, it is common that bit changes in the input do not change
the output.

– The differential is 0 for the last few step values in round 2 and the first few
step values for round 3.

– The differential is 231 for almost all step values in rounds 3 and 4.

The full version of this paper contains a detailed description of how this
difference in bit 31 is propagated in round three through the introduction of
differences via the message words and careful manipulation of certain properties
of addition modulo 232 and the function H . Basically, addition of 231 modulo
232 operates the same as XOR. For now, however, let us note that it appears
that the message differentials were chosen for this exact reason - propagating a
single bit difference through most of round three.

The above analysis leads us to believe the following course of action was used
in determining the message and step value differentials:
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– Assume that whatever message differences are introduced in the first and
second rounds can be absorbed by the Φi functions so that there are no
differences in the step values used in the first step of round 3.

– Pick message differences so that the difference in bit 31 cascades through
the step values. This involves:
• Picking blocks in the initial message expansion ma, mb, mc, such that

ma = wi, mb = wi+1, mc = wi+3, 32 ≤ i < 45.
• Let the differential be m′

b = mb + 231, m′
c = mc + 231 and m′

a = ma +
231−si where si is the shift value for round i.

– Find a differential path through the first and second rounds, using the mes-
sage differentials chosen above, so that the difference for the last four step
values in round 2 is zero.

– Find sufficient conditions on the step values to guarantee the differential
path (the work done in [6] is an excellent resource on this step).

– For the above step try to minimize 2nd round conditions to avoid complicated
multi-message modification techniques.

This third to last step is still surrounded in mystery, but one can see that by
the properties of the Φi functions for rounds 1 and 2 that the task is possible.
Although the step update function for MD4 and RIPEMD is different than
that of MD5, the Wang et al. attacks [15] on those functions support the above
analysis. That is, there is no difference in the step values for the last few steps
of round 2 and the message differentials appear to have been chosen to minimize
differences in round three by exploiting the linearity of bit 31. Again, we stress
that this analysis is guesswork and we eagerly await a full exposition by the
authors of [15, 16].

Fulfilling the Conditions. Conditions on Qi are conditions on the individual
bits of Qi. For example, for the first block near-collision of MD5 to guarantee
the differential they require that the 8-th least significant bit of Q4 is zero. There
are a total of 290 conditions on the round values for the first block attack, and
there a total of 310 conditions for step values in the second block.

However, most of these conditions occur in the first and second rounds. This
is important because during the first round, one can easily change M so that
all the conditions are satisfied because at that point one has complete control
over M and any changes do not affect prior computation. The Chinese team
denoted these types of changes as “single-message modifications” or “single-
step modifications.” We will adopt and use the former terminology. Some round
two conditions may also be corrected by other methods, which we will refer
to as “multi-message modifications,” but these methods are considerably more
complicated because one has to be sure, because of the initial message expansion,
that changes to M do not affect the computation of earlier rounds.

We present efficient methods [9, 16] which satisfy all but 30 conditions for
the first block, and all but 24 conditions for the second block. The remaining
conditions are satisfied in a probabilistic manner. On the assumption that each
condition is satisfied with probability 1/2, an expected 230 (224, resp) messages
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need to be generated before a message M is found which satisfies all the first
(second, resp) block conditions. This estimate is actually a tad low, because it
does not account for the fact that the conditions on the Qi are necessary, but
not sufficient, for the step differentials to hold, even in the later rounds where
the differentials cannot be satisfied deterministically.

5 The Dirty Details

In the full version [1] this section is intended as a detailed step-by-step guide to
writing code that implements the MD5 attacks. Here, however, we focus only
on some detailed examples of the method known as multi-message modification.
It is this method which is perhaps the most unexplained and crucial step of the
Chinese methods. We give a general overview of the method and go through
details for the first block multi-message modifications based on Klima’s paper
[9]. In the appendix we go over some new, more complex methods in detail. A
more general and comprehensive approach to this technique is presented in [3].

5.1 Multi-message Modification

One of the key ideas in the Chinese papers is that of multi-message modification.
This is where after the satisfaction of all first-round conditions has occurred, one
may alter several message blocks together to satisfy second round conditions
while leaving all first-round conditions satisfied. Despite the importance of these
methods for decreasing the time complexity of the attack, the description in
[15, 16] is either completely omitted or brief and truncated. We seek here to
fully explain the mystery of multi-message modification techniques by covering
the general ideas behind the method and then walking through a few examples
in detail in the appendix.

General Idea. In [16] the method of multi-message modification is given, al-
most entirely, in a table similar to the following:

Modify mi anew, bnew, cnew, dnew

1 m1 12 m1 ← m1 + 226 dnew
1 , a1, b0, c0

2 m2 17 m2 ← ((c1 − dnew
1 ) ≫ 17) − c0 − Φ2(dnew

1 , a1, b0) − y2 c1, dnew
1 , a1, b0

3 m3 22 m3 ← ((b1 − c1) ≫ 22) − b0 − Φ3(c1, dnew
1 , a1) − y3 b1, c1, dnew

1 , a1
4 m4 7 m4 ← ((a2 − b1) ≫ 7) − a1 − Φ4(b1, c1, dnew

1 ) − y4 a2, b1, c1, dnew
1

5 m5 12 m5 ← ((d2 − a2) ≫ 12) − dnew
1 − Φ5(a2, b1, c1) − y5 d2, a2, b1, c1

The table is a guide to correcting the condition on Q16,31, or a5,32 in the
notation from [16]. The condition is that this bit must be 0. The first column
denotes the step number. The second column and third columns denote the mes-
sage word and the shift value, respectively, used in the computation of the step
value. The column under the heading “Modify mi” details the update needed
to correct the step value or message word in that step. The last column lists
updates to step variables, if any, after the modification for that step.

How does this all work? Let’s walk through the table. Although not shown
in the table, the shift value for round 16 is 5. Therefore, the addition of 226 to
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m1 has the net effect of adding 231 to Q16,31, which corrects for the condition
in question. However, this change to m1 also changes the value of a step value
computed earlier: Q1(= d1). Therefore we must recompute d1 with the new value
of m1 to obtain dnew

1 (this is not explicitly shown in the above table, but we
will come to this in a bit). The other rows of the table detail how to assimilate
the changes in d1 so that none of the other step values are changed (but the
message bits are). Note that we can still change other message bits because in
step 16 only one message block has been used to compute more than one step
value. Namely, m1. At the end of the process, m1, m2, m3, m4, m5, Q1, and Q16
have been changed, but all other step values and message bits remain the same.
The change in Q16 was to remedy the incorrect condition, and the other changes
were necessary to absorb the changes to m1 and Q1.

Furthermore, in the paper by Wang et al. discussing their attack on MD4, the
table denotes that to update d1 to dnew

1 all one needs to do is add 226 shifted
by the appropriate amount (in this case 12, so that dnew

1 = d1 + 26). This does
not always produce the correct value because shifting and carry expansion do
not commute. The safest way to compute dnew

1 is to just re-do the step value
computation. A complete table with the updated computation is given below.

Modify mi anew, bnew, cnew, dnew

1 m1 12 mnew
1 ← m1 + 226 dnew

1 , a1, b0, c0
dnew
1 ← a1 + ((Φ1(a1, b0, c0) + d0 + y1 + mnew

1 ) ≪ 12)
2 m2 17 mnew

2 ← ((c1 − dnew
1 ) ≫ 17) − c0 − Φ2(dnew

1 , a1, b0) − y2 c1, dnew
1 , a1, b0

3 m3 22 mnew
3 ← ((b1 − c1) ≫ 22) − b0 − Φ3(c1, dnew

1 , a1) − y3 b1, c1, dnew
1 , a1

4 m4 7 mnew
4 ← ((a2 − b1) ≫ 7) − a1 − Φ4(b1, c1, dnew

1 ) − y4 a2, b1, c1, dnew
1

5 m5 12 mnew
5 ← ((d2 − a2) ≫ 12) − dnew

1 − Φ5(a2, b1, c1) − y5 d2, a2, b1, c1

So this is the gist of multi-message modification, but this simple trick does
not handle all cases, and unfortunately the details to some of the trickier mod-
ifications are not to be found in the Chinese papers. In the appendix we go
through an example of a slightly more complex multi-message modification, in
addition to attempting to explain the motivation for each step in the method.
We hope that by doing so the reader gains a deeper understanding of the (as yet
more-or-less unexplained) method.

5.2 1st Block Multi-message Modification

Here we present our methods for finding the first block pair, based on the meth-
ods found in [9, 16]. Before detailing our new methods for satisfying three extra
conditions, we review and correct the collision-finding pseudocode in Klima’s
paper [9].

1st Block Collision-Finding Program Outline. Klima is able to satisfy
four extra conditions from [16] through some clever probabilistic multi-message
modifications. The following outline is nearly identical to that which is presented
in Klima’s full paper [9]. There are a couple of mistakes in Klima’s multi-message
modification methods as presented in his paper, however. A few of the steps are
out of order and some crucial steps are omitted. Here is how the code should
look (using our notation with shifted indices):
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1. We choose Q2:15 fulfilling conditions.
2. We compute m6:15: For i going from 6 to 15 do

mi ← ((Qi −Qi−1) ≫ si)− F (Qi−1, Qi−2, Qi−3)−Qi−4 − yi

3. We change Q16 until conditions Q16:18 are fulfilled. Sometimes this is not
possible (because the values of Q12, Q13, Q14, Q15 do not allow the conditions
on Q17 and Q18 to hold), and it becomes necessary to change Q2:15.

Q17 ← Q16 + ((G(Q16, Q15, Q14) + Q13 + m6 + y17) ≪ s17)
Q18 ← Q17 + ((G(Q17, Q16, Q15) + Q14 + m11 + y18) ≪ s18)

4. All conditions Q2:18 are fulfilled now. Moreover, we have free value m0.
5. We choose Q19 arbitrarily, but fulfilling the one condition for it. Then we

compute m0:

m0 ← ((Q19 −Q18) ≫ s19)−G(Q18, Q17, Q16)−Q15 − y19

6. Compute Q0 from new value of m0:

Q0 ← Q−1 + ((F (Q−1, Q−2, Q−3) + Q−4 + m0 + y0) ≪ s0)

7. Compute m1:

m1 ← ((Q16 −Q15) ≫ s16)−G(Q15, Q14, Q13)−Q12 − y16

8. Compute Q1 from new values of m1, Q0:

Q1 ← Q0 + ((F (Q0, Q−1, Q−2) + Q−3 + m1 + y1) ≪ s1)

9. Compute m2:5: For i going from 2 to 5 do

mi ← ((Qi −Qi−1) ≫ si)− F (Qi−1, Qi−2, Qi−3)−Qi−4 − yi

For step 3, we chose to satisfy the conditions on Q16:18 probabilistically, by simply
randomly selecting Q16 and checking to see whether the other conditions were
satisfied. There are only 9 conditions for these three chaining variables, so this
can be done quickly. Sometimes no selection of Q16 will satisfy the conditions,
so in this case our code simply begins anew by randomly selecting another Q2:15
such that the first round conditions are satisfied.2

After step 9, we continue the computation, checking to see if the remaining
conditions are satisfied (each condition is expected to be satisfied with probabil-
ity near 1/2, so we expect to iterate over the above pseudocode 230 times before
we find a suitable first block pair). If a condition isn’t satisfied, then we have to
choose a new message. We do this efficiently by iterating over all possible 231

values of Q19 in step 5 (simply incrementing Q19 after each failed attempt is the
2 We implement this by setting a reasonable upper limit on the number of random

selections of Q16 which are chosen and tested.



A Study of the MD5 Attacks: Insights and Improvements 273

fastest way). If we exhaust all possible values for Q19 without finding a suitable
message, we return to step 3 and select another value for Q16. In this manner
we avoid significant unnecessary computation.

Performance. We ran code based on the work done by [13], modified with
our extra methods, to find the first block 80 times run on a desktop 3.0 GHz
processor. Overall, full two-block collisions were found, on average, in under 5
minutes. This is a dramatic improvement over the timings given by Klima, even
after correcting for discrepancies in hardware.

6 A New Method

In our research we found the following optimizing heuristic, which was verified
experimentally but not analytically:

Relying on the fact that the step update function is not very random, we
can attempt to identify patterns in the step values which tend to yield
solutions. Using this knowledge, we narrow our search space to use only
step values which fall within these patterns.

An Example. The methods presented in the appendix provide an analytic
method to satisfy conditions on Q20 with probability near 15/16 (approximately
94% of the time). Although the analytic solution works, it nearly doubles the
computation over the main iterative loop, thus weakening its positive impact on
the running time of our collision-finding program. However, we were also able to
obtain an equally or perhaps more effective (satisfied conditions around 97% of
the time on tests) method for satisfying conditions on Q20.

The pattern is simple. While iterating through values of Q19, as in step 5
of the pseudocode in section 5.2, there are distinct patterns in which values of
Q19 automatically satisfy conditions on Q20. That is, ignoring our new multi-
message modifications for Q20, we tried to identify which values of Q19 led to
conditions on Q20 being satisfied. We found that values of Q19 which satisfied
conditions on Q20 often occurred sequentially in blocks of 128 followed by 128
consecutive values of Q19 which didn’t satisfy conditions on Q20. There were
exceptions to this pattern, but the correlation was strong enough to reduce the
time complexity. This suggests a new method for satisfying conditions on Q20
that requires much less computation:

– While iterating over values of Q19, check to see if the conditions on Q20 are
satisfied. If not, add 127 to Q19 and continue.

Restricting the values of Q19 in this manner yields an algorithm for which
around 97% of all used values of Q19 satisfy conditions on Q20, with the addi-
tional benefit that very little overhead is needed compared to the other multi-
message modification method.

Several other examples are discussed in the full version of this paper[1].
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The Method. We have not attempted to systematically identify and define this
approach within our own work. It was merely that through a casual analysis of
data patterns observed during coding, we noticed this phenomenon. Nonetheless,
it seems that we used the following rough methodology:

– Record values for intermediate step values as well as result (Were all differ-
entials satisfied with these values? If not, how many were satisfied?). Do this
for many random choices of M .

– Attempt to find simple patterns in these step values which will yield a good
heuristic.

This procedure can have broad or narrow scope. With the above example, we
looked at consecutive values of Q19 and checked only one condition on Q20.
Broadening the scope may yield results, or it may decrease the chances that
simple patterns will be easy to find.

The above technique seems possible to automate so that no human interac-
tion is necessary and we believe this is a possible avenue for future research. We
suspect that artificial intelligence techniques could be especially useful with this
sort of analysis. The main drawback to this method is that one might not be
able to easily understand why these patterns of data exist. In general, it seems
preferable to do as much analysis as possible, but it seems likely that an au-
tomated tool to detect these kinds of patterns may be used with great success
after analysis becomes too cumbersome or fruitless.

7 The Full Version

We encourage the interested reader to look at our full version [1], which can be
found at http://www.cs.colorado.edu/~jrblack/papers.html. This version
of the paper contains the following additional content:

– Full, complete, updated tables of the 1st and 2nd block conditions and dif-
ferentials that use our notation.

– Many more details for those wishing to implement the attacks themselves,
correcting errors in earlier papers. This includes discussion of the single-
message modification technique.

– A detailed step-by-step guide to the 2nd block multi-message modification
methods.

– More examples of the technique presented in section 6.
– An in-depth presentation of additional new multi-message modifications for

the 1st block.
– A more detailed explanation of the derivation of Wang’s differentials.
– Discussion on the performance of various methods.
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A New Multi-message Modification Methods

We now cover the details of our methods which reduce the overall complexity
of the attack to an expected 230 MD5 computations. In subsection 5.1 we cov-
ered the basic idea behind multi-message modifications and went over a simple
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example. However, not all second-round conditions can be handled as easily. In
previous papers [15, 16], these more complicated methods are not described at
all. Therefore our approach will be to walk through our techniques in detail,
attempting to explain our methodology at each step so that the reader gains not
only an understanding of our techniques, but hopefully insight into the general
technique of multi-message modifications as well.

A.1 New Multi-message Modifications for Correcting Q20,17 and
Q20,31

These modifications take into account all the modifications that Klima has done
to correct the conditions on Q0:19. These methods satisfy the two conditions on
Q20 or a6 (Wang’s notation).

Outline of Method. We set up a few conditions on Q16:19 so that flipping a
couple of bits of Q18 and Q19 does not affect earlier computations but with high
probability satisfies the two conditions on Q20. For example, bit 31 of Q20 must
be set to 0. Let’s say it is 1. Note how Q20 is computed:

Q20 ← Q19 + ((G(Q19, Q18, Q17) + Q16 + m5 + y20) ≪ 5)

We set conditions on Q17:19 so that by default the value of the 26th bit of
G(Q19, Q18, Q17) is 0, but that if we flip the 26th bits of both Q19 and Q18
then the value of the 26th bit G(Q19, Q18, Q17) changes to 1. To derive such
conditions, one has to look at how the function G is computed, but it can easily
be verified that if the 26th bits of Q18 and Q19 are 0, then the 26th bit of
G(Q19, Q18, Q17) will be zero, and if the 26th bits of Q19 and Q18 are flipped to
1, then the 26th bit of G(Q19, Q18, Q17) will also be flipped. Flipping the 26th
bit of G(Q19, Q18, Q17) in this manner has the net effect of adding 231 + 226

to the value of Q20 because we have added 226 to Q19, which occurs twice in
the computation of Q20 (once in the computation of G() and once by addition
to T19 ≪ 5). Adding 231 flips the most significant bit of Q20, like we wanted,
and the addition of 226, which we cannot really avoid, will only re-flip the most
significant bit of Q20 if the next 5 most significant bits of Q20 were originally
set, which occurs with probability 1/32.

At this point the observant reader may ask “Why did we have to flip the 26th
bits of both Q19 and Q18?”. “Why not just flip the 26th bit of Q19?” Here’s why:
Remember back in Klima’s code how m0 was computed:

m0 ← ((Q19 −Q18) ≫ s19)−G(Q18, Q17, Q16)−Q15 − y19

If we just changed Q19, we would have to re-compute m0, which would affect the
computation of m5 a couple of steps later, and Q20 would likewise be affected.
In fact, changing m0 by one bit in this way can change m5 by a bunch of bits, so
we must be very careful so we don’t have to modify it for our methods to work.
By changing both Q19 and Q18 in the same way, the changes cancel each other
out and m0 is not changed, so long as G(Q18, Q17, Q16) is not affected by these
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changes. It can easily be verified that requiring the condition Q16,26 = 0 satisfies
this goal (1 more condition). It is important to note that these added conditions
do not significantly affect the performance of the overall code because they are
satisfied in step 3 of Klima’s code. Instead of 9 conditions to probabilistically
satisfy in step 3, we now have 11, which is still tiny in comparison to the overall
runtime.

Okay. So we’ve sneakily changed Q19 and Q18 so that m0 is unaffected and a
condition on Q20 is fulfilled with high probability. Now we have to fix everything
else. We recompute the value of m11 from the new value of Q18 by the following:

m11 ← ((Q18 −Q17) ≫ s18)−G(Q17, Q16, Q15)−Q14 − y18

And we now have to recompute Q11 from m11.

Q11 ← Q10 + ((F (Q10, Q9, Q8)−Q7 − y11) ≪ s11)

Luckily the changes we made to m11 don’t affect any of the 15 conditions on
Q11, so long as bit 2 of Q11 is originally set to 0 (so that we don’t have to worry
about carries). So we add this condition to the list - again, it is fulfilled “for
free” by the single-message modification methods presented in the Wang papers
(or by the fact that Q11 is initially arbitrarily chosen in the Klima paper).

The only thing left to do is to recompute m12:15 to absorb the changes in
Q11. This can be done without changing any of the other Q variables by simply
recomputing m12:15 as we did earlier:

m12 ← ((Q12 −Q11) ≫ s12)− F (Q11, Q10, Q9)−Q8 − y12

m13 ← ((Q13 −Q12) ≫ s13)− F (Q12, Q11, Q10)−Q9 − y13

m14 ← ((Q14 −Q13) ≫ s14)− F (Q13, Q12, Q11)−Q10 − y14

m15 ← ((Q15 −Q14) ≫ s15)− F (Q14, Q13, Q12)−Q11 − y15

That’s it. At the end of everything we have changed Q19 and Q18 so that
one condition on Q20 has been changed with probability 31/32, m11 and Q11
have been changed, but without affecting the conditions on Q11, and m12−15
have been changed to absorb the changes in Q11 so that no other Q values are
affected.

The exact same method can be used to correct the condition on the 17th bit of
Q20 (just shift all bit values above by 14). There are a total of 8 new conditions
that this method requires, but they are all more or less “free.”

It is possible that the above methods fail to correct the specified conditions,
but the probability that this happens is bounded above by 1/32 + 1/32 = 1/16.

After each iteration, our code goes back to starting values for m11:15, Q11, and
Q18, because we need the correct bits of Q11 and Q18 to be set so that flipping
them to satisfy Q20 can occur safely.



The Impact of Carries on the Complexity of
Collision Attacks on SHA-1�

Florian Mendel��, Norbert Pramstaller,
Christian Rechberger, and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Austria
Norbert.Pramstaller@iaik.tugraz.at

Abstract. In this article we present a detailed analysis of the impact
of carries on the estimation of the attack complexity for SHA-1. We
build up on existing estimates and refine them. We show that the attack
complexity is slightly lower than estimated in all published work to date.
We point out that it is more accurate to consider probabilities instead
of conditions.

1 Introduction

In past years, significant progress has been made in the cryptanalysis of the hash
functions MD4, MD5, RIPEMD, SHA-0, and SHA-1 [2,3,5,6,9,10,11,13,14,15]. In
2004 and 2005, Wang et al. announced that they had broken the hash functions
MD4, MD5, RIPEMD, HAVAL, SHA-0, and SHA-1 [16,17,19,20,21].

SHA-1, a widely used hash function in practice, has attracted most attention
over the last years. This year, at the CRYPTO 2005 rump session, Wang et
al. announced that they have further improved their attack on SHA-1. They
updated the attack complexity from 269 to 263 [18].

As it will be explained in Section 2, the attack complexity is mainly de-
termined by the probabilities of so-called 6-step local collisions in a linearized
variant of SHA-1. For each local collision, the attacker derives conditions such
that the local collision holds for the original SHA-1. Based on the derived condi-
tions the attack complexity is conjectured. The main contribution of this article
is that we will show that it is more accurate to look at probabilities instead of
estimating the attack complexity based on the number of conditions.

The remainder of this article is structured as following. We start with a short
description of the hash function SHA-1 and review the basic attack strategy
of Wang et al. in Section 2. In Section 3, we perform a detailed analysis of
local collisions. Section 3.2 describes how Wang et al. derive conditions for local
collisions. In Section 3.3 and Section 3.4 we present a more accurate analysis of
local collisions and the corresponding probabilities. Based on these results we
update the complexity of the collision attack on SHA-1 in Section 3.5. Finally,
we present conclusions in Section 4.
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2 Collision Attacks on SHA-1

In this section we will review the basic attack strategy for collision attacks on
SHA-1. We start with a short description of SHA-1, giving only the details we
need later in this article.

2.1 Short Description of SHA-1

The input message is split into 512-bit message blocks (after padding). The
compression function is then applied to each of these 512-bit message blocks.
The compression function basically consists of two parts: the message expansion
and the state update. The message expansion expands the 512-bit input message
block into 80 32-bit words Wi that are used in each step of the state update. A
single step of the state update is shown in Figure 1.

Wi

Ki

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

+

Ai Bi Ci Di Ei

+

+

+

f

<<5

>>2

Fig. 1. One step of the state update of SHA-1

As it can be seen in Figure 1, in each step the function f is applied to the
inputs Bi, Ci, and Di. The function f depends on the step number: steps 0 to
19 (round 1) use fIF and steps 40 to 59 (round 3) use fMAJ . fXOR is applied
in the remaining steps (round 2 and 4). The functions are defined as:

fIF (B, C, D) = B ∧ C ⊕B ∧D (1)
fMAJ (B, C, D) = B ∧ C ⊕B ∧D ⊕ C ∧D (2)
fXOR(B, C, D) = B ⊕ C ⊕D . (3)

For a detailed description of SHA-1 refer to [12].

2.2 The Basic Attack Strategy on SHA-1

In 1998, Chabaud and Joux presented an attack on SHA-0 [3]. They used a
linearized variant of SHA-0 to find a characteristic, which we will refer to as L-
characteristic throughout the remainder of this article. For the linearized variant
all modular additions are replaced by XOR and the functions fMAJ and fIF

are replaced by fXOR. They observed the following: the probability that the
characteristic holds for the original SHA-1 is related to the Hamming weight of
the characteristic. In general, the lower the weight the higher the probability.
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In 2004 and 2005, Wang et al. announced that they have broken the hash
functions MD4, MD5, RIPEMD, SHA-0, and SHA-1 [19,20,21]. For the colli-
sion attack on SHA-1 they use basically the following strategy, which is also
depicted in Figure 2. They search for a low-weight L-characteristic that leads
to a pseudo collision in the last 60 steps (referred to as P2 in Figure 2). Then
by using a nonlinear characteristic (referred to as NL-characteristic) in the first
20 steps (referred to as P1 in Figure 2), they are able to turn the pseudo colli-
sion into a collision. Furthermore, they improved their attack by searching for
an L-characteristic that leads to a pseudo-near collision in P2. As before, they
turn the pseudo collision into a collision with the NL-characteristic and by us-
ing two-block messages they construct a collision from the near collision in each
block. The fact that it is easier to find a near collision than a collision was ob-
served already by Biham and Chen in [1]. An important property of this attack
strategy is that the NL-characteristic has no impact on the complexity of the
attack since conditions in P1 are fulfilled by using message modification tech-
niques invented by Wang et al. Therefore, only the L-characteristic determines
the attack complexity.

collision

pseudo collision

pseudo-near collision

 = 00

 = 0

 0  0

 = 0

IV
state
out

20 79L-characteristic

P1 P2

Fig. 2. Attack strategy of Wang et al.

The L-characteristic consists of overlapped single local collisions as it has been
shown in [19]. To determine the attack complexity, Wang et al. count the number
of conditions for each local collision such that it holds for the original SHA-1.
Then they conjecture the attack complexity by assuming that after fulfilling the
first 20 steps, random trials are performed to find the colliding messages. The
complexity for this random trials is estimated to be 2# conditions.

Many researchers investigated the L-characteristic and tried to find L-charact-
eristics with lower weight. A possible approach is to exploit coding theory since
finding a low-weight L-characteristic in P2 corresponds to finding a low-weight
codeword in a linear code describing P2. Results of the coding-theory approach
are presented for instance in [8,11,13,15]. In 2005, Jutla and Patthak [7] used a
computer aided proof to show that the minimum Hamming weight in the last
60 steps of the SHA-1 message expansion is 25. This low-weight vector is also
referred to as the disturbance vector, since it contains the disturbances for the
single local collisions. However, Wang et al. use a disturbance vector with higher
weight (weight = 27). The reason for this is that the vector with higher weight
leads to a smaller number of conditions (see [19]). Since the attack complexity is
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determined by the number of local collisions and the corresponding probabilities
(conditions) we will analyze them accurately in the next section.

3 Detailed Analysis of Local Collisions in SHA-1

In the first part of this section, we start with deriving the conditions and corre-
sponding probabilities for all possible local collisions in the L-characteristic of
SHA-1. We follow the work of Wang et al. in [19] to conjecture the overall prob-
ability of a collision attack on SHA-1 based on these local collisions. Note that
the L-characteristic does not include the first 20 steps of SHA-1 and therefore,
we only consider the functions fXOR and fMAJ described in Section 2.1. In the
second part of this section, we derive a more accurate estimation of the proba-
bilities for local collisions. With this analysis we update the attack complexity
of Wang et al. presented in [19].

3.1 Notation and Definitions

For the analysis of local collisions we follow the notation given in Table 1.
Throughout the remainder of this article we will use signed bit differences. In
the following we describe the basic properties of signed bit differences that we
require for our analysis. A detailed discussion of signed bit differences can be
found in [4, Chapter 4].

We define the sign of a difference in bit position j as

w′
j = wj − w∗

j , where wj , w
∗
j ∈ {0, 1} and w′

j ∈ {−1, 0, +1} . (4)

In particular, if w′
j = 0 the difference is zero. The signed bit difference is then

defined as W ′
j = w′

j2
j. A useful property of signed bit differences is the fact that

the difference also includes information about the values of wj and w∗
j . This is

shown in (5).

W ′
j =

⎧⎪⎨⎪⎩
+2j if wj = 1 and w∗

j = 0
0 if wj = w∗

j

−2j if wj = 0 and w∗
j = 1

(5)

Table 1. Notation

notation description
step the SHA-1 compression function consists of 80 steps, 0 ≤ i ≤ 79

round the SHA-1 compression function consists of 4 rounds = 4 × 20 steps
Wi,j bit j of expanded message word in step i, 0 ≤ j ≤ 31
w′

j sign of bit difference in bit position (j mod 32), w′
j ∈ {−1, 0, +1}

W ′
j = w′

j2
j signed bit difference in bit position (j mod 32), W ′

j ∈ {−2j , 0, +2j}
W ′

i,j signed bit difference in step i, bit position j
(j + n mod 32) bit position j rotated to the left by n positions
(j − n mod 32) bit position j rotated to the right by n positions
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Table 2. Addition of signed bit differences

A′
j B′

j C′
j S′

j C′
j+1 A′

j B′
j C′

j S′
j C′

j+1

0 0 0 0 0 0 u v 0 1
2 (u + v)

0 0 v (−1)Aj⊕Bj v −v(Aj ⊕ Bj) u 0 v 0 1
2 (u + v)

0 v 0 (−1)Aj⊕Cj v −v(Aj ⊕ Cj) u v 0 0 1
2 (u + v)

v 0 0 (−1)Bj⊕Cj v −v(Bj ⊕ Cj) v v −v (−1)Aj⊕Bj⊕1v (−1)Aj⊕Bj v

v v v (−1)Aj⊕Bj⊕1v (−1)Aj⊕Bj v v −v v (−1)Aj⊕Cj⊕1v (−1)Aj⊕Cj v

−v v v (−1)Bj⊕Cj⊕1v (−1)Bj ⊕Cj v

Table 3. Differential properties of fXOR and fMAJ for signed bit differences

B′
j C′

j D′
j fXOR(B′

j , C
′
j , D

′
j) fMAJ (B′

j , C
′
j , D

′
j)

0 0 v (−1)Bj⊕Cj v (Bj ⊕ Cj)v
0 v 0 (−1)Bj⊕Dj v (Bj ⊕ Dj)v
v 0 0 (−1)Cj⊕Dj v (Cj ⊕ Dj)v

Let us now consider the addition of two signed bit differences. The addition
S = A + B is defined as Sj = Aj ⊕ Bj ⊕ Cj and Cj+1 = fMAJ (Aj , Bj , Cj)
with C0 = 0, where Cj+1 is the resulting carry of the addition in bit position j.
Table 2 lists all possible cases for the output and carry difference of a signed bit
addition with v, u ∈ {−1, +1}.

To perform the addition of two signed bit differences we can use Table 2
for computing the resulting difference. We know that the output difference is
C′

j+12
j+1 + S′

j2
j . For instance, if there are two non-zero differences at the input

with opposite signs, then both C′
j+1 and S′

j are zero and hence the output
difference is zero. If the differences have the same sign, for instance −2j and
−2j, the output difference is −2j+1, since C′

j+1 = −1 and S′
j = 0.

For our analysis we need the differential properties of fXOR and fMAJ with
respect to signed bit differences. In Table 3, we list the cases that occur in a local
collision (see Figure 3) where v ∈ {−1, +1}. As it can be seen in Table 3, for
fXOR the sign of the input difference is flipped with probability 1/2 depending
on the input values. For fMAJ the sign is preserved but the difference propagates
with probability 1/2.

3.2 Considering the Number of Conditions

In [3], Chabaud and Joux showed how the corrections for a single bit disturbance
in SHA-0 can be constructed. Since the state update for SHA-0 and SHA-1 is the
same, this construction is also valid for SHA-1. Table 4 shows a local collision
with signed bit differences for fXOR and fMAJ .

For the local collision defined in Table 4, we can now derive the number
of conditions and the corresponding probabilities such that the local collision
holds for the original SHA-1. We refer to conditions that contain only expanded
message words as easy conditions since we can easily fulfill them. Conditions that
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Table 4. Local collision (disturbance-corrections) for SHA-1

step difference description
fXOR fMAJ

i W ′
i = +2j +2j single bit disturbance at bit position j

i + 1 W ′
i+1 = −2j+5 −2j+5 correction

i + 2 W ′
i+2 = ±2j −2j correction

i + 3 W ′
i+3 = ±2j−2 −2j−2 correction

i + 4 W ′
i+5 = ±2j−2 −2j−2 correction

i + 5 W ′
i+8 = −2j−2 −2j−2 correction
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Fig. 3. On the left, a local collision with disturbance in bit position j. No carry occurs
in step i. On the right a local collision with disturbance in bit position j = 0. In
step i a carry occurs. The differences in the dashed rectangles are the possible output
differences of fXOR and fMAJ .
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include state variables are considered to be hard conditions. For the analysis we
can assume without loss of generality that the sign of the disturbance is positive,
i.e. W ′

i = +2j. If the disturbance is −2j, we get the same results by just flipping
all the other signs. The propagation of the disturbance and corrections is shown
in the left part of Figure 3.

Disturbance in step i. In step i, where the disturbance is introduced, it is
required that the disturbance propagates to state variable Ai+1 without causing
a carry in the difference, i.e. A′

i+1 = W ′
i = +2j . This occurs with probability

1/2. If the disturbance is introduced at bit position j = 31, it propagates to
A′

i+1 with probability 1.

Correction in step i+1. As shown in Figure 3, the difference in state variable
A is rotated to the left by 5 positions. Therefore, the correction is W ′

i+1 = −2j+5.
It follows from Table 2 that if the sign of the correction is the opposite of the sign
of the disturbance, then the correction occurs with probability 1. We can ensure
the negative sign of the correction with condition CWi+1: Wi+1,j+5 ⊕Wi,j = 1.
This condition is in W only and we can easily fulfill it.

Correction in step i + 2. In this step, we have to consider the modular
addition and the function f . As described in Table 3, fXOR flips the sign of
the input difference with probability 1/2. Therefore, for B′

i+2 = +2j the output
difference of fXOR can be either +2j or −2j depending on Ci+2 and Di+2. Since
we cannot easily influence the values of Ci+2 and Di+2 the probability for the
correction is 1/2.

For fMAJ we get the same probability as for fXOR by defining a condition
in W only. For the input difference B′

i+2 = +2j the possible output difference
of fMAJ is either +2j or 0. This results in a probability of 1/4. However, if the
sign of the correction is negative, then the correction has a probability of 1/2.
This can be ensured by fulfilling condition CWi+2: Wi+2,j ⊕Wi,j = 1.

Correction in step i + 3 and i + 4. These steps are the same as step i + 2
except that the difference +2j is rotated to the right by 2 positions, i.e. +2j−2.
For fXOR we get a probability of 1/2 in each step. For fMAJ we also get the
probability 1/2 by fulfilling the following easy conditions in W only: CWi+3:
Wi+3,j−2 ⊕Wi,j = 1, and CWi+4: Wi+4,j−2 ⊕Wi,j = 1.

Correction in step i + 5. If all corrections have taken place in the previous
steps the signed bit difference is in state variable E. As it can be seen in Figure 3,
E′

i+5 is the same difference as A′
i+1 = +2j rotated by 2 to the right, i.e. E′

i+5 =
+2j−2. We only have to consider the modular addition. As in step i + 1, we
can fulfill condition CWi+5: Wi+5,j−2 ⊕ Wi,j = 1 such that the correction has
negative sign. Hence, the correction in step i + 5 has probability 1.

Local collision with best probability. With the above described probabili-
ties for each step of the local collision we can define a local collision that has the
best probability for fXOR. Assume the disturbance is introduced in bit position
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Table 5. Probabilities for local collisions in SHA-1

probability easy conditions on W

disturbance fXOR fMAJ fXOR fMAJ

j = 1 2−2 2−4 CWi+1 CWi+1, CWi+2

j = 26 2−4 2−4 CWi+5 CWi+2, CWi+3, CWi+4, CWi+5

j = 31 2−3 2−3 CWi+1, CWi+5 CWi+1, CWi+3, CWi+4, CWi+5

j = 0, 2, . . . , 25
j = 27, . . . , 30

2−4 2−4 CWi+1, CWi+5 CWi+1, CWi+2, CWi+3, CWi+4, CWi+5

j = 1. In step i we have a probability of 1/2. Since we can easily fulfill condition
CWi+1 we have a probability of 1 in step i + 1. In step i + 2 the probability is
1/2. Now, for steps i+3 to i+5 the disturbance is rotated to bit position j = 31.
Since a carry in the difference can be ignored (addition mod 232), we get a total
probability of 2−2 for a local collision with disturbance in bit position j = 1.

Summary of probabilities of local collisions. Table 5 summarizes the prob-
abilities for all possible local collisions with a single-bit disturbance and lists the
easy conditions in W that have to be fulfilled. For the discussion so far we only
considered probabilities and easy conditions. However, the probabilities for the
modular addition and the functions fMAJ and fXOR can also be described in
terms of so-called hard conditions. Each single condition is fulfilled with prob-
ability 1/2. Consider for instance fMAJ . The input difference B′

i = +2j leads
to the output difference +2j(Ci ⊕ Di) (see Table 3). In order to ensure that
the difference propagates, we require that Ci ⊕Di = 1. Since we cannot easily
influence the values of Ci and Di, the condition is fulfilled with probability 1/2.
The same can be done for the other cases. For a local collision with disturbance
in bit position j = 1, we have a probability of 2−4. In other words there are 4
hard conditions that we cannot easily fulfill.

With the probabilities listed in Table 5 the complexity of the attack on SHA-1
can be determined. For the description we follow the work of Wang et al. [19]. For
the disturbance vector [19, Table 5] we compute the product of all probabilities
for each disturbance bit to determine the overall probability and hence the attack
complexity.

3.3 Accurate Probability Computation

In Section 3.2, we determined the probabilities of local collisions with distur-
bances introduced at different bit positions. For the analysis we did not allow
carries in step i where the disturbance is introduced. This restriction can actu-
ally be relaxed. In the following we will analyze the impact of carries in step
i on the probability of local collisions. We will show that the probabilities are
actually higher for most bit positions of the disturbance.

Single bit disturbance. We start with a disturbance in bit position j = 0. As
shown in Table 5 this results in a probability of 2−4. Now consider that a carry
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occurs in the difference in step i, i.e. the disturbance W ′
i = +20 propagates to

A′
i+1 = +21 − 20. This case is shown on the right hand side in Figure 3.
The carry in step i occurs with probability 1/4. The difference in bit position

j = 1 can be seen as a new disturbance that leads to a second local collision with
a certain probability. To cancel out the difference A′

i+1 = +21 we require that
the corrections in the consecutive steps also produce a carry in the difference. As
described in Section 3.2, we fulfill condition CWi+1 to ensure that W ′

i+1 = −25.
Therefore, the differences cancel out with probability 1 since (+26−25)+(−25) =
0 (as shown in Table 2, −25+(−25) = −26 and hence 26−26 = 0). For steps i+2
to i+4 we first consider fXOR. In step i+2 we have a probability of 1/4 because
fXOR flips the sign of a bit difference with probability 1/2. Since we have two
bit differences this results in a probability of 1/4. The same holds for steps i +3
and i+4. However, since the disturbance is introduced in bit position j = 0, the
second difference caused by the carry is rotated to bit position j = 31 in step
i+2. We can ignore carries in this bit position and hence the sign in bit position
j = 31 has no impact. Therefore, we get a probability of 1/2 for each step. We
can do the same analysis for fMAJ . As already mentioned, fMAJ preserves the
sign of the input difference but the difference propagates only with probability
1/2. Therefore, we cannot exploit bit position j = 31—the probability for steps
i + 3 and i + 4 is 1/4 each. For step i + 2 the probability is 1/4 since CWi+2
is fulfilled. In step i + 5 we have a probability of 1 for fXOR and fMAJ based
on the same reasoning as for step i + 1. With the results of this analysis we can
update the probability of Section 3.2. The best probability for fXOR and fMAJ

with a disturbance in bit position j = 0 is:

p(fXOR, j = 0) = 2−4 + 2−6 = 2−3.6781 , (6)
p(fMAJ , j = 0) = 2−4 + 2−8 = 2−3.9125 . (7)

Uncorrectable carries. Let us now consider the case where two carries in step
i occur, i.e. W ′

i = +20 propagates to A′
i+1 = +22 − 21 − 20. Two carries occur

with probability 1/8. If we work with the difference in bit position j = 2, we
encounter the following problem, which we refer to as uncorrectable carries. In
step i+2 the difference is rotated by two positions to the right, i.e. −231−230+20.
It is not possible to correct the difference +20 in step i + 3 anymore since the
correction takes place in bit position j = 30. For fMAJ , uncorrectable carries
for this example take place only in step i + 5. This is due to the fact that the
difference +20 is blocked by fMAJ with probability 1/2 in steps i + 2 to i + 4.
However, in step i + 5 we cannot correct the difference +20 since the correction
takes place in j = 30. Therefore, the probabilities given in (6) and (7) are the
best probabilities for both functions with a disturbance in j = 0.

If we perform the carry analysis for bit position j = 1, we also encounter
uncorrectable carries as for the disturbance in j = 0. Namely, a carry in step i
cannot be corrected anymore in step i + 3 (step i + 5 for fMAJ , respectively)
and therefore, a carry does not increase the probability for a local collision with
disturbance in j = 1 for both fXOR and fMAJ . Uncorrectable carries can also
occur due to the left rotation by 5 in step i + 1. A disturbance in j = 26 that
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leads to a carry in step i cannot be corrected anymore in step i + 1 since the
correction W ′

i+1 takes place in bit position j = 31 but the carry is rotated to
j = 0.

Carries that improve the probability of local collisions. After determin-
ing the probabilities for j = 0 and j = 1, we describe now the impact of carry
effects for disturbances in bit position j = 2, . . . , 31. Due to uncorrectable carries
after bit position j = 26 we have to analyze the probability for j = 2, . . . , 26 and
j = 27, . . . , 31 separately. We start the explanation for fXOR. For 2 ≤ j ≤ 26 we
have the same probability in steps i, i+2, i+3, and i+4, namely the probability
that no carry occurs and the probabilities for all possible carries. Note that the
probability in steps i+1 and i+5 is 1 since we fulfill the easy conditions CWi+1
and CWi+5 (see Section 3.2). For 27 ≤ j ≤ 31 we have the same except that the
probability in step i+2 is increased by a factor of 2 if the carry in step i reaches
bit position j = 31. For fMAJ we also assume that the easy conditions in W are
fulfilled. Then we get the same probabilities as for fXOR with the difference that
for 27 ≤ j ≤ 31 we cannot exploit bit position j = 31. In (8) and (9) we give the
formulae to compute the accurate probability for a local collision including all
carry effects. Probability bounds for (8) and (9) are given in Appendix A. For
a disturbance in bit position j = 3 the probability for both fXOR and fMAJ is
2−3.9068 instead of 2−4 which is the probability derived by counting conditions.

p(fXOR, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2−2 for j = 1
2−4 + 2−6 for j = 0∑27−j

k=1 2−4k for j = 2, . . . , 26
2 · 2−4·(32−j) +

∑31−j
k=1 2−4k for j = 27, . . . , 31

(8)

p(fMAJ , j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2−4 for j = 1
2−3 for j = 31
2−4 + 2−8 for j = 0∑27−j

k=1 2−4k for j = 2, . . . , 26∑32−j
k=1 2−4k for j = 27, . . . , 30

(9)

3.4 Disturbances in Consecutive Bit Position

If we have a look at the disturbance vector in [19, Table 5] or [13, Table 7] there
occur disturbances in consecutive bit positions, i.e. W ′

i = +2j+1 + 2j for fXOR.
For the explanation we take the concrete case with disturbance W ′

i = −21 + 20,
and the five corrections W ′

i+1 = +26−25, W ′
i+2 = +21−20, W ′

i+3 = +231 +230,
W ′

i+4 = +231 + 230, and W ′
i+5 = +231 − 230. In a straightforward way we can

just treat them as separate disturbances and compute the probability based on
(8). This results in a probability of

p(fXOR,−21 + 20) = 2−2︸︷︷︸
j=1

·(2−4 + 2−6︸ ︷︷ ︸
j=0

) = 2−5.678 . (10)
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Table 6. Update on complexity for collision attack on SHA-1

[19, Table 9] our work
disturbance disturbance number of estimated accurate
bit position index conditions probability probability

j = 1 23, 24, 27, 28, 32, 35, 36 2 · 7 = 14 2−14 2−14

j = 0 25, 29, 33 4 · 3 = 12 2−12 2−11.0343

j = 1 39, 43, 45, 47, 49 4 · 5 = 20 2−20 2−20

j = {2, 3, 4, 5, 7} 65, 68, 71, 73, 74 4 · 5 = 20 2−20 2−5·3.9068 = 2−19.534

total 2−66 2−64.5683

However, by performing a detailed analysis we show that the probability for
this case can be improved to p(fXOR,−21 + 20) = 2−3.678 by defining two addi-
tional conditions in W only, referred to as CWi and CW1i+2. We assume that
the easy conditions described in Section 3.2 are fulfilled. If no carry occurs in
step i, both disturbances are corrected with probability 2−6. This follows from
Section 3.2. Now consider the case that a carry occurs in step i. Assume that
in step i the disturbances have opposite signs, e.g. W ′

i = −21 + 20. This can be
ensured by fulfilling the new condition CWi: Wi,1 ⊕Wi,0 = 1. If a carry occurs
in bit position j = 0 the difference that propagates to A′

i+1 is −20 since the
positive sign of the carry (see Table 2) cancels the negative difference in j = 1.
This occurs with probability 1/2. In step i + 1 the probability is 1 since CWi+1
is fulfilled. In step i + 2 we can increase the probability to 1/2 if the additional
condition CW1i+2: Wi+2,1 ⊕Wi+2,0 = 1 is fulfilled. This is based on the same
reasoning as for step i. For the remaining steps i+3 to i+4 we get a probability
of 1/2 for each step. Again, in step i+5 we have a probability of 1. Hence we have
a total probability of 2−4 for the case that a carry occurs in step i. Therefore,
the total probability for the disturbance +21 − 20 or −21 + 20 is

p(fXOR,−21 + 20) = 2−4︸︷︷︸
carry in j=0

+ 2−6︸︷︷︸
no carry in step i

= 2−3.6781 . (11)

Wang et al. use a probability of 2−4 for their estimation. For disturbances in
other consecutive bit positions the same analysis can be performed. For fXOR

the analysis is given in Appendix B.

