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Preface

The 9th International Conference on Principles of Distributed Systems (OPODIS
2005) was held during December 12–14, 2005 in Pisa, Italy. It continued a tra-
dition of successful conferences with friendly and pleasant atmospheres. Previ-
ous OPODIS conferences were held in Chantilly (1997), Amiens (1998), Hanoi
(1999), Paris (2000), Mexico (2001), Reims (2002), La Martinique (2003), and
Grenoble (2004).

The OPODIS conference constitutes an open forum for the exchange of state-
of-the-art knowledge on distributed computing and systems among researchers
from around the world. Following the tradition of the previous events, the 2005
program was composed of high-quality contributed papers by experts of inter-
national caliber in this scientific area. Papers were sought soliciting original
research contributions to the theory, specifications, design and implementation
of distributed systems, including:

– communication and synchronization protocols
– distributed algorithms, multiprocessor algorithms
– distributed collaborative environments
– embedded systems
– fault-tolerance, reliability, availability
– grid and cluster computing
– location- and context-aware systems
– mobile computing and networks
– peer-to-peer systems, overlay networks
– performance analysis of distributed algorithms and systems
– real-time systems
– security issues in distributed computing and systems
– sensor networks
– specification verification and testing of distributed systems

This year, a particular focus was placed on real-time systems and wireless
networks.

In response to the call for papers for OPODIS 2005, 109 papers in the above
areas were submitted from 30 countries from around the world. Each paper was
reviewed by at least three reviewers, and judged according to scientific and pre-
sentation quality, originality and relevance to the conference topics. The Program
Committee selected 30 papers for presentation at the conference. In addition to
the submitted technical papers, the program included two exciting invited talks,
by David Peleg (Weizmann Institute of Science, Israel), and by Giorgio Buttazzo
(Scuola Superiore S. Anna of Pisa). We are grateful that these two distinguished
experts accepted our invitation to share with us their views on various aspects
of the field.



VI Preface

It is impossible to organize a successful program without the help of many
individuals. We would like to express our appreciation to the authors of the sub-
mitted papers, the Program Committee members and the external referees. We
would also like to thank the OPODIS Steering Committee members, in partic-
ular the chairman Philippas Tsigas, who supervised and supported the continu-
ation of this event. We owe special thanks to the Organizing Committee chair,
Giuseppe Prencipe (Università di Pisa, Italy), the publicity chair, Thomas Mosci-
broda (ETH Zurich, Switzerland), and Andreas Wetzel (ETH Zurich, Switzer-
land) for his assistance with the electronic submission and reviewing system.

December 2005 James H. Anderson and Roger Wattenhofer
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Philippe Hunel
Martin Hutle
Damir Isovic
Gian Paolo Jesi
Colette Johnen
Eunjin Jung
Koushik Kar
Rastislav Kralovic
Pierre Lemarinier
Antonio Mancina
Ernesto Martins
Alessia Milani
Florent Nolot
Linda Pagli
Paulo Pedreiras
Evaggelia Pitoura
Matteo Repeti
Laurent Rosaz
Eric Ruppert



Organization IX
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Distributed Algorithms for Systems
of Autonomous Mobile Robots

David Peleg�

Department of Computer Science, The Weizmann Institute of Science, Rehovot, Israel
david.peleg@weizmann.ac.il

Over the last five decades, mobile robots have been the focus of extensive research
and development activities, with numerous applications for industrial tasks, mil-
itary operations, search and rescue missions and space exploration, as well as
some home applications.

Systems consisting of a group of autonomously operating mobile robots (some-
times referred to as robot swarms) have attracted considerable interest through-
out the past twenty years, due to their potential for providing flexible, low-cost
solutions in hazardous situations (e.g., military operations, toxic environments
or fire fighting). The idea is to deal with such applications using swarms con-
sisting of many small and simple robots, with very limited capabilities (e.g., low
energy sources, limited communication means and weak processors). The use of
tiny, functionally simple and cheap robots may make it acceptable to lose some
of the robots, so long as the team manages to achieve its collective goals.

The main research efforts invested so far in mobile robots focused on the main
engineering aspects of providing physical functionalities. Nevertheless, it seems
clear that the design of very large robots swarms makes it essential to reconsider
also control and coordination issues. For instance, managing the movements of a
robot swarm involves new and interesting algorithmic problems due to the need
to coordinate the movements of the individual robots and avoid collisions and
over-crowding. Coordination tasks studied so far in the literature include gath-
ering a robot swarm to a single point, pattern formation, flocking (or following
a leader), partitioning, spreading and searching.

Most existing experimental settings of robot swarms involve small swarms (of,
say, up to a dozen robots), which allow centralized control. However, future robot
swarms, consisting of tens of thousands of robots, can no longer be controlled
centrally in an efficient manner, and it seems that certain tasks may need to be
managed by distributed protocols. Indeed, there have been a number of recent
studies on distributed coordination and control protocols for robot swarms. From
the point of view of the community of distributed algorithms and systems, this
presents an interesting new distributed model that differs in a number of key as-
pects from the traditional models, and raises some intriguing research problems.

The talk will review this exciting research area, present some of the main
problems and issues raised by it, and discuss directions for future study.
� Supported by the Israel Science Foundation (grant No. 693/04).

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Real-Time Issues in Mobile Wireless Networks

Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa

The use of cooperating mobile robots is requested in an increasing number
of application domains, including civil protection, surveillance, environmental
monitoring, under-water exploration, and space missions. In most of these ap-
plications, the robot units are required to acquire sensory information, localize
themselves in the environment, plan trajectories, avoid obstacles, and cooperate
with the other robots to reach a common goal.

To achieve such objectives, the development of a team of cooperating robots
poses several interesting problems from a research point of view, such as the real-
time execution of acquisition and control processes, the efficient management of
computational resources, the software control of energy consumption, the real-
time communication protocols on wireless networks, and the development of
distributed agreement algorithms for reaching a consensus in collective decisions.
Moreover, small mobile robots are often controlled by micro-controllers having
low computational power and limited resources, hence satisfying timing con-
straints requires the use of efficient operating systems and algorithms that can
guarantee a predictable behavior both in normal and overload conditions.

This talk will present some of the most challenging problems to be solved
in order to support the development of mobile wireless networks of cooperating
robots.

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Lazy Concurrent List-Based Set Algorithm

Steve Heller1, Maurice Herlihy2, Victor Luchangco1, Mark Moir1,
William N. Scherer III3, and Nir Shavit1

1 Sun Microsystems Laboratories
2 Brown University

3 University of Rochester

Abstract. List-based implementations of sets are a fundamental build-
ing block of many concurrent algorithms. A skiplist based on the lock-free
list-based set algorithm of Michael will be included in the JavaTM Con-
currency Package of JDK 1.6.0. However, Michael’s lock-free algorithm
has several drawbacks, most notably that it requires all list traversal op-
erations, including membership tests, to perform cleanup operations of
logically removed nodes, and that it uses the equivalent of an atomically
markable reference, a pointer that can be atomically “marked,” which is
expensive in some languages and unavailable in others.

We present a novel “lazy” list-based implementation of a concurrent
set object. It is based on an optimistic locking scheme for inserts and
removes, eliminating the need to use the equivalent of an atomically
markable reference. It also has a novel wait-free membership test op-
eration (as opposed to Michael’s lock-free one) that does not need to
perform cleanup operations and is more efficient than that of all previ-
ous algorithms.

Empirical testing shows that the new lazy-list algorithm consistently
outperforms all known algorithms, including Michael’s lock-free algo-
rithm, throughout the concurrency range. At high load, with 90% mem-
bership tests, the lazy algorithm is more than twice as fast as Michael’s.
This is encouraging given that typical search structure usage patterns
include around 90% membership tests. By replacing the lock-free mem-
bership test of Michael’s algorithm with our new wait-free one, we achieve
an algorithm that slightly outperforms our new lazy-list (though it may
not be as efficient in other contexts as it uses Java’s RTTI mechanism
to create pointers that can be atomically marked).

1 Introduction

Lists are a fundamental building block for concurrent data structures, both in
their own right, and as the basis for many types of search and dictionary data
types [12]. We consider three kinds of list operations: inserting a list entry, re-
moving a list entry, and testing whether an entry is in the list.

This paper introduces the lazy list, a simple new concurrent list-based set al-
gorithm with a number of novel concurrency-related properties. To explain the
novel aspects of lazy lists, we start with an overview of different ways to synchro-
nize lists. Coarse-grained locking, which uses a single lock to protect the entire

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, pp. 3–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 S. Heller et al.

list, has the advantage of simplicity, but provides no concurrency. With lock
coupling (sometimes called “hand-over-hand” locking) [1], a thread acquires the
lock for each successive entry before releasing the lock for its predecessor. Lock
coupling provides more concurrency than coarse-grained locking, but threads
may acquire many successive locks, which is undesirable because lock acquisi-
tion typically involves expensive atomic operations (such as compare-and-swap).
Moreover, concurrent threads moving through the list may contend for locks even
if they are searching for unrelated list entries. Valois [14] was the first to sug-
gest a non-blocking implementation of a concurrent list-based set. Harris [3] and
later Michael [10], presented highly efficient lock-free algorithms for list-based
sets. Fomitchev and Ruppert [10] present more complex algorithms that pro-
vide an amortized cost guarantee for all operations that is provably linear in the
length of the list. Michael’s algorithm is the basis for a concurrent skip-list data
structure in the JavaTM Concurrency Package of JDK 1.6.0.

As in most previous list-based set algorithms, we represent a set as a sorted
linked list. In our new lazy list algorithm, insertion and removal operations
are optimistic: each operation searches the list without acquiring any locks or
interfering with other threads. When an operation locates the entry it is seeking
it locks that entry and its predecessor and checks for synchronization conflicts. If
no conflict is detected, an entry is inserted or removed, and otherwise the locks
are released and the operation is restarted.

This optimistic approach to insertion and removal has the advantage that
insert and remove calls that access non-adjacent list entries never interfere. In
the absence of synchronization conflicts, these operations acquire only a constant
number of locks. Entries are removed from the list in a lazy manner: the entry
is first marked as removed (the “logical” removal), and then it is physically
unlinked from the list (the “physical” removal). The simplifying power of lazy
techniques has been exploited by Harris [3] and Michael [10] for concurrent
lists, and by Maier [9] in more general contexts. Nevertheless, the algorithms of
Harris and Michael require the ability to perform an atomic compare-and-swap
on two fields at once: a Boolean marked field and a reference field to the next
entry in the list (the equivalent of an AtomicMarkableReference in the Java
Programming Language). Since in many systems it is unacceptable to “steal a
bit” from a reference, one must use alternative techniques. In modern object
oriented languages, one can have two trivial (empty) subclasses of a node object
and use a run time type identification (RTTI) mechanism [2] to determine which
subclass the current instance belongs to, where each subclass represents a state
of the bit. In languages without RTTI support, one can use an additional level
of indirection, adding a pointer to a special dummy node to signify that the bit
is set. This is the mechanism used to implement AtomicMarkableReference in
the Java Concurrency Package, which unfortunately can introduce significant
performance penalties.

Perhaps the most substantial advantage of the new algorithm is that mem-
bership test operations are wait-free [4]. The lock-freedom progress property of
the membership test in Michael’s algorithm guarantees that if some threads are
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executing method calls, and at least one thread continues taking steps, then at
least one thread will complete its call, but makes no progress guarantee for any
individual thread. Wait-freedom is a stronger progress property that guarantees
that any thread that continues taking steps in executing a method call, will
eventually complete the call.

The membership test of our algorithm acquires no locks, requires no synchro-
nization, and never interferes with any concurrent operations. This last property
is particularly important because it is reasonable to expect that in most real-
world applications, membership tests are by far the most common operations. In
Michael’s lock-free list algorithm, and unlike in ours, if a thread traversing the
list encounters an entry that has been logically but not physically removed, then
the thread must stop to complete the physical removal. Physical removal requires
calling a compare-and-swap operation, and if several concurrent threads attempt
to remove the same entry, then only one will succeed, and the rest will be forced
to abandon their traversals and start over. While the number of such removals
is likely to be small, our empirical testing shows that when there is a high level
of concurrent traversals, contention among threads competing to perform the
removal causes a large number of traversals to be abandoned and restarted.

By contrast, in the new lazy list algorithm, only the remove operations are
required to perform physical removals, while the insertion and (more impor-
tantly) membership query traversals are not delayed by physical removals. The
wait-free nature of the membership operation means that ongoing changes to the
list cannot delay even a single thread from deciding membership. We note that
our wait-free membership test is of independent value: one can readily replace
the membership test in Michael’s algorithm with the lazy list’s new membership
test, allowing it to obtain improved performance by eliminating the need for
physical removals.

To evaluate our new lazy list algorithm, we implemented it in the JavaTM pro-
gramming language and conducted a series of benchmarks comparing our new
algorithm to known algorithms on a 16 node SunFireTM 6800 cache coherent
bus-based multiprocessor machine. We found that when there is a high fraction
of membership tests (as in search structures) the new lazy list algorithm and a
new version of Michael’s algorithm that uses our wait-free membership test, out-
perform all others by a factor of two or more. The good performance of our new
version of Michael’s lock-free list depended on the use of Java’s RTTI mecha-
nism. We also found that as the fraction of membership queries dropped, the rel-
ative performance advantage of the lazy list disappeared, and the new version of
Michael’s list with our wait-free membership test showed the best performance.

In summary, we conclude that adding the new wait-free membership test
always offers a performance advantage and has no performance penalties. For
applications with a high fraction of membership tests, one should definitely use
the new algorithms, while the choice of which algorithm to use—the new lazy
list, or Michael’s lock-free list with our new wait-free membership test—seems to
depend on the cost and availability of mechanisms for implementing the equiv-
alent of AtomicMarkableReference in a given system and language.
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Following our initial presentation of the algorithms in this paper, a complete
formal treatment was provided by Vafeiadis et al in [13]. We therefore focus on
providing an informal and easily accessible explanation of why our new algorithm
works, and refer the interested reader to [13] for the detailed correctness proofs.

2 The New Algorithm

We present our concurrent linked-list implementation in the context of a list-
based set object. For our purposes, a Set provides three methods:

– The add(x) method adds x to the set, returning true if and only if x was
not already in the set.

– The remove(x) method removes x from the set, returning true if and only if
x was in the set.

– The contains(x) method returns true if and only if the set contains x.

For each method, we say that a call is successful if it returns true, and unsuc-
cessful otherwise.

Linearizability [6] is a standard correctness condition for concurrent data
structures. The list-based set implementation that we present is a linearizable
implementation of a set object. To prove this it is enough to identify, for each
method call in each possible execution history, a linearization point, a single
operation when the method call “takes effect”. For example, the linearization
point defines exactly when add(a) adds an entry, a point during the execution of
the method immediately before which a is not in the set, and immediately after
which a is in the set.

Lock-freedom is a progress property that guarantees that if some threads are
executing method calls, and at least one thread continues taking steps, then at
least one thread will complete its call. It guarantees that the system as a whole
continues to make progress, but makes no progress guarantee for any individual
thread. Wait-freedom is a stronger progress property that guarantees that any
thread that continues taking steps in executing a method call, will eventually
complete the call.

As noted earlier, following our initial presentation of the algorithms in this
paper, a complete formal treatment was provided by Vafeiadis et al in [13]. We
therefore focus here on giving an informal and easily readable explanation of
why our new algorithm works.

We represent the set as a sorted list of entries. As shown in Figure 1, the
Entry class has four fields. The key field is the set element. Our algorithm
works for any ordered set of keys that has maximum and minimum values and
is well-founded, that is, for any given key, there are only finitely many smaller
keys. This is trivially satisfied by most real-world key types because the size of
the key is fixed; for simplicity, we present our algorithm assuming that the keys
are integers. We will use the well-foundedness assumption to technically capture
the notion that the progress of a membership query in Michael’s algorithm is
lock-free while the new algorithm’s membership query is wait-free.
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private class Entry {
int key;
Entry next;
boolean marked;
lock lock;

}

Fig. 1. List entry: an entry keeps track of the set element itself (the key), the next
entry in the list, a marked field to denote logical removal of the entry, and a lock field
for synchronization

The list is maintained in key order, providing an efficient way to determine
whether a given key is in the list. We sometimes abuse notation slightly and use
the same symbol to refer to an entry and its associated key (entry a will have
key a and so on.). The next field is a reference to the next entry in the list,
the marked field indicates if its associated key is logically removed or still in the
data structure, and the lock field is a lock used for synchronization.

We assume that the add(), remove(), and contains() methods are the only
ones that modify entries, a property sometimes called freedom from interference.
We require freedom from interference even for entries that have been removed
from the list, since a thread may unlink an entry while it is being traversed by
others. In a language such as Java, we can rely on the garbage collector to recycle
unreachable entries. In a programming language without garbage collection, this
property can be maintained by using methods like ROP [5] or SMR [11].

The list has two kinds of entries. In addition to regular entries that hold
elements (keys) in the set, we use two sentinel entries, called head and tail,
as the first and last list entries. The sentinel entries contain the minimum and
maximum key values, respectively; we assume that these values are never added,
removed or searched for. Ignoring the details of synchronization for the moment,
the top part of Figure 2 shows a schematic description of how a key is added to
the set. Each thread has two local variables used to traverse down the list: curr
is the current entry and pred is its predecessor.

a b

remove b

head tail

c

pred curr

a

b
add b

head tail

c

pred curr

Fig. 2. Insertion and removal of list entries
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To add a new key to the set, a thread sets the local variable pred to head
and curr to head’s successor, and moves down the list, comparing curr’s key to
the key being added. If they match, the key is already present in the set, so the
thread returns false. If pred precedes curr in the list, pred’s key is lower than
the inserted key, and curr’s key is higher, then the key is not present in the list.
Therefore, the thread creates a new entry b to hold the key, sets b to point to
curr, and then sets pred to point to b. The key is now a member of the set.

Removing a key is similar: we scan the list to find the relevant adjacent pair
of entries. The target entry is removed from the list in two steps: first, its marked
field is set to true, indicating that the entry has been logically removed from the
list, and second, the predecessor entry’s next field is redirected to point to the
successor entry, physically removing the entry from the list. As discussed more
precisely later, the removal “actually happens” when an entry is marked, and
the physical removal is just a way to clean up.

2.1 The remove() Method

As shown in Figure 3, when the remove() method attempts to remove the entry
with key k, it scans through the list without acquiring any locks, traversing both
marked and unmarked entries. The remove() method uses two local variables:
curr is the current entry and pred is its predecessor. When curr is set to the
first entry with a key greater than or equal to k, the traversal stops, and the
method locks curr and pred. Because there is a gap between the unsynchronized
traversal and the lock acquisition, it is necessary to validate that the method
has locked the correct entries. What can go wrong? There are three obvious
problems: the curr entry could have been removed, the pred entry could have
been removed, or another entry may have been inserted between pred and curr.
Surprisingly, perhaps, these are the only things that can go wrong, and moreover,
they can be detected very efficiently. It is enough to check that curr and pred
are both unmarked, and that pred’s next pointer points to curr (see Figure 4).
If these conditions hold, the entries are adjacent and present in the list. If the
validation succeeds, the remove() method logically removes the entry, physically
removes the entry, releases both locks and returns true. If the entry with key
k is absent, the method unlocks the entries and returns false. If the validation
fails, the thread restarts the method.

2.2 List Traversal

For an unsuccessful remove() call, the linearization point is the point at which
it finds (reads the pointer to) a marked entry with the same key or the first
unmarked entry with a larger key. For a successful remove() method call, the
linearization point is the moment the entry is marked (line LR of Figure 3).

We pause momentarily to discuss list traversal. The list traversal in the
remove() method in Figure 3 seems straightforward: simply follow the list point-
ers. The same approach is used in the add() and contains() methods. It is
important to note that this traversal differs from those of other concurrent list-
based set algorithms in the literature in two important ways:
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– it requires no additional synchronization (such as acquiring locks [1] or clean-
ing up logically removed nodes [10]), and

– it traverses both logically and physically removed nodes.

This latter property, which allows us to achieve the former, is the key to our
algorithm’s good performance. Figure 7 shows how a concurrent physical removal
of a node during thread A’s traversal can cause it to traverse a physically removed
part of the list. The traversal works correctly because we assume the freedom
from interference property which implies that nodes, even if they are removed
from the list, are not recycled (freed back to the available memory pool) as long
as they are reachable. Thus, if a node is removed while it is being traversed, the

public boolean remove(int key) {
while (true) {
Entry pred = this.head;
Entry curr = head.next;
while (curr.key < key) {

pred = curr; curr = curr.next;
}
pred.lock();
try {

curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key != key) { // present

return false;
} else { // absent

LR: curr.marked = true; // logically remove
pred.next = curr.next; // physically remove
return true;

}
}

} finally { // always unlock curr
curr.unlock();

}
} finally { // always unlock pred

pred.unlock();
}

}
}

Fig. 3. The lazy remove() method: removes entries in two steps, logical and physical

private boolean validate(Entry pred, Entry curr) {
return !pred.marked && !curr.marked && pred.next == curr;

}

Fig. 4. The lazy lists validation
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traversing thread will continue to follow the list of pointers and eventually reach
its target node. Our algorithm maintains the property that if an entry was in
the list when a given thread started searching for it, it will remain reachable
from this thread’s curr pointer as long as it is not removed.

2.3 The add() Method

Like the remove() method, the add() method (Figure 5) scans the list without
acquiring locks, until curr is set to the first entry with a key greater than or
equal to the key to be inserted. The method locks both entries, validates them,
and if an entry with the specified key is not already present in the list, inserts a
new entry, unlocks the entries, and returns true. The remaining cases are just as
in the remove() method. For an unsuccessful add() method call, the linearization
point is the moment at which the entry is observed to be unmarked in the list.
For a successful add() method call, it is the moment when pred.next is set.
We note that one can make the add() method more efficient by locking only

public boolean add(int key) {
while (true) {
Entry pred = this.head;
Entry curr = head.next;
while (curr.key < key) {

pred = curr; curr = curr.next;
}
pred.lock();
try {

curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) { // present

return false;
} else { // not present
Entry entry = new Entry(key);
entry.next = curr;
pred.next = entry;
return true;

}
}

} finally { // always unlock
curr.unlock();

}
} finally { // always unlock

pred.unlock();
}

}
}

Fig. 5. The add() method
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public boolean contains(int key) {
Entry curr = this.head;
while (curr.key < key)
curr = curr.next;

return curr.key == key && !curr.marked;
}

Fig. 6. The lazy list’s wait-free contains() method

Head Tail 

predA

currA

a1 1

0 000 b

Fig. 7. Linearizing an unsuccessful contains() method calls is a bit tricky. Dark nodes
are physically in the list and white nodes are physically removed. During a traversal of
the list by thread A, the sublist starting at the node pointed to by curr (and schemat-
ically represented by “. . .”) may be disconnected from the main list by a concurrent
remove() method execution. Both nodes with items a and b can still be reached, and
the determination if an item is in the list is based solely on the mark-bit.

the pred node, but for the sake of keeping our algorithm simple, we omit this
optimization here.

2.4 The Wait-Free contains() Method

The key to the performance of our algorithm is the new wait-free contains()
method. This method is of independent interest. For example, we show in Sec-
tion 3 that it can readily replace the lock-free contains() method in the algo-
rithm of Michael [10] to provide improved performance.

The contains() method scans the list, just like the remove() and add() meth-
ods, ignoring whether nodes are marked or not, until curr is set to the first entry
with a key greater than or equal to the sought-after key. Instead of locking the
entry, however, it simply returns true if and only if the curr entry is unmarked
with the desired key. This is correct since the list is ordered and so, if a node is
removed, it must be marked or not present in the list.

It is easy to see that this method is wait-free. First, notice that because the
universe of keys is well-founded there are only a finite number of keys that are
smaller than the one being searched for. According to the algorithm, entries with
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lower or equal keys to a given entry will never be added ahead of it (i.e. so that
they are reachable from it) even if the entry points into the list but is logically
and physically removed from the list. Thus, each time the traversal moves to a
new node, the new node has a larger key than the previous one, and this can
happen only finitely many times, which implies that traversal is wait-free. This
contrasts with Michael’s membership test [10] which is only lock-free [4], since
it can be forced to restart its traversal from the beginning of the list infinitely
often if the same item is re-inserted and removed, and it fails each time when
attempting to clean it up.

A successful contains() method call is linearized when the marked field of a
matching entry is observed to be false. Linearizing an unsuccessful contains()
method call is a bit tricky, and is a good example showing that it is not always
possible to define a single linearization point for each method that works for all
method calls in all executions. In particular, simply choosing the linearization
point for an unsuccessful contains() as the point at which a marked entry with
the sought-after key or an entry greater than the sought-after key is found is
incorrect. Consider the following scenario. Assume that entry a is marked and
thread A is attempting to find the entry matching a’s key. While A is traversing
the list, currA and all entries between currA and a including a are removed
logically and physically. Thread A would still proceed to the point where currA

points to a. It would then detect that a is marked and therefore no longer in
the list. Linearizing at this point is correct in this case. However, consider what
happens if while thread A is traversing the removed section of the list leading to
a, and before it reaches the removed a, another thread adds a new entry with a
key a to the reachable part of the list. Linearizing the unsuccessful contains()
method at the point at which it observed the marked entry a would be wrong,
since it occurs after the insertion of the new entry with key a to the list.

We therefore linearize an unsuccessful contains() method call within its ex-
ecution interval at the earlier of the following points: (1) the point where a
removed matching entry is found and (2) the point immediately before a new
matching entry is added to the list. As can be seen, this linearization point is
determined by the ordering of events in the execution, and not predetermined
as a specific point in the method execution.

3 Performance

We evaluated our new algorithm on a SunFireTM 6800 cache coherent bus-based
multiprocessor machine with 16 1.2 GHz processors. The algorithms were im-
plemented in Java 1.5.0. We varied the percentage of contains() method calls
and the percentage of add() and remove() method calls. Each thread randomly
selected both the type of call to make (respecting the given percentages) and
the operand for it; operands are integers in the range 0..1023. We repeated this
test suite both with and without an additional load of 16 threads performing
computation in order to evaluate the sensitivity of our results to background
load, but do not report the additional load tests here as there were no signifi-
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cant differences noted. In all our benchmarks, we measured throughput : the total
number of calls completed over the course of 8 seconds, averaged across three
runs. We tested six different list algorithms in all.

– Coarse – We use a single java.util.concurrent.ReentrantLocks lock to
protect all access to the list.

– Fine – This is a fine grained hand-over-hand locking (lock-coupling) [8, 1]
list-based implementation using a lock per list entry. Threads traverse down
the list holding multiple locks at a time, releasing the earlier acquired entry’s
lock only after acquiring the next one in the list.

– LockFree – This is a lock-free list implemented according to Michael’s al-
gorithm [10], using the AtomicMarkableReference of JDK 1.5.0 to allow
a markable next pointer per entry. As in our algorithm, the mark is used
to denote that an entry is logically removed. Unlike in our algorithm, the
contains() method is lock-free and not wait-free as calls do not traverse
marked entries, instead, they clean them up before continuing traversal down
the list.

– LockFreeRTTI – This is the lock-free list of Michael’s algorithm [10] using
the Java RTTI mechanism to distinguish marked entries. Such mechanisms
are not available in all languages. Achieving the effect of marking a bit in the
next pointer is done more efficiently than with AtomicMarkableReference
by having two trivial (empty) subclasses of each entry object and using RTTI
to determine at runtime which subclass the current instance is, where each
subclass represents a state of the mark bit.

– NewLockFreeRTTI – This is LockFreeRTTI with Michael’s lock-free
contains() method directly replaced by the new wait-free contains()
method of this paper, one that does not clean up marked entries and in-
stead traverses them in a wait-free manner.

– NewLazy – This is the new lazy list algorithm of this paper, with its new
wait-free contains() and an optimization of the add() method to use only
a single lock.

The top of Figure 8 shows the results of running a benchmark with 90%
contains() method calls, 9% add() method calls and 1% remove() method calls
(left) and another benchmark with 50% contains() method calls, 45% add()
method calls and 5% remove() method calls (right). The 90/9/1 ratio and the
high fraction of add() method calls to remove() method calls are considered
typical of search structures, a common application of linked-lists [7].

If we look at the graph of the 90% test on the lefthand side of Figure 8, we
see that the two new algorithms, the lazy list and the new lock-free list with a
wait-free contains() method, outperform all others by a factor of two or more,
including both versions of Michael’s lock-free list, the one implemented with
AtomicMarkableReference and the one implemented with the RTTI mecha-
nism. The reason for this is as follows: even though there is a very small fraction
of remove() method calls, there are many concurrent contains() method traver-
sals, and in both of the original versions of Michael’s algorithm they all compete
to clean up the same small set of logically removed entries. All traversals that
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Fig. 8. The top two graphs show the change in throughput as concurrency increases
to 32 threads with 60% and 90% of the operations being contains() method calls,
and a 9/1 ratio of add() to remove() method calls. The bottom graph shows the
change in throughput for the case of 32 threads as the fraction of contains() calls
increases to 90%.

fail must restart, leading to a significant overhead. The new version of Michael’s
algorithm with RTTI and our wait-free contains() method performs slightly
better than the lock-based lazy list. However, the reader is reminded that many
languages do not have the equivalent of RTTI.

The graph of the 50% test on the righthand side of Figure 8 shows what
happens when we drop the fraction of contains() method calls. As can be
seen, the lock-free RTTI-based implementation of Michael’s algorithm stays at
about the same throughput level, yet the performance of the two new algorithms
deteriorates because (1) the large number of additional add() method calls in the
new version of Michael’s algorithm incur cleanup contention (they fail attempts
at cleaning up the same entries) and must restart their traversals, and (2) the
add() method calls in the lazy list acquire more costly locks and fail validation
at a much higher rate, forcing them to restart their traversals.

The bottom graph of Figure 8 shows the change in throughput for the case of
32 threads as the fraction of contains() method calls increases (maintaining the
9/1 ratio of add() and remove() method calls). As can be seen, from 50% and
onward the two new algorithms outperform all others, and have more than twice
their throughput at 90%. The choice of which algorithm to use, the new lazy list,
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Fig. 9. The graph shows throughput as concurrency increases with a 34%, 33% and
33% ratio respectively of contains(), add(), and remove() method calls

or Michael’s lock-free list with our new wait-free membership test, for typical
search applications with a high fraction of memberships tests, seems to depend
on the cost of implementing the equivalent of AtomicMarkableReference in a
given system and language.

The graph in Figure 9 shows the change in throughput when running a bench-
mark with 34% contains() method calls, 33% add() method calls and 33%
remove() method calls. Though this is not a typical search structure access pat-
tern, we present it here to explore how the algorithms compare across a wider
range of loads. As can be seen, the throughput of the lock-free RTTI based
implementations drops slightly, and the performance of the lazy list drops more
significantly. As before, this is due to the further increase in the number of costly
lock acquisitions and of failed validations.

We conclude that even with higher add() and remove() method call rates than
we expect in many applications, our results show how to improve on the per-
formance of previous algorithms. Furthermore, without using any nonstandard
language tricks, our new algorithms soundly beat previous ones.

4 Conclusions

We introduced the lazy list, a simple new concurrent list algorithm based on
lazy marking and deletion of nodes. Perhaps the most substantial advantage of
the new algorithm is a wait-free membership test operation, an operation that
can readily replace membership tests in other list-based set algorithms such as
Michael’s lock-free lists [10].

Various optimizations to our algorithm are possible. As noted earlier, one can
make the add() method more efficient by locking only the pred node. One can also
add an optimization whereby threads “prevalidate” the state of an entry before
acquiring the entry locks, thereby saving the cost of acquiring them upon failure.
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Most importantly, we believe the algorithmic approach introduced in this
paper, the combination of lazy lock-based list manipulation coupled with wait-
free traversal, can lead to simpler and possibly more efficient algorithms for
related data structures such as concurrent skip-lists and other search structures.
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Abstract. Over the past decade, a pair of instructions called load-linked
(LL) and store-conditional (SC) have emerged as the most suitable syn-
chronization instructions for the design of lock-free algorithms. However,
current architectures do not support these instructions; instead, they
support either CAS (e.g., UltraSPARC, Itanium) or restricted versions
of LL/SC (e.g., POWER4, MIPS, Alpha). Thus, there is a gap between
what algorithm designers want (namely, LL/SC) and what multiproces-
sors actually support (namely, CAS or RLL/RSC). To bridge this gap,
a flurry of algorithms that implement LL/SC from CAS have appeared
in the literature. The two most recent algorithms are due to Doherty,
Herlihy, Luchangco, and Moir (2004) and Michael (2004). To implement
M LL/SC objects shared by N processes, Doherty et al.’s algorithm
uses only O(N + M) space, but is only non-blocking and not wait-free.
Michael’s algorithm, on the other hand, is wait-free, but uses O(N2 +M)
space. The main drawback of his algorithm is the time complexity of the
SC operation: although the expected amortized running time of SC is
only O(1), the worst-case running time of SC is O(N2). The algorithm
in this paper overcomes this drawback. Specifically, we design a wait-
free algorithm that achieves a space complexity of O(N2 +M), while still
maintaining the O(1) worst-case running time for LL and SC operations.

1 Introduction

In shared-memory multiprocessors, multiple processes running concurrently on
different processors cooperate with each other via shared data structures (e.g.,
queues, stacks, counters, heaps, trees). Atomicity of these shared data structures
has traditionally been ensured through the use of locks. To perform an operation,
a process obtains the lock, updates the data structure, and then releases the lock.
Locking, however, has several drawbacks, including deadlocks, priority inversion,
convoying, and lack of fault-tolerance to process crashes.

Wait-free implementations were conceived to overcome the above drawbacks
of locking [1, 2, 3]. A wait-free implementation guarantees that every process
completes its operation on the data structure in a bounded number of its steps,
regardless of whether other processes are slow, fast, or have crashed. A weaker
form of implementation, known as non-blocking implementation [2], guarantees
that if a process p repeatedly takes steps, then the operation of some process
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– LL(O) returns O’s value.
– SC(O, v) by process p “succeeds” if and only if no process performed a successful

SC on O since p’s latest LL on O. If SC succeeds, it changes O’s value to v and
returns true . Otherwise, O’s value remains unchanged and SC returns false.

– VL(O) returns true if and only if no process performed a successful SC on O since
p’s latest LL on O.

Fig. 1. Definitions of operations LL, SC, and VL

– CAS(X, u, v) behaves as follows: if X’s current value is u, X is assigned v and true
is returned; otherwise, X is unchanged and false is returned.

Fig. 2. Definition of the CAS operation

(not necessarily p) will eventually complete. Thus, non-blocking implementa-
tions guarantee that the system as a whole makes progress, but admit starva-
tion of individual processes. An even weaker form of implementation, known
as obstruction-free implementation [4], guarantees that a process completes its
operation on the data structure, provided that it eventually executes for a suf-
ficient number of steps without interference from other processes. This progress
condition therefore allows for a situation where all processes starve.

It is a well understood fact that whether lock-free algorithms (i.e., wait-free,
non-blocking, or obstruction-free) can be efficiently designed depends crucially
on what synchronization instructions are available for the task. After more than
two decades of experience with different instructions, there is growing consensus
among algorithm designers on the desirability of a pair of instructions known as
Load-Link (LL) and Store-Conditional (SC). The LL and SC instructions act like
read and conditional-write, respectively. More specifically, the LL instruction by
process p returns the value of the memory word, and the SC(v) instruction by p
writes v if and only if no process updated the memory word since p’s latest LL.
A more precise formulation of these instructions is presented in Figure 1.

Despite the desirability of LL/SC, no processor supports these instructions in
hardware; instead, they support either compare&swap, also known as CAS (e.g.,
UltraSPARC [5], Itanium [6]) or restricted versions of LL/SC (e.g., POWER4
[7], MIPS [8], Alpha [9]). Although the restrictions on LL/SC vary from one ar-
chitecture to another, Moir [10] noted that the LL/SC instructions supported by
current architectures, henceforth referred to as RLL/RSC, satisfy at a minimum
the semantics stated in Figure 3.

Since CAS suffers from the well-known ABA problem [11] and RLL/RSC
impose severe restrictions on their use [10], it is difficult to design algorithms
based on these instructions. Thus, there is a gap between what algorithm design-
ers want (namely, LL/SC) and what multiprocessors actually support (namely,
CAS or RLL/RSC). This gap must be bridged efficiently, which gives rise to the
following problem:

Design an algorithm that implements LL/SC objects from memory words sup-
porting either CAS or RLL/RSC operations. To be useful in practice, the time
and space complexities must be kept small.
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– RLL/RSC are similar to LL and SC, with two differences [10]: (i) there is a chance
of RSC failing spuriously: RSC might fail even when SC would succeed, and (ii) a
process must not access any shared variable between its RLL and the subsequent
RSC.

Fig. 3. Definition of operations RLL/RSC

The above problem has been extensively studied in the literature
[10, 12, 13, 14, 15, 16, 17, 18, 19]. The most efficient algorithm for implementing
LL/SC from CAS is due to Moir [10]. His algorithm runs in constant time and
has no space overhead. However, it can only implement small (e.g., 24 to 32 bit)
LL/SC objects, which are inadequate for storing pointers, large integers and
doubles. This size limitation is due to the fact that Moir’s algorithm stores a
sequence number along with the object’s value in the same memory word. Since
sequence number could take up to 32 to 40 bits, only 24 to 32 bits are left for
the value field.

Elsewhere, we presented an algorithm that implements a word-sized LL/SC
object from a word-sized CAS object and registers (e.g., 64-bit LL/SC on a
64-bit machine) [17]. This algorithm stores a value and a sequence number in
separate memory words, thus enabling values to be as big as 64 bits. The algo-
rithm implements both LL and SC in O(1) time and uses O(N) space, where N
is the maximum number of processes that the algorithm is designed to handle.
Although these space requirements are modest when a single LL/SC object is im-
plemented, the algorithm does not scale well when the number of LL/SC objects
to be supported is large. In particular, in order to implement M LL/SC objects,
the algorithm requires O(NM) space. Furthermore, the algorithm requires that
N is known in advance.

The recent algorithms by Doherty, Herlihy, Luchangco, and Moir [14] and
Michael [19] have aimed to overcome the above two drawbacks. Doherty et al.’s
algorithm [14] uses only O(N + M) space and does not require knowledge of N ,
but is only non-blocking and not wait-free. Michael’s [19] algorithm, on the other
hand, is wait-free and does not require knowledge of N , but uses O(N2 + M)
space. The main drawback of this algorithm is the time complexity of the SC
operation: although the expected amortized running time of SC is only O(1), the
worst-case running time of SC is O(N2). The algorithm in this paper overcomes
this drawback, as described below.

We design a wait-free algorithm that achieves a space complexity of O(N2 +
M), while still maintaining the O(1) worst-case running time for LL and SC oper-
ations. This algorithm too does not require knowledge of N . When constructing
a large number of LL/SC objects (i.e., when M = ω(N)), our implementation
is the first to be simultaneously (1) wait-free, (2) time optimal, and (3) space
efficient. Specifically, the algorithm by Doherty et al. [14], although more space
efficient than ours, is not wait-free. Michael’s algorithm [19] has the same
space complexity as ours and is wait-free, but is not time optimal. Other al-
gorithms are either not space efficient [10, 12, 13, 15, 16, 17], not wait-free [18], or
implement small LL/SC objects [10, 13, 15].
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We note that the algorithm in this paper, as well as the algorithms by Doherty
et al. [14] and Michael [19], implement (the more general) multiword LL/SC ob-
ject, i.e., an LL/SC object whose value spans across multiple machine words (e.g.,
512- or 1024-bit LL/SC object). Many existing applications [12, 20, 21, 22] require
support for such an object. When implementing a W -word LL/SC object, the time
and space complexities increase by a factor of W , which is also the case with the
algorithms of [14] and [19]. Specifically, the space complexity of our algorithm be-
comes O((N2 + M)W ), and the time complexity of LL and SC becomes O(W ).

Elsewhere, we presented an algorithm that implements M W -word LL/SC
objects using O(NMW ) space [16]. This algorithm employs a helping scheme
by which processes help each other complete their LL operations. We use a
similar helping scheme in the present paper.

1.1 Related Work

The quality of an LL/SC algorithm can be judged by several criteria: (1) the max-
imum size of the object that the algorithm is capable of implementing (e.g., small,
word-sized, or multiword), (2) the strength of the progress condition that the
algorithm satisfies (obstruction-free, non-blocking, or wait-free), (3) whether the
algorithm requires explicit knowledge of N , and (4) the time and space com-
plexities of the algorithm. With these criteria in mind, we present a comparison
of related work in Table 1. We used the following notation: M is the number
of implemented LL/SC objects, and N is the number of processes sharing those
objects.

1.2 Correctness Condition

The correctness condition that we use in the paper is linearizability [23]. Since
this correctness condition is well known, we only describe it informally here.

A shared object is linearizable if operations applied to the object appear to act
instantaneously, even though in reality each operation executes over an interval
of time. More precisely, every operation applied to the object appears to take
effect at some instant between its invocation and completion [23]. This instant
(at which an operation appears to take effect) is called the linearization point
for that operation. Our algorithms ensure that the implemented object O is
linearizable whenever the primitive objects from which O is implemented are
linearizable.

1.3 Organization for the Rest of the Paper

In the next section, we present the algorithm that implements an array of M
LL/SC objects shared by N processes, where N is known in advance. The proof
of this algorithm is given in Section 3. The algorithm that does not require
knowledge of N is ommitted due to space constraints; it is presented in the full
version of the paper [24].
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Table 1. A comparison of algorithms that implement LL/SC from CAS

Worst-case
Size of Progress Time Complexity

Algorithm LL/SC Condition LL SC
1. This paper W -word wait-free O(W ) O(W )
2. Israeli and Rappoport [15] small wait-free O(N) O(N)
3. Anderson and Moir [13], Figure 1 small wait-free O(1) O(1)
4. Anderson and Moir [12], Figure 2 W -word wait-free O(W ) O(W )
5. Moir [10], Figure 4 small wait-free O(1) O(1)
6. Moir [10], Figure 7 small wait-free O(1) O(1)
7. Luchangco et al. [18]1 63-bit obstruction-free − −
8. Jayanti and Petrovic [17] 64-bit wait-free O(1) O(1)
9. Doherty et al. [14] W -word non-blocking − −
10. Michael [19] W -word wait-free O(W ) O(N2 + W )2

11. Jayanti and Petrovic [16] W -word wait-free O(W ) O(W )

Space Knowledge
Algorithm Complexity of N

1. This paper O((N2 + M)W ) not required
2. Israeli and Rappoport [15] O(N2 + NM) required
3. Anderson and Moir [13], Figure 1 O(N2M) required
4. Anderson and Moir [12], Figure 2 O(N2MW ) required
5. Moir [10], Figure 4 O(N + M) not required
6. Moir [10], Figure 7 O(N2 + NM) required
7. Luchangco et al. [18] O(N + M) required
8. Jayanti and Petrovic [17] O(NM) required
9. Doherty et al. [14] O((N + M)W ) not required
10. Michael [19] O((N2 + M)W ) not required
11. Jayanti and Petrovic [16] O(NMW ) required
1This algorithm implements a weaker form of LL/SC in which an LL operation by a
process can cause some other process’s SC operation to fail.

2The expected amortized running time for SC is O(W ).

2 LL/SC for a Known N

Figure 4 presents an algorithm that implements an array O[0 . . M − 1] of M
W -word LL/SC object shared by N processes. To make the presentation easier
to follow, the algorithm is shown for the case when each process has at most one
outstanding LL operation. Later, we explain how the algorithm can be trivially
modified to handle any number of outstanding LL operations. We provide below
an intuitive description of the algorithm.

2.1 The Variables Used

We begin by describing the variables used in the algorithm. BUF[0 . . M + (N +
1)N−1] is an array of M +(N +1)N buffers. Of these, M buffers hold the current
values of objects O[0],O[1], . . . ,O[M −1], while the remaining (N +1)N buffers
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Types
valuetype = array [0 . . W ] of 64-bit value
xtype = record seq: (64 − lg (M + (N + 1)N))-bit number;

buf: 0 . . M + (N + 1)N − 1 end
helptype = record seq: (63 − lg (M + (N + 1)N))-bit number; helpme: {0, 1};

buf: 0 . . M + (N + 1)N − 1 end
Shared variables

X: array [0 . . M − 1] of xtype; Announce: array [0 . . N − 1] of 0 . . M − 1
Help: array [0 . . N − 1] of helptype
BUF: array [0 . . M + (N + 1)N − 1] of ∗valuetype

Local persistent variables at each p ∈ {0, 1, . . . , N − 1}
mybufp: 0 . . M + (N + 1)N − 1; Qp: Single-process queue; xp: xtype
lseqp: (63 − lg (M + (N + 1)N))-bit number; indexp: 0 . . N − 1

Initialization
X[k] = (0, k), for all k ∈ {0, 1, . . . , M − 1}
BUF[k] = the desired initial value of O[k], for all k ∈ {0, 1, . . . , M − 1}
For all p ∈ {0, 1, . . . , N − 1}

enqueue(Qp, M + (N + 1)p + k), for all k ∈ {0, 1, . . . , N − 1}
mybufp = M + (N + 1)p + N ; Help[p] = (0, 0, ∗); indexp = 0; lseqp = 0

procedure LL(p, i, retval) procedure SC(p, i, v) returns boolean
1: Announce[p] = i 11: copy ∗v into ∗BUF[mybufp]
2: Help[p] = (++lseqp, 1, mybufp) 12: if ¬CAS(X[i], xp, (xp.seq + 1, mybufp))
3: xp = X[i] 13: return false
4: copy ∗BUF[xp.buf] into ∗retval 14: enqueue(Qp, xp.buf)
5: if ¬CAS(Help[p], (lseqp, 1,mybufp), 15: mybufp = dequeue(Qp)

(lseqp, 0, mybufp)) 16: if (Help[indexp] ≡ (s, 1, b))
6: mybufp = Help[p].buf 17: j = Announce[indexp]
7: xp = BUF[mybufp][W ] 18: x = X[j]
8: copy ∗BUF[mybufp] into ∗retval 19: copy ∗BUF[x.buf] into ∗BUF[mybufp]
9: return 20: BUF[mybufp][W ] = x

21: if CAS(Help[indexp], (s, 1, b),
(s, 0,mybufp))

22: mybufp = b
procedure VL(p, i) returns boolean 23: indexp = (indexp + 1) mod N

10: return (X[i] = xp) 24: return true

Fig. 4. Implementation of O[0 . . M − 1]: an array of M N-process W -word LL/SC
objects

are “owned” by processes, N +1 buffer by each process. Each process p, however,
uses only one of its N +1 buffers at any given time. The index of the buffer that
p is currently using is stored in the local variable mybufp, and the indices of the
remaining N buffers are stored in p’s local queue Qp. Array X[0 . . M−1] holds the
tags associated with the current values of objects O[0],O[1], . . . ,O[M−1]. A tag
in X[i] consists of two fields: (1) the index of the buffer that holds O[i]’s current
value, and (2) the sequence number associated with O[i]’s current value. The
sequence number increases by 1 with each successful SC on O[i], and the buffer
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holding O[i]’s current value is not reused until some process performs at least N
more successful SC’s (on any O[j]). Process p’s local variable xp maintains the
tag corresponding to the value returned by p’s most recent LL operation; p will
use this tag during the subsequent SC operation to check whether the object
still holds the same value (i.e., whether it has been modified). Finally, it turns
out that a process p might need the help of other processes in completing its
LL operation on O. The shared variables Help[p] and Announce[p], as well as
p’s local variables lseqp and indexp, are used to facilitate this helping scheme.
Additionally, an extra word is kept in each buffer along with the value. Hence,
all the buffers in the algorithm are of length W + 1.3

2.2 The Helping Mechanism

The crux of our algorithm lies in its helping mechanism by which SC operations
help LL operations. This helping mechanism is similar to that of [16], but whereas
the mechanism of [16] requires O(NMW ) space, the mechanism in this paper re-
quires only O((N2 +M)W ) space. Below, we describe this mechanism in detail.4

A process p begins its LL operation on some object O[i] by announcing its
operation to other processes. It then attempts to read the buffer containingO[i]’s
current value. This reading has two possible outcomes: either p correctly obtains
the value in the buffer or p obtains an inconsistent value because the buffer is
overwritten while p reads it. In the latter case, the key property of our algorithm
is that p is helped (and informed that it is helped) before the completion of its
reading of the buffer. Thus, in either case, p has a valid value: either p reads a
valid value in the buffer (former case) or it is handed a valid value by a helper
process (latter case). The implementation of such a helping scheme is sketched
in the following paragraph.

Consider any process p that performs a successful SC operation. During that
SC, p checks whether a single process—say, q—has an ongoing LL operation that
requires help. If so, p helps q by passing it a valid value and a tag associated
with that value. (We will see later how p obtains that value.) If several processes
try to help, only one will succeed. Process p makes a decision on which process
to help by consulting its variable indexp: if indexp holds value j, then p helps
process j. The algorithm ensures that indexp is incremented by 1 modulo N after
every successful SC operation by p. Hence, during the course of N successful SC
operations, process p examines all N processes for possible help. Recall the ear-
lier stated property that the buffer holding an O[i]’s current value is not reused
until some process performs at least N successful SC’s (on any O[j]). As a conse-
quence of the above facts, if a process q begins reading the buffer that holdsO[i]’s
current value and the buffer happens to be reused while q still reads it (because
some process p has since performed N successful SC’s), then p is sure to have
helped q by handing it a valid value of O[i] and a tag associated with that value.

3 The only exception are the buffers passed as an argument to procedures LL and SC,
which are of length W .

4 Some of the text to follow has been taken directly from [16].
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2.3 The Roles of Help[p] and Announce[p]

The variables Help[p] and Announce[p] play an important role in the helping
scheme. Help[p] has three fields: (1) a binary value (that indicates if p needs help),
(2) a buffer index, and (3) a sequence number (independent from the sequence
numbers in tags). Announce[p] has only one field: an index in the range 0 . . M−1.
When p initiates an LL operation on some object O[i], it first announces the
index of that object by writing i into Announce[p] (see Line 1), and then seeks
the help of other processes by writing (s, 1, b) into Help[p], where b is the index of
the buffer that p owns (see Line 2) and s is p’s local sequence number incremented
by one. If a process q helps p, it does so handing over its buffer c containing a
valid value of O[i] to p by writing (s, 0, c). (This writing is performed with a
CAS operation to ensure that at most one process succeeds in helping p.) Once
q writes (s, 0, c) in Help[p], p and q exchange the ownership of their buffers: p
becomes the owner of the buffer indexed by c and q becomes the owner of the
buffer indexed by b. (This buffer management scheme is the same as in Herlihy’s
universal construction [25].) Before q hands over buffer c to process p, it also
writes a tag associated with that value into the W th location of the buffer.

2.4 How the Helper Obtains a Valid Value

We now explain an important feature of our algorithm, namely, the mechanism
by which a process p obtains a valid value to help some other process q with.
Suppose that process p wishes to help process q complete its LL operation on
some object O[i]. To obtain a valid value to help q with, p first attempts to
read the buffer containing O[i]’s current value. This reading has two possible
outcomes: either p correctly obtains the value in the buffer or p obtains an
inconsistent value because the buffer is overwritten while p reads it. In the latter
case, by an earlier stated property, p knows that there exists some process r that
has performed at least N successful SC operations (on any O[j]). Therefore, r
must have already helped q, in which case p’s attempt to help q will surely fail.
Hence, it does not matter that p obtained an inconsistent value of O[i] because
p will anyway fail in giving that value to q. As a result, if p helps q complete its
LL operation on some object O[i], it does so with a valid value of O[i].

2.5 Code for LL

A process p performs an LL operation on some object O[i] by executing the
procedure LL(p, i, retval), where retval is a pointer to a block of W -words in
which to place the return value. First, p announces its operation to inform others
that it needs their help (Lines 1 and 2). It then attempts to obtain the current
value of O[i] by performing the following steps. First, p reads the tag stored
in X[i] to determine the buffer holding O[i]’s current value (Line 3), and then
reads that buffer (Line 4). While p reads the buffer at Line 4, the value of O[i]
might change because of successful SC’s by other processes. Specifically, there
are three possibilities for what happens while p executes Line 4: (i) no process
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performs a successful SC, (ii) no process performs more than N − 1 successful
SC’s, or (iii) some process performs N or more successful SC’s. In the first case,
it is obvious that p reads a valid value at Line 4. Interestingly, in the second
case too, the value read at Line 4 is a valid value. This is because, as remarked
earlier, our algorithm does not reuse a buffer until some process performs at
least N successful SC’s. In the third case, p cannot rely on the value read at
Line 4. However, by the helping mechanism described earlier, a helper process
would have made available a valid value (and a tag associated with that value)
in a buffer and written the index of that buffer in Help[p]. Thus, in each of the
three cases, p has access to a valid value as well as a tag associated with that
value. Further, as we now explain, p can also determine which of the three cases
actually holds. To do this, p performs a CAS on Help[p] to try to revoke its
request for help (Line 5). If p’s CAS succeeds, it means that p has not been
helped yet. Therefore, Case (i) or (ii) must hold, which implies that retval has a
valid value of O. Hence, p returns from the LL operation at Line 9.

If p’s CAS on Help[p] fails (Line 5), p knows that it has been helped, and that
a helper process must have written in Help[p] the index of a buffer containing a
valid value U of O[i] (as well as a tag associated with U). So, p reads U and its
associated tag (Lines 7 and 8), and takes ownership of the buffer it was helped
with (Line 6). Finally, p returns from the LL operation at Line 9.

2.6 Code for SC

A process p performs an SC operation on some object O[i] by executing the
procedure SC(p, i, v), where v is the pointer to a block of W -words which contain
the value to write to O[i] if SC succeeds. First, p writes the value v into its local
buffer (Line 11), and then tries to make its SC operation take effect by changing
the value in X[i] from the tag it had witnessed in its latest LL operation to a new
tag consisting of (1) the index of p’s local buffer and (2) a sequence number (of
the previous tag) incremented by one (Line 12). If the CAS operation fails, it
follows that some other process performed a successful SC after p’s latest LL, and
hence p’s SC must fail. Therefore, p terminates its SC procedure, returning false
(Line 13). On the other hand, if CAS succeeds, then p’s current SC operation
has taken effect. In that case, p gives up ownership of its local buffer, which now
holds O[i]’s current value, and becomes the owner of the buffer B holding O[i]’s
old value. To remain true to the promise that the buffer that held O[i]’s current
value (B, in this case) is not reused until some process performs at least N
successful SC’s, p enqueues the index of buffer B into its local queue (Line 14),
and then dequeues some other buffer index from the queue (Line 15). Notice
that, since p’s local queue contains N buffer indices when p inserts B’s index
into it, p will not reuse buffer B until it performs at least N successful SC’s.

Next, p tries to determine whether some process needs help with its LL opera-
tion. As we stated earlier, the process to help is q = indexp. So, p reads Help[q] to
check whether q needs help (Line 16). If it does, p consults variable Announce[q]
to learn the index j of the object that q needs help with (Line 17). Next, p
reads the tag stored in X[j] to determine the buffer holding O[j]’s current value
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(Line 18), and then copies the value from that buffer into its own buffer (Line 19).
Then, p writes into the W th location of the buffer the tag that it read from X[j]
(Line 20). Finally, p attempts to help q by handing it p’s buffer (Line 21). If p
succeeds in helping q, then, by the earlier discussion, the buffer that p handed
over to q contains a valid value of O[j]. Hence, p gives up its buffer to q and
assumes ownership of q’s buffer (Line 22). (Notice that p’s CAS at Line 21 fails if
and only if, while p executed Lines 16–21, either another process already helped
q or q withdrew its request for help.) Regardless of whether process q needed
help or not, p increments the indexp variable by 1 modulo N (Line 23) to ensure
that in the next successful SC operation it helps some other process (Line 23),
and then terminates its SC procedure by returning true (Line 24).

The procedure VL is self-explanatory (Line 10). The following theorem sum-
marizes the above discussion. Its proof is presented in Section 3.

Theorem 1. The algorithm in Figure 4 is a linearizable, wait-free implementa-
tion of an array O[0 . . M −1] of W -word LL/SC objects, shared by N processes.
The time complexities of LL, SC and VL operations on any O[i] are O(W ),
O(W ) and O(1), respectively. The space complexity of the implementation is
O((N2 + M)W ).

2.7 Remarks

Sequence Number Wrap-Around. Each 64-bit variable X[i] stores in it a
buffer index and an unbounded sequence number. The algorithm relies on the as-
sumption that during the time interval when some process p executes one LL/SC
pair, the sequence number stored in X[i] does not cycle through all possible val-
ues. If we reserve 32 bits for the buffer index (which allows the implementation
of up to 231 LL/SC objects, shared by up to 215 = 32, 768 processes), we still
will have 32 bits for the sequence number, which is large enough that sequence
number wraparound is not a concern in practice.

The Number of Outstanding LL Operations. Modifying the code in
Figure 4 to handle multiple outstanding LL/SC operations is straightforward.
Simply require that each LL operation, in addition to returning a value, also
returns the tag associated with that value. Then, when calling an SC operation
on some object, the caller p must also provide the tag that was returned by p’s
latest LL operation on that object.

3 Proof

Let H be finite execution history of the algorithm in Figure 4. Let op be some
LL operation, op′ some SC operation, and op′′ some VL operation on O[i] in H,
for some i. Then, we define the linearization points (LPs) for op, op′, and op′′

as follows. If the CAS at Line 5 of op succeeds, then LP(op) is Line 3 of op.
Otherwise, let t be the time when op executes Line 2, and t′ be the time when
op performs the CAS at Line 5. Let v be the value that op reads from BUF at
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1. For any process p, we have |Qp| ≥ N .
2. For any process p such that PC(p) = 15, we have |Qp| ≥ N + 1.
3. For any process p and any value b in Qp, we have b ∈ [0 . . M + (N + 1)N − 1].
4. For any processes p ∈ P , we have mybyfp ∈ [0 . . M + (N + 1)N − 1].
5. For any process p ∈ P ′, we have Help[p].buf ∈ [0 . . M + (N + 1)N − 1].
6. For any process p ∈ P ′′, we have xp.buf ∈ [0 . . M + (N + 1)N − 1].
7. For any process p ∈ P ′′′, we have b(p) ∈ [0 . . M + (N + 1)N − 1].
8. For any index i ∈ [0 . . M − 1], we have X[i].buf ∈ [0 . . M + (N + 1)N − 1].
9. Let p and q, (respectively, p′ and q′, p′′ and q′′, p′′′ and q′′′), be any two processes

in P (respectively, P ′, P ′′, P ′′′). Let r be any process and b1 and b2 any two values
in Qr. Let i and j be any two indices in [0 . . M − 1]. Then, we have mybufp �=
mybufq �= b1 �= b2 �= X[i].buf �= X[j].buf �= Help[p′].buf �= Help[q′].buf �= xp′′ .buf �=
xq′′ .buf �= b(p′′′) �= b(q′′′).

Fig. 5. The invariants satisfied by the algorithm in Figure 4

Line 8 of op. Then, we show that there exists a successful SC operation SCq on
O[i] such that (1) at some point t′′ during (t, t′), SCq is the latest successful SC
on O[i] to execute Line 12, and (2) SCq writes v into O[i]. We then set LP(op)
to time t′′. We set LP(op′) to Line 12 of op′, and LP(op′′) to Line 10 of op′′.

In the following, we let PC(p) denote the value of process p’s program counter.
For any register r at process p, we let r(p) denote the value of that register. We
let P denote a set of processes such that p ∈ P if and only if PC(p) ∈ {1, 2, 7−
13, 16−21, 23, 24} or PC(p) ∈ {3−5}∧Help[p] ≡ (∗, 1, ∗). We let P ′ denote a set
of processes such that p ∈ P ′ if and only if PC(p) ∈ {3− 6}∧Help[p] ≡ (∗, 0, ∗).
We let P ′′ denote a set of processes such that p ∈ P ′′ if and only if PC(p) = 14.
We let P ′′′ denote a set of processes such that p ∈ P ′′′ if and only if PC(p) = 22.
Finally, we let |Qp| denote the length of process p’s local queue Qp.

Due to space constraints, we present the next six lemmas without proofs.

Lemma 1. Let p be some process, and LLp some LL operation by p in H. Let
t and t′ be the times when p executes Line 2 and Line 5 of LLp, respectively.
Let t′′ be either (1) the time when p executes Line 2 of its first LL operation
after LLp, if such operation exists, or (2) the end of H, otherwise. Then, the
following statements hold:

(S1) During the time interval (t, t′], exactly one write into Help[p] is performed.
(S2) Any value written into Help[p] during (t, t′′) is of the form (∗, 0, ∗).
(S3) Let t′′′ ∈ (t, t′] be the time when the write from statement (S1) takes place.
Then, during the time interval (t′′′, t′′), no process writes into Help[p].

Lemma 2. The algorithm satisfies the invariants in Figure 5.

Lemma 3. Let t0 < t1 < . . . < tK be all the times in H when some variable X[i]
is written to (by a successful CAS at Line 12). Then, for all j ∈ {0, 1, . . . , K},
the value written into X[i] at time tj is of the form (j, ∗).
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Lemma 4. Let O[i] be an LL/SC object. Let t be the time when some process
p reads X[i] (at Line 3 or 18), and t′ > t the first time after t that p completes
Line 4 or Line 19. Let op be the latest successful SC operation on O[i] to execute
Line 12 prior to time t, and v the value that op writes in O[i]. If there exists
some process q such that Help[q] holds value (∗, 1, ∗) throughout (t, t′) and doesn’t
change, then p reads value v from BUF at Line 4 or Line 19 (during (t, t′)).

Lemma 5. Let O[i] be an LL/SC object and op some LL operation on O[i].
Let SCq be the latest successful SC operation on O[i] to execute Line 12 prior to
Line 3 of op, and vq the value that SCq writes in O[i]. If the CAS at Line 5 of
op succeeds, then op returns value vq.

Lemma 6. Let O[i] be an LL/SC object, and op an LL operation on O[i] such
that the CAS at Line 5 of op fails. Let p be the process executing op. Let t and
t′ be the times, respectively, when p executes Lines 2 and 5 of op. Let x and v
be the values that p reads from BUF at Lines 7 and 8 of op, respectively. Then,
there exists a successful SC operation SCq on O[i] such that (1) at some point
during (t, t′), SCq is the latest successful SC on O[i] to execute Line 12, and (2)
SCq writes x into X[i] and v into O[i].

Lemma 7 (Correctness of LL). Let O[i] be some LL/SC object. Let op be
any LL operation on O[i], and op′ be the latest successful SC operation on O[i]
such that LP(op′) < LP(op). Then, op returns the value written by op′.

Proof. Let p be the process executing op. We examine the following two cases:
(1) the CAS at Line 5 of op succeeds, and (2) the CAS at Line 5 of op fails. In
the first case, let SCq be the latest successful SC operation on O[i] to execute
Line 12 prior to Line 3 of op, and vq be the value that SCq writes in O[i]. Since
all SC operations are linearized at Line 12 and since op is linearized at Line 3,
we have SCq = op′. Furthermore, by Lemma 5, op returns value vq. Therefore,
the lemma holds in this case.

In the second case, let t and t′ be the times, respectively, when p executes
Lines 2 and 5 of op. Let v be the value that p reads from BUF at Line 8 of op.
Then, by Lemma 6, there exists a successful SC operation SCr on O[i] such that
(1) at some time t′′ ∈ (t, t′), SCr is the latest successful SC on O[i] to execute
Line 12, and (2) SCr writes v into O[i]. Since all SC operations are linearized
at Line 12 and since op is linearized at time t′′, we have SCr = op′. Therefore,
the lemma holds. ��
Lemma 8 (Correctness of SC). Let O[i] be some LL/SC object. Let op be
any SC operation on O[i] by some process p, and op′ be the latest LL operation
on O[i] by p prior to op. Then, op succeeds if and only if there does not exist any
successful SC operation op′′ on O[i] such that LP(op′) < LP(op′′) < LP(op).

Proof. We examine the following two cases: (1) the CAS at Line 5 of op′ suc-
ceeds, and (2) the CAS at Line 5 of op′ fails. In the first case, let t1 be the time
when p executes Line 3 of op′, and t2 be the time when p executes Line 12 of
op. Then, we show that the following claim holds.
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Claim. Process p’s CAS at time t2 succeeds if and only if there does not exist
some other SC operation on O[i] that performs a successful CAS at Line 12
during (t1, t2).

Proof. Suppose that no other SC operation on O[i] performs a successful CAS
at Line 12 during (t1, t2). Then, X[i] doesn’t change during (t1, t2), and hence
p’s CAS at time t2 succeeds.

Suppose that some SC operation SCq on O[i] does perform a successful CAS
at Line 12 during (t1, t2). Then, by Lemma 3, X[i] holds different values at times
t1 and t2. Hence, p’s CAS at time t2 fails, which proves the claim. ��

Since all SC operations are linearized at Line 12 and since op′ is linearized at
time t1, it follows from the above claim that op succeeds if and only if there
does not exist some successful SC operation op′′ on O[i] such that LP(op′) <
LP(op′′) < LP(op). Hence, the lemma holds in this case.

In the second case (when the CAS at Line 5 of op′ fails), let t and t′ be the
times when p executes Lines 2 and 5 of op′, respectively. Let x and v be the
values that p reads from BUF at Lines 7 and 8 of op′, respectively. Then, by
Lemma 6, there exists a successful SC operation SCr on O[i] such that (1) at
some time t′′ ∈ (t, t′), SCr is the latest successful SC on O[i] to execute Line 12,
and (2) SCr writes x into X[i] and v into O[i]. Therefore, at Line 7 of op′, p
reads the value that variable X[i] holds at time t′′. We now prove the following
claim.

Claim. Process p’s CAS at time t2 succeeds if and only if there does not exist
some other SC operation on O[i] that performs a successful CAS at Line 12
during (t′′, t2).

Proof. Suppose that no other SC operation on O[i] performs a successful CAS
at Line 12 during (t′′, t2). Then, X[i] doesn’t change during (t′′, t2), and hence
p’s CAS at time t2 succeeds.

Suppose that some SC operation SCq on O[i] does perform a successful CAS
at Line 12 during (t′′, t2). Then, by Lemma 3, X[i] holds different values at times
t′′ and t2. Hence, p’s CAS at time t2 fails, which proves the claim. ��

Since all SC operations are linearized at Line 12 and since op′ is linearized at
time t1, it follows from the above claim that op succeeds if and only if there
does not exist some successful SC operation op′′ on O[i] such that LP(op′) <
LP(op′′) < LP(op). Hence, the lemma holds. ��

Lemma 9 (Correctness of VL). Let O[i] be some LL/SC object. Let op be
any VL operation on O[i] by some process p, and op′ be the latest LL operation
on O[i] by p that precedes op. Then, op returns true if and only if there does not
exist some successful SC operation op′′ on O[i] such that LP(op′′) ∈ (LP(op′),
LP(op)).

Proof. Similar to the proof of Lemma 8. ��
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Theorem 1. The algorithm in Figure 4 is a linearizable, wait-free implementa-
tion of an array O[0 . . M −1] of W -word LL/SC objects, shared by N processes.
The time complexities of LL, SC and VL operations on any O[i] are O(W ),
O(W ) and O(1), respectively. The space complexity of the implementation is
O((N2 + M)W ).

Proof. The theorem follows immediately from Lemmas 7, 8, and 9. ��
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Abstract. We introduce a novel term, memory-adaptive, that intu-
itively captures what it means for a distributed protocol to most effi-
ciently make use of its shared memory. We also prove three results that
relate to our memory-adaptive model. In our store/release protocols pro-
cessors are required to store a value in shared MWMR memory so that
it cannot be overwritten until it has been released by the processor. We
show that there do not exist uniformly wait-free store/release protocols
using only the basic operations read and write that are memory-adaptive
to point contention. We further show that there exists a uniformly wait-
free store/release protocol using only the basic operations read and write
that is memory-adaptive to total contention. We finally show that there
exists a uniformly wait-free store/release protocol using only the basic
operations read, write, and write-plus that is memory-adaptive to inter-
val contention and time-adaptive to total contention.

1 Introduction

In order to solve certain well known problems such as collect, atomic snapshot,
or renaming, the active processors need to gather information about each other.
For example, in the renaming problem, before choosing a new name, processors
need to know which names other processors have already chosen. A straight-
forward way in which information can be communicated is to use an array of
Single-Writer Multi-Reader (SWMR) registers such that each processor has a
unique array entry assigned to it. Only a single fixed processor is allowed to
write to each array location while all processors can read them. A processor can
update information about itself by writing into its entry and it can then collect
information about the other processors by reading all entries in an arbitrary
order. Such a simple algorithm has the property that if a collect by a processor
pj returns a value v for a processor pi then v is the value of the last update
operation by pi before the beginning of the collect or of an update that is con-
current with the collect. Moreover in two successive collects that do not overlap,
the later one will not return for any processor a value that is older than a value
returned by the earlier one for the same processor.

Such a collect algorithm with step complexity O(N), however, where N is
the total number of processors in the system, is possibly inefficient if only few
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of the N processors are actually participating. This motivated researchers to
look for adaptive algorithms whose step complexity only depends on the num-
ber of participating processors. We will call these algorithms time-adaptive to
distinguish them from algorithms that we call memory-adaptive in this paper.
In memory-adaptive algorithms processors are only allowed to write to a shared
MWMR register whose index is a function of the contention during the proces-
sors previous shared memory access.

Time-adaptive algorithms have a worst case step complexity that is bounded
by a function of the number of concurrently participating, or actually active pro-
cessors [3]. Motivated by Lamport’s MX algorithm [26], many such time-adaptive
algorithms have since been designed [1, 3, 4, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 20, 21]
[22, 24, 25, 27, 29]. The strongest forms of time-adaptiveness in the read/write
shared memory model have been defined and achieved in recently presented
long-lived time-adaptive collect [7] and renaming [1, 19] algorithms. In these al-
gorithms, called time-adaptive to point contention the number of steps taken
by a processor executing an operation is a function of the maximum number of
processors that were active simultaneously at some point in time during this op-
erations execution interval. Algorithms time-adaptive to interval contention have
a slightly weaker level of adaptiveness. Here the number of steps taken during a
given operation is a function of the total number of different processors active
during the operation’s execution interval. Finally, an algorithm is time-adaptive
to total contention if the number of steps taken by a processor is a function of
the total number of processors active since the beginning of the execution.

1.1 Background

Though we do not prove any results on the problem, this research is motivated by
attempts to prove lower bounds in various settings for collect and related prob-
lems. We therefore give a few recent references and outline the current state of
research on the collect problem below. (This is not meant to be a comprehensive
summary by any means.)

Recently, a number of different time-adaptive collect algorithms were pre-
sented [7, 19, 20, 21, 22]. The algorithm presented by Attiya, Fouren and Gafni
[20] has an asymptotically optimal O(k) step complexity1, but it is a one-shot
algorithm and the memory consumption is exponential in N . Attiya, Kuhn,
Wattenhofer and Wattenhofer [21] presented a new randomized time-adaptive
collect algorithm with asymptotically optimal step complexity and polynomial
memory overhead. For any constant γ > 1 they also presented a new de-
terministic collect algorithm with O(k2/((γ − 1) log N)) step complexity and
O(Nγ+1/((γ−1) log N)) memory complexity. However, their algorithms are one-
shot, not long-lived and hence time-adapt only to total contention with respect
to shared memory operations. On the other hand the collect algorithm by Afek,
1 Throughout this paper, we will use the lowercase k to refer to the contention and

the uppercase N to refer to the total number of processors that could potentially
become active. We capitalize N to emphasize that it is to be considered large in
comparison to k.
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Stupp and Touitou [7] is long-lived and time-adapts to the point contention
(and hence to interval contention) k. It is designed for low contention, has step
complexity O(k3) and uses O(N3) shared memory registers.

Additionally, Afek, Boxer and Touitou [2] showed that the number of Multi-
Writer Multi-Reader (MWMR) registers used must be a function of N . They
specifically show that for any constant d there is a large enough Nd such that
every long-lived time-adaptive (to interval contention, and hence, point con-
tention as well) read/write implementation of collect (and renaming) with Nd

processors must use at least d MWMR registers. In their paper they use a simple
object called weak test and set [12] to derive their impossibility results. More
recently Attiya, Fich and Kaplan [16] significantly improved on [2]. They showed
that if a collect algorithm is time-adaptive to total contention, namely, its step
complexity is f(k), where k is the number of processors that ever became active
during the current execution, then it uses Ω(f−1(N)) MWMR registers, where
N is the total number of processors in the system.

1.2 Motivation

What if in a distributed system such as the Internet, we have a potentially
huge number of processors that might participate in some protocol but it is
known that with very high probability only a small number of processors will be
active at any given time. It is unrealistic and wasteful for a system to provide
a huge number of shared memory registers for the operation of such a protocol.
Algorithms that operate in this setting are not able to use a priori knowledge
about a finite upper bound on the number of processors in the system and are
called uniform algorithms. Aguilera, Englert and Gafni [10] showed that there
are single shot tasks such as generalized weak test and set [12] that cannot be
solved uniformly with a finite number of MWMR registers. In other words a
protocol solving this task with finitely many MWMR registers must know the
number of participating processors in advance. Since generalized weak test and
set is a one-shot algorithm, this implies that the long lived nature of test and
set and the requirement that the step complexity adapt to interval contention
are not the only requirements that preclude a solution in finite space.

Consider a setting where no finite a priori upper bound on the number of
possibly participating processors is known. Ultimately we would like to know
if in such a setting it is possible to uniformly implement collect (or any of the
other closely related protocol problems) with finitely many MWMR registers.
In such a setting an algorithm that implements collect will not be able to rely
on and make use of processor id’s (such as in [7]) to decide which MWMR
registers to write to. With this in mind we present in this paper some new results
concerning a new measure of adaptiveness that we call memory-adaptiveness.
Algorithms that are memory-adaptive strictly only use memory space whose
size at all times is a function of the contention. We investigate what can be
implemented memory adaptively in a system with infinitely many processors and
an infinite shared memory. We provide results for algorithms memory-adaptive
to point, interval, and total contention. Ultimately we hope that the continuation
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of this investigation will shed some light on the question of if and, if so, how
collect and similar algorithms can be solved uniformly in a system with infinitely
many MWMR registers and infinitely many SWMR registers.

Memory-Adaptiveness. For the purposes of investigating uniform protocols
on systems with enormous shared memory resources2, we introduce the notion of
memory-adaptiveness: each write operation that a processor makes must be close
to the “front” of shared memory. Intuitively such a definition is motivated by the
fact that, if processors are able to write to registers with “unpredictably large”
indices, then the amount of shared memory used by the protocol needs to be at
least as “unpredictably large” as the largest index written. Imagine a distributed
operating system with essentially infinite memory. If the protocols it runs are
allowed to write to any part of memory, then, if pointer-based structures are
not used3, it can only run a single protocol at a time so as to prevent memory
collisions between protocols. On the other hand, if it can guarantee that the
memory required by each protocol is a bounded function of the contention, then it
can allocate large memory blocks to each protocol on an ad hoc basis and, on the
rare occasions when it is necessary, increase or decrease the individual allocations
as necessary. If the system is guaranteed of an upper bound on the potential
index of a register based on the contention, then the memory requirements of
each protocol run in the system are clearly much less.

Another reason for investigating memory-adaptiveness is as follows. If pro-
cessors are allowed to write to arbitrarily large indices (i.e. indices that are
independent of the contention) for the first time, later processors will not be
able to accurately determine the contention without performing a potentially
huge number of reads. Hence they will want to register in a fixed finite subset
of the infinite set of MWMR registers that we call “close to the beginning of
shared memory.”

By way of contrast, consider the renaming problem [1, 5, 17, 19], for example.
Each active processor is required to choose a unique name for itself that is
as small as possible by storing its index in a shared memory register. Its new
“name” becomes the index of this shared register. Processors are allowed to use
any shared register during the execution of the protocol, even a register with an
extremely large index, but the final result must lie within a bounded distance
from the front of shared memory. In our new definition of memory-adaptiveness,
to capture the notion of having to write close to the front of shared memory
every time, we require processors to write to a MWMR register whose index is a
function of the contention during the previous operation of the same processor.
2 Currently, purchasing a potentially huge amount of memory is possible for a dis-

tributed system. Memory is cheap nowadays. However, effectively managing this
memory is a serious problem.

3 Pointer-based structures inherently require numerous small, on-the-fly memory al-
locations, which usually necessitate the intervention of the operating system and
hence greatly slow the computation. As any seasoned programmer knows, operat-
ing system interrupts (and hence pointer-based structures) are to be avoided when
programming a computationally intensive algorithm.
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Our Contributions. We begin by investigating simple tasks, store and release,
that require a given processor to store a value in shared MWMR memory that
cannot be overwritten by any other processor and then erasing the value when
no longer needed, freeing the memory for other processors to use4. We will study
whether these simple commands can be implemented memory-adaptively under
different assumptions about the contention of the protocol.

We roughly summarize the contributions of our paper here. The rigorous
phrasing of the theorems and definitions will come in Section 2.

1. Point contention: (Theorem 1) We show that in a system with infinitely many
MWMR registers and infinitely many SWMR registers, for any constant d,
there exists a number Nd such that if Nd processors are allowed to participate
in a memory-adaptive (to POINT contention) execution of the protocol, then
at least one does not make a single uncovered write to a shared register in d
writes. In other words we show that under these conditions processors cannot
memory-adaptively store a value in shared memory. This implies that any
time-adaptive collect or renaming algorithm in this setting that uses only
finitely many of the infinitely many MWMR registers (if such an algorithm
exists) cannot be built from memory-adaptive building blocks alone.

Note that Afek, Boxer, and Touitou [7] showed that for any constant
d there is a large enough Nd such that every long-lived time-adaptive (to
interval contention and hence point contention as well) read/write imple-
mentation of collect (and renaming) with Nd processors must use at least
d MWMR registers. This result essentially implies that there cannot ex-
ist a uniform long-lived time-adaptive (to interval contention) read/write
implementation of collect or renaming that uses only a finite number of
memory registers. However, their result is not immediately applicable to the
case where there are an infinite number of registers available for use. Also,
we show that a processor cannot even hope to reliably store its value in a
register in the point-contention memory-adaptive model, much less reliably
collect all of the values of the other active processors.
Oddly enough, however, if we relax the type of contention, we get positive
results for the very same store and release protocols.

2. Total Contention: (Theorem 2) We show that there does exist a uniform
long-lived implementation of store and release in the read-write model that
is memory-adaptive to TOTAL contention. Thus, the definition of memory-
adaptiveness itself is not one that precludes the possibility of a meaningful
protocol for store and release. The proof is constructive and similar to [20].

3. Interval contention: (Theorem 3) Note that if one can implement store and
release, then the collect protocol becomes trivial to implement. Unfortu-
nately, given the result in [7], it seems unlikely that a collect protocol

4 Another way to view a store and release protocol is as a simple renaming protocol
where the index of the register in which a value is stored becomes the new name
and where release simply releases this name. To focus attention on the central com-
ponents of such a protocol and to avoid confusion with already existing renaming
protocols we choose the store/release terminology.
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memory-adaptive to interval contention is possible. If we change the model
to allow a slightly stronger write command called WRITE-PLUS, then such
an algorithm for store/release does exist. Note that the WRITE-PLUS com-
mand is much weaker than the standard read-modify-write. We give a thor-
ough description of the command and the algorithm below.

The covering techniques used in our impossibility proofs first appeared in [23]
to show some bounds on the number of registers necessary for mutual exclusion.
However there they were used to prove an impossibility in a system with finitely
many MWMR registers. Here, we modify them to show an impossibility in a
system with infinitely many MWMR registers.

2 The Model

We use the standard shared-memory model of distributed computation. There
exists a large numbers of processors modeled by infinite-state machines capable of
unbounded computation that are allowed to engage in a distributed deterministic
asynchronous protocol. Processors are indexed by the positive natural numbers
and each knows its own “name.” There are two areas of memory: the single-
writer multi-reader (SWMR) space and the multi-writer multi-reader (MWMR)
space. The former can be thought of as a large array of numbered registers
indexed by the positive natural numbers. Each register is associated with a
distinct processor and can store an unbounded number of bits. A given processor
may only write to its assigned register though it may read the contents of any
other SWMR registers. The MWMR registers have all the same properties as the
SWMR registers with the exception that any processor may both read and write
to any register. Intuitively, we think of the SWMR registers as private memory
controlled by the individual processors, and the MWMR registers as the memory
domain of a separate entity with its own operating system accessible by the all
the processors.

Processors interact with the memory space using basic atomic operations.
The atomic operations we will allow in this paper are read, write, and a new
operation we call write-plus.

– READ: To execute a read command, a processor specifies a register to be
read and upon completion of the read, the processor has gained a snapshot
of the contents of the specified register.

– WRITE: A processor specifies which register to write to (in either private or
shared memory) and the data to be written. Upon completion of the write
command, all previous data is overwritten with the new data specified by
the processor. (Note that we do not allow a processor to overwrite “part” of
a register.)

– WRITE-PLUS: A write-plus command is similar to a write command except
that after the value of the register is written, the processor receives a snap-
shot of the value that was overwritten. It is a special case of a Read-Modify-
Write (RMW). The RMW command allows the unbreakable execution of the
following code (where X is a shared variable and f is a mapping):
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function RMW(X,f)
begin

temp←X;
X←f(X);
return(temp);

end

The write-plus command is equivalent to specifying that the function f is
required to be a constant independent of X.

A protocol is an algorithm that accomplishes a task using basic operations.
An adaptive protocol is one in which the resources consumed by the protocol
are functions of the number of processors that actually participate in the proto-
col (a.k.a. active processors) rather than the total number of processors. When
dealing with adaptive protocols, it is convenient to have definitions that mea-
sure the number of active processors in the system at a given time (i.e. the
“contention”). Total contention refers to the total number of processors that
become active during the entire execution of the algorithm. Interval contention
during a given processor’s protocol is defined to be the total number of processors
that become active during the execution of a processors protocol. Finally, point
contention during a given processor’s protocol refers to the maximum number
of processors that are simultaneously active during the execution of a processors
protocol.

There are naturally several different ways to measure the complexity of an
adaptive protocol. One says that a protocol is time-adaptive to a particular
type of contention if the maximum number of basic operations executed dur-
ing the protocol by any given processor is a bounded function of the con-
tention type. This is another way of saying that the step complexity of the
algorithm depends on the contention. This definition is fairly standard in the
literature [1, 3, 4, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 29].

To obtain our results we are mainly interested in the writes processors make
to shared memory (MWMR registers). We hence introduce a new measure of
complexity that we call memory-adaptive. We say that a command is memory-
adaptive to a type of contention if and only if the following is true. Whenever
a processor executes a basic operation, if the next basic operation will change
the state of a shared memory register, the index of the register is a bounded
function of the contention at the time of the previous basic operation. (In the
asynchronous model, without loss of generality, we may assume that the first
basic operation in any protocol is a read, which does not change the state of any
register.) In other words, a processor can read wherever it wants, but it can only
write to places that are as close to the “front” of shared memory as possible.

Our definition of memory-adaptiveness is not well-established in the literature.
The common understanding of the concept of memory-adaptiveness refers to the
end result of the computation [1, 3, 4, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 20, 21, 22, 24]
[25, 27, 29]. The final result must lie within a bounded distance of the “front”
of shared memory. For example, in the renaming protocol, each active processor
is required to choose a unique name for itself that is as small as possible by
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storing its index in a shared memory register. Its new “name” becomes the
index of this shared register. Processors are allowed to use any shared register
during the execution of the protocol, even a register with an extremely large
index, but the final result must lie within a bounded distance from the front of
shared memory. We justify our new definition based on the following reasoning.
Assume that a distributed system has a potentially huge number of processors
that might participate in some protocol. (For example, assume that a renaming
protocol is executing on a certain subset of the computers connected to the
Internet...) It is known that with very high probability only a small number of
processors will be active at any given time. It is unrealistic and wasteful for a
system to provide a huge number of shared memory registers for the operation
of such a protocol. Using the established definition of “memory-adaptiveness,”
a protocol could be memory-adaptive and yet require unbounded resources for
a proper execution. On the other hand, if a protocol is memory-adaptive using
our new definition of memory-adaptiveness, one need not have prior knowledge
of the potential number of active processors before the protocol begins. This new
definition seems to better capture the intuitive feel of what memory-adaptiveness
should be.

The two protocols that we will focus on in this paper are store and release.

– STORE: A data value is specified in advance by the processor. The goal
is for the processor to store the data value in some shared register in such
a way that upon completion the processor knows that the value will not
be moved or erased by any other processor until the register is explicitly
released. Essentially, this amounts to storing a value in shared memory and
locking the location. Ideally, the index of the shared register in question will
be as close to the “front” as possible.

– RELEASE: This assumes that the processor has already executed a previ-
ous store protocol. Upon completion, the shared register occupied by the
processor is released.

Notethatthesearefundamentalcommandsuseful formanydistributedprotocols
(e.g. collect, mutual exclusion, consensus, approximate agreement, and so on).

We call a protocol uniformly wait-free if there exists a uniform bound ap-
plicable to all processors on the number of basic operations that the protocol
requires before termination. All protocols considered in this paper will be uni-
formly wait-free.

3 Point Contention

Our first major result is the following theorem.

Theorem 1. There do not exist long-lived uniformly wait-free store/release pro-
tocols using only the basic operations read and write that are memory-adaptive
to point contention.

The proof requires a preliminary combinatorial lemma. Throughout this paper,
N represents the set of positive integers.
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Lemma 1. Assume that you are given an infinite collection of sets Si ⊆ N such
that |Si| ≤ k for some nonnegative constant k. Then ∃X ⊆ N such that |X | = ∞
and such that ∀x, y ∈ X, y �= x ⇒ x �∈ Sy.

Note that it is not enough to make the Si bounded. They must be uniformly
bounded. As a counterexample, note that if we let Si = {1, 2, . . . , i}, then
∀i, |Si| < ∞ but for any set such that |X | = ∞, if x < y ∈ X , then x ∈ Sy.

Proof. We will induct on the value of k. For the base case, assume that k = 0.
Then ∀x ∈ N , Sx = ∅ so the claim is trivially true.

Assume inductively that the claim is true for all nonnegative integers up to
some nonnegative constant k.

Assume that you are given sets Si ⊆ N such that |Si| ≤ k + 1. By way of
contradiction, assume that ∀X ⊆ N , the condition

∀x, y ∈ X, y �= x ⇒ x �∈ Sy

implies that |X | < ∞. Choose a set X . Perform the following algorithm
repeatedly:

– Determine whether the following statement is true or false: ∃a ∈ N−X, ∀x ∈
X, x �∈ Sa ∧ a �∈ Sx.
• If the statement is true, then let X = X ∪ {a}. Start again.
• If the statement is false, stop.

Either the procedure above lasts forever or eventually stops. If the procedure
lasts forever, then by the Axiom of Choice, we have found a set X such that
|X | = ∞ and ∀x, y ∈ X, y �= x ⇒ x �∈ Sy which is a contradiction. So we
may assume that the procedure eventually terminates. Then X is a finite-size
maximal set such that ∀x, y ∈ X, y �= x ⇒ x �∈ Sy. We also know by virtue of
the fact that the algorithm above terminated, that

∀a ∈ N −X, ∃x ∈ X, x ∈ Sa ∨ a ∈ Sx

Create a new collection of sets S′
i from the old collection Si. For each i ∈ N ,

– If i ∈ X ∨ i ∈ ⋃
a∈X Sa, let S′

i = ∅
– If i �∈ X ∧ i �∈ ⋃

a∈X Sa, let S′
i = Si −X

Our first claim is that ∀i ∈ N , |S′
i| ≤ k. This is clear if i ∈ X ∨ i ∈ ⋃

a∈X Sa. If
i �∈ X ∧ i �∈ ⋃

a∈X Sa, then we claim that ∃x ∈ X, x ∈ Si which would prove the
claim.

Claim.

i �∈ X ∧ i �∈
⋃

a∈X

Sa ⇒ ∃x ∈ X, x ∈ Si
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Proof of Claim: Assume that i �∈ X ∧ i �∈ ⋃
a∈X Sa. Assume by way of contra-

diction that Si ∩X = ∅. Recall that X is finite and maximal. We claim that

∀x, y ∈ X ∪ {i}, y �= x⇒ x �∈ Sy

thus violating the maximality of the set X because i �∈ X . Let x ∈ X . Then we
have two things to check: (a) i �∈ Sx and (b) x �∈ Si. For the condition (a), note
that i �∈ ⋃

a∈X Sa ⇒ i �∈ Sx. For the condition (b), Si ∩X = ∅ ⇒ x �∈ Si. So we
are done. ��
Thus, we have new sets S′

i ⊆ N such that |S′
i| ≤ k. Using the inductive hypoth-

esis, ∃X ′ ⊆ N such that |X ′| = ∞ and such that ∀x, y ∈ X ′, y �= x ⇒ x �∈ S′
y.

Let X ′′ ⊆ N be X ′ − X − ⋃
a∈X Sa. We claim that (a) |X ′′| = ∞ and (b)

∀x, y ∈ X ′′, y �= x ⇒ x �∈ Sy.
Condition (a) is trivially true from the fact that |X ′| = ∞ and |X | < ∞ and

|⋃a∈X Sa| <∞.
To prove condition (b), choose x, y ∈ X ′′. We want to show that x ∈ Sy ⇒

x = y. Assume that x ∈ Sy. Note that y ∈ X ′′ ⇒ y �∈ X ∧ y �∈ ⋃
a∈X Sa ⇒ S′

y =
Sy − X . We also have x ∈ X ′′ ⇒ x �∈ X so that x ∈ Sy ⇒ x ∈ S′

y. Finally,
x, y ∈ X ′′ ⇒ x, y ∈ X ′ and therefore x ∈ S′

y ⇒ x = y. Thus, X ′′ is the inductive
set for k + 1 and we are done. ��
Proof of Theorem 1: Assume that store and release protocols exist that are
uniformly wait-free and memory-adaptive to point contention. Assume that there
are an infinite number of potential processors indexed byN , only a finite number
of which will ever participate in executing the protocol.

We make the following claim. For all k ≥ 0, there exists an infinite set of
processors P and an execution sequence such that all processors in P satisfy
the following statements: ∀p ∈ P , if p is executing a store command from a
configuration that is consistent with all processors inactive, then after k writes
to shared memory, (a) p has not written a single uncovered write into shared
memory and (b) p’s current computational transcript is consistent with any
positive number of active processors in the system. It is clear that this claim
implies the theorem: after k writes, the processor is no better off than at the
beginning of its execution. The remainder of the proof proves this claim.

Fix some k. We will build a set P = Pk that satisfies both properties. We will
first examine the computational transcripts of our processors just before each is
about to make its first shared write. Initially, the system is in a configuration
that is consistent with all processors being inactive.

Assuming each processor in N makes a solo execution, let S
(0)
i be the set of

single-writer registers read by processor i. Note that by the uniform wait-free
nature of the store command, |S(0)

i | ≤ j0 for some constant j0. By Lemma 1,
∃X0 ⊆ N such that |X0| = ∞ and such that ∀x, y ∈ X0, y �= x ⇒ x �∈ S

(0)
y .

Translating this back into English, this implies that there exists an infinite set
of processors X0 such that no processor reads the single-writer register of any
other processor in the set. Because we start from an inactive state, the first
write must be to within a constant distance from the front of shared memory
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(by the definition of memory-adaptiveness). By the Pigeonhole Principle, there
must exist an infinite number of processors from the set X0 that cover the same
shared register. Call this infinite set P0. We claim that P0 satisfies properties (a)
and (b). (a) is trivial. Because each processor cannot see any other processor by
construction, (b) is also trivial.

Assume that Pm has been constructed and we wish to construct Pm+1.
To construct Pm+1, we do the following. Choose some p′ ∈ Pm. For every

p ∈ Pm − {p′}, we can construct an execution that happens like this. p finishes
its write but the value it writes is immediately overwritten by p′. We allow
p′ to completely finish its store and then we allow p′ to completely finish a
release operation. Note that shared memory now looks completely inactive. Index
the set Pm − {p′} by N . Let S

(m)
i be the set of single-writer registers that

are read by pi in a pi-only execution up until the next shared pi-write. (Note
that N is only indexing Pm − {p′} and so a processor might read some single-
writer registers that are not in this set, but we don’t care because all other
processors are assumed to be inactive.) Once again, note that |S(m)

i | ≤ jm for
some constant jm. By Lemma 1, ∃Xm+1 ⊆ N such that |Xm+1| = ∞ and such
that ∀x, y ∈ Xm+1, y �= x⇒ x �∈ S

(1)
y . So we again get an infinite set of processors

that still cannot see each other. Because of condition (b) and the definition of
memory-adaptiveness, for each processor, we can only write to within a constant
distance from the front of shared memory. Again, by the Pigeonhole Principle,
there must be an infinite number of processors covering the same shared memory
location. Let this be Pm+1. Because all the processors in Pm−{p′} were executing
covered writes, (a) is trivially true because it was true previously. (b) is also
trivial by construction.

We can continue in this way for any number of shared writes. ��

4 Total Contention

Interestingly, it is possible to make an equivalent protocol adaptive to total
contention rather than point contention.

Theorem 2. There exists a long-lived uniformly wait-free store/release protocol
using only the basic operations read and write that is memory-adaptive to total
contention.

Proof Sketch. This is very similar to existing algorithms for collect, renaming
such as the algorithms presented in [20, 28]. Think of the memory as a two dimen-
sional grid N × (N ∪{0}). We can easily convert this back to a one-dimensional
linear configuration via a simple diagonalization argument. The registers (i, 0)
will be the ones that are used to store the actual values. The registers (i, j) for
j ≥ 1 are all splitters [8, 26, 28] and will be the competition space for (i, 0). Ini-
tially the spot (i, 0) for all i will consist of a pointer to (i, 1) (i.e. the first “empty
splitter”) and a flag indicating that the register is empty. When a processor exe-
cutes a store, it tries for (i, 0) first. If (i, 0) is not occupied with a value, it notes
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the current round and proceeds to the first empty splitter in the column. The
operation of the splitters is as follows:

The processor writes its name into slot #1. It then looks into slot #2. If there
is a processor in slot #2, then it proceeds onwards to try for (i+1, 0). If not, the
processor writes its name into slot #2. It then checks slot #1. If the processors
name is not written in slot #1, then it proceeds to (i, j + 1). If the processors
name is in slot #1, then it wins the splitter and the register. In the register, it
will note its own value, the fact that the register is “taken”, and the value of j
that it won from. This will be the “lowest” dirty splitter. Below that are clean
splitters; the next processor that tries to claim this register will start from the
highest clean splitter. When a release is called, all the processor needs to do is
indicate that the register is open.

5 Interval Contention

Oddly enough, there also exists a store/release protocol similar to the one above
that is memory-adaptive to interval contention. However, in order to make the
protocol memory-adaptive to interval contention, we need to use the somewhat
stronger write-plus operation.

Theorem 3. There exists a long-lived uniformly wait-free store/release proto-
col using only the basic operations read, write, and write-plus that is memory-
adaptive to interval contention and time-adaptive to total contention.

Proof. Once again, we assume that the memory is arranged in the form of a
two-dimensional grid, this time indexed by N ×N .

Whenever a processor executes a write-plus into shared memory, it notes what
was previously written there in its private memory space along with whatever
it writes into the register. It therefore always has a complete record of all of its
operations from the beginning of time in its private space along with the values
that it overwrites. During each store and with each write, the processor keeps
track of the number of times it has stored a value in shared memory. Each write
will contain a field with this parameter. Also, splitters are able to hold values.
Whenever a processor captures a splitter, it uses it to store its value.

Assume for the moment that a processor has the ability to tell whether a
splitter is “clean” or “dirty”. In other words, the processor is able to tell whether,
given a splitter, there exists another processor that has previously written into
the splitter’s slot #1 and yet has not either written into slot #2 or written into
some other shared register. Then we perform the following protocol: Whenever a
processor executes a store, it begins at (1, 1) = (i, j). If the splitter is taken with
a value, then the processor moves to (i + 1, 1). If the splitter is dirty, it moves
to (i, j + 1). If the splitter is clean, it competes. It writes its name into slot #1
and checks slot #2. If there is a “new” name (i.e. a name that has been written
in the splitter after the processor started competing) in slot #2, the processor
moves to (i + 1, 1). If there is no new name, then the processor writes its name
into slot #2 and checks slot #1. If there is a new name in slot #1, then the
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processor moves to (i, j + 1). If the processor’s name is still written in slot #1,
then the processor has won the splitter and the right to use its value register. It
notes this in the register and writes in its value.

It remains to show that a processor has the ability to tell whether a splitter is
clean or dirty. The processor examines the names of the processors in each slot of
the splitter. Using this information, it can work backwards to determine all of the
processors that have written into the slot previously by examining the private
register of each and working backwards recursively. With that information, the
processor can determine whether there exists a processor that has written into
slot #1 and not #2 or has written into slot #1 and then nowhere else. This is
the definition of dirty.

In order to execute a release, the processor simply indicates that the splitter
is now clean.

We claim that this protocol is time-adaptive to total contention and memory-
adaptive to interval contention. First, we will show the memory-adaptiveness.

We assume that the total number of processors that ever become active during
the interval under consideration is k. Consider the protocol restricted to a given
column i. Assume that only at most j active processors are ever in the column at
any given time. Because all processors are required to start at position (i, 1), note
that the furthest downward that any processor could ever move is (i, j). We now
claim that in column i, at most k− i+1 processors will ever exist in the column
at any given time. Clearly, this is true for i = 1. In order for a processor to move
to the right, another processor must be “left behind.” Thus, there can be at most
one fewer active processor in a given column than in the column to the left. In-
ductively, our claim is therefore proved. The processors are therefore restricted to
move in the space above and to the left of the grid points (i, k− i+1), 1 ≤ i ≤ k.
Because the processors are only allowed to move right and down, this restricts
the number of moves to at most k before an empty splitter is found. This implies
a bound of O(k2) on the memory-adaptiveness of the protocol.

For the time-adaptive claim, note that the number of reads that is necessary
for a given processor to determine the history of a given splitter is proportional
to the number of processors that has previously written into the splitter.

6 Open Problems

We leave open the question of whether it is possible to design a store/release
protocol that is memory-adaptive to interval contention and does not require
the use of the slightly stronger write-plus operation. We conjecture, based on
previous results in a slightly different setting, that this will not be possible.

Moreover, the question remains whether a time-adaptive, uniform collect al-
gorithm in an unbounded execution exists that always uses only finitely many
registers. We conjecture that it must use infinitely many MWMR registers even
if throughout, in this unbounded execution, only finitely many processors ap-
pear. We hope that the results in this paper help lead to an eventual proof of
this conjecture.
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Atomicity Assumption
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Abstract. We present a randomized algorithm for asynchronous wait-
free consensus using multi-writer multi-reader shared registers. This algo-
rithm is based on earlier work by Chor, Israeli and Li (CIL) and is correct
under the assumption that processes can perform a random choice and a
write operation in one atomic step. The expected total work for our al-
gorithm is shown to be O(N log(log N)), compared with O(N2) for the
CIL algorithm, and O(N log N) for the best known weak adversary algo-
rithm. We also model check instances of our algorithm using the proba-
bilistic model checking tool PRISM.

Keywords: Asynchronous Consensus, Randomized Algorithms, Wait-
Free Termination, Weak Adversary, Probabilistic Model Checking.

1 Introduction

Distributed consensus refers to a class of problems in which a set of parallel
processes exchange messages in order to agree on a common preference. Initially,
each process is given an input value from a fixed, finite domain and, at the end
of the algorithm, each non-faulty process outputs a decision value. Correctness
requirements are typically formulated as follows.

– Validity: the output of any non-faulty process must have been the input of
some process.

– Agreement : all non-faulty processes decide on the same value.
– Termination: every non-faulty process decides after a finite number of steps.

As shown in [FLP85], there exists no deterministic algorithm that solves dis-
tributed consensus in a setting of asynchronous communication with undetected
process failure. Nonetheless, many efficient solutions exist under stronger as-
sumptions (e.g. partial synchrony [DLS88] and failure detection [ACT00]) or
weaker correctness requirements (e.g. probabilistic termination [CIL87]).

Our algorithm falls into the category of randomized consensus algorithms,
where processes may use coin tosses to determine their course of actions. In this
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setting, termination is weakened to a probabilistic statement: the set of all non-
terminating executions has probability 0. We refer to [Asp03] for a comprehensive
overview on randomized consensus.

The first randomized consensus algorithm was proposed by Chor, Israeli and
Li [CIL87, CIL94]. It satisfies the following termination condition.

– Probabilistic wait-free termination: with probability 1, each non-faulty pro-
cess decides after a finite number of steps.

We adopt the same requirement. In fact, the logical structure of our algorithm
closely resemble that in [CIL94], while we borrow ideas from [Cha96] to reduce
the amount of shared and local data. We shall refer to [CIL94] as the original
CIL algorithm and our own as the modified CIL algorithm.

Adversary Models and Work Bounds. To prove probabilistic termination,
we must reason about probability distributions on the set of executions. These
distributions are induced by the so-called adversaries, which are functions from
finite histories to available next steps.

The strength of an adversary varies according to the amount of information
it can extract from a finite history. The strong adversaries have access to com-
plete history of all processes and shared registers. Some weaker forms, such as
write-oblivious and value-oblivious, delay the adversary’s knowledge of outcomes
of internal coin tosses. Clearly, a stronger adversary model permits more possi-
bilities and therefore renders consensus more difficult. Consensus against strong
adversaries is shown to be Ω(N2/ log2 N) in expected total work, where N is the
number of processes participating in the algorithm [Asp98]. The best known al-
gorithms achieve expected O(N2 log N) total work [BR91] and O(N log2 N) per
process [AW96]. Against write-oblivious adversaries, one can achieve expected
O(log N) per process work and O(N log N) total work [Aum97]. Against value-
oblivious adversaries, the fastest algorithm is O(N log N e

√
log N ) in a single-

writer single-reader (SWSR) setting [AKL99]1.
Our adversary model takes the form of an atomicity assumption: processes

can perform a random choice and a write operation in one atomic step. In par-
ticular, the process increments its round number if and only if the coin lands
heads; then immediately it writes 1 to the memory location mem(r, v), where r
is the round number after the coin toss and v is the current preference. This
amounts to saying that the adversary cannot distinguish between the two loca-
tions mem(r, v) and mem(r+1, v). The original CIL algorithm relies on a similar
atomicity assumption2 and achieves expected O(N2) total work [CIL94]. In the
present paper, we replace the single-writer multiple-reader (SWMR) registers
of [CIL94] with multi-writer multi-reader (MWMR) registers, thereby reducing
the expected total work to O(N log(log N)).

1 This is faster than other value-oblivious algorithms because SWSR is a weak primi-
tive. More discussion can be found in Section 7.

2 The assumption in [CIL94] says that the adversary cannot distinguish between the
values r and r + 1 as they are written to the same memory location.
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Since our adversaries are value-sensitive, every non-faulty process must per-
form at least one read operation, otherwise we can easily construct an exe-
cution that violates the agreement property. Therefore, expected total work
in this model is Ω(N), which is almost matched by our upper bound of
O(N log(log N)).

We have adopted the worst case expected total work as our complexity mea-
sure, mainly because it is more natural to reason about the collective effect of
all processes on the shared memory. In fact, per process work in our case is
comparable to total work: if all but one process suffer crash failures, the lone
survivor carries the total work burden and performs expected Ω(N) tosses in
order to pull far enough ahead for termination. In this sense, our algorithm is less
efficient than [Cha96, Aum97], where polylogarithmic upper bounds are given
for per process work.

Probabilistic Model Checking. We model check instances of our algorithm
using PRISM, which can check PCTL (Probabilistic Computation Tree Logic)
formulas against an MDP (Markov Decision Process) [PRI, BK98]. This tool has
been applied to many randomized algorithms, including the consensus algorithm
of Aspnes and Herlihy [AH90, KNS01] and Byzantine agreement [KN02].

Consensus algorithms are often hard to model check, because the state space
grows exponentially with the number of participating processes. In [KNS01],
PRISM is applied only to a shared-coin subroutine, while full correctness re-
lies on verification using Cadence SMV, as well as higher level manual proofs.
Unfortunately, the structure of our algorithm does not provide such convenient
isolation of probabilistic reasoning. Nevertheless, we are able to build models
of binary consensus with up to 4 processes and verify relevant properties. In
Section 6, we briefly describe these models and give a summary of PRISM re-
sults. In Section 7, we discuss some prospects in improving feasibility of model
checking.

Overview. Section 2 describes in greater detail our computational setting and
assumptions. Section 3 presents the algorithm and Sections 4 and 5 outline cor-
rectness proofs. Detailed proofs are carried out in [Che05b]. Section 6 is devoted
to model checking and Section 7 contains closing discussions.

2 System Model

We consider a system of N processes interacting asynchronously via shared mem-
ory objects. Each process Pi is given as input an initial preference p0

i , which be-
longs to a fixed, finite domain. Without loss of generality, this preference domain
is assumed to be ZK for some natural number constant K ≥ 2. As a convention,
we write ZK for {0, . . . , K − 1} and Z

+
K for {1, . . . , K − 1}.

We take a state-based view of our system. The local state of a process is
determined by a valuation of all of its local variables, plus a program counter
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indicating the next line of code to be executed. The global state is then de-
termined by local states of all N processes, together with contents of shared
MWMR atomic registers.

A process executes a possibly infinite sequence of discrete steps, each consist-
ing of a change in local state and/or a memory operation. It may also exhibit a
limited form of non-deterministic behavior: crashing at any point of its execution.
A crashed process may never recover and re-enter the algorithm.

An execution of the entire system is obtained by interleaving executions of
individual processes, where scheduling among processes is determined by an
adversary that satisfies the atomicity assumption stated in Section 1. That is, if
a process is scheduled to toss a coin, it must be allowed to write to the memory
before another process is given a turn. The worst-case complexity is measured in
terms of the expected number of read and write operations taken by all processes,
quantifying over all admissible adversaries.

3 Modified CIL Algorithm

As in many other consensus algorithms (e.g. [BO83, CIL94, AH90, Cha96]), we
make use of a round structure. During each round, a process goes through a
possibly infinite sequence of phases, each of which is a complete pass through
the main while-loop.

In original CIL, the shared memory is configured into an array of N many
SWMR registers, one for every process. Each registeri contains two pieces of
information: round number ri and preference value pi. At the beginning of each
phase, process Pi copies the contents of all registerj (i �= j) and stores them
locally. These entries are then examined to decide the next action of Pi: output
a decision value and terminate, toss a coin to advance to the next round, or
jump to a higher round.

The initial copying of each phase is the main source of inefficiency in original
CIL: copied data contain more information than necessary for decision making.
For example, Pi need not know exactly which Pj is in a higher round, as long as it
knows some Pj is. This observation is precisely the motivation of our move from
SWMR memory to MWMR memory. Thus, instead of a race among processes,
we envision a race among preference values. In this way, processes participate
anonymously and the number of read operations in the main loop is reduced
from O(N) to O(1). Moreover, consensus is achieved with high probability using
only O(log N) registers containing one bit each.

Following [Cha96], our MWMR shared memory is configured into K arrays
of bits, each of length R + 2, where R := 2�log N�. In other words, we have
mem : ZR+2 × ZK → {0, 1}. (Recall that K is the size of the preference domain
and is a constant, while N is the number of participating processes.) These bits
can be interpreted as follows.

– For all r ∈ Z+
R+1 and v ∈ ZK , mem(r, v) = 1 if and only if value v has

reached round r (i.e., some process holds/held preference v while in round
r). These entries are initialized to 0.
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– We assume every value v participates in the race from round 0, therefore
mem(0, v) is initialized to 1. This prevents a process from deciding (erro-
neously) in round 1 before all processes “wake up” and join the protocol3.

– Round-(R + 1) entries are initialized to 0 and are used for marking decision
values. That is, if a process decides on value v, it writes 1 to mem(R + 1, v).

Each process Pi maintains a current preference pi and a round number ri.
Intuitively, Pi “believes” that pi is a leading value and ri is the highest round
reached by pi. If Pi detects any value v in a round higher than ri, it updates its
“belief” by running a subroutine Jump. In this way, lagging values are quickly
abandoned by active processes and are eventually eliminated from the race.
(This notion is made precise in Definition 1 in Section 4.) Therefore the number
of contending preference values never increases and the algorithm terminates
when that number decreases to 1. If Pi sees pi at least two rounds ahead in
the race, the algorithm guarantees that every other contending value has been
eliminated, therefore Pi can safely terminate with pi.

Notice, biased coin tosses are used to break ties in the lead pack, so that
with probability 1 the number of contending preferences eventually reaches 1.
This technique is used in [CIL94] and is quite different from the more common
approach of shared coin subroutines, in which processes cast randomly generated
votes to obtain a weak shared-coin (e.g. [AH90, BR91]).

Although every non-faulty process is guaranteed (with probability 1) to ter-
minate after a finite number of steps, the round in which it terminates can
become arbitrarily high. This requires an unbounded number of registers and
is infeasible. Therefore we stop our algorithm when it reaches a certain round
without successful termination, in which case we switch to a slower algorithm
that requires bounded memory. We call this the exit algorithm. For convenience,
the original CIL algorithm is chosen for this purpose4. We will show that any
exit algorithm is invoked with probability at most 1

N , therefore the higher cost
of original CIL does not affect overall expected complexity.

Figure 1(a) contains the pseudocode for process Pi. The numbered lines can
be described informally as follows.

(1) Check if some process has decided.
(2) If so, decide for the same value.
(3) Check if a value other than pi has reached round ri − 1.
(4) If not, write 1 to mem(R + 1, pi) and terminate with output pi.
(5) Otherwise, if round R is reached, run the original CIL algorithm.
(6) Otherwise, check if some value has reached round ri + 1.
(7) If not, advance pi to the next round with probability 1

2N .
(8) Otherwise, run subroutine Jump to find a leading value.

3 As noted in [CH05], original CIL contains this initialization error.
4 Technically, original CIL requires registers with unbounded size. However, according

to [CIL94], the probability of non-termination is already extremely small (2−56)
when each register is 128 bits.
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ModifiedCIL(i, p0
i )

local variables
// round number
ri ∈ ZR+2,
// preference
pi ∈ ZK ,
// decision value
di ∈ ZK+1,
// values read from memory
aheadi, behindi ∈ ZK+1

begin
pi := p0

i ; ri := 0;
while ri ≤ R do

(1) di := ReadMem(R + 1, K);
(2) if di �= K then return di;

if ri > 0 then {
(3) behindi := ReadMem(ri − 1, pi);
(4) if behindi = K then {

mem(R + 1, pi) := 1;
return pi

}
(5) elseif ri = R then return

OriginalCIL(i, pi)
}

(6) aheadi := ReadMem(ri + 1, K);
if aheadi = K then {

(7) with probability 1
2N

do
ri := ri + 1;

mem(ri, pi) := 1
}

(8) else 〈ri, pi〉 := Jump(ri + 1, aheadi)
od

end
(a) Main Algorithm.

ReadMem(r, p)
local variables

// counter
k ∈ ZK ,
// preference value found
v ∈ ZK+1,

begin
k := 0; v := K;
while k < K and v = K do

if mem(r, k) = 1 and k �= p then
v := k;

k := k + 1
od
return v

end
(b) Subroutine ReadMem.

Jump(r, p)
local variables

// confirmed round and preference
r′ ∈ ZR+1, p′ ∈ ZK ,
// current round and preference
l ∈ Z

+
R+1, u ∈ ZK+1,

// counter
c ∈ ZR+1,

begin
if r ≥ R then return 〈r, p〉;
r′ := r; p′ := p; c := 
log(R − r)�;
while c > 0 do

l := r′ + 2c−1;
if l ≤ R then {

u := ReadMem(l, K);
if u �= K then {

r′ := l; p′ := u
}

}
c := c − 1

od
return 〈r′, p′〉

end
(c) Subroutine Jump.

Fig. 1. Modified CIL Algorithm

Notice that the atomicity assumption discussed in Section 1 applies at Line (7).
This prevents the adversary from selectively delaying write operations of pro-
cesses who are ready to advance its preference to the next round.

Figures 1(b) and 1(c) contain the subroutines ReadMem and Jump, respec-
tively. The former is used to read from the shared memory, while the later is
used to find a faster value. When called with parameters r and p, ReadMem
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scans one-by-one the r-th entry of every bit vector, except for the p-th. In other
words, we would like to know if any process has reached round r with preference
other than p. It returns the first k such that both k �= p and, at the time of read
access, mem(r, k) = 1. If no such k is encountered, ReadMem returns K.

In every pass through the while-loop of Figure 1(a), ReadMem is called with
at most three round numbers: R + 1, ri− 1, and ri + 1. This does not reveal the
highest round ever reached by any value. Therefore, a separate subroutine Jump
is run when the process sees itself behind. This is a key difference between our
algorithm and original CIL: in exchange for fewer read operations in the main
loop, more work is needed for slower processes to catch up.

The subroutine Jump can be implemented in various ways. The version pre-
sented here is essentially a binary search on mem. This involves O(log(log N)) op-
erations per invocation of Jump, but a process can correctly locate a fastest value
in one complete phase (provided no further progress is made in the mean time).

4 Validity and Agreement

In this section, we treat all coin tosses as non-deterministic choices. Let s0 denote
the initial state of our system, where all N processes as well as the shared
memory have been properly initialized. A path of the system is a finite sequence
of states s0s1 . . . sm where, for all j ∈ Zm, sj+1 can be obtained from sj by
allowing exactly one non-faulty process to execute its next instruction. A state
s is reachable if there is a path ending in s. Finally, a value k ∈ ZK is said to be
valid if there is i ∈ ZN such that k equals the input p0

i to process Pi.
We use record notation to indicate valuation of variables. For example, s.ri

denotes the round number of Pi in state s. If Pi is running a subroutine (e.g.
ReadMem), we add subscript i to variables of that subroutine (e.g. s.ki and s.vi).

First we state some properties about mem and subroutines ReadMem and
Jump. Lemma 1 says that an entry in mem never changes from 1 to 0. Lemma 2
says that the return value of ReadMem is correct (although it may be out-of-
date). Similarly, Lemma 3 states the correctness of Jump.

Lemma 1. Let r ∈ ZR+2, v ∈ ZK and a path s0 . . . sm be given. Suppose there
is j ∈ Zm+1 with sj .mem(r, v) = 1. Then sj′ .mem(r, v) = 1 for all j ≤ j′ ≤ m.

Lemma 2. Let r ∈ ZR+2, p, v ∈ ZK+1 and a path s0 . . . sm be given. If the last
step is ReadMem(r, p) returning v �= K, then sm.mem(r, v) = 1.

Lemma 3. Let r, r′′ ∈ ZR+1, p, p′′ ∈ ZK and a path s0 . . . sm be given. Suppose
the last step is Jump(r, p) returning 〈r′′, p′′〉. If mem(r, p) = 1 when Jump(r, p)
is called, then sm.mem(r′′, p′′) = 1.

Proof (Sketch). This follows from the fact that mem(r′, p′) = 1 is an invariant
of the while-loop in Jump. ��
Lemma 4 below states that mem correctly reflects the preference history of par-
ticipating processes. Validity is then proven to be an invariant (Theorem 1).
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Lemma 4. Let a path s0 . . . sm be given.

(i) For all i ∈ ZN , sm.ri ≤ R implies sm.mem(sm.ri, sm.pi) = 1.
(ii) For all r ∈ Z

+
R+2 and v ∈ ZK , sm.mem(r, v) = 1 implies there exist i ∈ ZN

and j ∈ Zm+1 such that sj .pi = v.

Theorem 1. The following claims hold in every reachable state s.

(i) For every i ∈ ZN , s.pi is valid.
(ii) For every r ∈ Z

+
R+2 and v ∈ ZK , s.mem(r, v) = 1 implies v is valid.

(iii) For every i ∈ ZN , if s.di �= K then s.di is valid. Similarly for s.aheadi and
s.behindi.

Corollary 1. The modified CIL algorithm in Figure 1 is valid, assuming the
exit algorithm (in this case, the original CIL algorithm) is valid.

Next we prove agreement. A key ingredient is a predicate Φ on global states.

Definition 1. Let v, v′ ∈ ZK and r ∈ Z
+
R+1 be given. We say that v eliminates v′

in round r in global state s (denoted s |= Φ(v, v′, r)) just in case s.mem(r, v) = 1
and s.mem(r − 1, v′) = 0.

We state a string of lemmas leading to the claim that no two processes termi-
nating by Line (4) do so with conflicting decision values (Lemma 8). First, if
an entry mem(r, v) is marked 1, then every entry mem(r′, v) with r′ ≤ r is also
marked 1 (Lemma 5). Second, if v′ is eliminated by v in round r, then no process
subsequently reaches round r with preference v′ (Lemma 6). Finally, if a process
Pi terminates by Line (4) with value v in round r, then every other v′ must have
been eliminated by v in round r at some earlier state (Lemma 7).

Lemma 5. Let s be a reachable state. For all r ∈ ZR+1 and v ∈ ZK , if
s.mem(r, v) = 1 then s.mem(r′, v) = 1 for all r′ ≤ r.

Lemma 6. Let v, v′ ∈ ZK and r ∈ Z
+
R+1 be given. Consider a path s0 . . . sm

such that sj |= Φ(v, v′, r) for some j ∈ Zm+1. Then, for all j′ ∈ {j, . . . , m},
sj′ .mem(r, v′) = 0.

Proof (Sketch). If the claim doesn’t hold, then some process Pi must have writ-
ten 1 to mem(r, v′) by executing Line (7) between sj and sm. This leads to a
contradiction because the definition of Φ implies that Pi does not reach Line (7).

Lemma 7. Consider a path s0 . . . sm+1. Suppose that in the last step some pro-
cess Pi terminates by executing Line (4). Let r denote sm.ri and v denote sm.pi.
For every v′ �= v, there is j′ ∈ Zm+1 such that sj′ |= Φ(v, v′, r).

Proof (Sketch). Set sj′ to be the state from which the last invocation of ReadMem
in Line (3) reads from mem(r − 1, v′). ��
Lemma 8. Let a path s0 . . . sm and j, j′ ∈ Zm+1be given. Assume that process
Pi terminates by Line (4) with output v from state sj and some other process
Pi′ does the same with output v′ from state sj′ . Then v = v′.
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Proof (Sketch). From the assumptions we prove that v and v′ have eliminated
each other, which by Lemma 6 is a contradiction. ��
It remains to consider termination by Line (2). Lemma 9 below implies that every
process terminating by Line (2) must be preceded by a process terminating by
Line (4) with the same decision.

Lemma 9. Let v ∈ ZK and a path s0 . . . sm be given. Assume that sm.mem(R+
1, v) = 1. There is j ∈ Zm+1 such that some process Pi terminates with decision
value v by executing Line (4) from sj.

