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Preface

This volume contains the papers selected for presentation at the First Inter-
national Conference on Rough Sets and Knowledge Technology (RSKT 2006)
organized in Chongqing, P. R. China, July 24-26, 2003. There were 503 sub-
missions for RSKT 2006 except for 1 commemorative paper, 4 keynote papers
and 10 plenary papers. Except for the 15 commemorative and invited papers,
101 papers were accepted by RSKT 2006 and are included in this volume. The
acceptance rate was only 20%. These papers were divided into 43 regular oral
presentation papers (each allotted 8 pages), and 58 short oral presentation pa-
pers (each allotted 6 pages) on the basis of reviewer evaluation. Each paper was
reviewed by two to four referees.

Since the introduction of rough sets in 1981 by Zdzis�law Pawlak, many great
advances in both the theory and applications have been introduced. Rough set
theory is closely related to knowledge technology in a variety of forms such as
knowledge discovery, approximate reasoning, intelligent and multiagent systems
design, and knowledge intensive computations that signal the emergence of a
knowledge technology age. The essence of growth in cutting-edge, state-of-the-
art and promising knowledge technologies is closely related to learning, pattern
recognition, machine intelligence and automation of acquisition, transformation,
communication, exploration and exploitation of knowledge. A principal thrust
of such technologies is the utilization of methodologies that facilitate knowledge
processing. RSKT 2006, the first of a new international conference series named
Rough Sets and Knowledge Technology (RSKT) has been inaugurated to present
state-of-the-art scientific results, encourage academic and industrial interaction,
and promote collaborative research and developmental activities, in rough sets
and knowledge technology worldwide. This conference provides a new forum for
researchers in rough sets and knowledge technology.

It is our great pleasure to dedicate this volume to the father of rough sets
theory, Zdzis�law Pawlak, who passed away just 3 months before the conference.

We wish to thank Setsuo Ohsuga, Zdzis�law Pawlak, and Bo Zhang for acting
as Honorary Chairs of the conference, and Zhongzhi Shi and Ning Zhong for
acting as Conference Chairs. We are also very grateful to Zdzis�law Pawlak, Bo
Zhang, Jiming Liu, and Sankar K. Pal for accepting our invitation to be keynote
speakers at RSKT 2006. We also wish to thank Yixin Zhong, Tsau Young Lin,
Yingxu Wang, Jinglong Wu, Wojciech Ziarko, Jerzy Grzymala-Busse, Hung Son
Nguyen, Andrzej Czyzewski, Lech Polkowski, and Qing Liu, who accepted our
invitation to present plenary papers for this conference.

Our special thanks go to Andrzej Skowron for presenting the keynote lecture
on behalf of Zdzis�law Pawlak as well as Dominik Slezak, Duoqian Miao, Qing
Liu, and Lech Polkowski for organizing the conference.



VIII Preface

We would like to thank the authors who contributed to this volume. We
are also very grateful to the Chairs, Advisory Board, Steering Committee, and
Program Committee members who helped in organizing the conference. We also
acknowledge all the reviewers not listed in the Program Committee. Their names
are listed on a separate page.

We are grateful to our co-sponsors and supporters: the National Natural
Science Foundation of China, Chongqing University of Posts and Telecommu-
nications, Chongqing Institute of Technology, Chongqing Jiaotong University,
Chongqing Education Commission, Chongqing Science and Technology Com-
mission, Chongqing Information Industry Bureau, and Chongqing Association
for Science and Technology for their financial and organizational support. We
also would like to express our thanks to Local Organizing Chairs Neng Nie,
Quanli Liu, Yu Wu for their great help and support in the whole process of
preparing RSKT 2006. We also want to thank Publicity Chairs and Financial
Chairs Yinguo Li, Jianqiu Cao, Yue Wang, Hong Tang, Xianzhong Xie, Jun
Zhao for their help in preparing the RSKT 2006 proceedings and organizing of
the conference.

Finally, we would like to express our thanks to Alfred Hofmann at Springer
for his support and cooperation during preparation of this volume.

May 2006 Guoyin Wang
James F. Peters

Andrzej Skowron
Yiyu Yao
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Commemorating the life and work of Zdzis�law Pawlak�

If we classify objects by means of attributes,

exact classification is often impossible.

– Zdzis�law Pawlak, January 1981.

Abstract. This article celebrates the creative genius of Zdzis�law
Pawlak. He was with us only for a short time and, yet, when we look back
at his accomplishments, we realize how greatly he has influenced us with
his generous spirit and creative work in many areas such as approximate
reasoning, intelligent systems research, computing models, mathematics
(especially, rough set theory), molecular computing, pattern recognition,
philosophy, art, and poetry. Pawlak’s contributions have far-reaching im-
plications inasmuch as his works are fundamental in establishing new
perspectives for scientific research in a wide spectrum of fields. His most
widely recognized contribution is his brilliant approach to classifying
objects with their attributes (features) and his introduction of approx-
imation spaces, which establish the foundations of granular computing
and provides an incisive approach to pattern recognition. This article
attempts to give a vignette that highlights some of Pawlak’s remarkable
accomplishments. This vignette is limited to a brief coverage of Pawlak’s
work in rough set theory, molecular computing, philosophy, painting and
poetry. Detailed coverage of these as well as other accomplishments by
Pawlak is outside the scope of this commemorative article.

1 Introduction

This article commemorates the life, work and creative genius of Zdzis�law Pawlak.
He is well-known for his innovative work on the classification of objects by means
of attributes (features) and his discovery of rough set theory during the early

� Professor Zdzis�law Pawlak passed away on 7 April 2006.
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1980s (see, e.g., [7,19,24]). Since the introduction of rough set theory, there
have been well over 4000 publications on this theory and its applications (see,
e.g., [33,35]). One can also observe a number of other facets of Pawlak’s life
and work that are less known, namely, his pioneering work on genetic grammars
and molecular computing, his interest in philosophy, his lifelong devotion to
painting landscapes and waterscapes depicting the places he visited, his interest
and skill in photography, and his more recent interests in poetry and methods
of solving mysteries by fictional characters such as Sherlock Holmes. During his
life, Pawlak contributed to the foundations of granular computing, intelligent
systems research, computing models, mathematics (especially, rough set theory),
molecular computing, knowledge discovery as well as knowledge representation,
and pattern recognition.

This article attempts to give a brief vignette that highlights some of Pawlak’s
remarkable accomplishments. This vignette is limited to a brief coverage of
Pawlak’s works in rough set theory, molecular computing, philosophy, paint-
ing and poetry. Detailed coverage of these as well as other accomplishments by
Pawlak is outside the scope of this commemorative article.

The article is organized as follows. A brief biography of Zdzis�law Pawlak is
given in Sect. 2. Some of the very basic ideas of Pawlak’s rough set theory are
presented in Sect. 3. This is followed by a brief presentation of Pawlak’s introduc-
tion of a genetic grammar and molecular computing in Sect. 4. Pawlak’s more
recent reflections concerning philosophy (especially, the philosophy of mathe-
matics) are briefly covered in Sect. 5. Reflections on Pawlak’s lifelong interest
in painting and nature as well as a sample of paintings by Pawlak and a poem
coauthored by Pawlak, are presented in Sect. 6.

2 Zdzis�law Pawlak: A Brief Biography

Zdzis�law Pawlak was born on 10 November 1926 in �Lódź, 130 km south-west from
Warsaw, Poland [40]. In 1947, Pawlak began studying in the Faculty of Electrical
Engineering at �Lódź University of Technology, and in 1949 continued his studies
in the Telecommunication Faculty at Warsaw University of Technology. Starting
in the early 1950s and continuing throughout his life, Pawlak painted the places
he visited, especially landscapes and waterscapes reflecting his observations in
Poland and other parts of the world. This can be seen as a continuation of the
work of his father, who was fond of wood carving and who carved a wooden
self-portrait that was kept in Pawlak’s study. He also had extraordinary skill in
mathematical modeling in the organization of systems (see, e.g., [17,21,25]) and
in computer systems engineering (see, e.g., [13,14,15,16,18]). During his early
years, he was a pioneer in the designing computing machines. In 1950, Pawlak
constructed the first-in-Poland prototype of a computer called GAM 1. He com-
pleted his M.Sc. in Telecommunication Engineering in 1951. Pawlak’s publication
in 1953 on a new method for random number generation was the first article in
informatics published abroad by a researcher from Poland [10]. In 1958, Pawlak
completed his doctoral degree from the Institute of Fundamental Technological
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Research at the Polish Academy of Science with a Thesis on Applications of
Graph Theory to Decoder Synthesis. In 1961, Pawlak was also a member of a
research team that constructed one of the first computers in Poland called UMC
1. The original arithmetic of this computer with base “-2” was due to Pawlak
[11]. He received his habilitation from the Institute of Mathematics at the Pol-
ish Academy of Sciences in 1963. In his habilitation entitled Organization of
Address-Less Machines, Pawlak proposed and investigated parenthesis-free lan-
guages, a generalization of polish notation introduced by Jan �Lukasiewicz (see,
e.g., [13,14]).

In succeeding years, Pawlak worked at the Institute of Mathematics of War-
saw University and, in 1965, introduced foundations for modeling DNA [12] in
what has come to be known as molecular computing [3,12]. He also proposed a
new formal model of a computing machine known as the Pawlak machine [18,20]
that is different from the Turing machine and from the von Neumann machine.
In 1973, he introduced knowledge representation systems [19] as part of his work
on the mathematical foundations of information retrieval (see, e.g., [7,19]). In the
early 1980s, he was part of a research group at the Institute of Computer Science
of the Polish Academy of Sciences, where he discovered rough sets and the idea
of classifying objects by means of their attributes [22], which was the basis for ex-
tensive research in rough set theory during the 1980s (see, e.g., [5,6,8,23,24,26]).
During the succeeding years, Pawlak refined and amplified the foundations of
rough sets and their applications, and nurtured worldwide research in rough
sets that has led to over 4000 publications (see, e.g., [35]). In addition, he did
extensive work on the mathematical foundations of information systems during
the early 1980s (see, e.g., [21,25]). He also invented a new approach to conflict
analysis (see, e.g., [27,28,30,31]).

During his later years, Pawlak’s interests were very diverse. He developed a
keen interest in philosophy, especially in the works by �Lukasiewicz (logic and
probability), Leibniz (identify of indiscernibles), Frege (membership, sets), Rus-
sell (antinomies), and Leśniewski (being a part)). Pawlak was also interested in
the works of detective fiction by Sir Arthur Conan Doyle (especially, Sherlock
Holmes’ fascination with data as a basis for solving mysteries) (see, e.g., [32]).

Finally, Zdzis�law Pawlak gave generously of his time and energy to help oth-
ers. His spirit and insights have influenced many researchers worldwide. During
his life, he manifested an extraordinary talent for inspiring his students and col-
leagues as well as many others outside his immediate circle. For this reason, he
was affectionately known to some of us as Papa Pawlak.

3 Rough Sets

A brief presentation of the foundations of rough set theory is given in this section.
Rough set theory has its roots in Zdzis�law Pawlak’s research on knowledge rep-
resentation systems during the early 1970s [19]. Rather than attempt to classify
objects exactly by means of attributes (features), Pawlak considered an approach
to solving the object classification problem in a number of novel ways. First, in
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1.1: Blocks of Objects

The universe of objects

1.2: Sample Set Approximation

Fig. 1. Rudiments of Rough Sets

1973, he formulated knowledge representation systems (see, e.g., [7,19]). Then,
in 1981, Pawlak introduced approximate descriptions of objects and considered
knowledge representation systems in the context of upper and lower classifica-
tion of objects relative to their attribute values [22,23]. We start with a system
S = (X, A, V, δ), where X is a non-empty set of objects, A is a set of attributes,
V is a union of sets Va of values associated with each a ∈ A, and δ is called a
knowledge function defined as the mapping δ : X × A → V , where δ(x, a) ∈ Va

for every x ∈ X and a ∈ A. The function δ is referred to as knowledge func-
tion about objects from X . The set X is partitioned into elementary sets that
later were called blocks (see, e.g., [9,38]), where each elementary set contains
those elements of X which have matching attribute values. In effect, a block
(elementary set) represents a granule of knowledge (see Fig. 1.2). For example,
the elementary set for an element x ∈ X is denoted by B(x), which is defined by

B(x) = {y ∈ X | ∀a ∈ A δ(x, a) = δ(y, a)} (1)

Consider, for example, Fig. 1.1 which represents a system S containing a set X of
colored circles and a feature set A that contains only one attribute, namely, color.
Assume that each circle in X has only one color. Then the set X is partitioned
into elementary sets or blocks, where each block contains circles with the same
color. In effect, elements of a set B(x) ⊆ X in a system S are classified as
indiscernible if they are indistinguishable by means of their feature values for
any a ∈ B. A set of indiscernible elements is called an elementary set [22]. Hence,
any subset B ⊆ A determines a partition {B(x) : x ∈ X} of X . This partition
defines an equivalence relation I(B) on X called an indiscernibility relation such
that xI(B)y if and only if y ∈ B(x) for every x, y ∈ X .

Assume that Y ⊆ X and B ⊆ A, and consider an approximation of the set
Y by means of the attributes in B and B-indiscernible blocks in the partition
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of X . The union of all blocks that constitute a subset of Y is called the lower
approximation of Y (usually denoted by B∗Y ), representing certain knowledge
about Y . The union of all blocks that have non-empty intersection with the set Y
is called the upper approximation of Y (usually denoted by B∗Y ), representing
uncertain knowledge about Y . The set BNB(Y ) = B∗Y − B∗Y is called the
B-boundary of the set Y . In the case where BNB(Y ) is non-empty, the set Y
is a rough (imprecise) set. Otherwise, the set Y is a crisp set. This approach to
classification of objects in a set is represented graphically in Fig. 1.2, where the
region bounded by the ellipse represents a set Y , the darkened blocks inside Y
represent B∗Y , the gray blocks represent the boundary region BNB(Y ), and the
gray and the darkened blocks taken together represent B∗Y .

Consequences of this approach to the classification of objects by means of
their feature values have been remarkable and far-reaching. Detailed accounts of
the current research in rough set theory and its applications are available, e.g.,
in [32,35,37].

4 Molecular Computing

Zdzis�law Pawlak was one of the pioneers of a research area known as molecular
computing (see, e.g., ch. 6 on Genetic Grammars published in 1965 [12]). He
searched for grammars generating compound biological structures from simpler
ones, e.g., proteins from amino acids. He proposed a generalization of the tra-
ditional grammars used in formal language theory. For example, he considered
the construction of mosaics on a plane from some elementary mosaics by using
some production rules for the composition. He also presented a language for
linear representation of mosaic structures. By introducing such grammars one
can better understand the structure of proteins and the processes that lead to
their synthesis. Such grammars result in real-life languages that characterize the
development of living organisms. During the 1970s, Pawlak was interested in
developing a formal model of deoxyribonucleic acid (DNA), and he proposed a
formal model for the genetic code discovered by Crick and Watson. Pawlak’s
model is regarded by many as the first complete model of DNA. This work on
DNA by Pawlak has been cited by others (see, e.g., [3,40]).

5 Philosophy

For many years, Zdzis�law Pawlak had an intense interest in philosophy, espe-
cially regarding the connections between rough sets and other forms of sets. It
was Pawlak’s venerable habit to point to connections between his own work in
rough sets and the works of others in philosophy and mathematics. This is es-
pecially true relative to two cardinal notions, namely, sets and vagueness. For
the notion of a set, Pawlak called attention to works by Georg Cantor, Gottlob
Frege and Bertrand Russell. Pawlak observed that the notion of a set is not
only fundamental for the whole of mathematics but also for natural language,
where it is commonplace to speak in terms of collections of such things as books,
paintings, people, and their vague properties [32].
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Fig. 2. Poem about Rough Sets in Chinese

In his reflections on structured objects, Pawlak pointed to the work on mere-
ology by Stanis�law Leśniewski, where the relation being a part replaces the mem-
bership relation ∈. Of course, in recent years, the study of Leśniewski’s work has
led to rough mereology and the relation being a part to a degree in 1996 (see,
e.g., [34] cited by Pawlak in [32]).

For many years, Pawlak was also interested in vagueness and Gottlob Frege’s
notion of the boundary of a concept (see, e.g., [2,4]). For Frege, the definition of a
concept must unambiguously determine whether or not an object falls under the
concept. For a concept without a sharp boundary, one is faced with the problem
of determining how close an object must be before it can be said to belong to a
concept. Later, this problem of sharp boundaries shows up as a repeated motif in
landscapes and waterscapes painted by Pawlak (see, e.g., Fig. 3.1 and Fig. 3.2).
Pawlak also observed out that mathematics must use crisp, not vague concepts.
Hence, mathematics makes it possible to reason precisely about approximations
of vague concepts. These approximations are temporal and subjective [32].

Professor Zdzis�law Pawlak was very happy when he recognized that the rough
set approach is consistent with a very old Chinese philosophy that is reflected
in a recent poem from P.R. China (see Fig. 2).

The poem in Fig. 2 was written by Professor Xuyan Tu, the Honorary Presi-
dent of the Chinese Association for Artificial Intelligence, to celebrate the estab-
lishment of the Rough Set and Soft Computation Society at the Chinese Asso-
ciation for Artificial Intelligence, in Guangzhou, 21 November 2003. A number
of English translations of this poem are possible. Consider, for example, the fol-
lowing two translations of the poem in Fig. 2, which capture the spirit of the
poem and its allusion to the fact that rough sets hearken back to a philosophy
rooted in ancient China.

Rough sets are not rough, and one moves towards precision.
One removes the “unbelievable” so that what remains is more believable.
The soft part of computing is nimble.
Rough sets imply a philosophy rooted in China.
Anonymous
8 January 2005
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Rough sets are not “rough” for the purpose of searching for accuracy.
It is a more reliable and believable theory that avoids falsity and keeps
the truth.
The essence of soft computing is its flexibility.
[Rough Sets] reflect the oriental philosophy and fit the Chinese style of
thinking.
Xuyan Tu, Poet
Yiyu Yao, Translator
21 November 2003

The 8 January 2005 anonymous translation is a conservative rendering of
the Chinese characters in a concise way in English. The 21 November 2003
translation is more interpretative, and reflects the spirit of an event as seen
by the translator in the context of the opening of the Institute of Artificial
Intelligence in P.R. China.

6 Painting, Nature and Poetry

Zdzis�law Pawlak was an astute observer of nature and was very fond of spending
time exploring and painting the woodlands, lakes and streams of Poland. Starting
in the early 1950s and continuing for most of his life, Pawlak captured what he
observed by painting landscapes and waterscapes. Sample paintings by Pawlak
are shown in Fig. 3.1 and Fig. 3.2.

3.1: 1954 Landscape by Pawlak 3.2: 1999 Watercape by Pawlak

Fig. 3. Paintings by Zdzis�law Pawlak

In more recent years, Zdzis�law Pawlak wrote poems, which are remarkably
succinct and very close to the philosophy of rough sets as well as his interest
in painting. In his poems, one may find quite often some reflections which most
probably stimulated him in the discovery of the rough sets, where there is a focus
on border regions found in scenes from nature. A sample poem coauthored by
Pawlak is given next (each line of the English is followed by the corresponding
Polish text).
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Near To
Blisko

How near to the bark of a tree are the drifting snowflakes,
Jak blisko kory drzew p�latki śniegu tworza̧ zaspy,

swirling gently round, down from winter skies?
Wiruja̧c delikatnie, gdy spadaja̧ z zimowego nieba?

How near to the ground are icicles,
Jak blisko ziemi sa̧ sople lodu,

slowing forming on window ledges?
Powoli formuja̧ce siȩ na okiennych parapetach?

Sometimes snow-laden branches of some trees droop,
Czasami, ga�lȩzie drzew zwieszaja̧ siȩ pod ciȩżarem śniegu,

some near to the ground,
niektóre prawie do samej ziemi,

some from to-time-to-time swaying in the wind,
niektóre od czasu do czasu ko�lysza̧ siȩ na wietrze,

some nearly touching each other as the snow falls,
niektóre niemal dotykaja̧ siȩ wzajemnie, gdy śnieg pada,

some with shapes resembling the limbs of ballet dancers,
niektóre o kszta�ltach przypominaja̧cych kończyny baletnic,

some with rough edges shielded from snowfall and wind,
niektóre o nierównych rysach, os�loniȩte przed śniegiem i wiatrem,

and then,
i potem,

somehow,
w jakís sposób,

spring up again in the morning sunshine.
Wyrastaja̧ na nowo w porannym s�lońcu.

How near to ...
Jak już blisko do ...

– Z. Pawlak and J.F. Peters,

Spring, 2002.

The poem entitled Near To took its inspiration from an early landscape painted
by Pawlak in 1954, which is shown in Fig. 3.1. A common motif in Pawlak’s
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paintings is the somewhat indefinite separation between objects such as the outer
edges of trees and sky, the outer edges of tree shadows reflected in water and
the water itself, and the separation between water and the surrounding land.
The boundaries of objects evident in Pawlak’s paintings are suggestive of the
theoretical idea of the boundary between the lower and upper approximations
of a set in rough set theory. There is also in Pawlak’s paintings an apparent
fascination with containment of similar objects such as the parts of a tree shadow
or the pixels clustered together to represent a distant building (see, e.g., Fig. 3.2).
In some sense, the parts of a tree shadow or the parts of the roof of a distant
building are indiscernible from each other.

7 Conclusion

This paper attempts to give a brief overview of some of the contributions made
by Zdzis�law Pawlak to rough set theory, genetic grammars and molecular com-
puting, philosophy, painting and poetry during his lifetime. Remarkably, one can
find a common thread in his theoretical work on rough sets as well as in mole-
cular computing, painting and poetry, namely, Pawlak’s interest in the border
regions of objects that are delineated by considering the attributes (features)
of an object. The work on knowledge representation systems and the notion of
elementary sets have profound implications when one considers the problem of
approximate reasoning and concept approximation.
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Abstract. Conflicts analysis and resolution play an important role in
business, governmental, political and lawsuits disputes, labor-
management negotiations, military operations and others. In this paper
we show how the conflict situation and development can be represented
and studied by means of conflict graphs. An illustration of the introduced
concepts by the Middle East conflict is presented.

Keywords: Conflicts analysis; Conflict resolution; Decisions analysis;
Rough sets.

1 Introduction

Conflict analysis and resolution play an important role in many domains
[1,2,5,6,11,12,13] and stimulated research on mathematical models of conflict
situations [1,3,4,7,8,10,11].

This paper is devoted to conflict analysis.
We start our consideration by presenting basic ideas of conflict theory, pro-

posed in [8,10].
Next we introduce conflict graphs to represent conflict structure. These graphs

can be very useful to study coalitions and conflict evolution.

2 Anatomy of Conflicts

In a conflict at least two parties, called agents, are in dispute over some issues.
In general the agents may be individuals, groups, companies, states, political
parties etc.

Before we start formal considerations let us first consider an example of the
Middle East conflict, which is taken with slight modifications from [1].

The example does not necessarily reflect present-day situation in this region
but is used here only as an illustration of the basic ideas considered in this paper.

In this example there are six agents

1 – Israel,
2 – Egypt,

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 12–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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3 – Palestinians,
4 – Jordan,
5 – Syria,
6 – Saudi Arabia,

and five issues

a – autonomous Palestinian state on the West Bank and Gaza,
b – Israeli military outpost along the Jordan River,
c – Israeli retains East Jerusalem,
d – Israeli military outposts on the Golan Heights,
e – Arab countries grant citizenship to Palestinians who choose to remain within

their borders.

The relationship of each agent to a specific issue can be clearly depicted in the
form of a table, as shown in Table 1.

In the table the attitude of six nations of the Middle East region to the above
issues is presented: −1 means, that an agent is against, 1 means favorable and
0 neutral toward the issue. For the sake of simplicity we will write − and +
instead of −1 and 1 respectively.

Table 1. Data table for the Middle East conflict

U a b c d e

1 − + + + +
2 + 0 − − −
3 + − − − 0
4 0 − − 0 −
5 + − − − −
6 0 + − 0 +

Each row of the table characterizes uniquely the agent, by his approach to
the disputed issues.

In conflict analysis primarily we are interested in finding the relationship
between agents taking part in the dispute, and investigate what can be done
in order to improve the relationship between agents, or in other words how the
conflict can be resolved.

3 Conflicts and Information Systems

Tables as shown in the previous section are known as information systems. An
information system is a table rows of which are labeled by objects (agents),
columns – by attributes (issues) and entries of the table are values of attributes
(opinions, beliefs, views, votes, etc.), which are uniquely assigned to each agent
and attribute, i.e. each entry corresponding to row x and column a represents
opinion of agent x about issue a.
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Formally an information system can be defined as a pair S = (U, A), where U
is a nonempty, finite set called the universe; elements o U will be called objects
(agents) and A is a nonempty, finite set of attributes (issues) [9].

Every attribute a ∈ A is a total function a : U → Va, where Va - is the set of
values of a, called the domain of a; elements of Va will be referred to as opinions,
and a(x) is opinion of agent x about issue a.

The above given definition is general, but for conflict analysis we will need
its simplified version, where the domain of each attribute is restricted to three
values only, i.e. Va = {−1, 0, 1}, for every a, meaning against, neutral and fa-
vorable respectively. For the sake of simplicity we will assume Va = {−, 0, +}.
Every information system with the above said restriction will be referred to as
a situation.

An information system contains explicit information about the attitude of
each agent to issues being considered in the debate, and will be used to derive
various implicit information, necessary to conflicts analysis.

In order to express relations between agents we define three basic binary
relations on the universe: conflict, neutrality and alliance. To this end we need
the following auxiliary function:

φa(x, y) =

⎧⎨⎩ 1, if a(x)a(y) = 1 or x = y,
0, if a(x)a(y) = 0 and x �= y,
−1, if a(x)a(y) = −1.

This means that, if φa(x, y) = 1, agents x and y have the same opinion about
issue a (are allied on a); φa(x, y) = 0 means that at least one agent x or y has
neutral approach to issue a (is neutral on a), and φa(x, y) = −1, means that the
two agents have different opinions about issue a (are in conflict on a).

In what follows we will define three basic relations R+
a , R0

a and R−
a over

U2 called alliance, neutrality and conflict relations respectively, and defined as
follows:

R+
a (x, y) iff φa(x, y) = 1,

R0
a(x, y) iff φa(x, y) = 0,

R−
a (x, y) iff φa(x, y) = −1.

It is easily seen that the alliance relation has the following properties:

(i) R+
a (x, x),

(ii) R+
a (x, y) implies R+

a (y, x),
(iii) R+

a (x, y) and R+
a (y, z) implies R+

a (x, z),

i.e., R+
a is an equivalence relation for every a. Each equivalence class of alliance

relation will be called coalition on a. Let us note that the condition (iii) can be
expressed as “friend of my friend is my friend”.

For the conflict relation we have the following properties:

(iv) non R−
a (x, x),

(v) R−
a (x, y) implies R−

a (y, x),
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(vi) R−
a (x, y) and R−

a (y, z) implies R+
a (x, z),

(vii) R−
a (x, y) and R+

a (y, z) implies R−
a (x, z).

Conditions (vi) and (vii) refer to well known sayings “enemy of my enemy is my
friend” and “friend of my enemy is my enemy”.

For the neutrality relation we have:

(viii) none R0
a(x, x),

(ix) R0
a(x, y) = R0

a(y, x) (symmetry).

Let us observe that in the conflict and neutrality relations there are no coalitions.
The following property holds R+

a ∪ R0
a ∪R−

a = U2 because if (x, y) ∈ U2 then
Φa(x, y) = 1 or Φa(x, y) = 0 or Φa(x, y) = −1 so (x, y) ∈ R+

a or (x, y) ∈ R0
a or

(x, y) ∈ R−
a . All the three relations R+

a , R0
a and R−

a are pairwise disjoint, i.e.,
every pair of objects (x, y) belongs to exactly one of the above defined relations
(is in conflict, is allied or is neutral).

For example, in the Middle East conflict Egypt, Palestinians and Syria are
allied on issue a (autonomous Palestinian state on the West Bank and Gaza),
Jordan and Saudi Arabia are neutral to this issue whereas, Israel and Egypt,
Israel and Palestinians, and Israel and Syria are in conflict about this issue.

This can be illustrated by a conflict graph as shown in Figure 1.

Fig. 1. Conflict graph for attribute a

Nodes of the graph are labelled by agents, whereas branches of the graph
represent relations between agents. Besides, opinion of agents (0,−, +) on the
disputed issue is shown on each node. Solid lines denote conflicts, dotted line –
alliance, and neutrality, for simplicity, is not shown explicitly in the graph.

Any conflict graph represents a set of facts. For example, the set of facts rep-
resented by the graph in Figure 1 consists of the following facts:

R−
a (Israel, Egypt), R−

a (Israel, Palestinians), R−
a (Israel, Syria),

R+
a (Egypt, Syria), R+

a (Egypt, Palestinians), R+
a (Syria, Palestinians),

R0
a(Saudi Arabia, x), R0

a(Jordan, x),
R0

a(x, x) for x ∈ {Israel, Egypt, Palestinians, Jordan, Syria, SaudiArabia}.

Below conflict graphs for the remaining attributes are shown.
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Fig. 2. Conflict graph for attribute b

Fig. 3. Conflict graph for attribute c

Fig. 4. Conflict graph for attribute d

4 Coalitions

Let a ∈ A. If there exists a pair (x, y) such that R−
a (x, y) we say that the

attribute a is conflicting (agents), otherwise the attribute is conflictless. The
following property is obvious.
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Fig. 5. Conflict graph for attribute e

If a is a conflicting attribute, then the relation R+
a has exactly two equivalence

classes X+
a and X−

a , where X+
a = {x ∈ U : a(x) = +}, X−

a = {x ∈ U : a(x) =
−}, X0

a = {x ∈ U : a(x) = 0} and X+
a ∪ X−

a ∪ X0
a = U . Moreover R−

a (x, y) iff
x ∈ X+

a and y ∈ X−
a for every x, y ∈ U.

The above proposition says that if a is conflicting attribute, then all agents
are divided into two coalitions (blocks) X+

a and X−
a . Any two agents belonging

to two different coalitions are in conflict, and the remaining (if any) agents are
neutral to the issue a.

It follows from the proposition that the graph shown in Fig. 1 can be presented
as shown in Fig. 6, called a coalition graph.

Fig. 6. Coalition graph for attribute a

Coalition graphs for the remaining attributes are given in Fig. 7.
Careful examination of coalition graphs (Fig. 7) generated by various at-

tributes (issues) gives deep insight into structure of the Middle East conflict
and offers many hints concerning negotiations between agents.

For example, let us observe that attribute c induces partition in which Israel is
in conflict with all remaining agents, whereas attribute e leads to alliance of Israel
andSaudi Arabia againstEgypt, Jordanand Syriawith Palestiniansbeing neutral.

Ideas given in this section can be used to define degree of conflict caused by
an issue a (attribute), defined as

Con(a) =
|X+

a | · |X−
a |

[n
2 ] · (n − [n

2 ])
=

|R−
a |

[n
2 ] · (n − [n

2 ])
,
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Fig. 7. Coalition graphs for attributes b,c,d and e

where |X | denotes cardinality of X , n is the number of agents involved in the
conflict (the number of nodes of the conflict graph) and [n

2 ] denotes whole part
of n

2 .
For example, degree of conflict generated by the attribute b is Con(b) = 2/3,

whereas the attribute c induces Con(c) = 5/9.
The degree of conflict induced be the set of attributes B ⊆ A, called tension

generated by B is defined as

Con(B) =
∑

a∈B Con(a)
|B| .

Tension for the Middle East Conflict is Con(A) ∼= 0.51.

5 Dissimilarities Between Agents

Starting point for negotiations are dissimilarities of view between agents.
In order to study the differences between agents we will use a concept of a

discernibility matrix [14,15,16], which defines a discernibility relation between
agents.
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Let S = (U, A), B ⊆ A. By a discernibility matrix of B in S, denoted MS(B),
or M(B), if S is understood, we will mean n × n, n = |U |, matrix defined thus:

δB(x, y) = {a ∈ B : a(x) �= a(y)}.

Thus entry δB(x, y), in short, δ(x, y), is the set of all attributes which discern
objects x and y.

The discernibility matrix for conflict presented in Table 2 is given below:

Table 2. Discernibility matrix for the Middle East conflict

1 2 3 4 5 6

1
2 a,b,c,d,e
3 a,b,c,d,e b,e
4 a,b,c,d,e a,b,d a,d,e
5 a,b,c,d,e b e a,d
6 a,c,d a,b,e,d a,b,d,e b,e a,b,d,e

Each entry of the table shows all issues for which the corresponding agents
have different opinions.

The discernibility matrix M(B) assigns to each pair of objects x and y a
subset of attributes δ(x, y) ⊆ B, with the following properties:

i) δ(x, x) = ∅,
ii) δ(x, y) = δ(y, x),
iii) δ(x, z) ⊆ δ(x, y) ∪ δ(y, z).

Property iii) results from the following reasoning. Let a �∈ δ(x, y)∪δ(z, y). Hence
a(x) = a(z) and a(z) = a(y), so a(x) = a(y). W have a �∈ δ(x, y).

The above properties resemble the well known properties of distance in a
metric space, therefore δ may be regarded as qualitative metric and δ(x, y) as
qualitative distance.

We see from Table 2 that the distance (dissimilarity) between agents 1 and 3
is the set δ(1, 3) = {a, b, c, d, e}, whereas the distance between agents 2 and 5 is
δ(2, 5) = {b}.

We can also define distance between agents numerically, by letting

ρB(x, y) =
|δB(x, y)|

|A| ,

where B ⊆ A.
The following properties are obvious

1) ρB(x, x) = 0,
2) ρB(x, y) = ρB(y, x),
3) ρB(x, z) ≤ ρB(x, y) + ρB(y, z),
thus the ρB(x, y) is the distance between x and y.

For example, for the considered Middle East situation the distance function
ρA is shown in Table 3.
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Table 3. Distance function for the Middle East conflict

1 2 3 4 5 6

1
2 1
3 1 0.4
4 1 0.6 0.6
5 1 0.2 0.2 0.4
6 0.6 0.8 0.8 0.4 0.8

6 Reduction of Attributes

Objects x and y are discernible in terms of the set of attributes B ⊆ A (opinion)
if they have different opinion on same attributes (issues) from B.

Before we start negotiations we have to understand better the relationship
between different issues being discussed. To this end we define a concept of a
tr-reduct of attributes, where tr ∈ (0, 1] is a given threshold of discernibility
[8,16].

A tr-reduct of A is any minimal subset B of A satisfying the following condi-
tion:

ρA(x, y) ≥ tr if and only if ρB(x, y) ≥ tr.

One can consider objects x, y to be (B, tr)-discernible (in symbols xDISB,try)
if and only if ρB(x, y) ≥ tr and (B, tr)-indiscernible (in symbols xINDB,try) if
and only if ρB(x, y) < tr. For any x let τB,tr(x) be a set {y : xINDB,try} called
the (B, tr)-indiscernibility class of x. Then, B ⊆ A is tr-reduct of A if and only
if τA,tr = τB,tr, i.e., τA,tr(x) = τB,tr(x) for any x (see, [16]).

Observe that for tr = 1
|A| we obtain the classical definition of the reduct.

In order to find a tr-reduct of a set A of attributes we will use ideas proposed
in [15,16]. The algorithm goes as follows: every discernibility matrix M(B) and
a given threshold tr ∈ (0, 1] determines a Boolean function

φ(B) =
∏

x,y∈U2

[δ(x, y)], (∗)

where [δ(x, y)] =
∑

{ΠC : C ⊆ δ(x, y) is minimal such that ρC(x, y) ≥ tr}.
Each prime implicant of (*) corresponds to a tr-reduct of A preserving dis-

cernibility of objects x, y such that ρA(x, y) ≥ tr.
For example, it is easy to check that if tr = 0.1 then sets of attributes

{a, b, e} and {d, b, e} are the only tr-reducts of the set of attributes {a, b, c, d, e}
in the Middle East conflict. If tr = 0.65 then it is necessary to preserve tr-
discernibility between objects (1, 2), (1, 3), (1, 4), (1, 5), (2, 6)(3, 6), (5, 8) (see Ta-
ble 3). This means that for each of these pairs of objects we should preserve
at least 4 attributes to satisfy the requirement of discernibility. Hence, one can
easily calculate that the only tr-reduct for tr = 0.65 is {a, b, d, e}.
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Intersection of all tr-reducts is called the tr-core of attributes. The tr-core
contains all attributes which are most characteristic for the conflict and thus
cannot be eliminated in the negotiation process.