3.5 Update of Attack Complexity by Wang et al.

With the above analysis we covered all cases of disturbances that occur in the
disturbance vector of [19]. Since they count conditions in the last 60 steps of
SHA-1 the overall probability can be updated based on (8) and (9). Table 6 lists
the comparison with [19, Table 9].

As it can be seen in Table 6 the probability is by a factor of approx. 2.7
higher than estimated in [19]. Note that we did not count the disturbances
in step i = 21 and step i = 77 since some of the conditions are fulfilled due to
message modification or truncation. This means that the path of the disturbance
is fixed and we cannot exploit any carry effects.
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In order to determine the overall probability, we assume that the probabil-
ities of local collisions are independent. To confirm this assumption, we have
performed several computer measurements for a few overlapping local collisions.
The measurement results match the computed probabilities.

3.6 Importance of Carry Effects

In the case of SHA-1, the improvement of the attack complexity is rather small.
This is due to the fact that the disturbance vector is very sparse and the distur-
bances are introduced in bit positions where we cannot exploit any carry effects
due to uncorrectable carries, e.g. bit position j = 1.

Consider for instance the hash function SHA1-IME [8]. Jutla and Patthak
claim to improve the collision resistance of SHA-1 by modifying the existing
message expansion with the goal to increase the minimum Hamming weight. By
using a computer aided proof they show that the minimum weight in the last
60 steps of the message expansion of SHA1-IME is at least 75. It is clear that
the overall complexity increases with a higher weight in the disturbance vector.
However, due to the higher weight also the impact of carry effects as shown in
this section increases. Therefore, our way of looking at probabilities instead of
conditions gives a more accurate complexity estimation.

4 Conclusion and Further Work

In this article we analyzed local collisions and corresponding probabilities in
detail. We showed that it is more accurate to consider probabilities instead of
conditions for the estimation of the overall attack complexity for collision attacks
on SHA-1. This is due to the fact that carry effects increase the probability.
Based on the accurate probability computation we updated the complexity of the
collision attack on SHA-1 presented by Wang et al. Currently we are investigating
the impact of our approach on SHA1-IME and local collisions in SHA-256.
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A Probability Bounds for Single-Bit Disturbances

Based on formulae (8) and (9) in Section 3.3, the probability of fXOR and fMAJ

can be bounded as follows. We know that

27−j∑
k=1

2−4k = 2−4 1− 2−4(28−j)

1− 2−4 ≤ 2−4

1− 2−4 =
1

24 − 1
,

32−j∑
k=1

2−4k = 2−4 1− 2−4(33−j)

1− 2−4 ≤ 2−4

1− 2−4 =
1

24 − 1
, and

2 · 2−4(32−j) +
31−j∑
k=1

2−4k =

2−4(32−j)+1 + 2−4 1− 2−4(32−j)

1− 2−4 ≤ 2−3 +
2−4

1− 2−4 =
1
23 +

1
24 − 1

.

Therefore, we get the following bounds on the probability for fXOR and fMAJ :

1
24 ≤ p(fXOR, j) ≤ 1

24 − 1
for j = 2, . . . , 26 , (12)

1
24 ≤ p(fXOR, j) ≤ 1

23 +
1

24 − 1
for j = 27, . . . , 31 , (13)

1
24 ≤ p(fMAJ , j) ≤ 1

24 − 1
for j = 2, . . . , 26 and j = 27, . . . , 30 , (14)

where the lower bound for the probability 2−4 is derived by counting conditions.
For instance, if we compute the probability for a disturbance in bit position
j = 3 we get for both fXOR and fMAJ a probability of 2−3.9068 instead of 2−4.

B Probabilities for Disturbances in Consecutive Bit
Position

Here we give the probabilities for disturbances in consecutive bit positions for
fXOR. This is the generalization of the case presented in Section 3.4. Again,
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we have to consider uncorrectable carries. Uncorrectable carries occur if the
disturbances are in bit position j = 2, 1 and j = 27, 26. In these cases, we
get the probability of both disturbances without carry. If j = 2, 1, we obtain
a probability of 2−42−2 = 2−6 and j = 27, 26 results in 2−42−4 = 2−8. Let us
now consider disturbances in consecutive bit positions from j = 2, . . . 25, i.e.
the tuples j = (3, 2), (4, 3), . . . , (26, 25), and from j = 27, . . . , 30, i.e. the tuples
j = (28, 27), (29, 28), (30, 29), (31, 30). The formulae for all cases are given in
(15), where j refers to the right entry of the tuple.

p(fXOR, (j + 1, j)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2−4 + 2−6 for j = 0
2−4 + 2−8 for j = 1 and j = 26∑27−j

k=1 2−4k for j = 2, . . . , 25
2 · 2−4(32−j) +

∑31−j
k=1 2−4k for j = 27, . . . , 30

(15)
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Abstract. We present PEP, which is a new construction of a tweak-
able strong pseudo-random permutation. PEP uses a hash-encrypt-hash
approach which has been recently used in the construction of HCTR.
This approach is different from the encrypt-mask-encrypt approach of
constructions such as CMC, EME and EME∗. The general hash-encrypt-
hash approach was earlier used by Naor-Reingold to provide a generic
construction technique for an SPRP (but not a tweakable SPRP). PEP
can be seen as the development of the Naor-Reingold approach into a
fully specified mode of operation with a concrete security reduction for
a tweakable strong pseudo-random permutation. HCTR is also based on
the Naor-Reingold approach but its security bound is weaker than PEP.
Compared to previous known constructions, PEP is the only known con-
struction of tweakable SPRP which uses a single key, is efficiently paral-
lelizable and can handle an arbitrary number of blocks.

Keywords: mode of operation, tweakable encryption, strong pseudo-
random permutation.

1 Introduction

A block cipher is a fundamental primitive in cryptography. A block cipher by
itself can encrypt only fixed length strings. Applications in general require en-
cryption of long and arbitrary length strings. A mode of operation of a block
cipher is used to extend the domain of applicability from fixed length strings
to long and variable length strings. The mode of operation must be secure in
the sense that if the underlying block cipher satisfies a certain notion of security,
then the extended domain mode of operation also satisfies an appropriate notion
of security.

A formal model of security for a block cipher is a pseudo-random permuta-
tion [9] which is formalized as a keyed family of permutations. Pseudo-random-
ness of the permutation family requires a computationally bounded adversary
to be unable to distinguish between a random permutation and a permutation
picked at random from the family. Strong pseudo-random permutations (SPRPs)

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 293–309, 2006.
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require computational indistinguishability even when the adversary has access
to the inverse permutation.

A mode of encryption usually provides two security assurances – privacy and
authenticity. For example, OCB [14] is a mode of operation (providing both pri-
vacy and authenticity) which extends the domain of a block-cipher to arbitrary
strings. An SPRP which can encrypt arbitrary length strings, can be viewed as
a mode of operation with a somewhat different goal. Such a mode of operation
is length preserving and no tag is produced. Hence, authentication is of limited
nature. A change in the ciphertext cannot be detected but the decryption of the
tampered ciphertext will result in a plaintext which is indistinguishable from
a random string. Additional redundancy in the message introduced by higher
level applications might even allow the detection of the tampering. This point is
discussed in details by Bellare and Rogaway [1].

Tweakable encryption was introduced by Liskov, Rivest and Wagner [8] which
added an extra input called tweak to a block cipher. This allows simplification of
several applications. The paper [8] introduced both tweakable PRP and SPRP. In
the adversarial model for tweakable SPRP, the adversary queries the encryption
(resp. decryption) oracle with a tweak and the plaintext (resp. ciphertext). The
adversary is allowed to repeat the tweaks in its queries to the encryption and
the decryption oracles. A tweakable SPRP provides a mode of operation having
all the advantages of an SPRP with the additional flexibility of having a tweak.
The constructions CMC [4], EME [5], EME∗ [3] and HCTR [17] are proved to
be tweakable SPRPs under the assumption that the underlying block cipher is
an SPRP. As mentioned in [4], such a primitive is well suited for disk encryption
where the tweak can be considered to be the sector address.

Our Contributions: We present a new construction of a tweakable SPRP called
PEP (for Polynomial hash-Encrypt-Polynomial hash). PEP uses a block cipher
which can encrypt an n-bit string to construct an encryption algorithm which
can encrypt mn-bit strings for any m ≥ 1. It uses two Wegman-Carter [16]
style polynomial hashes over the binary field GF (2n). (Similar hashes have been
earlier used in GCM [10] and HCTR.) The new construction is proved to be a
tweakable SPRP assuming that the underlying block cipher is an SPRP. Below
we mention some interesting features of PEP.

1. PEP is a fully specified mode of operation providing a tweakable SPRP. The
security proof for PEP provides a concrete security bound which is the usual
quadratic birthday bound earlier obtained for CMC, EME and EME∗. The
security bound of HCTR is weaker and the security degradation is cubic.

2. The total computation cost of PEP for encrypting an m-block message con-
sists of m + 5 block cipher calls for m ≥ 2 (m + 3 for m = 1), and (4m− 6)
multiplications in GF (2n). In contrast, CMC requires 2m + 1 block cipher
calls; EME∗ requires (2m+m/n+1) block cipher calls; and HCTR requires
m block cipher calls and 2(m + 1) many GF (2n) multiplications. The ex-
act comparison of the computation costs between PEP and CMC depends
upon several factors such as the implementation platform (hardware or soft-
ware), availability of suitable co-processors (for software implementation),
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availability of parallel encryption blocks (for hardware implementation) and
most importantly on the actual block cipher being used and the efficiency of
its implementation.

3. Currently, PEP fills a gap in the known constructions. It is the only known
construction of tweakable SPRP which uses a single key, is efficiently par-
allelizable and can handle arbitrary number of message blocks. Table 1 in
Section 3 provides a detailed comparison of PEP with the other tweakable
SPRPs.

Related Constructions: To the best of our knowledge, the first suggestion for
constructing an SPRP was made by Naor and Reingold in [11]. They suggested
the hash-encrypt-hash approach used in PEP. However, as discussed in [4], the
description in [11] is at a top level and also the later work [12] does not fully
specify a mode of operation. Perhaps more importantly, the work [12] does not
consider tweakable SPRP since it predates the introduction of tweakable primi-
tives in [8].

The NR approach was rejected in [4] as not being capable of efficient instantia-
tion. The work in [4] and also the later constructions [5,3] follow a encrypt-mask-
encrypt strategy, i.e., there are two layers of encryptions with a layer of masking
in between. CMC [4] provides the first efficient, fully specified construction of
a tweakable SPRP. Parallel versions of the encrypt-mask-encrypt strategy have
been proposed as EME and EME∗.

Interestingly, the NR approach made a recent comeback in the HCTR con-
struction. The HCTR construction combines the NR type invertible hash func-
tions with the counter mode of operation. This results in an efficient tweakable
SPRP which can handle any message having length ≥ n bits. The drawback of
HCTR is its weaker security bound and the requirement of having two keys.
Currently, PEP can be viewed as the development of the NR approach to the
construction of tweakable SPRP.

2 Specification of PEP

We construct the tweakable enciphering scheme PEP from a block cipher E :
K × {0, 1}n → {0, 1}n and call it PEP[E]. The key space of PEP[E] is same as
that of the underlying block cipher E and the tweak space is T = {0, 1}n. The
message space consists of all binary strings of size mn where m ≥ 1.

Finite Field Arithmetic: An n-bit string can also be viewed as an element in
GF (2n). Thus, we will consider each n-bit string in the specification of PEP as
a polynomial over GF (2) modulo a fixed primitive polynomial τ(x) of degree n.
For each n-bit string Z that occur in the description of PEP, we will use Z(x) to
denote the corresponding polynomial in GF (2n). The expressions p(x)M1 (resp.
xEN), represent the n-bit string obtained by multiplying the polynomials p(x)
and M1 (resp. x and EN) modulo τ(x). Also for two n-bit strings Z1 and Z2, the
expression Z1(x)Z2(x) denotes the n-bit string obtained by multiplying Z1(x)
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and Z2(x) modulo τ(x). Finally, by R−1(x) we will denote the multiplicative
inverse of R(x) modulo τ(x) when R(x) �= 0.

Definition 1. Let m ≥ 3 and pm,1(x), . . . , pm,m(x) be a sequence of polynomials
over GF (2) each having degree at most n−1. We call such a sequence an allowed
sequence with respect to a primitive polynomial τ(x) of degree n if the following
two conditions hold.

1.
⊕m

i=1 pm,i(x) ≡ 0 mod τ(x).
2. For 1 ≤ i < j ≤ m, (pm,i(x)⊕ pm,j(x)) �≡ 0 mod τ(x).

From the definition, it is clear that for an allowed sequence to exist, we must
have m ≥ 3. The parameter m in the specification of PEP will represent the
number of blocks to be encrypted (or decrypted). Later we show how to easily
define such an allowed sequence. Since τ(x) is fixed, we will simply write “allowed
sequence” instead of “allowed sequence with respect to τ(x)”.

The notation bin(m) denotes the n-bit binary representation of the integer
m. For example, bin(1) = 0n−11 and bin(2) = 0n−210. The specification of PEP
consists of three cases: m = 1; m = 2; and m ≥ 3. The cases m = 1 and m = 2
are shown in Figure 2. Figure 3 shows the encryption of a 4-block message. The
complete encryption and decryption algorithms are shown in Figure 1.

Remark: For decryption to be possible, we need R(x) to have a multiplicative
inverse modulo τ(x). Since R(x) is a polynomial of degree at most n − 1, the
only value for which R(x) does not have such an inverse is R(x) = 0. For such
an R, the protocol is not defined. Note that R = EK(T ). Assuming EK() to
be a random permutation, the probability R = 0 is 1/2n. Since n ≥ 128, the
probability of getting a T for which the protocol is not defined is negligible.

Basic intuition behind the construction: The basic idea of the construction is
to compute a polynomial hash (Wegman-Carter [16]) of the message. (Similar
hashes are used in the GCM mode of operation [10] and HCTR.) This hash is
XOR-ed with EN to obtain the element MPP whose expression is the following.

MPP = EN ⊕
m⊕

i=1

Pi(x)Ri−1(x). (1)

The mask M1 is obtained by encrypting MPP . Since we are aiming at an
SPRP, we should ensure that each ciphertext bit depends upon all the plaintext
bits. To do this, the mask M1 is “mixed” to the message blocks to obtain the
PPPi’s. While doing this we must be careful. During decryption, we will obtain
the PPPi’s after the decryption layer. Thus, we should be able to compute
MPP from the PPPi’s. To ensure that this can be done, we do two things.
First we convert the Pi’s to PPi’s by multiplying with Ri−1. The second thing is
to “distribute” M1 among the PPi’s while obtaining the PPPi’s so as to ensure
that

m⊕
i=1

PPPi =
m⊕

i=1

PPi =
m⊕

i=1

Pi(x)Ri−1(x) = MPP ⊕ EN. (2)
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This follows from the first property of allowed sequences, namely,
⊕m

i=1 pm,i(x) ≡
0 mod τ(x) and hence MPP can be computed either as

⊕m
i=1 PPi ⊕ EN or as⊕m

i=1 PPPi ⊕ EN . Since allowed sequences exist only for m ≥ 3, we need to
tackle the cases m = 1 and m = 2 separately. In the case m = 1, there is no
requirement to “distribute” M1 among the message blocks while in the case of
m = 2, this is a bit tricky to do. In the last case, we distribute M1 as M1⊕EN and
M1⊕EEN . Note that the XOR of these two elements is EN⊕EEN (and not 0).
However, both EN and EEN can be computed from the tweak and the length
of the message and hence MPP = PP1 ⊕ PP2 ⊕EN = PPP1 ⊕ PPP2 ⊕EEN
and can be computed both during encryption and decryption.

The computation after the encryption layer is similar to the computation
before the encryption layer. This is because we are constructing an SPRP and
the view from the decryption end will be similar to the view from the encryption
end. In the decryption query, we work with L(x) = R−1(x) while computing the
polynomial hash. This is required to ensure the consistency of decryption. This
leads to decryption requiring one extra inversion operation making it slightly
more costlier than encryption.

2.1 Construction of Allowed Sequence of Polynomials

In this section, we provide one construction of allowed sequence. We do not claim
this to be the only possibility; there may be others.

Let τ(x) be a primitive polynomial of degree n. Let mmax be a positive integer
such that τ(x) does not divide any trinomial of degree less than mmax. Estimates
of mmax have been studied in the context of attacks on the nonlinear combiner
model for stream ciphers [7]. (To use a primitive polynomial τ(x) in such stream
ciphers, it is necessary that τ(x) does not divide a low degree trinomial.) This
study indicates that mmax is around 2n/3. Given τ(x), there are algorithms for
computing sparse multiples of τ(x). See [15] for a discussion on this issue.

We will be constructing an allowed sequence of length mmax and hence we will
not be able to encrypt a message having more than mmax blocks. For n = 128,
we have 2n/3 ≈ 242.6 and hence mmax is also around 242.6. The ability to encrypt
messages having at most 242.6 many blocks is sufficient for all practical purposes.

Let m = 3t ≤ mmax, with t ≥ 1. We define a sequence of polynomials
τ3t,1(x), . . . , τ3t,3t(x) in the following manner.

τ3t,i(x) = xi for 1 ≤ i ≤ 2t;
τ3t,2t+i(x) = x2i−1 ⊕ x2i for 1 ≤ i ≤ t.

}
(3)

Let 3 ≤ m ≤ mmax. We define a sequence of polynomials pm,1(x), . . . , pm,m(x)
in the following manner.

m = 3t: Define pm,i(x) = τm,i(x).

m = 3t + 1: Define pm,1 = 1 ⊕ x, pm,2(x) = x ⊕ x2, pm,3(x) = x2 ⊕ x3,
pm,4(x) = x3 ⊕ 1 and pm,4+i(x) = x3τ3(t−1),i(x), for 1 ≤ i ≤ m.
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Algorithm ET
K(P1, P2, . . . , Pm)

R = EK(T );
EN = EK(R ⊕ bin(m));
EEN = EK(xEN);
if m == 1, then

PPP1 = P1 ⊕ EN ;
CCC1 = EK(PPP1);
C1 = CCC1 ⊕ xEEN ;
return C1;

endif

if m == 2, then
PP1 = P1; PP2 = R(x)P2(x);
MPP = PP1 ⊕ PP2 ⊕ EN ;
M1 = EK(MPP );
PPP1 = PP1 ⊕ M1 ⊕ EN ;
PPP2 = PP2 ⊕ M1 ⊕ EEN ;
CCC1 = EK(PPP1);
CCC2 = EK(PPP2);
MCC = CCC1 ⊕ CCC2 ⊕ EN ;
M2 = EK(MCC);
CC1 = CCC1 ⊕ M2 ⊕ EN ;
CC2 = CCC2 ⊕ M2 ⊕ EEN ;
C1 = CC1; C2 = R(x)CC2(x);
return C1, C2;

endif
if m ≥ 3, then

R1 = 1; PP1 = P1; MPP = PP1;
for i = 2 to m do

Ri(x) = R(x)Ri−1(x);
PPi(x) = Ri(x)Pi(x);
MPP = MPP ⊕ PPi;

end for
MPP = MPP ⊕ EN ;
M1 = EK(MPP ); MCC = 0n;
for i = 1 to m do

PPPi = PPi ⊕ pm,i(x)M1(x);
CCCi = EK(PPPi);
MCC = MCC ⊕ CCCi;

end for
MCC = MCC ⊕ EEN ;
M2 = EK(MCC);
CC1 = CCC1 ⊕ pm,1(x)M2(x);
R1 = 1; C1 = CC1;
for i = 2 to m do

CCi = CCCi ⊕ pm,i(x)M2(x);
Ri(x) = R(x)Ri−1(x);
Ci(x) = Ri(x)CCi(x);

end for
return C1, C2, . . . , Cm;

endif

Algorithm DT
K(C1, C2, . . . , Cm)

R = EK(T );
EN = EK(R ⊕ bin(m));
EEN = EK(xEN);
if m == 1, then

CCC1 = C1 ⊕ xEEN ;
PPP1 = DK(CCC1);
P1 = PPP1 ⊕ EN ;
return P1;

endif
L(x) = R(x)−1;
if m == 2, then

CC1 = C1; CC2 = L(x)C2(x);
MCC = CC1 ⊕ CC2 ⊕ EEN ;
M2 = EK(MCC);
CCC1 = CC1 ⊕ M2 ⊕ EN ;
CCC2 = CC2 ⊕ M2 ⊕ EEN ;
PPP1 = DK(CCC1);
PPP2 = DK(CCC2);
MPP = PPP1 ⊕ PPP2 ⊕ EEN ;
M1 = EK(MPP );
PP1 = PPP1 ⊕ M1 ⊕ EN ;
PP2 = PPP2 ⊕ M1 ⊕ EEN ;
P1 = PP1; P2 = L(x)PP2(x);
return P1, P2;

endif
if m ≥ 3, then

L1 = 1; CC1 = C1; MCC = CC1;
for i = 2 to m do

Li(x) = L(x)Li−1(x);
CCi = Li(x)Ci(x);
MCC = MCC ⊕ CCi;

end for
MCC = MCC ⊕ EEN ;
M2 = EK(MCC); MPP = 0n;
for i = 1 to m do

CCCi = CCi ⊕ pm,i(x)M2(x);
PPPi = DK(CCCi);
MPP = MPP ⊕ PPPi;

end for
MPP = MPP ⊕ EN ;
M1 = EK(MPP );
PP1 = PPP1 ⊕ pm,1(x)M1(x);
L1 = 1; P1 = PP1;
for i = 2 to m do

PPi = PPPi ⊕ pm,i(x)M1;
Li(x) = L(x)Li−1(x);
Pi(x) = Li(x)PPi(x);

end for
return P1, P2, . . . , Pm;

endif

Fig. 1. Encryption and Decryption using PEP

m = 3t + 2: Define pm,1 = 1 ⊕ x, pm,2(x) = x ⊕ x2, pm,3(x) = x2 ⊕ x3,
pm,4(x) = x3⊕x4, pm,5(x) = x4⊕1 and pm,5+i(x) = x4τ3(t−1),i(x), for 1 ≤ i ≤ m.

From the definition, note that for m1 �= m2, we may have pm1,i(x) �= pm2,i(x).
Later we show that due to its simple form, multiplication by pm,i(x) is quite
efficient.

Proposition 1. The sequence of polynomials pm,1(x), . . . , pm,m(x) is an allowed
sequence.
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Proof : From the definition of τ3t,i(x) it is easy to verify that
⊕3t

i=1 τ3t,i(x) = 0.
From this it is easy to see that

⊕m
i=1 pm,i(x) = 0. This establishes the first

condition for allowed sequences.
For the second condition, we must show that pm,i(x)⊕pm,j(x) �≡ 0 mod τ(x).

There are three cases to consider.
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Both pm,i(x) and pm,j(x) are monomials: By construction the degrees of both
pm,i(x) and pm,j(x) are at most mmax < 2n − 1. Hence, by the primitivity of
τ(x) we have the required condition.

Both pm,i(x) and pm,j(x) are 2-nomials: By construction pm,i(x) = xi1 ⊕ xi1+1

and pm,j(x) = xj1 ⊕xj1+1. Assume without loss of generality that i1 < j1. Then,
pm,i(x)⊕pm,j(x) = xi1 (1⊕x)(1⊕xj1−i1). Again, the primitivity of τ(x) ensures
the required condition.

One of pm,i(x) and pm,j(x) is a monomial and the other is a 2-nomial: In this
case, pm,i(x)⊕ pm,j(x) is a trinomial of degree at most mmax. The definition of
mmax ensures the required condition.

This completes the proof. ��

2.2 Computation of pm,i(x)M1(x)

In the encryption and decryption algorithms, we need to compute pm,i(x)M1(x)
and pm,i(x)M2(x). We show how these may be efficiently computed. For this it
is sufficient to show how to efficiently compute τ3t,i(x)M1 and τ3t,i(x)M2.

The polynomials τ3t,i(x) satisfy the following recurrences:

τ3t,i(x) = xτ3t,i−1(x) for 2 ≤ i ≤ 2t;
τ3t,2t+1 = τ3t,1(x)⊕ τ3t,2(x);
τ3t,i(x) = x2τ3t,i−1(x) for 2t + 2 ≤ i ≤ 3t.

Define M1,3t,i = τ3t,i(x)M1. Then using the above recurrences, we have

M1,3t,i(x) = xM1,3t,i−1for 2 ≤ i ≤ 2t;
M1,3t,2t+1 = M1,3t,1(x) ⊕M1,3t,2;
M1,3t,i(x) = x2M1,3t,i−1for 2t + 2 ≤ i ≤ 3t.

Using these recurrences, it is easy to compute all the τ3t,i(x)M1’s; the require-
ment is to multiply by either x or x2 and perform a bitwise XOR. Multiplying
by x and x2 is much more efficient than a general multiplication modulo τ(x).
A similar computation will yield the products τ3t,i(x)M2.

3 Features of PEP

Here we discuss some of the important features and limitations of PEP.

Message Length: PEP does not produce any ciphertext expansion as it does not
produce any tag. The tweak is not considered to be a part of the ciphertext.
This is similar to CMC, EME, EME∗ and HCTR. The current version of PEP
can only handle messages whose length is a multiple of n. This is similar to
CMC. EME can handle messages of lengths mn, with 1 ≤ m ≤ n, while EME∗

and HCTR can handle messages of lengths ≥ n. Modification of PEP to handle
messages of lengths ≥ n is a future task.
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There is a (theoretical) restriction on the number of blocks in a particular
message to be encrypted by PEP. The number of blocks in any one message
to be encrypted by PEP is at most mmax. For n = 128, this implies that a
single message can contain at most around 242.6 blocks, which is sufficient for
all practical purposes (see Section 2.1).

Single Block Cipher Key: PEP uses the same key for all the block cipher calls.
CMC and EME require a single key. On the other hand, EME∗ requires three
keys and HCTR requires two keys. A single block cipher key saves key storage
space and key setup costs.

Tweak: Encryption under PEP requires an n-bit tweak. The tweak need not
be random, unpredictable or secret. The adversary is allowed to repeat a tweak
in queries to the encryption and decryption oracles. The tweak is required for
decryption and hence has to be available at both the receiver and the sender
ends. This may be achieved by maintaining a shared counter between the two
parties or it may be such that it can be understood from the context. An example
of the later is the sector address in disk encryption applications.

Online/Offline: An encryption scheme is called online if it can output a stream
of ciphertext bits as a stream of plaintext bits arrive. PEP is not online. PEP
incorporates the effect of the whole plaintext on each ciphertext bit. Hence,
construction of PEP does not allow it to output a single block of ciphertext
unless it has seen the total message. We note that no construction of SPRP
(tweakable or otherwise) can be online for the same reason as PEP.

Consider the encryption algorithm of PEP for m ≥ 3. The algorithm consists
of three separate for loops. The first loop computes the PPi’s and the quantity⊕m

i=1 Ri(x)Pi(x). The values of the PPi’s need to be stored for use by the
second loop. The second loop computes the PPPi’s and the CCCi’s and also
the quantity

⊕m
i=1 CCCi. The PPPi’s do not need to be stored but the value of

the CCCi’s need to be stored for use by the third loop. The third loop produces
the CCi’s and the Ci’s which completes the encryption. (Decryption also has a
similar structure).

To summarize, the algorithm makes a pass over the Pi’s to produce the PPi’s
which are stored; makes a pass over the PPi’s to produce the CCCi’s which
are also stored; and finally makes a pass over the CCCi’s to produce the Ci’s.
This makes it a three pass algorithm. Note that the PPi’s can be written over
the Pi’s and the CCCi’s can be written over the PPi’s. Thus, the intermediate
quantities PPi’s and the CCCi’s do not require any extra storage.

HCTR is also a hash-encrypt-hash type construction and requires three passes
for reasons similar to that of PEP. The algorithmic descriptions of CMC, EME
and EME∗ as given in the respective papers suggest these algorithms to be three-
pass algorithms. On the other hand, a careful consideration of the algorithms
show that all of these algorithms can be implemented using two passes over
the data. Basically, these algorithms are of the form encrypt-mask-encrypt. The
first encryption layer needs to be completed in one pass over the data. Then
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the mask is computed. The actual masking of the intermediate values and the
second encryption layer can be combined in a single pass.

Note that any algorithm requiring more than one pass cannot be online and
also at least one set of intermediate variables need to be stored. If we overwrite
the Pi’s then no extra storage is required for either two or three pass algorithms.
On the other hand, if we wish to preserve the Pi’s, then the same amount of
extra space is required by both two and three pass algorithms. Further, a two
pass algorithm is not necessarily more efficient than a three pass algorithm. We
have to compare the total amount of computation done by the two algorithms
to determine relative efficiency. We consider this issue next.

Computation Cost: PEP performs two polynomial hashes and one layer of block
cipher encryption. The total number of block cipher encryptions for an m-block
message is 4 if m = 1; and is m + 5 if m ≥ 2. The polynomial hashes are used
to compute MPP and MCC for m ≥ 2, the two computations being similar.

To compute MPP we have to compute
⊕m

i=1 Pi(x)Ri−1(x). Using Horner’s
rule this can be computed using (m − 1) multiplications over GF (2n). But
Horner’s rule does not compute the values PPi = Pi(x)Ri−1(x). Since the val-
ues of PPi’s are also required, using Horner’s rule does not help. We have to
compute R2(x), . . . , Rm−1(x) and P2(x)R(x), . . . , PmRm−1(x). These require a
total of 2m − 3 multiplications in GF (2n). Similarly, a total of 2m − 3 multi-
plications are required for computing MCC and the CCi’s. Hence, for m ≥ 2,
PEP requires a total of 4m− 6 finite field multiplications. In addition, there are
the multiplications of the type pm,i(x)M1 and pm,i(x)M2. But as discussed in
Section 2.2, these can be computed very efficiently.

If sufficient memory is available, then the values R2(x), . . . , Rm−1(x) com-
puted during the computation of MPP and the PPi’s can be stored and used
during the computation of MCC and the CCi’s. (This can also be combined
with the parallel computation strategy discussed below.) This brings down the
total number of multiplications to 3m− 4.

We note that decryption requires the computation of one finite field inverse.
The cost of this is amortized over the entire computation and will not reflect on
the overall cost if m is moderately large. The main cost will be that for hardware
implementation since we will have to implement a finite field inverter requiring
more chip area.

Parallelism: The encryption layer is fully parallelizable though the computations
of R, EN , EEN , M1 and M2 has to be sequential. Thus, for m ≥ 2, we require
at least six parallel encryption rounds irrespective of the number of available
block cipher units – five for computing the above quantities and at least one for
encrypting the PPPi’s.

The computation of the PPi’s and MPP can be parallelized in the following
manner. We illustrate by an example. Suppose there are 4 finite field multipli-
ers available. In the first step, the quantity R2 is computed. Now consider the
following parallel schedule for the four multipliers.
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multiplier 1 multiplier 2 multiplier 3 multiplier 4
Round 1 (P2(x) ∗R(x)) (P3(x) ∗R2(x)) (R(x) ∗R2(x)) (R2(x) ∗R2(x))
Round 2 (P4(x) ∗R3(x)) (P5(x) ∗R4(x)) (R3(x) ∗R2(x)) (R4(x) ∗R2(x))
Round 3 (P6(x) ∗R5(x)) (P7(x) ∗R6(x)) (R5(x) ∗R2(x)) (R6(x) ∗R2(x))
. . . . . . . . . . . . . . .

Using this schedule, all the four multipliers can be kept busy in all the rounds
(except possibly for the last round and the initial computation of R2). A similar
schedule can be built for computing MCC and the CCi’s. In general using κ
many multipliers, all the multiplications can be completed in approximately
&(4m− 6)/κ' many parallel rounds which is optimal for κ many multipliers.

HCTR uses a polynomial hash which can be evaluated by Horner’s rule. On the
other hand, there is no straightforward way of parallelizing the polynomial com-
putation without increasing the total number of multiplications. The approach
described above can be used to obtain parallel implementation of polynomial
evaluation and this would approximately double the number of multiplications
required in evaluating using Horner’s rule.

Provable Security: PEP is provably secure. We state a theorem related to the
security of PEP in Section 4 and provide the proof ideas (for the full proof see [2]).
The concrete security bound that we obtain for PEP is similar to that obtained
for CMC, EME and EME∗ and is as expected for a mode of operation. Loosely
speaking, the theorem shows that the advantage of an adversary in attacking
PEP[E] as a tweakable SPRP is bounded above by the advantage of an adversary
in attacking E as an SPRP plus an additive factor which is approximately equal
to cσ2

n/2n, where c is a constant and σn is the total number of blocks (plaintext
or ciphertext) provided by the adversary in its queries to the encryption and the
decryption oracles. The security bound of HCTR is considerably weaker than
the other modes of operations including PEP. For HCTR, the quantity cσ2

n/2n

is replaced by cσ3
n/2n, i.e., there is a cubic security degradation rather than the

usual quadratic degradation. One consequence of a weaker security bound is that
the secret keys need to changed much earlier compared to the other modes.

Comparison: Table 1 provides a comparison of the various features of PEP and
other modes of operations which are SPRPs. We make the following points based
on Table 1.

HCTR is the only previously known fully specified tweakable SPRP which is
of the hash-encrypt-hash type. The NR construction is too incomplete (and also
not tweakable) to permit a proper comparison to other constructions. The main
drawback of HCTR is its weaker security bound and the requirement of two keys.
It has other good features such as ability to handle all message lengths ≥ n, and
lower computation cost. The encryption layer of HCTR is fully parallel. The two
hash layers can be implemented in parallel with computation cost similar to that
of PEP.

PEP is currently the only known single key, efficiently parallelizable algorithm
which can handle arbitrary number of n-bit blocks. CMC, EME∗ and HCTR can
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Table 1. Comparison of SPRPs using an n-bit block cipher, an n-bit tweak and for
m message blocks. (We assume m ≥ 3.) [BC]: one block cipher invocation; [M]: one
GF (2n) multiplication.

Mode sec. bnd. computation keys msg. len. passes enc. parallel?
cost layers

CMC σ2
n/2n (2m + 1)[BC] 1 mn, m ≥ 1 2 2 No

EME σ2
n/2n (2m + 2)[BC] 1 mn, 1 ≤ m ≤ n 2 2 Yes

EME∗ σ2
n/2n (2m + m

n
+ 1)[BC] 3 ≥ n 2 2 Yes

HCTR σ3
n/2n m[BC] 2 ≥ n 3 1 partial

+2(m + 1)[M]
PEP σ2

n/2n (m + 5)[BC] 1 mn, m ≥ 1 3 1 Yes
+(4m − 6)[M]

handle such messages, but CMC is strictly sequential; EME∗ requires one key
from K plus two other n-bit keys; and HCTR requires one key from K and one
n-bit key. On the other hand, EME uses a single key and is fully parallel but
can handle at most n many n-bit blocks.

A general comparison of the computation cost of PEP and HCTR with the
other modes (CMC, EME and EME∗) is difficult. This is because in one case
we have less block cipher invocations but GF (2n) multiplications whereas in the
other case we have more block cipher invocations and no GF (2n) multiplications.
Consequently, the comparison depends upon several factors such as:

1. The implementation platform – hardware or software. For software imple-
mentation, we need to consider the target architecture and its support for
GF (2n) multiplication. Availability of cryptographic co-processors may pro-
vide substantial support for such operation. For hardware implementation,
the number of available parallel encryption units and GF (2n) multiplication
units need to be considered.

2. The most important consideration is the design of the actual block cipher
being used with the mode of operation and its efficient implementation.

Note that PEP approximately trades one block cipher call for four multiplica-
tions (HCTR trades one [BC] for two [M]). Implementation results from [10]
suggest that using a look-up table it is possible to complete a few GF (2n) mul-
tiplications in the time required for one AES-128 invocation. A more detailed
software speed comparison requires efficient implementation of the various modes
of operation and can be a topic of future study.

A mode of operation is not designed for use with any particular block cipher.
As a side remark, we would like to note that the FIPS 197 specifies AES for
protecting “sensitive (unclassified) information”. So each government might be
having its own block cipher for protecting classified information. The computa-
tion cost of PEP vis-a-vis the other modes with respect to such ciphers has to
be determined on a case-to-case basis.

The number of passes made by PEP and HCTR is one more than the other
modes (though the number of encryption layers is one less). We do not consider
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this to be a serious problem since all the modes require at least two passes and
cannot perform online encryption and decryption. The additional pass of PEP
and HCTR by itself does not by itself lead to any efficiency degradation.

4 Security of PEP

4.1 Definitions and Notation

As mentioned earlier, an n-bit block cipher is a function E : K × {0, 1}n →
{0, 1}n, where K �= ∅ is called the key space and for any K ∈ K, E(K, .) is a
permutation. We will usually write EK( ) instead of E(K, .).

An adversary A is a probabilistic algorithm which has access to some oracles
and which outputs either 0 or 1. Oracles are written as superscripts. The notation
AO1,O2 ⇒ 1 denotes the event that the adversary A, interacting with the oracles
O1,O2, finally outputs the bit 1.

Let Perm(n) denote the set of all permutations on {0, 1}n. We require E(, )
to be a strong pseudorandom permutation. The advantage of an adversary
in breaking the strong pseudorandomness of E(, ) is defined in the following
manner.

Adv±prp
E (A) = Pr

[
K

$← K : AEK( ),E−1
K ( ) ⇒ 1

]
−

Pr
[
π

$← Perm(n) : Aπ( ),π−1( ) ⇒ 1
]
.

Formally, a tweakable enciphering scheme is a function E : K×T ×M→M,
where K �= ∅ and T �= ∅ are the key space and the tweak space respectively and
M = ∪i≥1{0, 1}ni, where n is the length of a message block. We shall often write
ET

K(.) instead of E(K, T, .). The inverse of an enciphering scheme is D = E−1

where X = DT
K(Y ) if and only if ET

K(X) = Y .
Let PermT (M) denote the set of all functions πππ : T ×M→M where πππ(T , .)

is a length preserving permutation. Such a πππ ∈ PermT (M) is called a tweak
indexed permutation. For a tweakable enciphering scheme E : K × T ×M →
M, we define the advantage an adversary A has in distinguishing E and its
inverse from a random tweak indexed permutation and its inverse in the following
manner.

Adv±p̃rp
E (A) = Pr

[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−

Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]
.

Pointless queries: An adversary never queries its deciphering oracle with (T, C)
if it got C in response to an encipher query (T, M) for some M . Similarly,
the adversary never queries its enciphering oracle with (T, M) if it got M as
a response to a decipher query of (T, C) for some C. These queries are called
pointless as the adversary knows what it would get as response for such queries.
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Following [5], we define the query complexity σn of an adversary as follows. A
string X contributes max(|X |/n, 1) to the query complexity. A tuple of strings
(X1, X2, . . .) contributes the sum of the contributions from all oracle queries
plus the contribution from the adversary’s output. Suppose an adversary makes
q queries where the number of n-bit blocks in the ith query is �i. Then, σn =
1 +

∑q
i=1(1 + �i) ≥ 2q. Let ρ be a list of resources used by the adversary A

and suppose Adv±xxx
π (A) has been defined where π is either a block cipher

or a tweakable enciphering scheme. Adv±xxx
π (ρ) denotes the maximal value of

Adv±xxx
π (A) over all adversaries A using resources at most ρ. Usual resources

of interest are the running time t of the adversary, the number of oracle queries
q made by the adversary and the query complexity σn (n ≥ 1).

The notation PEP[E] denotes a tweakable enciphering scheme, where the n-
bit block cipher E is used in the manner specified by PEP. Our purpose is
to show that PEP[E] is secure if E is secure. The notation PEP[Perm(n)] de-
notes a tweakable enciphering scheme obtained by plugging in a random per-
mutation from Perm(n) into the structure of PEP. For an adversary attacking
PEP[Perm(n)], we do not put any bound on the running time of the adver-
sary, though we still put a bound on the query complexity σn. We show the
information theoretic security of PEP[Perm(n)] by obtaining an upper bound

on Adv±p̃rp
PEP[Perm(n)](q, σn). The upper bound is obtained in terms of n and

σn. For a fixed block cipher E, we bound Adv±p̃rp
PEP[E](q, σn, t) in terms of

Adv±prp
E (q, σn, t′), where t′ = t+O(σn). We will use the notation Eπ as a short-

hand for PEP[Perm(n)] and Dπ will denote the inverse of Eπ. Thus, the notation
AEπ,Dπ will denote an adversary interacting with the oracles Eπ and Dπ.

4.2 Statement of Result

The following theorem specifies the security of PEP.

Theorem 1. Fix n, q and σn ≥ q to be positive integers and an n-bit block
cipher E : K× {0, 1}n → {0, 1}n. Then

Adv±p̃rp
PEP[Perm(n)](q, σn) ≤ 1

2n+1 ×
(
q2 + 6(5q + σn)2

)
(4)

Adv±p̃rp
PEP[E](q, σn, t) ≤ 1

2n+1 ×
(
q2 + 6(5q + σn)2

)
+ Adv±prp

E (q, σn, t′) (5)

where t′ = t + O(σn).

Since each query consists of at least one n-bit block, we have q ≤ σn and hence
we could write (q2 + 6(5q + σn)2) ≤ cσ2

n for some constant c. Upper bounding
q by σn is proper when σn and q are comparable, i.e., when each query consists
of a few blocks. On the other hand, if each query consists of a large number of
blocks, the bound q ≤ σn is very loose and replacing q by σn makes the bound
appear worse than what it really is. Hence, we choose to present the bound in
terms of both q and σn.
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The above result and its proof is similar to previous work (see for exam-
ple [4,5,14]). As mentioned in [4], Equation (5) embodies a standard way to pass
from the information theoretic setting to the complexity theoretic setting. Let
E(., ., .) denote PEP[E]. For any adversary A, we have the following.

Adv±p̃rp
PEP[E](A)

= Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]

=
(
Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
])

+

Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]

= X + Adv±p̃rp
PEP[Perm(n)](A)

where

X =
(
Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
])

.

The quantity X represents an adversary’s advantage in distinguishing PEP[E]
from PEP[π], where π is a randomly chosen permutation from Perm(n). Clearly,
such an adversary A can also distinguish E from a random permutation and
hence X ≤ Adv±prp

E (A). This argument shows how (4) is obtained from (5).
We need to consider an adversary’s advantage in distinguishing a tweakable

enciphering scheme E from an oracle which simply returns random bit strings.
This advantage is defined in the following manner.

Adv±rnd
MEM[Perm(n)](A) = Pr[π $← Perm[n] : AEπ,Dπ ⇒ 1]− Pr[A$(.,.),$(.,.) ⇒ 1]

where $(., .) returns random bits of length |M |. The basic idea of proving (4) is
as follows.

Adv±p̃rp
PEP[Perm(n)](A)

= Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]

=
(
Pr
[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
]
− Pr

[
A$(.,.),$(.,.) ⇒ 1

])
+(

Pr
[
A$(.,.),$(.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

≤ Adv±rnd
PEP[Perm(n)](A) +

(
q

2

)
1
2n

where q is the number of queries made by the adversary. For a proof of the last
inequality see [5].

The main task of the proof now reduces to obtaining an upper bound on
Adv±rnd

PEP[Perm(n)](σn). The complete proof is provided in [2]. The proof uses the
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standard technique of sequence of games between an adversary and the mode
of operation PEP. The proof is similar to the corresponding proofs of CMC
[4] and EME [5]. By a sequence of games we show that if in response to any
valid query of the adversary, random strings of appropriate lengths are returned
then the internal computations of PEP can be performed consistently under the
assumption that the block cipher and its inverse are random permutations. The
crux of the proof lies in showing that there would seldom be any collisions in
the range and domain sets of the block cipher if the adversary queries PEP with
valid queries and PEP responds to them by producing random strings. In a later
part we remove the randomness associated with the adversary and the game
runs on a fixed transcript consisting of the queries and their responses. We show
that in such a situation also the internal computations of PEP can be performed
consistently.

We later prove (see [2]) that for any adversary making q queries and having
query complexity σn

Adv±rnd
PEP[Perm(n)](q, σn) ≤ 3(5q + σn)2

2n
.