Theorem 2. Let a path s0 . . . sm be given. Assume that process Pi terminates by
executing either Line (2) or Line (4) from state sj (j ∈ Zm+1) and its decision
value is v. Similarly for Pi′ , sj′ and v′. Then v = v′.

Proof (Sketch). Applying Lemma 9, we find a process that has terminated by
Line (4) with v. Similarly for v′. The claim is then reduced to Lemma 8. ��

5 Probabilistic Termination and Expected Complexity

Let us first consider the amount of work required during each phase of the
algorithm. (Recall that a phase is an entire pass through the while-loop in
Figure 1(a)). Notice each phase involves at most (i) three calls to ReadMem,
(ii) one write operation and (iii) one call to Jump. Each call to ReadMem requires
O(1) read operations, because the size K of the preference domain is a constant
in our analysis. Therefore, aside from Jump, each phase involves constant work.

Consider the while-loop in Jump. Each pass through this loop involves at
most one call to ReadMem. Furthermore, this loop is executed at most log R +1
times. Since R = 2�logN� by definition, each call to Jump requires O(log(log N))
read operations. This is then also the cost of a complete phase. Later on, we will
prove that the expected number of complete phases until at least one process
terminates successfully is O(N) and hence the expected number of read/write
operations is O(N log(log N)) (Lemma 13).

For any state s, let s.rmax denote the highest round reached by any process in
state s. In other words, s.rmax := maxi∈ZN s.ri. Since the two updates in Line (7)
of Figure 1(a) are performed in a single step, s.rmax is also the largest r such
that s.mem(r, v) = 1 for some value v ∈ {0, . . . , K − 1}. Lemma 10 below says,
if no value advances to round rmax + 1, a lagging process can catch up to round
rmax in one complete phase. Lemma 11 then shows, whenever rmax is at most
R−2, the probability of at least one process terminating successfully within the
next two rounds is bounded below by a constant. Moreover, this termination
takes place before 15N complete phases are executed.

Lemma 10. Let s0 . . . sm . . . sm′ be a path with m < m′. Assume that sj .rmax =
sm.rmax for every j ∈ {m, . . . , m′}. Moreover, assume that Pi completes a phase
between sm and sm′ without crashing, successfully terminating or switching to
the exit algorithm. Then sm′ .ri = sm.rmax.
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Proof (Sketch). First we argue that Pi reaches Line (8) in its first complete
phase after sm. Then, based on the while-loop in Jump, we construct a nested
sequence of intervals shrinking to the singleton {sm.rmax}. Therefore sm.rmax is
the round number returned by Jump. ��
Lemma 11. Suppose ModifiedCIL starts from a reachable state s. Let r denote
s.rmax and suppose r ≤ R− 2. Then, with probability greater than 0.511, at least
one process terminates successfully in a round no higher than r+2. Moreover, at
most 15N complete phases are executed between s and the successful termination.

Proof (Sketch). Consider two events: E1 is “a success occurs before 5N attempts
to move from r to r + 1 are made and all subsequent such attempts fail” and
E2 is “a success occurs before 5N attempts to move from r + 1 to r + 2 are
made.” We argue that the conjunction of E1 and E2 implies at least one process
terminates successfully in round r+2 before 15N complete phases are executed.
Moreover, the probability of both E1 and E2 occurring is at least 0.511, using
the fact that {(1− 1

n )n}∞n=2 increases to the limit 1
e . ��

Notice Lemma 11 applies only to executions starting in round R − 2 or lower.
The next lemma covers rounds R − 1 and R, assuming a decision is reached
without switching to the exit algorithm.

Lemma 12. Suppose ModifiedCIL starts from a reachable state s. Let r denote
s.rmax and suppose R− 2 < r ≤ R. Assuming the exit algorithm is not invoked,
the (conditional) probability that at least one process terminates successfully be-
fore 15N complete phases are executed after s is greater than 0.511.

Theorem 3. If the exit algorithm is wait-free and satisfies probabilistic termi-
nation, the same holds for ModifiedCIL.

Proof. By correctness of the exit algorithm, we may focus on the case in which
the exit algorithm is not invoked. Consider execution blocks of 15N complete
phases each. By Lemma 11 and Lemma 12, the probability of successful termina-
tion within each block is at least 0.511. Thus, with probability 1, the algorithm
terminates successfully after a finite number of blocks. Since we have made no
assumption on the number of surviving processes, the algorithm is wait-free. ��
We now turn to complexity considerations. Again, we make a case distinction
based on whether the exit algorithm is invoked.

Lemma 13. Assume that the exit algorithm is not invoked. The expected num-
ber of elementary read/write operations until at least one process terminates
successfully is O(N log(log N)).

Proof (Sketch). Again we consider blocks of 15N complete phases and argue
that the expected number of blocks is at most 2. Hence the expected number of
complete phases is O(N). Since each phase involves O(log(log N)) elementary
operations, the expected number of elementary operations O(N log(log N)). ��
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Lemma 14. Suppose the exit algorithm is the original CIL algorithm and is
invoked. The expected number of elementary read/write operations until at least
one process terminates successfully is O(N2 log(log N)).

Proof (Sketch). The expected number of elementary operations before switching
is shown to be O(N(log N)(log(log N))). Using results of [CIL94], the expected
complexity after switching is O(N2). Therefore, the overall expected complexity
is O(N2 log(log N)). ��

Lemma 15. Suppose the ModifiedCIL starts from the initial state s0. The prob-
ability of failing to reach a decision in or before round R is at most 1/N .

Proof (Sketch). By Lemma 11, this probability is at most (1−0.511)
R
2 ≤ 1

N . ��

Putting together Lemmas 13, 14, and 15, we conclude that the expected com-
plexity of ModifiedCIL is O(N log(log N)).

Theorem 4. Suppose ModifiedCIL starts from the initial state s0 and the exit
algorithm is original CIL. The expected number of elementary read/write oper-
ations until at least one process terminates successfully is O(N log(log N)).

6 Model Checking

It is quite straightforward to specify our algorithm in PRISM’s state-based in-
put language. Each process is modeled as a module and the shared memory is
modeled using global variables. Two more global variables are used to keep track
of process failures and the number of completed phases.

We consider binary consensus (i.e., K = 2) with N = 2, 3, 4 processes.
Processes are assumed to disagree initially, therefore validity is trivial. Agree-
ment is satisfied in all models constructed. For probabilistic termination, we
ask PRISM to compute the (exact) minimum probability of at least one pro-
cess terminating successfully, given an allowance of R = 2�log N� rounds and
15N · R

2 = 15N�logN� complete phases. This result is compared against our
analytic lower bound of 1− 1

N .
In the case of N = 4, the model becomes too complex (with 2�logN� = 4

rounds and 15N�logN� = 120 complete phases). However, we discover that the
analytic bound of 1− 1

N = 0.750 is already met when we restrict to 40 complete
phases. This suggests that we have made some overly conservative estimates
while deriving the analytic bound.

The table below summarizes our results. We use PRISM version 2.1, running
on a 1.4 GHz Pentium M machine with 500 Mb memory under Linux 2.6. The
MTBDD engine is used with a CUDD memory limit of 400 Mb. Other parameters
remain at default settings. All relevant files, including model checking logs, can
be found in [Che05a].
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N R #Phases Model Agreement Termination
#States Time(s) Time(s) Time(s) MinProb AnalyticBd

2 2 30 42,320 4 0.025 6 0.745 0.511
3 4 90 12,280,910 213 0.094 2,662 0.971 0.667
4 2 60 45,321,126 429 0.078 602 0.755 0.511
4 4 40 377,616,715 5224 3.926 55,795 0.765 0.750

7 Conclusions

We have given a simple algorithm that solves asynchronous wait-free consensus
in expected O(N log(log N)) total work. We follow a value-based (as opposed to
process-based) approach and make use of MWMR atomic registers. This strat-
egy, also adopted in [Cha96, Aum97], leads to a significant reduction in data
handling and hence more efficient consensus algorithms. As a pleasant side-effect,
the reduction in both global and local data makes model checking significantly
more feasible, for it helps to avoid the typical state explosion problem.

MWMR memory is often regarded as a stronger primitive than SWMR mem-
ory. Indeed, there are optimal implementations of MWMR from physical SWMR
registers using linear time and logarithmic space [IS92]. However, if one makes
comparisons from the basis of SWSR, then MWMR and SWMR become roughly
the same: when implemented from SWSR, both require linear time and logarith-
mic space. Moreover, it is argued in [BPSV00] that SWMR memory requires the
hidden assumption of naming: existence of distinct identifiers known to all. In
that sense, MWMR is a weaker primitive compared to SWMR. This idea is
echoed by the fact that, unlike the original CIL algorithm, our version allows
processes to participate anonymously.

The MWMR strategy has another advantage, namely, flexibility in memory
usage. We have shown that, with high probability, consensus can be reached
using O(log N) many single-bit MWMR registers. (That is, the main algorithm
succeeds and thus the exit algorithm is not invoked.) This can be seen as a
temporary reprieve from the lower bound of Ω(

√
N) for the space requirement

of randomized consensus [FHS98]. In practice, one may be willing to accept a
small probability of failing to reach consensus, in which case we can remove the
exit algorithm altogether. The main algorithm can be repeated to increase the
success probability, and memory is allocated only as needed.

For future work, we want to improve the per process work bound of our algo-
rithm. In [AW96], a similar improvement is achieved by allowing fast processes
to cast votes of increasing weights. However, their proofs rely on properties of
Martingale processes and cannot be adapted immediately to our setting. At this
time, we do not know if per process work is inherently high in our setting (e.g.
Ω( N

f(N) ), where f is a polylogarithmic function).
Finally, we comment on model checking using PRISM. Although the current

limit seems to be 4 processes, we conjecture a vast improvement using a symme-
try reduction option, which is under development by the PRISM team. Before
symmetry reduction is available, manual abstraction can be used to increase
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feasibility. That is, we manually construct an abstraction that captures core
ideas of an algorithm, while significantly decreasing the model size. We exper-
imented with such an abstraction of original CIL, by focusing on the shared
memory and filtering out local states of processes. Having done so, we were in
fact able to handle up to 10 processes. However, it is non-trivial to prove sound-
ness of the abstraction. Standard techniques such as probabilistic simulation are
available for this purpose, but substantial investment of time is required.

Overall, PRISM allows us to conduct experiments during the development
stage of an algorithm, with minimal learning effort. Although in most cases it
still cannot handle large instances of a full algorithm, it is perfectly feasible to
model check a subroutine or an abstract version. This already provides valuable
information, especially to those who simply wish to gain more insight into an
algorithm.
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Abstract. In the fair exchange problem, mutually untrusting parties
must securely exchange digital goods. A fair exchange protocol must
ensure that no combination of cheating or failures will result in some
goods being delivered but not others, and that all goods will be delivered
in the absence of cheating and failures.

This paper proposes two novel randomized protocols for solving fair
exchange using simple trusted units. Both protocols have an optimal
expected running time, completing in a constant (3) expected number
of rounds. They also have optimal resilience. The first one tolerates any
number of dishonest parties, as long as one is honest, while the second
one, which assumes more agressive cheating and failures assumptions,
tolerates up to a minority of dishonest parties.

The key insight is similar to the idea underlying the code-division mul-
tiple access (CDMA) communication protocol: outwitting an adversary
is much easier if participants share a common, secret pseudo-random
number generator.

1 Introduction

In the fair exchange problem, a set of parties want to trade an item which they
have for an item of another party (for a survey of fair exchange see [11]). Fair
exchange is a fundamental problem in domains with electronic business trans-
actions since (1) items can be any type of electronic asset (electronic money,
documents, music files, etc.) and (2) fairness is especially important in rather
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Fig. 1. Untrusted parties and security modules

anonymous environments without means to establish mutual trust relationships.
Briefly spoken, fair exchange guarantees that (1) every honest party eventually
either delivers its desired item or aborts the exchange, (2) the exchange is suc-
cessful if no party misbehaves and all items match their descriptions, and (3)
the exchange should be fair, i.e., if the desired item of any party does not match
its description, then no party can obtain any (useful) information about any
other item. Fair exchange algorithms must guarantee these properties even in
the presence of arbitrary (malicious) misbehavior of a subset of participants.

Fair exchange, a security problem, can be reduced [2] to a fault-tolerance
problem, namely a special form of uniform consensus. In the (non-uniform) con-
sensus problem [13], each process in a group starts with a private input value,
and after some communication, each non-faulty process is required to decide
(termination) on the same private output value (agreement), so that all pro-
cesses that decide choose some process’s private input value (validity). In its
uniform version, however, agreement requires all processes that decide (faulty or
non-faulty) to decide the same value. Only non-faulty processes are required to
terminate.

The reduction from fair exchange to consensus [2] holds in a synchronous
model where each participating party is equipped with a trusted unit, that is, a
tamper-proof security module like a smart card (see Fig. 1). Security modules
have recently been advocated by key players in industry to improve the security
of computers in the context of trusted computing [15]. Today, products exist
which implement such trusted devices (see for example [7]). Roughly speaking,
a security module is a certified piece of hardware executing a well-known algo-
rithm. Security modules can establish confidential and authenticated channels
between each other. However, since they can only communicate by exchanging
messages through their (untrusted) host parties, messages may be intercepted
or dropped. Overall, the security modules form a trusted subsystem within the
overall (untrusted) system. The integrity and confidentiality of the algorithm
running in the trusted subsystem is protected by the shield of tamper proof
hardware. The integrity and confidentiality of data sent across the network is
protected by standard cryptographic protocols. These mechanisms reduce the
type and nature of adversarial behavior in the trusted subsystem to message



Optimal Randomized Fair Exchange with Secret Shared Coins 63

loss and process self-destruction, two standard fault-assumptions known under
the names of omission and crash in the area of fault-tolerance.

This paper proposes two novel randomized protocols for solving uniform con-
sensus with binary inputs (and hence fair exchange) using such trusted units.
Our protocols are time optimal, completing in a constant (3) expected number
of rounds. They are also optimal in terms of resilience. The key insight is similar
to the idea underlying the code-division multiple access (CDMA) communica-
tion protocol [16]: outwitting an adversary is much easier if participants share
a common, secret pseudo-random number generator. In a multi-round protocol,
each trusted unit can flip a coin, and take action secure in the knowledge that
every other trusted unit has flipped the same value, and is taking a compatible
action in that round. Because messages are encrypted, coin flip outcomes can
be hidden, so dishonest parties can neither observe past coin flips nor predict
future ones. (Of course, the pseudo-random algorithm itself need not be secret
as long as the trusted units’ common seed is kept secret, just like their common
cryptographic key.) We believe that this approach is both efficient and practical.

The presentation is structured as follows. In section 2 we describe the model
of computation considered, whereas in section 3 we show how to reduce fair ex-
change to uniform consensus. Section 4 displays related work. Optimal random-
ized uniform consensus protocols for binary inputs with a constant (3) expected
number of rounds are introduced in sections 5 and 6. Note that both protocols
may be generalized to a larger set of k values with an extra factor cost of log(k).
However, we concentrate on the binary case, since we are mainly interested in
solving fair exchange efficiently. Finally, we conclude with section 7, where a
summary and work future directions are exhibited.

2 Model of Computation

Our model of computation is essentially synchronous: participants exchange mes-
sages in synchronous rounds. Of course, real distributed systems are not syn-
chronous in the classical sense, but it is reasonable to assume an upper bound
on how long one can expect a non-faulty processor to take before responding to
a message. A processor that takes too long to join in a round is assumed to be
faulty or malicious.

The system is logically structured into an untrusted system (including the
untrusted parties and their communication channels) and the trusted subsystem
consisting of the parties’ individual trusted units, that is, their tamper-proof
security modules (see Fig. 2). The untrusted parties can interact with their
trusted units through a well-defined interface, but they cannot in any other
form influence the computation within the trusted unit.

As noted, communication among the trusted units is confidential and authen-
ticated, so malicious parties cannot interpret or tamper with these messages.
Because each trusted unit sends the same encrypted message to every other
trusted unit, we have receiver anonymity and so a cheating party cannot learn
who is communicating to who from traffic analysis. An untrusted party can,
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however, prevent outgoing messages from being sent (called a send omission),
or incoming messages from being received (called a receive omission) or destroy
its trusted unit (called a crash). The effects of a crash can be regarded as a
permanent send (and receive) omission.

Define a party as cheating if it causes send or receive omissions of its trusted
unit. A party which does not cheat is honest. A fair exchange protocol must
ensure that under no circumstances will goods be delivered to a cheating party
but not to all honest parties. It is, however, acceptable to deliver the goods to
all honest parties, but not to some cheating parties. Cheating may cause the
exchange to fail, so that no goods are delivered to any party. In the absence
of cheating, the exchange should succeed, causing goods to be delivered to all
participants. For brevity, we refer to processes when we really mean untrusted
processes equipped with trusted units. With a process failure we mean either a
crash, a send message omission or a receive message omission.

3 Fair Exchange as Consensus

The reduction from fair exchange to uniform consensus works as follows. In
the first round of the protocol, each party applies its acceptance test to the
encrypted digital goods received from the others (in special cases this test can
also be performed within the trusted unit). It then informs its trusted unit
whether the goods passed the test. The trusted units broadcast this choice (using
confidential and authenticated messages) within the trusted subsystem. Each
unit that receives unanymous approvals starts the consensus protocol with input
1, and each trusted unit that either observes a disapproval or no message from
a trusted unit starts the consensus protocol with input 0. At the end of the
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protocol, each trusted unit delivers the goods if the outcome of the protocol is
1, and refuses to do so if the outcome is 0.

It is easy to see that in the absence of failures or cheating all goods will be
delivered. The uniform consensus protocol ensures that all honest parties agree
on whether to deliver the goods, and its uniformity ensures that no trusted unit
residing at a cheating party will deliver the goods if any trusted unit at an honest
party decides not to. (Recall that it is acceptable if the honest processes deliver
the goods after deciding 1, even if a cheating process fails to deliver the goods
after deciding 0.)

As noted, the protocols considered in this paper are randomized, in the sense
that they rely on the assumption that trusted units generate pseudo-random
values that cannot be predicted by an adversary. These protocols always produce
correct results, but their running time is a random variable, the so-called Las
Vegas model. (It is straightforward to transform these protocols into Monte-
Carlo protocols that run for a fixed number of rounds, and produce correct
results with very high probability.)

To simplify the presentation, we first present an uniform consensus protocol
that works in a failure model that permits send, but not receive omissions.
This protocol is slightly simpler and more robust: it tolerates f < n cheating
processes, while the full send/receive omissions model protocol tolerates f <
n/2 failures. Both resilience levels are optimal for their respective models [12].
Presenting the protocol in two stages illustrates how assumptions about the
model affect the protocol’s complexity and resilience.

4 Related Work

We build on work of Parvédy and Raynal [12]. They derive optimal early stopping
deterministic uniform consensus algorithms for synchronous systems with send
or send/receive omission failures. However, our algorithms are more efficient in
most cases (if the number of failures is not constant) and at least comparable
(otherwise).

Feldman and Micali [8] exhibit optimal consensus algorithms for Byzantine
agreement, which in principle could also be used in omission failure models.
Despite having also an optimal expected running time, our algorithms outper-
form theirs both on resilience and on the probability of not having termination
violated.

Avoine, Gärtner, Guerraoui and Vukolic [2] show how to reduce the fair ex-
change problem in a system where processes are provided with security modules
to the consensus problem in omission failure models. A solution to the fair ex-
change problem is presented by use of the algorithms of Parvédy and Raynal
[12]. In the same context, Delporte, Fauconnier and Freiling [6] investigate solu-
tions to consensus for asynchronous systems which are equipped with unreliable
failure detectors. They exhibit a weak failure detector in the spirit of previous
work by Chandra, Hadzilacos and Toueg [4] that allows to solve asynchronous
consensus in omission failure environments.
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Aspnes [1] presents a survey of randomized consensus algorithms for the
shared memory model where processes are prone to crashes. These results are
particularly interesting, since consensus cannot be solved deterministically in a
pure asynchronous distributed system, as proved in [9] by Fischer, Lynch and
Paterson.

Finally, Chaudhuri [5] introduces the k-set agreement problem, a generaliza-
tion of the consensus problem, and proves it to be harder. Later, Borowsky and
Gafni [3], Herlihy and Shavit [10], and Saks and Zaharoglou [14] would demon-
strate that there is no wait-free protocol for k-set agreement (or consensus) in
asynchronous message-passing or read/write memory models.

5 Optimal Protocol for Send Omissions

The ConsensusS algorithm in Figure 3 solves uniform consensus with binary
inputs in optimal 3 expected synchronous rounds tolerating an optimal number
of up to f < n failures - send message omissions as well as process crashes.

As noted, all processes share a common secret seed and pseudo-random num-
ber generator. We denote the r-th such pseudo-random binary number by flip(r).
For each r, every process computes the same value for flip(r).

In ConsensusS, each process broadcasts its binary input (line 1). In each subse-
quent round, the process waits to hear each process’s preference. If they disagree
(line 3), the process broadcasts a message informing the others. When receiving

1 send prefer(binary preference) to all ;
2 for each round r {
3 if (both prefer(0) and prefer(1) received) {
4 send disagreement(r) to all ;
5 }
6 on (receipt of disagreement(r) for the first time) {
7 send disagreement(r) to all ;
8 }
9 if ( all received preferences are prefer(v)) and (no disagreement(r) received){

10 if ( flip (r) == v) {
11 send decide(v) to all and return(v);
12 } else {
13 send prefer(v) to all ;
14 }
15 } else {
16 send prefer( flip (r)) to all ;
17 }
18 if (any decide(v) received) {
19 return(v)
20 }
21 }

Fig. 3. Uniform consensus for send message omissions and process crashes
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such a broadcast for the first time (line 6), every process relays it. Hence, if any
non-faulty process receives mixed preferences or a disagreement(r) message,
then all processes receive a disagreement(r) message and will change preference
according to the coin flip. If they agree (line 9) and no message communicat-
ing disagreement seen by another process is received, then the process checks
whether that preference agrees with the common pseudo-random binary num-
ber for that round. If so, it is safe to decide that value (line 11). If not, the
process simply rebroadcasts the preference (line 13). If the preferences disagree
or the process is informed so, then the process uses the common pseudo-random
binary number to choose a new preference (line 16). If any process announces
that it has decided, then the process decides on the same value (line 18).

Very informally, this protocol exploits in an essential way the observation that
each process (but not the adversary) can predict the others’ next coin flips. If a
process receives v from all processes, then v was sent by at least one good process,
so every other process will either receive all v preferences or both preferences.
Any processes that receive either mixed preferences or disagreement(r) messages
will change preference according to the coin flip. If the coin flip is the same as
v, then all processes will prefer v, and it is safe to decide.

Lemma 1. If f < n, for every process the expected number of rounds of Con-
sensusS is 3, and the protocol terminates with probability 1.

Proof. Think of an execution as a tree, where the root node represents the initial
round and the children of a node represent the following round possibilities. Let
E(n) be the expected number of rounds from node n. If n has children n.1 and
n.2, chosen by coin flip, then E(n) = (1/2)(1 + E(n.1)) + (1/2)(1 + E(n.2)).
Each child contributes one plus its expected running time, but with probability
one-half. Now let

– E(n) = E1(n) if at node n some non-faulty processes sent prefer (0) and
some non-faulty processes sent prefer (1),

– E(n) = E2(n) if at node n all non-faulty processes sent prefer (v) and some
non-faulty processes receive a disagreement message or both prefer (0) and
prefer (1),

– E(n) = E3(n) if at node n all non-faulty processes sent prefer (v) and all
non-faulty processes receive no disagreement messages and only prefer (v).

Note that if E(n) = Ez(n) and E(n.1) = Ew(n.1), it may be that z �= w.
However, it is always the case that if E(n.1) = Ez(n.1) then E(n.2) = Ez(n.2).
The reason is that from one round to the other the values that the non-faulty
processes send and receive may change. However, if the non-faulty processes
behave in a way at one children, then they should behave the same way at the
other, since both children just differ in the coin flip. Hence, executions differing
themselves by the values sent and received by non-faulty processes may generate
distinct execution trees.
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Now let e be the root of an execution tree. Consider that

– E(e) = E1(e): If there are non-faulty processes that sent prefer (0) and other
non-faulty processes that sent prefer (1) in round r, then at round r+1 every
process receives at least one message prefer (0) and one message prefer (1),
and thus, from round r +1 on, all preference messages sent by every process
(and all received as well) will be prefer (flip(r + 1)). Hence, all processes will
decide on flip(r + 1) in the first round t such that flip(t) = flip(r + 1),
and the probability that any process (and thus, a non-faulty one) violates
termination is the same as the probability that such a round t never happens,
that is, zero. Besides, the expected number of rounds to achieve a round t
such that flip(t) = flip(r + 1) is 2. Thus, the expected number of rounds of
ConsensusS is 3 = E1(e) = (1/2)(1 + 2) + (1/2)(1 + 2).

– E(e) = E2(e): If all non-faulty processes sent prefer (v) in round r and part
of the non-faulty processes receive a disagreement message or both messages
prefer (0) and prefer (1) in round r+1, then all processes receive disagreement
messages and from round r + 1 on, all preference messages sent by every
process (and all received as well) will be prefer (flip(r+1)). Thus, all processes
will decide on flip(r + 1) in the first round t such that flip(t) = flip(r + 1),
and the probability that any process (and thus, a non-faulty one) violates
termination is the same as the probability that such a round t never happens,
that is, zero. Besides, the expected number of rounds to achieve a round t
such that flip(t) = flip(r + 1) is 2. Thus, the expected number of rounds of
ConsensusS is 3 = E2(e) = (1/2)(1 + 2) + (1/2)(1 + 2).

– E(e) = E3(e): If all non-faulty processes sent prefer (v) and receive no dis-
agreement messages and only prefer (v) in round r+1, then if flip(r+1) = v,
all non-faulty processes send decide(v) messages and then decide by return-
ing v themselves. Moreover, on receipt of decide(v), all remaining processes
decide by returning v. If flip(r) �= v, then we fall again into the case that
all non-faulty processes send prefer (v). That is, E3(e.2) = E2(e.2)orE3(e.2).
Thus, the probability that any process (and thus, a non-faulty one) violates
termination is zero and the expected number of rounds of ConsensusS is
3 = E3(e) = (1/2)(1 + 1) + (1/2)(1 + 3).

In short, in all cases, if f < n, the probability that any process (and thus, a
non-faulty one) violates termination is zero. Moreover, the expected number of
rounds of ConsensusS is 3 for all processes. ��
Lemma 2. If f < n, each decided value is some process’s input.

Proof. Any decided value v is either an original input or the result of a shared
coin flip. Consider the first prefer(flip(r)) statement to be executed, if any. In
this case, there must have been a process received both prefer (0) and a prefer (1)
messages, which means that some process had input value 0 and another had
input value 1. It follows that either value is some process’s input. ��
Lemma 3. If f < n, no two processes decide differently.
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Proof. Consider the first round r in which a process decides v. It must be the
case that at round r, flip(r) = v and all preference messages received by the
process are prefer (v). As the messages from all non-faulty processes are received
by all processes and there is at least one non-faulty process, all processes receive
at least one prefer (v) message, and either decide on v at the same round r or
send prefer (v) = prefer (flip(r)). It follows that from the next round r + 1 on,
all messages sent from all processes (and thus, also all received ones) will be
prefer (v). Henceforth, no process can decide a value different from v. ��
Theorem 1. ConsensusS solves uniform consensus with binary inputs in a syn-
chronous system prone to crashes and send message omissions, with a probability
zero of termination violation, and both an optimal constant (3) expected rounds
and an optimal n − 1 resilience (that is, up to n − 1 processes may be faulty:
f < n).

Proof. Follows directly from Lemmas 1, 2 and 3. ��

6 Optimal Protocol for Send and Receive Omissions

The ConsensusSR algorithm in Figure 4 solves uniform consensus with binary
inputs in optimal 3 expected synchronous rounds tolerating an optimal number
of up to f < n/2 failures - send message omissions and receive message omissions
as well as process crashes.

In ConsensusSR, all processes start by broadcasting their inputs (line 2).
Whenever one process does not receive a message from another, it decides that
process must be faulty, and ignores it from that point on (line 6). Even so, all
non-faulty processes send and receive messages from one another. Moreover, a
live faulty process always receives messages from at least one non-faulty process,
since otherwise, it would have less than n/2+1 messages and it would halt before
reaching a decision (line 7).

On each round, every process checks if all received messages contain the same
preferred value v (line 9). If so, it broadcasts a message that it wants to decide
on v (line 10). When receiving this message for the first time (line 12), processes
relay it. If a process receives such message from a majority of processes (line
15) or if it receives a message to decide on v (line 18), then it sends messages
to all processes to decide on v and retuns v. Note that if a non-faulty process
relays the message, all non-faulty processes will relay the message as well, so all
non-faulty processes will receive the message from a majority of processes. As
every process needs a non-faulty process to relay the message in order to decide
on v, if any process decides on v, then every non-faulty process does as well. If
a decision is not reached, then the process either sends a message with v as its
current preference (line 22), if it received a majority of preferences v, or sends a
message containing flip(r) (line 24), otherwise.

Lemma 4. On any single round after initialization (sending the binary private
input), only one value is preferred or chosen deterministically.
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1 Recipients = set of all processes ;
2 send prefer(binary preference) to all ;
3 foreach round r {
4 Received(r) = set of processes from which messages were received in round r
5 Recipients = Recipients intersection Received(r);
6 Messages(r) = set of messages received in round r which were sent by Recipients;
7 if (|Messages(r)|<n/2+1) {
8 halt ; // too many failures
9 if ( all in Messages(r) are prefer(v)) {

10 send want decide(v) to Recipients;
11 }
12 on (receipt of want decide(r,v) for the first time) {
13 send want decide(r,v) to Recipients;
14 }
15 if (want decide(r,v) received from majority of processes) {
16 send decide(v) to all and return(v);
17 }
18 on (receipt of decide(v)) {
19 send decide(v) to all and return(v);
20 }
21 if (majority in Messages(r) are prefer(v)) {
22 send prefer(v);
23 } else {
24 send prefer(\ flip (r ));
25 }
26 }

Fig. 4. Uniform consensus for send and receive message omissions and process crashes

Proof. A process prefers or decides v deterministically only if it sees a majority
for v. ��
Lemma 5. If f < n/2, for every process the expected number of rounds of
ConsensusSR is 3, and the protocol terminates with probability 1.

Proof. After initialization (sending the binary private input), if all live processes
send prefer (flip(r)) or if all live processes send prefer (v), they agree right away,
by Lemma 4. If some send prefer (v) and some send prefer (flip(r)), again by
Lemma 4, then all live processes will agree in the first round t such that v =
flip(r), and the probability that any non-faulty process violates termination is
the same as the probability that such a round t never happens, that is, zero.
Besides, the expected number of rounds to achieve a round t such that v =
flip(r) is 2.

Once agreement by all live processes is achieved, non-faulty processes will
receive a majority of wantdecide(r, v), send decide(v) and return(v), immediately
in the same round. This is because they always receive messages from each other,
that is, they always belong to the Recipients of non-faulty processes, so once
a non-faulty process sends a wantdecide(r, v) message, all non-faulty processes
will send wantdecide(r, v) messages to (and receive them from) all non-faulty
processes and guarantee a majority of wantdecide(r, v).
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In short, in all cases, if f < n/2, the probability that a non-faulty process
violates termination is zero. Moreover, the expected number of rounds of Con-
sensusSR is 3 for all processes. ��

Lemma 6. If f < n/2, all processes in ConsensusSR decide some process’s
input.

Proof. A decided value v, from decide(v), is just obtained from a prefer (v). Now,
by induction, a v from prefer (v) has to be either an input or a flip(r) for some r.
However, take the first prefer (flip(r)) to occur, if any do. In this case, a process
received both a prefer (0) and a prefer (1), which means that there should be
a proposed input value equal to 0 and another equal to 1, as the particular
prefer (flip(r)) was the first one to take place. Otherwise, either there would be
a majority of prefer (v) or Hence, flip(r) must be a proposed input value if any
prefer (flip(r)) occurs, and v must also be one of the proposed values. ��

Lemma 7. If f < n/2, agreement is never violated in ConsensusSR: no two
processes decide differently.

Proof. Consider the first round r when a process decides by returning v. Then,
it must be the case that a majority of wantdecide(r, v) is received by the process.
However, because each process deciding has to receive a wantdecide(r, v) from a
non-faulty process and non-faulty processes always receive messages from each
other, when any process has a majority of wantdecide(r, v), it must be the case
that all non-faulty processes have a majority of wantdecide(r, v), that is, all
non-faulty processes decide by returning v as well. ��

Theorem 2. ConsensusSR solves uniform consensus with binary inputs in a
synchronous system prone to crashes, send message omissions and receive mes-
sage omissions, with a probability zero of termination violation, and both an op-
timal constant (3) expected number of rounds and an optimal n/2− 1 resilience
(that is, up to n/2− 1 processes may be faulty: f < n/2).

Proof. Follows directly from Lemma 5, 6 and 7. ��

7 Conclusions

The key idea in this paper is that if secure coprocessors can share secret cryp-
tographic keys (as they do), then they can also share secret seeds for secure
pseudo-random number generators. Such shared coins enable randomized (Las
Vegas) algorithms for fair exchange and uniform consensus that are optimal in
terms of expected running time and resilience.

Both the ConsensusS and ConsensusSR binary consensus protocols can be
extended to a larger set of k values in 3 log(k) rounds via bit-by-bit consensus.
It is an open question whether faster protocols exist (perhaps by doing bit-by-bit
consensus in parallel).
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2 IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France

roy@cs.technion.ac.il, {raynal, ctravers}@irisa.fr

Abstract. Defining appropriate abstractions is one of the main challenges in
computer science. This paper investigates two matching abstractions for imple-
menting read/write objects in a dynamic server system prone to crash failures.
The first abstraction concerns dynamic quorum systems. The second is a persis-
tent reliable broadcast communication primitive. These two abstractions capture
the essence of basic mechanisms allowing the implementation of atomic objects
in a distributed system where servers can dynamically enter and leave the sys-
tem (or crash). A read protocol and a write protocol based on these abstractions
are described and proved correct. The properties defining these abstractions can
be seen as requirements that are sufficient for implementing a dynamic storage
service, while the feasibility conditions that are stated can be seen as necessary
requirements. Instantiating the proposed abstractions in different contexts (e.g.,
settings defined by specific assumptions on failures, synchrony, message delays
and processing times) provides as many system specific protocols.

Keywords: Atomic object, Communication primitive, Crash failures, Distributed
system, Dynamic system, Quorum, Server, Shared memory.

1 Introduction

This paper is on the implementation of atomic read/write objects in a dynamic server
system. More precisely, the general context that is considered is the following:

– There is an a priori infinite number of clients accessing shared objects. A client can
sequentially issue read and write operations. It can also crash while executing an
operation. A crash outside an operation is irrelevant.

– Each read or write operation on an object issued by a client is considered as an
“atomic interaction” that accesses copies of the object. From an internal structure
point of view, each operation follows the two phase pattern introduced in [5]. The
first phase obtains control information, while the second phase ensures data per-
sistence and consistency. This internal structure is unknown to the clients. From a
client point of view, a read or write operation is a “primitive”.

– Each object is supported by a set of servers. The server model is the infinite arrival
model with finite concurrency [27]. This means that each run can have an infinite
number of servers (i.e., an infinite number of servers can join and leave the system),
but in each finite time interval there are finitely many servers. So intuitively, the
only source of “infinitely” is the passage of time [1].
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This model is very general, and matches many types of long lived dynamic applica-
tions, as we elaborate in Section 6. In this paper, we are interested in implementing an
atomic read/write object.

If servers join and leave the system arbitrarily fast, it is possible that no server re-
mains long enough in the system for completing any read or write operations. So, imple-
menting read and write operations requires some form of stability. This stability could
be obtained by considering duration assumptions on the time a server process remains
in the system, on message delays and on processing times. We consider here a more
high level approach based only on the statement of abstract properties (in that sense
our approach is similar to the failure detector approach introduced in [6]). Of course,
implementing these properties can be done in dynamic systems satisfying some syn-
chrony and durations assumptions (e.g., when there is a sliding time period of known
and long enough duration during which some fixed and known number of non-faulty
servers are continuously present).

So, instead of relying on specific low-level assumptions, the approach we propose
to implement atomic shared objects in a dynamic distributed system is based on two
complementary abstractions. The aim of these abstractions is to capture the relevant
properties that facilitate the design of read and write protocols that focus on solving
the problem rather than being overloaded with system specific implementation details.
More precisely, we consider the following matching abstractions:

– The first defines quorums suited for read/write operations in a dynamic server sys-
tem.1 Each phase of an operation uses a particular type of quorum, and only some
quorums have to intersect. More precisely, only the quorums of different types and
belonging to consecutive operations have to intersect. Interestingly, the abstract
properties defining these dynamic quorums can be interpreted as sufficient condi-
tions when one wants to implement a dynamic reliable storage service. Feasibility
conditions are also associated with these properties; those can be seen as necessary
requirements for such implementations.

– The second abstraction, which we call persistent reliable broadcast, concerns com-
munication. The primitives we propose allow an operation to broadcast a message
uniformly to a sufficient subset of servers in a dynamic server model.

A read protocol and a corresponding write protocol that are based only on these ab-
stractions are then presented and proved correct. Their correctness depends only on the
properties of the abstractions. As those are defined as a set of abstract properties inde-
pendent of a particular system or given technology, they can be implemented differently
in different systems2. This modular approach favors the proof of the upper layer pro-
tocols, and cleanly separates between the properties we want to benefit from and their
implementation [12].

1 By definition, an object type that allows solving the Consensus problem despite process fail-
ures in otherwise asynchronous environment cannot be implemented purely by intersecting
quorums. In particular, read-modify-write semantics is too strong to be supported by intersect-
ing quorums without additional synchrony assumptions or failure detection capabilities.

2 A trivial case being a static system with a majority of correct servers.
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2 Application and System Model

An application is made up of clients processes that enter and leave the system (or crash).
These processes can access read/write shared data objects. A client is not aware of other
clients; it only knows that other clients can concurrently coexist. There is no global time
notion accessible to the clients or the objects. This section defines the corresponding
computation model.

To simplify the presentation, we assume the existence of a discrete global clock. This
clock, whose domain is the set of integers denoted IN, is a fictional device that is known
neither by the clients, nor by the objects.

2.1 Client Processes

From the application’s point of view, the system consists of a possibly infinite set of
sequential processes (called clients) that access a pool of shared read/write objects. The
client process model we consider is sometimes called the infinite arrival process with
finite concurrency [27]: the system has infinitely many processes, each run can have
infinitely many clients, but in each finite time interval only finitely many processes can
take steps [1].

Each client has an identity. These identities are such that no two clients have the same
identity, and any two identities can be compared. A client knows its identity, but does
not know the identities of the other clients. In the following we consider that a client
identity is an integer, yet the client identities are not necessarily consecutive integers.
The interested reader may refer to [1] for a protocol to “name the anonymous”.

A client process can crash. In that case it stops its execution. A crashed process does
not recover. Let us note that practically, this means that a process that recovers can
re-enter the system as a new process, i.e., with a new identity. As a client process is
not aware of the other clients, it has to terminate its operations (if it does not crash)
whatever the behavior of the other clients. This means that the operations provided to
the client processes have to be wait-free [20] (with respect to other clients).

2.2 Shared Objects

Each object x of the shared memory can be accessed by two operations denoted READ (x)
and WRITE (x, v). They allow the invoking process to obtain the value of x, or define the
new value v of x, respectively. Each object x is atomic. This means that, from an external
observer point of view, all the operations accessing x can be totally ordered in such a way
that (1) this order respects their real-time occurrence order, and (2) each read obtains the
value written by the last write that precedes it in this total order [23]. Atomicity is a
fundamental concept as it allows us to reason sequentially despite concurrency.

Let us note that in the context of concurrent objects, i.e., objects that can be concur-
rently accessed by several processes, the atomicity concept has initially been formalized
and investigated for read/write shared objects [23]. It has then been extended under the
name linearizability to any object that has a sequential specification [21].
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Interestingly, it has been shown that a run that satisfies the atomicity (linearizability)
consistency criterion with respect to each shared object considered separately, also sat-
isfies this criterion when we consider the whole set of atomic objects as a single (bigger)
variable [21]. This property is called locality. Thus, atomic consistency is local. How-
ever, sequential consistency and causal consistency are not [21]. That is, merging a
protocol providing sequential consistency on a single object x with a protocol provid-
ing sequential consistency on another object y does not provide a protocol providing
sequential consistency on the composite object X = [x, y].3

Locality is significant for both theory and practice. From a theoretical point of view,
it allows us to reason sequentially on the combined set of all objects as if it was a single
object. From an implementation and software engineering point of view, this property
enables scalable composable realizations. That is, as soon as we have a protocol imple-
menting atomic consistency for one object, we can run multiple independent instantia-
tions of this protocol, one for each object, and the entire system will behave correctly
without any additional control or synchronization.

2.3 Shared Memory: A Set of Servers

We consider a shared memory service consisting of read/write objects that are imple-
mented on top of a distributed message-passing system made up of a set of server
processes, denoted s1, s2, ... As indicated in the introduction, this system may have
an infinite number of servers. Yet (as for clients), in each finite time interval there is
only a finite number of servers (infinite arrival model with finite concurrency). A server
sj can enter the shared memory service (event init j). It can later crash (event fail j)
or leave the system (event leavej). As we noted earlier, this means that a process that
crashed or left the system can re-enter the system, each time with a new identity. Each
object is implemented by a subset of servers. Practically, this allows us to assume that
the subset of servers implementing a single object at any given finite time interval is
reasonably small, even though the system as a whole might include a huge number of
servers. Due to the locality property of atomicity (recall the discussion in Section 2.2),
in the rest of the paper we consider a single object x without losing generality.

Let up(t) denote the set of servers (implementing object x) that joined the system
before time t and have neither crashed nor left at t. We assume that ∀t : up(t) �= ∅.
This is a feasibility condition necessary to obtain live quorums, i.e., quorums that can
prevent from definitive blocking the read and write operations that use them.

2.4 Operations as Intervals

As we have seen, an application process can only invoke a read or a write operation
on a shared object. These operations are abstract for it in the sense that it can use them
as primitives but it does not know how these primitives and the atomic objects are
implemented at the underlying level.

Let us consider the ath READ () or WRITE () operation invoked by the same client
process pi. The beginning of the execution of that operation at the client defines an

3 The bounds of the locality property with respect to various consistency criteria have been
investigated in [33].
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event that we denote startai . Similarly, its termination at the client defines an event that
we denote enda

i . The crash of a client pi while it is executing a read or write operation
defines an event that we denote crashi (let us note that the crash of pi outside an
operation is irrelevant). On the application side, these are the only relevant events.

The invocations of read and write operations by a client pi defines its local history.
The subsequence of events between startai and enda

i (or crashi) defines what we call
the interval Ia

i [18]. Let us stress that an interval is defined with respect to events at the
client only, regardless of any events and operations taken by the servers or other clients.
An execution of a set of processes sharing a set of atomic objects can be represented
by a history h that is the sequence of events issued by these processes (if two or more
events are “simultaneous”, they can be arbitrarily ordered [22]).

Interestingly, the history h defines a natural partial order on the intervals. Ia
i →h Ib

j

(precedes) if enda
i (or crashi) appears in h before startbj . Ia

i is an immediate prede-
cessor of Ib

j if Ia
i →h Ib

j and there is no interval I such that Ia
i →h I and I →h Ib

j .
Finally, im pred(I1, I2) is a predicate that is true if and only if I1 is an immediate
predecessor of I2.

Let I be an interval whose start and end events occur at time tIb and tIe , respectively
(if there is no end event for I , let tIe = +∞). The following set of servers is associated
with each interval I:

STABLE (I ) = {s | ∃t ∈ [tIb , t
I
e] : ∀t′ : t ≤ t′ ≤ tIe : s ∈ up(t′) }.

Another feasibility condition necessary to obtain live quorums is to have, for any inter-
val I , STABLE (I ) �= ∅.

3 A Dynamic Read/Write Quorum Abstraction

3.1 Quorum Oracle

A quorum oracle is a device that provides the processes with a single primitive, namely a
query. Moreover, we consider here that such a query can only be issued at a client due to
a READ () or a WRITE () operation on a shared object inside the corresponding interval.
Each query returns a set of servers. To be meaningful, the sets of servers returned by
the queries have to satisfy some properties. A given set of such properties defines the
type of the corresponding quorum oracle.

3.2 Dynamic Read/Write Quorums

We are now in order to define a class of quorum oracles that can be used to implement
an atomic object in a dynamic server system. This class, denoted RWdyn, allows a
process to issue two types of queries. As elaborated below, the goal of the first type is
to obtain a “consistent” timestamp (associated with the value read or written), so we
denote it CD (for control data). The second is to ensure that “enough” servers will have
an up to date copy of the last value of the object, so we denote it VAL.RWdyn is defined
by the following properties:
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– Progress property.
Let Q(t) be the quorum obtained by a query issued at time t during an interval I
(whatever the type CD or VAL of the query).

∃t ∈ [tIb , t
I
e] : ∀t′ : t ≤ t′ ≤ tIe : Q(t′) ⊆ STABLE (I ).

This property states that, by repeatedly querying its quorum oracle, an operation
(that does not crash) eventually obtains a quorum of servers that have joined the
system and have neither crashed nor left the system.

– Typed Bounded Lifetime Intersection property.
This property involves the two types of queries and their associated intervals. It
states that the quorums returned by two such queries have a non empty intersection
only if these queries (1) have different types and (2) belong to consecutive intervals.
Let Qcd (resp., Qval) denote both the quorum returned by a query whose type is
CD (resp., VAL), and the corresponding query event. Let I1 and I2 be the intervals
associated with these queries. We have:

[(Qval ∈ I1) ∧ (Qcd ∈ I2) ∧ im pred(I1, I2)]⇒ Qval ∩Qcd �= ∅.

3.3 Related Quorum Systems

When comparing RWdyn with traditional quorum systems [14, 15, 32], a noteworthy
difference lies in the limited period during which quorums (of different types) have
to intersect4. Interestingly, this intersection requirement allows all the servers that are
alive and participate in a quorum at a given time to later crash or leave the system.
In contrast, the quorum failure detectors introduced in [7, 8] require that all quorums
will intersect in at least one process that never crashes. The generalization of quorum
failure detectors in [11] only requires intersections between concurrent and immediately
consecutive quorums, but does not allow all the servers that are alive at some point to
later crash.

Herlihy’s work describe a scheme that allows processes to switch between quorums,
e.g., due to partitions [19]. The work of Herlihy concentrates on the mechanisms for
performing such transformations and assumes a finite set of servers. Our work, on the
other hand, concentrates on the formal framework and definitions of quorums in a dy-
namic system. In our approach, the change in the set of servers is inherently decided by
the environment and cannot be controlled by the processes.

The class RWdyn differs also from the quorums as defined in the seminal work
on RAMBO [24]. RAMBO is a reconfigurable atomic memory service for dynamic net-
works. A key notion in RAMBO is the concept of configuration that is a set of members
plus sets of read quorums and write quorums. RAMBO requires that any read quorum
and any write quorum of the same configuration do intersect. Moreover, this intersec-
tion requirement is independent of the actual pattern of read and write operations (in

4 One server that has the latest value of the object (it appears in the Qval quorum) has to sur-
vive until the next operation (that obtains the quorum Qcd), so that the previous intersection
property can be satisfied.
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our case, only consecutive operations require typed quorums to intersect). Thus, our
intersection requirement may allow for more continuous evolution of the system.

The notion of a Byzantine quorum system, i.e., one that is resilient to Byzantine
failures, was introduced in [25]. An extension that allows dynamically modifying the
resilience threshold, yet with a constant set of servers, was introduced in [3]. The work
of [29] describes a method that allows to dynamically change the set of servers by
running Byzantine consensus to decide on the next configuration of the system, and
thus can be thought as a kind of a Byzantine RAMBO like system. A somewhat similar
approach of switching quorum systems using views was taken in [26]. However, in [26],
a view change is performed by having an external entity notify a quorum of the current
view to stop accepting requests in that view, and then notifying all members of the new
view of its existence and initial state.

Finally, the idea of implementing a distributed shared memory in a dynamic system
based on a group communication system was introduced in [10]. Rather than using
quorums, that work relies on the virtual synchrony and total ordering mechanisms of
the underlying group communication toolkit to obtain total ordering of operations and
state continuity.

3.4 The Static Case

The static case is when the server system is statically defined with m = 2f + 1 servers,
and up to f of them can crash. Moreover, the bound f is known by the processes. In
this system, the classical quorum definition as sets of f +1 servers trivially satisfies the
two requirements of the previous definition. It is important to notice that if, incidentally,
a run has more than f + 1 servers that crash, the Progress property can no longer be
ensured, and operations based on such quorums can block forever. This means that,
be the system dynamic or static, there are assumptions for the operations to terminate
correctly. Here the implicit assumption is that “no more than f servers crash” (even
when this assumption is embedded into the model, it may or may not be satisfied during
a particular run).

4 A Communication Abstraction

In addition to the classical one-to-one reliable send and receive communication prim-
itives, the underlying system offers two communication primitives prst broadcast()
and prst deliver(). The first is to allow a read or a write operation to send a message
to the set of servers. The second allows a server s to be delivered the corresponding
message.

These primitives assume that each message m has a type type(m) and a sequence
number sn(m). When a process executes prst broadcast(m) (resp., prst deliver()),
we say that it “broadcasts” (resp., “delivers”) m. The persistent reliable broadcast com-
munication abstraction is defined by the following properties:

– Validity. If a message m is delivered by a server, it has been broadcast as part of
the execution of a read or a write operation.

– Integrity. A message m is delivered at most once by each server.
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– Server/server Termination. If a message m is broadcast during an interval I and
is delivered by a server, then any server s ∈ STABLE (I ) eventually delivers a
message m′ such that type(m) = type(m′) and sn(m′) ≥ sn(m).5

– Client/server Termination. If the client process does not crash while it is executing
the read or write operation defining the interval I that gave rise to the broadcast of
m, the message m is delivered eventually by at least one server.

The validity and integrity properties are safety properties. The first states that no spu-
rious message is created, while the second states that no message is duplicated. The two
other properties address the liveness of message deliveries. The client/server termina-
tion property states that if the application process that executes a read or write operation
does not crash while it is executing that operation, each message it broadcasts (during
that operation) is not lost in the sense that it is eventually delivered by at least one
server. Due to asynchrony and the fact that servers can crash, or dynamically join/leave
the system, it is not possible to require that all the servers that are active when a mes-
sage m is broadcast will deliver the message. Hence the rationale for the server/server
termination property that states that if a message is delivered by a server, then all the
servers that have entered or will enter the system and neither leave it nor crash by the
end of the operation (the servers defining the set denoted STABLE (I )), will deliver
this message or a message of the same type sent later6.

When all the messages have different types, the type notion disappears and sequence
numbers become useless. If additionally the number of servers is statically defined,
and all the events define a single interval [18], the primitives prst broadcast() and
prst deliver() then boil down to the classical uniform reliable broadcast primitives [17].

An implementation of the persistent reliable broadcast abstraction can be done ac-
cording to the following lines. When a server receives a message m, the server first
forwards m to all the other processes, and only then delivers the message to itself (the
way message forwarding is ensured depends on the underlying overlay network and
the associated routing [28, 30, 31] – see also discussion in Section 6). Moreover, a new
server that joins the system has first to broadcast (using the underlying routing) an in-
quiry message to the servers currently present in the system. When a server receives
such a message, the server sends back its state and, for each message type, the sequence
number of the last message it has delivered.

5 An Atomic Object Service

Assuming the previous dynamic quorum and persistent reliable broadcast abstractions,
this section presents and proves correct a simple and general protocol implementing
read and write operations suited to dynamic server systems.

5 Notice that unlike uniform delivery, here the message m′ that is eventually delivered by the
servers in STABLE(I ) can be different from m, as long as the types of m and m′ is the same
and sn(m′) ≥ sn(m).

6 The underlying idea is here the following. A message m′ that is causally affected by a message
m (hence sn(m′) > sn(m)) “includes” m from a causality point of view, and consequently
the delivery of m′ implicitly contains the delivery of m.
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5.1 Structure of the Implementation

Each client pi has a local variable sni that it uses to generate local sequence numbers.
This allows pi to give a unique identity to each read and write operation it invokes. In
the following we consider an application process pi and a read/write object x.

As a side comment, let us note that in some systems, an application process commu-
nicates only with a proxy, and several processes can share the same proxy. The proxy
plays the role of the process with respect to the server processes. As an example, we
have the following correspondence with transaction systems: transaction↔ operations,
transaction manager ↔ proxy, data managers ↔ servers, and data ↔ shared object
copy. Here we could envisage a similar architecture, but as our focus is on atomic con-
sistency, we do not detail the architectural issues of the whole system. Intuitively, the
reader can think that the sequence numbers may be managed by the proxies and not by
the processes themselves (as done, e.g., in [9]).

Back to our model, the protocol uses a classical timestamping mechanism [22]. It as-
sociates a timestamp ts, which consists of a pair made up of an integer denoted ts.clock
plus a process id denoted ts.proc, with each value that has been successfully written.
Using lexicographic ordering, this allows us to obtain a total order on all the values that
have been written. This total order is used to enforce atomic consistency. This basic
principle is used in most atomic consistency protocols we are aware of.

The protocols implementing write and read operations are described in Figure 1
and Figure 2, respectively. They are based on the principles used in [5], namely, they
are two-phase protocols. We first describe the write protocol, and then the read
protocol.

5.2 Implementing a WRITE (x, v) Operation

When an application process pi wants to write a new value, its first phase consists of
defining a correct timestamp for the value v. The second phase is for pi to ensure that
the new pair (value, timestamp) is known by enough servers so that atomic consistency
can be achieved. Each phase obeys the same algorithmic pattern, involving both ab-
stractions, namely, a persistent broadcast followed by a quorum-based synchronization.
Thus, the phases proceed as follows.

– Phase 1. First, pi builds an identity for its requests concerning this write. This iden-
tity is the pair (i, sni). Then, it broadcasts a request to the servers with the goal
of obtaining the timestamp associated with the last value of the object. This corre-
sponds to line 2, where the field “no” in the message means that pi does not need
the last value of the object.

The type of this first broadcast is defined by the pair (cd req,i) where cd req is the
message tag, and i the sender id. Then, pi waits until it receives acknowledgments
from the processes defining a CD quorum (lines 3–6). Due to the bounded lifetime
intersection property of quorums (as can be seen in the proof in the full version of
this paper [13]), pi can then define the new timestamp ts associated with the value
v it wishes to write. This timestamp is greater than all the timestamps associated
with values previously written.
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– Phase 2. During this phase, pi broadcast to the servers a new request carrying
the pair (ts, v) (line 8). This request is tagged write req and its type is the pair
(write req,i). Next, pi waits until it has received acknowledgments from the processes
defining a VAL quorum (lines 10–13). When this occurs, it knows (see the proof in
[13]) that “enough” servers have received the write request and, consequently, the
current write can terminate (line 14).

operation WRITEi (x, v)
% Phase 1 (lines 1-7): synchronization to obtain consistent information %

(1) sni ← sni + 1; ansi ← ∅;
(2) prst broadcast cd req(i, sni, no);
(3) repeat
(4) wait for a message cd ack(sni, ts) received from s;
(5) ansi ← ansi ∪ {s}
(6) until Qcd ⊆ ansi ;
(7) ts.clock ← max of the ts.clock fields received +1; ts.proc ← i;

% Phase 2 (lines 8-14): synchronization to ensure atomic consistency %
(8) prst broadcast write req(i, sni, ts, v);
(9) ansi ← ∅;
(10) repeat
(11) wait for a message write ack(sni) received from s;
(12) ansi ← ansi ∪ {s}
(13) until Qval ⊆ ansi ;
(14) return()

Fig. 1. Implementing a WRITE () operation

operation READi (x)
% Phase 1 (lines 1-7): synchronization to obtain consistent information %

(1) sni ← sni + 1; ansi ← ∅;
(2) prst broadcast cd req(i, sni, yes);
(3) repeat
(4) wait for a message cd ack(sni, ts, value) received from s;
(5) ansi ← ansi ∪ {s}
(6) until Qcd ⊆ ansi ;
(7) ts ← max of the ts received; v ← value field associated with ts;

% Phase 2 (lines 8-14): synchronization to ensure atomic consistency %
(8) prst broadcast write req(i, sni, ts, v);
(9) ansi ← ∅;
(10) repeat
(11) wait for a message write ack(sni) received from s;
(12) ansi ← ansi ∪ {s}
(13) until Qval ⊆ ansi ;
(14) return(v)

Fig. 2. Implementing a READ () operation
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5.3 Implementing a READ (x) Operation

The protocol for a read operation is structurally the same, and semantically nearly the
same, as the write protocol. It has two phases with exactly the same meaning, as de-
scribed in Figure 2. The only noteworthy difference with respect to the write protocol
lies in the fact that the last field of the message cd req() broadcast at line 2 carries the
value “yes”. This is to demand each server that sends back an acknowledgment to pro-
vide not only its last timestamp but also the associated value. This is required because
a read has to return a value when it terminates (line 14).

The second phase of the read protocol is to ensure atomicity. It prevents two sequen-
tial read operations from obtaining inconsistent values. More precisely, let R1 and R2
be two read operations such that R2 starts after R1 is finished, and both R1 and R2
are concurrent with a write operation W that updates the object x from v1 to v2. The
second phase prevents what is called “new/old” inversion, namely, it is not possible for
R1 to read v2 while R2 would obtain v1. The prevention of new/old inversions is what
makes an “atomic” object distinct from a “regular” object [23]7.

5.4 Read/Write Protocol: The Server Side

Each server s manages two local variables, tss and values, that contain the highest
timestamp value that s has ever received, and the associated value, respectively.

As we have seen, only messages of the type (cd req,i) or (write req,i) can be de-
livered to a server s. These messages have been broadcast by pi during the first phase
(line 2) or the second phase (line 8) of the write or the read protocol.

– When a server receives cd req(i, sn, bool), it sends back to pi an acknowledgment
(carrying the same sequence number sn so that pi does not confuse all acks it re-
ceives), plus the required control information (local timestamp) with the associated
value if it is required.

– When a server s receives write req(i, sn, ts, v), is first updates its local data if they
are out of date. In all cases, s sends back an acknowledgment to the process pi that
initiated the broadcast.

It is interesting to notice that an application process communicates anonymously
with the set of servers using the persistent reliable broadcast primitives. That is, an
application process sees only a service and does not know the servers on an individual
basis. Differently, a server works on a responsive mode, and can always send back an
acknowledgment to the sender of the message it receives. The acknowledgments are
one-to-one. The broadcasts are one-to-all.8

5.5 Another Implementation for a READ (x) Operation

There are distinct ways to implement the second phase of the read protocol. An alter-
native approach consists of asking the servers to inform the reader pi when they have

7 The interested reader can find an elaborate discussion on this difference in [16].
8 Let us remind the reader that when we say “all the servers”, we mean the set of alive servers

that currently implement the desired object.
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(1) when cd req(i, sn, bool) is delivered:
(2) if (bool =yes) then val to send ← values else val to send ← ⊥ end if;
(3) send cd ack(sn, ts, val to send) to i

(4) when write req(i, sn, ts, v) is delivered:
(5) if (ts > tss) then tss ← ts; values ← v end if;
(6) send write ack(sn) to i

Fig. 3. Processing by a server s of the messages it receives

stored a value whose timestamp is equal to or higher than ts (the timestamp of the
value read by pi). When pi learns that a VAL type quorum of servers have stored such
a timestamp, it can terminate the read operation and return v (the value associated with
ts). Protocols based on a similar approach are described in [1, 2] to implement atomic
variables from a fixed set of crash-prone disks.

Adapting this idea to our context can be done as follows. A new message tag is used
by a read operation and its lines 8-13 are replaced by the following lines:

8’ prst broadcast read req(i, sni, ts, v);
9’ ansi ← ∅;
10’ repeat
11’ wait for a message read ack(sni) received from s;
12’ ansi ← ansi ∪ {s}
13’ until Qval ⊆ ansi

The code of a server is modified accordingly, namely, it additionally includes the
following statement to process read req () messages:

(7) when read req(i, sn, ts) is delivered:
(8) wait until (tss ≥ ts);
(9) send read ack(sn) to i

Proof: Due to space limitation, the proof appears in the full version of this paper [13].

6 Practical Instantiations

Read/write objects are a general abstraction that can be used to implement various dis-
tributed services. These include, e.g., distributed shared memory, maintaining distrib-
uted files, distributed directory lookup services, shared bulletin boards, etc.

With proper assumptions about the rate of failures (process crashes), joins, and
leaves, it is possible to implement the required quorum oracles with many existing
distributed hash tables-based peer-to-peer systems (e.g., CAN [28], Chord [31], Pas-
try [30], Tapestry [34], to name a few). Specifically, most of these peer-to-peer systems
provide a service that enables implicit routing of messages to servers without the ap-
plication ever knowing the identifiers of the servers. The way these services operate is
that the application passes an object identifier to the service. The service calculates a
hashed identifier, and gradually forwards the message between some of the servers until
it reaches the server whose hashed identifier value is closest, under some metric, to the
hashed object identifier.
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When there are no changes in the system (i.e., no failures, no joins, and no leaves),
the service ensures that all requests to route a message with the same object identifier
x will reach the same server. In the rest of this section, we refer to such a server as
the responsible server for object x. Moreover, asymptotically, these systems provide
with high probability good load balancing for the division of object identifiers to cor-
responding responsible servers. That is, when there are “enough” servers and “enough”
object identifiers, each server is responsible for roughly the same number of objects.
Moreover, two slightly different object identifiers (e.g., the Hamming distance between
their binary representation is small) have different responsible servers.

If we assume that the rate of change in the system is low, we can employ the follow-
ing scheme, similar to what is done in [4]: for a given object identifier x and constant
k, we define the following set of derived object identifiers {1 x, 2 x, . . . , k x}. This set
of derived object identifiers implies a corresponding set of derived responsible servers.
Thus, the set of servers that implement a shared object x now becomes the set of derived
responsible servers for x.

Let us further assume that the rate of change, the latency of messages, and the speed
of processes are such that there exist constants k and f so that for every set of derived
servers whose size is k, at most f fail during an interval (an execution of a read or write
operation). With these assumptions, STABLE (I ) becomes the set of derived responsi-
ble servers for object x that do not fail or leave during I . Moreover, an implementation
of the oracle can periodically use the peer-to-peer service to find the current set of de-
rived responsible servers for x, and return any subset of them of size at least (k − f ).

Note that the choice of k and f , as well as the assumptions about the rate of change
in the systems are dependent on the specific peer-to-peer system used, as well as other
external environmental assumptions. This highlights the benefits of our approach, since
we have identified generic abstractions and devised a generic protocol based on them.
The specification of the protocol is independent of the low level assumptions needed to
implement the abstractions. Similarly, the proof of correctness only relies on the func-
tional properties of the abstractions, and does not rely on system dependent parameters.

7 Conclusion

This paper has investigated two matching abstractions suited to the implementation of
atomic objects in a dynamic distributed system where servers can dynamically enter
and leave the system (or crash). One of these abstractions concerns quorum systems,
the other one communication. Both abstractions are complementary in the sense they
address the two basic problems encountered when implementing atomic objects (data
persistence and data consistency). Their conceptual simplicity is a great advantage that
allows coping with and mastering the complexity of dynamic systems. As their de-
finition is based on abstract properties (and not on low-level assumptions), they are
problem-oriented and versatile.

A read protocol and a write protocol based on these abstractions have been de-
scribed and proved correct. The properties defining these abstractions can be seen as re-
quirements that are sufficient for implementing a dynamic storage service. Instantiating
the proposed abstractions in different contexts (e.g., settings defined by specific
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assumptions on failures, synchrony, message delays and processing times) provides as
many system specific protocols. It has also been shown that these abstractions can be
realized in dynamic peer-to-peer systems satisfying appropriate requirements.

As a server has to return values and execute Compare-&-Swap-like operations (i.e.,
store a value only if its timestamp is newer than the existing one) , it can actually be
either a process node or an active disk. It is consequently possible to envisage a hybrid
dynamic server system made up of nodes and active disks.

References

1. Aguilera M.K., A Pleasant Stroll Through the Land of Infinitely Many Creatures. ACM
SIGACT News, Distributed Computing Column, 35(2):36-59, 2004.

2. Aguilera M.K. and Gafni E., On Using Network Attached Disks as Shared Memory.
Proc. 21th ACM PODC, ACM Press, pp. 315-324, 2003.

3. Alvisi L., Malkhi D., Pierce E., Reiter M and Wright R.N., Dynamic Byzantine Quorum
Systems, Proc. IEEE Conf. on Depend. Syst. and Networks (DSN’00), pp. 283-392, 2000.

4. Anceaume E., Friedman R., Gradinariu M. and Roy M., An Architecture for Dynamic Scal-
able Self-managed Transactions. Proc. 6th International Symposium on Distributed Objects
and Applications, LNCS # 3291, pp. 1445-1462, 2004.

5. Attiya H., Bar-Noy A. and Dolev D., Sharing Memory Robustly in Message Passing Systems.
Journal of the ACM, 42(1):121-132, 1995.

6. Chandra T.D. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43(2):225-267, 1996.

7. Delporte-Gallet C., Fauconnier H. and Guerraoui R., Shared memory vs Message Passing.
Tech Report IC/2003/77, EPFL, Lausanne, December 2003.

8. Delporte-Gallet C., Fauconnier H. and Guerraoui R., Hadzilacos V., Kouznetsov P. and Toueg
S., The Weakest Failure Detectors to Solve Certain Fundamental Problems in Distributed
Computing. Proc. 23rd ACM PODC, pp. 338-346, 2004.

9. Ezhilchelvan P., Helary J.-M. and Raynal M., Building TMR-Based Reliable Servers Despite
Bounded Input Lifetime. Proc. 7th European Parallel Computing Conference (Europar’01),
Manchester (UK), LNCS # 2150, pp. 482-485, 2001.

10. Friedman R., Using Virtual Synchrony to Develop Efficient Fault Tolerant Distributed Shared
Memories. Technical Report 95-1506, Dept. of Computer Science, Cornell University, 1995.

11. Friedman R., Mostefaoui A. and Raynal M., Asynchronous Bounded Lifetime Failure
Detectors. Information Processing Letters, 94:85-91, 2005.

12. Friedman R. and Raynal M., On the Benefits of the Functional Modular Approach in Dis-
tributed Data Management Systems. Proc. SRDS’04 IEEE satellite Workshop on Dependable
Distributed Data Management (WDDDM’04), IEEE Computer Press, pp. 1-6, 2004.

13. Friedman R., Raynal M. and Travers C., Two Abstractions for Implementing Atomic Objects
in Dynamic Systems. Tech Report #1692, IRISA, University of Rennes 1 (France), 2005.

14. Garcia-Molina H. and Barbara D., How to Assign Votes in a Distributed System. Journal of
the ACM, 32(4):841-860, 1985.

15. Gifford D.K., Weighted Voting for Replicated Data. Proc. 7th ACM Symposium on Operating
Systems Principles (SOSP’79), ACM Press, pp. 150-162, 1979.

16. Guerraoui R. and Raynal M., Fault-Tolerance Techniques for Concurrent Objects. Tech
Report # 1667, 22 pages, IRISA, Université de Rennes 1 (France), December 2004.
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Abstract. Atomic broadcast is a communication primitive that allows a group
of n parties to deliver a common sequence of payload messages despite the fail-
ure of some parties. We address the problem of asynchronous atomic broadcast
when up to t < n/3 parties may exhibit Byzantine behavior. We provide the first
protocol with an amortized expected message complexity of O(n) per delivered
payload. The most efficient previous solutions are the BFT protocol by Castro
and Liskov and the KS protocol by Kursawe and Shoup, both of which have
message complexity O(n2). Like the BFT and KS protocols, our protocol is op-
timistic and uses inexpensive mechanisms during periods when no faults occur;
when network instability or faults are detected, it switches to a more expensive
recovery mode. The key idea of our solution is to replace reliable broadcast in
the KS protocol by consistent broadcast, which reduces the message complexity
from O(n2) to O(n) in the optimistic mode. But since consistent broadcast pro-
vides weaker guarantees than reliable broadcast, our recovery mode incorporates
novel techniques to ensure that safety and liveness are always satisfied.

1 Introduction

Atomic broadcast is a fundamental communication primitive for the construction of
fault-tolerant distributed systems. It allows a group of n parties to agree on a set of
payload messages to deliver and also on their delivery order, despite the failure of up to
t parties. A fault-tolerant service can be constructed using the state machine replication
approach [1] by replicating the service on all n parties and propagating the state updates
to the replicas using atomic broadcast.

In this paper, we present a new message-efficient atomic broadcast protocol that
is suitable for building highly available and intrusion-tolerant services in the Internet
[2, 3]. Since the Internet is an adversarial environment where an attacker can
compromise and completely take over nodes, we allow the corrupted parties to de-
viate arbitrarily from the protocol specification thereby exhibiting so-called Byzantine
faults. We work in an asynchronous system model for two reasons: (1) it best reflects the
loosely synchronized nature of nodes in the Internet, and (2) not relying on synchrony
assumptions for correctness also eliminates a potential vulnerability of the system that
the adversary can exploit, for example, through denial-of-service attacks.

Any asynchronous atomic broadcast protocol must use randomization, since deter-
ministic solutions cannot be guaranteed to terminate [4]. Early work focused on the
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polynomial-time feasibility of randomized agreement [5,6,7] and atomic broadcast [8],
but such solutions are too expensive to use in practice. Many protocols have followed
an alternative approach and avoided randomization completely by making stronger as-
sumptions about the system model, in particular by assuming some degree of synchrony
(like Rampart [9], SecureRing [10], and ITUA [11]). However, most of these protocols
have an undesirable feature that makes them inapplicable for our purpose: they may
violate safety if synchrony assumptions are not met.

Only recently, Cachin et al. proposed a practical asynchronous atomic broadcast [12]
protocol that has optimal resilience t < n/3, relying on a trusted initialization process
and on public-key cryptography. The protocol involves one randomized Byzantine
agreement [13] per round of atomically delivered payload messages.

The BFT protocol by Castro and Liskov [14] and the protocol by Kursawe and
Shoup [15] (the KS protocol for short) take an optimistic approach for providing more
efficient asynchronous atomic broadcast while never violating safety. The motivation
for such optimistic protocols is the observation that conditions are normal during most
of a system’s operation. Normal conditions refer to a stable network and no intrusions.
Both protocols proceed in epochs, where an epoch consists of an optimistic phase and
a recovery phase, and expect to spend most of their time operating in the optimistic
phase which uses an inexpensive mechanism that is appropriate for normal conditions.
The protocols switch to the more expensive recovery phase under unstable network or
certain fault conditions. In every epoch, a designated party acts as a leader for the opti-
mistic phase, determines the delivery order of the payloads, and conveys the chosen de-
livery order to the other parties through Bracha’s reliable broadcast protocol [16], which
guarantees delivery of a broadcast payload with the same content at all correct parties.
Bracha’s protocol is deterministic and involves O(n2) messages; it is much more ef-
ficient than the most efficient randomized Byzantine agreement protocol [12], which
requires expensive public-key cryptographic operations in addition. Consequently, both
the BFT and KS protocols communicateO(n2) messages per atomically delivered pay-
load under normal conditions, i.e., they have message complexity O(n2).

No protocol for asynchronous atomic broadcast with message complexity less than
Θ(n2) was known prior to our work. Our protocol for asynchronous atomic broadcast
is the first to achieve optimal resilience t < n/3 andO(n) amortized expected message
complexity. We call our protocol parsimonious because of this significant reduction
in message complexity. Linear message complexity appears to be optimal for atomic
broadcast because a protocol needs to send every payload to each party at least once
and this requires n messages (assuming that payloads are not propagated to the parties
in batches). Like the BFT and KS protocols, our protocol is optimistic in the sense that it
progresses very fast during periods when the network is reasonably behaved and a party
acting as designated leader is correct. Unlike the BFT protocol (and just like the KS
protocol), our protocol guarantees both safety and liveness in asynchronous networks
by relying on randomized agreement. The reduced message complexity of our protocol
comes at the cost of introducing a digital signature computation for every delivered
payload. But in a wide-area network (WAN), the cost of a public-key operation is small
compared to message latency. And since our protocol is targeted at WANs, we expect
the advantage of lower message complexity to outweigh the additional work incurred
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by the signature computations. A comparison of our protocol with the asynchronous
atomic broadcast protocols mentioned above is given in Table 1.

Our Approach. The starting point for the development of our protocol, which we
call PABC, is the BFT protocol [14]. In the BFT protocol, a leader determines the de-
livery order of payloads and conveys the order using reliable broadcast to other parties.
The parties then atomically deliver the payloads in the order chosen by the leader. If the
leader appears to be slow or exhibits faulty behavior, a party switches to the recovery
mode. When enough correct parties have switched to recovery mode, the protocol en-
sures that all correct parties eventually start the recovery phase. The goal of the recovery
phase is to start the next epoch in a consistent state and with a new leader. The difficulty
lies in determining which payloads have been delivered in the optimistic phase of the
past epoch. The BFT protocol delegates this task to the leader of the new epoch. But
since the recovery phase of BFT is also deterministic, it may be that the new leader
is evicted immediately, before it can do any useful work, and the epoch passes without
delivering any payloads. This denial-of-service attack against the BFT protocol violates
liveness but is unavoidable in asynchronous networks.

The KS protocol [15] prevents this attack by ensuring that at least one payload is
delivered during the recovery phase. It employs a round of randomized multi-valued
Byzantine agreement (MVBA) to agree on a set of payloads for atomic delivery, much
like the asynchronous atomic broadcast protocol of Cachin et al. [12]. During the opti-
mistic phase, the epoch leader conveys the delivery order through reliable broadcast as
in BFT, which leads to an amortized message complexity of O(n2).

Our approach is to replace reliable broadcast in the KS protocol with a consistent
broadcast protocol, also known as echo broadcast [17]. The replacement directly leads
to an amortized message complexity of only O(n). But consistent broadcast is weaker
than reliable broadcast and guarantees agreement only among those correct parties that
actually deliver the payload. Therefore, a corrupted leader may cause the fate of some
payloads to be undefined in the sense that there might be only a single correct party that
has delivered a payload from consistent broadcast, but no way for other correct parties
to learn about this fact. We solve this problem by delaying the atomic delivery of a pay-
load delivered from consistent broadcast until more payloads have been delivered from
consistent broadcast. However, the delay introduces an additional problem of payloads
getting “stuck” if no further payloads arrive. We address this by having the leader gen-
erate dummy payloads when no further payloads arrive within a certain time window.

The recovery phase in our protocol has a structure similar to that of the KS protocol,
but is simpler and more efficient. At a high level, a first MVBA instance ensures that
all correct parties agree on a synchronization point. Then, the protocol ensures that all
correct parties atomically deliver the payloads up to that point; to implement this step,
every party must store all payloads that were delivered in the optimistic phase, together
with information that proves the fact that they were delivered. A second MVBA instance
is used to atomically deliver at least one payload, which guarantees that the protocol
makes progress in every epoch.

Organization of the Paper. The rest of the paper is organized as follows. Section 2 in-
troduces preliminaries, some protocol primitives on which our algorithm relies, and the
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Table 1. Comparison of Efficient Byzantine-Fault-Tolerant Atomic Broadcast Protocols

Protocol
Sync. for
Safety?

Sync. for
Liveness?

Public-key
Operations?

Message Complexity
Normal Worst-case

Rampart [9] yes yes yes O(n) unbounded
SecureRing [10] yes yes yes O(n) unbounded

ITUA [11] yes yes yes O(n) unbounded
Cachin et al. [12] no no yes exp. O(n2) exp. O(n2)

BFT [14] no yes no O(n2) unbounded
KS [15] no no yes O(n2) exp. O(n2)

Protocol PABC no no yes O(n) exp. O(n2)

definition of atomic broadcast. The protocol is presented in Section 3, and its practical
significance is discussed in Section 4. For lack of space, the details of the formal system
model and the analysis of our protocol are contained in the full version [18].

2 Preliminaries

2.1 System Model

This section contains an overview of the system model. We consider an asynchronous
distributed system model equivalent to the one of Cachin et al. [12], in which there are
no bounds on relative processing speeds and message delays. The system consists of
n parties P1, . . . , Pn and an adversary. Up to t < n/3 parties are controlled by the
adversary and are called corrupted; the other parties are called correct. We use a static
corruption model, and there is an initialization algorithm run by a trusted dealer for
system setup. All computations by the parties, the adversary, and the dealer are proba-
bilistic, polynomial-time algorithms. Since our model is based on the formal approach
in cryptography, we allow for a negligible probability of failure in the specification
of our protocols. The system model includes a digital signature scheme that is secure
against existential forgery using adaptive chosen-message attacks [19].

Each pair of parties is linked by an authenticated asynchronous channel that provides
message integrity. Messages on the channels are scheduled by the adversary. However,
we assume that every message on a channel between two correct parties is eventually
delivered. Every protocol instance is identified by a unique string ID , called the tag.
Formally, the local interface to our protocols consists of input actions, which are mes-
sages of the form (ID ,in, type, . . .) and output actions, which are messages of the
form (ID ,out, type, . . .). The parties receive and generate protocol messages of the
form (ID , type, . . .), which are delivered to other parties over the channels. Before a
party starts to process messages for an instance ID , the instance with that ID must be
initialized.

2.2 Protocol Primitives

Our atomic broadcast protocol relies on a consistent broadcast protocol with special
properties and on a Byzantine agreement protocol.
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Strong Consistent Broadcast. We enhance the notion of consistent broadcast found
in the literature [12] to develop the notion that we call strong consistent broadcast.
Ordinary consistent broadcast provides a way for a designated sender Ps to broadcast a
payload to all parties and requires that any two correct parties that deliver the payload
agree on its content.

The standard protocol for implementing ordinary consistent broadcast is Reiter’s
echo broadcast [17]; it involves O(n) messages, has a latency of three message flows,
and relies on a digital signature scheme. The sender starts the protocol by sending the
payload m to all parties; then it waits for a quorum of �n+t+1

2 � parties to issue a sig-
nature on the payload and to “echo” the payload and the signature to the sender. When
the sender has collected and verified enough signatures, it composes a final protocol
message containing the signatures and sends it to all parties.

With a faulty sender, an ordinary consistent broadcast protocol permits executions
in which some parties fail to deliver the payload when others succeed. Therefore, a
useful enhancement of consistent broadcast is a transfer mechanism, which allows any
party that has delivered the payload to help others do the same. For reasons that will
be evident later, we introduce another enhancement and require that when a correct
party terminates a consistent broadcast and delivers a payload, there must be a quorum
of at least n − t parties (instead of only �n+t+1

2 �) who participated in the protocol
and approved the delivered payload. We call consistent broadcast with such a transfer
mechanism and the special quorum rule strong consistent broadcast.

Formally, every broadcast instance is identified by a tag ID . At the sender Ps, strong
consistent broadcast is invoked by an input action of the form (ID ,in,
sc-broadcast, m), with m ∈ {0, 1}∗. When that occurs, we say Ps sc-broadcasts
m with tag ID . Only Ps executes this action; all other parties start the protocol only
when they initialize instance ID in their role as receivers. A party terminates a con-
sistent broadcast of m tagged with ID by generating an output action of the form
(ID ,out,sc-deliver, m). In that case, we say Pi sc-delivers m with tag ID .

For the transfer mechanism, a correct party that has sc-delivered m with tag ID
should be able to output a bit string MID that completes the sc-broadcast in the fol-
lowing sense: any correct party that has not yet sc-delivered m can run a validation
algorithm on MID (this may involve a public key associated with the protocol), and if
MID is determined to be valid, the party can also sc-deliver m from MID .

Definition 1 (Strong consistent broadcast). A protocol for strong consistent broad-
cast satisfies the following conditions except with negligible probability.

Termination: If a correct party sc-broadcasts m with tag ID , then all correct parties
eventually sc-deliver m with tag ID .

Agreement: If two correct parties Pi and Pj sc-deliver m and m′ with tag ID , respec-
tively, then m = m′.

Integrity: Every correct party sc-delivers at most one payload m with tag ID . More-
over, if the sender Ps is correct, then m was previously sc-broadcast by Ps with
tag ID .

Transferability: After a correct party has sc-delivered m with tag ID , it can generate
a string MID such that any correct party that has not sc-delivered a message with
tag ID is able to sc-deliver some message immediately upon processing MID .
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Strong unforgeability: For any ID , it is computationally infeasible to generate a value
M that is accepted as valid by the validation algorithm for completing ID unless
n− 2t correct parties have initialized instance ID and actively participated in the
protocol.

Given the above implementation of consistent broadcast, one can obtain strong consis-
tent broadcast with two simple modifications. The completing string MID for ensuring
transferability consists of the final protocol message; the attached signatures are suffi-
cient to allow for any other party to complete the sc-broadcast. Strong unforgeability is
obtained by setting the signature quorum to n− t.

With signatures of size K bits, the echo broadcast protocol has communication com-
plexity O(

n(|m| + nK)
)

bits, where |m| denotes the bit length of the payload m. By
replacing the quorum of signatures with a threshold signature [20], it is possible to re-
duce the communication complexity toO(

n(|m|+ K)
)

bits [12], under the reasonable
assumption that the lengths of a threshold signature and a signature share are also at
most K bits [21].

Multi-valued Byzantine Agreement. We use a protocol for multi-valued Byzantine ag-
reement (MVBA) as defined by Cachin et al. [12], which allows agreement values from
an arbitrary domain instead of being restricted to binary values. Unlike previous MVBA
protocols, their protocol does not allow the decision to fall back on a default value if
not all correct parties propose the same value, but uses a protocol-external mechanism
instead. This so-called external validity condition is specified by a global, polynomial-
time computable predicate QID , which is known to all parties and is typically deter-
mined by an external application or higher-level protocol. Each party proposes a value
that contains certain validation information. The protocol ensures that the decision value
was proposed by at least one party, and that the decision value satisfies QID .

When a party Pi starts an MVBA protocol instance with tag ID and an input value
v ∈ {0, 1}∗ that satisfies predicate QID , we say that Pi proposes v for multi-valued
agreement with tag ID and predicate QID . Correct parties only propose values that
satisfy QID . When Pi terminates the MVBA protocol instance with tag ID and outputs
a value v, we say that it decides v for ID .

Definition 2 (Multi-valued Byzantine agreement). A protocol for multi-valued
Byzantine agreement with predicate QID satisfies the following conditions except with
negligible probability.

External Validity: Any correct party that decides for ID decides v such that QID (v)
holds.

Agreement: If some correct party decides v for ID , then any correct party that decides
for ID decides v.

Integrity: If all parties are correct and if some party decides v for ID , then some party
proposed v for ID .

Termination: All correct parties eventually decide for ID .

We use the MVBA protocol of Cachin et al. [12], which has expected message com-
plexity O(n2) and expected communication complexity O(

n3 + n2(K + L)
)
, where

K is the length of a threshold signature and L is a bound on the length of the values
that can be proposed.
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2.3 Definition of Atomic Broadcast

Atomic broadcast provides a “broadcast channel” abstraction [22], such that all correct
parties deliver the same set of messages broadcast on the channel in the same order.
A party Pi atomically broadcasts (or a-broadcasts) a payload m with tag ID when
an input action of the form (ID ,in,a-broadcast, m) with m ∈ {0, 1}∗ is deliv-
ered to Pi. Broadcasts are parameterized by the tag ID to identify their corresponding
broadcast channel. A party atomically delivers (or a-delivers) a payload m with tag ID
by generating an output action of the form (ID ,out,a-deliver, m). A party may
a-broadcast and a-deliver an arbitrary number of messages with the same tag.

Definition 3 (Atomic broadcast). A protocol for atomic broadcast satisfies the
following properties except with negligible probability.

Validity: If t + 1 correct parties a-broadcast some payload m with tag ID , then some
correct party eventually a-delivers m with tag ID .

Agreement: If some correct party has a-delivered m with tag ID , then all correct
parties eventually a-deliver m with tag ID .

Total Order: If two correct parties both a-delivered distinct payloads m1 and m2 with
tag ID , then they have a-delivered them in the same order.

Integrity: For any payload m, a correct party Pj a-delivers m with tag ID at most
once. Moreover, if all parties are correct, then m was previously a-broadcast by
some party with tag ID .

The above properties are similar to the definitions of Cachin et al. [12] and of Kursawe
and Shoup [15]. We do not formalize their fairness condition, although Protocol PABC
satisfies an equivalent notion.

3 The Parsimonious Atomic Broadcast Protocol

We now describe Protocol PABC in detail. The line numbers refer to the detailed pro-
tocol description in Figures 1–3.

3.1 Optimistic Phase

Every party keeps track of the current epoch number e and stores all payloads that it
has received to a-broadcast but not yet a-delivered in its initiation queue I. An element
x can be appended to I by an operation append(x, I), and an element x that occurs
anywhere in I can be removed by an operation remove(x, I). A party also maintains
an array log of size B that acts as a buffer for all payloads to a-deliver in the current
epoch. Additionally, a party stores a set D of all payloads that have been a-delivered
so far.

Normal Protocol Operation. When a party receives a request to a-broadcast a pay-
load m, it appends m to I and immediately forwards m using an initiate message
to the leader Pl of the epoch, where l = e mod n (lines 12–14). When this happens,
we say Pi initiates the payload.
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initialization:
1: e ← 0 {current epoch}
2: I ← [] {initiation queue, list of a-broadcast but not a-delivered payloads}
3: D ← ∅ {set of a-delivered payloads}
4: init epoch()

function init epoch():
5: l ← (e mod n) + 1 {Pl is leader of epoch e}
6: log ← [] {array of size B containing payloads committed in current epoch}
7: s ← 0 {sequence number of next payload within epoch}
8: complained ← false {indicates if this party already complained about Pl}
9: start recovery ← false {signals the switch to the recovery phase}

10: c ← 0 {number of complain messages received for epoch leader}
11: S ← D {set of a-delivered or already sc-broadcast payloads at Pl}

upon (ID,in,a-broadcast, m):

12: send (ID,initiate, e, m) to Pl

13: append(m, I)
14: updateFl

(initiate, m)
forever: {optimistic phase}

15: if ¬complained then {leader Pl is not suspected}
16: initialize an instance of strong consistent broadcast with tag ID |bind.e.s
17: m ← ⊥
18: if i = l then
19: wait for timeout(T ) or receipt of a message (ID,initiate, e, m)

such that m �∈ S
20: if timeout(T ) then
21: m ← dummy
22: else
23: S ← S ∪ {m}
24: stop(T )
25: sc-broadcast the message m with tag ID |bind.e.s
26: wait for start recovery or sc-delivery of some m with tag ID |bind.e.s

such that m �∈ D ∪ log
27: if start recovery then
28: recovery()
29: else
30: log [s] ← m
31: if s ≥ 2 then
32: updateFl

(deliver, log [s − 2])
33: deliver(log[s − 2])
34: if i = l and (log [s] �= dummy or (s > 0 and log [s − 1] �= dummy)) then
35: start(T )
36: s ← s + 1
37: if s mod B = 0 then
38: recovery()

Fig. 1. Protocol PABC for party Pi and tag ID (Part I)



96 H.V. Ramasamy and C. Cachin

function deliver(m):
39: if m �= dummy then
40: remove(m,I)
41: D ← D ∪ {m}
42: output (ID,out,a-deliver, m)

upon receiving message (ID ,complain, e) from Pj for the first time:

43: c ← c + 1
44: if (c = t + 1) and ¬complained then
45: complain()
46: else if c = 2t + 1 then
47: start recovery ← true

function complain():
48: send (ID,complain, e) to all parties
49: complained ← true

predicate QID|watermark.e (s1, C1, σ1), . . . , (sn, Cn, σn) ≡
for at least n − t distinct j, sj �= ⊥ and

for all j = 1, . . . , n, it holds (sj = ⊥) or

(σj is a valid signature by Pj on (ID,committed, e, sj , Cj) and (sj = −1

or the value Cj completes the sc-broadcast with tag ID |bind.e.sj))

predicate QID|deliver.e (I1, σ1), . . . , In, σn) ≡
for at least n − t distinct j,

Ij ∩ D = ∅ and σj is a valid signature by Pj on (ID, queue, e, j, Ij)

Fig. 2. Protocol PABC for party Pi and tag ID (Part II)

The leader binds a sequence number to every payload that it receives in an
initiate message, and conveys the binding to the other parties through strong con-
sistent broadcast. For this purpose, all parties execute a loop (lines 15–38) that starts
with an instance of strong consistent broadcast (lines 15–26). The leader acts as the
sender of strong consistent broadcast and the tag contains the epoch e and a sequence
number s. Here, s starts from 0 in every epoch. The leader sc-broadcasts the next avail-
able initiated payload, and every party waits to sc-deliver some payload m. When m
is sc-delivered, Pi stores it in log , but does not yet a-deliver it (line 30). At this point
in time, we say that Pi has committed sequence number s to payload m in epoch e.
Then, Pi a-delivers the payload to which it has committed the sequence number s − 2
(if available, lines 31–33). It increments s (line 36) and returns to the start of the loop.

Delaying the a-delivery of the payload committed to s until sequence number s + 2
has been committed is necessary to prevent the above problem of payloads whose fate is
undefined. However, the delay results in another problem if no further payloads, those
with sequence numbers higher than s, are sc-delivered. We solve this problem by in-
structing the leader to send dummy messages to eject the original payload(s) from the
buffer. The leader triggers such a dummy message whenever a corresponding timer
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function recovery():
{Part 1: agree on watermark}
50: compute a signature σ on (ID, committed, e, s − 1)
51: send the message (ID ,committed, e, s − 1, C, σ) to all parties, where C denotes

the bit string that completes the sc-broadcast with tag ID|bind.e.(s − 1)
52: (sj , Cj , σj) ← (⊥, ⊥, ⊥) (1 ≤ j ≤ n)
53: wait for n − t messages (ID ,committed, e, sj , Cj , σj) from distinct Pj s.t.

Cj completes the sc-broadcast instance ID|bind.e.sj and σj is a valid
signature on (ID,committed, e, sj)

54: W ← [(s1, C1, σ1), . . . , (sn, Cn, σn)]
55: propose W for MVBA withtag ID |watermark.e and predicate QID|watermark.e

56: wait for MVBA with tag ID|watermark.e to decide
some W̄ = [(s̄1, C̄1, σ̄1), . . . , (s̄n, C̄n, σ̄n)]

57: w ← max{s̄1, . . . , s̄n} − 1
{Part 2: synchronize up to watermark}
58: s′ ← s − 2
59: while s′ ≤ min{s − 1, w} do
60: if s′ ≥ 0 then
61: deliver(log[s′])
62: s′ ← s′ + 1
63: if s > w then
64: for j = 1, . . . , n do
65: u ← max{sj , s̄j}
66: M ← {Mv} for v = u, . . . , w, where Mv completes the sc-broadcast

instance ID |bind.e.v
67: send message (ID ,complete, M) to Pj

68: while s ≤ w do
69: wait for a message (ID,complete, M̄) such that M̄s ∈ M̄ completes

sc-broadcast with tag ID|bind.e.s
70: use M̄s to sc-deliver some m with tag ID |bind.e.s
71: deliver(m)
72: s ← s + 1
{Part 3: deliver some messages}
73: compute a digital signature σ on (ID,queue, e, i, I)
74: send the message (ID ,queue, e, i, I, σ) to all parties
75: (Ij , σj) ← (⊥, ⊥) (1 ≤ j ≤ n)
76: wait for n − t messages (ID ,queue, e, j, Ij , σj) from distinct Pj s.t. σj is a

valid signature from Pj and Ij ∩ D = ∅
77: Q ← [(I1, σ1), . . . , (In, σn)]
78: propose Q for MVBA with tag ID|deliver.e and predicate QID|deliver.e

79: wait for MVBA ID|deliver.e to decide some Q̄ = [(Ī1, σ̄1), . . . , (Īn, σ̄n)]
80: for m ∈ n

j=1 Īj \ D, in some deterministic order do
81: deliver(m)
82: init epoch()
83: for m ∈ I do
84: send (ID,initiate, e, m) to Pl

Fig. 3. Protocol PABC for party Pi and tag ID (Part III)
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T expires (lines 20–21); T is activated whenever one of the current or the preceding
sequence numbers was committed to a non-dummy payload (lines 34–35), and T is dis-
abled when the leader sc-broadcasts a non-dummy payload (line 24). Thus, the leader
sends at most two dummy payloads to eject a non-dummy payload.

Failure Detection and Switching to the Recovery Phase. There are two conditions under
which the protocol switches to recovery phase: (1) when B payloads have been com-
mitted (line 38) and (2) when the leader is not functioning properly. The first condition
is needed to keep the buffer log bounded and the second condition is needed to prevent
a corrupted leader from violating liveness.

To determine if the leader of the epoch performs its job correctly, every party has
access to a leader failure detector Fl. For simplicity, Figures 1–3 do not include the
pseudocode for Fl. The protocol provides an interface complain(), which Fl can asyn-
chronously invoke to notify the protocol about its suspicion that the leader is corrupted.
Our protocol synchronously invokes an interface updateFl

of Fl to convey protocol-
specific information (during execution of the updateFl

call, Fl has access to all vari-
ables of Protocol PABC).

An implementation of Fl can check whether the leader is making progress based
on a timeout and protocol information as follows. Recall that every party maintains
a queue I of initiated but not yet a-delivered payloads. When Pi has initiated some
m, it calls updateFl

(initiate, m) (line 14); this starts a timer TFl
unless it is al-

ready activated. When a payload is a-delivered during the optimistic phase, the call
to updateFl

(deliver, m) (line 32) checks whether the a-delivered payload is the
first undelivered payload in I, and if it is, disables TFl

. When TFl
expires, Fl invokes

complain().
When Pi executes complain(), it sends a complainmessage to all parties (line 48);

it also sets the complained flag (line 49) and stops participating in the sc-broadcasts
by not initializing the next instance. When a correct party receives 2t + 1 complain
messages, it enters the recovery phase. There is a complaint “amplification” mechanism
by which a correct party that has received t + 1 complain messages and has not yet
complained itself joins the complaining parties by sending its own complain mes-
sage. Complaint amplification ensures that when some correct party enters the recovery
phase, all other correct parties eventually enter it as well.

3.2 Recovery Phase

The recovery phase consists of three parts: determining a watermark sequence number,
synchronizing all parties up to the watermark, and delivering some payloads before
entering the next epoch.

Part 1: Agree on Watermark. The first part of the recovery phase determines a water-
mark sequence number w with the properties that (a) at least t + 1 correct parties have
committed all sequence numbers less than or equal to w in epoch e, and (b) no sequence
number higher than w + 2 has been committed by a correct party in epoch e.

Upon entering the recovery phase of epoch e, a party sends out a signedcommitted
message containing s − 1, the highest sequence number that it has committed in this
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epoch. It justifies s − 1 by adding the bit string C that completes the sc-broadcast in-
stance with tag e and s−1 (lines 50–51). Then, a party receives n−t such committed
messages with valid signatures and valid completion bit strings. It collects the re-
ceived committed messages in a watermark proposal vector W and proposes W for
MVBA. Once the agreement protocol decides on a watermark decision vector W̄ (lines
52–56), the watermark w is set to the maximum of the sequence numbers in W̄ minus 1
(line 57).

Consider the maximal sequence number s̄j in W̄ and the corresponding C̄j . It may be
that Pj is corrupted or that Pj is the only correct party that ever committed s̄j in epoch e.
But the values contain enough evidence to conclude that at least n− 2t ≥ t + 1 correct
parties contributed to this instance of strong consistent broadcast. Hence, these parties
have previously committed s̄j−1. This ensures the first property of the watermark above.

Although one or more correct parties may have committed w + 1 and w + 2, none
of them has already a-delivered the corresponding payloads, because this would con-
tradict the definition of w. Hence, these sequence numbers can safely be discarded. The
discarding also ensures the second property of the watermark above. It is precisely for
this reason that we delay the a-delivery of a payload to which sequence number s was
committed until s+2 has been committed. Without it, the protocol could end up in a sit-
uation where up to t correct parties a-delivered a payload with sequence number w + 1
or w + 2, but it would be impossible for all correct parties to learn about this fact and
to learn the a-delivered payload.

Part 2: Synchronize Up to Watermark. The second part of the recovery phase (lines
58–72) ensures that all parties a-deliver the payloads with sequence numbers less than
or equal to w. It does so in a straightforward way using the transferability property of
strong consistent broadcast.

In particular, every correct party Pi that has committed sequence number w (there
must be at least t + 1 such correct parties by the definition of w) computes completing
strings Ms for s = 0, . . . , w that complete the sc-broadcast instance with sequence
number s. It can do so using the information stored in log . Potentially, Pi has to send
M0, . . . , Mw to all parties, but one can apply the following optimization to reduce
the communication. Note that Pi knows from at least n − t parties Pj their highest
committed sequence number sj (either directly from a committed message or from
the watermark decision vector); if Pi knows nothing from some Pj , it has to assume
sj = 0. Then Pi simply sends a complete message with Msj+1, . . . , Mw to Pj for
j = 1, . . . , n. Every party receives these completing strings until it is able to a-deliver
all payloads committed to the sequence numbers up to w.

Part 3: Deliver Some Messages. Part 3 of the recovery phase (lines 73–84) ensures
that the protocol makes progress by a-delivering some messages before the next epoch
starts. In an asynchronous network, implementing this property must rely on
randomized agreement or on a failure detector [4]. This part uses one round of MVBA
and is derived from the atomic broadcast protocol of Cachin et al. [12].

Every party Pi sends a signed queue message with all undelivered payloads in its
initiation queue to all others (lines 73–74), collects a vector Q of n− t such messages
with valid signatures (lines 75–77), and proposes Q for MVBA. Once the agreement
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protocol has decided on a vector Q̄ (lines 78–79), party Pi delivers the payloads in Q̄
according to some deterministic order (lines 80–81).

Then Pi increments the epoch number and starts the next epoch by re-sending
initiatemessages for all remaining payloads in its initiation queue to the new leader
(lines 82–84).

3.3 Analysis

Theorem 1. Given a digital signature scheme, a protocol for strong consistent broad-
cast, and a protocol for multi-valued Byzantine agreement, Protocol PABC provides
atomic broadcast for n > 3t.

The proof can be found in the full version [18].
To analyze the complexity of Protocol PABC, we assume that strong consistent

broadcast is implemented by the echo broadcast protocol using threshold signatures
and that MVBA is implemented by the protocol of Cachin et al. [12], as described in
Section 2.2.

For a payload m that is a-delivered in the optimistic phase, the message complexity
is O(n), and the communication complexity is O(

n(|m| + K)
)
, where the length of a

threshold signature and a signature share are at most K bits.
The recovery phase incurs higher message and communication complexities be-

cause it exchanges the log of the epoch and involves Byzantine agreement. Parts 1
and 3 use MVBA with proposal values of length O(n|m|); hence, the expected mes-
sage complexity is O(n2) and the expected communication complexity is O(n3|m|).
In part 2, O(n2) complete messages are exchanged; each of the w ≤ B completing
strings in a complete message may be O(|m| + K) bits long, where m denotes the
longest a-delivered payload in the epoch; this leads to a communication complexity of
O(

n2B(|m|+ K)
)
.

Hence, for a payload that is a-delivered in the recovery phase, the cost is dominated
by the MVBA protocol, resulting in an expected message complexity of O(n2) and an
expected communication complexity of O(

n2(n + B)(|m| + K)
)
. Assuming that the

protocol stays in the optimistic mode as long as possible and a-delivers B payloads
before executing recovery, the amortized expected complexities per payload over an
epoch areO(n+ n2

B ) messages andO(
n3

B (|m|+K)
)

bits. It is reasonable to set B � n,
so that we achieve amortized expected message complexityO(n) as claimed.

3.4 Optimizations

Both the BFT and KS protocols process multiple sequence numbers in parallel using
a sliding window mechanism. For simplicity, our protocol description does not include
this optimization and processes only the highest sequence number during every iteration
of the loop in the optimistic phase. However, Protocol PABC can easily be adapted to
process Ω payloads concurrently. In that case, up to Ω sc-broadcast instances are active
in parallel, and the delay of two sequence numbers between sc-delivery and a-delivery
of a payload is set to 2Ω. In part 1 of the recovery phase, the watermark is set to the
maximum of the sequence numbers in the watermark decision vector minus Ω, instead
of the maximum minus 1.
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In our protocol description, the leader sc-broadcasts one initiated payload at a time.
However, Protocol PABC can be modified to process a batch of payload messages at
a time by committing sequence numbers to batches of payloads, as opposed to single
payloads. The leader sc-broadcasts a batch of payloads in one instance, and all payloads
in an sc-delivered batch are a-delivered in some deterministic order. This optimization
has been shown to increase the throughput of the BFT protocol considerably [14].

Although the leader failure detector described in Section 3.1 is sufficient to ensure
liveness, it is possible to enhance it using protocol information as follows. The leader
in the optimistic phase will never have to sc-broadcast more than two dummy mes-
sages consecutively to evict non-dummy payloads from the buffer. The failure detector
oracle can maintain a counter to keep track of and restrict the number of successive
dummy payloads sc-broadcast by the leader. If m is a non-dummy payload, the call
to updateFl

(deliver, m) upon a-delivery of payload m resets the counter; other-
wise, the counter is incremented. If the counter ever exceeds 2, then Fl invokes the
complain() function.

4 Practical Significance

In our formal system model, the adversary controls the scheduling of messages and
hence the timeouts; thus, the adversary can cause parties to complain about a correctly
functioning leader resulting in unnecessary transitions from the optimistic phase to the
recovery phase. In contrast to the formal model, the network in a real-world setting will
not always behave in the worst possible manner. The motivation for Protocol PABC —
or any optimistic protocol such as the BFT and KS protocols for that matter — is the
hope that timing assumptions based on stable network conditions have a high likelihood
of being accurate. Practical observations indicate that unstable network conditions are
the exception rather than the norm. During periods of stability and when no new intru-
sions are detected, our protocol will make fast progress, but both safety and liveness are
still guaranteed even if the network is unstable.
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Abstract. Self-stabilization in a model of anonymous, asynchronous in-
teracting agents deployed in a network of unknown size is considered.
Dijkstra-style round-robin token circulation can be done deterministically
with constant space per node in this model. Constant-space protocols are
given for leader election in rings, local-addressing in degree-bounded
graphs, and establishing consistent global direction in an undirected ring.
A protocol to construct a spanning tree in regular graphs using O(log D)
memory is also given, where D is the diameter of the graph. A general
method for eliminating nondeterministic transitions from the self-stabili-
zing implementation of a large family of behaviors is used to simplify the
constructions, and general conditions under which protocol composition
preserves behavior are used in proving their correctness.

1 Introduction

In some practical scenarios, a large (and sometimes unknown) number of devices
are deployed over a region without fine control of their locations, communication
and movement patterns. The devices are all indistinguishable and have only a
few bits of memory each. Such scenarios are modeled by the population protocols
introduced in [1], where families of predicates computable in this model are
explored. Graph properties computable in the same model are discussed in [2].
Communication in population protocols occurs through pairwise interaction of
anonymous finite-state agents. The number of agents is finite but unbounded. A
communication graph describes which pairs of nodes may interact.

In the theoretical literature on distributed computing, a weak fairness condi-
tion is usually assumed. Informally, in an infinite fair execution each process or
node is given a turn infinitely often. We call this definition local fairness. The
environment/scheduler is viewed as a powerful adversary who can strategically
determine the sequence in which processes are activated, as long as local fairness
is preserved. Many impossibility results rely on this assumption. For instance,
the impossibility of deterministic self-stabilizing token circulation in uniform
rings [3] follows from the assumption that the scheduler can activate the nodes
in a round-robin fashion, preserving symmetry and achieving local fairness.

However, in practical distributed systems, such a powerful scheduler seldom
exists. The global ordering of computational steps depends on a variety of ele-
ments. Temperature and power-supply affect the efficiency of electronic devices.
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Local clock frequency influences the progress of each node. For ad hoc networks,
the movement of nodes determines possible sequences of interactions. Random
delay is usually used in practical leader election and collision detection protocols,
which can be viewed as a way to randomize the scheduling of the system.

In the model of population protocols, an alternative fairness condition is as-
sumed, global fairness, which better reflects the scheduling properties of many
distributed systems. Global fairness puts more constraints on the scheduler, so
problems proved impossible under global fairness are also impossible under local
fairness. Global fairness also provides a simple conceptual framework for pro-
tocol design. For instance, once a task is known to be possible in our model,
randomization techniques can be applied to make the protocol work under some
weaker fairness conditions.

The responsibility of many systems is to meet certain specifications for well-
behavedness such as avoidance of deadlock, fairness among processes, fault toler-
ance, and other global system properties that cannot be simply modeled as I/O
behavior. We extend the model of population protocols to accommodate such
tasks. We focus on self-stabilizing systems that can start in any global configura-
tion and achieve behavior meeting the task specification by itself. Such systems
can tolerate worst-case transient faults.

1.1 Other Related Work

Self-stabilizing systems were first introduced by Dijkstra [3]. In his seminal paper,
Dijkstra gives three protocols to achieve process mutual-exclusion in rings in
a self-stabilizing way. Leader election and token management are fundamental
problems in self-stabilization and have been extensively studied in various other
models. Each of these result differs from our work in at least one of these aspects:
there is an external timeout mechanism to detect deadlocks [4]; each node can
access the states of all neighbors at the same time to determine its next state [5];
the protocol is randomized [6, 7, 8], knows the size of the network [6], or has per-
node space or message size in O(log n) [6, 9]; or nodes have unique IDs [10].

Herman [8] proposed a probabilistic synchronous self-stabilizing token-
circulation algorithm for identical nodes in an odd ring. Johnen [7] presents
a randomized self-stabilizing token circulation protocol on unidirectional anony-
mous rings. Fairness is enforced by randomization and the fair circulation of
privileges. The scheduler can only choose nodes that hold a privilege token to
make the next step. In our model, nodes are deterministic, and the nondeter-
minism in the environment (scheduler) is utilized to break symmetry.

Itkis and Levin [11] present a self-stabilizing leader-election protocol for asyn-
chronous networks of identical nameless nodes with arbitrary topology. In their
model, each node can set points to neighbors whose state satisfies given proper-
ties. Our impossibility result for leader election in connected interaction graphs
with arbitrary topology in Section 5.5 shows that their model and ours differ.
However, it is an open problem whether our model can simulate theirs in some
special classes of interaction graphs.
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Distance-2 coloring, also known as neighborhood unique naming, was defined
in [12] as the graph labeling problem with conditions at distance 2. The commu-
nication networks community have studied variants of this problem, for appli-
cations such as assigning radio frequency ranges or time slots to wireless-signal
transmitters to avoid interference. The existing results are different from ours in
the following aspects: nodes have unique IDs [13] or have the ability to associate
incoming messages with their sources [14, 15]; and the protocol has probabilistic
rules [13, 14, 15]. We impose a strong anonymity condition: A node does not have
innate ability to distinguish different neighbors. To our knowledge no existing
protocol is applicable in this model.

2 Basic Model

We represent a network by a directed graph G = (V, E) with n vertices num-
bered 0 through n− 1 and no multi-edges or self-loops. Each vertex represents a
finite-state sensing device, and an edge (u, v) indicates the possibility of a com-
munication between u and v in which u is the initiator and v is the responder.1

An “undirected” communication graph refers to a network in which for every
edge (u, v), interactions of the forms (u, v) and (v, u) are both possible.

A protocol P (Q, C, X, Y, O, δ) consists of a finite set of states Q, a set of initial
configurations C, a finite set X of input symbols, an output function O : Q → Y ,
where Y is a finite set of output symbols, and a transition function δ map-
ping each element of (Q × X) × (Q × X) to a nonempty subset of Q × Q. If
(p′, q′) ∈ δ((p, x), (q, y)), we call ((p, x), (q, y)) → (p′, q′) a transition. The transi-
tion function, and the protocol, is deterministic if δ((p, x), (q, y)) always contains
just one pair of states. The inputs provide a way for a protocol to interact with
an external entity, be it the environment, a user, or another protocol.

A configuration is a mapping C : V → Q specifying the state of each device
in the network, and an input assignment is a mapping α : V → X . A trace
TG(Z) on a graph G(V, E) is an infinite sequence of assignments from V to
the symbol set Z: TG = λ0, λ1, . . . where λi is an assignment from V to Z.
Z is called the alphabet of TG. If Z = X , we say TG is an input trace of the
protocol. Let C and C′ be configurations, α be an input assignment, and u, v
be distinct nodes. We say that (C, α) goes to C′ via pair e = (u, v), denoted
(C, α) e→ C′, if the pair (C′(u), C′(v)) is in δ((C(u), α(u)), (C(v), α(v))) and for
all w ∈ V −{u, v} we have C′(w) = C(w). We say that (C, α) can go to C′ in one
step, denoted (C, α) → C′, if (C, α) e→ C′ for some edge e ∈ E. Given an input
trace IT = α0, α1, . . . we write C

∗→ C′ if there is a sequence of configurations
C = C0, C1, . . . , Ck = C′, such that (Ci, αi) → Ci+1 for all i, 0 ≤ i < k, in which
case we say that C′ is reachable from C given input trace IT .

An execution is an infinite sequence of configurations and input assignments
(C0, α0), (C1, α1), . . . such that C0 ∈ C and for each i, (Ci, αi) → Ci+1. An

1 The distinct roles of the two devices in an interaction is a fundamental assumption
in our model.
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execution is fair if for every α, C and C′ such that (C, α) → C′, if (C, α)
occurs infinitely often in the execution, then C′ also occurs infinitely often in
the execution. We extend the output function O to take a configuration C and
produce an output assignment O(C) defined by O(C)(v) = O(C(v)). Let E =
(C0, α0), (C1, α1), . . . , (Ci, αi), . . . be an execution of P . We define the output
trace of an execution as OT (E) = O(C0), O(C1), . . . , O(Ci), . . ..

A self-stabilizing system can start at an arbitrary configuration and eventually
exhibit “good” behavior. We define a behavior B on a network G(V, E) to be a set
of traces on G that have the same alphabet. We write B(Z) to be explicit about
the common alphabet Z. A behavior B is constant if every trace in B is constant.
If given the constraint that every input trace is contained in some behavior
Bin(X), the output trace of every fair execution of a protocol P (Q, C, X, Y, O, δ)
starting from any configuration in C is in some behavior Bout(Y ), we say P is an
implementation of output behavior Bout given input behavior Bin. If P does not
have any restriction on inputs, we simply say P is an implementation of Bout.
Given a behavior B(Z), we define the corresponding stable behavior Bs(Z):
T ∈ Bs if and only if Z is T ’s alphabet, and there exists T ′ ∈ B such that T ′

is a suffix of T . Thus, an execution in a stable behavior may have a completely
arbitrary finite prefix followed by an execution with the desired properties. If
P (Q, C, X, Y, O, δ) is an implementation of Bs, and C is the set of all possible
configurations, we say that P is a self-stabilizing implementation of B.

3 Nondeterministic Protocols

In [2], we showed that nondeterminism in the transition function does not in-
crease the class of stably computable predicates. In this section, we extend the
result to self-stabilizing algorithms.

We define the repetition closure of a sequence t to be set of sequences obtain-
able from t by repeating each element one or more times. In other words, given
any sequence t = a1a2 . . . ai . . ., the repetition closure R(t) is a+

1 a+
2 . . . a+

i . . .
in regular expression notation. We extend the definition of R to a behavior B
by taking the union of R(t) for all t ∈ B. We say a behavior B is elastic if
B = R(B).

Theorem 1. If a nondeterministic protocol P is a self-stabilizing implemen-
tation of a behavior B, there exists a deterministic protocol P ′ that is a self-
stabilizing implementation of R(B).

Proof. The proof is similar to that of the theorem in [2] corresponding to com-
putations. We construct a compiler using a nondeterminizer to convert every
nondeterministic protocol to a deterministic one. For the compiler to preserve
self-stabilization, the nondeterminizer itself must be self-stabilizing.

Let P1 be a nondeterministic protocol with states Q, input alphabet X , and
transition function δ. We describe a simulation of P1 that works in graphs
with at least 3 vertices. Let m be the maximum cardinality of any of the sets
δ((q, x), (q′, x′)) for q, q′ ∈ Q and x, x′ ∈ X . For each q, q′ ∈ Q and x, x′ ∈ X ,
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select an arbitrary surjective function f(q,x),(q′,x′) mapping {0, 1, . . . , m − 1} to
δ((q, x), (q′, x′)).

We describe a protocol P2 to simulate each step of P1 by multiple determin-
istic steps. and the state components used in P1 only change in the last of the
corresponding steps in P2. The state consist of three components: (1) a non-
determinizer mark ◦ or its absence −, (2) a state q ∈ Q, (3) a choice counter,
consisting of an integer between 0 and m− 1 inclusive. The transitions are:

1. ((◦qc, x), (◦q′c′, x′)) → (−qc, ◦q′c′)
2. ((◦qc, x), (−q′c′, x′)) → (−qc, ◦q′(c′ + 1))
3. ((−q′c′, x), (◦qc, x′)) → (◦q′(c′ + 1),−qc)
4. ((−qc, x), (−q′c′, x′)) → (−rc, ◦r′c′)

where the increments are made modulo m and the pair of states (r, r′) is the
element of δ((q, x), (q′, x′)) selected by the function f(q,x),(q′,x′)(c). Thus, in tran-
sitions of type 4, the value of the choice counter of the initiator is used to make
a deterministic choice of an element of δ((q, x), (q′, x′)). The role of the nonde-
terminizers is to hop around the graph incrementing choice counters as they go.
accomplish this purpose. Transitions of type 4 ensure that deadlock is impossi-
ble: even if we start from a configuration with no nondeterminizers, the rule will
generate new nondeterminizers. Transitions of type 1 ensure that the nondeter-
minizers have room to move around by merging two adjacent nondeterminizers.

��
If B is an elastic behavior, B = R(B). The following corollary is immediate:

Corollary 1. If a nondeterministic protocol P is a self-stabilizing implementa-
tion of an elastic behavior B, there exists a deterministic protocol P ′ that is a
self-stabilizing implementation of B.

4 Protocol Composition

It is desirable to be able to combine protocols to obtain new protocols. Paral-
lel execution of protocols is easily achieved by taking the Cartesian product of
their state sets and updating the states for each protocol independently when a
transition occurs. In this section we introduce one technique of protocol compo-
sition in our model. We want to compose protocols P1, P2, . . . , Pn, so that the
self-stabilizing behavior of P1, P2, . . . , Pi is used as an assumption in Pi+1.

For n = 2, assuming P1 and P2 access different components of the node’s
state, we run P1 and P2 in parallel, except that whenever P2 is executed, it
uses the current output of P1 as its current input. When an edge is fired, it
is nondeterministically determined which protocol gets the chance to execute.
Recall that a behavior is constant if it contains only constant traces.

Theorem 2. Suppose B1 is a constant behavior. If P2 is a self-stabilizing im-
plementation of an elastic behavior B2 given input behavior B1, and P1 is a
self-stabilizing implementation of B1, the composition of P1 and P2 (written as
P1 ◦ P2) is a self-stabilizing implementation of B2.
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Proof. Let S = C0, C1, . . . be any fair execution of P1 ◦P2. Define the projection
Π1(C) of a configuration C to be the sub-configuration produced by taking each
node’s state components that are accessed by P1. Π2 is defined similarly for P2.
Define S′ = C′

0, C
′
1, . . . the maximal subsequence of S in which for each i, the

transition immediately after C′
i is defined in P1. S′′ = C′′

0 , C′′
1 , . . . is defined simi-

larly for P2. Because P1 is self-stabilizing, and Π1(C′
0), Π1(C′

1), . . . is a fair execu-
tion of P1, there exists some i such that the output trace of Π1(C′

i), Π(C′
i+1), . . .

satisfies B1. Let C′′
j be any configuration that appears after C′

i in S, and let
C′′

j , C′′
j+1, . . . be the sequence starting from C′′

j in S′′. Because the output trace
of P1 in C′′

j , C′′
j+1, . . . is constant and satisfies B1, Π2(C′′

j ), Π2(C′′
j+1), . . . is a

fair execution of P2 whose output trace satisfies B2. Because B2 is elastic, the
output trace of P1 ◦ P2 in the subsequence of S starting from C′′

j satisfies B2.
Therefore P1 ◦ P2 is a self-stabilizing implementation of B2. ��

5 Self-stabilizing Protocols

5.1 Token-Circulation in a Directed Ring

As an simple example, we discuss the token circulation problem in an interaction
graph whose topology is a directed ring. The protocol uses the same idea as in
Dijkstra’s first algorithm in [3], but we only use 2 colors (0 and 1). Readers from
the self-stabilization community will find the protocol familiar.

The token-circulation behavior TC on graph G(V, E) is the set of all traces
t = β0, β1, . . . with alphabet {T, φ} such that:

1. For all m ≥ 0, ∃v ∈ V such that βm(v) = T and ∀u ∈ V − {v}, βm(u) = φ.
2. For all 0 ≤ m < k < n, if ∃v, v′ ∈ V (v �= v′) such that βm(v) = βk(v′) =

βn(v) = T , then ∀u ∈ V − {v}, ∃l such that m < l < n and βl(u) = T .
3. For all v ∈ V , βk(v) = T for infinitely many k.

A node owns a token in a configuration if its output is T . For any trace in TC,
exactly one node has a token in each configuration, and after a node releases a
token, it does not obtain a token again until every other node has obtained a
token once.

We describe a self-stabilizing implementation of TC given the leader-election
behavior LE. The description of a self-stabilizing implementation of LE is post-
poned to Section 5.5. LE on graph G = (V, E) is the set of all constant traces
β, β, . . . such that for some v ∈ V , β(v) = L and for all u �= v, β(u) = N . Infor-
mally, there is a static node with the leader mark L, and all other nodes have
the nonleader mark N in every configuration. Given the LE input behavior, the
leader receives input L and all other nodes receive input N .

Node states are pairs in {−, +}×{0, 1}. “+” indicates the presence of a token
and “−” indicates the absence of token. The second component of a node is
called the label of that node. The interaction rules are:

1. ((∗b, N), (∗b, L))→ (−b, +b̄);
2. ((∗b, ∗), (∗b̄, N))→ (−b, +b).
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We use the convention that ∗ on the left side of a rule matches any value for
the component, that b on the left side matches either 0 or 1, and b̄ means the
complement of b. The output rules are +∗ → T and −∗ → φ. (Output T if and
only if the first component is “+”.)

Because of space limitation and the simplicity of the protocol, we state the
following theorem without giving the proof.

Theorem 3. There exists a constant-space self-stabilizing implementation of
output behavior TC given input behavior LE in a directed ring.

This protocol does not need a non-constant number of colors as in [3] or ran-
domized transition rules as in [7], because of the stronger fairness condition.

