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Abstract. A black hole is a highly harmful stationary process residing in a node
of a network and destroying all mobile agents visiting the node without leav-
ing any trace. The Black Hole Search is the task of locating all black holes in a
network, through the exploration of its nodes by a set of mobile agents. In this
paper we consider the problem of designing the fastest Black Hole Search, given
the map of the network, the starting node and, possibly, a subset of nodes of the
network initially known to be safe. We study the version of this problem that as-
sumes that there is at most one black hole in the network and there are two agents,
which move in synchronized steps. We prove that this problem is not polynomial-
time approximable within 389

388 (unless P=NP). We give a 6-approximation al-
gorithm, thus improving on the 9.3-approximation algorithm from [3]. We also
prove APX-hardness for a restricted version of the problem, in which only the
starting node is initially known to be safe.

Keywords: approximation algorithm, black hole search, graph exploration, mo-
bile agent, inapproximability.

1 Introduction

The Background and the Problem. The problem of protecting mobile agents from
malicious hosts, i.e., nodes of a network which store harmful processes in them, has
been widely studied ([8, 9, 11, 12]). Even though various countermeasures have been
proposed, the general belief (see [8, 13]) is that it is very hard (when not virtually im-
possible) to fully protect mobile agents from malicious hosts attacks.

We consider here malicious hosts of a particularly harmful nature, called black holes
[3, 2, 4, 5, 6]. A black hole is a node in a network which contains a stationary process
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destroying all mobile agents visiting this node, without leaving any trace. Since agents
cannot prevent being annihilated once they visit a black hole, the only way of protection
against such processes is identifying the hostile nodes and avoiding further visiting
them. In order to locate a black hole, at least one agent must visit it. In the model we
considered, the agents communicate only when they are in the same node (and not, e.g.,
by leaving messages at nodes). Therefore, the black hole can be identified by scheduling
a meeting between the agents after any visit of an unknown node. If such node is a black
hole, then the agent which visits that node gets destroyed and cannot turn up at a node
where the other agents expect it. This allows the surviving agents to infer the existence
and location of a black hole.

In this paper we investigate the case in which there are exactly two agents, starting
from the same node s, to which at least one agent has to report back the exact locations
of the black holes. We assume that there is at most one black hole in the network. We
consider the problem of designing a black hole search scheme for a given network, a
given starting node s, and a given subset S ⊇ {s} of nodes which are initially known
to be safe. The black hole, if present, is at any node not in S. It is interesting to observe
that the assumption of having at most one black hole in the network does not make the
algorithm presented here unsuitable for the general case. A (single black hole) search
can be restarted for each new black hole found, on the network obtained by removing
all the black holes already found and by inserting into S the nodes already explored.
This can be iterated until all the network nodes become explored. Obviously, even if at
most two agents can simultaneously coexist in the network, the total number of agents
needed is related to the total number of black holes in the network.

The issue of efficient black hole search was extensively studied in [4, 5, 6] under the
scenario of totally asynchronous networks, i.e., while every edge traversal by a mobile
agent requires finite time, there is no upper bound on this time. To solve the problem in
this setting, the network must be 2-connected. Moreover, in an asynchronous network it
is impossible to answer the question of whether a black hole actually exists, hence it is
assumed in [4, 5, 6] that there is exactly one black hole and the task is to locate it. Due
to the asynchronous setting, it is not possible to provide a simple and easy to compute
measure of the time needed by the agents to find the black hole. Hence, the complexity
measure taken into account for the algorithms is the total number of moves performed
by the agents. In the general case, the authors show that Θ(n log n) moves are necessary
and sufficient.

In this paper we study the problem under the scenario of synchronous networks,
previously considered in [3, 2, 10]. In this scenario it is possible to fix the time needed
by an agent for traversing any edge. This assumption makes dramatic changes to the
problem. First, the black hole can be located by two agents in any network and the
agents can decide if there is a black hole or not. Moreover, it is possible in this case to
compute exactly the time needed by the agents to find the black hole. With respect to
the total number of moves, this is a more relevant measure in the cases in which there is
no cost associated with each agent’s traversal, but the target is to determine as quickly
as possible the location of the black hole. In order to measure the efficiency of a black
hole search, we assume that each agent takes exactly one time unit (one synchronized
step) to traverse one edge (and to make all necessary computations associated with
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this move). Then the cost of a given black hole search (scheme) is defined as the total
number of time units the search takes under the worst-case location of the black hole in
the network, or when the network contains no black hole.

Previous Results. In [3] the authors prove that the Black Hole Search problem is NP-
hard, and show a 9.3-approximation algorithm. The restricted case of this problem,
when the starting node is the only node initially known to be safe (S = {s}), is consid-
ered in [2] and [10]. In [10] the authors prove that this restricted case is also NP-hard,
and give a 7

2 -approximation algorithm. In [2] the problem is studied in tree topologies,
and the main results are an exact linear-time algorithm for some sub-class of trees and a
5/3-approximation algorithm for arbitrary trees. The existence of an exact polynomial-
time algorithm for arbitrary trees is left open.