Using this and (6), we obtain

Adv±p̃rp
PEP[Perm(n)](q, σn) ≤ 1

2n+1 ×
(
q2 + 6(5q + σn)2

)
.

5 Conclusion

We have presented a new construction for a tweakable SPRP called PEP. Our
approach is to use polynomial hash, followed by an encryption layer and again
followed by a polynomial hash. This is different from the other constructions of
tweakable SPRPs, namely CMC, EME and EME∗ and is similar to the approach
for constructing SPRP (not tweakable SPRP) given in [11]; this approach has
also been used in constructing HCTR. PEP offers certain advantages over the
known tweakable SPRPs – it is the only know construction which uses a single
key, is efficiently parallelizable and can handle an arbitrary number of blocks.
We make a detailed comparison between the known constructions of tweakable
SPRPs which show that PEP compares quite favorably
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Abstract. In this paper, we define and analyze a new blockcipher mode
of operation for encryption, CENC, which stands for Cipher-based
ENCryption. CENC has the following advantages: (1) beyond the
birthday bound security, (2) security proofs with the standard PRP
assumption, (3) highly efficient, (4) single blockcipher key, (5) fully par-
allelizable, (6) allows precomputation of keystream, and (7) allows ran-
dom access. CENC is based on the new construction of “from PRPs to
PRF conversion,” which is of independent interest. Based on CENC and
a universal hash-based MAC (Wegman-Carter MAC), we also define a
new authenticated-encryption with associated-data scheme, CHM, which
stands for CENC with Hash-based MAC. The security of CHM is also
beyond the birthday bound.

1 Introduction

A blockcipher mode of operation, or a mode for short, is an algorithm that pro-
vides security goals, such as privacy and/or authenticity, based on blockciphers.
The mode for privacy is called an encryption mode.

Of many encryption modes, counter (CTR) mode has a number of desirable
advantages, and it works as follows. Let E be a blockcipher whose block length
is n bits, and let ctr be an n-bit counter. For a plaintext M = (M0, . . . , Ml−1)
broken into n-bit blocks, let{

Ci ← Mi ⊕ Si, where Si ← EK(ctr+ i) for 0 ≤ i ≤ l− 1,
ctr← ctr+ l.

The ciphertext is C = (C0, . . . , Cl−1), and S = (S0, . . . , Sl−1) is the keystream.
Starting from [3], provable security (or reduction-based security) is the stan-

dard security goal for modes. For encryption modes, we consider the strong secu-
rity notion of privacy called “indistinguishability from random strings” from [23],
which provably implies the more standard notions given in [1]. In this strong no-
tion, the adversary is in the adaptive chosen plaintext attack scenario, and the
goal is to distinguish the ciphertext from the random string of the same length
(where ctr is not considered part of the ciphertext).

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 310–327, 2006.
c© International Association for Cryptologic Research 2006
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For CTR mode, Bellare, Desai, Jokipii and Rogaway were the first who pre-
sented the proof of security [1]. The nonce-based treatment of CTR mode was
presented by Rogaway [21]. It was proved that, for any adversary against CTR
mode, the success probability is at most 0.5σ(σ − 1)/2n under the assumption
that the blockcipher is a secure pseudorandom permutation (PRP), where σ de-
notes the total ciphertext length in blocks that the adversary obtains. This is
the well-known birthday bound.

The above analysis is tight. There is an adversary that meets the security
bound within a constant factor. The adversary simply searches for a collision
in the keystream of σ blocks, and guesses the data is the true ciphertext iff
there is no collision. It is easy to show that the success probability is at least
0.3σ(σ− 1)/2n. This implies that, as long as EK(·) is a permutation, there is no
hope that CTR mode achieves beyond the birthday bound security.

In this paper, we design a new blockcipher mode of operation for encryption.
The goals are: (1) beyond the birthday bound security, (2) security proofs with
the standard PRP assumption, (3) highly efficient, (4) single blockcipher key,
(5) fully parallelizable, (6) allows precomputation of keystream, and (7) allows
random access. The original CTR mode achieves all the above goals except for
the first one, while we improve the security of CTR mode without breaking its
important advantages. As for the security assumption, we do not use the ideal
blockcipher model. For efficiency, the number of blockcipher calls is close to CTR
mode, and we avoid using any heavy operations, e.g., re-keying.

Now in CTR mode, it is known that if EK(·) is a secure pseudorandom func-
tion (PRF), then for any adversary the success probability 0, well beyond the
birthday bound. Thus the natural approach to achieve beyond the birthday
bound security is to construct a secure PRF from PRPs and use the PRF in CTR
mode, where the security of PRF must be beyond the birthday bound. There
are several such constructions [4,10,16,2]. The first construction, due to Bellare,
Krovetz, and Rogaway is called data-dependent re-keying [4]. It was proved that
the construction achieves beyond the birthday bound security in the ideal block-
cipher model. The truncation construction was analyzed by Hall et. al., and they
also considered the order construction [10]. Lucks [16] and Bellare and Impagri-
azzo [2] independently analyzed the construction GK(x) = EK(x‖0)⊕EK(x‖1),
where x ∈ {0, 1}n−1. Lucks also considered a more generalized construction
where d blockciphers are xor’ed to output an n-bit block, and a multiple key
version, GK1,K2(x) = EK1(x)⊕ EK2(x), where x ∈ {0, 1}n [16].

By using these constructions in CTR mode, it is possible to construct en-
cryption modes with beyond the birthday bound. However, there is a significant
restriction in efficiency, and/or it breaks several important advantages of the
original CTR mode. For example, if the construction from [4] is used, we need
the ideal blockcipher model for security proofs and have the efficiency prob-
lem for re-keying. The constructions from [10] are not very efficient and the
truncation construction has relatively small security improvement. If GK(x) =
EK(x‖0)⊕EK(x‖1) is used, 2l blockcipher calls are needed to encrypt l plaintext
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blocks. We see that the main reason for inefficiency is that the output size of
these PRFs is one block (or less).

To achieve beyond the birthday bound security, we first show a new “from
PRPs to PRF conversion,” where the output size of the new PRF is larger than
the block size. In particular, our PRF outputs w blocks at a time by using w +1
blockcipher calls. The parameter, w, is called a frame width, and one frame is
equivalent to nw bits. The frame width, w, can be any fixed positive integer. We
prove that the adversary’s success probability is at most wσ3/22n−3 + wσ/2n,
where σ is the total number of blocks that the adversary obtains.

Based on the PRF, we show a new encryption mode with beyond the birthday
bound security. The new mode is called CENC, which stands for Cipher-based
ENCryption. CENC calls l + &l/w' blockciphers to encrypt l plaintext blocks,
and the default value is w = 28, i.e., we need l + &l/256' blockcipher calls to
encrypt l plaintext blocks. Notice that, with the AES (n = 128), one frame
corresponds to nw bits, which is 128× 256 = 4KBytes, and almost all the traffic
on the Internet fits in one frame [8]. This implies we need l + 1 blockcipher calls
for these short data, i.e., the cost is one blockcipher call per data compared to
CTR mode. As for the security, with w = 28 and the AES, the security bound
of CENC is σ̂3/2248 + σ̂/2121, where σ̂ is (roughly) the total number of blocks
that the adversary obtains. The security of CENC is beyond the birthday bound
with the standard PRP assumption. Besides, CENC has desirable advantages
of CTR mode. It uses single blockcipher key, it is fully parallelizable, allows
precomputation of keystream, and random access is possible.

An authenticated-encryption with associated-data scheme, or AEAD scheme,
is a scheme for both privacy and authenticity. It takes a plaintext M and a header
H , and provides privacy for M and authenticity for both M and H . There are a
number of proposals: we have IAPM [13], OCB mode [23], CCM mode [25,12],
EAX mode [7], CWC mode [15], GCM mode [19,20], and CCFB mode [17]. Based
on CENC and a universal hash-based MAC (Wegman-Carter MAC), we propose
a new AEAD scheme called CHM, which stands for CENC with Hash-based
MAC. We show that the security of CHM is beyond the birthday bound, which
is the first example in literature. The scheme is similar to GCM, achieves higher
security with small efficiency loss. It also fixes several undesirable properties
of GCM (for example, GCM is not online in the sense that headers must be
MACed before starting MAC the ciphertext, and the plaintext length is limited
to 64GBytes when used with the AES).

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits. If x and y are two
equal-length strings, then x⊕y denotes the xor of x and y. If x and y are strings,
then x‖y denotes their concatenation. Let x ← y denote the assignment of y to
x. If X is a set, let x

R← X denote the process of uniformly selecting at random
an element from X and assigning it to x. For a positive integer n, {0, 1}n is the
set of all strings of n bits. For positive integers n and w, ({0, 1}n)w is the set of
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all strings of nw bits, and {0, 1}∗ is the set of all strings (including the empty
string). For positive integers n and m such that n ≤ 2m − 1, [n]m is the m-bit
binary representation of n. For a bit string x and a positive integer n such that
|x| ≥ n, first(n, x) and last(n, x) denote the first n bits of x and the last n bits of
x, respectively. For a positive integer n, 0n and 1n denote the n-times repetition
of 0 and 1, respectively.

Blockciphers and function families. The blockcipher (permutation family) is a
function E : K × {0, 1}n → {0, 1}n, where, for any K ∈ K, E(K, ·) = EK(·) is a
permutation on {0, 1}n. The positive integer n is the block length and an n-bit
string is called a block. If K = {0, 1}k, then k is the key length.

The PRP notion for blockciphers was introduced in [18] and later made con-
crete in [3]. Let Perm(n) denote the set of all permutations on {0, 1}n. This
set can be regarded as a blockcipher by considering that each permutation is
specified by a unique string. P is a random permutation if P

R← Perm(n). An
adversary is a probabilistic algorithm (a program) with access to one or more
oracles. Let A be an adversary with access to an oracle, either the encryption
oracle EK(·) or a random permutation oracle P (·), and returns a bit. We say A
is a PRP-adversary for E, and we define

Advprp
E (A) def=

∣∣∣Pr(K R← K : AEK(·) = 1)− Pr(P R← Perm(n) : AP (·) = 1)
∣∣∣ .

Similarly, the function family is a function F : K× {0, 1}m → {0, 1}n, where,
for any K ∈ K, F (K, ·) = FK(·) is a function from {0, 1}m to {0, 1}n. Let
Func(m, n) denote the set of all functions from {0, 1}m to {0, 1}n. This set can
be regarded as a function family by considering that each function in Func(m, n)
is specified by a unique string. R is a random function if R

R← Func(m, n). Let
A be an adversary with access to an oracle, either FK(·) or a random function
oracle R(·), and returns a bit. We say A is a PRF-adversary for F , and we define

Advprf
F (A) def=

∣∣∣Pr(K R← K : AFK(·) = 1)− Pr(R R← Func(m, n) : AR(·) = 1)
∣∣∣ .

For an adversary A, A’s running time is denoted by time(A). The running time
is its actual running time (relative to some fixed RAM model of computation)
and its description size (relative to some standard encoding of algorithms). The
details of the big-O notation for the running time reference depend on the RAM
model and the choice of encoding.

The frame, nonce, and counter. The modes described in this paper take a posi-
tive integer w as a parameter, and it is called a frame width. For fixed positive
integer w (say, w = 28), a w-block string is called a frame. Throughout this
paper, we assume w ≥ 1. A nonce N is a bit string, where for each pair of
key and plaintext, it is used only once. The length of the nonce is denoted by
�nonce, and it is at most the block length. We also use an n-bit string called a
counter, ctr. This value is initialized based on the value of the nonce, then it
is incremented after each blockcipher invocations. The function for increment is
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Fig. 1. Example illustration of F . In this example, w = 3, ω = 1 + �log2 w� = 2, and
F : {0, 1}k×{0, 1}n−2 → ({0, 1}n)3 where FK(x) = (y[0], y[1], y[2]). Here x ∈ {0, 1}n−2,
y[0] = L⊕EK(x‖01), y[1] = L⊕EK(x‖10), y[2] = L⊕EK(x‖11), where L = EK(x‖00).

denoted by inc(·). It takes an n-bit string x (possibly a counter) and returns the
incremented x. We assume inc(x) = x + 1 mod 2n, but other implementations
also work, e.g., with LFSRs if x �= 0n. For i > 0, inci(ctr) means ctr is incre-
mented for i times. Since the value is initialized based on the value of the nonce,
there is no need to maintain this value across the massages.

3 The Basic Tool: A New Pseudorandom Function F

In this section, we define a new function family F . It takes two parameters, a
blockcipher, and a frame width.

Fix the blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, and the frame width w.
Define ω = 1 + �log2 w�, i.e., we need ω bits to represent w. Now we define the
function family F : {0, 1}k×{0, 1}n−ω → ({0, 1}n)w as FK(x) = (y[0], . . . , y[w−
1]), where y[i] = L⊕EK(inci+1(x‖[0]ω)) for i = 0, . . . , w−1 and L = EK(x‖[0]ω).
We call L a mask. See Figure 1 for an example.

We have the following information theoretic result on F .

Theorem 1. Let Perm(n) and w be the parameters for F . Let A be a PRF-
adversary for F making at most q oracle queries. Then

Advprf
F (A) ≤ (w + 1)4q3

22n+1 +
w(w + 1)q

2n+1 .

Notice that w is a constant and the security bound of Theorem 1 is “beyond the
birthday bound.” Also, if we set σ = qw (i.e., the total number of blocks that
the adversary obtains) and measure the security bound in terms of σ, we have
Advprf

F (A) ≤ wσ3/22n−3 + wσ/2n, since 1 + w ≤ 2w.
The following definition is useful in proving Theorem 1.

Definition 1. Let x = (x0, . . . , xq−1) ∈ ({0, 1}n−ω)q be an arbitrary (n − ω)q-
bit string. We say that “x is distinct,” if xi �= xj for 0 ≤ i < j ≤ q − 1.
Similarly, let Y = (Y0, . . . , Yq−1) ∈ ({0, 1}nw)q be an arbitrary nqw-bit string,
where Yi = (yi[0], . . . , yi[w − 1]) ∈ ({0, 1}n)w for 0 ≤ i ≤ q − 1. We say that
“Y is non-zero-distinct,” if there is no equal bit strings in {0n, yi[0], . . . , yi[w−1]}
for any i s.t. 0 ≤ i ≤ q − 1.
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Note that 0n is included in the definition for “Y is non-zero-distinct.” Suppose
that FK(xi) = (yi[0], . . . , yi[w−1]). Then we always have yi[j] �= 0n, and we also
see that yi[j] �= yi[j′] for j �= j′. We allow, for example, yi[j] = yi′ [j′] for i �= i′.
Intuitively, Definition 1 is the set of possible input-output pairs, and for these
pairs the following lemma, which will be used in the proof of Theorem 1, shows
that the distribution is close to uniform. This is the crucial observation for the
security improvement. There are no collisions in “one frame,” but the collision
occurs across the frames.

Lemma 1. Let x = (x0, . . . , xq−1) ∈ ({0, 1}n−ω)q and Y = (Y0, . . . , Yq−1) ∈
({0, 1}nw)q be arbitrarily fixed bit strings, where x is distinct and Y is non-zero-
distinct. Then

pF

pR
≥ 1− q3(w + 1)4

22n+1 , (1)

where pF
def= Pr(P R← Perm(n) : FP (xi) = Yi for 0 ≤ i ≤ q − 1) and pR

def=
Pr(R R← Func(n− ω, nw) : R(xi) = Yi for 0 ≤ i ≤ q − 1).

The proof is based on the counting argument.

Proof (of Lemma 1). We first count the number of P ∈ Perm(n) which satisfies
FP (xi) = Yi for 0 ≤ i ≤ q − 1. Let L0, . . . , Lq−1 be n-bit variables. Then the
number of L0, . . . , Lq−1 which satisfy {Li, Li⊕yi[0], . . . , Li⊕yi[w−1]}∩{Lj, Lj⊕
yj [0], . . . , Lj⊕yj[w−1]} = ∅ for any 0 ≤ i < j ≤ q−1 is at least

∏
0≤i≤q−1(2

n−
i(w+1)2), since there are 2n possibilities for L0, and once L0, . . . , Li−1 are fixed,
we have at least 2n − i(w + 1)2 possibilities for Li. If we set Li = P (xi‖[0]ω),
then it is possible to set P (inc(xi‖[0]ω)) = Li ⊕ yi[0], . . . , P (incw(xi‖[0]ω)) =
Li ⊕ yi[w − 1] uniquely. We have fixed q(w + 1) input-output pairs of P , and
the remaining 2n − q(w + 1) entries can be any value. Therefore, the number
of P ∈ Perm(n) which satisfies FP (xi) = Yi for 0 ≤ i ≤ q − 1 is at least
(2n − q(w + 1))!

∏
0≤i≤q−1(2

n − i(w + 1)2).
Then, the left hand side of (1) is at least

(2n)qw(2n − q(w + 1))!
∏

0≤i≤q−1(2
n − i(w + 1)2)

(2n)!

≥
∏

0≤i≤q−1

1− i(w+1)2

2n(
1− i(w+1)

2n

)(
1− i(w+1)+1

2n

)
· · ·
(
1− i(w+1)+w

2n

)
≥

∏
0≤i≤q−1

(
1− i(w + 1)2

2n

)(
1 +

i(w + 1)2

2n
+

w(w + 1)
2n+1

)
. (2)

We have used the fact that (1 − α)−1 ≥ 1 + α for |α| < 1, and the right hand
side of (1) is given by simplifying (2). ��

The proof of Theorem 1 uses Lemma 1, and is given in Appendix A.
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4 A Relaxed Version F +

In F , if the input is x, then the mask is always generated with x‖[0]ω. In this
section, we present a slightly relaxed version of F , called F+, which removes
this restriction. Similarly to F , F+ takes two parameters, a blockcipher E :
{0, 1}k × {0, 1}n → {0, 1}n, and a frame width w.

Now the function family F+ : {0, 1}k × {0, 1}n → ({0, 1}n)w is defined as
F+

K (x) = (y[0], . . . , y[w−1]), where y[i] = L⊕EK(inci+1(x)) for i = 0, . . . , w−1
and L = EK(x).

Observe that F+ takes n-bit x as input, and the mask is generated with x.
Also, it is not hard to show that F+ is a good PRF as long as there is no collision
in the input to E.

Let A be an adversary that makes at most q oracle queries and let xi ∈ {0, 1}n

denote A’s i-th query. Define Xi = {xi, inc(xi), inc2(xi), . . . , incw(xi)}, i.e., Xi

is the set of input to E in the i-th query. We say that A is input-respecting if
Xi ∩ Xj = ∅ for any 0 ≤ i < j ≤ q − 1, regardless of oracle responses and
regardless of A’s internal coins.

We have the following information theoretic result on F+.

Corollary 1. Let Perm(n) and w be the parameters for F+. Let A be a PRF-
adversary for F+ making at most q oracle queries, where A is input-respecting.
Then

Advprf
F+(A) ≤ (w + 1)4q3

22n+1 +
w(w + 1)q

2n+1 .

The proof is almost the same as that of Theorem 1, and omitted.

5 CENC: Cipher-Based ENCryption

In this section, we propose a new (nonce-based) encryption scheme, CENC. It
takes three parameters, a blockcipher, a nonce length, and a frame width.

Fix the blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, the nonce length �nonce
and the frame width w, where 1 ≤ �nonce < n. CENC consists of two algo-
rithms, the encryption algorithm (CENC.Enc) and the decryption algorithm
(CENC.Dec). Both algorithms internally use the keystream generation algorithm
(CENC.KSGen). These algorithms are defined in Figure 2. A picture illustrating
CENC.KSGen is given in Figure 3.

CENC.Enc has the following syntax. CENC.Enc : Key×Nonce× Plaintext →
Ciphertext, where Key is {0, 1}k, Nonce is {0, 1}
nonce, and Plaintext and Ciphertext
are {M ∈ {0, 1}∗ | |M | ≤ n2
max}, i.e., the set of bit strings at most �max
blocks, where �max is the largest integer satisfying �max ≤ w(2n−
nonce − 1)/(w +
1). It takes the key K, the nonce N , and the plaintext M to return the ci-
phertext C. We write C ← CENC.EncK(N, M). The decryption algorithm
CENC.Dec : Key × Nonce × Ciphertext → Plaintext takes K, N , C to return
M . We write M ← CENC.DecK(N, C). For any K, N , and M , we have M ←
CENC.DecK(N, CENC.EncK(N, M)).



New Blockcipher Modes of Operation 317

Algorithm CENC.EncK(N, M)
100 ctr ← (N‖0n−�nonce )
101 l ← |M |/n�
102 S ← CENC.KSGenK(ctr, l)
103 C ← M ⊕ first(|M |, S)
104 return C

Algorithm CENC.DecK(N, C)
200 ctr ← (N‖0n−�nonce )
201 l ← |C|/n�
202 S ← CENC.KSGenK(ctr, l)
203 M ← C ⊕ first(|C|, S)
204 return M

Algorithm CENC.KSGenK(ctr, l)
300 for j ← 0 to l/w� − 1 do
301 L ← EK(ctr)
302 ctr ← inc(ctr)
303 for i ← 0 to w − 1 do
304 Swj+i ← EK(ctr) ⊕ L
305 ctr ← inc(ctr)
306 if wj + i = l − 1 then
307 S ← (S0‖S1‖ · · · ‖Sl−1)
308 return S

Fig. 2. Definition of the encryption algorithm CENC.Enc (left top), the decryp-
tion algorithm CENC.Dec (left bottom), and the keystream generation algorithm
CENC.KSGen (right), which is used in both encryption and decryption

CENC.Enc and CENC.Dec call CENC.SKGen to generate the keystream of
required length, where the length is in blocks. The encryption (resp. decryption)
is just the xor of the plaintext (resp. ciphertext) and the keystream.

The keystream generation algorithm, CENC.KSGen, takes K, the initial
counter value ctr, and a non-negative integer l. The output is a keystream
S, where the length of S is l blocks. We write S ← CENC.KSGenK(ctr, l).

In CENC.KSGen, we first generate an n-bit mask, L. &l/w' is the number
of frames, incomplete frame counts as one frame. We see that &l/w' masks are
generated in line 301. For each mask, w blocks of the keystream are generated
in line 304 (except for the last frame, as the last frame may have fewer than
w blocks). If l blocks of keystream are generated in line 306, the resulting S is
returned in line 308. Observe that the blockcipher is invoked for l+ &l/w' times,
since we generate &l/w' masks and we have l blocks of keystream, where each
block of keystream requires one blockcipher invocation.

Discussion and default parameters. CENC takes the blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n, the nonce length �nonce (1 ≤ �nonce < n) and the frame width
w, as the parameters. With these parameters, CENC can encrypt at most 2
nonce

plaintexts, and the maximum length of the plaintext is �max blocks. Note that
�max is derived by solving �max+&�max/w' ≤ 2n−
nonce in �max, and in general, the
bound on �max is �max ≤ 2n−
nonce−1 since &�max/w' ≤ �max. As we will present
in Section 6, the security bound of CENC is (w+1)4σ̂3/w322n+1+(w+1)σ̂/2n+1,
where σ̂ is (roughly) the total number of blocks processed by one key.

Our default parameters are, E is any blockcipher such that n ≥ 128, �nonce =
n/2, and w = 28 = 256. For example, if we use the AES, CENC can en-
crypt at most 264 plaintexts, the maximum length of the plaintext is 263 blocks
(237GBytes), and the security bound is σ̂3/2248+ σ̂/2121 (we used (w+1)4/w3 <
261 < 29), thus σ̂ should be sufficiently smaller that 282 blocks (256GBytes).
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Fig. 3. Illustration of the keystream generation algorithm. This example uses w = 3
and outputs l = 7 blocks of keystream S = (S0, . . . , S6). This S is used in both encryp-
tion and decryption. The mask L is updated after generating w blocks of keystream.
The counter ctr is incremented for l + l/w� = 10 times, and there are 10 blockcipher
invocations.

The frame width, w, should be large enough so that we can implement CENC
efficiently. On the other hand, it affects the security bound. We chose w = 28 =
256, which implies 256 blocks of keystream are generated with 257 blockcipher
invocations, thus the cost is about 0.4% compared to CTR mode. We see that
the efficiency loss is very small in both software and hardware. Also, the security
bound is low enough with this value of w. We do not recommend w > 28 (when
n = 128) because of the security loss.

64-bit blockciphers. We do not claim that CENC is generally useful for n = 64,
since there are restrictions on the nonce length (thus the number of plaintexts),
and the plaintext length.

For example, if we use Triple-DES and (�nonce, w) = (32, 256), CENC can
encrypt at most 232 plaintexts, and the maximum length of the plaintext is 231

blocks (16GBytes), which may not be enough for general applications (still, it is
comparable to CTR mode). In this case, the security bound is σ̂3/2120 + σ̂/257,
which implies σ̂ should be sufficiently smaller that 240 blocks (213GBytes).

The limitations of the nonce length and the plaintext length can be removed
if we use a counter (instead of a nonce) that is maintained across the plaintexts.
This “counter version of CENC” is more suitable for 64-bit blockciphers.

6 Security of CENC

CENC is a symmetric encryption scheme. Before showing the security results on
CENC, we first formally define what we mean by symmetric encryption schemes,
and what we mean by such schemes to be secure.

Symmetric encryption schemes. A (nonce-based) symmetric encryption scheme
is a pair of algorithms SE = (E ,D) where E is a deterministic encryption al-
gorithm E : Key × Nonce × Plaintext → Ciphertext and D is a deterministic
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decryption algorithm D : Key × Nonce× Ciphertext → Plaintext. The key space
Key is a set of keys, and is a nonempty set having a distribution (the uniform
distribution when the set is finite). The nonce space Nonce, the plaintext space
Plaintext, and the ciphertext space Ciphertext are nonempty sets of strings. We
write EK(N, M) for E(K, N, M) and DK(N, C) for D(K, N, C). We require that
DK(N, EK(N, M)) = M for all K ∈ Key, N ∈ Nonce and M ∈ Plaintext.

Nonce-respecting adversary. Let A be an adversary with access to an encryp-
tion oracle EK(·, ·). This oracle, on input (N, M), returns C ← EK(N, M). Let
(N0, M0), . . . , (Nq−1, Mq−1) denote its oracle queries. The adversary is said to
be nonce-respecting if N0, . . . , Nq−1 are always distinct, regardless of oracle re-
sponses and regardless of A’s internal coins.

Privacy of symmetric encryption schemes. We adopt the strong notion of pri-
vacy for nonce-based encryption schemes from [23]. This notion, which we call
indistinguishability from random strings, provably implies the more standard
notions given in [1].

Let A be an adversary with access to an oracle, either the encryption oracle
EK(·, ·) or R(·, ·), and returns a bit. The R(·, ·) oracle, on input (N, M), returns
a random string of length |EK(N, M)|. We say that A is a PRIV-adversary for
SE . We assume that any PRIV-adversary is nonce-respecting. The advantage of
PRIV-adversary A for SE = (E ,D) having key space Key is

Advpriv
SE (A) def=

∣∣∣Pr(K R← Key : AEK(·,·) = 1)− Pr(AR(·,·) = 1)
∣∣∣ .

Security results on CENC. Let A be a nonce-respecting PRIV-adversary for
CENC, and assume that A makes at most q oracle queries, and the total length
of these queries is at most σ blocks, where “the total length of queries” is defined
as follows: if A makes q queries (N0, M0), . . . , (Nq−1, Mq−1), then the total length
of queries is σ = &|M0|/n'+ · · ·+ &|Mq−1|/n', i.e, the total number of blocks of
plaintexts. We have the following information theoretic result.

Theorem 2. Let Perm(n), �nonce, and w be the parameters for CENC. Let A be
a nonce-respecting PRIV-adversary for CENC making at most q oracle queries,
and the total length of these queries is at most σ blocks. Then

Advpriv
CENC(A) ≤ (w + 1)4σ̂3

w322n+1 +
(w + 1)σ̂

2n+1 , (3)

where σ̂ = σ + qw.

If we use the rough inequality of w + 1 ≤ 2w, then we have the simpler form,
Advpriv

CENC(A) ≤ wσ̂3/22n−3 + wσ̂/2n.
The proof of Theorem 2 is based on the contradiction argument. If there exists

a nonce-respecting PRIV-adversary A such that Advpriv
CENC(A) is larger than the

right hand side of (3), then we can construct an input-respecting PRF-adversary
B for F+ which contradicts Corollary 1. The proof is given in Appendix B.

Given Theorem 2, we have the following complexity theoretic result.



320 T. Iwata

Corollary 2. Let E : {0, 1}k × {0, 1}n → {0, 1}n, �nonce, and w be the pa-
rameters for CENC. Let A be a nonce-respecting PRIV-adversary for CENC
making at most q oracle queries, and the total length of these queries is at most
σ blocks. Then there is a PRP-adversary B for E making at most (w + 1)σ̂/w

oracle queries, time(B) = time(A)+O(nσ̂w), and Advprp
E (B) ≥ Advpriv

CENC(A)−
wσ̂3/22n−3 − wσ̂/2n, where σ̂ = σ + qw.

The proof of Corollary 2 is given in [11].

7 CHM: CENC with Hash-Based MAC

In this section, we present a new (nonce-based) authenticated-encryption with
associated-data (AEAD) scheme, CHM. It takes six parameters, a blockcipher,
a nonce length, a tag length, a frame width, and two constants.

Fix the blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n, the nonce length �nonce, the
tag length τ , the frame width w, and two n-bit constants const0 and const1. We
require that 1 ≤ �nonce < n, 1 ≤ τ ≤ n, const0 �= const1, and first(1, const0) =
first(1, const1) = 1 (the most significant bits of const0 and const1 are both 1).

CHM consists of two algorithms, the encryption algorithm (CHM.Enc) and
the decryption algorithm (CHM.Dec). These algorithms are defined in Figure 4.
Both algorithms use the keystream generation algorithm (CHM.KSGen) and a
hash function (CHM.Hash). CHM.KSGen is equivalent to CENC.KSGen defined
in Figure 2, and the hash function CHM.Hash is defined in Figure 5.

The syntax of the encryption algorithm is CHM.Enc : Key×Nonce×Header×
Plaintext → Ciphertext×Tag, where the key space Key is {0, 1}k, the nonce space
Nonce is {0, 1}
nonce , and the header space Header is {0, 1}∗. The plaintext space
Plaintext and ciphertext space Ciphertext are {M ∈ {0, 1}∗ | |M | ≤ n2
max},
where �max is the largest integer satisfying �max ≤ w(2n−
nonce−1−1)/(w+1)−1.
The tag space Tag is {0, 1}τ . It takes the key K, the nonce N , the header
H , and the plaintext M to return the ciphertext C and the tag T . We write
(C, T ) ← CHM.EncK(N, H, M). The decryption algorithm CHM.Dec : Key ×
Nonce×Header× Ciphertext×Tag → Plaintext∪ {reject} takes K, N , H , C and
T to return M or a special symbol reject. We write M ← CHM.DecK(N, H, C, T )
or reject ← CHM.DecK(N, H, C, T ).

CHM is the natural combination of CENC and a universal hash function-
based MAC (Wegman-Carter MAC). As a universal hash function, we chose the
standard polynomial-based hash, since it is efficient in both software and hard-
ware, and it is well studied. The multiplication is done in the finite field GF(2n)
using a canonical polynomial to represent field elements. The suggested canon-
ical polynomial is the lexicographically first polynomial among the irreducible
polynomials of degree n that have a minimum number of nonzero coefficients.
For n = 128 the indicated polynomial is x128 + x7 + x2 + x + 1.

Discussion and default parameters. CHM takes six parameters, the blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n, the nonce length �nonce, the tag length τ , the
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Algorithm CHM.EncK(N, H,M)
100 S0 ← EK(const0)
101 S1 ← EK(const1)
102 l ← |M |/n�
103 ctr ← (0‖N‖0n−�nonce−1)
104 S ← CHM.KSGenK(ctr, l + 1)
105 S2 ← first(n, S)
106 S3 ← last(nl, S)
107 C ← M ⊕ first(|M |, S3)
108 Hash0 ← CHM.HashS0(C)
109 Hash1 ← CHM.HashS1(H)
110 T ← Hash0 ⊕ Hash1 ⊕ S2

111 T ← first(τ, T )
112 return (C, T )

Algorithm CHM.DecK(N, H,C, T )
200 S0 ← EK(const0)
201 S1 ← EK(const1)
202 l ← |C|/n�
203 ctr ← (0‖N‖0n−�nonce−1)
204 S ← CHM.KSGenK(ctr, l + 1)
205 S2 ← first(n, S)
206 Hash0 ← CHM.HashS0(C)
207 Hash1 ← CHM.HashS1(H)
208 T ′ ← Hash0 ⊕ Hash1 ⊕ S2

209 T ′ ← first(τ, T ′)
210 if T ′ �= T then return reject
211 S3 ← last(nl, S)
212 M ← C ⊕ first(|C|, S3)
213 return M

Fig. 4. Definition of the encryption algorithm CHM.Enc (left), and the decryption
algorithm CHM.Dec (right). CHM.KSGen is equivalent to CENC.KSGen in Figure 2,
and CHM.Hash is defined in Figure 5.

Algorithm CHM.HashS(M)
100 M ← M‖10n−1−(|M| mod n)

101 l ← |M |/n
102 Hash ← 0n

103 for i ← 0 to l − 1 do
104 Hash ← (Hash ⊕ Mi) · S
105 return Hash

Fig. 5. Definition of CHM.Hash : {0, 1}n × {0, 1}∗ → {0, 1}n. Mi is the i-th block of
M‖10n−1−(|M| mod n), i.e., (M0, . . . , Ml−1) = M‖10n−1−(|M| mod n). Multiplication in
line 104 is in GF(2n).

frame width w, and two n-bit constants const0 and const1. With these parame-
ters, CHM can encrypt at most 2
nonce plaintext-header pairs, and the maximum
length of the plaintext is �max blocks (�max is derived by solving �max+1+&(�max+
1)/w' ≤ 2n−
nonce−1 in �max). As we will present in Section 8, the security bound
of CHM is (w+1)3σ̃2/w222n−3 +(w+1)4σ̃3/w322n+1 +1/2n+(w+1)σ̃/2n+1 for
privacy, and (w+1)3σ̃2/w222n−3+(w+1)4σ̃3/w322n+1+1/2n+(w+1)σ̃/2n+1+
(1+Hmax +Mmax)/2τ for authenticity, where σ̃ is (roughly) the total number of
blocks processed by one key, Mmax is the maximum block length of plaintexts,
and Hmax is the maximum block length of headers.

Our default parameters are, E is any blockcipher such that n ≥ 128, �nonce =
n/2− 1, τ ≥ 96, w = 28 = 256, const0 = 1n−1‖0 and const1 = 1n.

With these parameters, if we use the AES, CHM can encrypt at most 263

plaintexts-header pairs, and the maximum length of the plaintext is 263 blocks
(237GBytes), and the security bounds are σ̃3/2242 + σ̃/2120 for privacy, and
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σ̃3/2242 + σ̃/2120 +(1+Hmax +Mmax)/2τ for authenticity. This implies σ̃ should
be sufficiently smaller that 280 blocks (254GBytes), and Hmax and Mmax should
be small enough so that (1 + Hmax + Mmax)/2τ is low enough.

8 Security of CHM

CHM is an authenticated-encryption with associated-data (AEAD) scheme. Be-
fore showing the security results on CHM, we first formally define what we mean
by AEAD schemes, and what we mean by such schemes to be secure.

AEAD schemes. A (nonce-based) authenticated-encryption with associated-data
(AEAD) scheme is a pair of algorithms AE = (E ,D) where E is a deterministic
encryption algorithm E : Key×Nonce×Header×Plaintext → Ciphertext×Tag and
D is a deterministic decryption algorithm D : Key×Nonce×Header×Ciphertext×
Tag → Plaintext ∪ {reject}. The key space Key is a set of keys. The nonce space
Nonce and the header space Header (also called the space of associated data),
the plaintext space Plaintext and the ciphertext space Ciphertext are nonempty
sets of strings. (We note that there is a more general treatment where Ciphertext
and Tag are not separated. See [7]. We separate them for simplicity.) We write
EK(N, H, M) for E(K, N, H, M) and DK(N, H, C, T ) for D(K, N, H, C, T ). We
require that DK(N, H, EK(N, H, M)) = M for all K ∈ Key, N ∈ Nonce, H ∈
Header and M ∈ Plaintext.

Privacy of AEAD schemes. We follow the security notion from [7]. Let A be
an adversary with access to an oracle, either the encryption oracle EK(·, ·, ·)
or R(·, ·, ·), and returns a bit. The R(·, ·, ·) oracle, on input (N, H, M), re-
turns a random string of length |EK(N, H, M)|. We say that A is a PRIV-
adversary for AE . We assume that any PRIV-adversary is nonce-respecting (i.e.,
if (N0, H0, M0), . . . , (Nq−1, Hq−1, Mq−1) is A’s oracle queries, N0, . . . , Nq−1 are
always distinct, regardless of oracle responses and regardless of A’s internal
coins). The advantage of PRIV-adversary A for AEAD scheme AE = (E ,D)
having key space Key is

Advpriv
AE (A) def=

∣∣∣Pr(K R← Key : AEK(·,·,·) = 1)− Pr(AR(·,·,·) = 1)
∣∣∣ .

Authenticity of AEAD schemes. A notion of authenticity of ciphertext for AEAD
schemes was formalized in [23,22] following [14,6,5]. This time, let A be an
adversary with access to an encryption oracle EK(·, ·, ·) and returns a tuple,
(N, H, C, T ). This tuple is called a forgery attempt. We say that A is an AUTH-
adversary for AE . We assume that any AUTH-adversary is nonce-respecting.
(The condition is understood to apply only to the adversary’s encryption oracle.
Thus a nonce used in an encryption-oracle query may be used in a forgery at-
tempt.) We say A forges if A returns (N, H, C, T ) such that DK(N, H, C, T ) �=
reject but A did not make a query (N, H, M) to EK(·, ·, ·) that resulted in
a response (C, T ). That is, adversary A may never return a forgery attempt
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(N, H, C, T ) such that the encryption oracle previously returned (C, T ) in re-
sponse to a query (N, H, M). Then the advantage of AUTH-adversary A for
AEAD scheme AE = (E ,D) having key space Key is

Advauth
AE (A) def= Pr(K R← Key : AEK(·,·,·) forges).

Privacy results on CHM. Let A be a nonce-respecting PRIV-adversary for CHM,
and assume that A makes at most q oracle queries, and the total plaintext length
of these queries is at most σ blocks, where “the total plaintext length of queries”
is defined as follows: if A makes queries (N0, H0, M0), . . . , (Nq−1, Hq−1, Mq−1),
then σ = &|M0|/n'+ · · ·+ &|Mq−1|/n', i.e., the total number of blocks of plain-
texts. We have the following information theoretic result.

Theorem 3. Let Perm(n), �nonce, τ , w, const0 and const1 be the parameters
for CHM. Let A be a nonce-respecting PRIV-adversary making at most q oracle
queries, and the total plaintext length of these queries is at most σ blocks. Then

Advpriv
CHM(A) ≤ (w + 1)3σ̃2

w222n−3 +
(w + 1)4σ̃3

w322n+1 +
1
2n

+
(w + 1)σ̃

2n+1 , (4)

where σ̃ = σ + q(w + 1).

Note that there is no restriction on the header length. If we use w + 1 ≤ 2w, we
have the simpler form, Advpriv

CHM(A) ≤ wσ̃2/22n−6 +wσ̃3/22n−3 +1/2n +wσ̃/2n.
The proof of Theorem 3 is given in [11]. From Theorem 3, we have the following

complexity theoretic result.

Corollary 3. Let E : {0, 1}k × {0, 1}n → {0, 1}n, �nonce, τ , w, const0 and
const1 be the parameters for CHM. Let A be a nonce-respecting PRIV-adversary
making at most q oracle queries, and the total plaintext length of these queries
is at most σ blocks. Then there is a PRP-adversary B for E making at most
(w + 1)σ̃/w oracle queries, time(B) = time(A) + O(nσ̃w), and Advprp

E (B) ≥
Advpriv

CHM(A)−wσ̃2/22n−6−wσ̃3/22n−3−1/2n−wσ̃/2n, where σ̃ = σ+q(w+1).

The proof of Corollary 3 is given in [11].

Authenticity results on CHM. Let A be an AUTH-adversary for CHM, and
assume that A makes at most q oracle queries (including the final forgery
attempt), the total plaintext length of these queries is at most σ blocks, the
maximum plaintext length of these queries is at most Mmax blocks, and the max-
imum header length of these queries is at most Hmax blocks. Here, if A makes
queries (N0, H0, M0), . . . , (Nq−2, Hq−2, Mq−2), and returns the forgery attempt
(N∗, H∗, C∗, T ∗), then σ, Mmax and Hmax are defined as⎧⎪⎨⎪⎩

σ
def= &|M0|/n'+ · · ·+ &|Mq−2|/n'+ &|C∗|/n',

Mmax
def= max{&|M0|/n', . . . , &|Mq−2|/n', &|C∗|/n'},

Hmax
def= max{&|H0|/n', . . . , &|Hq−2|/n', &|H∗|/n'}.

We say A’s query resource is (q, σ, Mmax, Hmax). We have the following informa-
tion theoretic result.
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Theorem 4. Let Perm(n), �nonce, τ , w, const0 and const1 be the parameters
for CHM. Let A be a nonce-respecting AUTH-adversary whose query resource is
(q, σ, Mmax, Hmax). Then Advauth

CHM(A) is at most

(w + 1)3σ̃2

w222n−3 +
(w + 1)4σ̃3

w322n+1 +
1
2n

+
(w + 1)σ̃

2n+1 +
1 + Hmax + Mmax

2τ
, (5)

where σ̃ = σ + q(w + 1).

If we use w + 1 ≤ 2w, we have the simpler form, Advauth
CHM(A) ≤ wσ̃2/22n−6 +

wσ̃3/22n−3 + 1/2n + wσ̃/2n + (1 + Hmax + Mmax)/2τ .
The proof of Theorem 4 is given in [11]. From Theorem 4, we have the following

complexity theoretic result.

Corollary 4. Let E : {0, 1}k × {0, 1}n → {0, 1}n, �nonce, τ , w, const0, and
const1 be the parameters for CHM. Let A be a nonce-respecting AUTH-adversary
whose query resource is (q, σ, Mmax, Hmax). Then there is a PRP-adversary B
for E making at most (w +1)σ̃/w oracle queries, time(B) = time(A)+O(nσ̃w),
and Advprp

E (B) ≥ Advauth
CHM(A) − wσ̃2/22n−6 − wσ̃3/22n−3 − 1/2n + wσ̃/2n −

(1 + Hmax + Mmax)/2τ , where σ̃ = σ + q(w + 1).

9 Discussions

Counter-based versions. CENC and CHM use a nonce, and it is natural to
consider their counter-based versions. Call them CENC-C and CHM-C, respec-
tively. They use an n-bit counter maintained across the plaintexts (usually by
the sender). The drawback is the difficulty of implementation and it is relatively
harder to use them properly, which is the reason why we have concentrated on
the nonce-based schemes. The advantage of CENC-C and CHM-C is that, the
nonce length and the maximum plaintext length restrictions are removed, while
the security is unchanged (further, non-adaptive version of PRP is enough for
the security proofs). The restrictions only come from the security bound (instead
of the schemes). Thus, if carefully implemented and properly used, these counter
versions are suitable especially for 64-bit blockciphers

Tightness of the security bounds. For CTR mode, the security bound is tight up
to a constant factor. However, for CENC and CHM (and the PRF F in Section
3), we do not know the tightness of our security bounds. The tightness is an open
question. For example, if we take CENC, the bound is O(wσ̂3/22n + wσ̂/2n).
The question is the existence of an adversary A that breaks the privacy of CENC
with about σ̂ = 282 data (without breaking the pseudorandomness of the AES),
or the proof that the security is better than the above. We conjecture that the
bound of CENC can be improved to O(wσ̂/2n), possibly by using the technique
from [2]1.
1 However, it is not possible to check the details of the proof of [2], since only a sketch

is given.
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A Proof of Theorem 1

Proof (of Theorem 1). Without loss of generality, we assume that A makes ex-
actly q oracle queries and A does not repeat an oracle query. Also, since A is com-
putationally unbounded, we assume that A is deterministic. Now we can regard
A as a function fA : ({0, 1}nw)q → {0, 1}. To see this, let Y = (Y0, . . . , Yq−1)
be an arbitrary nqw-bit string, where each Yi is nw bits. The first query, x0,
is determined by A. If we return Yi−1 as the answer for xi−1, the next query
xi is determined, and finally, if we return Yq−1 as the answer for xq−1, the
output of A, either 0 or 1, is determined. Therefore, the output of A and
the q queries, x0, . . . , xq−1, are all determined by fixing Y . Note that for any
Y , the corresponding sequence of queries x = (x0, . . . , xq−1) is distinct. Let
vone = {Y ∈ ({0, 1}nw)q | fA(Y ) = 1}, and vdist = {Y ∈ ({0, 1}nw)q |
Y is non-zero-distinct}. Observe that |vdist| = ((2n− 1)(2n− 2) · · · (2n−w))q ≥
2nwq(1− qw(w + 1)/2n+1), and therefore, we have

|vone ∩ vdist| ≥ |vone| − 2nwqqw(w + 1)/2n+1. (6)

Let PR
def= Pr(R R← Func(n− ω, nw) : AR(·) = 1). Then we have

PR =
∑

Y ∈vone

pR =
|vone|
(2nw)q

. (7)
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PRF-adversary B
If A makes a query (Ni, Mi):
100 ctr ← (Ni‖0n−�nonce )
101 l ← |Mi|/n�
102 S ← CENC.KSGen.Sim(ctr, l)
103 Ci ← Mi ⊕ first(|Mi|, S)
104 return Ci

If A returns b:
200 output b

Algorithm CENC.KSGen.Sim(ctr, l)
300 for j ← 0 to l/w� − 1 do
301 Yj ← O(ctr)
302 ctr ← incw+1(ctr)
303 Y ← (Y0, . . . , Y�l/w�−1)
304 Y ← first(nl, Y )
305 return Y

Fig. 6. The PRF-adversary B for F+ based on the PRIV-adversary A for CENC

On the other hand, let PF
def= Pr(P R← Perm(n) : AFP (·) = 1). Then

PF =
∑

Y ∈vone

pF ≥
∑

Y ∈(vone∩vdist)

pF ≥
(

1− q3(w + 1)4

22n+1

) ∑
Y ∈(Yone∩Ydist)

1
(2nw)q

where the last inequality follows from Lemma 1. Then PF is at least(
1− q3(w + 1)4

22n+1

)
|vone ∩ vdist|

(2nw)q
≥
(

1− q3(w + 1)4

22n+1

)(
PR −

qw(w + 1)
2n+1

)
from (6) and (7). Now, we have PF ≥ PR− q3(w +1)4/22n+1− qw(w +1)/2n+1,
and by applying the same argument to 1 − PF and 1 − PR, we have 1 − PF ≥
1− PR − q3(w + 1)4/22n+1 − qw(w + 1)/2n+1. ��

B Proof of Theorem 2

Proof (of Theorem 2). Suppose for a contradiction that Advpriv
CENC(A) is larger

than the right hand side of (3). Let the oracle O be either F+
P (·) or R(·) ∈

Func(n, nw). Consider the PRF-adversary B for F+ in Figure 6, where B uses
the nonce-respecting PRIV-adversary A for CENC as a subroutine.