For the Middle East conflict the 0.2-core attributes are b and e.
Let us also mention that if B′ is a tr-reduct of A and x is any object then

τB′(x) = τC(x) for any objects x and C such that A ⊇ C ⊇ B′, i.e.,extending
any tr-reduct of A by new attributes from A does not change the indiscernibility
classes.

The above properties give us clear information on how the issues are struc-
tured and their importance in negotiations.

7 Negotiations

In order to change the conflict situation we need negotiations. There are many
ways to negotiate, but we will restrict our considerations only to simple methods
and consider how the change of neutrality to support or objection to disputed
issues of some agents change the conflict.

To this end let us consider the attitude of agents to attribute a. Suppose that
Jordan changed neutrality to autonomous Palestinian State to objection then
the situation is shown in Fig. 8, i.e., it leads to coalition of Israel and Jordan.

Fig. 8. Jordan objects Palestinian state

If Jordan would change neutrality to support to this issue then the conflict
situation is presented in Fig. 9.

Change of attitude of Saudi Arabia from neutrality to support and objection
is presented in Fig. 10 and Fig. 11 respectively.

A very interesting case is when both Jordan and Saudi Arabia change their
position from neutrality to support or objection. Two most interesting cases are
presented in Fig. 12 and Fig. 13.
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Fig. 9. Jordan supports Palestinian state

Fig. 10. Saudi Arabia objects to Palestinian state

We see from these figures that situation presented in Fig. 12 leads to conflict
of Israel with all the remaining parties involved in the conflict, whereas changes
as presented in Fig. 13 induce partition of agents where Israel, Jordan and Saudi
Arabic are in conflict with Egypt, Palestinians and Syria.

The above information can be very useful in negotiations.

8 Conflict Graphs

In this section we will consider in more detail conflict graphs introduced in
previous sections.
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Fig. 11. Saudi Arabia supports Palestinian state

Fig. 12. Jordan and Saudi Arabia support Palestinian state

By a conflict graph we understand a set of nodes N (representing agents) and
two sets of branches B+ and B− (called alliance and conflict branches, respec-
tively). If x, y are nodes then (x, y) ∈ B+ implies (x, y) �∈ B−, and conversely.

We say that a conflict graph is stable (consistent ) if the set of formulas defined
by conditions (i)...(vii) given in Section 3 is consistent with the facts defined by
the conflict graph, otherwise the conflict graph is unstable (inconsistent).

We interpret R+ and R− as B+ and B−, respectively and we say that if
(x, y) ∈ B+ then x and y are allied, if (x, y) ∈ B− then x and y are in conflict
and if neither (x, y) ∈ B+ nor (x, y) ∈ B− then x and y are neutral.
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Fig. 13. Jordan and Saudi Arabia object to Palestinian state

Fig. 14. Unstable conflict graph

The corresponding branches (x, y) are referred to as alliance, conflict and
neutral, respectively.

Let x and y be neutral points in a conflict graph. If we replace branch (x, y)
by alliance, or conflict branch, then the obtained conflict graph will be called an
extension of the original conflict graph.

If we replace all neutral branches in a conflict graph by alliance or conflict
branches then the obtained conflict graph will be called maximal extension.

The following is a very important property of conflict graphs:

If a conflict graph contains a loop with odd number of conflict branches there
does not exist a stable maximal extension of the conflict graph.

For example, conflict graph shown in Fig. 14 does not have stable maximal
extension.
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Fig. 15. Extension of graph from Fig. 14

An example of a maximal extension of the conflict graph from Fig. 14 as
shown in Fig. 15 violates condition (iii).

Let us also observe that if a conflict graph is unstable then there is no con-
sistent labelling of agents by their opinion (i.e., nodes by +, 0,−).

Conflict graphs can be used to study evolution of conflict situations.
Suppose we are given only partial information about a conflict situation. We

assume that conflict situation can evolve only by replacing neutrality by alliance
or conflict branches in such a way that stability is preserved. Thus answer to
our question can be obtained by study of stable extensions of initial situation of
conflict.

For example, consider initial conflict situation as shown in Fig. 16.

Fig. 16. Initial situation

This conflict due to assumed axioms can evolve according to patterns shown
in Fig. 17.

The above methodology can be useful in computer simulation how the conflict
can develop.
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Fig. 17. Conflict evolution

9 Conclusion

The proposed attempt to conflict analysis offers deeper insight into structure
of conflicts, enables analysis of relationship between parties and issues being
debated. It gives many useful clues for conflict analysis and resolution. Besides,
the mathematical model of conflicts considered here seems especially useful for
computer simulation of conflicts in particular when negotiations are concerned.

Let us consider two examples of further investigations on the conflict analysis
discussed in the paper.

– The analysis of possible extensions of partial conflict graphs (see Section 8)
can also be performed using some additional knowledge (e.g., knowledge
which each agent may have about the other ones). In the consequence, the
number of possible extensions of a given partial conflict graph is decreasing.
Hence, searching in the space of possible extensions may become feasible.
In general, this additional knowledge can also help to better understand
the conflict structure between agents. Observe that the analysis should be
combined with strategies for revision of the generated extensions (e.g., if the
constraints (i)-(iii) from Section 3 are no longer preserved for extensions).
The necessity for revision follows from the fact that the additional knowledge
is usually incomplete or noisy. Hence, the conflict prediction based on such
knowledge may be incorrect.

– Negotiations between agents are often performed under the assumption that
only partial conflict graphs and partial knowledge about possible other con-
flicts are available for agents. Hence, agents may have different views on
possible extensions of the available partial conflict graphs. These possible
extensions can be further analyzed by agents. In particular, agents involved
in negotiations may attempt to avoid situations represented by some exten-
sions (e.g., including conflicts especially undesirable or dangerous).
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Abstract. One of the basic characteristics in human problem solving, including 
learning, is the ability to conceptualize the world at different granularities and 
translate from one abstraction level to the others easily, i.e., deal with them 
hierarchically[1]. But computers can only solve problems in one abstraction level 
generally. This is one of the reasons that human beings are superior to computers 
in problem solving and learning. In order to endow the computers with the 
human’s ability, several mathematical models have been presented such as fuzzy 
set, rough set theories [2, 3]. Based on the models, the problem solving and 
machine learning can be handled at different grain-size worlds. We proposed a 
quotient space based model [4, 5] that can also deal with the problems 
hierarchically. In the model, the world is represented by a semi-lattice composed 
by a set of quotient spaces: each of them represents the world at a certain 
grain-size and is denoted by a triplet ( , , )X F f , where X is a domain, F- the 
structure of X, f -the attribute of X.  

In this talk, we will discuss the hierarchical machine learning based on the 
proposed model. From the quotient space model point of view, a supervised 
learning (classification) can be regarded as finding a mapping from a low-level 
feature space to a high-level conceptual space, i.e., from a fine space to its 
quotient space (a coarse space) in the model. Since there is a big semantic gap 
between the low-level feature spaces and the conceptual spaces, finding the 
mapping is quite difficult and inefficiency. For example, it needs a large number 
of training samples and a huge amount of computational cost generally. In order 
to reduce the computational complexity in machine learning, the characteristics 
of human learning are adopted. In human learning, people always use a 
multi-level learning strategy, including multi-level classifiers and multi-level 
features, instead of one-level, i.e., learning at spaces with different grain-size. 
We call this kind of machine learning the hierarchical learning. So the 
hierarchical learning is a powerful strategy for improving machine learning.  

Taking the image retrieval as an example, we’ll show how to use the 
hierarchical learning strategy to the field. Given a query (an image) by a user, the 
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aim of image retrieval is to find a set of similar images from a collection of 
images. This is a typical classification problem and can be regarded as a 
supervised learning. The first problem is how to represent an image so that the 
similar images can be found from the collection of images precisely and entirely. 
So far in image retrieval, an image was represented by several forms with 
different grain-size. The finest representation of an image is by an n×n matrix, 
each of its elements represents a pixel. Using this representation to image 
retrieval, the precision will be high but the robustness (recall) will be low. Since 
it has the precise detail of an image, it is sensitive to noises. Therefore, the 
pixel-based representation was used in image retrieval rarely. The common used 
representation in image retrieval is the coarsest one, i.e., so called global visual 
features [6]. Here, an image is represented by a visual feature (a vector) such as 
color moments, color correlograms, wavelet transforms, Gabor transform, etc. In 
the coarsest representations, most of the details in an image lose so that the 
retrieval precision decreases but the robustness (recall) increases. The coarsest 
representations are suitable for seeking a class of similar images due to their 
robustness. Therefore, the global visual features were used for image retrieval 
widely. In order to overcome the low precision introduced by the coarsest 
representations, global features, the middle-size representation of an image was 
presented recently such as region-based representation [7]. In the representation, 
an image is partitioned into several consistent regions and each region is 
represented by a visual feature (a vector) extracted from the region. The whole 
image is represented by a set of features (vectors). Since the region-based 
representation has more details of an image than the global one, the retrieval 
precision increases but the robustness decreases. Therefore, the quality, 
including precision and recall, of image retrieval will be improved by using 
multi-level features. One of the strategies for hierarchical learning is to 
integrating the features with different grain-size, including the global, the 
region-based, and the pixel-based features.   

One of the main goals in hierarchical learning is to reduce the computational 
complexity. Based on the proposed model we know that the learning cost can be 
reduced by using a set of multi-level classifiers. Certainly, the set of multi-level 
classifiers composes a hierarchical learning framework. A set of experimental 
results in hand-written Chinese character recognition and image retrieval are 
given to verify the advantage of the approach. 
Hierarchical learning inspired by human’s learning is one of the methodologies 
for improving the performances of machine learning. 

Keywords: Machine learning, hierarchical learning, granularity, quotient space, 
image retrieval. 
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Abstract. This talk has two parts. The first part describes how the concept of 
rough-fuzzy granulation can be used for the problem of case generation, with 
varying reduced number of features, in a case based reasoning system, and the 
application to multi-spectral image segmentation. Here the synergistic 
integration of EM algorithm, minimal spanning tree and granular computing for 
efficient segmentation is described. The second part deals with defining a new 
definition of image entropy in a rough set theoretic framework, and its 
application to the object extraction problem from images by minimizing both 
object and background roughness. Granules carry local information and reflect 
the inherent spatial relation of the image by treating pixels of a window as 
indiscernible or homogeneous. Maximization of homogeneity in both object 
and background regions during their partitioning is achieved through 
maximization of rough entropy; thereby providing optimum results for object 
background classification. The effect of granule size is also discussed.  

Keywords: Image processing, clustering, soft computing, granular computing, 
EM algorithm, minimal spanning tree, multi-spectral image segmentation. 
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The next generation Web technologies (in a broader sense than World Wide
Web), as one of the ultimate goals in Web Intelligence (WI) research, will enable
humans to go beyond the existing functionalities of online information search and
knowledge queries and to gain from the Web practical wisdoms of living, working,
and playing. This is a fundamental paradigm shift towards the so-called Wisdom
Web, and presents new challenges as well as opportunities to computer scientists
and practitioners.

In this keynote talk, I will highlight one of the most important manifestations
of such technologies, namely, computing with communities of autonomous enti-
ties. These communities establish and maintain a vast collection of socially or
scientifically functional networks. The dynamic interaction among autonomous
entities, such as information exchanges, experience sharing, and service transac-
tions following some predefined protocols, will lead to the dynamic formation,
reformation, and consolidation of such networks. As a result, networks of com-
mon practice or shared markets will emerge.

The dynamic interaction among autonomous entities is a complex one, in
which various types of interesting emergent behavior can be induced and ob-
served. Not only should the dynamics of formation and growth of the networks
be modeled, but more importantly the dynamics of network functions with re-
spect to certain purpose-directed criteria should be characterized. Such dynam-
ically emergent behavior will depend on the local interaction policies adopted.
Knowledge gained from these studies will be invaluable in that it allows us to
determine the structural characteristics, computational efficiency, and functional
optimality of self-organizing networks, and provides us with insights into the role
of local interaction policies.

In the talk, I will discuss the important research questions and methodolo-
gies underlying the studies of network behavior and structures, which cover the
modeling of network dynamics, the characterization of network structures, and
the design and optimization of network autonomy.
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Abstract. Granular Computing (GrC) operates with granules (gener-
alized subsets) of data as pieces of basic knowledge. Rough Set Theory
(RST) is a leading special case of GrC approach. In this paper, we out-
line a roadmap that stepwise refines RST into GrC. A prime illustration
is that GrC of symmetric binary relations is a complete topological RST
on granular spaces, where the adjective complete means that the repre-
sentation theory can fully reflect the structure theory.

1 Introduction

The original assumption of Rough Set Theory (RST) is that knowledge can be
represented by partitions [17,18]. However, real world applications often require
more complex models. Granular Computing (GrC) takes a more general, soft,
vague view [1,8,9,10,11,12,13,14,15]. Roughly, it is a computational theory that
deals with elements and granules (generalized subsets) of the domain of interest.
Vaguely generalized subsets may refer to classical sets, fuzzy sets (or more gen-
erally functions), topological subsets (subsets together with their neighborhood
systems) or any kind of their generalizations, e.g., subsets together with their
α-cuts.

The underlying intuition of GrC is that elements are the data and granules
are the basic knowledge or in ”negative” view, granules are atoms of uncertainty
(lack of knowledge). So, it provides the infrastructure for data and knowledge
computing/engineering and uncertainty managements or, more generally, AI-
computing/engineering. Taking this view, RST is a well developed special case
of GrC. Here, we outline a roadmap that stepwise refines RST into GrC.

The key point is that for each binary relation there is an induced partition (a
derived equivalence relation), which was observed in 1998 [8]. A granulation that
is specified by a binary relation can be viewed as a topological partition, that is,
every equivalence class has a neighborhood system. So, GrC on binary relation
can be approached as RST on granular spaces, called Binary Neighborhood
System Spaces (BNS-spaces).

The paper is organized as follows: Section 2 gives an overview of RST.
Section 3 gives an overview of GrC. Section 4 summarizes the types of set ap-
proximations, which can be considered in RST and GrC. Section 5 describes
how RST models can be extended to GrC models. Section 6 discusses table-
based knowledge representations for GrC. Section 7 concludes the paper.
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2 Rough Set Theory (RST)

We refer the reader to [17,18] for detailed study on Rough Set Theory. Here, we
briefly report only the most important contributions of RST:

2.1 Rough Approximations

This notion corresponds to a very rich area in mathematics: inner and outer
measures in measure/probability theory [2], as well as closure and interior in (pre-
)topological space [16,19]. Taking this view, RST corresponds to clopen spaces
and uses counting measure. A more general approach refers to Neighborhood
Systems(late 80’s) [4,5,6], which basically include most of other generalizations
(cf. [18]).

2.2 Knowledge Representation

Let U be the universe of objects and Q be a finite set of equivalence relations.
The pair (U,Q) is called a knowledge base [17].
Theorem 1. Pawlak’s Representation Theorem (PRT): Knowledge bases and
information tables/systems (representation theories) determine each other, up
to an isomorphism.
The phrase up to an isomorphism is added by ourselves. A theory that has this
property is called a complete RST theory. Our major result is that for reflexive
as well as non-reflexive and symmetric binary relations the theorem is true also.

Theorem 2. Symmetric Binary Relations Representation Theorem (SRT): Let
B be a finite set of symmetric binary relations. (U,B) induces a unique topological
information table/system (representation theory) up to an isomorphism and vice
versa.
There are examples to show, in general, that this theorem is not valid for non-
symmetric binary relations.

2.3 Reduction of Data

The idea is to reduce the representation into minimal forms. In RST, the theory
of reducts can be viewed as early data mining theory. We can also consider
topological reduct for reflexive symmetric binary relations. This can be viewed
as semantic data mining [10].

3 Granular Computing (GrC)

As we said in Section 1, any computing theory/technology that processes ele-
ments and granules (generalized subsets) within the universe of discourse may
be called Granular Computing (GrC). The underlying intuition is that elements
are the data and granules are the basic knowledge (or lack of knowledge). So
GrC provides the foundation and infrastructure of AI-computing. As this paper
is from RST prospect, we will concentrate on related views. For general model,
we refer the reader to [13,15].
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3.1 Binary Relations and BNS-Spaces

Binary relations can be introduced in many ways [8,9]. For simplicity, we restrict
to the following case:

Definition 1. Let U be a classical set and B be a binary relation (BR) on U
(B ⊆ U ×U). For each object p ∈ U , we associate a subset B(p) that consists of
all elements u that are related to p by B, that is, B(p) = {u | (p, u) ∈ B}. This
association, denoted by B again, is called a Binary Granulation (BG) and B(p)
is called a B-granule or a B-neighborhood.

Definition 2. The collection {B(p) | p ∈ U} is called a Binary Neighborhood
System (BNS). (U, B) is called a BNS-space. If B is understood from the context,
we simply say that U is a BNS-space.

Note that, if B is an equivalence relation, then B(p) is an equivalence class. So,
BNS-space is a generalization of approximation space [17]. Unlike approximation
spaces, however, q ∈ B(p) does not imply that B(p) is the neighborhood of q.
Surely, B-granules B(p) enable to reconstruct binary relation B as follows:

B = {(p, x) | x ∈ B(p) and p ∈ U}

B, BNS, and BG are equivalent and will be treated as synonyms.

3.2 The Partition of Center Sets

The observation in [9] is that the inverse image of a binary granulation

B : U → 2U ; p �→ B(p)

induces a partition on U .

Proposition 1. Let CB(p) = B−1(B(p)), i.e. CB(p) = {q | B(p) = B(q)}.
Then the family CB = {CB(p) | p ∈ U} forms a partition of U .

We will call CB(p) the center set of B(p). It is the set of all those points q such
that B(q) = B(p). The partition defined by center sets is called the center set
partition, denoted by CB-partition. It may be worthwhile to point out that, for
B(p) = ∅, CB(p) = {p | B(p) = ∅}. In other words, all the points that have no
neighborhood form an equivalence class.

Definition 3. The pair (U,Q) is called a Granular Data Model (GDM), where
Q is a finite set of equivalence relations. If each equivalence class is given a name
and the set of these names is denoted by DOMAIN , then (U,Q, DOMAIN) is
called an Interpreted GDM.

Remark 1. As reported in Section 2, Pawlak calls (U,Q) a knowledge base, how-
ever, we use the notion GDM to avoid confusion with regards to other meanings
of knowledge bases.
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If Q is an equivalence relation, then the set X is said to be Q-definable if and
only if X is a union of Q-equivalence classes. In general, B-neighborhood B(p)
is not CB-definable. But we have established it for symmetric binary relations.
Let us recall an interesting theorem from [11], which helps to establish a very
important result in computer security, Chinese Wall Security Policy.

Theorem 1. Representation Theorem for Symmetric Binary Relation: Let B
be a symmetric binary relation. Let CB be its center set partition. Then ev-
ery B-granule is a union of CB-equivalence classes. In rough set language, B-
neighborhoods are CB-definable.

Proof. Let p ∈ U be a point and B(p) be its granule. Let x ∈ B(p) be an
arbitrary point in B(p). Let y be in the same CB-equivalence class as x. By
definition of CB, x and y have the same neighborhood, that is, B(x) = B(y). By
the symmetry of B, x ∈ B(p) implies p ∈ B(x)(= B(y)), and hence y ∈ B(p).
This proves that if x ∈ B(p) then the whole CB-equivalence class of x is contained
in B(p). So B(p) is CB-definable.

Corollary 1. The Interpreted GDM (U,Q, DOMAIN) determines and is de-
termined by an Information Table (relational table). Briefly, Interpreted GDM
is equivalent to Information Table (relational table).

3.3 Granular Structure and Granular Data Model

Here we will modify the notion of binary granular structure introduced in [8]. As
every binary relation is associated with the center set partition, we will consider
them together.

Definition 4. A binary granular structure takes the form of

(U, (CB,B), DOMAIN)

where

1. U is a classical set, called the universe,
2. B is a set of binary relations B defined on U ,
3. CB is the corresponding set of center set partitions.

The pair (CB,B) imposes on U two structures. Let Bj be a binary relation of B.
Its center set partition is CBj . We regard (CB,B) = {(CBj , Bj) | j = 1, 2, . . .}
as a family of the pairs. CBj partitions U , and Bj granulates U . As noted, (U, CB)
is a GDM. B provides a BNS on GDM. So, a granular structure is topological
GDM. For applications corresponding to this idea, we refer the reader e.g. to [10].

4 Approximations – Summary

Let us summarize our earlier proposals and recent reports [8,9,10,11,12,14,15]. In
our new binary granular structure, there are a binary relation B and the induced
center set partition CB . For an equivalence relation Q, the pair (U, Q) is called
an approximation space.
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Definition 5. For any subset X of U , in an approximation space, we have:

1. Upper approximation: H [X ] = Q[X ] = ∪{Q(p) : Q(p) ∩ X �= ∅}.
2. Lower approximation: L[X ] = Q[X ] = ∪{Q(p) : Q(p) ⊆ X}.
3. HCB [X ] = CB [X ] = ∪{CB(p) : CB(p) ∩ X �= ∅}.
4. LCB [X ] = CB[X ] = ∪{CB(p) : CB(p) ⊆ X}.
5. Derived set: A point p is a limit point of X, if every B(q), such that p ∈ B(q),

contains a point of X other than p. The set of all limit points of X is called
the derived set D[X ].

6. Closure: C[X ] = X ∪ D[X ]; note that such C[X ] may not be closed.

7. Closed Closure: Some authors define the closure as X together with trans-
finite derived set, which is derived transfinitely many times. CC[X ] = X ∪
D[X ] ∪ D[D[X ]] ∪ D[D[D[X ]]] . . . (transfinite). Such closure is a closed set.

8. Interior: I[X ] = {p : B(p) ⊆ X}.
9. HB[X ] = B[X ] = ∪{B(p) : B(p) ∩ X �= ∅}.

10. LB[X ] = B[X ] = ∪{B(p) : B(p) ⊆ X}.

In general, all quantities C[X ], H [X ], HCB [X ], HB[X ], CC[X ], I[X ], L[X ],
LCB [X ], LB[X ] may not be equal. However, some identities are known, e.g.,
C[X ] = CC[X ] for reflexive and transitive relations.

Remark 2. In [7], we casually stated that C[X ] = CC[X ] is true for more general
case, which is not the case. Fortunately, the statement did not participate in
formal arguments; so the mathematical results are accurate, the interpretations
may be loose.

5 From RST to GrC

Pawlak’s interest is solely on rough set theory, with less emphasis on interpreta-
tions of his expressions/formulas under the telescope of general context. Hence:
A verbatim extension of expressions may not be appropriate.

For example, from measure theoretical view, the upper approximation should
be amended to minimal covering. From topological view, upper and lower ap-
proximations should be the closure C[X ], or closed closure CC[X ] and interior
I[X ].

Over the past decade or so, there have been many generalizations proposed.
Most of them are within the ranges of neighborhood systems and fuzzified ver-
sions. We propose the following assertion: A good generalized RST should have
a table representation such that the table can fully express the universe and be
processed completely by symbols.

Question 1. Which BNS theories are complete? So far we only know that Sym-
metric BNS do.
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As an illustration, let us consider also the Variable Precision Rough Set (VPRS)
model [21], which is a special case of BNS. It does have a representation theory,
but this representation is not complete in the sense that the table processing can
not be done by symbols alone; the approximations have to be referenced back
to the universe. Its measure is based on counting the members in the universe.

6 Knowledge Representations in Table Format

First we setup a convention:

A symbol is a string of ”bits and bytes.” Regardless of whether that symbol may or
may not have the intended real world meaning, no real world meaning participates
in the formal processing. A symbol is termed a word, if the intended real world
meaning participates in the formal processing.

The main idea here is to extend representation theory of RST to GrC.

6.1 Representations of Partitions

The basic idea is to assign a meaningful name to each equivalence relation.
The symbols of a given column are semantically independent, as there are no
non-empty intersections among equivalence classes of a given column. The main
result is:

Proposition 2. (U,B, DOMAIN) defines and is defined by an information ta-
ble where all distinct symbols in each column are semantically independent.

We recall the illustration from [8,9]. Let U = {id1, id2, . . . , id9} be a set of nine
balls with two partitions:

1. {{id1, id2, id3}, {id4, id5}, {id6, id7, id8, id9}}
2. {{id1, id2}, {id3}, {id4, id5}, {id6, id7, id8, id9}}

We label the first partition COLOR and the second WEIGHT. Next, we name
each equivalence class (by its real world characteristic):

– id1 −→ ({id1, id2, id3}) −→ Red
The first ”−→” says that id1 belongs to the equivalence class [id1] and the
second ”−→” says that the equivalence class has been named Red.

– id2 −→ ({id1, id2, id3}) −→ Red
. . .

– id4 −→ ({id4, id5}) −→ Orange
. . .

– id9 −→ ({id6, id7, id8, id9}) −→ Yellow

Similarly, we have names for all WEIGHT-classes. So we have constructed the
left-hand side of Table 1.
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Table 1. Constructing a table by naming equivalence classes or granules

U COLOR WEIGHT BALLs Having (COLOR) WEIGHT

id1 −→ Red W1 id1 → Having(RED) W1

id2 −→ Red W1 id2 → Having(RED) W1

id3 −→ Red W2 id3 → Having(RED) W2

id4 −→ Orange W3 id4 → Having(RED+YELLOW) W3

id5 −→ Orange W3 id5 → Having(RED+YELLOW) W3

id6 −→ Yellow W4 id6 → Having(YELLOW) W4

id7 −→ Yellow W4 id7 → Having(YELLOW) W4

id8 −→ Yellow W4 id8 → Having(YELLOW) W4

id9 −→ Yellow W4 id9 → Having(YELLOW) W4

Information Table Granular Table

6.2 Representations of Binary Relations

The basic idea is similar. Assign a meaningful name to each granule (or neigh-
borhood). The representation of a partition rests on the following fact:

Each object p ∈ U belongs to one and only one equivalence class.

We do have a similar property in binary granulation B:

Each object p ∈ U is assigned to one and only one B-granule.

So by assigning to each B-granule a unique meaningful name, we can represent
a finite set of binary granulations by a relational table, called a granular table:

Entity → Center Set → Granule → Name(Granule)
id1 → CB(id1) → B(id1) = {id1, ..., id4} → Having(RED)
id2 → CB(id1) → B(id1) = B(id2) = {id1, ..., id4} → Having(RED)
id3 → CB(id1) → B(id1) = B(id3) = {id1, ..., id4} → Having(RED)
id4 → CB(id4) → B(id4) = {id2, ..., id9} → Having(RED + Y ELLOW )
id5→CB(id4) → B(id4) = B(id5) = {id2, ..., id9}→Having(RED+Y ELLOW )
id6 → CB(id6) → B(id6) = {id5, ..., id9} → Having(Y ELLOW )
id7 → CB(id6) → B(id6) = B(id7) = {id5, ..., id9} → Having(Y ELLOW )
id8 → CB(id6) → B(id6) = B(id8) = {id5, ..., id9} → Having(Y ELLOW )
id9 → CB(id6) → B(id6) = B(id9) = {id5, ..., id9} → Having(Y ELLOW )

The above table summarizes the knowledge representations of BG-I and BG-2
(given in last section). To process such a table, we need computing with words;
computing with symbols is inadequate. All these words represent overlapping
granules. For illustration and comparison purpose, we may define a binary rela-
tion of these words in Table 2.

As granules may have non-empty intersection; these names should reflect the
overlap semantics [8,9]. They are captured as follows:
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Definition 6. Let B be a binary relation, and DOMAIN(B) be the set of all
the names of B-granules. A name is ”related” to another name if the granule of
the first name has non-empty intersection with the center set of the granule of
the second name. This relatedness is a binary relation on DOMAIN(B) and is
denoted by Bname. In other words, DOMAIN(B) becomes a Bname-BNS-space.

From this definition, a granular table is a BNS-table in the sense that each
attribute domain DOMAIN(B) is a BNS-space. For illustration, let us define
the binary relation for BCOLOR:

(Having(RED), Having(RED + YELLOW)) ∈ BCOLOR

iff B(Having(RED)) ∩ CB(Having(RED + Y ELLOW )) �= ∅, where we use
B(NAME(B(p))≡ B(p) and CB((NAME(B(p))≡ CB(p). Details in Table 2:

Table 2. A Binary Relation on DOMAIN(Having(COLOR))

Having(RED) Having(RED)

Having(RED) Having(RED + Y ELLOW )

Having(RED + Y ELLOW ) Having(RED)

Having(RED + Y ELLOW ) Having(RED + Y ELLOW )

Having(RED + Y ELLOW ) Having(Y ELLOW )

Having(Y ELLOW ) Having(RED + Y ELLOW )

Having(Y ELLOW ) Having(Y ELLOW )

6.3 Complete Representations

In this section, we are interested in the case, where the granular table is a
complete representation of B in the sense that B can be recaptured fully from
the table. In general, this is not valid. However, we note that each B-granule
is a union of CB-equivalence classes, by Representation Theorem of Symmetric
Binary Relation. That is, we have

Proposition 3. If B is a set of reflexive and symmetric binary relations, then
B and Bname determine each other.

Definition 7. A granular table together with the set of domain binary relations,
namely, Bname, is called a topological table, if B can be fully recovered from
Bname on DOMAIN . In this case RST is called complete representation theory.

Based on these, we have the following extension of Pawlak’s observation:

Theorem 2. (U, (CB,B), DOMAIN) determines and is determined by a topo-
logical table, if B is reflexive and symmetric.

7 Conclusions

We have observed that any binary relation gives rise to a center set partition.
So, a binary relation provides a topological partition. So, Granular Computing of
binary relations can be viewed as Rough Set Theory on pre-topological/granular.
Such consideration provides a roadmap from RST to GrC, for binary relations.
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Abstract. The article investigates probabilistic dependencies in hier-
archies of probabilistic decision tables learned from data. They are ex-
pressed by the probabilistic generalization of the Pawlak’s measure of
the dependency between attributes and the certainty gain measure.

Keywords: Probabilistic rough sets, decision table hierarchies, proba-
bilistic dependencies.

1 Introduction

Dependency measures capture the degree of connection between attributes of
a decision table by quantifying our ability to make accurate predictions of tar-
get decision attribute values based on known values of condition attribute val-
ues. The original rough set theory, as introduced by Pawlak [1], deals with the
quantification and analysis of functional and partial functional dependencies in
decision tables learned from data. In some problems, the decision table depen-
dencies are stochastic in nature, as reflected by specific frequency distributions of
attribute values. The probabilistic dependencies in probabilistic decision tables
can be measured by the expected gain function [8]. The learned decision tables
often suffer from the excessive decision boundary or are highly incomplete. In ad-
dition, the decision boundary reduction problem is conflicting with the decision
table incompleteness minimization problem. To deal with these fundamental dif-
ficulties, an approach referred to as the HDTL, was proposed [10]. It is focused
on learning hierarchical structures of decision tables rather than learning individ-
ual tables, subject to learning complexity constraints. As the single-level tables,
the hierarchies of decision tables need to be evaluated through computation of
dependencies. In this paper, the dependency measures for single-level tables are
generalized to the hierarchical structures of decision tables, their properties are
investigated and a simple recursive method of their computation is discussed.

2 Attribute-Based Classifications

One of the prime notions of rough set theory is the universe of interest U ,
a set of objects e ∈ U about which observations are acquired. The existence of

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 42–49, 2006.
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probabilistic measure P over σ-algebra of measurable subsets of U is also assumed.
It is assumed that all subsets X ⊆ U under consideration are measurable with
0 < P (X) < 1. The probabilities of the subsets are normally estimated from
data by frequency-based estimators in a standard way. We also assume that
observations about objects are expressed through values of functions, referred to
as attributes, belonging to a finite set C∪D, such that C∩D = ∅ . The functions
belonging to the set C are called condition attributes, whereas functions in D
are referred to as decision attributes. We can assume, without loss of generality,
that there is only one binary-valued decision attribute, that is D = {d}. Each
attribute a belonging to C∪D is a mapping a : U → Va, where Va is a finite set of
values called the domain of the attribute a. Each subset of attributes B ⊆ C ∪D
defines a mapping denoted as B : U → B(U) ⊆ ⊗a∈BVa, where ⊗ denotes
Cartesian product operator of all domains of attributes in B. The elements of
the set B(U) ⊆ ⊗a∈BVa will be referred to as tuples. For a tuple t ∈ C ∪ D(U)
and a subset of attributes B ⊆ C ∪D, let t.B denote the projection of the tuple
t on the collection of attributes B. The projection t.B corresponds to a set of
objects whose values of attributes in B match t.B, that is to the set B−1(t) =
{e ∈ U : B(e) = t}. For different tuples t, the sets B−1(t) form a partition of the
universe U , i.e. they are disjoint for different restricted tuples t.B and cover the
universe U . The partition will be denoted as U/B and its classes will be called B-
elementary sets. The pair (U, U/B) will be referred to as an approximation space
induced by the set of attributes B. The C ∪D-elementary sets, that is based on
all condition attributes, denoted as G ∈ U/C ∪ D, will be referred to as atoms.
The C -elementary sets E ∈ U/C will be referred to as elementary sets. The D -
elementary sets X ∈ U/D will be called decision categories. Each elementary set
E ∈ U/C and each decision category X ∈ U/D is a union of some atoms. That

Table 1. Classification Table

P a b c d

0.10 1 1 2 1

0.05 1 1 2 1

0.20 1 0 1 1

0.13 1 0 1 2

0.02 2 2 1 1

0.01 2 2 1 2

0.01 2 0 2 1

0.08 1 1 2 1

0.30 0 2 1 2

0.07 2 2 1 2

0.01 2 2 1 1

0.02 0 2 1 1
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is, E = ∪{G ∈ U/C ∪ D : G ⊆ E} and X = ∪{G ∈ U/C ∪ D : G ⊆ F}. Each
atom G ∈ U/C ∪ D is assigned a joint probability P (G). The table representing
the mapping C ∪ D : U → C ∪ D(U) will be called a classification table. It
consists of tuples t ∈ C ∪ D(U) corresponding to atoms and their associated
joint probabilities. An example classification table with C = {a, b, c}, D = {d}
and joint probabilities P , is shown in Table 1. From our initial assumption
and from the basic properties of the probability measure P , follows that for
all atoms G ∈ U/C ∪ D, we have 0 < P (G) < 1 and

∑
G∈U/C∪D P (G) = 1.

Based on the joint probabilities of atoms, probabilities of elementary sets E
and of a decision category X can be calculated from the classification table by
P (E) =

∑
G⊆E P (G). The probability P (X) of the decision category X will

be referred to as prior probability of the category X . The other probability of
interest here is the conditional probability of the decision category X , P (X |E)
conditioned on the occurrence of the elementary set E. It represents the degree
of confidence in the occurrence of the decision category X, given information
indicating that E occurred. The conditional probability can be expressed in
terms of joint probabilities of atoms by P (X |E) = G⊆X∩E P (G)

G⊆E P (G) .

3 Basics of the Variable Precision Rough Set Model

In rough set theory, the approximate definitions of undefinable sets allow for
determination of an object’s membership in a set with varying degrees of cer-
tainty. The lower approximation permits for uncertainty-free membership deter-
mination, whereas the boundary defines an area of objects which are not certain,
but possible, members of the set [1]. The variable precision model of rough sets
(VPRSM) and related probabilistic models extend upon these ideas (see, e.g. [2],
[4-8]). The defining criteria in the VPRSM are expressed in terms of conditional
probabilities and of the prior probability P (X) of the set X in the universe U .
Two precision control parameters are used. The lower limit l parameter, satis-
fying the constraint 0 ≤ l < P (X) < 1, represents the highest acceptable degree
of the conditional probability P (X |E) to include the elementary set E in the
negative region of the set X . In other words, the l-negative region of the set
X, denoted as NEGl(X) is defined by NEGl(X) = ∪{E : P (X |E) ≤ l}. The
l-negative region of the set X is a collection of objects for which the probabil-
ity of membership in the set X is significantly lower than the prior probability
P (X), the probability of an object’s membership in the set X in the absence
of any information about objects of the universe U . The upper limit u para-
meter, subject to the constraint 0 < P (X) < u ≤ 1, defines the u-positive
region of the set X. The upper limit reflects the least acceptable degree of the
conditional probability P (X |E) to include the elementary set E in the positive
region, or u-lower approximation of the set X . The u-positive region of the set X ,
POSu(X) is defined as POSu(X) = ∪{E : P (X |E) ≥ u}. The u-positive region
of the set X is a collection of objects for which the probability of membership
in the set X is significantly higher than the prior probability P (X). The objects
which are not classified as being in the u-positive region nor in the l-negative
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region belong to the (l, u)-boundary region of the decision category X , denoted
as BNRl,u(X) = ∪{E : l < P (X |E) < u}. The boundary is a specification of
objects about which it is known that their associated probability of belonging,
or not belonging to the decision category X , is not significantly different from
the prior probability of the decision category P (X).