Our Results. We show that the Black Hole Search problem is not approximable in
polynomial time within a 1 + ε factor for any ε < 1

388 , unless P=NP. Moreover, we
give a 6-approximation algorithm for this problem, i.e., a polynomial time algorithm
which, for any input instance, produces a black hole search scheme with cost at most 6
times the best cost of a black hole search scheme for this input. This improves on the
9.3-approximation algorithm shown in [3]. Finally we prove that the restricted case in
which only the starting node is initially known to be safe is also APX-hard.

2 Model and Terminology

We represent a network as a connected undirected graph G = (V, E), without mul-
tiple edges or self-loops, where nodes denote hosts and edges denote communication
links.1 The two agents, called Agent-1 and Agent-2, start the black hole search from a
STARTING NODE s ∈ V and explore graph G by traversing its edges. Together with the
starting node s, a subset of nodes S which are initially known to be safe is given. Let
U = V \ S, and let B ⊆ U , |B| ≤ 1, denote the (unknown) set of nodes containing
a black hole (we have either B = ∅ or B = {b}). We recall the formalization of the
Black Hole Search problem given in [10], extending it to the case of S containing more
nodes than only s, in the following way.

(General) Black Hole Search problem (gBHS)

Instance: a connected undirected graph G = (V, E), a subset of nodes S ⊂ V and a
node s ∈ S.

Solution: a feasible EXPLORATION SCHEME EG,S,s = (X, Y) for (G, S, s), where
X = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 are two equal-length sequences of
nodes in G. The feasibility of EG,S,s is determined by constraints 1–4 given below.
The length of EG,S,s is defined to be T .

Measure: the cost of the Black Hole Search (BHS) based on EG,S,s.
Goal: minimization.
1 In the following we will use the terms graph and network, host and node, and link and edge

interchangeably, although we tend to use the term graph to mean an abstract representation of
a network.
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When the BHS based on a given exploration scheme EG,S,s is performed in G,
Agent-1 follows the path defined by X while Agent-2 follows the path defined by Y.
At the end of the i-th step of the search (at time i), Agent-1 is in node xi while Agent-2
is in node yi. As soon as an agent deduces the value of B, it “aborts” the exploration
and returns to the starting node s by traversing nodes in V \ B. The cost of the BHS
based on EG,S,s is defined later in this section.

If X = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 are two equal-length sequences
of nodes in G, then EG,S,s = (X, Y) is a feasible exploration scheme for the input
(G, S, s) (and can be effectively used as a basis for a BHS in G) if the constraints 1–4
stated below are satisfied.

Constraint 1: x0 = y0 = s, xT = yT .

Constraint 2: for each i = 0, . . . , T − 1, either xi+1 = xi, or (xi, xi+1) ∈ E; and
similarly either yi+1 = yi or (yi, yi+1) ∈ E.

Constraint 3: U ⊆
⋃T

i=0 {xi} ∪
⋃T

i=0 {yi}.

Constraint 1 corresponds to the fact that both agents start from the given starting node s.
The requirement that the sequences X and Y end at the same node provides a convenient
simplification of the reasoning without loss of generality. Constraint 2 models the fact
that during each step, each agent can either WAIT in the node v where it was at the end
of the previous step, or traverse an edge of the network to move to a node adjacent to
v. Constraint 3 assures that each node in U is visited by at least one agent during the
exploration. We need additional definitions to state Constraint 4.

Given an exploration scheme EG,S,s = (X, Y), for each i = 0, 1, . . . , T , we call the
EXPLORED TERRITORY at step i the set Si defined in the following way:

Si =
{

S ∪
⋃i

j=0 {xj} ∪
⋃i

j=0 {yj} , if xi = yi;
Si−1, otherwise.

Thus S0 = S by Constraint 1, ST = V by Constraint 1 and Constraint 3, and Sj−1 ⊆
Sj for each step 1 ≤ j ≤ T . A node v is EXPLORED at step i if v ∈ Si, or UNEXPLORED

otherwise. An unexplored node v may have been already visited by one of the agents,
but it will become explored only when the agents meet, and communicate, next time
(the agents communicate with each other, exchanging their full knowledge, when and
only when they meet at a node). If both agents are alive at the end of step i, then the
explored nodes at this step are all nodes which are known to both agents to be safe.
Note that the explored territory is defined for an exploration scheme EG,S,s, not for the
BHS based on EG,S,s, and does not take into account the possible existence of the black
hole. This is taken into account in the definition of the cost of the BHS based on EG,S,s.