5.2 Distance-2 Coloring in Bounded-Degree Graphs

To extend the token circulation algorithm to undirected rings, we need a protocol
that imposes direction on the ring. A necessary condition is that each node be
able to recognize its two different neighbors. Here we describe a more general
algorithm that enables each node in a degree bounded graph to distinguish
between its neighbors.

Suppose an undirected graph has a degree bound d and we want to color the
graph such that any two nodes whose distance is 2 have different colors. After
a graph is properly colored, the neighbors of any node bear different colors and
thus are distinguishable. It is not difficult to see that d(d − 1) + 1 colors suffice
for a distance-2 coloring of a graph with degree bound d.

The distance-2 coloring behavior D2C on graph G = (V, E) with color set C
is defined as the set of constant traces λ, λ, . . . where the alphabet of λ is C and
whenever u, v, w ∈ V are such that (u, v) ∈ E and (v, w) ∈ E and u �= w, we
have λ(u) �= λ(w).

A node i has the following state components:

color i An integer encoding the color of node i; its value is between 0
and d(d− 1).

Fi A boolean array whose size is d(d − 1) + 1, indexed by colors.

Each node i outputs the current value of its color i component.
In this and the following sections, we describe our algorithms by specifying the

interaction between two adjacent nodes i and j when the edge (i, j) is activated.
The intuition behind the protocol is that if a node i has only one neighbor j with
a given color and vice versa, then interactions between i and j will flip the bits
Fi[color j ] and Fj [color i] synchronously. If there is a second neighbor j′ with the
same color as j, then an interaction with j′ will set the bit at i to the opposite
value of the bit at j; this will be detected in a later interaction between i and j,
causing a recoloring of either i or j and a resynchronization of the bits i and j
use to follow each other. After enough nondeterministic recolorings, the protocol
will eventually reach a state in which all distance-2 neighbors have distinct colors
and all alternating bits are properly synchronized.
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Protocol 1. Distance-2 coloring with degree bound d

1: if Fi[color j ] �= Fj [color i] then � possibly conflicting colors
2: color i ← color ′

i � nondeterministic coloring
3: Fi[color j ] ← Fj [color i]
4: else � valid coloring
5: Fi[color j ] ← Fi[color j ]
6: Fj [color i] ← Fj [color i]
7: end if

For a formal argument, we define the safe configurations to be the set of
configurations that satisfy the following conditions:

1. Let (u, v) and (v, w) be any two edges in the network, it holds that coloru �=
colorw.

2. Let u and v be any two adjacent nodes, Fu[colorv] = Fv[coloru].

Lemma 1. The trace of any execution of Protocol 1 starting from a safe con-
figuration is in D2C.

Proof. Let C0 be a safe configuration and (u, v) be any edge. Suppose C0
(u,v)−→

C1. Because Fu[colorv] = Fv[coloru], no change of color occurs. Because both
Fu[colorv] and Fv[coloru] are complemented in the interaction, it still holds that
Fu[colorv] = Fv[coloru]. Notice that if the first safety condition holds, among u’s
neighbors only v has the color colorv, and u is the only one of v’s neighbor with
coloru, therefore Fu[colorv] and Fv[coloru] cannot be changed unless (u, v) is
activated. Therefore both requirements of safety are preserved. Because C0 and
(i, j) are chosen arbitrarily, we can conclude that the coloring does not change
in any execution starting from any safe configuration. ��
Lemma 2. Starting from an arbitrary configuration, there exists a finite execu-
tion fragment that reaches a safe configuration.

Proof (sketch). Suppose the second safety condition is violated in the starting
configuration. There exists an edge (u, v) such that Fu[colorv] �= Fv[coloru].
When (u, v) is activated, node v will change its color and ensure that
Fu[colorv] = Fv[coloru] holds for the new value of coloru.

If the first safety condition is violated, there exist two edges (u, v) and (v, w)
such that coloru = colorw. For any initial states of u, v, and w, there is a
sequence of activations of (u, v) and (w, v) which will cause the second condition
to be violated and either u or w to change its color.

Therefore the coloring cannot stabilize until a safe configuration is reached.
By fairness, the nondeterministic coloring rule will eventually choose colors that
lead to a safe configuration.

According to Corollary 1, there is a deterministic version of this protocol. We
remark without proof that one way to turn the nondeterministic protocol to a
deterministic one is to change line 2 to color i ← (colori + 1) mod (d(d− 1)+ 1).

��
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The following theorem follows from the lemmas and establishes the correctness
of the protocol.

Theorem 4. For each d, there exists a constant-space self-stabilizing implemen-
tation of the distance-2 coloring behavior in communication graphs of degree
bounded by d.

5.3 Directing an Undirected Ring

Given a graph colored by Protocol 1, Protocol 2 gives a sense of direction to
each edge on an undirected ring and guarantees global consistency.

Formally, the ring direction behavior RD on G(V, E) is defined as the set of
all constant traces t = λ, λ, . . . over an alphabet C × C × C, where we denote
λ(v) by (cv, cv,0, cv,1), satisfying the conditions:

1. For all v ∈ V , cv,0 �= cv,1.
2. For all (u, v) ∈ E, there exists b ∈ {0, 1} such that cv = cu,b ∧ cu = cv,b.

We think of cv as the color of node v, cv,0 as the color of its left neighbor and cv,1
as the color of its right neighbor, and the conditions ensure global consistency.

In the protocol, each node i has the following components:

color i the color of node i (we assume this value is provided by the
input
behavior D2C.)

color i,0 the color of the left neighbor
color i,1 the color of the right neighbor

Node i outputs (color i, color i,0, color i,1). A configuration is safe if its output
assignment satisfies the requirement of RD.

Protocol 2. Directing an undirected ring
1: if color j = color i,0 and color j �= color i,1 then
2: color j,1 ← color i

3: else if color j = color i,1 and color j �= color i.0 then
4: color j,0 ← color i

5: else
6: color i,0 ← color j

7: color j,1 ← color i

8: end if

Lemma 3. In the executions of Protocol 2, given input behavior D2C, all reach-
able configurations from any safe configuration are also safe configurations.

Proof. Let C be a safe configuration, that is, for all (i, j) ∈ E, there exists b ∈
{0, 1} such that color j = color i,b and color i = color j,b̄, and for all i, color i,0 �=
color i,1. Depending on the value of b, the condition in either line 1 or line 3 is
true, and the assignments in line 2 and 4 do not modify the states, since the
components already have the assigned values. Therefore, starting from a safe
configuration, the state of each node does not change. ��
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Lemma 4. Starting from an arbitrary unsafe configuration given input behavior
D2C, there exists a finite execution fragment of Protocol 2 that ends at a safe
configuration.

Proof (sketch). Starting from an arbitrary configuration, after each edge is acti-
vated once, all dangling pointers are eliminated, which means the “left neighbor”
pointer and “right neighbor” pointer of each node points to its actual neighbors.
Under this assumption, consider an arbitrary node and label it 0. Label the ring
sequentially in a direction such that color0,0 = color 1. If the scheduler activates
(0, 1), it must hold afterwards that color0,0 = color 1 and color 1,1 = color 0,
because either of the conditions on line 1 or line 5 applies. Let the scheduler ac-
tivate (0, 1), (1, 2), . . . , (n− 1, 0) sequentially. Each activation (i, (i + 1) mod n)
ensures that color i,0 = color (i+1) mod n and color ((i+1) mod n),1 = color i. After
this sequence of activations, all edges are directed consistently and a safe con-
figuration is reached. ��
Theorem 5. Given the distance-2-coloring input behavior, there exists a
constant-space self-stabilizing implementation of ring direction.

5.4 Self-stabilizing Spanning Trees in Regular Graphs

Assuming the existence of a special node and the local addresses assigned by
the distance-2 coloring protocol, a spanning tree rooted at the special node can
be constructed in a self-stabilizing fashion in a regular graph of degree d. Our
protocol uses O(log D) bits of memory, where D is the diameter of the graph.

Let N be a set of labels and φ �∈ N be a special element. The spanning tree
behavior ST on graph G(V, E) consists of all constant traces t = λ, λ, . . . such
that:

1. For v ∈ V , λ(v) is a pair (c, p) where c ∈ N and p ∈ N ∪ {φ}, and there
exists a unique r ∈ V such that the second component of λ(r) is φ.

2. For all v0 �= r, there exists v0, v1, . . ., and vk = r, where vi ∈ V, λ(vi) =
(ci, pi) and pi = ci+1 for all 0 ≤ i < k.

Informally, N is the set of possible colors of nodes. If λ(v) = (c, p), c is the color
of v and p is the color of its parent in the spanning tree. For the root node r in
the spanning tree, p = φ.

We define the first spanning tree of a distance-2-colored graph with a unique
leader to be the spanning tree satisfying the following conditions:

1. The root of the tree is the leader.
2. The parent of each node is the neighbor closest to the root. Ties are broken

by an ordering of the colors.

It is easy to see that the first spanning tree is unique, if the coloring and the
leader is fixed. Due to space limitations, we leave the detailed specification of
the protocol to the full version of the paper and only informally describe the
protocol to construct the first spanning tree.
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The protocol consists of two parts. Each node keeps a neighbors queue of size
d which records the distinct colors of the nodes it interacts with. When the queue
is full and the node interacts with a node whose color is not in the queue, the
oldest value is removed from the queue and the new value is recorded. After the
coloring protocol stabilizes, each node will eventually have the d distinct colors
of all its neighbors.

When node i interacts with node j, if i is the root, j sets its state variable
dist j to 1, which records the length of the shortest path from j to the root
that has been discovered, and it sets the parent variable parent j to color i, the
color of node i. Otherwise, if parent j is undefined or if parent j �= colori and
dist i < dist j−1, j sets parent j to color i and dist j to dist i +1. If dist i = dist j−1
but color i < parent j , j also sets parent j to color i. If parent j = color i, j sets
dist j to dist i + 1.

Theorem 6. Given input behaviors LE and D2C, the above protocol is a self-
stabilizing implementation of output behavior ST for all regular graphs of degree d.

Proof. Given input behaviors D2C and LE, we may assume that the interaction
graph G is properly distance-2 colored with one node marked L and all other
nodes marked N . Let T denote the unique first spanning tree of G. Starting from
an arbitrary configuration, after every edge has been activated in each direction,
the queue of neighbors of each node consists of the d colors of its neighbors, and
the parent pointer of every node except the root points to some neighbor of the
node. Define graph H to be: (i, j) is in H if parent i = j. We look at each edge
that is in H but not in T and show each such edge will be corrected. For ease
of description, we associate a number Ni with each node i: the higher bits of Ni

gives the distance from the root (the real distance in G, not the current value of
dist i), and the lower bits give i’s color.

Let i be the node such that:

1. parent i = j ((i, j) ∈ H), but (i, j) �∈ T .
2. Ni has the smallest value among those that satisfy 1.

Let k be the node such that (i, k) ∈ T . That is, i’s parent should be k, but i
currently thinks j is his parent. There are two cases:

1. In graph H , the root is reachable from j. The scheduler activates the edges
on the path from the root to k in H sequentially. These edges are in both
T and H . Because each node will set its distance variable to be the distance
variable of its parent plus one, distk will be the real distance of k from the
root. The scheduler then activates the edges on the path from the root to j
in H sequentially. After that it must holds that dist j > distk or the distances
are equal but the color of k precedes the color of j. Then (i, k) is activated,
and i will set parent i = k.

2. In graph H , the root is not reachable from j. Let’s only look at H , and let
C consist of j and the nodes reachable from it. C does not contain the root.
Because all nodes in C have out-degree one, there must be a directed cycle in
C. By the definition of H , every node in the cycle think the next node is its
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parent. By letting the scheduler keep activating the edges in the cycle, the
dist values of the nodes in that cycle can be increased to become arbitrarily
large. By activating the edges on the path from j to any of the nodes on the
cycle in the reversed order, the large dist value will be propagated back to
j. Thus i will switch the parent pointer to another node which has a smaller
dist component than j. If the root is reachable from the new parent, do (1),
otherwise repeat (2).

The process is repeated until H = T . ��
We remark that a traversal of the tree can simulate a directed ring. Therefore,
token-circulation can be done in a regular graph by running the ring token-
circulation protocol in parallel with the distance-2 coloring protocol and the
spanning tree protocol.

5.5 Leader Election

Two of the above protocols assume a pre-designated special node. In our model,
self-stabilizing leader election is possible in some classes of interaction graphs
and impossible in others. In this section, we first describe a family of leader-
election protocols in directed rings. We also present an impossibility result for
leader election in general graphs. The formal definition of the leader-election
behavior (LE) is given in Section 5.1.

We first consider rings of odd size. Supposing each node has a label bit, we call
a maximal sequence of alternating labels a segment. Since the size of the ring is
odd, there is at least one pair of adjacent nodes with the same label. We define
the head and tail of a segment in the natural way according to the direction of
the ring. One edge of the form (0, 0) or (1, 1) connects the tail of one segment
to the head of another segment. We call such edges barriers.

The protocol consists of several parts. At the base is the “unstable clock”
protocol, in which the barriers move forward around the ring (which we call
“clockwise”). When two barriers collide, one of them is eliminated. There exists
a sequence of activations that remove all but one barrier. By fairness, eventually
there is a single barrier which rotates clockwise around the ring forever.

The remainder of the protocol manipulates the leader marks and two kinds
of tokens, bullet and probe. Probes move faster than barriers. Probes are sent
out by the barrier in a clockwise direction and absorbed by any leader they run
into. If a probe makes it all the way back to the barrier, it is converted to leader.
Leaders fire bullets counterclockwise around the ring. Bullets are absorbed by
the barrier, but they kill any leaders they encounter along the way.

Call a configuration “clean” if it contains exactly one barrier, exactly one
leader, and there are no bullet or probe marks on any node in the interval starting
from the leader and proceeding clockwise to the barrier. Thus, any bullet and
probe marks are confined to the interval starting from the barrier and proceeding
clockwise to the leader. As the barrier rotates, this region gets squeezed smaller
and smaller until finally the barrier passes leader, at which point there are no
bullet or probe marks at all. We leave the pseudocode specification of the protocol
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to the full version, and only give proof sketches of correctness according to the
description above.

Lemma 5. All configurations reachable from a clean configuration are also
clean, and the same node is marked leader in each.

Proof. No probe ever encounters the barrier, because there are no probe marks
anywhere in the region between leader and the barrier, hence, no new leader is
created. No bullet ever encounters the leader because there are no bullet marks
anywhere in the region starting from the barrier and going counterclockwise
to the barrier, hence the leader is never killed. Newly created bullet and probe
marks are both confined to the region from the barrier to the leader. ��
Lemma 6. For any configurations C there exists a clean configuration C′ reach-
able from C.

Proof. It follows from our fairness condition that every fair computation contains
a clean configuration. From the above claim, all configurations following the first
clean configuration are also clean and have the same node marked as leader.

Here’s how to reach a clean configuration starting from an arbitrary configu-
ration C. First, pick a barrier edge and rotate the barrier once around the ring
as described above. This eliminates any other barriers that might have been
present. Next, take any bullet in the forbidden region starting from the bar-
rier and proceeding counterclockwise to the first leader (or the entire ring if no
node is marked leader) and propagate the bullets counterclockwise around the
ring until they are absorbed by the barrier. Some or all leaders may die in
the process. If any leader remains, take the farthest leader from the barrier (in
the counterclockwise direction), fire a bullet, and propagate it until it is absorbed
by the barrier. Now at most one leader remains. Next, let the barrier create a
probe mark, then propagate all probe marks clockwise around the ring until they
are absorbed by the leader or they encounter the barrier and are converted to
leader. At this point, we have a ring with one barrier, one leader, and no other
marks, so it is clean. ��
Lemmas 5 and 6 complete the proof of correctness.

This protocol is a special case of a family of protocols. For any ring of size n,
we can pick an integer k > 1 that is relatively prime to n. Each node is labeled
by an integer between 0 and k−1 inclusive. Call an edge a ”barrier” if it is (i, j)
where i+1 �≡ j (mod k). Because k is relatively prime to n, there is at least one
barrier. The barrier advancement rule would be (i, j) → (i, i + 1 mod k), where
i + 1 �≡ j (mod k). Calling this protocol Pk, then the protocol we detailed in
this section is P2. We thus have a family of protocols P2, P3, . . . such that for
any ring, Pk accomplishes self-stabilizing leader election whenever k does not
divide the size of the ring.

Theorem 7. For each integer k ≥ 2, there exists a constant-space self-
stabilizing implementation of the leader-election behavior on all rings whose sizes
are not multiples of k.
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Finally, we present the following impossibility result:
Theorem 8. There does not exist a self-stabilizing protocol for leader election
in interaction graphs with general topology.

Proof. Assuming such a protocol A exists, we consider how it would behave in
directed lines. Let e be an arbitrary edge. If e were removed, the interaction
graph would become two directed lines, and by the correctness assumption of A,
the two shorter lines would each elect a leader. Therefore from any configuration
C there is a reachable configuration C′ in which there are two leaders, because
from C the scheduler just stops activating e and only activates other edges for a
certain amount of time to reach C′. By fairness, in any fair execution of A, some
configuration C′ with two leaders occurs infinitely often. Therefore the output
trace of any fair execution of A cannot have a suffix in the behavior LE. ��
A class C of graphs is simple if there does not exist a graph in C which con-
tains two disjoint subgraphs that are also in C. Notable simple classes of graphs
include rings, or, more generally, connected degree-d regular graphs. Directed
lines, connected graphs with a certain degree bound and strongly connected
graphs are non-simple classes of graphs. The proof above shows that there is
no self-stabilizing leader election protocol that works for all the graphs in any
non-simple class.

6 Conclusion and Open Problems

In this paper, we extended the population protocol model of [1] to allow for
inputs at each step, and we defined general classes of behaviors. We studied self-
stabilization protocols for token-circulation, distance-2 coloring, ring orientation,
spanning tree, and leader election in this extended model.

We remark that one of the applications of the self-stabilizing protocols is to
combine them with the protocols in [1, 2] to compute algebraic predicates or
graph properties, with the additional benefit of transient-fault tolerance. For in-
stance the token-circulation protocol could be augmented to compute predicates
such as n > k or expressions like n mod k in regular graphs in which n is the
size of the network and k is a constant. We leave the detailed discussion to the
full version of the paper.

The leader election protocol we presented in this paper depends on the size
of the ring. There are impossibility results and space bounds on self-stabilizing
leader election in general rings in various other models [3, 10]. Because of the
difference between our model and that of the previous papers, those results
cannot be easily extended to our model. The existence of a uniform constant-
space leader election protocol on the class of all rings or on the class of regular
communication graphs of degree d > 2 is still open for future research.
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Abstract. Self-stabilizing protocols can tolerate any type and any num-
ber of transient faults. However, in general, self-stabilizing protocols pro-
vide no guarantee about their behavior against permanent faults. This
paper proposes a self-stabilizing link-coloring protocol resilient to (per-
manent) Byzantine faults in arbitrary networks. The protocol assumes
the central daemon, and uses 2Δ−1 colors where Δ is the maximum de-
gree in the network. This protocol guarantees that any link (u, v) between
non faulty processes u and v is assigned a color within 2Δ + 2 rounds
and its color remains unchanged thereafter. Our protocol is Byzantine
insensitive in the sense that the subsystem of correct processes remains
operating properly in spite of unbounded Byzantine faults.

Keywords: distributed protocol, self-stabilization, link-coloring, Byzan-
tine fault, fault tolerance, fault containment.

1 Introduction

Self-stabilization [4] is one of the most effective and promising paradigms for
fault-tolerant distributed computing [5]. A self-stabilizing protocol is guaran-
teed to achieve its desired behavior eventually regardless of the initial network
configuration (i.e., global state). This implies that a self-stabilizing protocol is
resilient to any number and any type of transient faults since it converges to its
desired behavior from any configuration resulting from transient faults. However
the convergence to the desired behavior is guaranteed only under the assumption
that no further fault occurs during convergence.

The problem of vertex or link coloring has important applications related to
resource allocation in distributed systems (e.g. frequency or time slot allocation
in wireless networks), and has been largely studied in the self-stabilizing area.
Self-stabilizing algorithms for distance one vertex coloring have been studied
in [7,10,11,13,18,19,20], and for distance two vertex coloring in [9,12]. To our
knowledge, [17] is the only known self-stabilizing link-coloring algorithm, and is
further discussed thereafter.
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There exists several researches on self-stabilizing protocols that are also re-
silient to permanent faults [1,2,3,8,14,15,16,21]. Most of those consider only crash
faults, and guarantee that each non faulty process achieves its intended behav-
ior regardless of the initial network configuration. Nesterenko et al. [16] pro-
vide solutions that are self-stabilizing and tolerate unbounded Byzantine faults.
The main difficulty in this setting is caused by arbitrary and unbounded state
changes of the Byzantine process: processes around the Byzantine processes may
change their states in response to the state changes of the Byzantine processes,
and processes next to the processes changing their states may also change their
states. This implies that the influence of the Byzantine processes could expand to
the whole system, preventing every process from conforming to its specification
forever. In [16], the protocols manage to contain the influence of Byzantine pro-
cesses to only processes near them, the other processes begin able to eventually
achieve correct behavior. The complexity measure they introduce is the contain-
ment radius, which is the maximum distance between a Byzantine process and
a processor affected by the Byzantine process. They also propose self-stabilizing
protocols resilient to Byzantine faults for the vertex coloring problem and the
dining philosophers problem. The containment radius is one for the vertex col-
oring problem and two for the dining philosophers problem. In [17], the authors
consider a self-stabilizing link-coloring protocol resilient to Byzantine faults in
oriented tree networks, achieving a containment radius of two. Link-coloring of
the distributed system is an assignment of colors to the communication links such
that no two communication links with the same color share a process in common.
Link-coloring has many applications in distributed systems, e.g., scheduling data
transfer and assigning frequency band in wireless networks.

When the network is uniform (all nodes execute the same code) and anony-
mous (nodes have no possibility to distinguish from one another), a self-stabili-
zing coloring algorithm cannot make the assumption that the color of a link is
determined by a single node. Indeed, since nodes are uniform, it could be that
two nodes have decided (differently) on the color of the link. As a result, the
color of a link must come from some kind of coordination between at least two
nodes. In this paper, we make the realistic assumption that a link color is decided
only by its adjacent nodes. In this context, it follows that, from a Byzantine con-
tainment point of view, link coloring is harder than vertex coloring and dining
philosophers for the following reason: while the two latter problems require only
one process to take an action to correct a single fault (and the aforementioned
papers make that assumption), link colors result from an agreement of two neigh-
boring nodes, and thus can result in the update of two nodes to correct a single
failure.

In this paper, we present a self-stabilizing link-coloring protocol resilient to
unbounded Byzantine faults. Unlike the protocol of [17], we consider arbitrary
anonymous networks, where no pre-existing hierarchy is available. As it was
proved necessary in [17] to achieve constant containment radius, we assume the
central daemon, i.e. exactly one process can execute an action at a given time. We
use 2Δ−1 colors, where Δ is the maximum degree in the network. Our protocol
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guarantees that any link (u, v) between non faulty processes u and v is assigned
a color within 2Δ + 2 rounds and its color remains unchanged thereafter. As far
as fault containment is considered, our protocol is optimal, since the influence of
Byzantine processors is limited to themselves. Thus, our protocol also trivially
achieves Byzantine-fault containment with containment radius of one.

2 Preliminaries

2.1 Distributed System

A distributed system S = (P, L) consists of a set P = {v1, v2, . . . , vn} of processes
and a set L of bidirectional communication links (simply called links). A link is
an unordered pair of distinct processes. A distributed system S can be regarded
as a graph whose vertex set is P and whose link set is L, so we use some graph
terminology to describe a distributed system S.

A subsystem S′ = (P ′, L′) of a distributed system S = (P, L) is such that
P ′ ⊆ P and L′ = {(u, v) ∈ L|u ∈ P ′, v ∈ P ′}.

Processes u and v are called neighbors if (u, v) ∈ L. The set of neighbors of
a process v is denoted by Nv, and its cardinality (the degree of v) is denoted
by Δv(= |Nv|). The degree Δ of a distributed system S = (P, L) is defined as
Δ = max{Δv | v ∈ P}. We do not assume existence of a unique identifier of
each process. Instead we assume each process can distinguish its neighbors from
each other by locally arranging them in some arbitrary order: the k-th neighbor
of a process v is denoted by Nv(k) (1 ≤ k ≤ Δv).

Each process is modeled by a state machine that can communicate with its
neighbors through link registers. For each pair of neighboring processes u and
v, there are two link registers ru,v and rv,u. Message transmission from u to v is
realized as follows: u writes a message to link register ru,v and then v reads it
from ru,v. The link register ru,v is called an output register of u and is called an
input register of v. The set of all output (resp. input) registers of u is denoted
by Outu (resp. Inu), i.e., Outu = {ru,v | v ∈ Nu} and Inu = {rv,u |v ∈ Nu}.

The variables that are maintained by processes denote their states. Similarly,
the values of the variables stored in each register denote the state of these regis-
ters. A process may take actions during the execution of the system. An action
is simply a function that is executed in an atomic manner by the process.

A global state of a distributed system is called a configuration and is specified
by a product of states of all processes and all link registers. We define C to be the
set of all possible configurations of a distributed system S. For each configuration
ρ ∈ C, ρ|u and ρ|r denote the process state of u and the state of link register
r in configuration ρ respectively. For a process u and two configurations ρ and
ρ′, we denote ρ

u�→ ρ′ when ρ changes to ρ′ by executing an action of u. Notice
that ρ and ρ′ can be different only in the states of u and the states of output
registers of u.

A schedule of a distributed system is an infinite sequence of processes. Let
Q = u1, u2, . . . be a schedule. An infinite sequence of configurations e = ρ0, ρ1, . . .
is called an execution from an initial configuration ρ0 by a schedule Q, if e satisfies
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ρi
ui+1

�→ ρi+1 for each i (i ≥ 0). In this paper, process action are executed atomi-
cally, and we also assume that a locally central daemon schedules the actions of
our processes, i.e., no two neighboring processes may execute their actions at the
same time. In the literature, the central daemon is mostly used in conjunction
with a shared memory model [5], where a process is able to read the whole state
of its neighboring processes. Our scheme uses shared registers instead, in order
to narrow the communication capabilities to what is actually needed to solve the
problem.

The set of all possible executions from an initial configuration ρ0 ∈ C is
denoted by Eρ0 . The set of all possible executions is denoted by E, that is,
E =

⋃
ρ∈C Eρ. We consider asynchronous distributed systems where we can

make no assumption on schedules except that any schedule is weakly fair : every
process appears in the schedule infinitely often.

In this paper, we consider (permanent) Byzantine faults: a Byzantine process
(i.e., a Byzantine-faulty process) can arbitrarily behave independently from its
actions. If v is a Byzantine process, v can repeatedly change its variables and its
output registers arbitrarily.

Let BF = {f1, f2, . . . , fc} be the set of Byzantine processes. We call a process
v (�∈ BF ) a correct process. In distributed systems with Byzantine processes,
execution by a schedule Q = u1, u2, . . . is an infinite sequence of configurations
e = ρ0, ρ1, . . . satisfying the following conditions.

– When ui+1 is a correct process, ρi
ui+1�→ ρi+1 holds (possibly ρi = ρi+1).

– When ui+1 is a Byzantine process, ρi+1|ui+1 and ρi+1|r (r ∈ Outui+1) can
be arbitrary states. For any process v other than ui+1, ρi|v = ρi+1|v and
ρi|r = ρi+1|r (r ∈ Outv) hold.

In asynchronousdistributed systems, time is usually measured by asynchronous
rounds (simply called rounds). Let e = ρ0, ρ1, . . . be an execution from configu-
ration ρ0 by a schedule Q = u1, u2, . . .. The first round of e is defined to be the
minimum prefix of e, e′ = ρ0, ρ1, . . . , ρk, such that {ui | 1 ≤ i ≤ k} = P . Round
t (t ≥ 2) is defined recursively, by applying the above definition of the first round
to e′′ = ρk, ρk+1, . . .. Intuitively, every process has a chance to update its state in
every round.

2.2 Self-stabilizing Protocol Resilient to Byzantine Faults

The link coloring problem considered in this paper is a so-called static problem,
i.e., once the system reaches a desired configuration, the configuration remains
unchanged forever. For example, the spanning-tree construction problem is a
static problem, while the mutual exclusion problem is not [5]. Some static prob-
lems can be defined by a specification predicate, spec(v), for each process v, which
specifies the condition that v should satisfy at the desired configuration. A spec-
ification predicate spec(v) is a boolean expression consisting of the variables of
Pv ⊆ P and link registers Rv ⊆ R, where R is the set of all link registers.

A self-stabilizing protocol is a protocol that guarantees each process v satis-
fies spec(v) eventually regardless of the initial configuration. By this property, a
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self-stabilizing protocol can tolerate any number and any type of transient faults.
However, since we consider permanent Byzantine faults, faulty processes may
not satisfy spec(v). In addition, non faulty processes near the faulty processes
can be influenced by the faulty processes and may be unable to satisfy spec(v).
Nesterenko and Arora [16] define a strictly stabilizing protocol as a self-stabilizing
protocol resilient to Byzantine faults. Informally, the protocol requires each pro-
cess v more than � away from any Byzantine process to satisfy spec(v) eventually,
where � is a constant called stabilization radius. A strictly stabilizing protocol is
defined as follows.

Definition 1. A configuration ρ0 is a BF-stable configuration with stabilizing
radius � if and only if, for any execution e = ρ0, ρ1, . . . and any process v, the
following condition holds:

If the distance from v to any Byzantine process is more than �, then for
any i (i ≥ 0) (i) v satisfies spec(v) in ρi, (ii) ρi|v = ρi+1|v holds, and
(iii) ρi|r = ρi+1|r (r ∈ Outv) holds.

Definition 1 states that, once the system reaches a stable configuration, a process
v more than � away from any Byzantine process satisfies spec(v) and never
changes the states of v and r (r ∈ Outv) afterwards.

Definition 2 ([16]). A protocol A is a strictly stabilizing protocol with stabi-
lizing radius � if and only if, for any execution e = ρ0, ρ1, . . . of A starting from
any configuration ρ0, there exists ρi that is a BF-stable configuration with radius
�. We say that the stabilizing time of A is k for the minimum k such that the
last configuration of the k-th round is a BF-stable configuration in any execution
of A.

Definition 3. A protocol A is Byzantine insensitive if and only if every process
eventually satisfies its specification in S′ = (P ′, L′), the subsystem of all correct
processes.

Notice that if a protocol is Byzantine insensitive, it is also strictly stabilizing
with stabilizing radius of 1, but the converse is not necessarily true. So, the
former property is strictly stronger than the latter.

2.3 Link-Coloring Problem

The link-coloring problem consists in assigning a color to every link so that no
two links with the same color are adjacent to the same processor. In the following,
let CSET be a given set of colors, and let Color(u, v) ∈ CSET be the color of
link (u, v).

Definition 4. In the link-coloring problem, the specification predicate spec(v)
for a process v is given as follows:

∀x, y ∈ Nv : x �= y =⇒ Color(v, x) �= Color(v, y)

In the following, we denote a link-coloring protocol with b colors as a b-link-
coloring protocol.
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3 Link-Coloring Protocol

3.1 Link-Coloring Protocol on Arbitrary Networks

Our protocol is presented as Algorithms 3.1 and 3.2. It is informally described
as follows: each process maintains a list of colors assigned to its incident links
and periodically exchanges the list with each neighboring process. From the list
received from its neighbor v, a processor u can propose a color for the link (u, v).
This proposed color must not appear in the set of incident colors of u or v. The
system is scheduled by the central daemon, so no two neighboring processes can
propose a color at the same time. Since the set of colors is of size 2Δ− 1, u can
choose a color that is not used at u or v. If both u and v are correct, once they
settle on a color c for link (u, v), this color is never changed.

In case of a Byzantine process, it may happen however, that a Byzantine
process keeps proposing colors conflicting with other neighbors proposals. If the
color proposed by the Byzantine process conflict with a color on which two
neighbors u and v have settled on, the proposition is ignored. The remaining
case is when a node u has two neighbors v and w (where u and v are correct
processes and w is Byzantine), and has not settled on any color with either v
or w. The Byzantine process w may continuously proposed colors that conflict
with v to u, and u could always chose the color proposed by w. To ensure that
this behavior may not occur infinitely often, we use a priority list so that neigh-
bors of a particular node u get round robin priority when proposing conflicting
colors. Then, once u and v (the two correct processes) settle on a color for the
link (u, v), the following proposals from w (the Byzantine process) are ignored
by u.

3.2 Correctness Proof

Let u and v be neighboring processes, and let v be the k-th neighbor of u. We
say that register ru,v is consistent (with the state of u) if PCu,v = outColu(k)
and USETu,v = {outColu(m) | 1 ≤ m ≤ Δu, m �= k} hold.

Lemma 1. Once a correct process executes an action, its output registers become
consistent and remain so thereafter.

Proof. By the code of the algorithm (see the last three lines).

Corollary 1. In the second round and later, all output registers of correct
processes are consistent.

The following lemma also holds clearly.

Lemma 2. Once a correct process v executes an action, outColv(k) �= outColv(k′)
holds for any k and k′ (1 ≤ k < k′ ≤ Δv) at any time (except that outColv(k) =
outColv(k′) = ⊥ holds temporarily during execution of an action).
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Algorithm 3.1. The SS link-coloring protocol (Part 1: constants and variables)
constants

Δ = the maximum degree of the network
Δv = the degree of v
Nv(k) (1 ≤ k ≤ Δv) = the k-th neighbor of v
CSET = {1, 2, . . . , 2Δ − 1} // set of all colors

local variables of node v
outColv(x) (1 ≤ x ≤ Δv);

// color proposed by v for the x-th incident link
// We assume outColv(x) takes a value from CSET ∪ {⊥}
// The value ⊥ is used temporarily only during execution of an atomic step

Decidedv : subset of {1, 2, . . . , Δv};
// the set of neighbor u such that the color of (u, v) is accepted
// (or finally decided)

UnDecidedv : ordered subset of {1, 2, . . . , Δv};
// the ordered set of neighbor u such that the color of (u, v) is not accepted
// We assume Decidev ∪ UnDecidedv = {1, 2, . . . , Δv} holds
// in the initial configuration

variables in shared register rv,u

PCv,u;
// color proposed by v for the link (v, u)

USETv,u;
// colors of links incident to v other than (v, u)

// in-register ru,v has PCu,v and USETu,v

Proof. The lemma clearly holds from the following facts:

– When outColv(k) = outColv(k′) and {k, k′} ⊆ Decidedv hold, then either
outColv(k) or outColv(k′) is reset to ⊥. (outColv(k) = outColv(k′) and
{k, k′} ⊆ Decidedv may hold in the initial configuration.)

– v assigns a color c to outColv(k) only when outColv(k′) �= c holds for any
k′ (k′ �= k).

Let u and v be any neighboring processes, and let v be the k-th neighbor of
u. In the followings, we say that process u accepts a color c for a link (u, v) if
k ∈ Decidedu and outColu(k) = c holds.
Lemma 3. Let u and v be any correct neighboring processes, and let v be the
k-th neighbor of u and u be the k′-th neighbor of v.

Once v accepts a color of (u, v) in the second round or later, outColu(k) and
outColv(k′) never change afterwards. Moreover, u accepts the color of (u, v) in
the next round or earlier.

Proof. When process v completes its action at which v accepts a color c of (u, v),

outColu(k) = PCu,v = outColv(k′) = PCv,u = c
∧ outColu(k) �∈ {outColu(m) | 1 ≤ m ≤ Δu, m �= k}
∧ outColv(k′) �∈ {outColv(m) | 1 ≤ m ≤ Δv, m �= k′}holds.
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Algorithm 3.2. The SS link-coloring protocol (Part 2: the LINKCOLORING
function)
function LINKCOLORING {

// check the conflict on the accepted color
// This is against that a Byzantine process changes the accepted color.
// Also, this is against the initial illegitimate configuration
// (meaningful only in the first two rounds)
for each k ∈ Decidedv{

if (PCNv(k),v �= outColv(k))
or (outColv(k) = outColv(k′) for some k′( �= k))
then { // something strange happens

outColv(k) := ⊥;
remove k from Decidedv;
append k to UnDecidedv as the last element;

// if this occurs in the third round or later, Nv(k) is a Byzantine
// process
}

}
// check whether v’s previous proposals were accepted by neighbors
for each k ∈ UnDecidedv{

if PCNv(k),v = outColv(k)
then { // v’s previous proposed was accepted by Nv(k)

remove k from UnDecidedv;
append k to Decidedv;

}
else // v’s previous proposed was rejected by Nv(k)

outColv(k) := ⊥;
}
// check whether v can accept the proposal made by neighbors
for each k ∈ UnDecidedv in the order in UnDecidedv {

// the order in UnDecidedv is important to avoid infinite obstruction of
// Byzantine processes
if PCNv(k),v �∈ {outColv(m) | 1 ≤ m ≤ Δv}

then { // accept the color proposed by Nv(k)
outColv(k) := PCNv(k),v;
remove k from UnDecidedv;
append k to Decidedv;

}
else // make proposal of a color for undecided links

outColv(k) := min(CSET\
(({outColv(m) | 1 ≤ m ≤ Δv} − {⊥}) ∪ USETNv(k),v))

// at least one color is available (remark that outColv(k) = ⊥ holds)
}
for k := 1 to Δv { // write to its own link registers

PCv,Nv(k) := outColv(k);
USETv,Nv(k) := {outColv(m) | 1 ≤ m ≤ Δv, m �= k};

}
}
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Process u or v never accepts a proposal c for any other incident link, and
never makes a proposal c for any other incident link, as long as outColu(k) =
outColv(k′) = c holds. This implies that outColu(m) �= c (for eachm �= k) and
outColv(m) �= c (for eachm �= k′) hold as long as outColu(k) = outColv(k′) = c
holds.

Now we show that outColu(k) = outColv(k′) = c remains holding once
outColu(k) = outColv(k′) = c holds. We assume for contradiction that ei-
ther outColu(k) or outColv(k′) changes. Without loss of generality, we can as-
sume that outColu(k) changes first. This change of the color occurs only when
outColu(m) = c holds for some m such that m �= k. This contradicts the fact
that outColu(m) �= c (m �= k) remains holding as long as outColu(k) = c holds.

It is clear that u accepts the color c for the link (u, v) when u is activated and
outColu(k) = PCv,u = c holds. Thus, the lemma holds.

Lemma 4. Let u and v be any correct neighboring processes. Process u accepts
a color for the link (u, v) within 2Δu + 2 rounds.

Proof. Let v be the kth neighbor of u. Let t1, t2 and t3 (t1 < t2 < t3) be the
steps (i.e., global discrete times) when u, v and u are activated respectively, and
u is never activated between t1 and t3. We consider the following three cases of
the configuration immediately before u executes an action at t3. In what follows,
let c be the color such that outColu(k) = c holds immediately before u executes
an action at t3.

1. If PCv,u = c holds: Process u accepts the color c for (u, v) in the action
at t3.

2. If PCv,u(= c′) �= c holds and v is the first process among processes w such
that PCw,u = c′ in UnDecidedu: Process u accepts the color c′ of PCv,u for
(u, v) in the action at t3.

3. If PCv,u(= c′) �= c holds and v is not the first process among processes w
such that PCw,u = c in UnDecidedu: Process u cannot accept color c′ for
(u, v) in the action at t3. Process u accepts the color c′ for the link (u, w)
such that w is the first process among processes x such that PCx,u = c′ in
UnDecidedu.

In the third case, Process w is removed from UnDecidedu. From Lemma 3, w
is never appended to UnDecidedu again when w is a correct process. When w is
a Byzantine process, w may be appended to UnDecidedu again but its position
is after the position of u. This observation implies that the third case occurs at
most Δ− 1 times for the pair of u and v before u accepts a color for (u, v).

Now we analyze the number of rounds sufficient for u to accept a color of
the link (u, v). Consider three consecutive rounds. Let t be the time when u is
activated last in the first round of the three consecutive rounds, and let t′ be the
time when u is activated first in the last round of the three consecutive rounds.
It is clear that v is activated between t and t′. This implies that we have at least
one occurrence of the t1, t2 and t3 described above between t and t′. We repeat
this argument by regarding the last round of the three consecutive rounds as the
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first round of the three consecutive rounds we consider next. Thus, u accepts a
color of (u, v) within 2Δv + 2 rounds.

From Lemma 4, we can obtain the following theorem.

Theorem 1. The protocol is a Byzantine insensitive link-coloring protocol for
arbitrary networks. The stabilization time of the protocol is 2Δ + 2 rounds.

4 Conclusion

In this paper, we presented the first self-stabilizing link-coloring algorithm that
can be used on uniform anonymous and general topology graphs. In addition
to being self-stabilizing, it is also Byzantine insensitive, in the sense that the
subsystem of correct processes resumes correct behavior in finite time regard-
less of the number and placement of potentially malicious (so called Byzantine)
processes.

The system hypothesis that we assumed (central daemon scheduling) are nec-
essary to ensure bounded fault-containment of Byzantine processes (as proved
in [17]). However, we assumed that the number of link colors that is available
is 2Δ − 1, where Δ is the maximum degree of the graph. It is well known that
Δ+1 colors are sufficient for link coloring general graphs. Recently, a distributed
(non-stabilizing and non fault tolerant) solution [6] that uses only Δ + 1 colors
was provided. There remains the open question of a possible tradeoff between
the number of colors used for link coloring and the fault-tolerance properties of
distributed solutions.
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Abstract. We define a programming abstraction for mobile networks called the
Timed Virtual Stationary Automata programming layer, consisting of mobile
clients, virtual timed I/O automata called virtual stationary automata (VSAs), and
a communication service connecting VSAs and client nodes. The VSAs are lo-
cated at prespecified regions that tile the plane, defining a static virtual infrastruc-
ture. We present a self-stabilizing algorithm to emulate a timed VSA using the
real mobile nodes that are currently residing in the VSA’s region. We also discuss
examples of applications whose implementations benefit from the simplicity ob-
tained through use of the VSA abstraction.

Keywords: Ad-hoc networks, mobile computing, location-aware distributed
computing, fault tolerance/availability, virtual infrastructure, state replication,
virtual machine.

1 Introduction

The task of designing algorithms for constantly changing networks is difficult. Highly
dynamic networks, however, are becoming increasingly prevalent, especially in the con-
text of pervasive and ubiquitous computing, and it is therefore important to develop
new techniques to simplify this task. Here we focus on mobile ad-hoc networks, where
mobile processors attempt to coordinate despite minimal infrastructure support. This
paper develops new techniques to cope with this dynamic, heterogeneous, and chaotic
environment.

We mask the unpredictable behavior of mobile networks by defining and emulat-
ing a virtual infrastructure, consisting of timing-aware and location-aware machines
at fixed locations, that mobile nodes can interact with. The static virtual infrastructure
allows application developers to use simpler algorithms — including many previously
developed for fixed networks.

There are a number of prior papers that take advantage of geography to facilitate the
coordination of mobile nodes. For example, the GeoCast algorithms [19, 1], GOAFR

� Partially supported by IBM faculty award, NSF grant and the Rita Altura chair in computer
sciences.

�� Supported by DARPA contract F33615-01-C-1896, NSF ITR contract CCR-0121277, and
USAF, AFRL contract FA9550-04-1-0121.

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, pp. 130–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Timed Virtual Stationary Automata for Mobile Networks 131

[13], and algorithms for “routing on a curve” [18] route messages based on the loca-
tion of the source and destination, using geography to delivery messages efficiently.
Other papers [14, 10, 21] use geographic locations as a repository for data. These al-
gorithms associate each piece of data with a region of the network and store the data
at certain nodes in the region. This data can then be used for routing or other
applications. All of these papers take a relatively ad-hoc approach to using geogra-
phy and location. We suggest a more systematic approach; many algorithms presented
in these papers could be simplified by using a fixed, predictable timing-enabled
infrastructure.

In industry there have been a number of attempts to provide specialized applications
for ad-hoc networks by organizing some sort of virtual infrastructure over the mobile
nodes. PacketHop and Motorola envision mobile devices cooperating to form mesh
networks to provide communication in areas with wireless-broadcast devices but little
fixed infrastructure [15,26]. These virtual infrastructures could allow on-the-fly network
formation that can be used at disaster sites, or areas where fixed infrastructure does not
exist or has been damaged. BMW and other car manufacturers are developing systems
that allow cars to communicate about local road or car conditions, aiding in accident
avoidance [25, 17, 11, 22].

Each of the above examples tackles very specific problems, like routing or distribu-
tion of sensor data. A more general-purpose virtual infrastructure, that organizes mobile
nodes into general programmable entities, can make a richer set of applications easier to
provide. For example, with the advent of autonomous combat drones [24], the complex-
ity of algorithms coordinating the drones can make it difficult to provide assurance to an
understandably concerned public that these firepower-equipped autonomous units are
coordinating properly. With a formal model of a general and easy-to-understand virtual
infrastructure available, it would be easier to both provide and prove correct algorithms
for performing sophisticated coordination tasks.

Virtual Stationary Automata programming layer. The programming abstraction we
introduce in this paper consists of a static infrastructure of fixed, timed virtual machines
with an explicit notion of real-time, called Virtual Stationary Automata (VSAs), distrib-
uted at known locations over the plane, and emulated by the real mobile nodes in the
system. Each VSA represents a predetermined geographic area and has broadcast capa-
bilities similar to those of the mobile nodes, allowing nearby VSAs and mobile nodes to
communicate with one another. This programming layer provides mobile nodes with a
virtual infrastructure with which to coordinate their actions. Many practical algorithms
depend significantly on timing, and many mobile nodes have access to reasonably syn-
chronized clocks. In the VSA programming layer, the virtual automata also have access
to virtual clocks, guaranteed to not drift too far from real-time. These virtual automata
can then run programs whose behaviour might be dependent on the continuous evolu-
tion of timing variables.

Our virtual infrastructure differs in key ways from others that have previously been
proposed for mobile ad-hoc networks. The GeoQuorums algorithm [6,7] was the first to
use virtual nodes; the virtual nodes in that work are atomic objects at fixed geographical
locations. More general virtual mobile automata were suggested in [5]; our automata are
stationary, and are arranged in a connected pattern that is similar to a traditional wired
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network. Our automata also have more powerful computational capabilities than those
in [5] in that ours include timing capabilities, which are important for many applica-
tions. Finally, we use a different implementation stategy for virtual nodes than in [5],
incurring less communication cost and enabling us to provide virtual clocks that are
never far from real-time.

Emulating the virtual infrastructure. Our clock-enabled VSA layer is emulated by
the real mobile nodes in the network. Each mobile node is assumed to have access
to a GPS service informing it of the time and region it is currently in. A VSA for
a geographic region is then emulated by a subset of the mobile nodes populating its
region: the VSA state is maintained in the memory of the real nodes emulating it, and
the real nodes perform VSA actions on behalf of the VSA. The emulation is shared by
the nodes while one leader node is responsible for performing the outputs of the VSA
and keeping the other emulators consistent. If no mobile nodes are in the region, the
VSA fails; if mobile nodes later arrive, the VSA restarts.

An important property of our implementation is that it is self-stabilizing.
Self-stabilization [3, 4] is the ability to recover from an arbitrarily corrupt state. This
property is important in long-lived, chaotic systems where certain events can result in
unpredictable faults. For example, transient interference may disrupt the wireless com-
munication, violating our assumptions about the broadcast medium. This might result
in inconsistency and corruption in the emulation of the VSA. Our self-stabilizing im-
plementation, however, can recover after corruptions to correctly emulate a VSA.

Applications. We present in this paper an overview of some applications that are sig-
nificantly simplified by the VSA infrastructure. We consider both low-level services,
such as routing and location management, as well as more sophisticated applications,
such as motion coordination, tracking, traffic management, and traffic coordination. The
key idea in all cases is to locate data and computation at timed VSAs throughout the
network, thus relying on the virtual infrastructure to simplify coordination in ad-hoc
networks. This infrastructure can be used to implement services such as routing that are
oftentimes thought of as the lowest-level services in a network.

2 Datatypes and System Model

The system consists of a finite collection of mobile client processes moving in a closed,
connected, and bounded region of the 2D plane called R. Region R is partitioned into
predetermined connected subregions called tiles or regions, labeled with unique ids
from the set of tile identifiers U . In practice it may be convenient to restrict tiles to be
regular polygons such as squares or hexagons. We define a neighbor relation nbrs on
ids from U : two tiles u and v are neighbors iff the supremum distance between points
in tile(u) and tile(v) is bounded by a constant rvirt.

Each mobile node Cp, p ∈ P , the set of mobile node ids, is modeled as a mobile
timed I/O automaton whose location in R at any time is referred to as loc(p). Mobile
node speed is bounded by a constant vmax. We assume each node occasionally receives
information about the time and its current region u; a GPSupdate(u, now)p happens
every εsample time. While GPS is not entirely accurate in reality, as long as an error
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bound is known, its effects here are small. We assume the node’s local clock now pro-
gresses at the rate of real-time.

Each client is equipped with a local broadcast communication service called P -bcast,
with a minimum broadcast radius of rreal and a message delay d. This service allows
each client Cp to broadcast a message to all nearby clients through bcast(m)p and re-
ceive messages broadcast by other clients through brcv(m)p actions. We assume that a
local broadcast service guarantees two properties: integrity and reliable local delivery.
Integrity guarantees that every message received was previously broadcast. Reliable lo-
cal delivery (roughly) guarantees that a transmission will be received by nearby nodes:
If client Cp broadcasts a message, then every client Cq within rreal distance of Cp’s
transmission location during the transmission interval of length d receives the message
before the end of the interval.

Clients are susceptible to stopping and corruption failures. After a stopping failure,
a client performs no additional local steps until restarted. If restarted, it starts operating
again from an initial state. If a node is corrupted, it suffers from a nondeterministic
change to its program state.

Additional arbitrary external interface actions and local state used by algorithms
running at the client are allowed. For simplicity local steps are assumed to take no
time.

3 Virtual Stationary Automata Programming Layer
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Fig. 1. Virtual Stationary Automata abstraction. VSAs
and clients communicate using the V-bcast service. VSA
bcasts may be delayed in Dout buffers.

Here we describe the Virtual Sta-
tionary Automata programming
layer. This abstraction includes
the real mobile nodes discussed
in the last section, the virtual
stationary automata (VSAs) that
the real nodes emulate, and a lo-
cal broadcast service, V-bcast, be-
tween them (see Figure 1). The
layer allows developers to write
programs for both mobile clients
and stationary tiles of the network
as though broadcast-equipped vir-
tual machines exist in those tiles.
We begin by describing the prop-
erties of VSAs and then describe
the V-bcast service.

3.1 Virtual Stationary Automata

An abstract VSA is a timing-capable virtual machine. We formally describe such a
timed machine for a tile u, Vu, as a TIOA whose program can be referred to as a tuple
of its action signature, sigu, valid states, statesu, a start state function, startu, mapping



134 S. Dolev et al.

clock values to appropriate start states, a discrete transition function, δu, and a set of
valid trajectories of the machine, τu. Trajectories [12] describe state evolution over
intervals of time.

A virtual automaton Vu’s external interface is restricted to include only stopping
failure, corruption, and restart inputs and the ability to broadcast and receive messages
(the restriction guarantees the VSA can be emulated by mobile nodes). Corruptions
result in a nondeterministic change to any portion of Vu’s state, vstate, including the
virtual clock vstate.now. As with mobile clients, this now value is assumed to progress
at the rate of real-time and, outside of failure, equal real-time. Since a VSA is emulated
by physical nodes (corresponding to clients) in its region, its failures are defined in
terms of client movements and failures in its region: (1) If no clients are in the region,
the VSA is crashed, (2) If Vu is failed but a client Cp enters the region and remains
for at least trestart time, then in that interval of time Vu restarts, (3) If no client failure
(corruption or stopping) occurs in an alive VSA’s region over some interval, the VSA
does not suffer a failure during that interval, and (4) A VSA may suffer a corruption only
if a mobile client in its region suffers a corruption; our self-stabilizing implementation
of a VSA guarantees that starting from an arbitrary configuration of the emulation, the
emulation’s external trace will eventually look like that of the abstract VSA, starting
from a corrupted abstract state.

3.2 V-bcast Service

The V-bcast service is a “virtual” broadcast communication service with transmission
radius rvirt. It is similar to that of the real nodes’ P -bcast service and implemented
using the P -bcast service. It allows broadcast communication between neighboring
VSAs, between VSAs and nearby clients, and between clients through bcast and brcv
actions, as before. V-bcast guarantees the integrity property described for P -bcast, as
well as a similar reliable local delivery property. The reliable local delivery property
for V-bcast is as follows: If a client or VSA in a region u transmits a message, then
every client or VSA in region u or neighboring regions during the entire time inter-
val starting at transmission and ending d later receives the message by the end of the
interval. (For this definition, due to GPSupdate lag, a client is still said to be “in” re-
gion u even if it has just left region u but has not yet received a GPSupdate with the
change.)

Notice that V-bcast’s broadcast radius is different from that of P -bcast; since virtual
broadcasts are performed using real broadcasts, the virtual transmission radius cannot
be larger than the real. Recall rvirt is the supremum distance between points in two
neighboring tiles. V-bcast then allows a real node p and a VSA for tile u to communi-
cate as long as the node is at most rvirt distance from any point in tile u and a VSA
to communicate with another VSA as long as they are in neighboring tiles. The imple-
mentation of the V-bcast service using the mobile clients’ P -bcast service introduces
the requirement that rvirt ≤ rreal − 2εsample · vmax. The 2εsample · vmax adjustment
guarantees that two nodes emulating VSAs for tiles they have just left (because they
have not yet received GPSupdates that they’ve change tiles) can still receive messages
transmitted to each other. If GPS error is considered, we would compensate by further
decreasing rvirt by twice the error bound.
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3.3 Delay Augmentation

The overhead of emulating Vu may introduce additional delays in the broadcasting of
messages. The emulation of Vu is then called a delay-augmented TIOA, an augmenta-
tion of Vu with timing perturbations composed with Vu’s output interface. These timing
perturbations are represented with a buffer Dout[e]u, composed with Vu’s bcast output.
The buffer delays delivery of messages by some nondeterminstic time [0, e]. Program
actions of Vu must be written taking into account the emulation parameter e, just as it
must the message delay factor d. A discussion of the value of e is in Section 4.4.

4 Implementation of the VSA Layer

We describe the implementation of a VSA by mobile clients in its tile in the network.
At a high level, the individual mobile clients in a tile share emulation of the virtual
machine through a deterministic state replication algorithm while also being coordi-
nated by a leader. We begin by describing a totally-ordered broadcast service and leader
election service for individual regions, also implemented using the underlying real mo-
bile nodes, that we will use in our replication algorithm. We then focus on describ-
ing the core emulation algorithm, briefly sketch correctness, and analyze emulation
overhead.

4.1 TOBcast Service

In order to keep emulators’ state consistent, emulators must process the same sets of
messages in the same order. We accomplish this by using the emulators’ clocks and
P -bcast service to implement a TOBcast service for each region and client. This ser-
vice allows a client Cp in tile u to broadcast m, TOBcast(m)u,p, and to have the
message be received, TOBrcv(m, u)v,q, by clients in tile(u) and neighboring tiles ex-
actly d time later. To implement this service, when a client wants to TOBcast m from
itself or its tile, it tags m with its current tile, time, message sequence number (in-
cremented when the client sends multiple messages at once), and the client id, and
broadcasts it using P -bcast. When a client receives such a message from a client in
its tile or a neighboring tile it holds the message in a queue until exactly d time has
passed since the message’s timestamp. Messages that are exactly d old are then TO-
Brcved in order of sender id and sequence number, ordering the messages. Timestamps
are also used to ensure self-stabilization; this is similar to the use of GPS oracles
in [9]. To avoid the use of shared variables, we include input and output actions so
the TOBcast service can inform the client whether all messages sent up to d time ago
have been received. Most complications in the use of these actions come from self-
stabilization.

4.2 Leader Election Service

Here we describe the specification for a leader election service required for our emulator
implementation. We divide time up into segments of length tslice called timeslices, that
begin on multiples of tslice. Assume tslice ≥ 4d. When there are no corruption failures,
the leader election service for a region u guarantees:
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(1) There is at most one leader of a region at a time, and the leader is in the region (or
within εsample · vmax) distance,

(2) If a process p becomes leader of region u at some time, then at that time either:
(a) there was a prior leader of region u during an interval starting at least d after p

entered u and ending after some multiple of tslice at least 2d later, or
(b) there is no process in u where a prior leader such as in (a) can be found,

(3) If a process ceases being leader at time t then it will be at least d time before a new
leader is chosen,

(4) For any two consecutive timeslices such that at least one process is alive in u for
both timeslices and no failures occur in the latter timeslice, there will be a leader
in one of the two timeslices from at least 2d time before the end of the timeslice to
the end of the timeslice.

Property (2) guarantees that either the process that is chosen as a leader has been in the
region long enough to have interacted with a prior leader, or there are no processes for
which that is true. Property (3) provides a time gap between leaders that will later be
useful in guaranteeing that a new leader had heard all prior leader broadcasts before it
became a leader.

One example of a self-stabilizing heartbeat implementation of this leader election
specification is as follows: if a process is leader, it broadcasts a leaderhb message
every tslice amount of time. Once it fails or leaves the tile, the other processes in the
region will synchronously timeout the heartbeat and send restart messages, from which
the lowest id process that had previously heard a heartbeat from the leader at least 3d
time after entering the tile is chosen as leader; this ensures that property (2a) holds.
If there is no such process, then the lowest id process becomes leader. This simplistic
strategy ignores issues of network contention or power management. We briefly discuss
alternative leader election strategies in Section 6.

4.3 Emulator Implementation

Here we describe a fault-tolerant implementation of a VSA emulator. We first describe
how our leader-based emulation generally works and then address details in the emu-
lation. The signature, state, and trajectories for the algorithm are in Figure 2 and the
actions are in Figure 3. Line numbers refer to lines in Figure 3.

Leader-based virtual machine emulation. In our virtual machine emulation, at most
one of the mobile nodes in a VSA’s tile is a leader (chosen by the leader election ser-
vice), with primary responsibility for emulating the VSA and performing VSA outputs.
A leader stores and updates the state of the VSA (including the VSA’s clock value) lo-
cally, simulating all actions of the VSA based on it. When the leader receives a TOBcast
message, it places the message in a local saved message queue (lines 33-37) from which
it simulates the VSA brcving (processing) the message (lines 39-45). If the VSA is to
perform a local action, the leader simulates its effect on the VSA state (lines 47-54).
If the VSA action is to bcast a message, the leader places the message in an outgoing
VSA queue (lines 53-54), to be removed and TOBcasted with the tile as the source by
the leader, in the VSA’s stead (lines 56-61).
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Signature:
2 Input GPSupdate(v, t)p, v ∈ U, t ∈ R

Input leader(val)u,p , val ∈ Bool
4 Input TOBnext(t)u,p, t ∈ R

Input TOBrcv(m, v)u,p , v ∈ {u}∪ nbrs(u)
6 Output TOBprobeu,p

Output TOBcast(m)u,p, m ∈ (Msg × R)∪ {join} ∪
8 ({update}× statesu)∪ ({check}× (hash× N)× Bool)

Internal VSArcv(m)u,p

10 Internal VSAlocal(act)u,p, act ∈ internal, output sigu

Internal correctqueuesu,p

12 Internal checksumu,p

14 State:
analog now ∈ R, current real time

16 reg ∈ U, current reg, initially ⊥
nextrcv, joinTS, leadTS, joinreq ∈ R

18 vstate ∈ statesu

oldsavedq, savedq, outq, queues of msg, timestamp pairs
20 checksum, triple of hashed Vu state, a natural, and a bool

22Trajectories:
satisfies

24d(now) = 1
constant reg, joinTS, joinreq, oldsavedq, savedq,

26outq, nextrcv, leadTS, checksum
τ(now).vstate = τu(τ(now).vstate.now)

28if (vstate 
= ⊥ ∧ vstate.now ≥ now -d) then
if vstate.now < now then

30d(vstate.now) = x, x > 2
else vstate.now = now

32else constant vstate
stops when

34Any precondition is satisfied.

Fig. 2. VSAEu,p, emulator at p of Vu = 〈sigu, statesu, startu, δu, τu〉 - signature, state,
trajectories

For fault-tolerance and load balancing reasons, it is necessary to have more than just
the leader maintaining a VSA. In our multiple emulator approach, a VSA is maintained
by several emulators, including at most one leader, each maintaining and updating its
local copy of the VSA state and saved message queue as above. However, non-leader
emulators, unlike leaders, do not transmit messages for the VSA from their outgoing
VSA queues, preventing multiple transmission of messages from the VSA. To keep
emulators consistent, the emulation trajectories are based on a determinized version of
the VSA trajectories.

Emulation details. There are several complications in VSA emulation that arise due
to both message delays and process failure:

Joining: When a node discovers it is in a new region, it TOBcasts a join message (lines
23-31). Any process that receives this message stores the timestamp of the message as
the latest join request (lines 63-65). If a leader has processed all messages in its saved
message queue and TOBcasted all messages in its outgoing VSA queue, it answers
outstanding join requests by TOBcasting an update message, containing a copy of the
leader’s current emulated VSA state (lines 67-75). The leader holds off on performing
any additional VSA-related transmissions until it receives this message (line 75). When
any process that has been in the region at least 2d time receives the update, it adopts
the attached VSA state as its own local VSA state and erases its outgoing VSA queue
(lines 77-91). (If it has not been in the region 2d time, its saved message queue may not
have all messages that were too recent to be reflected in the update.)

Catching up to real time: After receipt of an update message, the VSA’s clock (and
state) can be d behind real time. Intuitively, the VSA emulation is “set back” whenever
an update message is received. To guarantee the VSA emulation satisfies the speci-
fications from Section 3 (bounding the time the output trace of the emulation may be
behind that of the VSA being emulated), the virtual clock must catch up to real time.
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Output TOBprobeu,p

2 Precondition:
nextrcv ≤ now -d

4

Input TOBnext(t)u,p

6 Effect:
nextrcv ← t

8

Input GPSupdate(v, t)p

10 Effect:
now ← t

12 if reg �= v then
reg ← v

14 joinTS ← ∞

16 Input leader(val)u,p

Effect:
18 if (! val ∨ joinTS > now -d) then

leadTS ←∞
20 else if leadTS > now + d then

leadTS ← now
22

Output TOBcast(join)u,p

24 Precondition:
reg = u ∧ joinTS > now

26 Effect:
joinTS ← now

28 nextrcv ← now -d
leadTS, joinreq ← ∞

30 savedq, oldsavedq, outq ←∅
vstate, checksum ←⊥

32

Input TOBrcv(m,s)u,p, m.first/∈ {check,update,join}
34 Effect:

savedq ← append(savedq, 〈m.first, now -d〉)
36 if (s = u ∧∃ x,y:[outq = append(append(x, m), y)])

then outq ← y
38

Internal VSArcv(m)u,p

40 Precondition:
vstate �= ⊥∧ 〈m, t〉 = head(savedq)

42 Effect:
vstate ← δu(vstate, brcv(m))

44 oldsavedq ← append(oldsavedq, head(savedq))
savedq ← tail(savedq)

46

Internal VSAlocal(act)u,p

48 Precondition:
vstate �= ⊥�= δu(vstate, act) ∧ savedq = ∅

50 nextrcv > now -d ∧ act = next(vstate, δu)
Effect:

52 vstate ← δu(vstate, act)
if act = bcast(m) then

54 outq ← append(outq, 〈m, vstate.now〉)

56 Output TOBcast(m)u,p

Precondition:
58 reg = u ∧ leadTS ≤ now < nextrcv + d ∧ vstate �= ⊥

vstate.now ≥ now -d ∧∀〈m, t〉 ∈ outq: t ≥ now -e
60 m = head(outq)

Effect: outq ← tail(outq)
62

Input TOBrcv(join, u)u,p

64 Effect:
joinreq ← now -d

Output TOBcast(〈update, vstate′〉)u,p

68Precondition:
reg = u∧ leadTS ≤ now < nextrcv + d

70(vstate′= vstate∧ [vstate= ⊥ ∨ (vstate.now = now
∧ outq = ∅= savedq ∧ joinreq �= ∞) ]) ∨ (vstate′ = ⊥

72∧ [vstate.now < now -d ∨∃ 〈m, t〉 ∈ outq: t < now -e ])
Effect:

74joinreq ←∞
leadTS ← now + d

76

Input TOBrcv(〈update, vstate′〉, u)u,p

78Effect:
if joinreq ≤ now -2d then

80joinreq ←∞

if (joinTS ≤ now -2d ∧ vstate′ = ⊥) then
82vstate ← startu(now)

savedq ← ∅
84else if joinTS ≤ now -2d then

if vstate = ⊥ then
86oldsavedq ←∅

vstate ← vstate′

88savedq ← append(oldsavedq, savedq)
− {〈m, t〉: t ≤ now -2d}

90oldsavedq, outq ← ∅
checksum ←⊥

92

Internal correctqueuesu,p

94Precondition:
∃ 〈m,t〉 ∈ oldsavedq ∪ savedq: t > now -d

96∨∃ 〈m,t〉 ∈ outq: t > now
Effect:

98savedq, oldsavedq − = {〈m, t〉: t > now -d}
outq − = {〈m, t〉: t > now}

100

Internal checksumu,p

102Precondition:
vstate.now mod ttlupdate = 0 ∧ nextrcv > now -d

104savedq= ∅∧∀act∈ sigu-{brcv(m)}:δu(vstate,act)=⊥

checksum �= 〈checksum(vstate),vstate.now/ttlupdate,∗〉
106Effect:

checksum ←
108〈checksum(vstate), vstate.now / ttlupdate , false〉

if (joinreq �= ∞ ∧ joinreq > now -d) then
110joinreq ← now -d

112Output TOBcast(〈check, 〈csum, t〉, jr〉)u,p

Precondition:
114reg = u ∧ leadTS ≤ now < nextrcv + d ∧ outq = ∅

now + d ≤ (t + 1)·ttlupdate

116checksum = 〈csum, t, false〉 ∧ jr = = (joinreq �= ∞)
Effect:

118checksum ←〈csum, t, true〉

120Input TOBrcv(〈check, 〈csum′, t′〉, jr〉, u)u,p

Effect:
122outq − = {〈m, t〉: t ≤ t′ ·tslice}

if (jr ∧ joinreq = ∞) then
124joinreq ← now -2d

if ([vstate = ⊥∧ joinTS ≤ now -2d ∧ ! jr ]
126∨ [vstate �= ⊥∧ checksum �= 〈csum′, t′, ∗〉 ]) then

joinTS ← ∞

128else checksum ←〈csum′, t′ , true〉

Fig. 3. VSAEu,p, emulator at p of Vu = 〈sigu, statesu, startu, δu, τu〉 - actions
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This is done by having the virtual clock advance more than twice as fast as real time un-
til both are equal, after which they increase at the same rate. This is formally described
in Figure 2, lines 28-32. To guarantee that the virtual clock can catch up before d time,
we require a leader to only transmit an update message once its virtual clock is caught
up to real time (line 70).

Message processing: Messages to be received by the VSA are placed in a saved message
queue from which emulators simulate receiving the messages. If an update message is
received, setting back the state of the VSA, emulators must be able to resimulate receiv-
ing messages that were sent up to d time before the update was sent. In order to guarantee
this, whenever an emulator processes a message from the saved message queue for the
VSA, it moves the message into an old saved message queue (line 44); if a process re-
ceives an update message, it moves all messages in that queue that were received after
the update was sent back into its saved message queue to be reprocessed (line 88-89).

Making up leader broadcasts: If a leader is supposed to perform broadcasts on the
VSA’s behalf, but fails or leaves before sending them, the next leader needs to transmit
the messages. Since emulators store outgoing VSA messages in a local outgoing queue,
the new leader just transmits any messages stored in its outgoing queue (lines 56-61)
and removes them. To prevent messages from being rebroadcast by future leaders, em-
ulators that receive a VSA message broadcast by the leader remove it from their own
outgoing queues (lines 36-37).

Restarting a VSA: If a process is leader and has no value for the VSA state or has mes-
sages in its outgoing queue with timestamps older than the delay augmentation parame-
ter e, it restarts the emulation. It does this by sending an update message with attached
state of ⊥ and then waiting to receive the message (lines 67-75). When processes that
have been in the region 2d time receive the message d later, they initialize the VSA state
and messaging queues and begin emulating a restarted VSA (lines 77-91).

Self-stabilization. Our implementation is self-stabilizing through the use of local cor-
rection and update and checksum messages. The update messages sent by a leader
contain state information which overwrites any VSA state information at other emula-
tors, bringing emulators into agreement about VSA state. In the event that join requests
do not occur very often, if the virtual clock is divisible by ttlupdate, the emulators calcu-
late and store a checksum of the VSA state. The leader is then responsible for sending
out checksum messages with the attached checksum. Emulators, when they receive
this message, compare the attached checksum to the version that they have stored. If
the versions differ, they re-join. This ensures that emulators will have state consistent
with the leader’s.

4.4 Correctness and Performance Evaluation

Correctness roughly consists of guaranteeing liveness of the emulation under certain cir-
cumstances and guaranteeing that emulations of an abstract VSA implement the VSA.

We say a VSA emulation is failed if no process in the region has VSA state vstate �=
⊥ such that vstate.now ≥ now − d and its outgoing queue has no messages with
timestamps more than e before real-time.
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Assume that as a parameter of the system, there is some positive integer k such that
if a process is alive in a region from the beginning of any timeslice t through the end of
timeslice t + k, then there is at least one timeslice in t + 1 . . . t + k where no failures
or leaves of processes occur in the region. We can then show the following:

Lemma 1. For any non-failed VSA emulation, VSA outputs are not delayed by more
than e = (k + 1) · tslice − d time, and as long as from the beginning of any timeslice
there is at least one alive process in the VSA’s region with vstate �= ⊥, vstate.now ≥
now − d, and an outgoing queue without messages that are older than e that remains
alive in the region through the following k timeslices, the VSA emulation does not fail
or restart.

Lemma 2. If a VSA is failed in some timeslice but there is an alive process in the VSA’s
region from the beginning of the timeslice through the following k timeslices, then the
VSA will be restarted within e time.

Theorem 1. The VSA emulator and client implementation (S) correctly implement the
VSA abstraction (A): timed-traces(S) ⊆ timed-traces(A).

Proof sketch: We introduce an intermediate layer, and describe a (simple) simulation
relation [12] between this layer and the abstract layer. We then describe a simulation
relation from our implementation to the intermediate layer. Together, this shows the
implementation implements the abstract layer.

The intermediate layer is similar to the abstract layer, except that VSAs may have
clocks that are behind real-time and have incoming delay buffers that hold each message
bound for the VSA until the VSA’s clock passes the message’s timestamp. This layer
captures the idea that VSA state in the emulation can be behind what the corresponding
abstract VSA state would be. A simulation relation is then defined to show that this
intermediate layer implements the abstract layer, by relating the state of a VSA, its
incoming message buffer, and outgoing message buffer in the intermediate layer to what
will be the state of that VSA and its delayed outgoing message buffer in the abstract
layer, once its virtual clock equals the current real-time.

We then describe a forward simulation relation between the implementation and the
intermediate VSA abstraction for non-failed VSA emulations. There are several parts,
relating state of emulators to the state of the abstract VSA and state of message buffers
in the implementation to those of the abstract system:

(1) For any process where vstate �= ⊥, the value of vstate is equivalent to Vu.vstate
unless there is an update message in transit, in which case Vu.vstate is equal to the
attached state in the update message.

(2) If m is a message either in transit to p or in p’s saved message queue, then m
is in virtual transmission to u. If there is an update message in transit and m is in p’s
old saved message queue and if m was sent less than d before the update, then it is in
virtual transmission to u.

(3) If m is a message in transit to p and was sent by Vu, then the message is in virtual
transmission to p.

(4) If m is a message in the outgoing queue and not currently in transit, and no
update message is in transit then m is in Dout[e]. ��
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Message complexity. There are two parts to the message overhead introduced by this
algorithm. The first is that of the overhead in normal operation introduced over that
of the virtual machine if it was real. This is just one checksum-sized message every
ttlupdate time (used for self-stabilization). The second is that of the overhead from
dealing with processes joining the emulation. In this case, when a successful join occurs
it results in a broadcast of the VSA state and saved message queue, which could contain
as many messages as could be received in d time. If M ′ is the number of messages that
can be received in d time, then the bit overhead of a join is O(|vstate|+ |msg| ·M ′).

5 Applications for the VSA Layer

We believe the VSA layer will be helpful for many applications, including some of the
more difficult coordination problems for nonhomogenous networks oftentimes desired
in true mobile ad-hoc deployments. It allows application developers to re-use many al-
gorithms originally designed for the fixed network or base station setting, and to design
different services for different regions. Here we list several applications whose imple-
mentations would benefit from use of the VSA abstraction.

Geo-routing. One important application is to allow arbitrary regions to communicate.
This can be easily implemented by VSAs that utilize the fixed tiling of the network to
forward messages [9]. Each VSA chooses a neighboring VSA to forward a message to
according to criteria of shortest path to destination or greedy DFS as suggested in [8].
The VSA layer offers a fixed tiled infrastructure to depend on, rather than the ad-hoc
imaginary tiling used in that algorithm. Retransmissions along greedy DFS explored
links can be used to cope with repeated crashes and recoveries [9]. The GOAFR al-
gorithm [13], combining greedy routing and face routing, can be used to give efficient
routing in the face of “holes” in the VSA tiling.

Location management and end-to-end routing. Location management is a difficult
task in ad-hoc networks, as many algorithms assume fixed infrastructure and raise
difficult-to-analyze concerns about data consistency. However, home location algo-
rithms are easily implemented using the VSA layer [9]. Each client’s id can be hashed to
a set of VSAs (home locations) that would store the client’s location. The client would
occasionally inform its local VSA of its presence. That local VSA would then inform
the client’s home locations, using a Geo-routing service, of the region. Anyone search-
ing for the client would have their local VSA query the client’s home location VSAs,
again using the a Geo-routing service, for the client’s location.

The home location service can then be used to provide tracking services or end-to-
end communication between individual clients [9]. A message is sent to a client by
looking up its location using the home location service and then using Geo-routing to
send the message to VSAs close to the returned location. Those VSAs that receive the
message broadcast it to local clients for delivery by the intended recipient.

Distributed coordination. VSAs corresponding to geographic regions can be a source
of on-line information and coordination, directing mobile clients to help them complete
distributed systemwide missions. The virtual infrastructure can make it easier to handle
coordination of many clients when tasks are complex. Also, many coordination prob-
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lems can tolerate a VSA in an empty region failing since such regions have no clients
to coordinate. The use of a virtual infrastructure to enable mobile clients to coordinate
and equally space themselves along a target curve was recently demonstrated in [16].
The paper provides a simple framework for coordinating client nodes through interac-
tion with virtual nodes. It also demonstrates a simplistic “emulator-aware” approach to
maintenance of virtual automata; a VSA makes decisions about target destinations for
participating clients based partly on information about local population density in an
attempt to keep the VSA alive. The approach could be extended to take into account
more client or network factors and even to provide active recruitment, where virtual
automata can request emulator aid from distant virtual automata regions.

An example of a timed coordination application is that of a virtual traffic light. A
VSA for a region corresponding to the intersection of roads in a remote area can provide
a virtual traffic light that keeps the light green in each direction for a specific amount of
time, providing a substitute for the fixed infrastructure lacking in the region. The VSA
would be emulated by computers on vehicles approaching the intersection. Multiple
traffic VSAs can also coordinate to facilitate optimal movement of mobile clients.

Another coordination application is the Virtual Air-Traffic Controller [20]. The VSA
controller uses detailed knowledge of time in order to plan where and when airborne
planes should fly. The burden of regulating lateral separation of aircraft could be al-
located in a distributed fashion by VSAs, where VSAs assign local planes different
time separations and altitudes based on aircraft type and heading. By devolving some
decision-making to aircraft, we can both alleviate ground-based bottlenecks and al-
low for more local control of flight plans, resulting in optimized routes and better fuel
economy [23]. Airspace VSAs are easy to envision, given positioning, long-range com-
munications, and computing resources increasingly available on commercial aircraft.

Data collection and dissemination. A VSA could maintain a summary database of in-
formation about its local conditions and those of other regions. Clients could then query
their local VSA to get recent information about a location. The history is complete as
long as the VSA’s tile remains occupied. Resiliency can be built in by using techniques
already designed for static but failure-prone networks, such as automatically backing up
data at neighboring VSAs or sending data to a central, reliable location by a background
convergecast algorithm executed by the VSA network.

Hierarchical distributed data structures. Here, tile size is constrained by the broad-
cast range of the underlying nodes. An hierarchical emulation of the model, where mul-
tiple nodes coordinate to emulate larger tiles, can provide a more general infrastructure.
The VSA layer can be a basic building block to implement hierarchies in a network that
could, for example, be used to allow clients to register and query attributes.

6 Current and Future Work

The system model assumed so far abstracts away details of the underlying physical
layer in order to clearly describe algorithmic issues. Here we discuss some implemen-
tation issues and extensions. We also hope that current work simulating this layer and
implementing it will guide improvements in our layer implementation.
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Non-synchronized clocks. The VSA layer model and implementation could be ex-
tended to allow for a known bound on mobile node clock drift. This results in the addi-
tion of incoming message delay buffers for VSAs in the abstract model, in addition to
the outgoing ones already present.

Emulation strategies to accommodate message collisions. Our work is being ex-
tended to a communication model allowing message collisions [2]. One approach is to
relax the physical and VSA layer broadcast models to allow message loss in the pres-
ence of contention, but guarantee the VSA emulation is reliable by taking advantage of
the fact that leader election effectively defines an orderly timeslicing of a communica-
tion channel for at least one process. Consider two channels per tile in the network, pro-
vided either through frequency allocation or additional timeslicing. Assuming a leader
election service for this setting, whichever process is leader can have one channel to
itself, allowing it to perform VSA related broadcasts without interference from other
processes. The other channel could be used by nodes trying to communicate with the
VSA; message loss on this channel would be possible since there could be contention.
The leader can then become the arbiter of which messages are actually received by
the VSA, by rebroadcasting received messages; other emulators adopt these as the in-
coming messages for the VSA. Alternatively, a more state transmission heavy approach
could be adopted, where non-leader emulators are passive, and the leader periodically
broadcasts up-to-date state to them.

Leader election algorithms. Our emulation algorithm utilizes a basic leader election
service with a simple interface. Alternative leader election strategies can be considered.
For example, a round-robin strategy can help relieve network congestion. Such a strat-
egy could periodically select a new leader from a k-bounded vector of mobile nodes in
a region called guards. This is done by defining globally known timeslices of length
tslice and rotating the guards vector each timeslice, defining revolving responsibility
for leadership. Whichever process’s id and join timestamp pair is currently at the head
of the rotating vector is the leader. Processes trying to join the guards vector are ap-
pended to it if there is room while leaders that fail to transmit during their timeslice are
subsequently dropped from the vector.

A promising area for further research is into region-based leader election algorithms
for mobile networks that are designed to produce stable outputs that take into account
factors such as location, speed, power constraints, and reliability of individual nodes.
Improved leader election guarantees can lead to improved emulation guarantees.

In addition, a leader election service could be extended to inform client nodes if they
should participate in emulation at all. Some clients could be told they are not needed
for emulation for some period, allowing them to conserve power.

Extensions to non-homogenous networks. In many cases, there are portions of a de-
ployment area that have fixed infrastructure or sensing capabilities and portions that
do not. While the model we introduced here does not take into account the fact that
some deployments may have some access to fixed infrastructure, the model in this pa-
per should easily be extended to accommodate these mixed deployments.
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Abstract. We study the scenario where a batch of transient faults hits
an asynchronous distributed system by corrupting the state of some f
nodes. We concentrate on the basic majority consensus problem, where
nodes are required to agree on a common output value which is the input
value of the majority of them. We give a fully self-stabilizing adaptive al-
gorithm, i.e., the output value stabilizes in O(f) time at all nodes, for any
unknown f . Moreover, a state stabilization occurs in time proportional
to the (unknown) diameter of the network. Both upper bounds match
known lower bounds to within a constant factor. Previous results (stated
for a slightly less general problem called “persistent bit”) assumed the
synchronous network model, and that f < n/2.

1 Introduction

We consider protocols that can withstand state-corrupting faults that flip the
bits of the volatile memory in a system arbitrarily. A system that reaches a
legitimate state starting from an arbitrary state is called self-stabilizing [14]
or fully self-stabilizing.1 The stabilization time is the time that elapses since the
protocol starts executing (with arbitrary states at the corrupted nodes) until the
system reaches a legal state. Classical self-stabilizing protocols were designed to
minimize worst-case stabilization time regardless of the number of nodes whose
state was corrupted by the faults. More recently, it has been recognized that
if the faults hit only a few nodes, then a much faster stabilization is possible,
see e.g. [25, 2, 29, 30]. In [29, 30] a system is called time-adaptive or fault-local
if its stabilization time is proportional to the number of nodes whose state was
corrupted.
� This research was partially supported by the Israel Science Foundation (Grant

4005/02).
1 We use the qualifier “fully” to emphasize that the state can be arbitrarily corrupted.

We mention some weaker forms of stabilization later.
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The Majority Consensus problem is a basic problem in distributed computing:
each node has an input, and it is required that the output at each node stabilizes
to the majority of these inputs. In this paper it is assumed that the input can be
changed by transient faults, by the environment, or by the stabilizing algorithm.
This problem is a simple form of the general consensus problem [20], which is
fundamental to fault tolerant distributed applications.
Our Results. We present a fully self-stabilizing, optimal time-adaptive solution
for the majority consensus problem for asynchronous networks. The output of
our algorithm stabilizes in time proportional to f , the number of nodes hit by
faults. The state stabilization time is proportional to the network diameter. In
other words, our algorithm is optimal in both output and state stabilization
(see [29]). These properties hold even in the case that f ≥ n/2 (where n is the
number of nodes). This should be contrasted with previous results that were
only for f < n/2.

As a corollary, our solution solves the Persistent Bit problem [30, 29] whenever
such a solution is possible. “Persistent Bit” is the task of remembering the value
of a replicated bit in the face of state corruptions. The time adaptive solution
in [29] was only for synchronous networks, while we solve it time adaptively for
asynchronous networks.

The algorithm utilizes some known techniques, namely the self-stabilizing
synchronization [6] and the power-supply method [1]. We use a new version
of the power-supply method. The time-adaptivity we prove for power-supply is
stronger than the self-stabilization proven in [1]; this new property may be useful
for other applications of power supply.

For simplicity, we present the algorithm as one maintaining only 0/1 values,
but it can easily be adapted for any range of values.

Related Work. The study of self-stabilizing protocols was initiated by Dijkstra
[14]. Reset-based approaches to self-stabilization are described in [27, 3, 7, 6, 16, 5].
One of the main drawbacks of this approach is that the detection mechanism
triggers a system-wide reset in the face of the slightest inconsistency.

Fast stabilization of the output variables are demonstrated in a number of
algorithms [26, 24, 2, 22, 4, 11, 32, 8]. Some general methods to achieve time adap-
tivity are discussed in [29, 17, 21]. The distinction between output stabilization
and state stabilization (see definitions in Sec. 2) is used and discussed in a number
of papers [29, 31, 15, 25, 23].

We use the self stabilizing synchronizer with a counter (sometimes called
phase clock) of [6]. Other phase clocks in the literature, such as [10, 18, 13, 23],
may also be useful.

Papers most closely related to our work are [6, 25, 2, 29, 30, 22, 11, 32]. A pre-
liminary brief announcement [28] at the PODC’98 symposium announces results
that appear in the current paper.

Paper Organization. In Sec. 2, we formalize the model and introduce a few
notations. In Sec. 3, we present the problems and explain the overall structure
of the solution. The new algorithm is presented in Sec. 4 and 5 dealing with
output and state stabilization respectively.
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2 Model and Notations

System Model. The system topology is represented by an undirected graph G =
(V, E), where nodes represent processors and edges represent communication
links. The number of the nodes is denoted by n = |V |. The diameter of the
graph is denoted by diam. We assume that there is a known upper bound
on the diameter of the network, denoted by D. This upper bound serves only
for the purpose of having finite space protocols. For i ∈ V , we define N(i) =
{j | (i, j) ∈ E}, called the neighbors of i. We do not assume that the set of edges
in the network is known in advance, i.e., algorithms are required to work on any
topology. We consider an asynchronous message passing network model. In a
message passing network, processors may exchange values only by transmitting
packets. In our model, a packet consists of a set of messages. The packet delivery
time can be arbitrary, but for the purpose of time analysis only, we assume that
each packet is delivered in at most one time unit.

The number of packets that may be in transit on any link in each direction
and at the same time is bounded by some parameter B (independent of the
network size). We adopt this assumption from [1]; it is necessary, as shown in
[19], for solving problems in a self-stabilizing manner. For simplicity, we assume
that B = 1, i.e., there is at most one outstanding packet on each link at any given
time (see [7] for more details). A packet may contain any number of messages.
Each message contains information (a node identity and more) related to some
specific node. In our algorithm, we distinguish between two types of messages,
called strong and weak (Sec. 4.1). Each node maintains two buffers for each link:
one for the incoming packets and another one for the outgoing packets. Each
buffer contains at most one message for each type and for each node: for each
type and node, only the most recent message is stored in the buffer (cf. [1]). If
a new message arrives, the previous one is discarded.

We adopt the usual definitions of the following: a local state of a node (an
assignment of values to the local variables and the location counter); a global
state of a system of nodes (the cross product of the local states of its constituent
nodes, plus the contents of the links); the semantics of protocol actions (possi-
ble atomic steps and their associated state changes); an execution sequence of
protocol P (a possibly infinite sequence of global states in which each element
follows from its predecessor by execution of a single atomic step of P).

Fault Model. We follow the terminology of [29]. We assume that each protocol
has a legality predicate over the set of global states. Informally, a legal global state
of our protocol is a state in which the protocol is ready to get a new batch of
faults in the sense that following these faults the protocol satisfy all its claimed
execution properties (in particular, time adaptivity; as for state stabilization,
our protocol stabilizes from any finite number of faults that occur anytime). A
formal definition of the legality predicate of our protocol is deferred to the full
paper. A faulty node is defined as in [6]. We define two global states: a start
state s0 that exists at time t0 = 0, right after the faults hit, and a reference
state s−1, where s−1 is legal; a node is called faulty if its local state is different
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in s0 and s−1. Note that every part of the state (except for the ID of the node)
can be changed by the adversary and this is considered a fault. Without loss
of generality, a fault that corrupts a packet over a link is considered a fault in
the node that receives that packet eventually. A fault number is the number of
faulty nodes at the start state s0.

A protocol is called f -stabilizing if starting from a state with fault number at
most f , it reaches a legal state eventually and remains in a legal state thereafter.
A protocol is called self-stabilizing or fully self-stabilizing if it is f -stabilizing for
f = n. We distinguish between output stabilization and state stabilization: output
stabilization is said to occur once the externally observable portion of the state
becomes (and stays) legal, and state stabilization is said to occur when the entire
state becomes (and stays) legal. The maximum number of time units that takes
to reach the state stabilization (respectively, output stabilization) is called the
state stabilization time of the protocol (resp., output stabilization time). If the
output stabilization time of an algorithm depends only on the fault number then
the algorithm is said to be fault local, or time-adaptive.

Typographical Convention. Protocol variables are represented using teletype
font, with a subscript indicating the node in which the variable is located.
For example, disti denotes the “distance” variable at node i, whose value may
be arbitrary. Graph properties are represented using a boldface font, as in
dist(i, j), which denotes the true distance in the graph between nodes i and j.

3 The Majority Consensus Problem

A node is said to be internally legal if its local state can be reached in an
execution with no faults.

Our main target is the following problem.

Definition 1. In the Majority Consensus problem, each node has an input bit
that can be changed by the environment and an externally observable output bit.
The bits satisfy the following requirements.

– Eventual Agreement: eventually, all output and input bits must be equal.
– Majority Consensus: If there is a majority of internally legal nodes having a

common value b in all the input and output bits at the start state, then the
eventual common value of all the output and input bits is b.

Let us also define the Persistent Bit problem that was dealt with previously in
[30, 29]. In this problem, each node has an input bit that can be changed by the
environment and an externally observable output bit. It is assumed that all input
bits were assigned a common value b, and then a fault may have occurred. The
“Eventual Agreement” requirement is identical to that of the Majority Consensus
problem. However, the Persistence requirement (which replaces the “Majority
Consensus” requirement) is that all output and input bits eventually stabilize
to the original value b. It is not hard to see that Persistence is impossible if
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f ≥ n/2. In the case of f < n/2, the Persistent Bit problem can be reduced
to the Majority Consensus problem, since in this case there is a majority of
non-faulty nodes in the start state.

In [29], an algorithm was presented for which the following result was proven.

Theorem 1. There exists a protocol for the Persistent Bit problem in the
synchronous network model such that if the local states of f < n/2 of the nodes
are changed arbitrarily, then the output bits are restored everywhere in O(f) time
units, and the state stabilization occurs in O(diam) time units, where diam
denotes the actual unknown diameter of the network.

Here we prove the following strictly stronger result.

Theorem 2. There exists a protocol for the Majority Consensus problem in
the asynchronous network model such that if the local states of f ≤ n of the nodes
are changed arbitrarily, then the output bits stabilize everywhere in O(f) time
units, and the state stabilization occurs in O(diam) time units, where diam
denotes the actual unknown diameter of the network.

As explained above, a solution to the majority consensus problem is a solution to
the persistent bit problem. Thus, the improvement in our result is twofold: first,
the algorithm presented here is for the strictly weaker model of asynchronous
communication; and second, our algorithm can withstand any number of faults
(i.e. it is fully self-stabilizing for the majority consensus problem).

3.1 Overview of the Protocol

The high-level structure of the new protocol is identical to that of the algorithm
presented in [29]. The protocol has two parts: the output stabilization (OS) pro-
tocol and the input fixing (IF) protocol. The input is given replicated at all the
nodes. Then, if faults corrupt a minority of the input bits, they can be repaired
by adopting the value of the majority. Here, if the majority is corrupted, the cor-
rect minority is brought to agree with the majority if a majority exists for some
input value in internally legal nodes. Otherwise, the protocol chooses some legal
value - the same at all the nodes. To perform this repair, the input bit of each
node is disseminated to all the other nodes using a protocol called power-supply
regulated broadcast (PS-RB) [29]. The (externally observable) output bit is com-
puted at each node by taking the majority of the values received by PS-RB.
For the input fixing part we design an algorithm that works independently from
the output stabilization algorithm and stabilizes the input bits to legal values in
O(diam) time units.

While the high-level structure of the solution resembles the one in [29], com-
ponent sub-protocols had to be changed. First, OS was changed because of the
asynchrony. In [29], the propagation of broadcasted input values was slowed
down. The idea was to allow fault detection messages to catch up with faulty
broadcast messages and stop them. Slowing down is easy in a synchronous model:
say, by forwarding slow messages every other clock “tick” (called pulse). This
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method cannot be used in asynchronous systems. Instead, we use the Power Sup-
ply technique [1]. This change enables the use of OS in asynchronous networks.
No change to OS was needed to ensure full stabilization, i.e., to allow for the
case f ≥ n/2. This is because, even if f ≥ n/2, the new Input Fixing makes sure
that complete state stabilization occurs in O(diam) and hence, in O(n) time.
Note that for f ≥ n/2, the time adaptivity requirement is vacuous since in that
case, f = Θ(n), and hence, an output stabilization time of O(n) is good enough.

Second, the new IF is a fully-stabilizing protocol for any f . To design the
IF algorithm, we first construct a fully-stabilizing algorithm which solves
the case of f ≤ n for the synchronous network model. We then combine it
with the self-stabilizing synchronizer to make it work in the asynchronous net-
work model. Such a use of a synchronizer was not possible for OS, since known
synchronizers are not time adaptive. The use of a synchronizer is possible for IF,
since IF cannot be time adaptive anyway [29].

4 Output Stabilization

4.1 The Output Stabilization Protocol

The main tool of the OS protocol is that each node has faithful replicas of all
input values in the system. These replicas, called estimates, are used to compute
the local output bit by a majority rule. For now, assume that for f < n/2,
input bits at non-faulty nodes never change (we prove this later). Under this
assumption, it is sufficient for time-adaptivity that (1) in O(f) time all unfaithful
estimates (those damaged by the faults) disappear, and (2) at each node there
are at least f +1 (a majority) faithful estimates of non-faulty nodes. In this way,
after O(f) time, the majority vote at each node outputs the original value that
was at the nodes at the reference state s−1 before the faults (Theorem 3).

In the case that f ≥ n/2, the output stabilization is achieved in two stages:
first, input bits of all nodes stabilize (by the IF protocol) in O(diam) time (Sec.
5); second, output bits stabilize to the common value of the input bits (by the
OS protocol) in O(diam) time too (Theorem 4).

We now introduce some terms used in the following description of the OS
protocol. The term estimate is used to describe not only the replica of some
input value, but also any other broadcast piece of information (like distance or
parent pointer values used by PS-RB). Given a node k ∈ V, an estimate is said
to be faithful w.r.t. k if: (1) it is an input value estimate and its value is identical
to the input value that is broadcast by the source k, or (2) it is a distance or
a parent pointer estimate and its value conforms with the graph properties. An
erased estimate means an estimate the value of which is its default value, e.g. ⊥
is a default value for an input bit estimate (null and ∞ are the default values
of parent pointer and distance estimates (resp.)). An unfaithful estimate is one
that is both not faithful and not erased. The term unfaithful message/node w.r.t
k refers to a message/node that contains an unfaithful estimate for node k.

Let us explain the mechanism of the OS protocol. As in the algorithm pre-
sented in [29], to disseminate the input values through the system in the reg-
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ulated manner, OS builds a Bellman-Ford (BF) [9] minimal hop spanning tree
rooted at each node, which is “regulated” by the power-supply technique as ex-
plained below. Thus, each node r ∈ V maintains multiple (n) BF trees: one tree
to broadcast its own input value and the rest n − 1 trees for participating in
broadcasts of other nodes’ input values. The invocation of the algorithm that
builds such a spanning tree is independent from those that build the other trees.
We term this algorithm power-supply regulated broadcast (PS-RB). The following
description of OS applies to one PS-RB tree, rooted at some node r.

A fault can create at some node i an unfaithful estimate of the input of r.
Moreover, a careless protocol could have disseminated the unfaithful estimate
to other nodes, causing them to behave as if they were faulty too. This would
have rendered time adaptive stabilization impossible. To avoid that situation,
the power supply technique presented in [1] is used to regulate the broadcast of
the input values. That is, the OS algorithm uses two types of messages: strong
and weak. Each node i sends to its neighbors a set of weak messages periodically.
Each weak message contains node’s current estimates for every other node. Weak
messages are not forwarded. The goal of the exchange of weak messages is to
detect faults in nodes’ states as fast as possible by detecting an inconsistency
in states of neighbors. An inconsistency (w.r.t. node r) in some node i �= r is
checked by evaluating the local predicate inconsisi,p(r) (given in Fig. 1) whenever
a message (either weak or strong) arrives from neighbor p ∈ N(i) (Def. 4). The
predicate is local in the sense that it is computed only on variables of node
i, and variables of its neighbors, received by messages from them. When an
inconsistency w.r.t. r is detected at node i, i initiates a reset wave. This is a
broadcast wave that is forwarded over the subtree (for r’s broadcast) rooted at
i. The reset erases all the estimates of r and r’s tree structure (the subtree rooted
at i) as it goes. Note that a reset in r’s tree does not harm the other trees in the
same nodes.

Strong messages are generated originally by each PS-RB tree root r to broad-
cast its own input value. They are the only messages that can propagate esti-
mates of a particular root r. A strong message of r propagates from the broadcast
tree root r to the leaves. To “adopt” new estimates for r, the following must hap-
pen for node i: (a) i must receive two identical consecutive strong messages (m1
and m2) containing these new estimates; (b) m1 and m2 must arrive on the
same path from r; (c) weak messages received from the same neighbor p on that
path in between m1 and m2 must be consistent in the sense that they do not
cause the local predicate cand inconsis i,p(r) (given in Fig. 1) to be true. Node i
that receives a candidate estimate (in a strong massage) for the first time, does
not propagates this estimate. Instead, i “consumes” that strong message and
initiates a reset wave down the tree. Only on the second receive of the same can-
didate estimate, node i can “adopt” and propagate this estimate. Note that new
estimate “adoption” can occur only if the explained above Constrains (a)-(b)
holds true.

The described mechanism ensures that unfaithful strong messages eventually
disappear from the network, since: (a) strong messages cannot flow in a cycle
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(Obs. 2 [1]), (b) although nodes can forward unfaithful strong messages, no node
can generate such messages, and (c) the number of unfaithful strong messages
is reduced by each node that “consumes” it. This, in turn, prevents unfaithful
strong messages from propagating unfaithful estimates too far. Thus, a reset
wave eliminates the effect of unfaithful estimates on the majority function as
fast as possible (in O(f) time). Meanwhile, in O(f) time too (for f < n/2),
a majority (at least f + 1) of faithful (and correct) input value estimates of
non-faulty nodes arrive (by the broadcast of faithful strong messages) and are
“adopted” by each node i. Now, the majority function outputs a legal value at
each i.

Pseudo-code for the output stabilization is presented in Fig. 2. Definitions
for the pseudo-code are presented separately in Fig. 1. For every pair of nodes
i, j, vali[j] is the current estimate of node i for the input value of node j, and
vali[i] is the input value of node i. The majority function ignores the ⊥ values
and outputs 0 in the case of a tie. Variable disti[j] is the current estimate of
i for the shortest distance from i to j. Variable pari[j] is the current estimate
of i for the parent pointer to the neighbor leading to j on the shortest path.
Variables with the prefix cand are used to store candidate values for newly
arrived estimates in strong messages. Strongi,p(j) and Weaki,p(j) are strong
and weak messages received at node i from neighbor p and contain estimates
for node j. Each message contains three elements: an identity of a node j, an
estimate for the input value of node j and an estimate for the shortest distance
between p and j.

4.2 Analysis of the Output Stabilization Protocol

To analyze the OS part of the new algorithm we use the structure of the analysis
used for the synchronous algorithm in [29]. To benefit from the work that was
already performed, we conform to definitions, notations and the proof sequence
as much as possible while emphasizing the differences. First, we concentrate on
proofs of the output stabilization for the case of f < n/2.

Since the regulated broadcast on any BF tree in the system works indepen-
dently of the others, we consider a single representative tree rooted at a non-
faulty node j. For the case of f < n/2, trees rooted at faulty nodes are ignored,
since they can distribute an arbitrary value.

Definition 2. Let i ∈ V . The depth of i is depth(i) def= max {dist(i, j) | j ∈ V }.

Definition 3. Let j ∈ V , and fix a global state.

– A node i is faithful with respect to j �= i if (vali[j] = valj [j]) ∧ (disti[j] =
dist(i, j)) and there exist path of nodes (x1 = j, x2, ..., xl, i), such that xl =
pari[j] and the length of the path is dist(i,j).

– A node i is faithful w.r.t. itself if disti[i] = 0 and pari[i] = null.
– A strong or a weak message (j, value, dist) is faithful w.r.t. j if the following

condition holds: (value = valj [j]) ∧ (dist = dist(i, j)).



154 J. Burman et al.

Constants
V : the set of nodes
D : an upper bound on diam
N(i) : the set of neighbors of i

State for node i
(* local estimates and candidates for the local estimates *)

vali[V ], cand vali[V ] : array of {0, 1,⊥}, except for vali[i] that is in {0, 1}
pari[V ], cand pari[V ] : array of N(i) ∪ {null}
disti[V ], cand disti[V ] : array of {1, . . . , D} ∪ {∞}
outputi ∈ {0, 1}

Messages at node i (* received from p ∈ N(i) with estimates for node v *)
Weaki,p(v), Strongi,p(v) ∈ { [V, {0, 1,⊥} , {1, . . . , D} ∪ {∞}] }

Shorthand (* value and dist are estimates for node j received from p ∈ N(i) *)
inconsisi,p(j, value, dist) ≡ inconsisi,p(j) ≡

≡ [i �= j] ∧
[
(value �= vali[j] ∧ p = pari[j]) ∨

(dist + 1 < disti[j]) ∨
(dist + 1 �= disti[j] ∧ p = pari[j]) ∨
(pari[j] = null ∧ disti[j] �= ∞) ∨
(pari[j] �= null ∧ disti[j] = ∞) ∨

(pari[j] = null ∧ disti[j] = ∞ ∧ vali[j] �= ⊥) ∨ pari[j] /∈ N(i)
]

cand inconsisi,p(j, value, dist) ≡ cand inconsisi,p(j) ≡
(* obtained by applying the inconsisi,p(j) on node i variables with prefix cand *)

is candidatei,p(j, value, dist) ≡ (cand vali[j] = value �= ⊥) ∧
(cand disti[j] = dist + 1 ∧ dist �= ∞) ∧ (cand pari[j] = p)

Fig. 1. Definitions at node i

Definition 4. Let j, i ∈ V such that i �= j and fix a global state.

– Let p ∈ N(i). Node i is inconsistent with p with respect to j if Predicate
inconsisi,p(j, valp[j], distp[j]), given in Fig. 1 holds true.

– A node i is inconsistent w.r.t. j if for some p ∈ N(i) inconsis i,p(j) holds.

Note that there is a subtle, but important, difference between the definition of
the inconsistency between nodes i and p (Def. 4) and the definition of Predicate
inconsisi,p(j). The predicate is computed by the algorithm, hence it uses the
variables of i and the values of the message received from p, in the buffer of
i. On the other hand, Def. 4 applies to the variables of i versus the variables
of p. The algorithm at i cannot access the variables of p, so it cannot know
immediately whether i and p are inconsistent. However, in at most an additional
(fault-free) time unit, an additional weak message that is originated in p arrives
at i and the true inconsistency may be detected.

We ignore the case of inconsistency w.r.t. the node itself, since it is easy to
see that the algorithm ensures a permanent consistency in this case (see the first
two actions in the Do forever loop and in the procedures dealing with the receive
of weak and strong messages in Fig. 2).
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Procedure send weak() (* sending a set of weak messages *)
for each j ∈ V do

Send [ j, vali[j], disti[j] ] as a weak message to N(i)

Upon receiving Strongi,p(v) ≡ (v, msg value, msg dist) message:

(* the following is executed atomically *)
pari[i] ← null, disti[i] ← 0 (* i is the root of its tree *)
if inconsisi,p(Strongi,p(v)) then

if is candidatei,p(Strongi,p(v)) then
vali[v] ← msg value
pari[v] ← p
disti[v] ← msg dist + 1
Send [ v, vali[v], disti[v] ] as a strong message to N(i)

else (* new information received *)
cand vali[v] ← msg value
cand pari[v] ← p
cand disti[v] ← msg dist + 1
vali[v] ←⊥ (* generate reset on inconsistency *)
pari[v] ← null
disti[v] ← ∞
Send [ v, vali[v], disti[v] ] as a weak message to N(i)

else (* if consistent, just forward *)
if p = pari[v] then

Send [ v, vali[v], disti[v] ] as a strong message to N(i)

outputi ← majority {vali[j] | j ∈ V }

Upon receiving Weaki,p(v) ≡ (v, msg value, msg dist) message:

(* the following is executed atomically *)
pari[i] ← null, disti[i] ← 0 (* i is the root of its tree *)
if inconsisi,p(Weaki,p(v)) then (* generate reset on inconsistency *)

vali[v] ← ⊥
pari[v] ← null
disti[v] ← ∞
Send [ v, vali[v], disti[v] ] as a weak message to N(i)

if cand inconsisi,p(Weaki,p(v)) then
cand vali[v] ← ⊥
cand pari[v] ← null
cand disti[v] ← ∞

Do forever: (* each iteration of the loop executes atomically *)
pari[i] ← null, disti[i] ← 0 (* i is the root of its tree *)
Send [ i, vali[i], disti[i] ] as a strong message to N(i)
send weak()

Fig. 2. Code for output stabilization at node i
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The importance of the following property of PS-RB is that it holds even
before stabilization. A similar lemma was used also in [29] for the synchronous
algorithm. The proof is deferred to the full paper.

Lemma 1. Let i, j ∈ V , and let t ≥ t0(= 0). Assume that no faults occur in the
time interval [0, t]. Then, at time t + 1, disti[j] ≥ min(t,dist(i, j)).

The following lemma implies that faithful estimates of input values that do not
change, are established quickly.

Lemma 2. Let i, j ∈ V , and let t ≥ 0. If valj [j] does not change in a (fault-
free) time interval [0, 3t+3], then for every node i with dist(i, j) ≤ t, i is faithful
w.r.t j at time 3t + 3.

Proof Sketch: By induction on t. The basis for t = 0 is trivial. For the induction
step we assume that the lemma holds for some t = k. We now prove the lemma
for t = k + 1. Let xk+1 be a node, such that dist(xk+1, j) = k + 1.

Starting at a time (at 3k + 3), some neighbor xk becomes faithful w.r.t j
by the induction hypothesis. This xk provides faithful w.r.t. j distance estimate
value k. Thus, starting at time (3k + 3) + 1, any distance estimate, which is
higher than k + 1, cannot be “adopted” at xk+1. This is correct due to the BF
minimal hop tree construction scheme used by the algorithm. See the definition
of predicate inconsisxk+1,xk

(j) (Fig.1). Moreover, by Lemma 1, starting at time
k + 2, distxk+1 [j] ≥ k + 1. This implies the following:

(*) Starting at time (3k + 3) + 1, distxk+1 [j] = k + 1 is the only candidate
distance estimate value that can be “adopted” at xk+1.

If starting at time (3k + 3) + 1, node xk+1 adopts (faithful) estimates from
some node zk, such that dist(zk, j) = k, then the lemma holds by the induction
hypothesis (and the assumption that this is a fault free interval). Let us assume,
by way of contradiction, that at some time after (3k + 3) the estimates at node
xk+1 are not faithful w.r.t. j. Consider the first time τ > 3k + 3 that this
happens. First, note that if just before time τ , node xk+1 is not consistent w.r.t.
j then xk+1 resets it variables for the tree of j. Hence, at time τ , node xk+1
adopts unfaithful estimates from some node y, such that disty[j] = disty > k.
On the other hand, if just before time τ node xk+1 does not reset its estimates,
then there exists a neighbor y such that xk+1 is consistent with y w.r.t. j. As
before, by our assumption that the estimates are unfaithful, and by the induction
hypothesis, disty[j] = disty > k.

By Lemma 1, starting at time disty + 1 (> k + 1), disty[j] > k. If xk+1
either adopts estimates from y, or is consistent with y w.r.t. j, it follows that
distxk+1 [j] = disty + 1 > k + 1. However, this is impossible by statement (*)
above. A contradiction.

Let us now describe the ideas behind the following lemma Lem. 3 informally.
Note that if a node v0 is inconsistent w.r.t. some j, then v0 resets its estimates
for j. Unfortunately, it is possible for a node to be unfaithful w.r.t. j, while
not being inconsistent. For example, consider an unfaithful w.r.t. j node v1 that
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is a neighbor of v0, such that parv1
[j] = v0, distv1 [j] = distv0 [j] + 1, and

valv1 [j] = valv0 [j]. (Moreover, assume that distv0 [j] is the smallest among
the distances estimates for j received from v1’s neighbors.). Clearly, node v1 is
consistent with v0 w.r.t. j. Hence, no resetting of the estimates for j will take
place until different estimates are received.

We say that v0 and v1 are in an unfaithful parent chain (w.r.t. j). The def-
inition of a parent chain is deferred to the full paper. It takes into account the
facts that the chain can change in time, and that it can be based on cand par,
cand val, and cand dist, not just on par, val, and dist.

The first crucial observation is that the maximum length of an unfaithful
parent chain immediately after the faults is O(f). Moreover, the first node v0
in an unfaithful parent chain is always inconsistent, hence it leaves the parent
chain within O(1) time, since it resets its estimates for j. Every child of v0 (in
the tree of j) now becomes a first node in an unfaithful parent chain, and hence
inconsistent. Thus, it leaves the parent chain in O(1) time, and so forth.

The second observation is that the number of unfaithful w.r.t. j strong mes-
sages in buffers or over links of the parent chain immediately after the faults is
O(f) too. Moreover, no new unfaithful w.r.t j strong messages can be created
(unless additional faults occur), since j is the only node who can generate its
strong messages. Moreover, for a node not in the parent chain to join a parent
chain, the number of unfaithful strong messages must decrease by one (the first
such message to be received by such a node is consumed, not forwarded; this is
the essence of Power Supply). The end result is that some nodes may join and
leave a chain several times. Nevertheless, the total number of such joins (total
over of all the nodes, for a given chain) is bounded by O(f). Moreover, the total
number of nodes’ joins, plus the original length of the chain is O(f).

Finally, it is easy to observe that chains cannot merge, nor can a chain contain
a cycle at any given time. The end result of these three observations is that an
unfaithful parent chain disappears in O(f) time. The above argument is used in
the proof of the following lemma. The formal proof is deferred to the full paper.

Lemma 3. Let i ∈ V be any node. Let j ∈ V be non-faulty, and assume that
valj [j] does not change for t ≥ 3 ·min(depth(i) + 1, f + 1) time (since a start
state s0 in t0 = 0). Assume that no faults occur in the time interval [0, t]. Then,
at time t, we have that vali[j] ∈ {valj [j],⊥}.

We note that one of the main by-products of the lemma’s proof is the basic
property of the power supply: unfaithful estimates are forwarded only a few
times (depending on f). The dependence on f , we prove, is required for the
time-adaptive solution. Although [1] concentrated on the worst case stabilization
time complexities (rather than time adaptivity), the proofs of [1] already hints
of time adaptivity.

We can now prove that the output stabilizes quickly, provided that the non-
faulty input bits remain fixed (we prove this in Theorem 5, [12]). The proof
follows directly from the last two lemmas.
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Theorem 3. Starting from an arbitrary state with a fault number f < n/2, if
non-faulty input values do not change, then starting at time min(3 ·diam, 6f)+3
the output stabilizes, i.e., all output values are equal to the input values of non-
faulty nodes.

The following theorem implies the required output stabilization time in the case
of f ≥ n/2, provided that input values stabilize in O(diam) time (Sec. 5). The
proof is easily implied by Lemma 2.

Theorem 4. Starting from an arbitrary state with a fault number f ≤ n, if input
values do not change, then starting at time 3 · diam + 3 the output stabilizes,
i.e., all output values are equal to the majority value of the input values.

The complete state stabilization time of PS-RB is larger than O(f). We have
shown above that this does not harm the O(f) output stabilization time. We
note that the complete stabilization time of PS-RB is O(diam) [1]. Hence, this
does not harm the state stabilization time of the combined OS-IF algorithm
either.

5 Input Fixing and Full Stabilization

Due to lack of space, we only give a brief outline of the IF protocol. For the
details, see the extended version of this abstract ([12]). First, consider the Input
fixing protocol of [29]. Recall that every node has two variables. The output
variable must stabilize quickly, and hence it may change its value several times
before stabilization (see [29]). The input variable, on the other hand, retains its
value for a long time. In [29] it was corrected by the algorithm only when it was
certain that this correction will not change a correct value to an incorrect one.

To ensure that a correct value will not be changed “too soon,” [29] uses the
assumption that only a minority of the processes are faulty. When coming to
ensure the full stabilization, we need to change the input fixing protocol such
that the reliance on a correct majority is removed. (The changes of the output
stabilization described in Sec. 4 were due only to the asynchronous network
model and assume an appropriate behavior of the IF.) The new IF protocol
with the adaptation for the case of f ≥ n/2 is given below.

Suppose that the majority of the nodes suffered faults, such that the input
value in the majority was changed to some new value maj. The first idea is
to view nodes with input = maj as correct nodes, and then use the output
stabilization algorithm as is. The idea above needs some refinements, though.
For example: had maj really been the value of a correct node v, then the output
(not just the input) at v would have also equaled maj at the start state. We
addressed this point (together with some related points) by being more careful
in the definition of the Majority Consensus requirement (Def. 1) and requiring
a node to be internally legal (Sec. 3) to be considered a part of the majority.

The main difficulty is raised by the need to ensure the assumption used in
Sec. 4 that if the input value at a node is the majority value, then it is not
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changed, or, more precisely, it is assumed that this value is not changed for a
sufficiently long time.

The new Input Fixing protocol ensures this property even when the majority
input value belongs to faulty nodes. First, we use a self stabilizing synchronizer,
which allows us to design the new IF for synchronous networks and than adopt
this solution to work in asynchronous networks as desired. (Recall that Input
Fixing cannot be time adaptive anyway [29], so a non-adaptive synchronizer
does not harm its time complexity.) We then use a self stabilizing phase clock
algorithm: this is a kind of a synchronizer that also keeps and advances a counter
of the passing time.2 Moreover, the phase clock algorithm ensures that time
counter values at different nodes differ by at most the nodes’ distance. Now, if
a node either fixes its input, or finds an inconsistency, it resets its time counter
to zero, and so do all the other nodes within diameter time. On the other hand,
in order to fix an input, the time counter value must be much larger than the
diameter. Hence, a long time passes (after the resetting) with no node fixing its
input. Actually, this is somewhat more involved: after fixing its input, a node
does not reset the counters immediately, but rather continues counting for a long
time and only then resets, to give the other nodes the opportunity to reach the
maximum of their counters and fix their inputs too.

References

1. Y. Afek and A. Bremler-Barr. Self-stabilizing unidirectional network algorithms by
power-supply. In the 8th SODA, pp. 111-120, 1997.

2. Y. Afek and S. Dolev. Local stabilizer. In Proceedings of the 5th Israel Symposium
on Theory of Computing and Systems, June 1997.

3. Y. Afek, S. Kutten, and M. Yung. Memory-efficient self-stabilization on general
networks. In the 4th WDAG, pp. 15-28, 1990.

4. A. Arora and H. Zhang. LSRP: Local stabilization in shortest path routing. In
IEEE-IFIP DSN, 2003.

5. A. Arora and M. G. Gouda. Distributed reset. IEEE Transactions on Computers,
43:1026-1038, 1994.

6. B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time
optimal self-stabilizing syncronization. In the 25th STOC, pp. 652-661, 1993.

7. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction. In the 32nd FOCS, pages 268-277, Oct. 1991.
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Abstract. Detection of stable predicates is fundamental to distributed
application development and control. Stable predicates are distinguished
by the fact that once they are true in some consistent global state, they
remain true indefinitely. We present a protocol for the detection of stable
predicates within dynamic systems (in which process membership may
not be static). Unlike existing protocols, the presented protocol is not
restricted to the detection of distributed termination and is based upon
the use of approximately synchronized clocks. When clocks are approx-
imately synchronized, the difference between the readings of any two
clocks at an instant of time is kept within some known bound. Although
clocks are assumed to be synchronized, temporary loss of synchroniza-
tion is tolerated. The use of a global time base facilitates detection of
predicates that remain true only after becoming true at some instant of
time, while correctly detecting predicates that remain true upon becom-
ing true in some consistent global state.

1 Introduction

The ability to evaluate stable predicates over the global state of a distributed
system is fundamental to application development, including debugging, mon-
itoring, and control. Stable predicates are characterized by the fact that once
they become true, they remain true indefinitely (or until the predicate is de-
tected and action is taken). Examples include program termination, deadlock,
and token loss.

Modern system architectures, including peer-to-peer systems, ad hoc net-
works, and computational grids, have given rise to a class of applications in which
process membership is not permanent. In these dynamic systems processes may
enter and leave as the computation progresses.

Existing protocols for the detection of stable predicates in dynamic systems
are restricted to the problem of detecting distributed termination [1, 2, 3]. In this
paper, we present a decentralized protocol for the detection of stable predicates
in dynamic systems. We assume the existence of at least one permanent process.
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Other processes may initiate entry into, or exit from, the system at any time
during the computation.

The algorithm is structured around the use of approximately synchronized
clocks, for which the difference between the readings of any two system clocks at
a single instant of time is within a known bound. Clocks may be synchronized
in hardware, software, and hybrid combinations of hardware and software [4, 5].
Global Positioning System (GPS) based hardware has become available that
allows physically dispersed systems to be synchronized within a few microsec-
onds of each other via their mutual synchronization to Coordinated Universal
Time (UTC). The clocks of processors world-wide can then be kept within a
few milliseconds of each other via an inexpensive combination of hardware and
software [6].

The motivation behind the use of a global time base is twofold. First, it
provides significant leverage for both designing simple protocols and reasoning
about protocol correctness. Second, a global time base provides support for sys-
tems in which changes in the truth of a predicate are rooted in time; predicate
truth is not affected by the communication in the system. This is common within
distributed systems that monitor and control physical systems [7].

The presented protocol asserts the truth of the stable predicate only once it
is true at a point in time during the computation. Hence, predicates that remain
true only upon becoming true at a point in time during the computation are
correctly detected. Stable predicates, which remain true upon becoming true
in some consistent global state, will always eventually be true at a point in
time. Hence, these predicates are also correctly detected. While our protocol
assumes the existence of approximately synchronized clocks, temporary loss of
synchronization is tolerated.

In the following section we give a brief overview of existing work on the
detection of stable predicates. In section 3, we present our system model. The
protocol is presented in section 4. We discuss the performance of the protocol in
section 5. Conclusions and directions for future work are presented in section 6.

2 Related Work

The detection of stable predicates is a well-studied problem. Algorithms for col-
lection of a consistent global state [8, 9, 10, 11] can be run repeatedly in order
to detect stable predicates. A significant amount of work has been focused on
exploiting the unique characteristics of certain stable predicates, such as distrib-
uted termination [12] and distributed deadlock [13], to develop more efficient
protocols for detection of these predicates.

Time-based protcols exist for the detection of stable predicates in systems with
constant process membership [14, 15, 16]. These protocols all are decentralized.
Work has also been done on time-based detection of unstable predicates in static
systems [17, 18, 19, 20]. Both centralized [17, 18, 19] and decentralized [20]
approaches have been developed. Stoller uses timestamps (from approximately
synchronized real-time clocks) to define two orderings on events: “definitely
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occurred before” and “possibly occurred before”. He then develops algorithms to
detect a global predicate Φ under three modalities based on these orderings.
Stoller’s algorithm for detecting predicates under the modality Inst(Φ) correctly
detects predicates that remain true upon becoming true at a point in time.

Existing predicate evaluation protocols for dynamic systems are restricted to
detection of distributed termination [1, 2, 3]. The contribution of this paper is
an algorithm for detection of stable predicates in dynamic systems. We assume
the predicate can be expressed as the conjunction of predicates over the local
process states. The protocol is decentralized and has constant process state and
protocol message size complexity. Processes may initiate entry into the system
at any node. The protocol uses approximately synchronized clocks and tolerates
temporary loss of clock synchronization. The protocol correctly detects predi-
cates that remain true only upon becoming true at a point in time during the
computation. A stable predicate remains true indefinitely once it becomes true
in a consistent global state, and then will eventually be true at some instant of
time. Hence, our protocol facilitates detection of these predicates as well.