4 Hierarchies of Probabilistic Decision Tables

For the given decision category X ∈ U/D and the set values of the VPRSM
lower and upper limit parameters l and u, we define the probabilistic decision
table DT C,D

l,u as a mapping C(U) → {POS, NEG, BND} derived from the
classification table. The mapping is assigning each tuple of values of condition
attribute values t ∈ C(U) to its unique designation of one of VPRSM approxima-
tion regions POSu(X), NEGl(X) or BNDl,u(X), the corresponding elementary
set Et is included in, along with associated elementary set probabilities P (Et)
and conditional probabilities P (X |Et):

DT C,D
l,u (t) =

⎧⎨⎩ (P (Et), P (X |Et), POS) ⇔ Et ⊆ POSu(X)
(P (Et), P (X |Et), NEG) ⇔ Et ⊆ NEGl(X)
(P (Et), P (X |Et), BND) ⇔ Et ⊆ BNDl,u(X)

(1)

The probabilistic decision table is an approximate representation of the prob-
abilistic relation between condition and decision attributes via a collection of
uniform size probabilistic rules corresponding to rows of the table. An example
probabilistic decision table derived from the classification Table 1 is shown in
Table 2. The probabilistic decision tables are most useful for decision making or
prediction when the relation between condition and decision attributes is largely
non-deterministic.

Because the VPRSM boundary region BNDl,u(X) is a definable subset of
the universe U , it allows to structure the decision tables into hierarchies by
treating the boundary region BNDl,u(X) as sub-universe of U , denoted as
U ′ = BNDl,u(X). The ”child” sub-universe U ′ so defined can be made com-
pletely independent from its ”parent” universe U , by having its own collection
of condition attributes C′ to form a ”child” approximation sub-space (U, U/C′).
As on the parent level, in the approximation space (U, U/C′), the decision table

Table 2. Probabilistic decision table for u=0.8 and l=0.1

a b c P (E) P (X|E) Region

1 1 2 0.23 1.00 POS

1 0 1 0.33 0.61 BND

2 2 1 0.11 0.27 BND

2 0 2 0.01 1.00 POS

0 2 1 0.32 0.06 NEG
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for the subset X ′ ⊆ X of the target decision category X , X ′ = X ∩BNDl,u(X)
can be derived by adapting the formula (1). By repeating this step recursively, a
linear hierarchy of probabilistic decision tables can be grown until either bound-
ary area disappears in one of the child tables, or no attributes can be identified
to produce non-boundary decision table at the final level.

The nesting of approximation spaces obtained as a result of recursive compu-
tation of decision tables, as described above, creates a new approximation space
on U . The resulting hierarchical approximation space (U, R) cannot be expressed
in terms of the attributes used to form the local sub-spaces on individual lev-
els of the hierarchy. An interesting and practical question, with respect to the
evaluation of any decision table-based classifier, is how to measure the degree of
dependency between the hierarchical partition R of U and the partition (X,¬X)
corresponding to the decision category X ⊆ U . Some answers to this question
are explored in the next section.

5 Partitions Dependencies in Decision Table Hierarchies

There are several ways dependencies between attributes can be defined in deci-
sion tables. In Pawlak’s early works functional and partial functional dependen-
cies were explored [1]. The probabilistic generalization of the dependencies was
defined and investigated in the framework of the variable precision rough set
model [2]. All these dependencies represent the relative size of the positive and
negative regions of the target set X . They reflect the quality of approximation of
the target category in terms of the elementary sets of the approximation space.
Following the original Pawlak’s terminology, we will refer to these dependencies
as γ-dependencies.

Other kind of dependencies, based on the notion of the certainty gain measure,
reflect the average degree of change of the certainty of occurrence of the decision
category X relative to its prior probability P (X) [8]. We will refer to these
dependencies as λ-dependencies. The γ-dependencies and λ-dependencies can
be extended to hierarchies of probabilistic decision tables, as described in the
following subsections. Because there is no single collection of attributes defining
the partition of U , the dependencies of interest in this case are dependencies
between the hierarchical partition R and the partition (X,¬X).

The original γ-dependency γ(D|C) measure represents the degree of deter-
minism represented by a decision table acquired from data. It can be expressed
in terms of the probability of positive region of the partition U/D defining de-
cision categories, that is, γ(D|C) = P (POSC,D(U)), where POSC,D(U) is a
positive region of the partition U/D in the approximation space induced by the
partition U/C. In the binary case of two decision categories, X and ¬X , the
γ(D|C)-dependency can be extended to the variable precision model of rough
sets by defining it as the combined probability of the u-positive and l -negative
regions γl,u(X |C) = P (POSu(X) ∪ NEGl(X). This dependency measure re-
flects the proportion of objects in U , which can be classified with sufficiently
high certainty as being members, or non-members of the set X .
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In case of the approximation spaces obtained via hierarchical classification
process, the γ-dependency between the hierarchical partition R and the parti-
tion (X,¬X) can be computed directly by analyzing all classes of the hierarchical
partition. However, a more elegant and easier to implement recursive computa-
tion is also possible. This is done by recursively applying, starting from the leaf
table of the hierarchy and going up to the root table, the following formula for
computing the dependency of the parent table γU

l,u(X |R) in the hierarchical ap-
proximation space (U, R), if the dependency of a child level table γU ′

l,u(X |R′) in
the sub-approximation space (U ′, R′) is given:

Proposition 1. γU
l,u(X |R) = γU

l,u(X |C) + P (U ′)γU ′
l,u(X |R′), where C is collec-

tion of attributes inducing the approximation space U and U ′ = BNDl,u(X).

The dependency measure represents the fraction of objects that can be classified
with acceptable certainty into decision categories X or ¬X by applying the de-
cision tables in the hierarchy. The dependency of the whole structure of decision
tables, that is the last dependency computed by the recursive application of the
formula given by Proposition (1), will be called a global γ-dependency.

Based on the probabilistic information contained in the probabilistic decision
table, as given by the joint probabilities of atoms, it is possible to evaluate the
degree of probabilistic dependency between any elementary set and a decision
category. The dependency measure is called absolute certainty gain [8] (gabs). It
represents the degree of influence the occurrence of an elementary set E has on
the likelihood of the occurrence of the decision category X . The occurrence of E
can increase, decrease, or have no effect on the probability of occurrence of X .
The probability of occurrence of X , in the absence of any other information, is
given by its prior probability P (X). Consequently, it can be used as a reference
to measure the degree of influence of the occurrence of the elementary set E on
the likelihood of occurrence of the decision category X . This degree of variation
of the probability of X , due to occurrence of E, is reflected by the absolute
certainty gain function gabs(X |E) = |P (X |E) − P (X)|, where | ∗ | denotes
absolute value function. The values of the absolute gain function fall in the
range 0 ≤ gabs(X |E) ≤ max(P (¬X), P (X)) < 1. In addition, if sets X and E
are independent in the probabilistic sense, that is if P (X∩E) = P (X)P (E), then
gabs(X |E) = 0. The definition of the absolute certainty gain provides a basis
for the definition of the probabilistic dependency measure between attributes.
This dependency can be expressed as the average degree of change of occurrence
certainty of the decision category X , or of its complement ¬X , due to occurrence
of any elementary set [8], as defined by the expected certainty gain function
egabs(D|C) =

∑
E∈U/C P (E)gabs(X |E), where X ∈ U/D.

The expected certainty gain egabs(D|C) can be computed directly from the
probabilistic classification table as the prior and conditional probabilities can be
computed from the joint probabilities of tuples. The following Proposition 2 [8]
sets the limits for the values of the expected certainty gain:

Proposition 2. The expected gain function falls in the range 0 ≤ egabs(D|C) ≤
2P (X)(1 − P (X)), where X ∈ U/D.
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Because the strongest dependency occurs when the decision category X is defin-
able, i.e. when the dependency is functional, this suggests the use of the degree
of the expected gain in the functional dependency case as a normalization fac-
tor. The following normalized expected gain function λ(D|C) = egabs(D|C)

2P (X)(1−P (X))
measures the expected degree of the probabilistic dependency between elemen-
tary sets and the decision categories belonging to U/D, where X ∈ U/D. The
dependency function reaches its maximum λ(D|C) = 1 only if the dependency is
deterministic (functional). The value of the λ(D|C) dependency function can be
easily computed from the probabilistic decision table. As opposed to the γ(D|C)
dependency, the λ(D|C) dependency has the monotonicity property [6]:

Proposition 3. The λ-dependency is monotonic, that is, for condition attri-
butes C and an attribute a, λ(D|C) ≤ λ(D|C ∪ {a}).
The monotonicity property allows for dependency-preserving reduction of at-
tributes leading to the λ-reduct of attributes [8]. This makes it possible for
application of existing algorithms (see, e.g. [9]) for λ-reduct computation.

The λ-dependencies can be computed based on any partitioning of the uni-
verse U . In the case when the approximation space is formed through hierarchi-
cal classification, the λ-dependency between the partition R so created and the
target category X can be computed via recursive process described below.

Let egabsl,u(X |C) =
∑

E∈POSu∪NEGl
P (E)gabs(X |E) denote the conditional

expected gain function, ie. restricted to the union of positive and negative re-
gions of the target set X in the approximations space induced by attributes
C. The maximum value of egabsl,u(X |C), achievable in deterministic case, is
2P (X)(1−P (X)). Thus, the normalized conditional λ-dependency function, can
be defined as λl,u(X |C) = egabsl,u(X|C)

2P (X)(1−P (X)) . The following Proposition (4) de-
scribes the relationship between λ-dependency computed in the approximation
space (U, R), versus the dependency computed over the approximation sub-space
(U, R′), where R and R′ are hierarchical partitions U/R and U ′/R′ of universes
U and U ′ = BNDl,u(X), respectively. Let λl,u(X |R) and λl,u(X |R′) denote
λ-dependency measures in the approximation spaces (U, R) and (U ′, R′), re-
spectively. The λ-dependencies in those approximation spaces are related by the
following:

Proposition 4. λl,u(X |R) = λl,u(X |C) + P (U ′)λl,u(X |R′).

The proof of the proposition follows directly from the Bayes’s equation. In prac-
tical terms, the Proposition (4) provides a method for efficient computation of
λ-dependency in a hierarchical arrangement of probabilistic decision tables. Ac-
cording to this method, to compute hierarchical λ-dependency for a given level
of the hierarchy, it suffices to compute the conditional λ-dependency for the level
and to combine with known ”child” BNDl,u(X)-level hierarchical λ-dependency.

6 Concluding Remarks

The article investigates two forms of partition dependencies in hierarchically
structured approximation spaces in the context of the variable precision rough
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set model. The first one, the γ-dependency is a direct generalization of Pawlak’s
partial functional dependency measure. It is useful in situations when relatively
strong positive or negative regions of the target category exist. However, the γ-
dependency is not subtle enough when the regions are weak or non-existent and
the dependencies are in the form of weak stochastic correlations. In such cases,
the second measure of λ-dependency is more appropriate, which is representing
the average degree of deviation from probabilistic independence between events.
The λ-dependency measure is capable of quantifying weak dependencies in the
absence of positive and negative regions. Both of the dependency measures are
shown to exhibit some convenient recursive regularities in hierarchical approxi-
mation spaces. The regularities make it possible to perform efficient dependency
computation via recursive procedure. The measures are applicable to the quality
assessment of empirical classifiers based on linear hierarchies of decision tables.
They have been implemented in Java in the application-oriented project con-
cerned with utilizing exiting stock market records to develop classifier system to
predict the direction of stock price movements for selected commodities [11].
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Abstract. It is proved in the paper that it is knowledge that plays a crucial role for 
intelligence formation this is because of the fact that intelligence must normally 
be activated from knowledge and different categories of knowledge will thus 
lead to different categories of intelligence. On the other hand, knowledge itself 
should mainly come from information. Therefore, knowledge serves as a channel 
for linking information and intelligence. Without knowledge, information can 
hardly be transformed into intelligence. Even more interestingly, a unified theory 
of artificial intelligence can well be achieved if a comprehensive understanding 
of knowledge theory is reached. 

Keywords: Knowledge theory, mechanism, unified theory of AI. 

1   Introduction 

As the most attractive and unique attributes to humans, intelligence as a subject in 
research has been received more and more attentions not only from scientific circles but 
also from engineering arena. It would be a significant progress if the secret of human 
intelligence can gradually be understood. It would be even great breakthrough in 
science and technology if human intelligence, or part of it, can steadily be transferred to 
machines, making machines intelligent. For this purpose, there have been tremendous 
efforts made by scientists and engineers during the past decades. Structuralism, 
functionalism, and behaviorism are the three major approaches among others to this 
end. While making progresses, all the three approaches confront with critical 
difficulties that seem to be very hard to overcome. 

What is the matter then? Based on the long-term observations and results 
accumulated during his research, the author of the article would like to give the answers 
toward the question above. Due to the space limitation for the article, the presentation 
will however have to be concise and brief. 

2   Model of Human Intelligence Process 

Intelligence is a kind of phenomenon that is pervasively existed in the world of living 
beings However, human intelligence is the most powerful and typical among others, 
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To begin with, therefore, a general model for describing human intelligence process 
is necessarily given as a basis of the discussions that will be carried on later in the 
article. 

In Fig.1 below shows the model of human intelligence process in the boxes of which 
are human organs (the sensors, nerve system, brain and actuators) while outside the 
boxes are related functions that human organs perform (information acquisition, 
information transferring, information cognition & decision making, and strategy 
execution) and alongside with the arrows are the products (ontological information, 
epistemological information, knowledge, intelligent strategy, and intelligent actions). 

 

Fig. 1. Model of Human Intelligence Process 

The model tells how human beings solve the problems they face in the real world 
and how the knowledge and information play their roles in producing intelligent 
strategies and accordingly the intelligent actions. Note that intelligent strategy is the 
major embodiment of intelligence and thus the words ‘intelligence’ and ‘intelligent 
strategy’ will be regarded as the same in what follows.   

3  The Mechanism of Intelligence Formation 

The mechanisms embedded in the process of intelligence formation consist of a 
number of transformations that will be explained in the following sub-sections. Due to 
the limitation of the space for the paper, only the nucleus that are in the middle in 
Fig.1, the transformations from information to knowledge and then to intelligence, are 
discussed in the paper whereas the transformations from ontological to episte- 
mological information and from intelligent strategy to intelligent action, that are the 
two interfaces between the intelligent system and the external world as seen in Fig.1, 
will be ignored. 
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3.1   The Cognition: Transformation from Information to Knowledge 

We begin to deal with the transformation from epistemological information to 
knowledge as is shown in Fig.1. For those who have the interest to understand the 
transformation from ontological information to epistemological information, please 
refer to reference [1].  

The related concepts are however given below, referring to that shown in Fig.1. 

Definition 1. Ontological Information of an object is its self-description concerning 
its state at which it is staying and the manner with which the state may vary. 

Definition 2. Epistemological Information of an object is a description, given by the 
subject (observer or user), concerning its state at which it is staying and may stay and 
the manner with which the state may vary, including the forms, meanings and utilities 
of the states/manner. The descriptions concerning the forms, meanings, and utilities of 
the states/manner are respectively termed the Syntactical Information, Semantic 
Information and Pragmatic Information, and the entirety of the three is termed the 
comprehensive information, see [1]. 

Definition 3. Knowledge: Knowledge concerning a category of objects is the 
description, made by subjects, on various aspects of the states at which the objects may 
stay and the law with which the states may vary. The first aspect is the form of the states 
and law and that is termed the formal knowledge, the second aspect is the meaning of 
the states and law that is termed the content knowledge and the third aspect is the value 
of the states and law with respect to the subject that is termed the value knowledge. All 
the latter three aspects constitute a trinity of knowledge [2]. 

The definitions 2 and 3 indicate clearly that the transformation from epistemological 
information to knowledge can be implemented through inductive algorithms: 

}{ EIK ⇐                                                     (1) 

where the symbol  in Eq. (1) stands for induction-like operator; {IE} the sample set of 
the epistemological information; and K the knowledge produced from {IE}. In some 
cases, there may need some iterations between induction and deduction and the 
deduction itself can be expressed as  

                            },{ CKK oldnew ℜ⇐                                            (2) 

where C stands for the constraint for deduction.  
More specifically, the formal knowledge can be refined from syntactic information, 

content knowledge can be refined by semantic information, and utility knowledge can 
be refined by pragmatic information through induction/deduction as indicated below: 

}{ syF IK ⇐                                                  (3) 

}{ prV IK ⇐                                                  (4) 

)},,({ CIIK pryC ℜ⇐
                                        

(5)
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where the symbols KF KV and KC  respectively stand for formal, content and value 
knowledge while Isy and Ipr for syntactic and pragmatic information. The general 
algorithms in principle related to (3), (4) and (5) can be referred to [2]. 

Knowledge itself, in accordance with its degree of maturity in the process of growth, 
can roughly and necessarily be further classified into three categories: the experiential 
knowledge, the regular knowledge and the knowledge in common sense. 

Definition 4. Empirical Knowledge: The knowledge produced by induction-like 
operations yet without scientific verification is named the empirical knowledge, or 
potential knowledge and also pre-knowledge, sometimes. 

Definition 5. Regular Knowledge: The regular knowledge can be defined as matured 
knowledge. It is the normal stage of knowledge growth. 

Definition 6. Common Sense Knowledge: There exist two sub-categories: (1) 
knowledge that has very well popularized and (2) instinctive knowledge. Learning and 
reasoning process are not needed in the category.  

3.2   The Decision-Making: Transformation from Knowledge to Intelligence 

The task for decision-making in Fig.1 is to create an intelligent strategy based on the 
knowledge and information. The strategy serves as the guidelines for problem solving 
intelligently and is the major embodiment of the related intelligence. This is why it is 
often called intelligent strategy. 

Definition 7. Strategy: A Strategy for problem solving is sort of procedure, produced 
based on the related knowledge and information, along which the given problem could 
be satisfactorily solved, meeting the constraints and reaching the goal. 

The transformation from knowledge and information to strategy can be expressed as 

                         SKGEPTS );,,(:                                         (6) 

where TS denotes the map or transformation, P the problem to be solved, E the 
constraints given by environment, G the goal of problem solving, K the knowledge 
related to the problem solving and S the space of strategies. Theoretically speaking, for 
any reasonably given P, E, G and K, there must exist a group of strategies such that the 
problem can be solved satisfactorily and among the strategies there will be at least an 
optimal one guaranteeing the optimal solution. 

In summary, as it is indicated in Fig.1, there are four categories of functional units in 
the entire intelligence process. The units of information acquisition and execution are 
two kinds of interface between intelligent system and the external world: the former 
acquires the ontological information from the external world while the latter exert 
strategic information to the external world. The units of information cognition and 
decision-making are two kinds of inner core of the intelligent system: the former create 
knowledge from information and the latter produce strategy from the knowledge. Only 
by the synergetic collaboration among all the four functions could make intelligence 
practical and this is the mechanism of intelligence formation in general cases.  
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4   The Role of Knowledge in Intelligence Formation 

Dependent on the properties of the problem faced and the knowledge already possessed 
the specific form of the transformation will be implemented in different ways.  

(1) If empirical knowledge has to be in use (there is no regular knowledge 
available), the mechanism of intelligence formation, or the transformation from 
information to knowledge and further to intelligence, can well be implemented 
through the procedure of learning/training and testing/revision. In fact, this is 
the common mechanism of artificial neural network’s learning [3]. 

(2) As for the category of regular knowledge, the transformation can be 
implemented via a series of logic inferences. More specifically, for the given 
problem, constraints, goal and the related knowledge, it is possible to form a 
tentative strategy for the selection of rules for applying to the problem and 
producing a new state of the problem. Diagnosing the new state by comparing it 
with the goal and making analysis based on the related knowledge, the tentative 
strategy can thus be improved or maintained. A new rule can then be selected to 
apply to the new state and new progress may be made. This process will be 
continued until the goal is reached and the constraints are met. In the meantime, 
the strategy is also formed. Evidently, this is the mechanism of strategy 
formation in the so-called Expert System [4]. 

(3) In the case of common-sense knowledge, the mechanism of intelligent strategy 
formation can be implemented by directly linking the input pattern and the 
intelligent action. As long as the input pattern is recognized the intelligent action 
can immediately be determined based on the common sense knowledge direct 
related to the problem without any inferences needed. This is the typical feature 
of strategy formation sensor-motor category [5]. 

The discussions above clearly show that different categories knowledge available 
will determine the categories of intelligence at hand. 

5   Unified Theory of AI: A By-Product 

It is interesting to note that in a long history of Artificial Intelligence development there 
have been three strong approaches to the research in literature, the structuralism also 
called as connectionism approach [3], the functionalism also termed as symbolism 
approach [4], and the behaviorism or senor-motor approach [5] that have seemed quite 
clearly distinctive to each other.  

As is seen in last section, however, all the three approaches have well been unified 
into one same mechanism of intelligence formation, that is, the transformations from 
information to knowledge (Cognition Process) and further to intelligence (Decision- 
making Process). Therefore, in views of the inherent mechanism of intelligence 
formation, there should be a unified theory of intelligence, realizing the unification 
among the three approaches. This is shown in Fig.2. 
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It is clearly enough to see from Fig.2 that the difference among the three traditional 
approaches lies only on the microscopic view, the categories of knowledge in use while 
the macroscopic view, the core mechanisms of intelligence formation, the process of 
cognition and decision-making, are remained the same. 

As stated in section 3.2 and shown in Fig.2, if the knowledge to be used in the 
process of intelligence formation must be refined from information directly and 
instantly (this is referred to the first category of knowledge, or experiential knowledge), 
the implementation of cognition and decision-making will have to employ the training 
and testing procedure by using, for example, the artificial neural networks approach. 
This is just the so-called Structuralism Approach because all Artificial Neural 
Networks are designed by following the Biological Neural Networks in principle.  

 

Fig. 2. Intelligence Theory Unification 

If the knowledge to be used in the process of intelligence formation can be obtained 
from some experts and not necessary to be refined from information (this is referred to 
the second category of knowledge, or regular knowledge), the task of cognition is 
simply be performed by humans while the decision-making can be implemented via 
logic inference. This is the structuralism approach emphasizing on the functions of the 
system while without considering the structure constraints. 

When the knowledge to be used in the process of intelligence formation is the third 
category, the common sense knowledge about the relationships between the input 
patterns and output actions, there is of course no need for knowledge acquisition, 
representation as well as reasoning and the only thing that have to do is to take the 
action closely related to the input pattern. This thus directly goes to the so-called 
behaviorism approach. 

These results show that knowledge does play a crucial role in the research of 
artificial intelligence not only because of the fact that knowledge is a channel to link 
both information and intelligence together but also because of the fact that the 
categories of knowledge in use will ultimately decide the real approaches to the 
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implementation of AI. In this aspect, one may say that AI is such a field in which 
knowledge is dominant.  

After all, based on the analyses seen above, it is clear that the three approaches, 
existed in Artificial Intelligence research, are by no means in contradiction to each 
other. They, Artificial Neural Networks Approach (The Structuralism), Expert Systems 
Approach (The Functionalism), and Senor-Motor Approaches (The Behaviorism), are 
well complementary to a unified theory of Artificial Intelligence and no one can take 
the other’s place.  

It is the author’s belief that the unification of structuralism, functionalism and 
behaviorism into a harmonic theory of AI based on the inherent formation mechanism 
of intelligence of any kinds of intelligent systems possesses great significance to the 
future development in Artificial Intelligence research as the transformations of 
information to knowledge and further to knowledge are feasible in any cases. 

One of the lessons we learned from the study above is something called scientific 
methodology. In the past in the history of AI development, the most frequently adopted 
methodology is the one called “Divide and Conquer” through which the problem is 
divided into different parts separately and independently without mutual linkage. 
Following this methodology, the intelligent systems were divided into structural, 
functional, and behavioral views, therefore leading to Structuralism, Functionalism, 
and Behaviorism approaches. Also following that methodology, the intelligence 
formation process was separated into information, knowledge, and intelligence 
processes without a link among them. However, to the complicated problems, the most 
useful methodology should be the “Divide and Integrity”. Employing the new 
methodology, the core mechanism approach was discovered and the structure, function, 
behavior on one hand and information, knowledge, and intelligence, on the other hand, 
all becomes an integrity. This, the author of the paper believes, is also an important 
conclusion resulted from the studies in the AI.  
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Abstract. Sound and Vision Engineering as an interdisciplinary branch
of science should quickly assimilate new methods and new technologies.
Meanwhile, there exist some advanced and well developed methods for
analyzing and processing of data or signals that are only occasionally
applied to this domain of science. These methods emerged from the ar-
tificial intelligence approach to image and signal processing problems.
In the paper the intelligent algorithms, such as neural networks, fuzzy
logic, genetic algorithm and the rough set method will be presented with
regards to their applications to sound and vision engineering. The paper
will include a practical demonstration of results achieved with intelligent
algorithms applications to: bi-modal recognition of speech employing
NN-PCA algorithm, perceptually-oriented noisy data processing meth-
ods, advanced sound acquisition, GA algorithm-based digital signal pro-
cessing for telecommunication applications and others.
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Abstract. In this paper we discuss four kinds of missing attribute val-
ues: lost values (the values that were recorded but currently are un-
available), ”do not care” conditions (the original values were irrelevant),
restricted ”do not care” conditions (similar to ordinary ”do not care”
conditions but interpreted differently, these missing attribute values may
occur when in the same data set there are lost values and ”do not care”
conditions), and attribute-concept values (these missing attribute values
may be replaced by any attribute value limited to the same concept).
Through the entire paper the same calculus, based on computations of
blocks of attribute-value pairs, is used. Incomplete data are character-
ized by characteristic relations, which in general are neither symmetric
nor transitive. Lower and upper approximations are generalized for data
with missing attribute values. Finally, some experiments on different in-
terpretations of missing attribute values and different approximation def-
initions are cited.

Keywords: Incomplete data sets, lost values, ”do not care” conditions,
attribute-concept values, blocks of attribute-value pairs, characteristic
sets, characteristic relations.

1 Introduction

Using standard rough set theory we may describe complete data sets, i.e., data
sets in which all attribute values are given. However, many real-life data sets are
incomplete, i.e., some attribute values are missing. Recently rough set theory was
extended to handle incomplete data sets (i.e., data sets with missing attribute
values) [1,2,3,4,5,6,7,8,9,10,11,12,13,17,18,19].

We will consider four kinds of missing attribute values [7]. The first kind of
missing attribute value will be called lost. A missing attribute value is lost when
for some case (example, object) the corresponding attribute value was mistakenly
erased or the entry into the data set was forgotten. In these cases the original
value existed, but for a variety of reasons now it is not accessible.

The next three kinds of missing attribute values, called ”do not care” condi-
tions, restricted ”do not care” conditions and attribute-concept values are based
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on an assumption that these values were initially, when the data set was cre-
ated, irrelevant. For example [7], in a medical setup, patients were subjected to
preliminary tests. Patients whose preliminary test results were negative were di-
agnosed as not affected by a disease. They were perfectly well diagnosed in spite
of the fact that not all tests were conducted on them. Thus some test results
are missing because these tests were redundant. In different words, a missing
attribute value of this kind may be potentially replaced by any value typical for
that attribute. This kind of a missing attribute value will be called a ”do not
care” condition. Restricted ”do not care” conditions are defined in the next sec-
tion. In our last case, a missing attribute value may be replaced by any attribute
value limited to the same concept. For example [7], if a patient was diagnosed
as not affected by a disease, we may want to replace the missing test (attribute)
value by any typical value for that attribute but restricted to patients in the
same class (concept), i.e., for other patients not affected by the disease. Such
missing attribute value will be called attribute-concept value.

Two special data sets with missing attribute values were extensively studied:
in the first case, all missing attribute values are lost, in the second case, all miss-
ing attribute values are ordinary ”do not care” conditions. Incomplete decision
tables in which all attribute values are lost, from the viewpoint of rough set
theory, were studied for the first time in [10], where two algorithms for rule in-
duction, modified to handle lost attribute values, were presented. This approach
was studied later, e.g., in [17,18], where the indiscernibility relation was gener-
alized to describe such incomplete decision tables.

On the other hand, incomplete decision tables in which all missing attribute
values are ”do not care” conditions, from the view point of rough set theory,
were studied for the first time in [2], where a method for rule induction was
introduced in which each missing attribute value was replaced by all values from
the domain of the attribute. Originally [2] such values were replaced by all values
from the entire domain of the attribute, later [8], by attribute values restricted
to the same concept to which a case with a missing attribute value belongs. Such
incomplete decision tables, with all missing attribute values being ”do not care
conditions”, were broadly studied in [12,13], including extending the idea of the
indiscernibility relation to describe such incomplete decision tables.

In general, incomplete decision tables are described by characteristic relations,
in a similar way as complete decision tables are described by indiscernibility re-
lations [4,5,6,7].

In rough set theory, one of the basic notions is the idea of lower and upper
approximations. For complete decision tables, once the indiscernibility relation
is fixed and the concept (a set of cases) is given, the lower and upper approxi-
mations are unique.

For incomplete decision tables, for a given characteristic relation and concept,
there are three important and different possibilities to define lower and upper
approximations, called singleton, subset, and concept approximations [4,5,6,7].
Singleton lower and upper approximations were studied in [12,13,16,17,18]. Note
that similar three definitions of lower and upper approximations, though not for
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incomplete decision tables, were studied in [14,20]. As it was observed in [4,5,6,7],
singleton lower and upper approximations are not applicable in data mining.

2 Blocks of Attribute-Value Pairs

We assume that the input data sets are presented in the form of a decision table.
An example of a decision table is shown in Table 1. Rows of the decision table

Table 1. An incomplete decision table

Attributes Decision

Case Capacity Noise Size Quality

1 two – compact high

2 four * * high

3 ? medium medium low

4 + low compact low

5 four ? medium high

6 – medium full low

7 five low full high

represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2, ..., 7}. Independent variables are called
attributes and a dependent variable is called a decision and is denoted by d. The
set of all attributes will be denoted by A. In Table 1, A = {Capacity, Noise,
Size}. Any decision table defines a function ρ that maps the direct product of U
and A into the set of all values. For example, in Table 1, ρ(1, Capacity) = two. A
decision table with an incompletely specified function ρ will be called incomplete.

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. Also, we will assume that lost values will be denoted
by ”?”, ”do not care” conditions by ”*”, restricted ”do not care” conditions by
”+”, and attribute-concept values by ”–”. Additionally, we will assume that for
each case at least one attribute value is specified.

An important tool to analyze complete decision tables is a block of the
attribute-value pair. Let a be an attribute, i.e., a ∈ A and let v be a value
of a for some case. For complete decision tables if t = (a, v) is an attribute-value
pair then a block of t, denoted [t], is a set of all cases from U that for attribute
a have value v. For incomplete decision tables the definition of a block of an
attribute-value pair must be modified in the following way:

– If for an attribute a there exists a case x such that ρ(x, a) =?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks[(a, v)] for all values v of attribute a,
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– If for an attribute a there exists a case x such that the corresponding value
is a ”do not care” condition or a restricted ”do not care” condition, i.e.,
ρ(x, a) = ∗ or ρ(x, a) = +, then the case x should be included in blocks
[(a, v)] for all specified values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., ρ(x, a) = −, then the corresponding case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where

V (x , a) = {ρ(y, a) | ρ(y, a) is specified , y ∈ U, ρ(y, d) = ρ(x, d)}.

In Table 1, for case 1, ρ(1, Noise) = −, and V (1, Noise) = {low}, so we add case
1 to [(Noise, low)]. For case 2, ρ(2, T emperature) = ∗, hence case 2 is included
in both sets: [(Noise, medium)] and [(Noise, low)]. Similarly, ρ(2, Size) = ∗,
hence case 2 is included in all three sets: [(Size, compact)], [(Size, medium)],
and [(Size, full)].

Furthermore, ρ(3, Headache) = ?, so case 3 is not included in [(Capacity,
two)], [(Capacity, four)] and [(Capacity, five)]. For case 4, ρ(4, Capacity) = +,
so case 4 is included in [(Capacity, two)], [(Capacity, four)], and [(Capacity, five)].
Also, ρ(5, Noise) =?, so case 5 is not in [(Noise, medium)] and [(Noise, low)].
Finally, ρ(6, Capacity) = −, and V (6, Capacity) = ∅ so case 6 is not included
in [(Capacity, two)], [(Capacity, four)], and [(Capacity, five)]. Thus,

[(Capacity, two)] = {1, 4},
[(Capacity, four)] = {2, 4, 5},
[(Capacity, five)] = {4, 7},
[(Noise, medium)] = {2, 3, 6},
[(Noise, low)] = {1, 2, 4, 7},
[(Size, compact)] = {1, 2, 4},
[(Size, medium)] = {2, 3, 5},
[(Size, full)] = {2, 6, 7}.

For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the following way:

– If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a)] of attribute a and
its value ρ(x, a),

– If ρ(x, a) =? or ρ(x, a) = ∗ then the set K(x, a) = U ,
– If ρ(x, a) = +, then K(x, a) is equal to the union of all blocks of (a, v), for

all specified values v of attribute a,
– If ρ(x, a) = −, then the corresponding set K(x, a) is equal to the union

of all blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is
nonempty. If V (x, a) is empty, K(x, a) = U .

For Table 1 and B = A,

KA(1) = {1, 4} ∩ {1, 2, 4, 7} ∩ {1, 2, 4} = {1, 4},
KA(2) = {2, 4, 5} ∩ U ∩ U = {2, 4, 5},
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KA(3) = U ∩ {2, 3, 6} ∩ {2, 3, 5} = {2, 3},
KA(4) = ({1, 4} ∪ {2, 4, 5} ∪ {4, 7}) ∩ {1, 2, 4, 7} ∩ {1, 2, 4} = {1, 2, 4},
KA(5) = {2, 4, 5} ∩ U ∩ {2, 3, 5} = {2, 5},
KA(6) = U ∩ {2, 3, 6} ∩ {2, 6, 7} = {2, 6}, and
KA(7) = {4, 7} ∩ {1, 2, 4, 7} ∩ {2, 6, 7} = {7}.
Characteristic set KB(x) may be interpreted as the set of cases that are indis-

tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values. Thus, KA(x) is the set of all cases that cannot be
distinguished from x using all attributes.

The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x , y) ∈ R(B) if and only if y ∈ KB (x ).

Thus, the relation R(B) may be defined by (x, y) ∈ R(B) if and only if y is indis-
tinguishable from x by all attributes from B. The characteristic relation R(B) is
reflexive but—in general—does not need to be symmetric or transitive. Also, the
characteristic relation R(B) is known if we know characteristic sets K(x) for all
x ∈ U . In our example, R(A) = {(1, 1), (1, 4), (2, 2), (2, 4), (2, 5), (3, 2), (3, 3),
(4, 1), (4, 2), (4, 4), (5, 2), (5, 5), (6, 2), (6, 6), (7, 7)}. The most convenient way
is to define the characteristic relation through the characteristic sets.

For decision tables, in which all missing attribute values are lost, a special char-
acteristic relation was defined in [17], see also, e.g., [18]. For decision tables where
all missing attribute values are ”do not care” conditions a special characteristic
relation was defined in [12], see also, e.g., [13]. For a completely specified decision
table, the characteristic relation R(B) is reduced to the indiscernibility relation.