A MEETING STEP (or simply MEETING) is the step 0 and every step 1 ≤ j ≤ T
such that Sj �= Sj−1. Observe that, for each meeting step j, we must have xj = yj ,
but not necessarily the opposite, and we call this node a MEETING POINT. The meeting
steps are the steps when the agents meet and add at least one new node to the explored
territory. A sequence of steps 〈j + 1, j + 2, . . . , k〉 where j and k are two consecutive
meetings is called a PHASE of length k−j. We give now the last constraint on a feasible
exploration scheme.
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Constraint 4: for each phase with a sequence of steps 〈j + 1, j + 2, . . . , k〉,
(a) | {xj+1, . . . , xk} \ Sj | ≤ 1 and | {yj+1, . . . , yk} \ Sj | ≤ 1; and
(b) {xj+1, . . . , xk} \ Sj �= {yj+1, . . . , yk} \ Sj .

Constraint 4(a) means that during each phase, one agent can visit at most one unex-
plored node. If it visited two or more unexplored nodes and one of them was a black
hole, then the other, surviving, agent would not know where exactly the black hole is.
Constraint 4(b) says that the same unexplored node cannot be visited by both agents
during the same phase, or otherwise they both may end up in a black hole (see [2]
for a formal proof of this fact). From now on an exploration scheme means a feasible
exploration scheme. We recall from [10] the next two simple observations.

Lemma 1. If k ≥ 1 is a meeting step for an exploration scheme EG,S,s, then xk =
yk ∈ Sk−1.

Lemma 2. Each phase of an exploration scheme EG,S,s has length at least 2.

Any phase 〈j + 1, j + 2〉 of length 2 which expands the explored territory by 2 nodes
has to have the following structure. Let m be the meeting point at step j. During step
j + 1, Agent-1 visits an unexplored node v1 adjacent to m, while Agent-2 visits an
unexplored node v2 adjacent to m as well, and v1 �= v2. In step j + 2, the agents meet
in a node which has been already explored and is adjacent to both v1 and v2. This node
can be either m, and in this case we denote the phase as b-split(m, v1, v2), or a different
node m′ �= m, and in this case the phase is denoted as a-split(m, v1, v2, m

′).
For an exploration scheme EG,S,s = (X, Y) and a location of a black hole B,

the EXECUTION TIME is defined as follows. If B = ∅, then the execution time is
equal to the length T of the exploration scheme, plus the shortest path distance from
xT (= yT ) to s. In this case the agents must perform the full exploration (spending
one time unit per step) and then get back to the starting node to report that there is
no black hole in the network. If B = {b} ⊆ U , then let j be the first step in EG,S,s

such that b ∈ Sj . Observe that j must be a meeting step and 1 ≤ j ≤ T , since
S0 = S and ST = V . The execution time in this case is equal to j plus the length
of the shortest path from xj(= yj) to s not including b. In this case one agent, say
Agent-1, vanishes into the black hole during the phase ending at step j, so it does not
show up to meet Agent-2 at node xj = yj . Since, by Constraint 4, Agent-1 has vis-
ited only one unexplored node during the phase, the surviving Agent-2 learns the exact
location of the black hole and thus it goes back to s, obviously omitting the black
hole.

The COST of the BHS based on an exploration scheme EG,S,s = (X, Y) is denoted
by cost(EG,S,s) and defined as the worst (maximum) execution time of EG,S,s over all
possible values of B (including B = ∅). The target of the black hole search problem
is to find an exploration scheme EG,S,s which yields a minimum cost BHS over all
possible exploration schemes for (G, S, s).

The following lemma helps to simplify, at least in some cases, the computation of
the cost of the BHS based on a given exploration scheme.
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Lemma 3. Let (G, S, s) be an input instance for the gBHS problem, and let U be the
set of initially unexplored nodes (U = V \ S). The case B = ∅ yields the maximum
execution time for any exploration scheme in (G, S, s), if and only if, by removing any
node u ∈ U from G, each node in V \ {u} either becomes disconnected from s, or
maintains its shortest path distance from s.2

3 Approximation Lower Bound for the General BHS Problem

In this section we provide an explicit lower bound on the approximability of the General
Black Hole Search problem by showing an approximation preserving reduction from a
particular subcase of the Traveling Salesman Problem, presented in [7], and defined in
the following way.

(1,M)-Traveling Salesman Problem (TSP(1,M))

Instance: a pair (G, d), where G = (V, E) is a complete graph (with n = |V |) and
d : V 2 → {1, . . . , M} is a distance function associating to each pair of nodes
(v, u) a positive integer length d(v, u) between 1 and M (where M is a constant).
Function d is symmetric (i.e., d(u, v) = d(v, u)) and satisfies the triangle inequality
(i.e., d(i, j) + d(j, k) ≥ d(i, k), ∀i, j, k ∈ V ).

Solution: a tour τ of G, i.e., a permutation τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 of the nodes
in V .

Measure: the length (or cost) of the tour, i.e., cost(τ ) =
∑n−1

i=1 d(vπ(i), vπ(i+1)) +
d(vπ(n), vπ(1)).

Goal: minimization.

In [7] it is also presented a lower bound on the approximability of such problem.

Lemma 4. It is NP-hard to approximate TSP(1,8) within 1 + ε for any ε < 1
388 .