3 System Model

A distributed system is represented as a finite set of reliable processes. Let SYS
denote the set of all processes that are ever present in the system before the
global predicate is detected. Also, for t ≥ 0, let SYS(t) denote the subset of
SYS containing the processes in the system at real time t.

Processes in SYS share no common memory and can only communicate via
message passing. It is assumed that all protocol control messages are delivered
correctly after an arbitrary but finite amount of time. No restriction is placed on
message delivery order or on communication within the underlying computation.

Distributed systems are dynamic if processes can be created or destroyed dur-
ing execution. It is assumed that at least one process in a dynamic system is
permanent. Permanent processes exist in the system from the time of system cre-
ation until system termination. Non-permanent processes may leave the system
at any time.

Each process Pj , Pj ∈ SYS , is assumed to have access to a local clock. The
clock at Pj is represented by the function Cj , where Cj(t) = T is the time on
the clock of Pj at real time t. Throughout the paper, real times are denoted by
lowercase letters, and process clock values are denoted by uppercase letters.

The clock of an arbitrary permanent process is designated as the master
clock, and is denoted CM . Other process clocks can be either in synchrony or
out of synchrony with the master clock. No assumptions are made about the
behavior of a clock when it is not synchronized. A synchronized process clock
value is assumed to be within a known bound of the master clock value. While
synchronized, Cj is assumed to be nondecreasing. Further, any clock that falls
out of synchrony will eventually regain synchronization. These assumptions are
formally stated in the following clock axioms.
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Clock Axiom 1. For all Pj ∈ SYS, there exists a nonempty set Σj such that
|Cj(t)− CM (t)| < ε/2 for all t ∈ Σj.

Clock Axiom 2. For each t �∈ Σj, Pj ∈ SYS, there exists t′ > t such that
t′ ∈ Σj.

Clock Axiom 3. For all Pj ∈ SYS and t, t′ ∈ Σj, Cj(t) ≥ Cj(t′) iff t ≥ t′.

The following corollaries follow trivially from the clock axioms.

Corollary 1. For all t > 0, t ∈ ΣM .

Corollary 2. For all Pi, Pj ∈ SYS and t ∈ Σi ∩Σj, |Ci(t)− Cj(t)| < ε.

The inverse of the clock function C−1
j (T ) returns the set of instants in Σj at

which Cj read T . Inf C−1
j (T ) and sup C−1

j (T ) return the earliest and latest real
time instants, respectively, in Σj at which Cj read T .

Selection of the master clock is arbitrary from the perspective of the stable
predicate detection protocol. In a system where clocks are synchronized to some
external reference signal, this reference signal can assume the role of master
clock. Assuming the existence of a reference clock simplifies reasoning about the
protocol, but the protocol remains correct without this assumption. In section 4.5
we present modifications to the clock axioms that eliminate this assumption.

We assume that process Pi is able to detect when it is in approximate syn-
chrony with the other process clocks. Pi need not know whether a given instant of
time t is in Σi. However, Pi is assumed to be able to measure intervals delimited

Table 1. Protocol State and Supported Functions for Process Pj

Name Functionality
statej indicates Pj ’s state; initially refuse
TSj value of Pj ’s timestamp; initially 0
Γj set of all tokens received by Pj during the current transition

state; initially empty; the operator tsmax applied to Γj returns
the token with the largest timestamp value; tsmax(∅) returns
Token(0, 0)

Token(TSi, i) received token, initiated by Pi with timestamp TSi

Cmd(Pi, msg,Pk) received command message, initiated by Pi with message msg
and optional argument Pk; msg can be one of enter , exit , ac-
cept , reject , pred , or ack

Rj Pj ’s predecessor in the logical cycle of processes
Sj Pj ’s successor in the logical cycle of processes
SynchT imerj(ε) signals Pj after an interval [t1, t2], where t1, t2 ∈ Σj , Cj(t2) −

Cj(t1) ≥ ε, and t1 is a point in real time that occurs no
earlier than the point at which the function was invoked;
SynchT imerj(0) cancels the timer

SynchT imej() returns Cj(t1) for the most recently expired timer interval
[t1, t2]
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by instants of time known to be in Σi. Pi then must be able to detect instants
when the clock is synchronized. This is achievable with certain probabilistic clock
synchronization protocols [21].

The predicate to be detected is expressed as the conjunction of predicates over
the local process states at some moment in time. For some t ≥ 0, the predicate
is denoted A(t), where A(t) = ∧j:Pj∈SY S(t)Aj . Each predicate Aj represents
a local predicate over the state of Pj , Pj ∈ SYS(t), and is evaluated by Pj

1.
Detection of predicates over the channel states is discussed in section 4.4.

If the global predicate becomes true at time pt, then A(t) is true for all
t ≥ pt since the predicate is stable. The protocol insures that for all t ≥ pt,
SYS(t) ⊆ SYS(pt). That is, no process can enter the system once the global pred-
icate becomes true. This is necessary to prevent processes from entering that may
change the value of the global predicate from true to false. Since every process
in SYS(pt) has a true local predicate that will remain true forever, then any
subset of SYS(pt) will also consist only of processes with true local predicates.

4 Protocol

Detection of the predicate is token-based. Each token contains information about
the process that created it, as well as a timestamp associated with that process.
The tokens in the system circulate through a logical cycle of the processes.
Processes initiate a token when their local predicates become true. When a
process receives a token, it either discards it or propagates it to the next process
in the cycle, depending on the timestamp on the token, the timestamp of the
receiving process, and the current state of the receiving process.

In addition to tokens, processes can also send command messages. Command
messages are used to restructure the logical cycle of processes when processes
enter or leave the system. Processes can only send and forward command mes-
sages to their predecessors or successors, with the exception of entering processes.
Since entering processes do not initially have a successor or predecessor, they
may send an entry request to an arbitrary system process. (It is assumed that the
address of at least one system process is known to all entering processes.) The
protocol is fully distributed. In support of the protocol, process Pj , Pj ∈ SYS ,
maintains the state data given in Table 1. It is assumed that each process is ca-
pable of supporting a timer function SynchT imerj(ε) which measures intervals
of time instants in Σj . If the input interval is ε, then the timer will signal Pj

after Cj has passed through an interval of at least ε, as measured when Cj is
synchronized with the other process clocks. Minimally, Cj is synchronized at the
real time instants corresponding to the interval endpoints.

Discussion of the protocol is divided into two parts. Static systems will be
discussed first, followed by the entry and exit mechanisms needed to support
dynamic systems.
1 The local predicates may also vary over time, if whenever all local predicates become

true, the global predicate is true and remains true indefinitely. We have specified
time-invariant local predicates to simplify the presentation.
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Table 2. Conjunctive Stable Predicate Detection Protocol for Process Pj (Static
Systems)

statej Event Action
refuse Aj becomes true SynchT imerj(ε); Γj ← ∅; statej ← transition

receive Token(TSi, i) discard Token(TSi, i)
transition SynchT imerj expires TSj ← SynchT imej()

Token(TSi, i) ← tsmax (Γj)
if TSi > TSj then

propagate Token(TSi, i)
else

initiate Token(TSj , j)
statej ← agree

receive Token(TSi, i) Γj ← Γj ∪ {Token(TSi, i)}
Aj becomes false SynchT imerj(0); statej ← refuse

agree Aj becomes false statej ← refuse
receive Token(TSi, i) if (j = i) then

declare A true
else if (TSj ≤ TSi) then

propagate Token(TSi, i)
else if TSj > TSi then

discard Token(TSi, i)

4.1 Static Systems

In static systems, SYS(t) = SYS for all t ≥ 0. While attempting to detect the
global predicate, processes are in one of three states: refuse, transition, or agree.

The protocol for static systems is given in Table 2. It is specified as a set of
rules for the way that Pj reacts to events when it is in a given state. We assume
that all actions associated with an event are executed before another event is
processed. If no action is specified for a given event, then no action is taken.

Each process Pj in the system initially starts out in the refuse state. When
a process is in this state, it is waiting for its local predicate to become true. All
tokens received in the refuse state are discarded. Upon satisfaction of the local
predicate, the transition state is entered.

The transition state is essentially a pause prior to releasing a token to account
for the clock skew. Prior to entering this state, SynchTimer j() is set to signal
Pj after a synchronized interval of ε has elapsed. When Pj is signaled, the first
time instant in the synchronized interval becomes the timestamp for Pj . A new
token is initiated by Pj at this time, and the agree state is entered. If the local
predicate becomes false before the timer expires, the refuse state is restored.

While in the agree state, a process is waiting for receipt of its own token.
Received tokens that were not initiated by Pj are forwarded to Sj if they have
timestamps greater than Pj ’s, and are discarded otherwise. Upon receiving its
own token, Pj declares detection of the global stable predicate.
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Table 3. The Entry and Exit Mechanisms for Process Pj

statej Event Action
refuse receive Cmd(Pi, enter) send Cmd(Pj , accept, Sj) to Pi;

block until Cmd(Pi, ack) is received;
Sj ← Pi

receive Cmd(Pi, exit , Pk) if Pi = Sj then
send Cmd(Pj , pred) to Pk;
send Cmd(Pj , accept ,nil) to Sj ;
Sj ← Pk

else
discard Cmd

receive Cmd(Pk, pred) Rj ← Pk

transition receive Cmd(Pi, enter) forward Cmd(Pi, enter) to Sj

receive Cmd(Pi, exit , Pk) if Pi = Sj then
send Cmd(Pj , pred) to Pk;
send Cmd(Pj , accept ,nil) to Sj ;
Sj ← Pk;
SynchT imerj(0);
SynchT imerj(ε); Γj ← ∅

else
discard Cmd

receive Cmd(Pk, pred) Rj ← Pk

agree receive Cmd(Pi, enter) forward Cmd(Pi, enter) to Sj

receive Cmd(Pi, exit , Pk) if Pi = Sj then
send Cmd(Pj , pred) to Pk;
send Cmd(Pj , accept ,nil) to Sj ;
Sj ← Pk;
SynchT imerj(ε); Γj ← ∅;
statej ← transition

else
discard Cmd

receive Cmd(Pk, pred) Rj ← Pk

exit receive Cmd(Rj , accept ,nil) Pj exits the system
receive Cmd(Pi, enter) forward Cmd(Pi, enter) to Sj

receive Cmd(Sj , exit , Pk) discard Cmd
receive Cmd(Pi, pred) Rj ← Pi;

send Cmd(Pj , exit , Sj) to Rj

receive Token(TSi, i) discard Token(TSi, i)

4.2 Dynamic Systems

In dynamic systems, command messages are used to communicate information
that is necessary for processes to enter and exit the system. Five different com-
mand messages are used, which have the following meanings when received by
a process Pj :

Cmd(Pi, enter): Pi is requesting entry into the system immediately following Pj

in the logical cycle.
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Cmd(Pi, exit, Pk): Pi is requesting to leave the system; if Pj accepts this request,
then all subsequent tokens will be sent to Pk.
Cmd(Pi, accept, Pk): In response to Cmd(Pj , enter), Pj has been allowed to
join the system following Pi, and should send all tokens to Pk; in response to
Cmd(Pj , exit , Sj), Pj is free to leave the system.
Cmd(Pi, pred): A process has entered or exited the system immediately preced-
ing Pj ; Pi is the new predecessor of Pj in the cycle.
Cmd(Pi, ack): Pi has finished restructuring the logical cycle of processes.

Processes in a dynamic system must execute the state machine given for static
systems, and additionally handle the protocol events and actions concerning
entry and exit of processes given in table 3.

Process Entry. Processes are allowed to enter the system at any time in the
logical cycle following a process with a false local predicate. A new process Pnew
sends Cmd(Pnew , enter) to a process Pj in the system, and if Aj is false, then
Pnew becomes the new successor of Pj in the logical cycle. If Aj is true, then Pj

forwards the request to the next process in the cycle, until the request reaches a
process with a false local predicate. As long as the global predicate is not true,
there exists at least one process in the system whose local predicate is false.

It is possible that the truth of the local predicates will oscillate in such a
manner that an entry request never reaches a process with a false local predi-
cate, even when the global predicate is not true. However, such an occurrence is
expected to be very rare. Rather than complicating the protocol with the details
of handling such an occurrence, it is assumed that a process will never need to
forward a specific entry request more than once. A simple solution to this prob-
lem would be to require that upon receiving a particular entry request a second
time, a process Pj keeps the request, and allows the process to enter the next
time Aj becomes false.

If a process Pj accepts a request for entry from Pnew , then Pj must be in
the refuse state. When Pj accepts the request, it sends Cmd(Pj , accept , Sj) to
Pnew to inform Pnew that it can enter the system between processes Pj and
Sj . Pj then blocks (on activity related to the detection protocol) until receiving
Cmd(Pnew , ack). This is to insure that Pj does not exit the system until restruc-
turing is complete, and that no command messages or tokens are sent to Pnew

until Pnew has finished entering the system. Upon receiving acknowledgment
from Pnew , Pj sets its successor to Pnew .

When Pnew receives notification that it can enter the system, it sets its pre-
decessor to Pj , its successor to Sj , and then sends Cmd(Pnew , pred) to Sj to
inform Sj that Pnew now precedes it. If Sj attempts to exit before receiving this
message, the exit request will be received and ignored by Pj . Sj will attempt to
exit again when it is notified that it has a new predecessor. Finally, Pnew sends
Cmd(Pnew , ack) to Pj to announce that the restructuring of the logical cycle
is complete. Pseudo code that Pj executes to enter the system is depicted in
Figure 1.
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send Cmd(Pnew , enter) to Pi;
block until Cmd(Pj , accept , Pk) is received;
Rnew ← Pj ;
Snew ← Pk;
send Cmd(Pnew , pred) to Snew ;
send Cmd(Pnew , ack) to Pj ;
statenew ← refuse

Fig. 1. Pseudocode for Entry by Process Pj

Process Exit. To exit the system, a process Pj sends Cmd(Pj , exit , Sj) to its
predecessor, Rj . If Rj accepts the exit request, it sends Cmd(Rj , pred) to Sj ,
to notify Sj that it is now the predecessor of Sj in the cycle. If Rj is in the
transition or agree state when it receives the exit request, it will re-start or
re-enter the transition state, update its timestamp, and initiate another token.
This is to account for any tokens that may have been en route to Pj that will
be lost. Also, by updating its timestamp, Rj will discard any token that would
have been discarded by Pj . Rj then sends Cmd(Rj , accept) to Pj , and sets its
successor to Sj . When Pj receives this message, it is free to leave the system.

The only time a process is not allowed to exit the system is when its prede-
cessor is in the process of exiting. In this case, the predecessor Rj will simply
discard the exit request, or the request will be lost if Rj exits before receiving
it. At some point while Rj is exiting, Pj will receive a notification that its pre-
decessor has changed. When this occurs, Pj sends a new exit request to its new
predecessor. Any tokens that are received by a process that is waiting to leave
the system are discarded.

Pseudo code that Pj executes in order to exit the system is depicted in figure 2.
Note that upon execution of this code, Pj enters the exit state, where it remains
until it receives notification that it can leave:

send Cmd(Pj , exit , Sj) to Rj

statej ← exit

Fig. 2. Pseudocode for Exit by Process Pj

4.3 Correctness

The following results are useful in establishing the correctness of our protocol.

Lemma 1. Suppose Cj(tj) ≥ TSj + ε for some tj ∈ Σj, and that ti ≥ tj for
some ti ∈ Σi. Then Ci(ti) > TSj.
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Proof. By clock axiom 1, CM (tj) > TSj + ε/2. Then by clock axiom 3 and
corollary 1, CM (ti) > TSj + ε/2. Finally, by clock axiom 1, Ci(ti) > TSj. ��
Lemma 2. Suppose Pj initiates Token(TSj, j) at time tpj. If any process Pi ∈
SYS(tpj) has a false local predicate at time tpj, then some process will discard
the token.

Proof. If Ai is false at tpj , then Pi will be in the refuse state at that time. If
Pi remains in the refuse state, then it will clearly discard the token. If Pi has
entered the transition state since the token was initiated, then it will either re-
enter the refuse state and discard the token, or it will generate a timestamp at
some real instant tti ∈ Σi, tti > tpj . By the protocol, tpj ≥ inf C−1

j (TSj + γ)
for some γ ≥ ε. Then by our assumption and Lemma 1, Ci(tti) > TSj. By the
protocol, Pi will discard the token from both the transition and agree states
since TSi > TSj.

If Pi exits the system before receiving the token, then Ri will discard the
token. This is clearly true if Ri receives the token while in the refuse state. If
Ri was in the transition or agree state when Pi exited, then by the protocol,
Ri will re-start or re-enter the transition state when Pi exits, and will generate
a new timestamp. Then, when Ri receives the token, it will have a timestamp
greater than TSj by the same argument given above. Thus, Ri will discard the
token. ��
To establish the correctness of the protocol, we must first establish that if some
process detects the global stable predicate, then the predicate was in fact true
(safety). Secondly, we must establish that if the global stable predicate becomes
true, then some process will detect it (liveness).

Theorem 1 (Safety). If some process Pi detects the global stable predicate,
then the predicate was true at some real time instant.

Proof. If Pi declares detection of the global stable predicate, then it must have
received its own token containing its current timestamp value. It follows from
Lemma 2 that if Pi received its own token, then every process had a true local
predicate when the token was initiated. The global stable predicate was also true
at this time. ��
Theorem 2 (Liveness). If at some time t ≥ 0, the global stable predicate
A(t) = ∧j:Pj∈SY S(t)Aj becomes true, then some process will detect it.

Proof. When the global predicate becomes true, the local predicate of every
process is true. By the protocol, no process can enter the system after this point.
Also, after some point, no more processes will exit, since at least one process is
required to remain in the system permanently.

Once all of the local predicates have become true, and no more processes will
exit the system, then by the protocol every process has entered the transition
state a final time. By assumption, any process clock that falls out of synchro-
nization eventually regains synchronization. Then all processes in the transition
state will eventually generate some final timestamp and enter the agree state.
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Let TSmax be the highest-valued timestamp generated, and let Pmax be a
process that generates a token with this timestamp. When Token(TSmax , max)
is initiated, another process can be in the refuse, transition, or agree state. By
the protocol, Cmax reads at least TSmax +ε when the token is initiated. Then by
Lemma 1, a process in the refuse state would eventually generate a timestamp
greater than TSmax , contradicting the definition of TSmax .

Thus, when Token(TSmax , max) is initiated, every other process must be in
either the transition or the agree state. No process in the agree state discards
a token with a timestamp greater than or equal to its own. A process in the
transition state may discard a token with a timestamp equal to its own, but will
then initiate a token of its own with this same timestamp. Hence, the last token
initiated with timestamp TSmax will circulate completely and the predicate will
be detected. ��

4.4 Predicates over the Channel States

Many stable predicates, such as distributed termination [22], require evaluation
of the state of the communication channels.

The protocol can be easily modified to evaluate channel states. It follows
from Lemma 2 that if a process receives its own token, then every process in the
system had a true local predicate at the time the token was initiated. Further,
by the protocol, the predicate of each process Pj ∈ SYS remained true from
the time the token was initiated until Pj propagated the token. If the state of
the channels incident to Pj is constant throughout this same interval, then Pj

can append channel state information to the token, which can be evaluated by
a process receiving its own token.

To evaluate channel states, the protocol could be modified as follows. Each
process Pj records the state of all incident channels that can affect the truth of
the global predicate. The channel state is recorded via a message history, the
set of all messages sent and received, as described in [9]. A collection of these
message histories can be used to accurately reconstruct the state of any chan-
nel. When the state of a channel changes while Pj is in the transition or agree
state, Pj will enter the refuse state if its local predicate is no longer true, other-
wise it will enter or re-start the transition state and generate a new timestamp.
Hence, the state of the channels incident to Pj remains constant throughout the
time Pj is in the transition and agree states. Pj appends this state informa-
tion on the circulating token. A process that receives its own token evaluates
the collected state of all channels in order to determine the truth of the global
predicate.

It must be noted that this approach is based on an assumption that the state
of the channels related to the truth of the predicate does not vary continuously.
This is true for many stable predicates. For example, distributed termination
requires that the channels be empty of application messages. In this case, each
process can track the number of messages it has sent, minus the number received,
and append this count to circulating tokens. Receipt of an application message
in the transition or agree state will cause process Pj to re-enter the refuse state.
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Once the global predicate becomes true, application messages will no longer
be received, processes will remain in the agree state, and eventually a token
reflecting empty channels will circulate completely.

4.5 Eliminating the Master Clock

The notion of a master clock makes reasoning about the synchronization of a
set of clocks more intuitive. Further, it does not significantly restrict the set of
clock synchronization protocols over which the predicate detection protocol may
run. In a system in which clocks are synchronized to each other, the role of the
master clock can be assumed by any process clock. However, the stable predicate
detection protocol does not require the existence of a master clock. Intuitively,
clock axiom 1 only need be replaced by corollary 2. However, consider lemma 1,
on which the correctness arguments are based. Clock axiom 3 only requires that
synchronized clock readings be nondecreasing for a given clock. It is then possible
for clock Cj to read T after another clock Ci (i �= j) has read T + ε, and lemma
1 will not hold. For example, suppose some subset Sα of the system clocks is
synchronized during an initial interval of system operation. Then all clocks fall
out of synchrony for a following interval. Let Ssys denote the set of all system
clocks. Finally, the clocks that were initially unsynchronized, Ssys −Sα, acquire
synchronization, while the clocks in Sα remain unsynchronized. Then, according
to corollary 2 and clock axioms 2 and 3 (which comprise the remaining axioms
on clock behavior), there is no restriction on the values of the clocks in Ssys−Sα

during the interval in which they are synchronized, relative to the values of the
clocks in Sα during the interval in which they were synchronized.

In addition to replacing clock axiom 1 with corollary 2, we then make an
additional restriction which ensures that no synchronized clock can read T after
another synchronized clock reads T + ε. Let M(t) represent the minimum syn-
chronized clock value at real time instant t. More formally, M(t) = min{Ci(t) :
t ∈ Σi, i ∈ SYS}. We then require that:

Clock Axiom 4. For all tj in Σj, j ∈ SYS, Cj(tj) ≥ max{M(t) : t < tj}.
We now restate lemma 1 and show that it still holds.

Suppose Cj(tj) ≥ TSj + ε for some tj ∈ Σj, and that ti ≥ tj for some ti ∈ Σi.
Then Ci(ti) > TSj.

Proof. The lemma holds by corollary 2 when ti = tj . Suppose that ti > tj . By
corollary 2, M(tj) > TSj. Then by our additional restriction, given by clock
axiom 4, Ci(ti) ≥ M(tj) > TSj. ��

5 Performance

In this section we will analyze the additional network traffic introduced by the
protocol and the amount of communication for detecting a true global predicate.
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5.1 Total Cost

Suppose the global predicate becomes true at time pt. Let M = |SYS(pt)|, and
let N = |SYS |. We will consider worst-case scenarios for process entry, global
predicate detection, and process exit separately.

By assumption, if a process requests entry to the system, the request will
be forwarded to at most N processes (see section 4.2). Other messages involved
with process entry are negligible, since their number is fixed for each entering
process. Suppose all but one process in SYS requests entry to the system at
some point, and let D be the total number of processes that request entry after
the global predicate is satisfied. Then O(N2 + ND) messages are required for
process entry.

The cost of the predicate detection depends on the number of times each local
predicate oscillates between true and false before the global predicate becomes
true. For each Pi ∈ SYS , let Fi be equal to the total number of times that
Ai changed from false to true before the global predicate is satisfied, and let
F = F0 + F1 + · · ·+ FN−1.

Tokens are potentially initiated by a process Pi whenever Ai becomes true,
and whenever Si exits the system. Thus, no more than F+N tokens will ever be
initiated. Each of these tokens may be propagated by every process in the system.
If each token propagation is considered a separate message, then O(NF + N2)
messages will be generated.

Suppose all but one process in SYS exits the system at some point before
the predicate is detected. By the protocol, an exit request made by Pex may be
discarded if Rex is already exiting the system, in which case Pex will eventually
make a new request to its new predecessor. Thus, Pex may send exit requests
to every other process in the system. As with entry messages, other messages
concerning process exit are negligible, since their number is fixed for each exiting
process. Then O(N2) messages are required for process exit.

Overall, the communication cost of our protocol is O(NF + N2 + ND). This
reduces to O(NF) for static systems, since D = 0 and F ≥ N in this case. (The
only time F < N is when one or more processes exit the system before their
local predicate ever becomes true.)

5.2 Detection Cost

We will now consider the number of messages required to detect the global pred-
icate once it becomes true. There are only three differences when measuring the
cost of detecting a true global predicate as opposed to the total communication
cost. First, we are only dealing with entry requests from D processes, rather
than N − 1 + D processes. Secondly, since no processes enter the system af-
ter satisfaction of the predicate, we need only consider a system of at most M
processes, rather than N . Lastly, at most 2M − 1 tokens will be initiated after
the global predicate becomes true. The first M tokens can be initiated when
the local predicates of all M processes become true simultaneously, and the sec-
ond M − 1 tokens are initiated when all but one process exits. The number of
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messages required for process exits is then O(M2). This gives an overall detection
cost of O(M2 + MD) messages, which reduces to O(M2) for static systems.

6 Conclusions

We have proposed a decentralized time-based protocol for detecting global stable
predicates within dynamic systems. The protocol is structured around the use of
a global time base, but tolerates temporary loss of clock synchronization. The use
of time allows detection of predicates that remain true only upon becoming true
at a point in time during the execution, in addition to predicates that remain
true upon becoming true in some consistent global state. A process entering the
system needs only the address of one process currently in the system. A process
may initiate exit from the system at any time; exit is achieved after a protocol
that is O(N2), where N is a count of the number of processes that were in the
system before its termination.
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Abstract. In this paper, we propose a new video delivery method called MTcast
(Multiple Transcode based video multicast) which achieves efficient simultane-
ous video delivery to multiple users with different quality requirements by relying
on user nodes to transcode and forward video to other user nodes. In MTcast, each
user specifies a quality requirement for a video consisting of bitrate, picture size
and frame rate based on the user’s environmental resource limitation. All users
can receive video with the specified quality (or near this quality) along a single
delivery tree. The main characteristics of MTcast are in its scalability, high user
satisfaction degree in received video quality, short startup latency and robustness
against node failure. Through simulations, we have confirmed that MTcast can
achieve much higher user satisfaction degree and robustness against node failure
than the layered multicast method.

Keywords: video multicast, transcode, QoS, service overlay networks.

1 Introduction

There is a demand for an efficient video delivery method for heterogeneous user nodes
which have different computation powers, display sizes and available bandwidths.
There are several approaches for simultaneously delivering video to multiple users with
different quality requirements. In the multiversion technique [1], multiple versions of a
video with different bitrates are prepared in advance so that the best one can be deliv-
ered to each user, within resource limitation. In the online transcoding method [2], an
original video is transcoded at a server or an intermediate node (i.e. proxy) to videos
with various quality, according to receivers’ preferences, and forwarded to the receivers.
In the layered multicast method [3, 4], video is encoded with layered coding techniques
such as in [5] so that each user can decode the video by receiving arbitrary number of
layers. Since each layer is delivered as an independent multicast stream, each user can
receive as many layers as possible within his/her resource limitation. In this method, as
the number of users increases, more layers are required in order to improve user satis-
faction degree. However, decoding video from many layers consumes large processing
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power and buffers. In [3], a method for optimizing bitrate of each layer to maximize user
satisfaction degree is proposed. In the multiversion method, the control mechanism is
simple, but not efficient in terms of server storage and network bandwidth usage. In
the multiversion and layered multicast methods, there can be a large gap between the
requested quality and the delivered quality if there are not enough number of versions
or layers. The online transcoding method can satisfy all the above requirements since
it can transcode original video to arbitrary quality video. But, large computation power
required for transcoding can be a problem.

There are many studies on video streaming in peer to peer networks. [6] has proposed
the Overlay Multicast Network Infrastructure (OMNI). In OMNI, each user node works
as a service provider as well as a service user, and a multicast tree is composed of
user nodes so that the video delivery service is provided to all the user nodes through
the tree. OMNI can adapt to the change of the user node distribution and the network
conditions. [7] has proposed CoopNet where traditional client-server based streamings
are augmented when the load of the video server exceeds it’s limit. In CoopNet, user
nodes cache parts of stream data, and deliver them through multiple diverse distribution
trees to the user nodes while the server load is high. OMNI and CoopNet aim at adapting
the video delivery service depending on the dynamic change of network conditions,
server load and so on. However, they do not treat video delivery to user nodes with
different quality requirements.

We propose a new video delivery method called MTcast (Multiple Transcode based
video multicast) which achieves efficient simultaneous video delivery to multiple het-
erogeneous users by relying on user nodes to transcode and forward video to other user
nodes. In MTcast, each user specifies a quality requirement for a video consisting of bi-
trate, picture size and frame rate based on the user’s environmental resource limitation.
All users can receive video near specified quality along a delivery tree. Each user can
change the quality requirement each time segment or each video shot.

We have considered the following criteria : (1) high scalability for accommodating a
large number of users, (2) high user satisfaction in the sense that the delivered quality is
close to the required quality, (3) small resource consumption within available resource
of each user node, (4) short startup latency to start playing back video quickly, (5)
reasonable number of transcoding times for keeping good video quality as well as short
delivery latency, and (6) high robustness for continuing video delivery service even with
node/link failures.

In order to achieve the above (1) to (3), a delivery tree called transcode tree whose
root is the sender of a video content, is constructed as a variation of a perfect n-ary
tree, where user nodes with higher quality requirements are located near the root of
the tree, and nodes with lower quality requirements are located near leaves. Nodes are
placed according to their computation power, available downstream and upstream band-
widths. Each node in the tree receives a video stream, transcodes it to lower quality
video in real time and forwards it to its children nodes. In order to achieve the above
(4) to (6), nodes are grouped so that each group has k members with similar quality
requirements. These groups are called layers. All nodes in a layer receives the video
with the same quality from their parent nodes along the transcode tree. We let the rep-
resentative node of each layer keep the complete information of the tree. This allows
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a new receiver to easily find the layer which has the closest quality to its own qual-
ity requirement and to quickly send a request to the node in the layer to start delivery
of the video. In order to accommodate new receivers or to replace faulty nodes with
normal ones, we let each layer keep a certain amount of extra computation power and
available upstream bandwidth (computed from the value of k). In general, if we use
a large number for k, we can improve performance of the above (4) to (6). However,
user satisfaction degree may be reduced since the received video quality is averaged
over k members. So, in the proposed method, we adopted an approach to dynamically
increase the value of k as the total number of receivers increases. When the num-
ber of receivers is sufficiently large, we can keep both user satisfaction and system
robustness high.

After certain time elapses, extra resources at a layer might have been exhausted.
So, our method reconstructs the transcode tree periodically or at each time boundary
between subsequent video shots. When video delivery requests and failures occur af-
ter extra resources of a layer have been exhausted, they are processed at the next tree
reconstruction.

We have investigated performance of MTcast by simulations using network topolo-
gies generated by Inet3.0 [8]. As a result, we have confirmed that MTcast can achieve
both higher user satisfaction degree and higher robustness than the layered multicast
method.

2 Target Environment

In this paper, we deal with a method for simultaneously delivering a video content to
multiple heterogeneous users who have different available bandwidths, different com-
putation power, and different display resolutions. Here, we assume the following types
of user terminals, types of communication infrastructures and target contents.

– user terminal: desktop PC, laptop PC, PDA, cellular phone, etc.
– communication infrastructure: Either fixed broadband (leased lines, ADSL, CATV,

etc.) or wireless network (wireless LAN, W-CDMA, Bluetooth, GSM/PDC, etc).
– the total number of users: 500 to 100,000
– target contents: video (both recorded and live)

We target a video delivery service which starts to transmit a video content to all re-
ceivers at the same starting time like TV broadcast. Even after the starting time of the
video, users can start to receive the video anytime, but the video can be watched from
the scene currently in transmission.

We assume that user nodes are connected to each other through overlay links, and
that each node uses overlay multicast to transmit/receive streams to/from the other node.

In the multicast tree, we let each user node except leaf nodes transcode a video stream
and forward it to its children nodes, playing back the stream.

From the above discussion, the main purpose of this paper is to build and manage
the multicast tree which satisfies criteria (1) to (6) in Sect. 1 and to devise the efficient
video delivery method using the tree.
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3 MTcast

In this section, first we briefly define notations used in our MTcast algorithm, and then
explain the details of MTcast.

3.1 Definitions

Let s denote a video server, and U = {u1, ..., uN} denote a set of user nodes. We as-
sume that for each ui ∈ U , available upstream (i.e., node to network) bandwidth and
downstream (i.e., network to node) bandwidth are known in advance. We denote them
by ui.upper bw and ui.lower bw, respectively. Let ui.q denote ui’s video quality re-
quirement. In general, as ui.q, multiple video parameters such as bitrate, picture size
and frame rate are specified. In this paper, we assume that ui.q represents only bitrate
of video1. Let ui.ntrans(q) denote the maximum number of simultaneous transcoding
which can be executed by ui for videos with quality q. Let ui.nlink(q) denote the max-
imum number of simultaneous forwarding of videos with quality q which can be per-
formed by ui. ui.ntrans(q) and ui.nlink(q) are calculated from computation power of
ui, ui.upper bw and video quality.

In the proposed method, we construct a multicast tree where s is the root node and
user nodes in U are intermediate (internal) or leaf nodes. Hereafter, this multicast tree
is called the transcode tree.

3.2 Structure of Transcode Tree

Internal nodes in the transcode tree transmit a video stream to children nodes. In the
proposed method, we assume that fanout (degree) of each node is basically a constant
(denoted by n). As we will explain in Sect. 3.3, we decide the value of n depending on
available resources of user nodes.

In order to reduce the number of transcoding between the root node and each leaf node,
we construct the transcode tree as a variation of complete n-ary tree where degree of the
root node is changed tok instead ofn (k is a constant, and explained later). In the transcode
tree, for each node ui ∈ U and each of its children nodes uj , ui.q ≥ uj .q holds.

In order to tolerate node failures and to shorten startup delay of video delivery, every
k nodes in U are bunched up into one group. We call each group a layer, where k
is a predetermined constant, as shown in Fig. 1. We let user nodes in the same layer
receive video with the same quality. This quality is called the layer quality. A represen-
tative node is selected for each layer. Parent-child relationship among all layers on the
transcode tree is called the layer tree.

An example of the transcode tree with n = 2 and k = 6 is shown in Fig. 1. Here,
small circles and big ovals represent nodes and layers, respectively. Each bitrate (e.g.,
500kbps) represents the layer quality.

3.3 Construction of Transcode Tree

In our method, the transcode tree is calculated in a centralized way by one of the nodes.
The way of deciding the calculation node uc is explained later. We assume that uc has

1 A method to treat a parameter vector as quality is discussed in [9].
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Fig. 1. Example of Transcode Tree, where
n = 2, k = 6
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Fig. 2. Tree construction in order of depth-first
search

information of a video server s and user nodes U ′ ⊆ U who have requested video. Our
tree construction algorithm consists of the following three steps.

In the first step, our algorithm divides U into the set of candidate internal nodes UI

and the set of leaf nodes UL. We always put s into UI .

u.ntrans(u.q) ≥ 1 (1)

u.nlink(u.q) ≥ n + 1 (2)

For each node u ∈ U , the algorithm checks if the above inequalities hold or not. If
they hold for u, then u is put into UI , otherwise put into UL. The above inequalities (1)
and (2) represent whether node u can perform transcoding of one or more videos and
whether u can forward n + 1 video streams, respectively.

After that, if |UI | < 1
n |U |, quality requirements of |UL| − n−1

n |U | nodes in UL with
larger upstream bandwidths are reduced so that the inequalities (1) and (2) hold. Then,
those nodes are moved to UI . By the above procedure, |UI | ≥ 1

n |U | always holds.
In the second step, the algorithm assigns the set of all nodes U to layers. Elements

of UI are sorted in decreasing order of their quality requirements and every bunch of k
elements is packed to an internal layer. Here, we select the first node of each layer as the
representative node of the layer. The average value of quality requirements is assigned
as the layer quality. For the set of leaf nodes UL, elements are similarly packed to leaf
layers.

In the last step, the transcode tree is constructed. The algorithm sorts internal layers
in decreasing order of layer quality, and constructs a complete n-ary tree of those inter-
nal layers so that the layer quality of each layer does not exceeds that of its parent layer.
Next, the algorithm attaches each leaf layer L to the internal layer whose layer quality is
closest to L. If the layer quality of L exceeds that of L’s parent layer, the layer quality
of L is adjusted to that of L’s parent. The order of assigning internal layers to n-ary
tree could be depth-first, breadth-first, or so on. Example using depth-first is shown in
Fig. 2.

Finally, the transcode tree is obtained by assigning internal nodes and leaf nodes to
internal layers and leaf layers in decreasing order of their required quality, respectively.

Adaptation to Available Bandwidth Between Nodes
In our method, after constructing the layer tree, each node which belongs to the child
layer selects an actual delivery node from k nodes in the parent layer. Whether each



MTcast: Robust and Efficient P2P-Based Video Delivery 181

child node can receive the video with the requested quality or not depends on the avail-
able bandwidth on the path, that is, links on a physical network connecting the child
node to the parent node. Below, we describe how to decide the parent nodes by taking
into consideration of the physical topology of the network and available bandwidths
on paths in the network. Here, we also consider the case that two or more overlay links
share the same physical links and thus compete the available bandwidths on those links.

Let C and P be the sets of nodes which belong to a layer and its parent layer, re-
spectively. We suppose that, for each pair of nodes between a child layer and its parent
layer, the physical path and the available bandwidth can be obtained with tools such as
traceroute and pathload[10], respectively. Let bw(c, p) and L(c, p) denote the available
bandwidth measured with a tool like pathload (called measured available bandwidth,
hereafter) and the set of links between c ∈ C and p ∈ P except for links attached
to nodes c and p, respectively. Next, we estimate the worst-case available bandwidth
of each overlay link (called estimated available bandwidth, hereafter) by considering
some of links which are shared among multiple overlay links. Initially, for each pair of
nodes (c, p) ∈ C × P , the estimated available bandwidth of each link l ∈ L(c, p) is set
to bw(c, p). The estimation is done based on the link stress of each link (i.e., the num-
ber of overlay links which use the same physical link for the same data transmission)
as follows. (1) The initial link stress is set to 0 for each physical link. (2) For each pair
(c, p) ∈ C × P and for each link l ∈ L(c, p), the link stress of l is incremented. How-
ever, once the link stress has been already incremented by node c, we do not let other
paths including c increment the link stress of the same link to avoid duplicate counting.
Based on the measured available bandwidth and the link stress of each physical link,
we decide the parent node of each child node as follows.

– (i) For each c ∈ C, the following step (ii) is examined in increasing order of node
ID.

– (ii) For each p ∈ P , whether node p can deliver the video with the specified bitrate
to node c or not is decided based on the estimated available bandwidth on path
L(c, p). If there is no parent node which has enough available bandwidth for the
video delivery to node c, node c is moved to a lower quality layer. If only a node
can deliver video to c with required bitrate, this node is selected as the parent node
of c, and the following step (iv) is executed. If there are multiple nodes which can
deliver video to node c with the required bitrate, the following step (iii) is applied
to selecting the parent node of c.

– (iii) For each node p ∈ P which can deliver video to c with the required bitrate,
the new estimated available bandwidth for each link in L(c, p) is calculated by
dividing the current estimated bandwidth by the link stress. One node with the
largest estimated available bandwidth is selected as the parent node of c.

– (iv) Once node p is selected as the parent of c, we re-calculate the link stress of each
link l ∈ L(c, p) without incrementing it by the paths including c and subtract the
bitrate of the video from the estimated available bandwidth of l. If some bandwidth
is still remaining in l, it can be used for another overlay link.

We compared our bandwidth adaptation method with hop count first method where each
node greedily selects a parent node which has the minimum hop count. From experi-
ment, we confirmed that our bandwidth adaptation method can achieve higher success-
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ful rate (≈ 1.0) of finding parent node which has enough bandwidth to stream video
than that of the hop count first method (≈ 0.65) in the similar environment described in
Sect. 4.

How to decide appropriate values of n and k
In our method, the transcode tree is constructed as a variation of a complete n-ary tree.
So, as the value of n becomes large, the tree height (i.e., the number of transcoding) also
decreases. Since the required upstream bandwidth of each node increases in proportion
to n’s value, the value of n must be carefully decided considering upstream bandwidth
limitation of each node. We can decide the maximum value of n so that the number of
nodes satisfying inequality u.nlink(q) ≥ n + 1 is equal to 1

n |U |. If f nodes may leave
from a layer at the same time before the transcode tree is reconstructed, the remaining
k− f nodes in the current layer must transmit video streams to n ·k children nodes. So,
the following inequalities must hold in order to recover from f simultaneous failures in
each layer. Thus, the appropriate value of k can be decided from values of n and f .

(k − f)u.nlink(q) ≥ n · k ∧ (k − f)u.ntrans ≥ � k

u.nlink(q)
�n (3)

3.4 Behavior of MTcast

Startup Behavior
Let t denote the time of video delivery. Each user who wants to receive video stream
sends a video delivery request to the video server s before time t − δ. At time t −
δ, s calculates the transcode tree with the algorithm explained in Sect. 3.3. Here, δ
is the time to calculate the transcode tree and distribute the necessary information to
all nodes. s also decides the node uc which calculates the transcode tree next time.
uc is selected from representative nodes of layers which have sufficient downstream
bandwidths. Next, s distributes the information which is necessary for video delivery to
all nodes in T .

For information distribution, s composes data I which contains the complete infor-
mation on T , its layer tree, representative nodes and quality of layers, and uc. Then, it
sends I to the representative node of the root layer. Then, the node forwards the infor-
mation to its children layers’ representative nodes. Data I is propagated until all leaf
layers’ representative nodes receive it. When each representative node receives the data
I , it sends part of the information in I to member nodes of the same layer. We let each
representative node keep (a) the whole layer tree with each layer’s layer quality and
representative node’s address, and (b) its responsible layer and addresses of the layer’s
member nodes. We also let each node keep (1) addresses and layer quality of children
nodes, (2) current layer’s quality and responsible node’s address, (3) parent node’s layer
and its responsible node’s address, and (4) node uc to calculate the transcode tree next
time. By the above steps, information of the transcode tree is shared among all nodes
and video gets ready to be delivered.

How to cope with new delivery requests and node failures
As explained in Sect. 3.3, each node in an internal layer has an extra upstream band-
width for forwarding one more video stream. A user node unew who has requested
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video delivery after time t can use this extra bandwidth to receive a video stream. Here,
the fanout of the forwarding node uf which sends a stream to unew is allowed to be
n + 1 tentatively. The forwarding node uf does not need to transcode a video stream
for unew, since uf is already transmitting a video stream to n children nodes and it
transmits the same stream to unew.

If one or more nodes in a layer fail or suddenly leave from the transcode tree, all
of their descendant nodes will not be able to receive video streams. Our method al-
lows children nodes of the failure nodes to find alternative nodes in the same layer as
those failure nodes and to ask them to forward video streams. Therefore those alterna-
tive nodes use their extra upstream bandwidths similarly to the case of processing new
delivery requests.

As we will explain later, the transcode tree is reconstructed periodically, the fanout of
each stream is reduced to n or less than n and the consumed extra upstream bandwidth
is regained after reconstruction.

If the representative node of a layer fails, children nodes of the representative node
cannot find new parent nodes. Thus, one of other nodes in the layer becomes sub rep-
resentative node, and nodes in children layers keep addresses of these nodes. When the
representative node fails, one of children nodes of the representative node sends a switch
request to the sub representative node so that the sub representative node becomes the
new representative node. If a sub representative node fails before the representative
node fails, one of other nodes becomes a sub representative node.

Procedure for new delivery requests
We assume that a new user node unew knows at least one node u∗ in the transcode tree
which is already receiving a video stream. unew tries to find the best node in the transcode
tree which can be unews’s parent node in the following procedure. (1) unew sends a query
with its quality requirement unew.q and its address to u∗. (2) If u∗ is not a responsible
node of any layer, it forwards the received query to the responsible node ur of u∗’s current
layer. (3) When ur receives the query, it sends the information of the layer tree to unew.
(4) When unew receives the layer tree, it finds the layer which has the layer quality closest
to unew.q and sends a video delivery request to the responsible node u′

r of the layer. (5)
u′

r selects a node u′ and forwards the request to u′ which has the required extra upstream
bandwidth. (6) Finally, u′ starts to deliver a video stream to unew.

Recovery from node failure
We let each node u monitor status of data receiving in real-time, and u thinks that node
failure happened when it does not receive any data (or the average data reception rate is
much less than the expected one) during a specified time period. When u detects failure
of its parent node up, u sends a video forwarding request to the representative node of
up’s layer. Then, similarly to the case of a new video delivery request, the video stream
is forwarded from an alternative node if it has an extra upstream bandwidth. At u, video
can be played back seamlessly by buffering certain time of video data during the above
switching process.

Reconstruction of Transcode Tree
User node uc reconstructs the transcode tree in the following steps. We assume that all
nodes know the time tr when the reconstructed transcode tree is in effect.
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Before time tr − δ′, each node u sends a new quality requirement which will be
effective after tr to the representative node of u′s current layer, if u wants to change
video quality. Here, δ′ is the time to gather quality requirements from all nodes, cal-
culate the transcode tree and distribute the necessary information to (part of) nodes.
When the representative node uL of each layer L receives quality requirements from
all members of L and those from representative nodes of L’s children layers (if L has
children layers), uL sends the unified list of quality requirements to L’s parent layer’s
representative node. Finally, the representative node of the root layer sends the received
list of quality requirements to node uc. Finally, uc has quality requirements of all nodes
which will be effective after time tr.

Then, node uc calculates the transcode tree with the algorithm in Sect. 3.3 and dis-
tribute to all nodes the information for the new transcode tree and the node u′

c which
calculates the tree next time, as explained in Sect. 3.3.

At time tr, all nodes stop receiving streams from current parent nodes and the nodes
in the root layer of the new transcode tree starts to deliver video streams. Nodes in
internal layers also forward video streams after receiving them. The video stream trans-
mitted along the new transcode tree arrives after a certain time lag due to transcode and
link latency. So, during the time lag, each node plays back video from its buffer to avoid
blank screen.

For the next reconstruction of the transcode tree, the buffer of each node must be
filled with video data of the above time lag. This process is done by transmitting the
video stream slightly faster than its playback speed. This fast transmission requires
more computation power for transcoding and more bandwidth for forwarding video
data. Let α denote the ratio of the above time lag over the time period between two
subsequent tree reconstructions. α is a real constant number between 0 and 1. Then this
fast transmission requires computation power and upstream/downstream bandwidths
(1 + α) times as much as the normal transmission.

Reconstruction of the transcode tree may greatly change positions of nodes in the
tree. So, we let nodes closer to the root node play back video with larger delay by
buffering certain time of video data. Data amount to be buffered can be decided with
statistic information calculated from received video streams.

Validity of assumptions
As described in Sect.3.2, if there are not enough number of candidate internal nodes,
part of leaf nodes which have larger upstream bandwidths are transformed into inter-
nal nodes by decreasing their quality requirements. This could be the largest factor of
users’ unsatisfaction. Thus, the proposed technique is especially effective if (i) there
are many users who have larger bandwidths compared to quality requirements. Also,
our technique is effective if (ii) users’ quality requirements are distributed widely, since
the proposed technique can flexibly adjust video quality by transcoding, compared to
layered multicast techniques.

Hereafter, we give some typical environments where the above conditions (i) and
(ii) hold. Under the following three example environments, condition (i) holds. (1) A
video delivery system in which users pay fee according to video quality. (2) An envi-
ronment where user’s available network bandwidth is much larger than bitrate of video.
(3) An environment where video quality is restricted by display resolution rather than
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bandwidth. Regarding (1), even if a user has large available network bandwidth, the user
may want to keep video quality low to save on fee. Regarding (2), if a user is connecting
to the Internet through the optical fiber network, available network bandwidth is usually
much larger than bitrate of video, and thus there can be many users with large unused
network bandwidth if such a network becomes popular. Regarding (3), it is possible that
a user watches video using a portable game console or a PDA. These devices normally
have screens with resolutions smaller than VGA, and it is quite unlikely that users of
these devices request larger resolution than that, even if plenty of network bandwidth is
available.

Next, we give three examples under which condition (ii) holds. (1) Watching multi-
ple videos simultaneously on a single screen. (2) Recording video under restriction of
disk space. (3) Watching multi-object video with adjusted quality of objects according
to importance of each object. Regarding (1), contents such as news and stock prices are
displayed on PC screen, and watched when the user is doing other jobs on another win-
dow. Users set window size according to their interests, and thus there would be various
quality requirements. Regarding (2), users may want to record received video in bitrate
according to importance of the video. In this case, quality requirement varies depend-
ing on user’s interest and the size of disk space. Regarding (3), multi-object video is
played back under constraints of network bandwidth. Users may want to watch impor-
tant objects in higher bitrate. Quality requirements of objects would vary depending on
importance of objects.

Thus, we can say that users’ quality requirements can widely be distributed.

4 Evaluation

In order to show usefulness of MTcast, we have conducted several experiments for
measuring (1) required computation power for transcoding (2) overhead of transcode
tree construction and (3) the user satisfaction degree on received quality.

4.1 Required Computation Power for Transcoding

In our method, since transcoding is processed on user nodes, the load of transcoding
should not influence the playback of video. So, we examined the load of transcoding
while playing back a video using a desktop PC, a laptop PC, and a PDA. In the exper-
iment, we measured maximum processing speed of transcoding (in fps) while playing
back a video and compared it with the actual playback speed of the video. If the maxi-
mum processing speed is sufficiently larger than the actual playback speed, it can be said
that the load of the transcoding doesn’t influence playback of the video. We measured
the maximum processing speed by changing the transcoding degree (i.e., the number of
simultaneous transcode processing) from 1 to 3. In the experiment, we used mpeg2dec
0.4.0b as the decoder and ffmpeg 0.4.9-pre1 as the encoder. The experimental
parameters and results are shown in Table 1. The specifications of the devices in Table 1
are as follows: desktop PC (CPU: Pentium4 2.4GHz, 256MB RAM, Linux2.6.10), lap-
top PC (CPU: Celeron 1GHz, 384MB RAM, Linux 2.4.29), and PDA (SHARP Zaurus
SL-C700, CPU: XScale PXA250 400MHz, 32MB RAM, Linux 2.4.28). The original
frame rate of all videos is 24 fps.
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Table 1. Maximum processing speed while playing back a video

device original video transcoded video transcoding degree
picture size bit rate (kbps) picture size bit rate(kbps) 1 2 3

Desktop PC 640x480 3000 480x360 2000 35.66 20.03 14.84
Desktop PC 480x360 2000 352x288 1500 61.60 36.40 25.89
Laptop PC 352x288 1500 320x240 1000 49.90 30.65 21.84

PDA 320x240 1000 208x176 384 10.12 6.04 4.33

Table 1 shows that common desktop PCs and laptop PCs have enough computation
power to simultaneously transcode one or more videos with 3000Kbps (640x480 pixels)
and with 1500 Kbps (352x288 pixels) in real-time, respectively.

In MTcast, each internal node needs computation power more than one transcod-
ing degree. Table 1 shows that this requirement is not hard to be achieved. However,
PDA’s maximum processing speed is 10.12 fps even if the transcoding degree is 1. It
shows that PDAs and smaller computing devices cannot be used as internal nodes of the
transcode tree.

4.2 Overhead of Tree Reconstruction

In our method, the transcode tree is reconstructed periodically and/or when a new video
segment starts. The overhead of the tree reconstruction consists of (i) aggregation of
quality requirements for the new video segment from (part of) user nodes, (ii) cal-
culation of the new transcode tree, and (iii) distribution of the new transcode tree to
representative nodes of all layers.

For the above (i), even when the number of nodes is 100,000 2 and each node sends
a 50 Byte packet for quality requirement directly to the computation node uc, 5 MByte
information is sent to the node uc which computes the transcode tree. If we assume
that this information is sent in 10 seconds (it should be less than the period of the
tree reconstruction), the average transmission speed becomes 4 Mbps. Since only the
node with enough downstream bandwidth can be selected as uc, this would not be a
bandwidth bottleneck.

In order to investigate the impact of the above (ii) and (iii), we measured the size
and the computation time of the transcode tree with the number of nodes from 1,000 to
100,000. Here, we assumed that n = 2 and k = 5, where n and k are the fanout of each
internal node and the number of layer members, respectively. The experimental result
is shown in Table 2. According to Table 2, the computation time was within 2 seconds
even when the number of nodes is 100,000 (Pentium 4 2.4GHz with 256MB RAM on
Linux2.6.10). So, computation time would not be a bottleneck.

The size of the transcode tree was 30 Kbyte when the number of all nodes is 10,000.
The information of the tree is sent to representative nodes of all layers along the layer
tree. If we assume that this is sent in 10 seconds, each representative node needs 24Kbps
extra bandwidth. Even when the number of nodes is 100,000, the required bandwidth

2 This number is actually much smaller since only the nodes which want to change their quality
requirements for the next video segment send the messages.
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Table 2. Size and Computation Time of Transcode Tree

number of nodes computation time (sec) size of tree (byte)
1000 0.016 3K

10000 0.140 30K
100000 1.497 300K

would be 240Kbps. Also, the tree size can be further reduced with the general compres-
sion algorithm like gzip.

4.3 User Satisfaction

In this section, we compare MTcast with the layered multicast method in terms of the
user satisfaction degree for the quality requirements.

Similarly to [3], the satisfaction degree of user u (0 ≤ Su ≤ 1) is defined as follows.

Su = 1− |u.q − u.q′|
u.q

(4)

Here, u.q represents u’s required quality and u.q′ represents the quality of the received
video. When u.q′ is closer to u.q, Su gets closer to 1.

The experiment has been conducted as follows: The physical network topology with
6000 nodes is generated with Inet3.0 [8] and 1000 nodes are selected as user nodes.
Links directly connected to those user nodes are regarded as LANs. Links attached to
LAN links are considered as MAN links, and other links are considered as WAN links.
We assume that there are the following four types of user nodes: (1) user nodes with cell
phone networks whose available downstream bandwidths are 100 to 500 Kbps; (2) user
nodes with wireless LAN (2 Mbps to 5 Mbps); and (3) user nodes with wired broadband
networks (10 Mbps to 20 Mbps). We assume that each user node has the same amount
of available upstream bandwidth as the downstream bandwidth.

We selected the quality requirement of each user node according to one of the fol-
lowing three distributions within the available bandwidth: (a) uniform distribution from
300 Kbps to 3 Mbps; (b) sum of two normal distributions with 300 Kbps average and
50Kbps standard deviation and with 3 Mbps average and 1 Mbps standard deviation.
On the other hand, the total sum of bandwidths of LAN links connected to each MAN
link was used as the bandwidth of the MAN link. 6 Gbps was used as bandwidths for
WAN links.

In the above simulation configuration, we measured the average user satisfaction de-
gree ( 1

|U|
∑

u∈U Su, U is the set of all users). We changed the number of user nodes

Table 3. Configuration of Available Band-
width

100k to 500k 2M to 5M 10M to 20M
case1 33% 33% 33%
case2 5% 33% 62%
case3 45% 10% 45%
case4 62% 33% 5%

Table 4. Relationship of u.ntranscode,
u.nlink , f

p.ntranscode p.nlink k f

pref. 1 2 4 2 1
pref. 2 1 3 3 1
pref. 3 1 3 6 2
pref. 4 1 3 9 3
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Fig. 4. Average User Satisfaction by require-
ment (b)

from 1 to 1000 and measured the average satisfaction degree for the combination of the
above quality requirement distributions (a), (b) and four different types of populations
of user nodes shown in Table 3. The experimental results are shown in Fig. 3, Fig. 4.
In the figures, X-axis and Y-axis represent the number of nodes and the average satis-
faction degree, respectively.

In Fig. 3 and Fig. 4 , we see that MTcast can achieve pretty high satisfaction degree
for various distribution of quality requirements from user nodes, when the number of
user nodes are more than 100. The satisfaction degree is lower in case4 than other cases.
This is because the percentage of user nodes with higher bandwidth is much smaller in
case 4. However, even in such a case, MTcast achieved more than 70% user satisfaction.

In order to measure variation of user satisfaction degree depending on the value of
k, we measured average user satisfaction degrees for k = 2, 3, 6 and 9 which are de-
rived when applying four different combinations of u.ntrans(u.q) and u.nlink(u.q) in
Table 4. From Table 4, when k = 2 or k = 3, the system can be recovered from one
node failure per layer, and when k = 6 or k = 9, the system can be recovered from
two and three simultaneous node failures per layer, respectively (these are calculated by
equation (3). However, as the value of k increases, the average user satisfaction degree
might decrease since the delivered quality is averaged among k members of each layer.
The experimental result is shown in Fig. 5.

From Fig. 5, while the number of nodes is relatively small (i.e., less than 300), the
average user satisfaction degree decreases as the value of k increases. However, as
the number of user nodes increases, the decrease gets smaller. From the result, while the
number of user nodes is small, we should keep the value of k small in order to keep the
average user satisfaction degree high, and we should increase the value of k gradually
to improve robustness against node failure as the number of users increases.

For comparison, we also measured the average user satisfaction degree when using
the layered multicast method. The average user satisfaction degree depends largely on
the proportion of bitrates among multiple layers. So, we used the following way for
allocating bitrates of layers: The average user satisfaction degree was considered as
the evaluation function, and the optimal allocation of encoding rates were calculated
for basic and extension layers using the Simulated Annealing method (the number of
repetition times were 10,000).
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Fig. 6. Average User Satisfaction by Layered Multicast

With this optimization technique, we measured the average user satisfaction degrees.
The results are shown in Fig. 6. From Fig. 5 and Fig. 6, when the number of user nodes
is small (less than 200), and we use k = 6 or k = 9 with MTcast for two failure recovery
per layer, the layered multicast achieves higher satisfaction degree than MTcast. On the
other hand, when the number of nodes is sufficient (more than 200), MTcast achieves
much higher satisfaction degree than the layered multicast with less than 10 layers
(when the number of layers is higher than 10, the computational complexity may exceed
the power of an ordinary PC [3]).

5 Concluding Remarks

In this paper, we proposed a new video delivery method called MTcast to achieve ef-
ficient simultaneous video delivery to multiple heterogeneous users. In the proposed
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method, the same video stream is transmitted from a video server to user nodes by
step-by-step transcoding at each intermediate node. The main contributions of MTcast
are the following: (1) quick failure recovery and new user’s quick reception of video
streams can be achieved owing to layers of user nodes, (2) the size and height of the
tree are kept small by periodical tree reconstruction, and (3) higher user satisfaction can
be achieved with reasonable resource consumption at user nodes.

The above (2) also allows users to play back video segments with various different
quality. When we use MTcast with our energy consumption control technique in [11],
users can increase playback quality for preferred video segments without shortening
playable time at portable devices within the battery amount.

In this paper, we only provided a centralized algorithm for constructing the transcode
tree, although it works for the scale of 100,000 nodes. As part of future work, we will
design a distributed algorithm for tree construction to improve scalability further.
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Abstract. This paper aims at providing a rigorous definition of self-
organization, one of the most desired properties for dynamic systems,
such as peer-to-peer systems, sensor networks, cooperative robotics, or
ad-hoc networks. We propose a framework in order to prove the self-
organization of dynamic systems with respect to generic criteria (e.g.,
similarity, load balancing, geographical neighborhood, battery level) that
can be composed in order to construct more complex criteria. We illus-
trate our theory with a case study that consists in proving the self-
organization of CAN, a representative peer-to-peer system.

1 Introduction

Self-organization is an evolutionary process in which the effects of the envi-
ronment are present. Natural phenomena, living forms, or social systems (e.g.,
growing crystals, cells aggregation, ant colonies) are examples of self-organizing
systems in which a global order of the system emerges from local interactions.

In the newly emerging fields of distributed systems (p2p, ad-hoc networks,
sensor networks, cooperative robotics), self-organization became one of the most
desired properties.

The major feature of all recent scalable distributed systems is their extreme
dynamism in terms of structure, content, and load. In p2p networks, nodes con-
tinuously join and leave the system. In large scale sensor, ad-hoc or robot net-
works, the energy fluctuation of batteries and the inherent mobility of nodes
induce a dynamic aspect of the system (the system size and the topology may
change) that must be addressed. In all these systems there is no central entity
in charge of their organization and control, and there is an equal capability,
and responsibility entrusted to each of them to own data [10]. To cope with
such characteristics, these systems must be able to spontaneously organize to-
ward desirable global properties. In peer-to-peer systems, self-organization is
handled through protocols for node arrival and departure, based either on a
fault-tolerant overlay network, such as in CAN, Chord, Pastry [7, 14, 16, 18], or
on some localization and routing infrastructure, such as in OceanStore [11, 22].
Recent peer-to-peer applications exploit the natural self-organization of peers in
semantic communities (clusters) [9, 12, 17]. In ad-hoc networks, solutions have
been proposed for a self-organizing public-key management system that allows
users to create, store, distribute, and revoke their public keys without the help of
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any trusted authority or fixed server [4]. Self-organization was also used in order
to cluster ad-hoc nodes [21]. Self-organizing algorithms have also been devel-
oped that arrange mobile robots into predefined geometric patterns (e.g., [19]).
Inspired from crystal growth, Fujibayashi et al. [8] simulations self-organizing
heuristics for the shape formation of a group of mobile robots. Their work uses
the notion of virtual spring—a virtual link between neighboring nodes. The
global shape is obtained by tuning the parameters of the springs.

Informal definitions for self-organization, or the related self∗ properties (e.g.,
self-configuration, self-healing or self-reconfiguration) have been proposed pre-
viously [3, 20, 21]. Babaoğlu et al. [3] propose a platform, called Anthill, aimed
at the design of peer-to-peer applications based on self-organized colonies and
swarms of agents. Anthill offers a bottom-up opportunity to understand the
emergent behavior of complex adaptive systems. Walter et al. [20] focus on the
concept of reconfiguration of a metamorphic robotic system with respect to a
goal configuration. One of the problems left open in this work is the specification
of admissible and non-admissible configurations, key notions in proving the cor-
rectness of the proposed solutions. Zhang and Arora [21] propose the concepts
of self-healing and self-configuration in wireless ad-hoc networks, and propose
self-stabilizing [5] solutions for self∗ clustering in ad-hoc networks.

The correctness proofs for all previously mentioned self-organizing systems
should be based on a well-founded theoretical model, able to encapsulate the
dynamic behavior of these systems. Dynamic systems must cope with frequent
changes in topology and size. Hence, the characterization of the self-organizing
aspects of these systems cannot solely focus on the non-dynamic periods, since
they may be absent or very short. Moreover, defining self-organization as a simple
convergence process towards a stable predefined set of admissible configurations
is inadequate for two reasons. First, it may be impossible to clearly characterize
the set of admissible configurations since, in dynamic systems, a configuration
should include the state of some key parameters that have a strong influence
on the dynamicity of the system. These parameters can seldom be quantified a
priori (e.g., the status of batteries in sensor networks, or the data stored within
p2p systems). Second, due to the dynamic behavior of nodes, it may happen
that no execution of the system converges to one of the predefined admissible
configurations.

The main contribution of this paper is to propose a formal specification of
the self-organization notion which, to the best of our knowledge, has never been
formalized in the area of scalable and dynamic systems, in spite of an over-
whelming use of the term. Our specification is based on the principles that
govern dynamic systems. The first one relates to the exchange of information
or resources within the system (components are possibly capable to infinitely
often retrieve new information/resources from components around them). The
second one is the dynamics of these systems (components have the ability to
move around, to leave or to join these systems based on local knowledge). The
third principle is the specificity of the components: Among all components of the
system, some have huge computation resources, some have large memory space,
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some are highly dynamic, some have broad centers of interest. In contrast, seeing
such systems as a simple mass of components completely obviates the differences
that may exist between individual components; those very differences that make
the richness of these systems. The tenets mentioned above share as a common
seed the locality principle, i.e., the fact that interactions and knowledge are
both limited in range. We formalize this idea, leading first to the notion of lo-
cal self-organization. Intuitively, a locally self-organizing system should reduce
locally the entropy of the system. For example, a locally self-organized p2p sys-
tem forces components to be adjacent to components that improve, or at least
maintain, some property or evaluation criterion. We then formalize the notion
of self-organization by imposing the system to be locally self-organizing at all
its nodes and by ensuring that despite its dynamicity, the system entropy pro-
gressively reduces. Using our framework we prove the weak self-organization of
CAN, a well known peer-to-peer overlay. The proof of the self-organization of
Pastry is proposed in [1].

The remaining of this paper is organized as follows: Section 2 proposes a model
for dynamic and scalable systems. Section 3 formalizes the local and global self-
organization properties. In Section 4, we propose the study of CAN, a dynamic
peer-to-peer overlay. Section 5 concludes and discusses open issues.

2 Model

2.1 Dynamic System Model

Communication Graph. The physical network is described by a weakly con-
nected graph. Its nodes represent processes of the system and its edges represent
established communication links between processes. The graph is referred in the
following as the communication graph. We assume that the communication graph
is subject to frequent and unpredictable changes: processes can leave or join the
system arbitrarily often, and they can fail temporarily (transient faults) or per-
manently (crash failures). Communication links can commit transient failures
(e.g., messages loss).

Data Model. Nearly all modern applications in the dynamic distributed sys-
tems are based on the principle of data independence—the separation of data
from the programs that use the data. This concept was first developed in the
context of database management systems. In dynamic systems, in particular in
P2P systems, data stored locally at each node, organized in flat or hierarchi-
cal structures (e.g., XML trees), play a crucial role in creating semantic based
communities (logical links between processes that store or query similar data).
Note that system data is subject to frequent and unpredictable changes adjust-
ing to nodes connections and disconnections. Data also suffers modifications like
replication, aggregation, removal and can be subject to permanent or transient
failures.

Logical Overlay. We consider the network plus the data stored in the network
represented by a logical multi-layer overlay, each logical layer l being a weakly
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connected graph, also referred to as the logical communication graph at layer
l. In order to connect to a particular layer l, a process executes an underlying
connection protocol. A process p is called active at a layer l if there exists at least
one process q which is connected at l and aware of p. The set of logical neighbors
of a process p at a layer l is the set of processes q such that the logical link (p, q) is
up (p and q are aware of each other) and is denoted N l(p). Notice that a process
p may belong to several layers simultaneously. Thus, p may have different sets
of neighbors at different logical layers. Can, Pastry or Chord ([14, 15, 18]) are
logical overlays using DHTs as design principle. In sensors or ad-hoc networks,
connected coverings (such as trees, weakly connected maximal independent sets
or connected dominating sets) can also be seen as logical overlays.

2.2 State Machine-Based Framework

To rigorously analyze the execution of the dynamic systems, we use the dynamic
I/O automata introduced by Attie and Lynch [2]. This model allows the modeling
of individual components, their interactions and their changes. The external
actions of a dynamic I/O automata are classified in three categories, namely
the actions that modify data (by replication, aggregation, removal, or writing),
the input-output actions (I/O actions), and dynamic actions (C/D actions for
Connection-Disconnection actions) describing the mobility within the system. A
configuration is the system state at time t altogether with the communication
graph and data stored in the system. A fragment of an execution e is a finite
subsequence of e. Its size is the length of this subsequence. A static fragment is a
maximal-sized fragment that does not contain C/D actions. Let f = (ci, . . . , cj)
be a fragment in a dynamic I/O automaton execution. We denote as begin(f)
and end(f) the configurations ci and cj respectively. In the sequel, all the referred
fragments are static and are denoted by f or fi. Thus, an execution of a dynamic
I/O automaton is a infinite sequence of fragments e = (f0, . . . , fi, . . . fj , . . .)
interleaved with dynamic actions.

3 Self-organization

In this section we propose to formally define the notion of self-organization in the
context of scalable and dynamic systems (in particular p2p systems) altogether
with tools for proving their self-organization.

3.1 Local Self-organization

Intuitively, a locally self-organizing system should force processes to improve
or at least maintain some criterion. In the following we restrict our attention
to insensitive criterion, that is criterion whose evaluation at a process is not
modified by the internal actions of other processes. A typical example of such
criterion is the proximity metric in the nodeId space. Let C be a [0, 1]-valued
function defined on the local neighborhood of a process (the local neighborhood
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of a process p includes both the state of p and the state of p’s neighbors). In
the following Cp denotes an evaluation criterion in the local neighborhood of a
process p. Let γp be a [0, 1] function defined for a process p, a configuration c
and an evaluation criterion Cp. γp(c, Cp) is the aggregate of the Cp(q) values in
the configuration c for all one hop neighbors q of p. In the following γp(c, Cp) is
referred as the local aggregate criterion. In order to define local self-organization,
we introduce the notion of stable configurations. Informally, a configuration c is
p-stable for a given evaluation criterion in the neighborhood of a process p if the
local aggregate criterion has reached a local maximum in c.

Definition 1 (p-stable configuration). Let c be a configuration of a system S
and p be a process, Cp be an evaluation criterion and γp(c, Cp) the local aggregate
of Cp at the configuration c. Configuration c is p-stable for γp if, for any config-
uration c′ reached from c after one action executed by p, γp(c, Cp) ≥ γp(c′, Cp).

Definition 2 (local self-organization). Let S be a system, p a process, Cp an
evaluation criterion of p and γp the aggregate of Cp. S is locally self-organizing
for γp if S eventually reaches a p-stable configuration. S is locally self-organizing
if ∀p ∈ S, S is locally self-organizing for γp.

In p2p systems local self-organization should force processes to be logical neigh-
bors with processes which improve the evaluation criterion. Module 1 executed by
a process p, referred in the following LSA, proposes a local self-organizing generic
algorithm for an arbitrary insensitive criterion C. Note that existing DHT-
based peer-to-peer systems (see Section 4) execute similar algorithms to ensure
self-organization with respect to specific criteria (e.g., geographical proximity).
The nice property of our generic algorithm is its adaptability to unstructured
networks.

LSA is based on a greedy technique, which reveals to be a well adapted tech-
nique for function optimization. Its principle follows the here above intuition:
Let q such that q ∈ N C(p), and r such that r ∈ N C(q) but r �∈ N C(p), where
N C(p) and N C(q) are the logical neighborhoods of p and q respectively with
respect to the criterion C. If p notices that r improves the evaluation criterion
previously computed for q, then p replaces q by r in N C(p). Inputs of this al-
gorithm are the evaluation criterion C and the set of p’s neighbors for C, that
is N C(p). The output is the updated view of N C(p). Given a criterion C, a p-
stable configuration, in this context, is a configuration where for any neighbor
q of p, there is no neighbor r of q (r �= p) that strictly improves C, formally
∀q ∈ N C(p), ∀r ∈ N C(q) \ N C(p), Cp(r) < Cp(q). Note that, because of the
partial view that a component has on the global state of the system (due to
the scalability and dynamism of the system), only a heuristic algorithm can be
found under these assumptions.

Theorem 1 (Local Self-organization of LSA). Let S be a system and C be
an insensitive evaluation criterion. If S executes the LSA algorithm with C, then
S is a locally self-organizing system for any strictly monotonic local aggregation
of C.
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Module 1. Local Self-Organization Algorithm for Criteria C Executed by p
(LSA)
Inputs :

Cp : the evaluation criterion used by p;

N C(p): p neighbors for the evaluation criterion C;

Actions :
R : if ∃q ∈ N C(p), ∃r ∈ N C(q) \ N C(p),Cp(q) < Cp(r)

then N C(p) = N C(p) {rmax} \ q;
where rmax ∈ N C(q), Cp(rmax ) = maxr′∈N C(q),Cp(q)<Cp(r′)(Cp(r′))

Proof. Let p be a processor in the system executing the LSA algorithm. Assume
that S does not locally self-organize in the neighborhood of p. That is, there is
an execution of S, say e, that does not include a p-stable configuration.

Assume first that e is a static execution (i.e., no connection/disconnection
action is executed during e). Let c be the first configuration in e. By assump-
tion of the proof, c is not p-stable. Thus there is a neighbor of p, say q, that
has itself a neighbor improving the evaluation criterion. Hence, rule R (Module
1) can be applied which makes r replacing q in the neighbors table of p. By
applying the assumption of the proof again, the obtained configuration is not
stable, hence there is at least one neighbor of p which has a neighbor which im-
proves the evaluation criteria. Since the evaluation criteria is bounded and the
replacement of a neighbor is done only if there is a neighbor at distance 2 which
strictly improves the evaluation criteria, then either the system converges to a
configuration cend where the evaluation criteria reaches its maximum for some
neighbors of p, or the evaluation criterion cannot be improved. There are two
cases:

– The system has a finite number of nodes. Following the execution of the
algorithm LSA at nodes p, we can exhibit the following finite maximal
chain:

Cp(q0) < Cp(q1) < . . . < Cp(qm)

where q0 is the p’s neighbor replaced by the algorithm and qi, i∈{0, 1, . . . , m}
are the nodes which will successively replace nodes in the neighborhood of p.
Let cend be the configuration where the node qm is added to the neighbors
table of p. Since the chain is finite and maximal (due to the finite number
of nodes), in cend the value of Cp(qm) is also maximal hence, either cend is
stable, or no neighbor of qm improves the evaluation criteria. Thus, there
exists a configuration in e, namely cend , that is p-stable.

– The number of processes in the system is infinite. Similar to the previous
case we can exibit the following chain:

Cp(q0) < Cp(q1) < . . . < Cp(qm) < . . .
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where q0 is the node q and qi, i ∈ {0, 1, . . . , m . . .} are the nodes which
will successively replace nodes in the p’s neighborhood. By hypothesis, Cp

is bounded and by construction, the generated chain is monotonic strictly
increasing. Therefore, the chain converges to its supremum. That is, there
exists a configuration cend in e where the criteria cannot be further improved
or the criteria reached its supremum. In both cases any configuration reached
from cend in e after one action executed by p cannot improve the criteria.
Thus, the system reached a p-stable configuration.

Assume now that the execution e is dynamic, hence the system size and topol-
ogy may be modified by nodes connection and disconnection. Assume that node
p joins the system. This case is similar to the previous one, where p executes the
rule R of Module 1 until it reaches a p-stable configuration.

Now, let us study the case where the system is in a p-stable configuration
and, due to the connection/disconnections the p neighbors set changes. That is,
in the p neighbors set a node r appears, and the new node r is improving the
criterion. Once p is aware of the new configuration of it neighbor it restarts the
convergence period by applying rule R. The system reaches eventually a p-stable
configuration.

3.2 Self-organization Through Local Self-organization

As previously said, self-organization strongly relies on the local self-organization
property, as well as on the effect of connection/disconnection actions and data
modifications on the system. According to this effect, the system guarantees dif-
ferent levels of self-organization, namely, from weak to strong self-organization.
Before defining these properties, we introduce the notion of global evaluation cri-
terion, denoted in the following γ. The global evaluation criterion evaluates the
global organization of the system at a given configuration. More precisely, the
global evaluation criterion is the aggregate of all local criteria. For instance, if
the evaluation criterion is logical proximity (i.e., the closer a process, the higher
the evaluation criterion), then optimizing the global evaluation criterion γ will
result in all processes being connected to nearby processes.

Let Cp be an evaluation criterion and let γp be its local aggregation for any p
process in the system. In the sequel we focus only on global evaluation criteria
γ that exhibit the following property :

∀f, ∀c1, c2 ∈ f, γ(c1) < γ(c2) if ∃p, γp(c1, Cp) < γp(c2, Cp) and
∀t �= p, γt(c1, Ct) ≤ γt(c2, Ct)

Intuitively, the increase of the value of a local criterion will determine the
increase of the global criterion if the other local criteria increase their values or
remain constant. An example of criterion that meets such a requirement is the
union/intersection of local criteria. Namely, γ is the sum of a local aggregation
criterion γ: γ(c) =

∑
p∈S

γp(c).
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The weak self-organization is defined in terms of two properties. The weak
liveness property says that for each static fragment fi, either (1) fi is stable, or
(2) there exists some fragment fj, in the future of fi, during which the global
evaluation criteria strictly improves (see Fig. 1). The safety property requires
that the global evaluation criteria never decreases during a static fragment. For-
mally, we have:

Definition 3 (Weak Self-organization). Let S be a system and γ be a global
evaluation criterion defined on the configurations of S. A system is weakly self-
organizing for γ if the following two properties hold (recall that (f0, . . . , fi, . . .)
stand for static fragments):

Weak Liveness Property

∀e = (f0, . . . , fi, . . . , fj, . . .), ∀fi ∈ e, ∃fj ∈ e,j ≥ i : γ(end(fj)) > γ(begin(fj))
or ∀p ∈ S, begin(fj) is p-stable

Safety Property: ∀e = (f0, . . . , f, . . .), ∀f ∈ e : γ(end(f)) ≥ γ(begin(f))

γ

t

∀fi

· · ·
· · · ∃fj

dynamicstatic

begin(fj)

end(fj)

Fig. 1. Illustration of the Weak liveness property

The following theorem gives a sufficient condition to build a weakly self-organiz-
ing system:

Theorem 2 (Weak Self-organization). Let S be a system and γ be an in-
sensitive global evaluation criterion. S is weakly self-organizing for γ if for any
process p, S locally self-organizes in p’s neighborhood.

Proof. Let e be an execution of S. We first prove that the sufficient part.

Safety proof. Let f be a static fragment in e. Since S is locally self-organizing
then for any p node in the system there are two situations: (1) p is executing
some actions in f , and thus γp(begin(f)) < γp(end(f)) or (2) p does not
execute any action and, in this case γp(begin(f)) ≤ γp(end(f)). Overall,
γ(end(f)) ≥ γ(begin(f)).

Weak liveness proof. Let p be a process. Let fi be an arbitrary static frag-
ment in e. S is locally self-organizing hence there is a static fragment fj , i ≤ j
in e such that p executes self-organizing actions in fj hence Cp(begin(fj)) <
Cp(end(fj)). Overall, for any fi there is a fragment fj such that γ(end(f)) >
γ(begin(f)).
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The weak self-organization definition applies to static fragments. Nothing is
guaranteed during dynamic ones (i.e., fragments in which connections / dis-
connections occur or data are modified). For example, Pastry self-organization
protocol may cause the creation of multiple, isolated Pastry overlay networks
during periods of IP routing failures. Because Pastry relies almost exclusively on
information exchange within the overlay network to self-organize, such isolated
overlays may persist after full IP connectivity resumes [7].

The following definition proposes a characterization of the system during both
static and dynamic fragments. This definition is characterized by the safety
property as defined above and a liveness property. This property says that either
(1) infinitely often, there are static fragments during which the knowledge of the
system enriches (see Fig. 2), or (2) all the processes have reached a stable state.

Definition 4 (Self-organization). Let S be a system and γ be a global evalua-
tion criterion defined on the configurations of S. A system is self-organizing for
γ if both safety (defined here above) and liveness hold, with the liveness property
defined as follows:

Liveness Property

∀e = (f0, . . . , fi, . . . , fj, . . .), ∀fi ∈ e, ∃fj ∈ e, j ≥ i : γ(end(fj)) > γ(end(fi))
or ∀p ∈ S, begin(fj) is p-stable

γ

t

∀fi · · ·
· · · ∃fj

end(fj)

end(fi)

Fig. 2. Illustration of the liveness property

Note that none of these properties forbid processes to reset their neighbors lists
after each connection/disconnection. To prevent the system from “collapsing”
during dynamic fragments, we need to specify a stronger property guaranteeing
that for all the processes whose neighborhood has not changed, information
is maintained. Specifically, this ensures the existence of a non-empty group of
processes for which local information has been maintained between the end of a
static fragment and the beginning of the subsequent one. We can see this group
of processes as the kernel of the system. More precisely, given two successive
configurations ci and ci+1 with their associated graphs Gi and Gi+1, the static
common core of Gi and Gi+1 is the sub-graph common to Gi and Gi+1 minus
all nodes for which the neighborhood has changed. Formally, let G1 and G2 be
two graphs, and ΓGi(a) the set of neighbors of a in Gi. We define the topological
static common core of (G1, G2) as:

Notation 1 (Topological Kernel). KerT (G1, G2) = G1∩G2\{a : ΓG1(a) �=
ΓG2(a)}.
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Since we study systems where the self-organization may be data-oriented (typ-
ically the peer-to-peer systems), we propose a data oriented definition of the
static core of the system. That is, given two successive configurations ci and
ci+1, the data static common core of ci, ci+1 is:

Notation 2 (Data Kernel). KerD(ci, ci+1) = Di ∩ Di+1, where Di is the
system data in ci.

This leads to the following property:

Definition 5 (Kernel Preservation). Let S be a system and γ be a global
evaluation criterion defined on the configurations of S. Let e = (f0, . . . , fi,
fi+1, . . .) be an execution of S and let Ki = Ker∗(end(fi), begin(fi+1)) (where
Ker∗ denotes either KerT or KerD). S verifies the kernel preservation property
for γ if the following property holds:

Kernel Safety. ∀i, γ(Proj |Ki
(end(fi))) ≤ γ(Proj |Ki

(begin(fi+1))) where
Proj |Ki

(c) is the sub-configuration of c corresponding to the kernel Ki.

This leads to a stronger version of self-organization defined as follows:

Definition 6 (Strong Self-organization). Let S be a system and γ be a
global evaluation criterion defined on the configurations of S. S is strongly self-
organizing for γ if it is self-organizing and it verifies the kernel preservation
property defined here above.

The concept of self-organization can be easily extended to a finite set of criteria.
In the following we show that when criteria are not interfering, i.e., when they are
independent, then one can build a self-organizing system for a complex criterion
by using simple criteria as building blocks. Using the previous example where
the local evaluation criterion was proximity, a second global evaluation criterion
is needed to decrease the number of hops of a lookup application. For instance,
we may want to use a few long links to reduce the lookup length.

Definition 7 (Independent Criteria). Let S be a system and let γ1 and γ2 be
two global criteria defined on the configurations of S. Let c be a configuration of
S and sc and sc′ the sub-configurations of c spanned by γ1 and γ2. γ1 and γ2 are
independent with respect to c if sc �= sc′. γ1 and γ2 are independent with respect
to S if for any configuration c in S, γ1 and γ2 are independent with respect to c.

Definition 8 (Monotonic Composition). Let S be a system and let γi ∈ I a
set of criteria on the S configurations. γ = ×i∈Iγi is a monotonic composition
of the criteria γi, i ∈ I if the following property is verified: ∀c1, c2, γ(c1) < γ(c2)
iff ∃iγi(c1) < γi(c2) and ∀j �= i ∈ I, γj(c1) ≤ γj(c2).

Theorem 3 (Multi-criteria Self-orgnization). Let S be a system and let
γ1 . . . γm be a set of independent evaluation criteria. If S is weakly, resp. strongly,
self-organizing for each γi, i ∈ [1..m] then S is weakly, resp. strongly, self-
organizing for γ1 × . . .× γm.
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Proof. Let e be a configuration of S and let ei be the projection of e on the
sub-configurations modified by γi. Since, S is self-organizing with respect to γi

then ei is self-organizing with respect to γi.

Safety Proof. Let f be a static fragment in e and let fi be the projection of f on
the sub-configurations spanned by γi. From the hypothesis, γi(begin(fi))≤
γi(end(fi)) ∀i hence γi(begin(f))≤γi(end(f)). So, γ(begin(f))≤γ(end(f)).

Weak Liveness Proof. Let fi be a fragment. There is fj and γk such that
γk(begin(fj)) < γk(end(fj)). Using the safety for all γj , j �= k it follows
γ(begin(fj)) < γ(end(fj)).

Overall, S is weak self-stabilizing for γ. The proof for strong self-organization
follows using a similar reasoning.

Theorem 4 (Self-organization Hierarchy). Weak self-organization ⊂ self-
organization ⊂ strong self-organization

Proof. Straigtforward from the definitions.

4 Case Study: Self-organization of CAN

We now prove the self-organization of CAN. CAN [14, 13] is a scalable content-
addressable network, the principle of which is to use a single namespace—the
d-dimensional torus [0, 1]d—for both data and nodes. Data and CAN nodes are
assigned a physical volume in the torus. Each zone has associated a virtual
indentifier - a binary string. The insertion of a new node in the torus is done
by spliting an existing zone in two halves, one of which is assigned to the new
node. At the insertion each node has assigned a virtual indentifier (VID) which
is the identifier of its reposponsability zone. Each existing zone can be seen as
a leaf of a virtual binary tree. The internal vertices in the tree represent zones
that no longer exist, but were split at some previous time. The children of a tree
vertex are the two zones into which it was split. Each edge in the virtual tree has
a binary label. The VID of a CAN-node is the binary string labeling the path
from the root to the corresponding leaf zone in the virtual tree. CAN-nodes does
not maintain the virtual tree structure however, each node maintains pointers to
the immediate successor and predecessor VIDs. This linked list guaranties the
connectivity between any two CAN-nodes.

The distributed algorithms executed on a node arrival or departure ensures
that the complete torus volume is uniquelly partitioned between all participating
CAN nodes. These algorithms are crucial for the self-organization of the system,
since the topology of CAN changes only when nodes enter or leave the system.
In the following, we show how CAN fits into our self-organization framework.
Let us consider the following evaluation criterion:

Ccart−dist
p (q) =

1
1 + dist(p, q)

, where dist is the cartesian distance in the torus.
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Theorem 5. CAN is weak self-organizing for Ccart−dist
p .

Proof. We first show that CAN protocols for node insertion and node removal
perform actions that leave the system in a locally stable configuration. Then, we
show that, if static fragments are too short, the system may not reach a locally
stable configuration. To this end, we first assume that the system is in a locally
stable configuration, and prove that after a join or a leave the system reaches
again a locally stable configuration. Finally, we address the high churn case.

Nodes Insertion. The insertion of a node is a two-step operation. In the first
step, the node p that wants to join the system computes a Cartesian point,
id , in the d-torus, then obtains the IP address of some CAN node q0. The
second step is the actual insertion: (1) q0 sends a message to the node q1
responsible for the volume containing the id computed by p, then (2) p
contacts q1 which, in turn, contacts its neighbors and splits its volume in
order to maximize the uniform distribution of nodes within the torus, and
finally (3) p enters the system with a volume defined by q1.

The key point here is that, for any node r in the torus, when a new node
p is inserted in CAN, it becomes a neighbor of r only if p is closer to r
than one of r’s previous neighbors. Hence, the Cartesian distance from r to
its neighbors is either identical or reduced, when compared to the situation
before the insertion: the evaluation criterion for every node in the system is
improved by an insertion. The insertion of a node is a finite process since the
number of nodes in the system is finite. Once the insertion process finishes,
the system is again in a locally stable configuration.

Nodes Departure. When a node p leaves the systems, every neighbor of p
will have its evaluation function decreased, and will start a recovery process,
that is, the replacement of the departing neighbor by an active node. The
reponsability zone of p is taken over by the node t the virtual identifier (VID)
of which is numerically closest to p. The important point here is that, for
any node r which has lost a neighbor p, node t becomes r’s neighbor only if
t is the closest to p in terms of VID distance. Node r finds the location of
node t by querying one of its neighbors having the closest VID to p’s VID.
If this neighbor has no neighbor with VID closer to p’s VID than its own
VID, it becomes responsible for p’s zone, otherwise the query is forwarded
to the neighbor closest to p’s VID. Eventually, the recovery returns the node
closest to p’s VID. This node replaces p in the neighbors list of r and becomes
new owner of p’s zone. In order to ensure that every neighbor of p reaches
the same node, each CAN-node maintains pointers to the next and previous
nodes in the VIDs space using a protocol similar to Chord ([18]).

Once every neighbor of the departing node finishes the recovery protocol,
the topology of CAN remains unchanged unless another insertion or depar-
ture occurs. Hence, the departure protocol leaves the system in a locally
stable configuration.

The main problem occurs in systems with high churn. That is, if during the
recovery process a node experiences concurrent departures, the locally stable
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configuration may never be reached. Nevertheless, during each static fragment
that follows a dynamic period, the criteria is improved or else, a locally stable
configuration is reached. Thus, CAN is a weak self-organizing system.

Observation 1. When CAN experiences only connections the evaluation cri-
terion Ccart−dist

p in the common core is unchanged, while its value increases
for the new connected nodes and their neighborhood. Therefore in dynamic sys-
tems where only connections are experienced CAN is strong self-organizing for
Ccart−dist

p .

Multi-layering in CAN. Another feature of CAN is its ability to support multiple
realities [14, 13]: several coordinate spaces can be used in parallel, in a layered
form. For example, in a scenario where three different realities coexist in CAN,
every node of the system has three different coordinates and, correspondingly,
three lists of neighbors, one for each layer. These realities are completely inde-
pendent, and hence Theorem 3 can be used to show that multi-realities CAN is
an example of a multi-criteria self-organizing system.

5 Conclusion and Open Problems

In this paper, we have proposed a framework for proving the self-organizing
properties of dynamic systems. Self-organization is a key feature for the newly
emerging dynamic networks (peer-to-peer, ad-hoc, robot or sensor networks).
Our framework includes formal definitions for self-organization, altogether with
sufficient conditions for proving the self-organization of a dynamic system. We
have illustrated our theory by proving the self-organization of two p2p overlays:
Pastry and CAN.

We have also provided a generic algorithm that ensures the self-organization
of a system with respect to a given input criterion. Our algorithm is based on the
greedy technique, and relies solely on the local knowledge provided by the direct
neighborhood of each process. This algorithm can be used as building-block in
the construction of any self-organized DHT-based or unstructured peer-to-peer
system.

Several problems are left open for future investigation. The first one is the de-
sign of a probabilistic extension to our model. This study is motivated by the fact
that connection/disconnection actions are well-modeled by probabilistic laws.
Essentially, the liveness property could be redefined using the Markov chains
model for probabilistic dynamic I/O automata. Moreover, since our generic al-
gorithm for self-organization uses a greedy deterministic strategy, it may reach
just a local maximum for the global criterion. Adding randomized choices could
be a way to converge (with high probability) to a global maximum.

Another interesting research direction is to prove or refute our conjecture that
the selfish self-organizing generic strategy (Algorithm LSA) is optimal among all
the self-organizing local strategies. Games and economic mechanisms theories are
rich in tools adequate to this study.
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We also intend to extend our framework towards a unified theory of the self∗

(self-healing, self-configuration, self-reconfiguration, self-repairing) properties of
dynamic systems. To this end, we need to extend our case study to other dynamic
systems like robots networks and large scale ad-hoc or sensor networks, that may
offer complementary insides for understanding the rules that govern complex
adaptive systems.

Finally, we would like to study the relationship between the self-organization
and super-stabilization [6]. Note that CAN and Pastry are not self-stabilizing
or super-stabilizing (direct consequence of Theorem 1, [1]). We conjecture that
self-organization and super-stabilization are two complementary notions.
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Abstract. This paper abstracts the problem of network nodes discovering one
another in a network of unknown size using all-to-all gossip. The problem is
studied in terms of evolving directed graphs where vertices represent the partici-
pating nodes and an edge represents one node’s knowledge about another. Ideally,
such a graph has diameter one, i.e., each node knows all others. Nodes share their
knowledge by sending gossip messages. Gossip among the nodes allows them
to discover one another, decreasing the diameter of the graph. Here this problem
is considered in several synchronous settings under different assumptions about
the ability of the participating nodes to communicate. Specifically, the following
aspects of communication are considered: (1) the ability of the nodes to multicast
gossip messages, and (2) the size of the messages. The results describe the lower
and upper bounds on the number of synchronous rounds required for the partici-
pants to discover each other. A particular question of interest is if the network size
is unknown, how does a node know that it has discovered all other nodes? Given
a weakly-connected graph describing the initial knowledge of the nodes, every
node in our algorithm can stop the discovery process knowing that there are no
unknown nodes—this is done without any prior knowledge of the total number
of nodes participating in the computation.

Keywords: Distributed algorithms, resource discovery.

1 Introduction

In distributed systems it is often the case that a large subset of machines want to coop-
erate with one another to accomplish a common task. For example, the machines may
want to perform a distributed computation or to implement a distributed file system. A
first step in such an application would be to discover the available relevant resources
that are distributed across the network. This first step is referred to as the Resource
Discovery Problem [3]. The most interesting metrics used in evaluating the efficiency
of message-passing algorithms are (a) time and (b) message complexity that counts the
number of elementary transmissions performed by the communicating processes. A re-
source discovery algorithm must be efficient with respect to time and cost of messaging.

� This work is supported in part by the NSF Grants 9984778, 9988304, 0121277, 0311368.

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, pp. 206–220, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Node Discovery in Networks 207

In particular, the machines participating in the computation should be able to terminate
the algorithm upon the completion of the discovery task. Solutions to such problems
often rely on gossip and broadcast, both of which are among the basic communication
patterns in network computing (e.g., [4, 9, 6, 2]). The goal of broadcasting is to deliver
information known at one node to all other known nodes, while in the case of gossiping
one is interested in all nodes exchanging their local information. Depending on the set-
ting, resource discovery algorithms may have to be constrained based on the allowable
message size and the availability of efficient broadcast.

Konwar et al. [5] considered dynamic settings where the set of participants can
change over time as new participants join, and as failures and voluntary departures
remove those who have joined previously. The question they posed for these settings
is: how soon can newly joined nodes discover each other by means of gossiping? They
abstracted the problem, called the Join Problem, and studied it for dynamic systems that
use all-to-all gossip. The problem is studied in terms of join-connectivity graphs where
vertices represent the participants and where each edge represents one participant’s
knowledge about another. Ideally, such a graph has diameter one, i.e., all participants
know each other. The diameter can grow as new participants join, and as failures re-
move edges from the graph. Gossip helps participants discover one another, decreasing
the diameter. The results in [5] describe the lower and upper bounds on the number of
communication rounds such that the participants who have previously joined discover
one another, under a variety of assumptions about joining and failures. The problem
is defined for an asynchronous setting, but for the performance analysis, certain addi-
tional timing assumptions are made. The protocols considered in [5] have high message
and communication complexity. They also make a less-than-realistic assumption that a
node can broadcast arbitrary information to arbitrary number of other nodes: the num-
ber of messages sent out concurrently could be O(n) and each message can be of size
O(n log n), where n is the number of participants. The current work considers a some-
what similar problem in the synchronous setting. However, in the current work the set of
participating nodes remains the same throughout the computation. i.e., there are no fail-
ures or joining of new nodes. On the other hand, we introduce limitations on the ability
of the nodes to multicast and also on the size of the messages that can be transmitted.

Motivation and Contributions. In this work we consider a more general version of the
Resource Discovery Problem. We model our problem as a directed graph with proces-
sors at the vertices, where a directed edge from node u to node v means that u knows
v and thus can transmit a message to v. Initially, we assume that the graph is at least
weakly connected. Nodes share their knowledge by sending gossip messages. Gossip
among the nodes allows them to discover one another, decreasing the diameter of the
graph. We are interested in protocols that achieve the state where every node knows
about every other node participating in the computation. We refer to this problem as the
Node Discovery in Graphs problem (NDIG).

An important goal is for the nodes to be able to decide when to terminate the al-
gorithm, i.e., once a node realizes that it has discovered all the nodes participating in
the computation it can stop within some constant number of local steps. However, such
termination should not affect the liveness of the protocol. The need for the participating
nodes to detect the completion of the resource discovery without prior knowledge of the
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number of participants is mentioned in [3, 7]. The resource discovery problem stated
in [3, 7] aims to guarantee the existence of a unique node, called the root, that knows
every other node participating in the computation. However, in a practical system it is
often not enough for one node to know the identities of all other nodes. Firstly, the root
is a bottleneck when the number of participating nodes is large. Secondly, the root may
be a single point of failure. The algorithms presented in this paper aim to make every
node aware of every other node participating in the computation. Another aspect of the
problem, often overlooked, is the maximum allowable message size and the limitation
on the number of destinations a node can simultaneously send (multicast) messages
to. Here this problem is considered in several synchronous settings under different as-
sumptions about the ability of the participating nodes to communicate. Specifically, the
following aspects of communication are examined: (1) the ability of the nodes to mul-
ticast gossip messages, and (2) the size of the messages. The results describe the lower
and upper bounds on the number of synchronous rounds required for all the participants
to discover each other. One of the algorithms, viz., algorithm A, has the property that
the nodes can detect the discovery of all the nodes, and decide when to terminate the al-
gorithm without knowing the number of participating nodes a priori. For this algorithm
we do not assume any bound on message size, or the number of concurrent messages
that can be sent in a single step. As a result, this algorithm suffers from high message
and communication complexities, although its complexity matches the lower bound in
the model.

In more detail, the contributions in this paper are as follows. Let n be the number
of processes participating in the computation. We consider four message passing mod-
els depending on multicast ability and size of messages, viz., model MA—multicast
with message size O(n log n) (each node identifier can have O(log n) bits); model
MB—multicast and messages of size O(log n); model MC—unicast and message size
O(log n); and model MD—unicast with message size O(n log n).

In model MA we provide an algorithm that has the ability to detect the termination
without any vertex knowing the number of participating processes a priori, i.e., any
node can tell if it has discovered all the nodes without knowing how many nodes were
participating in the computation a priori. It is noteworthy, that this algorithm is inferior
to the algorithms proposed in [7] in terms of message and communication complexities
but the fact that it can detect termination makes it distinctive.

For model MC , we show that any algorithm that runs on model MB can be simulated
in model MC at the cost of increasing the running time by a factor of n (Theorem 3).
This shows a structural relation between these models, and is a result of independent
interest. Using this result we provide an algorithm for model MC by simulating the
algorithm for model MB. The time, message, and communication complexities of the
simulated algorithm are close to the respective lower bounds.

For model MD we provide algorithm D with time complexity O((maxC∈C

diam(C)+ |C |) log n), where C is the set of strongly connected components of the ini-
tial weakly-connected graph. For this model there is still a large gap between the lower
and upper bounds. We also show that any algorithm that can be used with model MD

can be simulated in the more restrictive model MC . Table 1 summarizes the complexity
bounds.
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Table 1. Summary results, where Δ = diam(G) and L = (maxC∈C diam(C)+ |C | where C
is the set of strongly connected components of the initial weakly-connected graph. In model MA

the bounds are based on the fact the algorithm that can detect termination.

Model Time Complexity Message Complexity Communication Complexity
Upper Lower Upper Lower Upper Lower

M∗
A O (log Δ) Ω (log Δ) O n2 log Δ Ω(n) O n3 log Δ log n Ω(n2 log n)

MB O(log2 n) Ω(log n) O(n2 log2 n) Ω(n) O(n2 log3 n) Ω(n2 log n)
MC O n log2 n Ω (n) O n2 log2 n Ω n2 O n2 log3 n Ω(n2 log n)
MD O(L log n) Ω (log n) O(nL log n) Ω (n) O(n2L log n) Ω(n2 log n)

Related Problems. The problem of resource discovery was formalized by Harchol-
Balter, Leighton, and Lewin in [3]. Several algorithms were proposed in [3] in the syn-
chronous setting assuming that the initial logical network is a weakly connected graph.
However, the best algorithm they used was a randomized algorithm. Following [3],
Kutten, Peleg, and Vishkin [7] proposed a deterministic algorithm. In this algorithm the
time complexity has been reduced, in comparison to [3], from O(log2 n) to O(log n);
the message complexity from O(n log2 n) to O(n log n); and the communication com-
plexity from O(n2 log3 n) to O(|E0| log2 n), where E0 is the number of edges in the
initial graph. In [3], the the cost of communication is measured using two complexity
measures called “connection” complexity and “pointer” complexity. However, optimiz-
ing these measures is equivalent to optimizing the usual message and communication
complexity. The deterministic algorithm in [7] does not impose limits on the message
size. Furthermore, any number of messages can be sent by a node in a given step.

A dynamic version of gossiping, called perpetual gossiping, has been proposed by
Liestman and Richards [8]. Here the new information is generated continuously and
the goal is to update the received information, hence the gossiping-like protocol must
be repeated. Another related problem is maintaining consistency among the sites in the
face of updates in the replicated database. Demers et al. [1] developed randomized al-
gorithms for distributing updates and driving the replicas toward consistency. They use
epidemic-like approach to model and analyze the performance of designed protocols.

Document Structure. The rest of the paper is structured as follows. Section 2 describes
the models of computation and measures of efficiency. Section 3 provides an algorithm
that can detect termination. In Section 4 we provide an efficient algorithm that solves
the NDIG problem introduced in this paper. Section 5 shows a method for simulating
any algorithm for the model of computation considered in Section 4 under the model of
computation considered in Section 6. Section 6 gives an algorithm for the fourth model
in this paper. We conclude in Section 7. An online technical report [10] contains the
omitted proofs.

2 Models and Complexity Measures

System model. We consider a system of n processes, with unique identifiers, able to
communicate over a fully connected synchronous network. Initially, a process may not
be aware of all other processes participating in the computation, and also may not know
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the value of n. We define step to be a standard constant period of time sufficient for a
processor to accept any incoming messages, to perform some local computation, or to
send/broadcast any outgoing messages. We assume that the nodes do not fail and that
messages are not lost. By vertex we denote a process and also we use the words vertices
and nodes synonymously.

Modeling Knowledge. We model the knowledge in the system by a directed graph
whose vertices represent processors and whose edges represent the knowledge of one
processor about another. We denote by V the set of vertices, where |V | = n. For
each vertex v we denoted by world(v) the set of adjacent vertices of v and clearly
world(v) ⊆ V . We call this graph the connectivity graph:

Definition 1. Given a set V and for each v ∈ V the set world(v) ⊆ V , we define the
connectivity graph as the directed graph, denoted as G = (V, E), where E = {(u, v) :
u, v ∈ V, v ∈ world(u)}.
We assume that any connectivity graph is at least weakly-connected which is a reason-
able assumption to guarantee that eventually any node can possibly know any other
node. Next we define an undirected version of the graph.

Definition 2. The induced connectivity graph, G = (V , E) of the connectivity graph
G = (V, E), is the undirected graph such that V = V and E = {(u, v) : ((u, v) ∈
E) ∨ ((v, u) ∈ E)}.

Problem Definition. Now, we give a relatively formal definition of the problem of node
discovery in graphs as follows. Given the initial connectivity graph G = (V, E) the
node discovery in graphs problem (NDIG) is to use a distributed protocol, under the
given message passing model of computation, to evolve the initial connectivity graph
to a fully connected connectivity graph.

Algorithmic Template. We will consider iterative algorithms, where each iteration con-
sists of a constant, fixed at “compile-time”, number of steps, i.e. the number of synchro-
nous steps involved in an iteration is known or decided a priori. We number iterations
using natural numbers. We define the following algorithmic template. At some step
within an iteration, a node v chooses a set of nodes send(v) ⊆ world(v). It then sends
messages Mv,u, for u ∈ send(v). Here, Mv,u denotes the content of message sent to
node u from v. Each message contain a set of identifiers, such that Mv,u ⊆ world(v).
When a message reaches the destination u, the set world(u) is updated as follows:
world(u) ← world(u) ∪Mv,u. Thus the connectivity graph may evolves after every
iteration.

Now let G0 = (V0, E0) and G0 = (V0, E0) to be the connectivity graph and induced
connectivity graph corresponding to the initial state. At the end of each iteration i > 0,
we define Gi = (Vi, Ei) and Gi = (Vi, Ei) to be the resulting connectivity graph and
induced connectivity graph, respectively. Clearly, V0 = Vi, i ≥ 0.

We consider several algorithms that are instantiated from the above algorithmic tem-
plate by constraining, in each round, the cardinality of the sets of destinations and
the size of the messages. Our problem is to study the conditions under which the
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connectivity graph becomes fully connected. We analyze the upper and lower bounds on
the number of iterations required to achieve that. Specifically, we examine four models
defined by imposing the following constraints on each communication round:

– Model MA: multicast and message size is O(n log n) where n is the total number
of nodes

– Model MB: multicast is at most linear in the total number of nodes and message
size is O(log n)

– Model MC : unicast and messages are of size O(log n)
– Model MD: unicast and message size at most O(n log n)

Complexity Measures. In this paper we measure the performance of the algorithms
presented in terms of time complexity, and commonly used measures of communication
cost in terms of message complexity and communication complexity. Given an initial
connectivity graph G0 and an algorithm to solve the NDIG problem we define the time
complexity as the number of synchronous steps of the algorithm executed in solving the
NDIG problem, i.e., to evolve the connectivity graph into a fully connected graph.

The message complexity of an algorithm that solves the NDIG problem on an initial
connectivity graph G0 is the total number of messages sent during the execution of the
algorithm to solve the NDIG problem.

The communication complexity of an algorithm is the total number of bits sent dur-
ing the execution of the algorithm until it solves the NDIG problem. Below we provide
a lower bound on the communication complexity of the NDIG problem valid for all the
four models. These lower bounds are proved under the assumption that the algorithms
are polynomial time complexity.

Lemma 1. The lower bound the communication complexity to solve the NDIG model,
under the models MA, MB, MC and MD is Ω

(
n2 log n

)
, where n is the number of

vertices in the connectivity graph.

3 Multicast and Message Size O(n log n)

In this section we consider the least constrained model where each node v is able to mul-
ticast in one step messages to all other nodes it is aware of, i.e, all nodes in world(v).
The size of the messages can be linear in the number of nodes times the logarithm of
the number of nodes (i.e., O(n log n). We give an algorithm solving the problem and
analyze its complexity and provide lower bounds.

Algorithm A, at any node v, is given in Fig. 1 which can detect the discovery of all
the nodes and also decide termination. On the other hand, it suffers from high message
and communication complexities. A natural question in resource discovery arises: how
will a vertex know how to stop? That is, how can a processor know that it discovered
all resources? First we describe the resource discovery problem as in [7]: a distributed
algorithm is said to solve the Resource Discovery Problem if the following applies
to every initially weakly connected component C in the directed graph G when the
algorithm terminates:
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(i) there exists a root vertex v ∈ C so that for every other vertex u ∈ C, G contains a
directed edge (v, u).

(ii) every vertex u ∈ C recognizes v as the root vertex.

With this we explain the question as follows: given a resource discovery problem on a
weakly connected graph, where each edge represents the knowledge of the tail vertex
about the head vertex, is there a distributed protocol where each node can detect the
termination condition, and thus terminate the protocol ?

RECEIVE-PHASE:
Step 1. Receive all the messages sent to v, denote by Mv the set of messages received.

Step 2. worldi(v) ← worldi−1(v) ∪ Mu,v∈Mv
Mu,v .

Step 3. if node v determines that i ≥ 2∧worldi(v) \ worldi−2(v) = ∅ then it STOPS

SEND-PHASE:
Step 4. Prepare outgoing message M such that M = worldi(v).
Step 5. Prepare a set of destinations D such that D ⊆ worldi(v).
Step 6. Send messages Mv,u to destinations u, such that Mv,u = M and u ∈ D.

Fig. 1. Algorithm A: Structure of the iteration number i, at node v

In algorithm A every vertex can detect the termination condition and thereby know
the identities of every other vertex when it terminates. Choosing the vertex with the
least identifier as the root solves the resource discovery problem.

In algorithm A each node broadcasts all of its current knowledge to every other node
it knows. We show that this algorithm has message complexity O(n2) and communica-
tion complexity O(n3 log n). We show that eventually all nodes terminate the execution
once they know about every other node in the graph, i.e., without any prior knowledge
of the total number of nodes participating in the computation.

The algorithm iterates through a receive phase and a send phase (for convenience
we start with the receive phase). Each phase consists of three steps. We refer to the
six steps iterated by the algorithm as the iteration of the algorithm, and we number
the iterations starting with 0. For phase 0, M0 = world0(v) and D0 = world0(v). For
i > 0, Mi = worldi(v) and Di = {u : u ∈ worldi(v)∧u �∈ worldi−1(v)}. If the node
at vertex v terminates the algorithm in iteration i, we define worldj(v) = worldi(v)
for every j > i.

Lemma 2. Algorithm A, for model MA, with the initial connectivity graph G0 =
(V0, E0), every vertex v ∈ V0 eventually reaches termination.

Lemma 3. Algorithm A, in model MA, with the initial connectivity graph G0 =
(V0, E0), for any two u, v ∈ V0 we have v ∈ world(u) and u ∈ world(v) at
termination.

Lemma 4. For model MA, the number of iterations required to solve NDIG problem
on the connectivity graph G0 = (V0, E0) is lower bounded by Ω (log diam(G)), where
diam(G) = diameter of the graph G0.
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Lemma 5. Algorithm A, for model MA, the number of iterations required to solve the
NDIG problem on the initial connectivity graph is G0 = (V0, E0) is O (log diam(G)),
where diam(G) = diameter of the graph G0.

Lemma 6. The message and communication complexities of Algorithm A, for model
MA, to solve the NDIG problem in the initial connectivity graph G0 = (V0, E0) are
O

(
n2 log diam(G)

)
and O

(
n3 log diam(G) log n

)
, respectively, where n = |V | and

diam(G) is the diameter of the graph G0.

In algorithm A, each of the vertices can detect termination, i.e., they know whether
there are any more vertices to be discovered or not. Intuitively, the termination con-
dition can be realized in the following observation. In algorithm A, in any node until
all nodes are discovered by it then in each consecutive iterations its aware of at least
one new node. This leads us to conclude that it is possible to detect termination in this
problem without knowing the number of vertices by any vertex a priori. However, al-
though algorithm A has running time matching with the lower bound for the model
MA and reasonable message complexity, it suffers from very high communication
complexity.

4 Multicast and Messages of Size O(log n)

In this model we assume that a vertex at any step can multicast messages of constant
size. Recall the fact that we assume that the connectivity graph is weakly connected.
We provide an algorithm (viz., algorithm B) that solves the NDIG problem with closely
matching lower and upper bounds on time complexity, message complexity and com-
munication complexity. The algorithm progresses with the aim of reaching two main
objectives, viz, (1) produce a vertex that knows the names of all the vertices in the con-
nected component to which it belongs to, and (2) concurrently spread the knowledge
of such a vertex to other vertices. Recall that the number of vertices participating in
the computation is not known in advance to any of the vertices. As a result we cannot
assure the completion of the first part, i.e., to produce a vertex that knows the names of
all the vertices in the connected component it belongs to. Therefore, we run these two
parts of the algorithm concurrently. For the clarity of presentation we present these two
aspects of the same algorithm as two separate algorithms, viz., algorithm B1 and algo-
rithm B2. An iteration of algorithm B consists of the execution of the steps of algorithm
B1 followed by the steps corresponding to algorithm B2.

Notations and Definitions. Now we define the data structure required for the algorithm.
Each vertex v has the following variables associated with it, viz., ptr, world, as follows.
The variable ptr associated with vertex v is such that ptr(v) ∈ V .

First, we explain both parts of the algorithm independently for clarity of presentation.
Then we will put together both the parts to get the final algorithm and show that our
algorithm solve the NDIG problem. Since each vertex v ∈ V has a unique identifier,
which we denote as id(v), we can always assume that the set of possible identifiers is
well-ordered. Hence, for any v ∈ V we can always have a linear ordering of the set of
nodes in worldt(v), for any t > 0.
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4.1 Algorithm B1

Notations and Definitions. One of the data structures is the pointer graph, (i) at any
time of the algorithm every vertex v points to another vertex (possibly itself) through
its variable ptr(v), and (ii) the graph formed by the pointers (edges induced by the
pointers) is a forest. As the algorithm progresses these invariants are maintained. For
any v ∈ V if we have ptr(v) = v we call such a vertex a root vertex of the tree
rooted at v. As the algorithm proceeds the final emergence of exactly one star with all
the vertices in V is anticipated by: (i) merging trees and, (ii) shortening height of the
trees.

As a result, messages are sent to communicate with other vertices. All messages
are of size at most O(log n), where n is the maximum number of participating nodes.
A message can consist of identifiers of vertices, or control messages such as a join
invitation. The initial contents of world(v) are the vertices at the tail of the outgoing
edges of G0; also, any new vertex v comes to know about, during the execution of the
protocol, are added to world(v). In the algorithm in Fig. 2, the data structure“children”
is updated in Step 6.

Initially, every vertex v ∈ V is a root, i.e., sets ptr(v) ← v. An iteration i (beginning with
i ← 0 ) in v consists of the following steps.

Step 1. Every root vertex v sends join invitations to all edges in Gi.
Step 2. For a root vertex v, suppose rmin is the vertex with the minimum identifier among all

the vertices from which a join invitation is received. If id(rmin) < id(v) then inform rmin

about it and set ptr(v) ← rmin.
Step 3. Every vertex v sends its ptr(v) to its “children”.
Step 4. The children point their pointers to the pointers received from their parents, i.e., set

ptr(v) ← ptr(ptr(v))
–Step 5. Every vertex v sends its ptr(v) to all its neighbors in Gi.
–Step 6. The vertices receiving messages from Step 5 send their id (i.e. id(v)) to each of the

ptr(v)’s.
–Step 7. Any vertex v receiving messages from Step 6 adds the vertex id’s received to its world(v).

Fig. 2. Algorithm B1: The main steps during iteration i

Correctness and liveness. We want to prove if we run algorithm B1 the pointer graph
will always be a forest and eventually consist of one root and within a finite number of
iterations every vertex would know any other vertex, i.e., safety and liveness.

Lemma 7. In algorithm B1, under the model MB , for a given initial connectivity graph
G0 = (V0, E0), the pointer graph is a forest during any iteration.

Lemma 8. In O(log2 n) iterations there exists a vertex v such that each vertex v ∈ V
is in world(v).
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4.2 Algorithm B2

Notations and Definitions. In this algorithm the main data structure is the world(v)
variable as already described. Initially, for every vertex v ∈ V0, we have count ← 0.
Algorithm B2 carries out a “circular binary broadcasting” on a logical ring of ver-
tices. This logical ring is induced by the identifiers of the vertices known to a root index
(through its world variable). Each root vertex perpetually tries to disseminate its knowl-
edge of the vertices in its world variable to each of the vertices in its world variable to
form a all-to-all logical connection. In order to do so, assume the following: given a set
of vertex IDs, every vertex should be able have a commonly agreed circular ordering of
these IDs. We can do this by defining this order by comparison of the IDs. In order to
carry out the ”circular binary broadcasting” we use a function f to determine, locally
by a vertex v, the target vertex given the information about which vertex started the
current broadcast and when the current broadcast (called the initiator) was started (by
the count variable ).

Suppose U = {u1, u2, · · · , uk} where U ⊆ W and suppose id(u1) < id(u2) <
· · · < id(uk) and denote by ord(ui) = i. Next, define a function as f : U×N×N→ V ,
such that, f(u, i, j) = (ord(u) + 2i + j) mod k + 1

Each vertex is equipped with the following additional variables: broadcaster - a
binary variable set to true or false to indicate if a vertex is taking part as a broadcaster
in some iteration or not; count - every broadcaster counts the number of iterations that
have passed since the beginning of the current broadcasting round; and initiator - the
identity of the root vertex that started the current circular binary broadcast.

Initially, every vertex v ∈ V sets broadcaster ← true

Step 1. If broadcaster then
count ← count + 1
if new known are added to world(v) or count > �log2 n then

if v is a root vertex then
count ← 0, initiator ← id(v)

else
broadcaster ← false

Step 2. If broadcaster then
target ← f(initiator, count, v)

and send the message 〈initiator, count, target〉 to each vertex in world(v)
Step 3. Receive messages from Step 2 and send all the vertices collected as target’s of the

messages.
Step 4. Receive messages from Step 3 and include all the identifiers into world(v) and set

count ← count, initiator ← initiator, broadcaster ← true with the values ”count”
and ”initiator” received from the messages.

Fig. 3. Algorithm B2: At vertex v for iteration i
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Initially, every vertex v ∈ V is a root, i.e., sets ptr(v) ← v and broadcaster ← true.
An iteration of the algorithm consists of the following. If a root vertex already sent join
messages to all the vertices in its world and its world did not change during the last
�log2 |world| consecutive iterations then it does not send any message until it receives
from other vertices.

Phase I: Execute one iteration (all the steps 1-7 ) of algorithm B1.
Phase II: Execute one iteration (all the steps 1-4 ) of algorithm B2.

Fig. 4. Algorithm B: At vertex v for iteration i

Correctness and Liveness of Algorithm B2. We want to show that if the algorithm B2
is run on a connectivity graph such that there is exactly one root vertex that has all other
vertices in its world variable then in O(log n) iterations the connectivity graph will
evolve to a fully connected graph, i.e., the NDIG problem will be solved. We state the
algorithm B as in Fig. 4.

Lemma 9. Consider an initial connectivity graph G such that it has exactly one root
vertex such that all other vertices are in its world variable then algorithm B2, under
model MB, solves the the NDIG problem in O(log n) iterations.

Complexity of the algorithm. We now state and prove the performance measures for
the Algorithm B, in model MB , with the initial connectivity graph G0 = (V0, E0) for
solving the NDIG problem.

Theorem 1. Algorithm B, in model MB , with the initial connectivity graph G0 =
(V0, E0), solves the NDIG problem with the initial connectivity graph G0 = (V0, E0)
in O

(
log2 n

)
iterations, where n = |E0|.

Theorem 2. Under the MB model the lower bound on the number of iterations re-
quired to solve the NDIG problem on is Ω (log n), where n is the number of vertices on
the connectivity graph.

Lemma 10. The message and communication complexities of Algorithm B, under the
MB model, with the initial connectivity graph G0 = (V0, E0), to solve the NDIG prob-
lem are O

(
n2 log2 n

)
and O

(
n2 log3 n

)
respectively, where n = |V |.

Lemma 11. The lower bound on the message complexity to solve the NDIG problem in
model MB is Ω

(
n2

)
, where n = |V |.

Above we provided an algorithm (we call it algorithm B) for model MB that has an
upper bound on its running time of O(log2 n) which is only a log n factor higher than
the lower bound of O(log n).
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5 Unicast and Message Size O(log n)

In this model we assume that a vertex at any step can send only a constant number of
messages and of size O(log n), where n is the number of vertices participating in the
computation. Although this is a very stringent model, in this section we show that any
computation that can be carried out in model MB can be simulated in the model MC .
However, we can show a stronger result: any computation that can be carried out in
model MB can be simulated in the model unicast and messages of size O(1) . In the
latter model messages can be of size O(1) bits.

For our problem of node discovery we can use the above mentioned result to con-
struct an algorithm that gives closely matching upper and lower bound.

Theorem 3. Any algorithm that can be run in model MB in O(g(n)) iterations can
be simulated in model “unicast and message size O(1)” in O(ng(n) log n) iterations,
where g(n) is some function g : N → R

+.