3 Definability

For completely specified decision tables, any union of elementary sets of B is
called a B-definable set [15]. Definability for completely specified decision tables
should be modified to fit into incomplete decision tables. For incomplete decision
tables, a union of some intersections of attribute-value pair blocks, where such
attributes are members of B and are distinct, will be called B-locally definable
sets. A union of characteristic sets KB(x), where x ∈ X ⊆ U will be called
a B-globally definable set. Any set X that is B -globally definable is B -locally
definable, the converse is not true. For example, the set {4} is A-locally definable
since {4} = [(Capacity, f ive)] ∩ [(Size, compact)]. However, the set {4} is not
A-globally definable. Obviously, if a set is not B-locally definable then it cannot
be expressed by rule sets using attributes from B. This is why it is so important
to distinguish between B-locally definable sets and those that are not B-locally
definable.

4 Lower and Upper Approximations

For completely specified decision tables lower and upper approximations are
defined on the basis of the indiscernibility relation. Let X be any subset of the
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set U of all cases. The set X is called a concept and is usually defined as the
set of all cases defined by a specific value of the decision. In general, X is not a
B-definable set. However, set X may be approximated by two B-definable sets,
the first one is called a B-lower approximation of X , denoted by BX and defined
as follows

{x ∈ U | [x]B ⊆ X}.
The second set is called a B-upper approximation of X , denoted by BX and
defined as follows

{x ∈ U | [x]B ∩ X �= ∅}.
The above shown way of computing lower and upper approximations, by con-
structing these approximations from singletons x, will be called the first method.
The B-lower approximation of X is the greatest B-definable set, contained in X .
The B-upper approximation of X is the smallest B-definable set containing X .

As it was observed in [15], for complete decision tables we may use a second
method to define the B-lower approximation of X , by the following formula

∪{[x]B | x ∈ U, [x]B ⊆ X},

and the B-upper approximation of x may be defined, using the second method,
by

∪{[x]B | x ∈ U, [x]B ∩ X �= ∅}.
Obviously, for complete decision tables both methods result in the same respec-
tive sets, i.e., corresponding lower approximations are identical, and so are upper
approximations.

For incomplete decision tables lower and upper approximations may be de-
fined in a few different ways. In this paper we suggest three different definitions
of lower and upper approximations for incomplete decision tables. Again, let X
be a concept, let B be a subset of the set A of all attributes, and let R(B) be
the characteristic relation of the incomplete decision table with characteristic
sets K(x), where x ∈ U . Our first definition uses a similar idea as in the pre-
vious articles on incomplete decision tables [12,13,17,18], i.e., lower and upper
approximations are sets of singletons from the universe U satisfying some prop-
erties. Thus, lower and upper approximations are defined by analogy with the
above first method, by constructing both sets from singletons. We will call these
approximations singleton. A singleton B-lower approximation of X is defined as
follows:

BX = {x ∈ U | KB(x) ⊆ X}.
A singleton B-upper approximation of X is

BX = {x ∈ U | KB(x) ∩ X �= ∅}.

In our example of the decision table presented in Table 1 let us say that B = A.
Then the singleton A-lower and A-upper approximations of the two concepts:
{1, 2, 4, 8} and {3, 5, 6, 7} are:

A{1, 2, 5, 7} = {5, 7},
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A{3, 4, 6} = ∅,
A{1, 2, 5, 7} = U,

A{3, 4, 6} = {1, 2, 3, 4, 6}.
We may easily observe that the set {5, 7} = A{1, 2, 5, 7} is not A-locally definable
since in all blocks of attribute-value pairs cases 2 and 5 are inseparable. Thus, as
it was observed in, e.g., [4,5,6,7], singleton approximations should not be used,
in general, for data mining and, in particular, for rule induction.

The second method of defining lower and upper approximations for complete
decision tables uses another idea: lower and upper approximations are unions
of elementary sets, subsets of U . Therefore we may define lower and upper ap-
proximations for incomplete decision tables by analogy with the second method,
using characteristic sets instead of elementary sets. There are two ways to do
this. Using the first way, a subset B-lower approximation of X is defined as
follows:

BX = ∪{KB(x) | x ∈ U, KB(x) ⊆ X}.
A subset B-upper approximation of X is

BX = ∪{KB(x) | x ∈ U, KB(x) ∩ X �= ∅}.

Since any characteristic relation R(B) is reflexive, for any concept X , singleton
B-lower and B-upper approximations of X are subsets of the subset B-lower
and B-upper approximations of X , respectively. For the same decision table,
presented in Table 1, the subset A-lower and A-upper approximations are

A{1, 2, 5, 7} = {2, 5, 7},

A{3, 4, 6} = ∅,
A{1, 2, 5, 7} = U,

A{3, 4, 6} = {1, 2, 3, 4, 5, 6}.
The second possibility is to modify the subset definition of lower and upper ap-
proximation by replacing the universe U from the subset definition by a concept
X . A concept B-lower approximation of the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X, KB(x) ⊆ X}.

Obviously, the subset B-lower approximation of X is the same set as the concept
B-lower approximation of X . A concept B-upper approximation of the concept
X is defined as follows:

BX = ∪{KB(x) | x ∈ X, KB(x) ∩ X �= ∅} =
= ∪{KB(x) | x ∈ X}.

The concept upper approximations were defined in [14] and [16] as well. The
concept B-upper approximation of X is a subset of the subset B-upper approxi-
mation of X . Besides, the concept B-upper approximations are truly the smallest
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B-definable sets containing X . For the decision table presented in Table 1, the
concept A-upper approximations are

A{1, 2, 5, 7} = {1, 2, 4, 5, 7},

A{3, 4, 6} = {1, 2, 3, 4, 6}.
Note that for complete decision tables, all three definitions of lower approxi-

mations, singleton, subset and concept, coalesce to the same definition. Also, for
complete decision tables, all three definitions of upper approximations coalesce
to the same definition. This is not true for incomplete decision tables, as our
example shows.

5 Results of Experiments

In Table 2 results of experiments [9] on seven well-known data sets from the
UCI Machine Learning Repository are cited. Error rates were computed using
ten-fold cross validation, with exception of the echocardiogram data set where
leave-one-out was used.

Table 2. Error rates for data with missing attribute values

Data set Missing attribute values interpreted as

lost values ”do not care” attribute-concept

conditions values

Breast cancer 32.17 33.57 33.57

Echocardigram 32.43 31.08 31.08

Hepatitis 17.42 18.71 19.35

Horse 19.84 27.99 32.61

House 5.07 7.60 7.60

Soybean 12.38 20.52 16.94

Tumor 70.50 68.44 66.37

In our experiments we used the MLEM2 (Modified Learning from Examples
Module, version 2) rule induction algorithm [3]. MLEM2, a modified version of
the LEM2 algorithm, is a part of the LERS (Learning from Examples based on
Rough Sets) data mining system. LERS computes lower and upper approxima-
tions for all concepts. Rules induced from the lower approximations are called
certain, while rules induced from the upper approximations are called possible.
All error rates, reported in Table 2, were computed using certain rule sets.

6 Conclusions

Four standard interpretations of missing attribute values are discussed in this
paper. These interpretations may be applied to any kind of incomplete data set.
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This paper shows how to compute blocks of attribute-value pairs for data sets
with missing attribute values, how to compute characteristic sets (i.e., general-
ization of elementary sets), how to compute characteristic relations (i.e., gen-
eralization of an indiscernibility relations), and three kinds of approximations
(reduced for ordinary approximations for complete data sets). Finally, results of
experiments on seven data sets indicate that there is no universally best inter-
pretation of missing attribute values.
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Abstract. Cognitive neuroscience is an interdisciplinary research field to study 
human information processing mechanism from both macro and micro views. 
Web intelligence is a new direction for scientific research and development of 
emerging web-based artificial intelligence technology. 

As two related important research fields, cognitive neuroscience and web 
intelligence mutually support each other strongly. The discovery of cognitive 
neuroscience can propose a new human intelligence model and to support web 
intelligence developments. Furthermore, web intelligence technology is useful 
to discover more advanced human cognitive models. 

In order to develop the web intelligence systems which match human ability, 
it is necessary to investigate human cognitive mechanism systematically. The 
key issues are how to design the psychological, functional Magnetic Resonance 
Imaging (fMRI) and Electroencephalograph (EEG) experiments for obtaining 
various data from human cognitive mechanism, as well as how to analyze such 
data from multiple aspects for discovering new models of human cognition.  

In our studies, we propose a new methodology with a multi-step process, in 
which various psychological experiments, physiological measurements and data 
mining techniques are cooperatively used to investigate human cognitive 
mechanism. This talk mainly introduces some cognitive neuroscience resea- 
rches and the related intelligent mechanical systems in my laboratory. The 
researches include vision, auditory, memory, language and attention, etc. More 
specifically, I will talk about the relationship between cognitive neuroscience 
and web intelligence with using some examples. 

Keywords: Cognitive neuroscience, fMRI, EEG, eb intelligence, human 
mechanisms of vision, auditory, memory and language. 
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Abstract. Although there are various ways to express entities, notions, 
relations, actions, and behaviors in natural languages, it is found in Cognitive 
Informatics (CI) that human and system behaviors may be classified into three 
basic categories known as to be, to have, and to do. All mathematical means 
and forms, in general, are an abstract and formal description of these three 
categories of system behaviors and their common rules. Taking this view, 
mathematical logic may be perceived as the abstract means for describing ‘to 
be,’ set theory for describing ‘to have,’ and algebras, particularly the process 
algebra, for describing ‘to do.’  

This paper presents the latest development in a new transdisciplinary field 
known as CI. Three types of new mathematical structures, Concept Algebra 
(CA), System Algebra (SA), and Real-Time Process Algebra (RTPA), are 
created to enable rigorous treatment of knowledge representation and 
manipulation in terms of to be / to have / to do in a formal and coherent 
framework. A wide range of applications of the three knowledge algebras in the 
framework of CI has been identified in knowledge and software engineering.        

        
Keywords: Cognitive informatics, descriptive mathematics, concept algebra, 
process algebra, system algebra, knowledge engineering, software engineering, 
system science.      

1   Introduction 

The history of sciences and engineering shows that new problems require new forms 
of mathematics. Software and knowledge engineering are new disciplines, and the 
problems in them require new mathematical means that are expressive and precise in 
describing and specifying system designs and solutions. Conventional analytic 
mathematics are unable to solve the fundamental problems inherited in software and 
knowledge engineering, Therefore, an descriptive mathematical means for the 
description and specification of knowledge network and system behaviors is yet to be 
sought [1, 5, 9, 18, 19].         

In order to formally and rigorously describe human knowledge and behaviors in 
the categories of to be, to have, and to do, three types of knowledge algebras are 
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presented in this paper known as Concept Algebra (CA), System Algebra (SA), and 
Real-Time Process Algebra (RTPA). These are the fundamental mathematical means 
for dealing with knowledge and human/system behaviors in cognitive Informatics 
(CI) [8, 9, 12, 15].  

This invited lecture presents the contemporary mathematics for knowledge 
engineering in the context of the new transdisciplinary field of CI. Section 2 
introduces CI and its applications in software and knowledge engineering.            
Section 3 describes three types of new mathematical structures known as CA, SA, and 
RTBA, for rigorous treatment of knowledge representation and manipulation in a 
formal and coherent framework. Section 4 draws conclusions on the latest 
development of CI and contemporary mathematics on knowledge algebras for 
knowledge engineering.        

2   Cognitive Informatics 

Information is the third essence of the natural world supplementing matter and 
energy. Informatics, the science of information, studies the nature of information, it’s 
processing, and ways of transformation between information, matter and energy. 

Definition 1. Cognitive Informatics (CI) is a new discipline that studies the natural 
intelligence and internal information processing mechanisms of the brain, as well as 
processes involved in perception and cognition. 

The basic characteristic of the human brain is information processing. According to 
CI, the cognitive information and knowledge modeled in the brain can be divided into 
different abstract levels, such as analogue objects, natural languages, professional 
notation systems, mathematics, and philosophies. In many disciplines of human 
knowledge, almost all of the hard problems yet to be solved share a common root in 
the understanding of the mechanisms of natural intelligence and the cognitive 
processes of the brain. Therefore, CI is the discipline that forges links between a 
number of natural science and life science disciplines with informatics and computing 
science. 

A Layered Reference Model of the Brain (LRMB) [14] is developed to explain the 
fundamental cognitive mechanisms and processes of the natural intelligence. It is 
found that the brain can be modelled by 37 recurrent cognitive processes at six layers 
known as the layers of sensation, memory, perception, action, meta and higher 
cognitive layers. All cognitive processes related to the six layers are described and 
integrated into the comprehensive and coherent reference model of the brain, by 
which a variety of life functions and cognitive phenomena have been explained. A 
formal approach is taken to rigorously describe the cognitive processes of the brain as 
modeled in LRMB by a unified mathematical treatment. 

The Object-Attribute-Relation (OAR) Model of information representation in the 
brain investigates into the cognitive models of information and knowledge 
representation and fundamental mechanisms in the brain. The object-attribute-relation 
(OAR) model [15, 16] describes human memory, particularly the long-term memory, 
by using a relational metaphor, rather than the traditional container metaphor as 
adopted in psychology, computing, and information science. The cognitive model of 
the brain shows that human memory and knowledge are represented by relations, i.e. 
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connections of synapses between neurons, rather than by the neurons themselves as 
the traditional container metaphor described. The OAR model can be used to explain 
a wide range of human information processing mechanisms and cognitive processes. 

Almost all modern disciplines of science and engineering deal with information 
and knowledge. According CI, the information may be classified into four categories 
known as knowledge, instruction, experience, and skills as shown in Table 1.  

 
Table 1. Types of Cognitive Information and Knowledge 

 

 
 
 
 

The taxonomy of cognitive knowledge is determined by types of inputs and outputs 
of information to and from the brain, where both inputs and outputs can be either 
information or action. It is noteworthy that the approaches to acquire 
knowledge/instructions and experience/skills are fundamentally different. The former 
may be obtained directly based on hands on activities and indirectly by reading, while 
the latter can never be acquired indirectly. The above discovery in CI lays an 
important foundation for learning theories and knowledge engineering [15- 17]. 

Autonomic Computing is a new approach to implement intelligent systems, which 
can be classified into those of biological organisms, silicon automata, and computing 
systems. Based on CI studies, autonomic computing [10] is proposed as a new and 
advanced computing technique built upon the routine, algorithmic, and adaptive 
systems. An autonomic computing system is an intelligent system that autonomously 
carries out robotic and interactive actions based on goal- and event-driven 
mechanisms. Conventional imperative computing systems are a passive system that 
implements deterministic, context-free, and stored-program controlled behaviors. In 
contrast, the autonomic computing systems are an active system that implements 
nondeterministic, context-sensitive, and adaptive behaviors. Autonomic computing 
does not rely on imperative and procedural information, but are dependent on internal 
status and willingness that formed by long-term historical events and current rational 
or emotional goals. 

3   Contemporary Mathematics for Knowledge Manipulation 

This section introduces three types of new mathematics, CA, RTPA, and SA, which 
are created recently by the author to enable rigorous treatment of knowledge 
representation and manipulation in a formal and coherent framework.  

3.1   Concept Algebra (CA)    

A concept is a cognitive unit by which the meanings and semantics of a real-world or 
abstract entity may be represented and embodied.            

Definition 2. An abstract concept c is a 5-tuple, i.e.: 

Type of Output  
Information Action 

Ways of Acquisition 

Information Knowledge Instruction  Direct or indirect Type of 
Input  Action Experience Skill  Direct only 
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                                  ( , , , , )c i oc O A R R R            (1) 
 

where 
 

• O is a nonempty set of object of the concept, O = {o1, o2, …, om} = ÞU, 
where ÞU denotes a power set of U. 

  • A is a nonempty set of attributes, A = {a1, a2, …, an} = ÞM. 
  • Rc ⊆ O × A is a set of internal relations.  
  • Ri ⊆ C′ × C is a set of input relations, where C′ is a set of external concepts.  
  • Ro ⊆ C × C′ is a set of output relations.         

Definition 3. Concept algebra (CA) is an abstract mathematical structure for the 
formal treatment of concepts and their algebraic relations, operations, and associative 
rules for composing complex concepts [17].          

Associations of concepts, ℜ, defined in CA form a foundation to denote complicated 
relations between concepts in knowledge representation. The associations between 
concepts can be classified into nine categories, such as inheritance, extension, tailoring, 
substitute, composition, decomposition, aggregation, specification, and instantiation 
[17], i.e.: 

 { , , , , , , , , } =
+

ℜ                                   (2) 

Definition 4. A generic knowledge K is an n-nary relation Rk among a set of n 
multiple concepts in C, i.e.: 

: Xk i
i=1

K = R C  C→
n

( )                                                   (3) 

where =U i
i=1

C  C
n

.   

In Definition 4, the relation Rk is one of the nine concept association operations as 
discussed above, Rk ∈ ℜ, which serve as the knowledge composing rules.     

Definition 5. A concept network CN is a hierarchical network of concepts interlinked 
by the set of nine associations ℜ defined in concept algebra, i.e.:   

  : X Xi i
i=1 i=1

CN = C  Cℜ →
n n                                                  (4) 

Because the relations between concepts are transitive, the generic topology of 
knowledge is a hierarchical concept network. The advantages of the hierarchical 
knowledge architecture K in the form of concept networks are as follows: a) Dynamic: 
The knowledge networks may be updated dynamically along with information 
acquisition and learning without destructing the existing concept nodes and relational 
links. b) Evolvable: The knowledge networks may grow adaptively without changing 
the overall and existing structure of the hierarchical network. 

The algebraic relations and operations of concepts are summarized in Table 2.    
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3.2   Real-Time Process Algebra (RTPA)    

A key metaphor in system modeling, specification, and description is that a software 
system can be perceived and described as the composition of a set of interacting 
processes. Hoare [2], Milner [4], and others developed various algebraic approaches 
to represent communicating and concurrent systems, known as process algebra. A 
process algebra is a set of formal notations and rules for describing algebraic 
relations of software engineering processes. RTPA [9, 13] is a real-time process 
algebra that can be used to formally and precisely describe and specify architectures 
and behaviors of human and software systems. 

A process in RTPA is a computational operation that transforms a system from a 
state to another by changing its inputs, outputs, and/or internal variables. A process 
can be a single meta-process or a complex process formed by using the process 
combination rules of RTPA known as process relations. 

Definition 6. Real-Time Process Algebra (RTPA) is a set of formal notations and 
rules for describing algebraic and real-time relations of human and software 
processes. 

Behavioral or instructive knowledge can be modelled by RTPA. A generic 
program model by a formal treatment of statements, processes, and complex 
processes from the bottom-up in the program hierarchy.     

Definition 7. A process P is a composed listing and a logical combination of n meta 
statements pi and pj, 1 ≤ i < n, 1 < j ≤ m = n+1, according to certain composing  

  
1

1

1 12 2 23 3 1,

(   ), 1

(...((( )  )  ) ...  )

n

i ij j
i

n n n

P p r p j i

p r p r p r p

R
−

=

−

= = +

=

                                      (5) 

where the big-R notation [12, 13] is adopted that describes the nature of processes as 
the building blocks of programs.   

Definition 8. A program P is a composition of a finite set of m processes according 

to the time-, event-, and interrupt-based process dispatching rules, i.e.: 

(@ )
m

e PRP
1

k k
k                                                         

(6)
 

Eqs. 5 and 6 indicate that a program is an embedded relational algebraic entity. A 
statement p in a program is an instantiation of a meta instruction of a programming 
language that executes a basic unit of coherent function and leads to a predictable 
behavior.  

Theorem 1. The Embedded Relational Model (ERM) of programs states that a 
software system or a program P is a set of complex embedded relational processes, in 

which all previous processes of a given process form the context of the current 
process, i.e.: 
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The ERM model provides a unified mathematical treatment of programs, which 
reveals that a program is a finite and nonempty set of embedded binary relations 
between a current statement and all previous ones that forme the semantic context or 
environment of computing.  

Definition 9. A meta process is the most basic and elementary processes in 
computing that cannot be broken up further. The set of meta processes P encompasses 
17 fundamental primitive operations in computing as follows:  

P ={:=, , , , , , , | , | , @ , , !, , , §}
                                       

(8)
 

Definition 10. A process relation is a composing rule for constructing complex 
processes by using the meta processes. The process relations R of RTPA are a set of 
17 composing operations and rules to built larger architectural components and 
complex system behaviors using the meta processes, i.e.:  

 

   R = {→, , |, |…|, 
*

R , R
+ ,

i

R , , , ||, , |||, », , t, e, i}   (9) 

The definitions, syntaxes, and formal semantics of each of the meta processes and 
process relations as defined n Eqs. 8 and 9 may be referred to RTPA [9, 13].  A 
complex process and a program can be derived from the meta processes by the set of 
algebraic process relations. Therefore, a program is a set of embedded relational 
processes as described in Theorem 1. 

The algebraic relations and operations of RTPA are summarized in Table 2.    

3.3   System Algebra (SA)    

Systems are the most complicated entities and phenomena in the physical, 
information, and social worlds across all science and engineering disciplines [3, 6, 
13]. Systems are needed because the physical and/or cognitive power of an individual 
component or person is inadequate to carry out a work or solving a problem. An 
abstract system is a collection of coherent and interactive entities that has stable 
functions and clear boundary with external environment. An abstract system forms 
the generic model of various real world systems and represents the most common 
characteristics and properties of them.  

Definition 11. System algebra is a new abstract mathematical structure that provides 
an algebraic treatment of abstract systems as well as their relations and operational 
rules for forming complex systems [11]. 

Abstract systems can be classified into two categories known as the closed and 
open systems.  

Definition 12. A closed systemS is a 4-tuple, i.e.: 
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    S  = (C, R, B, Ω)                                            (10) 
 

where  

•    C is a nonempty set of components of the system, C = {c1, c2, …, cn}. 
• R is a nonempty set of relations between pairs of the components in the system,  

R = {r1, r2, …, rm}, R ⊆ C × C.   
•   B is a set of behaviors (or functions), B = {b1, b2, …, bp}. 
•   Ω is a set of constraints on the memberships of components, the conditions of 

relations, and the scopes of behaviors, Ω={ω1,ω2, …, ωq}. 

Most practical systems in the real world are not closed. That is, useful systems in 
nature need to interact with external world known as the environment Θ in order to 
exchange energy, matter, and/or information. Such systems are called open systems. 
Typical interactions between an open system and the environment are inputs and 
outputs. 

Definition 13. An open system S is a 7-tuple, i.e.: 
 

   S  = (C, R, B, Ω, Θ)       
          = (C, Rc, Ri, Ro, B, Ω, Θ)         (11) 
 

where the extensions of entities beyond the closed system are as follows:     

• Θ is the environment of S with a nonempty set of components CΘ outside C.  
• Rc ⊆ C × C is a set of internal relations.  
• Ri ⊆ CΘ × C is a set of external input relations.  
• Ro ⊆ C × CΘ is a set of external output relations.         

The equivalence between open and closed systems states that an open system S is 

equivalent to a closed systemS , or vice verse, when its environment S or S is 

conjoined, respectively, i.e.: 
 

      
S

S

 = S

S =  

S

S
             (12) 

Eq. 12 shows that any subsystem kS  of a closed system S  is an open system S. 
Similarly, any super system S of a given set of n open systems kS , plus their 
environments Θk, 1 ≤ k ≤ n, is a closed systems. The algebraic relations and 
operations of systems are summarized in Table 2.    

Theorem 2. The Wang’s first law of system science, the system fusion principle, 
states that system conjunction or composition between two systems S1 and S2 creates 
new relations ΔR12 and/or new behaviors (functions) ΔB12 that are solely a property of 
the new super system S determined by the sizes of the two intersected component sets 
#(C1) and #(C2), i.e.: 

              ΔR12 = #(R) - (#(R1) + #(R2)) 
                 = (#(C1 + C2))

2 - ((#(C1))
2 +(#(C2))

2) 
                  = 2 (#(C1) • #(C2))                        (13) 
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The discovery in Theorem 2 reveals that the mathematical explanation of system 
utilities is the newly gained relations ΔR12 and/or behaviors (functions) ΔB12 during 
the composition of two subsystems. The empirical awareness of this key system 
property has been intuitively or qualitatively observed for centuries. However, 
Theorem 2 is the first mathematical explanation of the mechanism of system gains 
during system conjunctions and compositions. According to Theorem 2, the 
maximum incremental or system gain equals to the number of by-directly 
interconnection between all components in both S1 and S2, i.e., 2(#(C1) • #(C2)) [13]. 

Table 2. Taxonomy of Contemporary Mathematics for Knowledge Manipulation 

Real-Time Process Algebra Operations 
 

Concept 
Algebra 

System 
Algebra Meta processes Relational Operations 

Super/sub relation  /   /  
Assignment                 := Sequence → 

Related/independent ↔ /  ↔ /  Evaluation Jump                

Equivalent = = Addressing          Branch | 
Consistent ≅   Memory allocation ⇐ Switch          | … | … 
Overlapped  Π Memory release While-loop *

R  

Conjunction + 
 

Read                           Repeat-loop       

R
+

  

Elicitation *  Write                           For-loop               i

R  

Comparison ~  Input                     | Recursion    

Definition 
 

 Output                         | Procedure call   

Difference   Timing            @ Parallel                || 

Inheritance   Duration Concurrence   

Extension +  +  Increase ↑ Interleave ||| 

Tailoring   Decrease  ↓ Pipeline   » 

Substitute   Exception detection ! Interrupt   

Composition 
  

Skip      Time-driven dispatch  t 

Decomposition 
  

Stop  Event-driven dispatch  e 

Aggregation/ 
generalization 

  System     § Interrupt-driven 
dispatch  

i 

Specification       

Instantiation       

Theorem 3. The Wang’s 2nd law of system science, the maximum system gain 
principle, states that work done by a system is always larger than any of its 
component, but less than or equal to the sum of those of its components, i.e.: 
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There was a myth on an ideal system in conventional systems theory that supposes 
the work down by the ideal system W(S) may be greater than the sum of all its 

components W(ei), i.e.: 
1

( ) ( )
n

i
i

W S W e
=

. According to Theorem 3, the so called ideal 

system utility is impossible to achieve [13]. 
A summary of the algebraic operations and their notations in CA, RTPA, and SA 

is provided in Table 2. Details may be referred to [9, 11, 17].   

4   Conclusions 

Cognitive informatics (CI) has been described as a new discipline that studies the 
natural intelligence and internal information processing mechanisms of the brain, as 
well as processes involved in perception and cognition. CI has been a new frontier 
across disciplines of computing, software engineering, knowledge engineering, 
cognitive sciences, neuropsychology, brain sciences, and philosophy in recent years. 
It has been recognized that many fundamental issues in knowledge and software 
engineering are based on the deeper understanding of the mechanisms of human 
information processing and cognitive processes. 

Algebra has been described as a branch of mathematics in which a system of 
abstract notations is adopted to denote variables and their operational relations and 
rules. Three new mathematical means have been created in CI collectively known as 
the knowledge algebra. Within the new forms of descriptive mathematical means for 
knowledge representation and manipulation, Concept Algebra (CA) has been 
designed to deal with the new abstract mathematical structure of concepts and their 
representation and manipulation in knowledge engineering. Real-Time Process 
Algebra (RTPA) has been developed as an expressive, easy-to-comprehend, and 
language-independent notation system, and a specification and refinement method for 
software system behaviors description and specification. System Algebra (SA) has 
been created to the rigorous treatment of abstract systems and their algebraic relations 
and operations. 

On the basis of CI and knowledge algebras, a wide range of knowledge 
engineering, system engineering, and software engineering problems can be solved 
systematically [13].        
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To the memory of Professor Zdzis�law Pawlak

Abstract. This article comes up a couple of months after the death of
Professor Zdzis�law Pawlak who created in 1982 the theory of rough sets
as a vehicle to carry out Concept Approximation and a fortiori, Decision
Making, Data Mining, Knowledge Discovery and other activities.

At the roots of rough set theory, was a deep knowledge of ideas going
back to Frege, Russell, �Lukasiewicz, Popper, and others.

Rough sets owe this attitude the intrinsic clarity of ideas, elegant
simplicity (not to be confused with easy triviality), and a fortiori a wide
spectrum of applications.

Over the years, rough set theory has been enriched with new ideas.
One of those additions has been rough mereology, an attempt at intro-

ducing a regular form of tolerance relations on objects in an information
system, in order to provide a more flexible scheme of relating objects
than indiscernibility. The theory of mereology, proposed long ago (1916)
by S. Lesniewski, proved a valuable source of inspiration. As a result, a
more general theory has emerged, still far from completion.

Rough mereology, operating with so called rough inclusions, allows
for definitions of a class of logics, that in turn have applications to dis-
tributed systems, perception analysis, granular computing etc. etc. In
this article, we give a survey of the present state of art in the area of
rough mereological theory of reasoning, as we know it, along with com-
ments on some problems.

Keywords: rough sets, granular computing, rough inclusions, rough
mereology, granular logics, granular computing, perception calculus,
foundations for rough sets.

1 Inexact Concepts: Approximate Reasoning

The case of inexact concepts was discussed by Gottlob Frege (Grundlagen II,
1903) on the margin of his theory of concepts:”..inexact concepts must have a
boundary in which one cannot decide whether the object belongs in the concept
or in its complement.. .” In the realm of mathematics, topology realized this

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 79–92, 2006.
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idea accurately: around a set not definable in topological terms, i.e., not clopen,
there is the nonempty boundary, whose elements have any neighborhood neither
in the set nor in its complement. In computer science, this idea was rendered by
Professor Pawlak (1982) in his theory of rough sets.

In learning concepts, the obvious prerequisite is to employ a symbolic language
for coding objects along with some formulas, i.e.,”knowledge”, that form the
starting point for attempts at concept description.

1.1 Rough Sets: A Program Envisioned by Zdzis�law Pawlak

Let us go back to the idea of a rough set by Zdzis�law Pawlak. An abstract set-
ting for this idea, see Pawlak [4], [5] is a pair (U, R), where U is a universe of
objects and R is an equivalence relation on U (or, for that matter, a family of
equivalences on U) called a knowledge base (some authors use the term an ap-
proximation space). The relation R induces a partition into equivalence classes
[u]R, interpreted as elementary blocks of knowledge (some say: elementary gran-
ules of knowledge).

A practical way of implementing this idea is by using an information system
[4], i.e., a pair (U, A) where A is a set of attributes, each of them a mapping
a : U → V on U valued in the value set V ; the equivalence R is then produced
as the indiscernibility relation; R = IND with uINDv iff a(u) = a(v) for each
a ∈ A.

An exact concept relative to (U, A) is defined as the union of classes of the
relation IND; other concepts are declared inexact.

A variant of an information system is a decision system, in which one attribute,
say d is added, i.e., a decision system is a triple (U, A, d) with d /∈ A. The decision
d represents a classification of objects into decision classes by an external source
of knowledge.

Decision logic, see [4], formulates in a logical form dependencies among groups
of attributes. Its primitive formulas are descriptors of the form (a, v), where
a ∈ A∪{d} and v a value of a, and formulas are formed by means of propositional
connectives ∨,∧,→,¬. The meaning of a descriptor (a, v) is [a, v]={u ∈ U :
a(u) = v}, and it is extended recursively to meanings of formulas; in particular,
[p ∨ q] = [p] ∪ [q], [p ∧ q] = [p] ∩ [q], [¬p] = U \ [p].

A decision rule is a formula of the form
∧

a(a, va) ⇒ (d, v) that does express
a relation between conditional attributes in A and the decision; a set of decision
rules is a decision algorithm. In this way rough sets allow for classification and
decision solvers.

Concept approximation is achieved by means of rough set approximations;
for a concept X ⊆ U , the lower, resp., the upper approximation to X is the
set, resp., AX = {u : [u]A ⊆ X} and AX = {u : [u] ∩ X �= ∅}. In this way a
concept X is sandwiched between two exact sets. The set BdX = AX \ AX is
the boundary of X , in conformity with the Frege idea of sect.1 of the existence
of a boundary for inexact concepts.

All these notions have given way to a rich specter of theoretical analysis and
application works in the language explained just above.
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The question was also: how to enrich the language to absorb many new de-
velopments like granular computing, perception calculus and so on? Below we
give a subjective view on the status of this question based on some of the author
works in years that passed since the year 1997, see, e.g., [15], [8], [9], [10], [11],
[12], [13], [14]. Some earlier papers are quoted in the papers mentioned here.

2 Alternative Approaches

Can we have a collective view on concepts that may co–exist with the orthodox,
naive–set–theory–based distributive approach exposed above? The answer seems
to be ”yes”.

2.1 A Neoaristotelian Approach: Ontology and Mereology Due to
Lesniewski

“Aristotle says in the seventh book of Metaphysics: ”If anything were com-
pounded of but one element that one would be the thing itself” (Duns Scotus,
Treatise on God as First Principle [18]).

A view contradictory to our set theory. Taken as a principle, it led Stanis�law
Leśniewski [3] to a new theory of sets (1916) based on the aristotelian notion
of part: transitive and non-reflexive relation on nonempty collection of objects.
But when the element is defined as a part or the whole object, then each object
is an element of itself. Mereology is the theory of collective concepts based on
part relation.

Out of distributive concepts, collective concepts are formed by means of the
class operator of Mereology.

Mereology is based on the predicate π of part, defined for individual entities,
subject to :

P1. xπy ∧ yπz ⇒ xπz.
P2. ¬(xπx).
The element relation elπ induced by π is defined as follows:

x elπ y ⇔ x = y or x π y.

Class of a property M is defined in case a distributive concept M is non–
empty; it is subject to,

C1. x ∈ M ⇒ x elπ Cls(M).
C2. x elπ Cls(M) ⇒ ∃u, v.u elπ x ∧ u elπ v ∧ v ∈ M .
Hence, Cls(M) collects, in one whole object, all objects whose each part has

a part in common with an object in M ; see remark no. 2 in sect.2.2, below.

2.2 Rough Inclusions

In approximate reasoning mereology works well when diffused to approximate
mereology based on the notion of a part to a degree expressed in the form of the
predicate μ(x, y, r) subject to requirements:
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RM1. μ(x, y, 1) ⇔ x el y.

RM2. μ(x, y, 1) ⇒ ∀z.[μ(z, x, r) ⇒ μ(z, y, r)].

RM3. μ(x, y, r) ∧ s < r ⇒ μ(x, y, s).

The relation el is the element relation of the underlying mereology; predicate
μ acts on individual objects x, y indicating the degree r to which x is a part of y.

The motivation for this approach can be itemized as follows:

1. Mereology , represented by the predicate el is an alternative theory of sets;
rough set theory built on Mereology can be an interesting alternative to
traditional rough set theory;

2. Traditional, naive, set theory and Mereology are related: the strict contain-
ment ⊂ is a part relation and ⊆ is the corresponding element relation. In
consequence, e.g., for a family of sets F , the class of F is the union of F :
Cls(F ) =

⋃
F .

3. The consequence of the preceding item is that constructs of traditional, naive
set – based rough set theory, are a particular case of a more general approach
based on a predicate μ – a rough inclusion.

2.3 Rough Inclusions: Specific Definitions

One may ask what form are rough inclusions taking. We consider an information
system (U, A) and for u, v ∈ U we let, DIS(u, v)={a ∈ A : a(u) �= a(v)}, and
IND(u, v) = A \ DIS(u, v).

Rough inclusions from archimedean t–norms. Consider an archimedean
t–norm, i.e., a t–norm t : [0, 1] × [0, 1] → [0, 1] with properties that (i) t is
continuous; (ii)t(x, x) < x for x ∈ (0, 1) (i.e., no idempotents except 0,1).

For the norm t as above, a functional representation holds: t(x, y) = gt(ft(x)+
ft(y)) with ft continuous and decreasing automorphism on [0,1], and gt its
pseudo–inverse, see,e.g., [7].

We let, μt(u, v, r) iff gt(
|DIS(u,v)|

|A| ) ≥ r. This defines a rough inclusion μt.
Standard examples of archimedean t–norms are : the �Lukasiewicz norm
tL(x, y) = max{0, x+y−1}, and the product (Menger) norm tM (x, y) = x ·y.