Reduction from instances (G, d) of TSP(1,M) to instances (G′, S, s) of gBHS.
Let (G, d) be an instance of TSP(1,M). We define the graph G′ = (V ′, E′), the set
S ⊂ V ′, and the starting node s, in the following way. Let v1 be an arbitrary node in V .
We add v1 to V ′ and to S, and we define s = v1. For each node vi (2 ≤ i ≤ n) in V , we
add to V ′ a pair of nodes v′i, v

′′
i . We denote node v1 as the ISLAND I1, and each pair of

nodes v′j , v′′j as the ISLAND Ij . For each edge (vi, vj) in E of length d(vi, vj), we add
to V ′ (and to E′) a path of 2 · d(vi, vj) − 1 nodes (BRIDGE i ↔ j), whose endpoints
are adjacent respectively to v′i, v

′′
i (or v1 if i = 1) and to v′j , v

′′
j (or v1 if j = 1). We

add all the nodes of the bridge to S. We call as bi,j and as bj,i the endpoints of bridge
i ↔ j adjacent respectively to island Ii and island Ij (note that if d(vi, vj) = 1, then
bi,j ≡ bj,i). Each bridge is composed by at least one (safe) node, and |V ′\S| = 2(n−1).
An example of reduction is given in Figure 1.

Lemma 5. The distance in G′ between any node of island Ii and any node of island Ij

(where i �= j and i, j = 1, . . . , n) is equal to 2 · d(vi, vj).

The following lemma gives a useful characterization of G′.
2 Due to space constraints, the proofs of some lemmas have been omitted in this extended

abstract.
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Fig. 1. An example of the reduction from an instance (G, d) (in a)) to an instance (G′, S, s) (in
b)). The nodes in S are filled with gray color.

Lemma 6. Let G′ be a graph produced with the above mentioned construction. The
case B = ∅ yields the maximum execution time for any exploration scheme in G′.

Now we define an exploration scheme on G′ which explores the islands in G′, in the
order defined by a tour on G. In the following definition we introduce a new keyword:
walk. By walk(b) we mean that both agents (which are supposed to be already in the
same node w), move to b by following a shortest (safe) path from w to b. Actually, the
walk is not a complete phase (no new nodes are explored), but it is the initial part of a
phase.

Let τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 be a tour on G of length l. We assume w.l.o.g. that
π(1) = 1. A τ -BASED EXPLORATION SCHEME Eτ

G′,S,s on G′ consists of the following
sequence of steps:

1. walk(b1,π(2)), where b1,π(2) is the node adjacent to s on the bridge 1 ↔ π(2);
2. for each i = 2, . . . , n:

(a) walk(bπ(i),π(i−1)), where bπ(i),π(i−1) is the node adjacent to Iπ(i) on the bridge
π(i − 1) ↔ π(i);

(b) a-split(bπ(i),π(i−1), v
′
π(i), v

′′
π(i), bπ(i),π(i+1)), where bπ(i),π(i+1) is the node ad-

jacent to Iπ(i) on the bridge π(i) ↔ π(i + 1) (or bridge π(n) ↔ 1 if i = n).

Given the tour τ in G, the τ -based exploration scheme Eτ
G′,S,s can be obviously con-

structed in linear time. In the following lemma we compute the cost of the Black Hole
Search based on Eτ

G′,S,s.

Lemma 7. Given a tour τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 on G of length l, the τ -based
exploration scheme Eτ

G′,S,s satisfies cost(Eτ
G′,S,s) = 2 · l.
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Corollary 1. Let (G, d) be an instance of the TSP(1,M) problem, and let (G′, S, s) be
the corresponding instance of the BHS problem where the graph G′ is constructed as
explained before. Moreover, let τ∗ be an optimal solution for (G, d) and let E∗

G′,S,s be
an optimal solution for (G′, S, s). Then cost(E∗

G′,S,s) ≤ 2 · cost(τ∗).

In what follows we show a method to modify an exploration scheme without altering its
properties (i.e., feasibility, length, sequence of explored territories and the cost of the
BHS based on it). We then use this technique to impose a characteristic of “regularity”
to any exploration scheme on G′.

Definition 1. Let EG,S,s = (X, Y) be an exploration scheme for (G, S, s), and let φ =
(Xφ, Yφ) be a phase in EG,S,s. Let E ′

G,S,s be the exploration scheme obtained from
EG,S,s by swapping the paths of the two agents in phase φ, i.e., φ′ = (Yφ, Xφ). We call
this operation a PHASE-SWAP. Two exploration schemes are EQUIVALENT if and only
if one is obtained from the other by applying a finite sequence of phase-swaps.

Lemma 8. Let EG,S,s = (X, Y) be an exploration scheme for (G, S, s). Let E ′
G,S,s

be the exploration scheme obtained from EG,S,s by applying a phase swap on EG,S,s.
Then, the exploration scheme E ′

G,S,s is feasible, has exactly the same meeting points,
the same sequence of explored territories and the same length as EG,S,s. Moreover,
cost(E ′

G,S,s) = cost(EG,S,s).