Proof. We will show this proof by simulating any algorithm for model MB by an al-
gorithm for model MC . We assume that each vertex has enough local memory to store
the local history of the computation, i.e., as seen by the vertex. Since we are in a de-
terministic message passing model the progress of the execution at a node is dependent
on the messages received from other nodes. When we refer to an iteration of algorithm
in model MB we refer to it as phase. The intuition behind the simulation algorithm, in
model “unicast and message size O(1)”, is that the algorithm, for model MB , is simu-
lated by keeping track of its phase numbers. We call the algorithm for model MB the
simulated algorithm and the algorithm, in model MC , that carries out the simulation
as the simulating algorithm. Any message sent, in the simulated algorithm, by a vertex
v to vertex u in model MB is now simulated, in the simulating algorithm, by having
v send from v at most O(n log n) consecutive messages of size O(1) over consecutive
synchronous steps. At any step of the simulating algorithm it has no way of figuring out
if it has received all the messages corresponding to a phase in the simulated algorithm.
Since the number of participants n is not known a priori therefore the simulating al-
gorithm does not wait expecting messages. But it simulates the steps of the simulated
algorithm in whatever messages it received up to that point. However, if a computa-
tion is already carried out for a particular phase and a message corresponding to this
or a earlier phase arrives, then the computation for such phases are re-computed (or
re-simulated ) with the new information. So, this requires sending (or re-sending ) mes-
sages to some nodes–which might even include certain ”ignore” messages–so that the
computation can be repeated or corrected in some relevant nodes.

We present in Fig. 5 the main steps of the simulating algorithm. Every message has
a tag associated with that that contains the phase number of the simulated algorithm,
we denote it by tag(i, u, v), where u is the sender and v is the receiving vertex.

Now, we want to show the correctness of the simulation algorithm as follows. Sup-
pose we run the simulated algorithm (i.e. algorithm for the model “multicast is at most
linear in the total number of nodes and message size is O(log n)”) and the simulating
algorithm (i.e. algorithm for the model “unicast and constant message size O(1)”) with
the same initial connectivity graph G. Now, given any phase k ∈ N of the simulated al-
gorithm there exists an � ∈ N, so that, for any iteration i > � of the simulating algorithm
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–RECEIVE MESSAGES PHASE: Receive all the messages and choose the earliest or smallest
phase i that comes from the tags. We denote by iv the iteration number of the simulating
algorithm at vertex/node v.

Case iv > i + 1 or message with tag(i, u, v) was already received before: Include
new information and ignore old information. Recompute the step with the logged data
structure values beginning with the phase i + 1.
Case iv < i + 1: Store this information that is to used in the context of phase i + 1.
Case iv = i + 1: Simulate for phase iv .

–SEND MESSAGES PHASE: If re-computation was done, then send to the newly decided des-
tinations the re-computed results starting from the earliest phase i. This train of messages is
sent in consecutive steps until a new re-computation is started. If in the earlier phase i some
message was sent, then send ignore/cancel messages.

Fig. 5. Algorithm to simulate an algorithm in model MB at vertex v for iteration i

the simulated data structure values (world, initiator, etc) for phases 0, 1, · · · , k are
similar to those of the simulated algorithm. We show this by induction on k (i.e. phase).

Base case k = 0: Since the first phase depends on the initial connectivity graph G and
the initialized values the claim is clearly held for k = 0 and � = 0.

Induction hypothesis: Suppose our claim is true for some phase k and hence there exists
an � as defined above.

Induction step: Observe that for iterations i, i > � the simulated data structures are sim-
ilar to those of the simulated algorithm’s. Therefore, after O(n log n) iterations, since
there are at most O(n) nodes to send messages each of size at most O(log n), all the
messages from phase k will arrive at their destinations in the simulating algorithm, and
hence this will have the simulated data structures hold values similar to the simulated
algorithm. Also, no re-computing will be done for phase k + 1 since all messages have
arrived. So, after � + O(n) iterations all the phases 0, 1, · · · , k + 1 have the property as
claimed. Also, if the simulated algorithm takes O(g(n)) phases to evolve the connectiv-
ity graph to a fully connected graph, from the above argument the simulating algorithm
would achieve the same in O(ng(n) log n) iterations.

Theorem 4. Any algorithm that can be run in model MB in O(g(n)) iterations can be
simulated in the model MC in O(ng(n)) iterations.

Theorem 5. In the model MC the lower bound on the number of iterations required
to solve the NDIG problem on the initial connectivity graph G0 = (V0, E0) is Ω (n),
where n = |V |.

5.1 The Algorithm C

From Lemma 4 we have seen above that if there is an algorithm for the model MB

we can simulate the algorithm to work for the model MC . We have already seen an
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algorithm, viz., algorithm B, that runs on the first model. Therefore, we can simulate
this algorithm in the latter model as given in the proof of Lemma 3 that would evolve
the initial connectivity graph G to a fully connected graph. We call this simulated al-
gorithm “Algorithm C”. By Lemma 4 the running time of the simulated algorithm in
O(n log2 n) iterations. Hence, we state the following theorem.

Theorem 6. Algorithm C, under model MC , with the initial connectivity graph G0 =
(V0, E0), solves the NDIG problem in O

(
n log2 n

)
iterations, where n = |E0|.

Lemma 12. The message and communication complexities of Algorithm C, for model
MC , with any initial connectivity graph G0 = (V0, E0), to solve the NDIG problem are
O

(
n2 log2 n

)
and O

(
n2 log3 n

)
, respectively, where n = |V |.

Lemma 13. For model MC , the lower bound for the message complexity of any al-
gorithm that solves NDIG on any given initial connectivity graph G0 = (V0, E0) is
Ω

(
n2

)
, where n = |V |.

6 Unicast and Message of Size O(n log n)

In this model we assume that a vertex at any step can send only constant number of
messages but the message size is O(n log n), where n = |V |. Recall, we only assume
that the connectivity-graph is weakly connected. Let C be the set of strongly connected
components of G0. For this model (i.e. model MD ) we present an algorithm, viz., algo-
rithm D in Fig. 6 that solves the NDIG problem in O((maxC∈C diam(C)+|C |) log n),
where n is the number of vertices in G0. We again use a ”circular binary broadcasting”

Initially, every vertex v ∈ V we set broadcaster ← true, count ← 0, root ← true. If
a root vertex’s world did not change during the last �log2 |world| consecutive iterations
then it does not send any messages until it receives a message from other vertex.

Step 1. If broadcaster then
count ← count + 1
if new known are added to world(v) or count > �log2 |world| then

if v is a root vertex then
count ← 0, initiator ← id(v)

else
broadcaster ← false

Step 2. If broadcaster then
target ← f(initiator, count, v)

and send the message 〈initiator, count, world〉 to vertex corresponding to target.
Step 3. Receive messages from Step 2 and include world(initiator) in world(v). If multiple

initiators are received choose the one with the smallest id. If there is any u ∈ world(v)
such that id(u) < id(v), then broadcaster ← false and root ← false

Fig. 6. Algorithm D: At vertex v for iteration i
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to spread the content of the world variable of a root vertex. For this purpose we use the
same function f : U × N× N → V as in Section 4.2.

Theorem 7. Algorithm D, for model MD, takes O((maxC∈C diam(C) + |C |) log n)
iterations to solve the NDIG problem for the initial weakly connected graph G0 =
(V0, E0), where n = |V |.
Theorem 8. The message and communication complexities of Algorithm D, for model
MD, with the initial weakly connected graph G0 = (V0, E0), to solve the NDIG
problem are O(n(maxC∈C diam(C) + |C |) log n) and O(n2(maxC∈C diam(C) +
|C |) log n), respectively, where n = |V |.

7 Conclusion

In this paper we considered the NDIG problem in four message passing models depend-
ing on multicast ability and size of message sent by any vertex, in each synchronous
step, viz., models MA, MB, MC and MD. One natural question arises about the lower
bounds on message and communication complexities whether the termination detection
is always possible. Certainly, in such a situation there is a trade-off between the run-
ning time, and message and communication complexities. Another issue is to design
algorithm with fault-tolerant capabilities.
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Abstract. Clock synchronization is a crucial service in many distrib-
uted systems, including wireless ad-hoc networks. This paper studies
external clock synchronization, in which nodes should bring their clocks
close to the value of some external reference time, which is provided in
the system by one or more source clocks.

Reference broadcast synchronization (RBS) is a known approach that
exploits the broadcast nature of wireless networks for a single hop. How-
ever, when networks are large in physical extent, additional mechanisms
must be employed.

Using multi-hop algorithms that re-broadcast time information to
short distances reduces the energy consumed for clock synchronization.
The reason is that energy costs grow more than linearly with the broad-
cast distance. On the other hand, the quality of the clock synchroniza-
tion, as measured in the closeness of the clocks, deteriorates as the
number of hops increases.

This paper shows how to balance these two contradictory goals,
achieving optimal clock synchronization while adhering to an energy bud-
get at each node. In particular, a distributed algorithm is presented that
uses multi-hop broadcasting over a shallow infrastructure to synchronize
the clocks. The closeness of clock synchronization achieved by the algo-
rithm is proved to be optimal for the given energy constraints.

Keywords: Clock Synchronization, Wireless Networks, Ad-hoc Net-
works, Multi-hop Broadcasts.

1 Introduction

Multi-hop ad-hoc networks consist of a collection of computing devices (called
nodes) communicating by wireless broadcast. Their simplicity and the fact they
do not require a pre-existing, wired infrastructure, have made them very popular.
A broadcast transmission reaches all nodes within a specific range of its source;
in order to reach a node outside this range, one or more intermediate broadcast
transmissions are used. The transmission range of a broadcast is determined by
the power used by the node: the power needed to broadcast to distance d is γdβ ,

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, pp. 221–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



222 H. Attiya, D. Hay, and J.L. Welch

where β ≥ 1 is the distance-power gradient, which depends on the environmental
conditions of the network, and γ > 0 is the transmission quality parameter.

Many applications in distributed systems need synchronized clocks to work
correctly. Such applications need to relate the local occurrence time of events to
some reference time that is provided in the system by (possibly multiple) sources,
which are perfectly synchronized with each other (e.g., by relying on UTC [32]).
Reference broadcast synchronization (RBS) [12] is a known approach for clock
synchronization in wireless ad-hoc networks, which broadcasts reference time on
a single hop. When networks are large in physical extent, RBS is extended to
use multi-hop re-broadcasting [23].

An important parameter for evaluating clock synchronization algorithms is
the clock skew it provides, namely, the maximal (absolute) difference between
the reading of a local clock and the reference time. The theory of clock synchro-
nization [3,18,25,28] indicates that clock skew depends on the uncertainty about
the accumulated delay of delivering messages between the nodes. For example, in
case the uncertainty about the delay experienced by each broadcast message is
the same, the clock skew increases as the number of intermediate hops increases.

In wireless ad-hoc networks, energy is typically a scarce resource, which should
be used sparingly. Additionally, the likelihood of interference among transmis-
sions increases with their transmission power [19]. In the common case, where
β > 1, the energy costs grow super-linearly with the broadcast distance, making
it more energy-economic to broadcast information in several hops, rather than
transmitting at the maximum power and reaching far away nodes in a single
broadcast hop.

This paper considers clock synchronization in multi-hop ad-hoc networks from
a new angle, relating the energy constraints on a clock synchronization algorithm
with the optimal skew it may obtain. Given individual energy budgets indicating
how much a node is willing to spend on each message transmission for clock
synchronization, we give exact bounds on the optimal skew that can be achieved,
as a function of the uncertainty in message delays.

As we show, the optimal skew is the minimal depth of a particular spanning
forest—whose trees are rooted at the time sources—of the topology graph in-
duced by respecting the energy budgets. For the upper bound, we describe how
to construct a shallow spanning forest, whose depth is minimal with respect to
the accumulated uncertainty. This is done by applying simple (centralized or dis-
tributed) algorithms for finding breath-first search trees from multiple sources.
Then, the source time is propagated down the trees. The skew attained by this
simple algorithm is the sum of the uncertainties along the path from a source to a
node. The matching lower bound is shown using well-known shifting techniques.

This paper considers external clock synchronization, in which there is at least
one node in the system with access to the reference, or source, time. Applications
sometimes require only internal (or mutual) clock synchronization, in which the
local clocks of the nodes are brought close to each other but with no necessary
relation to a reference time. Clearly, by invoking an external clock synchroniza-
tion algorithm A in which an arbitrary node plays the role of the time source,
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it is possible to achieve internal clock synchronization with skew that is at most
twice the skew of A.

Theoretical study of the clock synchronization problem dates back to the early
1980’s. In particular, Lundelius and Lynch [20], and later Halpern et al. [18],
proved tight bounds on the best skew achieved by internal clock synchroniza-
tion algorithms. Interestingly, our bound is a simple expression depending on
the (weighted) depth of the tree, no matter how complicated the topology is.
This stands in contrast to the result in [18] for internal synchronization, in
which the tight bound on clock skew is only characterized as the solution to a
particular linear program. Later work [3, 25, 28] considered the issue of internal
and external clock synchronization algorithms that exploit specific assumptions
on message delay. Recently, Fan and Lynch proved lower [16] and upper [15]
bounds on clock skew for the problem of gradient clock synchronization, in
which the skew between nodes’ clocks should be smaller if they are closer to
each other.

Clock synchronization in wireless ad-hoc networks has been the topic of ex-
tensive research over the last few years (see the survey papers [30,31] as well as
surveys in Elson and Römer [14] and in Cao’s thesis [9]). RBS [12], mentioned
above, broke new ground by exploiting the nature of wireless broadcasts to get
improved performance. Römer’s algorithm [29] assigns timestamps to events,
which can be compared to estimate the relative times at which events occurred;
it was designed for systems with mobile nodes. The local nature of gradient clock
synchronization [16, 15] makes it particularly well-suited to sensor networks.

Much of the previous work is not directly comparable to the results in this
paper, by focusing, for instance, on one-hop networks, on internal clock synchro-
nization, on how neighboring nodes estimate each other’s clock values, or by
evaluating the performance solely through experiments or simulation. Here we
discuss more related papers, in which either the approach or algorithm is similar
to ours or some notion of optimality is proved.

Several papers have addressed the issue of trading off energy and accuracy
of the clock synchronization. For instance, PalChaudhuri et al. [26] describe a
probabilistic version of RBS [12] and provide an analysis that gives the number
of messages and synchronization overhead required to achieve a certain accuracy
in the synchronization. van Greunen and Rabaey [33] have a way to devise an
algorithm with minimum number of messages to achieve a certain accuracy.
Finally, in the context of RBS-style algorithms, Elson et al. [13] show how to
achieve an optimal tradeoff between energy consumption and accuracy. In all
these papers, the energy usage is equated with the number of messages sent.

Several papers (e.g., [17, 33]) contain algorithms for clock synchronization
that work by constructing and using a spanning tree of the network, preferably
one of low depth, and propagating time information down the tree. These papers
measure the depth of the trees by hop-count, in contrast to our work, which mea-
sures depth based on the accumulated uncertainty; since we allow non-uniform
uncertainties on links, the two measures are not equivalent. Our matching lower
bound shows that uncertainties must be taken into account when constructing
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the spanning forest to achieve optimality. Thus, our approach yields more accu-
rate clock synchronization when uncertainties are non-uniform.

The Network Time Protocol (NTP) [22], used to synchronize clocks in the
Internet, also uses a spanning forest rooted at time sources to broadcast syn-
chronization messages. This spanning forest is built in an ad-hoc manner, and it
minimizes the message delay, while our algorithm minimizes message uncertainty.

A few papers provide lower bounds on some complexity measures, which can
be used to show that various algorithms are optimal in that regard. Blum et al. [8]
prove a lower bound on the size of the interval for algorithms in which each node
keeps an interval in which the real time should lie. Meier et al. [21] present an
algorithm for internal synchronization that uses the data in a communication
pattern optimally in order to obtain the best synchronization.

2 The System Model

Next we sketch a model of computation that captures our assumptions about
nodes and their communication. The formalism is based on that in [4, 7].

We consider a set of n nodes V = {v1, . . . , vn}, located in the Euclidean plane
R

2, that communicate with each other through wireless broadcasts. We assume
that nodes are not mobile.

Associated with each broadcast is a distance d; we define the recipients of a
broadcast performed by node vi to be the set of nodes whose Euclidean distance
from vi is at most d. The power required for broadcasting to distance d is γdβ ,
where β ≥ 1 is the distance-power gradient, which depends on the environmental
conditions of the network, and γ > 0 is the transmission quality parameter ; typ-
ically, 1 ≤ β ≤ 8 and γ is normalized to one. We assume messages are of a fixed
size, therefore γdβ is proportional to the energy consumed when broadcasting
to distance d.

Various events can occur at a node, including the arrival of a message as well
as internal happenings, e.g., internal timers going off.

Each node vi has a hardware clock, denoted HCi, which is a function from real
time to hardware clock time of the form HCi(t) = t+oi, where oi is the offset of
the hardware clock from real time. This form of the hardware clock corresponds
to the situation when hardware clocks have no drift, i.e., these clocks run at the
same rate as real time.

Each node is modelled as a deterministic state machine, with a set of states,
including subsets of initial and final states, and a transition function. The tran-
sition function takes as input the current state of the node, the current value of
the hardware clock, and the current event, and produces as output a new state
and possibly a message to be broadcast to a certain distance (equivalently, with
a certain power). The hardware clock cannot be modified by the node. The state
machine encodes the local algorithm executed by the node.

A history of a node is an infinite sequence of alternating states and pairs,
where each pair consists of an event φ and a hardware clock value T . The first
state must be an initial state of the node and each subsequent state must follow
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correctly, according to the node’s transition function, from the previous state
and pair. Furthermore, the hardware clock values must form a strictly increasing
sequence that is unbounded.

A timed history of a node vi is a history together with an assignment of a
real time to each pair such that for each pair (φ, T ), the time t assigned to it
satisfies HCi(t) = T . The value of a node’s variable at real time t is the value
of the variable in the latest state whose preceding pair is assigned a real time
at most t. If t is less than the real time assigned to the first pair in the history,
then the value of the variable is that in the first state of the history.

An execution is a set of n timed histories, one for each node. For each pair
appearing in one timed history, say that of vi, which causes a message to be
broadcast, there must be exactly one pair appearing in the timed history of each
broadcast recipient vj whose event is the receipt of vi’s broadcast. Furthermore,
for each pair appearing in a timed history whose event is the receipt of a broad-
cast, there must be a pair containing the corresponding broadcast. Here we are
modelling reliable communication via the broadcasts.

The delay of a message (received by a node in an execution) is the difference
between the real time when the message is received by the node and the real
time when the message is broadcast. Specific instances of the model restrict the
admissible executions, by making assumptions on message delay. These assump-
tions can vary from one node to another or even from one broadcast to another.

3 Problem Statement

Our goal is to synchronize the clocks of the non-source nodes as closely as possible
without using too much energy.

We start by explaining how nodes adjust their clocks. Each node vi has an
adjustment variable adji as part of its state whose value it adds to its hardware
clock to produce its logical clock, denoted LCi. That is, LCi(t) = HCi(t)+adji(t)
for all real times t.

There is a set S ⊆ V of distinguished source nodes that have perfectly syn-
chronized clocks; call this source time, denoted ST(t). Thus, LCi(t) = ST(t) = t
for all vi ∈ S and all real times t, i.e., the source time is the real time.

The non-source nodes have arbitrary logical and hardware clock values
initially.

Informally, every node should set the value of its logical clock so as to mini-
mize the difference between its clock and the source time. More formally, we say
a system solves the external clock synchronization problem if there exists a value
ε such that in every admissible execution there exists a real time tf such that for
each node vi and every real time t ≥ tf , vi is in a final state at time t and |ST(t)−
LCi(t)| ≤ ε. We call the quantity |ST(t)− LCi(t)| the skew of vi’s logical clock.

The way we model energy constraints and how they affect the clock synchro-
nization problem is explained next.

Each node vi has a value, denoted energyi, which bounds the amount of
energy it is allowed to use for each transmission. This constraint translates to a
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bound on the power with which each node is allowed to broadcast. We denote
this bound by poweri; note that for fixed-size messages, poweri = c · energyi, for
some constant c. For a node vi, let its neighborhood, denoted N(vi), be the set
of nodes that can correctly receive a message sent from vi and send a message
to vi without violating the energy constraints, that is, the set of nodes within
Euclidean distance 1

γ1/β

(
min{poweri, powerj}

) 1
β from vi.

The neighborhoods induce a topology graph, TG = 〈V, E〉, such that 〈vi, vj〉 ∈
E if and only if vj ∈ N(vi). Since the neighborhoods are bidirectional, the
topology graph is in fact undirected (i.e., 〈vi, vj〉 ∈ E if and only if 〈vj , vi〉 ∈ E).

We also assume that the energy constraints are “feasible”, in particular, that
they allow each node to communicate (perhaps indirectly) with every other node.
This means that TG is strongly-connected.

We assume that for each pair of neighboring nodes vi and vj , the behavior
of the link from vi to vj is the same as that of the link from vj to vi regarding
the median message delay and the uncertainty in the message delays. Therefore,
we associate with each link e in the topology graph, real numbers δe and ue,
with δe > ue ≥ 0, such that each message on the link e has delay in the range
[δe − ue, δe + ue], regardless of its direction.

The relationship to the definition of external clock synchronization is that we
now consider admissible executions to be executions in which the recipients of
a broadcast by node vi are all the neighbors of vi in TG, and every message on
link e has delay within the range [δe − ue, δe + ue].

Crucial to our analysis of clock synchronization algorithms is the weighted
variant of TG, denoted WTG, in which the weight of each edge e is ue. Consider
any path Π in WTG. Let the uncertainty of Π , denoted u(Π), be Σe∈Πue, that
is, the sum of the weights on all the edges in Π . Let ui,j be the minimum, over
all paths Π in WTG between vi and vj , of the uncertainty u(Π) of the path.
A path between vi and vj that achieves the minimum uncertainty is called a
minimum-uncertainty path. We define umin

i to be the minimum, over all source
nodes vs, of us,i, i.e., the shortest (weighted) distance from vi to any source.

We conclude this section with a few observations about our problem
statement.

Since the clocks do not drift, we are considering a “one-shot” problem: the
nodes execute some algorithm during which they can reset their adjustment
variables. Eventually each node finishes the algorithm and makes no further
changes to its adjustment variable. After this point, the relative values of their
logical clocks stay the same, no further resynchronization takes place, and the
skew of a node is unchanged thereafter.

As we have defined the problem, the goal of a clock synchronization algorithm
is to minimize the maximum, over all nodes vi, of the skew of vi’s clock. In fact,
in this paper we introduce clock synchronization algorithms that achieve even
stronger property: Not only do they minimize the maximum clock skew over all
nodes, but in addition they minimize the clock skew for each node vi separately.

The assumption of bidirectional links in the topology graph is common in proto-
cols for ad-hoc networks, e.g., the temporally-ordered routing algorithm
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(TORA) [27]. The IEEE 802.11 specification also requires bidirectional signaling.
The justification for the assumption that the message delays and uncertainties are
symmetric is that variation in the delay is mostly due to processing in the nodes
and contention in the physical layer. We assume that nodes are roughly the same
and running the same software. Since the number of neighbors affects the level of
contention and the number of neighbors of a node vi is approximately the same
as the number of neighbors of any neighbor vj of vi, we expect the uncertainty of
messages from vi to vj to be about the same as that of messages from vj to vi.

Note that we measure the delay of a specific message as the time elapsing
from when the transmitting node starts broadcasting until the time the recipi-
ent finishes its processing. Therefore, this quantity includes processing time in
both transmitting and recipient nodes, and the accumulated delays of any re-
transmissions of the message necessary in case the message is not successfully
transmitted at first. This implies that the delay of messages corresponding to the
same broadcast may be significantly different, and therefore, receiver-to-receiver
synchronization [12, 31], which exploits the fact that the propagation delay of
such correlated messages is about the same, cannot be applied in our model.

4 Multi-hop Broadcast-Based Clock Synchronization

In this section, we present algorithms for clock synchronization in the presence of
multiple sources. First, we describe a generic algorithm for clock synchronization
which assumes that there is a spanning forest of the topology graph TG, with
each source being the root of a tree in the spanning forest. We prove that the
clock skew achieved by the generic algorithm, depends linearly on the depth of
the forest, namely, the maximum weighted distance of a path from a leaf to a
root. (Recall that edge weights are their uncertainties.) Then, we discuss simple
methods to construct a shallow spanning forest. Finally, we present an algorithm
that synchronizes clocks while constructing the spanning forest.

4.1 A Generic Synchronization Algorithm

We assume there is a spanning forest of TG such that each source is the root of
a separate tree, called its broadcast tree. Each source wakes up at some time and
sends its current clock value over its broadcast tree. When a node gets the message,
it adopts that clock value, after adding D to account for the message delay, where
D is the sum of the median delays along the path the message has travelled so far.
The detailed pseudocode is omitted from this version due to space limitations.

Specifically, the spanning forest is represented by storing in each node vi an
indication of its parent, parenti; if vi is a source node, we have parenti = ⊥. Non-
source nodes also keep in a local variable delayi the sum of the median delays on
all the edges in the path in the broadcast tree between the node and the source.
Broadcasts received from a non-parent node are ignored. All broadcasts by node
vi are performed with power level poweri.

It is easy to see that the largest error that a neighbor vi of a source can make is
ue, where e is the edge between vi and the source. The largest error occurs if the



228 H. Attiya, D. Hay, and J.L. Welch

message from the source took the minimum time δe − ue, or the maximum time
δe + ue, to arrive. This maximum error propagates linearly with the (weighted)
distance, as the wave of messages moves down the tree away from the source.

Clearly, the clock skew of the algorithm is minimized when the spanning
forest is shallow, namely, when the maximum (weighted) depth over all the trees
is minimized. It is straightforward to prove the next theorem:

Theorem 1. In every admissible execution of the generic algorithm over a shal-
low spanning forest, the clock skew of each node vi is eventually at most umin

i .

4.2 Pre-computing a BFS Forest

It is simple to construct a shallow spanning forest of the topology graph TG,
needed for the generic clock synchronization algorithm. The spanning forest
complies with the energy constraints, since it is a subgraph of TG.

One option is to use a centralized algorithm to compute the topology graph
TG, and then run a generalization of Dijkstra’s algorithm [10,11] to construct a
shortest paths forest from the sources.

Another option is to use a distributed algorithm to compute the spanning
forest. Here we describe a two-step process. A simple distributed algorithm
constructs the topology graph TG, by computing the neighborhood N(vi) of
each node vi; the latter task is achieved by broadcasting a message and waiting
for acknowledgments. Once the neighborhoods are computed, we can construct
the spanning forest by invoking well-known distributed algorithms for finding
a Breadth-First Search (BFS) forest rooted at multiple sources (e.g., [1, 5] or
OSPF [24]). These algorithms require a node to send messages using its maximal
power under the energy restrictions. The reason is to ensure that the calculated
communication links actually “exist”.

4.3 Computing the BFS Forest On-the-Fly

In this section, we describe an algorithm that does not rely on pre-processing
for constructing the broadcast forest. Instead, the forest is built on the fly, while
doing the clock synchronization for the first time. The broadcast forest con-
structed by the algorithm can be used in future computations, including, for
instance, clock resynchronizations to handle clock drift.

The code is presented in Algorithm 1. Each node has a local variable
uncertainty which keeps track of the uncertainty associated with the path to
a source that has the smallest uncertainty discovered so far. Each node keeps
a local variable parent indicating which neighbor is its parent in the spanning
forest. The local variable updated is used to control when the node sends broad-
casts. Each node knows the median delay δe and the uncertainty ue on each edge
e adjacent to it.

The algorithm uses a 〈sync〉 message with the following fields:
time: the logical time at the sender when the message is sent.
sender: the originator of the message.
uncertainty: the value of the uncertainty variable of the sender.
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Algorithm 1. Clock synchronization without a predefined spanning forest;
code for node vi

Initialization
parenti ← ⊥
updatedi ← false
if vi ∈ S then uncertaintyi ← 0 // a source
else uncertaintyi ← ∞

Upon beginning the algorithm: // only performed by a source
broadcast 〈sync,ST, i, 0〉

Upon receiving 〈sync,T ,j,u〉 on an edge e:
if uncertaintyi > u + ue then // ue is the uncertainty over edge e

adji ← (T + δe) − HCi // δe is the median delay on the edge e
uncertaintyi ← u + ue

parenti ← j
updatedi ← true

Upon a trigger causing a node to broadcast // depends on heuristics
if updatedi then

updatedi ← false
broadcast 〈sync,LCi,i,uncertaintyi〉

The algorithm is initiated by having each source s ∈ S send 〈sync,ST(t),s,0〉,
at some time t. Each time a node vi receives a 〈sync〉 message m with uncer-
tainty u on edge e such that u + ue is smaller than vi’s current uncertainty,
vi has discovered a shorter path to one of the sources. In this case, vi updates
its adjustment variable based on the time in the message m and the median
delay for that link, its current parent to be the originator of message m, and its
current uncertainty to be u + ue. At some later time, controlled by the update
variable, vi broadcasts a new 〈sync〉 message with the current value of its logical
clock.

We show that the algorithm achieves the same properties as the generic clock
synchronization scheme. Namely, every node vi ultimately adopts the clock value
t + D, where t is the real time at which the message is sent from some source s,
and D is the median delay on a path with minimum weight from s to vi.

The next lemma says that the uncertainty variable of a node is the uncertainty
of some path to that node from a source and the clock skew is the same value.
The proof, which is omitted in this version, follows by induction on prefixes of
the execution.

Lemma 1. For all admissible executions, all nodes vi, and all times t, if
uncertaintyi(t) <∞, then there exists a path Π from some source node vs to vi

such that uncertaintyi(t) = u(Π), parenti(t) is the predecessor of vi in Π, and
|ST(t)− LCi(t)| ≤ u(Π).
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The next lemma, whose proof is omitted, says that the uncertainty variable
of each node continues to decrease until reaching the uncertainty of a minimum-
uncertainty path.

Lemma 2. For every admissible execution, each source node vs, and each node
vi, eventually uncertaintyi ≤ us,i.

Theorem 2. For each admissible execution of Algorithm 1 and each node vi,
eventually the clock skew of vi is umin

i , and parenti is the predecessor of vi

in the (weighted) path to the closest source.

Proof. Lemma 2 implies that eventually vi’s uncertainty variable is at most that
of a minimum-uncertainty path to a closest source. Let vs be this closest source.
Lemma 1 states that vi’s uncertainty always corresponds to some path to a
source, so once vi’s uncertainty is at most us,i, it actually is exactly us,i, never
gets any smaller, and the clock skew is us,i = umin

i . Lemma 1 also implies that
parenti is the predecessor of vi in the (weighted) path to vs. �

The worst-case message complexity of Algorithm 1 depends on the frequency
with which 〈sync〉 messages are transmitted. It is possible to apply heuristics
proposed by Banerjee and Khuller [6], and delay sending 〈sync〉 messages for a
certain time; this creates the effect of waiting for messages on paths with less
uncertainty that encounter higher total delay. A careful inspection of our correct-
ness proof reveals that doing so does not compromise the eventual convergence
of the tree. As Banerjee and Khuller show, careful choice of parameters in this
heuristic can significantly reduce the message complexity.

5 Optimality

We prove that the synchronization achieved over a shallow spanning forest is
optimal for the topology graph. This implies that our algorithms achieve optimal
clock skew for the given energy budget. More specifically, we prove a lower bound
of umin

i on the skew of a node vi. Recall that in our model, nodes may “overhear”
any message that is broadcast within their reception distance, namely, by their
neighbors in the topology graph. Potentially, overhearing may yield algorithms
that provide lower skew than our spanning-forest-based algorithm, in which a
broadcast by a node is only used by its children; our lower bound shows that
this is not the case.

The intuition for this result is to think of lifting up a piece of cloth from
the table, holding the sources pinned to the table. The node of interest is some
point on the cloth. We pinch the cloth at that location and lift it up by umin

i .
The nodes in the neighborhood of the node of interest correspond to points on
the cloth that will be lifted by smaller amounts; these amounts form a gradient.
Using the fact that umin

i is the shortest distance from a source, we can show that
the cloth will not tear, namely, the timing at adjacent nodes remains consistent.

The detailed proof relies on a well-known shifting argument [20]: Given an
execution α and an n-vector x of real numbers, we define a new execution,



Optimal Clock Synchronization Under Energy Constraints 231

denoted α′ = shift(α,x), by adding xi to the real time associated with each
event of node vi’s history in α, for all i. Shifting an execution affects the hard-
ware clocks and the message delays, in ways that are quantified in the next
lemma.

Lemma 3 (Shifting [4,20]). Let α be an execution with hardware clocks HCi,
and let x be an n-vector of real numbers. Then α′ = shift(α,x) is an execution
with hardware clocks HC′

i, where

(a) HC′
i(t) = HCi(t)− xi for all t, and

(b) if the delay of a message in α from vi to vj is d, then the delay of this
message in α′ is d− xi + xj.

Theorem 3. For any external clock synchronization algorithm that complies
with the energy constraints and every node vi, there exists an admissible execu-
tion in which the final skew of vi’s clock is at least umin

i .

Proof. Fix an arbitrary external clock synchronization algorithm. Consider the
admissible execution α of the algorithm in which the delay of each broadcast on
each edge e of TG is the median delay δe. Choose any node vi and let tf be the
real time when vi has finished the algorithm.

Let σ be the skew of vi at time tf in α, i.e., |ST(tf )− LCi(tf )| = σ. We first
assume that ST(tf )− LCi(tf ) ≥ 0.

We build execution α′ by shifting execution α such that every node vj is
shifted by umin

j , that is, α′ = shift(α,x) where xj = umin
j for every j. Since

the sources are at distance 0 (from themselves), they are not shifted (and they
should not be, since they must have the real time).

We must verify that message delays are within the bounds so that α′ is ad-
missible. Consider a message m sent from node vj to node vk on an edge e in
the topology graph TG. We distinguish between three cases:

If umin
j = umin

k , then the delay of m is are unaffected, since sender and receiver
are shifted by the same amount.

If umin
j < umin

k , then since there is an edge between vj and vk, the fact that
umin

k is a shortest path distance implies that umin
k ≤ umin

j + ue (recall that ue

is the uncertainty in message delay over the edge e). In α, the delay of m is
δe; hence, by part (b) of Lemma 3, the delay of m in α′ is δe + umin

k − umin
j .

This implies that the delay of m in α′ is between δe and δe + ue, since 0 <
umin

k − umin
j ≤ ue.

If umin
j > umin

k , then since the weighted graph WTG is undirected, we have
that umin

j ≤ umin
k + ue, and a similar argument shows that the delay of m in α′

is between δe − ue and δe.

We conclude that α′ is admissible.
Consider what happens to vi’s skew in α′. At real time t′f = tf + umin

i in α′,
vi has finished the algorithm. In α′ we have:
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|ST′(t′f )− LC′
i(t

′
f )| = |ST(t′f )− LC′

i(t
′
f )| source clocks do not change

= |ST(t′f )− (LCi(t′f )− umin
i )| by part (a) of Lemma 3

= |ST(tf )− LCi(tf ) + umin
i |

skew does not change after tf < t′f
≥ umin

i ST(tf )− LCi(tf ) and umin
i are positive

In the symmetric case where ST(tf ) − LCi(tf ) in α is negative, we shift
execution α by negative amounts instead of positive to produce α′. Namely,
α′ = shift(α,x), where xj = −umin

j for each j. The skew of node vi in execution
α′ is |ST(tf )− LCi(tf )− umin

i |. Since ST(tf )− LCi(tf ) is negative and umin
i is

positive, the skew is at least umin
i . �

6 Discussion

In this section we discuss generalizations of our approach, especially to make it
more practical, as well as alternative approaches.

Our algorithm proposes a specific way to estimate clock readings over one hop
(in a single broadcast), and a simple method to combine the estimations over
several hops (re-broadcasts). However, we consider our key contribution to be the
approach of picking the multi-hop broadcasts in a way that minimizes the worst-
case accumulated uncertainty, while complying with the energy constraints. It
is reasonable to apply other estimation and combination methods over shallow
spanning forests of the topology, for example, methods that are geared towards
optimizing the expected skew [26]. It would be interesting to prove that shallow
energy-constrained spanning forests are optimal under these measures as well,
as experimentally observed by van Greunen and Rabaey [33]. It would also be
interesting to extend our results to deal with the more theoretical approach of
optimizing the skew on a per-execution basis [3, 25, 28].

In this paper, we fixed the energy constraints and found algorithms that
achieve optimal skew, under this budget. A complementary approach is to fix
the desired skew and look for the minimal-energy algorithm achieving this skew.
With uniform uncertainties, our techniques easily translate the desired skew into
a desired number of hops, reducing the problem to the task of constructing a
minimal-energy forest with this depth. For a constant depth and a single source,
the tree can be approximated using an algorithm of Ambühl et al. [2]. It would
be interesting to handle multiple sources and arbitrary depths.

Our approach can also be extended to apply when the sources are only ap-
proximately synchronized, as is the case when sources are in a wired network and
run a separate algorithm to synchronize with each other. The approach can also
accommodate clock drift ; this requires clock synchronization to be invoked re-
peatedly and not only once. Once a shallow spanning forest is constructed, later
resynchronization can use the same infrastructure. We leave the development of
these ideas, and their analysis, as a topic for future research.
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Finally, it is interesting to remove (at least some of) the assumptions we have
made, most notably, the immobility of nodes and the reliability of communication
links as well as their bidirectionality.
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Abstract. We give a new local test, called a Half-Space Proximal or
HSP test, for extracting a sparse directed or undirected subgraph of a
given unit disk graph. The HSP neighbors of each vertex are unique, given
a fixed underlying unit disk graph. The HSP test is a fully distributed,
computationally simple algorithm that is applied independently to each
vertex of a unit disk graph. The directed spanner obtained by this test is
shown to be strongly connected, has out-degree at most six, its dilation
is at most 2π + 1, contains the minimum weight spanning tree as its
subgraph and, unlike the Yao graph, it is rotation invariant. Since no
coordinate assumption is needed to determine the HSP nodes, the test
can be applied in any metric space.

1 Introduction

An ad-hoc network is a network consisting of transmitters, often called hosts,
that is established as needed, typically without any assistance from a fixed in-
frastructure. It is assumed that each host can communicate with all the hosts
within its transmission range with a single transmission, called a hop. Typically,
not all hosts are within the transmission range of each other and the transmis-
sion ranges of all hosts are identical. We will additionally assume that each host
knows its location, its coordinates in the plane, obtained by a low energy GPS
device or by other means.

Such an ad-hoc network can be represented by a unit disk graph (UDG) in
which the vertices are points in the Euclidean plane at coordinates corresponding
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to the geographical location of the hosts. Two nodes are connected by an edge
if their Euclidean distance is less than a given unit, where the unit represents
the common transmission range of the hosts. Due to the use of unit disk graphs
for ad-hoc network representations, computations in the UDG are of interest in
computer science.

A subgraph of the UDG is called a geometric graph. The length of an edge
[u, v] between adjacent vertices u and v of a geometric graph is defined to be
the Euclidean distance between u and v. Given a path p in a geometric graph
G the length of the path is the sum of the Euclidean lengths of the edges of p.
Thus, for any pair of vertices u, v of a geometric graph G we define the distance
dG(u, v) to be the length of the shortest path between u and v in G. Let G be
a geometric graph and G′ be a spanning subgraph of G. If two vertices of G are
connected by an edge e in G and the distance of these vertices in G′ is equal
to k then we say that the dilation of e is equal to k. We call G′ a t−spanner of
G if the dilation of any pair of adjacent vertices of G is at most t. A geometric
graph is planar if no two of its edges represented by the straight line segments
intersect each other.

When a UDG contains regions with many vertices, the graph may contain a
large number of edges, or in an extreme case it may contain a complete subgraph
(all the nodes are reachable). For many applications, like routing, energy efficient
broadcast, power optimizations, etc., it is often preferable to extract from a
given UDG a subgraph having some specific properties, e.g., being planar, or
close in weight to a minimal spanning tree, or a t−spanner [7, 17, 4, 13]. In an
ad-hoc network the topology of the whole network is typically not available in
the nodes of the network due to the lack of a central infrastructure, the reduced
amount of memory available and the possible mobility of the hosts. Thus, in these
situations, the extraction of a suitable geometric subnetwork must be done in a
distributed manner in the network using local information. Ideally, there should
be a simple algorithm that is executed by each node of the network using only
information on nodes reachable within a fixed number of hops, called a fixed-hop
neighborhood. This algorithm would determine which edges of the UDG incident
with the node are retained for the suitable geometric subgraph. Such algorithms
are called tests and the geometric graphs which are obtained in this manner are
usually called local proximity graphs [9].

For extracting a planar subgraph of a given UDG one can use the Relative
Neighborhood test [17], the Gabriel test [7], or the Morelia test [3]. Given a UDG
G, the spanner RNG(G) is obtained by applying the RNG test to every edge
of the UDG: edge [u, v] is retained in RNG(G) if there is no vertex z such that
max{dG(u, z), dG(v, z)} < dG(u, v). The Gabriel and the Morelia tests have a
different condition to retain edges for the spanner and the graphs produced by
applying the tests are denoted G(G) and M(G), respectively. Given a UDG G
we have RNG(G) ⊆ G(G) ⊆ M(G), but none of the graphs is a t−spanner for
any fixed number t.

For extracting a spanner of a given UDG having a bounded dilation of edges,
one can use a Yao test [18] that is defined as follows. Let k be an integer greater
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or equal to 6. From each vertex v of a unit disk graph G draw rays separated
by 2π/k angles, starting with a ray in the horizontal line. A cone is defined as
the space between two rays and including one of the rays so that the plane is
partitioned into k cones. Yao test retains in each cone the shortest edge [u, v]
of G, if any exists. The collection of these oriented edges form the directed Yao
graph

→
Y k (G). The undirected Yao graph Yk(G) is obtained by omitting the

direction of edges. It has been shown [10] that the Yao graph is a 1
1−2 sin π/k -

spanner and, clearly, its out-degree is at most k. Unlike the spanners obtained
by the RNG, Gabriel, or Morelia test, the graph Yk(G) depends on the exact
position of the cones. Thus if G′ is obtained by a rotation of a unit disk graph
G then, in general, Yk(G) is not a rotation of Yk(G′).

In this paper we propose a new local test for constructing a t-spanner of a
UDG, called the Half-Space Proximal test, or HSP test for short. In Section 2,
we give a definition of the HSP test and show that, similarly to the Yao test, the
spanner obtained by the HSP test has a bounded dilation, out-degree at most 6,
and is strongly connected, and it contains the minimum weight spanning tree as
its subgraph. However, unlike the Yao test, the HSP test applied to a rotation
of the UDG G yields a rotation of the HSP spanner of G. Thus, the graph
properties of the HSP spanner are independent of the orientation of the unit
disk graph in the plane. Section 3 contains experimental results involving HSP
and Yao spanners of randomly generated unit disk graphs of different densities.

2 Half-Space Proximal Spanner and Its Properties

We assume that graph G = (V, E) is a unit geometric graph where each node v
has the coordinates vx, vy in the Euclidean plane and each vertex is assigned a
unique integer label.

2.1 HSP Test

Input: a vertex u of a geometric graph and a list L1 of edges incident with v.

Output: A list of directed edges L2 which are retained for the
→

HSP (G) graph.

1. Set the forbidden area F (u) to be ".
2. Repeat the following while L1 is not empty.

(a) Remove from L1 the shortest edge, say [u, v], (any tie is broken by smaller
end-vertex label) and insert in L2 directed edge (u, v) with u being the
initial vertex.

(b) Add to F (u) the open half-plane determined by the line perpendicular
to the edge [u, v] in the middle of the edge and containing the vertex v.
(Notice that the points of the line do not belong to the forbidden area)

(c) Scan the list L1 and remove from it any edge whose end-vertex is in
F (u).

An illustration of the HSP test applied to an UDG is given in Figure 1,
zooming is applied to a selected node and the forbidden area is shaded.
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(a) Original set of points (note the zooming, below)

(b) The HSP spanner

(c) 1st neighbor (d) 2nd neighbor (e) 3rd neighbor (f) 4th neighbor

Fig. 1. Applying the HSP test to an UDG. The original set of points (a) and the
resulting indirected graph (b). A zooming around the vicinity of a selected node (c)
· · · (e). Notice the crossing (shaded area) in (b).
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We stated the test using the forbidden half space due to its easy visualization.
Computationally, the elimination of edge [u, z] by an edge [u.v] is done when the
Euclidean distance from z to v is less than the Euclidean distance from z to u.
Furthermore notice that the proximity test can be done without any explicit use
of the coordinates, the test can be accomplished in any metric space. The HSP
test is a local test since all we need to know in each vertex is the set of edges
incident with it.

Definition 1. Let G be a UDG with vertex set V . The oriented graph
→

HSP
(G) is defined to be the graph with vertex set V whose edges are obtained by
applying the HSP test to each vertex in V . The undirected graph HSP (G) is

obtained from
→

HSP (G) by omitting the directions of edges.

Theorem 1. If G is a connected UDG then the digraph
→

HSP (G) has out-degree
at most 6 and is strongly connected.

Proof. Let u be a vertex of G and [u, v] be an edge that is selected for
→

HSP
(G) by the above algorithm. The forbidden area generated by [u, v] is a half-plane
determined by the line perpendicular to the edge [u, v] at the middle of the edge

[u, v]. Furthermore, the next edge selected from u for
→

HSP (G) cannot be shorter
than [u, v]. This implies that the end-vertex v′ of the next edge selected from

u for
→

HSP (G) is in the area outside the circle around u of radius equal to the
length of [u.v] and inside the half-plane containing u. This means that angle
vuv′ is at least π/3. Since the angle between any two edges selected from u for

→
HSP (G) is at least π/3, the out-degree of u is at most 6. Notice that the degree
6 would be possible only if the selected edges form a regular hexagon.

We show the strong connectivity of
→

HSP (G) by showing that if [u, v] is an

edge of G than there is a directed path from u to v in
→

HSP (G). Assume that
there exist edges in G such that there is no directed path between the end-

vertices of the edges in
→

HSP (G). Let [u, v] be the shortest edge of G such that

there is no directed path from u to v in
→

HSP (G). According to the construction,

one possibility for [u, v] not being in
→

HSP (G) is that there exists an edge [u, z]

in
→

HSP (G) such that [u, z] is of length shorter or equal to the length of [u, v]
and v is in the forbidden area generated by the edge [u, z]. This implies that the
vertices u, v, z form a triangle with the angle vuz being at most π/3. Since G is a
UDG and the distance between z and v is strictly less than the distance between
u and v, edge [z, v] is in G, and furthermore, there exists a directed path from

z to v in
→

HSP (G). Since [u, z] is an edge in
→

HSP (G), there is a directed path

from u to v in
→

HSP (G). �

One can lower the highest out-degree of any HSP−spanner to 5. As mentioned
in the proof, the list L2 contains 6 edges after the execution of the HSP−test on
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vertex v when v is the center of a regular hexagon. In this case we may always
remove from the list the directed edge closest to, say the vertical line drawn
through vertex v in the clockwise direction. It is easy to check that this results
in a strongly connected spanner of degree at most 5. Since there is a sense of
orientation for this edge deletion, this out-degree at most 5 spanner depends on
the rotation of the graph. In cases when the degree reduction is more important,
one can use the degree reduction to 5 using the above test.

One can ask whether or not the degree of the spanning subgraph could be
further improved. The answer is negative, by considering a star graph of degree
5 in which all edges are of length 1 and the angles between two consecutive edges
is 2π/5. This is a UDG and the only spanning subgraph is equal to G and thus
the degree is necessarily 5 in some cases.

v
1 1−

u1u

z

δ

u2

u3

c2

c3

u
k−1 uk

y

Fig. 2. Upper bound on the dilation of an edge

Theorem 2. Let G be a geometric UDG and
→

HSP (G) be the digraph con-

structed from G by the above algorithm. Then the stretch factor of
→

HSP (G) is
at most 2π + 1.

Proof. Let u be a vertex of G and [u, v] be an edge of G of length r ≤ 1 such

that the edge is not selected by u for
→

HSP (G). Then there exist an edge [u, u1]

in G which is selected by u for
→

HS (G) such that [u, u1] is shorter than [u, v]
and the angle u1uv is less than π/2. Thus the edge [u, u1] makes the vertex v to

be in the forbidden area (see Figure 1). If the edge [u1, v] is in
→

HSP (G) than
the stretch factor is less than 3, else we can argue inductively that there exists
a sequence of vertices u0 = u, u1, u2, u3, . . . , uk+1 = v such that (see Figure 2):

1. for every i, 0 ≤ i ≤ k, there is an edge [ui, ui+1] in
→

HS (G),
2. for every i, 0 ≤ i ≤ k − 1, the length of [ui, ui+1] is less than the Euclidean

distance between ui and v,
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3. for every i, 0 ≤ i ≤ k − 1, the angle ui+1uiv is less than π/2,
4. for every i, 0 ≤ i ≤ k−1, the vertices u0, u1, u2, . . . , uk are in either clockwise

or anticlockwise order around v,
5. for every i, 0 ≤ i ≤ k − 1, the Euclidean distance between ui+1 and v is

smaller than the Euclidean distance between ui and v,
6. the sum of the angles

∑k
i=0 uivui+1 < 2π

The items 1, 2 and 3 are due to the fact that the edge [ui, v] is not chosen for
→

HSP (G) by ui. If the vertices u0, u1, u2, . . . , uk are not all in clockwise or anti-
clockwise order then let i be the index of a vertex such that both, u1 and ui+1 are
both say anticlockwise from the edge [u1, v]. If the distance between ui−1, ui+1
is not more than the distance between ui, ui+1 then the edge [ui−1, ui+1] exists
in G since G is a UDG and we can argue that there is a path from u to v in

→
HSP (G) that is even shorter than the sequence u0 = u, u1, u2, u3, . . . , uk+1 = v.
If the distance between ui−1, ui+1 is greater than the distance between ui, ui+1
then by considering the angles between [ui, ui+1] and [ui, v] we can argue that
there is a configuration of vertices that follows a clockwise path from u to v in

→
HSP (G) that is even shorter than the sequence u0 = u, u1, u2, u3, . . . , uk+1 = v.
The item 5 follows directly from item 3.

If
∑k

i=0 uivui+1 ≥ 2π then there exist integers i and j, 0 ≤ i < j − 1 such
that the vertex uj is in the triangle ui, v, ui+1. Since G is a UDG, either there

is a path from u to v in
→

HSP (G) that omits some of the edges between ui+1
and uj and hence is shorter than the sequence u0 = u, u1, u2, u3, . . . , uk+1 = v,
or the vertices of the path must be inside a circle of radius [u[i + 1], uj], also
leading to a shorter path.

Consider the circle with center v of diameter r and denote by ci the point of
intersection of the line segment from v through vertex ui (see Figure 2). By the
triangular inequality, the Euclidean length of the edge [ui, ui+1] is bounded from
above by si+ri−ri+1 where si denotes the length of the circle segment from ci to
ci+1 and ri denotes the Euclidean distances between ui and v. Thus the Euclidean
length of the path specified by the sequence u0 =u, u1, u2, u3, . . . , uk+1 =v is at
most

∑k
i=0 si + ri − ri+1≤2πr + r. Thus the stretch factor is at most 2π + 1. �

The dilation given in the theorem is an upper bound on the maximal dilation of
an edge in an HSP spanner. A lower bound on the maximal dilation can be ob-
tained from graph G in Figure 3. Consider edge [u, v] in this graph. Due to either
edge [u, u1] or the distance from u, there is no edge from u to v, u2, u3, . . . , uk

in the HSP spanner of G. Thus the path length from u to v in the HSP spanner
of the graph is at least 5π/3(1− δ) + (1− δ) = 5π/3 + 1− δ(5π/3 + 1). Since δ
can be an arbitrarily small positive number, the dilation can be arbitrarily close
to 5π/3 + 1. Thus 5π/3 + 1 gives a lower bound on the maximum dilation of an
edge in an HSP spanner. We conjecture that the maximum dilation of an HSP
spanner is close to this lower bound.

For a comparison, the upper bound of 1
1−2 sin π/k of Yao spanners is valid

for k ≥ 7 and this bound is larger than 2π + 1 when k = 7. It is clear that the
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v
1 1−δ
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u3
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k−1

u1
u

u
k

ε1+

Fig. 3. HSP-spanner with edge dilation 5π/3 + 1

configuration in Figure 3 is unlikely to occur in a UDG that represents an ad-hoc
network and thus the dilation of the HSP spanner of a UDG graph corresponding
to an ad-hoc network should be substantially smaller.

Theorem 3. If G is a connected unit disk graph then a geometric minimum
spanning tree of G is a subgraph of HSP (G).

Proof. Let G be a geometric unit disk graph and T be the geometric minimum
spanning tree of G that contains the maximum number of edges of HSP (G).
Assume that there is an edge [u, v] ∈ T which is not in HSP (G). Since the edge
[u, v] is not in HSP (G), there exist an edge [u, w] in HSP (G) and either [u, w]
and [w, v] are shorter than [u, v] or dG[u, v] = dG[u, w] and [w, v] is shorter than
[u, v]. Clearly, for one of u and v there is a path p to w in T that does not contain
edge [u.v]. If such a path exists from v then removing [u, v] from T and adding
[u, w] we obtain a spanning tree of the same or lower cost containing one more
edge of HSP (G), a contradiction. If such a path p exists from u then removing
[u, v] from T and adding edge [w, v] instead we obtain a spanning tree of lower
cost, a contradiction. �

It should be noted that, like in a Yao graph, the in-degree of
→

HSP (G) is not

bounded by any constant, and
→

HSP (G) is not necessarily a planar graph (see
Figure 1(f), shaded area). If a low in-degree is needed, one can apply to HSP
spanners the technique from [1] that has been used to lower the in-degree of Yao
graphs.

3 Experimental Results

In our experiments we used a UDG with 50 nodes randomly placed in a grid area
of size varying between 500 and 2000 units. The transmission radius is 250 units
in all of these graphs. Thus, as the grid size becomes larger the UDG density
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Fig. 4. We performed some experiments to compare the Yao graph, in several parame-
ters, against the HSP graph. The in-degree and out-degree of the HSP graph is smaller
for the HSP for minimum, average and maximum, (a) and (b). The number of crossings
for HSP spanner is smaller than Yao spanner for more sparse graphs, and for denser
graphs is exactly the reverse. For dense graphs the HSP spanner have more crosses (c).
The total weigth of the HSP spanner is about half the total weigth of the Yao spanner,
consistently through the density (d).

gets smaller. For each unit disk graph HSP spanner and Y AO spanner (with 6
cones) were generated both directed and undirected versions.

We measured the dependence of the following parameters of the HSP and Yao
spanners on the density of UDG:

1. Minimum, maximum and average in-degree,
2. Minimum, maximum ans average out-degree,
3. The number of edges that cross each other,
4. The total weight of spanners,
5. Average Euclidean distance in the spanner,
6. The average number of hops.

See the results of experiments in Figures 3,5(a) and 5(b). The in-degree and
out-degree of HSP spanners is lower that those of Yao spanners and so is the
total weight of the spanners. As far as the number of crossing edges is concerned,
it is higher for HSP spanners when the density is higher, but is lower for smaller
densities. Due to the significantly lower in and out-degrees of HSP spanners,
the average distances in HSP spanners are higher.
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Fig. 5. The average dilation as a function of the density

4 Conclusion

The HSP test proposed in this paper is a distributed test that gives a (2π +1)−
spanner of a UDG. The computation of the test is simple, it obviously generalizes
to any metric space, and the spanner obtained by the test is independent of the
exact placement of the graph in the plane. The experiments on random unit
disk graphs show that the average in-degree of the spanner is very low and the
number of edges that cross each other is very low for small densities. The total
weight is small and a high in-degree in unlikely to occur.

Thus, HSP spanner could be very convenient in network applications where
the use of spanners having these properties is needed. At present, we are in-
vestigating a generalization of the HSP test to ad-hoc networks with irregular
transmission ranges [2].
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Abstract. We introduce a state-based model that can be used in spec-
ifying sensor network protocols. This model accommodates several fea-
tures that are common in sensor networks. Examples of these features
are 1-step local broadcast, probabilistic delivery of messages, asymmetric
communication, and message collision. We propose a three-step method
for verifying sensor protocols that are specified in this model. In the first
step, the specified protocol is shown to be “nondeterministically correct”
under the assumption that message delivery is assured and message colli-
sion is guaranteed not to occur. In the second step, the protocol is proven
“probabilistically correct” under the assumption that message delivery
is probabilistic but message collision is guaranteed not to occur. In the
third step, the correctness of the protocol is proven by a simulation where
message delivery is probabilistic and message collision may occur (when
two or more neighboring sensors happen to send messages at the same
time). To demonstrate the utility of our model, we discuss an example
protocol that can be used by a sensor to identify its strong neighbors in
the network, and apply the verification method to the protocol.

Keywords: Sensor network, State-based model, Formal model, Protocol
specification, Protocol verification.

1 Introduction

A sensor is a battery-operated small computer with an antenna and a sensing
board that can sense magnetism, sound, heat, etc. Sensors in a network can use
their antennas to communicate in a wireless fashion by broadcasting messages
over radio frequency to neighboring sensors in the network. Due to the limited
range of radio transmission, sensor networks are usually multi-hop. Sensor net-
works can be used for military, environmental or commercial applications such
as intrusion detection [1], disaster monitoring [2] and habitat monitoring [3].

Sensor networks and their protocols have several characteristics that make
them hard to specify formally and even harder to verify. Examples of these
characteristics are

i. Unavoidable local broadcast: When a sensor sends a message, even one that
is intended for a particular neighboring sensor, a copy of the message is
received by every neighboring sensor.

� Young-ri Choi is the corresponding author of this paper.

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, pp. 246–260, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A State-Based Model of Sensor Protocols 247

ii. Probabilistic message transmission: When a sensor sends a message, the
message reaches the different neighboring sensors (and can be received by
each of them) with different probabilities.

iii. Asymmetric communication: Let u and v be two neighboring sensors in a
network. The probability that a message sent by u is received by v can be
different from the probability that a message sent by v is received by u.

iv. Message collision: If two neighboring sensors send messages at the same
time, then neither sensor receives the message from the other sensor. More-
over, if two (not necessarily neighboring) sensors send messages at the same
time, then any sensor that is a neighbor of both sensors will not receive
any of the two messages. In this case, the two messages are said to have
collided.

v. Timeout actions and randomization steps: Given the above characteristics
of a sensor network, it seems logical that sensor protocols need to heav-
ily depend on timeout actions and randomization steps to perform their
functions.

The above characteristics of sensor protocols are far from common in the liter-
ature of distributed systems. Thus, one is inclined to believe that the “standard
model” of distributed systems is not suitable for sensor protocols. The search for
a suitable model for sensor protocols is an obligatory first step towards formal
specification, verification, and design of these protocols.

There have been earlier efforts to model the software of sensor networks. Ex-
amples of these efforts are [4], [5], [6], and [7]. We review these and other efforts in
the related work section of this paper. Nevertheless, it is important to state here
that all these efforts are not directed towards modeling sensor protocols; rather
they are directed toward modeling sensor network applications. Clearly, sensor
protocols are quite different from sensor applications in terms of their functions
and in terms of how they accomplish these functions. For instance, sensor pro-
tocols need to deal with the intricate characteristics of sensor networks, as they
attempt to hide these characteristics from the sensor applications. Thus, whereas
a sensor protocol has to deal with unavoidable local broadcast, probabilistic mes-
sage transmission, asymmetric communication, and message collision, a sensor
application can view the sensor network as a reliable medium for communicating
sensing data. Also whereas a sensor protocol depends heavily on timeout actions
and randomization steps, a sensor application rarely needs to resort to these
devices.

2 Topology of Sensor Networks

The topology of a sensor network is a directed graph where each node represents
a distinct sensor in the network and where each directed edge is labeled with
some probability. A directed edge (u,v), from a sensor u to a sensor v, that is
labeled with probability p indicates that if sensor u sends a message, then this
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message arrives at sensor v with probability p (provided that neither sensor v nor
any “neighboring sensor” of v sends another message at the same time). There
are two probabilities that label the edges in the topology of a sensor network.
These two probabilities are 0.95 and 0.5 in this work. (Below we discuss some
experiments that we have carried out on sensors and led us to this choice of
probabilities in the topology of a sensor network [8].)

In the topology of a sensor network, an edge that is labeled with the large
probability 0.95 is called a strong edge, and an edge that is labeled with the
small probability 0.5 is called a weak edge.

Let u and v be two distinct sensors in a network. Sensors u and v are called
strong neighbors iff there are two strong edges between them in the network
topology. The two sensors are called middle neighbors iff there are one strong
edge and one weak edge between them in the network topology. Sensors u and
v are called weak neighbors iff there is exactly one edge between them, or there
are two weak edges between them in the network topology. They are called non-
neighbors iff there are no edges between them in the network topology. If there
is an edge from u to v in the network topology, then u is called an in-neighbor
of v and v is called an out-neighbor of u.

As an example, Fig. 1 shows the topology of a sensor network that has four
sensors. In this network, sensors u and v are weak neighbors, sensors u and v′

are strong neighbors, sensors u and v′′ are middle neighbors, and sensors v and
v′′ are non-neighbors. Sensor u has three out-neighbors, namely sensors v, v′,
and v′′. Also sensor u has two in-neighbors, namely sensors v′, and v′′.

v’
v’’v

u

0.95 0.5

0.950.5
0.95

0.5 0.5

Fig. 1. Topology of a sensor network
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In [8], we describe some experiments that we have carried out using Mica
sensors [9]. In these experiments, a sensor u sends a sequence of messages at the
rate of one message per 5 seconds, and another sensor v attempts to receive all
the sent messages. The results of these experiments are summarized in Fig. 2
where each point represents the result of one experiment. (Similar results are
reported in [10] and [11].)

We observe that from Fig. 2 if the distance between two sensors u and v is in
the range 0 .. 38 inches, v receives between 90% and 100% of the messages sent
by u. One the other hand, if the distance between sensors u and v is in the range
38 .. 67 inches, v receives anywhere between 0% and 100% of the messages sent
by u. Finally, the distance between sensors u and v is longer than 67 inches, v
receives 0% of the messages sent by u. From these observations, the diagram in
Fig. 2 can be “idealized” as shown in Fig. 3.

Let u and v be distinct sensors in the topology of a sensor network, and assume
there is a directed edge from u to v in the network topology. According to the
idealized diagram in Fig. 3, if the distance between u and v is in the range 0 ..
x, then v receives between 90% and 100% of the messages sent by u. Thus, the
directed edge from u to v can be labeled with a probability 0.95, and the edge
is strong. If the distance between u and v is in the range x .. y, then v receives
between 0% and 100% of the messages sent by u. Thus, the directed edge from
u to v can be labeled with a probability 0.5, and the edge is weak. Fig. 4 shows
how the probability label of an edge from one sensor to another in the network
topology is chosen based on the distance between the two sensors.

3 Sensor Network Execution

A sensor is specified as a program that has global constants, local variables, and
one or more actions. In general, a sensor is specified as follows:

sensor <sensor name>

const <const name> : <const type>, ... , <const name> : <const type>
var <var name> : <var type>, ... , <var name> : <var type>
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begin
timeout-expires -> <action statements> // timeout action

[] rcv <msg.0> -> <action statements> // receiving action
... ...

[] rcv <msg.k-1> -> <action statements> // receiving action
end

Note that the actions of a sensor consist of exactly one timeout action and
zero or more receiving actions. Before we can discuss the execution of sensor
actions, we need to explain our model of real-time.

We assume that the real-time passes through discrete time instants: instant
1, instant 2, instant 3, and so on. The time periods between consecutive instants
are equal. Executions of the different actions of a sensor occur only at the time
instants, and not during the time periods between instants. We refer to the time
period between two consecutive instants t and t + 1 as the time unit (t, t + 1).
(The value of a time unit is not critical to the current presentation, but we
estimate that the value of the time unit is around 100 milliseconds.)

At a time instant t, if the timeout of a sensor u expires, then u executes
its timeout action (at t). Executing the timeout action of sensor u at t causes
u to update its local variables, and to send at most one message at t. It also
causes u to execute the statement “timeout-after <expression>” which causes
the timeout of u to expire (again) after k time units, where k is the value of
<expression> at the time unit (t, t + 1). The timeout action of sensor u is of
the following form:

timeout-expires -> <update local variables of u>;
<send at most one message>;
<execute timeout-after <expression>>

To keep track of its timeout, each sensor u has an implicit variable named
“timer.u”. In each time unit between two consecutive instants, timer.u has a fixed
positive integer value. The value of “timer.u” is determined by the following two
rules:

i. If the value of timer.u is k, where k > 1, in a time unit (t − 1, t), then the
value of timer.u is k − 1 in the time unit (t, t + 1).

ii. If the value of timer.u is 1 in a time unit (t−1, t), then sensor u executes its
timeout action at instant t. Moreover, since sensor u executes the statement
“timeout-after <expression>” as part of executing its timeout action, the
value of timer.u in the time unit (t, t + 1) is the value of <expression> in
the same time unit.

If a sensor u executes its timeout action and sends a message at an instant t,
then an out-neighbor v of u receives a copy of the message at t, provided that
the following three conditions hold.

i. A random integer number is uniformly selected in the range 0 .. 99, and this
selected number is less than 100 ∗ p, where p is the probability label of edge
(u,v) in the network topology.
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ii. Sensor v does not send any message at instant t.
iii. For each in-neighbor w of v, other than u, if w sends a message at t, then a

random integer number is uniformly selected in the range 0 .. 99, and this
selected number is at least 100 ∗ p′, where p′ is the probability label of edge
(w,v) in the network topology.

If a sensor u receives a message <msg.i> at an instant t, then u executes the
following receiving action at t.

rcv <msg.i> -> <update local variables of u>;
<may execute timeout-after <expression>>

Note that executing the receiving action of sensor u causes u to update its
own local variables. It may also cause u to execute the statement “timeout-after
<expression>” which causes the timeout of u to expire after k time units, where
k is the value of <expression> in the time unit (t, t + 1). Note that executing
the receiving action of sensor u does not cause u to send any message.

Let us summarize how the execution of a sensor network proceeds during one
time instant t. First, the value of timer.u for every sensor u in the network is
decremented by one at t. Second, if the value of any timer.u becomes 0 at t, then
sensor u executes its timeout action at t. Execution of the timeout action of a
sensor u at t assigns a new value to timer.u and may cause u to send one message
at t. Third, if a sensor u sends a message at t, then any out-neighbor v of u may
receive the message at t. Even if an out-neighbor v of u has executed its timeout
action but sent no message at t, v can still receive u’s message at t. In other
words, a sensor may execute its timeout action followed by a receiving action at
the same time instant provided that the sensor does not send a message during
its execution of the timeout action. It follows from the above discussion that at
a time instant, a sensor u executes exactly one of the following:

i. u sends one message, but receives no message.
ii. u receives one message, but sends no message.
iii. u sends no message and receives no message.

In the remainder of the paper, we use this model to specify an example proto-
col and to prove the protocol correct utilizing our verification method described
in the next section.

4 Three-Step Verification Method

The model of sensor network protocols presented in the previous sections is
rather complicated. Thus, the correctness of a sensor protocol specification, that
is based on this model, is better verified in steps, in fact three steps. In the first
step, the correctness of the protocol specification is verified under two assump-
tions: idealized message transmission and no message collision. In the second
step, the effect of relaxing the first assumption on the established correctness
in the first step is analyzed. In the third step, the effect of relaxing the second
assumption on the established correctness in the second step is analyzed.
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We refer to the first step as nondeterministic analysis, to the second step as
probabilistic analysis, and to the third step as simulation.

In the next two sections, we present an example of a sensor protocol specifi-
cation, and then verify the correctness of this specification using our verification
method.

The two assumptions, of idealized message transmission and no message col-
lision, upon which our verification method is based are stated as follows.
i. Idealized message transmission: In the topology of a sensor network, the

probability label of each strong edge is 1 (instead of 0.95), and the probabil-
ity label of each weak edge is 0 (instead of 0.5).

ii. No message collision: For every two distinct sensors u and v in a sensor net-
work, if u is a (in- or out-) neighbor of v, or if the network has a third sensor
w that is an out-neighbor for both u and v, then timer.u and timer.v have
distinct values at every instant during the execution of the sensor network.

Some explanations concerning these two assumptions are in order. The first
assumption has the effect of removing all the weak edges from the topology of a
sensor network. It also has the effect of strengthening all the strong edges in a
network topology.

To explain the second assumption, recall that a sensor u can send a message
only during an execution of its timeout action, and that the timeout action of
sensor u can be executed at an instant t iff the value of timer.u is 1 in the time
unit (t − 1, t). Thus, the assumption of no message collision ensures that any
two sensors, whose messages would collide if they were sent at the same instant,
are guaranteed never to send messages at the same instant during any execution
of the sensor network.

In order to make the second assumption, of no message collision, more accept-
able, it is recommended that each statement “timeout-after x” in a sensor u be
written as “timeout-after random(x, y)” where x > 0 and x ≤ y. Thus, any new
value assigned to timer.u is chosen uniformly from the range x .. y. Because the
new values of the timer variables are chosen uniformly from a reasonably large
range, it is unlikely that any two timer variables will ever have the same value.

Next, we describe in some detail the three steps of our verification method.

i. Nondeterministic analysis:
This analysis is used to verify that a protocol is guaranteed to reach, from
a given initial state, a desirable target state under the two assumptions of
idealized message transmission and no message collision. For this analysis,
we generate a state transition diagram of the protocol. In the diagram, each
protocol state has one or more outgoing edges, since the protocol is specified
using randomization steps of the form “timeout-after random(x,y)”. From
this diagram, we can verify that the protocol nondeterministically satisfies
the desired reachability property.

ii. Probabilistic analysis:
This analysis is used to verify that a protocol will reach, from a given initial
state, a desirable target state with a high probability, under the assumption
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of no message collision. For this analysis, we generate a probabilistic state
transition diagram of the protocol, where each edge in the diagram is la-
beled with a probability. Note that the probabilities that label the edges in
the probabilistic state transition diagram are computed from the probabil-
ity labels in the network topology of the protocol. From this diagram, we
can verify that the protocol probabilistically satisfies the desired reachability
property.

iii. Simulation:
The nondeterministic and probabilistic analyses (in the first two steps) of a
protocol can be carried out without specifying the values of x and y in the
randomization steps “timeout-after random(x,y)” in the protocol specifica-
tion. In choosing the values of x and y in these steps, one needs to observe
two restrictions. First, the difference y − x should be large enough to en-
sure that the probability of message collision is reasonably small (and so the
nondeterministic and probabilistic analyses of the protocol are reasonably
accurate). Second, the difference y − x should be small enough to ensure
that the protocol reaches its desirable target state in a reasonably short
time. To determine the appropriate values of x and y in the randomization
steps, one can simulate the protocol for many value combinations of x and
y and select the most appropriate values of x and y.

5 A Protocol Specification Example

In this section, we use the above model to specify a sensor protocol that can be
used by any sensor in order to identify the strong neighbors of that sensor in its
network. We refer to this protocol as the neighbor computation protocol. (Recall
that two sensors in a network are strong neighbors iff there are two strong edges
between them in the network topology.)

To identify the strong neighbors of a sensor u, sensor u sends three request
messages. Whenever a sensor v receives a request message sent by sensor u,
sensor v sends a reply message. If sensor u receives two or more reply messages
sent by the same sensor v, then sensor u concludes that sensor v is one of its
strong neighbors.

Assume that the time period between two successive request messages sent
by the same sensor is fixed. Under this assumption, if two neighboring sensors u
and u′ start to send their request messages at the same time, then the request
messages sent by u will collide with the request messages sent by u′ and both
u and u′ may end up concluding wrongly that they have no strong neighbors.
Therefore, the time period between two successive request messages should be
uniformly selected from a “large enough” range 1 .. x. (In the next section, we
discuss how to choose a value for x.)

If every sensor v, that receives a request message from a sensor u, sends a reply
message immediately after it receives the request message, then all the re-
ply messages will collide with one another and u may end up receiving no reply
messages. Thus, when a sensor v receives a request message from a sensor u, v
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should wait a random period of time before it sends a reply message. The length
of this time period should be uniformly selected from the range 1 .. x.

Consider the scenario where a sensor v receives a request message from a
sensor u and decides to wait for some random period before it sends a reply
message to u. It is possible that before v sends its reply to u, v receives another
request message from another sensor u′. In this case, v should send one reply
message to both u and u′. This requires that sensor v maintains a reply set, called
rset, that contains the identifier of every sensor u from which v has received a
request message and to which v has not yet sent a corresponding reply message.
At the end of the above scenario, rset in sensor v has the value {u, u′}.

Note that sensors u and u′ in the above scenario can be the same sensor u.
Thus, rset in each sensor is a multiset rather than a set. For example, at the
end of the above scenario, rset in sensor v has the value {u, u}.

Consider the scenario where a sensor u sends a request message and decides to
wait for a random period before it sends its second request message. It is possible
that before u sends its second request message, u receives a request message
from another sensor u′. In this case, u should send one composite message that
consists of the second request message and a reply message to sensor u′. We refer
to this composite message as a request-reply message. In fact, every message in
our protocol, whether a request message, a reply message, or a request-reply
message, can be viewed as a request-reply message.

Each message in the neighbor computation protocol has three fields:

(v,b,s)

The first field v is the identifier of sensor v that sent this message. The second
field b has two possible values: 0 and 1. If b = 0, then the message is a pure reply
message. If b = 1, then the message is either a request message or a request-reply
message. The third field s is the current value of rset in sensor v. Note that if
the message is a pure request message, then s = empty set.

Each sensor u has one constant x and eight variables as follows.

sensor u // sensor u where 0=< u < n

const x : integer
var nghs : set {u’ | 0<= u’ < n}, // strong ngh set

rcvd : array [0 .. n-1] of 0..3, // rcvd replies
rset : set {u’ | 0<= u’ < n}, // reply set
rm : 0..3, // remaining request msgs
done : boolean, // computation done or not
v : 0..n-1, // received sensor id
b : 0..1, // received request bit
s : set {u’ | 0<= u’ < n} // received reply set

Variable nghs is the set of strong neighbors that sensor u needs to compute
periodically. An element rcvd[v] in variable rcvd contains the number of replies
that sensor u has received from sensor v after u has sent its first request message
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(in the current round of request messages). Variable rm stores the number of
request messages that sensor u still needs to send (in the current round of request
messages). Variable rset is the multiset of all the replies that sensor u needs to
include in its next request-reply message. Variable done is a boolean variable
whose value is true when and only when the current computation of the strong
neighbors of sensor u is completed.

Initially, the value of nghs is the empty set, the value of every element in
variable rcvd is 0, the value of variable rm is 0, the value of variable rset is the
empty set, the value of variable done is true, and the value of implicit variable
timer.u is any value in the range 1 .. x.

Each sensor u has two actions that are specified as follows.

sensor u // sensor u where 0=< u < n

begin
timeout-expires ->

if rm=0 -> if rset != {} -> send (u,0,rset); rset := {}
[] rset = {} -> skip
fi;
if done -> skip // no new round
[] done -> nghs := {}; // start new round

rcvd := 0;
rm := 3;
done := false

[] !done -> COMPNGH(in rcvd, out nghs);
rcvd := 0;
done := true

fi; timeout-after random(1,x)
[] rm>0 -> send (u,1,rset); rset := {};

rm := rm-1;
if rm>0 -> timeout-after random(1,x)
[] rm=0 -> timeout-after random(x+1,x+1)
fi

fi
[] rcv (v,b,s) -> if !done -> rcvd[v] := rcvd[v] + NUM(u,s)

[] done -> skip
fi;
if b=1 -> rset := rset+{v}
[] b=0 -> skip
fi

end

Sensor u executes its first action when the value of its timer.u becomes zero.
The execution of this action starts by checking the value of rm. On one hand, if
the value of rm is 0, then u recognizes that it does not need to send a request
message, but it needs to send a reply message in case rset is non-empty. Thus,
the sent message is of the form (u,0,rset). Also if the value of done is true, then
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sensor u chooses arbitrarily whether it starts to compute its strong neighbors or
not. If the value of done is false, sensor u invokes a procedure named COMPNGH
that computes the strong neighbors of sensor u from array rcvd and adds them
to the set nghs. (In COMPNGH, a sensor v is computed to be a strong neighbor of
u if rcvd[v] ≥ 2.) On the other hand, if the value of rm is larger than 0, then u
recognizes that it needs to send a request-reply message of the form (u,1,rset).

Sensor u executes the second action when u receives a (v,b,s) message sent
by a neighboring sensor v. The execution of this action starts by checking the
value of done. If the value of done is false, then the value of the element rcvd[v]
is incremented by NUM(u, s), the number of times u occurs in the multiset s.
Then sensor u checks the value of b in the received message. If the value of b is
1, then v is added to the multiset rset.

6 A Protocol Verification Example

In this section, we use the verification method outlined in Section 4 to verify
the correctness of the neighbor computation protocol in Section 5. Recall that
the verification method consists of three steps: nondeterministic analysis, prob-
abilistic analysis, and simulation. We apply each of these steps to the neighbor
computation protocol in order.

Nondeterministic analysis is used to show that the neighbor computation pro-
tocol satisfies some desirable progress property under the two assumptions of
idealized message transmission and no message collision, discussed above. The
analysis is carried out from the point of view of a sensor u that needs to compute
its strong neighbors.

From the assumption of idealized message transmission, each non-neighbor,
weak neighbor or middle neighbor of u cannot receive any message sent by u,
or cannot send any message to be received by u. Thus, non-neighbors, weak
neighbors and middle neighbors of u have no effect on the computation carried
out by u to identify its strong neighbors.

It remains to analyze the interaction between sensor u and each strong neigh-
bor v of u. Fig. 5 shows the state transition diagram that describes the interaction
between sensor u and its strong neighbor v. Each node in this diagram represents
a state of the two sensors u and v. Each dashed edge represents the passing of
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Fig. 5. State Transition Diagram
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Fig. 6. Specifying the states in the state transition diagram in Fig. 5

real-time by one time unit. Each solid edge labeled u represents the execution of
the timeout action in sensor u and the execution of the corresponding receiving
action, if any, in sensor v. Each solid edge labeled v represents the execution of
the timeout action in sensor v and the execution of the corresponding receiving
action, if any, in sensor u.

Each of the states S0 through S11 in the state transition diagram is specified
by a predicate in Fig. 6. Note that rcvd[v].u is the value of element rvcd[v] in
array rcvd in sensor u, rm.u is the value of variable rm in sensor u, done.u is
the value of variable done in sensor u, and NUM(u, rset.v) returns the number
of times u occurs in the multiset rset in sensor v.

From the state transition diagram, we conclude that the interaction between
sensors u and v satisfies the following progress property.

State S1 eventually leads to state S11.
Therefore, the protocol is correct under the two assumptions of idealized mes-

sage transmission and no message collision.
Probabilistic analysis is used to analyze the effect of relaxing the first assump-

tion of idealized message transmission on the correctness and performance of the
protocol. Under the assumption of idealized message transmission, the middle
neighbors and weak neighbors of a sensor u play no role in u’s computation of
its strong neighbors. When this assumption is relaxed, this is no longer true.
Let u and v are distinct sensors in a network. If there are no edges or if there is
exactly one edge between u and v in the network topology, then v has no effect
on u’s computation of its strong neighbors. Otherwise, let there be two edges
between u and v in the network topology. Moreover, let p be the probability
label of edge (u,v) and q be the probability label of edge (v,u). In this case,
the probability that u identifies v as one of its strong neighbors depends on the
probability labels of edges (u,v) and (v,u), p and q.

Simulation is used to analyze the effect of relaxing the two assumptions of
idealized message transmission and no message collision on the correctness and
performance of the protocol. In order to run the simulation of the protocol, we
need to choose the value of x. There are two contradictory concerns that can
affect our choice of x. If x is large, the probability of message collision becomes
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small, and consequently the probability of correctly identifying a strong neighbor,
as measured from the simulation, becomes close to the same probability, as
estimated from the probabilistic analysis. On the other hand, if x is large, the
average execution time of the protocol, which is around 2 ∗ x + 1 time units,
becomes large. Thus, the simulation is used to evaluate the performance of the
protocol over various values of x and choose the most appropriate value for x.

As we relax the two assumptions one by one, the probability for a sensor u
to identify a strong neighbor v is decreased. Moreover, middle neighbors and
weak neighbors of u affect u’s computation of its strong neighbors. The details
of probabilistic analysis and simulation can be found in [12].

7 Related Work

Several models for sensor applications have been proposed [5], [6], [4], [7]. In
general, the purpose of these models is to hide application programmers from
low-level details such as routing, group management, resource management, etc.
EnvioTrack [5] provides a high-level programming abstraction for tracking appli-
cations in sensor networks. Newton and Welsh proposed a functional language
to specify the global behavior of a sensor application [6]. Liu et al. presented
a state-centric programming model for sensor networks [4]. Database approach
was proposed in TAG [7]. Unlike these models, our proposed model is to de-
scribe sensor protocols (that are responsible for routing, group management,
etc). Thus, our model deals with the intricate characteristics of wireless sensor
networks described in Section 1.

Levis et al. developed a communication-centric virtual machine for sensor
networks called Maté [13]. Using Maté’s high-level interfaces, sensor applications
can be composed in a very short code.

The Abstract Protocol notation was developed earlier to specify network pro-
tocols in traditional networks [14]. Gracanin et al. proposed a model that focuses
on services provided by wireless sensor networks [15]. Volgyesi et al. proposed a
model to describe interface specification of components for sensor networks [16].
This model allows us to check the compatibility of components and to verify the
design and composition of components based on their interfaces. In [17], anti-
replay protocols for sensor networks were proposed. Also it was shown that the
proposed protocols satisfy desirable properties (such as corruption detection, re-
play detection, and freshness detection) under some assumption. In this paper,
we investigate what a model should be to describe sensor protocols and how
sensor protocols specified in this model can be verified.

Several simulation frameworks have been developed for sensor networks [18],
[19], [20]. TOSSIM [18] is a simulator for TinyOS wireless sensor networks.
Prowler [19] is a MATLAB-based simulator that can simulate not only net-
work protocol stacks but also radio transmission phenomena. Downey et al. [20]
developed a flexible simulation framework, where a new model can be added or
substituted easily. Note that the simulator used in this paper is to simulate the
execution of a protocol based on our model.
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8 Concluding Remarks

In this paper, we presented a state-based model of sensor network protocols.
This model accommodates several characteristics of sensor networks, such as un-
avoidable local broadcast, probabilistic message transmission, asymmetric com-
munication, message collision, and timeout actions and randomization steps. We
also proposed a three step verification method that consists of nondeterministic
analysis, probabilistic analysis, and simulation. Using this verification method,
we can verify and analyze the correctness and performance of a sensor protocol
specified in this state-based model.

Although the probability label of a strong edge is chosen to be 0.95 and the
probability label of a weak edge is chosen to be 0.5 in this work, different values
can be chosen for these probability labels for different setting of sensor networks.

The neighbor computation protocol in Section 5 is suitable for a resource
limited sensor network, since each sensor needs to send a small number of mes-
sages to compute its strong neighbors. This protocol can be used to calibrate
the model such that the estimated performance from the model is correlated to
the observed performance from an actual prototype of the protocol.

There are several directions to extend our model for sensor protocols. First,
our model assumes that sensors in a sensor network are stationary. The model
can be extended to support a sensor network with mobile sensors. Second, energy
models of sensors can be added to our model to estimate the lifetime of a sensor
network or measure the amount of energy consumed by a sensor.
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Abstract. A black hole is a highly harmful stationary process residing in a node
of a network and destroying all mobile agents visiting the node without leav-
ing any trace. The Black Hole Search is the task of locating all black holes in a
network, through the exploration of its nodes by a set of mobile agents. In this
paper we consider the problem of designing the fastest Black Hole Search, given
the map of the network, the starting node and, possibly, a subset of nodes of the
network initially known to be safe. We study the version of this problem that as-
sumes that there is at most one black hole in the network and there are two agents,
which move in synchronized steps. We prove that this problem is not polynomial-
time approximable within 389

388 (unless P=NP). We give a 6-approximation al-
gorithm, thus improving on the 9.3-approximation algorithm from [3]. We also
prove APX-hardness for a restricted version of the problem, in which only the
starting node is initially known to be safe.

Keywords: approximation algorithm, black hole search, graph exploration, mo-
bile agent, inapproximability.

1 Introduction

The Background and the Problem. The problem of protecting mobile agents from
malicious hosts, i.e., nodes of a network which store harmful processes in them, has
been widely studied ([8, 9, 11, 12]). Even though various countermeasures have been
proposed, the general belief (see [8, 13]) is that it is very hard (when not virtually im-
possible) to fully protect mobile agents from malicious hosts attacks.

We consider here malicious hosts of a particularly harmful nature, called black holes
[3, 2, 4, 5, 6]. A black hole is a node in a network which contains a stationary process
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destroying all mobile agents visiting this node, without leaving any trace. Since agents
cannot prevent being annihilated once they visit a black hole, the only way of protection
against such processes is identifying the hostile nodes and avoiding further visiting
them. In order to locate a black hole, at least one agent must visit it. In the model we
considered, the agents communicate only when they are in the same node (and not, e.g.,
by leaving messages at nodes). Therefore, the black hole can be identified by scheduling
a meeting between the agents after any visit of an unknown node. If such node is a black
hole, then the agent which visits that node gets destroyed and cannot turn up at a node
where the other agents expect it. This allows the surviving agents to infer the existence
and location of a black hole.

In this paper we investigate the case in which there are exactly two agents, starting
from the same node s, to which at least one agent has to report back the exact locations
of the black holes. We assume that there is at most one black hole in the network. We
consider the problem of designing a black hole search scheme for a given network, a
given starting node s, and a given subset S ⊇ {s} of nodes which are initially known
to be safe. The black hole, if present, is at any node not in S. It is interesting to observe
that the assumption of having at most one black hole in the network does not make the
algorithm presented here unsuitable for the general case. A (single black hole) search
can be restarted for each new black hole found, on the network obtained by removing
all the black holes already found and by inserting into S the nodes already explored.
This can be iterated until all the network nodes become explored. Obviously, even if at
most two agents can simultaneously coexist in the network, the total number of agents
needed is related to the total number of black holes in the network.

The issue of efficient black hole search was extensively studied in [4, 5, 6] under the
scenario of totally asynchronous networks, i.e., while every edge traversal by a mobile
agent requires finite time, there is no upper bound on this time. To solve the problem in
this setting, the network must be 2-connected. Moreover, in an asynchronous network it
is impossible to answer the question of whether a black hole actually exists, hence it is
assumed in [4, 5, 6] that there is exactly one black hole and the task is to locate it. Due
to the asynchronous setting, it is not possible to provide a simple and easy to compute
measure of the time needed by the agents to find the black hole. Hence, the complexity
measure taken into account for the algorithms is the total number of moves performed
by the agents. In the general case, the authors show that Θ(n log n) moves are necessary
and sufficient.

In this paper we study the problem under the scenario of synchronous networks,
previously considered in [3, 2, 10]. In this scenario it is possible to fix the time needed
by an agent for traversing any edge. This assumption makes dramatic changes to the
problem. First, the black hole can be located by two agents in any network and the
agents can decide if there is a black hole or not. Moreover, it is possible in this case to
compute exactly the time needed by the agents to find the black hole. With respect to
the total number of moves, this is a more relevant measure in the cases in which there is
no cost associated with each agent’s traversal, but the target is to determine as quickly
as possible the location of the black hole. In order to measure the efficiency of a black
hole search, we assume that each agent takes exactly one time unit (one synchronized
step) to traverse one edge (and to make all necessary computations associated with
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this move). Then the cost of a given black hole search (scheme) is defined as the total
number of time units the search takes under the worst-case location of the black hole in
the network, or when the network contains no black hole.

Previous Results. In [3] the authors prove that the Black Hole Search problem is NP-
hard, and show a 9.3-approximation algorithm. The restricted case of this problem,
when the starting node is the only node initially known to be safe (S = {s}), is consid-
ered in [2] and [10]. In [10] the authors prove that this restricted case is also NP-hard,
and give a 7

2 -approximation algorithm. In [2] the problem is studied in tree topologies,
and the main results are an exact linear-time algorithm for some sub-class of trees and a
5/3-approximation algorithm for arbitrary trees. The existence of an exact polynomial-
time algorithm for arbitrary trees is left open.

Our Results. We show that the Black Hole Search problem is not approximable in
polynomial time within a 1 + ε factor for any ε < 1

388 , unless P=NP. Moreover, we
give a 6-approximation algorithm for this problem, i.e., a polynomial time algorithm
which, for any input instance, produces a black hole search scheme with cost at most 6
times the best cost of a black hole search scheme for this input. This improves on the
9.3-approximation algorithm shown in [3]. Finally we prove that the restricted case in
which only the starting node is initially known to be safe is also APX-hard.

2 Model and Terminology

We represent a network as a connected undirected graph G = (V, E), without mul-
tiple edges or self-loops, where nodes denote hosts and edges denote communication
links.1 The two agents, called Agent-1 and Agent-2, start the black hole search from a
STARTING NODE s ∈ V and explore graph G by traversing its edges. Together with the
starting node s, a subset of nodes S which are initially known to be safe is given. Let
U = V \ S, and let B ⊆ U , |B| ≤ 1, denote the (unknown) set of nodes containing
a black hole (we have either B = ∅ or B = {b}). We recall the formalization of the
Black Hole Search problem given in [10], extending it to the case of S containing more
nodes than only s, in the following way.

(General) Black Hole Search problem (gBHS)

Instance: a connected undirected graph G = (V, E), a subset of nodes S ⊂ V and a
node s ∈ S.

Solution: a feasible EXPLORATION SCHEME EG,S,s = (X, Y) for (G, S, s), where
X = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 are two equal-length sequences of
nodes in G. The feasibility of EG,S,s is determined by constraints 1–4 given below.
The length of EG,S,s is defined to be T .

Measure: the cost of the Black Hole Search (BHS) based on EG,S,s.
Goal: minimization.
1 In the following we will use the terms graph and network, host and node, and link and edge

interchangeably, although we tend to use the term graph to mean an abstract representation of
a network.
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When the BHS based on a given exploration scheme EG,S,s is performed in G,
Agent-1 follows the path defined by X while Agent-2 follows the path defined by Y.
At the end of the i-th step of the search (at time i), Agent-1 is in node xi while Agent-2
is in node yi. As soon as an agent deduces the value of B, it “aborts” the exploration
and returns to the starting node s by traversing nodes in V \ B. The cost of the BHS
based on EG,S,s is defined later in this section.

If X = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 are two equal-length sequences
of nodes in G, then EG,S,s = (X, Y) is a feasible exploration scheme for the input
(G, S, s) (and can be effectively used as a basis for a BHS in G) if the constraints 1–4
stated below are satisfied.

Constraint 1: x0 = y0 = s, xT = yT .

Constraint 2: for each i = 0, . . . , T − 1, either xi+1 = xi, or (xi, xi+1) ∈ E; and
similarly either yi+1 = yi or (yi, yi+1) ∈ E.

Constraint 3: U ⊆ ⋃T
i=0 {xi} ∪

⋃T
i=0 {yi}.

Constraint 1 corresponds to the fact that both agents start from the given starting node s.
The requirement that the sequences X and Y end at the same node provides a convenient
simplification of the reasoning without loss of generality. Constraint 2 models the fact
that during each step, each agent can either WAIT in the node v where it was at the end
of the previous step, or traverse an edge of the network to move to a node adjacent to
v. Constraint 3 assures that each node in U is visited by at least one agent during the
exploration. We need additional definitions to state Constraint 4.

Given an exploration scheme EG,S,s = (X, Y), for each i = 0, 1, . . . , T , we call the
EXPLORED TERRITORY at step i the set Si defined in the following way:

Si =
{

S ∪⋃i
j=0 {xj} ∪

⋃i
j=0 {yj} , if xi = yi;

Si−1, otherwise.

Thus S0 = S by Constraint 1, ST = V by Constraint 1 and Constraint 3, and Sj−1 ⊆
Sj for each step 1 ≤ j ≤ T . A node v is EXPLORED at step i if v ∈ Si, or UNEXPLORED

otherwise. An unexplored node v may have been already visited by one of the agents,
but it will become explored only when the agents meet, and communicate, next time
(the agents communicate with each other, exchanging their full knowledge, when and
only when they meet at a node). If both agents are alive at the end of step i, then the
explored nodes at this step are all nodes which are known to both agents to be safe.
Note that the explored territory is defined for an exploration scheme EG,S,s, not for the
BHS based on EG,S,s, and does not take into account the possible existence of the black
hole. This is taken into account in the definition of the cost of the BHS based on EG,S,s.

A MEETING STEP (or simply MEETING) is the step 0 and every step 1 ≤ j ≤ T
such that Sj �= Sj−1. Observe that, for each meeting step j, we must have xj = yj ,
but not necessarily the opposite, and we call this node a MEETING POINT. The meeting
steps are the steps when the agents meet and add at least one new node to the explored
territory. A sequence of steps 〈j + 1, j + 2, . . . , k〉 where j and k are two consecutive
meetings is called a PHASE of length k−j. We give now the last constraint on a feasible
exploration scheme.
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Constraint 4: for each phase with a sequence of steps 〈j + 1, j + 2, . . . , k〉,
(a) | {xj+1, . . . , xk} \ Sj | ≤ 1 and | {yj+1, . . . , yk} \ Sj | ≤ 1; and
(b) {xj+1, . . . , xk} \ Sj �= {yj+1, . . . , yk} \ Sj .

Constraint 4(a) means that during each phase, one agent can visit at most one unex-
plored node. If it visited two or more unexplored nodes and one of them was a black
hole, then the other, surviving, agent would not know where exactly the black hole is.
Constraint 4(b) says that the same unexplored node cannot be visited by both agents
during the same phase, or otherwise they both may end up in a black hole (see [2]
for a formal proof of this fact). From now on an exploration scheme means a feasible
exploration scheme. We recall from [10] the next two simple observations.

Lemma 1. If k ≥ 1 is a meeting step for an exploration scheme EG,S,s, then xk =
yk ∈ Sk−1.

Lemma 2. Each phase of an exploration scheme EG,S,s has length at least 2.

Any phase 〈j + 1, j + 2〉 of length 2 which expands the explored territory by 2 nodes
has to have the following structure. Let m be the meeting point at step j. During step
j + 1, Agent-1 visits an unexplored node v1 adjacent to m, while Agent-2 visits an
unexplored node v2 adjacent to m as well, and v1 �= v2. In step j + 2, the agents meet
in a node which has been already explored and is adjacent to both v1 and v2. This node
can be either m, and in this case we denote the phase as b-split(m, v1, v2), or a different
node m′ �= m, and in this case the phase is denoted as a-split(m, v1, v2, m

′).
For an exploration scheme EG,S,s = (X, Y) and a location of a black hole B,

the EXECUTION TIME is defined as follows. If B = ∅, then the execution time is
equal to the length T of the exploration scheme, plus the shortest path distance from
xT (= yT ) to s. In this case the agents must perform the full exploration (spending
one time unit per step) and then get back to the starting node to report that there is
no black hole in the network. If B = {b} ⊆ U , then let j be the first step in EG,S,s

such that b ∈ Sj . Observe that j must be a meeting step and 1 ≤ j ≤ T , since
S0 = S and ST = V . The execution time in this case is equal to j plus the length
of the shortest path from xj(= yj) to s not including b. In this case one agent, say
Agent-1, vanishes into the black hole during the phase ending at step j, so it does not
show up to meet Agent-2 at node xj = yj . Since, by Constraint 4, Agent-1 has vis-
ited only one unexplored node during the phase, the surviving Agent-2 learns the exact
location of the black hole and thus it goes back to s, obviously omitting the black
hole.

The COST of the BHS based on an exploration scheme EG,S,s = (X, Y) is denoted
by cost(EG,S,s) and defined as the worst (maximum) execution time of EG,S,s over all
possible values of B (including B = ∅). The target of the black hole search problem
is to find an exploration scheme EG,S,s which yields a minimum cost BHS over all
possible exploration schemes for (G, S, s).

The following lemma helps to simplify, at least in some cases, the computation of
the cost of the BHS based on a given exploration scheme.
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Lemma 3. Let (G, S, s) be an input instance for the gBHS problem, and let U be the
set of initially unexplored nodes (U = V \ S). The case B = ∅ yields the maximum
execution time for any exploration scheme in (G, S, s), if and only if, by removing any
node u ∈ U from G, each node in V \ {u} either becomes disconnected from s, or
maintains its shortest path distance from s.2

3 Approximation Lower Bound for the General BHS Problem

In this section we provide an explicit lower bound on the approximability of the General
Black Hole Search problem by showing an approximation preserving reduction from a
particular subcase of the Traveling Salesman Problem, presented in [7], and defined in
the following way.

(1,M)-Traveling Salesman Problem (TSP(1,M))

Instance: a pair (G, d), where G = (V, E) is a complete graph (with n = |V |) and
d : V 2 → {1, . . . , M} is a distance function associating to each pair of nodes
(v, u) a positive integer length d(v, u) between 1 and M (where M is a constant).
Function d is symmetric (i.e., d(u, v) = d(v, u)) and satisfies the triangle inequality
(i.e., d(i, j) + d(j, k) ≥ d(i, k), ∀i, j, k ∈ V ).

Solution: a tour τ of G, i.e., a permutation τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 of the nodes
in V .

Measure: the length (or cost) of the tour, i.e., cost(τ ) =
∑n−1

i=1 d(vπ(i), vπ(i+1)) +
d(vπ(n), vπ(1)).

Goal: minimization.

In [7] it is also presented a lower bound on the approximability of such problem.

Lemma 4. It is NP-hard to approximate TSP(1,8) within 1 + ε for any ε < 1
388 .

Reduction from instances (G, d) of TSP(1,M) to instances (G′, S, s) of gBHS.
Let (G, d) be an instance of TSP(1,M). We define the graph G′ = (V ′, E′), the set
S ⊂ V ′, and the starting node s, in the following way. Let v1 be an arbitrary node in V .
We add v1 to V ′ and to S, and we define s = v1. For each node vi (2 ≤ i ≤ n) in V , we
add to V ′ a pair of nodes v′i, v

′′
i . We denote node v1 as the ISLAND I1, and each pair of

nodes v′j , v′′j as the ISLAND Ij . For each edge (vi, vj) in E of length d(vi, vj), we add
to V ′ (and to E′) a path of 2 · d(vi, vj) − 1 nodes (BRIDGE i ↔ j), whose endpoints
are adjacent respectively to v′i, v

′′
i (or v1 if i = 1) and to v′j , v

′′
j (or v1 if j = 1). We

add all the nodes of the bridge to S. We call as bi,j and as bj,i the endpoints of bridge
i ↔ j adjacent respectively to island Ii and island Ij (note that if d(vi, vj) = 1, then
bi,j ≡ bj,i). Each bridge is composed by at least one (safe) node, and |V ′\S| = 2(n−1).
An example of reduction is given in Figure 1.

Lemma 5. The distance in G′ between any node of island Ii and any node of island Ij

(where i �= j and i, j = 1, . . . , n) is equal to 2 · d(vi, vj).

The following lemma gives a useful characterization of G′.
2 Due to space constraints, the proofs of some lemmas have been omitted in this extended

abstract.
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Fig. 1. An example of the reduction from an instance (G, d) (in a)) to an instance (G′, S, s) (in
b)). The nodes in S are filled with gray color.

Lemma 6. Let G′ be a graph produced with the above mentioned construction. The
case B = ∅ yields the maximum execution time for any exploration scheme in G′.

Now we define an exploration scheme on G′ which explores the islands in G′, in the
order defined by a tour on G. In the following definition we introduce a new keyword:
walk. By walk(b) we mean that both agents (which are supposed to be already in the
same node w), move to b by following a shortest (safe) path from w to b. Actually, the
walk is not a complete phase (no new nodes are explored), but it is the initial part of a
phase.

Let τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 be a tour on G of length l. We assume w.l.o.g. that
π(1) = 1. A τ -BASED EXPLORATION SCHEME Eτ

G′,S,s on G′ consists of the following
sequence of steps:

1. walk(b1,π(2)), where b1,π(2) is the node adjacent to s on the bridge 1↔ π(2);
2. for each i = 2, . . . , n:

(a) walk(bπ(i),π(i−1)), where bπ(i),π(i−1) is the node adjacent to Iπ(i) on the bridge
π(i− 1)↔ π(i);

(b) a-split(bπ(i),π(i−1), v
′
π(i), v

′′
π(i), bπ(i),π(i+1)), where bπ(i),π(i+1) is the node ad-

jacent to Iπ(i) on the bridge π(i) ↔ π(i + 1) (or bridge π(n) ↔ 1 if i = n).

Given the tour τ in G, the τ -based exploration scheme Eτ
G′,S,s can be obviously con-

structed in linear time. In the following lemma we compute the cost of the Black Hole
Search based on Eτ

G′,S,s.

Lemma 7. Given a tour τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 on G of length l, the τ -based
exploration scheme Eτ

G′,S,s satisfies cost(Eτ
G′,S,s) = 2 · l.
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Corollary 1. Let (G, d) be an instance of the TSP(1,M) problem, and let (G′, S, s) be
the corresponding instance of the BHS problem where the graph G′ is constructed as
explained before. Moreover, let τ∗ be an optimal solution for (G, d) and let E∗G′,S,s be
an optimal solution for (G′, S, s). Then cost(E∗G′,S,s) ≤ 2 · cost(τ∗).

In what follows we show a method to modify an exploration scheme without altering its
properties (i.e., feasibility, length, sequence of explored territories and the cost of the
BHS based on it). We then use this technique to impose a characteristic of “regularity”
to any exploration scheme on G′.

Definition 1. Let EG,S,s = (X, Y) be an exploration scheme for (G, S, s), and let φ =
(Xφ, Yφ) be a phase in EG,S,s. Let E ′G,S,s be the exploration scheme obtained from
EG,S,s by swapping the paths of the two agents in phase φ, i.e., φ′ = (Yφ, Xφ). We call
this operation a PHASE-SWAP. Two exploration schemes are EQUIVALENT if and only
if one is obtained from the other by applying a finite sequence of phase-swaps.

Lemma 8. Let EG,S,s = (X, Y) be an exploration scheme for (G, S, s). Let E ′G,S,s

be the exploration scheme obtained from EG,S,s by applying a phase swap on EG,S,s.
Then, the exploration scheme E ′G,S,s is feasible, has exactly the same meeting points,
the same sequence of explored territories and the same length as EG,S,s. Moreover,
cost(E ′G,S,s) = cost(EG,S,s).

Corollary 2. Two equivalent exploration schemes have exactly the same meeting
points, the same sequence of explored territories and the same length. Moreover the
cost of the BHS based on them is the same.

We now turn back our focus to instances (G′, S, s) constructed by reduction from in-
stances (G, d). We give a classification of each phase of any exploration scheme in G′.
A phase φ is a 2s-phase if the two nodes of the same island are explored during φ. It
is a 2d-phase, if two nodes in two distinct islands are explored during φ. Finally, it is a
1-phase if only one node is explored during φ.

Definition 2. Given an exploration scheme EG′,S,s, we define the PHASE GRAPH of
EG′,S,s, the following directed multigraph P (EG′,S,s). The graph P (EG′,S,s) has the
nodes v2, . . . , vn corresponding to the islands I2, . . . , In in G′, plus one further node
which we call x. The following edges are added to P (EG′,S,s):

– a directed edge 〈vi, x〉 (〈x, vi〉) is added for each node in island Ii which is explored
during a 1-phase by Agent-1 (Agent-2);

– a directed edge 〈vi, vj〉 is added for each 2d-phase exploring a node of island Ii

with Agent-1 and a node of island Ij with Agent-2;
– a directed self-loop 〈vi, vi〉 is added if the nodes of island Ii are explored by a

2s-phase.

Lemma 9. Given any exploration scheme EG′,S,s, each node of the phase graph
P (EG′,S,s) has degree (= in-degree + out-degree) equal to 2.

The graph P (EG′,S,s) is thus a set of connected components. In the underlying undi-
rected multigraph, these components are either cycles or isolated nodes. Now we give a
new characterization of an exploration scheme in G′.
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Definition 3. An exploration scheme EG′,S,s is REGULAR if and only if each agent
explores exactly one node of each island Ij , with j = 2, . . . , n.

Notice that any τ -based exploration scheme is regular; we can observe that each node
in P (Eτ

G′,S,s) is an isolated node (the only adjacent edge is a self-loop). Indeed, we can
prove a tighter relation between regular exploration schemes and their corresponding
phase graph.

Lemma 10. An exploration scheme EG′,S,s is regular if and only if, in the correspond-
ing phase graph P (EG′,S,s), for each node vi, indeg(vi) = 1 and outdeg(vi) = 1.

Lemma 11. For any exploration scheme EG′,S,s there is an equivalent regular one that
can be found in linear time.

Proof. We want to prove that we can find in linear time a finite sequence of phase-swaps
in EG′,S,s,which transforms EG′,S,s into a regular exploration scheme. By Lemma 10,
this means transforming P (EG′,S,s) into a graph where, for each node vi, indeg(vi) =
1 and outdeg(vi) = 1. We can observe that each phase-swap in EG′,S,s produces a
change in the orientation of the corresponding edge in P (EG′,S,s). Since P (EG′,S,s) is
composed by a set of cycles and isolated nodes, we can swap the edges in the cycles
according to a fixed orientation (e.g., clockwise orientation), and thus make regular the
graph P (EG′,S,s), and the corresponding exploration scheme. ��
Lemma 12. Given an exploration scheme EG′,S,s, we can find in linear time a tour τ on
G such that, for the τ -based exploration scheme Eτ

G′,S,s, cost(Eτ
G′,S,s) ≤ cost(EG′,S,s).

Proof. By Corollary 2 and Lemma 11, we can assume w.l.o.g. that EG′,S,s is a regular
exploration scheme. By regularity, Agent-1 explores a node of each island in G′. Let
IX = 〈Iπ(2), . . . , Iπ(n)〉 be the sequence of the islands in G′ in the order they are ex-
plored by Agent-1. Let τ be the tour in G corresponding to IX (i.e., τ = 〈v1, vπ(2), . . . ,
vπ(n)〉), and let l = cost(τ ). We show that the τ -based exploration scheme Eτ

G′,S,s is
such that cost(EG′,S,s) ≥ cost(Eτ

G′,S,s). Consider the case B = ∅ (Lemma 6). Agent-1
starts from s, visits islands in IX and then gets back to s. By Lemma 5, the length of this
tour is at least 2 · l. The execution time of EG′,S,s cannot be shorter than 2 · l. Therefore,
cost(EG′,S,s) ≥ 2 · l ≥ cost(Eτ

G′,S,s). ��
Lemma 13. Let G be an instance of the TSP(1,M) problem, and let G′ be the corre-
sponding instance of the gBHS problem. Moreover, let τ∗ be an optimal tour in G, and
let E∗G′,S,s be an optimal exploration scheme for G′. Let ε > 0. If we can find in polyno-
mial time an exploration scheme EG′,S,s such that cost(EG′,S,s) ≤ cost(E∗G′,S,s)(1+ε),
then we can find in polynomial time a tour τ in G such that cost(τ ) ≤ cost(τ∗)(1 + ε).

Proof. Suppose that, given a graph G′, we can construct in polynomial time an explo-
ration scheme EG′,S,s such that its cost is at most 1 + ε times the cost of an optimal ex-
ploration scheme. By Lemma 12, we can find an exploration scheme Eτ

G′,S,s, based on a
tour τ in G, such that cost(Eτ

G′,S,s) ≤ cost(EG′,S,s) ≤ cost(E∗G′,S,s)(1 + ε). Supposing
that the length of the tour τ is l, then, by Lemma 7: cost(Eτ

G′,S,s) = 2 · l. Supposing
that the length of the optimal tour τ∗ is l∗, then, by Corollary 1: cost(E∗G′,S,s) ≤ 2 · l∗.
Therefore, by hypothesis: 2 ·l = cost(Eτ

G′,S,s) ≤ cost(E∗G′,S,s)(1+ε) ≤ 2 ·l∗(1+ε),
and hence, l ≤ l∗(1 + ε) . ��
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The main theorem immediately follows from Lemma 4 and Lemma 13.

Theorem 1. The gBHS problem is not approximable in polynomial time within a factor
of 1 + ε for any ε < 1

388 , unless P=NP.

4 The Restricted BHS Problem Is APX-Hard

In this section we consider the restricted version of the BHS problem in which S = {s},
i.e., the starting point is the only node initially known to be safe (we denote it as rBHS).
We show that the BHS problem with this restriction remains APX-hard. The input of
rBHS is fully specified by providing a graph G and the starting node s. We will hence
use now the notation EG,s to refer to an exploration scheme.

We will prove APX-hardness of the rBHS problem using APX-hardness of the
TSP(1,2) problem. We first recall Lemma 6.3 from [1]:

Lemma 14. Assume we are given an instance of TSP(1,2) on the n-node complete
graph G, in the form of the subgraph G of G containing the edges of weight 1. Assume
that G has max degree 3. Assume that we know that its minimum cost TSP tour is either
of cost n or at least (1 + ε0)n, for some fixed ε0. Then there exists such a constant
ε0 for which it is NP-hard to decide which of the two cases holds. The claim holds for
ε0 = 1

786 . If G is cubic then the claim holds for ε0 = 1
1290 .

We show a polynomial-time reduction algorithm A from TSP(1,2) to rBHS, which
takes as input an instance G of TSP(1,2), computes an instance (G′, s) of rBHS, and
has the following property.

Lemma 15. Let 0 < ε < ε0/7, let G be an n-node cubic graph (an instance of
TSP(1,2)), and let (G′, s) be the corresponding instance of rBHS computed by the
reduction algorithmA. Then the following two conditions hold.

1. If the optimal cost of a tour in G is equal to n, then the optimal cost of an explo-
ration scheme for (G′, s) is at most 7

2n + 1.
2. There exists n0 = n0(ε0, ε) such that for n ≥ n0, if the optimal cost of a tour in G

is at least n(1 + ε0), then the optimal cost of an exploration scheme for (G′, s) is
greater than

( 7
2n + 1

)
(1 + ε).

This lemma implies that for 0 < ε < ε0/7 and n ≥ n0, if we have an n-node cubic
graph G and we know that the optimal cost of a tour in G either is equal to n or is at
least n(1 + ε0), then we can decide which of these two cases happens, if we have an
(1 + ε)-approximation of the optimal cost of an exploration scheme for (G′, s). Thus
Lemmas 14 and 15 imply the following theorem.

Theorem 2. It is NP-hard to compute (1+ε)-approximate exploration schemes for the
rBHS problem for any ε < 1

9030 .

Description of the Reduction Algorithm A. Let an n-node graph G = (V, E) be the
input instance of TSP(1,2). The construction of the instance (G′, s) of rBHS proceeds
as follows. We pick an arbitrary node in G (say v1) as the starting node (s ≡ v1) and
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we add it to G′ (as before, this is island I1). For each node vi in G, 2 ≤ i ≤ n, we add
in G′ a pair of unexplored nodes v′i, v

′′
i (as before, we denote this pair as island Ii). For

each edge (vi, vj) in G, we put in G′ an unexplored node bi,j (bridge node), connected
to v′i, v

′′
i (if i > 1), to v′j , v

′′
j (if j > 1) and to s. If the number of bridge nodes (that is,

the number of edges in G) is odd, then we add another unexplored node bs adjacent to s
(to ensure that s is adjacent to an even number of unexplored nodes). Node s is adjacent
to all bridge nodes and is not adjacent to any “island” nodes.

Sketch of Proof of Lemma 15. Let G be an n-node cubic graph. Since G has m =
3
2n edges, the total number of nodes in G′ is 7

2n − 1 + odd(m), and all of them but
one are initially unexplored. For an integer k, odd(k) is equal to 1, if k is odd, and
to 0 otherwise. As in Section 3, we define for a tour τ = 〈v1, vπ(2), . . . , vπ(n)〉 in
G, the exploration scheme Eτ

G′,s for (G′, s), which explores two by two the nodes of
each island in the order 〈Iπ(2), . . . , Iπ(n)〉. Here, however, the scheme first explores the
bridge nodes.

More formally, the scheme Eτ
G′,s has the following sequence of steps.

1. While there are two unexplored nodes b′, b′′ adjacent to s: b-split(s, b′, b′′).
2. For each i = 2, . . . , n:

(a) walk(b′), where b′ is either the bridge node bπ(i−1),π(i), if nodes vπ(i−1) and
vπ(i) are adjacent in G, or any bridge node adjacent to Ii otherwise.

(b) a-split(b′, v′π(i), v
′′
π(i), b

′′), where b′′ is either the bridge node bπ(i),π(i+1), if i <
n and nodes vπ(i) and vπ(i+1) are adjacent in G, or any bridge node adjacent
to Ii otherwise.

The first walk operation, for i = 2, has length 1. For each 3 ≤ i ≤ n, the walk operation
has length either 0, if nodes vπ(i−1),π(i) are adjacent in G, or 2, if nodes vπ(i−1),π(i) are
not adjacent in G. Therefore, if the tour τ has cost n + d (that is, contains d edges of
weight 2), then the exploration scheme Eτ

G′,s has length at most 3
2n+odd(m)+1+2d+

2(n− 1) ≤ 7
2n + 2d. The execution time for the case B = ∅ is at most 7

2n + 2d + 1,
since Eτ

G′,s ends in a bridge node, which is adjacent to s. This is also the cost of the
BHS based on Eτ

G′,s. When an agent realizes that there is a black hole, then this agent
must be at a meeting point, and each meeting point is either node s or a bridge node,
which is adjacent to s. Hence, if the cost of tour τ is n, then d = 0 and the cost of Eτ

G′,s
is at most 7

2n + 1, so the first part of Lemma 15 holds.
To prove the second part of Lemma 15, consider an arbitrary exploration scheme

EG′,s. By using a similar approach as in Section 3, we can find, through a sequence
of phase swaps, a “regular” exploration scheme E ′G′,s, equivalent to EG′,s, where each
agent explores exactly one node of each island Ij for j = 2, . . . , n, and cost(E ′G′,s) =
cost(EG′,s). We assume by symmetry that scheme E ′G′,s is such that Agent-1 explores
nodes v′j , j = 2, . . . , n, and that 〈v′π(2), . . . , v

′
π(n)〉 is the order in which Agent-1 ex-

plores these nodes. We consider the tour τ = 〈v1, vπ(2), . . . , vπ(n)〉 in G.
Let d be the number of weight 2 edges in τ . Thus the number of indices i, 2 ≤ i ≤

n − 1, such that (vπ(i), vπ(i+1)) is not an edge in G is at least d − 2. Consider any
of these indices i and two consecutive phases φji and φji+1 in E ′G′,s, where φji is the
phase during which node v′π(i) is explored by Agent-1. It can be shown that at least one
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of the two phases φji and φji+1 is not a split, so at least (d − 2)/2 phases in scheme
E ′G′,s are not splits.

The cost of any exploration scheme is at least the number of unexplored nodes plus
the number of phases other than splits. Therefore, we have cost(E ′G′,s) ≥ 7

2n− 3 + d
2 .

This implies that if cost(E ′G′,s) ≤
( 7

2n + 1
)
(1 + ε), then d ≤ 7εn + 2(4 + ε), and

cost(τ ) = n+d ≤ n+7εn+2(4+ε) ≤ n(1+ε0)−(ε0−7ε)n+2(4+ε) < n(1+ε0),

provided that ε < ε0/7 and n ≥ n0 = �2(4 + ε)/(ε0 − 7ε) + 1�.

5 A 6-Approximation Algorithm for the General BHS Problem

Let G, S and U be defined as in Section 2. We define the distance graph Ĝ as the
complete weighted graph in which the set of nodes corresponds to the nodes in U ∪
{s} and the weight of edge (vi, vj) is the shortest path distance from vi to vj in G

(considering both safe and unexplored nodes). Weights in Ĝ satisfy triangle inequality.
Let T be the minimum spanning tree of Ĝ rooted at s, and let cost(T ) be its cost, i.e.,
the sum of the weights of all its edges. Let LT = 〈v0 ≡ s, v1, . . . , vu〉 be the depth-first
ordering of the nodes in T , and let LG be the sequence obtained from LT by replacing
each pair of adjacent nodes vi, vi+1 with the shortest path in G from vi to vi+1. Since
the distance from vi to vi+1 is at most the (weighted) cost of path vi, . . . , vi+1 in T , the
length of LG is at most 2cost(T )− d(vu, s).

We now construct the exploration scheme EG,S,s = (X, Y) for G. Initially X = Y =
LG. Then, the pairs of adjacent steps 〈xi, xi+1〉 and 〈yi, yi+1〉 are considered from
i = 1, . . . , k. If xi = yi = v′ and xi+1 = yi+1 = v′′, where v′′ is an unexplored node
occurring for the first time in the sequences, we replace 〈v′, v′′〉 in X with the sequence
〈v′, v′′, v′, v′′〉 and we replace 〈v′, v′′〉 in Y with the sequence 〈v′, v′, v′, v′′〉. This is to
assure that each time the agents have to visit an unexplored node, Agent-1 first explores
it by using the technique of probing. Since |U | is the number of unexplored nodes, 2|U |
steps are added to exploration scheme EG,S,s. The length of EG,S,s is therefore at most
2cost(T ) − d(vu, s) + 2|U |, while the execution time in the case B = ∅ is at most
2cost(T ) + 2|U | since the surviving agents have to get back from vu to s. Observing
that B = ∅ yields the worst case for the execution time since we are operating on a tree,
we can derive the following lemma.

Lemma 16. The exploration scheme EG,S,s is feasible and cost(EG,S,s) ≤ 2cost(T )
+ 2|U |.
Consider now an optimal exploration scheme E∗G,S,s = (X∗, Y∗). In computing
cost(E∗G,S,s) we consider, as lower bound, the execution time of E∗G,S,s in the case
B = ∅. Let L′ = (xk, . . . , s) be the shortest path in G from the last node xk in X

∗

to the starting node, excluding the endpoints xk and s. Let L′′ = X
∗ ◦L′ ◦Y

∗ ◦L′ ◦ 〈s〉.
The sequence L′′ starts from s, visits all the nodes in U and ends in s. The length of L′′

(we denote it as |L′′|) is at most twice the execution time of E∗G,S,s in the case B = ∅,
since L′′ is the concatenation of the paths the two agents follow during the exploration
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in such case; hence 2cost(E∗G,S,s) ≥ |L′′|. Let L∗ be the minimum (shortest) tour in
G starting from s and visiting all the nodes in U , and let |L∗| be its length; obviously,
|L′′| ≥ |L∗|.

Due to its optimality, L∗ has the following structure: L∗ = 〈s〉◦P (s, u1〉◦P (u1, u2〉◦
. . . ◦ P (uu, s〉 where 〈u1, . . . , uu〉 is the sequence of unexplored nodes in the order
they are visited for the first time in L∗, and P (x, y〉 is the shortest path from node x
(excluded) to node y in G. Since weights in G satisfy triangle inequality, the length
of L∗ is equal to the length of the minimum traveling salesman tour in Ĝ, which is
at least the cost of the minimum spanning tree T of Ĝ. Therefore, |L∗| ≥ cost(T ),

and cost(E∗G,S,s) ≥ cost(T )
2 . Moreover, the trivial lower bound holds: cost(E∗G,S,s) ≥

|U |. We compute the approximation ratio of the algorithm presented in this section,
by choosing a suitable balance for the two bounds on the optimal cost. Therefore:
cost(EG,S,s)
cost(E∗G,S,s)

≤ 2 cost(T )+2 |U|
2
3

cost(T )
2 + 1

3 |U|
= 6 .