A justification of probabilistic reasoning. In case of the norm tL, one has:
ftL(x) = 1 − x = gtL(x) for x ∈ [0, 1], hence, μtL(u, v, r) iff 1 − |DIS(u,v)|

|A| ≥ r iff
|IND(u,v)|

|A| ≥ r.
It is important in applications to have also a rough inclusion on subsets of the

universe U ; to this end, for subsets X, Y ⊆ U , we let, μtL(X, Y, r) iff gtL( |X\Y |
|U| ) ≥

r iff 1 − |X\Y |
|U| ≥ r iff |X∩Y |

|U| ≥ r.
The last formula is applied very often in Data Mining and Decision Making

as a measure of quality of rules; in rough set decision making, formulas for
accuracy and coverage of a rule (see, e.g., Tsumoto’s chapter, pp. 307 ff., in
[16]) as well as Ziarko’s Variable Precision Model approach [20] are based on the
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probabilistic approach. Similarly, one can apply Menger’s t–norm to produce the
corresponding rough inclusion.

We restrict ourselves in this article’s applications to the �Lukasiewicz related
t–norms defined above.

The case of continuous t–norms. It is well–known (cf., e.g., [7], [2], papers
by Mostert and Shields, Faucett quoted therein) that any archimedean t–norm
is isomorphic either to the �Lukasiewicz or to the Menger t–norm. Thus, in the
realm of archimedean t–norms we have a little choice. Passing to continuous
t–norms, it results from the work of Mostert–Shields and Faucett (quoted in
[7],[2]) that the structure of a continuous t–norm t depends on the set F of
idempotents (i.e, values x such that t(x, x) = x); we denote with Ot the countable
family of open intervals Ai ⊆ [0, 1] with the property that each Ai is free of
idempotents and

⋃
i Ai = [0, 1] \ F . Then, t(x, y) is an isomorph to either tL or

tM when x, y ∈ Ai for some i, and t(x, y) = min{x, y}, otherwise. It is well–
known (Arnold, Ling quoted in [7]) that in a representation for min of the form
min(x, y) = g(f(x) + f(y)), f cannot be either continuous or decreasing.

Rough inclusions from reference objects. We resort to residua of continu-
ous t–norms.For a continuous t–norm t(x, y), the residuum x ⇒t y is defined as
the max{z : t(x, z) ≤ y}. Clearly, x ⇒t y = 1 iff x ≤ y for each t.

For an information system (U, A), let us select an object s ∈ U referred to as
a reference. For a continuous t–norm t, we define a rough inclusion νIND

t based
on sets IND(u, v), by letting,

νIND
t (x, y, r) iff

|IND(x, s)|
|A| ⇒ |IND(y, s)|

|A| ≥ r. (1)

Let us examine the three basic t–norms. In case of tL, we have: x ⇒tL y =
min{1, 1− x + y}; thus νIND

tL
(x, y, r) iff |IND(y, s)| − |IND(x, s)| ≥ (1 − r)|A|.

In case of tM , we have: x ⇒tM y = 1 when x ≤ y and y when x > y; hence
νIND

tM
(x, y, 1) iff |IND(x, s)| ≤ |IND(y, s)| and νIND

tM
(x, y, r) with r < 1 iff

|IND(x, s)| > |IND(y, s)| ≥ r · |A|.
Finally, in case of tm = min, we have x ⇒tm y is 1 in case x ≤ y and y

x

otherwise. Thus, νtm(x, y, r) iff |IND(y,s)|
|IND(x,s)| ≥ r.

Regarding objects x, y as close to each other when ν(x, y, r) with r close to
1, we may feel some of the above formulas counterintuitive as objects x with
”smaller” reference set IND(x, s) may come closer to a given y; a remedy is
to define dual rough inclusions, based on the set DIS(x, s) in which case the
inequalities in definitions of IND–based rough inclusions will be reverted. In
any case, one has a few possibilities here. We state a problem to investigate.

RESEARCH PROBLEM 1. Create a full theory of t–norm–based rough
inclusions.

Now, we would like to review some applications to rough mereological
constructs.
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3 Application 1: Granulation of Knowledge

As said above, indiscernibility classes of IND are regarded as elementary gran-
ules of knowledge, and their unions form a Boolean algebra of granules of knowl-
edge relative to a given information system (U, A). Rough sets know also some
other forms of granules, based on, e.g., entropy (see the paper by Ślȩzak in [17].

Using a rough inclusion μ, or ν, one can produce granules on which a more
subtle topological structure can be imposed. The tool is the class operator. Given
r, and u ∈ U , we define a property Pu

μ (v, r) that holds iff μ(v, u, r), and then we
form the class of this property: gμ

r (u)=Cls(Pu
μ (v, r). Granules have some regular

properties:
1. if y el u then y el gμ

r (u)
2. if v el gμ

r (u) and w el v then w el gμ
r (u)

3. if μ(v, u, r) then v el gμ
r (u).

(2)

Properties 1-3 follow from properties in sect. 2.2 and the fact that el is a partial
order, in particular it is transitive.

The case of an archimedean rough inclusion. In case of a rough inclusion
μt induced by an archimedean t–norm t, one may give a better description of
granule behavior, stating the property 3 in (2) in a more precise way,

v el gμt
r (u) iff μt(v, u, r). (3)

Rough inclusions on granules. Regarding granules as objects, calls for a
procedure for evaluating rough inclusion degrees among granules. First, we have
to define the notion of an element among granules. We let, for granules g, h,

g el h iff [z el g implies there is t such that
z el t, t el h], (4)

and, more generally, for granules g, h, and a rough inclusion μ,

μ(g, h, r) if and only if for w el g there is v such that
μ(w, v, r), v el h.

(5)

Then: μ is a rough inclusion on granules. This procedure may be iterated to
granules of granules, etc., etc. Let us note that due to our use of class operator
(being, for our set theoretical representation of granules, the union of sets op-
erator), we always remain on the level of collections of objects despite forming
higher–level granules.

We also have,

if vingr gμt
r (u) then gμt

s (v) ingr gμt

t(r,s)(u), (6)

showing a kind of weak topology on granules.
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Granular information systems. Given a rough inclusion μ on the set U
of objects, we define an r–net, where r ∈ (0, 1), as a set Nr = {u1, .., uk} ⊂
U such that the granule set Gr = {gμ

r (u1), .., gμ
r (uk)} is a covering of U . For

each of granules gμ
r (uj), j ∈ {1, .., k}, we select the decision value and values

of conditional attributes in the set A by means of some strategies, respectively,
A,D. The resulting decision system (Gr,A(A),D(d)) is the (Gr,D,A)–granular
decision system. Decision rules induced from the granular decision system can
be regarded as an approximation to decision rules from the original system; one
may expect the former will be shorter subrules of the latter in general.

Example 1. A simple example that illustrates the idea is given. Table 1 is a
simple decision system ([17], p.18).

Table 1. A simple test table

obj a1 a2 a3 a4 d

o1 1 1 1 2 1
o2 1 0 1 0 0
o3 2 0 1 1 0
o4 3 2 1 0 1
o5 3 1 1 0 0
o6 3 2 1 2 1
o7 1 2 0 1 1
o8 2 0 0 2 0

This system produces 14 decision rules generated by the RSES 2 system [19]:
(a1=1),(a2=1)⇒(d=1[1]) 1; (a1=1),(a2=0)⇒(d=0[1]) 1;
(a1=2),(a2=0)⇒(d=0[2]) 2; (a1=3),(a2=2)⇒(d=1[2]) 2;
(a1=3),(a2=1)⇒(d=0[1]) 1; (a1=1),(a2=2)⇒(d=1[1]) 1;
(a2=1),(a4=2)⇒(d=1[1]) 1; (a2=0),(a4=0)⇒(d=0[1]) 1;
(a2=0),(a4=1)⇒(d=0[1]) 1; (a2=2),(a4=0)⇒(d=1[1]) 1;
(a2=1),(a4=0)⇒(d=0[1]) 1; (a2=2),(a4=2)⇒(d=1[1]) 1;
(a2=2),(a4=1)⇒(d=1[1]) 1; (a2=0),(a4=2)⇒(d=0[1]) 1.

Applying the t-norm tL with r = .5 and using the strategy of majority voting
with random resolution of ties, we produce the table Table 2 of the granular
counterpart to Table 1 with four granules g1 − g4, centered at objects, resp.,
o1, o2, o3, o7.

For Table 2, there are 10 rules generated by the system RSES:
(ga1=1)⇒(gd=1[2]) 2; (ga1=3)⇒(gd=0[1]) 1;
(ga1=2)⇒(gd=0[1]) 1; (ga2=1)⇒(gd=1[1]) 1;
(ga2=0)⇒(gd=0[2]) 2; (ga2=2)⇒(gd=1[1]) 1;
(ga3=1),(ga4=2)⇒(gd=1[1]) 1; (ga3=1),(ga4=0)⇒(gd=0[1]) 1;
(ga3=1),(ga4=1)⇒(gd=0[1]) 1; (ga3=0),(ga4=1)⇒(gd=1[1]) 1.
We call a rule r1 subordinated to rule r2 if the set of descriptors (a = v) in

the antecedent of r1 is a subset of the set of descriptors in the antecedent of
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Table 2. A granular decision system for Table 1

granobj ga1 ga2 ga3 ga4 gd

g1 1 1 1 2 1
g2 3 0 1 0 0
g3 2 0 1 1 0
g4 1 2 0 1 1

r2 and decision values are identical in both rules. This means that r1 is shorter
but has the same predictive ability. Comparing the two sets of rules, one finds
that 60 percent of rules for Table 2 are subordinated to rules for table 1. This
means that the rules for Table 2 approximate the rules for the original Table 1
to degree of 0.6. In connection with this, we state

RESEARCH PROBLEM 2: verify experimentally the feasibility of this ap-
proach to real data of importance. This implies software solutions as well.

4 Application 2: Rough Mereological Logics

Rough inclusions can be used to define logics for rough sets; for a rough inclusion
μ on subsets of the universe U of an information system (U, A), we define an
intensional logic RMLμ. We assume a set P of unary open predicates given, from
which formulas are formed by means of connectives C of implication and N of
negation; the intension I(μ) assigns to a predicate φ ∈ P a mapping I(μ)(φ) :
E → [0, 1], where E is the family of exact sets (or, granules) defined in (U, A).
For each predicate p its meaning in the set U is given as [[p]] = {u ∈ U : p(u)}.

For an exact set G, the extension of φ at G is defined as I(μ)∨G(φ)=I(μ)(φ)(G)
and it is interpreted as the value of truth (or, the state of truth) of φ at G.

We adopt the following interpretation of logical connectives N of negation
and C of implication,

[[Np]] = U \ [[p]], [[Cpq]] = (U \ [[p]]) ∪ [[q]].
These assignments of meaning extend by recursion from predicates in P to

formulas.
The value I(μ)∨G(φ) of the extension of φ at an exact set G is defined as

follows,

I(μ)∨G(φ) ≥ r ⇔ μ(G, [[φ]], r). (7)

We call a meaningful formula φ a theorem with respect to μ if and only if
I(μ)∨G(φ) = 1 for each G ∈ E.

The case of the �Lukasiewicz t–norm. We give some facts concerning the
rough inclusion μtL induced by the �Lukasiewicz t–norm tL; in this case we have
by results of sect.2.3 that,

I(μtL)∨G(φ) ≥ r ⇔ |G ∩ [[φ]]|
|G| ≥ r. (8)
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In what follows, I(μtL)∨G(φ) is identified with the value of |G∩[[φ]]|
|G| .

One verifies that,

I(μtL)∨G(Nφ) = 1 − I(μtL)∨G(φ)), (9)

and,
I(μtL)∨G(Cφψ) ≤ 1 − I(μtL)∨G(φ) + I(μtL)∨G(ψ). (10)

The formula on the right hand side of inequality (10) is of course the �Luka
- siewicz implication of many–valued logic. We may say that in this case the logic
RMLμtL is a sub–�Lukasiewicz many–valued logic, meaning in particular, that if
a sentential form of the formula φ(x) is a theorem of [0, 1]–valued �Lukasiewicz
logic then φ(x) is a theorem of the logic RML.

One verifies directly that derivation rules:

(MP) p(x),Cp(x)q(x)
q(x) (modus ponens)

and

(MT) ¬q(x),Cp(x)q(x)
¬p(x) (modus tollens)

are valid in the logic RMLμ for each regular rough inclusion μ. In the con-
text of intensional logic RML, we may discuss modalities L (of necessity) and
M (of possibility).

Necessity, possibility. We define, with the help of a regular rough inclusion
μ, functors L of necessity and M of possibility (the formula Lφ is read ”it is
necessary that φ” and the formula Mφ is read: ”it is possible that φ”) with
partial states of truth as follows,

I(μ)∨G(Lφ) ≥ r ⇔ μ(G, [[p(x)]], r), (11)

and, similarly,
I(μ)∨G(φ)) ≥ r ⇔ μ(G, [[p(x)]], r). (12)

It seems especially interesting to look at operators L, M with respect to the
rough inclusion μtL of �Lukasiewicz. Then,

In the logic RMLμtL , a meaningful formula φ(x) is satisfied necessarily (i.e., it
is necessary in degree 1) with respect to an exact set G if and only if G ⊆ [[φ(x)]];
similarly, φ(x) is possible (i.e., possible in degree 1) with respect to the set G if
and only if G ⊆ [[φ(x)]].

Clearly, by duality of rough set approximations, the crucial relation,

I(μtL)∨G(Lφ) = 1 − I(μtL)∨G(MNφ), (13)

holds between the two modalities with respect to each rough inclusion μ.
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A Calculus of modalities. We now may present within our intensional logic
RMLμtL an otherwise well–known fact, obtained within different frameworks by
a few authors (e.g, Or�lowska, Pawlak–Or�lowska, Rasiowa–Skowron, Vakarelov,
see [7]) that rough sets support modal logic S5.

Proposition 1. The following formulas of modal logic are theorems of RML
with respect to every regular rough inclusion μ:

1. (K) CL(Cp(x)q(x))CLp(x)Lq(x).
2. (T) CLp(x)p(x).
3. (S4) CLp(x)LLp(x).
4. (S5) CMp(x)LMp(x).

RESEARCH PROBLEM 3: establish properties of rough mereological logics, in
particular relations to fuzzy logics.

4.1 A Formalization of Calculus of Perceptions

An example of a flexibility and power of our calculus based on rough inclu-
sions, is a formalization of calculus of perceptions, a phrase coined by L. Zadeh.
Perceptions are vague statements often in natural language, and we interpret
them semantically as fuzzy entities in the sense of fuzzy set theory of Zadeh.
Fuzzy entities in turn form a hierarchy of predicates interpreted in the universe
of an information system. A query related to the perception induces constraints
interpreted as exact sets (granules); measuring the truth value of predicates con-
stituting the formal rendering of a perception against those exact sets gives the
truth value of perceptions.

Example 2. A very simple example illustrates the idea.
Premises: Joan has a child of about ten years old.
Query: How old is Joan?
We address this query with reference to knowledge encoded in Table 3, where

child is the child age, and age is the mother age. We will use the t–norm tL

Table 3. A decision system child age-mother age

object child age

1 15 58
2 10 42
3 10 30
4 24 56
5 28 62
6 40 67
7 25 60
8 26 63
9 38 70
10 16 38
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The interpretation of the concept μ10 - ”about ten”, over the domain D10 =
[0, 30], is given as,

μ120(x) =

⎧⎨⎩
x
5 for x ∈ [0, 5]

1 for x ∈ [5, 15]
2 − x

15 for x ∈ [15, 30]

The interpretation of the concept ”Old”, over the domain DOld = [30, 70], is
given as,

μOld(x) =
{

0.02(x − 30) for x ∈ [30, 60]
0.04(x − 60) + 0.6 for x ∈ [60, 70] (14)

The answer to the query will be presented as a fuzzy entity, defined as follows:
given cut levels a, b ∈ (0, 1) for notions ”about ten”, ”Old”, respectively; choice
of a sets constraint on objects in Table 3, interpreted as a granule G, and then,
choice of cut level b produces a meaning [age ≥ b] for predicate age ≥ b induced
from Table 3. For values of a, b, the value of I(μ)∨G(age ≥ b) is the truth degree
of the statement:”for given a, b, the age of Joan is at least the value at the cut
level b with the truth degree of I(μ)∨G(age ≥ b)”.

In our case, let a = .5 = b; then, the granule G defined by the interval,

about ten.5 = [2.5, 22.5], (15)

is G={1, 2, 3, 10}. Now, for b = .5, the meaning [age ≥ .5] is {1, 4, 5, 6, 7, 8, 9}.
The age defined by b = .5 is 55.

The truth degree of the statement:
” the age of Joan is at least 55” is |{1,2,3,10}∩{1,4,5,6,7,9}|

|{1,2,3,10}| =.25, for the given
a, b. The complete answer is thus a fuzzy set over the domain [0, 1]2 × Dage.

RESEARCH PROBLEM 4: construct an interface for inducing constraints
and fuzzy predicates from a vague input in Natural Language (a restricted for-
malized subset of).

5 Application 3: Networks of Cognitive Agents

A granular agent ag in its simplest form is a tuple

ag∗ = (Uag, Aag, μag, P redag, UncP ropag, GSyntag, LSyntag),

where (Uag, Aag) = isag is an information system of the agent ag, μag is a
rough inclusion induced from isag, and P redag is a set of first–order predicates
interpreted in Uag in the way indicated in Sect. IV. UncP ropag is the function
that describes how uncertainty measured by rough inclusions at agents connected
to ag propagates to ag. The operator GSyntag, the granular synthesizer at ag,
takes granules sent to the agent from agents connected to it, and makes those
granules into a granule at ag; similarly LSyntag, the logic synthesizer at ag,
takes formulas sent to the agent ag by its connecting neighbors and makes them
into a formula describing objects at ag.
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A network of granular agents is a directed acyclic graph N = (Ag, C), where
Ag is its set of vertices, i.e., granular agents, and C is the set of edges, i.e., con-
nections among agents, along with disjoint subsets In, Out ⊂ Ag of, respectively,
input and output agents.

5.1 On Workings of an Elementary Subnetwork of Agents

We consider an agent ag ∈ Ag and - for simplicity reasons - we assume that
ag has two incoming connections from agents ag1, ag2; the number of outgo-
ing connections is of no importance as ag sends along each of them the same
information.

We assume that each agent is applying the rough inclusion μtL induced by
the �Lukasiewicz t–norm tL, see sect. 2.3, in its granulation procedure; also, each
agent is applying the rough inclusion on sets of the form given in sect. 2.3 in
evaluations related to extensions of formulae intensions.

Example 3. The parallel composition of information systems. Clearly,
there exists a fusion operator oag that assembles from objects x ∈ Uag1 , y ∈ Uag2

the object o(x, y) ∈ Uag; we assume that oag = idag1 × idag2 , i.e., oag(x, y) =
(x, y). Similarly, we assume that the set of attributes at ag, equals: Aag = Aag1 ×
Aag2 , i.e., attributes in Aag are pairs (a1, a2) with ai ∈ Aagi (i = 1, 2) and that
the value of this attribute is defined as: (a1, a2)(x, y)=(a1(x), a2(y)).

It follows that the condition holds:
oag(x, y)INDagoag(x′, y′) iff xINDag1x

′ and yINDag2y
′.

Concerning the function UncP ropag, we consider objects x, x′, y, y′; clearly,

DISag(oag(x, y), oag(x′, y′)) ⊆ DISag1(x, x′)×Aag2∪Aag1×DISag2(y, y′), (16)

and hence,

|DISag(oag(x, y), oag(x′, y′))| ≤ |DISag1(x, x′)| · |Aag2 | + |Aag1 | · |DISag2(y, y′)|.
(17)

By (17),
μag(oag(x, y), oag(x′, y′), t)

= 1 − |DISag(oag(x,y),oag(x′,y′))|
|Aag1 |·|Aag2 |

≥ 1 − |DISag1 (x,x′)|·|Aag2 |+|Aag1 |·|DISag2(y,y′)|
|Aag1 |·|Aag2 |

= 1 − |DISag1 (x,x′)|
|Aag1 |

+ 1 − |DISag2(y,y′)|
|Aag2 |

− 1.

(18)

It follows that,

if μag1(x, x′, r), μag2 (y, y′, s) thenμag(oag(x, y), oag(x′, y′), tL(r, s)). (19)

Hence, UncP rop(r, s) = tL(r, s), the value of the �Lukasiewicz t–norm tL on
the pair (r, s).

In consequence, the granule synthesizer GSyntag can be defined in our exam-
ple as,

GSyntag(gag1(x, r), gag2 (y, s)) = (gag(oag(x, y), tL(r, s)). (20)
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The definition of logic synthesizer LSyntag follows directly from our assump-
tions,

LSyntag(φ1, φ2) = φ1 ∧ φ2. (21)

Finally, we consider extensions of our logical operators of intensional logic.
We have for the extension I(μag)∨GSyntag(g1,g2)(LSyntag(φ1, φ2)):

I(μag)∨GSyntag(g1,g2)(LSyntag(φ1, φ2)) = I(μag1)
∨
g1

(φ1) · I(μag2)
∨
g2

(φ2), (22)

which follows directly from (20), (21).
Thus, in our example, each agent works according to regular t–norms: the

�Lukasiewicz t–norm on the level of rough inclusions and uncertainty propagation
and the Menger (product) t–norm · on the level of extensions of logical intensions.

RESEARCH PROBLEM 5: explore other models of knowledge fusion intro-
ducing synergy effects.

6 Conclusion and Acknowledgements

We have presented basics of rough mereological approach along with some se-
lected applications to granular computing, perception calculus, as well as prob-
lems whose solutions would in our opinion advance rough set theory. We are
grateful to many colleagues for cooperation in many ways and particularly to
Professors Guoyin Wang and Qing Liu for their kind invitation to China. The ref-
erees are thanked for comments. Clearly, the author is responsible for all errors.

References

1. Frege’s Logic, Theorem, and Foundations for Arithmetic. In: Stanford Encyclopedia
of Philosophy at http://plato.stanford.edu.

2. Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998).
3. Lesniewski, S.: Podstawy ogolnej teoryi mnogosci (On the foundations of set theory,

in Polish). The Polish Scientific Circle, Moscow (1916). See also: Foundations of the
General Theory of Sets. I. In: Surma, S.J., Srzednicki, J., Barnett, D.I., Rickey, V.
F. (Eds.): Lesniewski, S. Collected Works vol. 1. Kluwer, Dordrecht (1992) 129-173.

4. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dor-
drecht (1991).

5. Pawlak, Z.: Rough sets. Int. J. Comp. Inform. Science. 11 (1982) 341–356.
6. Pawlak, Z., Skowron,A.: Rough membership functions. In: Yager, R.R., Fedrizzi,

M., Kasprzyk, J. (Eds.): Advances in the Dempster–Shafer Theory of Evidence.
Wiley, New York (1994) 251–271.

7. Polkowski, L.: Rough Sets. Mathematical Foundations. Physica–Verlag, Heidelberg
(2002).

8. Polkowski, L.: A rough set paradigm for unifying rough set theory and fuzzy set
theory (a plenary lecture). In: Proceedings of the International Conference on
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC’03),
Chongqing, China (2003). Lecture Notes in Artificial Intelligence. 2639, (2003)
70–78. Springer–Verlag, Berlin (2003).



92 L. Polkowski

9. Polkowski, L.: Toward rough set foundations. Mereological approach (a plenary
lecture). In: Proceedings of the International Conference on Rough Sets and Cur-
rent Trends in Computing (RSCTC’04), Uppsala, Sweden (2004). Lecture Notes in
Artificial Intelligence. 3066 (2004), 8–25. Springer, Berlin (2004).

10. Polkowski, L., Semeniuk–Polkowska, M.: On rough set logics based on similarity
relations. Fundamenta Informaticae 64 (2005) 379–390.

11. Polkowski, L.: Rough–fuzzy–neurocomputing based on rough mereological calculus
of granules. International Journal of Hybrid Intelligent Systems. 2 (2005) 91–108.

12. Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In:
Proceedings of the 2005 IEEE International Conference on Granular Computing,
Beijing, China (2005). IEEE Press (2005) 57–62.

13. Polkowski, L., Semeniuk–Polkowska, M.: A formal approach to Perception Calculus
of Zadeh by means of rough mereological logic. In: Proceedings of the 11th Inter-
national Conference on Information Processing and Management of Uncertainty in
Knowledge –Based Systems (IPMU’06), Paris (2006). In print.

14. Polkowski, L., Semeniuk–Polkowska, M.: Mereology in approximate reasoning
about concepts. In: Valore, P. (Ed.): Formal Ontology and Mereology. Polimetrica
International Publishers, Monza, Italy (2006).

15. Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate
reasoning. International Journal of Approximate Reasoning. 15 (1997) 333–365.

16. Polkowski, L., Skowron, A.: Rough Sets in Knowledge Discovery. Applications,
Case Studies and Software Systems. Physica–Verlag, Heidelberg (1998).

17. Polkowski, L., Tsumoto, S., Lin, T. Y.: Rough Set Methods and Applications.
Physica–Verlag, Heidelberg (2000).

18. John Duns Scotus.: A Treatise on God as First Principle at
www.ewtn.com/library/theology/godasfir.htm

19. Skowron, A. et al.: RSES 2.2 at http://logic.mimuw.edu.pl/ rses/
20. Ziarko, W.: Variable precision rough set model. Journal of Computer and Systems

Science 46 (1993) 39–59.



Theoretical Study of Granular Computing

Qing Liu1,2 and Hui Sun1

1 Department of Computer Science & Technology
Nanchang Institute of Technology, Nanchang 330099, China

qliu−ncu@yahoo.com.cn
2 Department of Computer Science & Technology

Nanchang University, Nanchang 330029, China

Abstract. We propose a higher order logic called as the granular logic.
This logic is introduced as a tool for investigating properties of granular
computing. In particular, constants of this logic are of the form m(F ),
where F is a formula (e.g., Boolean combination of descriptors) in a given
information system. Truth values of the granular formula are discussed.
The truth value of a given formula in a given model is defined by a degree
to which the meaning of this formula in the given model is close to the
universe of objects. Our approach generalizes the rough truth concept
introduced by Zdzis�law Pawlak in 1987. We present an axiomatization
of granular logic. The resolution reasoning in the axiomatic systems is
illustrated by examples, and the resolution soundness is also proved.

Keywords: Granular logic, granular computing, closeness degree.

1 Introduction

Information granulations belong to a specific class of sets. Granulation is a col-
lection of entities, arranged together due to their similarity, functional relativity,
indiscernibility, coherency or alike. The properties of entities or relationships
between entities can be described by meanings of logical formulas, hence infor-
mation granulations may be considered as sets defined from formulas.

We propose a higher order logic, with two types of formulas: the individual and
the set formulas. Constants may be of the form m(F ), where F is an individual
formula. The meaning of constant m(F ) in an information system is the set of
all objects satisfying F . Binary relational symbols with arguments of the set
type are the inclusion to a degree ⊆λ and the closeness to a degree CLλ. In this
paper we discuss mainly the set formula type in such granular logic. Granular
logic may hopefully be a theoretical tool to study granular computing.

For computing the truth value of the set formulas in a model (e.g., defined
by an information system), we use 1-ary functional symbol T with the following
interpretation: The value of T on a given set of objects is equal to the degree of
closeness of this set to the universe of objects. Pawlak introduced in 1987 the
concept of rough truth [1], assuming that a formula is roughly true in a given
information system if and only if the upper approximation of its meaning is equal
to the whole universe. So, our approach extends Pawlak’s approach in [1].
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The paper is organized as follows. In Section 2 we define the granular logic
and its reasoning systems. In Section 3 we present some basic properties of gran-
ular logic. Section 4 presents a resolution reasoning in granular logic. Section 5
concludes the paper.

2 Granular Logic and Its Reasoning Systems

Zadeh proposed data granules in 1979 [2]. The data granule g is characterized
by proposition of general form

g = (x is G is λ) (1)

where x is a variable on U and the value of x belongs to the fuzzy subset G ⊆ U
to a degree at least λ, 0 ≤ λ ≤ 1. Formally, g – as induced by x, G, and λ – is
specified by

g = {u ∈ U : v(x) = u, v is an assignment symbol on U, u ∈λ G} (2)

From the viewpoint of fuzzy sets, we could also write ∈G (e) ≥ λ or μG(e) ≥ λ.
From the viewpoint of fuzzy logic, λ approximates from below the truth value
or probability of fuzzy proposition g.

Lin defined binary relational granulation from a viewpoint of neighborhood
in 1998. Subsequently, he published many papers on granular computing [3 −
8]. Consider information system IS = (U, A, V, f), where U is the universe of
objects, A is a set of attributes, V is a set of attribute values, and f is the
information function. Let B : V → U be a binary relation. The granulation
defined by B is defined as follows:

gp = {u ∈ U : uBp}, where p ∈ V (3)

Obviously, whether gp is clear or vague depends on properties of B [7, 8].
In 2001, Skowron reported the information granules and granular computing.

He called the meaning set of formula defined on information table an information
granule corresponding to the formula, and introduced the concepts of syntax and
semantics of the language LIS defined on information systems IS [9 − 14].

In 2002, Yao studied granular computing using information tables [15−19]. In
particular, Yao and Liu proposed a generalized decision logic based on interval-
set-valued information tables in 1999 [19].

In IS = (U, A, V, f), av, which can be denoted also as (a, v), is defined as a
descriptor defined by a(x) = v, where v is the value of attribute a with respect
to individual variable x ∈ U . Thus av is considered as a proposition in rough
logic [21, 24]. The meaning set of av can be also formulated as

m(av) = {x ∈ U : x |≈IS av} (4)

where |≈IS is the symbol of satisfiability to a degree on IS. The granule is
defined via propositional formula av in rough logic, so it is called elementary
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granular logical formula. If ϕ is the combination of descriptors av with regard
to usual logical connectives ¬ (negative), ∨ (disjunctive), ∧ (conjunctive), →
(implication) and ↔ (equivalence), then

m(ϕ) = {x ∈ U : x |≈IS ϕ} (5)

is granular combination of m(av) with regard to usual set operation symbols ∪
(union), ∩ (intersection), − (complement). In this way we construct so called
granular logic [1, 23, 24].

Example 1. Let IS = (U, A, V, f) be an information system, ϕ = a3 ∧ c0 be a
rough logical formula on IS. By the definition above, the granulation may be
computed using the following information table.

m(ϕ) = m(a3 ∧ c0) = m(a3) ∩ m(c0) = {2, 3, 5} ∩ {1, 2, 3, 4, 6} = {2, 3} (6)

Table 1. Information Table

U a b c d e

1 5 4 0 1 0

2 3 4 0 2 1

3 3 4 0 2 2

4 0 2 0 1 2

5 3 2 1 2 2

6 5 2 1 1 0

2.1 Syntax and Semantics for Granular Logic

Definition 1. (Syntax) The granular logic consists of granular formulas of the
set formula type derived via atoms or their combination in rough logic on IS:

1. The descriptor of the form av is an atom in rough logic, thus m(av) is defined
as the elementary granular formula in granular logic;

2. Let B ⊆ A be a subset of attributes. Any logical combination ϕ of atoms
av, where a ∈ B, is the formula in rough logic, thus m(ϕ) is the granular
formula in granular logic;

3. If m(ϕ) and m(ψ) are granular formulas, then m(¬ϕ), m(ϕ ∨ ψ), m(ϕ ∧ ψ)
are also granular formulas;

4. The formulas defined via finite quotation (1−3) are considered in the granular
logic.

Definition 2. (Inclusion) Let ϕ and ψ be rough logical formulas on IS. The
granular formula m(ϕ) is included in granular formula m(ψ) to degree at least
λ. Formally:

⊆λ (m(ϕ), m(ψ)) =
{

Card(m(ϕ) ∩ m(ψ))/Card(m(ϕ)) m(ϕ) �= ∅
1 m(ϕ) = ∅ (7)

Definition 3. (Closeness) Let ϕ and ψ be rough logical formulas. The granu-
lation m(ϕ) is close to granulation m(ψ) to degree at least λ. Formally, it is
defined as follows:
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| TIISuIS (m(ϕ)) − TIISuIS (m(ψ)) |< 1 − λ ∧ m(ϕ) ⊆λ m(ψ) ∧ m(ψ) ⊆λ m(ϕ)
(8)

for short denoted by CLλ(m(ϕ), m(ψ)), where:

1. CLλ is called λ-closeness relation, abbreviated by ∼λ, to have ∼λ (m(ϕ),
m(ψ)),

2. TIISuIS is the united assignment symbol defined by

TIISuIS (m(ϕ)) = Card(m(ϕ))/Card(U) (9)

where IIS is an interpretation symbol of set formula m(ϕ) in a given infor-
mation system IS, and uIS is an evaluation symbol to individual variable in
set formula in a given information system IS (to see [22 − 32]).

Truth value of a formula in GLIS is defined by the means of assignment model
TIISuIS (m(ϕ)). So, satisfiability of granular logical formula means the formula
is true or roughly true in the model.

Definition 4. (Truth) For ϕ ∈ RLIS, truth value of m(ϕ) is the ratio of the
number of elements in U satisfying ϕ to the total of objects in U .Truth value of
granular formula in granular logic is defined as follows:

1. If ∼ (m(ϕ), U) = 0, then truth value of m(ϕ) is thought of as false in IS;
2. If ∼ (m(ϕ), U) = 1, then truth value of m(ϕ) is thought of as true in IS;
3. If ∼ (m(ϕ), U) = λ, then truth value of m(ϕ) is thought of as being true to

degree at least λ, where 0 ≤ λ ≤ 1.

Definition 5. (Semantics) Semantics of individual logical formula ϕ in a given
information system is similar to usual logical formulas. The following discusses
the meaning of the set formulas in a given information system, namely the value
assignments to the constants, variables, functions and predicates occurring in the
set formula m(ϕ):

1. Each constant symbol c is interpreted as the set of an entity e ∈ U . That is
m(ϕ) = IIS(c) = {e};

2. Each individual variable x is assigned the set of an entity e ∈ U . That is
m(ϕ) = uIS(x) = {e};

3. Each n-tuple function symbol π is interpreted as a mapping from Un to U ,
such that m(ϕ) = {x ∈ Un : π(x) = e};

4. Each n-tuple predicate symbol P is interpreted as an attribute – relation on
U such that m(ϕ) = {x ∈ U : x |≈IS P} .

Let satisfiability model of granular formula m(ϕ) in GLIS be a five-tuple

M = (U, A, IR, V AL, m) (10)

where:

– U is a set of entities. A is a set of attributes. Every attribute subset B ⊆ A
induces the indiscernibility relation on U .

– IR = {I1
IS , · · · , Ih

IS} is the set of all interpretations on IS.



Theoretical Study of Granular Computing 97

– V AL = {u1
IS, · · · , ut

IS} is the set of all evaluation symbols on IS.
– uIS ∈ V AL is to assign an entity to individual variable on U .
– m is to assign a granule/granulation to rough logical formula on IS.

Furthermore, for each ϕ ∈ RLIS , the lower satisfiability, the upper satisfiability
and satisfiability of granular logical formula m(ϕ) with respect to interpretation
IIS ∈ IR and evaluation uIS ∈ V AL, are denoted, respectively, by

M, uIS |≈Lϕ∼λ (m(ϕ), U)
M, uIS |≈Hϕ∼λ (m(ϕ), U)
M, uIS |≈m(ϕ)∼λ (m(ϕ), U)

(11)

Here, Lϕ and Hϕ are the lower and upper approximations of m(ϕ), respectively
[22, 32]. The meaning of the above types of satisfiability is Lϕ ∼λ U , Hϕ ∼λ U ,
and m(ϕ) ∼λ U , respectively.

Definition 6. (Operations) Let m(ϕ) and m(ψ) be two granular logical formu-
las, the operations of them with respect to usual logical connectives ¬, ∨, ∧, →
and ↔ in the rough logical formula are defined as follows [1, 21]:

1. m(¬ϕ) = U − m(ϕ);
2. m(ϕ ∨ ψ) = m(ϕ) ∪ m(ψ);
3. m(ϕ ∧ ψ) = m(ϕ) ∩ m(ψ);
4. m(ϕ → ψ) = m(¬ϕ) ∪ m(ψ);
5. m(ϕ ↔ ψ) = (m(¬ϕ) ∪ m(ψ)) ∧ (m(¬ψ) ∪ m(ϕ)).