We see that if O is F+
P (·), then B gives A a perfect simulation of CENC.Enc,

since F+
P (·) corresponds to “one frame” of CENC.KSGen, and therefore the out-

puts of CENC.KSGen.Sim(ctr, l) and CENC.KSGenP (ctr, l) are the same. This
implies Pr(P R← Perm(n) : BF+

P (·) = 1) = Pr(P R← Perm(n) : ACENC.EncP (·,·) =
1). Also, it is easy to check that B is input-respecting. On the other hand, if O
is R(·), then B gives A a perfect simulation of R. That is, Pr(R R← Func(n, nw) :
BR(·) = 1) = Pr(AR(·,·) = 1). Therefore, we have Advprf

F+(B) = Advpriv
CENC(A).

Suppose that the queries made by A are (N0, M0), . . . , (Nq−1, Mq−1). If we let
li = &|Mi|/n', then B makes &l0/w' + · · ·+ &lq−1/w' queries, which is at most
(l0+· · ·+lq−1)/w+q ≤ σ/w+q = σ̂/w queries. Note that this holds regardless of
the value of l0, . . . , lq−1. From the assumption for a contradiction, Advpriv

CENC(A)
is larger than the right hand side of (3), which implies Advprf

F+(B) > (w +
1)4σ̂3/w322n+1 + (w + 1)σ̂/2n+1. This contradicts Corollary 1. ��
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Abstract. The Ideal-Cipher Model of a blockcipher is a well-known and
widely-used model dating back to Shannon [25] and has seen frequent use
in proving the security of various cryptographic objects and protocols.
But very little discussion has transpired regarding the meaning of proofs
conducted in this model or regarding the model’s validity. In this pa-
per, we briefly discuss the implications of proofs done in the ideal-cipher
model, then show some limitations of the model analogous to recent
work regarding the Random-Oracle Model [2]. In particular, we extend
work by Canetti, Goldreich and Halevi [5], and a recent simplification by
Maurer, Renner, and Holenstein [15], to exhibit a blockcipher-based hash
function that is provably-secure in the ideal-cipher model but trivially
insecure when instantiated by any blockcipher.

Keywords: Ideal-Cipher Model, Information-Theoretic Cryptography,
Random-Oracle Model, Uninstantiability.

1 Introduction

The Standard Model. Before we can prove the security of a cryptographic
system or object, we must specify what model we are using. The most common
model used in modern cryptography is the so-called “standard model.” Here we
use no special mathematical objects such as infinite random strings or random
oracles [2], and we abstract our communications system typically as a reliable but
insecure channel. We have not been able to achieve most common cryptographic
goals in the standard model without making additional complexity-theoretic
hardness assumptions, because we still have no proof that any of our standard
cryptographic building blocks have computational lower bounds. The common
assumptions are typically that factoring the product of large primes is hard,
or that discrete log is intractible in certain sufficiently large groups, or that
AES is a good pseudo-random permutation (PRP) [16]. The standard model
is usually well-accepted in our community despite the fact that proofs done in
this model rest upon unproven assumptions and that already much relevant
real-world context has been abstracted away (timing, power consumption, error
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messages, and other real-world effects are typically not included as part of the
model in spite of the demonstrated fact they are often relevant to security).

The Random-Oracle Model. When proofs in the standard model are unap-
pealing or are provably impossible (eg, see [19]), we often resort to proofs using
an alternative model. By far the best-known is the “Random-Oracle Model.”
The random-oracle model was used for some time before being formalized by
Bellare and Rogaway [2], and continues to see widespread use today (there are
more than a hundred instances; for a few examples see [11,18,2,21,24]). In the
random-oracle model we have a public random function, accessible to all parties,
which typically accepts any string from {0, 1}∗ and outputs n bits. For each ele-
ment in its domain, the corresponding n-bit output is uniform and independent
from all other outputs. Proofs conducted in the random-oracle model often admit
schemes which are provably-secure and more efficient than schemes which have
been proven secure in the standard model, and for this reason the random-oracle
model has been widely-adopted.

Of course random oracles do not exist in practice, and if the schemes proven
secure in the random-oracle model are going to be put into use, we must choose
some object to implement the random oracle. This step is called “instantiation.”
Most often, random oracles are instantiated with cryptographic hash functions
such as SHA-1 [20]. The following question then arises: now that we have instan-
tiated our random oracle with a concrete function, what security guarantees do
we have? Does our proof in the random-oracle model have any bearing on the
security of the instantiated system?

For quite some time there has been concern in our community that the
random-oracle model should be treated with suspicion, and proofs in the stan-
dard model should be preferred. As a recent example, the main selling point
of the Cramer-Shoup cryptosystem [7] is that it is provably-secure in the stan-
dard model and still practical (and, as with most proofs in the standard model,
comes with an assumption: the Decisional Diffie-Hellman assumption [4]). Fur-
ther doubt has been recently cast on the random-oracle model due to a string of
results exhibiting schemes which are provably-secure in the random-oracle model
but are completely insecure when instantiated by any hash function [5,15,6,1].
Schemes of this type are called “uninstantiable.”

It has been noted [2] that proofs done in the random-oracle model do guaran-
tee one thing: if the adversary treats the instantiated random oracle as a black
box, promising not to think about its inner workings, promising not to exploit
any unnatural behavior related to the fact that we have instantiated with some
algorithm that has a compact description, then the proof remains valid in the
standard model. Of course there is no guarantee that real adversaries would abide
by such restrictions, and indeed they would be remiss if they did. Nonetheless,
no scheme has thus far been proven secure in the random-oracle model and then
broken once instantiated, unless this was the goal from the start.

The Ideal-Cipher Model. Blockciphers are a common building block for
cryptographic protocols. In the standard model the associated assumption for
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blockciphers is that they are “pseudo-random permutations” (PRPs). By this we
mean (informally) that an n-bit blockcipher under a secret randomly-chosen key
is computationally indistinguishable from a randomly-chosen n-bit permutation.
Proofs conducted using this assumption typically give reductions showing that
if an adversary breaks some scheme, then there exists an associated adversary
that can efficiently distinguish the underlying blockcipher from random.

There are countless examples where the PRP assumption in the standard
model is sufficient, but there are also plenty of cases where we cannot get a
proof to go through. In certain cases it can be shown that blockcipher-based
schemes we believe to be secure cannot have a proof of security using only the
PRP assumption in the standard model [26]. In this case we are faced with either
abandoning attempts at a proof, or using an alternate model.

The blockcipher analog for the random-oracle model is variously called the
“Shannon Model,” the “Black-Box Model,” or the “Ideal-Cipher Model.” We
will prefer the latter name in this paper.

Though not as widely-used as the random-oracle model, the ideal-cipher model
dates back to Shannon [25] and has been used in a variety of settings (see, for ex-
ample [27,17,10,13,9,3,12]). In the ideal-cipher model we think of a blockcipher E
with k-bit key and n-bit blocksize as being chosen uniformly from the set of all
possible blockciphers of this form. For each key, there are 2n! permutations, and
since any permutation may be assigned to a given key, there are (2n!)2

k

possible
blockciphers. When we instantiate our black box, it becomes some particular
blockcipher. AES with a 128-bit key is one choice from the nearly 22263

blockci-
phers we could have chosen (though in the spirit of Kolmogorov complexity and
in line with the main result of this paper, we should note that the vast majority
of these blockciphers will not have an efficient and compact C implementation).

The ideal-cipher model is analogous to the random-oracle model with three
notable exceptions:

– The ideal cipher has a permutivity requirement that random oracles obvi-
ously do not.

– Adversaries interacting with an ideal-cipher oracle are typically given access
to both the cipher and its inverse.

– The blocksize n of the ideal cipher is typically fixed a priori. This means
that an ideal cipher is a finite object while the random oracle is an infinite
one.

The ideal-cipher model has been used in a variety of settings, and like the
random-oracle model, some researchers question the wisdom of its use. The ar-
gument is completely analogous: if a scheme is proved secure in the ideal-cipher
model, what exactly are we guaranteed once the ideal cipher is instantiated by
a real blockcipher? And if the answer is essentially “not much,” then what is
the value of such proofs? A common argument against the ideal-cipher model is
that most real-world blockciphers have distinguishing patterns which would exist
with exceedingly small probability in a collection of random permutations. The
key complementation property of DES is a typical example of this [16]. Although
no such properties are currently known for AES, some blockcipher experts who
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are comfortable with the assumption that AES is a good PRP are reluctant to
model AES as ideal because of practical concerns: the AES key schedule, for
instance, is quite simple and it perhaps contains related-key properties we have
not yet discovered.

As compensation to the adversary for his respecting the blockcipher as a black
box, we often endow him with limitless computational resources. In this respect,
many proofs done in the ideal-cipher model are information theoretic. This too
is unrealistic, but here we are giving the adversary more power rather than
enhancing the objects themselves. Nonetheless, it is saying something about the
strength of our model that it allows us to achieve information-theoretic security.

The main result of this paper is to exhibit a blockcipher-based hash function
that is secure in the ideal-cipher model against information-theoretic adversaries
but which is trivially insecure once instantiated with any blockcipher. In order to
state this result more clearly, we take a short detour to review blockcipher-based
hash functions.

Blockcipher-Based Hash Functions. One area of recently-renewed inter-
est involves constructing hash functions from blockciphers. This approach, dat-
ing back at least to Rabin [23], uses some blockcipher E with an n-bit key
and an n-bit blocksize, and builds a compression function from it. Iterating
this function then hopefully produces a collision-resistant hash function. Pre-
neel, Govaerts, and Vandewalle [22] conducted a systematic study of a class
of 64 blockcipher-based hash functions. They focused on compression functions
of the form f(hi−1, mi) = Ea(b)⊕ c where a, b, c ∈ {hi−1, mi, hi−1⊕mi, v}
for some fixed constant v. We can now hash any M ∈ ({0, 1}n)+ by writing
M = M1 · · ·M
 and then setting h0 to some constant (typically 0n) and set-
ting hi = f(hi−1, m). We return h
 as the digest. The PGV analysis consisted
of testing a series of attacks on each of these iterated hash functions. Black,
Rogaway and Shrimpton [3] considered these same 64 constructions exhibiting
either an attack or a proof of security (in the ideal-cipher model) for each. They
determined that 20 of the 64 schemes were provably collision-resistant up to the
birthday bound. For one example, see Figure 1.

Although a proof of security for a blockcipher-based hash function in the
standard model would be prefered, it has been shown that the PRP assumption
is insufficient for building a collision-resistant hash function [26]. Indeed, one can
easily imagine a blockcipher Ẽ : {0, 1}n ×{0, 1}n → {0, 1}n that is a good PRP,
but which fails when used in the MMO construction of Figure 1. For example,
let blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n be a good PRP and consider
blockcipher Ẽ defined as follows:

Ẽ(K, X) =

⎧⎨⎩ K if X = K
E(K, K) if X = E−1(K, K)
E(K, X) otherwise

So Ẽ is the same blockcipher as E with one change: we now have the invariant
that E(K, K) = K for all K ∈ {0, 1}n. Clearly Ẽ is a good PRP since E was:
for a randomly-chosen key K, Ẽ(K, ·) is computationally indistinguishable from
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E
nn

n

mi

hi−1 > f(hi−1, mi)

Fig. 1. The Matyas-Meyer-Oseas (MMO) compression function [14], called H1 in [3].
E : {0, 1}n × {0, 1}n → {0, 1}n is a block cipher; the hatch mark denotes the location
of the key. Iterating this compression function results in a provably-secure blockcipher-
based hash function in the ideal-cipher model.

a random permutation. However, using Ẽ in MMO would be inadvisable: it is
trivial to find collisions. Specifically, let H be MMO built on Ẽ with h0 = 0n.
Then H(a ‖ Ẽ(0, a)⊕ a) = 0n for all a ∈ {0, 1}n.

Main Result. Given the recent string of results calling into question the va-
lidity of the random-oracle model, it is natural to ask if there are similar re-
sults which can be shown for the ideal-cipher model. Specifically, is it possible
to exhibit some cryptographic scheme which is provably secure in the ideal-
cipher model and yet breaks when instantiated with any blockcipher? Given
that ideal ciphers are finite objects whereas random oracles are infinite objects,
this fact might lead one to ask whether results for the random-oracle model
(in particular uninstantiability results) might break down in the ideal-cipher
setting given that ideal ciphers can be described with a finite string. We will
show that the answer to the above question is “yes”: we exhibit a blockcipher-
based hash function which is provably collision-resistant in the ideal-cipher model
and for which it is trivial to find collisions once the ideal cipher has been
instantiated.

We follow the approaches of [5,15], adapting them to blockciphers and hash
functions, and moving into the concrete (rather than asymptotic) setting. The
main idea is to create a blockcipher-based hash function H̃ that acts normally
on most inputs, but acts insecurely when given a description of its oracle as an
input. In the latter case, H̃ tests the oracle description embedded in its input
against the oracle it already has by submitting some number of test values. If the
oracles agree on all values, H̃ outputs a user-specified value which was also given
in the input. The difficulty here is showing that H̃ remains secure even when
behaving this way, and the crucial point is that there a far more possible ideal
ciphers with specified input-output pairs than there are encodings to represent
them. All of this is formalized and rigorously proven in Section 3.

Related Work. Virtually no discussion of the ideal-cipher model has tran-
spired prior to this work. As already mentioned, much relevant work has
appeared in the analogous random-oracle setting. Random oracles were used
implicitly at least 18 years ago by Fiat and Shamir in their seminal work on
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identification schemes [11]. Bellare and Rogaway formalized the notion and
argued that the model afforded a path to efficient protocols; as examples, they
gave efficient non-malleable and chosen-ciphertext-secure encryption schemes, a
signature scheme secure against adaptive chosen-message attack, and an efficient
zero-knowledge proof protocol [2]. Canetti, Goldreich, and Halevi gave the first
uninstantiable protocol for the random-oracle model: they exhibited a signature
scheme which was provably-secure in the random-oracle model but which acted
insecurely (gave up its key) when instantiated [5]. Their proof is quite complex,
involving techniques similar to Micali’s CS-proofs [18]. The same authors later
extended their result to show that there exists a signature scheme, limited to
short messages, which is also uninstantiable [6]. Maurer, Renner, and Holenstein
generalized the results of [5]; they introduced a generalization of indistinguisha-
bility called “indifferentiability” which captures the notion of shared random
objects (like random oracles) [15]. They state general theorems which imply the
result of [5] as a special case, and give an explicit simplified proof of that re-
sult. Their proof is very much in the spirit of classical Kolmogorov complexity
theory as is ours in the present paper. Nielsen [19] exhibited a protocol that
had a simple solution in the random-oracle model, but which had no provable
instantiation in the standard model. Bellare, Boldyreva, and Palacio exhibited
the first “natural” scheme, a hybrid encryption scheme, secure in the random-
oracle model but uninstantiable [1]. Dent adapted techniques from [5] to show
an uninstantiable signature scheme in the generic group model (generic groups
are finite objects like ideal ciphers) [8].

2 Definitions

Basic notions. Let κ, n ≥ 1 be numbers. A blockcipher is a map E : {0, 1}κ ×
{0, 1}n → {0, 1}n where, for each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) is
a permutation on {0, 1}n. Parameter n is called the blocksize of E, and n will
be understood to be this quantity throughout the paper. If E is a blockcipher
then E−1 is its inverse, where E−1

k (y) is the string x such that Ek(x) = y.
Let Bloc(κ, n) be the set of all block ciphers E : {0, 1}κ × {0, 1}n → {0, 1}n.
Choosing a random element of Bloc(κ, n) means that for each k ∈ {0, 1}κ one
chooses a random permutation Ek(·).

A (blockcipher-based) hash function is a map H : Bloc(κ, n)×D → R where
κ, n, c ≥ 1, D ⊆ {0, 1}∗, and R = {0, 1}c. The function H must be given by a
program that, given M , computes HE(M) = H(E, M) using an E-oracle. Hash
function f : Bloc(κ, n)×D → R is a compression function if D = {0, 1}a×{0, 1}b

for some a, b ≥ 1 where a + b ≥ c. Fix h0 ∈ {0, 1}a. The iterated hash of
compression function f : Bloc(κ, n) × ({0, 1}a × {0, 1}b) → {0, 1}a is the hash
function H : Bloc(κ, n) × ({0, 1}b)∗ → {0, 1}a defined by HE(m1 · · ·m
) = h


where hi = fE(hi−1, mi). Set HE(ε) = h0. We often omit the superscript E to f
and H .
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We write x
$← S for the experiment of choosing a random element from the

finite set S and calling it x. An adversary is an algorithm with access to one or
more oracles. We write these as superscripts. The notation |x| denotes the size of
the string x, in bits, and the notation x[i . . . j] denotes the substring of string x
starting at the i-th bit of x and terminating at the j-th bit, inclusive. All bits
are numbered starting from 1, and ascending left-to-right. Finally, x ‖ y denotes
the concatenation of strings x and y.

Collision resistance. To quantify the collision resistance of a blockcipher-
based hash function H we instantiate the blockcipher by a randomly chosen E ∈
Bloc(κ, n). An adversary A is given oracles for E(·, ·) and E−1(·, ·) and wants to
find a collision for HE—that is, M, M ′ where M �= M ′ but HE(M) = HE(M ′).
We look at the number of queries that the adversary makes and compare this
with the probability of finding a collision.

Definition 1 (Collision Resistance). Let H be a blockcipher-based hash
function, H : Bloc(κ, n) × D → R, and let A be an adversary. Then the ad-
vantage of A in finding collisions in H is the real number

Advcoll
H (A) = Pr

[
E

$← Bloc(κ, n); (M, M ′) $← AE,E−1
:

M �= M ′ ∧ HE(M) = HE(M ′)
]

For q ≥ 1 we write Advcoll
H (q) = maxA{Advcoll

H (A)} where the maximum is
taken over all adversaries that ask at most q oracle queries (ie, E-queries + E−1

queries).

3 An Uninstantiable Blockcipher-Based Hash Function

In [3] we find 20 blockcipher-based hash function constructions that are provably
secure in the ideal-cipher model. Specifically, it is shown that Advcoll

H (q) =
Θ(q2/2n) for 20 blockcipher-based hash functions H . This bound is about the
best we can hope for: a truly random function would have the same bound due
to the birthday phenomenon.

The proofs in [3] are carried out in the ideal-cipher model and the adver-
saries are information theoretic. In this section we will show that any scheme
H from this set can be transformed into a related scheme H̃ such that H̃ is
uninstantiable. We first outline the method and then give the details.

Main Idea. Our goal is to produce an uninstantiable blockcipher-based hash
function. We will do this by transforming some scheme which is provably secure
in the ideal-cipher model. For concreteness, select any of the 20 secure schemes
from [3] and call it H .

We will describe a related blockcipher-based hash function H̃ which is unin-
stantiable. The idea has its roots in Kolmogorov complexity. We adapt the ap-
proach of Maurer, Renner, and Holenstein [15]; when H̃ processes input M , it
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first decomposes M into three parts: M = (π, c, v) where the details of this
decomposition are left for later. The first parameter, π is considered to be the
encoding of a Universal Turing Machine (UTM), encoded in some well-defined
manner. The second parameter c ∈ {0, 1}σ is a counter that is ignored by H̃ ,
and the final parameter v ∈ {0, 1}n is the value that the adversary would like to
have output by H̃.

Now H̃ uses its blockcipher oracle O to compute O(i, 0n) for all 1 ≤ i ≤ |π|.
(Why we choose this range will become apparent in the proof below.) It also
computes π(i, 0n) for the same set of i-values. If O(i, 0n) = π(i, 0n) for all 1 ≤
i ≤ |π|, H̃ outputs v. If not, H̃ outputs H(M).

Now consider two cases: in the first case, the oracle to H̃ was an ideal cipher I.
This means that it is highly unlikely there is a sufficiently-short Turing-machine
encoding, π, such that π(·, 0n) would correctly match I on all |π| points, and
therefore it is extremely unlikely that we would have I(i, 0n) = π(i, 0n) for all
1 ≤ i ≤ |π|. This means that in all likelihood H̃ would output H(M), and
we know this construction is provably collision resistant. And so in this case
Advcoll

H
(q) is Θ(q2/2n) by [3].

Now consider the case where the oracle to H̃ is some blockcipher E; in other
words we have instantiated oracle O with blockcipher E. There therefore exists
some Turing machine π that implements E. Therefore an adversary may simply
output two queries M1 = (π ‖ 0σ ‖ v) and M2 = (π ‖ 1σ ‖ v) for any fixed
string v ∈ {0, 1}n he desires. Since H̃ will discover that E(i, 0n) = π(i, 0n) for
all 1 ≤ i ≤ |π|, it will output v for both queries, and this adversary will have
trivially found a collision.

Note that things could not be worse for H̃ , in fact: not only can we find
collisions, but we can find preimages for any output value, second preimages for
any output value, and 2σ inputs which collide on any chosen value.

A Detailed Description. We now proceed to formalize and prove correct the
informal discussion just given. Throughout the remainder of this section, n will
denote the blocksize of our blockciphers.

Definition 2. Blockcipher E is said to be k-efficient if it can be implemented
as a Turing machine never requiring more than k steps to produce its output.

For example, all modern blockciphers are 220-efficient. For the remainder of this
section, k is assumed to be some fixed value. We next exhibit an uninstantiable
blockcipher-based hash function. Here, by “uninstantiable” we mean that a given
hash function H has Advcoll

H (q) = O(q2/2n), and is therefore secure in the ideal-
cipher model, but any instantiation of its blockcipher oracle with a blockcipher E
results in a trivially insecure hash function.

For the remainder of this section we will let H denote some blockcipher-based
hash function which is known to be secure in the ideal-cipher model (such as
MMO, in Figure 1). We now give the algorithm H̃ which is an uninstantiable
variant of H , then we prove its various properties.
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Algorithm H(M)
10 if |M | ≤ n + σ then return HO(M)
20 v ← M [|M | − n + 1 . . . |M |]
21 π ← M [1 . . . |M | − n − σ]
30 if ¬TuringValid(π) then return HO(M)
40 for i ← 1 to |π|
41 Run π on input (i, 0n) for at most k steps
42 if π does not output n bits then return HO(M)
43 if π(i, 0n) �= O(i, 0n) then return HO(M)
50 return v

Fig. 2. An uninstantiable variant of the provably-secure blockcipher-based hash func-
tion H . If the input encodes a valid UTM, we evaluate |π| values on this UTM and
check against our oracle O. If they match, we simply output v, the last n bits of M .
There are σ bits of M which are ignored in order to help the attacker produce 2σ

colliding inputs with digest v. The UTM π is run for at most k steps, where k is a fixed
parameter of the scheme.

Algorithm H̃ accepts messages M from the domain ({0, 1}n)+ and outputs n
bits. As usual, the domain could be extended to M ∈ {0, 1}∗ with an unambigu-
ous padding rule. We fix two parameters to the algorithm: H , the provably-secure
blockcipher-based hash function just mentioned, and a counter-size σ > 0. We
assume the domain of H has been extended to {0, 1}∗ so we can dispense with
concerns about message sizes in our construction of H̃. We further fix some
binary encoding scheme for Universal Turing Machines (UTMs) such that any
UTM can be encoded into a binary string. Furthermore, we assume there is an
efficient function TuringValid that returns true when given a string π that is a
valid UTM encoding under our fixed convention. Finally, we let O denote the
blockcipher-oracle which is used by H̃ . The algorithm to compute H̃O(M) is
given in Figure 2.

We are now faced with arguing that H̃ is uninstantiable. First notice that H̃
is efficient: we assume that oracle calls are constant-time, so therefore HO runs
in time linear in the length of the input M . Since we run π for at most k steps,
the whole algorithm runs in time O(k|π|) = O(|M |).

Theorem 1. [H̃ is uninstantiable] Fix some provably-secure blockcipher-
based hash function H and some σ > 0. Let O be a blockcipher oracle. Then
function H̃ as described above is uninstantiable.

Proof. There are two things we must prove: first, that H̃ is secure in the ideal-
cipher model. That is, Advcoll

HO (q) = O(q2/2n). Second, that H̃E is insecure for
any efficient blockcipher E.



The Ideal-Cipher Model, Revisited 337

We begin by showing H̃O is secure when O is modeled by an ideal cipher.
Fix q and suppose adversary A makes q oracle queries to O. (Throughout the
proof, we will assume q ≤ 2n/2 since q-values in excess of this render the bound
vacuous.) At the end of this process, A must output a pair of distinct messages M

and M ′ in the hope that H̃O(M) = H̃O(M ′). The probability that he succeeds
is the advantage we wish to bound.

There are two types of collisions A may construct given the outputs from
his q queries to O. The first collision is event C1: there exist two distinct
messages M1, M2 such that they collide under the original hash function (ie,
H(M1) = H(M2)). We have selected H such that Pr[C1] = O(q2/2n). The other
type of collision A might construct given his q oracle-query outputs results in
event C2 which we describe next.

Extract π as in line 21, and observe the for loop at lines 40 through 43. If at
any time, π does not output n bits, or if the n bits it does output do not agree
with O, we relegate the computation to H . Therefore we are concerned with the
condition that π correctly computes the |π| values required by the test on line
43. If π(i, 0n) = O(i, 0n) for all 1 ≤ i ≤ |π|, we say π is a “qualifying” program.
We define event C2 as true if there exists a qualifying program with length at
most q bits. If C2 occurs, A will certainly have set v (computed at line 20) to a
colliding value, and so we therefore wish to bound Pr[C2].

Adversary A has made q queries to O and would like to now encode some
qualifying program π into M , with |π| ≤ q. To this end, there are two possibili-
ties: (1) A outputs a program π where C2 is guaranteed because he has queriedO
at all points from 1 to |π| and there was a qualifying program, or (2) A outputs
a program π where there exists some point j with 1 ≤ j ≤ |π| that A did not
query, yet C2 occurs by chance. In the second case, H̃ will ask π(j) and the
probability over choices of O that π(j, 0n) = O(j, 0n) is 1/2n. Therefore in this
case Pr[C2] ≤ 1/2n.

We therefore concern ourselves with the first case, where C2 occurs because A
has queried O(·, 0n) at all points from 1 to |π|. The encoding scheme is of course
fixed a priori. Therefore Pr[C2] is computed over choices of O. Let Q
 be the
event that there exists a qualifying program of size �. So C2 = Q1 ∨ · · · ∨ Qq.
For fixed � there are at most 2
 possible Turing-Valid encodings π with |π| = �.
We evaluate, at line 43, O(i, 0n) for 1 ≤ i ≤ |π|. Since we are iterating on the
key value for O, there is no permutivity, and therefore outputs will be uniform
on {0, 1}n. This means that, for a fixed i, the probability that π(i, 0n) = O(i, 0n)
is 2−n. The probability this will happen � times is therefore 2−n
, and given there
are 2
 possible encodings, we see

Pr
O

[Q
] ≤ 2
/2n
 = 1/2
(n−1) ≤ 1/2n−1.

So the chance of finding a qualifying program within q queries is

Pr
O

[C2] = Pr
O

[Q1 ∨ · · · ∨ Qq] ≤
q∑


=1

1/2n−1 =
q

2n−1 .
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Finally, the chance that A can find any collision in q queries is bounded by
Pr[C1 ∨ C2] ≤ Pr[C1] + Pr[C2] = O(q2/2n) + q/2n−1 = O(q2/2n), as required.

The second case is quite straightforward. We wish to show that H̃E is inse-
cure for any efficient blockcipher E. Since E does have a concise Turing-Valid
encoding π, we may simply write two messages

M = π ‖ 0σ ‖ 0n and M ′ = π ‖ 1σ ‖ 0n.

Since the oracle to H̃ is E, and since π agrees with E on every point, the if
condition in line 43 will never hold and we will return v = 0n for each message.
Thus we have H̃E(M) = H̃E(M ′) = 0n, yielding a collision with zero oracle
queries required.

Preimage, Second Preimage, and Multicollisions. Since the instantiated
form of H̃ allows us full control over the output, we can clearly find 2σ preimages
for any digest of our choice, and we can similarly find 2σ − 1 second preimages
for any given value. Similarly, we can find multicollisions for any value, and 2σ

collisions for each of the 2n possible outputs. In this sense, H̃E is much worse
than just failing to be collision resistant: it fails to have any security properties
at all.

On a technical note, the alert reader will notice that we at no time defined
what “insecure” means for a blockcipher-based hash function that has been
instantiated. This is because all concrete hash functions are “insecure” if security
requires the nonexistence of any efficient program that outputs a colliding pair
of inputs! (Since collisions must exist for any non-injective map f , there exists
a program that simply outputs a colliding pair for any given f .) Nonetheless,
there exists an intuitive notion of security for fixed functions like SHA-1, and
clearly the instantiated version of hash function H̃ is insecure in this sense.

Artificiality. Like all other uninstantiable schemes, H̃ is quite artificial. It is
uninstantiable only because it was designed to be, and upon inspection no one
would use such a scheme. It remains to be seen whether there is a more nat-
ural construction (where “natural” is necessarily subjective). Thus far, as in the
random-oracle model analog, no scheme proven secure in the ideal-cipher model
has been broken after instantiation, unless that was the goal from the start.

4 Conclusion and Open Questions

Although the scheme just presented is quite unnatural, it does arouse suspicion
as to the wisdom of blindly using the ideal-cipher model in proofs of security.
More evidence to support this suspicion could be provided by showing that
HAES is insecure for a hash scheme H from [3] that is provably-secure in the
ideal-cipher model. Such an attack would necessarily exploit specific features of
AES, but since AES is generally thought to be well-designed, it would add fuel
to the fire.

Probably the short-signature results of [6] could be extended to this setting,
but a more interesting question is whether there exists a “natural” scheme that
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is provably-secure in the ideal-cipher model but uninstantiable. Hash functions
probably are not the right place to look for these, but there are many other
objects whose proofs rely on the ideal-cipher model that might provide settings
where natural examples of uninstantiable schemes could be constructed.
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Abstract. This paper studies the state-of-the-art software optimization
methodology for symmetric cryptographic primitives on the new 64-bit
x64 processors, AMD Athlon64 (AMD64) and Intel Pentium 4 (EM64T).
We fully utilize newly introduced 64-bit registers and instructions for
extracting maximal performance of target primitives. Our program of
AES with 128-bit key runs in 170 cycles/block on Athlon 64, which is, as
far as we know, the fastest implementation of AES on a PC processor.

Also we implemented a “bitsliced” AES and Camellia for the first
time, both of which achieved very good performance. A bitslice imple-
mentation is important from the viewpoint of a countermeasure against
cache timing attacks because it does not require lookup tables with a key-
dependent address. We also analyze performance of SHA256/512 and
Whirlpool hash functions and show that SHA512 can run faster than
SHA256 on Athlon 64. This paper exhibits an undocumented fact that
64-bit right shifts and 64-bit rotations are extremely slow on Pentium 4,
which often leads to serious and unavoidable performance penalties in
programming encryption primitives on this processor.

Keywords: Fast Software Encryption, x64 Processors, Bitslice.

1 Introduction

This paper explores instruction-level software optimization techniques for the
new 64-bit x64 architecture on Athlon 64 and Pentium 4 processors. Of course a
64-bit programming is not a new topic; Alpha, PA-RISC, Sparc, etc. have been
already studied in many literatures, but the new x64 architecture is extremely
important and promising in the sense that it is a superset of the currently dom-
inant x86 architecture and Microsoft finally launched 64-bit Windows running
on the x64 processors in the PC market.

Interestingly and ironically, the x64 architecture was initially designed and
published by AMD under the name AMD64, and later followed by Intel under
the name EM64T. EM64T is binary compatible with AMD64, but the inter-
nal hardware design of Pentium 4 is completely different from that of Athlon
64. Intel pursues higher clock frequency with a deep pipeline and AMD seeks
for higher superscalability and lower memory latency with an on-chip I/O con-
troller (HyperTransport). Which of Intel and AMD is fast has been always a
controversial issue.

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 341–358, 2006.
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From programmer’s side, the x64 structure is what was long awaited; one
of its biggest impacts is liberation from the “register starvation”, which was
x86 programmer’s nightmare. This paradigm shift could be compared with the
liberation from the “segment wall” of a 16-bit program in 1980’s.

Our interest in the x64 architecture is two-fold. First we would like to see
to what extent performance gain is expected on this architecture for symmetric
cryptographic primitives, and then compare AMD with Intel, targeting at Athlon
64 and Pentium 4 processors. To do this, we started at looking at instruction-
level performance. AMD has published a reliable list of an instruction latency
and throughput of 64-bit instructions [20], but no similar information is cur-
rently available for Pentium 4. Our own experiments exhibit that some 64-bit
instructions of Pentium 4 are unexpectedly slow, which can lead to serious and
unavoidable performance penalties in programming encryption primitives.

Our first target primitive is AES [6]. We show that Athlon 64 is very suitable
for an AES program mainly because it can issue up to two memory instructions
in parallel. This boosts encryption speed of AES and, as a result, our program
runs at the speed of 170 cycles/block, which is the fastest record of AES on a
PC processor. Pentium 4 has a higher clock frequency than Athlon 64 in general,
but still Athlon 64 seems to outperform Pentium 4 for AES.

The next target is Camellia [1]. the structure of Camellia should fit to 64-bit
processors in nature. However, due to a long dependency chain, it was not easy
to obtain high performance. We here propose a two-block parallel encryption,
which can be used in a non-feedback mode such as the CTR mode, and show
that its encryption speed on Athlon 64 reaches 175 cycles/block, thanks to the
doubled number of registers.

We next develop a bitslice implementation of AES and Camellia. The bitslice
technique for speeding up an encryption algorithm was introduced by Biham [4],
which was remarkably successful for DES key search on 64-bit processors such as
Alpha. We revisit this implementation from the viewpoint of a countermeasure
against cache attacks [17].

A bitsliced cipher can achieve a good performance if the number of registers
is many and a register size is long, which fully meets the x64 architecture. We
carefully optimized the S-boxes of AES and Camellia in bit-level, and succeeded
in obtaining very good and performance. Note that a bitslice implementation of
AES was also discussed by Rudra et al. [18], but our paper for the first time
reports a measured performance of bitsliced AES and Camellia implemented on
a real processor.

Finally we study software performance of hash functions SHA256/512 and
Whirlpool. Our x64 implementation results show that SHA512 can be faster
than SHA256 on Athlon 64, and also faster than Whirlpool on both of Athlon
64 and Pentium 4 processors, unlike the results on 32-bit Pentium shown in
[13][14].

Table 1 shows our reference machines and environments. Throughout this
paper, we refer to Pentium 4 with Prescott core as Pentium 4; it is a current
dominant core of Intel’s EMT64 architecture.
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Table 1. Our reference machines and environments

Processor Name AMD Athlon 64 3500+ Intel Pentium 4 HT
Core Name Winchester Prescott
Other Processor Info Stepping 4 Revision 14
Clock Frequency 2.2GHz 3.6GHz
Cache (Code/Data) 64KB / 64KB 12Kμops / 16KB
Memory 1GB 1GB
Operation System Windows XP 64-bit Edition
Compiler Microsoft Visual Studio 2005 beta

2 The x64 Architecture

2.1 x86 vs x64

The x64 (or x86-64) is the first 64-bit processor architecture that is a superset of
the x86 architecture. It was initially proposed and implemented by AMD and,
in an ironic twist of processor history, later adopted by Intel under the name
EM64T. Most of the extended features of the x64 architecture are what PC
programmers long awaited:

1. The size of general registers is extended to 64 bits. The 32-bit eax register,
for instance, is now lower half of the 64-bit rax register.

2. Additional eight general registers r8-r15 and eight xmm registers xmm8-
xmm15 are introduced.

3. Almost all x86 instructions now accept 64-bit operands, including rotate
shift instructions.

In particular the register increase has liberated PC programmers from the
nightmare of register starvation. It is highly expected that these benefits open
up new possibilities of fast and efficient cryptographic applications in near future.
On the other side, using these extended features may cause the following new
penalties, which can be serious in some cases:

1. An instruction requires an additional prefix byte in using a 64-bit operand
or a new register. An increase in instruction length reduces decoding rate.

2. A 64-bit instruction is not always as efficient as its corresponding 32-bit
instruction. Performance of an instruction might vary in 32-bit mode and
64-bit mode.

How fast a specific instruction runs is an issue of processor hardware design,
not instruction set design. We will see that the second penalty above can be
serious for Intel Pentium 4 processor and show that a great care must be taken
when we implement a cryptographic algorithm on this processor.
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2.2 Athlon 64 vs Pentium 4

Athlon 64 is a 3-way superscalar processor with 12 pipeline stages. It can de-
code and execute up to three instructions per cycle. Its three ALU’s and three
AGU’s work independently and simultaneously, and moreover up to two 64-bit
read/write instructions can access data cache each cycle in any combination
of reads and writes. Hence, for example, an n-time repetition of the following
(highly practical) code, which consists of five micro operations, works in n cycles,
that is, 5μops/cycle.

xor rax,TABLE1[rsi*8] ; 64-bit load and 64-bit ALU
xor rbx,TABLE2[rsi*8] ; 64-bit load and 64-bit ALU
add rsi,1 ; 64-bit ALU

Almost all of the 64-bit instructions of Athlon 64 runs in the same performance
as its corresponding 32-bit x86 instructions, which is why Athlon 64 is often
called a genuine 64-bit processor. The internal architecture of this processor is
well-documented by AMD [20] and relatively easy to understand. A document
written by Hans de Vries [21] is also helpful for understanding the architecture of
Athlon 64. Working on this processor is generally less frustrating than exploring
on Pentium 4.

One drawback of Athlon 64 is that it can fetch only 16 bytes of instructions
from instruction cache per cycle. This means that the decoding stage can be still
a bottleneck of performance, unlike Pentium 4. It is hence critically important
for programmers to reduce an average instruction length for obtaining maximal
performance on this processor.

A prominent feature of the Pentium 4 processor family is that instructions
are cached after decoded, and hence the decoding capability is not a perfor-
mance limiter any more, as long as a critical loop is covered by the trace cache
(instruction cache) entirely.

There exist two different core architectures in the Pentium 4 family, of which
we treat a newer one, the Prescott core, in this paper. Prescott has a deep 31-
stage pipeline and achieves high clock frequency. At the time of writing, the
highest frequency of the Athlon 64 family is 2.8GHz, while that of the Pentium
4 family is 3.8GHz, 36% faster than fastest Athlon 64.

Intel has not published pipeline architecture details of the Prescott core,
nor documented information about how EM64T instructions are handled in its
pipeline stages. To optimize a program on Pentium 4, we have to refer to not only
Intel’s document of the 32-bit architecture IA-32 [10], which is often erroneous,
but also resources outside Intel such as Agner [8] Kartunov [12].

As far as we know, Prescott can run continuously three micro operations per
cycle in an average (some resource says four, but we are not sure), which is less
than Athlon 64. Moreover, many instructions of Prescott have a longer latency
and/or a lower throughput than those of Athlon 64. This is a clear consequence of
the high clock frequency of the Prescott core. Table 2 shows a brief comparative
summary of these processors.
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Table 2. A simple comparison between Athlon 64 and Pentium 4

Athlon 64 Pentium 4
Current highest clock frequency 2.8GHz 3.8GHz (good)
Decoding bottleneck possible mostly no (good)
Average instruction latency low (good) sometimes high
Maximal continuous execution rate 5μops/cycle (good) 3μops/cycle

Which of AMD and Intel is faster is always a controversial issue. We will
show in this paper that in many cryptographic algorithms Athlon 64 outperforms
Pentium 4 on the 64-bit platform, except a code using xmm instructions (SSE2),
even if we take into consideration Pentium 4’s faster clock frequency.

2.3 Instruction Latency and Throughput

Table 3 shows a list of an instruction latency (left) and throughput (right) of
some of x64 instructions. We derived all the data in the list experimentally.
Specifically, we measured the number of execution cycles of a code that consists
of 100-1000 repetitions of a target instruction. Some fractional values on Pen-
tium 4 are approximate. A latency of an instruction is n, when its result can
be used in n cycles after the instruction has been issued. A throughput is the
maximal number of the same instructions that can run continuously in parallel
per cycle.

We believe that this table is of independent interest. It is quite surprising
that 64-bit right shifts shr and 64-bit rotations ror,rol are extremely slow on
Pentium 4. We do not know what was behind in this decision in Intel. Clearly
this is a bad news for programmers of cryptographic algorithms.

Table 3. A list of an instruction latency and throughput of Pentium 4 and Athlon 64

Processor Pentium 4 (EM64T) Athlon 64 (AMD64)
Operand Size 32 64 32 64

mov reg,[mem] 4, 1 4, 1 3, 2 3, 2
mov reg,reg 1, 3 1, 3 1, 3 1, 3
movzx reg,reg8L 1, 3 1, 3 1, 3 1, 3
movzx reg,reg8H 2, 4/3 - 1, 3 -

add reg,reg 1, 2.88 1, 2.88 1, 3 1, 3
sub reg,reg 1, 2.88 1, 2.88 1, 3 1, 3
adc reg,reg 10, 2/5 10, 2/5 1, 5/2 1, 5/2
sbb reg,reg 10, 2/5 10, 2/5 1, 5/2 1, 5/2

xor/and/or reg,reg 1, 7/4 1, 7/4 1, 3 1, 3
not reg 1, 7/4 1, 7/4 1, 3 1, 3

shr reg,imm 1, 7/4 7, 1 1, 3 1, 3
shl reg,imm 1, 7/4 1, 7/4 1, 3 1, 3
ror/rol reg,imm 1, 1 7, 1/7 1, 3 1, 3
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Table 3. (continued)

Processor Pentium 4 (EM64T) Athlon 64 (AMD64)
Operand Size 128 128

movdqa xmm,[mem] -, 1 -, 1
movdqa xmm,xmm 7, 1 2, 1
movd xmm,reg + movd reg,xmm 13, - 14, -

paddb/paddw/paddd xmm,xmm 2, 1/2 2, 1
paddq xmm,xmm 5, 2/5 2, 1

pxor/pand/por xmm,xmm 2, 1/2 2, 1

psllw/pslld/psllq xmm,xmm 2, 1/2 2, 1
pslldq xmm,xmm 4, 1/2 2, 1

psrlw/psrld/psrlq xmm,xmm 2, 1/2 2, 1
psrldq xmm,xmm 4, 1/2 2, 1

Throughout this paper, we assume that a memory read/write is one μop each,
and hence that xor reg,[mem] and xor [mem],reg consist of two μops and
three μops, respectively. An exact μop break-down rule has not been published.

After our creating this table, we found an independent (but not formally pub-
lished) result obtained by Granlund [9]. Table 3 contains several results that are
not covered in [9]. Our results mostly agreewith Granlund’s for Athlon 64, but look
slightly different for some instructions of Pentium 4. It is known that Pentium 4
Prescott has many variations (stepping, revision), which can lead to subtly differ-
ent instruction timings. Since Intel has not published detailed information on the
hardware design of Prescott, it is difficult to derive the precise timing information.