Corollary 2. Two equivalent exploration schemes have exactly the same meeting
points, the same sequence of explored territories and the same length. Moreover the
cost of the BHS based on them is the same.

We now turn back our focus to instances (G′, S, s) constructed by reduction from in-
stances (G, d). We give a classification of each phase of any exploration scheme in G′.
A phase φ is a 2s-phase if the two nodes of the same island are explored during φ. It
is a 2d-phase, if two nodes in two distinct islands are explored during φ. Finally, it is a
1-phase if only one node is explored during φ.

Definition 2. Given an exploration scheme EG′,S,s, we define the PHASE GRAPH of
EG′,S,s, the following directed multigraph P (EG′,S,s). The graph P (EG′,S,s) has the
nodes v2, . . . , vn corresponding to the islands I2, . . . , In in G′, plus one further node
which we call x. The following edges are added to P (EG′,S,s):

– a directed edge 〈vi, x〉 (〈x, vi〉) is added for each node in island Ii which is explored
during a 1-phase by Agent-1 (Agent-2);

– a directed edge 〈vi, vj〉 is added for each 2d-phase exploring a node of island Ii

with Agent-1 and a node of island Ij with Agent-2;
– a directed self-loop 〈vi, vi〉 is added if the nodes of island Ii are explored by a

2s-phase.

Lemma 9. Given any exploration scheme EG′,S,s, each node of the phase graph
P (EG′,S,s) has degree (= in-degree + out-degree) equal to 2.

The graph P (EG′,S,s) is thus a set of connected components. In the underlying undi-
rected multigraph, these components are either cycles or isolated nodes. Now we give a
new characterization of an exploration scheme in G′.
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Definition 3. An exploration scheme EG′,S,s is REGULAR if and only if each agent
explores exactly one node of each island Ij , with j = 2, . . . , n.

Notice that any τ -based exploration scheme is regular; we can observe that each node
in P (Eτ

G′,S,s) is an isolated node (the only adjacent edge is a self-loop). Indeed, we can
prove a tighter relation between regular exploration schemes and their corresponding
phase graph.

Lemma 10. An exploration scheme EG′,S,s is regular if and only if, in the correspond-
ing phase graph P (EG′,S,s), for each node vi, indeg(vi) = 1 and outdeg(vi) = 1.

Lemma 11. For any exploration scheme EG′,S,s there is an equivalent regular one that
can be found in linear time.

Proof. We want to prove that we can find in linear time a finite sequence of phase-swaps
in EG′,S,s,which transforms EG′,S,s into a regular exploration scheme. By Lemma 10,
this means transforming P (EG′,S,s) into a graph where, for each node vi, indeg(vi) =
1 and outdeg(vi) = 1. We can observe that each phase-swap in EG′,S,s produces a
change in the orientation of the corresponding edge in P (EG′,S,s). Since P (EG′,S,s) is
composed by a set of cycles and isolated nodes, we can swap the edges in the cycles
according to a fixed orientation (e.g., clockwise orientation), and thus make regular the
graph P (EG′,S,s), and the corresponding exploration scheme. ��
Lemma 12. Given an exploration scheme EG′,S,s, we can find in linear time a tour τ on
G such that, for the τ -based exploration scheme Eτ

G′,S,s, cost(Eτ
G′,S,s) ≤ cost(EG′,S,s).

Proof. By Corollary 2 and Lemma 11, we can assume w.l.o.g. that EG′,S,s is a regular
exploration scheme. By regularity, Agent-1 explores a node of each island in G′. Let
IX = 〈Iπ(2), . . . , Iπ(n)〉 be the sequence of the islands in G′ in the order they are ex-
plored by Agent-1. Let τ be the tour in G corresponding to IX (i.e., τ = 〈v1, vπ(2), . . . ,
vπ(n)〉), and let l = cost(τ ). We show that the τ -based exploration scheme Eτ

G′,S,s is
such that cost(EG′,S,s) ≥ cost(Eτ

G′,S,s). Consider the case B = ∅ (Lemma 6). Agent-1
starts from s, visits islands in IX and then gets back to s. By Lemma 5, the length of this
tour is at least 2 · l. The execution time of EG′,S,s cannot be shorter than 2 · l. Therefore,
cost(EG′,S,s) ≥ 2 · l ≥ cost(Eτ

G′,S,s). ��
Lemma 13. Let G be an instance of the TSP(1,M) problem, and let G′ be the corre-
sponding instance of the gBHS problem. Moreover, let τ∗ be an optimal tour in G, and
let E∗

G′,S,s be an optimal exploration scheme for G′. Let ε > 0. If we can find in polyno-
mial time an exploration scheme EG′,S,s such that cost(EG′,S,s) ≤ cost(E∗

G′,S,s)(1+ε),
then we can find in polynomial time a tour τ in G such that cost(τ ) ≤ cost(τ∗)(1 + ε).