2.2 Axiomatics of Granular Logic

GA1: Each axiom in the granular logical is derived from the corresponding axiom
schema in classical logic.
GA2: m(av) ∩ m(au) = ∅, where a ∈ A, v, u ∈ Va, and v �= u.
GA3:

⋃
v∈Va

m(av) = U , for each a ∈ A.
GA4: ¬m(au) =

⋃
v∈Va:v 
=u m(av), for each a ∈ A.

GA2−GA4 are special axioms in the granular logic based on information systems.

2.3 Inference Rules

G − MP : If |∼ m(ϕ) ⊆λ m(ψ) and |∼∼λ (m(ϕ), U), then |∼∼λ (m(ψ), U).
G − UG: If |∼∼λ (m(ϕ), U), then |∼∼λ ((∀x)m(ϕ), U).
Where |∼ is a reasoning symbol, to denote truth under degree at least λ ∈ [0, 1].

3 Properties of Granular Logic

In this paper a granular logic based on rough logic in information systems is
proposed and this granular logic is used as the tool for granular computing. The
granulations derived by rough logical formulas are also called granular logical
formulas. The operation rules of granular logic depend on usual logical connec-
tives. Thus in the following we will discuss relative properties of granular logic.
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Property 1. Identity:
|∼ (∀x)(∼λ (m(x), m(x))); (12)

Property 2. Symmetry:

|∼ (∀x)(∀y)(∼λ (m(x), m(y)) →∼λ (m(y), m(x)); (13)

Property 3. Transitive:

|∼ (∀x)(∀y)(∀z)(∼λ (m(x), m(y))∧ ∼λ (m(y), m(z)) →∼λ (m(x), m(z)));
(14)

Property 4. Substitute:

|∼ (∀x)(∀y)(∼λ (m(x), m(y)) →∼λ (m(P (x)), m(P (y)))); (15)

Property 5. Forever True: For ϕ ∈ RL, where RL is the abbreviation of rough
logic,

|∼∼λ (m(¬ϕ ∨ ϕ), U); (16)

It means that for arbitrary rough logical formula ϕ ∈ RL,¬ϕ∨ϕ is forever true,
so the granulation (m(¬ϕ ∨ ϕ) is close to universe U ;

Property 6. Extension:

|∼ (∀x)(∀y)((∀z)(∼λ (m(z ∈ x), m(z ∈ y)) →∼λ (m(x), m(y))); (17)

It means that a granule/granulation is defined by their elements.

Property 7. Right:

|∼ (∀x)(∼λ (m((∃y)y ∈ x), U) →∼λ (m((∃y)y ∈ x ∧ (∀z)(z ∈ y → ¬z ∈ x)), U);
(18)

For any granulation x, if ∃y ∈ x, then y is an object or a granule/granulation of
object elements. If z ∈ y for all z, then y is only granule/granulation. So x is the
granule/granulation of granule/granulation y used as element, thus the elements
in y cannot be used as any object element in x.

Property 8. Power set:

|∼∼λ (m((∀x)(∀y)(∀z)(z ∈ y → z ⊆ x)), U); (19)

For any granule/granulation x, y = ρ(x) is the power set of x. For all z, if z ∈ y,
then z ⊆ x.

Property 9. Choice axiom:

|∼∼λ (m((∀x)(x �= ∅ → (∃f)(∀y)(y ∈ x ∧ y �= ∅ → f(y) ∈ y))), U). (20)

It means that for any granule/granulation x �= ∅, there exists a function f , such
that ∀y �= ∅ and y ∈ x, then the functional value f(y) on y is in y, that is,
f(y) ∈ y.
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4 Resolution Reasoning for Granular Logic

We discuss the reasoning technique called granular resolution. It is similar to
the resolution of clauses in classical logic. This is because the resolution of com-
plement ground literals in classical logic is false, which equals exactly to the
intersection of two elementary granules corresponding to them is empty set.

Definition 7. Let ϕ ∈ RLIS, where RLIS denotes rough logic defined for in-
formation system IS = (U, A, V, f). If there is no free individual variable in ϕ,
then the m(ϕ) is called a ground granular formula in granular logic.

Theorem 1. For ϕ ∈ RLIS, m(ϕ) can be transformed equivalently into granu-
lar clause form m(C1) ∩ · · · ∩ m(Cn), where each m(Ci) is an elementary gran-
ule/granulation, which is the set of the form m(a) or negation of m(a), where
a ∈ A is an attribute on A.

Definition 8. Consider ground granular clauses m(C1) and m(C2) specified by
m(C1) : m(C′

1) ∪ m(a) and m(C2) : m(C′
2) ∪ m(b). The resolvent of m(C1) and

m(C2), GR(m(C1), m(C2)), is defined as follows: If the ground granular atoms
m(a) in m(C1) and m(b) in m(C2) are a complement literal pair [23, 25, 28] in
granular logic, then resolution of m(C1) and m(C2) is

C1 : m(C′
1) ∪ m(a)

C2 : m(C′
2) ∪ m(b)

C : m(C′
1) ∪ m(C′

2)
(21)

Namely, we have GR(m(C1), m(C2)) = m(C′
1) ∪ m(C′

2).

Example 2. Let IS = (U, A, V, f) be an information system, as given in Section 2.
One can construct an axiomatic system of granular logic based on IS, as defined
in [25 − 32]. We extract formula ϕ ∈ RLIS as follows:

ϕ(a5, b2, b4, c0,¬e0) = (a5 ∨ b4) ∧ b2 ∧ (c0∨ ∼ e0) (22)

Formula (22) may be written as the following granular logical formula:

ϕ(a5, b2, b4, c0,¬e0) = (m(a5) ∪ m(b4)) ∩ m(b2) ∩ (m(c0) ∪ m(¬e0)) (23)

By Theorem 1, this is the granular clause form, where each intersection item is a
granular clause. By Definition 6, the ground granular clause form of the granular
formula is defined as follows:

ϕ(a5, b2, b4, c0,¬e0) = (a{1,6}
5 ∪ b

{1,2,3}
4 ) ∩ b

{4,5,6}
2 ∩ (c{1,2,3,4}

0 ∪ ¬e
{2,3,4,5}
0 ) (24)

where each item is a ground granular clause. Obviously, a
{1,6}
5 and ¬e

{2,3,4,5}
0 is

a complement ground granular literal pair. So, the resolvent GR(m(C1), m(C2))
of a

{1,6}
5 ∪ b

{1,2,3}
4 in m(C1) and c

{1,2,3,4}
0 ∪ ¬e

{2,3,4,5}
0 in m(C2) is defined as

follows:
a
{1,6}
5 ∪ b

{1,2,3}
4

c
{1,2,3,4}
0 ∪ ¬e

{2,3,4,5}
0

b
{1,2,3}
4 ∪ c

{1,2,3,4}
0

(25)
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Hence, the form (3) can be rewritten as

(b{1,2,3}
4 ∪ c

{1,2,3,4}
0 ) ∩ b

{4,5,6}
2 (26)

Theorem 2. Let � be a set of granular clauses. If there is a deduction of gran-
ular resolution of granular clause C from �, then � implies logically C.

Proof. It is finished by simple induction on length of the resolution deduction.
For the deduction, we need only to show that any given resolution step is sound.
Suppose that m(C1) and m(C2) are arbitrary two granular clauses at the step i,
m(C1) = m(C′

1)∪m(a) and m(C2) = m(C′
2)∪m(b) where m(C′

1) and m(C′
2) are

still granular clauses. Assuming that m(C1) and m(C2) are two correct granular
clauses, m(a) and m(b) are complement granular literal pair at the step i, then
m(a) and m(b) are resolved to produce a resolvent GR(m(C1), m(C2)), which is
a new granular clause m(C) : m(C′

1) ∪ m(C′
2).

Now let us prove that m(C) is also a correct granular clause. By Definition 7,
two granular clauses joined in resolution are m(C1) and m(C2). If there are the
complement granular literals m(a){} in m(C1) and m(b)U in m(C2) respectively,
then m(C′

1) is a correct granular clause, so the new granular clause m(C) :
m(C′

1) ∪ m(C′
2) is correct; If there are m(b){} in m(C2) and m(a)U in m(C1)

respectively, then m(C′
2) is correct, so m(C) : m(C′

1) ∪ m(C′
2) is correct new

granular clause.
The extracting of resolution step i could be arbitrary, the proof of the sound-

ness of granular resolution deduction is finished.

5 Conclusion

In this paper, we define a granular logic and study its properties. The logic is
axiomatized, to get the deductive system. We may prove many relationships
between granulations in the axiomatic system of granular logic, so the granular
logic may be derived from the formulas in a given information system and used
in granular computing. Hence, this logic could be hopefully a theoretical tool of
studying granular computing.
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Extended Abstract

In recent years, rough set theory [1] has attracted attention of many researchers
and practitioners all over the world, who have contributed essentially to its de-
velopment and applications. With many practical and interesting applications
rough set approach seems to be of fundamental importance to AI and cognitive
sciences, especially in the areas of machine learning, knowledge acquisition, de-
cision analysis, knowledge discovery from databases, expert systems, inductive
reasoning and pattern recognition [2].

The common issue of the above mentioned domains is the concept approx-
imation problem which is based on searching for description – in a predefined
language L – of concepts definable in other language L∗. Not every concept in
L∗ can be exactly described in L, therefore the problem is to find an approx-
imate description rather than exact description of unknown concepts, and the
approximation is required to be as exact as possible. Usually, concepts are inter-
pretable as subsets of objects from a universe, and the accuracy of approximation
is measured by the closeness of the corresponding subsets.

Rough set theory has been introduced as a tool for concept approximation
from incomplete information or imperfect data. The essential idea of rough set
approach is to search for two descriptive sets called the lower approximation
containing those objects that certainly belong to the concept and the ”upper
approximation” containing those objects that possibly belong to the concept.

Most concept approximation methods realize the inductive learning approach,
which assumes that a partial information about the concept is given by a finite
sample, so called the training sample or training set, consisting of positive and
negative cases (i.e., objects belonging or not belonging to the concept). The
information from training tables makes the search for patterns describing the
given concept possible. In practice, we assume that all objects from the universe
U are perceived by means of information vectors being vectors of attribute values
(information signature). In this case, the language L consists of boolean formulas
defined over conditional (effectively measurable) attributes.

The task of concept approximation is possible when some information about
the concept is available. Except the partial information above the membership
function given by training data set, the domain knowledge is also very useful

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 103–106, 2006.
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in developing efficient methods of searching for accurate approximate models.
Unfortunately, there are two major problems related to the representation and
the usage of the domain knowledge can cause many troubles in practical appli-
cations. In [3] [4] [5] we have presented a method of using domain knowledge,
which is represented in form of concept taxonomy, to improve the accuracy of
rough classifiers and to manage with approximation problems over complex con-
cepts. The proposed solution adopts the general idea of multi-layered learning
approach [6] where the original problem is decomposed into simpler ones and the
main effort is to synthesize the final solution from the solutions of those simpler
problems.

Usually rough set methodology is restricted to decision tables and is destined
to classification task. This paper focus on applications of rough sets and layered
learning in other KDD tasks like approximation of concept defined by decision
attribute with continuous domain or ranking learning.

In mathematics, k-argument relations over objects from a given universe U are
defined as subsets of the Cartesian product Uk. Relations play an important role
in classification problem. For example, the distance-based methods like nearest
neighbor classifiers or clustering are based mainly on similarity relation between
objects defined by the distance function.

Investigations on concept approximation problem are well motivated both
from theoretical as well as practical point of view [7] [8]. As an example, let as
remind that the standard rough sets were defined by indiscernibility between
objects which is an equivalence relation, while similarity relation approximating
the indiscernibility relation is the tool for many generalizations of rough set
theory including the tolerance approximation space [9], similarity based rough
sets [10], rough set methods for incomplete data [11], rough set methods to
preference-ordered data [12] [13].

In this paper we investigate the problem of searching for approximation of
relations from data. We show that this method is the basic component of many
compound tasks. We also present a novel rough set based approach to discov-
ering useful patterns from nonstandard and complex data for which the stan-
dard inductive learning methodology fails. The proposed solution is based on
a two-layered learning algorithm. The first layer consists of methods that are
responsible for searching for (rough) approximation of some relations between
objects from the data. At the second layer, the approximated relations induced
by the first layer are used to synthesize the solution of the original problem.
The critical problem in any layered learning system is how to control the global
accuracy by tuning the quality of its components. We present a solution of this
problem based on the changing of the quality of approximate relations.

We describe two representative examples related to binary relations to demon-
strate the power of the proposed methodology. In the first example, we consider
the problem of extracting the optimal similarity relation and present some appli-
cations of approximate similarity relations in classification problem. We present
the advantages of this method comparing with the standard classification meth-
ods [14] [15].
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The second example relates to the approximation of preference relation and
its applications in (1) learning ranking order on a collection of combinations,
(2) predicting the values of continuous decision attribute, (3) optimizing the
process of searching for the combination with maximal decision [16]. This method
can be applied to mining ill-defined data, i.e., data sets with few objects but a
large number of attributes. Results of some initial experiments on medical and
biomedical data sets were very promising.

Keywords: Rough sets, relation approximation, knowledge discovery.
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Abstract. Galois (concept) lattices and formal concept analysis have
been proved useful in the resolution of many problems of theoretical and
practical interest. Recent studies have put the emphasis on the need for
both efficient and flexible algorithms to construct the lattice. In this pa-
per, the concept of attribute reduction of formal concept was proposed
with its properties being discussed. The CL−Axiom and some equivalent
conditions for an attributes subset to be a reduction of a formal concept
are presented.

Keywords: Galois (concept) lattices, attribute reduction, CL−Axiom.

1 Introduction

Formal concept analysis(FCA) is a discipline that studies the hierarchical struc-
tures induced by a binary relation between a pair of sets. The structure, made up
of the closed subsets ordered by set-theoretical inclusion, satisfies the properties
of a complete lattice and has been firstly mentioned in the work of Birkhoff[1].
The term concept lattice and formal concept analysis are due to Wille[2], [3], [4].
Later on, it has been the subject of an extensive study with many interesting
results. As a classification tool, FCA has been used in several areas such as data
mining, knowledge discovery, and software engineering. Today, there is a con-
stantly growing number of studies in both theoretical and practical issues [5], [6].

One of the important challenges in FCA is to get efficient and flexible algo-
rithms to construct the concept lattice from the formal context. The algorithms
can be mainly divided into two groups: algorithms which extract the set of
concepts[7], [9] only, and algorithms for constructing the entire lattice[10], [11],
[12] i.e., concepts together with lattice order. An efficient algorithm has been
suggested by Bordat[10] which generates both the concept set and the Hasse
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diagram of the lattice. It takes the advantage of the structural properties of the
precedence relation to generate the concepts in an increasing order. The obvious
drawback of the method is that a concept is generated several times. The design
of flexible algorithms was pioneered by Godin et al.[11] who designed an incre-
mental method for constructing the concept lattices. The lattice is constructed
starting from a single object and gradually incorporating new objects. Nourine
and Raynaud[12] suggested a general approach towards the computation of clo-
sure structures and showed how it could be used to construct concept lattices.
Valtchev et al.[13] presents a novel approach for concept lattice construction
based on the apposition of binary relation fragments.

In this paper, the concepts of core attribute and attribute reduction for for-
mal concepts were proposed with their basic properties being discussed. The
CL−Axiom and some equivalent conditions for an attributes subset to be a re-
duction of a formal concept are presented. This paper provides foundation for
new approaches towards lattice construction based on the attribute reduction.

2 Fundamentals of FCA

Definition 1. A formal context is an ordered triple T = (G, M, I) where G, M
are finite nonempty sets and I ⊆ G × M is an incidence relation. The elements
in G are interpreted to be objects, elements in M are said to be attributes. If
(g, m) ∈ G × M is such that (g, m) ∈ I, then the object g is said to have the
attribute m.

The incidence relation of a formal context can be naturally represented by an
incidence table.

Example 1. [8] T = (G, M, I) is a formal context, where G = {1, 2, 3, 4, 5, 6, 7, 8},
M = {a, b, c, d, e, f, g, h, i} and the table below describes incidence relation:

To introduce the definition of the formal concept, Wille used two set-valued
functions, ↑ and ↓, given by the expressions:

Table 1. The incidence relation of the formal context

a b c d e f g h i

1 x x x
2 x x x x
3 x x x x x
4 x x x x x
5 x x x x
6 x x x x x
7 x x x x
8 x x x x
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↑: P (G) → P (M), X↑ = {m ∈ M ; ∀g ∈ X, (g, m) ∈ I},

↓: P (M) → P (G), Y ↓ = {g ∈ G; ∀m ∈ Y, (g, m) ∈ I}.

Definition 2. A formal concept of a context T = (G, M, I) is a pair (A, B) ∈
P (G)×P (M) such that A↑ = B and B↓ = A. The set A is called its extent, the
set B its intent.

The subset L(G, M, I) of P (G)×P (M) formed by all the concepts of the context
is a complete lattice with the order relation

(A, B) ≤ (C, D) if and only if A ⊆ C (or equivalently B ⊇ D).

This relation shows the hierarchy between the concepts of the context. The
lattice (L(G, M, I),≤) is said to be the formal concept lattice of the context
(G, M, I) with LUB and GLB are given are follows:

n∨
i=1

(Ai, Bi) = ((
n⋃

i=1

Ai)↑↓,
n⋂

i=1

Bi),

n∧
i=1

(Ai, Bi) = (
n⋂

i=1

Ai, (
n⋃

i=1

bi)↓↑).

For convenience reasons, we simplify the standard set notation by dropping
out all the separators (e.g., 124 will stand for the set of objects {1, 2, 4} and cd
for the set of attributes {c,d}). The concept lattice of Example 1 is showed in
Fig. 1.
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Fig. 1. Galois/concept lattice corresponding to Table 1
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3 The Attribute Reduction of Formal Concepts

Let (G, M.I) be a formal context and (A, B) ∈ P (G) × P (M) a formal concept.
We introduce the notation ε(A,B) by

ε(A,B) = {Y ⊆ M ; Y ↓ = A}.

For any Y ∈ P (M), (Y ↓, Y ↓↑) is a concept, it is said to be the concept generated
by the set Y of attributes. It follows that ε(A,B) is the family of subsets of
attributes which generate same concept as B does.

Theorem 1. Let (G, M.I) be a formal context and (A, B) ∈ P (G) × P (M) a
formal concept.

(1) B is the greatest element in the poset (ε(A,B),⊆).
(2) If Y1 ∈ ε(A,B) and Y1 ⊆ Y2 ⊆ B, then Y2 ∈ ε(A,B).

Proof. (1) By B↓ = A, B ∈ ε(A,B). If Y ⊆ M is such that Y ∈ ε(A,B), then

Y ⊆ Y ↓↑ = A↑ = B.

(2) Assume that If Y1 ∈ ε(A,B) and Y1 ⊆ Y2 ⊆ B. It follows that

A = Y ↓
1 ⊇ Y ↓

2 ⊇ B↓ = A,

that is Y ↓
2 = A and Y2 ∈ ε(A,B).

Definition 3. Let (G, M.I) be a formal context and (A, B) ∈ P (G) × P (M) a
formal concept.

(1) A minimal element in (ε(A,B),⊆) is said to be an attribute reduction of
(A, B).

(2) If a ∈ B is such that (B −{a})↓ ⊃ A, then a is said to be a core attribute
of (A, B).

We denote by Core(A, B) the set of all core attributes of (A, B) and by Red
(A, B) the set of all attribute reductions of (A, B), that is

Core(A, B) = {a ∈ B; (B − {a})↓ ⊃ A}, (1)
Red(A, B) = {Y ; Y is a attribute reduction of (A, B)}. (2)

Theorem 2. ∩Red(A, B) = Core(A, B).

Proof. Assume that Y ∈ ε(A,B) and a ∈ Core(A, B). If a /∈ Y , then Y ⊆ B−{a}
and hence

Y ↓ ⊇ (B − {a})↓ ⊃ A,

a contradiction with Y ↓ = A. It follows that a ∈ Y and hence ∩Red(A, B) ⊇
Core(A, B).

Conversely, if a /∈ Core(A, B), then (B − {a})↓ = A and (B − {a}) ∈ ε(A,B).
It follows that there exists Y ∈ Red(A, B) such that Y ⊆ B −{a}, that is a /∈ Y
and a /∈ ∩Red(A, B).
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Example 2. For the formal context in Example 1, (23, abgh) is a concept. It is
trivial to verify that

ε(23,abgh) = {bh, abh, bgh, abgh},

bh is the unique attribute reduction of (23, abgh) and Core(23, abgh) = {b, h}.
For the concept (6, abcdf),

ε(6,abcdf) = {bcd, bcf, bcdf, abcdf}.

It follows that Red(6, abcdf) = {bcd, bcf} and Core(6, abcdf) = {b, c}.

In the following, we discuss the properties of attribute reductions.

Theorem 3. Let (G, M, I) be a formal context. Y ⊆ M, Y �= ∅ is an attribute
reduction of a concept if and only if

�(b) = {x ∈ G; I(x, b) = 0,
∏

a∈Y {b}
I(x, a) = 1} �= ∅

for each b ∈ Y .

Proof. Assume that Y ⊆ M, Y �= ∅ is a attribute reduction of a formal concept,
say (A, B). For each b ∈ Y , (Y − {b})↓ ⊃ A. It follows that there exists x ∈ G
such that x /∈ A and x ∈ (Y −{b})↓. That is I(x, a) = 1 for each a ∈ Y −{b} and
hence

∏
a∈Y −{b} I(x, a) = 1. By x /∈ A = B↓ = Y ↓, I(x, b) = 0 and x ∈ �(b),

that is �(b) �= ∅.
Conversely, assume that �(b) �= ∅ for each b ∈ Y . Y ∈ ε(Y ↓),Y ↑↓ is trivial.

For each b ∈ Y , suppose that x ∈ �(b), it follows that I(x, b) = 0 and x /∈ Y ↓,∏
a∈Y {b} I(x, a) = 1 and x ∈ (Y − {b})↓. Consequently, (Y − {b})↓ ⊃ Y ↓ and

(Y −{b}) /∈ ε(A,B). It follows that Y is an attribute reduction of formal concept
(Y ↓, Y ↓↑).

Based on the above Theorem, we introduce the CL−Axiom for attribute subset
Y ⊆ M as follows:

CL-Axiom:
∑

b∈Y δ(�(b)) = |Y |, where

δ(�(b)) =
{

1, if�(b) �= ∅,
0, if�(b) = ∅. (3)

The proof of the following Theorem are trivial.

Theorem 4. Let (G, M, I) be a formal context. Y ⊆ M, Y �= ∅ is an attribute
reduction of a concept if and only if Y satisfies CL−Axiom.

Theorem 5. Let (G, M, I) be a formal context, Y ⊆ M, Y �= ∅. Y does not sat-
isfy CL−Axiom if and only if there exist formal concept (A, B) and its attribute
reduction Z such that Z ⊂ Y ⊆ B.
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Proof. Assume that (A, B) is a concept and Z its attribute reduction such that
Z ⊂ Y ⊆ B. Let b ∈ Y − Z. If there exist x ∈ G such that x ∈ �(b), then∏

a∈Y −{b} I(x, a) = 1 and hence
∏

a∈Z I(x, a) = 1, that is x ∈ Z↓. Consequently
I(x, b) = 1 by b ∈ B = Z↓↑, a contradiction with I(x, b) = 0. It follows that
�(b) = ∅ and Y does not satisfy CL−Axiom.

Conversely, assume that Y does not satisfy CL−Axiom. It follows that there
exist b ∈ Y such that �(b) = ∅. Consequently, for each x ∈ G, if

∏
a∈Y −{b}

I(x, a) = 1, then I(x, b) = 1. It follows that Y ↓ = (Y − {b})↓. We consider
the concept ((Y − {b})↓, (Y − {b})↓↑). Suppose that Z is one of its attribute
reduction. It follows that

Z ⊆ Y − {b} ⊂ Y ⊆ Y ↓↑ = (Y − {b})↓↑. (4)

Theorem 6. Let (G, M, I) be a formal context. If Y ⊆ M, Y �= ∅ is not attribute
reduction of any concept, then Z is not attribute reduction of any concept for
each Y ⊆ Z ⊆ M .

4 Conclusions

This paper is devoted to the discussion of concept lattice. We proposed the con-
cepts of core attribute and attribute reduction for formal concepts and discussed
their basic properties. The CL−Axiom and some equivalent conditions for an
attributes subset to be a reduction of a formal concept are presented. This paper
provides foundation for new approaches towards lattice construction based on
the attribute reduction.
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Abstract. In the paper, we define a new discernibility matrix and func-
tion between two decision tables. They are extension of Hu’s improved
discernibility matrix and function such that the reducts and the cores of
decision tables could be calculated by parts of them. The method of new
discernibility matrix and function may be applied to the cases of large
amount of data and incremental data.

Keywords: Rough sets, decision table, discernibility matrix, discerni-
bility function.

1 Introduction

The method of discernibility matrix and function was proposed by A.Skowron
and C.Rauszer[2,8], and improved by X.Hu and N.Cercone[9] later, by which it is
easy to represent and interpret knowledge, especially it is convenient to calculate
reducts and the core of data.

The method of discernibility matrix and function is important in rough set
theory, and widely applied to the procedure of reduction and rough reasoning
etc.[5]. But it is not convenient for the original discernibility matrix and function
to deal with tremendously large data and incremental data. In the paper we
extend discernibility matrices and functions to fit them.

Jan G.Bazan et al. presented the concept of dynamic reducts [3,4]to solve
the problem of large amount of data or incremental data. They select parts of
data to process reduction, then select the intersection of all reducts as a stable
reduct. The method is very successful but may lose some information of data if
the samples are not suitable. In the paper, we present a new discernibility matrix
and function. The method can deal with the case that a decision table consists
of parts. We prove some theorems to show that the efficiency of the method is
the same as that of the original one. The method has the following merits at least:

1. Fit the situation of tremendously large data.
2. Fit the situation of incremental data.
3. Disassemble decision tables into parts, and then ”divide and conquer”.
4. Fit parallel computing.

The rest of the paper is organized as follows. In section 2, we introduce the
basic concepts of rough set theory. In section 3, we introduce the discernibility
matrix and function, which was improved by X.Hu and N.Cercone[9]. We present
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a new discernibility matrix and function, and discuss their properties in section 4.
At last, we draw a conclusion in section 5.

2 Rough Sets

An information system is a pair S = (U, A), where U is the universe of discourse
with a finite number of objects(or entities), A is a set of attributes defined on
U . Each a ∈ A corresponds to the function a : U → Va, where Va is called the
value set of a. Elements of U are called situation, objects or rows, interpreted
as, e.g., cases, states[1,5].

With any subset of attributes B ⊆ A, we associate the information set for
any object x ∈ U by

InfB(x) = {(a, a(x)) : a ∈ B}

An equivalence relation called B-indiscernible relation is defined by

IND(B) = {(x, y) ∈ U × U : InfB(x) = InfB(y)}

Two objects x, y satisfying the relation IND(B) are indiscernible by attributes
from B. [x]B is referred to as the equivalence class of IND(B) defined by x. A
minimal subset B of A such that IND(B) = IND(A) is called a reduct of S.

Suppose S = (U, A) is an information system, B ⊆ A is a subset of attributes,
and X ⊆ U is a subset of discourse, the sets

B(X) = {x ∈ U : [x]B ⊆ X}, B(X) = {x ∈ U : [x]B
⋂

X �= φ}

are called B-lower approximation and B-upper approximation respectively.
In a decision table DT = (U, A ∪ {d}), where {d} ∩ A = φ, for each x ∈ U , if

[x]A ⊆ [x]{d}, then the decision table is consistent, or else it is inconsistent.

3 Discernibility Matrix and Function

Given a decision table DT = (U, A
⋃

{d}), where U = {u1, u2, · · · , un}, A =
{a1, a2, · · · , ak}, by discernibility matrix of the decision table DT we mean
the(n × n) matrix[9]

M(DT ) = [Ci,j ]ni,j=1

such that Ci,j is the set of attributes discerning ui and uj . Formally:

Ci,j =
{

{am ∈ A : am(ui) �= am(uj)} if d(ui) �= d(uj)
φ otherwise.

The discernibility function corresponding to M(DT ) is defined as follows:

f(DT ) =
∧
i,j

(
∨

Ci,j), Ci,j �= φ
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The method of discernibility matrx and function is usually utilized in the
procedure of reduction and boolean reasoning, but there is a fault, which the
reducts and cores of decision tables may not be got correctly when decision tables
are inconsistent[6,7]. Therefore, we assume decision tables are consistent in the
sequel.

4 New Discernibility Matrix and Function

By discernibility matrix and function we could get reducts and cores of decision
tables, but it is not convenient for the original discernibility matrix and function
to fit the situation of incremental data and tremendously large data. In the
sequel, we present a method to solve this problem by improving discernibility
matrix and function.

Definition 1. Given two decision table DT1 = (U1, A
⋃

{d}), DT2 = (U2, A
⋃

{d}),where U1 = {x1, x2, · · · , xm}, U2 = {y1, y2, · · · , yn}, A = {a1, a2, · · · , ak},
by discernibility matrix M(DT1, DT2) between two decision tables DT1, DT2 we
mean the (m × n) matrix

M(DT1, DT2) = [Ci,j ]
m,n
i,j=1

such that Ci,j is the set of attributes discerning xi and yj . Formally:

Ci,j =
{

{ap ∈ A : ap(xi) �= ap(yj)} if d(xi) �= d(yj)
∧

xi ∈ U1
∧

yj ∈ U2
φ otherwise.

Remark 1. The two decision tables in definition 1 may be the same. In this
case the discernibility matrix turns into Hu’s discernibility matrix[9].

Definition 2. Given two decision tables and their discernibility matrix between
them, just as definition 1. the corresponding discernibility function is defined as
follows:

f(DT1, DT2) =
∧
i,j

(
∨

Ci,j), Ci,j �= φ

Example 1. Given two decision tables DT1, DT2 corresponding to Table 1 and
Table 2 respectively, where a, b, c are condition attributes, d is decision attribute.
DT = (U1

⋃
U2, {a, b, c}

⋃
{d}) is the union of DT1 and DT2. M(DT ), M(DT1)

and M(DT2) are the discernibility matrices of DT , DT1 and DT2, respectively.
M(DT1, DT2) is the discernibility matrix between DT1 and DT2. f , f1, f2 and
f1,2 are the discernibility functions corresponding to M(DT ), M(DT1), M(DT2)
and M(DT1, DT2), respectively. These discernibility matrices are displayed as
follows:

M(DT1) =

⎡⎣φ φ a, c
φ a, b, c

φ

⎤⎦ .
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Table 1. Decision Table DT1

U1 a b c d

x1 0 0 3 1
x2 1 1 2 1
x3 2 0 1 0

Table 2. Decision Table DT2

U2 a b c d

y1 0 2 1 0
y2 0 0 3 1
y3 3 1 2 1
y4 3 2 0 0
y5 1 2 0 0

M(DT2) =

⎡⎢⎢⎢⎢⎣
φ b, c a, b, c φ φ

φ φ a, b, c a, b, c
φ b, c a, b, c

φ φ
φ

⎤⎥⎥⎥⎥⎦ .

M(DT1, DT2) =

⎡⎣ b, c φ φ a, b, c a, b, c
a, b, c φ φ a, b, c b, c
φ a, c a, b, c φ φ

⎤⎦ .

M(DT ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ φ a, c b, c φ φ a, b, c a, b, c
φ a, b, c a, b, c φ φ a, b, c b, c

φ φ a, c a, b, c φ φ
φ b, c a, b, c φ φ

φ φ a, b, c a, b, c
φ b, c a, b, c

φ φ
φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, we have the corresponding discernibility functions as follows:

f1 = (a
∨

c)
∧

(a
∨

b
∨

c)

f2 = (b
∨

c)
∧

(a
∨

b
∨

c)

f1,2 = (b
∨

c)
∧

(a
∨

b
∨

c)
∧

(a
∨

c)

f = (b
∨

c)
∧

(a
∨

b
∨

c)
∧

(a
∨

c)
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Remark 2. The second decision table could be considered to be an incremental
one of the first. We have deleted the iterative elements in discernibility functions
f , f1, f2 and f1,2.

Our definitions of discernibility matrix and its corresponding discernibility
function are extension of the original ones. When the two decision tables are
the same, the discernibility matrix and function between them turn into Hu’s
discernibility matrix and function respectively. In the sequel, we may not distinct
these concepts if the meaning of them is not ambiguous.

The new discernibility matrix and function have some advantages in reduc-
tion and boolean reasoning. They fit tremendously large data and incremental
data, which avoid the workload of repeating computing. In the sequel we will
investigate their properties.

Proposition 1. Suppose three decision tables DT1 = (U1, A
⋃

{d}), DT2 =
(U2, A

⋃
{d}) and DT = (U, A

⋃
{d}), where U1 = {x1, x2, · · · , xm}, U2 = {y1, y2,

· · · , yn}, A = {a1, a2, · · · , ak}, U = U1
⋃

U2 and U1
⋂

U2 = φ. Suppose M(DT ),
M(DT1) and M(DT2) are discernibility matrices of DT, DT1 and DT2 respec-
tively. M(DT1, DT2) is the discernibility matrix between DT1 and DT2. Then

M(DT ) =
[
M(DT1) M(DT1, DT2)

M(DT2)

]
.

Proof. It can be got from the discernibility matrices M(DT ), M(DT1), M(DT2)
and M(DT1, DT2) directly. �

Proposition 2. Suppose three decision tables DT1 = (U1, A
⋃

{d}), DT2 =
(U2, A

⋃
{d}) and DT = (U, A

⋃
{d}), where U = U1

⋃
U2 and U1

⋂
U2 = φ,

f1, f2, f are the discernibility functions of DT1, DT2, DT respectively. f1,2 is the
discernibility function between DT1 and DT2, then

f = f1

∧
f2

∧
f1,2

Proof. It can be got from proposition 1 directly. �

Theorem 1. Suppose DTi = (Ui, A
⋃

{d})(i = 1, 2, · · · , l) are a series of decision
tables, and that DT = (U, A

⋃
{d}) is the union of them, where

⋃l
i=1 Ui = U ,

Ui

⋂
Uj = φ(i �= j, i, j = 1, 2, · · · , l). f is the discernibility function of DT ,

fi,j(i, j = 1, 2, · · · , l) is the discernibility function between DTi and DTj . Then
we have the following equation:

f =
l∧

i,j=1

fi,j

Proof. Suppose M(DT ) is the discernibility matrix of DT , M(DTi, DTj) is the
discernibility matrix between DTi and DTj . Because

⋃l
i=1 Ui = U , Ui

⋂
Uj =

φ(i �= j, i, j = 1, 2, · · · , l), for every element Xp,q of M(DT ), there exists a
discernibility matrix M(DTi, DTj) such that Xp,q is its element. Conversely, all
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of elements of M(DTi, DTj) belong to M(DT ). Therefore, from the definition
of discernibility function we have the above equation. �

Theorem 2. Suppose DTi = (Ui, A
⋃

{d})(i = 1, 2, · · · , l) are a series of decision
tables, and that DT = (U, A

⋃
{d}) is the union of them, where

⋃l
i=1 Ui = U ,

Ui

⋂
Uj = φ(i �= j, i, j = 1, 2, · · · , l). M(DTi, DTj) is the discernibility ma-

trix between DTi and DTj . Corei,j is the set of elements of only one value in
M(DTi, DTj). Then the core Core of DT satisfies the following equation:

Core =
l⋃

i,j=1

Corei,j

Proof. Suppose M(DT ) is the discernibility matrix of DT . Because each element
Xp,q of M(DTi, DTj)(i, j = 1, 2, · · · , l) belong to M(DT ), and for each element
Xp,q of M(DT ) there exists some M(DTi, DTj) such that the element Xp,q

belongs to it. The core of DT is the set of only one value of elements in M(DT ),
Therefore, the above equation is satisfied. �

Theorem 3. Suppose DT1 = (U1, A
⋃

{d}), DT2 = (U2, A
⋃

{d}), DT = (U, A
⋃

{d}, where U = U1
⋃

U2, U1
⋂

U2 = φ. Reduct1 is a reduct of DT1. f2 is the
discernibility function of DT2. f1,2 is the discernibility function between DT1
and DT2. Then each term of DNF (disjunction normal formula) of the formula
Reduct1

∧
f1,2
∧

f2 is a reduct of DT . Proof. Suppose f1 is the discernibility
function of DT1, then f1 is the disjunction of all of reducts of DT1, i.e., f1 =
Reduct1

∨
· · ·. In terms of proposition 2, we have:

f = f1

∧
f1,2

∧
f2

= (Reduct1
∨

· · ·)
∧

f1,2

∧
f2

= (Reduct1
∧

f1,2

∧
f2)
∨

· · ·

Therefore, each term of DNF of the formula Reduct1
∧

f1,2
∧

f2 is a reduct of
DT . �

Corollary. Suppose DT1 = (U1, A
⋃

{d}), DT2 = (U2, A
⋃

{d}), DT = (U, A
⋃

{d}, where U = U1
⋃

U2, U1
⋂

U2 = φ, Reduct1,...,Reductk are reducts of DT1,
f2 is the discernibility function of DT2, f1,2 is the discernibility function between
DT1 and DT2. Then each term of DNF (disjunction normal formula) of the
formula (Reduct1

∨
...
∨

Reductk)
∧

f1,2
∧

f2 is a reduct of DT .
In practical, the amount of data is usually tremendously large, we could par-

tition the decision table at first, then in terms of Theorem 1 and Theorem 2 we
calculate the discernibility functions between each two parts of them respectively
such that we could get the reducts and the core of the decision table. Further-
more, when data are increasing, we could utilize the existed conclusions but only
calculate the reducts and the core relative to new data in terms of Theorem 3
and its corollary. Besides, we could get the new core in terms of Theorem 2.
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In many cases data of subtables may be superfluous, i.e., Ui

⋂
Uj �= φ. In

these cases, all of the above theorems are correct too. We don’t repeat them
here.