3 AES

First we discuss a fast implementation of AES on the x64 architecture. See [6] for
the detailed specification of the AES algorithm. In [13], an x86 code of the “basic
component” of AES, which corresponds to Subbytes+Shiftrows+Mixcolumns,
was proposed for Pentium 4 processors. Code 1 shows the proposed code with
a modification for the x64 platform. One round of AES, except the final round,
can be implemented with four additional xor instructions, which corresponds to
AddRoundKey, and four-time repetition of the basic component:

movzx esi,al ; first address
mov/xor reg32_1,table1[rsi*4] ; first table lookup
movzx esi,ah ; second address
mov/xor reg32_2,table2[rsi*4] ; second table lookup
shr eax,16
movzx esi,al ; third address
mov/xor reg32_3,table3[rsi*4] ; third table lookup
movzx esi,ah ; fourth address
mov/xor reg32_4,table4[rsi*4] ; fourth table lookup

Code 1. An x64 implementation of the basic component of AES
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Alternatively, the last two lines can be also written in the following form,
which was recommended for Pentium 4 with Prescott core, where using ah is a
bit expensive:

shr eax,8 ; fourth address
mov/xor reg32_4, table4[rax*4] ; fourth table lookup

Code 2. An alternative implementation of the basic component (part)

Since each of the four tables occupies 1KB and we need additional four tables
for the final round, a total of 8KB data memory is needed for the entire AES
tables. This implementation is highly optimized and well scheduled, and hence
also works on 64-bit environments excellently.

Readers might be tempted to write the following code instead, which looks
more “genuine” 64-bit style:

movzx rsi,al
mov/xor reg32_1,table1[rsi*4]
movzx rsi,ah ; no such instruction
mov/xor reg32_2,table2[rsi*4]
shr rax,16 ; slow on Pentium 4
movzx rsi,al
mov/xor reg32_3,table3[rsi*4]
movzx rsi,ah ; no such instruction
mov/xor reg32_4,table4[rsi*4]

Code 3. This code does not work

Code 3 does not work since a higher 8-bit partial register such as ah can be
used only in x86 code (the third and eighth lines), which is one of the small
number of exceptional instructions that do not have an extended 64-bit form.
If we change movzx rsi,ah into the original form movzx esi,ah, then code 3
works as expected, but is still slow on Pentium 4 because shr rax,16 is a 64-bit
right shift instruction.

Moreover, since the number of higher 8-bit registers are still limited to four
(ah,bh,ch,dh) in the x64 environment, we have to assign eax,ebx,ecx,edx to
reg32_1,...,reg32_4, which are used as address registers in the next round,
to minimize the number of instructions, but this is impossible without sav-
ing/restoring at least one input register in each round. In the x86 environment,
we had to access temporary memory for this due to register starvation, but in
the x64, we can use a new register instead, which slightly improves performance.

In summary, we should keep an x86 style, using new registers for temporary
memory in implementing AES on x64 environments. Table 4 summarizes our
implementation results of the AES algorithm with 128-bit key on Athlon 64 and
Pentium 4 processors, where the right most column shows the best known result
on 32-bit Pentium 4:

Our program runs very fast on the Athlon 64 processor. As far as we know,
this is the fastest AES implementation ever made on a PC processor; faster
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Table 4. Our implementation results of AES with 128-bit key

Processor Athlon 64 Pentium 4 Pentium 4
64-bit 64-bit 32-bit [13]

cycles/block 170 256 284
cycles/byte 10.6 16.0 17.8

instructions/cycle 2.74 1.81 -
μops/cycle 3.53 2.34 -

than Pentium 4 even if we take into consideration higher clock frequency of the
Pentium 4 processor. This is mainly because Athlon 64 can execute two memory
load instructions with 3 latency cycles in parallel. The number of memory reads
for one block encryption of AES is 4 (for plaintext loads) + 11× 4 (for subkey
loads) + 16× 10 (for table lookups) = 208, which means that Pentium 4 takes
at least 208 cycles/block for one block encryption.

Considering an instruction latency of Athlon 64, the theoretical limit of AES
performance on this processor seems around 16 cycles/round = 160 cycles/block.
Our result is hence reaching closely this limit.

4 Camellia

The next example of our implementation is another 128-bit block cipher Camellia
[1]. Recently Camellia has been adopted in the NESSIE project [16], Japan’s
CRYPTREC project [5] and also the ISO/IEC 18033-3 standard [11].

Camellia supports three key sizes; 128 bits, 192 bits and 256 bits as AES,
where we treat the 128-bit key version. The basic structure of Camellia is Feis-
tel type, consisting eighteen rounds with additional four small FL functions.
Figures 1 and 2 show the F-function and the FL-function, respectively.

Fig. 1. The F-function of Camellia
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Fig. 2. The FL-function of Camellia

The F-function has a typical SP-structure of eight-byte width, which is quite
suitable for 64-bit processors. Code 4 shows an implementation of (half of) the
F-function of Camellia with the minimum number of x64 instructions, which
should get the benefits of 64-bit registers:

movzx esi,al ; first address
xor rbx,table1[rsi*4] ; first table lookup
movzx esi,ah ; second address
xor rbx,table2[rsi*4] ; second table lookup
shr rax,16
movzx esi,al ; third address
xor rbx,table3[rsi*4] ; third table lookup
movzx esi,ah ; fourth address
xor rbx,table4[rsi*4] ; fourth table lookup
shr rax,16
... ; fifth to eighth

Code 4. An x64 implementation of the F-function of Camellia

In practice, however, this code does not run very fast because of a long de-
pendency chain; especially the xor chain hinders parallel execution of multiple
instructions. Although we can obtain some performance improvement by intro-
ducing some intermediate variables to cut the dependency chain, the resultant
performance gain is limited.

On the other side, it should be noted that code 4 is using only three regis-
ters. Therefore it is possible to compute two blocks in parallel without register
starvation, which is expected to boost the performance. This parallel compu-
tation method can be applied to a non-feedback mode of operation, such as a
counter mode. Our optimized code for encrypting two blocks of Camellia in par-
allel, where they are interleaved in every half round, runs in 175 cycles/block on
Athlon 64; this performance is almost the same as that of AES.
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Table 5. Performance of our two-block parallel program of Camellia with 128-bit key

Processor Athlon 64 Pentium 4
cycles/block 175 457
cycles/byte 10.9 28.6

instructions/cycle 2.46 0.94
μops/cycle 3.28 1.26

On the other hand, the performance on Pentium 4 is still poor because of
a long latency of the 64-bit right shift instructions. Probably a code without
using 64-bit instructions could be faster on Pentium 4. Table 5 summarizes our
implementation results of (two-block parallel) Camellia. Further optimization
efforts on Pentium 4 are now ongoing.

Code 5 is our implementation of the FL-function on 64-bit registers without
dividing a 64-bit input into two 32-bit halves. The required number of instruc-
tions of this tricky code is a bit smaller than that of a straightforward method.

mov rcx,[key] ; load 64 bits (klL+klR)
and rcx,rax ; rax = input
shr rcx,32
rol ecx,1
xor rax,rcx
mov ecx,[key] ; load 32 bits again (klR)
or ecx,eax
shl rcx,32
xor rax,rcx ; rax = output

Code 5. An x64 implementation of the FL-function of Camellia

5 Bitslice Implementation

This section discusses a bitslice implementation of AES and Camellia. The bit-
slice implementation was initially proposed by Biham [4], which makes an n-
block parallel computation possible, where n is a block size and one (software)
instruction corresponds to n simultaneous one-bit (hardware) operations, by re-
garding the i-th bit of register j as the j-th bit of the i-th block.

In general, this implementation can be faster than an ordinary implementation
when the following conditions are met:

– The bit-level complexity of the target algorithm is small.
– The number of registers of the target processor is many.
– The size of registers of the target processor is long.

The bitslice implementation was successful for DES [4] and MISTY [15] on
the Alpha processor, since these algorithms are small in hardware and Alpha
has thiry-two 64-bit general registers.
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It is obvious that there is no hope of gaining performance using the bitslice
technique on x86 processors, which have only eight 32-bit registers. However
we have now sixteen 64-bit registers and it is now an interesting topic to see
to what extent the x64 architecture contributes to fast encryption. Note that
128-bit xmm registers are of no use, due to a poor latency and throughput of
SSE2 instructions.

Moreover, a program written in the bitslice method does not use any table
lookups with a key-dependent address. This means that a bitsliced code is safe
against implementation attacks such as cache timing attacks [17]. As far as we
know, this is the first paper that describes bitslice implementations of AES and
Camellia on an actual processor.

Clearly the most critical part of the bitslice program of these cipher algorithms
is a design of the 8x8 S-boxes. To minimize the number of instructions of each of
the S-boxes, which is composed of an inversion function over GF (28) and a linear
transformation for either of AES and Camellia, we should look at its hardware
implementation, not software, due to the nature of the bitslice implementation.

Satoh et. al [19] proposed to design an inversion circuit of GF (28) using
circuits of GF (2) in hardware by recursively applying circuits of a subfield of
index two. We further considered an optimality of linear transformations that
are required before and after the inversion function to design the entire S-box
structure, and reached the following basis of GF (28) over GF (2) for a bitslice
S-box with a small number of instructions:

(1, β5, β, β6, α, β5α, βα, β6α),

where α8 + α6 + α5 + α3 + 1 = 0, and β = α6 + α5 + α3 + α2 ∈ GF (24).

Table 6 shows the number of x64 instructions required for implementing the S-
box of AES and Camellia, respectively. The “Before inversion”/“After inversion”
column shows the number of register-register logical instructions required for
the linear transformation before/after the Galois field inversion, respectively.
The two numbers of the “Inversion on GF (28)” column shows the number of
register-register logical instructions and register-memory load/store instructions.
In the inversion part, all of the fifteen 64-bit general registers are used except the
stack register, and additional five 64-bit temporary memory areas are needed.
Appendix B shows a source code of our implementation of this AES S-box.

Using this S-box implementation, we made the entire bitslice programs of
AES and Camellia. Table 7 shows the resultant performance of our codes.

The speed shown in this table is slower than that of the ordinary implementa-
tion method shown in the previous sections, but is still in a very practical level.

Table 6. The number of x64 instructions of the S-box of AES and Camellia

Before inversion Inversion on GF (28) After inversion Total
AES S-box 12 156(reg) + 21(mem) 16 205

Camellia S-box 12 156(reg) + 21(mem) 14 203
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Table 7. Our implementation results of bitsliced AES and Camellia with 128-bit key

Algorithm AES Camellia
Processor Athlon 64 Pentium 4 Athlon 64 Pentium 4

cycles/block 250 418 243 415
cycles/byte 15.6 26.1 15.2 25.9

instructions/cycle 2.75 1.66 2.74 1.61
μops/cycle 3.20 1.93 2.99 1.75

Note that in the bitslice implementation Camellia is slightly faster than the
bitsliced AES. This is mainly because Camellia has a fewer number of S-boxes
(144) than AES (160), though Camellia has an additional FL-function. Also the
performance of Athlon 64 is excellent again, since three logical instructions can
run on Athlon in parallel, but only two on Pentium 4.

6 Hash Functions: SHA256/512 and Whirlpool

This section briefly shows our implementations of three recent hash functions
SHA256, SHA512 [7] and Whirlpool [2][3], all of which are now under consider-
ation for an inclusion in the new version of the ISO/IEC 10118 standard. Note
that the message block size of SHA256 and Whirlpool is 64 bytes, while SHA512
has a 128-byte message block.

Table 8 summarizes our performance results of SHA256, where the first col-
umn presents an ordinary implementation using general registers, and the second
column shows a four-block parallel implementation (in the sense of [13][14]). It
is seen that the x64 code of Athlon 64 establishes an excellent superscalability,
2.88 instructions/cycle, which is very close to its structural limit, 3 instruc-
tions/cycle. On the other hand, Pentium 4 is faster than Athlon 64 on the xmm
code, considering Pentium 4’s faster clock frequency.

Table 8. Our implementation results of SHA256

Processor Athlon 64 Pentium 4
Instructions x64 (1b) xmm (4b) x64 (1b) xmm (4b)
cycles/block 1173 1154 1600 1235
cycles/byte 18.3 18.0 25.0 19.3

instruction/cycle 2.88 1.15 2.11 1.08
μops/cycle 3.16 1.22 2.31 1.14

Table 9 illustrates our implementation results of SHA512, where the second
column shows a two-block parallel code using xmm instructions. Also the right
two columns are previous results shown on [13]. A remarkable fact is that SHA512
runs faster than SHA256 on Athlon 64 because an 64-bit instruction runs in the
same latency/throughput as its corresponding 32-bit instruction on this proces-
sor. On the other side, Pentium 4 is very slow due to a long latency of 64-bit
rotate operations, which are unavoidable in programming SHA512.
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Table 9. Our implementation results of SHA512

Processor Athlon 64 Pentium 4 Pentium 4 [13]
Instructions x64 (1b) xmm (2b) x64 (1b) xmm (2b) mmx (2b) xmm (4b)
cycles/block 1480 2941 3900 3059 5294 3111
cycles/byte 11.6 23.0 30.5 23.9 41.4 24.3

instruction/cycle 2.85 1.15 1.08 1.10 - -
μops/cycle 3.17 1.21 1.20 1.14 - -

Table 10. Our implementation results of Whirlpool

Processor Athlon 64 Pentium 4 Pentium 4 [13]
Instructions x64 x64 mmx
cycles/block 1537 2800 2319
cycles/byte 24.0 43.8 36.2

instruction/cycle 2.27 1.24 -
μops/cycle 3.08 1.69 -

Our final example is Whirlpool. Our experimental results presented in
Table 10 shows that Whirlpool is not faster than SHA512 on either of Athlon
64 and Pentium 4 in 64-bit environments.

7 Concluding Remarks

This paper explored the state-of-the-art implementation techniques for speeding
up symmetric primitives on the x64 architecture. In many cases Athlon 64 attains
better performance than Pentium 4 EM64T, even if Pentium 4’s higher clock
frequency is taken into consideration. Probably the slow 64-bit right shifts and
64-bit rotations of Pentium 4 will be (should be) redesigned in the next core
architecture for EM64T.

We also showed the first bitslice implementation of AES and Camellia on
these processors and demonstrated that our program achieved very good perfor-
mance. We believe that a bitslice implementation has a significant and practical
impact from the viewpoint of resistance from cache timing attacks. For inter-
ested readers, we summarize the coding style we adopted and how we measured
clock cycles of our programs in appendix A, and list an assembly language source
code of a bitsliced S-box of AES in appendix B.
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Appendix A: Coding Style and How to Measure Cycles

The coding style of our programs is basically the same as that in [13]. Our
programs are thread-safe; that is, we did not use any static memory area except
read-only constant tables. Also we did not write any key dependent code such
as a self-modifying trick.

Our assembly codes have the following interface that is callable from C lan-
guage, and we assume that the subkey has been given in the third argument.
In the x64 environments, the arguments are usually passed through registers,
not through stack, but this calling convention does not affect performance of
encryption functions seriously if block is sufficiently large.

We also assume that all addresses are appropriately aligned, at least on a
16-byte boundary to reduce possible mis-alignment penalties.

Function( uchar *plaintext, uchar *ciphertext, uint *subkey, int block )

The method for measuring a speed of Function that we adopted is that using
the cpuid+rdtsc instruction sequence, which is common in x86 processors, as
shown below:

xor eax,eax
cpuid ; pipeline flush
rdtsc ; read time stamp
mov CLK1,eax ; current time
xor eax,eax
cpuid

Function(..., int block)

xor eax,eax
cpuid ; pipeline flush
rdtsc ; read time stamp
mov CLK2,eax ; current time
xor eax,eax
cpuid

Code 6. A code sequence for measuring a speed of Function

We first ran the code above and recorded CLK2-CLK1. Then we removed
Function from the code, ran again the code and recorded CLK2-CLK1. Since
the second record is an overhead of the measurement itself, we subtracted the
second record from the first record, then divded it by block and adopted the
resultant value as “cycles/block”. In practice, we made the measurement 100
times, of which we removed exceptional cases due to, for instance, an interruption
caused by an operation system, and took an average on the remaning cases.

Strictly speaking the rdtsc instruction returns 64-bit clock tics to edx and
eax, but we used only lower 32 bits, because if an overflow of eax took place
during the measurement, it could be removed as an exceptional case.
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Appendix B: Source Program of Bilsliced AES Sbox

This appendix shows a source code of our bitslice implementation of the Sbox of
AES, which is written in x64 assembly language with Microsoft MASM syntax.
The complete program is described as a macro with eight register inputs and
eight register outputs. We wrote several instructions in a single line for saving
space.

;************************************************
;* Bitslice Implementation of Sbox of AES *
;* Using x64 Instructions (AMD64 / EM64T) *
;* *
;* Input (rax,rbx,rcx,rdx,rbp,r8,r9,r10) *
;* Output (rbx,rdx,rax,r15,rbp,rcx,r10,r9) *
;* *
;* 205 Instructions (184 logical 21 memory) *
;* 40 Temporary Memory Bytes *
;* *
;* (C) Mitsuru Matsui 2005,2006 *
;************************************************

SBOX MACRO
InBasisChange rax,rbx,rcx,rdx,rbp,r8,r9,r10
Inv_GF256 r10,rbp,rbx,rcx,rdx,r8,r9,rax,r11,r12,r13,r14,r15,rsi,rdi
OutBasisChange r10,rbp,rbx,rcx,rdx,r8,r9,rax,r15
ENDM

;**************************
;* InBasisChange: (12) *
;**************************

InBasisChange MACRO g0,g1,g2,g3,g4,g5,g6,g7
xor g6,g5 xor g6,g1 xor g5,g4 xor g7,g5 xor g4,g3
xor g4,g0 xor g0,g2 xor g7,g0 xor g3,g2 xor g2,g6
xor g3,g1 xor g6,g4

ENDM

;***************************
;* OutBasisChange: (16) *
;***************************

OutBasisChange MACRO g0,g1,g2,g3,g4,g5,g6,g7,g8
xor g1,g3 xor g1,g5 xor g1,g0 mov g8,g1 xor g8,g2
xor g1,g4 xor g2,g6 xor g6,g1 xor g1,g7 xor g7,g2
xor g2,g3 xor g3,g5 xor g3,g0 xor g0,g4 xor g0,g7
xor g4,g5
;We can skip the follwing four NOTs by modifying subkey in advance.
;not g6 ;not g0 ;not g7 ;not g4

ENDM
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;*************************************************************
;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) *
;*************************************************************

Mul_GF4 MACRO x0,x1,y0,y1,t0
mov t0,x1 xor x1,x0 and x0,y0 and t0,y1
xor y0,y1 and x1,y0 xor x1,x0 xor x0,t0

ENDM

;**********************************************
;* Inv_GF4: Input x0,x1 Output x0,x1 (2) *
;**********************************************

Inv_GF4 MACRO x0,x1
and x0,x1 not x0

ENDM

;******************************************************************
;* Mul_GF16: Input x0-x3,y0-y3 Output x0-x3 Temp t0-t3 (35) *
;******************************************************************

Mul_GF16 MACRO x0,x1,x2,x3,y0,y1,y2,y3,t0,t1,t2,t3
mov t0,x2 mov t1,x3 mov t2,y3
mov t3,t0 and t3,t2 and t0,y2 and t2,t1 and t1,y2
xor t1,t3 xor t0,t1 xor t1,t2
xor x2,x0 xor x3,x1 xor y2,y0 xor y3,y1

Mul_GF4 x2,x3,y2,y3,t3
Mul_GF4 x0,x1,y0,y1,t3

xor x2,x0 xor x3,x1 xor x0,t1 xor x1,t0
ENDM

;************************************************************
;* Inv_GF16: Input x0-x3 Output x0-x3 Temp t0-t3 (34) *
;************************************************************

Inv_GF16 MACRO x0,x1,x2,x3,t0,t1,t2,t3
mov t0,x0 mov t1,x1 xor t0,x2 xor t1,x3 mov t2,t0

Mul_GF4 x0,x1,t0,t1,t3

xor x0,x3 xor x1,x2

Inv_GF4 x0,x1

mov t0,x0

Mul_GF4 x2,x3,t0,x1,t3
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Mul_GF4 x0,x1,t2,t1,t3
ENDM

;********************************************************************
;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s2 (177) *
;********************************************************************

Inv_GF256 MACRO x0,x1,x2,x3,x4,x5,x6,x7,t0,t1,t2,t3,s0,s1,s2
mov t0,x0 mov t1,x1 mov t2,x2 mov t3,x3 xor t0,x4
xor t1,x5 xor t2,x6 xor t3,x7

mov [rsp+0],t0 mov [rsp+8],t1
mov [rsp+16],t2 mov [rsp+24],t3
mov [rsp+32],x7

Mul_GF16 x0,x1,x2,x3,t0,t1,t2,t3,s0,s1,s2,x7

mov x7,[rsp+32]

xor x0,x4 xor x1,x4 xor x2,x4 xor x3,x4 xor x1,x5
xor x3,x5 xor x2,x6 xor x2,x7 xor x3,x7

Inv_GF16 x0,x1,x2,x3,t0,t1,t2,t3

mov t0,[rsp+0] mov t1,[rsp+8]
mov t2,[rsp+16] mov t3,[rsp+24]
mov [rsp+0],x0 mov [rsp+8],x1
mov [rsp+16],x2 mov [rsp+24],x3

Mul_GF16 x0,x1,x2,x3,t0,t1,t2,t3,s0,s1,s2,x7

mov t0,[rsp+0] mov t1,[rsp+8]
mov t2,[rsp+16] mov t3,[rsp+24]
mov [rsp+24],x3 mov x7,[rsp+32]

Mul_GF16 x4,x5,x6,x7,t0,t1,t2,t3,s0,s1,s2,x3

mov x3,[rsp+24]
ENDM
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Abstract. The purpose of algebraic attacks on stream and block ciphers
is to recover the secret key by solving an overdefined system of multivari-
ate algebraic equations. They become very efficient if this system is of low
degree. In particular, they have been used to break stream ciphers im-
mune to all previously known attacks. This kind of attack tends to work
when certain Boolean functions used in the ciphering process have either
low degree annihilators or low degree multiples. It is therefore important
to be able to check this criterion for Boolean functions. We provide in
this article an algorithm of complexity O md (for fixed d) which is able
to prove that a given Boolean function in m variables has no annihilator
nor multiple of degree less than or equal to d. This complexity is essen-
tially optimal. We also provide a more practical algorithm for the same
task, which we believe to have the same complexity. This last algorithm
is also able to output a basis of annihilators or multiples when they exist.

Keywords: Algebraic attacks, Algebraic immunity, Stream ciphers,
Boolean functions, Annihilator, Low degree multiple.

1 Introduction

Algebraic attacks have proved to be a powerful class of attacks which might
threaten both block and stream ciphers [CM03, Cou03, CP02, CDG05, Arm04].
The idea is to set up an algebraic system of equations verified by the key bits and
to try to solve it. For instance, this kind of approach can be quite effective [CM03]
on stream ciphers which consist of a linear pseudo-random generator hidden with
non-linear combining functions acting on the outputs of the generator to produce
the final output. For such an attack to work, it is crucial that the combining
functions have low degree multiples or low degree annihilators. The reason for
this is that it ensures that the algebraic system of equations verified by the
secret key is also of small degree, which is in general essential for being able to
solve it. This raises the fundamental issue of determining whether or not a given
function has non-trivial low degree multiples or annihilators [Car04, MPC04,
DGM04, BP05, DMS05]. The smallest degree for which this happens is called
the algebraic immunity of the function.

Here we are going to address this issue for Boolean functions. Note that this
is the main case of interest in this setting and that the algorithms presented
here can be generalized to fields of larger size. This problem has already been
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considered in the literature. In [MPC04] three algorithms are proposed to decide
whether or not a Boolean function in m variables has a non-trivial annihilator of
degree at most d. Note that it is readily checked that finding a multiple of degree
d for f amounts to finding an annihilator of degree d for 1 + f . Therefore it is
sufficient for computing the algebraic immunity to be able to test whether or
not a Boolean function has annihilators of a certain degree. All three algorithms
have complexities of order O

((
m
d

)3)
. Gröbner bases have also been suggested to

perform this task (see [FA03]) but it is still unclear if they perform better than
the aforementioned algorithms.

Recall that a Boolean function g of degree d in m variables is an annihilator
of a Boolean function f with support of size N iff the k

def=
(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
d

)
coefficients of the monomials of g verify a system of N linear equations (the
equations express the fact that g has to be equal to zero at points for which f
is equal to 1). We will suppose here that computing a value of f is in O(1) and
that it is the only thing we can do. This implies that the complexity of checking
whether or not a Boolean function has an annihilator of degree at most d is at
least of order Ω(k) since we need to check the value of f on at least k points.

We are going to present here a new algorithm (namely Algorithm 1 in this
paper) which is able to prove the non-existence of annihilators of a certain degree
efficiently. More precisely, we prove that for fixed d, the expected running time
for our algorithm to prove that there is no non-trivial annihilator of maximum
degree d is of order O(k). This algorithm might fail to prove such a property
for certain Boolean functions which have actually annihilators of this kind, we
prove however that the proportion of such functions is negligible. In view of the
previous lower bound, this algorithm is essentially optimal.

We also present another algorithm, namely Algorithm 2, which computes a
basis for the annihilators of degree ≤ d. We conjecture that the average running
time of this algorithm is not worse than the average running time of Algorithm
1 when the latter succeeds in proving that there is no annihilator (which would
then be of order O(k)), but we are only able to prove that its average running
time is in this case of order O(k(log m)2). Several remarks can be made here.

– It should be noted that the case of small d and rather large m is definitely
interesting in cryptography. We wish to emphasize that it implies that we
are far from checking all the entries of f to perform such a task. For instance,
we are able to test that a random function in 64 variables has no non-trivial
annihilator of degree 5 in a few minutes.

– It should be stressed here that our proof does not rely on any assumption
about the linear system of equations which arises when a degree d annihi-
lator is sought after. In particular, we do not assume that it behaves like a
random system of linear equations, but we rely on a general result about the
probability of not being able to recover erasures for linear codes for which
the generalized weights distribution is known [Did05].

– The complexity of Algorithm 2 is not the same when there is an annihilator
of the specified degree. We note that in this case, if we want to be sure
that the output is indeed an annihilator, then the complexity of such an
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algorithm is necessarily at least of order the number of entries of f . We
present in Section 4 a way to modify this algorithm to make it faster in this
case. Its output is in general only a basis of a space which contains the space
of annihilators we look after. This algorithm and Algorithm 2 itself have
been implemented. In our experiments, we found no example for which the
output was not the space of annihilators itself.

2 Algebraic Immunity of a Boolean Function

In this section we recall basic facts about Boolean functions and algebraic im-
munity. We also introduce the tools we will need to analyze the complexity of
our algorithms. In all this paper, we consider the binary vector space B(m) of m-
variable Boolean functions, that is the space of functions from {0, 1}m to {0, 1}.
It will be convenient to view {0, 1} as the field over two elements, what we de-
note by F2. It is well known that such a function f can be written in an unique
way as an m-variable polynomial over F2 where the degree in each variable is at
most 1 using the Algebraic Normal Form (ANF) :

f(x0, . . . , xm−1) =
∑

u∈Fm
2

αu

(
Πm−1

i=0 xui

i

)
where αu ∈ F2, u = (u0, . . . , um−1).

By monomial, we mean in what follows, a polynomial of the form Πm−1
i=0 xui

i with
(u0, . . . , um−1) ∈ Fm

2 . The degree of f is the maximum weight of the u’s for which
αu �= 0. By listing the images of a Boolean function f over all possible values of
the variables, that is (f(x))x∈Fm

2
(with some particular order over Fm

2 ) we can

also view it as a binary word of length n
def=2m. The weight of a Boolean function

f is denoted by |f | and is equal to
∑

x∈Fm
2

f(x) (the sum being performed over
the integers). We also denote in the same way the (Hamming) weight of a binary
2m-tuple. A balanced Boolean function is a function with weight equal to half its
length, that is n/2.

Dealing with algebraic immunity, we will be interested in the subspace B(d, m)
of B(m) formed by all Boolean functions of degree ≤ d. Note that the set of
monomials of degree ≤ d forms a basis of B(d, m), we call it the monomial basis.
By counting the number of such monomials we obtain that the dimension k of
B(d, m) is given by k =

∑d
i=0

(
m
i

)
.

As mentioned in the introduction, the algebraic immunity quantifies the im-
munity of a cryptosystem to some recent algebraic attacks. These attacks try to
break a cryptosystem by solving an algebraic system involving the key bits. The
equations involved often depend on a Boolean function f used in the ciphering
process. The idea is that f can be replaced by its annihilators or multiples to
obtain a new system of lower degree. The complexity of the attack depends on
the degree of this system which is nothing but the algebraic immunity of f .
Considering the pointwise product of two m-variable Boolean functions f and g,
∀x ∈ Fm

2 , f.g(x) = f(x)g(x), a function g is an annihilator of f if and only if
f.g is equal to 0, and a function g is a multiple of f if and only if there exists a
Boolean function h such that f.h is equal to g. Note that in the latter case, since
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the existence of such a function is equivalent to the fact that the set of zeros of
f is included in the set of zeros of g, we also have f.g = g, which is equivalent
to (f + 1)g = 0, i.e. g is an annihilator of 1 + f . By definition, the algebraic
immunity of f is the smallest degree d such that f admits a non-trivial annihi-
lator or multiple of degree d. By the previous remark, this is also the smallest
degree of a non-trivial annihilator of f or 1 + f . In this paper, we will be inter-
ested in computing efficiently the algebraic immunity of a Boolean function. For
achieving this aim, it is clearly sufficient to be able to find efficiently the smallest
degree of a non-trivial annihilator of a Boolean function. Note that a Boolean
function f admits a non-trivial annihilator of degree ≤ d iff the following set
of equations with unknowns βu ∈ F2, where u = (u0, . . . , um−1) ranges over all
binary m-tuples of weight ≤ d, has a non-zero solution⎛⎝∑

|u|≤d

βuxu0
0 . . . x

um−1
m−1 = 0

⎞⎠
x=(x0,...,xm−1)∈Fm

2 :f(x)=1

(1)

This just expresses the fact that a Boolean function g of degree ≤ d (that is
a function g(x0, . . . , xm−1) =

∑
u=(u0,...,um−1)∈Fm

2 :|u|≤d βuxu0
0 . . . x

um−1
m−1 ) annihi-

lates f if and only if for all points x at which f evaluates to 1, g is equal to 0.
Our task will be to solve this linear system efficiently.

To estimate the complexity of the algorithms given in the following sections,
we will use this result

Theorem 1. Let λ be the fraction of m-variable Boolean functions of weight w
with a non-trivial annihilator of degree ≤ d, k =

(
m
0

)
+
(
m
1

)
+ · · · +

(
m
d

)
and

n = 2m. Then λ ≤ exp
[

n
2d

(
k
n (d ln 2 + 3) + ln

(
1− w

n

))]
.

Proof. See [Did05]. ��

3 Proving the Non-existence of an Annihilator Efficiently

We provide in this section an efficient algorithm which proves that a given
Boolean function has no non-trivial annihilator up to a given degree. We hasten
to say that we are going to present an improved version of this algorithm in the
next section which will also be able to output a basis of the annihilator space up
to a certain degree. The purpose of the algorithm presented here is that it can
be analyzed rigorously and has average complexity of order O(md) to prove that
an m-variable Boolean function has no non-trivial annihilator of degree ≤ d.

This algorithm makes heavily use of Gaussian elimination in its basic subrou-
tines. What we call lazy Gaussian elimination in what follows simply consists
in solving system (1) by inserting one by one the equations in a matrix that is
kept reduced all the time.

When our algorithm looks for annihilators of degree ≤ d for an m-variable
Boolean function f , it will apply lazy Gaussian elimination on subfunctions of
f and will look for annihilators of lower degree. More precisely, it will apply
lazy Gaussian elimination for other values of d and m, that is degrees d′ in the
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range 1 ≤ d′ ≤ d and number of variables m′ of the form 2d + 1 + &log m'. We
need a bound on the probability that an m′-variable Boolean function has no
non-trivial annihilator in B(d′, m′). We will focus on random balanced Boolean
function which is one of the most significant random model in a cryptographic
context. The analysis carried over here can of course be applied to more general
probabilistic models.

Lemma 1. Let f be a random balanced Boolean function in m variables. Con-
sider an m′-variable Boolean function f ′ obtained by fixing m−m′ variables of
f . Let m′ = 2d + 1 + &log m' and 1 ≤ d′ ≤ d, then as m tends to infinity, the
probability that there is a non-trivial degree d′ annihilator for f ′ is upper bounded
by e−22d−d′

(1+o(1))m.

Proof. See appendix, Section A.

Moreover, we also need to give an upper bound on the expected running time
of the previous lazy Gaussian elimination. It is quite likely that it is of order
O(k3), but we are only able to prove the slightly weaker statement :

Lemma 2. The expected running time of lazy Gaussian elimination applied to
the f ′ of the previous lemma is upper bounded by O(d′k′3), where k′ =

(
m′
0

)
+

· · ·+
(
m′
d′
)
.

Proof. See appendix, Section B.

Our algorithm is based on the the classical (u, u+v) decomposition of a Boolean
function. Given a Boolean function f of degree r in algebraic normal form,
one can write f(x0, . . . , xm−1) = u(x0, . . . , xm−2) + xm−1v(x0, . . . , xm−2) where
u and v are Boolean functions in m − 1 variables. Note that for xm−1 = 0
we have f(x0, . . . , xm−1) = u(x0, . . . , xm−2) whereas for xm−1 = 1 we have
f(x0, . . . , xm−1) = u(x0, . . . , xm−2) + v(x0, . . . , xm−2) . In other words, u is the
restriction of f to the space xm−1 = 0 and u + v is the restriction of f for
xm−1 = 1. Moreover, the degree of u is at most r and the degree of v is at most
r − 1.

Now, if there exists a non-trivial annihilator g for f of degree ≤ d, then by
decomposing g in (u′, u′ + v′) we either have:
- u′ �= 0 and u′.u = 0. This yields a non-trivial annihilator of u of degree ≤ d.
- u′ is zero but not v′. Then v′.(u + v) = 0 and we get a non-trivial annihilator
of u + v of degree ≤ d− 1.

This simple remark is the underlying idea of our algorithm : to check that f
has no non-trivial annihilator of degree ≤ d we check that neither u (or what
is the same the restriction of f to xm−1 = 0) has a non-trivial annihilator of
degree ≤ d nor u + v (i.e. the restriction of f to xm−1 = 1) has a non-trivial
annihilator of degree ≤ d− 1. We perform this task recursively by decomposing
u and u+v further, up to the time the number of variables in the decomposition
is equal to 2d + 1 + &log m'. This is illustrated by Figure 1. The first number in
each couple represents the maximum annihilator degree to consider. The second
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Fig. 1. Recursive decomposition of a 9-variable Boolean function used to find an an-
nihilator of degree smaller than or equal to 2. The decomposition is performed up to
6-variable subfunctions. The bottom squares represent the domains of the subfunctions
which are leaves of the decomposition.

number corresponds to the number of variables in the corresponding subfunction.
We will continue the decomposition up to a certain depth as indicated above.
Note that the decomposition may also stop because the degree of the annihilator
to consider is zero.

It is important to notice the following fact

Fact 1. The first level of decomposition of a Boolean function f(x0, . . . , xm−1)
corresponds for the left part to the restriction of f to xm−1 = 0, whereas the right
part corresponds to the restriction of f to xm−1 = 1. More generally, consider
a subfunction f ′ at the l-th level of the decomposition. It is associated to a path
p = (p1, . . . , pl) ∈ Fl

2 starting from the root (that is f) by choosing either left or
right children at each level. Here the value of pi is 0 if we go from level i−1 to level
i by choosing the left children and 1 otherwise. Notice that f ′ is the restriction
of f to xm−1 = p1, . . . , xm−l = pl. Moreover, if we look for an annihilator of
degree d for f , we search for an annihilator of degree d− |p| for f ′.

More formally, our algorithm is the following

Algorithm 1. (Immunity verification) The input is an m-variable Boolean func-
tion f and a parameter d. The output is Yes if it can prove that there is no
non-trivial annihilator of degree ≤ d, No otherwise.

1. [decomposition] Recursively decompose the variable space of f according to
d and this up to subfunctions in 2d + 1 + &log m' variables. For each leaf,
execute step 2.

2. [Subfunction verification] Use lazy Gaussian elimination with the correct de-
gree to compute the annihilator space of the considered subfunction. If there
is a non-trivial annihilator then go directly to step 4, otherwise continue.

3. [Immune] Output Yes: f has no non-trivial annihilator of degree ≤ d.
4. [Unknown] Output No: we cannot prove the immunity of f .
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Since in most cases of interest in cryptography, d is small, we can continue
the decomposition quite far and still have with high probability that each sub-
function does not admit any annihilator of the required degree. The point is
that verifying with a classical algorithm that there is no annihilator for each
subfunction is much faster than verifying it for the whole function. The real gain
comes actually from the fact that the decomposition often ends at subfunctions
for which we just have to check that the constant function 1 is not an annihi-
lator. For this, we just have to find a corresponding value of the subfunction
which is equal to 1. This can be done in O(1) expected time. Hence, the more
we decompose f , the faster we get but the more chance we have to output “No”,
since the probability that at least one of the subfunctions admits an annihila-
tor increases. Choosing to decompose the functions up to a number of variables
equal to 2d + 1 + &log m' is a good tradeoff. For this choice we are able to prove
the following

Theorem 2. Let f be a random balanced m-variable Boolean function. Let d be
fixed, then as m tends to infinity, Algorithm 2 runs in O(k) = O

(
md
)

expected
time and proves that there is no non-trivial annihilator up to degree d, except
for a proportion of functions which is at most O

(
e−2dm(1+o(1))

)
.

Proof. See Appendix C.

4 An Efficient Algorithm for Finding Annihilators

It the previous section, we considered a fixed depth decomposition, but the depth
of decomposition may vary. For a given function f , the best decomposition for
our problem is actually the smallest decomposition such that each subfunction
has no non-trivial annihilator of the required degree.

By using a specific order on the monomials it is possible to work on this best
decomposition. In practice, this new algorithm (Algorithm 2) will perform really
well as shown by the running time presented later and will even be able to output
an annihilator when it exists. However, analyzing directly Algorithm 2 seems to
be more involved. We can only get a good upper bound on its complexity when
there is a decomposition for which Algorithm 1 outputs Yes, and even in this
case, the bound is slightly larger than the O(k) bound of Algorithm 1.

4.1 The Algorithm

We describe here the new algorithm. Its relation with Algorithm 1 is not clear
at first sight but will be explained in the next subsection. We will heavily use a
specific order on the monomials and on elements of Fm

2 . This order is induced
by the integer order on the set of integers �0, 2m − 1� by viewing an m-tuple
x (or a monomial X) as a binary representation of an integer. More precisely
an element (x0, . . . , xm−1) ∈ Fm

2 or the corresponding monomial Xx0
0 . . .X

xm−1
m−1

are both associated to the integer
∑m−1

i=0 xi2i. This identification allows us to
compare monomials with points in Fm

2 and to speak about intervals. For instance
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for a, b ∈ Fm
2 with a < b we define [a, b)def= {y ∈ Fm

2 : a ≤ y < b}. We also index
from 0 to k − 1 the m-variable monomials of degree ≤ d arranged in increasing
order.

We are now ready to describe Algorithm 2. The idea behind it is just to com-
pute incrementally (for an x varying in Fm

2 ) an annihilator basis of f restricted
to the first x points.

Algorithm 2. (Incremental algorithm) The input is a Boolean function f in m
variables and a number d. The output is a basis of the subspace of annihilators
for f of degree ≤ d.

1. [Initialization] Set the basis stack S to the constant function 1. Set the current
monomial index i to 0. Initialize x to the first value in Fm

2 such that f(x) = 1.
2. [Add basis element?] While the monomial of index (i + 1) is smaller than or

equal to x, push it onto the top of S and increment i.
3. [Remove basis element?] If any, find the element of S closest to the top that

evaluates to 1 on x. XOR it with all the other elements of S that evaluate to
1 on x and remove it from S.

4. [Skip to next monomial?] If the annihilator space is trivial, increment i, push
the monomial of index i onto the top of S and set x to be this monomial.

5. [Loop?] If possible, increment x until f(x) = 1 and go back to step 2.
6. [end] Execute a last time step 2 and return the current basis stored in S.

The correctness of this algorithm follows from the two following lemmas

Lemma 3. Given a monomial Xx0
0 . . . X

xm−1
m−1 of degree d, the associated mono-

mial function is zero on all entries strictly smaller than x = (x0, . . . , xm−1).
Moreover, this function is equal to 1 on the interval [x, x′) where x′ is the first
point in Fm

2 greater than x of weight ≤ d.

Proof. The aforementioned monomial function evaluates to 1 on an m-tuple
y = (y0, . . . , ym−1) iff for all i such that xi = 1 we also have yi = 1. In such
a case, we necessarily have

∑m−1
i=0 yi2i ≥

∑m−1
i=0 xi2i which concludes the first

part of the proof. Now, let us define i0 to be the minimum of the set {i, xi �= 0}.
Denote by x′ the first point greater than x of weight less than or equal to d.
The second assertion follows from the fact that all y′ strictly between x and x′

coincide with x for all positions greater than or equal to i0. This implies that
the aforementioned monomial evaluates to 1 at such y’s. ��

Lemma 4. Let A<x(d), respectively A≤x(d) be the set of m-variable Boolean
functions g generated by the monomials of degree ≤ d which are smaller than or
equal to x that satisfy f(y)g(y) = 0 for all entries y ∈ Fm

2 smaller than x, resp.
smaller than or equal to x. We use the same notation when x is a monomial by
identifying x with the corresponding point in Fm

2 . For a value x chosen by the
algorithm, we denote by x− its previously chosen value. Then

– The set S obtained after completing step 2 is a basis for A<x(d).
– The set S obtained after completing step 3 is a basis of A≤x(d).
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– If a monomial X has been added in step 4, then just after completing step
4, A<X(d) = {0, X}.

– For step 5, if no monomial has been added in step 4 just before, then after
completing step 5 we have that f(x) = f(x−) = 1 and f(y) = 0 for all y
such that x− < y < x. If a monomial X has been added in step 4 just before,
we have after step 5 has been completed, that A<X(d) = {0, X}.

Proof. The key point is that by Lemma 3 the value of a Boolean function on x
depends only on the monomials in its ANF smaller than or equal to x.

Let us check by induction on the number of times we perform step 2 that
S is a basis of A<x(d) after step 2 has been completed. This is obviously true
the first time we perform step 2. The assertions on step 3,4,5 are also clearly
true the first time they are performed. Consider now a further step 2 for which
all assertions about the previous steps 2,3,4,5 hold. There are two possibilities
depending on whether the previous step 4 has added or not a monomial to S.
Case 1 : Assume that step 4 has added a monomial X .
Then A<X(d) = {0, X}. All monomials added in step 2 are precisely the mono-
mials X ′ of degree ≤ d such that x ≥ X ′ > X . Note that for all these X ′ we
have X ′(y)f(y) = 0 for all y < x. This is also true for monomial X . Therefore
all elements in S belong to A<x(d). All the elements in S are monomials and are
necessarily independent. Consider now an element g in A<x(d). Let us first note
that the ANF of g contains no monomial < X , otherwise the Boolean function
formed by the part of the ANF of g involving only monomials < X would belong
to A<X(d), which is impossible. g is then necessarily a sum of monomials in S
since we have put in S all monomials of degree ≤ d between X and x. S is
therefore a basis of A<x(d).
Case 2 : Assume that step 4 has added no monomial. In this case, we have added
to S all monomials between x−(exclusive) and x(inclusive) of degree ≤ d. Note
that f(y) = 0 for all y such that x− < y < x. From this, it is easy to check
that all elements in S belong to A<x(d). They are also clearly independent. As
before, consider a g ∈ A<x(d). Write g = g≤x− + g>x− , where the ANF of g≤x−

consists in the monomials of the ANF of g which are smaller than or equal to x−.
Notice from Lemma 3 that g≤x− belongs to A≤x−(d). It is therefore generated
by elements in S. g>x− is also clearly generated by the monomials added in step
2. S is therefore a basis of A<x(d).

The assertion on step 3 follows at once from the assertion on step 2, and the
assertions about step 4 and 5 are straightforward. ��

Remarks

1. Step 4 might seem odd at first sight, because it could be omitted without
changing the correctness of the algorithm. However it is an essential step for
having a low complexity algorithm. The point is that it avoids checking a
lot of values of x satisfying f(x) = 1 which are useless for the algorithm.

2. In step 3, taking the element of S closest to the top of the stack is a heuristic
which really helps in being fast. Define the trailing monomial of a Boolean
function as the smallest monomial appearing in its ANF, the closer we are
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to the top of the stack, the larger the trailing monomial will be. Taking
elements the closest possible to the top of the stack will therefore tend to
reduce the number of monomials in its ANF form. XOR’ing such a function
to the other elements of the stack will therefore be more efficient.

3. Observe that Algorithm 2 necessarily outputs the empty-set if f evaluates
to 1 in at least one point in any interval [X1, X2) where X1 and X2 are
two consecutive monomials of degree ≤ d (the monomials being ordered as
explained above). This result comes from the second part of Lemma 3 and
implies that such a function has no non-trivial annihilator in B(d, m). In
particular, this applies to the inverse m-variable majority function which
is defined by f(x) = 1 iff |x| ≤ �m/2�. This function is equal to 1 on all
monomials of degree ≤ �m/2� and has therefore no non-trivial annihilator
of degree ≤ �m/2�.

4.2 Complexity Issues

Let us now explain the relationship between Algorithm 1 and Algorithm 2 when
there exists a decomposition for which the output of Algorithm 1 is “YES I
can prove that there are no annihilator of degree ≤ d”. Indeed let Al-
gorithm 1∗ be a modified version of Algorithm 1 where we use Algorithm 2 on
subfunctions instead of lazy Gaussian elimination. Then we have

Proposition 1. The complexity of Algorithm 2 is upper-bounded by the small-
est1 complexity of Algorithm 1∗ when it outputs YES.