Proof. Suppose that, given a graph G′, we can construct in polynomial time an explo-
ration scheme EG′,S,s such that its cost is at most 1 + ε times the cost of an optimal ex-
ploration scheme. By Lemma 12, we can find an exploration scheme Eτ

G′,S,s, based on a
tour τ in G, such that cost(Eτ

G′,S,s) ≤ cost(EG′,S,s) ≤ cost(E∗
G′,S,s)(1 + ε). Supposing

that the length of the tour τ is l, then, by Lemma 7: cost(Eτ
G′,S,s) = 2 · l. Supposing

that the length of the optimal tour τ∗ is l∗, then, by Corollary 1: cost(E∗
G′,S,s) ≤ 2 · l∗.

Therefore, by hypothesis: 2 ·l = cost(Eτ
G′,S,s) ≤ cost(E∗

G′,S,s)(1+ε) ≤ 2 ·l∗(1+ε),
and hence, l ≤ l∗(1 + ε) . ��
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The main theorem immediately follows from Lemma 4 and Lemma 13.

Theorem 1. The gBHS problem is not approximable in polynomial time within a factor
of 1 + ε for any ε < 1

388 , unless P=NP.

4 The Restricted BHS Problem Is APX-Hard

In this section we consider the restricted version of the BHS problem in which S = {s},
i.e., the starting point is the only node initially known to be safe (we denote it as rBHS).
We show that the BHS problem with this restriction remains APX-hard. The input of
rBHS is fully specified by providing a graph G and the starting node s. We will hence
use now the notation EG,s to refer to an exploration scheme.

We will prove APX-hardness of the rBHS problem using APX-hardness of the
TSP(1,2) problem. We first recall Lemma 6.3 from [1]:

Lemma 14. Assume we are given an instance of TSP(1,2) on the n-node complete
graph G, in the form of the subgraph G of G containing the edges of weight 1. Assume
that G has max degree 3. Assume that we know that its minimum cost TSP tour is either
of cost n or at least (1 + ε0)n, for some fixed ε0. Then there exists such a constant
ε0 for which it is NP-hard to decide which of the two cases holds. The claim holds for
ε0 = 1

786 . If G is cubic then the claim holds for ε0 = 1
1290 .

We show a polynomial-time reduction algorithm A from TSP(1,2) to rBHS, which
takes as input an instance G of TSP(1,2), computes an instance (G′, s) of rBHS, and
has the following property.

Lemma 15. Let 0 < ε < ε0/7, let G be an n-node cubic graph (an instance of
TSP(1,2)), and let (G′, s) be the corresponding instance of rBHS computed by the
reduction algorithm A. Then the following two conditions hold.

1. If the optimal cost of a tour in G is equal to n, then the optimal cost of an explo-
ration scheme for (G′, s) is at most 7

2n + 1.
2. There exists n0 = n0(ε0, ε) such that for n ≥ n0, if the optimal cost of a tour in G

is at least n(1 + ε0), then the optimal cost of an exploration scheme for (G′, s) is
greater than

( 7
2n + 1

)
(1 + ε).

This lemma implies that for 0 < ε < ε0/7 and n ≥ n0, if we have an n-node cubic
graph G and we know that the optimal cost of a tour in G either is equal to n or is at
least n(1 + ε0), then we can decide which of these two cases happens, if we have an
(1 + ε)-approximation of the optimal cost of an exploration scheme for (G′, s). Thus
Lemmas 14 and 15 imply the following theorem.

Theorem 2. It is NP-hard to compute (1+ε)-approximate exploration schemes for the
rBHS problem for any ε < 1

9030 .

Description of the Reduction Algorithm A. Let an n-node graph G = (V, E) be the
input instance of TSP(1,2). The construction of the instance (G′, s) of rBHS proceeds
as follows. We pick an arbitrary node in G (say v1) as the starting node (s ≡ v1) and
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we add it to G′ (as before, this is island I1). For each node vi in G, 2 ≤ i ≤ n, we add
in G′ a pair of unexplored nodes v′i, v

′′
i (as before, we denote this pair as island Ii). For

each edge (vi, vj) in G, we put in G′ an unexplored node bi,j (bridge node), connected
to v′i, v

′′
i (if i > 1), to v′j , v

′′
j (if j > 1) and to s. If the number of bridge nodes (that is,

the number of edges in G) is odd, then we add another unexplored node bs adjacent to s
(to ensure that s is adjacent to an even number of unexplored nodes). Node s is adjacent
to all bridge nodes and is not adjacent to any “island” nodes.

Sketch of Proof of Lemma 15. Let G be an n-node cubic graph. Since G has m =
3
2n edges, the total number of nodes in G′ is 7

2n − 1 + odd(m), and all of them but
one are initially unexplored. For an integer k, odd(k) is equal to 1, if k is odd, and
to 0 otherwise. As in Section 3, we define for a tour τ = 〈v1, vπ(2), . . . , vπ(n)〉 in
G, the exploration scheme Eτ

G′,s for (G′, s), which explores two by two the nodes of
each island in the order 〈Iπ(2), . . . , Iπ(n)〉. Here, however, the scheme first explores the
bridge nodes.