Theorem 3. The gBHS problem is approximable within 6.

6 Conclusions

We showed that the problem of computing an optimal exploration scheme for a BHS
with two agents (the gBHS problem) is not approximable within 389

388 (unless P=NP).
We also showed that for the restricted version of this problem (the rBHS problem),
when initially only one, starting node is known to be safe, approximating within any fac-
tor less than 9031

9030 is NP-hard. We have presented a polynomial-time 6-approximation
algorithm for the gBHS problem (while a polynomial-time 3 1

2 -approximation algo-
rithm for the rBHS problem was previously shown in [10]).

It seems very difficult to reduce significantly the gap between the upper and lower
bounds on the approximation ratios for the gBHS and rBHS problems. However, some
small improvements can be achieved, for example, by showing, with a more detailed
analysis, that Lemma 15 holds also for 0 < ε < 2ε0/7 and for graphs G of maxi-
mum degree 3. This improves the constant in the lower bound for the rBHS problem
to 2752

2751 . Since our lower bounds are based on reductions from problems TSP(1,8) and
TSP(1,2), any improvements of the inapproximability results for those problems will
directly lead to improved lower bounds for our problems.

We believe that we can improve the 6 approximation ratio, by a more detailed analy-
sis of the bad case, when the two lower bounds on the optimal cost of an exploration
scheme are similar. More precisely, if the ratio cost(T )/2|U | is in the range [1−δ, 1+δ],
for some small constant δ > 0, then one should be able to derive a lower constant than
6 for the bound (5) using a similar analysis as in [10]. If cost(T )/2|U | is outside of this
range, then the left-hand side of (5) is less than 6 − δ. This approach would however
lead most likely only to a small improvement, while requiring substantial expansion
and refinement of technical details.

As already observed in Section 1, it would be interesting to investigate how one
could model and analyse the more practical and more general case of multiple black
holes search, possibly performed by more than two agents.
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Abstract. We concentrate on automatic addition of UNITY properties
unless, stable, invariant, and leads-to to programs. We formally define the
problem of adding UNITY properties to programs while preserving their
existing properties. For cases where one simultaneously adds a single
leads-to property along with a conjunction of unless, stable, and invari-
ant properties to an existing program, we present a sound and complete
algorithm with polynomial time complexity (in program state space).
However, for cases where one simultaneously adds two leads-to proper-
ties to a program, we present a somewhat unexpected result that such
addition is NP-complete. Therefore, in general, adding one leads-to prop-
erty is significantly easier than adding two (or more) leads-to properties.

Keywords: UNITY, Formal Methods, Program Synthesis.

1 Introduction

In this paper, we focus on automated addition of UNITY properties [1] to existing
programs. To motivate the application of this work, consider two scenarios: In the
first scenario, a designer checks the model of a computing system to determine
if it satisfies the given properties of interest using a model checker. The model
checker provides a counterexample demonstrating that one of the properties is
not met. In this scenario, the designer needs to modify the given model so that
it satisfies that property (while ensuring that the remaining properties continue
to be satisfied). In another scenario, an existing program needs to be modified
so that it satisfies an additional property of interest (while satisfying existing
properties). Such a scenario occurs when the specification is incomplete and as
designers gain more domain knowledge about the problem at hand, they may
add new properties to the specification.
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There exist two ways in which one can deal with the above scenarios: (1)
local redesign, where the designer removes the program behaviors that violate
the property of interest without adding any new behaviors, or (2) comprehensive
redesign, where the designer introduces new behaviors in the program compu-
tations (e.g., by introducing new variables, or adding new computation paths).
Clearly, the former approach is desirable, as it ensures that certain existing spec-
ifications (e.g., the UNITY specifications from [1]) are preserved. Moreover, in
the second scenario, the designer may not have access to the complete specifi-
cation of the existing system. Hence, in this case, local redesign, if successful, is
highly desirable.

We expect that an algorithm for local redesign would be especially useful
if it were sound and complete. A sound algorithm ensures that the redesigned
program meets the new specification (in addition to preserving existing spec-
ification); i.e., the redesigned program is correct by construction. Moreover, a
complete algorithm provides an insight for the designer to decide if a program
can be redesigned locally or it should be redesigned from scratch to satisfy a new
property while preserving its exiting properties. Such automated assistance for
the designer is highly desirable since it significantly decreases the design time
by warning the designers about spending time on fixing a program that is not
fixable.

With this motivation, we present an incremental method for adding UNITY
properties to programs. Our incremental approach has the potential to reuse the
computations of an existing program while adding new properties to it. Also,
we focus on UNITY since it provides (i) a simple and general computational
model for a variety of computing systems, and (ii) a proof system for refining
programs [1]. We expect to benefit from simplicity and generality of UNITY in
automatic design of programs.

The basic UNITY properties from [1] are unless, stable, invariant, ensures,
and leads-to. (We refer the reader to Section 2 for precise definitions.) Of these,
ensures can be expressed in terms of leads-to and unless. Hence, we focus on
adding unless, stable, invariant, and leads-to to programs. In particular, we
present a sound and complete algorithm for simultaneous addition of a single
leads-to property and a conjunction of unless, stable, and invariant properties.
The time complexity of our algorithm is polynomial in program state space.
However, we present an unexpected result that simultaneous addition of two
leads-to properties to a program is NP-complete. Based on this result, we find
that adding one leads-to property is significantly easier than simultaneous addi-
tion of two (or more) leads-to properties.

Contributions. The contributions of this paper are as follows: (1) We formally
define the problem of adding UNITY properties to programs; (2) We present a
sound and complete algorithm for automatic addition of a leads-to property and
a conjunction of unless, stable, and invariant properties to programs, and (3)
We show that simultaneous addition of two leads-to properties to a program is
NP-complete.
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Organization of the Paper. First, we present preliminary concepts in Section
2. In Section 3, we formally define the problem of adding UNITY properties to
programs. Then, in Section 4, we present our sound and complete algorithm
for adding a leads-to property to programs. In Section 5, we present our NP-
completeness result. Subsequently, in Section 6, we demonstrate our addition
algorithm using a mutual exclusion program. In Section 7, we compare the results
of this paper with related work. We discuss the limitations and the applications
of our results in Section 8. Finally, we make concluding remarks in Section 9.

2 Preliminaries

In this section, we give formal definitions of programs and properties in UNITY
[1]. Programs are defined in terms of their state space and their transitions.
UNITY properties are defined in terms of infinite sequences of transitions.

Program. A program p is of the form 〈Sp, Ip, δp〉, where Sp is a finite set of
states, Ip ⊆ Sp is the set of initial states of p, and δp ⊆ Sp × Sp is the set of
transitions of p.

A state predicate of p is any subset of Sp. A sequence of states, σ = 〈s0, s1, · · ·〉
is a computation of p iff (if and only if) the following three conditions are satisfied:
(1) s0 ∈ Ip; (2) if σ is infinite then ∀j : j > 0 : (sj−1, sj)∈ δp holds, and (3) if
σ is finite and terminates in state sf then there does not exist state s such that
(sf , s) ∈ δp, and ∀j : 0 < j ≤ f : (sj−1, sj) ∈ δp holds. A sequence of states,
〈s0, s1, ..., sn〉, is a computation prefix of p iff ∀j : 0 < j ≤ n : (sj−1, sj)∈δp .

Properties of UNITY Programs. We reiterate the definition of the UNITY
properties from [1]. In the following definitions, P and Q are state predicates.

– Unless. An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies P unless Q
iff ∀i : 0 ≤ i : (si ∈ (P ∩ ¬Q)) ⇒ (si+1 ∈ (P ∪Q)). Intuitively, the sequence
σ satisfies P unless Q iff if P holds in some state of σ then either (1) Q
never holds in σ and P is continuously true, or (2) Q eventually becomes
true and P holds at least until Q becomes true.

– Stable. An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies stable(P ) iff σ
satisfies (P unless false). Intuitively, P is stable iff once it becomes true it
remains true forever.

– Invariant. An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies invariant(P )
iff s0 ∈ P and σ satisfies stable(P ). An invariant property always holds.

– Ensure. An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies P ensures Q
iff (σ satisfies P unless Q) and (∃j : 0 ≤ j : sj ∈ Q). In other words, there
exists a state sj , where (i) Q eventually becomes true in sj , and (ii) P
remains true everywhere between the first state si, i ≤ j, where P becomes
true and sj .

– Leads-to (denoted �→). An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies
P �→ Q iff (∀i : 0 ≤ i : (si ∈ P ) ⇒ (∃j : i ≤ j : sj ∈ Q)). If P holds in some
state si ∈ σ then there exists a state sj ∈ σ where Q holds and i ≤ j.
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Since ensures can be expressed as a conjunction of an unless property and a
leads-to property, we do not consider it explicitly in this paper. The properties
unless, stable, and invariant are safety properties, as defined by Alpern and
Schneider [2]. These properties can be modeled in terms of a set of bad transitions
that should never occur in a program computation. For example, stable(P ),
requires that transitions of the form (s0, s1), where s0 ∈ P and s1 /∈ P should
never occur in any program computation. Hence, for simplicity, in this paper,
when dealing with these properties, we assume that they are represented as a
set of transitions B ⊆ Sp × Sp that must not occur in any computation.

Now, let spec be any conjunction of the above properties; i.e., spec = L1 ∧
· · · ∧ Ln, where Li belongs to the set of properties unless, stable, invariant,
and leads-to (1 ≤ i ≤ n). A sequence of states σ = 〈s0, s1, ...〉 satisfies spec iff
∀i : 1 ≤ i ≤ n : σ satisfies Li. We say that program p satisfies a given UNITY
specification, spec, iff all computations of p are infinite and every computation
of p satisfies spec.

Remark. We distinguish between a terminating computation and a deadlocked
computation. To model a computation that terminates in state sf , we include the
transition (sf , sf ) in program p. When a computation c of p reaches sf , c can be
extended to an infinite computation by stuttering at sf . If there exists a state sd

such that there is no outgoing program transition from sd then sd is a deadlocked
state and a computation of p that reaches sd is a deadlocked computation. Such
computations cannot be extended to an infinite computation. We want to ensure
that such deadlocked computations do not occur while revising a program.

3 Problem Statement

In this section, we formally define the problem of adding UNITY specifications
to programs. Given is a program p (with state space Sp, initial states Ip and
transitions δp) that satisfies a UNITY specification spece. The goal is to generate
a modified version of p, denoted p′, in such a way that p′ satisfies a UNITY
specification specn, in addition to preserving its existing specification spece.
Moreover, this addition should be done in such a way that one does not need
to know the existing specification spece; during the addition, we only want to
reuse the correctness of p with respect to spece so that the correctness of p′ with
respect to spece is derived from ‘p satisfies spece’.

Now, we identify constraints on Sp′ , Ip′ and δp′ . Clearly, in obtaining Sp′ ,
no new states should be added to Sp; otherwise, there is no guarantee that the
correctness of p can be reused to ensure that existing specification will continue to
be preserved. Moreover, since Sp denotes the set of all states (not just reachable
states) of p, removing states from Sp is not advantageous. Likewise, Ip′ should
not have any states that were not there in Ip. Moreover, since Ip denotes the
set of all initial states of p, we should preserve them during the transformation.
Finally, likewise, δp′ should be a subset of δp. Note that not all transitions of
δp may be preserved in p′. However, we must ensure that p′ does not deadlock
in any reachable state. Based on the definition of the UNITY specification, if
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(i) δp′ ⊆ δp, (ii) p′ does not deadlock in any reachable state, and (iii) p satisfies
spece, then p′ also satisfies spece. Thus, the problem statement is defined as
follows:

The Problem of Adding UNITY Properties
Given a program p, its state space Sp, its set of initial states Ip, and
a UNITY specification specn , identify
δp′ , Sp′ , and Ip′ such that

(C1) Sp′ = Sp

(C2) Ip′ = Ip

(C3) δp′ ⊆ δp

(C4) p′ satisfies specn ��
Note that the requirement of deadlock freedom is not explicitly specified in the
above problem statement, as it follows from ‘p′ satisfies specn’.

4 Adding Single Leads-to and Multiple Safety Properties

In this section, we present a simple solution for the addition problem (defined
in Section 3) for the case where the new specification specn is a conjunction of
a single leads-to property and multiple safety properties. We note that the goal
of our algorithm is simply to illustrate the feasibility of this solution. Hence,
although our algorithm in this section can be modified to reduce complexity
further, we have chosen to present a simple (and not so efficient) solution. In
Section 8, we give an intuition as to how one can implement our algorithm using
counterexamples provided by model checkers.

Given are a program p = 〈Sp, Ip, δp〉 and a specification specn = B∧L, where
B represents the conjunction of a set of safety properties and L is a R �→ T
property for state predicates R and T . Our goal is to generate a new program p′

that satisfies specn and preserves the existing specification. To guarantee that p′

satisfies B (i.e., p′ never executes a transition in the set of bad transitions B), we
exclude all transitions of p that belong to B (see Step 1 in Figure 1). To add the
leads-to property L ≡ (R �→ T ) to p, we need to guarantee that any computation
of p′ that reaches a state in R will eventually reach a state in T . Towards this
end, we rank all states s based on the length of the shortest computation prefix
of p from s to a state in T . In such ranking, if no state of T is reachable from s
then the rank of s will be infinity. Also, the rank of states in T is zero.

There exist two obstacles in guaranteeing the reachability from R to T : (1)
the deadlock states reachable from R, and (2) cycles reachable from R where
the computations of p′ may be trapped forever. We may create deadlock states
by (i) removing safety-violating transitions (Step 1 in Figure 1), and (ii) making
infinity-ranked states unreachable in Step 3.

To deal with the deadlock states, we make them unreachable by removing
transitions that reach a deadlock state (Step 4 in Figure 1). Such removal of
transitions may introduce new deadlock states that are removed in the while
loop in Step 4. If the removal of deadlock states culminates in making an initial
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Add UNITY(Ip: state predicate, p: set of transitions, R,T : state predicate, B: safety specification )
{ // Sp is the state space of p.

p1 := p− {(s0, s1) | (s0, s1) ∈ B}; (1)
∀s : s ∈ Sp : Rank(s) = the length of the shortest computation prefix of p1 (2)

that starts from s and ends in a state in T ;
//Rank(s) = ∞ means T is not reachable from s.

repeat{
p1 := p1−{(s0, s1) | (s1 ∈ R) ∧Rank(s1) = ∞}; (3)
while (∃s0 :: (∀s1 : s1∈Sp : (s0, s1) �∈p1)) { (4)

If (s0 /∈Ip) then p1 := p1 − {(s, s0) | (s, s0) ∈ p1};
else declare that the addition is not possible; exit();

}
∀s : s ∈ Sp : Rank(s) = the length of the shortest computation prefix of p1 (5)

that starts from s and ends in a state in T ;
} until (∀s : (s ∈ R) ∧ (s is reachable in p1) : Rank(s) �= ∞) (6)
return p1 − {(s0, s1) | Rank(s0) < Rank(s1)}; (7)

}

Fig. 1. Adding one leads-to and multiple safety properties

state deadlocked then (R �→ T ) cannot be added to p. Otherwise, we again rank
all states (in Step 5) since we might have removed some deadlock states in T ,
and as a result, we might have created new infinity-ranked states. We repeat
the above steps until no reachable state in R has the rank infinity. At this point
(end of repeat-until in Step 6), there is a path from each state in R to a T state.
However, there may be cycles that are reachable from a state in R.

To deal with such cycles from R, we remove transitions from low-ranked states
to high-ranked states (Step 7 in Figure 1). In particular, if Rank(s0) < Rank(s1)
then that means there exists a shorter computation prefix from s0 to T with
respect to the computation prefix from s1 to T . Thus, removing (s0, s1) will not
make s0 deadlocked. (Note that in Step 7, transitions of the form (s0, s1), where
Rank(s0) = ∞ and Rank(s1) = ∞, are not removed. Hence, computations in
which neither predicates R and T are reached will not be affected. )

Theorem 4.1. The algorithm Add UNITY is sound.

Proof. Since Add UNITY does not add any new states to Sp, we have Sp′ = Sp.
Likewise, Add UNITY does not remove (respectively, introduce) any initial states;
we have Ip′ = Ip. The Add UNITY algorithm only updates δp by excluding some
transitions from δp in Steps 1, 3, 4, and 7. It follows that δp′ ⊆ δp. By construction,
Add UNITY removes all deadlock states in Step 4. Thus, if Add UNITY generates
a program p′ in Step 7 then reachability from R to T is guaranteed in p′. Thus, p′

meets all the requirements of the addition problem. ��
Theorem 4.2. The algorithm Add UNITY is complete.

Proof. Note that any transition removed in Add UNITY (in Steps 1, 3, and 4)
must be removed in any program that meets the requirements of the addition
problem. Hence, when failure is declared (in Step 4), it follows that a solution
to the addition problem does not exist. ��
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Theorem 4.3. The time complexity of Add UNITY algorithm is polynomial
in Sp.

Proof. The proof follows from the polynomial-time complexity of each step of
Add UNITY. ��
In Section 6, we demonstrate our algorithm in the local redesign of a token
passing mutual exclusion program. We have also used our algorithm in the local
redesign of a readers-writers program in [3].

5 Adding Two Leads-to Properties

In this section, we show that the addition of a UNITY specification, which is
the conjunction of two leads-to properties, to a program is NP-complete. We
show this by presenting a reduction from the 3-SAT problem to an instance of
the decision problem defined below. The instance and the decision problem for
adding two leads-to properties are as follows:

Instance. An instance of the addition problem for two leads-to properties con-
sists of a program p , its state space Sp , set of initial states Ip , transitions δp ,
and specn = L1 ∧ L2, where L1 ≡ P �→ Q and L2 ≡ R �→ T , and P, Q, R, and
T are state predicates.

The Decision Problem
Given is an instance of the addition problem for two leads-to properties:

Does there exist a program p′, its state space Sp′ , and its set of initial
states Ip′ such that
Sp = Sp′ , Ip′ = Ip , δp′ ⊆ δp , and p′ satisfies specn = L1 ∧ L2?

The 3-SAT problem is as follows: Let x1, x2, ..., xn be propositional variables.
Given is a Boolean formula y = y1 ∧ y2 · · · ∧ yM , where each yj (1 ≤ j ≤ M)
is a disjunction of exactly three literals. Does there exist an assignment of truth
values to x1, x2, ..., xn such that y is satisfiable?

Next, in Subsection 5.1, we present a polynomial-time mapping from 3-SAT
to an instance of the decision problem. Then, in Subsection 5.2, we show that
the 3-SAT problem is satisfiable iff the answer to the above decision problem is
affirmative for the instance introduced in Subsection 5.1.

5.1 Mapping 3-SAT to the Addition of Two Leads-to Properties

We now present the mapping of an instance of the 3-SAT problem to an instance
of the problem of adding two leads-to properties. First, we introduce the state
space and the initial states of the instance of the addition problem corresponding
to each variable xi and each disjunction yj . We also introduce the state predicates
P, Q, R, and T that define specn. Then, we present the transitions of the instance
corresponding to each variable xi and each disjunction yj .
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The State Space, Initial States, and State Predicates P, Q, R, and T .
Corresponding to each variable xi of the given 3-SAT instance, we introduce
six states Pi, ai, Qi, Ri, bi, and Ti, where 1 ≤ i ≤ n (see Figure 2). For each
disjunction yj , we introduce a state cj , where 1 ≤ j ≤ M , in the state space.

Thus,

– Sp = {Pi, ai, Qi, Ri, bi, Ti | 1 ≤ i ≤ n} ∪ {cj | 1 ≤ j ≤ M}
– Ip = {cj | 1 ≤ j ≤M}
– P = {Pi | 1 ≤ i ≤ n}, Q = {Qi | 1 ≤ i ≤ n}, R = {Ri | 1 ≤ i ≤ n}, and

T = {Ti | 1 ≤ i ≤ n}

ai bi

Pi

Qi

Ri

Ti

Fig. 2. Mapping of variables in the 3-SAT problem

The Program Transitions. Corresponding to each variable xi, we include
transitions (Pi, ai), (ai, bi), (bi, Qi), (Qi, Qi), (Ri, bi), (bi, ai), (ai, Ti), and (Ti, Ti)
in the set of program transitions δp (see Figure 2). Moreover, corresponding to
each disjunction yj, we include the following transitions:

– If xi is a literal in yj then we include the transition (cj , Pi).
– If ¬xi is a literal in yj then we include the transition (cj , Ri).

5.2 Reduction from the 3-SAT Problem

In this subsection, we show that the given instance of 3-SAT is satisfiable iff
both leads-to properties L1 ≡ (P �→ Q) and L2 ≡ (R �→ T ) can be added to the
problem instance defined in Subsection 5.1.

Part I. First, we show that if the given instance of the 3-SAT formula is
satisfiable then there exists a solution that meets the requirements of the decision
problem. Since the 3-SAT formula is satisfiable, there exists an assignment of
truth values to variables xi, 1 ≤ i ≤ n, so that each yj, 1 ≤ j ≤M , is true. Now,
we identify a program p′ that is obtained by adding the leads-to properties L1
and L2 to program p as follows.
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– The state space of p′ consists of all the states of p, i.e., Sp′ = Sp.
– The initial states of p′ consists of all the initial states of p, i.e., Ip′ = Ip.
– For each variable xi, if xi is true then we include the transitions (Pi, ai),

(ai, bi), (bi, Qi), and (Qi, Qi).
– For each variable xi, if xi is false then we include the transitions (Ri, bi),

(bi, ai), (ai, Ti), and (Ti, Ti).
– For each disjunction yj that contains xi, we include the transition (cj , Pi) if

xi is true.
– For each disjunction yj that contains ¬xi, we include the transition (cj , Ri)

if xi is false.

As an illustration, we show the partial structure of p′, for the formula [(x1 ∨
¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x4)], where x1 = true, x2 = false , x3 = false , and
x4 = false in Figure 3.

c1

a1 b1

P1

Q1

a2 b2

R2

T2

c2

a4 b4

R4

T4

a3 b3

R3

T3

Fig. 3. The partial structure of the revised program

Now, we show that p′ meets the requirements of the decision problem.

– The first three constraints of the decision problem are trivially satisfied.
– It is easy to observe that by construction, there are no deadlock states.

Hence, for the UNITY specification spece if p satisfies spece then p′ also
satisfies spece. Moreover, if a computation of p′ reaches Pi from some initial
state (i.e., xi is true) then that computation will eventually reach Qi and
will stay there, since p′ does not include the transition (bi, ai). Likewise, if
a computation of p′ reaches Ri from some initial state (i.e., xi is false) then
that computation will eventually reach Ti and will stay there, since p′ does
not include the transition (ai, bi). Thus, p′ satisfies both L1 and L2.

Part II. Next, we show that if there exists a solution to the instance identified
in Subsection 5.1, then the given 3-SAT formula is satisfiable. Let p′ be the
program that is obtained by adding the two leads-to properties to program p.
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Now, to obtain the solution for 3-SAT, we proceed as follows. If there exists a
computation of p′ where state Pi is reachable then we assign xi the truth value
true. Otherwise, we assign it the truth value false.

We now show that the above truth assignment satisfies all disjunctions. Let
yj be any disjunction and let cj be the corresponding state in p′. Since cj is
an initial state and p′ cannot deadlock, there must be some transition from cj .
This transition terminates in either Pi or Ri, for some i. If the transition from
cj terminates in Pi then yj contains literal xi and xi is assigned the truth value
true. Hence, yj evaluates to true. If the transition from cj terminates in Ri

then Pi should not be reachable. Otherwise, (i) transitions (Ri, bi), (bi, ai), and
(ai, Ti) must be included to ensure that R �→ T is satisfied, and (ii) transitions
(Pi, ai), (ai, bi), and (bi, Qi) must also be included to guarantee that P �→ Q
is satisfied. Since the inclusion of all six transitions (Pi, ai), (ai, bi), (bi, Qi),
(Ri, bi), (bi, ai), and (ai, Ti) causes violation of P �→ Q and R �→ T , it follows
that Pi must not be reached in any computation of p′ if Ri is reachable. Thus, if
Ri is reachable then xi will be assigned the truth value false. Since in this case
yj contains ¬xi, the disjunction yj evaluates to true. Therefore, the assignment
of values considered above is a satisfying truth assignment for the given 3-SAT
formula. ��
Theorem 5.1. The addition of two leads-to properties to UNITY programs is
NP-complete.

Proof. The NP-hardness of adding two leads-to properties follows from the
reduction presented in this section. Also, given a solution (in terms of p′ con-
sisting of Sp′ , Ip′ , δp′) to the instance of the decision problem, one can verify the
requirements (1) Sp′ = Sp , (2) Ip′ = Ip , (3) δp′ ⊆ δp , and (4) p′ satisfies
specn in polynomial time. Thus, the membership to NP follows. Therefore, the
problem of adding two leads-to properties is NP-complete. ��

6 Example: Mutual Exclusion

In this section, we illustrate the role of the algorithm Add UNITY in deciding
about local or comprehensive redesign of a token passing mutual exclusion (ME)
program. We use Dijkstra’s guarded commands (actions) [4] as the shorthand
for representing the set of program transitions. A guarded command g → st
captures the transitions {(s0, s1) : the state predicate g is true in s0, and s1 is
obtained by atomic execution of statement st in state s0 }.

The initial ME program has two competing processes P1 and P2. Each process
Pj (j = 0, 1) has three Boolean variables nj , cj , and tj , where (i) tj represents
whether or not Pj is trying to enter its critical section (i.e., trying section), (ii)
cj represents whether or not Pj is in its critical section, and (iii) nj represents
whether or not Pj intends to enter its trying section (i.e., non-trying section).
The variables of Pj are mutually exclusive; i.e., the condition (tj ⇒ (¬nj ∧
¬cj))∧ (nj ⇒ (¬tj ∧¬cj))∧ (cj ⇒ (¬nj ∧¬tj)) holds. We denote a state of ME
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by 〈s0, s1〉, where s0 represents the state of P0 and s1 represents the state of P1.
Also, we represent the actions of a process j (j = 0, 1 ) as follows:

ME1j : nj −→ tj := true; nj := false;
ME2j : tj −→ cj := true; tj := false;
ME3j : cj −→ nj := true; cj := false;

For simplicity, we illustrate the reachability graph of the initial ME program
in Figure 4 that shows all reachable states from the initial state sinit , where both
processes are in their non-critical sections. We have annotated each transition
with the index of the process that executes that transition.

In the initial state of ME, both processes are in their non-trying section (i.e.,
n0 = true and n1 = true). The ME program satisfies its safety property that
stipulates P0 and P1 must not enter the critical section simultaneously (i.e.,
Invariant(¬(c0 ∧ c1))). Also, the initial ME program only satisfies cj �→ nj .
Next, we trace Add UNITY to add the leads-to property t0 �→ c0 to ME while
preserving c0 �→ n0. For reasons of space, we omit the addition of t1 �→ c1 as it
is similar to the addition of t0 �→ c0.

Step 1. Since ME already satisfies its safety property, no transitions are
removed at the first step of Add UNITY.

Step 2. The Add UNITY algorithm ranks all states based on their short-
est computation prefix to states where c0 is true. As a result,
the rank of 〈t0, t1〉 becomes 1 and the rank of 〈t0, c1〉 becomes
2.

Step 3. Since there exist no states with rank ∞, Add UNITY does not
remove any transitions in Step 3.

Step 4. Since the execution of Steps 2 and 3 does not create any dead-
lock states, Add UNITY does not modify the program structure
in Step 4.

Step 5 and 6. The ranking of the states will not be changed in Step 5. Also,
Add UNITY exits the repeat-until loop since no state where t0
holds has a rank of ∞.

n1n0
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n1c0
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n0 c1t 0 t 1

c0 t 1 c1t 0

1

1

1

1

1

1

1

0

0

0

0

0 0

0

Fig. 4. The reachability graph of program ME



286 A. Ebnenasir, S.S. Kulkarni, and B. Bonakdarpour

Step 7. Finally, in Step 7, Add UNITY removes the transition 〈t0, t1〉 →
〈t0, c1〉 since the rank of 〈t0, t1〉 is 1 and the rank of 〈t0, c1〉
is 2 (see Figure 4). Likewise, in the addition of t1 �→ c1, the
transition 〈t0, t1〉 → 〈c0, t1〉 is removed (see Figure 4).

A similar execution of Add UNITY for the addition of t1 �→ c1 results in the
synthesis of the following (⊕ denotes modulo 2 addition):

ME1′j : nj ∧ ¬t(j⊕1) −→ tj := true; nj := false;
ME2′j : tj ∧ n(j⊕1) −→ cj := true; tj := false;
ME3′j : cj −→ nj := true; cj := false;

Note that, the above program does not satisfy nj �→ tj . Now, if we use
Add UNITY for the addition of nj �→ tj , while preserving tj �→ cj and cj �→ nj ,
then Add UNITY will declare failure because the initial state will be deadlocked.
In the context of this example, the addition of the above properties will fail
regardless of the order of their addition. Thus, based on the completeness of
Add UNITY, it follows that the initial program cannot be revised to a program
that simultaneously satisfies the above leads-to properties. This is an interest-
ing result that enlightens designers to search for other solutions where one adds
new variables and computations to the ME program (e.g., Peterson’s solution)
instead of spending time on modifying the initial ME program.

7 Related Work

In this section, we illustrate how the contributions of this paper differ from
existing approaches for program synthesis and verification. Existing synthesis
methods in the literature mostly focus on deriving the synchronization skele-
ton of a program from its specification (expressed in terms of temporal logic
expressions or finite-state automata) [5–11], where the synchronization skeleton
of a program is an abstract structure of the code of the program implementing
inter-process synchronization. Although such synthesis methods may have dif-
ferences with respect to the input specification language and the program model
that they synthesize, the general approach is based on the satisfiability proof of
the specification. This makes it difficult to provide reuse in the synthesis of pro-
grams; i.e., any change in the specification requires the synthesis to be restarted
from scratch. By contrast, since the input to our algorithm (cf. Figure 1) is the
set of transitions of a program, our approach has the potential to reuse those
transitions in incremental synthesis of a revised version of the input program.

The algorithms for automatic addition of fault-tolerance [12–16] add fault-
tolerance concerns to existing programs in the presence of faults, and guarantee
not to add new behaviors to that program in the absence of faults. The problem
of adding fault-tolerance is orthogonal to the problem of adding UNITY prop-
erties in that one could use the algorithms of [12–16] to add fault-tolerance con-
cerns to a UNITY program synthesized by the algorithm presented in this paper.



Revising UNITY Programs: Possibilities and Limitations 287

On the other hand, we plan to investigate the addition of UNITY properties to
fault-tolerant programs while preserving their fault-tolerance properties.

Run-Time Verification. Runtime verification techniques focus on monitoring
the program behavior at runtime with respect to a given specification [17]. Also,
such techniques provide a mechanism for ensuring the correctness of program
execution after monitoring violations of desired properties [18]. Such approaches
mostly focus on the verification of safety properties [19–22] and also provide
mechanisms for exception handling and dealing with deadlocks at runtime. By
contrast, our focus is on off-line addition of UNITY properties to programs where
we ensure that the synthesized program satisfies its existing and newly added
properties. Also, to the best of our knowledge, the runtime verification of leads-to
properties is still an open question.

8 Discussion

In this section, we address some questions raised about the limitations and the
applications of the results presented in this paper. We proceed as follows:

Stepwise Application of Add UNITY. The Add UNITY algorithm can be used
in a stepwise fashion. While such a stepwise use of Add UNITY to add multiple
leads-to properties will be sound, it is not complete. This is due to the fact that
during the addition of the first leads-to property, the transitions removed in the
last step (Step 7 in Figure 1) may cause failure in adding the subsequent leads-
to property. Therefore, this does not contradict the NP-completeness result in
Section 5.

Addition of Other UNITY Properties. The Add UNITY algorithm shows
that it is possible to add several safety (stable, invariant and unless) properties
and one leads-to property in polynomial time. Since ensures is a conjunction of
unless and leads-to properties, this algorithm can be trivially extended to deal
with the case where one adds several safety properties and an ensures property.
Also, one can use Add UNITY to add the until property in Linear Temporal Logic
(LTL) [23] to programs as ensures is semantically the same as until in LTL.

However, in the context of adding multiple leads-to properties, there are
several open questions. For example, is it possible to combine these leads-to
properties with other (specific) properties to obtain efficient solutions? To il-
lustrate this, it is straightforward to observe that adding ‘invariant(¬P ) ∧
(P �→ Q) ∧ (R �→ T )’ can be added efficiently, as it corresponds to adding
‘invariant(¬P ) ∧ (R �→ T )’. Moreover, the complexity of adding two ensures
properties is still an open question. (Note that the complexity of adding two
ensures properties does not necessarily follow from the results in Section 5; as
discussed earlier in this paragraph, combining leads-to properties with certain
safety properties, does permit polynomial time solutions.)

Implementing Add UNITY Using Model Checking. The algorithm
Add UNITY can also be implemented with the help of a model checker as
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follows: For this exposition, consider the case where a program, say p, is specified
as a set of transitions, as defined in Section 2. When p is checked with a model
checker with respect to a leads-to property (R �→ T ) and found to be incorrect,
the counterexamples will be of one of the following two forms: (1) There exists
a state sd such that sd is reachable in computations of p and sd is a deadlocked
state, or (2) There exists a state, say sr ∈ R that is reachable in a program
computation and that program computation can be extended to reach a cycle,
say s0, s1, · · · , sn(= s0) such that T is never satisfied. In the former case, transi-
tions terminating in sd need to be removed. In the latter case, we need to check
if there exists a computation prefix of p that starts in one of the states in the
cycle and reaches T . (This case could also be checked with a model checker.) If
such a computation prefix does not exist then the state sr and all its incident
transitions should be removed. If such a computation prefix exists and sj is the
last state from the cycle to appear on that path then the transition (sj , sj+1)
in the cycle should be removed. After removing the transitions in this fashion,
we can repeat the process with the new program until a solution is found. (We
leave it to the reader to verify that this approach is also sound and complete.)

The Choice of the Initial Program. The algorithm Add UNITY takes the
initial program p and adds a set of UNITY properties to p if possible. The choice
of the initial program can affect the result of addition in that if we start with
an initial program that is maximal, i.e., has the maximal non-determinism, then
the chance of a successful addition is higher. This issue is particularly important
for a step-wise application of the Add UNITY algorithm.

9 Conclusion and Future Work

In this paper, we focused on the problem of revising UNITY [1] programs where
one adds a conjunction of UNITY properties unless, stable, invariant, ensures,
and leads-to to an existing program to provide new functionalities while preserv-
ing the existing functionalities. This is an important problem given the dynamic
nature of the requirements of computing systems, where developers need to con-
stantly revise existing programs due to newly-discovered user requirements. In
particular, we formally defined the problem of adding UNITY properties to
programs. Afterwards, we presented a sound and complete algorithm for such
addition where one automatically (i) verifies if it is possible to add a conjunc-
tion of UNITY properties to a program and preserve the existing properties,
and (ii) adds a conjunction of UNITY properties to a program if such addition
is possible.

More importantly, we showed that if one adds a single leads-to property and
a conjunction of unless, stable, and invariant properties to a program then the
complexity of such addition will be polynomial in program state space. However,
in general, we showed a surprising result that simultaneous addition of two leads-
to properties to a program is NP-complete. Hence, revising UNITY programs
would be significantly easier if one added a single leads-to property instead of
adding more than one leads-to property. Since ensures can be expressed as the
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conjunction of an unless property and a leads-to property, the algorithm pre-
sented in this paper for adding a leads-to property and a conjunction of unless,
stable, and invariant properties can be used for the addition of ensures property
as well. Nonetheless, to the best of our knowledge, the complexity of adding two
ensures properties to UNITY programs is still an open problem.

To extend the results of this paper, we plan to integrate the algorithm pre-
sented in this paper with model checking algorithms to provide automated assis-
tance for developers. As a result, if the model checking of a model with respect to
a UNITY property fails then our algorithm automatically (i) determines whether
or not the model is fixable, and (ii) fixes the model if it is fixable.
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Abstract. We consider the partitioned scheduling of sporadic, hard-real-
time tasks on a multiprocessor platform with static-priority scheduling
policies. Most previous work on the static-priority scheduling of sporadic
tasks upon multiprocessors has assumed implicit deadlines (i.e. a task’s
relative deadline is equal to its period). We relax the equality constraint
on a task’s deadline and consider task systems with constrained deadlines
(i.e. relative deadlines are at most periods). In particular, we consider the
first-fit decreasing partitioning algorithm. Since the partitioning problem
is easily seen to be NP-hard in the strong sense, this algorithm is unlikely
to be optimal. We quantitatively characterize the partitioning algorithm’s
worst-case performance in terms of resource augmentation.

1 Introduction

Over the years, the sporadic task model [23] has proven remarkably useful for
the modelling of recurring processes in hard-real-time systems where the release
times of jobs are not known a priori. In this model, a sporadic task τi = (ei, di, pi)
is characterized by a worst-case execution requirement ei, a (relative) deadline
di, and a minimum inter-arrival separation pi, which is, for historical reasons,
also referred to as the period of the task. Such a sporadic task generates a
potentially infinite sequence of jobs, with successive job-arrivals separated by at
least pi time units. Each job has a worst-case execution requirement equal to ei

and a deadline that occurs di time units after its arrival time. A sporadic task
system is comprised of several such sporadic tasks. Let τ denote a system of
sporadic tasks: τ = {τ1, τ2, . . . τn}, with τi = (ei, di, pi) for all i, 1 ≤ i ≤ n.

A sporadic task system is said to be feasible upon a specified platform if
it is possible to schedule the system on the platform such that all jobs of all
tasks will meet all deadlines, under all permissible (also called legal) combi-
nations of job-arrival sequences by the different tasks comprising the system.
The feasibility-analysis of sporadic task systems on preemptive uniprocessors
has been extensively studied. It is known (see, e.g. [9]) that a sporadic task sys-
tem is feasible on a preemptive uniprocessor if and only if all deadlines can be
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met when each task in the system has a job arrive at the same time-instant,
and subsequent jobs arrive as rapidly as legal (such a combination of job-arrival
sequences is sometimes referred to as a synchronous arrival sequence for the
sporadic task system).

Feasibility of a sporadic task system under static-priority scheduling has a
more restrictive definition. In static-priority systems, each task is assigned a dis-
tinct priority, and all jobs of a task execute at the task’s priority. A task system
is said to be feasible with respect to a static-priority scheduling algorithm if the
resulting priority assignment results in all deadlines being met under all legal
combinations of job-arrival sequences. For constrained-deadline systems (i.e. each
task has di ≤ pi), a sporadic system is feasible on a preemptive uniprocessor if
and only if it can be scheduled according to the Deadline-Monotonic algorithm
(DM) [19]; DM assigns priority to task according to on the inverse of its rela-
tive deadline. Several exact algorithms for feasibility-analysis of static-priority
task systems (both unconstrained- and constrained-deadline) upon uniprocessor
platforms have been developed [16, 1, 17].

On multiprocessor systems, two alternative paradigms for scheduling collec-
tions of sporadic tasks have been considered: partitioned and global scheduling. In
the partitioned approach, the tasks are statically partitioned among the proces-
sors, i.e., each task is assigned to a processor and is always executed on it.
Leung and Whitehead [19] showed that determining the feasibility of a task sys-
tem under the partitioned paradigm is NP-hard. Under global scheduling, it is
permitted that a job that has previously been preempted on one processor can
resume execution at a later point in time upon a different processor, at no ad-
ditional cost (however, each job may be executing on at most one processor at
each instant in time).

Most prior theoretical research on multiprocessor scheduling of collections of
sporadic tasks has assumed that all tasks have their deadlines equal to their pe-
riod parameters (i.e., di = pi for all tasks τi) — such sporadic systems are some-
times referred to in the literature as implicit-deadline systems1. Oh [25] gives
a performance bound on the first-fit decreasing heuristic using exact feasibility
tests for deadline-monotonic scheduling. A significant portion of prior research
has focused on deriving partitioning algorithms based on utilization bounds. A
utilization bound represents the highest utilization in which any task system
possessing a utilization at most the bound is guaranteed to be feasible on the
multiprocessor system. Oh and Baker [24] derive a sufficient utilization test for
feasibility of a task system that is partitioned scheduled using DM algorithm and
assuming an implicit-deadline task system. Burchard, et al. [12] present utiliza-
tion conditions for partitioned DM based on tightened uniprocessor utilization
bounds derived from Liu and Layland [20].

The research described in this report is part of a larger project that is aimed
at obtaining a better understanding of the multiprocessor scheduling of arbi-

1 Notable and important exceptions are the recent work of Baker [4, 5, 6, 7], Baruah
and Fisher [8], and Bertogna et al. [10] which consider systems of sporadic tasks
with di �= pi.
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trary sporadic task systems – i.e., systems comprised of tasks that do not satisfy
the “di = pi” constraint. We are motivated to perform this research for two
major reasons. First, sporadic task systems that do not necessarily satisfy the
implicit-deadline constraint often arise in practice in the modelling of real-time
application systems, and it therefore behooves us to have a better understand-
ing of the behavior of such systems. Second, we observe that in the case of
uniprocessor real-time scheduling, moving from implicit-deadline systems (the
initial work of Liu and Layland [20]) to arbitrary systems (as represented in,
e.g. [23, 18, 19, 17, 2] etc.2, had a major impact in the maturity and development
of the field of uniprocessor real-time systems; we are hopeful that progress in
better understanding the multiprocessor scheduling of arbitrary sporadic task
systems will result in a similar improvement in our ability to build and analyze
multiprocessor real-time application systems.

Organization. In this paper, we report our findings concerning the preemp-
tive multiprocessor scheduling of constrained-deadline sporadic real-time sys-
tems under the partitioned paradigm. The remainder of the paper is organized
as follows. In Section 2, we formally specify the task model, and define the
request-bound function and demand-bound function as characterizations of the
maximum amount of execution time that has been requested by a task over
a time interval of a given length. In Section 3, we position our finds within a
larger context of multiprocessor real-time scheduling theory, and compare and
contrast our results with related research. In Section 4, we describe an exact fea-
sibility test for uniprocessor static-priority scheduling. In Section 5, we describe
the first-fit decreasing algorithm for the partitioning of sporadic tasks upon a
multiprocessor system. In Section 6, we theoretically evaluate the conditions un-
der which first-fit decreasing is guaranteed to be able to successfully partition
a task system on a multiprocessor platform. In Section 7, we state some future
directions of our research.

2 Task/Machine Model and Definitions

In the sporadic task model, a sporadic task τi = (ei, di, pi) is characterized by
a worst-case execution requirement ei, a (relative) deadline di, and a minimum
inter-arrival separation pi (historically, referred to as the period of a task). The
ratio ui

def= ei/pi of sporadic task τi is often referred to as the utilization of τi.
We will assume that we have a multiprocessor platform comprised of m iden-

tical processors π1, π2, . . ., πm, on which we are to schedule a system τ of n
sporadic tasks: τ = {τ1, τ2, . . . τn}, with τi = (ei, di, pi) for all i, 1 ≤ i ≤ n.
Depending upon what additional restrictions are placed on the relationship be-
tween the values of di and pi for each sporadic task τi ∈ τ , we may define special
subclasses of sporadic task systems:

2 This is merely a small sample, and by no means an exhaustive list of citations of
important and influential papers.
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Fig. 1. (a) denotes a plot of rbf(τi, t) as a function of t. (b) denotes a plot of dbf(τi, t)
as a function of t.

– Sporadic task systems in which each task satisfies the additional constraint
that di = pi for each task τi are referred to as implicit-deadline sporadic
tasks systems.

– Sporadic task systems in which each task satisfies the additional constraint
that di ≤ pi for each task τi are often referred to as constrained sporadic
tasks systems.

Where necessary, the term arbitrary sporadic task system will be used to refer
to task systems which do not satisfy the above constraints. The results we obtain
in this work is for constrained task systems. Therefore, we will assume that a
given task system, τ , is constrained, unless otherwise specified.

2.1 The Request-Bound Function

For any sporadic task τi and any real number t ≥ 0, the request-bound function
rbf(τi, t) is the largest cumulative execution requirement of all jobs that can
be generated by τi to have their arrival times within a contiguous interval of
length t. Every time a task τi releases a job, ei additional units of processor
time are requested. The following function provides an upper bound on the total
execution time requested by task τi at time t (i.e. the scenario where a task
releases jobs as soon as legally possible):

rbf(τi, t)
def=

⌈
t

pi

⌉
ei. (1)

Figure 1a shows an example of a rbf. Notice that the “step” function,
rbf(τi, t) increases by ei units every pi time units.

To determine the response-time for the first job of task τi on a preemptive
uniprocessor, we must consider execution requests of τi and all jobs of tasks
which may preempt τi. We define the following cumulative request-bound function
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based on rbf. Let THi be the set of tasks with priority greater than τi. Then,
the cumulative request-bound function is defined as:

Wi(t)
def= ei +

∑
τj∈THi

rbf(τj , t). (2)

The cumulative request-bound function Wi(t) is simply the total execution
requests of all tasks of higher priority than τi over the interval [0, t), and the
execution request of one job of τi.

2.2 The Demand-Bound Function

For any sporadic task τi and any real number t ≥ 0, the demand-bound function
dbf(τi, t) is the largest cumulative execution requirement of all jobs that can
be generated by τi to have both their arrival times and their deadlines within a
contiguous interval of length t (see Figure 1b for a visual example). It has been
shown [9] that the cumulative execution requirement of jobs of τi over an interval
[to, to + t) is maximized if one job arrives at the start of the interval – i.e., at
time-instant to – and subsequent jobs arrive as rapidly as permitted — i.e., at
instants to + pi, to + 2pi, to + 3pi, . . . Equation (3) below follows directly [9]:

dbf(τi, t)
def= max 0,

t − di

pi
+ 1 × ei . (3)

2.3 Relationship Between rbf and dbf

For all task systems, rbf(τi, t) exceeds or equals dbf(τi, t) for all t > 0. In a con-
strained task system τ , an important property regarding the ratio between rbf
and dbf holds. For each task τi ∈ τ , the ratio between the rbf and dbf,for all
t ≥ di, is bounded by two. The following lemma formally states this observation:

Lemma 1. If di ≤ pi, then for all t ∈ [di,∞), rbf(τi, t) ≤ 2 · dbf(τi, t).

Proof: Recall that di ≤ pi; thus, di

pi
≤ 1. So, for t ≥ di:⌈

t

pi

⌉
−

⌊
t− di

pi

⌋
≤

⌈
t

pi

⌉
−

⌊
t

pi

⌋
+ 1 ≤ 2. (4)

Multiplying both sides of Equation 4 by ei, we get:⌈
t
pi

⌉
ei −

⌊
t−di

pi

⌋
ei ≤ 2ei

⇒
⌈

t
pi

⌉
ei ≤

(⌊
t−di

pi

⌋
+ 1

)
ei + ei

⇒ rbf(τi, t) ≤ dbf(τi, t) + ei (by definition of rbf and dbf)
⇒ rbf(τi, t) ≤ 2 · dbf(τi, t).

The last step follows because for t ≥ di, dbf(τi, t) ≥ ei. ��
Lemma 1 will be useful in Section 6 for deriving quantitative results for the
first-fit decreasing partitioning algorithm.
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3 Context and Related Work

Given the specifications of a multiprocessor sporadic task system, feasibility
analysis is the process of determining whether it is possible for the system
to meet all timing constraints under all legal combinations of job arrivals. For
implicit-deadline systems, partitioned feasibility-analysis can be transformed
to a bin-packing problem [14] and shown to be NP-hard in the strong sense;
sufficient feasibility tests for various bin-packing heuristics have recently been
obtained [22, 21]. The constrained and arbitrary task models are general-
izations of the implicit-deadline model; therefore, the intractability result (fea-
sibility analysis being NP-hard in the strong sense) continues to hold. To our
knowledge, there have been no prior non-trivial positive theoretical results (other
than [8]) concerning partitioned feasibility analysis of constrained and arbitrary
sporadic task systems — “trivial” results include the obvious ones that τ is fea-
sible on m processors if (i) it is feasible on a single processor; or (ii) the system
obtained by replacing each task τi by a task τ ′

i = (ei, min(di, pi), min(di, pi)) is
deemed feasible using the heuristics presented in [22, 21, 24].

While feasibility analysis is a very interesting and important question from
a theoretical perspective, the following question is more relevant to the system
designer: Given the specifications of a multiprocessor sporadic task system and
a scheduling algorithm that will be used to schedule the system during run-time,
how do we determine whether the system will meet all its deadlines when sched-
uled using this scheduling algorithm? More formally, for any scheduling algorithm
A, a real-time system is said to be A-schedulable if the system meets all its
deadlines during run-time when scheduled using algorithm A. (Note that, at
least for the designer of hard real-time systems, schedulability analysis must be
performed beforehand during the design of the system, and prior to run-time.)

The technique of resource augmentation [15, 26] is sometimes used to relate
the concepts of feasibility and A-schedulability, for specific algorithms A. The
technique is as follows: given that a system is known to be feasible upon a
particular platform, can we guarantee that algorithm A will always successfully
schedule the system if we augment the platform in some particular, quantifiable,
way (e.g., by increasing the speed, or the number, of processors available to A
as compared to the platform on which the system was shown to be feasible)?

In prior work [8], we developed a partitioning algorithm for constrained and
arbitrary task systems using dynamic-priority scheduling policies, and analyzed
its performance from the perspective of resource augmentation. Our results, in
this paper, are with respect to partitioned static-priority scheduling of sporadic,
constrained task systems. We will derive the following resource-augmentation
bound from these results (see Corollary 2):

If a system of sporadic tasks is feasible under the global paradigm (and con-
sequently, under the partitioned paradigm as well) on m identical processors,
then this system of sporadic tasks is partitioned by the first-fit decreasing algo-
rithm on m identical processors in which the individual processors are (3− 1

m
)

times as fast as in the original system, such that each partition is uniprocessor
dm-schedulable.
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4 Uniprocessor Exact-Feasibility Test

In this section, we present uniprocessor exact-feasibility tests for a sporadic
task set, τ , in a static-priority system. We will use these tests as the basis
for the partitioning algorithm defined in Section 5 and the sufficient feasibility
conditions developed in Section 6.

For static-priority task systems with relative deadlines bounded by periods,
Liu and Layland [20] showed that the worst-case response time for a job of task
τi occurs when all tasks of priority greater than τi release a job simultaneously
with τi under the synchronous arrival sequence. In a sporadic task system with
constrained deadlines, it is necessary and sufficient to only check the worst-case
response time of the first job of each task. If the worst-case response time of the
first job of task τi is at most its relative deadline, then τi is schedulable; else, it
is not schedulable. A task system τ is feasible on a uniprocessor if and only if
the first job of each task τi has a worst-case response time at most di.

Audsley et al. [3] presented an exact feasibility test for task τi using dm: a
task always meets all deadlines on a preemptive uniprocessor if and only if there
exists a fixed point, t, of Wi(t) such that t occurs before τi’s deadline . The
following theorem restates their test:

Theorem 1 (from [3]). In a constrained sporadic task system, task τi always
meets all deadlines using dm on a preemptive uniprocessor if and only if ∃t ∈
(0, di] such that Wi(t) ≤ t. ��

5 A Partitioning Algorithm

Given sporadic task system τ comprised of n tasks τ1, τ2, . . . τn, and a platform
comprised of m unit-capacity processors π1, π2, . . . , πm, we now describe an al-
gorithm for partitioning the tasks in τ among the m processors. With no loss
of generality, let us assume that tasks are indexed according to non-decreasing
order of their relative deadline parameter (i.e., di ≤ di+1 for all i, 1 ≤ i < n).
The algorithm considers the tasks in the order τ1, τ2, . . . . Suppose that tasks τ1,
τ2, . . ., τi−1 have all been successfully allocated among the m processors, and we
are now attempting to allocate task τi to a processor. The algorithm for doing
this is a variant of the First-Fit Decreasing [13, 25] algorithm for bin-packing,
and is as follows (see Figure 2 for a pseudo-code representation of ffd-dm). For
any processor π
, let τ(π
) denote the tasks from among τ1, . . . , τi−1 that have al-
ready been allocated to processor π
. Considering the processors π1, π2, . . . , πm,
in order, we will assign task τi to the first processor π
, 1 ≤ � ≤ m, that satisfies
the following condition:

∃t ∈ (0, di] :: Wi,π�
(t) ≤ t, (5)

where
Wi,π�

(t) def= ei +
∑

τj∈THi
∩τ(π�)

rbf(τj , t). (6)
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ffd-dm(τ, m)
� The collection of sporadic tasks τ = {τ1, . . . , τn} is to be partitioned on

m identical, unit-capacity processors denoted π1, π2, . . . , πm. (Tasks are
indexed according to non-decreasing value of relative deadline parame-
ter: di ≤ di+1 for all i.) τ (π�) denotes the tasks assigned to processor π�;
initially, τ (π�) ← ∅ for all �.

1 for i ← 1 to n
� i ranges over the tasks, which are indexed by non-decreasing value of
the deadline parameter

2 for � ← 1 to m
� � ranges over the processors, considered in order

3 if τi satisfies Condition 5 on processor π� then
� assign τi to π�; proceed to next task

4 τ (π�) ← τ (π�) {τi}
5 goto line 7
6 end (of inner for loop)
7 if (� > m) return partitioning failed
8 end (of outer for loop)
9 return partitioning succeeded

Fig. 2. Pseudo-code for partitioning algorithm

If no such π
 exists, then we declare failure: we are unable to conclude that
sporadic task system τ is feasible upon the m-processor platform.

The following lemma asserts that, in assigning a task τi to a processor π
,
the partitioning algorithm does not adversely affect the feasibility of the tasks
assigned earlier to each processor.

Lemma 2. If the tasks previously assigned to each processor were dm-feasible
on that processor and the algorithm above assigns τi to processor π
 (according
to Condition 5), then the tasks assigned to each processor (including processor
π
) remain feasible on that processor.

Proof: Observe that the feasibility of processors other than processor π
 is not
affected by the assignment of task τi to processor π
. It remains to demonstrate
that, if the tasks assigned to π
 were feasible on π
 prior to the assignment of τi

and Condition 5 is satisfied, then the tasks on τ
 remain feasible after adding τi.
Observe that the following conditions held prior to adding τi to processor π


(due to Condition 5 of partitioning algorithm):

∀τj ∈ THi ∩ τ(π
) : (∃t ∈ (0, dj ] :: Wj,π�
(t) ≤ t) . (7)

In a static-priority, uniprocessor system adding a lower-priority task τi does
not affect the Wj,π�

(t) function for all τj ∈ THi ∩ τ(π
). Therefore, Condition 7
continues to hold after the assignment of τi to processor π
. By Theorem 1, all
tasks τj previously assigned to processor π
 remain feasible. ��
The correctness of the partitioning algorithm follows, by repeated applications
of Lemma 2:
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Theorem 2. If the ffd-dm partitioning algorithm returns partitioning suc-
ceeded on constrained task system τ , then the resulting partitioning is dm-
feasible.

Proof Sketch: Observe that the algorithm returns partitioning succeeded
if and only if it has successfully assigned each task in τ to some processor.

Prior to the assignment of task τi, each processor is trivially dm-feasible. It
follows from Lemma 2 that all processors remain dm-feasible after each task
assignment as well. Hence, all processors are dm-feasible once all tasks in τ have
been assigned. ��

5.1 Run-Time Complexity

It may appear that a potentially infinite number of values of t must be checked
in order to ensure that Equation 5 is satisfied. However, Lehoczky, et al [16]
showed that it suffices to check only the values in the set,

Si,π�

def=
{

t = bpj : τj ∈ τ(π
) ∩THi , b = 1, . . . ,

⌊
di

pj

⌋}
(8)

to determine whether τi fits on π
. We may have to check all m processors to
determine whether τi “fits” on the multiprocessor platform. Thus, in the worst-
case, we need to check all the points in

Si
def= Si,π1 ∪ . . . ∪ Si,πm =

{
t = bpj : j = 1, . . . , i; b = 1, . . . ,

⌊
di

pj

⌋}
. (9)

The number of elements in Si is O(i
⌊

di

p1

⌋
). Therefore, to check Equation 5 for a

task τi requires O(i
⌊

di

p1

⌋
+m). The time complexity for testing the feasibility of

the entire task set τ is O(n2
⌊

dn

p1

⌋
) under the reasonable assumption that m ≤

n. Since the time complexity of the (exact-test-based) partitioning algorithm
depends upon the period and relative deadline parameters of τ , the algorithm
runs in pseudo-polynomial time. The run-time of determining whether Equation 5
is satisfied can be further reduced by considering the tunable feasibility test of
Bini and Buttazzo [11].

6 Evaluation

As stated in Section 1, the first-fit decreasing partitioning algorithm represents
a sufficient, rather than exact, test for feasibility — it is possible that there
are systems that are feasible under the partitioned paradigm but which will be
incorrectly flagged as “infeasible” by ffd-dm. Indeed, this is to be expected
since a simpler problem – partitioning collections of sporadic tasks that all have
their deadline parameters equal to their period parameters – is known to be NP-
hard in the strong sense while the ffd-dm algorithm runs in pseudo-polynomial
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time. In this section, we offer a quantitative evaluation of the efficacy the algo-
rithm. Specifically, we derive some properties (Theorem 3 and Corollary 2) of the
ffd-dm partitioning algorithm, which characterize its performance. We would
like to stress that these properties are not intended to be used as feasibility tests
to determine whether ffd-dm would successfully schedule a given sporadic task
system. Rather, these properties are intended to provide a quantitative measure
of how effective ffd-dm partitioning is vis a vis the performance of an optimal
scheduler. For an empirical evaluation of the ffd-dm algorithm considered in
this paper, we refer the reader to [7].

For given task system τ = {τ1, . . . , τn}, let us define the following notation:

δmax(τ) def=
n

max
i=1

(ei/di) , (10)

δsum(τ) def= max
t>0

(∑n
j=1 dbf(τj , t)

t

)
. (11)

Lemma 3. If task system τ is feasible (under either the partitioned or the global
paradigm) on an identical multiprocessor platform comprised of mo processors
of computing capacity ξ each, it must be the case that

ξ ≥ δmax(τ) ,

and
mo · ξ ≥ δsum(τ) .

Proof: Observe that each job of each task of τ can receive at most ξ · di units
of execution by its deadline; hence, we must have ei ≤ ξ · di ≡ λi ≤ ξ. Taken
over all tasks in τ , this observation yields the first condition.

The requirement that moξ ≥ δsum(τ) is obtained by considering a sequence
of job arrivals for τ that defines δsum(τ); i.e., a sequence of job arrivals over
an interval [0, to) such that

n
j=1 dbf(τj,to)

to
= δsum(τ). The total amount of

execution that all these jobs may receive over [0, to) is equal to mo · ξ · to; hence,
δsum(τ) ≤ mo · ξ. ��
Lemma 3 above specifies necessary conditions for the ffd-dm algorithm to suc-
cessfully partition a sporadic task system; Theorem 3 below specifies a sufficient
condition. But first, a technical lemma that will be used in the proof of Theorem 3.

Lemma 4. Suppose that the ffd-dm partitioning algorithm is attempting to
schedule a constrained sporadic task system τ on a platform comprised of unit-
capacity processors.

If δsum(τ) ≤ 1
2 , then Equation 5 is always satisfied.

Proof: Observe that δsum(τ) ≤ 1
2 implies that

∑
τj∈τ dbf(τj , to) ≤ to

2 for all

to ≥ 0. For any task τi ∈ τ ,
∑i

j=1 dbf(τj , to) ≤ to

2 . By Lemma 1, this in turn
implies that

∑i
j=1 rbf(τj , to) ≤ to for all to ≥ di; notice that rbf(τi, di) ≥ ei.
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Thus, for all τi ∈ τ ,
∑i−1

j=1 rbf(τj , di) + ei ≤ di. This implies for any processor
π
:

∃to ∈ (0, di] :: Wi,π�
(to) ≤ to.

Therefore, Equation 5 is satisfied. ��
Corollary 1. Any constrained sporadic task system τ satisfying (δsum(τ) ≤ 1

2 )
is successfully partitioned on any number of processors ≥ 1.

Thus, any sporadic task system satisfying δsum(τ) ≤ 1
2 is successfully sched-

uled by the ffd-dm. We now describe, in Theorem 3, what happens when this
condition is not satisfied.

Theorem 3. Any constrained sporadic task system τ is successfully scheduled
by ffd-dm on m unit-capacity processors, for any

m ≥ 2δsum(τ) − δmax(τ)
1− δmax(τ)

. (12)

Proof: The proof is by contradiction. Assume that m satisfies the antecedent
of the theorem, but cannot schedule τ on m processors by ffd-dm. Then there
exists a task τi which does not fit on any processor according Equation 5. It
must be the case (by Theorem 1) that each such processor π
 satisfies

Wi,π�
(di) > di

⇒ ∑
τj∈τ(π�) rbf(τj , di) + ei > di

⇒ ∑
τj∈τ(π�) 2 · dbf(τj , di) > di − ei (according to Lemma 1).

Observe that dbf(τi, di) = ei and dbf(τj , di) = 0 for all j > i. Summing over
all m such processors and noting that the tasks on these processors is a subset
of the tasks in τ , we obtain

2
n∑

j=1

dbf(τj , di) > m(di − ei) + ei

⇒
∑n

j=1 dbf(τj , di)
di

>
m

2
(1− ei

di
) +

ei

2di
. (13)

By definition of δsum(τ) (Equation 11)∑n
j=1 dbf(τj , di)

di
≤ δsum(τ). (14)

Chaining Inequalities 13 and 14 above, we obtain

m

2
(1 − ei

di
) +

ei

2di
< δsum(τ)

⇒ m <
2δsum(τ)− ei

di

1− ei

di

.
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By Corollary 1, it is necessary that δsum(τ) > 1
2 hold. Since δmax(τ) ≤ 1

(if not, the system is trivially non-feasible), the right-hand side of the above
inequality is maximized when ei

di
is as large as possible, this implies that

m <
2δsum(τ) − δmax(τ)

1− δmax(τ)
,

which contradicts Inequality 12 above. ��
The technique of resource augmentation may be used to quantify the “good-
ness” (or otherwise) of an algorithm for solving problems for which optimal
algorithms are either impossible in practice (e.g., because optimal decisions re-
quire knowledge of future events), or computationally intractable. In this tech-
nique, the performance of the algorithm being discussed is compared with that
of a hypothetical optimal one, under the assumption that the algorithm un-
der discussion has access to more resources than the optimal algorithm. Using
Theorem 3 above, we now present such a result concerning ffd-dm.

Theorem 4. ffd-dm makes the following performance guarantees: if a con-
strained sporadic task system is feasible on mo identical processors each of a
particular computing capacity, then ffd-dm will successfully partition this sys-
tem upon a platform comprised of m processors that are each (2mo

m + 1 − 1
m)

times as fast as the original.

Proof: Let us assume that τ = {τ1, τ2, . . . , τn} is feasible on mo processors each
of computing capacity equal to ξ. Since τ is feasible on mo ξ-speed processors,
it follows from Lemma 3 that the tasks in τ satisfy the following properties:

δmax(τ) ≤ ξ, and δsum(τ) ≤ mo · ξ

Suppose we attempt to schedule τ using ffd-dm on m ≥ 2moξ−ξ
1−ξ unit-capacity

processors. By substituting the inequalities above, we satisfy the condition of
Theorem 3:

m ≥ 2δsum(τ) − δmax(τ)
1− δmax(τ)

⇐ m ≥ 2moξ − ξ

1− ξ

≡ ξ ≤ m

2mo + m− 1

≡ 1
ξ
≥ 2

mo

m
+ 1− 1

m

which is as claimed in the statement of the theorem. ��
By setting mo ← m in the statement of Theorem 4 above, we immediately have
the following corollary.
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Corollary 2. ffd-dm makes the following performance guarantees:

If a constrained sporadic task system is feasible on m identical processors
each of a particular computing capacity, then ffd-dm will successfully
partition this system upon a platform comprised of m processors that are
each (3− 1

m ) times as fast as the original. ��

7 Conclusions and Future Work

Prior theoretical research [12, 24] on the static-priority scheduling of sporadic
task systems upon partitioned multiprocessors has assumed that a task’s dead-
line is equal to its period parameter. In this work, we have relaxed this constraint,
and have allowed a task’s period parameter to exceed its deadline parameter.
We consider the scheduling of such sporadic task systems upon preemptive
multiprocessor platforms, under the partitioned scheduling paradigm. To this
end, we consider the first-fit decreasing partitioning algorithm using an exact-
uniprocessor feasibility tests as a condition for a task “fitting” on a processor. We
have proven the correctness of the partitioning algorithm, and have character-
ized the conditions under which the algorithm correctly partitions a task system.
In particular, we have shown that the algorithm can partition a globally feasi-
ble task system by augmenting the speed of each processor by a multiplicative
factor.

While we have assumed in this paper that our multiprocessor platform is com-
prised of identical processors, we observe that our results are easily extended to
apply to uniform multiprocessor platforms — platforms in which different proces-
sors have different speeds or computing capacities — under the assumption that
each processor has sufficient computing capacity to be able to accommodate each
task in isolation. We are currently working on extending the results presented
in this paper to uniform multiprocessor platforms in which this assumption may
not hold.

We have not considered in this paper arbitrary sporadic task systems (i.e.
task systems where there is no restriction between a task’s relative deadline and
its period parameter). Unfortunately, preliminary research indicates that the
sufficient feasibility tests from this paper do not directly generalize for arbitrary
sporadic tasks. Formally, the reason the results do not generalize is due to the
fact that Lemma 1 does not hold for arbitrary task systems. We are currently
working on devising sufficient feasibility tests for arbitrary sporadic task systems
scheduled under the partitioned multiprocessor paradigm.
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Abstract. In this paper, we address the problem of schedulability analysis of
a set of real-time periodic (or sporadic) tasks on multiprocessor hardware plat-
forms, under fixed priority global scheduling. In a multiprocessor system with
M processors, a global scheduler consists of a single queue of ready tasks for
all processors, and the scheduler selects the first M tasks to execute on the M
processors. We allow preemption and migration of tasks between processors.

This paper presents two different contributions. First, we derive a sufficient
schedulability test for periodic and sporadic task system scheduled with fixed
priority when priorities are assigned according to Deadline Monotonic. This test
is efficient when dealing with heavy tasks (i.e. tasks with high utilization). Then,
we develop an independent analysis for preperiod deadline systems. This leads to
a new schedulability test with density and utilization bounds that are tighter than
the existing ones.

1 Introduction

Recently, multicore hardware platforms (i.e. with more than one processor on a single
chip) are gaining momentum both in the high-end processor market and in the embed-
ded systems market. There are many reasons for this widespread popularity, the most
important being the technological constraints that make it impossible to design and im-
plement faster single-processor chips at reasonable costs.

However, the current state-of-practice programming methodologies have not yet
shifted toward parallel computing. This is particularly unfortunate in real-time systems.
As a matter of fact, the real-time scheduling theory for multiprocessor systems is not
yet well studied as the corresponding single-processor scheduling theory. In particular,
many negative results are known for real-time scheduling on multi-processors.

Recently, a number of research papers have addressed the problem of schedulability
analysis of real-time task sets on a multi-processor platform when global scheduling is
considered. In a multiprocessor system with m processors, global scheduling consists in
having one single queue of ready tasks for all processors and a scheduler selects the first
m tasks from the queue to be executed on the processors. Preemption and migration are
allowed, i.e. a task may be interrupted by higher priority tasks at any time and it may
resume execution on a different processor. A totally different approach is static parti-
tioning of tasks to processors, where, before execution, tasks are statically allocated to
processors and cannot migrate. On each processor, a single processor scheduler is run.

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, pp. 306–321, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In comparison to static partitioning, global scheduling suffers the cost of migration.
This cost is mostly due to the cache: when moving a task from one processor to another,
chances are that the task must reload the cache of the second processor. This cost,
which might result excessive in traditional multiprocessor platforms, is greatly reduced
in multicore chips, as the processors share part of the cache, and one processor can
access the cache contents of another processor at little additional cost.

Moreover, global scheduling is particularly useful in case of open dynamic systems,
where tasks may dynamically enter and leave the system. In fact, with static partition-
ing, every time a task enters the system, it must be allocated to a processor, and optimal
allocation is an NP-Hard problem. Therefore, admission control and allocation become
difficult and time consuming. Also, when a task leaves the system, there may be the
need for re-allocation and load balancing, and this reintroduces migration overhead.

On the other hand, under global scheduling a task is not allocated to a processor.
Therefore, when a task wants to enter the system, the only remaining problem is admis-
sion control, i.e. to understand if the task can be admitted into the system without jeop-
ardizing the guarantee on the already admitted real-time tasks. This test is commonly
referred to as schedulability test. In this paper we propose schedulability tests based on
utilization and density bounds, which are polynomial in the number of tasks.

When considering global scheduling, schedulers can be roughly divided in three
groups depending on the priority that a task has during its execution. If the priority
of a task cannot change throughout the whole task lifetime, the scheduling algorithm
has “fixed task priority”. If the priority can change only at job boundaries, as with
EDF, then the algorithm has “fixed job priority”. The above classes are often referred
to as “priority driven”. Finally, if the priority can change also during the job execution,
as for the P-fair class of algorithms described in [1], then the algorithm has “(fully)
dynamic priority”. Algorithms from the latter class can have a higher utilization bound,
reaching the number of processors when deadlines are equal to periods. On the other
side, they have a higher number of preemptions and migrations and a more difficult
implementation. For these reasons, it may be more favorable to use a priority driven
scheduler that has all the mentioned advantages related to the global scheduling.

This work will analyze the first group of algorithms, which assigns statically the
priority to each task and that is often briefly called fixed priority. One of the most
used priority assignment in this class is Rate Monotonic (RM), that assigns priorities
proportional to the inverse of the periods. RM has been proved to be optimal in the
uniprocessor case, in the sense that if a task set can be scheduled with fixed priority
with a particular priority assignment, then it is also schedulable with RM. If a system
can have deadlines less than periods, then the Deadline Monotonic priority assignment
(DM) is optimal on a single processor. Efficient schedulability tests are known in the
uniprocessor case for both DM and RM. When considering systems with more than one
CPU, the above optimality is lost. This is mainly due to the “Dhall effect” [2], that takes
place when scheduling on the same platform tasks with high utilization and tasks with
low utilization. To overcome this effect reaching a higher utilization bound, there are
proposed solutions that give maximum priority to the heaviest tasks and schedule the
remaining ones with RM or DM.
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1.1 Our Contribution

This paper presents various contributions. First, we discuss two recent solutions to the
multiprocessor schedulability analysis using deadline-monotonic algorithm, one pro-
posed by Andersson, Baruah and Jonsson [3], which will be denoted by ABJ, and the
other one proposed by Baker [4], which will be denoted by BAK. We prove that neither
test dominates the other.

Using a technique similar to the one used in [5] for the EDF case, we then pro-
pose a schedulability test that, bounding the interference imposed on a task, is able to
succesfully guarantee a larger portion of schedulable task sets, especially in presence
of heavy tasks (i.e. tasks whose utilization is greater than 0.5).

In order to derive a result that generalizes ABJ, as well as a utilization bound pro-
posed by Baker, we develop a new scheduling analysis that leads to tighter density and
utilization bounds. With these new results, we can evaluate the performances of DM-
based hybrid scheduling algorithms, which are solutions that treat in a different way the
tasks with high and with low utilization, overcoming Dhall’s effect and reaching higher
utilization bounds.

The paper is organized as follows. In Section 2 we introduce the terminology and
notation. In Section 3, the two main existing results on the schedulability analysis with
RM and DM are summarized and compared. In Section 4, we present our first test,
which improves over the test proposed in [4] bounding the interference that can be im-
posed on a task. In Section 5, we propose a new scheduling analysis that leads to tighter
density and utilization bounds. Using this result, we then characterize the performances
of previously proposed hybrid algorithms based on RM and DM. Finally, in Section 6
we present our conclusions.

2 System Model

We consider a set τ of periodic or sporadic tasks to be scheduled on m identical proces-
sors. A task τk is a sequence of jobs Jj

k , each one with an arrival time rj
k and a finishing

time f j
k . Each task τk = (Ck, Dk, Tk) ∈ τ is characterized by a worst-case computation

time Ck, a period or minimum interarrival time Tk, and a relative deadline Dk. Goal of
the scheduling algorithm is to guarantee that each job will complete before its absolute
deadline dj

k = rj
k + Dk.

For convenience, tasks are numbered in decreasing priority order. We denote with
constrained deadline (resp. implicit deadline) the systems with Dk ≤ Tk (resp. Dk =
Tk). We define the utilization of a task τk as Uk = Ck

Tk
. We also define the density of

a task τk as λk = Ck

Dk
, which represents the “worst-case” request of a task in a generic

time interval. Let Umax (resp. λmax) be the largest utilization (resp. the largest density)
among all tasks.

The workload Wk(a, b) of task τk is the sum of all intervals in which τk is executing
in interval [a, b]. The load Lk(a, b) of a task τk in [a, b] is the workload divided by the
length of the interval: Lk(a, b) = Wk(a,b)

b−a .
The competing (work)load of a task τk is the sum of the (work)loads of all tasks τi,

with i < k.
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The interference Ik(a, b) on a task τk over an interval [a, b] is the cumulative length
of all intervals in which the task is ready to execute but it cannot execute due to higher
priority jobs. We also define the interference Ii,k(a, b) of a task τi on a task τk over an
interval [a, b] as the cumulative length of all intervals in which τk is ready to execute, τi

is executing while τk is not. Notice that by definition: Ii,k(a, b) ≤ Ik(a, b), ∀i, k, a, b.
We finally define the interfering load on a task τk over an interval [a, b], as the

interference Ik(a, b) divided by the length of the interval, i.e.: Lint
k (a, b) = Ik(a,b)

b−a .
Similarly, we define the interfering load of a task τi on a task τk in an interval [a, b], as:
Lint

i,k (a, b) = Ii,k(a,b)
b−a .

3 Summary of Existing Results

The schedulability problem for RM or DM has been widely studied in the uniprocessor
case. Only recently the multiprocessor case has been analyzed in more detail. In particu-
lar, there are two previously proposed works that derive schedulability tests with poly-
nomial time complexity, one proposed by Andersson, Baruah, Jonsson [3] and the other
by Baker [4]. We will refer to both results with the first letters of the authors.

3.1 The ABJ Test

The following result has been presented in [3, 6] and is valid only for systems with
deadlines equal to periods.

Theorem 1 (ABJ). A task set with Utot ≤ m2

3m−2 and Umax ≤ m
3m−2 is schedulable

with Rate Monotonic (RM) upon m processors.

The test is very simple but is only applicable to task sets composed by tasks with limited
utilization. In the same paper is proposed a slightly modified version of RM that allows
to reach a utilization bound of m2

3m−2 with no restriction on the utilization of a task. We
will better describe this algorithm and the related bound in the last part of this paper.

3.2 The BAK Test

With a different approach, Baker derived in [4, 7] another test that is valid also for
preperiod deadline systems with unrestricted task utilization. The idea is based on the
consideration that if a job Jj

k of task τk misses its deadline dj
k, it means that the com-

peting load of task τk in interval [rj
k, dj

k] is at least m(1−λk). The situation is depicted
in Figure 1. Therefore, if it would be possible to show, for every job Jj

k , that the higher
priority tasks cannot generate so much competing workload in interval [rj

k, dj
k], then the

schedulability would be guaranteed.
Unfortunately, checking the condition directly in [rj

k, dj
k] is not simple without over-

estimating the contribution of each task. To find a better estimation, Baker proposes to
enlarge the interval to the largest possible interval such that the competing load is still
greater than m(1− λk). This new interval is called busy window. By deriving an upper
bound on the combined load produced in the busy window, the final result is obtained.
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i<k Wi > Dk − Ck

jobJj
k

τk

τk

τk

Dk

rj
k dj

k

tasks τi<k

processors

deadline
miss

Fig. 1. Problem window

Theorem 2 (BAK). A task set τ composed by n tasks is schedulable with DM on a
SMP with m processors if

∀τk :
k−1∑
i=1

βi ≤ m(1−λk), where βi =

{
Ui(1 + Ti−Ci

Dk
) if λk ≥ Ui

Ui(1 + Ti−Ci

Dk
) + Ci−λkTi

Dk
if λk < Ui

It consists of n − 1 inequalities, one for each task, excluded the task with shortest
deadline that doesn’t have any interfering task.

Even if the BAK test is valid also for preperiod deadline systems with unrestricted
task utilization, we show with a simple example that it doesn’t dominate ABJ. Consider
a platform with m = 2 processors and a task set τ = {τ1 = (4, 9); τ2 = (4, 9); τ3 =
(1, 10)}. Since the largest utilization is 4

9 ≤ m
3m−2 = 0.5, then ABJ is applicable. The

total utilization is less than m2

3m−2 = 1 and ABJ is passed. On the other side, it is easy
to verify that the BAK test fails for k = 3. Then, BAK is not more general than ABJ.

Note that this also proves that the utilization bound proposed in [4] for implicit dead-
line systems cannot follow from the general test. Anyway, we will prove along this
paper that the bound is indeed correct, and our indipendent analysis will show that a
similar result is valid also for preperiod deadline systems.

4 The BCL Test

A previous work [5] modified Baker’s analysis for the EDF case, deriving a test that
better behaves with tasks that have a high utilization. In this section, we briefly report
some of the results derived in that work adapting them, when needed, to the fixed pri-
ority case. We will consider systems with constrained deadline. When a proof is not
reported, it is identical to the EDF case and can be found in the cited paper.

4.1 Interference Time

The interference (resp. interfering load) that a task τi causes on another task τk in an
interval [a, b] is never greater than the workload (resp. load) of τi in the same interval:

∀i, k, a, b : Ii,k(a, b) ≤ Wi(a, b) ≤ b− a, and Lint
i,k (a, b) ≤ Li(a, b) ≤ 1.

Moreover, note that the competing workload of a task τk in a generic interval cannot
be less than the interference Ik in the same interval. Considering again Figure 1 and
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the definition of interference, we have that if a task τk misses a deadline in dj
k, the

interference on task τk in [rk
k , dj

k] must be greater than (Dk − Ck).
Since the fixed priority global scheduling algorithm is work-conserving, we have

that in the time instants in which a job is ready but not executing, each processor must
be occupied by a job of a higher priority task. Then, the followig results is valid.

Lemma 1. The interference (resp.interfering load) that a task τk can suffer in interval
[a, b] is the sum of the interferences (resp. interfering loads) of all higher priority tasks

in the same interval, divided by the number of processors: Ik(a, b) = i<k Ii,k(a,b)
m

(resp.: Lint
k (a, b) = i<k Lint

i,k (a,b)
m ).

For constrained deadline systems scheduled with fixed priority, we then have that when
a deadline dj

k is missed:
∑

i<k Ii,k(rj
k, dj

k) > m(Dk − Ck).
Therefore, for a job to meet its deadline, the competing interference on the task must

be less than or equal to m(Dk − Ck). For a task to be schedulable, the condition must
hold for all its jobs.

We define the worst-case interference for task τk as: Ik = maxj(Ik(rj
k, dj

k)) =
Ik(rj∗

k , dj∗
k ), where j∗ is the job instance in which the total interference is maximal. To

simplify the notation, we define: Ii,k = Ii,k(rj∗
k , dj∗

k ). With the above notation we can
easily extend a necessary and sufficient test derived in [5] for the EDF case.

Theorem 3. A task set with constrained deadlines is schedulable with fixed priority iff,
for each task τk, one of the following is true:

1)
∑

i<k min
(
Ii,k, Dk − Ck

)
< m(Dk − Ck)

2)
∑

i<k min
(
Ii,k, Dk − Ck

)
= m(Dk − Ck) and ∃h < k : 0 < Ih,k ≤ Dk − Ck

Proof. In [5], a corresponding theorem is proved for EDF. The difference is only in the
tasks that have to be considered in the sum. In the EDF case, the sum is extended to all
tasks (excluded τk). With fixed priority, the sum can be limited to the first k − 1 tasks,
because the interference on task τk of each task τi≥k is null.

To better understand the key idea behind Theorem 3, consider again the situation de-
picted in Figure 1. It is clear that, if the interference that a task τi can impose on task τk

in window [rj
k, dj

k] is greater than Dk − Ck , it is sufficient to consider only the portion
Dk − Ck in the sum to verify the schedulability of task τk.

4.2 Combined Workload

The schedulability test of Theorem 3 requires the interferences Ii,k. Since we are not
able to compute these values without a simulation of the system, we will use an up-
per bound, deriving only a sufficient condition. We know that an upper bound on the
interference Ii,k(rj

k, dj
k) is the workload Wi(r

j
k, dj

k). The workload of each interfering
task τi<k is maximized when the last job is released at instant (dj

k − Ci), and the job
has just the time to complete its execution requirements before the deadline of task
τk. The situation is depicted in Figure 2 and detailed in [4]. In such a situation, let
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Ni =
(⌊

Dk−Ci

Ti

⌋
+ 1

)
be the number of requests rh

i that τi makes in [rj
k, dj

k]. An

upper bound on the workload of τi in a generic interval [rj
k, dj

k] is then:

Wi(r
j
k, dj

k) ≤ NiCi + εi(r
j
k, dj

k)

where εi(r
j
k, dj

k) is the execution time that the first job of τi having execution in [rj
k, dj

k]
spends inside the considered interval. This is often called carry-in of task τi in interval
[rj

k, dj
k]. Note that an upper bound on the carry-in is the following:

εi(r
j
k, dj

k) ≤ min (Ci, (Dk −NiTi + Di − Ci)0) ,

where we used (x)0 as a short notation for max(0, x). Obviously, the carry-in of a task
cannot exceed the worst-case computation time Ci of the task. Moreover, since the first
missed deadline is later at dj

k, the finishing time of the first job of τi cannot be later
than its deadline. From Figure 2, it follows that the carry-in cannot be greater than
(Dk −NiTi + Di − Ci), when this term is positive, proving the bound.

rh
i dh

i rh+1
i dh+1

i rh+2
i dh+2

i rh+3
i dh+3

i

rj
k dj

k
Dk

TiTi Ci

NiTi
εi

Fig. 2. Carry-in of a task τi<k in [rj
k, dj

k]

Denoting with βi an upper bound on the load of task τi in interval [rj
k, dj

k], we can
then write:

βi =
NiCi + min (Ci, (Dk −NiTi + Di − Ci)0)

Dk
. (1)

Expressing Theorem 3 using the load instead of the workload and modifying it with
the derived bound on the load of a task, we get the following sufficient condition.

Theorem 4 (BCL). A task set with constrained deadlines is schedulable with fixed
priority if, for each task τk, one of the followings is true:

1)
∑

i<k min (βi, 1− λk) < m(1− λk)
2)

∑
i<k min (βi, 1− λk) = m(1− λk) and ∃i �= k : 0 < βi ≤ 1− λk.

where βi is expressed by Equation (1).

One of the main differences between this test and the results presented in [4] lies in term
(1−λk) in the minimum. This term directly derives from term Dk−Ck in Theorem 3.
The underlying idea is that when considering the interference of a heavy task τi over
another task τk, we do not want to overestimate its contribution to the total interference.
If we consider its entire load, when we sum it together with the load of the other tasks on
all m processors, its contribution could be much higher than Dk−Ck

Dk
and we could end

up overestimating the total interference. Therefore, we must consider only the fraction of
its workload that can actually interfere with task τk. This fraction is bounded by 1−λk.
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5 Density-Based Test

In this section we will develop an indipendent analysis of the multiprocessor schedula-
bility problem when using a fixed priority scheduler with Deadline Monotonic priority
assignment. This will allow to derive a new density based test that represents the corre-
sponding version for DM of a utilization based test derived in [8] for implicit deadline
systems scheduled with EDF, and extended for preperiod deadlines in [5].

We will then show that this test generalizes the ABJ test and allows to characterize
hybrid algorithms based on DM that have better performances when scheduling heavy
and light tasks on the same platform.

In [4], a similar bound for implicit deadline systems is presented but not correctly
proved. The task set we introduced in Section 3 can be used to show that it cannot follow
from the general BAK test. However, a corollary derived from our test when deadlines
are equal to periods will show that the bound is indeed correct.

Lemma 2. In a constrained deadline system scheduled with fixed priority, if a task τk

misses a deadline dj
k, then∑

i≤k

Li(r
j
k, dj

k) > m(1− λk) + λk

The proof is detailed in [4] and follows from Figure 1.
For the next results, we assume the constrained deadline model is used.

Lemma 3. If the load Li(I) of a task τi in an interval I = [a, b], with |I| ≥ Di, is
greater than 2λi, then τi has two and only two releases, r1

i and r2
i , in I .

Proof. First we prove that the interval should at least include two releases of task τi.
Suppose there exists a task τi with Li(I) > 2λi and less than two releases inside

interval I . The load of τi inside that interval is due to at most two instances. Since
Di ≤ |I|, such load is: Li(I) ≤ 2Ci

|I| ≤ 2Ci

Di
= 2λi, contradicting the hypothesis.

We say that a job J l
i is “entirely contained” inside an interval, if its arrival time, rl

i,
and the arrival time of the next released job of the same task, rl+1

i , are both contained
inside the considered interval. Let ξ be the number of jobs of τi entirely contained in I .
We showed that ξ ≥ 1. Now we prove that ξ < 2.

Note that task τi produces the maximal load in I when (see Figure 3):

(i) The first job of τi executing in I is released at instant (a−Di + Ci) and executes
for Ci units at the beginning of the interval.

(ii) The last job of τi executing in I is released at instant (b − Ci) and executes for Ci

units at the end of the interval.

Suppose there exists a task τi for which ξ ≥ 2 and Li(I) > 2λi. The load of τi under
conditions (i) and (ii) is:

Li(I) =
2Ci + ξCi

ξTi + 2Ci + Ti −Di
≤ 2Ci + ξCi

ξTi + 2Ci
=

(2 + ξ)Ui

ξ + 2Ui

The above expression can be greater than 2Ui only when ξ < 2. So when ξ ≥ 2 it will
be Li(I) ≤ 2Ui ≤ 2λi, contradicting the hypothesis. Therefore it should be ξ = 1, as
the situation depicted in Figure 4.
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...

r0
i d0

i r1
i d1

i r2
i rξ

i dξ
i j rξ+1

i dξ+1
k

a bI

TiTiCi Ci

Fig. 3. Densest possible packing of jobs for task τi

From now on, we will call J0
i the first job of task τi that executes in interval I . The

following jobs are numbered accordingly.

Lemma 4. If the load Li(I) of a task τi in an interval I = [a, b], with |I| ≥ Di, is
greater than 2λi, then:

Ui <
1
4

(2)∑
h≤i

Lh([r0
i , a]) > m(1− λi) + λi (3)

Di >
2
3
|I| (4)

|[r0
i , a]| > Di

2
+ Ci (5)

Proof. Lemma 3 guarantees that there is one and only one job of τi entirely contained
in [a, b], as in Figure 4. The load of τi in this situation is Li(I) < 3Ci

Ti+2Ci
= 3Ui

1+2Ui
.

Since Li(I) > 2λi ≥ 2Ui, then Ui < 1
4 , proving Equation (2).

Let x = [r0
i , a], y = [a, r1

i ] and z = [r1
i , b].

It is: Li(y + z) > 2λi and Li(x + y) ≤ λi. Moreover:

Li(z) ≤ 2Ci

Ti + Ci
=

2Ui

1 + Ui
< 2Ui ≤ 2λi

Li(y) =
Li(y + z)(|y|+ |z|)− Li(z)|z|

|y| > 2λi +
|z|(2λi − Li(z))

|y| ≥ 2λi

Li(x) =
Li(x + y)(|x|+ |y|)− Li(y)|y|

|x| ≤ λi +
|y|(λi − Li(y))

|y| < λi (6)

Since job J0
i didn’t yet complete its execution at instant a, it means that when in

interval x task τi is not executing, all m processors are executing higher priority tasks
and Li(x) + Lint

i (x) = 1. From Equation (6) we have: Lint
i (x) > 1− λi.

Using Lemma 1, Equation (3) is proved by:
∑

h≤i Lh(x)≥∑
h<i Lint

h,i (x)+Li(x)=
mLint

i (x) + Li(x) = mLint
i (x) + (1− Lint

i (x)) > m(1− λi) + λi.
Now, let w = [a, d0

i ]. Note that an upper bound on Li(y + z) is 3Ci

Ti+Ci+(Ti−Di)+|w| .
Since this quantity should be greater than 2λi, we have: |w| < 5

2Di − 2Ti − Ci.
Then: |I| = Ti + Ci + (Ti −Di) + |w| < 3

2Di, proving Equation (4).
And: |[r0

i , a]| = Di − |w| > 2Ti − 3
2Di + Ci ≥ Di

2 + Ci, proving Equation (5).
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I

x y z

r0
i d0

i r1
i d1

i r2
i d2

i

a b

Fig. 4. A situation with Li(I) > 2λi

Theorem 5. A set of periodic or sporadic tasks with constrained deadlines is schedu-
lable with Deadline Monotonic priority assignment on m ≥ 2 processors if:

λtot =
n∑

i=1

Ci

Di
≤ m

2
(1− λmax) + λmax (7)

Proof. The proof is by contradiction. Using deadline monotonic priorities, suppose
there exists a task set τ with λtot ≤ m

2 (1−λmax)+λmax, which misses a deadline. Let dj
k

be the first missed deadline. Task τk is interfered by tasks in the set T = {τ1, . . . , τk−1}.
Case 1: ∀τi ∈ T : Li(r

j
k, dj

k) ≤ 2λi.
Since

∑
i<k Lint

i,k (rj
k, dj

k) > m(1− λk), we get:

λtot ≥
∑
i<k

λi + λk ≥
∑
i<k

Li(r
j
k, dj

k)
2

+ λk ≥
∑
i<k

Lint
i,k (rj

k, dj
k)

2
+ λk

>
m

2
(1− λk) + λk ≥ m

2
(1− λmax) + λmax.

Case 2: There is at least one task τi ∈ T : Li(r
j
k, dj

k) > 2λi.
Let H = {τi ∈ T : Li(r

j
k, dj

k) > 2λi}. Since Di ≤ Dk, Lemma 3
guarantees that for every task τi ∈ H there is one and only one job entirely
contained in [rj

k, dj
k], as in Figure 4. Let τh be the task in H with the ear-

liest released job that interferes τk in [rj
k, dj

k]. So it is: r0
h ≤ r0

i , ∀τi ∈ H .
Then no task in H can have only one job entirely contained in [r0

h, dj
k]. For

Lemma 3 we then have:

∀τi ∈ H : Li(r0
h, dj

k) ≤ 2λi (8)

Let a = [r0
h, rj

k], b = [rj
k, dj

k] and (a + b) = [r0
h, dj

k].
Since task τk can execute only when task τh is not interfered, and job

J0
h has remaining execution time at instant rj

k, then Lk(a) ≤ Lh(a). Equa-
tion (6) (with I = [rj

k, dj
k]) gives Lh(a) < λh. So we have:

Lk(a) < λh (9)
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Case 2.1: ∀τi ∈ T : Li(r0
h, dj

k) ≤ 2λi.
Equation (3) with I = [rj

k, dj
k] and Lh(I) > 2λh gives:∑

i≤k

Li(a) ≥
∑
i≤h

Li(a) > m(1 − λh) + λh.

Using the above relation together with Lemma 2 we get:∑
i≤k

Li(a + b) =
∑
i≤k

Li(a)|a|+ Li(b)|b|
|a + b|

>
(m(1− λh) + λh)|a|+ (m(1− λk) + λk)|b|

|a|+ |b| (10)

Consider separately the case λh ≤ λk and λh > λk.
- Case λh ≤ λk:
Equation (10) gives:

∑
i≤k Li(a + b) > m(1− λk) + λk.

Equation (9) gives: Lk(a)<λh≤λk. Remember that Lk(b)<λk, because
deadline dj

k is missed. So, Lk(a + b)= Lk(a)|a|+Lk(b)|b|
|a+b| < λk|a|+λk|b|

|a+b| <λk.
Since ∀τi ∈ T : Li(a + b) ≤ 2λi, we get:

λtot≥
∑
i<k

λi+λk >
∑
i≤k

Li(a + b)
2

+
λk

2
>

m

2
(1−λk)+λk ≥ m

2
(1−λmax)+λmax.

- Case λh > λk:
From Equation (10) with (λh − λk) > 0, m≥ 2 and |b|

|a|+|b| > Th+Ch

2Th+Ch
=

1+Uh

2+Uh
> 1

2 :

∑
i≤k

Li(a + b) > m(1−λh)+λk +
(λh − λk)|a|+ m(λh − λk)|b|

|a|+ |b|

> m(1−λh)+λh + (λh−λk)
|b|

|a|+ |b|
> m(1 − λh) + λh +

(λh − λk)
2

Since |a| < Dh ≤ Dk, then at most two jobs of τk can execute in interval
(a + b). So we have: Lk(a + b) ≤ 2Ck

2Th+Ch
< Ck

Th
≤ Ck

Dh
< Ck

2
3 Dk

= 3
2λk,

where we used Equation (4) with |I| = |b| = Dk.
Moreover: Lh(a + b) ≤ 3Ch

2Th+Ch
= 3Uh

2+Uh
< 3

2Uh ≤ 3
2λh.

Since ∀τi ∈ T : Li(a + b) ≤ 2λi, it is:

λtot >
∑

i<k,i
=h

Li(a + b)
2

+ λh + λk >
∑
i≤k

Li(a + b)
2

+
λh + λk

4

>
m

2
(1− λh) + λh ≥ m

2
(1− λmax) + λmax

contradicting the hypothesis.
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Case 2.2: There is at least one task τg ∈ T : Lg(r0
h, dj

k) > 2λg.
Lemma 3 guarantees that τg has one and only one job entirely contained

in (a + b).
Let a′ = [r0

g , r0
h]. We will now prove that: ∀τi ∈ T : Li(a′+a+b) ≤ 2λi.

Suppose there is a task τf ∈ T for which Lf (a′+a+b) > 2λf . Applying
repeatedly Equation (4) with I = (a′ + a + b), I = (a + b) and I = b, we
get:

Df >
2
3
(2Tg + Cg) ≥ 4

3
Dg >

4
3

2
3
(2Th + Ch) ≥ 16

9
Dh >

16
9

2
3
Dk > Dk.

Therefore, τf cannot be in T , proving the assertion.
Equation (4) with I = (a + b) gives: Dg > 2

3 (2Th + Ch) > Th ≥ Dh,
showing that τg has lower priority than τh. This means that, since at instant
rj
k job J0

h still has to complete: Lg(a) ≤ Lh(a). Equation (6) with I = b
gives Lh(a) < λh. Then:

Lg(a) < λh (11)

Note that for Equation (8) τg /∈ H , so: Lg(b) < 2λg . Since Lg(a + b) >
2λg , then: Lg(a) > 2λg . Combining the latter relation with Equation (11),
we get:

λg <
λh

2
(12)

Equation (3) with I =[r0
h, dj

k] gives:
∑

i≤k Li(a′)≥∑
i≤g Li(a′)>m(1−

λg) + λg . For what we said for Case 2.1, it is also:
∑

i≤k Li(a) > m(1 −
λh) + λh. Using the above relations together with Lemma 2 we get:∑

i≤k

Li(a′+a+b)>
(m(1−λg)+λg)|a′|+(m(1−λh)+λh)|a|+(m(1−λk)+λk)|b|

|a′|+|a|+|b| (13)

We consider separately the case λh ≤ λk and λh > λk.
- Case λh ≤ λk:
Equations (12) and (13) give:

∑
i≤k Li(a′ + a + b) > m(1− λk) + λk.

Being Dg ≤ Dk, task τk can execute only when task τg is not inter-
fered. Considering that job J0

g has remaining execution at instant r0
h, then:

Lk(a′) ≤ Lg(a′). Equation (6) for I = [r0
h, dj

k] gives Lg(a′) < λg . So we
have: Lk(a′) < λg < λk . Moreover, for Equation (9) it is: Lk(a) < λh ≤
λk. Using Lk(b)<λk , we get: Lk(a′+a+b)= Lk(a′)|a′|+Lk(a)|a|+Lk(b)|b|

|a′+a+b| <
λk|a′|+λk|a|+λk|b|

|a′|+|a|+|b|| = λk.

Since ∀τi ∈ T : Li(a′ + a + b) ≤ 2λi:

λtot≥
∑
i<k

λi+λk >
∑
i≤k

Li(a′+a+b)
2

+
λk

2
>

m

2
(1−λk)+λk≥m

2
(1−λmax)+λmax.
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- Case λh > λk:
Equation (4) with I = (a + b) gives Dg > 2

3 (2Th + Ch). Since Dk ≥ Dg,
we get Th < 3

4Dk − Ch

2 , and:

|a′ + a + b| < Dg + (2Th + Ch) < Dk + (2(
3
4
Dk − Ch

2
) + Ch) =

5
2
Dk (14)

This means that at most three jobs of task τk can execute in interval (a′ +
a + b).
If r0

g ≥ rj−1
k , then Lk(a′ + a + b) ≤ 2Ck

|a′+a+b| < 2Ck

2Th+Ch
< Ck

Th
< 3

2Uk ≤
3
2λk, where we used Th > 2

3Dk. If r0
g < rj−1

k , then Lk(a′ + a + b) <
3Ck

2Tk
< 3

2Uk ≤ 3
2λk.

In both cases: Lk(a′ + a + b) ≤ 3
2λk.

Similarly: Lg(a′ + a + b) ≤ 3Cg

2Tg+Cg
= 3Ug

2+Ug
< 3

2Ug ≤ 3
2λg .

Since ∀τi ∈ T : Li(a′ + a + b) ≤ 2λi:

λtot >
∑

i<k,i
=h,g

Li(a′ + a + b)
2

+ λh + λg + λk

>
∑
i≤k

Li(a′ + a + b)
2

+ λh +
λg

4
+

λk

4
− Lh(a′ + a + b)

2

For Equation (12): (λh−λg) > 0. Using Equation (13), with (λh−λk) > 0
and m≥2:∑

i≤k

Li(a′+a+b)>m(1−λh)+
m(λh−λg)|a′|+m(λh−λk)|b|+λg|a′|+λh|a|+λk|b|

|a′+a+b|

>m(1−λh)+λh+
(λh−λg)|a′|+(λh−λk)|b|

|a′+a+b|

Since for Equation (14) it is |b|
|a′+a+b| > Dk

5
2 Dk

= 2
5 , then:

λtot >
m

2
(1 − λh) + λh +

(λh − λg)|a′|
2|a′ + a + b| +

7
10

λh +
λg

4
− Lh(a′ + a + b)

2

To derive an upper bound for Lh(a′ + a + b), note that, using Equation (4),
it is:
Th ≥ Dh > 2

3Dk ≥ 2
3Dg > 2

3 |a′|. Then at most two jobs of τh can execute
in a′.
- If |a′| ≤ Th, at most one job of τh can execute in a′. Using twice Equa-
tion (4):

Lh(a′+a+b) ≤ 4Ch

|a′+a+b| <
4Ch

2Tg+Cg
<

4Ch

2Dg
<

4Ch

2 2
3 (2Th+Ch)

<
3
2
Uh ≤ 3

2
λh
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Equation (4) and (5), with I = [r0
h, dj

k], give:
|a′|

|a′+a+b| >
Dg
2 +Cg

Dg
2 +Cg+|a+b| >

1
2

2
3 |a+b|+Cg

1
2

2
3 |a+b|+Cg+|a+b| > 1

4 . Then:

λtot >
m

2
(1− λh) + λh +

(λh − λg)
8

+
7
10

λh +
λg

4
− 3

4
λh

>
m

2
(1− λh) + λh ≥ m

2
(1− λmax) + λmax.

- If |a′| > Th, then two jobs of τh can execute in a′, and it is:

Lh(a′ + a + b) ≤ 5Ch

|a′|+ |a + b| <
5Ch

3Th + Ch
<

5
3
Uh ≤ 5

3
λh

Equation (2) for I = [rj
k, dj

k] gives Ch < Th

4 .

So we have: |a′|
|a′+a+b| >

Th

Th+2Th+Ch
> Th

3Th+ Th
4

= 4
13 . And:

λtot >
m

2
(1− λh) + λh +

2(λh − λg)
13

+
7
10

λh +
λg

4
− 5

6
λh

>
m

2
(1− λh) + λh ≥ m

2
(1 − λmax) + λmax.

When deadlines are equal to periods, a utilization based test immediately follows.

Corollary 1. A set of periodic or sporadic tasks with deadline equal to period is sche-
dulable with Rate Monotonic priority assignment on m ≥ 2 processors if:

Utot ≤ m

2
(1 − Umax) + Umax

The above result is more general than ABJ. This is easy to see taking Umax = m
3m−2 .

Then a task set is schedulable when: Utot ≤ m
2 (1− m

3m−2 ) + m
3m−2 = m2

3m−2 , as ABJ.
Theorem 5 is useful not only with RM and DM, but also with “hybrid” algorithms.

Hybrid algorithms are modified versions of classic scheduling algorithms that can reach
a higher utilization bound, dealing separately with heavy and light tasks (see
[3, 4, 9, 10]). This is done in order to overcome Dhall’s effect [2], an effect that limits
the scheduling performances of the classic algorithms when tasks with high and low uti-
lization have to be scheduled on the same platform. Consider Algorithm RM-US[Uth]
(Rate Monotonic with Utilization Separation Uth) that assigns maximum priority up to
the heaviest m−1 tasks having utilization greater than the threshold Uth and schedules
the remaining tasks with priorities according to RM.

ALGORITHM RM-US[Uth](tasks ordered by decreasing utilization):

– For(i=0, i<m, i= i+1){If (Ui > Uth) {give τi maximum priority}; else break}
– Schedule the remaining tasks with priorities according to RM.

Andersson et al. showed that, when the threshold is m
3m−2 , such algorithm can sched-

ule any periodic task set with total utilization Utot ≤ m2

3m−2 .
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Using Corollary 1, we can generalize the analysis to any utilization threshold. Being
H < m the number of tasks with Ui > Uth, the minimum total utilization needed
for a task set to be schedulable is at least the minimum total utilization needed by an
algorithm that schedules each one of the H “heavy” tasks on a dedicated processor and
the others on the remaining m−H processors with RM [3, 10]. Applying Corollary 1,
the light tasks can be scheduled on m − H processors if their total utilization is at
most m−H

2 (1 − Uth) + Uth. Therefore, the total utilization that still guarantees the
schedulability with RM-US[Uth] is: HUth + m−H

2 (1 − Uth) + Uth. The maximum
with respect to Uth of the minimum with respect to H of this expression is reached
when Uth = 1

3 , which represents the utilization threshold that guarantees the highest
utilization bound for the RM-US class of algorithms, relatively to our schedulability
algorithm. Using this value inside the previous expression we have the following.

Corollary 2. A periodic or sporadic task set with deadlines equal to periods is sche-
dulable with RM-US[1

3 ] on m processors if Utot ≤ m+1
3 .

Note that the bound of Corollary 2 is better than the bound derived in [3] for RM-
US[ m

3m−2 ], when m ≥ 2.
Since Theorem 5 is valid also for preperiod deadline systems, we can as well cha-

racterize a similar algorithm that uses as separation value the density of each task. We
call this algorithm DM-DS[λth] (Deadline Monotonic with Density Separation λth),
where λth is the density threshold that discriminate between maximum priority “heavy”
task, and “light” task to be scheduled with DM.

ALGORITHM DM-DS[λth](tasks ordered by decreasing density):

– For(i=0, i<m, i= i+1){If (λi > λth) {give τi maximum priority}; else break;}
– Schedule the remaining tasks with priorities according to DM.

Proceding as before, but using Theorem 5 instead of Corollary 1, we can derive
that the density threshold that guarantees the highest density bound using the test of
Theorem 5 is λth = 1

3 , and state the following result.

Corollary 3. A periodic or sporadic task set with preperiod deadlines is schedulable
with DM-DS[1

3 ] on m processors if λtot ≤ m+1
3 .

6 Conclusions

In this paper we presented two schedulability tests to be used with the fixed priority
scheduling algorithm. The first test is very efficient in presence of heavy tasks and it is
the correspondent version of a similar test appeared in [5] for the EDF case. The sec-
ond test behaves well with a high number of light tasks, given that the total density of
the task set doesn’t exceed a derived bound. It represents the DM version of an EDF
schedulability test presented in [8] and extended for constrained deadline systems in
[5]. We showed that our result allows to generalize and improve the existing related
bounds, as well as to characterize the performances of previously proposed hybrid al-
gorithms. An advantage of our result is that it is valid also for sporadic task systems
with unbounded task utilization and with preperiod deadlines. No density bounds for
constrained deadline systems have been previously proposed.
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Abstract. Consider the problem of scheduling sporadic messages with
deadlines on a wireless channel. We propose a collision-free medium ac-
cess control (MAC) protocol which implements static-priority schedul-
ing and present a schedulability analysis technique for the protocol. The
MAC protocol allows multiple masters and is fully distributed; it is an
adaptation to a wireless channel of the dominance protocol used in the
CAN bus. But unlike that protocol, our protocol does not require a node
having the ability to receive an incoming bit from the channel while
transmitting to the channel.

1 Introduction

The sporadic model [11] has proven to be very useful in the design of real-time
systems. In this model, the exact time of a transmission request is unknown
but a lower bound on the time between two consecutive transmission requests
from the same message stream is known. This model is supported in processor
scheduling [4] (where a message stream is called a task) and in wired communica-
tion channels [17]. Wireless communication is of increasing interest in the design
of distributed real-time systems, and many scheduling algorithms and analysis
techniques for wireless communication are available for periodic messages. But
for sporadic messages such results are less well developed. Most of the current
wireless protocols cannot be analyzed to offer pre-run-time guarantees that spo-
radic messages meet deadlines, and the protocols that do offer such guarantees
rely on polling, which is inefficient when the deadline is short and the minimum
time between two consecutive requests is long.

In this paper we solve the problem of sporadic scheduling on a wireless chan-
nel. We adapt the dominance protocols [12] (used in the CAN bus [5]) to a
wireless channel and perform a schedulability analysis. The main idea of our
dominance protocol is that a message stream is assigned a static priority and
when message streams contend for the channel, they perform a tournament such
that the highest-priority message is granted access to the channel. This tour-
nament is performed bit-by-bit, starting with the most significant bit. A bit is
assigned a time interval. If a node contends with a dominant bit then a carrier

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, pp. 322–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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wave is transmitted in this time interval; if the node contends with a recessive
bit, it transmits nothing but listens. This makes it possible for a node with a
recessive bit to detect that another node has transmitted a dominant bit, and
hence the node with the recessive bit withdraws. In order for this scheme to
work, nodes must agree on which time interval to use. This requires a conven-
tion, something that is easy to state and which we do. It also requires that nodes
have a common reference point in time. We provide this as well.

The remainder of this paper is structured as follows. Section 2 discusses re-
lated work and their ability to solve the problem of sporadic messages on a
wireless channel. Section 3 presents the system model with our assumptions and
terminology. Section 4 presents the protocol and discusses the rationale behind
its design. Section 5 presents the schedulability analysis. Finally, Section 6 offers
conclusions and future work.

2 Related Work

The introduction of the wireless LAN standard IEEE 802.11 [1] stimulated the
development of many prioritized Carrier Sense Multiple Access (CSMA) proto-
cols. Some of these protocols [2, 3, 7] changed parameters in the IEEE 802.11
standard to be a function of deadlines, either choosing (i) inter-frame spacing
(the amount of time that a station waits before transmitting) or (ii) the back-off
times after a collision has occurred. These techniques are useful to meet deadlines
because they can implement algorithms such as deadline monotonic [9]. But they
have two drawbacks (i) they only approximate priority scheduling; it may happen
that a high-priority message has to wait for one or many lower-priority messages
and (ii) collisions can occur hence causing deadline misses. Other prioritization
protocols based on IEEE 802.11 use “black-bursts” [13, 15, 14]. They do not only
change some parameters in the IEEE 802.11 but they also require other signals
to be transmitted. If the channel is idle then a node transmits a message imme-
diately. Otherwise the node waits until the channel becomes idle and transmits
a “black-burst” (a jamming signal) for a time duration which is proportional
to the priority. When a node finished transmitting its jamming signal, the node
listens to find out whether other nodes transmit a jamming signal. If so, the
node did not have the highest priority so it waits until the channel is idle again.
The protocols based on “black-burst” were originally used to ensure that all real-
time traffic is given a higher priority than non real-time traffic and dynamically
change priorities of real-time traffic to achieve round-robin scheduling [15, 14].
These schemes treat all real-time messages in the same way and hence they are
inappropriate for our purpose. The black-burst scheme in [13] implements static-
priority scheduling though and is more interesting. However, all these black-burst
schemes [13, 15, 14] have the drawback that (i) collisions can occur if the channel
is idle and two nodes request to transmit simultaneously and (ii) the maximum
length of the black-burst is proportionate to the number of priority levels, so only
a small number of priority levels can be supported. Another technique [19], not
based on IEEE 802.11, is to implement prioritization using two separate narrow
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band busy-tones to communicate that a node is backlogged with a high-priority
message. This technique has the drawback of requiring specialized hardware (for
listening to the narrow band signals), requires extra bandwidth (for the narrow
band signals) and it supports only two priority levels.

The IEEE 802.11 standard also defined another MAC protocol where a base
station polls a node, and gives it the right to transmit in a time interval. Natu-
rally such an approach is inefficient to schedule sporadic messages. Recently, the
IEEE 802.11e profile was introduced with the intention of offering better support
for Quality-of-Service. The previous approach [2, 3, 7] of choosing back-off times
as a function of priorities was adopted, and the polling scheme in IEEE 802.11
was refined with traffic classes.

MAC protocols have also been proposed from the real-time community with
the goal of meeting deadlines. Some protocols use tables (sometimes called Time-
Division Multiple-Access (TDMA) templates) with explicit start times of mes-
sage transmission. These tables are created at run-time in a distributed fashion
[16] or by a leader [10]. It is also conceivable to use a TDMA template designed
before run-time [8] and use it to schedule wireless traffic. However, all these
time-table approaches have the drawback of requiring that sporadic message
streams are dealt with using polling, which, as previously stated, is inefficient.
Another approach, Implicit EDF [6], is based on the assumption that all nodes
know the traffic on the other nodes that compete for the medium, and all these
nodes execute the EDF scheduling algorithm. If the message selected by the
EDF scheduling algorithm is in the node’s queue of outgoing messages, then
the node transmits this message otherwise it does not transmit. Unfortunately,
this algorithm is based on the assumption that a node knows the arrival time
of messages on other nodes, and this implies that polling must be used to deal
with sporadic message streams. MAC protocols based on token bus can be used
in wireless channels and some of their analyses can be extended to sporadic
messages [18]. Unfortunately, they only prioritize messages on a node; global
prioritization is not achieved. As a result, deadlines can be missed although the
utilization of the messages is low, and there exists a schedule of the messages
that meets deadlines.

The dominance protocol [12] (used in for example the CAN bus [5]) uses
global priorities and it can schedule sporadic message streams. Unfortunately, it
requires that a node has the ability to receive an incoming bit from the channel
while transmitting to the channel. Such a behavior is impossible on a wireless
channel due to the large difference in transmitted energy and the received energy.
The conclusion of this section is that several prioritization protocols and real-
time scheduling algorithms exist, but they do not efficiently solve the problem
of sporadic scheduling in wireless networks.

3 System Model

Consider n message streams τ1 ,τ2 ,τ3 , . . . , τn and m computer nodes N1 , . . . ,
Nm . A message stream is assigned to exactly one node.
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Workload. Message stream τ i makes a sequence of requests to transmit a mes-
sage. The exact time of a transmission request is unknown but a lower bound
on the time between two consecutive transmission requests from the same mes-
sage stream is known. This lower bound is denoted T i . Every message from
τ i requires to transmit for C i contiguous time units. The maximum time from
a request of a message from τ i to the completion of the transmission of that
message is called the response time of τ i , and it is denoted Ri .

Success and Failure. If there exists an overlap between a pair of transmission of
data bits then both transmissions have failed. If a message finishes transmission
later than D i time units after it requested to be transmitted then the transmis-
sion has failed as well. The goal of our protocol is to schedule all messages in all
message streams to finish their transmission before their deadlines. Then we say
that the protocol has succeeded and we will (in Section 5) derive equations to
compute whether a set of message streams succeeds using our protocol.

Priorities. Message streams are assigned unique priorities; these priorities are
non-negative integers. Messages with low numbers have high priority. As a result,
we will say that if a bit is “0” then it is dominant and if a bit is “1” then it is reces-
sive. Let npriobits denote the number of bits required to represent the priorities.
We use lower order first; that is, bit “0” is considered to be the most-significant
bit in an integer. We do not assume any particular priority-assignment scheme.

Propagation. The time-of-flight between two arbitrary nodes i and j is unknown
but it is non-negative and there is an upper bound α on the time-of-flights. We
assume that when a node transmits and there is no collision, then all nodes
receive exactly one copy of the message; that is, there is no noise, no hidden ter-
minals and the transmitted signal takes only one path to the receiving node(s).

Nodes. We assume that nodes are equipped with real-time clocks. They are not
synchronized; that is, their values may be different. For every unit of real-time,
the clock increases by an amount. This amount is unknown but it is in the range
[1-ε,1+ε], 0<ε<1. We let CLK denote the granularity of the clock. We assume that
the clock does never “wrap-around”. A message may have one intended node as a
receiver (unicast) or all nodes (broadcast); our protocol can deal with both types
of traffic. We assume, however, that when a node receives a message it does not
send an acknowledgement. A node can sense other transmissions only if the node
does not transmit. We do not assume any particular modulation technique or
coding scheme for the data bits but we assume that when data bits are transmit-
ted, there is no interval of continuous idle time that exceeds F time units. (F is a
design parameter that will be discussed later). We assume that nodes can trans-
mit a carrier wave and all nodes are able to detect that carrier wave if they do
not transmit themselves. A node needs TFCS time units to detect that a carrier
wave was transmitted. The transceiver of a node needs at most turnaroundRxTx

time units to switch from reception to transmission or vice-versa.
We will describe the protocol using a timed-automata like notation. States

are represented as vertices and transitions are represented as edges. An edge is
described by its guard (a condition which has to be true in order for the protocol
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to make the transition) and an update (an action that occurs when the transition
is made). In figures, we let “/” separate the guards and the updates; the guards
are before “/” and the update is after. We let “=” denote test for equality and
let “:=” denote assignment to a variable.

We assume that when a time-out transition is enabled, it occurs immediately.
The corresponding update of that transition and a continuing path of enabled
transitions occur at most L time units later. Intuitively, L represents the delay
due to executing on a finite-speed processor.

4 The Protocol

Figure 1 gives an informal overview of the protocol. Between the protocol and
applications on the node, there is a queue storing messages that requested to
be transmitted. In the starting state (marked as a circle with a circle inside),
the protocol waits until the queue is non-empty. Then the protocol waits for a
long idle time and then it transmits a pulse of the carrier wave. The beginning
of the pulse represents a common reference point in time for all nodes. A node
dequeues the highest priority message and then the nodes perform a tournament.
If a node wins the tournament then it transmits the message. If a node loses the
tournament then it continues to listen on the channel to figure out which priority

stop Rx msg

queue is
non-empty/

there is a long duration
of idle time on
the channel/

start Tx msg

start Rx msg

stop Tx msg

/transmit a pulse of
the carrier wave and
let the channel be
idle

lost tournament/

won tournament?/

/dequeue highest
    prio msg

perform
tournament

Fig. 1. Overview of the protocol
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was the winner and then it receives the message. If the node which lost had an
application that requested this message then it is delivered to that application,
if not then the message is discarded.

The remainder of this section is structured as follows. Section 4.1 gives a
detailed view of the protocol. Section 4.2 explains the rationale for the design of
the protocol and why it is robust against imperfections in clocks.

4.1 Details of the Protocol

Figure 2 shows details of the protocol. The figure illustrates how the protocol
is designed; the actual behavior is slightly different due to clock imperfection,
time-of-flight of the carrier-signal and delays in the transitions.

States are numbered from 0 to 18. State 0 is the initial state. Each node has
the following variables: a clock X, an integer i within the range 0..npriobits-1, an
integer prio occupying npriobits bits, an integer winner prio occupying npriobits
bits and a boolean variable winner. We let winner prio[i] denote the bit i in the
variable winner prio. Analogously for prio[i]. We assume that when the protocol
dequeues the highest-priority message then the variable prio is assigned the
priority of that message. There are two functions carrierOn and carrierOff that
can be called by a node. The function carrierOn requests to start the transmission
of a carrier wave. It may take up to turnaroundRxTx until the carrier actually
starts to be transmitted but then it continues doing so. If carrierOff is called
then it is requested that the carrier stops being transmitted but it may take
up to turnaroundRxTx until it stops. The symbol “carrier?” means: sense for a
carrier and if there is a carrier then “carrier?” is true. E,F,G,H and SWX are
constants used for time-outs, whose value we will choose later.

The states 1-5 in Figure 2 establish a common reference point in time between
all nodes that requests to transmit. The transition 3→4 is designed to make the
protocol robust to clock inaccuracies. The states 6-11 perform the tournament.
During the tournament, nodes contend bit-by-bit, starting with the most signif-
icant bit.

If a node loses the contention of a bit then it loses the entire tournament but
it continues to listen to find out which priority wins the tournament. If a node
does not lose the contention during this bit, it continues with the contention
for the next bit. Finally there is only one winner of the tournament because
priorities are unique. This winning node makes the transition to state 14 and
then transmits the message and then makes the transition to the initial state 0.

If the protocol contends with a dominant bit (“0”) then it transmits a pulse
of the carrier wave by taking the path 7→ 8 → 9 → 11. If the protocol contends
with a recessive bit (“1”) then it may take either the path 7 → 10 → 11 or
the path 7 → 11; it depends on whether the node heard a carrier wave (which
signals that another node transmits a dominant bit). If a node contended with
a recessive bit (“1”) but heard a carrier wave then this node has lost.