Proof. Assume that we apply Algorithm 1∗ to a certain decomposition for which
the corresponding output is YES. Consider the first restriction of f for which
we look for an annihilator of degree ≤ d. Notice that this subfunction is the
restriction of f on [0, a), where the integer associated to a is equal to 2m′

, m′

being the number of variables on which the restriction depends. Algorithm 1∗

coincides with Algorithm 2 on this subfunction and outputs that there are no
annihilator. Notice now that the second subfunction considered by Algorithm 1∗

is a restriction of f over an interval of the form [a, b), and so on for all the other
subfunctions which correspond to restrictions of f . Note that these intervals
are consecutive and that they are examined by Algorithm 1∗ in a consecutive
order. Since Algorithm 1∗ notices that every subfunction has no annihilator of
the corresponding degree, Algorithm 2 also reduces in applying itself to each
subfunction separately. The reduction is done implicitly because in this case an
element in S will have only non zero coordinates on monomials in the current
subfunction interval. The proposition follows. ��

However, the problem is that this does not show that Algorithm 2 is as efficient
as Algorithm 1. If we use Algorithm 2 instead of lazy Gaussian elimination
on the subfunctions in Algorithm 1, we are only able to use the weak bound
1 Recall that this means that the minimum is taken over all decompositions of f for

which all subfunctions have no non-trivial annihilators.
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E(m′, d′) ≤ n′k′2 instead of the bound of Lemma 2 (E(m′, d′) representing the
expected running time of Algorithm 2 on the corresponding subfunction). But
we still have E(m′, 0) = O(1) and we obtain

Proposition 2. The complexity of Algorithm 1∗ applied to the decomposition
of the previous section is O

(
k(log m)2

)
.

Proof. Let us first bound the expected complexity of Algorithm 2 when applied
to a subfunction f ′ on m′ variables to find annihilators of degree ≤ d′. When
d′ ≥ 1 we will simply use the worst case complexity where we consider all n′

points and for each of them, step 3 and 4 run in k′2. Thus we have E(m′, d′) =
O(n′k′2). In the case d′ = 0, because of step 4, we will stop as soon as we get
a point where f ′ = 1 and we have the same expected running time as the lazy
Gaussian algorithm, that is E(m′, 0) = O(1).

In the end, with the new E(m′, d′) = O(n′k′2) we obtain a complexity in
O(k(log m)2) for Algorithm 1∗ which is only slightly larger than the bound of
complexity of Algorithm 1. ��

4.3 Benchmarks

We have implemented a version of Algorithm 2 in C language running on a
Pentium 4 at 2.6GHz with 1Gb memory. The (d, m) entry in the following tables
means that we calculated the annihilator subspace in B(d, m) of a balanced m-
variable Boolean function.

First of all, we ran some computations to find high degree annihilators. The
results are presented in Figure 2. Notice that even for such large values of d
corresponding to m, Algorithm 2 performs much better than lazy Gaussian elim-
ination. Notice that the memory usage is better too, allowing to deal with cases
where lazy Gaussian elimination ran out of memory.

d,m 2,6 3,8 4,10 5,12 6,14 7,16 8,18 9,20
k 22 93 386 1586 6476 26333 106762 431910

Lazy G 0s 0s 0s 0.1s 5s 2m30s oom oom
Algo 2 0s 0s 0s 0.01s 0.5s 20s 15m 12h

Fig. 2. Running time to check a high degree immunity for random balanced functions.
The abbreviation oom means Out Of Memory. The lowest degree of a non-trivial anni-
hilator of all the tested functions appeared to be the maximum possible, that is m

2 �
for an m-variable balanced Boolean function.

After this, we ran Algorithm 2 for small values of d and large values of m.
The table in figure 3 clearly reflects the theoretical complexity in O(k).

We have also checked the performances of our algorithm when there is an
annihilator. The results are displayed in Figure 4. To make sure that the balanced
Boolean function in m variables had an annihilator of a specified degree d, we
took a random g in B(m) of degree d and weight w greater than 2m−1. Then
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d,m 4,32 5,32 6,32 7,32 3,64 4,64 5,64 2,128 3,128 2,256
k 4.104 2.105 1.106 4.106 4.104 6.105 8.106 8.103 3.105 3.104

Algo 2 1s 5s 30s 2m40s 1s 32s 8m 0.1s 32s 0.3s

Fig. 3. Running time to check low degree immunity of functions with a large number
of variables. The functions were chosen randomly among balanced function and no
non-trivial annihilators were found.

d,m 2,30 3,30 4,30 5,30 6,30
k 466 4526 3.104 2.105 8.105

Algo 2 13m 1h 3h45 - -
Algo 2∗ 1s 1s 4s 31s 4m34s

Fig. 4. Running times for Algorithm 2 and 2∗ when m = 30 and a non-trivial annihi-
lator of degree d exists

we chose w − 2m−1 random values of g equal to 1 and made them equal to 0 to
obtain a balanced function f . The f obtained this way has obviously 1 + g as
an annihilator of degree d. We chose m = 30 for our experiments. In this case,
Algorithm 2 has to check all 230 points and this can be really long. It is possible
to modify the algorithm to obtain a new algorithm (Algorithm 2∗) which runs
much faster by avoiding to consider all points of f . Since we know that there
is an annihilator, the first modification is to skip to the next monomial in step
4 as soon as the annihilator space is of dimension 1. To speed up the process
even more, another modification is to consider (at random) only a fraction of
all the points where f is equal to 1 (one half for example). However, with this
last modification, the output of the new algorithm is just a candidate set for the
annihilator subspace : it always contains the right annihilator space, but it could
be much larger. In spite of this fact, we found an annihilator space of dimension
1 at the end of all our experiments.

5 Conclusion

This article presents two algorithms of low complexity which allow to detect
whether or not a given Boolean function has low degree multiples or low degree
annihilators. They allow to check this kind of property even for Boolean functions
with a large number of variables. They can be used to build cryptographically
strong functions by devising such functions with respect to other criterions (non-
linearity, being balanced, resiliency, ... ) and by checking afterwards that such
functions are also immune against algebraic attacks.

The analysis of the complexity of Algorithm 2 is probably somehow pessimistic
and it is likely that it can be improved. It should also be interesting to improve
this algorithm when we apply it to a Boolean function admitting a non-trivial
annihilator of the specified degree.
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A Proof of Lemma 1

Let n′ = 2m′
, k′ =

(
m′

0

)
+
(
m′

1

)
+ · · ·+

(
m′

d′
)

and n = 2m. Note that n′ ≥ 22d+1m.
We start the proof by noticing that the probability that the weight of f ′ is w is
given by (

n−n′

n/2−w

)(
n′

w

)(
n

n/2

) .

By Stirling’s formula this probability can be shown to be of the form
O(en′(h(w/n′)−1)), with h(x) = −x lnx − (1 − x) ln(1 − x). Using Theorem 1
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we obtain that the probability that f ′ has an annihilator of degree ≤ d is of the
form

n′∑
w=o

O

(
e
22d+1m h(w/n′)−1+ 1

2d′ ln(1−w/n′)+ k′(d′ ln 2+3)
n′

)
.

It is straightforward to check that k′
n′ = o(1) as m′ tends to infinity. This implies

that the k′(d′ ln 2+3)
n′ term in the exponent tends to zero. Moreover, we have a

linear (in m) number of terms in the sum. Hence, we can upperbound it by its
largest term times an emo(1) factor. Putting all these facts together, we obtain
that the probability that f ′ has an annihilator of degree d′ is upperbounded by
an expression of the form

e22d+1m supx∈[0,1] g(x,d′)(1+o(1)),

where g(x, d′)def=h(x) − 1 + 1
2d′ ln(1 − x). It can be checked that for d′ ≥ 1

we have that supx∈[0,1] g(x, d′) ≤ − 1
2d′+1 . The upper-bound given in Lemma 1

follows directly from this last remark.

B Proof of Lemma 2

Let n′ = 2m′
. First of all, the maximum complexity of lazy Gaussian elimination

is O(n′k′2). Moreover, by using Theorem 1, the processing of w0 = k′(&d′ ln 2'+
5) equations in lazy Gaussian elimination fails to prove the immunity of f ′ in
O(w0k

′2) with a probability smaller than

e
n′
2d′ k′

n′ (d′ ln(2)+3)+ln(1−w0
n′ ) ≤ e

− k′
2d′−1 (1+o(1))

We can split the expected running time E in two. One part for the case where
the Hamming weight of f ′ is greater than w0 and one part where this is not the
case. We get

E ≤
[
Ew0 + O(w0k

′2) + e
− k′

2d′−1 (1+o(1))
O(n′k′2)

]
+ P (|f ′| < w0)O(n′k′2)

where Ew0 is the expected number of function evaluations we have to perform
before actually finding w0 points where f ′ is equal to 1. Notice that in this

setting k′ = O(m′d′
) and e

− k′
2d′−1 (1+o(1))

n′ = O(1). The probability that we have
to check i points to find w0 points for which an m-variable balanced Boolean
function evaluates to 1 is given by(

i− 1
w0 − 1

)( n−i
n/2−w0

)(
n

n/2

) =
(

i− 1
w0 − 1

)
(n)!(n/2)!(n/2)!

(n− i)!(n/2− w0)!(n/2 + w0 − i)!

We can upper-bound this expression by(
i− 1

w0 − 1

)
ni

2i(n− i)i
≤
(

i−1
w0−1

)
2i

1
(1− n′

n )n′
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Therefore we have for the expected number of function evaluations

Ew0 =
1

(1− n′
n )n′

n′∑
i=w0

(
i− 1

w0 − 1

)
i

2i
= O(w0)

In the same way, we have

P (|f ′| < w0) ≤
w0−1∑
i=0

(
n′

i

)(
n−n′

n/2−i

)(
n

n/2

) ≤ w0

(
n′

w0

)(n−n′
n−n′

2

)(
n

n/2

) ≤ w0n
′w0

2n′
1

(1− n′
n )n′

So P (|f ′| < w0)n′ = O(1) which concludes the proof.

C Proof of Theorem 2

The proof of this theorem starts by first evaluating N(m, d, m′, d′) which is the
number of times we obtain an m′-variable subfunction for which we have to
determine whether or not it has a degree ≤ d′ annihilator.

Lemma 5. We have N(m, d, m′, d′) =
(

m−m′
d−d′

)
.

Proof. We use Fact 1 (and also the notation introduced there) and notice that
such subfunctions correspond to paths p = (p1, p2, . . . , pm−m′) ∈ Fm−m′

2 for
which |p| = d− d′. The number of paths of this kind is obviously

(
m−m′
d−d′

)
. ��

Let E(m′, d′) be the expected running time of checking whether or not the m′-
variable subfunction has a non-trivial annihilator of degree ≤ d′. The crux of
obtaining a low-complexity algorithm is that

Lemma 6. For any m′, E(m′, 0) = O(1).

Proof. The idea is that in this case we just have to check whether or not the
constant function 1 is an annihilator for the subfunction. This can be done by
finding a point of the subfunction which evaluates to 1. Let n = 2m and n′ = 2m′

.
The probability that we have to check i points to find a point for which an m-

variable balanced Boolean function evaluates to 1 is equal to ( n−i
n/2−1)
( n

n/2)
. Therefore

the expected time is equal to

n′∑
i=1

i

(
n−i

n/2−1

)(
n

n/2

) + n′

(
n−n′

n/2

)(
n

n/2

) .

The last term corresponds to the probability that the subfunction is the all-zero
function and tends to 0 as n′ tends to infinity. For the sum, we notice that
( n−i

n/2−1)
(n−i−1

n/2−1)
= n/2−i+1

n−i ≤ 1
2 and therefore the expected time is smaller than

n′∑
i=1

i

(
1
2

)i

+ o(1) = O(1). ��
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We finish the proof of the first assertion in Theorem 2 by noticing that the
expected running time E of our algorithm is equal to

d∑
i=1

N(m, d, 2d + 1 + &log m', i)E(2d + 1 + &log m', i) + E0

where :

- 2d + 1 + &log m' is the number of variables at which we stop the decompo-
sition.

- E0 is the expected time spent in checking the subfunctions for which d′ = 0.

From Lemma 6, E0 depends on the number of subfunctions for which d′ = 0. It
corresponds to paths of weight exactly d in the decomposition tree and we get

E0 = O

((
m− (2d + 1 + &log m')

d

))
.

We use Lemma 2 to bound the E(2d+1+ &log m', i)’s (and by noticing that the
k′’s involved in this lemma are of the form O

(
(2d + 1 + log m)i

)
and we obtain

that

E = O
m − 2d − 1 − log m�

d
+

d

i=1

m − 2d − 1 − log m�
d − i

i(2d + 1 + log m)3i

= O md +
d

i=1

md−ii(2d + 1 + log m)3i

= O(md) = O(k).

It should be noted that it is really the time spent in proving that subfunctions
have not the constant 1 as annihilator which is responsible for the O(k) term in
the average complexity. The time spent in proving that the other subfunctions
have annihilators of larger degree is negligible.

To prove that there is only a negligible part of functions for which Algorithm 1
answers “No”, we proceed as follows. The probability P1 that Algorithm 2 exits
for values of d′ greater than 0 can be bounded by using lemmas 5 and 1 by

P1 ≤
d∑

d′=1

(
m− 2d− 1− &log m'

d− d′

)
e−22d−d′

(1+o(1))m

≤ O(md)e−2d+1(1+o(1))m + e−2d(1+o(1))m

≤ e−2d(1+o(1))m

The probability P2 that Algorithm 1 exits for values of d′ equal to 0 is clearly
upper-bounded by the number of subfunctions for which d′ equals 0 times the
probability that such a subfunction evaluates to 0 on a domain of size
22d+1+�log m�. This last probability is clearly of the form O

(
e−22d+1m(ln 2+o(1))

)
.

Summing P1 and P2 yields an upper-bound for the probability we wish to bound
and leads to the second assertion in Theorem 2.
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Abstract. Algebraic attacks have received a lot of attention in studying
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n	 � respectively. We also generalize this idea to Boolean
polynomial functions. All existing algorithms to determine AI and cor-
responding low degree multiples become too complex if the function has
more than 25 variables. In our approach no algorithm is required. The
AI and low degree multiples can be obtained directly from the given
formula.
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1 Introduction

The idea behind the algebraic attacks is to express the cipher as a system of
multivariate equations whose solution gives the secret key. The complexity of
the attack depends on the degree of these equations. Therefore the existence of
low degree equations, to express a cipher, is crucial for algebraic attacks.

The algebraic attacks on stream ciphers composed of LFSR(s) and a nonlin-
ear combining function f were proposed by Courtois and Meier in [8, 9]. The
authors presented several scenarios under which low degree equations exist for
ciphers using a combining function f with small number of inputs. These low
degree equations are obtained by producing low degree multiples of f , i.e., by
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multiplying f with a low degree function g such that fg is of low degree. In [26]
Meier, Pasalic and Carlet reduced the scenarios (given in [8, 9]) under which
low degree equations may exist to two and showed that existence of low degree
equations is equivalent to the existence of low degree annihilators of f or f + 1.

Krause and Armknecht extended algebraic attacks to combiners with memory
in [2]. They proved that algebraic equations always exist for such combiners and
also gave an upper bound on the degree of such equations in terms of their input
size and memory. In [10] Courtois further extended these attacks to combiners
with memory and several outputs and provided an upper bound on the degree
of equations for such combiners in terms of the size of their input, output and
memory. An improvement on the algebraic attacks called fast algebraic attacks
was presented in [7]. These attacks have been further examined in [3,21].

The first algebraic attack on a block cipher was discussed in [30]. In [11]
Courtois and Pieprzyk showed that AES can be attacked by solving a system of
quadratic equations. This is possible because the only nonlinear component in
AES, i.e., the S-box, can be expressed as a system of quadratic Boolean equa-
tions. They also introduced a definition of the resistance of the S-box to algebraic
attacks based on the number and type of equations that describe the S-box. Low
degree equations that describe the S-box are again essential for the low complex-
ity of the algebraic attack. Cheon and Lee [6] used this definition to determine
the resistance of S-boxes (based on Gold, Kasami and inverse exponents) against
algebraic attacks. However their results have been disputed by Courtois et al.
in [12]. Another algebraic attack on AES was given in [27,28].

Since the existence of low degree equations for simple combiners, combiners
with memory, and S-boxes is important for algebraic attacks, Armknecht com-
bined the three cases in [1]. He showed that finding low degree equations for
simple combiners, combiners with memory, and S-boxes can be reduced to the
same problem of finding low degree annihilators.

In other direction there is increasing interest in the construction of Boolean
functions with highest AI. So far there are only three known constructions [14,
5, 15] that can acheive maximum possible AI &n

2 ', where n is the number of
inputs to the function. But the constructed function lacks certain cryptographic
properties making it unsuitable to be used in a cryptosystem.

Except [27] all other techniques for finding the low degree equations have been
developed from the theory of Boolean functions. Even, functions and S-boxes de-
signed over finite field F2n , n > 2 are analyzed according to this approach. We can
refer to them as polynomial functions or mappings. For example the filter func-
tion f : F216 → F2 used in the stream cipher SFINKS [4] is a component of the
inverse mapping in F216 . S-box used in AES [13] and stream cipher SNOW [22]
consists of inverse mapping in F28 . A power mapping from F2n to F2n can be
decomposed into n component functions, from F2n to F2, called Boolean power
functions. In other words a Boolean power function is a monomial trace function
which will be introduced later.

In this paper we use the theory of polynomial functions to analyze the AI of
Boolean power function. This approach allows us to obtain meaningful results
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that are very difficult to obtain from the theory of Boolean functions. For exam-
ple we derive upper bounds on the AI of many Boolean power functions that
are much lower than the optimal upper bound presented in literature. We show
that AI of functions based on inverse, Kasami and Niho exponents decreases
drastically as n increases. More over the existing algorithms to determine the AI
(and finding low degree equations) of functions are very slow and are not prac-
tical for n > 25. Our approach has no such limitation. The AI of any Boolean
power function can be obtained directly from the formula regardless of the value
of n. Similarly the low degree equations required for the algebraic attack are also
obtained directly from the formula.

We believe that besides determining the AI of polynomial functions, the
approach presented in this paper can be used to analyze and design polynomial
functions with high AI along with other cryptographic properties.

2 Definitions and Preliminaries

In this section we provide the necessary preliminary material required in the
later sections.

2.1 Polynomial Functions

Let F2 be the finite field of two elements. We consider the domain of an n-
variable Boolean function to be the vector space (Fn

2 , +) over F2, where + is
used to denote the addition operator over both F2 and the vector space Fm

2 .
The Hamming weight of an integer i is the number of nonzero coefficients in

the binary representation of i and is denoted by H(i).
For a binary string, λ consecutive ones (1’s) preceded by zero and followed by

zero is called a run of ones of length λ. We are only interested in the total number
of runs of ones in a given binary string and not their length λ. Furthermore we
consider our runs of ones to be cyclic. For example 1100011110011111 has two
(not three) cyclic runs of ones.

Any n variable Boolean function h: Fn
2 → F2, can be uniquely represented as

a multivariate polynomial over F2, called the algebraic normal form,

h(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . . + a1,2,...,nx1x2 . . . xn,

where the coefficients a0, ai, ai,j , . . . , a1,2,...,n ∈ F2. The degree of the Boolean
function h, denoted by deg(h), is the same as the degree of the multivariate
polynomial.

An (n, m) S-box ( or vectorial function) is a map F : Fn
2 → Fm

2 and has
component functions f1, · · · , fm.

Let F2n be the finite field with 2n elements. A Trace function Tr: F2n → F2m ,
is given by [24, page 51]

Trn
m(x) =

n/m−1∑
i=0

x2mi

, x ∈ F2n .
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A Cyclotomic coset Cs modulo 2n − 1 is defined as [25, page 104]

Cs = {s, s · 2, · · · , s · 2ns−1},

where ns is the smallest positive integer such that s ≡ s2ns(mod 2n − 1). The
subscript s is chosen as the smallest integer in Cs, and s is called the coset leader
of Cs. For example the cyclotomic cosets modulo 15 are:

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 12, 9}, C5 = {5, 10}, C7 = {7, 14, 13, 11},

where {0,1,3,5,7} are coset leaders modulo 15.
Any non-zero polynomial function f : F2n → F2, can be represented as a sum

of trace functions [20, page 178]:

f(x) =
∑

k∈Γ (n)

Trnk
1 (Akxk) + A2n−1x

2n−1, Ak ∈ F2nk , A2n−1 ∈ F2,

where Γ (n) is the set consisting of all coset leaders modulo 2n− 1, nk is the size
of the coset Ck, and Trnk

1 (x) is the trace function from F2nk → F2.
If f(x) is balanced , we have [20]

f(x) =
∑

k∈Γ (n)

Trnk
1 (Akxk), Ak ∈ F2nk , x ∈ F2n . (1)

The algebraic degree of f , denoted by deg(f), is given by the largest w such
that Ak �= 0 and H(k) = w. There is a natural correspondence between Boolean
functions h and polynomial functions f [20, page 334]. Let {α0, . . . , αn−1} be a
basis for F2n , then this correspondence is given by:

h(x0, . . . , xn−1) = f(α0x0 + . . . αn−1xn−1).

A monomial or single trace term function f is a function that can be represented
by a single trace term, f(x) = Trn

1 (βxt) where β ∈ F2n and t is the coset leader
of Ct.

2.2 Algebraic Immunity AI
A Boolean function f is said to admit an annihilating function g, if f ∗ g = 0.
In [26] AI of f , denoted by AI(f), is defined as the minimum value of d such
that f or f + 1 admits an annihilating function of degree d.

Proposition 1 of [26] states that existence of the relations of form f ∗ g = h,
where g and h have degree at most d, means the existence of annihilating function
g′ of degree at most d (as f ∗(g+h) = 0). Therefore if for f we can find a function
g such that degree of f ∗ g is d then we can say that AI(f) ≤ d.

Fact 1. [8, Theorem 6.0.1] Let f be any Boolean function with n inputs. Then
there is a Boolean function g �= 0 of degree at most &n

2 ' such that f * g is of
degree at most &n

2 '.
Fact 1 shows that the upper bound on the AI of any Boolean function is &n

2 '.
To establish upper bound on the AI of a polynomial function f we will try to
find multipliers g such that the degree of f ∗ g is less than &n

2 '.
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2.3 Monomial Trace Functions and Power Mappings

Monomial Trace functions are represented by a single trace term in polynomial
form. There are several compelling reasons to study the AI of monomial trace
functions. Any polynomial function can be expressed as a sum of monomial
trace functions. Therefore, for a constant multiplier g, the AI of any function
f is upper bounded by the maximum AI of any monomial trace function in its
polynomial representation. This bound may not always be tight but in certain
cases it can reveal the weakness of a function against algebraic attacks. Another
important class of functions are the Boolean power functions that can be repre-
sented as monomial trace functions. These functions are of interest as they can
be used as combining or filtering functions in stream ciphers [4]. These functions
can easily be constructed from a power mapping in a finite field. Power mappings
can be represented as F : x → xa in F2n and are classified based on exponent a.
Some famous exponents that have been studied for use in S-boxes are Inverse,
Gold, Kasami, Welch and Niho [18, 23, 16, 17]. These mappings can easily be
decomposed into Boolean power functions or monomial trace functions:

Let {α0, ..., αn−1} and {β0, ..., βn−1} be the dual basis [25, page 117] of F2n .
Then an S-box based on power mapping (F : x → xa ) can be represented
as F (x) =

∑n−1
j=0 Trn

1 (βjx
2it)αj , x �= 0 and its component functions can be

represented as monomial trace functions of the form fj(x) = Trn
1 (βjx

2it), where
a ∈ Ct. It is conventional to represent monomial trace functions in the form
Trn

1 (βxt) where t is a coset leader of Ct. Note that we can write a = 2−it for
some i. So for any exponent a we can write the monomial trace function in the
standard forms as

f(x) = Trn
1 (βxa) = Trn

1 (βx2−it) = Trn
1 (β2i

xt),

since Trn
1 (x) = Trn

1 (x2). Next we find the AI of monomial trace functions.

3 Algebraic Immunity of Monomial Trace Functions

We provide the following proposition that will be used to derive upper bound
on the AI of monomial trace functions.

Proposition 1. Let f(x) = Trn
1 (βxt) and g(x) = Trm

1 (γxr) be monomial trace
functions, where x ∈ F2n , t and r are the coset leaders of cosets Ct and Cr.
The sizes of the cosets Ct and Cr are n and m respectively, m|n, and β ∈ F2n,
γ ∈ F2m . Then

deg(f(x)g(x)) = max
0≤i<m

H(r + t2−i)

Proof. Note both f(x) and g(x) are n variable Boolean functions. From the
definition of trace function we can write (see also [19])

f(x)g(x) =
n−1∑
j=0

(βxt)2
j

m−1∑
l=0

(γxr)2
l

=
n−1∑
j=0

m−1∑
l=0

β2j

γ2l

xt2j+r2l
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=
m−1∑
k=0

Trn
1 (γβ2k

xr+t2k

),

where the algebraic degree of f(x)g(x) is given by the largest w such that γβ2k �=
0 and H(r + t2k) = w. Let k = m− i, we have t2k ≡ t2m−i ≡ t2−i mod 2n − 1.
Therefore

deg(f(x)g(x)) = max
0≤k<m

H(r+t2k) = max
0≤i<m

H(r+t2−i) �

Proposition 1 shows that we only need to add r to the members of coset Ct,
and the highest hamming weight of the resulting integers gives the maximum
possible degree of f(x)g(x).

In the following Theorem we derive an upper bound on the AI of monomial
trace functions based on a property of the exponent t, i.e., the number of runs
of 1’s in the binary representation of t.

Theorem 1. Let l = �
√

n�, k = n− �n
l �l and f(x) = Trn

1 (βxt), where β ∈ F2n

and t is the coset leader of Ct. Let g(x) = Trm
1 (xr), where

m =
{

l, k = 0;
n, 0 < k < l

, and r =

{
1 +

∑n
l −1
i=1 2il , k = 0

1 + 2k +
∑�n

l −1
i=1 2il+k , 0 < k < l

.

Then

deg(f(x)g(x)) ≤ ul +
⌈n

l

⌉
− 1, (2)

where u is the number of runs of 1s in the binary representation of t.

To prove Theorem 1 we need the following two lemmas.

Lemma 1. r is a coset leader modulo 2n − 1.

Proof. The above can be established by examining the binary representation of r.
Case: k = 0 ︷ ︸︸ ︷

n
l l

r =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01 . . . . . .

︷ ︸︸ ︷
00 · · · 01

2r = 00 · · · 10 00 · · · 10 . . . . . . 00 · · · 10 > r
· · ·
2l−1r = 10 · · · 00 10 · · · 00 . . . . . . 10 · · · 00 > r
2lr = 00 · · · 01 00 · · · 01 . . . . . . 00 · · · 01 = r

Therefore r is the coset leader modulo 2n − 1.
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Case: 0 < k < l

︷ ︸︸ ︷
n

l l k

r =
︷ ︸︸ ︷
00 · · ·01

︷ ︸︸ ︷
00 · · · 01 . . . . . .

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

2r = 00 · · ·10 00 · · · 10 . . . . . . 00 · · ·10 00 · · ·10 > r
· · ·

l k l

2lr =
︷ ︸︸ ︷
00 · · ·01

︷ ︸︸ ︷
00 · · · 01 . . . . . .

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01 > r

· · ·
l l k

2nr =
︷ ︸︸ ︷
00 · · ·01

︷ ︸︸ ︷
00 · · · 01 . . . . . .

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01 = r

Therefore r is the coset leader modulo 2n − 1. �

Note: For k = 0, |Cr| = l and for 0 < k < l, |Cr| = n, where |Cr| is the size of
the coset Cr.

In Lemma 1 ︷︸︸︷ is used to indicate the size of a segment in bits. From here
onwards we will use ︷︸︸︷ to represent the size of the segment as before and ︸︷︷︸
to represent the number of 1’s in the segment

Lemma 2. H(r + t2−i) ≤ ul + &n
l ' − 1, 0 ≤ i ≤ m− 1 and r, t, u, and l are as

defined in Theorem 1.

Proof. Consider the binary representations of r and t. In Lemma 1, r consists
of �n

l � identical l bit segments when k = 0. If k �= 0, then k least significant bits
of r form an additional segment. All &n

l ' segments have hamming weight 1. We
can segment t in the same way as r however these segments may or may not be
identical. We will represent a segment of r and t as r′ and t′ respectively. Now
let us consider the addition of r′ and t′. Initially we will restrict ourselves to the
case where the binary representation of t′ has at most one run. Now consider all
possible transitions in t′ with and without carry.

Case 1: 1 → 0 transition

j � j � ← carry

t′ =
︷ ︸︸ ︷
111 · · ·1 0 · · · 00 t′ =

︷ ︸︸ ︷
111 · · ·1 0 · · · 00

r′ = 000 · · ·00 · · · 01 r′ = 000 · · ·00 · · ·01
+ −−−−−−− + −−−−−−−

111 · · ·10 · · · 01 111 · · ·10 · · ·10

H(r′ + t′) = j + 1, j < l − 1 H(r′ + t′) = j + 1, j < l − 1
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j � carry ← j � ← carry

t′ =
︷ ︸︸ ︷
111 · · ·11 0 t′ =

︷ ︸︸ ︷
111 · · ·11 0

r′ = 000 · · ·001 r′ = 000 · · ·001
+ −−−−−−− + −−−−−−−

111 · · ·111 000 · · ·000

H(r′ + t′) = j + 1, j = l − 1 H(r′ + t′) = 0, j = l − 1

Case 2: 0 → 1 transition

j � j � ← carry

t′ =
︷ ︸︸ ︷
000 · · ·0 1 · · · 11 t′ =

︷ ︸︸ ︷
000 · · ·0 1 · · · 11

r′ = 000 · · ·00 · · · 01 r′ = 000 · · ·00 · · ·01
+ −−−−−−− + −−−−−−−

000 · · ·10 · · · 00 000 · · ·10 · · ·01

H(r′ + t′) = 1, j < l H(r′ + t′) = 2, j < l

Case 3: No transition

← carry
t′ = 000 · · ·00 t′ = 000 · · ·00
r′ = 000 · · ·01 r′ = 000 · · ·01

+ −−−−− + −−−−−
000 · · ·01 000 · · ·10

H(r′ + t′) = 1 H(r′ + t′) = 1

carry ← carry ← ← carry
t′ = 111 · · ·11 t′ = 111 · · ·11
r′ = 000 · · ·01 r′ = 000 · · ·01

+ −−−−− + −−−−−
000 · · ·00 000 · · ·01

H(r′ + t′) = 0 H(r′ + t′) = 1
From the above cases it is clear that H(r′ + t′) achieves maximum value l for

1 → 0 transition (no carry case). For 0 → 1 transition the maximum value is 2
and when there is no transition it is 1.

Now consider the following complete binary representation of r and t.

l l l

t =
︷ ︸︸ ︷
∗ ∗ · · · ∗ ∗ . . . . . .

︷ ︸︸ ︷
1110 · · ·00 . . . . . .

︷ ︸︸ ︷
∗ ∗ · · · ∗ ∗

r = 0 0 · · · 0 1 . . . . . . 0000 · · ·01 . . . . . . 0 0 · · · 0 1

where * can be either 1 or 0.
First we assume that each segment t′ has at most one run. To get the maxi-

mum possible value of H(r + t2−i) each segment with a 1 → 0 transition must
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contribute l number of 1’s to the sum. Since there are u number of 1 → 0 transi-
tions this adds up to ul number of 1’s. For u number of 1 → 0 transitions there
are at most u segments with 0 → 1 transitions, each contributing a maximum of
2 number of 1’s to the sum, i.e., 2u number of 1’s. All the remaining &n

l ' − 2u
segments with no transitions can contribute at most single 1 to the sum. So
the total contribution is ul + 2u + &n

l ' − 2u = ul + &n
l '. Now consider the first

segment from right to left that contains a 0 → 1 transition (right most segment
with a 0 → 1 transition). For this segment to contribute 2 number of 1’s to
the sum it must receive a carry, otherwise it will contribute a single 1 (see case
2). Since the right most segment never receives a carry, the only way a carry
can be generated between the right most segment and the right most segment
with a 0 → 1 transition is due to the presence of a segment with all 1’s (see all
cases without carry). However this all 1’s segment contributes zero number of
1’s to the sum. Therefore we subtract 1 from ul + &n

l '. Therefore the maximum
possible value of H(r + t2−i) is ul + &n

l ' − 1.
Suppose a segment t′ has more than one runs. Then it must contain a 1 → 0

transition. In our analysis of segments with single runs, we assumed that each
segment with a 1 → 0 transition must contribute l number of 1’s to the sum. As
the size of the segment is l the contribution of a segment with more than one
runs must be less than or equal to the contribution of the segment with one run.
Therefore H(r + t2−i) is upper bounded by ul + &n

l ' − 1 �

Proof of Theorem 1.
The assertion follows directly from Lemma 1, Lemma 2 and Proposition 1. �

Remark 1. The significance of Theorem 1 is two fold. It gives the upper bound
on the AI of f , i.e., ul + &n

l ' − 1 and it also gives the low degree multiplier g
(deg(g) = &n

l '). In Theorem 1 we give only one multiplier however we can get
2m−1 distinct non zero multipliers by taking g(x) = Trm

1 (βxr), where β ∈ F2m .
Note only m of them are linearly independent. Also note that these multipliers
can be computed directly from the formula in Theorem 1 with almost no effort.

Remark 2. From Fact 1 we know that AI of any function is at most &n
2 '. Let

v be the degree of f(x), then, to obtain a meaningful upper bound on AI,
deg(f(x)g(x)) ≤ min

(
v,
⌈

n
2

⌉)
. So we have the following condition on u,

u ≤ min

(
v −

⌈
n
l

⌉
+ 1

l
,

⌈
n
2

⌉
−
⌈

n
l

⌉
+ 1

l

)
. (3)

For many cryptogaphically useful power mappings, u is very small. For exam-
ple, u = 1 for inverse, and u = 2 for Kasami, Gold, Welch and Niho. Therefore
Theorem 1 can give very useful bounds for these mappings. In fact in most cases
using the proof technique of Theorem 1 and exploiting the specific binary form
of each exponent, we can further improve this bound. Since functions with Gold
and Welch exponents have very small degrees (2 and 3 respectively) we will only
consider inverse, Kasami and Niho exponents in this paper.
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4 Inverse Exponent

Inverse mappings x → x−1 in F2n can be decomposed in to n monomial trace
functions of the form Trn

1 (βx−1). The degree of the monomial trace functions
with inverse exponents is n − 1. The inverse exponent consists of a single run
of 1’s. From Theorem 1 its AI is upper bounded by l + &n

l ' − 1. However in
Theorem 2 we show that for inverse function this bound can be improved to
l + &n

l ' − 2.

Lemma 3. Let t = 2n−1 − 1. Then H(r + t2−i) ≤ l + &n
l ' − 2, 0 ≤ i ≤ m − 1

and r is defined as in Theorem 1.

Proof. Consider the binary representation of r and t.

l l l

t =
︷ ︸︸ ︷
01 · · ·11

︷ ︸︸ ︷
11 · · · 11 . . . . . .

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · ·11

r = 00 · · ·01 00 · · · 01 . . . . . . 00 · · ·01 00 · · · 01
+ −−−−−−−−−−−−−−−−

10 · · ·01︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ . . . . . . 00 · · · 01︸ ︷︷ ︸ 00 · · ·00︸ ︷︷ ︸
2 1 1 0

H(r + t) = &n
l '.

We can see that H(r + t2−i) is maximized when i = l − 2

l l l

t2−(l−2) =
︷ ︸︸ ︷
11 · · ·01

︷ ︸︸ ︷
11 · · · 11 . . . . . .

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · ·11

r = 00 · · ·01 00 · · · 01 . . . . . . 00 · · ·01 00 · · ·01
+ −−−−−−−−−−−−−−−−

11 · · ·11︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ . . . . . . 00 · · · 01︸ ︷︷ ︸ 00 · · ·00︸ ︷︷ ︸
l 1 1 0

H(r + t2−(l−2)) = l + &n
l ' − 2.

Therefore H(r + t2−i) ≤ l + &n
l ' − 2, 0 ≤ i ≤ n− 1. �

Theorem 2. Let f(x) = Trn
1 (βx−1) and g(x) = Trm

1 (xr). Then

deg(f(x)g(x)) = l +
⌈n

l

⌉
− 2 (4)

where β, m, r and l are the same as defined in Theorem 1.

Proof. From Lemma 3, t = 2n−1 − 1. Since Trn
1 (x) = Trn

1 (x2), we have

f(x) = Trn
1 (βx−1) = Trn

1 (βx2t) = Trn
1 (β2n−1

xt). (5)

From Lemma 1, r is a coset leader and from Lemma 3, Eqn.( 5 ) and Proposi-
tion 1, deg(f(x)g(x)) ≤ l + &n

l ' − 2. �
This bound on AI is much less than theoretical optimal value &n

2 ' for higher
values of n (see Table 1).
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5 Kasami Exponents

An n variable monomial trace function with Kasami exponent, f(x), can be
defined as f(x) = Trn

1 (βxe), where e = 22s − 2s + 1, gcd(n, s)=1 and 1 ≤
s ≤ n

2 [23]. Note that f(x) is not balanced for all values of n. The algebraic
degree of f(x) is s + 1. We will only consider Kasami exponents that give the
highest algebraic degree. The Kasami exponent consists of 2 runs of 1’s in its
binary representation. From Theorem 1 its AI is upper bounded by 2l+&n

l '−1.
However in Theorem 3 we show that this bound can be improved to l + &n

l '.
Theorem 3. Let f(x) = Trn

1 (βxe), where e is the Kasami exponent that gives
highest algebraic degree, i.e., n+1

2 for n odd, n
2 for n ≡ 0 mod 4 and n

2 − 1 for
n ≡ 2 mod 4. Then

deg(f(x)g(x)) ≤ l +
⌈n

l

⌉
where β, l and g(x) are defined in Theorem 1.

Proof. Let t = e2−s, then

f(x) = Trn
1 (βxe) = Trn

1 (βxt2s

) = Trn
1 (β2n−s

xt), (6)

since Trn
1 (x) = Trn

1 (x2). The assertion follows directly from Lemma 5 (Proof is
given in appendix), Lemma 1, Eqn.( 6) and Proposition 1. �
Remark 3. Though in Theorem 3 bound on AI is proved for Kasami exponent
that gives the highest algebraic degree, it is easy to prove that this bound holds
for any Kasami exponent. The proof is given in [29]. This bound is much lower
than the optimal bound &n

2 ' for large n (see Table 1).

6 Niho Exponent

An n variable monomial trace function with Niho exponent [17, 6], f(x), can be
defined as f(x) = Trn

1 (βxe), where e = 2s + 2
s
2 − 1, n = 2s + 1 when s is even

and e = 2s + 2
3s+1

2 − 1, n = 2s + 1 when s is odd. The degree of Niho function
in n variables is n+3

4 for n ≡ 1 mod 4 and n+1
2 for n ≡ 3 mod 4.

The Niho exponent consists of 2 runs of 1’s in its binary representation. From
Theorem 1 its AI is upper bounded by 2l + &n

l ' − 1. However Theorem 4 show
that this bound can be improved to l + &n

l '. The proof of the theorem is very
similar to the proof of Kasami case, so we provide Theorem 4 without proof
(proof is given in [29]).

Theorem 4. Let f(x) = Trn
1 (βxe), where e is a Niho exponent. Then

deg(f(x)g(x)) ≤ l +
⌈n

l

⌉
where β, l and g(x) are defined in Theorem 1.

Table 1 shows how the upper bound on the AI of monomial trace functions
with Inverse, Kasami and Niho exponents decreases as n increases. Also note
that in [4], AI of inverse function for n = 16 is given as 6 which is confirmed
by our bound. This shows that our bound is tight for n = 16.
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Table 1. AI bounds for Inverse, Kasami and Niho functions

f n deg(f) Bound from Fact 1 (
⌈

n
2

⌉
) Our bound on AI

Inverse 16 15 8 6
36 35 18 10
100 99 50 18

Kasami 16 8 8 8
36 18 18 12
100 50 50 20

Niho 15 8 8 8
35 18 18 12
99 50 50 20

7 Generalization to Polynomial Functions

Any balanced polynomial function f(x) can be represented by Eqn.( 1) which is
reproduced here as

f(x) =
∑

k∈Γ (n)

Trnk
1 (Akxk), Ak ∈ F2nk , x ∈ F2n ,

which is simply a sum of monomial trace functions. If we only consider monomial
trace functions as multipliers the result in Theorem 1 can be generalized to all
balanced polynomial functions. Let uk be the number of runs of 1’s in the binary
representation of k and u = maxk∈Γ (n){uk} such that Ak �= 0. Let g(x) be a
monomial trace function defined in Theorem 1. Then

deg(f(x)g(x)) ≤ ul +
⌈n

l

⌉
− 1.

To obtain a meaningful bound on AI of f , u must satisfy Eqn.( 3). The above
result implies that AI of f is upper bounded by the maximum AI of the single
trace functions in the polynomial representation of f .

8 Conclusions

In this paper we use the theory of polynomial functions to provide an upper
bound on AI of Boolean power functions. The low degree multiples are also
obtained directly from the formula for any n. This is particularly useful as there
are no existing algoritms to find theAI of a function with more than 25 variables.
We improve the AI bound on inverse, Kasami and Niho functions and show that
their AI is very low. We also generalize our results to polynomial functions.
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A Appendix

In order to study the binary representation of e we need the following result.

Lemma 4. Let n > 4 be any integer and f(x) = Trn
1 (βxe), where e = 22s −

2s + 1, gcd(n, s)=1 and s is the highest value less than n
2 . Then

1. If n ≡ 0 mod 4, then gcd(n, s)=1 where s = n
2 − 1

2. If n ≡ 2 mod 4, then gcd(n, s)=1, where s = n
2 − 2

3. If n is odd gcd(n, s)=1, where s = n−1
2

Proof. Let n be even and 2 divides n
2 . Let k > 1 be an integer such that k divides

both n and n
2 − 1. As n

2 is even, n
2 − 1 is odd, and so divisor k must be odd.

Since k divides n, and k is odd, it must also divide n
2 and hence it can not divide

n
2 − 1. Hence the contadiction. So gcd(n, n

2 − 1)=1 and hence s = n
2 − 1.

The proves of the other two cases are similar. �

Lemma 5. Let t = e2−s where e and s are defined in Lemma 4. Then H(r +
t2−i) ≤ l + &n

l ', 0 ≤ i ≤ m− 1 and r is defined in Theorem 1.

Proof. From Lemma 4 the binary representation of t is :

s s

t = 2
n−1

2 + 2
n+1
2 − 1 =

︷ ︸︸ ︷
00 · · ·01 0

︷ ︸︸ ︷
11 · · ·11, n is odd.

s s

t = 2
n
2 −1 + 2

n
2 +1 − 1 =

︷ ︸︸ ︷
00 · · ·01 00

︷ ︸︸ ︷
11 · · ·11, n ≡ 0 mod 4.

s s

t = 2
n
2 −2 + 2

n
2 +2 − 1 =

︷ ︸︸ ︷
00 · · ·01 0000

︷ ︸︸ ︷
11 · · ·11, n ≡ 2 mod 4.
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Let us consider the addition of r and t. We only consider the case where 2 | n
2 .

The other two cases are similar. The binary representation of t has 2 runs of 1’s
out of which one run consists of single 1. This 1 can only contribute a single 1
in any segment of r + t. Now we can see that H(r + t2−i) is maximized when
i = l − 1.

l l l

t2−(l−1) =
︷ ︸︸ ︷
11 · · · 10

︷ ︸︸ ︷
00 · · ·00 . . . . . .

︷ ︸︸ ︷
0 · · · 100

︷ ︸︸ ︷
001 · · ·11 . . . . . .

︷ ︸︸ ︷
11 · · · 11

r = 00 · · · 01 00 · · · 01 . . . . . . 0 · · · 001 000 · · ·01 . . . . . . 00 · · ·01
+ −−−−−−−−−−−− −−−−−−−−−−

11 · · · 11︸ ︷︷ ︸ 00 · · ·01︸ ︷︷ ︸ . . . . . . 0 · · · 101︸ ︷︷ ︸ 010 · · ·01︸ ︷︷ ︸ . . . . . . 00 · · · 00︸ ︷︷ ︸
l 1 2 2 0

H(r + t2−(l−1)) = l + &n
l '.

Therefore H(r + t2−i) ≤ l + &n
l ', 0 ≤ i ≤ n− 1 �
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Abstract. Self-Synchronizing Stream Ciphers (SSSC) are a particu-
lar class of symmetric encryption algorithms, such that the resynchro-
nization is automatic, in case of error during the transmission of the
ciphertext.

In this paper, we extend the scope of chosen-ciphertext attacks against
SSSC. Previous work in this area include the cryptanalysis of dedicated
constructions, like KNOT, HBB or SSS. We go further to break the last
standing dedicated design of SSSC, i.e. the ECRYPT proposal MOS-
QUITO. Our attack costs about 270 computation steps, while a 96-bit
security level was expected. It also applies to ΓΥ (an ancestor of MOS-
QUITO) therefore the only secure remaining SSSC are block-cipher-
based constructions.