More formally, the scheme Eτ
G′,s has the following sequence of steps.

1. While there are two unexplored nodes b′, b′′ adjacent to s: b-split(s, b′, b′′).
2. For each i = 2, . . . , n:

(a) walk(b′), where b′ is either the bridge node bπ(i−1),π(i), if nodes vπ(i−1) and
vπ(i) are adjacent in G, or any bridge node adjacent to Ii otherwise.

(b) a-split(b′, v′π(i), v
′′
π(i), b

′′), where b′′ is either the bridge node bπ(i),π(i+1), if i <
n and nodes vπ(i) and vπ(i+1) are adjacent in G, or any bridge node adjacent
to Ii otherwise.

The first walk operation, for i = 2, has length 1. For each 3 ≤ i ≤ n, the walk operation
has length either 0, if nodes vπ(i−1),π(i) are adjacent in G, or 2, if nodes vπ(i−1),π(i) are
not adjacent in G. Therefore, if the tour τ has cost n + d (that is, contains d edges of
weight 2), then the exploration scheme Eτ

G′,s has length at most 3
2n+odd(m)+1+2d+

2(n − 1) ≤ 7
2n + 2d. The execution time for the case B = ∅ is at most 7

2n + 2d + 1,
since Eτ

G′,s ends in a bridge node, which is adjacent to s. This is also the cost of the
BHS based on Eτ

G′,s. When an agent realizes that there is a black hole, then this agent
must be at a meeting point, and each meeting point is either node s or a bridge node,
which is adjacent to s. Hence, if the cost of tour τ is n, then d = 0 and the cost of Eτ

G′,s

is at most 7
2n + 1, so the first part of Lemma 15 holds.

To prove the second part of Lemma 15, consider an arbitrary exploration scheme
EG′,s. By using a similar approach as in Section 3, we can find, through a sequence
of phase swaps, a “regular” exploration scheme E ′

G′,s, equivalent to EG′,s, where each
agent explores exactly one node of each island Ij for j = 2, . . . , n, and cost(E ′

G′,s) =
cost(EG′,s). We assume by symmetry that scheme E ′

G′,s is such that Agent-1 explores
nodes v′j , j = 2, . . . , n, and that 〈v′π(2), . . . , v

′
π(n)〉 is the order in which Agent-1 ex-

plores these nodes. We consider the tour τ = 〈v1, vπ(2), . . . , vπ(n)〉 in G.
Let d be the number of weight 2 edges in τ . Thus the number of indices i, 2 ≤ i ≤

n − 1, such that (vπ(i), vπ(i+1)) is not an edge in G is at least d − 2. Consider any
of these indices i and two consecutive phases φji and φji+1 in E ′

G′,s, where φji is the
phase during which node v′π(i) is explored by Agent-1. It can be shown that at least one
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of the two phases φji and φji+1 is not a split, so at least (d − 2)/2 phases in scheme
E ′

G′,s are not splits.
The cost of any exploration scheme is at least the number of unexplored nodes plus

the number of phases other than splits. Therefore, we have cost(E ′
G′,s) ≥ 7

2n − 3 + d
2 .

This implies that if cost(E ′
G′,s) ≤

( 7
2n + 1

)
(1 + ε), then d ≤ 7εn + 2(4 + ε), and

cost(τ ) = n+d ≤ n+7εn+2(4+ε) ≤ n(1+ε0)−(ε0−7ε)n+2(4+ε) < n(1+ε0),

provided that ε < ε0/7 and n ≥ n0 = �2(4 + ε)/(ε0 − 7ε) + 1�.

5 A 6-Approximation Algorithm for the General BHS Problem

Let G, S and U be defined as in Section 2. We define the distance graph Ĝ as the
complete weighted graph in which the set of nodes corresponds to the nodes in U ∪
{s} and the weight of edge (vi, vj) is the shortest path distance from vi to vj in G

(considering both safe and unexplored nodes). Weights in Ĝ satisfy triangle inequality.
Let T be the minimum spanning tree of Ĝ rooted at s, and let cost(T ) be its cost, i.e.,
the sum of the weights of all its edges. Let LT = 〈v0 ≡ s, v1, . . . , vu〉 be the depth-first
ordering of the nodes in T , and let LG be the sequence obtained from LT by replacing
each pair of adjacent nodes vi, vi+1 with the shortest path in G from vi to vi+1. Since
the distance from vi to vi+1 is at most the (weighted) cost of path vi, . . . , vi+1 in T , the
length of LG is at most 2cost(T ) − d(vu, s).