Example 2. Given two decision tables DT1, DT2 corresponding to Table 3 and
Table 4 respectively, where a, b, c are condition attributes, d is decision attribute.
The decision table DT = (U1

⋃
U2, {a, b, c}

⋃
{d}) is the union of DT1 and DT2.

M(DT ), M(DT1), M(DT2) are the discernibility matrices of DT , DT1 and DT2,
respectively. M(DT1, DT2) is the discernibility matrix between DT1 and DT2.
f , f1, f2 and f1,2 are the discernibility functions corresponding to M(DT ),
M(DT1), M(DT2) and M(DT1, DT2), respectively. These discernibility matrices
are displayed as follows:

Table 3. Decision Table DT1

U1 a b c d

x1 1 0 2 1
x2 2 1 0 2
x3 2 1 2 0

Table 4. Decision Table DT2

U2 a b c d

y1 2 1 2 0
y2 1 2 2 1
y3 1 2 0 0

M(DT1) =

⎡⎣φ a, b, c a, b
φ c

φ

⎤⎦ .

M(DT2) =

⎡⎣φ a, b φ
φ c

φ

⎤⎦ .

M(DT1, DT2) =

⎡⎣a, b φ b, c
c a, b, c a, b
φ a, b φ

⎤⎦ .

M(DT ) =

⎡⎢⎢⎢⎢⎣
φ a, b, c a, b φ b, c

φ c a, b, c a, b
φ a, b φ

φ c
φ

⎤⎥⎥⎥⎥⎦ .

From the above discernibility matrices, it is easy to examine f = f1
∧

f2
∧

f1,2

and Core =
⋃2

i,j=1 Corei,j = {c}.
Remark 3. Notice that x3 = y1 in example 2.
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From above theorems, we could disassemble decision tables into parts at first
when data are tremendously large, and then calculate the discernibility functions
between each two parts of them, at last calculate the conjunction of all of these
discernibility functions such that we could get the reducts and cores of decision
tables. When data are increasing we could calculate the new reducts and core
attributes of decision tables, and avoid repetition of computing. The condition
of these theorems is that the set of subtables is a cover of a decision table.

5 Conclusion

In this paper we present a new discernibility matrix and its corresponding dis-
cernibility function. The method could be applied to reduction and approxima-
tion reasoning in the cases of tremendously large data and incremental data. But
in inconsistent decision tables the method may not be applied efficiently, we will
investigate this problem in our next paper. Moreover, we will investigate new
applications of the new discernibility matrix and function.
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Abstract. The variable precision rough sets (VPRS) model is para-
metric and there are many types of knowledge reduction. Among the
present various algorithms, β is introduced as prior knowledge. In some
applications, it is not clear how to set the parameter. For that reason,
it is necessary to seek an approach to realize the estimation of β from
the decision table, avoiding the influence of β apriority upon the result.
By studying relative discernibility in measurement of decision table, it
puts forward algorithm of the threshold value of decision table’s rela-
tive discernibility: choosing β within the interval of threshold value as a
substitute for prior knowledge can get knowledge reduction sets under
certain level of error classification, thus finally realizing self-determining
knowledge reduction from decision table based on VPRS.

Keywords: Variable precision rough sets, knowledge reduction, variable
precision value, distribution reduction.

1 Introduction

As a new mathematical tool for dealing with inexact, uncertain knowledge[1],
the rough sets theory (RST) has been successfully employed in machine learning,
data mining and other fields[2, 3] since it was put forward by Pawlak[4]. Variable
precision rough sets (VPRS) model [3] proposed by Ziarko extended classic rough
sets theory and made it more adaptable for processing data with noise.

Based on VPRS, Beynon[5] studied the relation of relative discernibility be-
tween β and the set. Mi Jusheng et al.[6,7] presented β lower or upper distribu-
tion reduction. But, they only indicated the effect of β upon the reduction. In all
existing algorithms of knowledge reduction[5-9] based on VPRS, β is introduced
as prior knowledge, which tarnishes the prominent advantage of RST-’Let data
speak by itself’, i.e. not to need any other information outside the information
system. If β could be generated from the data to be processed during the re-
duction, it will surely play an important role in propelling the development and
application of VPRS. Unfortunately, there is no such method for the time being.
The paper is concerned with approaches to the relations between the value β
and the relatively discernible decision table and influences of β on knowledge

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 122–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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reduction. The next section gives some basic notions related to VPRS and the
relative discernibility of a set. Section 3 introduces the measurement approach
of the relatively discernible decision table and how to compute the value of β
from a decision table. It is also proved that for some special thresholds value , β
lower distribution reduction is equivalent to β upper distribution reduction. In
the end, the conclusion is made to sum up what has been discussed and further
research work is pointed out.

2 Basic Notions Related to VPRS

An information system is usually denoted as a triplet S=(U, C
⋃

D, f) , which
is called a decision table, where U is the universe which consists of a finite set of
objects, C is the set of condition attributes and D the set of decision attributes.
If X, Y ⊆ U are subsets of U then the ratio of classification error, denoted as
c(X, Y ) [10], is defined as follows,

c(X, Y ) =

{
1 − |X∩Y |

|X| |X | > 0,

0 |X | = 0.

where |X | is the cardinality of set X.

Definition 2.1. Let X, Y ⊆ U , the majority inclusion relation is defined as

Y
β

⊇X ⇔ c(X, Y ) ≤ β ,where 0 ≤ β < 0.5.

Definition 2.2. Let X ⊆ U, B ⊆ C, U/RB = {X1, X2, · · · , Xn} , one can char-
acterize X by a pair of β lower and β upper approximations:

Rβ
B(X) = ∪{Xj|c(Xj , X) ≤ β}, Rβ

B(X) = ∪{Xj |c(Xj , X) < 1 − β}.

The set Rβ
B(X) may also be called β positive region of X ,denoted as posβ(X).

Corresponding to it, the β negative region and β boundary region of X can be
defined as follows respectively:

negrβ(X) = ∪{Xj |c(Xj , X) ≥ 1 − β}, bnrβ(X) = ∪{Xj|β < c(Xj , X) < 1 − β}.

Definition 2.3. If bnrβ(X) = φ then set X is called β discernibility, else it is
called β indiscernibility.

Some propositions in [5,10,11] are introduced as follows:

Proposition 2.1. If set X is given a classification with 0 ≤ β < 0.5, then X is
also discernible at any level β < β1 < 0.5 .

Proposition 2.2. If R0.5(X) �= R0.5(X) ,then X is discernible at any level
0 ≤ β < 0.5 .

This proposition tells us that a set with a non-empty absolute boundary region
is indiscernible.
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Proposition 2.3. If set X is not given a classification with R0.5(X) �= R0.5(X) ,
then it is also indiscernible at any level β2 < β .

Ziarko [3] also stated that a set which is not given a classification for very β will
be called absolutely rough, while one only given a classification for a range of β
is called relatively rough. These statements of Ziarko indicate some move to the
exposition of the role of ranges of β rather than specific β values, which studied
in [5]. The minimal threshold value, denoted as ξ(X) that can discern the set X
is defined as follows:

Proposition 2.4. ξ(X) = max(m1, m2) , where

m1 = 1 − min{c(Xi, X)|∀Xi ∈ U/R, c(Xi, X) > 0.5},
m2 = max{c(Xi, X)|∀Xi ∈ U/R, c(Xi, X) < 0.5}.

3 Relative Discernibility of Decision Table and Variable
Precision Value

3.1 Relative Discernibility of Decision Table

In this section, we discuss the value β related to the relative discernibility of
decision table based on VPRS and introduce the method to get the minimal
threshold of β from decision table.

Definition 3.1. Given a decision table S = (U, C ∪ D, f) , for 0 ≤ β < 0.5 , we
define the β boundary region and the β positive region of S respectively as:

bnrβ(S) =
m
∪

i=1
bnrβ(Di), posβ(S) =

m
∪

i=1
Rβ

C(Di) .

Definition 3.2.Decision table S = (U, C ∪ D, f) is absolutely rough iff bnr0.5
(S) �= φ.

Definition 3.3. For decision table S = (U, C ∪D, f) , if bnrβ(S) = φ then S is
β discernibility, otherwise it is β indiscernibility.

Proposition 3.1. If decision table S is discernible at classification level 0 ≤ β <
0.5 , then it is also discernible at the level β < β1 < 0.5.

For any Di ∈ U/RD , we can obtain the value of ξ(Di) according to proposition
2.4. Therefore, for all decision classes D1, D2 · · ·Dm, we can obtain a series of
ξ(D1), ξ(D2), · · · ξ(Dm). Thus the minimal threshold, denoted as ξ(S) that can
be found according to proposition 3.1:

ξ(S) = max(ξ(D1), ξ(D2), · · · ξ(Dm)).

Lemma 3.1.For S = (U, C ∪ D, f) and Di ∈ U/RD, we have the relation

negrβ(∼ Di) = posβ(Di),

where ∼ Di = U − Di.
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Proof. For Xj ∈ U/RC , suppose Xj ⊆ negrβ(∼ Di), according to definition
2.2, we have

c(Xj ,∼ Di) ≥ 1 − β ⇔ 1 − |Xj∩ ∼ Di|
|Xj |

≥ 1 − β ⇔ |Xj ∩ (U − Di)|
|Xj|

≤ β.

On the other hand, due to

|Xj ∩ (U − Di)| = |Xj ∩ U − Xj ∩ Di| = |Xj − Xj ∩ Di| ≥ |Xj | − |Xj ∩ Di|

we have

|Xj| − |Xj ∩ Di|
|Xj|

≤ |Xj ∩ (U − Di)|
|Xj |

≤ β ⇔ 1 − |Xj ∩ Di|
|Xj |

≤ β.

Therefore, c(Xj , Di) ≤ β ⇔ Xj ⊆ posβ(Di) ⇔ negrβ(∼ Di) = posβ(Di).

Proposition 3.2. If β ∈ [ξ(S), 0.5) then a decision table S = (U, C ∪ D, f) is
relatively discernible and posβ(S) = U .

Proof. According to proposition 2.1, when β ∈ [ξ(S), 0.5) , the equation
of bnrβ(S) = φ. must be satisfied. Therefore, the decision table is relatively
discernible.

Next we show by contradiction the proposition of posβ(S) = U .
β negative region of the decision table S is denoted as negrβ(s), if posβ(S)

�= U , then posβ(S)∪negrβ(s) = U , therefore there is at least an element x ∈ U
and x /∈ posβ(S) ,we assume x ∈ Xk

⇒ Xk �⊂ posβ(S) ⇒ Xk ⊆ negrβ(S), ∃Di ∈ U/RD

⇒ c(Xk, Di) ≥ 1 − β, according to lemma 3.1

⇒ c(Xk,∼ Di) ≤ β , i.e. Xk ⊆ posβ(∼ Di) = posβ(U − Di)

besides,U − Di = D1 ∪ D2 ∪ · · · ∪ Di−1 ∪ Di+1 ∪ · · · ∪ Dm

⇒ Xk ⊆ posβ(D1 ∪ D2 ∪ · · · ∪ Di−1 ∪ Di+1 ∪ · · · ∪ Dm)

According to proposition[3]: the any basic class can be classified into a decision
class according to the majority inclusion

⇒ ∃Dj , j �= i, Xk ⊆ posβ(Dj) ⊆ posβ(S)

⇒ Xk ⊆ posβ(S) is in contradiction with the equation Xk �⊂ posβ(S), therefore,it
has been proved.

The proposition 3.2 implies that every condition class supports a decision rule
when β is assigned to be in the domain [ξ(S), 0.5).
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3.2 Getting β from Decision Table

The β value plays an important role in the knowledge reduction based on VPRS.
The algorithm of self- determining knowledge reduction can be realized if we get
the minimal threshold value from decision table. In order to obtain ξ(S) , several
steps are as follows:

Step 1. Obtain the matrix of the combined probability of decision table,

CoD =

⎡⎢⎢⎢⎣
D(D1/X1) D(D1/X2) · · · D(D1/Xn)
D(D2/X1) D(D2/X2) · · · D(D2/Xn)

...
...

...
...

D(Dm/X1) D(Dm/X2) · · · D(Dm/Xn)

⎤⎥⎥⎥⎦
m×n

where D(Y/X) = |X∩Y |
|X| if |X | > 0 ,and D(Y/X) = 0 otherwise.

Step 2. Due to c(X, Y ) + D(Y/X) = 1 according to definitions of c(X, Y ) and
D(X, Y ) , the matrix CoD is transformed into COD which represents the prob-
ability distribution of classification errors in decision table;
Step 3. Compute ξ(D1), ξ(D2), · · · , ξ(Dm) according to COD
Step4. Compute the minimal threshold value of decision table ,
ξ(S) = max(ξ(D1), · · · , ξ(Dm)).

3.3 Influences of β on Lower (Upper) Distribute Reduction

In general, if β is not in the interval [ξ(S), 0.5), then β upper distribute consis-
tent set may not be the same as β lower distribute consistent set. However, the
following proposition will imply that β lower distribution consistent set is equal
to β upper distribution consistent set for some special thresholds.

Proposition 3.3. Given a decision table S = (U, C ∪ D, f) and B ⊆ C , if
β ∈ [ξ(S), 0.5) then β upper distribute consistent set is equal to β lower dis-
tribute consistent set.

Proof. According to proposition 3.2, for any Di ∈ U/RD , if β ∈ [ξ(S), 0.5) ,
then bnrβ(Di) = φ ,i.e., Rβ

B(Di) = Rβ
B(Di) , as a result we have Lβ

B = Hβ
B

[6,7] . Therefore, β upper distribute consistent set is equal to β lower distribute
consistent set when β is in the domain [ξ(S), 0.5).

Example. Consider decision table S = (U, C ∪ D, f) (see[6])
The decision classes of objects are

D1 = {x1, x5, x6}, D2 = {x2, x3, x4}.

The condition classes of objects are

X1 = {x1}, X2 = {x2}, X3 = {x3, x5, x6}, X4 = {x4}.

It can be easily calculated that 0.4 upper distribute reduction set {a4} is the
same as 0.4 lower distribute reduction set[7]. The reason that leads to the same
result is as follows:
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Since

CoD =
[

1 0 2
3 0

0 1 1
3 1

]
, CoD =

[
0 1 1

3 1
1 0 2

3 0

]
We have ξ(S) = 1

3 .
According to proposition 3.3, since β=0.4 ∈ [ 13 , 0.5) , β lower distribute re-

duction set is equal to the upper distribute reduction set and then we conclude
that the same result is relative to the value β rather than the decision table
itself.

4 Conclusion

VPRS is an extension of classic rough sets theory, which propels the application
of rough sets theory in inconsistent information system. However, In all existing
algorithms of knowledge reduction based on VPRS the value of β is introduced
as prior knowledge, which restricts their applications. The paper puts forward
the concept of relative discernibility of decision table and the algorithm of the
discernible threshold value. It is proved by theory analysis and examples that a
value of β choosing from the interval of threshold can get a knowledge reduc-
tion set under certain level of classification errors. Thus, the self-determining
knowledge reduction can be realized for inconsistent data sets.

It should be pointed out, when the decision table is absolutely rough, i.e.
ξ(S) = 0.5 , our method does not suit. In such case, how to estimate a proper
value of β from the data set to be treated is our work in future.
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Abstract. In this paper, we focus on the extension of the theory of
rough set in lattice-theoretic setting. First we introduce the definition
for generalized lower and upper approximation operators determined by
mappings between two complete atomic Boolean algebras. Then we find
the conditions which permit a given lattice-theoretic operator to repre-
sent a upper (or lower) approximation derived from a special mapping.
Different sets of axioms of lattice-theoretic operator guarantee the exis-
tence of different types of mappings which produce the same operator.

Keywords: Approximation operators, atomic Boolean algebras, map-
pings, rough sets.

1 Introduction

The theory of rough sets, proposed by Pawlak [1], is an extension of classical
set theory. In this theory, based on an equivalence relation, each subset of the
universe can be approximated by a pair of subsets called lower and upper ap-
proximations. There are two methods for the development of this theory [2,3],
the constructive and axiomatic approaches.

In constructive approach, the majority of studies on rough sets have focused
on extensions of Pawlak rough set model. By replacing set algebras with abstract
algebras, such as Boolean algebras, many authors have proposed extensive rough
set models [4,5,6,7]. Based on a partition of the unity of a Boolean algebra, Qi and
Liu [7] proposed a pair of rough approximations and discussed the relationships
between rough operations and some uncertainty measures. Järvinen [5] defined
rough approximations in a complete atomic Boolean lattice and examined the
structure of rough approximations. Comparing with the studies on constructive
approach, less effort has been made for axiomatic approaches. Yao [2,3] and Yao
and Lin [8] extended axiomatic approach to rough set algebras constructed from
arbitrary binary relations. Mi and Zhang [9], Wu et al. [10], and Thiele [11,12]
generalized axiomatic approach to rough fuzzy sets and fuzzy rough sets.

In this paper, we devote to the axiomatic approaches of the generalized ap-
proximation operators on two Boolean algebras. Based on arbitrary mappings
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between two complete atomic Boolean algebras, we introduce new definitions of
generalized lower and upper approximation operators. Axiomatic characteriza-
tions of generalized approximation operators are also examined.

2 Preliminaries

We first recall some basic notions and results which can be found in [13].
Let B = (B,≤) be a lattice and X ⊆ B, the join and the meet of X are denoted

by ∨X and ∧X respectively. B is called a Boolean algebra if it is distributive, has
a least element 0 and a greatest element 1, and is complemented. The complement
of element a is denoted by a′.

Lemma 1. Let B =< B,≤> be a Boolean algebra. Then, for all a, b ∈ B,
(1) ∧∅ = 1,∨∅ = 0, (2) 0′ = 1 and 1′ = 0,
(3) a′′ = a, (4) a ∧ b′ = 0 iff a ≤ b,
(5) (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′.

An element a �= 0 of Boolean algebra B =< B,≤> is said to be an atom of B if
for every x ∈ B, x ≤ a implies that either x = 0 or x = a. The set of atoms of B
is denoted by A(B). A Boolean algebra B =< B,≤> is atomic if every element
x of B is a join of the atoms below it. We denote {a ∈ A(B) : a ≤ x} by At(x).
It is obvious that for any a ∈ A(B) and x ∈ B,

a ∧ x �= 0 ⇐⇒ a ≤ x .

The following lemma can easily be obtained.

Lemma 2. Let B =< B,≤> be a complete atomic Boolean algebra. Then for
any x, y ∈ B, and a family (xi)i∈I ⊆ B,

(1) x �= 0 iff At(x) �= ∅, (2) x ≤ y iff At(x) ⊆ At(y),
(3) x = y iff At(x) = At(y), (4) At(∧i∈Ixi) = ∩i∈IAt(xi),
(5) At(∨i∈Ixi) = ∪i∈IAt(xi).

3 Generalized Approximation Operators

Let B1 = (B1,≤) and B2 = (B2,≤) be two complete atomic Boolean algebras
and m a mapping from A(B1) to B2. Then the triple (B1,B2, m) is called a
generalized approximation space [14,15]. m is said to be compatible if m(a) �= 0
for all a ∈ A(B1); m is said to be a covering mapping if ∨a∈A(B1)m(a) = 1.
When B1 = B2 = B = (B,≤), m is referred to as a mapping from A(B) to
B, and m is said to be extensive if a ≤ m(a) for all a ∈ A(B); m is said to be
symmetric if a ≤ m(b) implies b ≤ m(a) for all a, b ∈ A(B); m is said to be closed
if a ≤ m(b) implies m(a) ≤ m(b) for all a, b ∈ A(B); m is said to be Euclidean if
a ≤ m(b) implies m(b) ≤ m(a) for all a, b ∈ A(B). If m is extensive, symmetric
and closed, then m is called a partition mapping.
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Let (B1,B2, m) be a generalized approximation space. For any y ∈ B2, we
define its lower and upper approximations as follows:

m(y) = ∨{a ∈ A(B1) : m(a) ≤ y}, m(y) = ∨{a ∈ A(B1) : m(a) ∧ y �= 0}.

m and m are called generalized lower and upper approximation operators re-
spectively. If B1 = (B1,≤) and B2 = (B2,≤) are the same lattice, then m and
m coincide with those in [5], therefore, m and m are really extensions of the
approximation operators defined in [5].

Proposition 1. For any a ∈ A(B1), b ∈ A(B2), y ∈ B2,

(1) a ≤ m(y) iff m(a) ≤ y, (2) a ≤ m(y) iff m(a) ∧ y �= 0,

(3) a ≤ m(b) iff b ≤ m(a).

Proposition 2. m(y′) = (m(y))′.

4 Axiomatic Characterization of Operators

Let B1 = (B1,≤) and B2 = (B2,≤) be two complete atomic Boolean algebras
and L, H : B2 → B1. L and H are said to be dual if, for each y ∈ B2,

(l1) L(y′) = (H(y))′, (h1) H(y′) = (L(y))′.

In such a case, L (and H , resp.) is referred to as the dual operator of H (and
L resp.) and write L and H as LH and HL respectively. H is said to be unit
embedding if H(1) = 1; H is said to be compatible if H(b) �= 0 for all b ∈ A(B2).
When B1 = B2 = B, H is referred to as an operator on B. H is said to be
embedding if x ≤ H(x) for all x ∈ B; H is said to be symmetric if x ≤ LH(H(x))
for all x ∈ B; H is said to be closed if H(H(x)) ≤ H(x) for all x ∈ B; H is said
to be Euclidean if H(x) ≤ LH(H(x)) for all x ∈ B. If H is embedding, closed
and symmetric, then H is called a symmetric closure operator.

H is said to be an upper operator if it satisfies axioms: ∀y1, y2 ∈ B2 (or B),

(H1) H(0) = 0, (H2) H(y1 ∨ y2) = H(y1) ∨ H(y2).

For H : B2 → B1, we define a mapping MapH : A(B1) → B2 as follows:

MapH(a) = ∨{b ∈ A(B2) : a ≤ H(b)}, ∀a ∈ A(B1) . (1)

It can easily be proved

b ≤ MapH(a) ⇐⇒ a ≤ H(b), ∀a ∈ A(B1), b ∈ A(B2) . (2)

Theorem 1. Let m : A(B1) → B2, then Mapm = m.

Proof. It follows immediately from Eq.(1) and Eq.(2). �

Theorem 2. Let H : B2 → B1 be an upper operator, then MapH = H.
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Proof. It is trivial to prove that MapH(0) = H(0). ∀y �= 0(y ∈ B2), if a ∈ A(B1)
and a ≤ MapH(y), then MapH(a) ∧ y �= 0, thus there exists a b ∈ A(B2) such
that b ≤ MapH(a) and b ≤ y. By Eq.(2), a ≤ H(b). So a ≤

∨
b∈A(B2), b≤y H(b) =

H(y). Conversely, we can also prove that a ≤ H(y) implies MapH(a) ∧ y �= 0,
consequently, by Lemma 2 and Prop. 1 we conclude MapH(y) = H(y). �

Theorem 3. H : B2 → B1 is an upper operator iff there exists a mapping m
from A(B1) to B2 such that H = m.

Proof. “⇒” Let m = MapH , then by Theorem 2 we have H = MapH = m.
“⇐” ∀y1, y2 ∈ B2, ∀a ∈ A(B1), if a ≤ H(y1∨y2), then m(a)∧(y1∨y2) �= 0, that

is, m(a) ∧ y1 �= 0 or m(a) ∧ y2 �= 0. By Prop. 1 we have that a ≤ m(y1) or a ≤
m(y2), i.e., a ≤ m(y1) ∨ m(y2) = H(y1) ∨ H(y2). Similarly, we can prove that
a ≤ H(y1) ∨ H(y2) implies a ≤ H(y1 ∨ y2). Consequently, by Lemma 2 we have
H(y1 ∨ y2) = H(y1) ∨ H(y2). By definition of m, it is evident that m(0) = 0.
Thus we conclude that H is an upper operator. �

We know from Theorem 3 that m can be characterized by axioms (H1) and (H2).
In the sequel, we assume that m is a mapping from A(B1) to B2 (or from A(B)
to B) and H is an upper operator from B2 to B1 (or on B). Theorems 4-10
below give axiomatic characterizations of different types of generalized upper
approximation operators. By Theorems 1 and 2 we only prove first parts of
Theorems 4-10.

Theorem 4
(1) m is compatible iff m is unit embedding,
(2) H is unit embedding iff MapH is compatible.

Proof. If m is compatible, i.e., m(a) �= 0 for all a ∈ A(B1), then m(1) = ∨{a ∈
A(B1) : m(a) ∧ 1 �= 0} = ∨A(B1) = 1. Thus m is unit embedding. Conversely,
if m is unit embedding, then a ≤ 1 = m(1) for all a ∈ A(B1). By Prop. 1(2) we
have m(a) = m(a) ∧ 1 �= 0. Hence m is compatible. �

Corollary 1. m is compatible iff m(y) ≤ m(y) for all y ∈ B2.

Theorem 5
(1) m is a covering mapping iff m is compatible,
(2) H is compatible iff MapH is a covering mapping.

Proof. Assume that m is a covering mapping and b ∈ A(B2). By Lemma 2 there
exists an ab ∈ A(B1) such that b ≤ m(ab), from Prop.1 we then have ab ≤ m(b),
thus m(b) �= 0. Conversely, if m is compatible, i.e., m(b) �= 0 for all b ∈ A(B2),
then there exists an ab ∈ A(B1) such that ab ≤ m(b). By Prop. 1(3), it follows
that b ≤ m(ab). Thus ∨a∈A(B1)m(a) = 1, that is, m is a covering mapping. �

Theorem 6
(1) m is extensive iff m is embedding,
(2) H is embedding iff MapH is extensive.
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Proof. By [3, Prop. 3.8] it is only to prove the sufficiency. In fact, if m is embed-
ding, then ∀a ∈ A(B), a ≤ m(a). Consequently, from Prop. 1 we conclude that
m is extensive. �

Theorem 7
(1) m is symmetric iff m is symmetric,
(2) H is symmetric iff MapH is symmetric.

Proof. By [3, Prop. 3.9] it is only to prove the sufficiency. In fact, if m is symmet-
ric, then ∀b ∈ A(B), b ≤ m(m(b)), hence m(b) ≤ m(b). ∀a ∈ A(B), if a ≤ m(b) ,
then a ≤ m(b), by Prop. 1(3) we have b ≤ m(a). Thus m is symmetric. �

Theorem 8
(1) m is closed iff m is closed,
(2) H is closed iff MapH is closed.

Proof. By [3, Lemma 3.13] it is only to prove the sufficiency. ∀a, b ∈ A(B),
assume that a ≤ m(b). If c ∈ A(B) and c ≤ m(a), then a ≤ m(c). Hence
m(b) ∧ m(c) �= 0, in turn, b ≤ m(m(c)). Since m is closed, we have b ≤ m(c),
i.e., c ≤ m(b). Thus m(a) ≤ m(b), that is, m is closed. �

Theorem 9
(1) m is Euclidean iff m is Euclidean,
(2) H is Euclidean iff MapH is Euclidean.

Proof. Assume that m is Euclidean. ∀a ∈ A(B), ∀x ∈ B, if a ≤ m(x), then
m(a)∧x �= 0. ∀b ∈ A(B), if b ≤ m(a), since m is Euclidean, we have m(a) ≤ m(b),
then m(b) ∧ x �= 0, i.e., b ≤ m(x). Hence m(a) ≤ m(x), i.e., a ≤ m(m(x)). It
follows that m(x) ≤ m(m(x)), that is, m is Euclidean. Conversely, ∀a, b ∈ A(B),
if a ≤ m(b), then for any c ≤ m(b), we have b ≤ m(c). Since m is Euclidean, we
have b ≤ m(m(c)), hence m(b) ≤ m(c). Note that a ≤ m(b), we obtain a ≤ m(c),
which implies c ≤ m(a). Thus we conclude m(b) ≤ m(a), i.e., m is Euclidean. �

From Theorems 6-8, we have the following result:

Theorem 10
(1) m is a partition mapping iff m is a symmetric closure operator on B,
(2) H is a symmetric closure operator on B iff MapH is a partition mapping.

5 Conclusion

In this paper, we have studied the rough sets on atomic Boolean algebras by
the constructive and axiomatic approaches. In the constructive approach, by us-
ing the mappings between two complete atomic Boolean algebras, we extended
approximation concepts to generalized lower and upper approximation opera-
tors in the generalized lattice-theoretic approximation spaces. In the axiomatic
approach, we have presented the conditions permitting a given lattice-theoretic
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operator to represent an upper approximation derived from a special mapping.
Only the axiomatic sets characterizing the upper approximation operators were
given in this paper, because the corresponding results of lower approximation
operators can be obtained by the duality of the lower and upper approximation
operators.
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Abstract. An important issue of knowledge discovery and data mining
is the reduction of pattern dimensionality. In this paper, we investigate
the attribute reduction in decision systems based on a congruence on
the power set of attributes and present a method of determining congru-
ence classifications. We can obtain the reducts of attributes in decision
systems by using the classification. Moreover, we prove that the reducts
obtained by the congruence classification coincide with the distribution
reducts in decision systems.

Keywords: C-closed set, congruence, dependence space, knowledge re-
duction, semilattice.

1 Introduction

Rough set theory [1, 2] offers effective mathematical approaches for creating
approximate descriptions of objects for data analysis and knowledge acquisition.
Rough set attribute reduction (RSAR) is a central question in data mining and
knowledge discovery. It has been studied extensively in the past decades [3, 4,
5, 6, 7].

RSAR encompasses a set of approaches aimed at finding a minimal subset of
condition attributes such that the reduced set provides the classification with
the same quality of approximation as the original conditional attribute set; that
is, we can eliminate redundant conditional attributes from the data sets and
preserve the partition. Ziarko [8] proposed the precise definition of an approxi-
mate reduct in the context of the variable precision rough sets (VPRS) model.
Jensen and Shen [3] discussed the problem of fuzzy-rough attribute reduction.
Mi et al. [5] studied the methods of knowledge reduction in inconsistent and
incomplete information systems. In this paper, we focus on the attribute reduc-
tion in decision systems. Based on a congruence on the power set of attributes, a
new approach to attribute reduction is derived. In addition, we demonstrate the
relationships between congruence classes and generalized decision distribution
functions. Consequently, reducts in decision systems can be obtained by using
the congruence classification.
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2 Background of Attribute Reductions

An information system is a triple IS = (U, A, V ), where
• U = {x1, x2, · · · , xn} is a universe, the elements of U are called objects.
• A = {a1, a2, · · · , am} is a set of attributes, each al : U → Vl is a mapping
whose range contains at least two elements. Vl being the value set of attribute
al, i.e., for all x ∈ U, al(x) ∈ Vl.

• V =
m⋃

l=1
Vl is the domain of attribute set A.

An information system (U, A ∪ D, V ) is called a decision system if A is the
set of condition attributes and D is the set of decision attributes. It is denoted
by DS = (U, A ∪ D, V ).

Let (U, A, V ) be an information system . For any B ⊆ A, we define

R
B

= {(x, y) ∈ U × U ; ∀ al ∈ B, al(x) = al(y)}. (1)

Clearly, R
B

is an equivalence relation, which is called an indiscernibility relation
in information system (U, A, V ). If (x, y) ∈ R

B
, we say that x and y are B-

indiscernible. The partition of U , generated by RB is denoted by U/RB , i.e.,

U/RB = {[x]B ; x ∈ U}, (2)

where [x]
B

= {y ∈ U ; (x, y) ∈ R
B
}. For B = {b} we write [x]b instead of [x]{b} .

Definition 1. (See [6]) Let DS = (U, A ∪ D, V ) be a decision system. We say
that DS is consistent if it satisfies the condition R

A
⊆ R

D
; otherwise DS is

called inconsistent.

Let DS = (U, A∪D, V ) be a decision system, B ⊆ A and U/R
D

= {D1, . . . , Dr}.
For any x ∈ U , we define

D(Dj/[x]
B
) =

|Dj ∩ [x]B |
|[x]

B
| , 1 ≤ j ≤ r. (3)

μ
B
(x) = (D(D1/[x]

B
),D(D2/[x]

B
), . . . ,D(Dr/[x]

B
)). (4)

where |X | stand for the cardinality of set X , and D(Dj/[x]
B
) is the degree of

inclusion of the class [x]
B

in set Dj. μ
B
(x) is called the generalized decision

distribution function of x with respect to B on U/R
D

.

Definition 2. (See [9]) Let DS = (U, A ∪ D, V ) be a decision system, B ⊆ A.
B is called a distributed consistent set if it satisfies the condition μB (x) = μA(x)
for all x ∈ U. If B is a distributed consistent set, and for any b ∈ B, ∃x ∈ U
such that μ

B−{b}(x) �= μ
A
(x), then B is called a distribution reduct of DS.

3 Congruence Classifications and Reductions

Let (S, ∗) be an algebra. The algebra (S, ∗) is a semilattice iff the operation ∗
is idempotent, commutative, and associative. If S is a finite nonempty set, it is
easy to verify that (S,∪) and (S,∩) are both semilattices.
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For a semilattice (S, ∗), we can define the binary relation ≤ as following:
x ≤ y if and only if x ∗ y = y. The ordering ≤ will be said to be derived from
the operation ∗.

Let (S, ∗) be a semilattice, C is a closure operator on semilattice (S, ∗) (See
[10]. If x ∈ S and satisfies the condition C(x) = x, then x is called C-closed.

Definition 3. Let (S, ∗) be a semilattice, R an equivalence relation on the set
S. R is called a congruence on (S, ∗) if it satisfies the following condition:

∀x, x′, y, y′ ∈ S, (x, x′) ∈ R, (y, y′) ∈ R =⇒ (x ∗ y, x′ ∗ y′) ∈ R. (5)

Assume R is a congruence on semilattice (S, ∗), then R is an equivalence relation
on S, and so a partition on S can be obtained. The equivalence classes of R is
called congruence classes.

Theorem 1. Let (S, ∗) be a finite semilattice, R a congruence on (S, ∗). For
any X ∈ S/R, if X = {x1, . . . , xp}, then x1 ∗ x2 ∗ . . . ∗ xp ∈ X.

Proof. It can be derived directly from Theorem 15 in [10]. �

Theorem 2. Let S be a finite set, R a congruence on the semilattice (S,∪).
Then there exists a maximal element in each congruence class.

Proof. By Theorem 1, the conclusion is clear. �

Theorem 3. Let (S, ∗) be a finite semilattice, R a congruence on (S, ∗). We let

C(R)(x) = ∪[x]
R
, ∀x ∈ S. (6)

Then, C(R) is a closure operator on the semilattice (S, ∗).