Consider a node which has lost the tournament. It continues in the tournament
and if such a node has a recessive bit then it acts in the same way as if it had not
lost. The reason for this is that a recessive bit just listens; it does not transmit
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1

2

6

1116
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3 7

14 13
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8

stop Rx msg

queue is
non-empty/

carrier?
x:=0

start Tx msg

start Rx msg

x>=2H+2G+
   (G+H)*(npriobits-1)/

stop Tx msg

x>=F/
x:=0

i<npriobits-1/
i:=i+1

i=npriobits-1 AND
winner=TRUE/

i:=0
winner:=TRUE
dequeue highest
    prio msg
carrierOff

x>=H/
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   (G+H)*i/

prio[i]=1 AND
carrier?/
winner_prio[i]:=0
winner:=FALSE
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   (G+H)*i/

winner_prio[i]:=0
carrierOff
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   (G+H)*i/

prio[i]=1 AND
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   (G+H)*i/

winner_prio[i]:=1

prio[i]=0 AND
winner=FALSE AND
x>=2H+G+
   (G+H)*i/
winner_prio[i]:=0

i=npriobits-1 AND
winner=FALSE/
enqueue msg

requests
to receive
only/

carrier?/
x:=0
prio[0]=1
prio[1]=1
...
prio[npriobits-1]=1

x>=H/
i:=0
winner:=FALSE

no carrier?/
x:=0

carrier?/

x>=E
carrierOn

x>=E+SWX
x:=0

prio[i]=0 AND
winner=TRUE/
carrierOn

x>=H+G+SWX
   (G+H)*i/

Fig. 2. Details about the protocol. This figure illustrates the design; the behavior is
slightly different due to clock imperfection, time-of-flight of the carrier-signal and delays
in the transitions.
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G

carrier

yes

no

time

F H tournament

beginning of

message

transmission

a transmission

request occurs

G

Fig. 3. An example of the carrier wave transmitted assuming npriobits=2 and the pri-
ority of the requested message is 1. (The priority is encoded in a binary way as 01 which
is signaled as: first a dominant bit and then a recessive bit). A solid box indicates that
the node transmitted a carrier wave whereas a dotted box indicate that the node heard
a carrier wave. The node that requested to transmit this message heard that another
node transmitted a carrier wave so it did not need to transmit the carrier wave.

a carrier wave. However, if a node has a dominant bit and it has lost, then
the protocol acts differently from the case when it had won; no carrier wave is
transmitted. A node which only requests to receive, acts like a node losing the
tournament from the start (see 0→ 17→ 18→ 6).

In order to understand the time-out parameters E,F,G,H and SWX, consider
Figure 3. F denotes the initial idle time period. H represents the duration of
a pulse of the carrier wave. G denotes a “guarding” time interval to separate
pulses of carrier waves. This “guarding” time interval makes the protocol robust
against clock inaccuracies, and takes into account that signals need a non-zero
time to propagate from one node to another. E makes the protocol robust to
inaccuracies of when the nodes measure F. SWX is used for the protocol to wait
to be sure that a request to transmit a carrier really has resulted in a carrier
being transmitted.

Consider the automata in Figure 2 again. Traverse the path of the transitions
of the winning node and observe the last time-out (the transition 12 → 13).
Based on this, we can compute the transmission time of a message taking the
overhead of the protocol into account as:

C′
i = Ci + 2H + 2G + (G + H)× (npriobits− 1) + 2L (1)

By taking into account also the initial idle time (in state 2) we obtain:

C′′
i = F + E + SWX + C′

i (2)

4.2 Rationale of the Design and Correctness

We will now discuss the correctness of the protocol and discuss how assigning
values to the constants E,F,G,H and SWX affects the correctness. The protocol
must satisfy:
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– Mutual Exclusion. At most one node is in state 14.
– Progress. There are two types of progress (i) state 0 is reached after at

most C′′
i time units from any state and (ii) if a message finishes transmission

and there exists a backlogged node then a message of the backlogged nodes
should be transmitted after the finished transmission.

– Prioritization. Of all nodes which were backlogged, the one that will trans-
mit a message is the one that dequeues (at the transition 5→6) the message
with the highest priority.

In order to assure that these properties hold we need to assure that certain
events do not occur at the wrong time. We need to assure that:

– When a node transmits a dominant bit, it is received by all other
nodes. Consider an iteration of the tournament. It must have been sufficient
overlap between the time interval where one node transmits the carrier to
inform that it has a dominant bit and the time interval where a node with
a recessive bit listens for nodes with a dominant bit. Due to clock drift, this
overlap becomes smaller and smaller for each iteration of the tournament.
Hence we consider the last iteration of the tournament. We require:

[2H + G + (H + G)× (npriobits− 1)]× [1− ε]−
[H + G + (H + G)× (npriobits− 1)]× [1 + ε]

−2CLK − L− 2α− (E + SWX) > TFCS + 2SWX (3)

The motivation of Equation 3 is that the inaccuracy of the synchronization
after the initial period of silence is (E +SWX). Consequently, two different
nodes can have different opinion on when a bit should be transmitted. If the
time windows of the two nodes overlap by TFCS + 2SWX then we can be
sure that the node that attempts to detect the dominant bit will hear at
least TFCS time units of the carrier. The reason for requiring 2SWX extra
time units is that it may take SWX for the sender to enter Tx mode and
when it has transmitted the carrier for TFCS time units, when it switches
the carrier off, this may take effect immediately.

– If one node i has perceived a time of silence long enough (F time
units) to make the transition from state 2 to state 3 but other
nodes perceive that the duration of silence to be less than F time
units so far due to different time-of-flight and clock-imperfections,
then node i needs to wait until all nodes have perceived this long
time of silence. The protocol should stay in state 3 for E time units to
ensure this. We require:

2CLK + L + 2α + F × 2ε < E (4)

– A node which has lost the tournament must be in receiving mode
in state 15 before it receives the data bits from the transmission
of the winning node (which is in state 13). This is taken care of by
the delay between state 12 to state 13. We know that the node which lost
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was in receiving mode because in the last bit in the tournament, it was in
receiving mode (if the losing node would have transmitted in the last bit
in the tournament then it must have lost in the last bit and transmitted
a dominant bit, something which is impossible). For this reason, it is only
required that the delay between state 12 to state 13 is large enough to ensure
that the losing node reaches state 15 before the winning node reaches state
13. To do so we require that the following inequality is satisfied:

[2H + 2G + (H + G)× (npriobits− 1)]× [1− ε]−
[2H + G + (H + G)× (npriobits− 1)]× [1 + ε]−

−(E + SWX) > 0 (5)

– During the tournament, the maximum time interval of idle time
should be less than F, the initial idle period. This assures that if one
node makes the transition from state 2 to state 3 (the initial idle time period)
then all nodes will do it at most E+SWX time units later. We require:

[2H + 2G + (H + G)× (npriobits− 1)]× [1 + ε]−
H × [1− ε]−

+2CLK + L + 2α + (E + SWX) < F (6)

– The time interval between two successive dominant bits must be
long enough to assure that no node interprets the first dominant
bits to be transmitted in the time interval for the second dominant
bit. The worst case occurs when these two bits are the last ones in the
tournament. We require:

[2H + 2G + (H + G)× (npriobits− 2)]× [1− ε]−
[2H + G + (H + G)× (npriobits− 2)]× [1 + ε]

−2CLK − L− 2α− (E + SWX) > 0 (7)

– The time to wait from when a carrier is requested to be transmit-
ted until it is known that a carrier is transmitted must be greater
than the time required by the hardware. Naturally, this requires:

SWX > turnaroundRxTx (8)

The values of E,F,G,H and SWX must be selected to satisfy the inequalities
3-8. In order to get an idea of the magnitude of these values, we will work out
an example.

Consider a typical distributed real-time system (a car, a factory or a ship)
with a diameter of at most 300m. This gives:α=1μs. Typical computers have
CLK=1μs and ε=10−5 (assuming a low resolution timer and a poor quality
crystal). We assume that the protocol is implemented on dedicated hardware and
use L=2μs. We choose TFCS=5μs because busy tone detection of narrow-band
signals have been estimated to need this time [19] and our application of carrier
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sensing is similar to busy tone detection. We choose turnaroundRxTx=19μs
based on the requirement in IEEE 802.11 standard (see page 180 in [1]). We
choose npriobits=20. One choice that satisfies the constraints for this example is:
E=8μs, F=2349μs, G =35μs, H=79μs and SWX=20μs. Hence the overhead
per message (calculated based on Equation 2) is 4775μs.

5 Schedulability Analysis

Consider the mutual exclusion, the two progress properties and the prioritization
property in Section 4.2. By combining them and a previous result on schedu-
lability analysis of the CAN bus [17] we obtain that the response time can be
calculated as a sum of the waiting time w i and C′′

i .

Ri = wi + C′′
i (9)

where C′′
i is defined as in Equation 2. The waiting time is obtained as:

wi = Bi +
∑

j∈hp(i)

⌈
wi

Tj

⌉
× C′′

j (10)

where hp(i) is the set of all message streams with a higher priority than τ i .
B i can be computed as follows:

Bi = max
{
C′

j : j ∈ lp(i)
}

(11)

where lp(i) is the set of all message streams with a lower priority than τ i . Note
that the schedulability analysis considers the initial idle time between states 1-4
to be a part of the “message” when we compute interference. This initial idle
period should not be included when computing the blocking in Equation 11.

6 Conclusions and Future Work

We have presented a MAC protocol for sporadic messages. The protocol is
collision-free, does not require synchronized clocks and supports a large num-
ber of priority levels. We consider for future work (i) implementation of the
protocol in Berkeley motes, (ii) automated formal verification of mutual exclu-
sion, progress and prioritization, (iii) extending the protocol to deal with hidden
nodes, (iv) analyzing the resilience of the protocol to noise in the carrier sensing
and (v) techniques for achieving a low overhead and a large number of priori-
ties on computer platforms with a large turnaround time from transmission to
reception.
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Abstract. A widely accepted viewpoint is that designs for distributed
real-time systems should be based on synchronous computational models.
Safety in such designs, however, requires that the target system behaves
as the synchronous model postulates. We believe that this approach is
rather risky, as it rests on solving distributed scheduling problems which
are known to be NP-hard. We therefore advocate the use of more relaxed
system models, namely asynchronous models equipped with unreliable
failure detectors.

To this end, we introduce a novel implementation of the perfect failure
detector, resting on an abstract model without upper bounds on end-to-
end message delays. Then, we demonstrate how this algorithm can be
transferred from the abstract model into a real network/system archi-
tecture. Finally, we prove that this solution exhibits real-time behavior.

1 Introduction

The research disciplines of distributed computing (DC) and real-time (RT), al-
though often dealing with common problem domains— e.g. fault-tolerant sys-
tems/networks—seem not to reflect each others’ results adequately. This might
stem from apparently contrary research directions: Due to impossibility results,
e.g. the impossibility of solving consensus in asynchronous systems [1], a major
driver for DC research was to find weak timing models as close as possible to
the asynchronous model (e.g. via unreliable failure detectors) that (1) match the
highest possible number of real applications/systems and (2) allow fundamental
non-trivial problems such as consensus or atomic broadcast to be solved [2, 3, 4].
Of course, with algorithms designed in some non synchronous model, liveness
only can be proven to hold, not timeliness (known bounded finite delays).

In contrast, RT research traditionally focuses on queuing and scheduling dis-
ciplines in order to prove timeliness properties considering synchronous models.
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However, as is well known, proofs of timeliness properties involve solving com-
binatorial problems that are NP-hard, usually considering simplified models of
reality (e.g. no failures, no cache-memory conflicts). We arrive at the mentioned
gap: DC seeks solutions that are as far as possible independent of the system’s
timing behavior while RT considers underlying timing behaviors so as to ensure
that, e.g. deadlines are met.

Is it the case that DC results regarding weak (partial) synchrony— assum-
ing weak timing behavior— are of no use for designing RT systems, as the
timeliness properties in RT should be predictable? (Exaggeratedly, one could
rephrase this question to “Do DC results that guarantee safety and liveness in
asynchronous models suddenly lose their properties when used in a synchronous
system?”)

Consider, e.g., the classic failure detector (FD) implementation by Chandra
and Toueg [5]. The guarantee we get with such FDs is that crashes can eventually
be detected if eventually some unknown bound on message transmission and
computing speeds holds. At first sight, “eventually” and “some unknown bound”
seem to be of little use when one wants to guarantee hard real-time behavior.
This is mistaken. Just run Chandra and Toueg’s FD implementation in a system
where worst-case response times have been properly established via (distributed)
schedulability analysis. In such systems one can derive worst-case response times
for failure detection. Note again, that the distributed algorithm that implements
the FD was designed for a generalized partially synchronous model (close to
asynchrony), but now it provides real-time behavior!

But why should one take such a (not really straightforward) design approach?
To this question there are several answers. Let us discuss two of them.

Safety. No timeliness failure— i.e., violation of the demonstrated timeliness
properties— can ever lead to disagreement with asynchronous consensus algo-
rithms based e.g. on eventually strong FD &S [5].

This is of great interest as every solution to some RT scheduling problem
inevitably rests on some schedulability analysis yielding “worst-cases under a
given set of assumptions”. As every assumption has a non-zero probability of
being violated during operation (as we cannot tell the future) every derived
bound on e.g. message delays could be violated. In such a case an algorithm that
relies on these bounds will cease to work. That is, one loses safety (consistency)
along with timeliness, although it need not be this way.

Performance. When trying to “implement” synchronous models, i.e., provide
applications the illusion that they run in synchronous systems, timers (e.g. round
durations, periods of scheduler activation) have to be set to worst-case values
computed for worst-case load and failure conditions (e.g. re-transmissions of
lost messages contributes to delay bounds). Thus, in many synchronous system
designs, run-time behavior which is dictated by worst-case timeouts is bound to
be worst-case behavior. Synchronous designs are inefficient by construction.
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This deficiency increases even more as new applications for real-time systems
demand highly dynamic computations. Dimensioning the systems according to
rare (on demand) computations is expensive, and often not even required from
a safety point of view. This can be avoided by favoring designs based on less
restrictive assumptions. From these considerations emerged the concept of design
immersion or late binding, which has been introduced and discussed formally
by Le Lann [6, 7, 8].

Contribution. This paper provides an example of how weak synchrony assump-
tions can be immersed into systems to achieve real-time behavior. In Sect. 3, we
present a novel algorithm for implementing the perfect FD P [5] in the Θ-Model,
where one does not assume local clocks, or bounded computational step time or
upper bounds on message transmission delay [9, 4, 10]. Rather, the Θ-Model as-
sumes just eventual step/termination and a bounded ratio of end-to-end delays
experienced by messages that are in transit simultaneously. We then show how
to immerse our algorithm into a system where clocks may exist and bounded
computational step times are used to implement and prove real-time behavior.
To this end, we revisit the architecture that was employed in [11]. This allows
us to compare timeout based FD implementations to our solutions that are
message-driven and timer-free.

2 Model

For our presentation of the algorithm and our formal analysis1 we consider a sys-
tem of n distributed processes denoted as p, q, . . ., which communicate through
a reliable, error free and fully connected point-to-point network. We assume
that a non-faulty receiver of a message knows the sender. The communication
channels between processes need not provide FIFO transmission, and there is no
authentication service.

At most f processes may stop by prematurely halting. A process is consid-
ered correct until it stops operation. Since we will immerse our solution into
a broadcast network (Deterministic Ethernet [13]) later, we assume that any
broadcast message is either received by all correct processes or by none (in the
case the sender crashes before finishing its broadcast). This leads to simple fault
semantics, i.e., clean crashes.

We now give two different models. The dynamic model of Sect. 2.1 will just be
considered for coverage analysis. In this model, upper bounds on message end-
to-end delays do not exist. There is just a relation of long and short transmission
times of those messages which are simultaneously in transit. In order to keep the
analysis simple we give the static model in Sect. 2.2 which is logically equivalent,
i.e., any problem solvable in one of the models has a solution in the other model
(see Theorem 1). However, both models assume that processes have no access
to local clocks and can take a computational step only as a reaction to received
messages, thus they are message-driven.
1 Due to space restrictions we had to omit the full analysis of our algorithm. It can

be found in the full version of the paper [12].
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2.1 Dynamic Timing Model

In our dynamic model, processes communicate by message passing. The time
interval a message m is in transit consists of three parts: Local message prepa-
ration and queuing at the sender, transmission over the link, and local receive
computation and queuing at the receiver. We denote as tms the instant the prepa-
ration of message m starts. The instant the receive computation is finished we
denote as tmr . We assume that all communication is done by broadcasting.

In the dynamic model we say that message m is in transit during time interval
(tms , tmr ]. We denote ηm = tmr −tms the finite end-to-end computational + queuing
+ transmission delay of message m sent from one correct process to another. Let
M(t) be the set of all messages which are in transit at time t. Let δ(t) be a lower
envelope function on transmission delays of all messages that are in transit at
time t, such that for any time t it holds that δ(t) ≤ min(ηm) for all m ∈ M(t)
if |M(t)| > 0 and δ(t) = 1 otherwise. We define for a fixed Θ ∈ IR, Θ ≥ 1
the upper envelope function Δ(t) = Θδ(t). At any time t it must hold that
Δ(t) ≥ max(ηm) for all m ∈ M(t) if |M(t)| > 0.

2.2 Static Timing Model

In contrast to the dynamic model, the static one stipulates an upper bound Δ
on end-to-end delays as well as a lower bound δ such that 0 < δ ≤ ηm ≤ Δ < ∞,
where δ and Δ are not known in advance. Since Δ < ∞, every message sent
from a correct process to another one is eventually received. The transmission
delay ratio is Θ = Δ/δ. For our formal treatment we assume that processes
have a priori knowledge of some integer Ξ (a function of Θ; cf. Theorem 5) but
no knowledge on time bounds. Moreover, there is no access to an external time
base, hardware clocks or similar devices that allow to get a notion of elapsed
time; in other words, executions are message-driven. It follows that time passing
information has to be obtained solely out of the message pattern.

In [10] we have shown the following theorem by proving that the runs of the
dynamic and the static model cannot be distinguished by the processes. It follows
that an algorithm that was proven correct in the static model is correct in the
dynamic model as well.

Theorem 1 (Equivalence [10, Theorem 1]). The dynamic model and the
static model have the same expressive power.

Uncertainty. Processes only communicate by broadcasting. In literature (in
particular in work on clock synchronization [14]), usually, the delay uncertainty
E = Δ − δ is employed to discuss the effect of timing uncertainty (jitter). Our
analysis reveals, however, that for our broadcast based algorithm we can employ
a finer grained measure. Assume that a message m is broadcast at time t. It will
be received by correct processes in the interval [t + rm, t+ Rm] with rm ≥ δ and
Rm ≤ Δ. We define the broadcast uncertainty ε ≥ Rm − rm for all messages
m. Obviously we have ε ≤ E < Δ. We will see in Sect. 5.2 that distinguishing
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between ε and E makes a big difference. It will turn out that in our targeted
architecture the value of ε is close to 0 while E remains close to Δ.

Significant Timing Values. In this paper, we consider a round based algo-
rithm that is executed in asynchronous rounds, i.e., every correct process sends
a message in every round k. The transition to round k + 1 occurs when n − f
messages for the current round are received. It will turn out that the uncertainty
we have to deal with does not stem from the ratio of message delays directly
but rather from the ratio of the longest message delay and the shortest round
switching intervals. The shortest round-switching interval δr, however, is not
determined by only one single correct message. Rather it is determined by the
sending time of the first message and the receive time of the (n− f)th message.
This might seem irrelevant since any message is bounded by δ, and all could
be sent simultaneously. From a practical point of view — as is confirmed by our
analysis in Sect. 4— this is very important, however. If one tries to establish an
analytical expression for δ one would examine an idle system and the sending of
a single message in this system— which could be a self reception as well. Obvi-
ously the receiver just has to deliver one message here. However, assuming that
a receiver can process, say n− f messages as fast as a single one is typically not
valid in real systems —this would amount to assuming infinite computational
power. Choosing δr = δ hence would be overly conservative since round switch-
ing requires n− f messages, i.e. is determined by the (n− f)th fastest message.
Moreover, in broadcast bus networks one cannot transmit two messages simul-
taneously over the bus, i.e. the n− f fastest messages must be transmitted one
after the other. The time for n−f messages to be transmitted in such networks is
hence always larger than the best-case time of sending a single message in an idle
system. Using δ in the analysis would lead to over-valuation of its significance.

In our analysis, we will hence set δr equal to the transmission time of the
(n− f)th fastest message. That is, we will use δr as expression for the shortest
time it may take to send n − f messages from distinct processes to a single
receiver (end-to-end). Let us formalize this:

Definition 1 (Incoming Messages). For any correct process q, δq is the n−f
smallest ηm for all messages m sent by distinct correct processes that enable an
event at q. δr is defined as the the smallest δq of all correct processes q.

Lemma 1 (Sending Time). If a correct process receives messages from at
least n − f distinct correct processes by time t, then at least one message was
sent by time t− δr.

2.3 Event Generation

In previous work [15, 4] we considered purely message-driven algorithms. These
algorithms are started by an external event, which triggers the first computa-
tional step. All steps after the first one are direct responses to received messages.
As already shown in [4], such protocols can be employed efficiently in systems
with large delay×bandwidth product; e.g. satellite broadcast communication
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link. In the architecture of Sect. 4, we show how to fine tune the overhead by in-
troducing mute periods.2 To this end we add local events to the model. Previous
work that investigated the intersection of message-driven and time-driven seman-
tics can be found in [16] where one has shown that message-driven semantics
are weaker than time-driven ones by proving that the problem of self-stabilizing
failure detection cannot have a message-driven solution [16] while time-driven
solutions are known [17]. In fact, in [16] we proved even more. We showed that
the impossibility result even holds if there are locally generated (deadlock pre-
vention) events where no assumption is made on the occurrence of their arrival
such that their semantics are too weak to employ them as clocks.

Following this result we add local events without assumptions on arrival laws
to our model as well. We use local event generation in order to start instances of
the basic round synchronization algorithm. In our theoretical analysis we show
that the correctness of the algorithm does not depend on the actual intervals
between these events. In our implementation example we then use these events
in order to control the overhead such that we compare our performance with
previous failure detector implementations [11].

3 General Implementation and Analysis of Perfect
Failure Detector P

The need for a definition of (unreliable) FDs emanated from the impossibility [1]
of deterministic fault-tolerant consensus in asynchronous distributed systems. In
their seminal paper, Chandra and Toueg [5] characterized FDs by the two proper-
ties completeness and accuracy. In an asynchronous distributed system equipped
with FDs consensus is solvable. In this paper we will give an implementation of
the perfect failure detector P that ensures the following two properties.

Strong Completeness. Eventually, every correct process permanently suspects
every crashed process.

Strong Accuracy. No process is suspected before it crashes.

Our implementation of P follows an idea originally proposed in [9]; its pseudo-
code is given in Fig. 1. It is executed in consecutive instantiations which are
numbered using variable i (see line 1). We will see that each instantiation can be
regarded independently and that a process that crashes before instantiation j is
started will be suspected at the end of j. The algorithm is started independently
at each process by sending (round, 0, 0) in line 4— round being just a message
identifier. Note that round k = 0 is the only round where not all correct processes
must send messages. The code inside the statement starting at line 6 is a simple
round synchronization algorithm, i.e., the round number is a counter of the
terminated rounds of computation. If a process has received n − f messages
from distinct processes for the current round k it increases k and sends its

2 This is done in all FD implementations where e.g. heartbeats are sent every x (phys-
ical) time units while the FD remains mute in between.
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0: VAR k : integer := 0; /* round number */
1: VAR i : integer := 0; /* instantiation number */
2: VAR SL[n] : boolean := false; /* list of suspected processes */
3: VAR saw max[n][∞] : integer := 0;

4: broadcast (round, 0, 0) [once]; /* Initialization */

5: /* Round Synchronization */
6: if received (round, i, k) from at least n − f distinct processes
7: → k := k + 1;
8: if k > Ξ
9: → ∀q: if saw max[q][i] = 0 → SL[q]:= true;
10: k := 0;
11: i := i + 1;
12: control overhead ;
13: broadcast (round, i, k) [once]; /* start next round */

14: if received (round, j, �) from q /* Store received messages */
15: → saw max[q][j] := max(�, saw max[q][j]);

Fig. 1. Perfect Failure Detector Implementation

message for the new round. Due to a priori knowledge of Ξ, a process can
determine upon updating its counter whether messages from other processes
for past rounds are missing. It does so in line 8 where it checks whether all
processes succeeded in sending at least (round, i, 1). Processes which did not,
must have crashed and are therefore suspected, i.e., added to the list of suspects
SL which is the interface to upper layer applications (see Sect. 4). After that, k
and i are updated and the next instantiation is started after the control overhead
command (see line 12), which will be used to create silent intervals between two
instantiations, when the algorithm is immersed into our targeted architecture. It
does so by, e.g., scheduling the transmission of the given message for some later
point in time. Another way to implement timer-free local waiting are hardware
instructions that exist in certain computers that allow to trigger some event
when x instructions have been executed.

The chosen value of this timeout— we will introduce τ in Definition 3 as
upper bound on it— neither has an influence on the correctness of the FD im-
plementation (it could as well be set to 0) nor must be the same at every process.
Moreover if there is no local timer, diverse local information may be used to get
some rough estimate of elapsed time (counting interrupts or updates of the pro-
gram counter etc.). In our example (Deterministic Ethernet in Sect. 5), we derive
a timeout value which leads to a worst-case overhead of 5% for FD messages.

Contrary to most other FD implementations, we do not use hardware clocks
to achieve FD properties, neither do we require upper bounds on message delays.
Other FD implementations use local clocks or timers to timeout (1) τ and (2) the
upper bound on end-to-end delays. Our solution neither relies on local informa-
tion about τ nor on the existence of some upper bounds on end-to-end delays in
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order to detect a crashed process. It follows that our timeout mechanism remains
message-driven.

To complete the description of our algorithm: The code of the statement in
line 14 stores which processes have sent messages for which round. Only the
message for the largest round number has to be stored here. (Note that the
declaration of saw max in line 3 includes an infinity of rows in the matrix just
for conciseness of presentation. In real implementations, information from past
instantiations need not be stored such that just bounded memory is needed in
order to maintain the required information.)

In order to show that our algorithm does implement P we first analyze some
properties of its included round synchronization algorithm (line 6) where k is
the local round number. Since messages for different instantiations do not inter-
fere logically with each other, we just examine the rounds for one instantiation
here. For conciseness we therefore suppress i in the following. We follow the
analysis of [15] where a logical clock synchronization algorithm in the presence
of Byzantine faults was considered. We just focus on crashes and therefore have
a simpler algorithm. After that we show the FD properties based upon these
round synchronization properties. We start with some preliminary definitions.

Theorem 2 (Properties). In the presence of f < n faults, the algorithm given
in Fig. 1 satisfies the following properties:

(P) Uniform Progress. If all correct processes set their round numbers to k by
time t, then every process sets its round number at least to k + 1 by time
t + Δ.

(U) Uniform Unforgeability. If no process sets its round number to k by time t,
then no process sets its round number to k + 1 by time t + δr or earlier.

(S) Uniform Simultaneity. If some process sets its round number to k at time
t, then every process sets its round number at least to k by time t + ε.

Lemma 2 (Fastest Progress). Let the first correct process set its round num-
ber to k at time t. Then no correct process can reach a larger round number
k′ > k before t + δr(k′ − k).

After discussing the fundamental round synchronization properties we now turn
our attention to the problem of failure detection. We start with the behavior of
instantiations.

Definition 2 (Instantiation). The start of instantiation i is defined to be the
earliest time bi by which n − f processes have sent (round, i, 0). Further, the
end of instantiation i is defined to be the time ei the last process sets its round
number to k > Ξ.

The following corollary follows directly from (P) and Definition 2, which intro-
duces D as the worst-case time between start and end of an instantiation.

Corollary 1 (Instantiation Termination Time). For all instantiations i it
holds that ei − bi ≤ D, where D = (Ξ + 1)Δ.
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As discussed above, we would like to fine tune the overhead of the FD algorithm
to application requirements by inserting silent periods in our algorithm. In order
to give a bound on detection latency we have to assume an upper bound on
the duration of these periods. The value τ that we introduce in the following
definition can in fact be arbitrary (depending on the required overhead) such that
it cannot be used as a weak clock [3] that could be used to timeout processes.

Definition 3 (Intermission). τ ≥ 0 is the upper bound on the timeout of the
control overhead call.

Corollary 2 (Intermission Period). For all instantiations i and i+1 it holds
that bi+1 − ei ≤ τ .

With the results regarding timing we now turn our attention to FD semantics.

Theorem 3 (Strong Completeness). Let Ξ be some positive integer. In a
system with n > f processes, the algorithm given in Fig. 1 ensures that each
process p that crashes by time bi is suspected by all correct processes by time ei.

We now give two theorems for strong accuracy. Theorem 5 is typical for results
in the Θ-Model as no time unit parameters show up but just the integer Ξ ≥ Θ.
From Theorem 4, however, one sees the parameters that have to be evaluated
during immersion more explicitly, i.e., Δ, ε, and δr.

Theorem 4 (Strong Accuracy). Let Ξ ≥ ⌊
Δ
δr + ε

δr

⌋
+ 1. In a system with

n > f processes, the algorithm given in Fig. 1 ensures that no process is suspected
before it crashes.

Theorem 5 (Strong Accuracy in the Θ-Model). Let Ξ ≥ '2Θ(. In a sys-
tem with n > f processes, the algorithm given in Fig. 1 ensures that no process
is suspected before it crashes.

Assume that we have a system with ε = 0 and
⌊

Δ
δr

⌋
= 1 which according to

Theorem 4 requires Ξ ≥ 2 for failure detection with our algorithm. Following
Theorem 5, we say that the system behaves as a system obeying the Θ-Model
with Θ = 1. Similarly we show in Sect. 5 that our architecture built upon
Deterministic Ethernet requires just Ξ ≥ 2 as well.

To achieve real-time behavior we require an upper bound on detection time.
We give such a bound only for crashes that happen after time b0, since obvi-
ously we cannot bound detection latencies for crashes that occurred before the
algorithm was running. Such crashes, however, will be detected by all correct
processes by time e0 by Theorem 3.

Theorem 6 (Detection Latency). Let Ξ be according to Theorem 4 resp.
Theorem 5. In a system with n > f processes, the algorithm given in Fig. 1
ensures that a crash occurring at time t ≥ b0 is detected by time t + L, with
detection latency L = τ + 2D.
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Theorems 3 and 5 show that completeness and accuracy just depend on Θ while
only timeliness depends on Θ and Δ (i.e., the assumed time bound). If Δ is
violated but Θ still holds (which is possible in many real systems/networks [9])
we still guarantee completeness and accuracy while just timely detection is lost.
This is the best one can hope for, given that Δ is violated here!

Despite Theorem 6 we have no solution to a real-time problem yet, since we
did not show how to implement both the system model and the algorithm in a
real network. To this end we have to show that the assumed timing behavior in
the abstract model can be matched by demonstrated timeliness properties in real
systems. We do so in the following section in order to give a complete solution to
the RT FD problem for a network architecture based on Deterministic Ethernet
and suitable scheduling algorithms.

4 Architectural Model

In this section, we sketch out a generic architectural model of the systems under
consideration. See [11] for a detailed presentation of that model.

We consider a finite set Π of processors, interconnected by a network, re-
ferred to as Net. The nominal size of Π is n > 1. The model of a processor
is given in Fig. 2. The software/hardware architecture is modeled after a num-
ber of levels, such as the application software level, the middleware level, the
executive/operating system level, various communication protocol levels, the in-
put/output (I/O) level. Processors act as sources of messages. There are two
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Fig. 2. Architectural model of a processor
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types of messages. Messages handled by FDs are denoted FD-messages. Mes-
sages other than FD-messages are referred to as ordinary messages (e.g. ap-
plication, middleware, system). Let COM denote the level of communication
protocols where one finds FD modules. An FD module consists of a process,
denoted FD-proc, which maintains a local list of suspects, denoted SL. At any
time, SL(p) contains the names of those processors that p’s FD suspects (rightly
or erroneously) of having failed. In addition, FD-proc receives and broadcasts
FD-messages so as to “prove” that its processor has not failed. Let APP denote
the application level.

Let us model those waiting queues visited by outgoing messages, from the
APP level down to the COM level, as a single queue, denoted outQ, and those
waiting queues visited by outgoing messages, from the COM level down to the
I/O level, as a single queue, denoted outq. We define inq and inQ similarly. An
FD-message is initially deposited by FD-proc in outQ, moved to outq after being
serviced in outQ, transmitted across Net after being serviced in outq, deposited in
inq, then delivered to FD-proc after being serviced in inq. An ordinary message
is initially deposited by an algorithm A in outQ, moved to outq after being
serviced in outQ, transmitted across Net after being serviced in outq, deposited
in inq, then moved to inQ after being serviced in inq, and delivered to A after
being serviced in inQ.

Correct modeling of reality leads to considering that a processor servicing a
message pending in a waiting queue is not preempted. Consequently, we define
variables woutQ, woutq, winq , and winQ as the service times corresponding to
the four waiting queues, respectively, that is the worst-case times for servicing
a message pending in each of these queues. We define dm as the blocking factor
with Net, i.e., dm is the exact time needed for transmitting the longest ordinary
message over the physical link between a processor and Net.

Let γ stand for an upper bound on end-to-end delays for an FD-message,
measured at the COM level.

Under worst-case processor and Net “loads”, waiting queues build up and Net
contention arises for transmitting concurrent FD-messages and ordinary mes-
sages on the one hand, concurrent FD-messages on the other hand. Fast failure
detection is achievable only if upper bounds for FD-messages’ sojourn times in
waiting queues and Net nodes are optimal, the case whenever FD-messages are
serviced prior to ordinary messages. This can be enforced by resorting to clas-
sical priority-driven, or deadline-driven, scheduling policies that implement the
well-known head-of-the-line policy. Consequently, we retain the following SW
algorithm:

SW . In every visited waiting queue, an FD-message is always deposited ahead
of ordinary messages and behind possibly pending FD-messages. It is
serviced prior to any ordinary message.

In order to resolve interprocessor competition for network and processor re-
sources optimally, processors may be assigned priorities or messages may be
assigned different relative deadlines. Priorities or deadlines being fixed, they de-
fine a total order over any set of FD-messages whenever contention develops.
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Any such assignment is equivalent to assigning indices 1, . . . , n over set Π , one
index per processor. Moreover, whenever possible, preemption (of a broadcast
medium, of a Net node) should be exercised, to the benefit of FD-messages, for
it is known that preemption may be needed to achieve optimality. Therefore, we
retain the following SN algorithm:

SN . Net resources are allocated to FD-messages, prior to ordinary messages;
in case of interprocessor competition for transmitting FD-messages, FD-
messages are serviced in increasing index order.

Let ψ(x) stand for the worst-case time it takes for x processors to preempt Net
locally and to fully resolve Net contention involving x FD-messages and ψ′(x′)
stand for the worst-case time it takes for a processor to fully service a set of x
incoming FD-messages, both measured at the COM level (x′ is a function of x).
Let ν be the smallest FD-message inter-arrival delay. Bound x′ is the maximum
number of FD-messages (out of x) that are not serviced at the time the last
incoming FD-message is deposited into inq. Given SW , x′ = 1 if ν ≥ winq ,
x′ = �x (1− ν/winq)� if ν < winq , and ψ′(x′) = x′ winq.

Bound ψ(x) is determined by policies SW and SN and bound ψ′(x′) is deter-
mined by algorithm SW . Hence, ψ(x) and ψ′(x′) are tight. Let θ stand for the
worst-case time needed for transmitting an FD-message across Net, measured
at the I/O level, including the time needed for delivery into inq. A tight bound
θ can be computed, considering that optimal schedulers (proper to Net) ser-
vice FD-messages prior to ordinary messages. Consequently, for an FD-message
generated by that processor assigned index x, tight bound γ(x) is as follows:

γ(x) = woutQ + woutq + dm + ψ(x) + θ + x′ winq .

Note the importance of differentiating between end-to-end delays proper to
every process in a system. If no such differentiation is made, one faces a circu-
lar dependency. A distributed system consists of some architecture (processors,
links) and all the system processes and application processes that run on the
architecture. It makes no sense to talk about upper bounds on message delays
in the “system” if one part of the system, i.e., the system processes and appli-
cation processes are not known since they may produce unknown loads on the
processors and/or links. Conversely, if one specifies the exact scheduling policy
used for every class of processes, the circular dependency vanishes. For a given
process p, only processes scheduled prior to p may influence upper bounds on
response times. When choosing a head-of-the-line policy for a process (our case,
for the FD process), then it is possible to conduct a worst-case schedulability
analysis for that process ignoring all other processes (to the exception of simple
blocking factors in case of non preemption). This is what we have shown how
to do.

In Sect. 5, we consider Deterministic Ethernets and establish the analytical
expression of γ for such networks. Then, we derive ρ, the worst-case overhead
induced by FD-messages, and finally L, a tight upper bound on processor failure
detection latencies. Before that we shortly discuss the network traffic which is
induced by our FD implementation.
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5 Illustration with Ethernets

We illustrate our generic results with Ethernet-like networks. Let COM be the
ISO/OSI data link level. With Ethernets, θ = 0 as ψ(x) includes local physical
transmission delays and there is no additional transmission delay. Hence, γ(x) =
woutQ + woutq + dm + ψ(x) + x′ winq . Being concerned with real-time systems,
we must consider a deterministic variant of the original Ethernet CSMA/CD
protocol. This variant has been implemented in COTS products and is called
CSMA/DCR (Carrier Sense Multi Access / Deterministic Collision Resolution),
which is based on distributed deterministic balanced m-ary tree searches [13].

5.1 CSMA/DCR

Broadcast media are physically characterized by a channel slot time, denoted σ.
Sources of messages are processors. Channel sharing between sources works like
CSMA-CD whenever there is no unresolved collision pending. When a collision
is detected (and there is no previous collision pending), sources initiate a de-
terministic balanced m-ary tree search collectively. To this end, every source is
assigned some unique index. For this illustration, it suffices to consider exactly
one index per source. A tree search proceeds from left to right, searching for
subtrees that either are empty or contain exactly one active leaf. A leaf is active
if its index is that of a source which has a message pending. Obviously, during
a tree search, a message submitted by a source assigned index i is transmitted
prior to messages submitted by sources assigned indexes greater than i. A tree
search is time bounded, which permits computing ψ(x).

Consider x sources, each attempting to transmit a pending message (rank 1
in outq). Let Σ(x) be the time needed to physically transmit these x messages
locally, in the absence of contention. Consider now that these x sources “collide.”
Let ξl

x be the maximum number of steps needed to search x leaves in a m-ary
tree of l leaves. In [18] and [19], one shows for x ∈ {2, . . . , l}:

ξl
x =

m�logm(m' x
2 ()� − 1

m− 1
+ m

⌊x

2
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logm
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⌊
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2
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This formula applies for any assignment of x indexes over l sources. The
worst-case delay involved with resolving a collision fully is Σ(x) + ξl

x σ.
CSMA/DCR has been designed to be fault-tolerant. This protocol may be

defeated whenever sources get out of synchrony, which is revealed by detecting
a collision on some tree leaf. Whenever this occurs, a channel jamming sequence
JS of duration at least equal to logm(l)σ is generated by the sources. Message
transmissions are resumed when the channel returns to idle.

5.2 Behavior of the FD in Our Architecture

Evaluating ε. Our FD algorithm requires a priori knowledge of Ξ. Therefore,
we examine the timing of our architecture in order to derive values for the
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timing parameters used in Theorem 4. Due to the physical properties of Net, all
messages are received by all processes at I/O level within σ. Due to our queuing
algorithm SW , all FD-messages are taken out of inq by the FD-processes within
σ as well. That is, ε = σ.

Bound on γ. We now derive a term for calculating the worst-case end-to-end
delay of a message that participates in a collision on Net with x messages.

We use the J S mechanism to indicate that an on-going tree search performed
for ordinary messages must be stopped, in order to transmit FD-messages. The
channel is preempted without aborting any ordinary message, hence the blocking
factor is dm. After JS has been generated, only FD-messages are transmitted
during the same tree search. Transmission of ordinary messages is resumed from
its preemption state when the channel returns to idle. Given that the body of an
FD-message requires only to contain 2 bits3 (which can easily be stored within
the smallest possible Ethernet message), its physical transmission delay is that
of a message of minimum duration, i.e., slot time σ. Therefore, Σ(x) = xσ.
Tight bound ψ(x) is as follows:

ψ(x) =
(
logm(l) + x + ξl

x

)
σ.

The smallest FD-message inter-arrival delay is σ. Hence, x′ = �x (1− σ/winq)�
if σ < winq , x′ = 1 if σ ≥ winq . Tight bound γ for the xth FD-message is:

γ(x) = woutQ + woutq + dm + ψ(x) + x′ winq .

Evaluating δr. We already partially discussed the expression of Theorem 4
(i.e., ε), which can be used to determine a numerical value for Ξ. What remains
to do is to give an analytical expression of Δ

δr . In the worst-case, Δ = γ(n). It
remains to derive an expression for δr. Recall that δr is defined as a lower bound
on the time between when the first of n− f messages is sent to some process p
and when p receives the last of the n−f messages. Let us assume pessimistically
that on the bus the n− f messages are sent back to back, i.e., on the bus they
require (n− f) · σ time units. (Note that this lower bound is by no means tight
as our solution always requires J S which leads to a distributed tree search.)
At inq the (n − f) messages, however, queue up such that from the time the
last message arrives additional (n − f)′ · winq time units are required. At the
respective outgoing queues at the first sender we have to add woutQ and woutq

while we assume that there is no congestion at Net. Summing up, we see that:

δr = woutQ + woutq + (n− f) · σ + (n− f)′ · winq .

5.3 Numerical Examples and Discussion

We use the same numerical values as in [11] to have a meaningful comparison. Let
us consider 10 MBit/s Ethernets. According to the ISO/OSI standard, n ≤ 1, 024

3 We will justify this in Sect. 5.3 by showing that Ξ = 2 suffices for failure detection.
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Case 1: n = l = 16 Case 2: n = l = 1, 024
results of [11] our results
D = 5.93 ms D = 17.78 ms

τ = 103.55 ms τ = 292.87 ms

L = 114.61 ms L = 328.44 ms

results of [11] our results
D = 275.39 ms D = 826.18 ms

τ = 6.52288 s τ = 18.74246 s

L = 7.07287 s L = 20.39482 s

Fig. 3. Comparison to [11]

and σ = 51.2 μs (microseconds). We assume that the size of the longest ordinary
message (I/O level framing) is 10, 000 bits, i.e., dm = 1 ms (millisecond). Let
us pick up 250 μs for each of the service times woutQ, woutq, and winq . Hence
γ(x) = 1.5 + ψ(x) + 0.25 x′ (in ms), with x′ = �0.7952 x�. Results shown below
are rounded up to a precision of 10 μs. We consider quaternary trees (m = 4).

With Perfect FDs, x = n. As in [11] we pick up f = 5 as the upper bound on
the number of processes that can crash during the execution of the algorithm (a
very high number given practical fault probabilities). Thus, we get:
Case 1: n = l = 16, f = 5. x′ = 13, ψ(16) = ψ1 = 1.18 ms, hence
γ(16) = γ1 = 5.93 ms.

(n − f)′ = 9, δr
1 = 3.31 ms, hence Δ

δr
1

= γ1
δr
1

= 5.93 ms
3.31 ms = 1.79. Adding ε

δr
1

=
51.2 μs
3.31 ms = 0.02 to this and applying the floor function (cf. Theorem 4) we get
Ξ = 2. By Corollary 1 the termination time of an instantiation D = (Ξ + 1)Δ
such that we get D1 = 3γ1 = 17.78 ms
Case 2: n = l = 1024, f = 5. x′ = 815, ψ(1, 024) = ψ2 = 70.14 ms, hence
γ(1, 024) = γ2 = 275.39 ms.

(n− f)′ = 811, δr
2 = 255.42 ms, hence Δ

δr
2

= γ2
δr
2

= 275.39 ms
255.42 ms = 1.08. Addition-

ally, ε
δr
2

= 51.2 μs
255.42 ms = 0.0002 such that again Ξ = 2. D2 = 3γ2 = 826.18 ms.

The worst-case FD-message overhead is ρ = 3(ψ(x)+ xwinq)/(D + τ). Let us
pick up ρ = 5%. We get τ = 60 (ψ(x) + 0.25 x)−D (in ms). Thus we derive the
following values for the mute periods τ and the tight upper bound on the failure
detection latency L (cf. Theorem 6).
Case 1: τ1 = 292.87 ms, L1 = 328.44 ms.
Case 2: τ2 = 18.74246 s, L2 = 20.39482 s.

Let us compare our results with those presented in [11]. In Fig. 3, we see that
the “worst-case price” for our message-driven implementation is a factor 3. This
means that we have a worst-case detection latency that is 3 times larger with the
same overhead or that one can achieve the same detection latency by tripling
the overhead.

At first sight, these results seem to contradict one of the arguments (perfor-
mance) at the core of the design immersion or late binding principle (cf. Sect. 1).
This is not the case. Firstly, a complete comparison should take coverage into
consideration. In other words, one should compare numerical results considering
violations of the assumed timing behavior postulated in a synchronous model,
i.e. timing bounds that are not tight, these bounds being such that the probabil-
ity of having a bound violated or Θ violated is the same. Secondly, the run-time



Implementing Reliable Distributed RT Systems with the Θ-Model 349

behavior induced by the synchronous design of [11] is always the actual worst-
case behavior, even if actual delays are smaller than their postulated bounds
most of the time (e.g. the blocking factor dm). Conversely, the run-time behav-
ior induced by the asynchronous design given in this paper simply matches the
best-case or average-case message delay scenarios, yielding actual failure detec-
tion latencies (much) smaller than values computed for L.

Finally, experimental results [20] confirm the analytical ones, showing that
broadcast bus based systems are particularly well suited for the Θ-Model. In
our architecture we have seen that the value of Θ (derived from Ξ) is much
smaller than the ratio of absolute bounds on worst-case and best-case message
end-to-end delays.

6 Conclusions

In this paper, we have illustrated a number of concepts related to real-time com-
puting and asynchronous models of computation. From a theoretical viewpoint,
an interesting result is that we showed that local physical clocks are not re-
quired to detect crashed processes in bounded finite time. To this end, we have
presented an implementation of the perfect FD P in the Θ-Model. One major
merit of this implementation is its very high coverage, since the FD P semantics
are not violated when postulated end-to-end upper bounds are violated, provided
that Θ is not violated, which is not the case with implementations in partially
synchronous models.

Acknowledgments. We are grateful to Gérard Le Lann and Ulrich Schmid for
many valuable discussions on the Θ-Model.
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pour systèmes répartis. PhD thesis, Paris-VI-Pierre-et-Marie-Curie Univ. (1999)

20. Albeseder, D.: Evaluation of message delay correlation in distributed systems. In:
Proceedings of the Third Workshop on Intelligent Solutions for Embedded Systems,
Hamburg, Germany (2005)



Reconfigurable Distributed Storage for Dynamic
Networks�

Gregory Chockler1,2, Seth Gilbert1, Vincent Gramoli3,4, Peter M. Musial3,
and Alex A. Shvartsman1,3

1 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
grishac@csail.mit.edu, sethg@mit.edu, alex@theory.csail.mit.edu

2 IBM Haifa Labs, Haifa University Campus, Mount Carmel, Haifa 31905, Israel.
3 Dep. of Comp. Sci. and Eng., University of Connecticut, Storrs, CT 06269, USA.

piotr@cse.uconn.edu
4 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France.

vgramoli@irisa.fr

Abstract. This paper presents a new algorithm, RDS (Reconfigurable
Distributed Storage), for implementing a reconfigurable distributed shared
memory in an asynchronous dynamic network. The algorithm guarantees atomic
consistency (linearizability) in all executions in the presence of arbitrary crash
failures of processors and message loss and delays. The algorithm incorporates a
quorum-based read/write algorithm and an optimized consensus protocol, based
on Paxos. RDS achieves the design goals of: (i) allowing read and write oper-
ations to complete rapidly, and (ii) providing long-term fault tolerance through
reconfiguration, a process that evolves the quorum configurations used by the
read and write operations. The new algorithm improves on previously developed
alternatives by using a more efficient reconfiguration protocol, thus guarantee-
ing better fault tolerance and faster recovery from network instability. This paper
presents RDS, a formal proof of correctness, conditional performance analysis,
and experimental results.

Keywords: Distributed algorithms, reconfiguration, atomic objects, performance.

1 Introduction

Providing consistent and available data storage in a dynamic network is an important
basic service for modern distributed applications. To be able to tolerate failures, such
services must replicate data, which results in the challenging problem of maintaining
consistency despite a continually changing computation and communication medium.
The techniques that were previously developed to maintain consistent data in static net-
work are largely inadequate for the dynamic settings of extant and emerging networks.

Recently a new direction was proposed that integrates dynamic reconfiguration
within a distributed data storage service. The goal of this research was to enable the
storage service to guarantee consistency (safety) in the presence of asynchrony, arbi-
trary changes in the collection of participating network nodes, and varying connectiv-
ity. The original service, called RAMBO (Reconfigurable Atomic Memory for Basic
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Objects) [1, 2], supports multi-reader/multi-writer atomic objects in dynamic settings.
The reconfiguration service is loosely coupled with the read/write service. This allows
for the service to separate data access from reconfiguration, during which the previous
set of participating nodes can be upgraded to an arbitrary new set of participants. Of
note, read and write operations can continue to make progress while the reconfiguration
is ongoing. Reconfiguration is a two step process. First, the next configuration is agreed
upon by the members of the previous configuration; then obsolete configurations are
removed using a separate configuration upgrade process. As a result, multiple configu-
rations can co-exist in the system if the removal of obsolete configurations is slow. This
approach leads to an interesting dilemma. (a) On the one hand, decoupling the choice
of new configurations from the removal of old configurations allows for better con-
currency and simplified operation. Thus each operation requires weaker fault-tolerance
assumptions. (b) On the other hand, the delay between the installation of a new config-
uration and the removal of obsolete configurations is increased. Delaying the removal
of obsolete configurations can slow down reconfiguration, lead to multiple extant con-
figurations, and require stronger fault-tolerance assumptions.

Our broader current research direction is to study the trade-off between the simplicity
of loosely coupled reconfiguration protocols, as in [1,2], and the fault tolerance proper-
ties that they require. This paper presents a new algorithm that more tightly integrates
the two stages of reconfiguration. Our goal is to reduce the cost of reconfiguration, both
in terms of latency and the fault-tolerance properties required of the configurations.
We bound and reduce the time during which the old configurations need to remain ac-
tive, without impacting the efficiency of data access operations. Reducing this time can
substantially increase the fault-tolerance of the service, despite the more complicated
integrated reconfiguration operation.

Contributions. In this paper we present a new distributed algorithm for implement-
ing a read/write distributed shared memory in a dynamic asynchronous network. This
algorithm, named RDS (Reconfigurable Distributed Storage), is fault-tolerant, using
replication to ensure that data can survive node failures, and reconfigurable, tolerating
continuous changes in the set of participating nodes. As in the original approach [1],
we implement atomic (linearizable) object semantics, where in order to maintain consis-
tency in the presence of small and transient changes, the algorithm uses configurations
consisting of quorums of locations. Read and write operations consist of two phases,
each phase accessing the needed read- or write-quorums. In order to tolerate significant
changes in the computing medium we implement reconfiguration that evolves quorum
configurations over time.

In RDS we take a radically different approach to reconfiguration. To speed up recon-
figuration and reduce the time during which obsolete configurations must remain acces-
sible, we present an integrated reconfiguration algorithm that overlays the protocol for
choosing the next configuration with the protocol for removing obsolete configurations.
The protocol for choosing and agreeing on the next configuration is based on an opti-
mized version of Paxos [3,4,5,6]. The protocol for removing obsolete configurations is
a two-phase protocol, involving quorums of the old and the new configurations.

In summary, RDS improves on the previous solutions [1, 2, 7] by using a more ef-
ficient reconfiguration protocol that relaxes some of the fault tolerance assumptions
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made in prior work and that provides faster recovery following network instability. In
this paper we present the new algorithm, a formal proof of correctness, conditional per-
formance results, and highly encouraging experimental results of additional operation
latency due to reconfiguration. The highlights of our approach are as follows:

– Read/write independence: Read and write operations are independent of ongoing
reconfigurations, and can make progress regardless of ongoing reconfiguration or
the time it takes for reconfiguration to terminate (e.g., due to the instability of lead-
ers selected by the reconfiguration algorithm). Even if the network is completely
asynchronous, as long as reconfigurations are not too frequent (with respect to net-
work latencies), then read and write operations are able to complete.

– Fully flexible reconfiguration: The algorithm imposes no dependencies between the
quorum configurations selected for installation.

– Fast reconfiguration: The reconfiguration uses a leader-based protocol; when the
leader is stable, reconfigurations are very fast: 3 network delays. Since halting con-
sensus requires at least 3 network delays, this is seemingly optimal. Combining
quorum reconfiguration with optimized 3-delay “Fast Paxos” requires new tech-
niques since (i) prior attempts to use Paxos for reconfiguration depend on each re-
configuration using the existing quorum system to install the next, while (ii) “Fast
Paxos” uses preparatory work from earlier configurations that may be obsolete.

– Fast read operations: Read operations require only two message delays when no
write operations interfere with it.

– Fast recovery: Our solution eliminates the need for recovery following network
instability and the associated clean-up of obsolete quorum configurations. Specifi-
cally, and unlike the prior RAMBO algorithms [1,2] that may generate a backlog of
old configurations, there is never more than one old configuration at a time.

Our reconfiguration algorithm can be viewed as an example of protocol composition
advocated by van der Meyden and Moses [8]. Instead of waiting for the establishment
of a new configuration and then running the obsolete configuration removal protocol,
we compose (or overlay) the two protocols so that the upgrade to the next configuration
takes place as soon as possible.

Background. Several approaches have been used to implement consistent data in (sta-
tic) distributed systems. Starting with the work of Gifford [9] and Thomas [10], many
algorithms have used collections of intersecting sets of objects replicas (such as quo-
rums) to solve the consistency problem. Upfal and Wigderson [11] use majority sets of
readers and writers to emulate shared memory. Vitányi and Awerbuch [12] use matrices
of registers where the rows and the columns are written and respectively read by specific
processors. Attiya, Bar-Noy and Dolev [13] use majorities of processors to implement
shared objects in static message passing systems. Extension for limited reconfiguration
of quorum systems have also been explored [14, 15].

Virtually synchronous services [16], and group communication services (GCS) in
general [17], can also be used to implement consistent data services, e.g., by imple-
menting a global totally ordered broadcast. While the universe of processors in a GCS
can evolve, in most implementations, forming a new view takes a substantial time,
and client operations are interrupted during view formation. However the dynamic
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algorithms, such as the algorithm presented in this work and [1, 2, 7], allow reads and
writes to make progress during reconfiguration.

Reconfigurable storage algorithms are finding their way into practical implementa-
tions [18, 19]. The new algorithm presented here has the potential of making further
impact on system development.

Document Structure. Section 2 defines the model of computation. We present the al-
gorithm in Section 3. In Section 4 we present the correctness proofs. In Section 5 we
present conditional performance analysis of the algorithm. Section 6 contains experi-
mental results about operation latency. The conclusions are in Section 7.

2 System Model and Definitions

We use a message-passing model with asynchronous processors that have unique iden-
tifiers (the set of processor identifiers need not be finite). Processors may crash. Proces-
sors communicate via point-to-point asynchronous unreliable channels. In normal op-
eration any processor can send a message to any other processor. In safety (atomicity)
proofs we do not make any assumptions about the length of time it takes for a message
to be delivered.

To analyze the performance of the new algorithm, we make additional assumptions as
to the performance of the underlying network. In particular, we assume that eventually
(at some unknown point) the network stabilizes, becoming synchronous and delivering
messages in bounded (but unknown) time. We also restrict the rate of reconfiguration
after stabilization, and limit node failures such that some quorum remains available in an
active configuration. (For example, in majority quorums, this means that only a minority
of nodes in a configuration fail between reconfigurations.) We present a more detailed
explanation in Section 5.

Our algorithm uses quorum configurations. A configuration c consists of three com-
ponents: (i) members(c), a finite set of processor ids, (ii) read-quorums(c), a set of quo-
rums, and (iii) write-quorums(c), a set of quorums, where each quorum is a subset of
members(c). We require that the read quorums and write quorums of a common config-
uration intersect: formally, for every R ∈ read-quorums(c) and W ∈ write-quorums(c),
the intersection R∩W �= /0.

3 RDS Algorithm

In this section, we present a description of RDS. An overview of the algorithm appears
in Figure 1 and Figure 2 (the algorithm is formally specified in the full paper). We
present the algorithm for a single object; atomicity is preserved under composition and
the complete shared memory is obtained by composing multiple objects. See [20] for
an example of a more streamlined support of multiple objects.

In order to ensure fault tolerance, data is replicated at several nodes in the network.
The key challenge, then, is to maintain the consistency among the replicas, even as
the underlying set of replicas may be changing. The algorithm uses quorum configura-
tions to maintain consistency, and reconfiguration to modify the set of replicas. During
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read() or write(v) operation at node i:

– RW-Phase-1a: Node i chooses a unique id, t, and sends a 〈RW1a,t〉 message to a read quo-
rum of every active configuration. Node i stores the set of active configurations in op-configs.

– RW-Phase-1b: If node j receives a 〈RW1a,t〉 message from i, it sends a
〈RW1b,t,tag,value〉 message back to node i.

– RW-Phase-2a: If node i receives a 〈RW1b,t,tag,value〉 message from j, it updates its
tag and value. If it receives RW1b messages from a read quorum of all configurations in
op-configs, then the first phase is complete. If the ongoing operation is a read operation and
the tag has already been confirmed, node i returns the current value; otherwise it sends a
〈RW2a,t,tag′,value′〉 message to a write quorum of every active configuration where tag′
and value′ depend on whether it is a read or a write operation: in the case of a read, they are
just equal to the local tag and value; in the case of a write, they are a newly unique chosen
tag, and v, the value to write. Node i resets op-configs to the set of active configurations.

– RW-Phase-2b: If j receives a 〈RW2a,t,tag,value〉 message from i, it updates its tag and
value and sends to i, 〈RW2b,t,configs〉, where configs is the set of active configurations.

– RW-Done: If node i receives message 〈RW2b,t,c〉, it adds any new configurations from c to
its set of active configurations and to op-configs. If it receives a RW2b message from a write
quorum of all configurations in op-configs, then the read or write operation is complete and
the tag is marked confirmed. If it is a read operation, node i returns its current value to client.

Fig. 1. The phases of the read and write protocols. Each protocol requires up to two phases.

normal operation, there is a single active configuration; during reconfiguration, when
the set of replicas is changing, there may be two active configurations. Throughout the
algorithm, each node maintains a set of active configurations. A new configuration is
added to the set during a reconfiguration, and the old one is removed at the end of a
reconfiguration.

Read and Write Operations. Read and write operations proceed by accessing the cur-
rently active configurations. Each replica maintains a tag and a value for the data being
replicated. Tag is a counter-id pair used as a write operation version number where its
node id serves as a tiebreaker. Each read or write operation potentially requires two
phases: RW-Phase-1 to query the replicas, learning the most up-to-date tag and value,
and RW-Phase-2 to propagate the tag and value to the replicas. In a query phase, the
initiator contacts one read quorum from each active configuration, and remembers the
largest tag and its associated value. In a propagate phase, read and write operations be-
have differently: a write operation chooses a new tag that is strictly larger than the one
discovered in the query phase, and sends the new tag and new value to a write quorum; a
read operation sends the tag and value discovered in the query phase to a write quorum.

Sometimes, a read operation can avoid performing the propagation phase, RW-
Phase-2, if some prior read or write operation has already propagated that particular
tag and value. Once a tag and value has been propagated, be it by a read or a write
operation, it is marked confirmed. If a read operation discovers that a tag has been
confirmed, it can skip the second phase.

One complication arises when during a phase, a new configuration becomes active.
In this case, the read or write operation must access the new configuration as well as the
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recon(c,c′) at node i: If c is the only configuration in the set of active configurations, then
reconfiguration can begin. The request is forwarded to the putative leader, �. If it has already
completed Phase 1 for some ballot b, then it can skip Phase 1, and use this ballot in Phase 2.
Otherwise, it performs Phase 1.

– Recon-Phase-1a: Leader � chooses a unique ballot number b larger than any previously
used ballots and sends 〈Recon1a,b〉 messages to a read quorum of configuration c (the old
configuration).

– Recon-Phase-1b: When node j receives 〈Recon1a,b〉 from �, if it has not re-
ceived any message with a ballot number greater than b, then it replies to � with
〈Recon1b,b,configs,〈b′′,c′′〉〉 where configs is the set of active configurations and b′′ and
c′′ represent the largest ballot and configuration that j voted to replace configuration c.

– Recon-Phase-2a: If leader � has received a 〈Recon1b,b,con f igs,b′′ ,c′′〉message, it updates
its set of active configurations; if it receives “Recon1b” messages from a read quorum of
configuration c, then it sends a 〈Recon2a,b,c,v〉 message to a write quorum of configuration
c, where: if all the 〈Recon1b,b, . . .〉messages contained empty last two parameters, then v is
c′; otherwise, v is the configuration with the largest ballot received in the prepare phase.

– Recon-Phase-2b: If a node j receives 〈Recon2a,b,c,c′〉 from �, and if c is the only active
configuration, and if it has not already received any message with a ballot number greater
than b, it sends 〈Recon2b,b,c,c′,tag,value〉 to a read quorum and a write quorum of c.

– Recon-Phase-3a: If a node j receives 〈Recon2b,b,c,c′,tag,value〉 from a read quorum and
a write quorum of c, and if c is the only active configuration, then it updates its tag and
value, and adds c′ to the set of active configurations and to op-configs. It then sends a
〈Recon3a,c,c′,tag,value〉 message to a read quorum and a write quorum of configuration c.

– Recon-Phase-3b: If a node j receives 〈Recon3a,c,c′,tag,value〉 from a read quorum and a
write quorum of configuration c, then it updates its tag and value, and removes configuration
c from its active set of configurations (but not from op-configs, if it is there).

Fig. 2. The phases of the recon protocol. The protocol requires up to three phases.

old one. In order to accomplish this, read or write operations save the set of currently
active configurations, op-configs, when a phase begins; a reconfiguration can only add
configurations to this set—none are removed during the phase. Even if a reconfiguration
finishes with a configuration, the read or write phase must continue to use it.

Reconfiguration. When a client wants to change the set of replicas, it initiates a recon-
figuration, specifying a new configuration. The nodes then initiate a consensus protocol,
ensuring that everyone agrees on the active configuration, and that there is a total or-
dering on configurations. The resulting protocol is somewhat more complicated than
typical consensus, however, since at the same time, the reconfiguration operation prop-
agates information from the old configuration to the new configuration.

The reconfiguration protocol uses an optimized variant of Paxos [3]. The reconfigu-
ration request is forwarded to a leader, which coordinates the reconfiguration, consist-
ing of three phases: a prepare phase, Recon-Phase-1, in which a ballot is made ready,
a propose phase, Recon-Phase-2, in which the new configuration is proposed, and a
propagate phase, Recon-Phase-3, in which the results are distributed.

The prepare phase accesses a read quorum of the old configuration, thus learning
about any earlier ballots. When the leader concludes the prepare phase, it chooses a
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configuration to propose: if no configurations have been proposed to replace the current
old configuration, the leader can propose its own preferred configuration; otherwise, the
leader must choose the previously proposed configuration with the largest ballot. The
propose phase then begins, accessing both a read and a write quorum of the old configu-
ration. This serves two purposes: it requires that the nodes in the old configuration vote
on the new configuration, and it collects information on the tag and value from the old
configuration. Finally, the propagate phase accesses a read and a write quorum from the
old configuration; this ensures that enough nodes are aware of the new configuration to
ensure that any concurrent reconfiguration requests obtain the desired result.

There are two optimizations included in the protocol. First, if a node has already pre-
pared a ballot as part of a prior reconfiguration, it can continue to use the same ballot
for the new reconfiguration, without redoing the prepare phase. This means that if the
same node initiates multiple reconfigurations, only the first reconfiguration has to per-
form the prepare phase. Second, the propose phase can terminate when any node, even
if it is not the leader, discovers that an appropriate set of quorums has voted for the new
configuration. If all the nodes in a quorum send their responses to the propose phase
to all the nodes in the old configuration, then all the replicas can terminate the propose
phase at the same time, immediately sending out propagate messages. Again, when any
node receives a propagate response from enough nodes, it can terminate the propagate
phase. This saves the reconfiguration one message delay. Together, these optimizations
mean that when the same node is performing repeated reconfigurations, it only requires
three message delays: the leader sending the propose message to the old configuration,
the nodes in the old configuration sending the responses to the nodes in the old con-
figuration, and the nodes in the old configuration sending a propagate message to the
initiator, which can then terminate the reconfiguration.

4 Proof of Correctness (Atomic Consistency)

We now outline the safety proof of RDS, i.e., we show that the read and write operations
are atomic (linearizable). We depend on two lemmas commonly used to show lineariz-
ability: Lemmas 13.10 and 13.16 in [21]. We use the tags of the operations to induce
a partial ordering on operations that allows us to prove the key property necessary to
guarantee atomicity: if π1 is an operation that completes before π2 begins, then the tag
of π1 is no larger than the tag of π2; if π2 is a write operation, the inequality is strict.

Ordering Configurations. Before we can reason about the consistency of read and
write operations, we must show that nodes agree on the active configurations. For a
reconfiguration replacing configuration c, we say that reconfiguration 〈c,c′〉 is well-
defined if no node replaces configuration c with any configuration except c′. This is,
essentially, showing that the consensus protocol successfully achieves agreement. The
proof is an extension of the proof in [3] which shows that Paxos guarantees agreement,
modified to incorporate optimizations in our algorithm and reconfiguration (for lack of
space we omit the proof).

Theorem 1. For all executions, there exists a sequence of configurations, c1,c2, . . .,
such that reconfiguration 〈ci,ci+1〉 is well-defined for all i.
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Ordering Operations. We now proceed to show that tags induce a valid ordering on
the operations. If both operations “use” the same configuration, then this property is
easy to see: operation π1 propagates its tag to a write quorum, and π2 discovers the
tag when reading from a read quorum. The difficult case occurs when π1 and π2 use
differing configurations. In this case, the reconfigurations propagate the tag from one
configuration to the next.

We refer to the smallest tag at a node that replaces configuration c� with configu-
ration c�+1 as the “tag for configuration c�+1.” We can then easily conclude from this
definition, along with a simple induction argument, that:

Invariant 2. If some node i has configuration c� + 1 in its set of active configurations,
then its tag is at least as large as the tag for configuration c�+1.

This invariant allows us to conclude two facts about how information is propagated by
reconfiguration operations: the tag of each configuration is no larger than the tag of the
following configuration, and the tag of a read/write operation is no larger than the tag
of a configuration in its set of active configurations. The next lemma requires showing
how read and write operations propagate information to a reconfiguration operation:

Lemma 1. If c� is the largest configuration in i’s op-config set of operational configu-
rations when RW-Phase-2 completes, then the tag of the operation is no larger than the
tag of configuration c�+1.

Proof. During the RW-Phase-2, the tag of the read or write operation is sent to a write
quorum of the configuration c�. This quorum must intersect the read quorum during
the Recon-Phase-2 propagation phase of the reconfiguration that installs c�+1. Let i′
be a node in the intersection of the two quorums. If i′ received the reconfiguration
message prior to the read/write message, then node i would learn about configuration
c�+1. However we assumed that c� was the largest configuration in op-config at i at the
end of the phase. Therefore we can conclude that the read/write message to i preceded
the reconfiguration message, ensuring that the tag was transfered as required. ��
Theorem 2. For any execution, α, it is possible to determine a linearization of the
operations.

Proof. As discussed previously, we need to show that if operation π1 precedes operation
π2, then the tag of π1 is no larger than the tag of π2, and if π1 is a write operation, then
the inequality is strict.

There are three cases to consider. First, assume π1 and π2 use the same configuration.
Then the write quorum accessed during the propagate phase of π1 intersects the read
quorum accessed during the query phase of π2, ensuring that the tag is propagated.

Second, assume that the smallest configuration accessed by π1 in the propagate phase
is larger than the largest configuration accessed by π2 in the query phase. This case
cannot occur. Let c� be the largest configuration accessed by π2. Prior to π1, some
configuration installing configuration c�+1 must occur. During the final phase Recon-
Phase-2 of the reconfiguration, a read quorum of configuration c� is notified of the new
configuration. Therefore, during the query phase of π2, the new configuration for c�+1

would be discovered, contradicting our assumption.
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Third, assume that the largest configuration c� accessed by π1 in the propagate phase
RW-Phase-2 is smaller than the smallest configuration c�′ accessed by π2 in the query
phase RW-Phase-1. Then, Lemma 1 shows that the tag of π1 is no larger than the tag
of c�; Invariant 2 shows that the tag of c� is no larger than the tag of c�′ and that the tag
of c�′ is no larger than the tag of π2. Together, these show the required relationship of
the tags.

If π1 skips the second phase, RW-Phase-2, then an earlier read or write must have
performed a RW-Phase-2 for the same tag, and the proof follows as before. ��

5 Conditional Performance Analysis

Here we examine the performance of RDS, focusing on the efficiency of reconfigura-
tion and how the algorithm responds to instability in the network. To ensure that the
algorithm makes progress in an otherwise asynchronous system, we make a series of
assumptions about the network delays, the connectivity, and the failure patterns. In par-
ticular, we assume that, eventually, the network stabilizes and delivers messages with a
delay of d. The main results in this section are as follows. (i) we show that the algorithm
“stabilizes” within e+2d time after the network stabilizes, where e is the time required
for new nodes to fully join the system and notify old nodes about their existence. (By
contrast, the original RAMBO algorithm [1] might take arbitrarily long to stabilize un-
der these conditions.) (ii) we show that after the algorithm stabilizes, reconfiguration
completes in 5d time; if a single node performs repeated reconfigurations, then after the
first, each subsequent reconfiguration completes in 3d time. (iii) we show that after the
algorithm stabilizes, reads and writes complete in 8d time, reads complete in 4d time if
there is no interference from ongoing writes, and in 2d if no reconfiguration is pending.

Assumptions. Our goal is to model a system that becomes stable at some (unknown)
point during the execution. Formally, let α be a (timed) execution and α′ a finite prefix
of α during which the network may be unreliable and unstable. After α′ the network is
reliable and delivers messages in a timely fashion.

We refer to �time(α′) as the time of the last event of α′. In particular, we assume
that following �time(α′): (i) all local clocks progress at the same rate, (ii) messages
are not lost and are received in at most d time, where d is a constant unknown to the
algorithm, (iii) nodes respond to protocol messages as soon as they receive them and
they broadcast messages every d time to all service participants, (iv) all enabled actions
are processed with zero time passing on the local clock.

Generally, in quorum-based algorithms, the operations are guaranteed to terminate
provided that at least one quorum does not fail. In constrast, for a reconfigurable quo-
rum system we assume that at least one quorum does not fail prior to a successful
reconfiguration replacing it. For example, in the case of majority quorums, this means
that only a minority of nodes fail in between reconfigurations. Formally, we refer to this
as configuration-viability: at least one read quorum and one write quorum from each
installed configuration survive 4d after (i) the network stabilizes and (ii) a following
successful reconfiguration operation.

We place some easily satisfied restrictions on reconfiguration. First, we assume that
each node in a new configuration has completed the joining protocol at least time e prior
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to the configuration being proposed, for a fixed constant e. We call this recon-readiness.
Second, we assume that after stabilization, reconfigurations are not too frequent: 5d-
recon-spacing implies that recons are at least 5d apart.

Also, after stabilization, we assume that nodes, once they have joined, learn about
each other quickly, within time e. We refer to this as join-connectivity.

Finally, we assume that a leader election service chooses a single leader at time
�time(α′) + e and that it remains alive until the next leader is chosen and for a suf-
ficiently long time for a reconfiguration to complete. For example, a leader may be
chosen among the members of a configuration based on the value of an identifier.

Bounding Reconfiguration Delays. We now show that reconfiguration attempts com-
plete within at most five message delays after the system stabilizes. Let � be the node
identified as the leader when the reconfiguration begins.

The following lemma describes a preliminary delay in reconfiguration when a non-
leader node forwards the reconfiguration request to the leader.

Lemma 2. Let the first recon(c,c′) event at some active node i, where i �= �, occur at
time t and let t ′ be max(�time(α′),t)+ e. Then, the leader � starts the reconfiguration
process at the latest at time t ′+ 2d.

Proof (sketch). When the recon(c,c′) occurs at time t, one of two things happen: either
the reconfiguration fails immediately, if c is not the current, unique, active configu-
ration, or the recon request is forwarded to the leader. Observe that join-connectivity
ensures that i knows the identity of the leader at time t ′, so no later than time t ′+ d, i
sends a message to � that includes reconfiguration request information. By time t ′+ 2d
the leader receives message from i and starts the reconfiguration process. ��
The next lemma implies that after some time following reconfiguration request, there is
a communication round where all messages include the same ballot.

Lemma 3. After time �time(α′)+e+2d, � knows about the largest ballot in the system.

Proof (sketch). Let b be the largest ballot in the system at time �time(α′)+ e + 2d, we
show that � knows it. We know that after �time(α′), only � can create a new ballot.
Therefore ballot b must have been created before �time(α′). Since � is the leader at time
�time(α′)+ e, we know that � has joined before time �time(α′).

If ballot b still exists after �time(α′) (the case we are interested in), then there are two
possible scenarios. Either ballot b is conveyed by an in transit message or it exists an
active node i aware of it at time �time(α′)+ e. In the former case, gossip policy implies
that the in transit message is received at time t, such that �time(α′)+e < t < �time(α′)+
e + d. However, it might happen that � does not receive it, if the sender ignored its
identity at the time the send event occurred. Thus, at this time one of the receiver sends
a message containing b to �. Its receipt occurs before time �time(α′) + e + 2d and �
learns about b. In the latter case, by join-connectivity assumption at time �time(α′)+ e,
i knows about �. Gossip policy implies i sends a message to � before �time(α′)+ e + d
and this message is received by � before �time(α′)+e+2d, informing it of ballot b. ��
Next theorem says that any reconfiguration completes in at most 5d time, following the
system stabilization. The proof is straightforward from the code and is omitted for lack
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of space. In Theorem 4 we show that when the leader node has successfully completed
the previous reconfiguration request then it is possible for the subsequent reconfigura-
tion to complete in at most 3d.

Theorem 3. Assume that � starts the reconfiguration process initiated by recon(c,c′)
at time t ≥ �time(α′)+ e + 2d. Then the corresponding reconfiguration completes no
later than t + 5d.

Theorem 4. Let � be the leader node that successfully conducted the reconfiguration
process from c to c′. Assume that � starts a new reconfiguration process from c′ to c′′
at time t ≥ �time(α′)+ e + 2d. Then the corresponding reconfiguration from c′ to c′′
completes at the latest at time t + 3d.

Proof (sketch). By configuration-viability, at least one read and one write quorums of
c′ are active. By Lemma 3, � knows the largest ballot in the system at the beginning of
the new reconfiguration. This means that � may keep its ballot and start from Recon-
Phase-2a (since it has previously executed Recon-Phase-1b). Hence only a single mes-
sage exchange in Recon-Phase-2a/Recon-Phase-2b and a single broadcast following
Recon-Phase-3a take place. Therefore, the last phase of Paxos occurs at time t + 3d.

Bounding Read-Write Delays. In this section we present bounds on the duration of
read/write operations under assumptions stated in the previous section. Recall from
Section 3 that both the read and the write operations are conducted in two phases, first
the query phase and second the propagate phase. We begin by first showing that each
phase requires at least 4d time. However, if the operation is a read operation and no
reconfiguration and no write propagation phase is concurrent, then it is possible for this
operation to terminate in only 2d – see proof of Lemma 4. The final result is a general
bound of 8d on the duration of any read/write operation.

Lemma 4. Consider a single phase of a read or a write operation initiated at node i at
time t, where i is a node that joined the system at time max(t− e−2d, �time(α′)). Then
this phase completes at the latest at time max(t, �time(α′)+ e + 2d)+ 4d.

Proof. Let ck be the largest configuration in any active node’s op-configs set, at time
t − 2d. By the configuration-viability assumption, at least one read and at least one
write quorum of ck are active for the interval of 4d after ck+1 is installed. By the join-
connectivity and the fact that i has joined at time max(t− e−2d, �time(α′)), i is aware
of all active members of ck by the time max(t−2d, �time(α′)+ e).

Next, by the timing of messages we know that within d time a message is sent from
each active members of ck to i. Hence, at time max(t, �time(α′)+e+2d) node i becomes
aware of ck, i.e. ck ∈ op-configs.

At d time later, messages from phase RW-Phase-1a or RW-Phase-2a are received
and RW-Phase-1b or RW-Phase-2b starts. Consequently, no later than
max(t, �time(α′)+ e + 2d)+ 2d, the second message of RW-Phase-1 or RW-Phase-
2 is received.

Now observe that configuration might occur in parallel, therefore it is possible that a
new configuration is added to the op-configs set during RW-Phase-1 or RW-Phase-2.
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Discovery of new configurations results in the phase being restarted, hence completing
at time max(t, �time(α′) + e + 2d) + 4d. By recon-spacing assumption no more than
one configuration is discovered before the phase completes. ��

Theorem 5. Consider a read operation that starts at node i at time t:

1. If no write propagation is pending at any node and no reconfiguration is ongoing,
then it completes at time max(t, �time(α′)+ e + 2d)+ 2d.

2. If no write propagation is pending, then it completes at time
max(t, �time(α′)+ e + 2d)+ 8d.

Consider a write operation that starts at node i at time t. Then it completes at time
max(t, �time(α′)+ e + 2d)+ 8d.

Proof. At the end of the RW-Phase-1, if the operation is a write, then a new non con-
firmed tag is set. If the operation is a read, the tag is the highest received one. This tag
was maintained by a member of the read queried quorum, and it is confirmed only if
the phase that propagated it to this member has completed. From this point, if the tag
is not confirmed, then in any operation the fix-point of propagation phase RW-Phase-
2 has to be reached. But, if the tag is already confirmed then the read operation can
terminate directly at the end of the first phase. By Lemma 4, this occurs at the latest
at time max(t, �time(α′)+ e + 2d)+ 4d; or at time max(t, �time(α′)+ e + 2d)+ 2d if
no reconfiguration is concurrent. Likewise by Lemma 4, the RW-Phase-2 fix-point is
reached in at most 4d time. That is, any operation terminates by confirming its tag no
later than max(t, �time(α′)+ e + 2d)+ 8d. ��

6 Experimental Results

We implemented the new algorithm based on the existing RAMBO codebase [7] on a
network of workstations. The primary goal of our experiments was to gauge the cost
introduced by reconfiguration. When reconfiguration is unnecessary, there are simpler
and more efficient algorithms to implement a replicated DSM. Our goal is to achieve
performance similar to the simpler algorithms while using reconfiguration to tolerate
dynamic changes.

To this end, we designed three series of experiments where the performance of RDS
is compared against the performance of an atomic memory service which has no recon-
figuration capability — essentially the algorithm of Attiya, Bar Noy, and Dolev [13]
(the “ABD protocol”). In this section we briefly describe these implementations and
present our initial experimental results. The results primarily illustrate the impact of
reconfiguration on the performance of read and write operations.

For the implementation we manually translated the IOA specification (from the ap-
pendix) into Java code. To mitigate the introduction of errors during translation, the
implementers followed a set of precise rules to guide the derivation of Java code [22].
The target platform is a cluster of eleven machines running Linux. The machines are
various Pentium processors up to 900 MHz interconnected via a 100 Mbps Ethernet
switch.
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Fig. 3. Average operation latency: (a) as size of configurations changes, (b) as number of nodes
performing read/write operations changes, and (c) as the reconfiguration and the number of par-
ticipants changes

Each instance of the algorithm uses a single socket to receive messages over TCP/IP,
and maintains a list of open, outgoing connections to the other participants of the ser-
vice. The nondeterminism of the I/O Automata model is resolved by scheduling locally
controlled actions in a round-robin fashion. The ABD and RDS algorithm share parts
of the code unrelated to reconfiguration, in particular that related to joining the system
and accessing quorums. As a result, performance differences directly indicate the costs
of reconfiguration. While these experiments are effective at demonstrating compara-
tive costs, actual latencies most likely have little reflection on the operation costs in a
fully-optimized implementation.

Experiment (a). In the first experiment, we examine how the RDS algorithm responds
to different size configurations (and hence different levels of fault-tolerance). We mea-
sure the average operation latency while varying the size of the configurations. Results
are depicted in Figure 3(a). In all experiments, we use configurations with majority
quorums. We designate a single machine to continuously perform read and write oper-
ations and compute average operation latency for different size configurations, ranging
from 1 to 5. In the tests involving the RDS algorithm, we chose a separate machine to
continuously perform reconfiguration of the system – when one reconfiguration request
successfully terminates another is immediately submitted.

Experiment (b). In the second set of experiments, we test how the RDS algorithm re-
sponds to varying load. Figure 3(b) presents results of the second experiment, where we
compute the average operation latency for a fixed-size configuration of five members,
varying the number of nodes performing read/write operations changes from 1 to 10.
Again, in the experiments involving RDS algorithm a single machine is designated to
reconfigure the system. Since we only have eleven machines to our disposal, nodes that
are members of configurations also perform read/write operations.

Experiment (c). In the last experiment we test the effects of reconfiguration frequency.
Two nodes continuously perform read and write operations, and the experiments were
run varying the number of instances of the algorithm. Results of this test are depicted in
Figure 3(c). For each of the sample points on the x-axis, the size of configuration used
is half of the algorithm instances. As in the previous experiments, a single node is dedi-
cated to reconfigure the system. However, here we insert a delay between the successful
termination of a reconfiguration request and the submission of another. The delays used
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are 0, 500, 1000, and 2000 milliseconds. Since we only have eleven machines to our
disposal, in the experiment involving 16 algorithm instances, some of the machines run
two instances of the algorithm.

Interpretation. We begin with the obvious. In all three series of experiments, the la-
tency of read/write operations for RDS is competitive with that of the simpler ABD
algorithm. Also, the frequency of reconfiguration has little effect on the operation la-
tency. These observations lead us to conclude that the increased cost of reconfiguration
is only modest.

This is consistent with the theoretical operation of the algorithm. It is only when a
reconfiguration exactly intersects an operation in a particularly bad way that operations
are delayed. This is unlikely to occur, and hence most read/write operations suffer only
a modest delay.

Also, note that the messages that are generated during reconfiguration, and read and
write operations, include replica information as well as the reconfiguration informa-
tion. Since the actions are scheduled using a round-robin method, it is likely that in
some instances a single communication phase might contribute to the termination of
both the read/write and the reconfiguration operation. Hence, we suspect that the dual
functionality of messages helps to keep the system latency low.

A final observation is that the latency does grow with the size of the configuration
and the number of participating nodes. Both of these require increased communication,
and result in larger delays in the underlying network when many nodes try simultane-
ously to broadcast data to all others. Some of this increase can be mitigated by using
an improved multicast implementation; some can be mitigated by choosing quorums
optimized specifically for read or write operations.

7 Conclusion

We have presented RDS, a new distributed algorithm for implementing a reconfig-
urable consistent shared memory in dynamic, asynchronous networks. Prior solutions
(e.g., [1, 2]) used a separate new configuration selection service that did not incorpo-
rate the removal of obsolete configurations. This resulted in longer delays between the
time of new-configuration installation and old configuration removal, hence requiring
configurations to remain viable for longer periods of time and decreasing algorithm’s re-
silience to failures. In this work we capitalized on the fact that RAMBO and Paxos solve
two different problems using a similar mechanism, namely round-trip communication
phases involving sets of quorums. This observation led to the development of RDS that
allows rapid reconfiguration and removal of obsolete configurations, hence reducing the
window of vulnerability. Finally, our experiments show that reconfiguration is inexpen-
sive, since performance of our algorithm closely mimics that of an algorithm that has no
reconfiguration functionality. However, our experiments are limited to a small number
of machines and a controlled lab setting. Therefore, as future work we would like to
extend the experimental study to a wide area network where many machines participate
thereby allowing us to capture a more realistic behavior of this algorithm for arbitrary
configuration sizes and network delays.
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Abstract. We describe a new data structure, the Skip B-Tree, that
combines the advantages of skip graphs with features of traditional
B-trees. A skip B-Tree provides efficient search, insertion and deletion
operations. The data structure is highly fault tolerant even to adversarial
failures, and allows for particularly simple repair mechanisms. Related
resource keys are kept in blocks near each other enabling efficient range
queries.

Using this data structure, we describe a new distributed peer-to-peer
network, the Distributed Skip B-Tree. Given m data items stored in
a system with n nodes, the network allows to perform a range search
operation for r consecutive keys that costs only O(logb m + r/b) where
b = Θ(m/n). In addition, our distributed Skip B-tree search network
has provable polylogarithmic costs for all its other basic operations like
insert, delete, and node join. To the best of our knowledge, all previ-
ous distributed search networks either provide a range search operation
whose cost is worse than ours or may require a linear cost for some basic
operation like insert, delete, and node join.

1 Introduction

Peer-to-peer systems provide a decentralized way to share resources among ma-
chines. An ideal peer-to-peer network should have such properties as decentral-
ization, scalability, fault-tolerance, self-stabilization, load-balancing, dynamic
addition and deletion of nodes, efficient query searching and exploiting spatial
as well as temporal locality in searches.

Much of academic work on peer-to-peer systems has concentrated on building
distributed hash tables or DHTs. In a DHT, the hash value of the key of
resource is used to determine which node it will be stored at (typically the node
whose own hashed identity is closest), and the use of random-looking hash values
roughly balances out the load on the nodes in the system. An overlay graph is
then constructed on top of the nodes in order to allow efficient searches for the
nearest node to a target hash using some sort of routing algorithm. The major
form of variation between these DHTs is the routing algorithm used to locate
� Supported in part by NSF grants CCR-0098078, CNS-0305258, and CNS-0435201.
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resources; however, in each case the underlying structure is built on pointers
between nodes, so the resulting mechanism typically looks like some sort of tree
search.

Even though traditional DHT systems effectively construct balanced search
trees in order to find nodes, they generally do not support range queries
since hashing destroys the ordering on keys. They also typically lack load
balancing mechanisms other than the limited randomized balancing provided
by hashing. For example, in Chord it is likely that some machine will own
Ω(log N/N log log N) fraction of the key space. There are some recent extensions
of DHT systems which try to mitigate this problem. An extension of Chord called
a p-tree [CLGS04] supports O(logb N) search as well as providing efficient range
query. However, there is no analysis on deletion and insertion, and the addition
and removal of nodes are based on a complicated self-stabilization mechanism
whose performance is based on empirical data only. Karger and Ruhl [KR04]
propose algorithms to do address space balancing and item balancing in Chord,
which ensures with high probability no node will be responsible for more than
O(1/N) of the key space. The item balancing algorithm is dependent on nodes
being able to move freely in the key space and is incompatible with the address
space balancing algorithm though. Ratnasamy etc. [RRHS04] proposes a new
data structure called Prefix Hash Tree (PHT) that could be put on top of ex-
isting DHT. PHT is essentially a binary trie built over data sets being indexed.
The system supports range queries and is load balanced, but it suffers from hot
spots since the top-level trie nodes tend to be accessed more frequently than
bottom-level trie nodes.

Though continued research on DHTs is likely to lead to further improvements,
some of the difficulties with reconciling range queries and DHT structures is in-
herent in the use of hashing to perform load balancing. Another line of research
has focused on providing searchable concurrent data structures by applying the
tree structure in order to support efficient range queries using mechanisms similar
to those in traditional balanced binary trees. For example, Skipnet, developed
by Harvey etc. [HJS+03], is a trie of circular, singly-linked skip lists that link the
machines in the system. It provides path locality and content locality, and its
hashing provides some form of load balancing. However, transparent remapping
of resources to other domains is not possible. Aspnes and Shah [AS02] concur-
rently devised a data structure called a skip graph which applies skip lists in a
similar way to support O(log N) search, insertion and deletion operations, while
maintaining the inherent tree structure in the network so that range queries are
also supported. Skip graphs are also tolerant to node failures, including both
adversarial failures and random failures.

The original skip graph construction in [AS02] was marred by the lack of any
policy for assigning resources to nodes, excessive internode pointers, and a cum-
bersome self-repair mechanism. Recently Aspnes et al.[AKK04] have proposed a
mechanism to do global load balancing by pairing heavily loaded machines with
lightly loaded ones, while using sampling to reduce the number of pointers in the
data structure from O(log N) per resource to O(log N) per machine. However,
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search times in such binned skip graphs still suffer from large constants, and
exploiting the large memory capacity of typical machines may allow much faster
searching.

1.1 Our Contribution

We describe a new data structure, the Skip B-Tree, which has the following
features:

1. By combining skip graphs with features of traditional B-trees, the skip B-
Tree avoids the drawbacks of traditional skip graphs while providing
O(logb N) search, insertion and deletion operations, where b is the block
size. When b = N1/k for some constant k, then for any set of N items, all
operations take constant time, O(k).

2. The high connectivity of our data structure makes it highly fault tolerant
even to adversarial failures, and allows for particularly simple repair mech-
anisms.

3. Related resource keys are kept in blocks near each other, which may enhance
the performance of applications such as web page prefetching which utilize
the locality of resources.

Using this data structure, we describe a new distributed network, the Dis-
tributed Skip B-Tree. We show that our distributed Skip B-tree is the first
distributed search network with provable polylogarithmic costs for all its basic
operations1. It employs balancing techniques from [AAA+03] to locally update
system parameters and hence avoids costly global re-balancing. Moreover, given
m data items stored in a system with n nodes, a range search for r consecutive
keys costs only O(logb m + r/b) where b = Θ(m/n). To the best of our knowl-
edge, all previous distributed search networks may require a linear cost for some
operation or do not provide cost efficient range queries. Aspnes et al.[AKK04]
has a load balancing scheme that may cause an insert operation to trigger a
global re-balancing that costs Ω(n). Awerbuch and Scheideler [AS03] have a
scheme for which a range search for r consecutive keys costs O(r log n). Hence
their solution obtains no locality of resources and incurs a high cost relative to
our solution.

1.2 Distributed Search Trees vs Distributed Hash Tables

Skip B-trees are instances of the general concept of Distributed Search Trees
(DSTs), which we now define. Essentially, DSTs are to search trees what DHTs
are to hash tables. We begin by defining the interface to a Distributed Hash
Table (DHT). A DHT is a distributed network on n nodes storing m (key,value)
pairs with the following operations.

1. Add: Add a node to the system.
2. Remove: Gracefully remove a node from the system.
1 See Section 1.2 for a formal definition of the operations and their cost measures.
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3. Insert: add a (key,value) pair.
4. Delete: remove a (key, value) pair.
5. Search: Given a key, find the corresponding value(s).

The typical cost measures of a DHT are to achieve worst case guarantees for
the following:

1. Network change cost: Message complexity of Add or Remove operations. For
example O(log2 n) in Chord [SMLN+03] and O(log n/

√
log log n) in [KM05].

2. Data change cost: Message complexity of Insert, Delete, and Search oper-
ations. For example, O(log n) in [SMLN+03] and O(log n/ log log n) in Ko-
orde [KK03].

3. Data load: The maximal fraction of data items stored in one machine. For
example O(log n/n) in [SMLN+03] and O(1/n) in [KR04].

4. Network load: The maximal fraction of traffic a node receives given that ran-
dom nodes search for random data. For example O(log n/n) in [SMLN+03].

The interface of a DST contains all the operations of a DHT and includes
one new operation, the Range search. This search operation gets two parameters
(k, r) and must return the r minimal keys whose value is larger than the search
key k (one can also require a search for the r keys that are smaller than k). The
cost metrics for DSTs are the same as for DHTs with the only difference being
that the complexity of a range search operation is measured as a function of the
required range r. Ideally, an efficient distributed search tree that stores m data
items over a network with n nodes should store the index sorted with each node
storing a consecutive block of size b = Θ(m/n) of the index. In such a case a
range search operation for r keys should ideally require only O(logb m + r/b)
messages. Indeed we will show that our solution obtains this asymptotic bound
while keeping all other operations at a polylogarithmic cost.

Finally we mention that handling faulty nodes (non-graceful node removals)
is also an important issue both for DHTs and for DSTs. This usually requires
data replication and techniques that are out of the scope of this short paper.

2 Skip B-Trees

The B-tree was originally introduced by Bayer [Bay72]. The B-tree algorithms
utilized the locality of data and were designed to minimize the cost of sequen-
tial search/insert/delete operations. There has been a lot of research on build-
ing a distributed B-tree that supports concurrency and parallelism. Gilon and
Peleg [GP91] proposed several structures for implementing a distributed dic-
tionary, with the focus on reducing complexity of message passing as well as
data balancing. Colbrook etc. [CBDW91] have proposed a pipelined distrib-
uted B-tree. Johnson etc. [JC94] describe a data structure called a dB-tree
which permits concurrent updates on a replicated tree node, and rarely blocks
operations.
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A skip graph, introduced by Aspnes and Shah [AS02], is organized as a tower
of increasing sparse linked lists, much like a skip list [Pug90]. Level 0 of a skip
graph is just a doubly linked list of all nodes in increasing order by key. For each
i greater than 0, each node appears randomly in one of the many link lists in
level i (unlike a skip list where there is only one linked list per level), with two
constraints. First, if node x is a singleton at level i− 1, it doesn’t appear in any
of the linked list at levels higher than i − 1. Second, for every linked list L at
level i, there must be another linked list L′ at level i− 1 where the elements in
L are a subset of the elements in L′.

Our skip B-tree can be viewed as a non-trivial extension of the skip graph,
combined with the idea of a distributed B-tree. We specify a block size b, and
for every linked list on any level we divide it into blocks where the expected size
of each block is O(b) (we will explain how to do this later). The division into
blocks is independent of the skip graph structure.

As in a skip graph, each element x is assigned a membership vector m(x),
where the characters in m(x) are taken from a finite alphabet set Σ. The cardi-
nality of the alphabet, |Σ|, is typically taken to be the same as the block size b.
Every doubly-linked list in the skip B-tree is labeled by some finite word w. An
element x is in the list labeled by w if and only if w is a prefix of m(x). Each
element in the block keeps two pointers, one to the corresponding element in the
upper level (called “parent”) and one to the corresponding element in the lower
level (called “child”). The block itself keeps two pointers to its two neighbors at
the same level. It also keeps a count of how many elements there are in the block.
According to Lemma 1, the expected height of the skip B-tree is O(logb N). By
making b large enough (say b = 107), in practice the height of a skip B-tree can
be a very small constant (say, 2 or 3 for any data set).

We adopt much of the notation of [AS02]. In particular, for any element w,
write w � i for the prefix of w of length i. Write ε for the empty word. For each
block b at level �, write mell(b) to denote the �-th character of the membership

Fig. 1. A skip B-tree with n = 10 nodes and �logb n = 3 levels. The block size b = 3.
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vector of any element in b. In the implementation of the algorithm we actually
store a number in each block indicating the �-th element in the membership
vector of all elements belonging to it instead of storing a membership vector in
each element.

As in a skip graph, the bottom level of a skip B-tree is always a doubly-linked
list Sε consisting of all the nodes in order, divided into blocks with size of O(b).
In general, for each w in Σ∗, the doubly-linked list Sw contains all x for which
w is a prefix of m(x), in increasing order, divided into blocks with size of O(b).
We say that a particular list Sw is part of level i if |w| = i. This gives an infinite
family of doubly-linked lists; in an actual implementation, only those Sw with
at least two nodes are represented.

Lemma 1. With high probability, the height of a skip B-tree is O(logb N).

3 Algorithms for a Skip B-Tree

Here we describe the search, insert and delete operation for a skip B-tree. We
summarize the variables stored at each node in Table 1. For simplicity, our
description assumes a supply of blocks that can hold many data items. The
question of how these blocks are mapped to actual physical machines is deferred
to Section 6.

Table 1. List of all the variables stored at each node

Variable Meaning
MaxKey the maximum resource key in a block
MinKey the minimum resource key in a block

currentBlock the block receiving the message
Right the right neighbor of the current block
Left the left neighbor of the current block
Level the level of the block

m Membership vector
[key] the element in the block indexed by key

Parent pointer to the block one level higher which contains the same resource key as the element
Child pointer to the block one level lower which contains the same resource key as the element
Group indicates the grouping of the block

In this section, we will give the algorithms and analyze their performance.

3.1 The Search Operation

The search operation (Algorithm 1) is basically the same as that of a skip list,
except that our unit of search is now a block. The search is initiated by a top
level block seeking a key and it proceeds down the same level without over-
shooting, continuing at a lower level if required, until it reaches level 0. Either
the block at level 0 which contains the key, if it exists, or the block at level 0
storing the key closest to the search key is returned. The algorithm is described
below:
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Algorithm 1. Search for the file indexed by searchKey
upon receiving searchOp, startBlock, searchKey, level :
if (searchKey exists in unmarked elements of currentBlock) then

if (level = 0) then
send foundOp, currentBlock to startBlock

else
send searchOp, startBlock, searchKey, level − 1 to currentBlock[searchKey].Child

if (searchKey > currentBlock.MaxKey) then
while (level ≥ 0) do

if (currentBlock.Right.MinKey < searchKey) then
send searchOp, startBlock, searchKey, level to currentBlock.Right
break

else if (level > 0) then
send searchOp, startBlock, searchKey, level − 1 to currentBlock[currentBlock.MaxKey].Child

else
while (level ≥ 0) do

if (currentBlock.Left.MaxKey > searchKey) then
send searchOp, startBlock, searchKey, level to currentBlock.Left
break

else if (level > 0) then
send searchOp, startBlock, searchKey, level − 1 to currentBlock[currentBlock.MinKey].Child

if (level = 0) then
send notFoundOp, currentBlock to startBlock

Lemma 2. The search operation in a skip B-tree S with N nodes and block size
b takes O(logb N) time and O(logb N) messages with high probability.

Skip graphs can support range queries in which one is asked to find a key within
a specified range. For most of these queries, the procedure is an obvious modifi-
cation of Algorithm 1 and runs in O(logb N) time with O(logb N) messages. For
finding all nodes in an interval, we can use a modified Algorithm 1 to find the
closest element to the upper (or lower) bound. We then walk from this element
in level 0 list until we hit the lower (or upper) bound, and return all the elements
we have encountered. If there are r elements in the interval, the running time is
O(logbN + r).

3.2 The Insert Operation

A new element n knows some introducing block introducer which helps it to
join the network. n inserts itself in one list at each level until it finds itself a
singleton list at top level. At level 0, n will be added to the block which contains
a key closest to n.Key. At each level i, i >= 1, n will try to find the closest
element x in level i− 1 with x � i = n � i and add to the block x belongs to at
level i. To ensure load balancing, we adopt the approach described in [AKK04].
Specifically, we call a block “closed” if it has more than b/2 elements, and we call
it “open” if it has no more than b/2 elements. We group the blocks into groups
of 2 or 3, with each group having the following property: it must either contain
one closed block followed by one open block, or it may contain 2 closed blocks
and 1 open block while the open block is in the middle. This is the invariant
we try to keep for our insertion and deletion algorithm. When we insert a new
element, if we insert it into a closed block we always move the largest element to
the adjacent open block in the same group. If the open block is still open after
insertion, nothing happens. If it is in a group of 2 and it becomes closed, we add
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a new empty block in the middle of these two blocks and mark it “open”. We
move the element to this new block instead. If the open block is in a group of
3, we create a new block, link it to the right of the rightmost closed block, and
move the largest element in the open block in the middle to its neighbor to the
right, which in turn causes the movement of the largest element in the rightmost
closed block to the new block. We also split it into two groups of size 2 since we
have 4 blocks now. Notice that in this way we guarantee that the average block
size of any group is not smaller than b/4. To simplify analysis, we do not allow
duplicates here, but it is quite easy to extend the algorithm so that duplicates
are allowed. Also when we create a new block, we assume that there exists a
routine which allocates the space for the block and distribute it to a random
machine in the network.

if (introducer = ⊥) then
create a new block and add n to the block
block.Left ← ⊥
block.Right ← ⊥
block.Group ← 2

else
send searchOp, currentBlock, n.Key, introducer.Level to introducer
wait until foundOp or notFoundOp is received
upon receiving foundOp, clone :

terminate insert
upon receiving notFoundOp, block :
childblock ← ⊥
while true do

level ← block.Level
send buddyOp, currentBlock, n, n�level, to block
wait until receipt of setLinkOp, newblock :
send linkOp, n, childblock, newblock to block
if (newblock = ⊥) then

childblock ← block
block ← newblock

else
newBlock ← create a new block
m(newBlock) ← uniformly chosen random element of Σ
add n to newBlock
n.Child ← block
n.Parent ← ⊥
break

Algorithm 2. Insert a new element n

3.3 The Delete Operation

Deletion works as follows: we recursively delete the element from each level
it belongs to in a bottom-up fashion. When we delete an element, we check
the block’s size. If it remains closed/open after deletion, we simply remove the
element from it. Notice that we allow an empty block to be in the group here.
If it changes from closed to open and the open block in the group is not empty,
we move the largest/smallest in the open block to the current block. If the open
block in the group is empty, we then check the group size. If it is a group of size
3, we simply remove the empty block in the middle and form a group of size 2
since the block is open now. If it is a group of size 2, we check the size of the
group to the left. If it is also a group of size 2, we move the largest key in the
open block of the left neighbor to the current block, delete the empty open block
and form a group of 3. If it is a group of size 3, we delete the empty block, and
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upon receiving linkOp, n, childBlock, parentBlock :
add n to currentBlock
n.Child ← childBlock
n.Parent ← parentBlock
currentBlock.Count++
//the block is open
if (currentBlock.Count <= b�2) then

return
//this is the first block on this level and it is closed
if (currentBlock.Left = currentBlock.Right = ⊥) then

block ← create a new block
block.Group ← 2
insert block to the right of currentBlock
m ← largest element in currentBlock
send linkOp, m, m.Child, m.Parent to block
remove m from currentBlock
return

//if the block was closed before, swap element with the open block in the group
if (currentBlock.Count > b�2 + 1) then

if (currentBlock.Left.Count <= b�2 and currentBlock.Group = 3) then
block ← create a new block
block.Group ← 2
insert block to the right of currentBlock
currentBlock.Left.Left.Group ← 2
currentBlock.Left.Group ← 2
currentBlock.Group ← 2
m ← largest element in currentBlock
send linkOp, m, m.Child, m.Parent to currentBlock.Right
remove m from currentBlock
return

else
m ← largest element in currentBlock
send linkOp, m, m.Child, m.Parent to currentBlock.Right
remove m from currentBlock

return
//currentBlock must have b�2 + 1 elements now
if (currentBlock.Group = 2) then

currentBlock.Left.Group ← 3
currentBlock.Group ← 3
block ← create a new block
block.Group ← 3
insert block to the left of currentBlock
m ← smallest element in currentBlock
send linkOp, m, m.Child, m.Parent to currentBlock.Right
remove m from currentBlock
return

else
m ← largest element in currentBlock
send linkOp, m, m.Child, m.Parent to currentBlock.Right
remove m from currentBlock
return

Algorithm 3. Block’s message handler for physically inserting new element n

upon receiving buddyOp, startBlock, n, val, side :
foreach (element x in currentBlock)
if (m(x�P arent) = val) then

send setLinkOp, x.Parent to startBlock
return

if (side = ⊥) then
if (currentBlock.Left = ⊥) then

send buddyOp, startBlock, n, val, Left to currentBlock.Left
if (currentBlock.Right = ⊥) then

send buddyOp, startBlock, n, val, Right to currentBlock.Right
if (currentBlock.Left = ⊥ and currentBlock.Right = ⊥) then

send setLinkOp, to startBlock

else
if (currentBlock.side = ⊥) then

send buddyOp, startBlock, val, side
to currentBlock.side

else
send setLinkOp, to startBlock

Algorithm 4. Block’s message handler for finding the closest block one level higher
to insert new element n, whose b�Level-th component of membership vector is val
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form 2 groups of size 2 with the left neighbor. Notice that the invariant of group
structure is still preserved by our deletion algorithm.

The proof of the correctness of this mechanism is essentially the same as the
proof of Theorem 4 in [AKK04].

Lemma 3. The insertion and deletion operations in a skip B-tree S with N
nodes and block size b take O(logb N) messages and O(logb N) time with high
probability.

3.4 Concurrency Issues

In order to ensure the correctness of the algorithm under concurrent updates,
we need a lock-free doubly linked list in a distributed setting. Shasha and Good-
man [SG88] provide a framework for proving the correctness of non-replicated
concurrent data structures. For example, we could use the underlying doubly
linked list of dB-tree [JC94] as our doubly linked list. Since our insertion and
deletion operations all work in a bottom-up fashion, as long as each level is con-
sistent the whole data structure must be intact, and a lock-free doubly-linked list
ensures the consistency of each level. The only thing that could be missing dur-
ing updates is the pointers between different levels, but this will only slow down
the search operation and has no effect on the consistency of the data structure.

4 Fault Tolerance

In this section, we describe some of the fault tolerance properties of a skip
B-tree. Fault tolerance of related data structures, such as augmented versions
of linked lists and binary trees, has been well-studied and some results can be
seen in [MP84, AB96]. Section 5 gives a repair mechanism that detects node
failures and initiates actions to repair these failures. Before we explain the repair
mechanism, we are interested in the number of blocks that can be separated from
the primary component by the failure of other blocks, as this determines the size
of the surviving skip B-tree after the repair mechanism finishes.

Notice that if multiple blocks are stored on a single machine, if that machine
crashes all of its blocks are lost. Our results are stated in terms of the fraction
of blocks that are lost; if the blocks are roughly balanced across machines, this
will be proportional to the fraction of machine failures. Nonetheless, it would
be useful to have a better understanding of fault tolerance when the mapping
of resources to machines is taken into account; this may in fact dramatically
improve fault tolerance, as blocks stored on surviving machines can always find
other blocks stored on the same machine, and so need not be lost even if all of
their neighbors in the skip B-tree are lost.

We give analysis of adversarial failures here, as this will be the worst case fail-
ure pattern. In this section we look at the expansion ratio of a skip B-tree, which
gives the number of nodes that can be separated from the primary component
even with adversarial failures.
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Let G be a graph. Recall that the expansion ratio of a set of nodes A in G is
|δA|/|A|, where |δA| is the number of nodes that are not in A but are adjacent to
some node in A. The expansion ratio of the graph G is the minimum expansion
ratio for any set A, for which 1 ≤ |A| ≤ n/2. The expansion ratio determines the
resilience of a graph in the presence of adversarial failures, because separating a
set A from the primary component requires all nodes in δA to fail. We will show
that skip B-trees have Ω(1

b ) expansion ratio with high probability, implying that
only O(f ·b) nodes can be separated by f failures, even if the failures are carefully
targeted.

Since all the real data is stored on level 0 blocks, we only need to consider
the case when A consists entirely of level 0 blocks. The probability for a level 1
block to have no neighbor in A is (m0−|A|

m0
)b since none of its pointers to level 0

blocks can point to any block in A, where m0 is the total number of blocks on
level 0. Thus the expected number of neighbors at level 1 is m1(1− (1− |A|

m0
)b),

which is greater than b|A|m1
m0

. Since m1 = Θ(m0), the expansion ratio is Ω(1
b ),

which is pretty good since there are only O(|A|b) links from A to level 1 blocks.
It is comparable to the guarantee provided by data structures based on explicit
use of expanders such as censor-resistant networks [FS02, SFG+02, Dat02].

5 Repair Mechanism

In this section we describe a self-stabilization mechanism that repairs our skip
B-tree in case of block failure. We assume that a block either works or fails in
its entirety. The repair mechanism is quite simple: each block sends message to
its neighbors periodically to see if they are alive. If one of the neighbors is dead,
we try to fix the link to the next live neighbor. Without loss of generality, we
assume that the right neighbor fails, and the block resides on level 0.

Lemma 4. For any two adjacent blocks b1 and b2 on level 0, the probability that
there is an element x1 from b1 and an element x2 from b2 such that x1 � 1 =
x2 � 1 is at least 1− e−b/4.

Thus we can see that the repair mechanism would finish in expected O(1) time
if we assume the node can process O(b) messages simultaneously, and sends
expected O(b) messages with high probability.

send repairOp, block.maxKey, block to block
upon receiving repairOp, key, block :
minKey ← ∞
foreach element x in block
send message to x.Parent and x.Parent.Right asking for the smallest key greater than key
if (the reply is not ⊥ and the key returned is < minKey) then

minKey ← the key returned
newBlock ← the block containing the key

//make sure that newBlock’s left neighbor is indeed missing if (newBlock.Left = ⊥) then
newBlock.Left ← block
block.Right ← newBlock

else
send repairOp, key, block to the left neighbor of current block

Algorithm 5. Algorithm for repairing right neighbor for block block at level 0
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6 Distributed Skip B-Trees

In this section, we detail how to map skip B-trees to machines and build an
efficient DST. Consider a network with n machines that stores m data items,
we would like to have a skip B-tree with block size b ≈ m/n. We use the load
balancing strategy of [AAA+03] in order to label nodes with Θ(log n) identifiers.
This can be done so that all nodes have unique binary identifiers that form a
prefix code whose size is between log n − C and log n + C for a predetermined
constant C. The add node and remove node operations maintain this invariant
with cost O(log2 n) [AAA+03].

In order to map a skip B-Tree to nodes we must map nodes to blocks in a
manner that balances load between nodes and maintains low degree (an edge is
formed between any two nodes that store two consecutive blocks of any of the
linked lists of the skip B-Tree structure). The idea is that each node estimates b
to be about m/n, the estimation of b will always be always a power of two.

We now explain how to maintain the base linked list Sε that is maintained by
all the network nodes. However, the same techniques are used to store all the
linked lists. Specifically, for any binary word w, the nodes whose identifiers are
a prefix of w maintain the linked list Sw in the same fashion.

Insertion of a block into a linked list is performed in the following manner.
A sample of Θ(log n) random nodes are queried, and the least loaded node gets
to store the block. The nodes that store the previous and next blocks now store
a network link to this new location and the chosen node adds links to them.
If the adversary is oblivious to the random choices then with high probability
[MRS01, ABKU00] all machines will have the same load (number of blocks) up
to a constant factor. If b = Θ(m/n) and n nodes maintain the list then the
number of blocks per node is O(1) and hence the number of links of each node
is also O(1).

We now analyze the number of network links each node needs to maintain
for all the lists it belongs to. Fix a node u with id id(u), it participates in
maintaining all the linked lists Sw such that w is a prefix of id(u) or id(u) is a
prefix of w. Hence there are O(log m) such lists. Each such list Sw with |w| = i
contains Θ(2−im) elements and since node identifiers are balanced there are
O(2−in) nodes whose prefix is a prefix of w. Since b = Θ(m/n) then each such
list requires O(1) links for each node maintaining it. Therefore, for maintaining
all lists of the skip B-Tree the degree of each node is O(log m). So the cost of
adding a node and setting up its connections is O(log n log m).

Finally, we need a mechanism to update b as the size of n and m dynami-
cally change over time. We want to avoid global pitfalls that would require the
whole system to do a global update as such operations are not scalable. Each
node maintains b at a power of two, for a node v let b = 2B(v) be its local
estimate. Several events described below may cause B(v) to change. Whenever
B(v) changes this effects the open or closed status of the nodes blocks. We
use the bucket compression technique of [AKK04] (section 3.3) and a similar
bucket expansion algorithm to locally adjust the nodes blocks to the new value
of b = 2B(v). The details will appear in the full paper.
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When a node joins the system, we use the node split mechanism of [AAA+03].
When node v splits, it decreases its B(v) by one and the new node also takes
the updated value of B(v). Similarly, when a node leaves, we use the merge
mechanism of [AAA+03]. The two merged nodes increase their B(·) value by
one. Changes in B(v) also occur due to change in the number of blocks stored.
Once a node stores more that a given constant number of blocks, it locally
increase its value of B(v) by one. Similarly, when a node has less than a given
constant number of blocks, it locally decreases B(v) by one. The estimation of b
is adequate since the load balancing algorithms give each node an estimate of n
and m up to constant factors with high probability. In the full paper, we prove
that using this strategy the nodes’ estimates of b are all within a constant factor
of each other. Moreover, locally updating b has low cost as only O(log n log m)
messages are sent.

One remaining obstacle is that the skip B-tree now has different members
having slightly different estimates of b. As long as estimates are bounded by a
constant factor it is easy to see that insert, delete, and search operations can
still be carried out using O(logb m) messages. The resulting distributed data
structure is a DST with the following costs.

Lemma 5. Given an n node network storing m items, both the network change
cost and the data change cost is O(log n logb m). A range search for r consecu-
tive keys costs only O(logb m + r/b). Both the data load and network load are
O(log n/n).

7 Conclusion

In this paper we defined a new data structure called skip B-tree which has
several desirable properties. Insertion, deletion and search in skip B-tree all take
O(logb N) time for any set of elements that be arbitrarily unbalanced. In practice
just as in B-trees, our cost is a very small constant (2-3) for reasonably large
b (say, 107). Also under the condition of no additional node failures, the skip
B-tree can repair itself in a very efficient way. Finally, skip B-tree also supports
range queries, and it exploits the geographical proximity in location of resources.
We use skip B-trees to build a distributed peer-to-peer network that provides
the first polylogarithmic cost DST that allows to perform efficient range search
operations.
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The Peer-to-Peer networks which we are considering are based on consistent
hashing [1] with ring topology like Chord [2], Tapestry [3], Pastry [4], and a
topology inspired by de Bruijn graph [5, 6]. In short, Distributed Hash Tables
work as follows. Each peer chooses a number between 0 and 1 and takes responsi-
bility for the interval from the chosen place to the next node. When a peer wants
to insert or find an item x in the network, it computes a global hash function
on the item’s name which is a value h(x) between 0 and 1. It can then contact
the node responsible for h(x) using the network structure that has been built
among the participating nodes.

There are several approaches to build an efficient topology, however the exact
structure of the network is not relevant for us. It is only important that each
node has direct links to its successor and predecessor on the ring and that there
is a routine that lets any node contact the node responsible for any given point
in the network in time D.

A crucial parameter of a network defined in this way is its smoothness which
is the ratio of the length of the longest interval to the length of the shortest
interval. The smoothness is a parameter, which informs about three aspects of
the load balance.

– Storage load of a peer: The longer its interval is, the more data has to be
stored in the peer. On the other hand, if there are n nodes and Ω(n · log n)
items distributed (pseudo-)randomly on the ring, then, with high proba-
bility, the items are distributed evenly among the peers provided that the
smoothness is constant.

– Degree of a node: A longer interval has a higher probability of being con-
tacted by many short intervals which increases its in-degree.

– Congestion and dilation: Having constant smoothness is necessary to keep
these routing parameters small, for example in [5, 6].

Even if we choose the points for the nodes fully randomly, the smoothness is
as high as Ω(n · log n) with constant probability,1 whereas we would like it to be
constant (n denotes the current number of nodes).

1.1 Related Work

Load balancing has been a crucial issue in the field of Peer-to-Peer networks
since the design of the first network topologies like Chord [2]. In [7] the concept
of virtual servers was introduced and it was proposed that each real peer works
as log n virtual servers, thus greatly decreasing the probability that some peer
will get a large part of the ring. Some extensions of this method were proposed
in [8] and [9], where more schemes based on virtual servers were introduced and
experimentally evaluated. Unfortunately, such an approach increases the degree
of each peer by a factor of log n, because each peer has to keep all the links of
all its virtual servers.
1 With constant probability (w.c.p.) means with probability at least 1 − ε for an ar-

bitrary constant ε > 0.
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The paradigm of many random choices [10] was used by Byers et al. [11] and
by Naor and Wieder [5, 6]. When a peer joins, it contacts logn random places in
the network and chooses to cut the longest of all the found intervals. This yields
constant smoothness with high probability.2

A similar approach was proposed in [12]. It extensively uses the structure of the
hypercube todecrease thenumber of randomchoices to oneand the communication
to only one node and its neighbors. It also achieves constant smoothness with high
probability.

The two approaches above have a certain drawback. They both assume that
peers join the network sequentially. What is more important, they do not provide
analysis for the problem of balancing the intervals afresh when peers leave the
network.

Karger and Ruhl [13, 14] propose a scheme, in which each node chooses
Θ(log n) places in the network and takes responsibility for only one of them. This
can change, if some nodes leave or join, but each node migrates only among the
Θ(log n) places it chose, and after each operation Θ(log log n) nodes have to mi-
grate on expectation. The advantage of our algorithm is that it performs a migra-
tion only if there really is a too long interval in the network. Both their and our
algorithms use only tiny messages for checking the network state, and in both ap-
proaches the number of messages in half-life3 can be bounded by Θ(log n) per peer.
Their scheme is claimed to be resistant to attacks thanks to the fact that each node
can only join in logarithmically bounded number of places on the ring. However,
in [15] it is stated that such a scheme cannot be secure and that more sophisticated
algorithms are needed to provide provable security. The reasoning for this is that
with IPv6 protocol the adversary has access to thousands of IP numbers, and she
can join the system with the ones falling into an interval that she has chosen. She
does not have to join the system with each possible IP to check if this IP is useful,
because the hash functions are public and she can compute them offline.

Manku [16] presented a scheme based on a virtual binary tree that achieves
constant smoothness with low communication cost for peers joining or leaving
the network. It is also shown that the smoothness can be diminished to as low
as (1 + ε) with communication cost per operation increased to O(1/ε). All the
nodes form a binary tree, where some of them (called active) are responsible for
perfect balancing of subtrees rooted at them. Our scheme treats all peers evenly
and is substantially simpler.

In [17] the authors present a scheme that extends [16] and generalizes [12].
Nodes are grouped into clusters of size h. Each node checks k clusters when it
joins the network (In [12], h = log n and k = 1). The authors prove that it
is sufficient that h · k = Ω(log n) to guarantee that the resulting smoothness
is constant, with high probability. Similarly to the other two approaches, this
algorithm does not consider nodes leaving the network.

2 With high probability (w.h.p.) means with probability at least 1 − O 1
nl for an

arbitrary constant l.
3 For now, we define half-life of the network to be the time it takes for half of the peers

in the system to arrive or depart.
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1.2 Our Results

In [18] we showed a self-stabilizing distributed algorithm that rebalances the
system in the static case, that is when no nodes join or leave it. Such strong
assumption was needed in the analysis, but the algorithm itself was designed to
work in a dynamic environment.

In this paper we extend and modify the scheme so, that it can be analyzed
as an ever-running process. We show formally that the communication in a
half-life is bounded to log n messages per node. Unbounded communication was
the main drawback of our previous scheme. Consider a scenario in which the
sequence of join and leave requests is generated by an oblivious adversary and the
algorithm responsible for keeping the system connected is optimal with respect
to communication cost. We show that our algorithm keeps the system smooth
with only slight delay with additional communication cost by a logarithmic factor
larger than the cost of keeping the system connected.

Consider any phase of length equal to half-life, in which the sequence of join
and leave requests is generated by an oblivious adversary. We show that our
algorithm smooths the imbalance present in the beginning of the phase.

As a byproduct we present a scheme, which gives a constant approximation
of the number of nodes in the network n. The scheme needs the knowledge of
an upper bound of log n.