We now construct the exploration scheme EG,S,s = (X, Y) for G. Initially X = Y =
LG. Then, the pairs of adjacent steps 〈xi, xi+1〉 and 〈yi, yi+1〉 are considered from
i = 1, . . . , k. If xi = yi = v′ and xi+1 = yi+1 = v′′, where v′′ is an unexplored node
occurring for the first time in the sequences, we replace 〈v′, v′′〉 in X with the sequence
〈v′, v′′, v′, v′′〉 and we replace 〈v′, v′′〉 in Y with the sequence 〈v′, v′, v′, v′′〉. This is to
assure that each time the agents have to visit an unexplored node, Agent-1 first explores
it by using the technique of probing. Since |U | is the number of unexplored nodes, 2|U |
steps are added to exploration scheme EG,S,s. The length of EG,S,s is therefore at most
2cost(T ) − d(vu, s) + 2|U |, while the execution time in the case B = ∅ is at most
2cost(T ) + 2|U | since the surviving agents have to get back from vu to s. Observing
that B = ∅ yields the worst case for the execution time since we are operating on a tree,
we can derive the following lemma.

Lemma 16. The exploration scheme EG,S,s is feasible and cost(EG,S,s) ≤ 2cost(T )
+ 2|U |.

Consider now an optimal exploration scheme E∗
G,S,s = (X∗, Y∗). In computing

cost(E∗
G,S,s) we consider, as lower bound, the execution time of E∗

G,S,s in the case
B = ∅. Let L′ = (xk, . . . , s) be the shortest path in G from the last node xk in X

∗

to the starting node, excluding the endpoints xk and s. Let L′′ = X
∗ ◦L′ ◦Y

∗ ◦L′ ◦ 〈s〉.
The sequence L′′ starts from s, visits all the nodes in U and ends in s. The length of L′′

(we denote it as |L′′|) is at most twice the execution time of E∗
G,S,s in the case B = ∅,

since L′′ is the concatenation of the paths the two agents follow during the exploration
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in such case; hence 2cost(E∗
G,S,s) ≥ |L′′|. Let L∗ be the minimum (shortest) tour in

G starting from s and visiting all the nodes in U , and let |L∗| be its length; obviously,
|L′′| ≥ |L∗|.

Due to its optimality, L∗ has the following structure: L∗ = 〈s〉◦P (s, u1〉◦P (u1, u2〉◦
. . . ◦ P (uu, s〉 where 〈u1, . . . , uu〉 is the sequence of unexplored nodes in the order
they are visited for the first time in L∗, and P (x, y〉 is the shortest path from node x
(excluded) to node y in G. Since weights in G satisfy triangle inequality, the length
of L∗ is equal to the length of the minimum traveling salesman tour in Ĝ, which is
at least the cost of the minimum spanning tree T of Ĝ. Therefore, |L∗| ≥ cost(T ),

and cost(E∗
G,S,s) ≥ cost(T )

2 . Moreover, the trivial lower bound holds: cost(E∗
G,S,s) ≥

|U |. We compute the approximation ratio of the algorithm presented in this section,
by choosing a suitable balance for the two bounds on the optimal cost. Therefore:
cost(EG,S,s)
cost(E∗

G,S,s)
≤ 2 cost(T )+2 |U|

2
3

cost(T )
2 + 1

3 |U|
= 6 .

Theorem 3. The gBHS problem is approximable within 6.

6 Conclusions

We showed that the problem of computing an optimal exploration scheme for a BHS
with two agents (the gBHS problem) is not approximable within 389

388 (unless P=NP).
We also showed that for the restricted version of this problem (the rBHS problem),
when initially only one, starting node is known to be safe, approximating within any fac-
tor less than 9031

9030 is NP-hard. We have presented a polynomial-time 6-approximation
algorithm for the gBHS problem (while a polynomial-time 3 1

2 -approximation algo-
rithm for the rBHS problem was previously shown in [10]).

It seems very difficult to reduce significantly the gap between the upper and lower
bounds on the approximation ratios for the gBHS and rBHS problems. However, some
small improvements can be achieved, for example, by showing, with a more detailed
analysis, that Lemma 15 holds also for 0 < ε < 2ε0/7 and for graphs G of maxi-
mum degree 3. This improves the constant in the lower bound for the rBHS problem
to 2752

2751 . Since our lower bounds are based on reductions from problems TSP(1,8) and
TSP(1,2), any improvements of the inapproximability results for those problems will
directly lead to improved lower bounds for our problems.

We believe that we can improve the 6 approximation ratio, by a more detailed analy-
sis of the bad case, when the two lower bounds on the optimal cost of an exploration
scheme are similar. More precisely, if the ratio cost(T )/2|U | is in the range [1−δ, 1+δ],
for some small constant δ > 0, then one should be able to derive a lower constant than
6 for the bound (5) using a similar analysis as in [10]. If cost(T )/2|U | is outside of this
range, then the left-hand side of (5) is less than 6 − δ. This approach would however
lead most likely only to a small improvement, while requiring substantial expansion
and refinement of technical details.

As already observed in Section 1, it would be interesting to investigate how one
could model and analyse the more practical and more general case of multiple black
holes search, possibly performed by more than two agents.
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