1 Introduction

Symmetric encryption algorithms are generally split in two parts : stream ciphers
and block ciphers. On the one hand, stream ciphers manipulate the plaintext by
short packets of data (for instance bit per bit), using a time-dependent
transform. Typically the output of a PRNG (Pseudo-Random Number Gener-
ator) is XORed to the plaintext. On the other hand, block ciphers manipulate
the plaintext by larger packets of data (typically 128 bits for AES [17]) using
a fixed transform.

Self-Synchronizing Stream Ciphers (SSSC) are a special primitive : they are
often considered as a simple subclass of stream ciphers, but there are also some
similarities with block ciphers. Their main property is that, when some error
occurs in the transmission of the ciphertext, the decryption algorithm eventually
corrects it, after a short sequence of incorrectly decrypted bits. Hence a SSSC
achieves the features of an encryption algorithm and resynchronization after
transmission errors in one single primitive. They are suitable in situations where
encryption is needed, but no additional bandwidth is possible for error-correction
(see Maurer’s paper for a nice survey on the use of SSSC [14]). In practice,
few SSSC’s are actually used and it is not clear that such algorithms will be
important in the future [3]. However, from a theoretical point of view, it is a very
challenging subject, because no dedicated SSSC has yet been built, that resists

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 390–404, 2006.
c© International Association for Cryptologic Research 2006
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all known attacks. Some block-cipher-based constructions are possible, but it
would be nice to have a dedicated solution, that is both secure and efficient.

To guarantee the automatic resynchronization, it is a requirement that the
encryption of the i-th bit of the plaintext depends only on the key and a small
part of the previous ciphertext bits. We denote by K the secret key, {Pi}i≥0
the plaintext bits and {Ci}i≥0 the ciphertext bits. Typically, a SSSC is such that :

Ci = Pi ⊕ F (K, Ci−1, . . . , Ci−T )

for some function F and some integer T which is called the memory of the
SSSC. It is clear that such an encryption scheme is invertible. Besides, if an
error occurs in the ciphertext transmission, the decryption algorithm automati-
cally resynchronizes after transmitting T correct ciphertext bits. It is possible to
realize a SSSC with a dedicated design, or with a block cipher in an appropriate
mode, like the Cipher FeedBack (CFB) mode [9].

From a bitwise point of view, SSSC operate as stream ciphers, since every
plaintext bit can be encrypted separately using the time-dependent transform
x −→ x⊕F (K, Ci−1, . . . , Ci−T ). On the other hand, looking at the ciphertext, a
fixed-transform is applied to each T -bit block, which is more similar to a block
cipher. The difference is that a block cipher is an invertible mapping on n-bit
inputs, while the F function is a n-to-1 mapping. ¿From the designer’s point
of view, a dedicated SSSC is often looked at as a special mode of operation
for stream ciphers with ciphertext feedback (see HBB [20] among others), while
cryptanalysis methods are often related to the field of block cipher.

First, we review the usual design methods for SSSC. Secondly, we review
the existing attacks against dedicated SSSC, like KNOT, HBB or SSS. Finally,
we extend the scope of these attacks, in order to break the only standing ded-
icated design, MOSQUITO. The complexity of our attack is 270 steps, while
the expected security level was 96 bits. To summarize, we observe that only
block-cipher-based constructions remain secure in this area.

2 Design Methods for SSSC

Following the terminology introduced previously, all SSSC operate by

Ci = Pi ⊕ F (K, Ci−1, . . . , Ci−T )

The difference between the designs lie in the way F is built and in the value of
T . Figure 1 presents the general description of a SSSC.

2.1 Block-Cipher-Based Constructions

A typical solution is to start from a block cipher EK that operates on n bit
inputs, using a secret key K. Then, one builds a SSSC with memory of n bits
by :

F (K, Ci−1, . . . , Ci−n) = EK(Ci−1, . . . , Ci−n)&1;
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memory of T ciphertext bitsK

F

Plaintext bit

F

Plaintext bit

Kmemory of T ciphertext bits

Ciphertext bit

DECRYPTIONENCRYPTION

Fig. 1. General description of a SSSC

In other terms, E is applied and only the Least Significant Bit (LSB) of the
output is kept. This is called the Cipher FeedBack (CFB) mode, with 1-bit
feedback [9]. More generally, the CFB mode can be extended to t-bit feedback
for any t between 1 and n (see Figure 2), but only the 1-bit version is self-
synchronizing. The CFB mode with 1-bit feedback is very inefficient, as one full
application of E must be processed to encrypt one plaintext bit. However, there
exists more efficient alternatives, like the OCFB mode of operation [1].

There is no generic attack against CFB or OCFB, provided the underlying
block cipher is secure. Preneel et al. pointed out some possible attacks when one
reduces the number of rounds of the block cipher to improve the efficiency of the
CFB mode [18]. Actually, there exists a security proof for the CFB mode with
n-bit feedback, against chosen plaintext attacks [10]. It is also widely believed
that the CFB mode with t-bit feedback is secure for any t, although no generic
security proof has yet been published.

memory of n ciphertext bits

E

block cipher output (n bits)

t bits

memory of n ciphertext bits

E

block cipher output (n bits)

K K

DECRYPTIONENCRYPTION

t ciphertext bitst plaintext bits t plaintext bits

t bits

t bitst bits

Fig. 2. The CFB mode of operation with t-bit feedback
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2.2 Dedicated Constructions

Dedicated constructions of SSSC were first introduced by Maurer [14]. Later,
Daemen et al. reconsidered the design of dedicated SSSC, from a practical per-
spective [5]. They pointed out that it was not very efficient to recompute the
whole function F for each new ciphertext bit introduced. Therefore, they sug-
gested to split the design of the SSSC into two parts :

– An updatable part Q which is generally a register with an internal state
of size m bits. The state of the register at time i, denoted Qi, should depend
on the last T ciphertext bits, and possibly the key :

Qi = G(K, Ci−1, . . . , Ci−T )

Then an update function is specified, in order to compute efficiently Qi+1
from Qi and Ci. The function G is never actually computed in practice,
since the register Q is generally initialized with a m-bit constant, and then
the update function is applied as many times as necessary. Note that the
memory T and the register length m are not necessary equal, however it is
necessary that m ≥ T , in order to store enough information in the register.

– An output filter f which takes the state of the register Qi and computes
the output bit, :

F (K, Ci−1, . . . , Ci−T ) = f(K, Qi)

This filter f often looks like a “light” block cipher.

��

� �

�

�

�

�

�

� �

�

�

� �
� Update

fKfK

Update

K K

Qi−1 Qi

Pi Pi+1Ci Ci+1

. . .. . .

Fig. 3. General Framework of Dedicated SSSC

Figure 3 represents the general framework of such constructions. To guarantee
the self-synchronization, it is necessary that the “old” ciphertext bits are “for-
gotten” after T updates. This constraint is often satisfied using a shift register-
oriented design (this is the case for SSS and for the KNOT-MOSQUITO family).
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Concerning the role of the secret key, at least f or G must use K as input, but it
is rare that both do. Block-cipher-based constructions are the limit case of this
framework, with a very simple (unkeyed) shift register as the updatable part, and
a complicated (keyed) block cipher as the output filter. Dedicated constructions
try to reach a better trade-off with a more complicated (non-linear) updatable
part, but a lighter output filter.

2.3 The KNOT-MOSQUITO Family

An interesting family of dedicated SSSC is the “KNOT-MOSQUITO family”.
KNOT was first proposed as an example of efficient dedicated design by Daemen
et al. in their paper of 1992 that dealt with SSSC in a more general perspec-
tive [5]. In 1995, Daemen discovered a statistical imbalance in the output of
KNOT [4], which was further investigated later [12]. This weakness of the out-
put filter motivated a switch to a tweaked version of KNOT called ΓΥ which
was proposed in Daemen’s PhD thesis [4].

In 2003, a new weakness of KNOT was pointed out by Joux and Muller, which
allows to recover the secret key with complexity of 262 steps [12]. Their idea
is to apply methods from differential cryptanalysis in order to detect internal
collisions in the updatable register. This attack does not apply against ΓΥ .
Recently, as part of the eSTREAM competition for stream ciphers [8] launched
by the European project ECRYPT, Daemen and Kitsos proposed a new self-
synchronizing stream cipher called MOSQUITO [6]. It is a close variant of ΓΥ
which was designed to avoid the security problems of KNOT.

All algorithms in this family follow the framework introduced in Section 2.2,
with a memory of T = 96 bits and an updatable register Q of size m = 128 bits,
which is non-linear and key-dependent. The type of register used in this fam-
ily are also called Conditional Complementing Shift Registers (CCSR).
See [5] or [6] for more details. The output filter is an unkeyed iterative construc-
tion, which gradually reduces the state from 128 bits to 1 bit, after 8 rounds1.
The difference between the 3 algorithms in this family (KNOT, ΓΥ and MOS-
QUITO) lies in the way Q is updated, and in the details of the 8 rounds of the
filter. All algorithms in the family are designed to use of a 96-bit secret key.

To summarize, the KNOT-MOSQUITO family is an interesting family of ded-
icated SSSC, since it is not a “tweaked” mode of operation of a stream cipher,
like SSS or HBB. Therefore, it is very interesting from a research perspective.
However, all the algorithms of the family are subject to differential attacks, as
pointed out in Section 4.

2.4 SSS

SSS (Self-Synchronizing Sober) is a new dedicated SSSC, submitted to the eS-
TREAM competition [19] by Rose et al. It belongs to the SOBER family of

1 The authors mention 7 rounds, but it depends on whether the final XOR is counted
as an 8-th round or not.
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stream ciphers [11]. This family uses Linear Feedback Shift Registers (LFSR)
operating in GF(2n) with n = 8, 16 or 32. An output filter is applied to some
cells from the LFSR, in order to extract a pseudo-random output. This generally
relies on n-bit instructions as well, in order to obtain a software-efficient design.
Additional functionalities (like authenticated encryption or self-synchronization)
have been suggested in tweaked versions of the SOBER family. The general idea
is to add an auxiliary input in the LFSR to introduce either the plaintext (for
the integrity mode) or the ciphertext (for the self-synchronizing mode).

While few cryptanalysis results are known against the algorithms from the
SOBER family in encryption mode, it is well known that tweaking a stream
cipher in order to add integrity or self-synchronization completely modifies the
cryptanalysis scenario [16]. Indeed, an attacker potentially gains the ability to
control the content of the LFSR. A devastating attack against the integrity mode
of SOBER-128 was described in 2004 by Watanabe et al. [24].

SSS was also broken by Daemen, Lano and Preneel, shortly after its publi-
cation [7]. They described a chosen ciphertext attack which allows to retrieve
a key-dependent secret table. According to the designers of SSS, such attacks
fall outside the threat model, but Daemen et al. argued that chosen ciphertext
attacks are practical and that they are the standard way to evaluate SSSC.

2.5 HBB

HBB (Hiji-bij-bij) is a software-oriented stream cipher, proposed in 2003 by
Sarkar [20]. It is a new construction, where the usual LFSRs have been replaced
by cellular automata. In addition, an output filter operating on a 128-bit output
is used. This filter has some similarities with a block cipher design (use of S-
boxes and linear diffusion layers). The Basic (B) mode of operation of HBB is
a traditional stream cipher, for which some attacks faster than brute-force have
been published in 2005 [13,15].

In addition, a Self-Synchronizing (SS) mode of operation for HBB was also
proposed by Sarkar. It is based on a slight modification of the cipher, where
the cellular automata is filled with ciphertext bits, instead of being evaluating
autonomously. While the primitives are unchanged, this modification completely
changes the cryptanalysis scenario. Joux and Muller showed a devastating key-
recovery attack against this SS mode, which requires only 212 bits of chosen
ciphertext [13]. Basically, they exploited the weak differential properties of the
output filter.

2.6 Other Proposals

Another proposition of dedicated SSSC was made by Arnault and Berger [2],
as part of their work on Feedback with Carry Shift Registers (FCSR). Their
proposal was later broken [25] using a chosen ciphertext attack.

Like for SSS and HBB, it appears that building a SSSC by tweaking a con-
ventional stream cipher is not a good idea. Many devastating attacks have been
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published : as soon as one considers chosen ciphertext attacks, the cryptanalyst
no longer looks at the SSSC as a stream cipher, but instead he analyzes the G
function directly (see Section 2.2). The properties of G can be considered under
chosen input attacks : either differential properties are used (case of HBB or
KNOT) or the possibility to guess and identify individually some portions of the
key (case of SSS).

3 The Cryptanalysis Framework Against SSSC

3.1 Chosen Ciphertext Attacks Against SSSC

We first observe that the “natural way” to cryptanalyze a SSSC is by considering
chosen ciphertext attacks. This is natural from a theoretical point of view, but
also from a practical point of view, as already pointed out by Daemen et al. [7].

Theoretically, we are comparing dedicated SSSC with block ciphers in CFB
mode. Block ciphers are built to resist both chosen plaintext and chosen cipher-
text attacks, so it would be unfair to compare two algorithms that do not take
into account the same attack scenarios. In addition, the existence of chosen ci-
phertext attacks generally reveals design weaknesses that could later be extend
to much more realistic scenarios.

Moreover, there are still some scenarios where an attacker could have access
to a decryption oracle. This is not necessarily much more difficult than accessing
an encryption oracle. For instance, one could consider an active attacker that
modifies the communication channel (in order to obtain the ciphertext he wants)
and then observes the result of the decryption.

3.2 Chosen Plaintext Attacks Against SSSC

In some attack scenarios against SSSC, chosen ciphertext attacks can even be
turned into chosen plaintext attacks. Assume that the attacker needs to obtain
a chosen ciphertext sequence equal to (C1, . . . , Ci) in order to attack a SSSC.
He can achieve it with chosen plaintext only, assuming an adaptive chosen
plaintext attack.

In such a scenario, we assume that the attacker can reset the encryption
algorithm to its initial state, at any point2. Then, he tries both value of the
bit P1 and resets the algorithm if the value of C1 is not what he wants. Then,
the process is repeated as long as necessary. On average, this requires about i/2
resets, where i is the length of the needed ciphertext sequence, (C1, . . . , Ci).

This gives an example of a classical scenario, where there exists a bridge
between chosen plaintext and chosen ciphertext attacks against SSSC. In the
following, we focus on chosen ciphertext attacks.

2 If he has access to several copies of the algorithm using the same key, a similar
attack applies. The idea is to throw away a copy of the algorithm and use a new
copy, instead of doing the reset.
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4 Differential Attacks Against MOSQUITO

4.1 A Short Overview of the Design

Describing in details the MOSQUITO stream cipher is a long task, since a large
number of equations should be stated. We invite the reader to check the details
in the original specification [6]. Here, we only give a short overview of the design.

The register Q
As mentioned in Section 2.3, MOSQUITO uses a non-linear shift register as

the updatable part : Q has a length of 128 bits. Its content is noted in the later
as (x1, . . . , x128). At time i, the content of Q is updated by introducing the i-th
ciphertext bit, and also the secret key. More precisely, each bit xj is updated
by applying a simple boolean function hj : {0, 1}4 −→ {0, 1}, whose inputs are
chosen among (x1, . . . , xj−1), the key bits, and the introduced ciphertext bit.

One can observe that the propagation goes always in the direction of increasing
indexes. This guarantess that the influence of “old” ciphertext bits eventually
vanishes, which makes the resynchronization possible.

Actually, one could also express directly the content of register Q at time i
has a function of the last 96 ciphertext bits and the key. However, this would
lead to a very complicated expression. It is much clearer to describe Q by the
update equations (i.e. the hj). See [6] for the expression of all these equations.

The output filter f
After the update of register Q, the (i + 1)-th ciphertext bit is obtained by

XORing the (i + 1)-th plaintext bit to the output of the filter f . This filter is a
fixed, unkeyed transform applied to the state of the register Q. Therefore it is a
boolean function from 128 bits to 1 bits.

In order to be computed efficiently, f can be written as the composition of
8 simple transforms (also called rounds) applied to internal states of decreasing
size. For instance, the first round, noted ϕ1, is applied to the content of Q (i.e.
128 bits), but its output size is only 53 bits. Therefore ϕ1 is a transform from
{0, 1}128 to {0, 1}53. After the 8 rounds, the final output is simply one bit. Like
for the update of the register Q, each round can be represented by a small set
of boolean functions from 4 bits to 1 bit. The reader should refer to [6] for the
expression of all these equations.

4.2 Overview of the New Attack

Our attack is similar to a differential cryptanalysis of a block cipher : we find
differential characteristics for both parts of the cipher3 :

– First, we find a differential characteristic for the output filter f . In the case
of MOSQUITO, f is an unkeyed 8-round transform. We are looking for a
128-bit difference Δ such that

3 Regarding the mathematical tools, there are also relations with linear cryptanalysis
since we are interested in small statistical deviations called bias, as it will appear
later.
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f(Qi ⊕ Δ) ⊕ f(Qi)

is equal to 0 with probability p = 0.5·(1+ε) and |ε| as large as possible. In the
case of KNOT, Joux and Muller [12] exploited Δ = 0 which implied that ε =
1. Such collisions on Q could be obtained from two distinct ciphertexts (i.e.
the function G was not injective). In the newer algorithms of the family (ΓΥ
and MOSQUITO), this attack has been countered by making G injective.
Therefore, the difference Δ = 0 is not reachable, unless the ciphertexts are
equal. We extend the scope of Joux-Muller’s attack to non-zero
differences.

– Secondly, we describe how to build two ciphertexts such that the two values
of the state Qi differ exactly by the previous difference Δ. This step will
require to guess some portion of the key. We consider ε−2 such pairs, in
order to detect an imbalance on the outputs of the filter f .

4.3 Differential Characteristic for f

The filter f of MOSQUITO looks like a block cipher with 8 simple rounds,
applied successively. Our analysis focuses on the differential properties of the
first round transform, ϕ1. Since its output size is smaller than its input size, it
is not injective. Hence, we can expect to find an input difference Δ, such that,
after the first round

ϕ1(x) = ϕ1(x ⊕ Δ)

with good probability. If such a collision occurs after applying ϕ1, this will
imply the equality of the outputs of f , since no new input is introduced in the
7 following rounds. As mentioned previously, each output bit of ϕ1 is computed
using a simple boolean function, written as :

τ : (a, b, c, d) −→ a ⊕ b ⊕ c · (d ⊕ 1) ⊕ 1

applied to 4 among the input bits of ϕ1, noted x = (x1, . . . , x128). Since 4 ·
53 = 212 < 2 · 128 = 256, we know that at least 256 − 212 = 44 input bits
are processed only once by the function τ . A quick analysis shows that this
observation concerns :

(x1, . . . x17), (x54, . . . , x60), (x71, . . . , x75), (x114, . . . , x128)

which are all used only once in ϕ1. Some of them are only used as 3-rd or 4-
th input bit of τ , so if we flip them, the output of τ may be unchanged. This
observation concerns the set of bits :

S = {x1, . . . x17, x71, . . . , x75}

If we flip exactly one bit in this set S, the output of ϕ1 is unchanged with proba-
bility 0.5. Consequently, the output of f is also unchanged with probability 0.75
(even when ϕ1 is changed, the output bit can still be the same with probability
0.5). Hence, we found differential characteristics on F with bias ε = 0.5
and such that the input difference is non-zero.
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4.4 Advanced Differences

An advanced method consists in flipping two well-chosen input bits of ϕ1. As an
example, consider the output bit number 29 and 33 of ϕ1. They can be computed
by

x81 ⊕ x65 ⊕ x66 · (x48 ⊕ 1) ⊕ 1
x80 ⊕ x66 ⊕ x65 · (x49 ⊕ 1) ⊕ 1

The bits x65 and x66 are used nowhere else in ϕ1. If an attacker flips these two
bits simultaneously, there is a probability 0.25 that the output of ϕ1 is unaffected
(the condition is that x48 = x49 = 0). Hence the outputs of F are equal with
probability 0.625, and we have a differential characteristic, with bias ε = 0.25
and such that the input difference is still non-zero (only the bits x65 and x66
are flipped). There exists other strategies to flip 2 or more bits, while keeping a
reasonable bias. However, the difference we have just described will turn out to
be the most useful.

4.5 Analysis of the Updatable Part

Our goal is now to build two ciphertexts sequences that map to two register states
Qi and Q′

i such that Δ = Qi ⊕ Q′
i is one of the “useful” differences identified in

the previous section. We may need to repeat this process ε−2 times in order to
actually observe the predicted bias. Finding 2 appropriate ciphertext sequences
can be done using an exhaustive search on an appropriate portion of the
key.

4.6 Using the Difference on x17 Only

We first describe an attack that targets the difference Δ17, which is defined as
difference equal 0 on every input bit of f , except x17. At first glance, one could
envisage to work with the difference Δ1 which has the same differential behavior
regarding f , however, the resulting complexity of the attack would be worse, as
it will appear below.

We focus on the updatable register, to obtain register states that differ from
Δ17 The state at time i is expressed as :

Qi = G(K, Ci−1, . . . , Ci−96)

We denote the key bits by K = (k1, . . . , k96). The crucial observation, that we
refer to as observation O is that, for 1 ≤ t ≤ 88, the value of bit xt at time i
depends only on the key bits k1, . . . , kt and the ciphertext bits Ci−1, . . . , Ci−t.

The basic idea of our attack is to guess only the 79 least significant
bits of the key. This guess splits the register Q into a left part for which we
always know the internal values (thanks to observation O) and a right part which
generally remains unknown.

At any time, we can control the differential behavior on the left part.
The only way we can have information about the right part is by letting the
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“natural” propagation from left to right in Q bring a zero-difference on the right
part (resynchronization effect). We combine these ideas in the following. More
precisely, our attack proceeds in three steps, represented in Figure 4 :

.  .  . .  .  .
0 1 16 17 79 12880

Difference
Input

.  .  . .  .  .0 0 0 01 ? ?
Intermediate
Difference

.  .  . .  .  .0 0 0
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Final

(bit 17 only)

0 1 0 0

unknown
difference
(maybe non−zero)

difference
"controled"

? ? ? ? ? ? ?

0

0

?
18

.  .  .

.  .  .

.  .  .

Chosen Ciphertext

16 clockings

difference
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Fig. 4. The attack against MOSQUITO using Δ17

– First, we guess the key bits k1, . . . , k79. Because of the observation O, we can
easily determine the value of V = (x1, . . . , x79) for any introduced ciphertext.

– Secondly, we pick at random two ciphertext sequences that yield the same
V , except that the bit x1 is flipped. This step is easy to achieve in practice :
start from an arbitrary ciphertext sequence and compute the corresponding
value of V . Then, flip bit x1 and clock 79 times backward the register Q
(see Figure 3). So we find which ciphertext sequence should be introduced
in order to reach this modified state.

– Introduce 16 additional ciphertext bits and clock 16 times the register. The
difference will always propagate from position 1 to position 17 during these 16
clockings. But, observation O guarantees that there is no difference afterward
on bits x1, . . . , x16. Moreover, we can control the difference during these
16 extra clockings, in order for the difference not to propagate further than
position 17.

There are 2 ways to “control” the difference during these 16 extra clockings.
The first method consists in specifying a differential path and writing down
the boolean equations for this propagation to be satisfied. Here, about 20 such
conditions are needed, which remains reasonable in practice. A second method is
to test random ciphertexts, until a “good” one is found. Two tricks make this idea
quite efficient : First, we use “early-abort” in order to quickly eliminate the “bad”
candidates. Secondly, we observe that this propagation is almost independent on
our guess of key bits, k18, . . . , k79, so we can tell if a ciphertext is good or not,
before guessing the whole key.

Both methods have been tested on a standard PC and are very efficient.
The bottleneck of this attack is the 2-nd step, where we need to repeat 279 the
execution of 79 clockings of Q. For comparison, the basic step in an exhaustive
search requires 96 clockings of Q. Overall, we need at least ε−2 = 4 such plaintext
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pairs, in order to detect the predicted bias. So we estimate the complexity to
about 281 steps (compared to 296 for an exhaustive search).

4.7 Using the Difference on x65 and x66

The idea of this attack is essentially the same as the previous one, except that
we guess only 66 key bits. Therefore, we can predict only the state of bit number
1 to 66 of the state Qi. Then, we use 64 extra clockings and we hope to control
the difference, during these advances in order to obtain finally a difference on
cells number 65 and 66 only.

The approach based on specifying a differential path and writing the corre-
sponding boolean conditions seems very painful. Therefore, we adopted a purely
statistical approach : we tested random ciphertext sequences and used “early-
abort” : as soon as the difference starts to spread to several bits, we discard the
tested value.

Our implementation is very efficient and, for a given key guess, finds instantly
two satisfying ciphertext sequences, i.e. such that the final difference is only
located on the bits 65 and 66 of the state of Q. This needs to be repeated about
ε−2 times, so the complexity of our attack is about

266 × 42 = 270

steps, compared to 296 steps for an exhaustive search.

4.8 Some Comments

There are several interesting comments to make about these two attacks. First
the specific tricks needed to control the difference by specifying some set of
sufficient boolean conditions are related to the techniques developed against
hash functions like MD5 or SHA-1 by Wang et al. [21,22,23]. There could be
further improvements to the cryptanalysis of the KNOT-MOSQUITO family,
by looking in that area of research.

Secondly, our attacks also applies against ΓΥ , since the underlying primitives
(register Q and filter f) are the same. Concerning KNOT, there are slight dif-
ferences in the primitives, but a similar attack should also apply. However the
result by Joux and Muller, exploiting internal collisions for Qi are slightly more
efficient [12]. Actually, our attack can be viewed a generalization of this previous
result.

We used 4 pairs of ciphertext sequences in Section 4.6 and 8 pairs of cipher-
texts in Section 4.7. These are optimistic figures. It is well known that a small
security margin is generally needed above ε−2 to actually detect a bias ε, with
a small false alarm probability. It is not necessary that this probability is 2−96

here. Indeed, we have already guessed a large portion of the key, so 20 or 30
ciphertext pairs should probably be sufficient. Application of statistical tools is
needed to evaluate exactly how many ciphertexts are needed.

Finally, an important point is that the data complexity of our attacks is
very limited since we build the ciphertext sequences in an off-line computation
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Table 1. Summary of cryptanalysis results against some SSSC

Type of Attack Target Complexity Data

Distinguisher [4] KNOT 218 218

Key Recovery [12] KNOT 269 236.6

Key Recovery [12] KNOT 262 238.6

Key Recovery [7] SSS 10 seconds 10 kBytes

Key Recovery [13] HBB 212 212

Key Recovery (this paper) MOSQUITO 281 210

Key Recovery (this paper) MOSQUITO 270 211

Exhaustive Search MOSQUITO 296 96 bits

(described in Section 4.6 and Section 4.7). The data complexity is roughly of
4 × 96 × 2 � 210 ciphertext bits in the first attack and 8 × 96 × 2 � 211 for the
second attack.

5 Conclusion

All the dedicated Self-Synchronizing Stream Ciphers (SSSC) of the KNOT-
MOSQUITO family are subject to differential chosen ciphertext attacks. Our
results, combined with previous results on HBB, KNOT and SSS show that it is
extremely difficult to design a SSSC resistant against chosen-ciphertext attacks.

Some designers argued [19] that chosen ciphertext attacks should fall outside
the security model for SSSC. However, they are taken into account in block
cipher-based constructions, and could be more realistic than expected. Even the
authors of MOSQUITO [6] stressed out that dedicated SSSC should resist chosen
ciphertext attacks.

Since no dedicated SSSC still stands, we believe that block-cipher-based con-
structions should now be favored if one needs a self-synchronizing algorithm, for
practical purpose. An interesting direction would also be to see how much one
can “lighten” an existing block cipher (AES for instance), in order to obtain a
SSSC faster than the CFB (or OCFB) mode [1,9].
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Abstract. The stream cipher Py designed by Biham and Seberry is
a submission to the ECRYPT stream cipher competition. The cipher
is based on two large arrays (one is 256 bytes and the other is 1040
bytes) and it is designed for high speed software applications (Py is more
than 2.5 times faster than the RC4 on Pentium III). The paper shows a
statistical bias in the distribution of its output-words at the 1st and 3rd
rounds. Exploiting this weakness, a distinguisher with advantage greater
than 50% is constructed that requires 284.7 randomly chosen key/IV’s
and the first 24 output bytes for each key. The running time and the
data required by the distinguisher are tini · 284.7 and 289.2 respectively
(tini denotes the running time of the key/IV setup). We further show
that the data requirement can be reduced by a factor of about 3 with
a distinguisher that considers outputs of later rounds. In such case the
running time is reduced to tr ·284.7 (tr denotes the time for a single round
of Py). The Py specification allows a 256-bit key and a keystream of 264

bytes per key/IV. As an ideally secure stream cipher with the above
specifications should be able to resist the attacks described before, our
results constitute an academic break of Py. In addition we have identified
several biases among pairs of bits; it seems possible to combine all the
biases to build more efficient distinguishers.

1 Introduction

The cipher Py, designed by Biham and Seberry [3], was submitted to the
ECRYPT project [7] as a candidate for Profile 1 which covers software based
stream ciphers suitable for high-speed applications. In the last couple of years
a growing interest has been noticed among cryptographers to design fast and
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secure stream ciphers because of weaknesses being found in many de facto stan-
dards such as RC4 and also due to the failure of the NESSIE project [12] to find
a stream cipher that met its very stringent security requirements. The current
stream cipher, namely Py, is one of the attempts in this direction.

Py is the most recent addition to the class of stream ciphers whose design
principles are motivated by that of RC4 (see [9,10,13,14,15]). Like RC4, Py also
uses the technique of random shuffle to update the internal state. In addition,
Py uses a new technique of rotating all array elements in every round with a
minimal running time. The high performance (it is 2.5 times faster than the RC4
on Pentium III) and its apparent security make this cipher very attractive for
selection to the Profile 1 of the ECRYPT project.

This paper identifies several biased pairs of output bits of Py at rounds t and
t + 2 (where t > 0). The weaknesses originate from the non-uniformity of the
distributions of carry bits in modular addition used in Py. Using those biases, we
have constructed a class of distinguishers. We show that the best of them works
successfully with 284.7 randomly chosen key/IV’s, the first 24 bytes for each key
(i.e., a total of 289.2 bytes) and running time tini · 284.7 where tini is the running
time of the key/IV setup of Py. We also show that a simple adjustment to the
above distinguisher reduces the number of key/IV’s, the data complexity and
the running time to 228.7, a total of 287.7 bytes and tr · 284.7 respectively, where
tr is the running time of a single round of Py. Note that the allowable key-size
and keystream length of Py are 256 bits and 264 bytes respectively. Therefore,
these results imply that – even if our attack has a larger total complexity – Py
fails to provide the security level expected from an ideal stream cipher with the
parameter sizes of Py. Therefore, we believe that our results present a theoretical
break of the cipher; see Sect. 9 for an elaborate discussion on this issue. It is
important to note that the weaknesses of Py which are described in this paper,
still cannot be implemented in practice in view of the its high time complexity.
However, the individual distinguishers open the possibility to combine them in
order to generate more efficient distinguishers.

2 Description of Py

Py is a synchronous stream cipher which normally uses a 32-byte key (however,
the key can be of any size from 1 byte to 256 bytes) and a 16-byte initial value or
IV (IV can also be of any size from 1 byte to 64 bytes). The allowable keystream
length per key/IV is 264 bytes. Py works in three phases – a key setup algorithm,
an IV setup algorithm and a round function which generates two output-words
(each output-word is 4 bytes long). The internal state of Py contains two S-boxes
Y , P and a variable s. Y contains 260 elements each of which is 32 bits long. The
elements of Y are indexed by [-3, -2,..., 256]. P is a permutation of the elements
of {0, ..., 255}. The main feature of the stream cipher Py is that the S-boxes are
updated like ‘rolling arrays’ [3]. The technique of ‘rolling arrays’ means that, in
each round of Py, (i) one or two elements of the S-boxes are updated (line 1 and
7 of Algorithm 1) and (ii) all the elements are cyclically rotated by one position



Distinguishing Attacks on the Stream Cipher Py 407

toward the left (line 2 and 8 of Algorithm 1). In our analysis, we have assumed
that, after the key/IV setup, Y , P and the variable s are uniformly distributed
and independent. Under this assumption we analyzed the round function of Py
(or Pseudorandom Bit Generation Algorithm) which is described in Algorithm 1.
See [3] for a detailed description of the key/IV setup algorithms.

The inputs to Algorithm 1 are Y [−3, ..., 256], P [0, ..., 255] and s, which are
obtained after the key/IV setup. Lines 1 and 2 describe how P is updated and
rotated. In the update stage, the 0th element of P is swapped with another
element in P , which is accessed indirectly, using Y [185]. The next step involves
a cyclic rotation by one position, of the elements in P . This implies that the
entry in P [0] becomes the entry in P [255] in the next round and the entry in P [i]
becomes the entry in P [i − 1] (∀i ∈ {1, 2, ..., 255}). Lines 3 and 4 of Algorithm 1
indicate how s is updated and its elements rotated. Here, the ‘ROTL32(s, x)’
function implies a cyclic left rotation of s by x bit-positions. The output-words
(each 32-bit) are generated in lines 5 and 6. The last two lines of the algorithm
explain the update and rotation of the elements of Y . The rotation of Y is carried
in the same manner as the rotation of P .

Algorithm 1. Single Round of Py
Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s
Ensure: 64-bit random output

/*Update and rotate P*/
1: swap (P [0], P [Y [185]&255]);
2: rotate (P );

/* Update s*/
3: s+ = Y [P [72]] − Y [P [239]];
4: s = ROTL32(s, ((P [116] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25) ⊕ Y [256]) + Y [P [26]]);
6: output (( s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [153]];
8: rotate(Y );

2.1 Notation and Convention

As Py uses different types of internal and external states (e.g. integer arrays, 32-
bit integer) and they are updated every round, it is important to denote all the
states and rounds in a simple but consistent way. In every round of Py, the S-box
P and the variable s are updated before the output generation (see Algorithm 1).
The other S-box, namely Y , is updated after the output generation.

1. In the beginning of any round i, the components of the internal state are
denoted by Pi−1, si−1 but Yi.

2. At the end of any round i, the internal state is updated to Pi, si and Yi+1.
(If the above two conventions are followed, we have Pi, si and Yi in the
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formulas for the generation of the output-words in round i (line 5 and 6 of
Algorithm 1)).

3. The nth element of the arrays Yi and Pi, are denoted by Yi[n] and Pi[n]
respectively. The jth bit of Yi[n], Pi[n] and si are denoted by Yi[n](j), Pi[n](j)
and si(j) respectively (following the convention that the least significant bit
is the 0th bit).

4. The output-words generated in line 5 and line 6 of Algorithm 1 are referred
to as the ‘1st output-word’ and the ‘2nd output-word’ respectively.

5. Ol,m denotes the lth (l ∈ {1, 2}) output-word generated in the mth round
of Py. Ol,m(j) denotes the jth bit of Ol,m. For example, O1,3(5) denotes the
5th bit of the 1st output-word in round 3.

6. The ‘+’ operator denotes addition modulo 232 except when it is used to
increment elements of P (particularly in expressions of the form Pi[n] =
Pj [m] + 1, where ‘+’ denotes addition over Z). Similarly, ‘-’ and ‘⊕’ denote
subtraction modulo 232 and bitwise exclusive-or.

7. P [A] denotes the probability of occurrence of the event A.
8. [a, b] denotes the set of all integers between a and b including both.
9. A Pseudorandom Bit Generator will be denoted by PRBG.

2.2 Assumption

We assume that the key setup and the IV setup algorithms of Py are perfect, i.e.,
after the execution of them, the permutation P , the elements of Y and the s are
uniformly distributed and independent. When we are interested in the analysis
of the mixing of bits of the internal state by the PRBG, the above assumption is
reasonable, particularly when it is difficult to derive any relation between inputs
and outputs of the key/IV setup algorithm. Apart from that the assumption is
in agreement with a claim made in Sect. 6.4 of [3] that the key/IV setup leaks
no statistical information on the internal state.

3 Motivational Observation

Our main observation is that, if certain conditions on the elements of the S-box
P are satisfied then the least significant bit (lsb) of the 1st output-word at the
1st round is equal to the lsb of the 2nd output-word at the 3rd round.

Theorem 1. O1,1(0) = O2,3(0) if the following six conditions on the elements of
the S-box P are simultaneously satisfied.

1. P2[116] ≡ −18(mod 32) (event A),
2. P3[116] ≡ 7(mod 32) (event B),
3. P2[72] = P3[239] + 1 (event C),
4. P2[239] = P3[72] + 1 (event D),
5. P1[26] = 1 (event E),
6. P3[208] = 254 (event F ).
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G

−1 0 1 254 256 255

−1 0 1 254  255 256
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(a) The S−box Y after Key/IV Set up

(b) Y after the first round

(c) Y after the second round

O11

O23
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H

Fig. 1. (a) P1[26] = 1 (condition 5): G and H are used in O1,1, (b) Y2 (i.e., Y after the
1st round), (c) P3[208] = 254 (condition 6): G and H are used in O2,3

Proof. The formulas for the O1,1, O2,3 and s2 are given below (see Sect. 2):

O1,1 = (ROTL32(s1, 25) ⊕ Y1[256]) + Y1[P1[26]] , (1)
O2,3 = (s3 ⊕ Y3[−1]) + Y3[P3[208]] , (2)

s2 = ROTL32(s1 + Y2[P2[72]] − Y2[P2[239]], ((P2[116] + 18) mod 32)) . (3)

• Condition 1 (i.e., P2[116] ≡ −18(mod 32)) reduces (3) to

s2 = s1 + Y2[P2[72]] − Y2[P2[239]] .

• Condition 2 (i.e., P3[116] ≡ 7(mod 32)) together with Condition 1 implies

s3 = ROTL32((s1 + Y2[P2[72]] − Y2[P2[239]] + Y3[P3[72]] − Y3[P3[239]]), 25) .

• Condition 3 and 4 (that is, P2[72] = P3[239] + 1 and P2[239] = P3[72] + 1)
reduce the previous equation to

s3 = ROTL32(s1, 25) . (4)

From (1), (2), (4) we get:

O1,1 = (ROTL32(s1, 25) ⊕ Y1[256]) + Y1[P1[26]] , (5)
O2,3 = (ROTL32(s1, 25) ⊕ Y3[−1]) + Y3[P3[208]] . (6)

In Fig. 1, conditions 5 and 6 are described. According to the figure,

H = Y1[P1[26]] = Y3[−1] , (7)
G = Y1[256] = Y3[P3[208]] . (8)

Applying (7) and (8) in (5) and (6) we get,

O1,1(0) ⊕ O2,3(0) = Y1[256](0) ⊕ Y1[P1[26]](0) ⊕ Y3[−1](0) ⊕ Y3[P3[208]](0) = 0 .

This completes the proof. 	
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4 Bias in the Distribution of the 1st and the 3rd Outputs

In this section, we shall compute P [O1,1(0) ⊕ O2,3(0) = 0] using the results of
Sect. 3. We now recall the six events (or conditions) A, B, C, D, E, F as described
in Theorem 1. First, we shall compute P [A ∩ B ∩ C ∩ D ∩ E ∩ F ]. The elements
involved in the calculation of the probability are P1[26], P2[72], P2[116], P2[239],
P3[72], P3[116], P3[208], and P3[239]. Now we observe that Algorithm 1 ensures
that all the above elements occupy unique indices in round 1. We calculate the
probabilities step by step using Bayes’ rule under the assumption described in
Sect. 2.2.

1. P [E] = 1
256 ,

2. P [E ∩ F ] = P [F |E] · P [E] = 1
255 · 1

256 ,

3. P [A ∩ E ∩ F ] = P [A|E ∩ F ] · P [E ∩ F ] = 8
254 · 1

255 · 1
256 ,

4. P [A ∩ B ∩ E ∩ F ] = P [B|A ∩ E ∩ F ] · P [A ∩ E ∩ F ] = 8
253 · 8

254 · 1
255 · 1

256 ,

5. Similarly, P [A ∩ B ∩ C ∩ E ∩ F ] = 247
251·252 · 8

253 · 8
254 · 1

255 · 1
256 ,

6. P [A ∩ B ∩ C ∩ D ∩ E ∩ F ] ≈ 244
249·250 · 247

251·252 · 8
253 · 8

254 · 1
255 · 1

256 ≈ 2−41.9 .

Under the assumption of randomness and uniformity of the distributions of the
S-box elements and of s after the key/IV setup, if any of the six events – described
in Theorem 1 – does not occur then P [O1,1(0)⊕O2,3(0) = 0] = 1

2 (see Appendix A
for a justification for that). That is,

P [O1,1(0) ⊕ O2,3(0) = 0|(A ∩ B ∩ C ∩ D ∩ E ∩ F )c] =
1
2

.

We denote the event A ∩ B ∩ C ∩ D ∩ E ∩ F by L and its complement by Lc.
Therefore,

P [O1,1(0) ⊕ O2,3(0) = 0] = P [O1,1(0) ⊕ O2,3(0) = 0|L] · P [L]
+ P [O1,1(0) ⊕ O2,3(0) = 0|Lc] · P [Lc]

= 1 · 2−41.91 +
1
2

· (1 − 2−41.91)

=
1
2

· (1 + 2−41.91) . (9)

Note that, if Py had been an ideal PRBG then the above probability would have
been exactly 1

2 .

5 The Distinguisher

A distinguisher is an algorithm which distinguishes a stream of bits from a per-
fectly random stream of bits, that is, a stream of bits that has been chosen
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according to the uniform distribution. There are several ways a cryptanalyst
may try to distinguish between a string, generated by an insecure pseudoran-
dom bit generator, and one from a perfectly random source. In one case, she
selects a single key/IV randomly and produce keystream, seeded by the chosen
key/IV, long enough to distinguish it from random with high success probability.
This attack scenario is rather common and such distinguisher is called a regu-
lar distinguisher. In a different scenario, to build a distinguisher, the adversary
may use many randomly chosen key/IV’s rather than a single key and a few
specified bytes from each of the keystreams generated by those key/IV’s. The
distinguisher, so constructed, is called a prefix distinguisher. A bias present in
the output at time t in a single stream may hardly be detected by a regular
distinguisher but a prefix distinguisher can easily discover the anomaly with a
few bytes. This fact was nicely demonstrated by Mantin and Shamir [11] to de-
tect a strong bias toward zero in the second output byte of RC4. In addition to
that, there exist hybrid distinguishers that may fall between the above two ex-
treme cases, that is, the adversary may use many key/IV’s and for each key/IV
she collects long keystream. The idea of constructing distinguishers using many
randomly chosen key/IV’s has been a well studied subject. Goldreich has shown
that a distribution which is computationally indistinguishable from the uniform
distribution based on a single sample is also computationally indistinguishable
from the uniform distribution based on multiple samples [8].

The distinguishers that we construct in this section and Sect. 6, using the
bias described in Sect. 4, are prefix distinguishers. In Sect. 7, we build a regu-
lar distinguisher ; however, the number of outputs needed for this distinguisher
exceeds the allowable keystream length per key/IV. In Section 8, we propose a
hybrid distinguisher mainly to reduce the time cost of our prefix distinguisher.

Algorithm 2. A Distinguisher separating Py from Random
Require: An n-bit sequence (z1, z2, z3, · · · , zn)
Ensure: Whether the sequence is random or generated by Py
1: Compute LLR = i log(P0[zi]

P1[zi]
);

2: If LLR ≥ 0 then return 1 (i.e., “The sequence is from Py”)
else 0 (i.e., “The sequence is random”);

Algorithm 2. The prefix distinguisher that separates Py from random is de-
scribed in Algorithm 2. The input to the algorithm is a realization of the
sequence of binary random variables (z1, z2, z3, · · · , zn). The adversary first
generates n key/IV pairs X1, X2, X3, · · · , Xn randomly and then computes
zi = O1,1(0) ⊕ O2,3(0) for all Xi, 1 ≤ i ≤ n. Using the results obtained by
Baignères, Junod and Vaudenay [1], it can be shown that Algorithm 2 is an
optimal distinguisher. Given a fixed number of samples, an optimal distinguisher
attains the maximum advantage. Note that the random variables zi’s are inde-
pendent of each other and each of them follows the distribution computed in
Sect. 4 (call the distribution D0). Let the uniform distribution on alphabet [0, 1]
be denoted by D1. In Algorithm 2, P0[zi] (shorthand for PD0 [zi]) denotes the
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probability of occurrence of zi when chosen according to D0 (similarly P1[zi]
and PD1 [zi]).

Let the Algorithm 2, the sequence of variables (z1, z2, z3, · · · , zn) and the
quantity

∑
i log(P0[zi]

P1[zi]
) be denoted by F , Z and LLR respectively. Now we will

compute the advantage of F (the advantage of this distinguisher has been inde-
pendently calculated by Paul Crowley [5]). The advantage of a distinguisher –
a measure indicating the efficiency of an algorithm to distinguish a distribution
from another – is given by the following formula [1]:

Advn
F =

∣∣PDn
0
[F(Z) = 1] − PDn

1
[F(Z) = 1]

∣∣ . (10)

Following the results in [1], it can be shown that for large n,

PDn
0
[F(Z) = 1] = PD0 [LLR ≥ 0] ≈ Φ

(√
nμ0

σ0

)
,

PDn
1
[F(Z) = 1] = PD1 [LLR ≥ 0] ≈ Φ

(√
nμ1

σ1

)
.

where Φ is the standard normal distribution function expressed as,

Φ(z) =
1√
2π

∫ z

−∞
e−

1
2 u2

du.