Finally, we present the results of the experimental evaluation that we per-
formed. It shows that the constants used in the theoretical analysis can be no-
tably reduced in practice.

2 The Algorithm

We assume that each node knows an upper bound Δ on log n, the logarithm of
the current number n of nodes in the system. In order to avoid complex terms in
the analysis, we assume that Δ is a sharp bound (up to constant factors), that
is Δ = Θ(log n). This bound should be global for the whole network. Most of
the existing systems already assume such knowledge. It will be used to estimate
the value of n, in order to enable each node to decide whether its current load
is below or above the average.

An assumption already mentioned in the introduction is that each node can
communicate directly with its successor and predecessor on the ring.

Let D denote the dilation of the network, i.e. the maximum number of hops
needed to route from any node to any other node. D is O(log n) in Chord [2]
and O(log n/ log log n) in de Bruijn graph [5, 6].

In Subsection 2.1 we introduce a notion of weight of an interval. It is a mea-
sure supplementary to the interval’s length. We show the relationships between
these two measures and how to use them to efficiently approximate the number
of participants of the network. In Subsection 2.2 we state the algorithm and in
Subsection 2.3 we show that it achieves constant smoothness and its communi-
cation is bounded. In Section 3 we present the experimental evaluation of our
algorithm.
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2.1 Estimating the Current Number of Nodes

The goal of this subsection is to provide a scheme, which, for an arbitrary node
i responsible for an interval Ii of sufficient length, returns an estimate ni of the
total number of nodes, so that each ni is within a constant factor of n, with high
probability.

Let Δ be the upper bound on logn mentioned above. Each node keeps con-
nections to δ = α ·Δ random positions on the ring, for sufficiently large global
constant α. We assume each of these connections is visible for the node responsi-
ble for the interval containing the chosen position. These connections are called
markers and define weights of intervals and nodes in the following way.

Definition 1. For a node i and its interval Ii, the weight of the interval Ii,
denoted w(Ii), is the number of markers which fall into Ii. The weight of a node
is the weight of the interval it is responsible for.

It is clear that E[w(Ii)] = δ · l(Ii) · n, so ni = w(Ii)
δ·l(Ii)

is a good estimate for n. In
the following lemma we state precisely the relation between the length and the
weight of an interval and prove, using Chernoff bounds, that the quality of the
estimate is sufficient.

Lemma 1. There exist constants wmin < 1
2 , lmin and lmax, such that for arbi-

trary interval Ii and timestep t, if α is large enough, the following holds with
high probability. If w(Ii) ≥ wmin · δ, then lmin · w(Ii)

δ·n ≤ l(Ii) ≤ lmax · w(Ii)
δ·n .

Proof. Consider an interval I of length l(I) ≤ lmin
n and let I ′ be any interval

containing I such that l(I ′) = lmin
n . Let X = w(I ′) be the random variable

denoting how many of the δ ·n markers hit I ′; we have E[X ] = lmin · δ = Θ(δ) =
Ω(log n). Using Chernoff bound, we obtain X = Θ(δ), with high probability.
Since I is contained in I ′, its weight is always smaller than the weight of I ′, so
w(I) = O(δ), with high probability. Thus, if an interval I has weight w(I) ≥
wmin · δ = Ω(δ) then, with high probability, l(I) ≥ lmin

n = Ω
(

w(I)
δ·n

)
, which

proves the first inequality.
For the proof of the second inequality, we assume that l(I) ≥ lmin

n . The random
variable X = w(I) has expectation E[X ] = l(I) · δ · n = Ω(log n), so with high
probability, w(I) = Ω(l(I) · δ · n). This finishes the proof.

It is hard for nodes to compare their length to the average length (which is 1/n)
due to the lack of knowledge about the exact number of participants n. On the
other hand it is easy for them to compare their weight to the average weight,
since the latter is a global constant equal to δ.

2.2 The Balancing Algorithm

Our algorithm reorganizes the positions of the nodes on the ring, so that the
resulting intervals I ′i have weights between wmin · δ and 32 · δ, where wmin is
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the constant defined in Lemma 1. By Lemma 1, this implies that in the end the
smoothness is constant, with high probability.

We call the intervals of weight at most 16 · δ light and intervals of weight at
least 32 · δ heavy. Intervals of intermediate weight are called medium.

The algorithm minimizes the weight of the heaviest interval, but we also
have to take care that no interval is too light. This is needed, since smoothness
demands not only the longest interval to be sufficiently short but also the shortest
interval to be sufficiently long. Therefore, before we begin the routine we force all
the nodes responsible for intervals with weight smaller than wmin · δ to leave the
network; we call such nodes very light. Doing this, we assure that the weight of the
lightest interval in the network is bounded from below. We have to explain why
this does not destroy the structure of the network. That is, that the algorithm
does not worsen the balance of the system instead of improving it and that the
removed nodes can still communicate with others.

First of all, it is possible that we remove a huge fraction of the nodes. It is
even possible that a very long interval appears even though the network was
very near to a balanced state before. This is not a problem, since the algorithm
rebalances the system. Besides, if this algorithm is used also for new nodes at
the moment of joining, this initialization is not necessary. We do not completely
remove the nodes with too light intervals from the network. The number of
nodes n, and thus also the weight δ of a perfect interval is unaffected, and the
removed nodes act as though they were simple light nodes. Each of the very light
nodes knows its virtual position on the ring and contacts the network through
the node responsible for that position. We assume that the node is not heavy
since it could immediately split using the light node.

The routine works differently for different nodes, depending on the node’s
interval weight. The heavy nodes only wait for help proposals in order to split
their intervals. The medium nodes do nothing as they are too light to split their
intervals and too heavy to help. In order to be able to bound the communication
cost we distinguish two types of light nodes. A light node can be passive and
do nothing until it is stimulated, i.e. until it loses or receives a marker, which
is noticed by a loss or gain of a connection. Then the node becomes active and
stays active until it successfully sends a constant (A) number of help proposals.
An active node sends help proposals to random places until it finds a heavy node
or it becomes passive. In order not to create any heavy nodes, an active node
sends a proposal only if its predecessor is light and has been locked. Locking
means that the predecessor will not send any proposals, and thus guarantees
that the predecessor will not migrate.

The routines for two types of light nodes are depicted in Figure 1. The para-
meters A and F , responsible for the maximum activity time and the forwarding
distance, are sufficiently large constants, which will be defined later.

The very light nodes act in the following way. The light node responsible for
such nodes informs them of its markers and they are stimulated at the same
time as it is. They behave in the same way as the light nodes except that they
do not have to lock anything.
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passive light (permanently in staying state)
if (any change in markers)
{

change activity level to A
become active

}

active light
if (locked)

wait until unlocked by successor
if (predecessor is light)
{

do
perform one of the following choosing equiprobably at random

let the successor lock me and wait until unlocked
try to lock the predecessor

until (predecessor locked)
p := random(0..1)
P := the node responsible for p
if (P is heavy and migrating to p does not produce a very light interval)

migrate to p
else

contact consecutively the node P and its F · Δ successors on the ring
if (a contacted node R is heavy)

migrate to the middle of the interval of R
unlock the predecessor

}
if (any change in markers)

change activity level to A
decrease activity level
if (activity level = 0)

become passive

Fig. 1. The algorithm for two types of light nodes

2.3 Performance and Communication Cost

In [18] we showed an algorithm that can be treated as the algorithm we are cur-
rently analyzing with parameter A = ∞, and we proved that it is self-stabilizing,
that is after a constant number of rounds the smoothness becomes constant, pro-
vided that no new nodes join the system and no nodes leave it during this time.
Alas, such approach causes a lot of communication even if the system is already
balanced and there are no changes. Therefore we adapted the algorithm and we
analyze it in the situation with A set to a sufficiently large constant.

The environment, in which the algorithm has to work, is not a process that
starts and ends but rather a system that runs forever. In order to measure the



388 M. Bienkowski and M. Korzeniowski

communication not as the total bandwidth used, but rather as rate at which
each node has to communicate we introduce the following definition from [19].

Definition 2 ([19]). If there are n live nodes at time t, then:

1. the doubling time from time t is the time that elapses before n additional
nodes arrive

2. the halving time from time t is the time required for half of the nodes alive
at time t to depart

3. the half-life τt from time t is the smaller of the doubling and halving times
from time t

4. the half-life τ of the entire system is the minimum half-life over all times t

In order to show that our algorithm is competitive with respect to communica-
tion cost we also cite the following theorem from [19].

Theorem 1 ([19]). Any n-node P2P network that remains connected with high
probability for any sequence of joins and leaves with half-life τ must notify every
node with an average of Ω(log n) messages per τ time.

We model an oblivious adversary, against which the cost of the algorithm is
measured in the following way.

1. The adversary generates a pattern of insertions and removals of nodes in
any way she wants as long as she does not measure the performance of our
algorithm. Thus, she can generate the worst possible starting situation in an
adaptive way.

2. The adversary chooses a moment in time t0, at which she wants to start
the measurement. The number of nodes at time ti for i ≥ 0 is denoted ni.
As mentioned above, the distribution of the nodes on the ring at t0 can be
arbitrary. However, it has to be an output of our algorithm, so there are no
very light nodes in the system.

3. The adversary chooses the patterns of insertions and removals for the current
phase. She can decide about insertions online in an adaptive way, that is the
number of nodes inserted at time i may depend on the behavior of the
algorithm up to time i− 1. The removals are generated in an oblivious way,
i.e. the adversary decides about TTL (Time To Live) of each node at the
moment of its insertion; for the nodes present in the network at time t0,
TTLs can be generated at t0. The algorithm does not know the TTLs.

4. At every timestep nodes are inserted and removed according to the pattern
chosen by the adversary. The algorithm responds with communication and
possible migrations of nodes.

5. After a half-life the phase ends, and the adversary is switched off. The al-
gorithm is allowed to communicate and migrate in an extension of Θ(log n)
timesteps.

In order to precisely express the performance of the algorithm, we consider
the following virtual process after the half-life has ended. For each node which
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left during the considered half-life, we re-insert it into the network provided
that such an insertion does not create a very light interval. We perform the re-
insertions sequentially in any order, so that there are no ambiguities with parallel
checks. If we prove that after performing such process the system is balanced,
we prove that our algorithm copes with the imbalance present in the network at
the beginning of the half-life. The imbalance created by the adversarial deletions
of nodes will be repaired in the next half-life.

In the rest of this subsection we prove the following theorem characterizing
the communication cost of the algorithm in a half-life and stating how well the
algorithm rebalances the system.

Theorem 2. In the game described above, the following properties hold with
high probability:

1. The communication cost of the algorithm in half-life is at most O(log n)
times larger than the communication cost of maintaining the system.

2. If we re-insert the nodes removed in the current half-life as described above,
the smoothness is constant at the end of the half-life.

For further analysis we need the following claims about the behavior of the
network in a half-life.

Lemma 2. Denote the number of nodes in the network in the beginning of a
half-life by n0, the number of nodes present at time t by nt, and the number of
markers at time t as mt, for t ≥ 0. Then during a half-life

1. the number of nodes in the network at time t is bounded by n0
2 ≤ nt ≤ 2 ·n0,

2. the number of markers in the network at time t is bounded by n0·δ
2 ≤ mt ≤

2 · n0 · δ.
3. the number of insert / delete operations in a half-life ranges from n0

2 to 5·n0
2 ,

Proof. Let the nodes present at time t0 be called old and the nodes inserted
during half-life new. Before the half-life ends the adversary can remove at most
n0
2 old nodes and insert at most 2 · n0 new nodes. Thus, the total number of

nodes ranges from n0
2 to ≤ 2 · n0 and the number of markers ranges from n0·δ

2
to 2 · n0 · δ.

It is straightforward that removing n0/2 nodes is the fastest way to end the
half-life, whereas inserting n0 − 1 new nodes and removing them and n0/2 old
ones is the best way for the half-life to last long. Thus, the last statement follows.

We are now ready to prove the communication-competitiveness of the algorithm.

Proof (of Property 1 of Theorem 2). For the exact analysis we modify our al-
gorithm slightly. Instead of δ markers, each node inserts δ/2 insertion-markers
and δ/2 deletion-markers into the system. If a node u stores a marker of a node
v then u is activated in two cases: if v joins the network and the marker is an
insertion-marker or if v leaves the network and the marker is a deletion-marker.
Since the adversary is oblivious, we may think that the deletion-markers are
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generated at the moment when a node leaves the network. Thus, when a node
joins or leaves the network, it contacts Θ(δ) places chosen uniformly at random
at the moment in which the operation happens. Since the total number of joins
and leaves in a half-life is Θ(n), the total number of contacted places in a half-life
is Θ(n · δ), all of which are independent.

Since each light node has length Θ(1/n) during the whole half-life we can use
Chernoff bounds to show that each light node is activated Θ(δ) times, with high
probability. Each activation is responsible for a constant number of messages,
so the total number of messages sent by a light node is O(δ) = O(log n) in a
half-life, with high probability. Each of these messages is sent to a distance of
O(D+logn) = O(log n) and the total communication cost is O(log2 n) messages
per node. By Theorem 1, this proves the first property of Theorem 2.

It remains to prove that such communication is still sufficient to keep the system
balanced. First, we show that the number of proposals in a half-life is sufficiently
high.

Lemma 3. There exist n0
16 light nodes alive during the whole half-life which send

the maximum number A of proposals and still are not accepted anywhere. With
high probability, a fraction 1

3 of the messages they want to send is sent in the
half-life or in the extension.

Proof. There are at least n0/2 nodes which are alive during the whole half-life -
we call them immortals. Since an interval is light when its weight is below 16 · δ
and, by Lemma 2, the total weight in the network is at most 2 · n0 · δ, at most
n0/8 nodes are not light, and thus at every timestep at least 3

8 · n0 immortals
are light.

Consider the distribution of the immortals in the beginning of the half-life and
ignore other nodes for a while. We couple the immortals in the following way.
Any immortal is chosen as the first element of the first pair and its successor
is the second element of the first pair. Consecutive immortals (according to the
order on the ring) build consecutive pairs. We want to bound the number of
pairs with two light nodes. There are n0/4 pairs, at most n0/8 of which can have
at least one middle or heavy node, thus in at least n0/8 pairs, an immortal will
be willing to migrate when it is activated. Notice that presence of other nodes
can only decrease the weight and cannot discourage any immortals from sending
proposals.

As a node only wishes to share its load with another node, if its current
weight exceeds 32 · δ, n0/16 immortals suffice to store all load. Thus, only n0/16
immortals have a chance to migrate and at least n0/16 send the maximum
number A of messages.

Assume that in order to send a message, a node does not have to lock its
predecessor. Then all A messages sent by a node will be sent in time O(log n).
Suppose that the part of the algorithm responsible for trying to lock a neighbor
is performed immediately. Then at every timestep if a node is not sending a
message, it means that either it cannot lock its predecessor or that it has been
locked by its successor. In either case it implies that one of its neighbors is
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sending a message. This means that at least 1
3 of the messages will be delivered

in the time, in which all messages would be delivered if locking was immediate.
We assign additional Θ(log n) timesteps to each active node. Each time a

node fails to lock a predecessor or fails to let the successor lock itself, because
the other node tries to synchronize with its other neighbor, we pay for such
waste of time from these additional timesteps. If within these Θ(log n) timesteps
a node succeeds A times, it manages to send all its messages. At each such trial
the node succeeds with probability at least 1

4 , as at least one of its neighbors
tries to contact it at the same time and the probability that at a timestep they
try to contact each other is exactly 1

4 . With high probability, there is at least
one success in Θ(log n) timesteps, and thus also A successes in Θ(log n) trials.
Also, all nodes use Θ(log n) additional timesteps to succeed A times, w.h.p.

Below we prove the second part of Theorem 2. As writing all constants exactly
significantly decreases the readability of the proof, we simplify it by assuming
that nodes operate on lengths instead of weights and that an interval is consid-
ered very short, if its length is below 1

n . This assumption is justified by Lemma 1.

Proof (of Property 2 of Theorem 2). We know that in the half-life (or in the
extension guaranteed by the definition of the model) Θ(n) proposals from im-
mortals are generated in the system, and that we can make the constant in the
Θ notation arbitrarily large just by increasing the A constant in the algorithm.

Let y ∈ [0, 1) be an arbitrary real number on the ring. Consider the interval
Iy of length log n

n starting in y. Let x and z be equal to y − log n
n and y + log n

n
respectively. Ix and Iz are intervals of the same length as the length of Iy and
are the predecessor and successor of Iy on the ring.

Using Chernoff bound we can show that with high probability the number of
proposals from immortals that fall into Ix is Θ(log n). We say that a proposal
reaches z, if it contacts the node responsible for z. The parameter F is chosen
so, that even if all intervals between x and z have the lowest possible length, a
proposal travelling from x and forwarded through all the nodes can reach z.

At this point of the analysis we allow the adversary to be adaptive. She can
choose, which of the mortal nodes die and when. When she removes a node from
the network, a heavy interval can appear, which should be split by an immortal.
Our analysis is based on the fact that when an immortal splits a heavy interval,
it does it at least until the end of the half-life. The adversary may remove
some nodes from Iy after all immortals have been forwarded through Iy and the
algorithm repairs such imbalance in the next half-life.

Below we show that the following event happens at least 2 · log n times: a
proposal that hit Ix reaches z at the moment when there is a node in Iz . If such
an event happens, then either there are no heavy nodes in Iy, or the immortal
is inserted somewhere between y and the node in Iz. At most 2 · log n immortals
can be inserted in the interval Iy + Iz , so after 2 · log n such events there are no
heavy nodes in Iy.

First, we show that Θ(log n) of the proposals reach z in the process of for-
warding (not necessarily when there exists a node in Iz). This is true, since in
Ix and Iy there is place for at most 2 · log n of them. Notice that we cannot be
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sure which proposals (in order of coming) reach z: it may happen that the first
one gets through, right after that many nodes die in the network, and the next
immortals split the heavy intervals that appear in Ix and Iy.

We introduce a notion of a steady barrier as the first node behind z on the ring
which will survive until the end of the half-life. At the beginning of the process
we can bound the distance between y and the barrier by 1. When during our
process an immortal reaches z and there is no node in Iz then the immortal is
inserted between y and the current steady barrier and becomes the new steady
barrier. In the worst case, the distance between y and the steady barrier halves
each time when it happens, so after fewer than logn such events there is a steady
barrier in Iz. Thus, log n immortals can be used to assure that there is a steady
barrier in z and further 2 · log n to assure that Iy is balanced.

If we divide the ring into n
log n disjoint intervals each of length log n

n , then the
probability that the algorithm fails for at least one of them is at most n times
larger than the probability of failure for a single interval. Thus, our algorithm
succeeds on the whole ring with high probability.

3 Experimental Evaluation

In this paper we focused on theoretical proofs of correctness and efficiency of
our algorithm. Additionally, we performed a series of experiments on a single
machine, in order to show that constants emerging from our analysis are rea-
sonable. We did not experimentally compare our approach with others, as such
comparisons should probably be done in a large distributed environment. We
did not model the dynamics of the system, either, as our approach copes with
adversarial dynamics and in this matter we consider proofs of correctness to be
much better than any experiments. In all tests the underlying space was the ring
of natural numbers {0, . . . , 264 − 1} with arithmetic modulo 264.

There were two groups of experiments. The first group was to find the best pa-
rameters for the algorithm in the static case. In the tests in this group n nodes were
inserted in the very beginning and all lived until the end of the test. The number of
nodes n was 25, 211, 214 or 217; they were chosen to be powers of two only for easier
implementation. We present the results for the highest number of nodes.

The first parameter we tested was the number of markers that each node
should insert into the network. The number of markers δ ranged from 8 to 128
and the other parameters were set as follows. Each packet was forwarded through
128 nodes to assure quick convergence. An interval could send a proposal, if
the sum of the weight of itself and its successor was at most δ. An interval
was considered very light if its weight was below δ/2. We measured the final
smoothness in the system and noticed that choosing a value of 40 already yields
smoothness below 20 and values larger than 64 do not improve the system much.
The final smoothness for different δ parameters is depicted in Figure 2.

With the number of markers fixed to 64 we performed tests which had to
estimate the best definition of a very light interval. The forward parameter F ·Δ
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Fig. 2. Smoothness according to approximation of log n

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  10  20  30  40  50  60  70

T
he

 r
es

ul
tin

g 
sm

oo
th

ne
ss

Very Light Interval parameter
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Fig. 4. Convergence according to the forward parameter

was 128 again. The final smoothness for different weights of a very light interval
is depicted in Figure 3. We consider the constant 56 to be the best.

The last set of tests for the static scenario was developed to optimize the
distance to which a packet should be forwarded. This time the output of the
analysis was not smoothness but the time it takes for the scheme to stabilize.
From Figure 4 it can be seen that already very short forwarding gives good
results. We chose the forward parameter to be 16.
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To test the behavior of our algorithm in a dynamic scenario, we took the
model from [20]. For each time step the number of nodes joining at this time
step was chosen according to the Poisson distribution with mean λ, and for
each node its time to stay in the system was chosen according to the exponential
distribution with mean μ. For parameters (λ, μ) equal to (10, 100) and (100, 100)
the smoothness never exceeded 14 and was in 97% time steps at most 9. For
comparison, if we insert the nodes uniformly and independently at random the
smoothness is approximately 23 for 214 and 127 for 217 nodes.
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Abstract. We consider a population of anonymous processes commu-
nicating via anonymous message-passing, where the recipient of each
message is chosen by an adversary and the sender is not identified to
the recipient. Even with unbounded message sizes and process states,
such a system can compute only limited predicates on inputs held by
the processes. In the finite-state case, we show how the exact strength
of the model depends critically on design choices that are irrelevant in
the unbounded-state case, such as whether messages are delivered imme-
diately or after a delay, whether a sender can record that it has sent a
message, and whether a recipient can queue incoming messages, refusing
to accept new messages until it has had a chance to send out messages of
its own. These results may have implications for the design of distributed
systems where processor power is severely limited, as in sensor networks.

1 Introduction

We introduce and study certain variants of the population protocol model [2, 3]
modified to use forms of one-way communication progressively more similar to
those of traditional asynchronous message-passing. In the population protocol
model, finite-state agents interact in pairs, updating their states according to
a joint transition function whose value depends upon the previous states of
both agents. Because the new state of both agents may depend on the prior
state of the other, we call such an interaction a bidirectional interaction.
Protocols in this model must work correctly regardless of the order in which
these bidirectional interactions occur. Motivating scenarios include models of the
propagation of trust in populations of agents [10] and interactions of passively
mobile sensors [3]. Similar models of pairwise interaction have been used to
study the propagation of rumors in a population of agents [9] and to justify
the Chemical Master Equation [13], suggesting that the model of population
protocols may be fundamental in several fields.

Because the agents in a population protocol have only a constant number
of states, it is impossible for them to adopt distinct identities, making them
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effectively anonymous. An agent encountering another agent cannot tell in gen-
eral whether it has interacted with that agent before. Despite these limitations,
populations of such agents can compute surprisingly powerful predicates on their
initial states under a reasonable global fairness condition. When each agent may
interact with every other agent, any predicate over the counts of initial states
definable in Presburger arithmetic is computable [3]. When each agent has only
a bounded set of neighbors with which it can interact, linear space computable
predicates are computable [2].

The assumption of bidirectional interaction, however, may be unrealistic in
the context of sensor networks, where radio communication, even between nearby
sensors, may not be bidirectional. Moreover, one-way message-passing primitives
may be easier to implement in practice. In this paper, we study how the power
of the population protocol model changes when the assumption of bidirectional
interaction is replaced by certain forms of one-way communication. The pairwise
interactions are split into separate send and receive events that each may affect
only a single agent.

We consider the effect of two primary attributes of the models: (1) send and
receive events may occur simultaneously (immediate delivery) or may involve
delayed messages subject to various constraints (delayed delivery and queued
delivery), and (2) a sender may be allowed to change its state as a result of
sending a message (transmission), or not (observation). The transmission
model is more typical in distributed computing. A web page that increments its
counter in response to a visit is an example of such an interaction. Examples
of interactions that fit the observation model, where the receiver observes an
unknowing sender, include a person reading a post to a discussion forum or a
device reading a passive RFID (radio frequency identification) tag. (Of course to
preserve the anonymity of our model, the device would not get a unique identity
from the tag.) For models with delayed messages, we also consider whether the
number of messages in transit is linearly bounded in the population size. Precise
definitions are given in Sect. 2.

1.1 Comparing the Models

Comparing the computational power of the resulting models highlights the dif-
ferences between the forms of one-way communication we consider. As in [3],
we assume that every pair of agents eventually come into contact with each
other, and seek to characterize the class of predicates on multisets of inputs
that are stably computable by protocols in each model. Let #(a) denote the
number of agents assigned input a in the initial configuration. We consider three
kinds of predicates: (1) Threshold: #(a) ≥ t, (2) Modulo: #(a) ≡ j (mod k),
and (3) Comparison: #(a) ≥ #(b). These three kinds of predicates turn out to
be well-suited for characterizing the power of the various versions of our model
but they arise in some interesting distributed tasks. The threshold function is
applicable to a motivating example of [3]: a network of sensors monitoring indi-
vidual birds could detect when at least five birds in the flock have an elevated
temperature in order to raise an alarm of a possible epidemic. The modulo-k



398 D. Angluin et al.

predicate is useful if the system must determine whether processes can be evenly
partitioned into groups of size k. A majority voting scheme could use a compar-
ison predicate.

More complicated predicates can be built up from the basic predicates using
Boolean operators. We define classes of predicates on finite multisets of symbols
from a finite input alphabet Σ as follows. THk is the Boolean closure of all
threshold predicates #(a) ≥ t where a ∈ Σ and t ≤ k. Predicates in THk are
determined by the multiplicities of input symbols up to a maximum of k; in
particular, predicates in TH1 are determined by the presence or absence of each
input symbol. TH∗ is the union of THk over all positive integers k. REG is
the Boolean closure of all threshold predicates #(a) ≥ t and modulo predicates
#(a) ≡ j (mod k) where a ∈ Σ, t ≥ 1, j ≥ 0, and k ≥ 2. Predicates in REG
are those recognizable by finite-state acceptors when fed the input symbols in
any order. SLIN is the class of semilinear predicates over multisets of symbols
from Σ, that is, the class definable by Presburger predicates [21] over the counts
of symbols from Σ. It is the Boolean closure of threshold predicates, modulo
predicates and comparisons of linear combinations of input multiplicities. We
have the following relationships between these classes:

TH1 ⊂ TH2 ⊂ . . . ⊂ TH∗ ⊂ REG ⊂ SLIN,

where the containments are strict. The predicate (#(a) = 1) ∧ (#(b) ≥ 3) is
in TH3 but not TH2. The predicate (#(a) ≥ 13) ∨ (#(b) ≡ 3 (mod 5)) is
in REG, but not TH∗, which does not contain the modulo predicates. The
predicate ((3 ∗#(a) + 1) < (5 ∗#(b))) ∨ (#(b) = 2) is in SLIN but not REG,
which does not contain the comparison predicate. Every predicate in SLIN is
stably computable by a population protocol in the standard two-way model [3];
whether other predicates are stably computable in this model is open.

We define the class of core-REG predicates over an alphabet Σ as follows. A
finite multiset of elements of Σ is k-rich if it contains each element of Σ with
multiplicity at least k. Given a predicate P and a nonnegative integer k, define
the k-core of P to be P ∧ Q where Q is the property of being k-rich. Then a
predicate P is in core-REG if some k-core of P is in REG.

Our results for the finite-state models appear in Sect. 3. A summary is pro-
vided in Fig. 1. For each variant of the model, the corresponding box in the
figure describes known facts about the class of predicates that can be stably
computed.

The power of the delayed observation model is exactly TH1; protocols can
only detect the presence or absence of each input symbol. The power of the
immediate observation model is exactly TH∗. A protocol in this model may de-
termine the multiplicity of each input symbol up to some fixed limit k. Thus,
this model is strictly stronger than the delayed observation model. The power
of the immediate and delayed transmission models properly includes REG, but
does not include the comparison predicate. Thus, these two models are strictly
more powerful than the immediate observation model. The immediate transmis-
sion model is strictly weaker than the standard two-way model and the delayed
transmission model is strictly weaker than the queued transmission model.
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observation transmission transmission with
linear message bound

immediate = TH∗ (Thm 5) ⊃ REG (Thm 9) not applicable
�� comparison (Cor 12)
= two-way ∩ core-REG

(Thm 13)
delayed = TH1 (Thm 1) ⊇ immediate transmission = immediate transmission

�� comparison (Cor 12) (full paper)
⊆ queued ∩ core-REG

(Thm 11)
queued not applicable ⊇ two-way ⊇ SLIN = two-way ⊇ SLIN

(Thm 14 & [3]) (Thm 14 & [3])

Fig. 1. Summary of our results for finite-state models

The queued transmission model, which is essentially an anonymous finite-state
version of the usual asynchronous message-passing model, is at least as powerful
as the standard two-way model, and equal to it in power with a linear bound
on messages in transit. Without such a bound, the queued transmission model
admits protocols that spawn an unbounded number of new simulated agents; the
exact characterization of the power of the model in this case is an open question.

1.2 Anonymous Communication and Fairness

The question of what computations can be performed in anonymous systems,
where processes start with the same state and the same programming, has a
long history in theoretical distributed computing. Many early impossibility re-
sults such as [1] assume both anonymity and symmetry in the communication
model, which limits what can be done without some mechanism for symmetry-
breaking. See [12] for a survey of many such impossibility results. More recent
work targeted specifically at anonymity has studied what problems are solv-
able in message-passing systems under various assumptions about the initial
knowledge of the processes [6, 7, 22], or in anonymous shared-memory systems
where the properties of the supplied shared objects can often (but not always,
depending on the details of the model) be used to break symmetry and assign
identities [4, 5, 8, 11, 15, 17, 18, 19, 20, 23]. This work has typically assumed few
limits on the power of the processes in the system other than the symmetry
imposed by the model.

Agents in the population protocol model are assumed to be finite-state. To-
gether with a transition rule that depends only on the states of the two in-
teracting agents, the finite-state assumption naturally yields a model in which
agents are effectively anonymous. This makes the model much weaker than a
typical message-passing model, where processes have identities. On the other
hand, in one respect the population protocol model is much stronger than a
typical message-passing model: communication between two interacting agents
is instantaneous and bidirectional.
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Implicit in the structure of a population protocol is that message-passing is
rather strongly anonymous: not only does a receiver not learn the identity of
the sender, but a sender cannot direct its message to a particular receiver. This
is unusual even in anonymous message-passing models, which typically assume
that a process can use some sort of local addressing to direct messages to specific
neighbors. It also leads to a very weak message-passing model if we adopt the
traditional fairness assumption of eventual delivery to all destinations of any
message that is sent often enough. We show in Sect. 4 that even with unbounded
states and message lengths, this fairness condition provides only enough power to
detect the presence or absence of each possible input, giving additional support
for the global fairness condition used in the rest of the paper.

2 Model

We give a model that unifies both the standard asynchronous message-passing
model, adapted so that processes are anonymous and no longer control the des-
tinations of their messages; and the population protocol model of [3], restricted
so that interactions between two agents are one-way. We first describe these two
models separately, and then define our combined model and its variations.

2.1 Asynchronous Message-Passing

In an asynchronous message-passing model, processes communicate by
sending messages. A process may spontaneously send a message at any time,
which is delivered to a recipient at some later time. The recipient may respond
to the message by updating its state and possibly sending one or more messages.
In the standard model, senders can choose the recipients of their messages, and
recipients are aware of the identities of the senders of messages they receive; in
our model, we drop these assumptions.

Message-passing systems may be vulnerable to a variety of failures, including
failures at processes such as crashes or Byzantine faults, and failures in the
message delivery system such as dropped or duplicated messages. We assume
fault-free executions. Since message delivery is asynchronous, making any sort
of progress requires adopting a fairness condition to exclude executions in which
indefinitely-postponed delivery becomes equivalent to no delivery.

A minimal fairness condition might be that if some process sends a particular
message m infinitely often, then each other process receives the same message m
infinitely often. In Sect. 4, we show that this minimal fairness condition is not
enough to solve more than a small class of problems, even in a message-passing
model with unbounded states and message sizes. So instead we adopt a stronger
global fairness condition derived from that used in [3]. We define this condition
formally below.

2.2 Population Protocols

We call this model the standard two-way model of population protocols to
distinguish it from the one-way models we define in Sect. 2.3. A population
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protocol [3] consists of a finite population V of agents with states drawn from
a finite state set Q. The identities of agents v ∈ V are used in describing the
model, but are not accessible to the agents themselves. Agents interact in pairs;
each interaction updates the state of both agents according to a joint transition
rule δ : Q×Q→ Q×Q that maps pairs of states (p, q) �→ (p′, q′). Interactions are
asymmetric: the left-hand agent is called the initiator and the right-hand agent
the responder. We think of the initiator as the sender of a message and the
responder as the receiver of a message, but in the original model information
may flow in both directions.

A configuration C of a population protocol describes the states of all agents;
the state of agent v in C is denoted C(v). An interaction takes a configuration C
to a new configuration C′ by updating the states of exactly two agents. If there
is a transition from C to C′, we write C → C′. We write C

∗→ C′ if there is a
sequence of zero or more transitions that transform C to C′. In this case, C′ is
said to be reachable from C.

A computation is a sequence of configurations C0, C1, C2, . . . with Ci → Ci+1
for each i. Computations may be finite or infinite. Achieving positive results
in this model depends on excluding computations in which subpopulations are
isolated from each other or are only permitted to communicate at inopportune
times. In [3], a computation was defined to be fair if for every configuration C
that occurs infinitely often in the computation, if C → C′, then C′ also occurs
infinitely often in the computation. This condition is intended to capture the
effect of a probability 1 property without directly incorporating probabilities;
for example, if pairs of agents are selected at random to interact, the resulting
computation is fair with probability 1. In Sect. 2.4 we generalize this fairness
condition to deal with messages in transit.

To allow agent states to contain information other than the output value,
states in Q are mapped to outputs from a finite output alphabet Y by an output
function. Similarly, inputs from a finite input alphabet Σ are mapped to states
in Q by an input function I : Σ → Q. An input X assigns a symbol from
Σ to each agent in the population; the corresponding input configuration is
denoted I(X). Because the agents are anonymous and every pair may interact
and because we consider predicates, it is immaterial which agent is assigned each
symbol [3], and we may consider inputs and configurations as finite multisets.
Multisets are denoted by upper-case letters, and individual elements are denoted
by lower-case letters. We use the notation A + B for the union of multisets A
and B, and A+ a for the union of multisets A and {a}. The notation kA, where
k is a non-negative integer and A is a multiset, is used for the multiset in which
every element occurs with k times its multiplicity in A.

A configuration C is output-stable if, for any C′ reachable from C by a
sequence of zero or more transitions, the vector of output values in C′ is equal to
the vector of output values in C. A predicate P on finite multisets X of elements
from Σ is stably computed by a given protocol if every fair computation of the
protocol from an input configuration I(X) eventually reaches an output-stable
state in which all agents output the correct value for P (X). As an example, a
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protocol with inputs {0, 1} and identity input and output functions in which
(1, q) �→ (1, 1) and (0, q) �→ (0, q) stably computes the OR of all the initial
inputs. Output-stability does not require that the states of individual agents do
not change; it is enough that any changes are not visible in the outputs of agents.
This fact is exploited by protocols that include “leader bits” or similar tokens
that move freely among agents without affecting the output after convergence.

2.3 One-Way Communication in Population Protocols

To model one-way communication in a population protocol, we restrict the tran-
sition function so that the new state of the sender does not depend on the state
of the receiver. There are two natural ways to do this. We may stipulate that an
interaction does not change the state of the sender at all. This is an observa-
tion model, in which the sender is passively observed by the receiver. Formally,
if (p, q) �→ (p′, q′), then p′ = p.

Alternatively, in a transmission model, the sender of a message can detect
that it has sent the message, but learns nothing about the state of the recipient.
This corresponds to requiring that for any two transitions (p1, q1) �→ (p′1, q

′
1) and

(p2, q2) �→ (p′2, q
′
2), that if p1 = p2 then p′1 = p′2. Since each transmission model

formally includes the corresponding observation model, it is at least as powerful.
In both cases, the result is that communication is one-way: only the receiver

obtains any information about its partner’s state. We will refer to any protocol
with such one-way communication as a one-way population protocol. In an
immediate delivery model, these are the only changes to the basic popula-
tion protocol model. Immediate delivery models can be thought of as models of
interaction.

However, the standard asynchronous message-passing model assumes that (1)
processes cannot be compelled to send messages if they do not want to and (2)
messages may not be delivered immediately. Including the first feature requires
classifying states based on whether or not they are enabled to send messages.
For the non-immediate models we assume that send events only occur for states
q in some subset QS of Q; states in QS are called send-enabled.

To address (2), we split a joint transition into two separate sending and
receiving events. Configurations are extended to include two components: the
population configuration, giving the states of all the agents, and the multiset
of messages in transit, which for simplicity we take to be pairs consisting of
sender ids and elements of the state space Q. (The sender ids are used only in
the model discussed in Sect. 4.) Each transition (p, q) �→ (p′, q′) is split into a
send event which changes the state of an agent from p to p′ and adds p to the
multiset of messages in transit, and a receive event in which p is removed from
the multiset of messages in transit and the state of some agent is updated from
q to q′. As with immediate delivery, we can consider both a delayed transmis-
sion model in which a sender can record that it sent a message and a delayed
observation model in which a sender cannot.

Both the delayed transmission and delayed observation models require that
any agent be prepared to receive any message in any state. This may not give an
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agent enough time to respond to a message before the next incoming message
arrives. With queued delivery, an agent can enter into a state in which it refuses
to receive messages. Formally, we assume that only states in some subset QR of
Q can receive messages; states in QR are called receive-enabled. In the delayed
or queued models, the transition rule becomes a partial function whose domain
is QS ×QR, where QR = Q for delayed transmission or delayed observation and
QR ⊆ Q for queued transmission.1

Separating message transmission and receipt creates the possibility that an
agent may receive its own message. This can be thought of as including self-loops
in the interaction graph controlling which agents can communicate, which we
otherwise take to be complete. In general, we assume that this does not occur
in the immediate delivery models (which are interaction models) but may occur
in the delayed and queued delivery models (once a message is sent it may be
delivered to anyone.) In the full paper it will be shown that this has at most a
minor effect on the power of the models we consider.

2.4 Fairness Revisited

We generalize the fairness condition from [3], given in Sect. 2.2, to deal with
messages in transit. Because we permit partial transition rules, we also extend the
definition of a computation to be any sequence of configurations C0, C1, . . . such
that for each i, Ci → Ci+1 or Ci+1 = Ci. This does not change the reachability
relation on computations, but it does permit a simpler definition of fairness that
applies to computations that terminate (when no further transitions are enabled)
as well as non-terminating ones.

Let C0, C1, . . . be an infinite computation. A population configuration C oc-
curs infinitely often in this computation if there are infinitely many j such
that C is the population component of Cj . A population configuration C is infi-
nitely often enabled in this computation if there exist infinitely many j such
that C is the population component of some configuration reachable from Cj .
We say that this computation is fair if for every population configuration C that
is infinitely often enabled in the computation, C occurs infinitely often in the
computation.2

3 The Power of One-Way Population Protocols

We investigate what predicates on the multiset of input symbols are stably com-
putable in the models defined in Sect. 2.3 Note that for each of these models,
a direct product construction permits parallel execution of a finite collection
of different protocols, and therefore the set of stably computable predicates is
closed under Boolean combinations in each model.
1 In an observation model an agent cannot leave a non receive-enabled state; thus we

do not consider a queued observation model.
2 The antecedent of the condition may never be satisfied if the state space is un-

bounded, as is often implicit in the standard asynchronous message-passing model.
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3.1 Delayed Observation

The delayed observation model is very weak: an agent is unaware that it has sent
a message, and may receive messages that were sent in the distant past. This
effectively means that an agent may at any time receive messages containing any
state that has ever appeared in the computation. As a result, the most that a
protocol can do is detect the presence or absence of particular symbols in the
input.

Theorem 1. TH1 is the class of predicates stably computable in the delayed
observation model.

Lemma 2. Let P be a predicate in TH1. Then P is stably computable by a
delayed observation protocol.

Proof. Each state is a subset of the finite input alphabet. Input a is mapped to
{a}. Whenever an agent in state q receives a message q′, it updates its state to
q ∪ q′. The output function maps q to the value of P on this set of inputs. By
the fairness condition, the value of every state must converge to the set of inputs
present in the initial configuration, and the outputs will then be the correct value
of P . ��
The following cloning technique applies to both the observation models.

Lemma 3. Suppose a protocol in the delayed or immediate observation model
stably computes the predicate P . Suppose C

∗→ D and v is an agent such that
C(v) = p and D(v) = q. Let v′ be a new agent, and let C′ be C with v′ in state
p and let D′ be D with v′ in state q. Then C′ ∗→ D′.

Proof sketch. We use the computation from C to D to construct a computation
from C′ to D′ by duplicating every message eventually delivered to v in the
computation from C to D, and delivering one copy to v and one copy to v′.
The agents sending the duplicate messages are unaffected by the change because
these are observation models. ��
Lemma 4. Suppose P is stably computed by a delayed observation protocol.
Then P is in TH1.

Proof. We show that for any multiset X of inputs, if a ∈ X then P (X + a) =
P (X), which implies that P is determined solely by the presence or absence of
each input symbol and hence is in TH1.

Consider the finite graph whose nodes are configurations reachable from I(X)
that contain no messages in transit, with a directed edge from C to C′ if C

∗→ C′.
A final strongly connected component of this graph is one from which no other
strongly connected component of the graph is reachable. From I(X) we can reach
a configuration in a final strongly connected component F of this graph. Let F̂
denote all the configurations D, including those with undelivered messages, such
that C

∗→ D for some C ∈ F . For any configurations D and D′ in F̂ , D
∗→ D′
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by first delivering all messages in D. This implies that all configurations in F̂
are output-stable.

The set T of states that occur in configurations in F̂ is closed, that is, if
p, q ∈ T and (p, q) �→ (p, q′), then q′ ∈ T . To see this, assume not. Then,
take a configuration D in F̂ that contains p and let an agent in state p send
a message, putting p into messages in transit. Now mimic a computation from
D to a configuration D′ in F̂ containing q, leaving the message p undelivered.
Then deliver p to an agent in state q, arriving at a configuration in F̂ containing
q′, a contradiction.

Now consider any a in X . Let C be an output-stable configuration in F that
is reachable from I(X). Let q be the state in configuration C of an agent that
began with input a. Then by Lemma 3, a configuration C′ equal to C with a
new agent in state q is reachable from I(X + a). Because T is closed and the
states of C′ are all in T , C′ is output-stable and therefore P (X +a) = P (X). ��

3.2 Immediate Observation

In the immediate observation model, transitions are of the form (p, q) �→ (p, q′)
and there is no multiset of undelivered messages. For any constant k, an imme-
diate observation protocol can count the number of copies of each input symbol
up to k, making this model more powerful than the delayed observation model.
However, this is also the extent of its power.

Theorem 5. TH∗ is the class of predicates stably computable in the immediate
observation model.

Lemma 6. Every predicate in TH∗ is stably computable by an immediate ob-
servation protocol.

Proof. By Boolean closure, it suffices to give an immediate observation protocol
that stably computes an arbitrary threshold predicate: #(a) ≥ k. The states are
0, 1, 2, . . . , k. The input map takes a to 1 and every other symbol to 0; the pro-
tocol must determine whether there are at least k 1’s in the initial configuration.
The transitions are (i, i) �→ (i, i + 1) for all i = 1, 2, . . . , k− 1 and (k, i) �→ (k, k)
for all i = 0, 1, 2, . . . , k − 1, where all other transitions leave the argument pair
unchanged. The output map takes k to 1 and every other state to 0.

If there are no 1’s in the initial configuration, then it never changes. If there are
j 1’s in the initial configuration for some 0 < j < k, then any fair computation
eventually reaches a configuration in which the only nonzero states are 1, 2, . . . , j,
and this configuration never changes. In both cases, every output is 0 throughout
the computation.

If there are j ≥ k 1’s in the initial configuration, then any fair computation
must reach the configuration in which all states are k, and this configuration
never subsequently changes. In this configuration, every output is 1. (The full
paper will contain a proof that the number of states used in this protocol is
optimal.) ��
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Consider an immediate observation protocol that stably computes a predicate
P . The following property of output-stable configurations of P is very useful.
A set L of finite multisets of elements from some set S is called linear if there
exist a base element B ∈ L and a finite set of periods P1, . . . , Pd such that the
elements of L are precisely those of the form B + m1P1 + . . . + mdPd, where the
mi are nonnegative integers and the Pi are multisets of elements of S.

Lemma 7. The set of output-stable accepting (resp., rejecting) configurations is
a union of a finite collection of linear sets in which every period consists of a
singleton state.

Proof. A set is semilinear if it is a finite union of linear sets. The set A of
output-stable accepting configurations is downward closed, so its complement is
upward closed and therefore semilinear by Higman’s Lemma [16]. Because the
semilinear sets are closed under complement [14], A is semilinear.

Thus, A is a finite union of linear sets. Consider one of the linear sets, say L.
It has a base element B and a finite collection of periods, P1, . . . , Pd. Consider
the linear set L′ with base B and periods {q} for any state q that occurs in
some Pi. Clearly, L ⊆ L′, and we claim L′ ⊆ A, so that replacing each L
by its corresponding L′ gives the decomposition of A required by the lemma.
To see that the claim is true, consider any element C of L′. C consists of B
plus multiples of states q in the periods Pi. By taking B plus sufficiently large
multiples of the Pi’s we get a configuration C′ ∈ L such that C ⊆ C′. Because A
is downward closed, C ∈ A. The same proof works for the output-stable rejecting
configurations. ��

Lemma 8. Let P be a predicate that is stably computed by a protocol in the
immediate observation model. Then P is in TH∗.

Proof. By Lemma 7, the output-stable accepting configurations of the protocol
are the union of a finite collection of linear sets Li with singleton periods, and
similarly for the output-stable rejecting configurations, where the linear sets are
Mj . Let k be one more than the maximum cardinality of any of the bases of the
Li’s or Mj ’s.

Consider any finite multiset X of inputs for which #(a) ≥ k for some a.
Suppose X is accepted; a similar proof applies if X is rejected. If I(a) = q
then q occurs with multiplicity at least k in I(X). Consider any output-stable
configuration D reachable from C. D is in one of the linear sets Li. Because
the multiplicity of q exceeds the cardinality of the base of Li, some agent v in
state q in I(X) must have state q′ in D, where q′ is the singleton state of one
of the periods of Li. Thus, D + q′ is also in Li, so D + q′ is output-stable and
accepting. However, by Lemma 3, I(X)+ q

∗→ D + q′, and I(X)+ q = I(X + a),
so X + a must also be accepted by the protocol. Thus, for any input symbol a,
if #(a) ≥ k in input X , P (X +a) = P (X), which implies that P is in THk, and
therefore in TH∗. ��
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3.3 Immediate and Delayed Transmission

The immediate and delayed transmission models can stably compute all thresh-
old and modulo predicates, and therefore all predicates in REG. Thus they are
more powerful than the immediate observation model.

Theorem 9. Predicates in REG are stably computable in the immediate and
delayed transmission models.

Proof. By Boolean closure, it suffices to prove that all the threshold and modulo
predicates are stably computable in both models. We assume data values in the
set S = {0, 1, . . . , k} and a commutative monoid operation g(d1, d2) on this set
with identity 0. We describe a protocol to compute the g-sum of all the data
values in the input states. The states are (b, d), where b ∈ {0, 1} is a leader bit,
and d ∈ S. A transition with sender state (b, d) and receiver state (b′, d′) updates
the sender state to (0, d) and the receiver state to (1, g(d, d′)) if b = b′ = 1, to
(1, d) if b = 1 and b′ = 0, and leaves it unchanged otherwise.

The following invariant is preserved by each transition: the g-sum of the data
values of those agents and messages in transit with leader bit equal to 1 is the
g-sum of all the input data values. By fairness, eventually there will be just one
agent (or message in transit) with leader bit equal to 1, and its data value will
be the correct g-sum of all the input data values. Again by fairness, that data
value will be copied to every agent as the leader bit is passed among them.

For the threshold predicate #(a) ≥ k, a is mapped to (1, 1) and all other
input symbols are mapped to (0, 0). State (b, d) is mapped to output 1 if and
only if d = k. The monoid sum g(d1, d2) is min(k, d1 + d2). For the modulo
predicate #(a) ≡ j (mod (k + 1)) we take the same input function, map (b, d)
to output 1 if and only if d = j, and take the monoid sum g(d1, d2) to be
(d1 + d2) mod (k + 1). ��

The following theorem shows that REG does not exhaust the class of predicates
stably computable in the immediate and delayed transmission models. Let $ be a
symbol not in Σ and P a predicate over alphabet Σ. Define P$ be the predicate
over Σ ∪ {$} that is true if there are at least two agents in the population,
there is exactly one $ in the input, and P is true on the multiset of other input
symbols. For example, if P is the comparison predicate, #(a) > #(b), then P$
is the predicate that is true when the input contains exactly one $ and more a’s
than b’s, which is not in REG.

Theorem 10. Let P be a predicate over Σ that is stably computable in the
standard two-way model. Then P$ is stably computable in the immediate and
delayed transmission models.

Proof sketch. We run three protocols in parallel, one to verify that there are at
least two agents in the population, one to verify that there is just one $ in the
input, and one that performs a simulation of the two-way protocol computing
P on the rest of the input symbols, assuming that the first two conditions are
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satisfied. The first two conditions are in TH2 and TH1, respectively, and are
therefore computable, by Theorem 9.

The idea of the simulation is to use the unique input $ to generate a leader
token that passes from one simulated agent to another in the population. The
leader token nondeterministically chooses a simulated agent to be the initiator
and picks up its state (leaving behind a place marker), chooses another simulated
agent to be the responder, updates the responder’s state and waits until it returns
to the place marker to update the simulated initiator’s state, and then repeats
the whole sequence. The state of the extra agent (that had the input $) is updated
to reflect the outputs of the simulated agents. ��
The following theorem is an important restriction on the power of both trans-
mission models; its proof will appear in the full paper. Recall the definitions of
k-rich, k-core, and core-REG from Sect. 1.1.

Theorem 11. Let P be a predicate that is stably computable by an immediate
or delayed transmission protocol. Then for some k, the k-core of P is in REG.

Let P be the comparison predicate, #(a) > #(b). The 2-core of P$ is empty, and
therefore in REG, but no k-core of P is in REG, yielding the following corollary.

Corollary 12. The comparison predicate is not stably computable in the imme-
diate or delayed transmission models.

By generalizing Theorem 10 and combining it with Theorem 11, we get the
following characterization of the power of immediate transmission protocols; its
proof will appear in the full paper.

Theorem 13. A predicate P is stably computable in the immediate transmission
model if and only if P is stably computable in the standard two-way model and
some k-core of P is in REG.

3.4 Queued Transmission

The queued transmission model is the most powerful of the models we consider;
it is capable of simulating the standard model of two-way population protocols,
and (if no bounds are placed on the size of the multiset of messages in transit)
can generate an unbounded number of additional simulated agents. The intu-
ition is that a simulation can use messages in transit to represent agents of the
standard population protocol, and collect pairs of simulated agents at real nodes
to simulate transitions. To avoid deadlocks, we also include a floating population
of “release messages” that trigger nodes to release the simulated agents collected
so far.

Theorem 14. A predicate P is stably computable by a standard two-way popu-
lation protocol if and only if P is stably computable in the queued transmission
model using at most a linear number of messages in transit.

A detailed proof is given in the full paper. The full paper will also include a
proof that the delayed transmission model with a linear bound on messages in
transit is equivalent in power to the immediate transmission model, based on
Theorems 11 and 14.
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4 Local Fairness Is Weak Even with Unbounded States

In this section, we consider an anonymous message-passing model with the fol-
lowing local fairness condition: if some process sends a particular message m in-
finitely often, then each process receives message m infinitely often. This model
turns out to be surprisingly weak. Even if the states of processes and the lengths
of messages may grow without bound, protocols in this model cannot distinguish
two multisets of inputs if the same set of values appears in each. Since this model
subsumes the finite-state models of the preceding sections, it demonstrates why
the stronger global fairness condition assumed there is necessary. The definition
of THk generalizes straightforwardly to an infinite alphabet Σ.

Theorem 15. Let Σ denote the (finite or infinite) set of possible input values.
A predicate P on finite multisets of elements from Σ is stably computable in
the asynchronous message-passing model with the weak fairness condition if and
only if P is in TH1.

Proof. Consider the delayed observation protocol from the proof of Lemma 2 to
determine the set of all inputs that occur in the initial configuration, modified
so that each agent sends its state every time it runs. Clearly every message is a
subset of the initial set of input values, so there are only finitely many possible
messages in each computation. Every message sent by a process with input value
x contains the element x, and it sends infinitely many messages, so eventually
every process receives a message containing x. Thus, the state of every process
eventually consists of the initial set of input values.

For the converse, assume that we have an algorithm to stably compute a
predicate P , and let A and B be two multisets of values from Σ such that the
same set of values appears in each. Let n = |A| and n′ = |B|. Let C0 and C′

0 be
initial configurations where processes have inputs from A and B, respectively. We
construct two executions α and α′ starting from C0 and C′

0. Let m1, m2, . . . be an
arbitrary sequence of messages where every possible message appears infinitely
often. We construct the executions α and α′ in phases, where phase i will ensure
that message mi gets delivered to everyone if that message has been sent enough
times. Let Ci and C′

i be the configurations of α and α′ at the end of phase i.
Our goal is to prove the following claim: for all i ≥ 0 and for all x ∈ Σ, the

state of each process with input x in Ci is the same as the state of each process
with input x in C′

i. Assume that we have constructed the first i− 1 phases of the
two executions so that the claim is satisfied. Suppose we run all processes in lock
step from Ci−1 and C′

i−1 without delivering any messages. There are two cases.
Case (i): Eventually, after ri rounds, the run from Ci−1 will have at least n
copies of mi in transit and, after r′i rounds, the run from C′

i−1 will have at least
n′ copies of mi in transit. Then, the ith phase of α and α′ is constructed by
running each process for max(ri, r

′
i) rounds without delivering any messages,

and then delivering one copy of mi to every process. This ensures the claim will
be true for Ci and C′

i.
Case (ii): Otherwise, we allow every process to take one step without delivering
any messages. (This clearly satisfies the claim for Ci and C′

i.)
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It remains to show that both α and α′ satisfy the weak fairness condition,
and then it will follow from the claim that P (A) = P (B). First, notice that
every process takes infinitely many steps in α and α′. If some process v sends a
message m infinitely many times in α or α′, it will also be sent infinitely many
times by a process with the same input value in the other execution (since a
process with a particular input experiences the same sequence of events in both
executions). Suppose m is never delivered after phase i to some process w in one
of the two executions. Eventually, there will be n copies of m in transit in Cj

for some j > i and n′ copies of m in transit in C′
j′ for some j′ > i. Consider the

first occurrence of m in the sequence m1, m2, . . . that comes after mj and m′
j .

During the corresponding phase, m will be delivered to every process, including
w, a contradiction. Thus, α and α′ satisfy the weak fairness condition. ��

5 Conclusion

We defined several models incorporating one-way communication and message-
passing into population protocols and compared their ability to compute predi-
cates on multisets of inputs. We have fully characterized the power of the delayed
and immediate observation models, the immediate transmission model, and the
delayed and queued transmission models with a linear bound on messages in
transit. The queued transmission model with a linear bound on messages in
transit is equivalent in power to the original model of two-way population pro-
tocols. In contrast to traditional message-passing systems, the strongest model
is the most asynchronous: in the queued transmission model, messages in transit
can effectively act as extra storage. An important feature of the queued transmis-
sion model is that receivers can exercise flow control over incoming messages;
the delayed transmission model, lacking such flow control, is strictly weaker.
The problems of characterizing the power of the delayed and queued transmis-
sion models with no bound on messages in transit remains open, as does the
related problem from [3] of whether the power of standard two-way model is
more than SLIN.
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Abstract. Due to the distributed and resource constrained nature of
wireless sensor networks, their design proves to be difficult. We present a
resource management framework, which integrates a data-centric light-
weight operating system with a publish/subscribe middleware. In this
framework, the main system abstraction is data for both local and net-
worked processing. The resultant system software is extended with a
quality-aware adaptation mechanism, which configures system timeliness
according to the actual application requirements. A feedback-based con-
trol mechanism is used to iteratively tune the resultant data granularity
in order to fit user requirements. Our design is evaluated by simulations
and the concepts were also implemented in our sensor network testbed.

1 Introduction

Wireless Sensor Networks represent the first step towards ubiquitous computing
[1]. They are massively distributed systems built of small embedded devices with
computing and wireless communication capabilities and provide data-collection
or possibly real-time control functionality by means of collaboration. Typically,
a number of sensor nodes are scattered over the target area to monitor and
provide information about requested phenomena.

The considered distributed platform differs from traditional computing sys-
tems in numerous aspects. Sensor nodes are usually small, battery powered,
and possess extremely limited hardware resources, such as CPU and storage ca-
pacity. Due to the finite battery supply, the utilised mechanisms have to be as
energy-efficient as possible to maximize the lifetime of the system. Despite these
constraints, complex tasks can be performed by means of collaboration. These
embedded devices use self-organised wireless networking to interact with each
other; however, their communication is very limited as well. Since nodes may
arbitrarily arrive or leave the network, the available resources can dynamically
change during the operation. Moreover, both nodes and their communication
are characterised by uncertainty.

Designing distributed applications in a harsh environment having the above-
mentioned characteristics proves to be difficult. The management of distributed,
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scarce and dynamic system resources is too complicated to be performed by each
application, consequently mechanisms are needed to automate common distrib-
uted system functionalities. Moreover, the possibly immense number of nodes
might produce a vast amount of information, usually much more than required.
The quality and granularity of the acquired output should be managed according
to the actual user/application requirements. Thus, resource management should
also be capable of adapting service qualities, consequently managing what re-
sources are spent for.

We introduce a system software framework that integrates a data-centric real-
time operating system with a publish/subscribe middleware. This results in a
resource management framework, which presents similar system abstractions
for local and networked application development. We extend the resultant re-
source management framework with quality-awareness, which supports dynamic
quality-aware reconfiguration of distributed mechanisms based on the applica-
tion requirements. The provided framework is evaluated through simulations and
the mechanisms are also implemented in our sensor network testbed.

The rest of this paper is organized as follows. Section 2 introduces the prob-
lems that motivate our work in more details. The middleware that extends the
local abstractions of our local operating system is proposed in Section 3. Sec-
tion 4 describes our feedback-based quality-management mechanism, followed by
evaluation of the proposed framework in Section 5. Section 6 overviews related
work and finally Section 7 concludes the paper.

2 Motivation

Collaborative applications involve several entities and utilise several resources
concurrently in order to fulfil a common goal. The management and coordina-
tion of such distributed entities make the development very complex. Moreover,
dealing with the dynamic and uncertain nature of the underlying system poses
additional burden on the application developer.

The issue of handling system complexity is already present in traditional
distributed systems, in which the objective of System Software is to support
managing the system, consequently easing application development [12]. Sys-
tem software presents programming interfaces to perform standard operations,
thus prevents designers to handle all the underlying issues of the actual sys-
tem. This results not only in a simpler and generic development framework, but
also helps avoiding reimplementing common features in each of the applications.
Traditionally, the system software of distributed systems was divided into three
parts: (i) Operating System (OS), which hides low-level hardware concepts by
providing APIs for standard concerns, such as starting or stopping processes or
allocating memory (ii) Communication Protocol Stack, which decomposes net-
work communication tasks into a set of standardized layers (iii) Middleware that
aims at hiding the networked nature of the underlying system and providing
high-level, often application-dependent, programming primitives for distributed
applications.
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Providing generic system primitives calls for abstractions that shield develop-
ers from the underlying complexities of the distributed system. These high-level
concepts should be useful for development purposes, however should not contain
any details regarding the specific low-level system implementation. Selecting
suitable abstractions for sensor networks is especially challenging. The complex
distributed nature of the system makes it difficult to provide simple interfaces
that can be maintained with a wide range of resources. For instance, the offered
programming primitives should be independent of the number of available nodes
or the topology they are actually organised in.

On top of that, the resources to manage can change dynamically. As new nodes
enter the network, their offered services should get involved in the collaboration,
although, when nodes leave or fail during operation, the system should tolerate
the lack of their effort. The dynamic changes occurring in the actual network
should not be realised by the applications that rely on high-level system primi-
tives. System support should resolve such changes by reacting and adapting to
changing resources.

As severe resource changes occur, some system services might not be main-
tained without degradation. However, in sensory environments quality-resource
tradeoffs are usual between the accuracy of their acquired readings and the re-
source consumption. The system might operate at several quality levels, however
the availability of resources and the minimal quality requirement specified by the
application decide on suitable choices.

Resource management of sensor networks should consider such tradeoffs as
tunable knobs of the system. Adaptively influencing quality metrics and conse-
quently regulating resource demands has considerable benefits. It increases the
resource-tolerance, because in case of insufficient resources the system might
keep on operating with decreased quality levels. On the other hand, even if
resources allow high granularity, avoiding acquiring unnecessary details saves
energy. Thus, resource management should not only satisfy mechanisms with
dynamic resource availabilities, but also manage quality-resource tradeoffs to
regulate resource demands.

In this article, we introduce the design and evaluation of a resource manage-
ment framework that provides system primitives suiting dynamic systems. The
aim of our design is to set up a framework, in which both local and distributed
applications rely on similar system primitives. Moreover, the proposed system
software is capable of adapting qualities according to the available resources and
user requirements, thus actively influencing the timeliness of system mechanisms.

3 Data-Centric System Software for Sensor Networks

A major issue in designing system software is to find the suitable system abstrac-
tions that are practical for common application needs and are not related to the
actual resources. Since sensor networks are built of processing elements that
might arrive and leave the network arbitrarily, processing models that explicitly
describe the actual processing flow are not practical.
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Fig. 1. Data-Centric Entities in AmbientRT

Our framework follows the data-centric concept [5]. In a data-centric system,
actions are triggered by the data that is available in the network. Thus it focuses
on the data being produced and consumed, but does not explicitly define the
actions to be taken with produced data. That is the role of the system to pass
the data to a suitable processing entity and activate it.

In the following, we show both the operating system and middleware levels of
our data-centric system software.

3.1 AmbientRT

AmbientRT [8] is an embedded operating system developed and successfully ap-
plied by our research group. It was designed to fit the extremely limited memory
and computing capacity of sensor nodes, while being able to provide real-time
guarantees and facilitating energy-efficient operation.

AmbientRT is a data-centric operating system, in which the main system
abstraction, called an event, can range from a system event to data measured
from an environmental phenomena. The system is built of software components
called Data Centric Entities (DCE), which perform the processing tasks. As
illustrated in Figure 1, the execution of DCEs are triggered by the availability
of a data. During their execution, they usually require system resources and
produce output data that can trigger other entities.

In the example illustrated in Figure 1, entity DCE1 is activated by the pe-
riodic event timer, and perform a sensor measurement, presenting output data
as a result. This periodically produced data activates two other entities: DCE2
and DCE3 representing storage and radio transmission functionality.

The central element of AmbientRT is the Data Centric Scheduler, which
keeps track of all entities and has two main functionalities: to control which
entities should be activated and to manage the data flow between the entities.
The kernel uses a scheduling method called Earliest Deadline First with Inher-
itance [10] that enforces mutual exclusion of shared resources without the need
of semaphores. This scheduling mechanism enables entities to meet real-time
requirements.

The data-centric architecture of AmbientRT enables dynamic runtime recon-
figuration, which makes it especially suitable for dynamic environments. As new
entities appear and others are removed, the execution flow reconfigures automat-
ically. AmbientRT makes the development of data-centric applications simple,
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enabling the developer to focus on evolving data instead of tracking dynamically
available entities.

AmbientRT is a lightweight operating system facilitating a data-driven model
for application development. It suits systems with limited and dynamic resources,
but focuses only on the local aspects of system management. Since we consider
distributed systems, it is still difficult to implement networked applications by
using only local system support.

3.2 Publish/Subscribe Middleware for AmbientRT

To facilitate the development of networked applications, a network-wide resource
management framework is required. We propose a middleware that extends the
concepts of AmbientRT and provides efficient support for developing distributed
applications.

To suit the data-centric philosophy, we apply a publish/subscribe middleware.
In a publish/subscribe middleware, some nodes publish data that others are sub-
scribed for. These abstractions are independent of the actual network topology
and of available resources; it is focused on the data, therefore it is suitable to
extend our operating system. The role of the middleware is to offer simple ap-
plication interfaces and to manage disseminating data to the subscribed nodes.

The communication of the proposed middleware relies on the services of-
fered by LMAC, our energy-efficient medium access control (MAC) protocol
[14]. LMAC uses Time Division Multiple Access (TDMA) to share the com-
munication channel among the participants. It divides time into slots and sets
up schedules that determine when the nodes are allowed to transmit. LMAC
uses a distributed algorithm that relies only on local information to create the
schedules. LMAC is especially efficient in resource constrained environments, be-
cause nodes that do not communicate in a time slot might turn off their radios,
consequently saving significant amount of energy.

LMAC also includes a basic routing functionality, which enables nodes to
send data to the sink node, consequently supporting data collection in sensor
networks. Each node chooses one of its neighbours that is closer to the sink node,
and maintains it as a parent in the data collection tree. Our middleware relies
on this data collection tree, thus no energy is wasted to set up an additional
routing hierarchy.

With this basic routing support, we aimed at building a multicast routing
scheme to disseminate data to the subscribed places. Our routing scheme is sim-
ilar to the Protocol Independent Multicast (PIM) [4] protocol. Similarly to PIM,
subscribers send requests to a rendezvous point setting routing states along the
path. A published message is first sent to the rendezvous point, which subse-
quently routes it to all subscribers. However, PIM was proposed for wide area
networks, and our mechanism contains additional optimizations to save as much
energy as possible.

The nodes of the proposed publish/subscribe middleware perform as follows.
When a node subscribes for a data type, it sends a subscription message to
the root node. This message registers the interest both at the root as well as



Quality-Aware Resource Management for Wireless Sensor Networks 417

STi : subscription table of node i
PST j

i : proxied subscripiton table of node i for neighbour node j
uplinki : uplink of node i
downlinkj

i : downlink of node i to neighbour j
inlink : the link on which event e arrived from

Procedure1: node i subscribes for event e:
if ((e /∈ STi) ∧ (¬∃j : e ∈ PST j

i )) send e on uplinki;
add e to STi;

End;

Procedure2: node i publishes event e:
if (e ∈ STi) dispatch to local operating system;
send e on uplinki;
∀j: if (e ∈ PST j

i ) send e on downlinkj
i ;

End;

Procedure3: Subscribing network packet arrives:
if ((e /∈ STi) ∧ (¬∃j : e ∈ PST j

i )) send e on uplinki

add e to PST inlink
i ;

End;

Procedure4: Publishing network packet arrives:
if (e ∈ STi) dispatch to local operating system.
∀j: if ((e ∈ PST j

i ) ∧ (j �= inlink)) send e on downlinkj
i ;

if (inlink �= uplinki) send e on uplinki

End;

Fig. 2. Pseudocode of Event Dissemination

at each intermediate hops, so the delivery paths from the root node towards
each interested parties are formed. When an arbitrary node wants to publish
a data, it sends the data to the root node first, which disseminates it along
all the interested links of the tree. The pseudocode of the message dispatch-
ing algorithm run by the nodes is shown in Figure 2. The actions of the root
node differ slightly, because it cannot send messages further in the uplink
direction.

Each node i in the network is a participant of the data delivery tree, con-
sequently each node maintains links both to its parent (uplinki) and to all its
descendants (downlinkj

i ). Since the tree is set up by LMAC, the middleware as-
sumes that this information is available. The middleware registers subscriptions
in order to maintain the dissemination tree. Each node i stores a subscription
table for maintaining its own interest (STi), and also proxied subscription tables
(PST j

i ) for the interests of all the descendants.
When a node subscribes to a new data type, an entry is added to its local

subscription table. Then, if the data is neither present among the local nor the
proxied subscriptions, the subscription message is sent to the parent. If the data
is already present in any of the subscription tables, an interest has already been
registered at the parent, thus it is not necessary to do it again. Similarly, as
a subscription message arrives, the packet is sent to the parent only if it has
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Fig. 3. Example Data Dissemination in the Proposed Middleware

not been sent before. The incoming interest is stored in the proxied subscription
table of the particular incoming link.

When data is published, the middleware disseminates it to all the subscribed
parties. If the actual node itself is subscribed, the message has to be dispatched
to the local operating system first. Afterwards, the publishing message is dis-
seminated to the parent node, and to each of the interested descendants. When a
publishing network packet arrives, it is not necessary to disseminate the message
on the incoming link. Thus, if the publishing message arrived from a descendant,
it is sent to the parent and also to each interested downlinks, except the one it
arrived from. When a publication arrives from the parent, it is disseminated only
to the interested descendants.

An example is illustrated in Figure 3. Nodes (N1 . . . N7) form a tree rooted
at N1. When N3 subscribes for data type D1, its subscription message (SD1) is
sent to N2 first. N2 registers that the link towards N3 is interested in D1, then
it forwards SD1 to the root (N1), which registers the interest of N2. When N6
publishes D1, it is first delivered to the root through N5, then it is sent through
the previously registered route to N3. However, when N4 publishes the data,
N3 gets the message directly from N2 even before N1 receives it, thus making a
shortcut in the network.

Although not shown in the pseudocode, the routing mechanism can recover
from errors, because the subscription tables hold enough redundancy to avoid
loosing routing information. When a branch of the tree is broken, the root of
the subtree knows all subscription information of the nodes below it. Thus, as
it is reattached to an arbitrary parent, it can send its subscription tables in one
step, and the system is just ready to operate again.

Since LMAC is a schedule-based protocol, nodes that are willing to transmit
have to wait first until their time slot arrives. However, the delay of transmis-
sions is quite deterministic. It was shown previously, that when time slots are
randomly chosen amongst the available slots, the average transmission delay is
a half time frame. Because our routing uses the shortest possible path to con-
nect the sink to the receivers, the resultant dissemination delay is the smallest
possible, dependent on the depth of the tree.

The introduced mechanism runs at each node of the network, forming a collab-
orative middleware service. Towards the operating system, it provides interfaces
to publish or subscribe data. Consequently, the data-centric entities of the local
operating system can be easily extended to publish their output events network-
wide. Other nodes, that are subscribed, automatically get the data delivered.
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Fig. 4. Quality Management in a Data-Centric System

The dissemination of data and the management of the network are not a burden
on the application developer any more.

The mentioned middleware extends the data-centric concepts of AmbientRT
for networked applications. The events of AmbientRT can be easily exported to
the network, thus making local and networked processing almost identical from
the development point of view. The proposed middleware relies on the com-
munication services offered by LMAC, thus efficiently utilising already existing
communication infrastructure. However the solution is centralized at the root
node, such topology is reasonable in systems that perform data collection.

4 Quality-Aware Adaptation

The resource management of sensor networks should be capable of managing the
hosted mechanisms by controlling their resultant quality levels, consequently
regulating their resource demands. With the support of the introduced data-
centric architecture, we propose a quality management scheme, which adapts
network services according to application/network/user requirements. In this
section, the applied architecture and our feedback-based quality management
mechanism are introduced.

4.1 Quality Management Architecture

The mechanisms capable of operating with several quality levels usually possess
parameters that influence the granularity of their output. Unfortunately, these
parameters are often kept as fixed internal values, not supplying any interfaces
to change them. To facilitate the system managed tuning of quality levels, we
made the introduced system software capable of accessing and adjusting these
control knobs accordingly.

The idea is depicted in Figure 4. We let the processing entities of AmbientRT
define their parameters, which manipulate the quality of their resultant data.
The quality tuning changes only the accuracy of the provided information but
not the data type itself. Entities offer these knobs to the local operating system,
where a local quality manager is in charge for setting them to suit the actual
requirements.

We utilised the proposed publish/subscribe middleware to facilitate network-
wide quality management. The network of local quality managers utilise
data-centric middleware services to enable remote quality changing. Thus, they
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subscribe for control messages and rely on the middleware to get control messages
relevant to local knobs delivered. When such control occurs, the middleware is
in charge for delivering the control messages to each tunable party. As a result,
all members of the given distributed service are configured accordingly.

For instance, the distributed service providing periodic temperature measure-
ments might offer knobs to influence the sampling frequency or the resolution of
the measurements. The processing entities thus offer their knobs for the operat-
ing system, which subscribes for them at the middleware. During the operation
of the system, such control messages can speed up or slow down measurements.

The resultant quality management scheme is thus capable of reconfiguring
collaborative services, since it delivers data to all its members. By relying on the
dissemination service offered by the middleware, the required implementation
effort remains quite small.

4.2 Feedback-Based Quality Control

Even though the knobs can be controlled network-wide, choosing an adequate
configuration is challenging.

Control messages might be sent by any of the network participants, but we
assume that a particular entity exists for quality management. This entity might
be the base station, the network maintainer or the user of the application. The
manager has to evaluate the actual conditions and make decision about the
suitable control parameters accordingly. The choice is determined by the amount
of available resources and the application requirements.

Using a centralised quality manager is a limiting factor, because in many cases
local control needs to be executed. For instance, nodes around areas of interest
need to perform more accurate measurements than nodes that do not observe
any interesting data. Such local control can be performed by forming multiple
smaller groups, and executing the control mechanism within the group.

Applications express their interest by Quality of Interest (QoI) specifications.
If the terms of QoI specify high-level properties, such as the confidence of pat-
tern detection algorithm, determining the required parameters requires addi-
tional models. Thus, the terms in which the QoI is expressed might require
application-dependent knowledge to facilitate finding the parameters resulting
in the required quality.

Such models are usually not available, but the QoI requirements can also be
expressed in more generic terms. We focus on the case, when QoI is given as
statistical requirements over the provided data. For instance, QoI might specify
the number of required samples or the standard deviation of the result. Such
metrics can be evaluated independently of the actual application, therefore the
parameter adjustment results in a more general framework.

Since such statistical properties can be evaluated based on purely resultant
data, we apply a feedback-based approach to continuously adapt the system
to meet the requirements. As shown in Figure 5, the quality of the result is
continuously evaluated and compared to the expectations. If the difference makes
it reasonable, parameters of the mechanism are changed.
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Fig. 5. Closed Loop Quality Control

The design of such a closed loop control is well supported by the design
framework of digital control engineering. The basic task is to find the suitable
controller for the given real world system to achieve an expected output. How-
ever, when choosing the controller the behaviour of the controllable system has
to be considered. Whether the actual statistical QoI involves delays or transient
events, the controller has to fit the proportional, integral or derivative nature of
the controlled system.

Thus, our proposed quality-management scheme is based on the continuous
analysis of results and applies closed-loop feedback control to satisfy require-
ments. Since application-dependent models might support abstract QoI adjust-
ment, in case of purely statistical requirements such models are not required.

5 Evaluation

We have investigated the efficiency of the proposed schemes by simulations as
well as by real experiments. This section introduces the evaluation of the mid-
dleware and the quality adjustment scheme.

5.1 Overhead of Data Dissemination

First we evaluate the efficiency of the proposed publish/subscribe middleware.
Since the routing topology of LMAC was used, our focus is to investigate how
efficiently it is used and not to examine the tree itself.

We implemented the proposed publish/subscribed scheme in the OMNeT++
discrete event simulator [11]. For simulations, we applied a random topology of
40 nodes scattered uniformly in a 600x600m area. The communication range was
given 125m.

First, we investigated the overhead of the dissemination tree. We define over-
head as the number of nodes participating in the data dissemination without
being among the subscribers. We have changed the number of subscribers from
1 to 40 and recorded the number of such nodes. We evaluated both cases when
the subscribers were randomly selected and geographically nearby. The results
are shown in Figure 6.

When the subscribers were randomly selected, the overhead grows for a while
and then decreases to zero. It grows as long as new branches became involved
in the delivery tree, possibly involving nodes to forward the message without
actually being interested in it. As the tree becomes more and more saturated
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with subscribers, the chance that such a purely forwarding node becomes a
subscriber grows. Consequently, the overhead decreases and when all the nodes
are subscribed for the data, the overhead reaches zero.

The overhead has a different trend when the subscribers are geographically
nearby. Nearby nodes often have the same node as their parent, thus the overhead
does not grow as new nodes subscribe. Moreover, if the chosen node is the parent
of a previous subscriber, the overhead just decreases. Consequently, the overhead
gradually decreases, except for the case when a completely new branch of the
tree becomes involved in the dissemination. It can be seen from Figure 6 that the
overhead reaches zero when 15 subscribers are present. In this case, all members
of a tree branch are subscribed, however after this point a completely new branch
has to be involved again.

Another interesting metric is the number of messages needed for a new node
to join the data delivery tree. The subscription is sent upwards in the tree until
it reaches either the root or a node that is already subscribed. Figure 7 shows
how many times the subscription messages has to be transmitted. As expected,
it is always less than the depth of the tree, which is actually 6. It can be seen,
that except the two peaks at second 1 and 7, the number of required messages
is quite small. The reason that peaks occur is that as nodes in a new branch
subscribe, the subscription message should travel several hops upwards in the
tree to meet an already registered node.

Our evaluation focused on how efficient our data delivery service is over a given
routing tree. We have evaluated the overhead, and have seen that it depends on
the spatial distribution of subscribers. The dissemination is usually more efficient
if the subscribers are nearby. We have also seen that the number of messages
required for subscriptions usually remains quite small, because it has to reach
only the closest actually subscribed node.

5.2 Quality-Aware Adaptive Control

We evaluate the feedback-based quality control mechanism through a sample. As-
sume a typical sensor network to collect measurements periodically over a tar-
get area. The QoI specification describes how many of the nodes need to provide
measurements. It specifies minimum and maximum thresholds for the number of
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samples received by the sink node. Since the number of available sensors might be
very large, it is sufficient to sample only a subset of nodes and turn the rest off or
to power-saving mode. The sink evaluates the received samples in specified time
intervals and controls the system accordingly.

To influence the number of nodes participating in the sampling process, we
use probabilistic sampling with a p probability value as a parameter. Each node
receiving p decides to participate the measurements with probability p and is
turned off otherwise.

The sink node is in charge of determining p according to the received number of
samples. Since the controller entity is also a resource constrained unit, we decided
to keep the controller mechanism as simple as possible. Changing the applied p
probability results in immediate changing of the number of collected samples and
does not contain dynamic effects. Consequently, the applied controller adjusts p
proportionally to the ratio of required and desired number of samples.

First, we evaluated the control mechanism by simulation, in which the previ-
ously described setup of 40 nodes was used. The root node collects the measured
data, and performs the control in every second if it is necessary. The QoI re-
quirement was chosen to require 8 to 12 samples per interval. The simulation
starts with a stationary environment, then after second 25 nodes die uniformly.

The number of actually received samples and the number of available nodes
can be seen in Figure 8. First, it can be seen that despite the large number
of nodes, only the required number of samples was produced. Second, notice
that as the number of available nodes decreases, the number of received samples
mostly remains within the specified interval. When the specification is not met
(for instance at second 50), the network is immediately re-adjusted so that the
target QoI is met again. Finally, after second 88 the requirements cannot be met
any more.

Besides, we have also implemented this quality-aware control mechanism in
our sensor network testbed and evaluated it through real experiments. The target
number of samples was set to be either 2 or 3 in each 4 seconds time intervals.
We used 10 sensors that are gradually deployed in the first half of the time, then
started to turn them off. The number of samples received by the sink node are
shown in Figure 9. It can be seen that the number of received samples has never
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reached 10, thus the system did not activate some of the sensors in order to save
their battery capacity. After deploying all the nodes, we started turning off those
nodes that were actually sampling. No degradation can be seen in the second
half of the time, thus the system reacted to changes and reconfigured well in
order to maintain the specifications.

Although the number of acquired samples did not grow more than 5, unat-
tractive fluctuations can be observed. The reason is that as some samples were
missing due to transmission errors, the system thought nodes became unavail-
able and proportionately increased the probability. Since the actual node was
available at the following sampling, the resultant amount of acquired informa-
tion was increased unnecessarily. Thus, the system overreacted communication
errors and resulted in transients. However these transients might be suppressed
by filtering techniques, which would result in increased responsiveness and longer
convergence time.

As we have shown, adjusting sampling parameters based on the QoI require-
ments is efficient to avoid unnecessary actions. Resource management controls
system qualities to meet and maintain the target quality level even during re-
source changes. With the support of the proposed publish/subscribe middleware;
controlling of distributed control knobs is simple. However, the experimental re-
sults show that even if the controllable quantity does not produce dynamic be-
haviour, communication uncertainties might call for more complex controllers.

6 Related Work

The massively distributed, dynamic and uncertain environment poses several
new concerns to system software [12]. To respond to these concerns, several
operating system platforms have been proposed for extremely resource con-
strained systems. TinyOS [7] is one of the first and best known among them. Its
component-based development model is easy to use, however it is not capable
of providing real-time execution guarantees and the dynamic reconfiguration of
system components is not easy. In contrast, AmbientRT [8] is a data-centric op-
erating system, enabling real-time execution guarantees and supporting simple
runtime reconfiguration.

In addition to operating systems, numerous sensor network middleware plat-
forms have been evolved to provide high level distributed services. Cougar[2]
and SINA [13] are two middleware platform examples, both having database-
like query processing support, which is usually required by typical sensor network
applications. Unfortunately, these platforms are not able to guarantee quality of
service requirements.

QoS support for Wireless Sensor Networks can be categories into network,
reliability and application guarantees [3]. Although our framework enables the
reconfiguration of any system mechanism, we focused on QoS on the application-
level. MiLAN [6] is a middleware platform, also supporting quality requirements.
It is proactive, meaning that it is capable of influencing its mechanisms accord-
ing to higher level requirements. It aims at utilising only the most suitable set
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of resources to meet the actual requirements, although its scheme of expressing
quality requirements is quite limited. Similarly, MASTAQ [9] is a middleware,
supporting quality of service requirements, which uses a dynamic quality man-
agement mechanism, similar to our solution.

Existing QoS-aware middleware platforms do not involve the operating sys-
tem in the reconfiguration process. To the best of our knowledge, there is no re-
source management framework for sensor networks integrating the same concepts
ranging from operating system to middleware, and also enabling quality-aware
dynamic reconfiguration.

7 Conclusion and Future Work

The contribution of this paper is twofold. First, we proposed a system software
that integrates a real-time lightweight operating system and a publish/subscribe
middleware. The resulted framework provides similar data-centric abstractions
for the development of both local and networked applications. It results in easier
application development, because shields developers from the possibly distrib-
uted nature of the system.

By extending this system support we built a resource management framework
that supports quality-aware adaptation. It allows the system to tune quality
levels according to application requirements and actual resource availabilities.
Its feedback-based control loop mechanism continuously evaluates the resultant
quality metrics and satisfies application QoI requirements by tuning knobs of
possibly distributed applications.

Future research will look into combining the publish/subscribe middleware
with the MAC protocol, because it might result in additional energy savings.
Influencing the routing hierarchy based on the distribution of subscribers might
result in a more efficient routing tree. The time slot allocation could also be
changed based on the amount of information to be disseminated, consequently
influencing throughput and delay of the data dissemination.

As the experiments pointed out, designing a closed loop controller is not
straightforward even in case of a simplistic controllable quantity. The quality
should converge into the desired range rapidly, however transient events should
be suppressed. We aim at developing models to facilitate quality management
based on higher level quality concerns. Moreover, we aim at making the quality-
management scheme more distributed, applying local control mechanisms.
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Abstract. Topology control is the problem of selecting neighbors for
each node in a wireless network, so that the resulting network has a
number of useful properties. More precisely, a topology control protocol
P takes as input a network G and aims to construct a spanning sub-
graph GP , that is sparse, “energy minimizing” and has sufficient connec-
tivity so as to guarantee multiple short paths between pairs of nodes in
G. Currently, topology control protocols assume that nodes in G reside
in some Euclidean (usually, 2-dimensional) space and rely on geomet-
ric information such as node locations and pairwise distances between
nodes to produce GP with appropriate properties. However, these pro-
tocols are extremely sensitive to errors in location information and this
feature makes them impractical because errors in location and distance
information are pervasive in practical systems. This paper presents and
analyzes two randomized topology control protocols that are tolerant
to errors in pairwise distance estimates. The first protocol, called RTC
(short for randomized topology control) uses no geometric information,
relying only on connectivity information and is therefore completely im-
mune to errors in location or distance information. The second protocol,
called ε-RTC, generalizes the first protocol. Allowing for errors in dis-
tance estimates, but assuming that relative errors are bounded above by
ε, the second protocol produces an output network that is symmetric,
connected, sparse, and has good spanner properties. As ε → 0, ε-RTC be-
haves like the XTC protocol (R. Wattenhofer and A. Zollinger, “XTC: A
practical topology control algorithm for ad-hoc networks”, WMAN 2004)
and for large values of ε, it behaves like RTC. Our results hold whenever
the input network is a unit disk graph or even a quasi unit disk graph.

1 Introduction

An ad-hoc wireless network consists of a set of nodes, each equipped with a
wireless radio. Each node u can send messages to all nodes within its radio
range and all such nodes are potential neighbors of u. However, for reasons
explained below, it is preferable for u to communicate with an appropriately
chosen subset of these reachable nodes. Informally speaking, the topology control
problem is one of selecting neighbors for each node so that the resulting network
has a number of useful properties. More precisely, let V be a set of nodes that
can communicate via wireless radios and for each v ∈ V , let N(v) denote the
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set of all nodes that v can reach when transmitting at maximum power. The
induced digraph G = (V, E), where E = {(u, v) | v ∈ N(u)}, represents the
network in which every node has chosen to transmit at maximum power and
has designated every node it can reach, as its neighbor. The topology control
problem is the problem of devising a protocol P for selecting a set of neighbors
NP (v) ⊆ N(v) for each node v ∈ V . The induced digraph GP = (V, EP ), where
EP = {(u, v) | v ∈ NP (u)} is typically required the satisfy properties such
as symmetry (if v ∈ NP (u) then u ∈ NP (v)), sparseness (|EP | = O(|V |)) or
bounded degree (|NP (v)| ≤ c for all nodes v and some constant c), connectivity,
and the spanner property.

Current Research on Topology Control. In the last few years, a generation of
topology control protocols have been proposed that achieve many of the prop-
erties mentioned above by assuming that the nodes in V lie in some Euclidean
(typically, 2-dimensional) space and each node knows its spatial location with
respect to some global coordinate system [6, 7, 8, 9, 14]. In our view, the main
problem with these protocols is the reliance on node location information and
the lack of robustness with respect to errors in this information. Node location
information is typically available only if nodes are GPS enabled or if an expensive
protocol called localization [2] is run. For sensor networks, which typically con-
sist of a large scale deployment of small devices, assuming that nodes are GPS
enabled is unrealistic because of cost and size requirements [2, 3, 11]. No matter
which approach is used to find node locations, errors in location information
are quite likely. Unfortunately, none of the topology control protocols mentioned
above make allowances for any errors in location information and are extremely
sensitive to these errors. In other words, critical properties of the output network
such as connectivity or bounded maximum degree are not guaranteed to hold
even if there is a small amount of error in location information.

More recently, Wattenhofer and Zollinger [15] have proposed a topology con-
trol protocol called XTC that does not rely on specific location information for
each node, but rather requires each node to only know the distance to each of its
neighbors. Although this is an improvement over location-based topology con-
trol algorithms, XTC still suffers from lack of robustness to errors in distance
information. As we show in Sect. 2, there are networks modeled as unit disk
graphs (UDGs) such that when XTC is run on these, its output network is dis-
connected and contains vertices with unbounded degree, even in the presence
of arbitrarily small errors in pairwise distance estimates. This is a significant
problem because in general it seems hard to accurately estimate pairwise node
distances. For example, [15] mentions the use of the strength of the received
signal (RSSI) as a way to estimate distances. While this technique is relatively
cheap and does not need additional hardware, it is known to have low accuracy.
Alternate techniques such as the use of ultrasound hardware have been proposed
[13]. These have better accuracy than RSSI, but are significantly costlier, both
in terms of additional hardware and in terms of energy consumption.

Our Results. We present two randomized topology control protocols. The first
protocol, called RTC (short for “randomized topology control”) uses no geo-
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metric information, relying only on connectivity information. As a result RTC is
completely immune to errors in distance or location information. Our second pro-
tocol, called ε-RTC is parameterized by ε > 0, which stands for the maximum
relative error on pairwise distance estimates. This error represents the uncer-
tainty of the measured distance between pairs of nodes. A precise uncertainty
model would include errors due to noise, response time, energy consumption, de-
vice deterioration, ambient influences, as well as calibration equipment [5]. Such
an uncertainty model is beyond the scope of this paper. Allowing for errors in
distance estimates, but assuming that relative errors are bounded above by ε,
ε-RTC produces an output graph that is symmetric, connected, sparse, and has
spanner properties. As ε → 0, ε-RTC behaves like XTC and for large values of
ε, ε-RTC behaves like RTC. In general, ε-RTC combines the advantages of XTC
and RTC. Unlike XTC, ε-RTC is tolerant to errors bounded by ε and unlike RTC,
ε-RTC uses distance information to the extent they are reliable and attempts
to drop long links in favor of short links, thereby saving on energy consump-
tion. Both RTC and ε-RTC are randomized variants of XTC and are therefore
extremely light weight, needing only two rounds of communication. We prove
properties of the output network of RTC and ε-RTC assuming that the input
network G is a UDG. However, our results hold even when G is a quasi UDG [1].

2 The XTC Protocol

We start this section by reproducing the XTC protocol from [15], followed by a
description of properties of XTC.

1. Establish order ≺u over u’s neighbors in G
2. Broadcast ≺u to each neighbor in G; receive orders from all neighbors
3. Select topology control neighbors:
4. Nu := { }; Ñu := { }
5. while (≺u contains unprocessed neighbors){
6. v := least unprocessed neighbor in ≺u

7. if(∃w ∈ Nu ∪ Ñu : w ≺v u)
8. Ñu := Ñu ∪ {v}
9. else
10. Nu := Nu ∪ {v}
11. }

As mentioned in [15], the XTC protocol (shown above) consists of three main
steps: (i) neighbor ordering (Line 1), (ii) neighbor order exchange (Line 2), and
(iii) edge selection (Lines 3-11). In the edge selection step a vertex u decides
to drop v from its set of neighbors if there is a vertex w that u and v both
agree is mutually better. More precisely, u drops v from its neighborhood if
there exists w such that w ≺u v and w ≺v u. In the protocol, the variable Nu
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is the set of neighbors that u has chosen to retain and the variable Ñu is the
set of neighbors that u has chosen to drop. Let EXTC = {(u, v) | v ∈ Nu}
and GXTC = (V, EXTC). Also, let ≺= {≺u| u ∈ V (G)} denote the collection of
neighborhood orderings. Note that the protocol leaves≺ unspecified. Thus GXTC

is a function, not only of the input network G, but also of the neighborhood
orderings ≺. An appropriate choice of ≺ is critical to the success of XTC.

It is shown in [15] that GXTC is symmetric provided G is and this is indepen-
dent of ≺. It is also shown that if G is a Euclidean graph and ≺u is defined as

v≺u w⇔(|uv|,min{idu, idv},max{idu, idv})<(|uw|,min{idu, idw}, max{idu, idw}),
(1)

then GXTC is connected. We will call the above neighborhood ordering, a
distance-based ordering. Note that in the distance-based ordering, ids are only
used to break ties. Finally, it is shown that if ≺ is a distance-based ordering
and G is a UDG, then the maximum degree in GXTC is at most 6 and GXTC is
planar.

Even though XTC is fast and simple and its output graph has many desired
properties, it is extremely sensitive to small perturbations in the neighborhood
orderings. In the following subsections we show XTC’s lack of robustness to small
errors.

2.1 GXT C May Be Disconnected

We now present a simple example of a 4-vertex unit disk graph that illustrates
the lack of robustness of XTC. As shown in [15], if neighborhood orderings are
distance-based (as in (1)), then GXTC is connected. Note that according to
this definition, each node u orders its neighbors in increasing order of distance,
breaking ties using ids. We show that if the distance estimates are erroneous,
even slightly, then the resulting neighborhood orderings are such that GXTC

becomes disconnected.
Consider the unit disk graph shown in Fig. 1. Pick an ε, 0 < ε < 1− 1√

2
. Let

the lengths of the edges be |ab| = |dc| = (1 − ε)/2 and |ac| = |bd| = 1/2. Then
the neighborhood orderings ≺ according to (1) are:

d ≺a b ≺a c c ≺b a ≺b d b ≺c d ≺c a a ≺d c ≺d b.

Now suppose that node b incorrectly estimates distance |ba| as (1+ε)/2 and node
c incorrectly estimates distance |cd| as (1 + ε)/2. The resulting neighborhood
orderings

∼≺= {∼≺a,
∼≺b,

∼≺c,
∼≺d} are shown below.

d
∼≺a b

∼≺a c c
∼≺b d

∼≺b a b
∼≺c a

∼≺c d a
∼≺d c

∼≺d b.

If XTC is run with input
∼≺ then GXTC contains just the two edges {a, d}

and {b, c} and is therefore disconnected. Thus two incorrect estimates by an
arbitrarily small amount ε is sufficient to break connectivity.
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a b

d c

Fig. 1. A unit disk graph for showing the sensitivity of XTC to small perturbations.
The lengths of the edges are |ab| = |dc| = (1 − ε)/2 and |ac| = |bd| = 1/2.

2.2 GXT C May Have High Degree

To start with, suppose that we have three nodes u, v1, and v2 (refer to Fig. 2).
Fix an ε, 0 < ε < 1/2 and let |uv1| = d and |v1v2| = d

1+ε . If the length of the
third edge |uv2| is εd

1+ε , then the three points u, v2, and v1 would be collinear. To
make .uv1v2 a non-trivial triangle, pick |uv2| = 2εd

1+ε . If XTC were run, just on
.uv1v2, then vertex u would drop v1 from its set of neighbors in favor of vertex
v2. Likewise vertex v1 would drop u from its set of neighbors in favor of vertex
v2. This would eliminate the edge {u, v1}1 from the output graph. Now suppose
that there are errors in distance estimates such that lengths |uv1| and |uv2| are
unchanged, but the length |v1v2| is overestimated by a factor of (1 + ε), thus
making |v1v2| = |uv1|. Now, because ties are broken by node ids, we can assume
that idu < idv2 , thus forcing XTC to drop edge {v1, v2}, but retain {u, v1}. This
phenomenon can be forced to repeat arbitrarily. Specifically, u could have a third
neighbor v3 that plays the role relative to v2 that v2 played relative to v1. Let
the actual distances to the new vertex v3 satisfy

|v2v3| = 2εd

(1 + ε)2
, |uv3| =

( 2ε

1 + ε

)2
d, |v1v3| > d

(1 + ε)
,

and perturb |v1v3| and |v2v3| by a factor of (1 + ε) such that it would appear
that |v2v3| = |uv2| and |v1v3| > d. In addition, if we assume that idu < idv3 ,
then {v1, v3} and {v2, v3} would be dropped and {u, v2} would be retained. By
continuing this construction, we can force u to have arbitrarily high degree. Note
that in this example, some distances are unchanged while some are increased by
a factor of (1 + ε).

u v

vv

1

23

Fig. 2. A unit disk graph to illustrate how XTC may produce an output graph with
unbounded node degree

1 XTC outputs a symmetric network independent of the neighborhood orderings ≺.
This allows us to think of the edges of GXTC as undirected edges.
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2.3 Experimental Evidence

We have experimentally studied XTC’s sensitivity to errors in distance infor-
mation. We implemented XTC, RTC, and ε-RTC on a Pentium 4 PC running
Mathematica 5.0, release 1, with the Combinatorica add-on package. All algo-
rithms were run on UDGs and quasi UDGs that were generated by distributing
nodes in the plane in a variety of ways. One series of input graphs was constructed
by distributing nodes uniformly at random, at a density of 10 nodes per unit
square, and increasing the area of the square linearly from 1 to 77 square units.
Another series of input graphs was constructed by fixing the dimensions of the
graph at 5× 5 and increasing the density of nodes, placed uniformly at random,
linearly form 3 to 30 nodes per unit square. A final series of input graphs was
constructed by distributing nodes uniformly at random on a 5× 5 square, at a
density of 3 nodes per unit square, and then adding small regions (1

2 × 1
2 ) with

node density of 30 nodes per unit square.
To introduce errors in distance information, we fixed a value for ε > 0 and for

each edge {u, v} in each generated graph G, we picked two distance estimates
for |uv|, one to be assigned to u and the other to v. Both distance estimates are
picked uniformly at random from the interval [|uv| · (1 − ε), |uv| · (1 + ε)]. Our
experiments show that even for randomly generated instances of UDGs, XTC
produces disconnected output networks a substantial fraction of the time. For
example, for UDGs generated with node density of 3 nodes per unit square, for
ε = 0.4, XTC produces a disconnected network 60% of the time. Even for UDGs
of higher density, say 12 nodes per unit square, XTC produces a disconnected
network 40% of the time at ε = 0.4. See [10] for more details.

The plots below shows the increase in the maximum degree of GXTC , as
ε → 1. The plot on the left is for input UDGs with a density of 15 nodes per
unit square and the plot on the right is for input UDGs with a density of 30
nodes per unit square. In each case, at a certain value of ε, the maximum degree
of GXTC exceeds beyond 5, which is the upper bound on Δ(GXTC) assuming
completely accurate distances. Notice that in the case of the higher density
graphs, Δ(GXTC) exceeds 5 at around ε = 0.25.

Fig. 3. These are plots showing the increase in the maximum degree of GXTC as the
error bound ε increases
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3 Randomized Topology Control

Here we describe two randomized topology control protocols, RTC and ε-RTC.
Both are variants of XTC in that they first construct specific neighborhood or-
derings and then run XTC with these orderings as input. RTC ignores geometric
information completely, relying on randomization alone to obtain good expected
performance. ε-RTC does use the distance estimates, even though they may be
erroneous. However, in an attempt to foil the adversary, ε-RTC first does a ran-
dom perturbation of the distance estimates. The amount of perturbation is a
function of ε.

3.1 The RTC Protocol

RTC consists of two phases. In phase 1, a randomized edge labeling is constructed
and this is used by each node u to define a neighborhood ordering≺u on N(u). In
Phase 2, XTC is executed with these neighborhood orderings as input. Phase 1 of
RTC, which we call NeighborhoodOrdering, is shown below. It simply consists
of picking for each edge, a real number, uniformly at random from the range
[0, 1]. The choices for different edges are independent. Each node u maintains an
array du[v], v ∈ N(u), of local variables and for each edge {u, v} ∈ E(G), one of
the two endpoints u or v whichever has higher id, picks a real number d ∈ [0, 1]
to serve as the edge label for {u, v} and this is assigned to both du[v] and to
dv[u]. Finally, each node u constructs ≺u by ordering its neighbors in increasing
order of the values du[v], v ∈ N(u). We call the output of RTC, GRTC .

Algorithm NeighborhoodOrdering(u)

1. Node u sends to each neighbor v ∈ N(u), the value idu. It receives from each neighbor
v ∈ N(u), the value idv.

2. For each neighbor v with idv < idu, node u picks d ∈ [0, 1] uniformly at random and
assigns du[v] := d and sends du[v] to v.

3. For each neighbor v with idv > idu, node u receives dv[u] from v and assigns du[v] :=
dv[u].

4. Node u computes an ordering ≺u of its neighborhood N(u) such that for any pair of
vertices v1, v2 ∈ N(u):

v1 ≺u v2 ⇔ (du[v1], idv1) < (du[v2], idv2).

3.2 The ε-RTC Protocol

Let α(u, v) denote the distance between u and v, as estimated by u. It is possible
that α(u, v) �= α(v, u). We assume that the errors in distance estimates are
bounded. That is, there is an ε > 0, such that

(1− ε) · |uv| ≤ α(u, v) ≤ (1 + ε) · |uv|.
When the distance estimates satisfy this property, we say that they are ε-error
bounded.
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Like RTC, the ε-RTC protocol also consists of two phases, the first involves
constructing neighborhood orderings and the second involves calling XTC. The
first phase, called ε-NeighborhoodOrdering, is shown below. We assume that
all nodes know the value of ε and each node u can compute distance estimates
α(u, v) to all neighbors v ∈ N(u). Unlike in RTC, ε-NeighborhoodOrdering
does make explicit use of the estimated pairwise distances α(·, ·). For each edge
{u, v}, first the average of α(u, v) and α(v, u) is computed. Then, an interval
around this average is constructed and a value is picked, uniformly at random
from this interval. This value is assigned to both du[v] and dv[u] as the final label
of the edge {u, v}. We call the output of ε-RTC, Gε-RTC .

Algorithm ε-NeighborhoodOrdering(u)

1. Node u sends to each neighbor v ∈ N(u), the value idu. It receives from each neighbor
v ∈ N(u), the value idv.

2. Node u estimates the distance α(u, v) to each neighbor v ∈ N(u). Then node u sends to
each neighbor v ∈ N(u) the estimate α(u, v) and receives from each neighbor v ∈ N(u)
the estimate α(v, u).

3. For each neighbor v with idv < idu, node u computes a := (α(u, v) + α(v, u))/2 and
then picks d ∈ [a(1 − δL), a(1 + δR)] uniformly at random and assigns du[v] := d and
sends du[v] to v. Here, δL = 2ε/(1 + ε) and δR = 2ε/(1 − ε).

4. For each neighbor v with idv > idu, node u receives dv[u] from v and assigns du[v] :=
dv[u].

5. Node u computes an ordering ≺u of its neighborhood N(u) such that for any pair of
vertices v1, v2 ∈ N(u):

v1 ≺u v2 ⇔ (du[v1], idv1) < (du[v2], idv2).

4 Analysis of RTC and ε-RTC

In this section we show that the output networks produced by RTC and ε-RTC
are sparse. Specifically, we show that for any node u, its expected degree in
GRTC is bounded above by O(log degG(u)) and its expected degree in Gε-RTC is
bounded above by O(1). We use the notation degG(u) to denote degree of node
u in the graph G. Before we prove our sparsity results, we quickly show that
both GRTC and Gε-RTC are symmetric and connected.

It is observed in [15] that if G is symmetric, then so is GXTC no matter what
≺ is. As a corollary we obtain that both GRTC and Gε-RTC are symmetric since
the algorithms RTC and ε-RTC are just implementations of XTC with specific
choices of ≺. Connectivity of GRTC and Gε-RTC follows from the following result
due to [4, 15]. Before we state the result we need a definition.

Definition. Let S be an arbitrary set on which a total order <S is defined. The
collection of neighborhood orderings ≺= {≺u| u ∈ V (G)} is said to be consistent
if there is a labeling of the edges � : E → S such that for any two neighbors
v1, v2 ∈ N(u),
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v1 ≺u v2 ⇔ (�{u, v1}, idv1) < (�{u, v2}, idv2).

In the above, < denotes the lexicographic ordering on S × ID, where ID is the
space of all node ids. It is worth emphasizing that E is the set of undirected edges
and therefore every edge {u, v} gets a single label, that is, �{u, v} = �{v, u}.
Theorem 1. [4, 15] Let ≺ be a collection of consistent neighborhood orderings of
G. If XTC is executed with input ≺ and G is connected then GXTC is connected.

The above theorem essentially says that as long as some edge labels are agreed
upon and used to construct the neighborhood orderings, connectivity is guaran-
teed. These edge labels need have nothing to do with actual pairwise distances.
From the fact that RTC and ε-RTC both execute XTC with a consistent col-
lections of neighborhood orderings, we obtain that both GRTC and Gε-RTC are
connected.

Theorem 2. GRTC and Gε-RTC are both symmetric and connected.

4.1 Bound on Vertex Degrees

Here is a simple and useful fact about the probability that the neighbors of a
node u are ordered in ≺u in a certain way. This follows from the fact that in
RTC, for any node u, each ordering of its neighbors is equally likely to be ≺u.

Lemma 1. Let v1, v2, . . . , vt be neighbors of u. Then, Prob[
∧t

i=2 v1 ≺u vi] = 1
t .

Theorem 3. Let G be a UDG and let H = GRTC . For any vertex u of G

E[degH(u)] = O(log degG(u)).

Proof. Since G is a UDG, the neighborhood N(u) of u can be partitioned into
at most 5 cliques. For some integer t, 1 ≤ t ≤ 5, let {N i(u) | i = 1, 2, . . . , t}
be a partition of N(u) into t cliques. Let degi

G(u) = |N i(u)|, for each i =
1, 2, . . . , t and let degi

H(u) be the number of nodes in N i(u) that continue to
be neighbors of u in H . Then degH(u) =

∑t
i=1 degi

H(u) and by linearity of
expectation E[degH(u)] =

∑t
i=1 E[degi

H(u)]. We will now show that

E[degi
H(u)] = Θ(log degi

G(u)) = O(log degG(u)).

Since t ≤ 5, we have that E[degH(u)] = O(log degG(u)).
Fix i, 1 ≤ i ≤ t, and let d = degi

G(u) and N i(u) = {v1, v2, . . . , vd} such that
v1 ≺u v2 ≺u · · · ≺u vd. For each j = 1, 2, . . . , d, let Xj denote the indicator
random variable that equals 1 if {u, vj} ∈ E(H) and 0 otherwise. Then, by lin-
earity of expectation, E[degi

H(u)] =
∑d

j=1 E[Xj ] =
∑d

j=1 Prob[Xj = 1]. Given
that v� ≺u vj for each � = 1, 2, . . . , j − 1, for the edge {u, vj} to be present in
H , it must be the case that u ≺vj v�, for each � = 1, 2, . . . , j − 1. Therefore,

Prob[Xj = 1] ≤ Prob[∧j−1
�=1u ≺vj v�].
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By Lemma 1, Prob[∧j−1
�=1u ≺vj v�] = 1/j. Therefore,

E[degi
H(u)] =

d∑
j=1

Prob[Xj = 1] ≤
d∑

j=1

1
j

= Θ(log d) = Θ(log degi
G(u)).

This completes the proof.

The above proof can be modified to obtain a corresponding “high probability”
result.

Theorem 4. Let G be an n-vertex UDG and H = GRTC . Then, Δ(H) =
O(log n) with high probability.

Proof. Assuming that n ≥ 3, we extend the last line of the above proof.

E[degi
H(u)] =

d∑
j=1

Prob[Xj = 1] ≤
d∑

j=1

1
j
≤ ln d + 1 < 2 ln n.

Since degi
H(u) =

∑d
j=1 Xj and the Xj’s are negatively correlated binary random

variables, we can use the standard Chernoff bound [12] to show that degi
H(u)

exceeds 6 lnn with very small probability. Specifically,

Prob[degi
H(u) > 6 lnn] <

(e2

33

)2 ln n

<
1
n2 .

Using the union bound we observe that the probability that there exists a vertex
u and index i, 1 ≤ i ≤ 5 such that degi

H(u) > 6 lnn is less than 5/n. This implies
that the probability that Δ(H) exceeds 30 lnn is less than 5/n. Thus, Δ(H) is
at most 30 lnn with probability at least 1− 5/n.

Now we prove the sparseness of Gε-RTC . Specifically, we show that the expected
degree of each vertex u in Gε-RTC is bounded above by a constant. Before we
embark on this proof, we state a simple inequality that expresses a connection
between the actual distance |uv| between a pair of neighbors u and v and the
eventual edge label du[v] assigned by ε-RTC.

Lemma 2.

|uv| · (1− ε)2

(1 + ε)
≤ du[v] ≤ |uv| · (1 + ε)2

(1 − ε)
.

Theorem 5. Let G be a UDG and suppose that the pairwise distance estimates
α : V ×V → /+ are ε-error bounded. Let H = Gε-RTC. Then there is a constant
C such that for any vertex u ∈ V , E[degH(u)] ≤ C.

Proof. Set η = (1 + ε)3/(1 − ε)3. For this proof to go through, we require that
η < 2. This happens whenever

ε <
(21/3 − 1)
(21/3 + 1)

= 0.115013....
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For notational ease we denote the constant 0.115013... above by Ω. In other
words, our proof goes through when ε is around 1/9 or smaller. A more compli-
cated analysis can be used for larger values of ε between Ω and 1; we skip that
for conciseness.

Set θ = π/2− sin−1(η/2) and t = � 2π
θ �. Partition the unit disk centered at u

into cones, C1, C2, . . . , Ct such that each cone Ci, 1 ≤ i < t, makes an angle θ
at u, Ct makes an angle of at most θ at u. It is worth noting that as ε → 0, we
see that η → 1 and therefore θ → π/3. Also, when ε → Ω from below, we see
that η → 2 from below and θ → 0. In short, as ε increases, our cone partition
becomes more fine.

Let {N i(u) | i = 1, 2, . . . , t} be a partition of N(u) into t subsets such that all
nodes in N i(u) lie in cone Ci. Note that each N i(u) induces a clique in G because
θ ≤ π/3 for all values of ε < Ω. Let degi

G(u) = |N i(u)|, for each i = 1, 2, . . . , t and
let degi

H(u) be the number of nodes in N i(u) that continue to be neighbors of u in
H . Then degH(u) =

∑t
i=1 degi

H(u) and by linearity of expectation E[degH(u)] =∑t
i=1 E[degi

H(u)]. We will now show that E[degi
H(u)] ≤ c, where c is a constant

in the sense that it is independent of the size of the network, but does depend
on ε. From this, it immediately follows that E[degH(u)] ≤ t · c. Note that t is
also independent of the size of network and depends only on ε. Hence, we have
that E[degH(u)] ≤ C, for some constant C.

Fix i, 1 ≤ i ≤ t, and let d = degi
G(u) and N i(u) = {v1, v2, . . . , vd} such that

v1 ≺u v2 ≺u · · · ≺u vd. For each j = 1, 2, . . . , d, let Xj denote the indicator
random variable that equals 1 if {u, vj} ∈ E(H) and 0 otherwise. Then, by
linearity of expectation, E[degi

H(u)] =
∑d

j=1 E[Xj ] =
∑d

j=1 Prob[Xj = 1]. We
now calculate Prob[Xj = 1].

Given that v� ≺u vj for each � = 1, 2, . . . , j − 1, for the edge {u, vj} to be
present in H , it must be the case that u ≺vj v�, for each � = 1, 2, . . . , j − 1.
Therefore,

Prob[Xj = 1] ≤ Prob[∧j−1
�=1u ≺vj v�],

= Prob[∧j−1
�=1dvj [u] < dvj [v�]],

=
j−1∏
�=1

Prob[dvj [u] < dvj [v�]]. (2)

The last equality follows from the mutual independence of the events {dvj [u] <
dvj [v�] | � = 1, 2, . . . , j − 1}. These events are mutually independent because in
ε-RTC each edge label du[v] is obtained by a random perturbation and these
are done independently. We will now compute an upper bound on Prob[dvj [u] <
dvj [v�]], where 1 ≤ � ≤ j − 1. Fix � and for notational ease let v ≡ v�. We now
prove a geometric property that follows from the fact that dvj [v] < dvj [u] and
from our choice of θ.

Claim: Given that θ = π/2− sin−1(η/2) and that dvj [v] < dvj [u], it follows that
|vjv| ≤ |vju|.
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u

v

vj

x

γ

α

β

γ
1

2

Fig. 4. This shows the triangle uvjv

Proof. Refer to Fig. 4. To show that |vjv| ≤ |vju|, we will show that β ≤ α. This
is equivalent to showing that γ1 ≥ γ2. To obtain a contradiction suppose that
γ1 < γ2. This implies that |ux| < |xv|.

Since v ≺u vj , we have that du[v] < du[vj ]. Combining this with Lemma 2 we
obtain

|uv| · (1− ε)2

(1 + ε)
≤ du[v] < du[vj ] ≤ |uvj | · (1 + ε)2

(1− ε)
.

This yields

|uv| < (1 + ε)3

(1− ε)3
· |uvj | = η · |uvj |.

Combining the inequalities |ux| < |xv|, |uv| < η · |uvj| with the fact that
|ux| + |xv| = |uv|, we get that |ux| < η/2 · |uvj |. Now notice that sin γ1 =
|ux|/|uvj| < η/2, implying that γ1 < sin−1(η/2). Using the fact that β ≤ θ and
that θ was chosen to satisfy θ = π/2− sin−1(η/2), we get that β < π/2− γ1. In
other words, β + γ1 < π/2, which is a contradiction.

Let b = |vjv|. Then, both α(vj , v) and α(v, vj) are bounded above by b · (1 + ε)
and therefore their mean, which we will denote by α{vj , v}, is also bounded
above by b · (1 + ε). Since b = |vjv| ≤ |vju|, we obtain in a similar manner that
α{vj , u}, the mean of α(vj , u) and α(u, vj) is bounded below by b · (1 − ε).

Now recall that dvj [u] is chosen uniformly at random from the interval
[Lu, Ru], where Lu = α{vj , u} · (1 − δL) and Ru = α{vj , u} · (1 + δR). Note
that Ru satisfies

Ru = α{vj , u} · (1 + δR) ≥ b · (1− ε) · (1 + δR) = b · (1 + ε).

Thus, as shown in Fig. 5, the right endpoint Ru lies to the right of α{vj , v}.
Similarly, recall that dvj [v] is chosen uniformly at random from the interval
[Lv, Rv], where Lv = α{vj , v} · (1 − δL) and Rv = α{vj , v} · (1 + δR). Now note
that Lv satisfies:

Lv = α{vj , v} · (1− δL) ≤ b · (1 + ε) · (1 − δL) ≤ b · (1− ε).
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Lu Lv Ru Rv

α jα j{v  , u} {v  , v }

Fig. 5. This is the configuration of the point α{vj , u}, the interval [Lu, Ru] around it,
the point α{vj , v}, and the interval [Lv, Rv ] around it. Note that Lv is to the left of
α{vj , u} and Ru is to the right of α{vj , v}.

Thus, as shown in Fig. 5, the left endpoint Lv lies to the left of α{vj, u}.
We now show that the interval [Lv, Ru] is fairly large, compared to both

[Lu, Ru] and [Lv, Rv]. Recalling that Ru ≥ b · (1 + ε) and Lv ≤ b · (1− ε), we see
that Ru − Lv ≥ b · (2ε). Furthermore, we have that

Rv−Lv =α{vj, v}·(1+δR)−α{vj, v}·(1−δL) ≤ b·(1+ε)·(δR+δL)=b·(2ε)· 2
(1− ε)

.

Therefore,
Ru − Lv

Rv − Lv
≥ 1− ε

2
and

Ru − Lv

Ru − Lu
≥ 1− ε

2
.

The latter follows from the fact that Ru−Lu ≤ Rv −Lv. From these bounds, it
follows that

Prob
[
dvj [u] ∈ [Lv, Ru] and dvj [v�] ∈ [Lv, Ru]

]
≥ 1− ε

4
.

Given that both dvj [u] and dvj [v] are in [Lv, Ru], either the event dvj [u] < dvj [v]
or the event dvj [u] > dvj [v] occurs. Because of symmetry, the likelihood of these
two possibilities is the same and therefore,

Prob
[
dvj [u] > dvj [v]

]
≥ 1− ε

8
,

implying that

Prob
[
dvj [u] < dvj [v]

]
≤ 7 + ε

8
.

Plugging this upper bound in (2), we get that Prob[Xj =1] ≤ (7+ε
8 )j−1. Therefore,

E[degi
H(u)] ≤

d∑
j=1

(7 + ε

8

)j−1
≤ 8

1− ε
.

4.2 Experimental Evidence for Sparseness

In this subsection we report on experiment results related to the maximum
degree of GRTC and Gε-RTC . Figure 6 shows the ratio Δ(GRTC)/ logΔ(G) as
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Fig. 6. Although maximum degree of GRTC is not bounded, it is comparable to log(Δ)

the size of G increases. In the plot on the left, the increase in the size of G is
due to an increase in the area in which the nodes of G are distributed. In this
case, the density of G remains fixed. In the plot on the right, the size of G is
increased by increasing the density of the graph, while keeping the area of the
graph fixed.

Theorem 3 claims that for any vertex u, the expected value of degGRTC
(u)

is bounded above by O(log degG(u)). This does not imply that E[Δ(GRTC)] =
O(logΔ(G)). To see this consider a graph G in which there are many nodes whose
degrees are equal to Δ(G). While it is true that for each of these high degree
nodes u, we would expect the degree of u in GRTC to be equal to O(log degG(u)),
it is also true that with significant probability at least one of these nodes will
have a degree in the output graph that is much larger than log degG(u). As a
result, Δ(GRTC) may drift above O(log Δ(G)) and this drift is more pronounced
as the number of high degree nodes increases. This phenomenon is illustrated
by the two plots. In the plot on the left the ratio Δ(GRTC)/ log Δ(G) tends to a
constant because even though the size of G is increasing, the density is not. The
plot on the right shows a steady increase because as the density of G increases,
there are more and more high degree vertices.

Below (Fig. 7) we show a 3-dimensional plot of the behavior of Δ(Gε-RTC)
with respect to varying values of ε and the density of the input UDG. For ε = 0
the plot shows that Δ(Gε-RTC) is bounded above by a constant. This is to be
expected because ε-RTC is the same as XTC for ε = 0. For large values of ε (say,
0.8 or more) the behavior of Δ(Gε-RTC) is similar to the behavior of Δ(GRTC).
This is also to be expected. What is more interesting is the behavior of Δ(GRTC)
for small, positive values of ε. Our plot shows that for small, positive ε, the value
of Δ(Gε-RTC) remains, more or less, a constant even though the density of G
increases. Theorem 5 claims that for any node u, the degree of u in Gε-RTC is
bounded above by a constant C (whose value depends on ε). While this implies
that the average degree of Gε-RTC is bounded above by C/2, it does not imply
that Δ(Gε-RTC) is bounded above by a constant. Hence, it is a pleasant surprise
to see Δ(Gε-RTC) so well behaved for small values of ε.
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Fig. 7. The behavior of Δ(Gε-RTC), as ε increases and as the density of G increases

4.3 Spanner Properties

Due to lack of space we do not present a detailed analysis of the spanner prop-
erties of GRTC and Gε-RTC here. We simply state our results without proof and
postpone the proofs and a discussion of the implications of these results to the
full version of the paper. Note that our results hold for arbitrary graphs and not
just UDGs.

Definition. Let H be a spanning subgraph of the graph G. H is said to be
a t-hop spanner of G if for any u and v in G, cH(u, v)/cG(u, v) ≤ t, where
cG(u, v) (respectively, cH(u, v)) is the number of hops in a shortest u, v-path in
G (respectively, H).

Theorem 6. Let G be an arbitrary graph. GRTC is a t-spanner of G for t =
O(1) and Gε-RTC is a t-spanner of G for t = log(1/δ), where δ is the smallest
distance |uv| between any pair of nodes in G.
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