If the two distributions D0 and D1 are close (i.e.,
∣∣P0[z] − P1[z]

∣∣� P1[z]) then

μ0 ≈ −μ1 ≈ 1
2

∑
z∈[0,1]

(P0[z] − P1[z])2

P1[z]
and σ2

0 ≈ σ2
1 ≈

∑
z∈[0,1]

(P0[z] − P1[z])2

P1[z]
.

The above equations suggest that, for a given n, using the known distributions D0
and D1, the advantage of Algorithm 2 can be computed from (10). Some simple
calculations show that, if P0[0] − P1[0] = 1

M , then, to ensure the advantage of
the distinguisher to be greater than 0.5, the required number of samples is

n = 0.4624 · M2 . (11)

In the present case P0[0] − P1[0] = 1
242.9 (see Sect. 4). Therefore, from (11),

n = 0.4624 · (242.9)2 = 284.7 samples (i.e., as many randomly chosen key/IV’s)
can distinguish Py from random with an advantage that exceeds 0.5. The time
cost to build this distinguisher is tini · 284.7 where tini is the running time of the
key/IV setup of Py. Note that, for each key/IV, we collect the first 24 bytes of the
keystream. Therefore, the number of bytes required to establish the distinguisher
is 284.7 · 24 = 289.2.

6 Biases Among Other Pairs of Bits and Distinguishers

In Sect. 4, we have showed a bias in (O1,1(0), O2,3(0)). In this section, we show
that the bias is present in (O1,1(i), O2,3(i)), where 0 ≤ i ≤ 31; however, the bias
gradually reduces as i increases. From (1) and (2), we get:



Distinguishing Attacks on the Stream Cipher Py 413

O1,1(i) = ROTL32(s1, 25)(i) ⊕ Y1[256](i) ⊕ Y1[P1[26]](i) ⊕ c1(i) ,

O2,3(i) = s3(i) ⊕ Y3[−1](i) ⊕ Y3[P3[208]](i) ⊕ c3(i) ,

where 0 ≤ i ≤ 31 and c1, c3 are the carry terms in (1) and (2) respectively.

A Special Case. If all the 6 conditions of Theorem 1 are satisfied, O1,1 and
O2,3 can be written in the following form (see Theorem 1):

O1,1 = (S ⊕ G) + H , (12)
O2,3 = (S ⊕ H) + G , (13)

which implies that

O1,1(i) ⊕ O2,3(i) = c1(i) ⊕ c3(i), 0 ≤ i ≤ 31 ,

where the carries c1(i) and c3(i) can be calculated from the following recursive
relations (note that c1(0) = c3(0) = 0),

c1(i) = c1(i−1)(S(i−1) ⊕ G(i−1)) ⊕ c1(i−1)H(i−1) ⊕
H(i−1)(S(i−1) ⊕ G(i−1)) , (14)

c3(i) = c3(i−1)(S(i−1) ⊕ H(i−1)) ⊕ c3(i−1)G(i−1) ⊕
G(i−1)(S(i−1) ⊕ H(i−1)) . (15)

Computing P [O1,1(i) ⊕ O2,3(i) = 0]. Note that

P [O1,1(i) ⊕ O2,3(i) = 0] = P [O1,1(i) ⊕ O2,3(i) = 0|L] · P [L]
+ P [O1,1(i) ⊕ O2,3(i) = 0|Lc] · P [Lc]
= P [c1(i) ⊕ c3(i) = 0|L]︸ ︷︷ ︸

pi

·P [L]

+ P [O1,1(i) ⊕ O2,3(i) = 0|Lc]︸ ︷︷ ︸
Xi

·P [Lc] , (16)

where i ∈ [0, 31] and the event L is A ∩ B ∩ C ∩ D ∩ E ∩ F . Note that four
components are involved in (16); they are P [L], P [Lc], pi and Xi. Next, we show
how to determine these four quantities.

1,2. Computing P [L] and P [Lc]: the results in Sect. 4 show that P [L] = 2−41.9

and P [Lc] = (1 − 2−41.9).

3. Computing pi: now we recursively compute P [c1(i) ⊕ c3(i) = 0|L], denoted
by pi in (16) (similarly pi−1 should be understood), from the following equation
derived directly from (14) and (15).

c1(i) ⊕ c3(i) = (c1(i−1) ⊕ c3(i−1))(S(i−1) ⊕ G(i−1) ⊕ H(i−1)) ⊕
S(i−1)(G(i−1) ⊕ H(i−1)) . (17)
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Table 1. Truth table for (17). The last column in each row indicates the probability
of the occurrence of that row.

c1(i−1) ⊕ c3(i−1) S(i−1) B(i−1) A(i−1) c1(i) ⊕ c3(i) Probability
0 0 0 0 0 pi−1/8
0 0 0 1 0 pi−1/8
0 0 1 0 0 pi−1/8
0 0 1 1 0 pi−1/8
0 1 0 0 0 pi−1/8
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0 pi−1/8
1 0 0 0 0 (1 − pi−1)/8
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0 (1 − pi−1)/8
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Note that the variables G, H , S are uniformly distributed and independent. The
truth table for (17) is shown in Table 1. From Table 1, using Bayes’ rule, we
obtain the following recursion to compute pi,

pi =
pi−1

2
+

1
4

.

We already know that p0 = 1 (i.e., P [O1,1(0) ⊕ O2,3(0) = 0|L] = 1). Therefore,
solving the above recurrence relation, finally we get

pi =
1
2

+
1

2i+1 , 0 ≤ i ≤ 31 . (18)

4. Computing Xi: according to the results obtained in Appendix A it is rea-
sonable to assume that

Xi =
1
2

, for all i ∈ [0, 24] ∪ [26, 31] .

General Expression. Using the above results, recalling (16), we find,

P [O1,1(i) ⊕ O2,3(i) = 0] =
1
2
(1 + 2−(41.9+i)) , (19)

where i ∈ [0, 24] ∪ [26, 31]. It is also reasonable to assume (due to the event L′

as described in Appendix A) that

P [O1,1(25) ⊕ O2,3(25) = 0] ≥ 1
2
(1 + 2−(41.9+25))

≥ 1
2
(1 + 2−66.9) .
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From (19), one may see that P [O1,1(i)⊕O2,3(i) = 0] attains the maximum value
if i = 0. Our distinguisher, described in Sect. 4 and 5, exploits the case if i = 0.
Equation (19) suggests that many distinguishers can be generated using different
(O1,1(i), O2,3(i))’s rather than only (O1,1(0), O2,3(0)), however, the amount of bias
decreases as i increases (i.e., we get the most effective distinguisher if i = 0). For
example, if i = 1,

P [O1,1(1) ⊕ O2,3(1) = 0] =
1
2
(1 + 2−42.91) .

For the above case, taking the 1st bits of O1,1 and O2,3, the number of samples
(i.e., the number of key/IV’s) required to establish a distinguisher with advantage
exceeding 0.5 is 286.7 (see (11)). Similarly, if we consider i = 2 then the number
of required samples is 288.7.

7 Generalizing the Bias at Rounds t and t + 2:
A Distinguisher Using a Single Keystream

Under assumptions similar to those in Sect. 2.2, the results of Sect. 3 and Sect. 4
are valid even if we consider any rounds t and t+2 (t > 0) instead of just rounds
1 and 3. In other words, instead of (O1,1(0), O2,3(0)), one can show that the bias
exists even in the distribution of (O1,t(i), O2,(t+2)(i)). Now, we state a theorem
which is the generalized version of Theorem 1.

Theorem 2. O1,t(0) = O2,(t+2)(0) if the following six conditions on the elements
of the S-box P are simultaneously satisfied.

1. Pt+1[116] ≡ −18(mod 32),
2. Pt+2[116] ≡ 7(mod 32),
3. Pt+1[72] = Pt+2[239] + 1,
4. Pt+1[239] = Pt+2[72] + 1,
5. Pt[26] = 1,
6. Pt+2[208] = 254.

Using the above theorem and the techniques used before, it is easy to show that
(see (9))

P [O1,t(0) ⊕ O2,(t+2)(0) = 0] =
1
2
(1 + 2−41.91) .

The fact that the above probability is valid,∀ t > 0, allows us to generate a
regular distinguisher with the number of rounds 284.7 of a single keystream (see
Sect. 5 for a definition of a regular distinguisher). This means that 284.7 × 23 =
287.7 bytes of a single stream generated by a randomly chosen key/IV are suffi-
cient to distinguish Py from random with success probability greater than 0.5.
The work-load here is also comparable to 287.7. However, this attack is ren-
dered ineffective because the amount of required bytes falls outside the allowable
keystream length of 264 bytes.
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8 A More Efficient Hybrid Distinguisher

The results of Sect. 5 and Sect. 7 lead us in a natural way to build a hybrid
distinguisher by making a trade-off between the number of key/IV’s and output
bytes per key/IV. It is apparent from the previous discussion that, to realize our
distinguisher, we need 284.7 pairs of internal states (recall that the internal state
of Py consists of the arrays P , Y and a 32-bit integer s) with each pair being
separated by one round. Then, under the assumption that the first state of each
pair is randomly generated, those pairs can be used to build a distinguisher.
As the allowable number of rounds per key/IV is 264−8 = 256, the number
of required key/IV’s is 284.7−56 = 228.7 to construct this hybrid distinguisher.
The main difference between the prefix distinguisher in Sect. 5 and this hybrid
distinguisher is that the running time to build this hybrid distinguisher is much
smaller, as it requires the key/IV setup to run only for 228.7 times compared
to 284.7 times for the previous prefix distinguisher. Therefore, the time and the
data complexity of this distinguisher are tr · 284.7 and 287.7 bytes respectively,
where tr is the running time of a single round of Py. Furthermore, this hybrid
distinguisher does not breach the cipher specifications.

9 Do Our Distinguishers Break the Cipher Py?

The subject of what constitutes a break of a practical stream cipher or a PRBG is
a highly contentious issue even if the area is quite well developed in theory. The-
oretically, a cryptographically strong pseudorandom bit generator (CSPRBG)
is an algorithm A that, on being given a random seed k as input, generates a
sequence of pseudo-random bits a1, a2, a3, · · · . The function A possesses the
following properties (see Blum and Micali [4]):

1. Each bit ai can be produced in time polynomial in the length of seed k.
2. Given the algorithm A and the first s output bits generated by an unknown

seed k, it is computationally infeasible to predict the s + 1st bit with biased
probability. The s is polynomial in the length of the seed k.

We see that, theoretically, a PRBG is studied according to how it behaves when
the length of seed is increased asymptotically. The major problem in fitting the
analyses of practical stream ciphers into the above framework is that, most of
the ciphers work with fixed sized keys and keystream bits (e.g. Py allows 256-bit
key and 264 bytes of keystream per key/IV pair). Such constraints make the as-
ymptotic analyses of practical stream ciphers impossible. For a practical PRBG
with a fixed sized key (such as Py), given the first s output bits generated by
an unknown key/IV, the s + 1st bit can be predicted with a high probability
with running time bounded above by a trivial exhaustive search. As there is
no non-trivial upper bound on the running time of a distinguishing attack on a
stream cipher (or PRBG) with a fixed sized key, any legal distinguishing attack
with running time less than exhaustive search constitutes an academic break of
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the cipher.1 Therefore, our attacks from Sect. 5, Sect. 6 and Sect. 8 imply a
theoretical break of Py. However, it should be noted that each of the attacks
presented in the paper requires a workload larger than 285 and therefore, poses
no practical threats to the cipher.

Do Our Distinguishing Attacks on Py Violate the Designers’ Claims?
The stream cipher Py is claimed by the designers to have up to 256-bit security
(see Appendix A of [3]). In the authors’ words, “The security claims are for keys
up to 256 bits (32 bytes) and IVs up to 128 bits (16 bytes)”. 256-bit is also the
category of security level under which Py is included in the ECRYPT project
[6]. According to the discussion on the definition of n-bit security of a perfectly
secure stream cipher, it is clear that this claim is compromised by our attacks.

However, in Sect. 6.1 of [3], the authors claim,“There are no distinguishing
attacks that succeed given less than 264 bytes of key stream with a complexity
less than of exhaustive search.” It is understood from [2], that those 264 bytes,
as mentioned in the claim, may be generated by many keys rather than a single
key. Under this interpretation, our attacks do not violate this claim, since our
best attack requires 287.7 bytes of output.

As a result we conclude that two claims, mentioned above, contradict each
other with respect to the attacks mentioned in this paper. At this point, we leave
it to the reader to decide on the implications of our distinguishers.

10 Future Work

One could try to combine the individual biases of the pairs of bits presented
here to develop a more sophisticated distinguisher with fewer output bytes. Paul
Crowley has reduced the time and output bytes of our distinguisher to 272 each,
by analyzing our observation in Sect. 3 using a Hidden Markov Model [5]. A
plausible strategy consists of identifying many more correlations between internal
and external states of Py in order to reduce the time and data complexity of the
distinguisher.

11 Conclusion and Remarks

The paper presented several weaknesses of the stream cipher Py. We discovered
a class of distinguishers for the cipher, the best of which works with 287.7 bytes
and comparable time. We also showed that the output stream of Py with a
recommended keystream length of 264 bytes, contains biases at different points
– this fact can be exploited to build more effective distinguishers. These results
break the cipher Py academically. However, the data complexity for the best
distinguishing attack falls well beyond the time complexity what is feasible today.
Therefore, these weaknesses pose no practical threat to the security of the cipher
1 A legal distinguishing attack is the one which does not violate the specified parame-

ters of the cipher.
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at this moment. However, the shortened version of Py, known as Py6, may
contain more serious weaknesses than the ones described here, but the complete
description of Py6 has not been provided in [3].
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A Uniformity of Bits If L Does Not Occur

We first write the general formula to calculate Z = O1,1 ⊕ O2,3.

O1,1 = (ROT 32(s, 25) ⊕ G) + H , (20)
O2,3 = (ROT 32(ROT 32(s + I − J , r) + K − L , l) ⊕ M) + N , (21)

where
s = s1, G = Y1[256], H = Y1[P1[26]], I = Y2[P2[72]], J = Y2[P2[239]], r =
P2[116] + 18 mod 32, K = Y3[P3[72]], L = Y3[P3[239]], l = P3[116] + 18 mod 32,
M = Y3[−1], N = Y3[P3[208]].

Below we isolate 18 cases, divided into 4 groups, where the relation between
internal and external states is not trivial. The symbol ‘/’ is used to mean ‘or’.
Note that the equalities in each group are satisfied if they do not violate the
condition of uniqueness of permutation elements of S-box P . The notation A ⇔
B signifies that the A and B are identical elements in two different rounds
of the S-box Y (i.e., A = B but their indices may be changed in different
rounds).

Group 1                                                                  Group 3

H

I

J

G

N/M

M/N

K/L

L/K

I

J

N/M

K/L

L/K

H/G

G/HM/N

Fig. 2

1. I ⇔ N/M , J ⇔ M/N , K ⇔ G/H , L ⇔ H/G (a total of 4 cases). See Fig.2.
2. I ⇔ K/L, J ⇔ L/K, M ⇔ H , N ⇔ G (a total of 2 cases). See Fig.3.
3. I ⇔ N/M , J ⇔ K/L. The G is identical to one of the remaining two

elements (so is the H) (a total of 6 cases). See Fig.2.
4. Similar to the above, J ⇔ M/N , I ⇔ L/K. The G is identical to one of the

remaining two elements (so is the H) (a total of 6 cases).

Fact 1. After the key/IV setup, if the permutation P falls outside all of the 18
cases described above then O1,1 and O2,3 are independent and uniformly distrib-
uted over [232 − 1, 0].

Now we denote O1,1(0) ⊕ O2,3(0) by R0.
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Theorem 3. After the key/IV setup, let the S-box P be one of the 16 cases
described in Groups 1,3 and 4. Then

Prob[R0 = 0 | P ] =
1
2
.

Proof. Now we prove the theorem by considering Groups 1, 3 and 4 separately.

Group 1. (See Fig. 2). For this group, R0 can be written in the following form,

R0 = s(7) ⊕ s(w) ⊕ (G(0) ⊕ H(0) ⊕ K(u) ⊕ L(u))
⊕(I(w) ⊕ J(w) ⊕ M(0) ⊕ N(0)) ⊕ C.

Note that the C is a nonlinear function of several bits of s, M , N , H , G. Now
we take three possible subcases.

1. If u �= 0 then R0 is uniformly distributed since C is independent of K(u) and
L(u).

2. If u = 0, w �= 0 then R0 is uniformly distributed since C is independent of
I(w) and J(w).

3. If u = 0, w = 0 then R0 = s(7) ⊕s(0). Therefore, R0 is uniformly distributed.

Group 3. (See Fig. 2). R0 can be written in the following form,

R0 = s(7) ⊕ s(w) ⊕ (G(0) ⊕ N(0)) ⊕ (K(u) ⊕ J(w))
⊕(H(0) ⊕ L(u)) ⊕ (M(0) ⊕ I(w)) ⊕ C.

Of the 6 cases in Group 3, we are considering only the following case where
I ⇔ M , J ⇔ K, G ⇔ N and H ⇔ L. In a similar way as above we divide this
case into three subcases.

1. If u �= 0 then C is independent of L(u) and thus R0 is uniformly distributed.
2. If u = 0, w �= 0 then R0 is uniformly distributed since C is independent of

J(w).
3. If u = 0, w = 0 then R0 = s(7) ⊕s(0). Therefore, R0 is uniformly distributed.

All the other 5 cases of this group can be proved in a similar fashion.

Group 4. Proof for this group is similar to that for Group 3. 	


Discussion. From Fact 1 and Theorem 3, it is clear that, if P does not fall
within Group 2 then Prob[R0 = 0|P ] = 1

2 . The probability of the occurrence
of Group 2 is approximately 2−31. Therefore, for a fraction of (1 − 2−31) of all
cases, R0 is uniformly distributed. Sect. 4 shows that, for the event L occurring
with probability 2−41.9, Prob[R0 = 0 | P = L] = 1.

Therefore, we are able to prove that, for a fraction of (1 − 2−31.001) of cases,
there exists a bias in R0 toward zero. It is, however, nontrivial to determine the
distribution of R0 for the remaining fraction of 2−31.001 of the cases, because of
vigorous mixing of bits in a nonlinear way. Our experiments suggest that it is
very unlikely that the positive bias generated in a large fraction of (1 − 2−31.01)
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Group 2(b)

HN

K I

L J

GM

HN

K I

L J

GM

                                                                                                                               Group 2(a)

Fig. 3. Group 2(a): I ⇔ K, J ⇔ L, M ⇔ H , N ⇔ G; Group 2(b): I ⇔ L, J ⇔ K,
M ⇔ H , N ⇔ G

of the cases can be compensated by a very minuscule fraction of 2−31.001 of them.
According to a small number of experiments that we carried out, a slight bias
toward zero was detected for that remaining fraction of 2−31.001 also. However,
we ignored that bias and assumed R0 to be uniformly distributed for those cases
in building the distinguishers described in the paper.

In addition to the event L, for which Ri is biased toward zero ∀i ∈ [1, 31] (see
Sect. 6), we also identify another event L′, for which R25 is again biased toward
zero (all other Ri’s are uniformly distributed individually). The event L′ oc-
curs when P2[116] ≡ −18(mod 32), P3[116] ≡ 7(mod 32), P2[72] = P3[72] + 1,
P2[239] = P3[239] + 1, P1[26] = 1, P3[208] = 254 (see Group 2(a) of Fig. 3). Us-
ing similar arguments as above, it can be shown that Ri is uniformly distributed
over [0, 1] for the rest of the cases.
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Abstract. WG and LEX are two stream ciphers submitted to eStream –
the ECRYPT stream cipher project. In this paper, we point out security
flaws in the resynchronization of these two ciphers. The resynchroniza-
tion of WG is vulnerable to a differential attack. For WG with 80-bit
key and 80-bit IV, 48 bits of the secret key can be recovered with about
231.3 chosen IVs . For each chosen IV, only the first four keystream bits
are needed in the attack. The resynchronization of LEX is vulnerable
to a slide attack. If a key is used with about 260.8 random IVs, and
20,000 keystream bytes are generated from each IV, then the key of
the strong version of LEX could be recovered easily with a slide attack.
The resynchronization attack on WG and LEX shows that block cipher
related attacks are powerful in analyzing non-linear resynchronization
mechanisms.

Keywords: cryptanalysis, stream cipher, resynchronization attack, dif-
ferential attack, slide attack, WG, LEX.

1 Introduction

For the research on stream ciphers, resynchronization atacks have not been
studied as thoroughly as the keystream generation algorithm itself. Ten years
ago, Daemen, Govaerts and Vandewalle analyzed the weakness of linear resyn-
chronization mechanism with known output Boolean function [5]. Later Golić
and Morgari studied linear resynchronization mechanisms with unknown out-
put function [7]. However almost all the stream ciphers proposed recently use
non-linear resynchronization mechanisms, so the previous attacks on linear re-
synchronization mechanisms could no longer be applied. Recently Armknecht,
Lano and Preneel applied algebraic attacks and linear cryptanalysis to the resyn-
chronization mechanism and obtained lower bounds for the nonlinearity required
from a secure resynchronization mechanism [1]. In this paper, we apply the dif-
ferential attack and slide attack to stream ciphers with non-linear resynchroniza-
tion. We show that the cryptanalysis techniques used to attack block ciphers are
also useful in the analysis of non-linear resynchronization mechanisms.
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WG [11] and LEX [4] are two stream ciphers submitted to eStream, the
ECRYPT stream cipher project [6]. The keystream generation algorithms of
WG and LEX are quite strong. The keystream generation of WG is based on
the WG transformation which has excellent cryptographic properties [8]. The
keystream generation of LEX is based on the Advanced Encryption Standard
[10]. However, the resynchronization mechanism of WG and LEX are insecure.
The resynchronization mechanism of WG is vulnerable to the differential attack
[2] and that of LEX is vulnerable to a slide attack [3]. Breaking WG requires
231.3 chosen IVs, and breaking the strong version of LEX requires about 260.8

random IVs.
This paper is organized as follows. WG and LEX are introduced in Sect. 2.

The differential attack on WG is presented in Sect. 3, and the slide attack on
LEX is described in Sect. 4. Section 5 concludes this paper.

2 Description of WG and LEX

WG and LEX are described in Sec. 2.1 and 2.2, respectively.

2.1 The Stream Cipher WG

WG is a hardware oriented stream cipher with key length up to 128 bits; it
supports IV sizes from 32 bits to 128 bits. The main feature of the WG stream
cipher is the use of the WG transformation to generate keystream from an LFSR.

Keystream Generation
The keystream generation diagram of WG is given in Fig. 1. WG has a regularly
clocked LFSR which is defined by the feedback polynomial

Fig. 1. Keystream generation diagram of WG [11]
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p(x) = x11 + x10 + x9 + x6 + x3 + x + γ (1)

over GF (229), where γ = β464730077 and β is the primitive root of g(x)

g(x) = x29 + x28 + x24 + x21 + x20 + x19 + x18 + x17 +
x14 + x12 + x11 + x10 + x7 + x6 + x4 + x + 1 . (2)

Then the non-linear WG transformation, GF (229) → GF (2), is applied to gen-
erate the keystream from the LFSR.

Resynchronization (Key/IV Setup)
The key/IV setup of WG is given in Fig. 2. After the key and IV have been
loaded into the LFSR, it is clocked 22 steps. During each of these 22 steps, 29
bits from the middle of the WG transformation are XORed to the feedback of
LFSR, as shown in Fig. 2.

One step of the key/IV setup can be expressed as follows:

T = S(1)⊕S(2)⊕S(5)⊕S(8)⊕S(10)⊕(γ×S(11))⊕WG′(S(11)) ,
S(i) = S(i − 1) for i = 11 · · · 2; S(1) = T ,

where WG′(S(11)) denotes the 29 bits extracted from the WG transformation,
as shown in Fig. 2.

Fig. 2. Key/IV setup of WG [11]
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The WG cipher supports several key and IV sizes: the key size can be 80 bits,
96 bits, 112 bits and 128 bits and the IV sizes can be 32 bits, 64 bits, 80 bits,
96 bits, 112 bits, and 128 bits. Slightly different resynchronization mechanisms
are used for the different IV sizes. The details are given in Sect. 3.

2.2 The Stream Cipher LEX

LEX is based on the block cipher AES. The keystream bits are generated by
extracting 32 bits from each round of AES in the 128-bit Output Feedback
(OFB) mode [9]. LEX is about 2.5 times faster than AES. Fig. 3 shows how the
AES is initialized and chained. First a standard AES key-schedule for a secret
128-bit key K is performed. Then a given 128-bit IV is encrypted by a single
AES invocation: S = AESK(IV ). The S and the subkeys are the output of the
initialization process.

S is encrypted by K in the 128-bit OFB mode (for the more secure variant,
K is changed every 500 AES encryptions). At each round, 32 bits of the middle
value of AES are extracted to form the keystream. The bytes b0,0, b0,2, b2,0, b2,2
at every odd round and the bytes b0,1, b0,3, b2,1, b2,3 at every even round are
selected, as shown in Fig. 4.

Fig. 3. Initialization and stream generation [4]

Fig. 4. The positions of the output extracted in the even and odd rounds [4]
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3 The Differential Attacks on the Resynchronization of
WG

The resynchronization of WG can be broken with a chosen IV attack based
on differential cryptanalysis. (We remind the readers that the details of the
differential attack given in this paper are slightly different from the standard
differential attack on a block cipher, such as the generation of the differential
pairs and the filtering of the wrong pairs.) WG with a 32-bit IV size is not
vulnerable to the attack given in this section (since no special differential can be
introduced into this short IV). In Sec. 3.1 the attack is applied to break an WG
with an 80-bit key and an 80-bit IV. The attacks on WG with IV sizes larger
than 80 bits are given in Sect. 3.2. The attack on a WG with a 64-bit IV size is
given in Sec. 3.3.

3.1 An Attack on WG with an 80-Bit Key and an 80-Bit IV

We investigate the security of the key/IV setup of WG with an 80-bit key and
an 80-bit IV. For this version of WG, denote the key as K = k1, k2, k3, · · · , k80
and the IV as IV = IV1, IV2, IV3, · · · , IV80. They are loaded into the LFSR as
follows:

S1,...,16(1) = k1,...,16 S17,...,24(1) = IV1,...,8
S1,...,8(2) = k17,...,24 S9,...,24(2) = IV9,...,24
S1,...,16(3) = k25,...,40 S17,...,24(3) = IV25,...,32
S1,...,8(4) = k41,...,48 S9,...,24(4) = IV33,...,48
S1,...,16(5) = k49,...,64 S17,...,24(5) = IV49,...,56
S1,...,8(6) = k65,...,72 S9,...,24(6) = IV57,...,72
S1,...,8(7) = k73,...,80 S17,...,24(7) = IV73,...,80

All the remaining bits of the LFSR are set to zero. Then the LFSR is clocked
22 steps with the middle value from the WG transformation being used in the
feedback.

The chosen IV attack on WG goes as follows. For each secret key K, we choose
two IVs, IV ′ and IV ′′, so that IV ′ and IV ′′ are identical in 8 bytes, but differ
in two bytes: IV ′

17,...,24 �= IV ′′
17,...,24 and IV ′

49,...,56 �= IV ′′
49,...,56. The differences

satisfy IV ′
17,...,24 ⊕ IV ′′

17,...,24 = IV ′
49,...,56 ⊕ IV ′′

49,...,56.
Denote the value of S(i) (1 ≤ i ≤ 11) at the end of the j-th step by Sj(i),

and denote loading the key/IV as the 0th step. After loading the key and the
chosen IV into LFSR, we know that the differences in S(2) and S(5) are the
same, i.e., S′0(2) ⊕ S′′0(2) = S′0(5) ⊕ S′′0(5). We denote this difference as �1,
i.e., �1 = S′0(2) ⊕ S′′0(2) = S′0(5) ⊕ S′′0(5).

We now examine the differential propagation during the 22 steps in the key/IV
setup. The complete differential propagation is shown in Table 1, where the
differences at the i-th step indicate the differences at the end of the i-th step.
The difference �2 = (γ×S′6(11)⊕WG′(S′6(11))⊕(γ×S′′6(11)⊕WG′(S′′6(11)) =
(γ × S′0(5) ⊕ WG′(S′0(5)) ⊕ (γ × S′′0(5) ⊕ WG′(S′′0(5)). Similarly, we obtain
that �3 = (γ × S′0(2) ⊕ WG′(S′0(2)) ⊕ (γ × S′′0(2) ⊕ WG′(S′′0(2)).
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Table 1. The differential propagation in the key/IV setup of WG

S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10) S(11)
step 0 0 �1 0 0 �1 0 0 0 0 0 0
step 1 0 0 �1 0 0 �1 0 0 0 0 0
step 2 0 0 0 �1 0 0 �1 0 0 0 0
step 3 0 0 0 0 �1 0 0 �1 0 0 0
step 4 0 0 0 0 0 �1 0 0 �1 0 0
step 5 0 0 0 0 0 0 �1 0 0 �1 0
step 6 �1 0 0 0 0 0 0 �1 0 0 �1

step 7 �2 �1 0 0 0 0 0 0 �1 0 0
step 8 �1⊕�2 �2 �1 0 0 0 0 0 0 �1 0
step 9 0 �1⊕�2 �2 �1 0 0 0 0 0 0 �1

step 10 �1⊕�2
⊕�3

0 �1⊕�2 �2 �1 0 0 0 0 0 0

step 11 �2⊕�3 �1⊕�2
⊕�3

0 �1⊕�2 �2 �1 0 0 0 0 0

step 12 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

0 �1⊕�2 �2 �1 0 0 0 0

step 13 �2⊕�3 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

0 �1⊕�2 �2 �1 0 0 0

step 14 �3 �2⊕�3 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

0 �1⊕�2 �2 �1 0 0

step 15 �1⊕�2
⊕�3

�3 �2⊕�3 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

0 �1⊕�2 �2 �1 0

step 16 �1⊕�2
⊕�3

�1⊕�2
⊕�3

�3 �2⊕�3 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

0 �1⊕�2 �2 �1

step 17 �1⊕�4 �1⊕�2
⊕�3

�1⊕�2
⊕�3

�3 �2⊕�3 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

0 �1⊕�2 �2

step 18 �3⊕�4
⊕�5

�1⊕�4 �1⊕�2
⊕�3

�1⊕�2
⊕�3

�3 �2⊕�3 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

0 �1⊕�2

step 19 �1⊕�2
⊕�3⊕

�5⊕�6

�3⊕�4
⊕�5

�1⊕�4 �1⊕�2
⊕�3

�1⊕�2
⊕�3

�3 �2⊕�3 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

0

step 20 �4⊕�6 �1⊕�2
⊕�3⊕

�5⊕�6

�3⊕�4
⊕�5

�1⊕�4 �1⊕�2
⊕�3

�1⊕�2
⊕�3

�3 �2⊕�3 �1⊕�2 �2⊕�3 �1⊕�2
⊕�3

step 21 �4⊕�5
⊕�7

�4⊕�6 �1⊕�2
⊕�3⊕

�5⊕�6

�3⊕�4
⊕�5

�1⊕�4 �1⊕�2
⊕�3

�1⊕�2
⊕�3

�3 �2⊕�3 �1⊕�2 �2⊕�3

step 22 �2⊕�3
⊕�4⊕

�5⊕�6
⊕�7
⊕�8

�4⊕�5
⊕�7

�4⊕�6 �1⊕�2
⊕�3⊕

�5⊕�6

�3⊕�4
⊕�5

�1⊕�4 �1⊕�2
⊕�3

�1⊕�2
⊕�3

�3 �2⊕�3 �1⊕�2

From Table 1, we notice that at the end of the 22th step, the difference at
S22(10) is �2 ⊕ �3. From the above description of �2 and �3, we know that

�2 ⊕ �3 = ((γ × S′0(5) ⊕ WG′(S′0(5)) ⊕ (γ × S′′0(5) ⊕ WG′(S′′0(5))) ⊕
((γ × S′0(2) ⊕ WG′(S′0(2)) ⊕ (γ × S′′0(2) ⊕ WG′(S′′0(2))) . (3)

This shows that the value of �2⊕�3 is determined by k17,...,24, k49,...,64, IV ′
9,...,24,

IV ′
49,...,56, IV ′′

9,...,24, IV ′′
49,...,56.

From the keystream generation of WG, we know that the first keystream bit
is generated from S22(10) (after the key/IV setup, the LFSR is clocked, and
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S23(11) is used to generate the first keystream bit). If �2 ⊕ �3 = 0, then the
first keystream bits for IV ′ and IV ′′ should be the same. This property is applied
in the attack to determine whether the value of �2 ⊕ �3 is 0.

Assume that the value of �2 ⊕�3 is randomly distributed, then �2 ⊕�3 = 0
with probability 2−29. We thus need to generate about 229 pairs (�2, �3) in order
to obtain a pair satisfying �2 ⊕ �3 = 0. Note that the key is fixed and that
S′0(2)⊕S′′0(2) = S′0(5)⊕S′′0(5) must be satisfied. Three bytes of IV (IV ′

9,...,24,
IV ′

49,...,56) and one-byte difference (�1) can be freely chosen to generate different
(�2, �3), so there are about 224×255/2 ≈ 231 available pairs of (�2, �3). Hence
there is no problem to generate 229 pairs of (�2, �3).

Then we proceed to determine which pair (�2, �3) satisfies �2 ⊕�3 = 0. For
each pair (�2, �3), we modify the values of IV ′

1,...,8 and IV ′′
1,...,8, but we ensure

that IV ′
1,...,8 = IV ′′

1,...,8. This modification does not affect the value of �2 ⊕ �3,
but it affects the value of S22(10). We generate keystream and examine the first
keystream bits. If the values of the first keystream bits are the same, then the
chance that �2 ⊕ �3 = 0 is improved. In that case, we modify IV ′

1,...,8 and
IV ′′

1,...,8 again and observe the first keystream bits. This process ends when the
first keystream bits are not the same or this process is repeated for 40 times.
If one (�2, �3) passes the test for 40 times, then we know that �2 ⊕ �3 = 0
with probability extremely close to 1. (Each wrong pair could pass this filtering
process with probability 2−40. One pair of 229 wrong pairs could pass this process
with probability 2−11.) Thus with about 2× 229 ×

∑40
i=1

i
2i = 231 chosen IVs, we

can find a pair (�2, �3) satisfying �2⊕�3 = 0. Subsequently according to Eqn.
(3) and �2 ⊕ �3 = 0, we recover 24 bits of the secret key, k17,...,24 and k49,...,64.

The above attack can be improved if we consider the differences at S22(7) and
S22(8). The differences there are both �1⊕�2⊕�3. If the value of �1⊕�2⊕�3
is 0, then the third and fourth bits of the two keystreams would be the same. If
we only observe the third and fourth keystream bits, then k17,...,24 and k49,...,64

can be recovered with 2 × 229 ×
∑20

i=1(
1

2i−1 − 1
2i ) × i = 230.4 chosen IVs.

In the attack, we observe the first, third and fourth keystream bits, then
recovering k17,...,24 and k49,...,64 requires about 2×228 ×21.13 = 230.1 chosen IVs
(the value 21.13 is obtained through numerical computation).

By setting the difference at S0(3) and S0(6) and observing the second and
third bits of the keystream, we can recover another 24 bits of the secret key,
k25,...,40 and k65,...,72. We need 230.4 chosen IVs.

So with about 230.1 + 230.4 = 231.3 chosen IVs, we can recover 48 bits of the
80-bit secret key. It shows that the key/IV setup of the WG stream cipher is
insecure.

3.2 The Attacks on WG with Key and IV Sizes Larger Than 80
Bits

The WG ciphers with the key and IV sizes larger than 80 bits are all vulnerable
to the chosen IV attacks. The attacks are very similar to the above attack. We
omit the details of the attacks here. The results are given below:
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1. For WG with 96-bit key and 96-bit IV, 48 bits of the key can be recovered
with complexity about the same as the above attack.

2. For WG with IV sizes larger than 96 bits, 72 bits of the key can be recovered
with complexity about 1.5 times that of the above attack.

3.3 The Attacks on WG with 64-Bit IV Size

We use WG with an 80-bit key and a 64-bit IV as an example to illustrate the
attack. For WG cipher with an 80-bit key and a 64-bit IV, the key and IV are
loaded into the LFSR as follows:

S1,...,16(1) = k1,...,16 S1,...,16(2) = k17,...,32
S1,...,16(3) = k33,...,48 S1,...,16(4) = k49,...,64
S1,...,16(5) = k65,...,80 S1,...,16(9) = k1,...,16
S1,...,16(10) = k17,...,32 ⊕ 1 S1,...,16(11) = k33,...,48

S17,...,24(1) = IV1,...,8 S17,...,24(2) = IV9,...,16
S17,...,24(3) = IV17,...,24 S17,...,24(4) = IV25,...,32
S17,...,24(5) = IV33,...,40 S17,...,24(6) = IV41,...,48
S17,...,24(7) = IV49,...,56 S17,...,24(8) = IV57,...,64

In the attack, we introduce differences at S(2) and S(5), but we can only generate
about 223 pairs of (�2, �3) since we can only modify IV9,...,16 and IV33,...,40.
Thus we can obtain a pair (�2, �3) satisfying �2⊕�3 = 0 or �1⊕�2⊕�3 = 0
with probability 2−5. Once we know �2 ⊕�3 = 0 or �1 ⊕�2 ⊕�3 = 0, we can
recover 29 bits of information on k17,...,32 and k65,...,80. It shows that 29 bits of
information of the secret key can be recovered with probability 2−5. This attack
requires about 225.1 chosen IVs.

The attack on WG with 96-bit key and 64-bit IV is similar to the above attack.
We introduce differences at S(2) and S(5) or at S(3) and S(6). In the attack 29
bits of information on k17,...,32 and k65,...,80 can be recovered with probability
2−5, and another 29 bits of information on k33,...,48 and k81,...,96 can be recovered
with probability 2−5.

The attack on WG with 112-bit key and 64-bit IV is also similar. The result
is that 29 bits of information on k17,...,32 and k65,...,80 can be recovered with
probability 2−5, 29 bits of information on k33,...,48 and k81,...,96 can be recovered
with probability 2−5, and 29 bits of information on k49,...,64 and k97,...,112 can
be recovered with probability 2−5.

The attack on WG with 128-bit key and 64-bit IV is also similar. The result is
that 29 bits of information on k17,...,32 and k65,...,80 can be recovered with prob-
ability 2−5, 29 bits of information on k33,...,48 and k81,...,96 can be recovered with
probability 2−5, 29 bits of information on k49,...,64 and k97,...,112 can be recovered
with probability 2−5, and 29 bits of information on k64,...,80 and k113,...,128 can
be recovered with probability 2−5.
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4 A Slide Attack on the Resynchronization of LEX

The security of LEX depends heavily on the fact that only a small amount of
information is released for each round (including the input and output) of AES.
The slide attack intends to retrieve all the information of one AES round input
(or output) in LEX.

Denote Si = Ei
K(IV ), where Ei(m) means that m is encrypted i times, S0 =

IV ; denote the 320 bits extracted from the i-th encryption with ki for i ≥ 2.
For two IVs, IV ′ and IV ′′, if k′

2 = k′′
j (j > 2), then we know that S′

1 = S′′
j−1.

Immediately, we know that S′′
j−2 = S′

0 = IV ′. Note that k′′
j−1 is extracted from

EK(S′′
j−2), so k′′

j−1 is extracted from EK(IV ′); this means that we know the
input to AES, and we know 32 bits from the output of the first round. In the
following, we show that it is easy to recover the secret key from this 32 bits of
information of the first round output.

Denote the 16-byte output of the r-th round of AES with mr
i,j (0 ≤ i, j ≤ 3),

and denote the 16-byte round key at the end of the r-th round with wr
i,j (0 ≤

i, j ≤ 3). Now if m1
0,0, m1

0,2, m1
2,0, m1

2,2 are known, i.e, four bytes of the first
round output are known, then we obtain the following four equations:

m1
0,0 ⊕ w1

0,0 = MixColumn((m0
0,0 ⊕ w0

0,0) ‖ (m0
1,3 ⊕ w0

1,3)

‖ (m0
2,2 ⊕ w0

2,2) ‖ (m0
3,1 ⊕ w0

3,1))& 0xFF (4)

m1
2,0 ⊕ w1

2,0 = (MixColumn((m0
0,0 ⊕ w0

0,0) ‖ (m0
1,3 ⊕ w0

1,3)

‖ (m0
2,2 ⊕ w0

2,2) ‖ (m0
3,1 ⊕ w0

3,1)) >> 16)& 0xFF (5)

m1
0,2 ⊕ w1

0,2 = MixColumn((m0
0,2 ⊕ w0

0,2) ‖ (m0
1,1 ⊕ w0

1,1)

‖ (m0
2,0 ⊕ w0

2,0) ‖ (m0
3,3 ⊕ w0

3,3))& 0xFF (6)

m1
2,2 ⊕ w1

2,2 = (MixColumn((m0
0,2 ⊕ w0

0,2) ‖ (m0
1,1 ⊕ w0

1,1)

‖ (m0
2,0 ⊕ w0

2,0) ‖ (m0
3,3 ⊕ w0

3,3)) >> 16)& 0xFF . (7)

Each equation leaks one byte of information on the secret key. In the above
four equations, 12 bytes of the subkey are involved. To recover all these 12 bytes,
we need three inputs to AES and the related 32-bit first round outputs so that we
can obtain 12 equations. These 12 equations can be solved with about α × 232

operations, where α is a small constant. With 96 bits of the key have been
recovered, the rest of the 32 bits of AES can be recovered by exhaustive search.

We now compute the number of IVs required to generate three collisions.
Suppose that a secret key is used with about 265.3 random IVs, and each IV i is
used to generate a 640-bit keystream ki

2, k
i
3. Since the block size of AES is 128

bits, we know that with high probability there are three collisions ki
2 = kj

3 for
different i and j since 265.3×(265.3−1)

2 × 2−128 ≈ 3.
The number of IVs could be reduced if more keystream bits are generated from

each IV. In [4], it is suggested to change the key every 500 AES encryptions for
a strong variant of LEX. Suppose that each IV is applied to generate 500 320-bit
outputs, then with 260.8 IVs, we could find three collisions ki

2 = kj
x (2 < x < 500)
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and recover the key of LEX. For the original version of LEX, the AES key is
not changed during the keystream generation. Suppose that each IV is used to
generate 250 keystream bytes, then the key could be recovered with about 243

random IVs (here we need to consider that the state update function of LEX is
reversible; otherwise, the amount of IV required in the attack could be greatly
reduced).

For a secure stream cipher with a 128-bit key and a 128-bit IV, each key would
never be recovered faster than exhaustive key search no matter how many IVs
are used together with that key. But for LEX each key could be recovered faster
than exhaustive search if that key is used together with about 261 random IVs.
We thus conclude that LEX is theoretically insecure.

For a stream cipher with 128-bit key and 128-bit IV, if the attacker can choose
the IV, then one of 264 keys could be recovered with about 264 pre-computations
(based on the birthday paradox). The complexity of such an attack is close to
our attack on LEX. However, there are two major differences between these
two attacks. One difference is that the attack based on birthday paradox is a
chosen IV attack while our attack is a random IV attack. Another difference is
that the attack based on birthday paradox results in the recovery of one of n
keys, while our attack recovers one particular key. Recovering one of n keys and
recovering one particular key are two different types of attacks being used in
different scenarios, so it is not meaningful to simply compare their complexities.

5 Conclusion

In this paper, we show that the resynchronization mechanisms of WG and LEX
are vulnerable to a differential attack and a slide attack, respectively. It shows
that the block cipher cryptanalysis techniques are powerful in analyzing the
non-linear resynchronization mechanism of a stream cipher.

The designers of WG recommended to use 44 steps in the initialization to
resist a differential attack [12]. It is a small modification to the design to achieve
secure key/IV setup. However, it is inefficient. We recommend to change the
primitive polynomial tap positions so that the tap distances are coprime, and
to generate the first keystream bit from S(1) instead of S(10). Then we expect
that WG with 22-step key/IV setup will be able to resist a differential attack.

Acknowledgements

The authors would like to thank the anonymous reviewers of SASC 2006 and
FSE 2006 for their helpful comments. Special thanks go to Alex Biryukov for
pointing out that the attack on LEX is slide attack and for helpful discussion.

References

1. F. Armknecht, J. Lano, and B. Preneel,“Extending the Resynchronization Attack,”
Selected Areas in Cryptography – SAC 2004, LNCS 3357, H. Handschuh, and A.
Hasan (eds.), Springer-Verlag, pp. 19-38, 2004.



432 H. Wu and B. Preneel

2. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,” in
Advances in Cryptology – Crypto’90, LNCS 537, pp. 2-21, Springer-Verlag, 1991.

3. A. Biryukov, D. Wagner, “Slide Attacks,” Fast Software Encryption – FSE’99,
LNCS 1636, pp. 245-259, Springer-Verlag, 1999.

4. A. Biryukov, “A New 128-bit Key Stream Cipher LEX,” ECRYPT Stream Cipher
Project Report 2005/013. Available at http://www.ecrypt.eu.org/stream/

5. J. Daemen, R. Govaerts, J. Vandewalle, “Resynchronization weakness in synchro-
nous stream ciphers,” Advances in Cryptology - EUROCRYPT’93, Lecture Notes
in Computer Science, vol. 765, pp. 159-167, 1994.

6. ECRYPT Stream Cipher Project, at http://www.ecrypt.eu.org/stream/
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