Proof. It follows from Theorem 17 in [10]. �

If C(R)(x) = x, we say that x is a C(R)-closed set on semilattice (S,∪). The set
of all C(R)-closed sets in (S,∪) is denoted by C

R
. Obviously, |C

R
| = |S/R|.

Theorem 4. Let (S, ∗) be a semilattice, R a congruence on (S, ∗). Let

T (C
R
) = {(x, y) ∈ S × S; ∀ c ∈ C

R
, x ≤ c ⇔ y ≤ c}.

Then T (C
R
) = R.

Proof. This proof is obvious from Theorem 19 and Theorem 21 in [10]. �

Definition 4. Let DS = (U, A ∪ D, V ) be a decision system, R a congruence
on (P(A),∪), B ⊆ A. A set E ⊆ A is said to be a R-reduct of B if it satisfies
the conditions:

(i) E ⊆ B;
(ii) E is a minimal set in the congruence class [B]

R
.

The set of all R-reducts of B is denoted by RED(R, B).
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Assume DS = (U, A ∪ D, V ) is a decision system, B ⊆ A. Let

r
B

= { (xi, xj) ∈ U × U ; al(xi) = al(xj), ∀ al ∈ B, [xi]D ∩ [xj ]D = ∅}. (7)

It is easy to see that r
B

is a binary relation on U, and satisfies the condition
rB ⊆ RB . We now can construct two congruences in decision systems by using
the families {R

B
}

B∈P(A) and {r
B
}

B∈P(A) .

Theorem 5. Let DS = (U, A ∪ D, V ) be a decision system. We define

R = { (B, E) ∈ P(A) × P(A); RB = RE },
R

′
= { (B, E) ∈ P(A) × P(A); r

B
= r

E
}. (8)

Then R and R
′
are congruences on (P(A),∪).

Proof. Suppose (B, E) ∈ R, (B
′
, E

′
) ∈ R, then R

B
= R

E
, and R

B
′ = R

E
′ . Since

R
B∪B

′ = R
B

∩ R
B

′ , and R
E∪E

′ = R
E

∩ R
E

′ . Hence, we have R
B∪B

′ = R
E∪E

′ . It

follows that, (B∪B
′
, E∪E

′
) ∈ R. Similarly, we can prove R

′
is also a congruence

on (P(A),∪). �

Theorem 6. Let DS = (U, A ∪ D, V ) be a decision system, B, E ⊆ A. Then

r
B

= r
E

=⇒ μ
B
(x) = μ

E
(x), ∀x ∈ U.

Proof. Let r
B

= r
E
, and xs, xt ∈ U . If [xs]D ∩ [xt]D = ∅, then (xs, xt) ∈ R

B
⇔

(xs, xt) ∈ R
E
. Suppose (xs, xt) ∈ R

B
, and [xs]D ∩ [xt]D �= ∅.

(1) If there exists an element xk of U such that (xk, xs) ∈ R
B
, and [xk]

D
∩

[xs]D = ∅, then [xk]
D

∩ [xt]D = ∅. Hence, (xk, xs) ∈ R
E

and (xk, xt) ∈ R
E
. By

the transitivity, (xs, xt) ∈ RE . It follows that, for any [xs]B ∈ U/RB , if there
exists an element xk ∈ [xs]B such that [xk]

D
∩ [xs]D = ∅, then [xs]B = [xs]E .

Hence, D(Dj/[xs]B ) = D(Dj/[xs]E ) for all Dj ∈ U/R
D

.
(2) If for all xi ∈ U, (xi, xs) ∈ R

B
⇒ [xi]D ∩ [xs]D �= ∅. then (xi, xs) ∈ R

B

implies that (xi, xs) ∈ R
D

, and so [xs]B ⊆ [xs]D . Similarly, we have [xs]E ⊆
[xs]D . Hence, ∀xs ∈ U and ∀Dj ∈ U/R

D
,

D(Dj/[xs]B ) = D(Dj/[xs]E ) =

{
0, Dj �= [xs]D ,

1, Dj = [xs]D .

It follows that, the conclusion is true. �

Theorem 6 shows that any two sets in the congruence class of R
′
have the same

decision distribution functions. Thus, using the partition determined by R
′
, we

can obtain the distribution reducts of decision systems.

Example 1. Let DS = (U, A∪D, V ) be a decision system, where U = {x1, . . . ,
x6}, A = {a1, a2, a3}, D = {d1, d2}. The description function of DS is given by
Table 1.
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Table 1. Decision System DS

U a1 a2 a3 d1 d2

x1 1 2 2 1 2
x2 1 2 3 2 1
x3 1 2 2 2 1
x4 1 1 3 2 1
x5 2 1 1 2 3
x6 2 1 1 2 3

From Table 1 we can obtain the following partitions:

U/Ra1
= {{x1, x2, x3, x4}, {x5, x6}},

U/Ra2
= {{x1, x2, x3}, {x4, x5, x6}},

U/Ra3
= {{x1, x3}, {x2, x4}, {x5, x6}} = U/Ra1a3

,
U/Ra1a2

= {{x1, x2, x3}, {x4}, {x5, x6}},
U/Ra2a3

= {{x1, x3}, {x2}, {x4}, {x5, x6}} = U/R
A
,

U/R
D

= {{x1}, {x2, x3, x4}, {x5, x6}}.

(9)

As one can easily verify U/R
A

� U/R
D

. Hence, DS is an inconsistent decision
system. For any B ⊆ A, the binary relation r

B
can be determined by using

Eqs.(7) and (9). Hence, we have

ra1
= {(x1, x2), (x2, x1), (x1, x3), (x3, x1), (x1, x4), (x4, x1)},

ra2
= {(x1, x2), (x2, x1), (x1, x3), (x3, x1), (x4, x5), (x5, x4), (x4, x6), (x6, x4)},

ra3
= {(x1, x3), (x3, x1)} = ra1a3

= ra2a3
= r

A
,

ra1a2
= {(x1, x2), (x2, x1), (x1, x3), (x3, x1)}.

For the sake of brevity, for any i, j ∈ {1, 2, 3}, we let {ai} = i, {ai, aj} = ij

and {a1, a2, a3} = A. By Theorem 5 two partitions with respect to R and R
′

can be obtained as

P(A)/R = { ∅, {1}, {2}, {12}, {3, 13}, {23, A}}, (10)

P(A)/R
′
= { ∅, {1}, {2}, {12}, {3, 13, 23, A}}. (11)

From Eq.(10) we can determine the reducts of information system (U, A, V
A
)

(See [4]), where V
A

is the domain of condition attribute set A. From Theorem 6
we know that the distribution reducts of decision systems can be derived from
the partition P(A)/R

′
. Obviously, attribute set {a3} is the distribution reducts

of decision system (U, A ∪ D, V ).
In fact, for any B ⊆ A, we can determine the R

′
-reducts of B by using Eq.(11).

For example, RED(R
′
, 12) = {12}, RED(R

′
, 23) = {3}, etc. From Theorem 6

we know that RED(R
′
, A) coincides with the distribution reduct.
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4 Conclusion

In this paper, we have studied a especial equivalence relation on the power
set of attributes, which is a congruence on the semilattice. According to the
classification generated by this congruence relation, we can obtain the reducts of
decision systems. Furthermore, we have demonstrated that the reducts obtained
by the congruence classification coincide with the distribution reducts in decision
systems.

References

1. Pawlak, Z. : Rough sets, International J. Comp. Inform. Science. 11 (1982) 341-356
2. Pawlak, Z.: Rough Sets: Theoretical Aspects to Reasoning about Data, Kluwer Aca-

demic Publisher, Boston (1991)
3. Jensen, R., Shen, Q.: Fuzzy-rough attribute reduction with application to web

categorization, Fuzzy Sets and Systems. 141 (2004) 469-485
4. Li, H.R., Zhang, W.X.: Applying Indiscernibility Attribute Sets to Knowledge Re-

duction, Lecture Notes in Artifical Intelligence, 3809 (2005) 816-821
5. Mi, J.S., Wu, W.Z., Zhang, W.X.: Approaches to knowledge reduction based on

variable precision rough set model, Information Sciences. 159 (2004) 255-272
6. Zhang, W.X., Leung, Y., Wu, W.Z.: Information Systems and Knowledge Discov-

ery, Science Press, Beijing (2003)
7. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information

systems. In: Slowinski (Ed.), Intelligent Decision Support-Handbook of Applica-
tions and Advances of the Rough Sets Theory. Kluwer Academic, Dordrecht. (1992)
331-362

8. Ziarko, W.: Analysis of uncertain information in the framework of variable precision
rough sets, Foundations of Computing and Decision Sciences. 18 (1993) 381-396

9. Slowinski, R., Stefanowski, J., Greco, S., et al. Rough set based processing of
inconsistent information in decision analysis, Control Cybernet. 1 (2000) 379-404
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Abstract. The classical rough set theory based on complete information
systems stems from the observation that objects with the same character-
istics are indiscernible according to available information. With respect
to upper-approximation and lower-approximation defined on an indis-
cernibility relation it classifies objects into different equivalent classes.
But in some cases such a rigid indiscernibility relation is far from appli-
cations in the real world. Therefore, several generalizations of the rough
set theory have been proposed some of which extend the indiscernibility
relation using more general similarity or tolerance relations. For exam-
ple, Kryszkiewicz [4] studied a tolerance relation, and Stefanowski [7]
explored a non-symmetric, similarity relation and valued tolerance re-
lation. Unfortunately, All the extensions mentioned above have their
inherent limitations. In this paper, after discussing several extension
models based on rough sets for incomplete information, a concept of
constrained dissymmetrical similarity relation is introduced as a new ex-
tension of the rough set theory, the upper-approximation and the lower-
approximation defined on constrained similarity relation are proposed as
well. Furthermore, we present the comparison between the performance
of these extended relations. Analysis of results shows that this relation
works effectively in incomplete information and generates rational object
classification.

Keywords: Rough sets, incomplete information, constrained dissym-
metrical similarity relation.

1 Introduction

As a kind of mathematical tool Rough sets [1] can be used to depict the uncer-
tainty of information. In its power of analyzing and reasoning we can discover
implicit knowledge and underlying rules. Rough set theory is based upon the
the classification mechanism which is considered according to the equivalence
relation [2]. In the classical rough set theory the information system must be
complete. However, in the real world some attribute values may be missing due
to errors in the data measure, the limitation of data comprehension as well as
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neglects during the data registering process. Some attempts have been made to
draw rules from the incomplete information system by the rough set theory. The
LERS system [3] first transforms an incomplete information system into com-
plete information system, then generate rules. Kryszkiewicz [4] proposed a new
method which produces rules from incomplete information system directly, he
extended some concepts of the rough set theory in the incomplete information
system, studied the tolerance relation in his papers [4,5]. In the paper [6] a rule
discovery method was studied in incomplete information system based on the
GDT(Generalization Distribution Table). An extended rough set theory model
based on similarity relations and tolerance relations was proposed by Stefanowski
[7], and another model based on constrained similarity relations was defined in
the paper [8].

In this paper, several present extension models of rough sets under incomplete
information are discussed, and then we introduce the concept of constrained
dissymmetrical similarity relations as a new extension of rough set theory and
redefine the upper-approximation and the lower-approximation. Furthermore,
the comparison between the performances of the relations mentioned above are
presented. The experiments show that the proposed constrained dissymmetrical
similarity relation can effectively process incomplete information and generate
rational object classification.

2 Several Extension Models

In the rough set theory, the knowledge or information is expressed by the infor-
mation system.

Definition 1. Assume that information system I is a binary set: I =< U, A >.
U is a nonempty and finite set of objects(instances), called the universe of dis-
course; Assume the number of the objects is n, then U can be denoted as :
U = {u1, u2, . . . , un}. A is a nonempty and finite set which contains finite at-
tributes, assume the number of the attributes is m, then it can be denoted as :
A = {a1, a2, . . . , am}. For every ai ∈ A, ai: U → Vai , Vai is the domain of the
attribute ai.

The information system with such a domain Vai that contains missing value
represented by “*” is an incomplete information system.

To process and analyze the incomplete information system, Kryszkiewicz [4]
proposed the tolerance relation T as follows:

∀x,y∈U (TB(x, y) ⇔ ∀b∈B((b(x) = ∗) ∨ (b(y) = ∗) ∨ (b(x) = b(y))

The tolerance relation T satisfies reflexivity and symmetry, but transitivity.
The lower-approximation XT

B and the upper-approximation X
T

B can be defined
as:

XT
B = {x|x ∈ U ∧ IB(x) ⊆ X}, X

T

B = {x|x ∈ U ∧ (IB(x) ∩ X �= ∅)} (1)
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where
IB(x) = {y|y ∈ U ∧ TB(x, y)} (2)

Stefanowski [7] and others proposed a dissymmetrical similarity relation S.

∀x,y∈U (SB(x, y) ⇔ ∀b∈B((b(x) = ∗) ∨ (b(x) = b(y))

Obviously, the similarity relation S is dissymmetrical, but transferable and
reflexive. Also, Stefanowski [7] defined the lower-approximation XS

B and the
upper-approximation X

S

B of the set X ⊆ U based on the dissymmetrical simi-
larity relation S:

XS
B = {x|x ∈ U ∧ RS

B(x) ⊆ X}, X
S

B =
⋃

x∈X

R
S

B(x) (3)

where

RS
B(x) = {y|y ∈ U ∧ SB(x, y)}, R

S

B(x) = {y|y ∈ U ∧ SB(y, x)} (4)

It can be proved that the lower-approximation and the upper-approximation
of the object set X based upon the dissymmetrical similarity relation S is an
extension to that based upon the tolerance relation T [7].

3 Constrained Dissymmetrical Similarity Relation

The tolerance relation proposed by Kryszkiewicz [4] is based upon the following
assumption: the missing value “*” is equal to any known attribute value, which
may classify the objects not look alike into the same tolerance class. In the
dissymmetrical similarity relation proposed by Stefanowski [7], the missing value
is treated as inexistence rather than uncertainty, then some objects obviously
with a like look are classified into different classes. Therefore, we propose a new
concept of constrained dissymmetrical similarity relation.

Definition 2. Assume that information system I =< U, A >, B ⊆ A, con-
strained dissymmetrical similarity C can be defined as:

∀x,y∈U (CB(x, y) ⇔ ∀b∈B(b(x) = ∗)∨((PB(x, y) �= ∅)∧∀b∈B((b ∈ PB(x, y)) → (b(x) = b(y)))))

where
PB(x, y) = {b|b ∈ B ∧ (b(x) �= ∗) ∧ (b(y) �= ∗)}

Obviously, the relation C is reflexive, dissymmetric and untransferable.
The lower-approximation and the upper-approximation based on constrained

dissymmetrical similarity relation C can be defined as the following.

Definition 3. Assume that information system I =< U, A >, X ⊆ U , B ⊆
A, the lower-approximation XC

B and the upper-approximation X
C

B based on the
constrained dissymmetrical similarity relation C can be defined:
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XC
B = {x|x ∈ U ∧ RC

B(x) ⊆ X}, X
C

B =
⋃

x∈X

R
C

B(x) (5)

here,

RC
B(x) = {y|y ∈ U ∧ CB(x, y)}, R

C

B(x) = {y|y ∈ U ∧ CB(y, x)} (6)

Because of the dissymmetry of the relation C, RC
B and R

C

B are two different
object sets.

The following theorem expresses the relations between the tolerance relation
T , the similarity relation S and the constrained similarity relation C.

Theorem 1. Information system I =< U, A >,X ⊆ U ,B ⊆ A,

(1) XT
B ⊆ XC

B, X
C

B ⊆ X
T

B

(2) XC
B ⊆ XS

B, X
S

B ⊆ X
C

B

Proof. (1)For any object x and y of U , if (x, y) ∈ CB(x, y) or (y, x) ∈ CB(x, y),
then (x, y) ∈ TB.

It is evident that RC
B(x) ⊆ IB(x), R

C

B(x) ⊆ IB(x)
Suppose ∀x ∈ XT

B, then IB(x) ⊆ X , thus RC
B(x) ⊆ X, R

C

B(x) ⊆ X
so,XT

B ⊆ XC
B.

and X
T

B =
⋃

x∈X

IB(x), X
C

B =
⋃

x∈X

R
C

B(x)

so,X
C

B ⊆ X
T

B.
(2)∀x,y∈U (SB(x, y) ⇒ CB(x, y)), ∀x,y∈U (SB(y, x) ⇒ CB(y, x))
so, RS

B(x) ⊆ RC
B(x), R

S

B(x) ⊆ R
C

B(x).
Suppose ∀x ∈ XC

B, then RC
B(x) ⊆ X, RS

B(x) ⊆ X ,
therefore XC

B ⊆ XS
B ,

and X
S

B =
⋃

x∈X

R
S

B, X
C

B =
⋃

x∈X

R
C

B(x),

so X
S

B ⊆ X
C

B.

In the classical rough set theory, the lower-approximation and the upper-
approximation of the object set are defined by equivalence relation. In incomplete
information systems, the tolerance relation and the similarity relation can be seen
as an extension of equivalence relation. From theorem 1, we can see that the
constrained dissymmetrical similarity relation proposed in this paper is between
the tolerance relation and the similarity relation.

4 Result

We use two examples to analyze the extended rough set models proposed above,
one of which is an incomplete information system from the paper [7] and the
other is a data set from the UCI Machine Learning Repository.

Firstly, the incomplete information system from the paper [7] is given in
Table 1, where U is the set of objects denoted as U = {a1, a2 . . . , a12} and
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Table 1. An example of the incomplete information system

A a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

C1 3 2 2 ∗ ∗ 2 3 ∗ 3 1 ∗ 3
C2 2 3 3 2 2 3 ∗ 0 2 ∗ 2 2
C3 1 2 2 ∗ ∗ 2 ∗ 0 1 ∗ ∗ 1
C4 0 0 0 1 1 1 3 ∗ 3 ∗ ∗ ∗
D Φ Φ Ψ Φ Ψ Ψ Φ Ψ Ψ Φ Ψ Φ

B is the set of condition attributes denoted as {C1, C2, C3, C4}, d is the decision
attribute, “*” denotes the missing value.

(1) For the Tolerance relation T :
According to the definition of the tolerance relation T , we can conclude:

ΦT
B = ∅, ΦT

B = {a1, a2, a3, a4, a5, a7, a8, a9, a10, a11, a12}, ΨT
B = {a6}, Ψ

T

B = U

(2) For the Similarity relation S:
According to the definition of the similarity relation S, we can conclude:

ΦT
B = {a1, a10}, Φ

S

B = {a1, a2, a3, a4, a5, a7, a10, a11, a12}
ΨS

B = {a6, a8, a9}, Ψ
S

B = {a2, a3, a4, a5, a6, a7, a8, a9, a11, a12}
(3) For the Constrained dissymmetrical similarity relation C:
According to the definition of the constrained dissymmetrical relation C, we

can conclude:

ΦC
B = {a10}, Φ

C

B = {a1, a2, a3, a4, a5, a7, a9, a10, a11, a12}
ΨC

B = {a6, a8}, Ψ
C

B = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a11, a12}
From the analysis results above, we can see:

ΦT
B ⊆ ΦC

B ⊆ ΦS
B, ΨT

B ⊆ ΨC
B ⊆ ΨS

B, Φ
S

B ⊆ Φ
C

B ⊆ Φ
T

B , Ψ
S

B ⊆ Ψ
C

B ⊆ Ψ
T

B

Secondly, we choose a data set named shuttle-landing-control which is con-
cerned about Space Shuttle Autolanding Domain from the UCI Machine Learn-
ing Repository. In order to validate its ability in dealing with practiced problems,
we made some appropriate modification in it: replacing some real values with
missing values randomly at the ratio of less than 15%. For this data set, we can
also draw the conclusion that:

ΦT
B ⊆ ΦC

B ⊆ ΦS
B, ΨT

B ⊆ ΨC
B ⊆ ΨS

B, Φ
S

B ⊆ Φ
C

B ⊆ Φ
T

B , Ψ
S

B ⊆ Ψ
C

B ⊆ Ψ
T

B

From the theorem 1 and the experiment results, it can be seen that the con-
strained dissymmetrical similarity relation proposed in this paper has both toler-
ance relation’s and similarity relation’s merits and avoids the fault classification
which in dissymmetrical similarity relation, the almost same objects would be
classified to different classes, such as objects a1 and a12 in Table 1 and in toler-
ance relation the obviously different to the same class such as objects a4 and a10.
This makes objects’ classification more reasonable. The proposed constrained
dissymmetrical similarity relation is more practicable than the present.
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5 Summary

The actual data sets for data analysis usually contain a mass of missing values.
So, the research how to acquire knowledge from such an incomplete information
system has become a hotspot. In this paper, after analyzing several present
models based on rough sets for incomplete information systems, we propose an
extended model under the constrained dissymmetrical similarity relation, and
made comparison with other existing models. From both the theoretically proof
and experiments it can be seen that the rough set model based on the constrained
dissymmetrical similarity relation is classifies more reasonable than those based
on the tolerance relation or the similarity relation, and is more practicable and
reasonable.
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Abstract. Rough sets are applied to data tables containing possibilis-
tic information. A family of weighted equivalence classes is obtained, in
which each equivalence class is accompanied by a possibilistic degree to
which it is an actual one. By using the family of weighted equivalence
classes we can derive a lower approximation and an upper approxima-
tion. The lower approximation and the upper approximation coincide
with those obtained from methods of possible worlds. Therefore, the
method of weighted equivalence classes is justified.

Keywords: Rough sets, possibilistic information, lower and upper ap-
proximations.

1 Introduction

Rough sets proposed by Pawlak[15] play a significant role in the field of knowledge
discovery and data mining. The framework of rough sets has the premise that data
tables consisting of perfect information are obtained. However, there ubiquitously
exists imperfect information containing imprecision and uncertainty in the real
world[14]. Under these circumstances, it has been investigated to apply rough sets
to data tables containing imprecise information represented by a missing values,
an or-set, a possibility distributions, etc[1,2,3,6,7,8,9,10,11,12,16,17,18,19,20].
The methods are broadly separated into three ways. The first method is one based
on possible worlds[16,17]. In the method, a data table is divided into possible ta-
bles that consist of precise values. Each possible table is dealt with in terms of the
conventional methods of rough sets to data tables containing precise information
and then the results from the possible tables are aggregated. The second method
is to use some assumptions on indiscernibility of missing values[1,2,6,7,8,9,19,20].
Under the assumptions, we can obtain a binary relation for indiscernibility be-
tween objects. To the binary relation the conventional methods of rough sets are
applied. The third method directly deals with imprecise values under extending
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the conventional method of rough sets[10,11,12,20]. In the method, imprecise val-
ues are interpreted probabilistically or possibilistically[10,11,12,20] and the con-
ventional methods are probabilistically or possibilistically extended. A degree for
indiscernibility between any values is calculated.

For the first method, the conventional methods that are already established
are applied to each possible table. Therefore, there is no doubt for correctness of
the treatment. However, the method has some difficulties for knowledge discovery
at the level of a set of possible values, although it is suitable for finding knowledge
at the level of possible values. This is because the number of possible tables
exponentially increases as the number of imprecise attribute values increases.

For the second method, some assumptions are used for indiscernibility between
a missing value and an exact value and between missing values. One assumption is
that a missing value and an exact value are indiscernible with each other[6,7,8,9].
Another assumption is that indiscernibility is directional[1,2,19,20]. Each miss-
ing value is discernible with any exact values, whereas each exact value is indis-
cernible with any missing value, under indiscernibility or discernibility between
missing values. In the method, it is not clarified why the assumptions are com-
promise.

For the third method, first using implication operators, an inclusion degree
was calculated between indiscernible sets for objects[20]. The correctness crite-
rion is that any extended method has to give the same results as the method
of possible worlds[10]. This criterion is commonly used in the field of databases
handling imprecise information[4,5,21]. Nakata and Sakai have shown that the
results in terms of implication operators do not satisfy the correctness criterion
and has proposed the method that satisfies the correctness criterion[10,11,12].
However, the proposed method has some difficulties for definability, because ap-
proximations are defined by constructing sets from singletons. Therefore, Nakata
and Sakai have proposed a method of weighted equivalence classes to tables
containing probabilistic information[13]. In this paper, we show how weighted
equivalence classes are used to data tables containing possibilistic information.

In section 2, we briefly address the conventional methods of rough sets to
data tables containing precise information. In section 3, methods of possible
worlds are mentioned. In the methods, a data table containing imprecise val-
ues is divided into possible tables. The conventional methods of rough sets to
precise information are applied to each possible table and then the results from
the possible tables are aggregated. In section 4, methods of rough sets to data
tables containing imprecise values expressed in a possibility distribution are de-
scribed in terms of weighted equivalence classes. The last section presents some
conclusions.

2 Rough Sets to Precise Information

In a data table t consisting of a set of attributes A(= {A1, . . . , An}), a binary
relation IND(X) for indiscernibility on a subset X ⊆ A of attributes is,

IND(X) = {(o, o′) ∈ t × t | ∀Ai ∈ X o[Ai] = o′[Ai]}, (1)
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where o[Ai] and o′[Ai] denote values of an attribute Ai for objects o and o′, re-
spectively. This relation is called an indiscernibility relation. Obviously, IND(X)
is an equivalence relation. The family E(X) (= {E(X)o | o ∈ t}) of equivalence
classes is obtained from the binary relation, where E(X)o is the equivalence class
containing an object o and is expressed in E(X)o = {o′ | (o, o′) ∈ IND(X)}. All
the equivalence classes obtained from the indiscernibility relation do not cover
with each other. This means that the objects are uniquely partitioned.

Using equivalence classes, a lower approximation Apr(Y, X) and an upper
approximation Apr(Y, X) of E(Y ) by E(X) are,

Apr(Y, X) = {E(X) | ∃E(Y ) E(X) ⊆ E(Y )}, (2)

Apr(Y, X) = {E(X) | ∃E(Y ) E(X) ∩ E(Y ) �= ∅}, (3)

where E(X) ∈ E(X) and E(Y ) ∈ E(Y ) are equivalence classes on sets X and
Y of attributes, respectively. These formulas are expressed in terms of a family
of equivalence classes. When we express the approximations in terms of a set of
objects, the following expressions are used:

apr(Y, X) = {o | o ∈ E(X) ∧ ∃E(Y ) E(X) ⊆ E(Y )}, (4)

apr(Y, X) = {o | o ∈ E(X) ∧ ∃E(Y ) E(X) ∩ E(Y ) �= ∅}. (5)

3 Methods of Possible Worlds

In methods of possible worlds, the conventional ways addressed in the previous
section are applied to each possible table, and then the results from the possible
tables are aggregated. When imprecise information expressed in a normal possi-
bility distribution is contained in a data table, the data table can be expressed
in terms of the possibility distribution of possible tables.

t = {(t1, μ(t1)), . . . , (tn, μ(tn))}p, (6)

where the subscript p denotes a possibility distribution, μ(ti) denotes the possi-
bilistic degree to which a possible table ti is the actual one, n is equal to Πi=1,mli,
the number of imprecise attribute values is m, and each of them is expressed
in a possibility distribution having li(i = 1, m)) elements. When values from
imprecise attribute values in (tj , μ(tj)) are expressed in terms of vj1, vj2, . . .,
vjm and the possibilistic degree π(vjk) of a value vjk comes from the possibility
distribution of the imprecise attribute value to which the value belongs,

μ(tj) = min
k=1,m

π(vjk). (7)

Each possible table consists of precise values. The family of equivalence classes
is obtained from each possible table tj on a set X of attributes. These equivalence
classes are a possible equivalence classe on the set X of attributes and have the
possibilistic degree μ(tj) to which they are actually one of equivalence classes.
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Thus, the family of possible equivalence classes accompanied by a possibilistic
degree is obtained for each possible table.

The methods addressed in the previous section are applied to these possi-
ble tables. Let Apr(Y, X)

ti
and Apr(Y, X)ti

denote the lower approximation
and the upper approximation of E(Y )ti by E(X)ti in a possible table ti hav-
ing the possibilistic degree μ(ti). Possibilistic degrees κ(E(X) ∈ Apr(Y, X))ti

and κ(E(X) ∈ Apr(Y, X))ti to which an equivalence class E(X) is contained in
Apr(Y, X) and Apr(Y, X) for each possible table ti are obtained, respectively,
as follows:

κ(E(X) ∈ Apr(Y, X))ti =
{

μ(ti) if E(X) ∈ Apr(Y, X)
ti
,

0 otherwise.
(8)

This shows that the possibilistic degree to which an equivalence class E(X) is
contained in Apr(Y, X) is equal to μ(ti) for the table ti, if the equivalence class
is an element in Apr(Y, X)

ti
. Similarly,

κ(E(X) ∈ Apr(Y, X))ti =
{

μ(ti) if E(X) ∈ Apr(Y, X)ti
,

0 otherwise.
(9)

Possibilistic degrees κ(E(X) ∈ Apr(Y, X)) and κ(E(X) ∈ Apr(Y, X)) to which
the equivalence class E(X) is contained in Apr(Y, X) and Apr(Y, X) are,

κ(E(X) ∈ Apr(Y, X)) = max
i=1,n

κ(E(X) ∈ Apr(Y, X))ti , (10)

κ(E(X) ∈ Apr(Y, X)) = max
i=1,n

κ(E(X) ∈ Apr(Y, X))ti . (11)

These formulas show that the maximum of the possibilistic degrees obtained
from the possible tables is equal to the possibilistic degree for the equivalence
class E(X). Finally,

Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0}, (12)

Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0}. (13)

Proposition 1
When (E(X), κ(E(X) ∈ Apr(Y, X))) is an element of Apr(Y, X) in a table t,
there exists a possible table ti where Apr(Y, X)

ti
contains E(X) and μ(ti) is

equal to κ(E(X) ∈ Apr(Y, X)).

Proposition 2
When (E(X), κ(E(X) ∈ Apr(Y, X))) is an element of Apr(Y, X) in a table t,
there exists a possible table ti where Apr(Y, X)ti

contains E(X) and μ(ti) is
equal to κ(E(X) ∈ Apr(Y, X)).
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When the lower approximation and the upper approximation are expressed in
terms of a set of objects,

κ(o ∈ apr(Y, X)) = max
E(X)�o

κ(E(X) ∈ Apr(Y, X)), (14)

κ(o ∈ apr(Y, X)) = max
E(X)�o

κ(E(X) ∈ Apr(Y, X)), (15)

and

apr(Y, X) = {(o, κ(o ∈ apr(Y, X))) | κ(o ∈ apr(Y, X)) > 0}, (16)

apr(Y, X) = {(o, κ(o ∈ apr(Y, X))) | κ(o ∈ apr(Y, X)) > 0}. (17)

We adopt results from methods of possible worlds as a correctness criterion
of extended methods of rough sets to imprecise information. This is commonly
used in the field of databases handling imprecise information[4,5,21].

Correctness Criterion
Results obtained from applying an extended method to a data table containing
imprecise information are the same as ones obtained from applying the corre-
sponding conventional method to every possible table derived from that data table
and aggregating the results created in the possible tables.

4 Rough Sets to Possibilistic Information

When an object o takes imprecise values for attributes, we can calculate the
degree to which the attribute values are the same as another object o′. The
degree is the indiscernibility degree of the objects o and o′ on the attributes. In
this case, a binary relation for indiscernibility is,

IND(X) = {((o, o′), κ(o[X ] = o′[X ])) |
(κ(o[X ] = o′[X ]) �= 0) ∧ (o �= o′)} ∪ {((o, o), 1)}, (18)

where κ(o[X ] = o′[X ]) denotes the indiscernibility degree of objects o and o′ on
a set X of attributes and is equal to κ((o, o′) ∈ IND(X)),

κ(o[X ] = o′[X ]) =
⊗

Ai∈X

κ(o[Ai] = o′[Ai]), (19)

where the operator
⊗

depends on properties of imprecise attribute values. When
the imprecise attribute values are expressed in a possibility distribution, the
operator is min.

From a binary relation IND(X) for indiscernibility, the family E(X) of weigh-
ted equivalence classes is obtained. Among the elements of IND(X), the set
S(X)o of objects that are paired with an object o is,

S(X)o = {o′ | κ((o, o′) ∈ IND(X)) > 0}. (20)
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S(X)o is the greatest possible equivalence class among possible equivalence
classes containing the objects o. Let PS(X)o denote the power set of S(X)o.
From PS(X)o, the family PossE(X)o of possible equivalence classes containing
the object o is obtained:

PossE(X)o = {E(X) | E(X) ∈ PS(X)o ∧ o ∈ E(X)}. (21)

The whole family PossE(X) of possible equivalence classes is,

PossE(X) = ∪oPossE(X)o. (22)

The possibilistic degree κ(E(X) ∈ E(X)) to which a possible equivalence class
E(X) ∈ PossE(X) is an actual one is,

κ(E(X) ∈ E(X)) = κ(∧o∈E(X) and o′∈E(X)(o[X ] = o′[X ])
∧o∈E(X) and o′ 
∈E(X)(o[X ] �= o′[X ])), (23)

where o �= o′, κ(f) is the possibilistic degree to which a formula f is satisfied,
and κ(f) = 1 when there exists no f . Finally,

E(X) = {(E(X), κ(E(X) ∈ E(X))) | κ(E(X) ∈ E(X)) > 0}. (24)

Proposition 3
When (E(X), κ(E(X) ∈ E(X))) is an element of E(X) in a table t, there
exists a possible table ti where E(X)ti contains E(X) and μ(ti) is equal to
κ(E(X) ∈ E(X)).

Proposition 4
E(X) in a table is equal to the union of the families of possible equivalence classes
accompanied by a possibilistic degree, where each family of possible equivalence
classes is obtained from a possible table created from the table.

Note that the maximum possibilistic degree is adopted if there exists the same
equivalence class accompanied by a different possibilistic degree.

Proposition 5
For any object o,

max
E(X)�o

κ(E(X) ∈ E(X)) = 1. (25)

Using families of weighted equivalence classes, we can obtain the lower approx-
imation Apr(Y, X) and the upper approximation Apr(Y, X) of E(Y ) by E(X).
For the lower approximation,

κ(E(X) ∈ Apr(Y, X)) = max
E(Y )

min(κ(E(X) ⊆ E(Y )),

κ(E(X) ∈ E(X)), κ(E(Y ) ∈ E(Y ))), (26)
Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0}, (27)
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where

κ(E(X) ⊆ E(Y )) =
{

1 if E(X) ⊆ E(Y ),
0 otherwise. (28)

Proposition 6
If (E(X), κ(E(X) ∈ Apr(Y, X))) in a table t is an element of Apr(Y, X), there
exists a possible table ti where Apr(Y, X)

ti
contains E(X) and μ(ti) is equal to

κ(E(X) ∈ Apr(Y, X)).

For the upper approximation,

κ(E(X) ∈ Apr(Y, X)) = max
E(Y )

min(κ(E(X) ∩ E(Y ) �= ∅),

κ(E(X) ∈ E(X)), κ(E(Y ) ∈ E(Y ))), (29)
Apr(Y, X) = {(E(X), κ(o ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0}, (30)

where

κ(E(X) ∩ E(Y ) �= ∅) =
{

1 if E(X) ∩ E(Y ) �= ∅,
0 otherwise. (31)

Proposition 7
If (E(X), κ(E(X) ∈ Apr(Y, X))) in a table t is an element of Apr(Y, X), there
exists a possible table ti where Apr(Y, X)ti

contains E(X) and μ(ti) is equal to
κ(E(X) ∈ Apr(Y, X)).

For expressions in terms of a set of objects, the same expressions as in sec-
tion 3 are used.

Proposition 8
The lower approximation and the upper approximation that are obtained by the
method of weighted equivalence classes coincide ones obtained by the method of
possible worlds.

5 Conclusions

We have proposed a method, where weighted equivalence classes are used, to
deal with imprecise information expressed in a possibility distribution. The lower
approximation and the upper approximation by the method of weighted equiva-
lence classes coincide ones by the method of possible worlds. In other words, this
method satisfies the correctness criterion that is used in the field of incomplete
databases. This is justification of the method of weighted equivalence classes.
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Abstract. In this paper, we will try to use fuzzy approach to deal with
either incomplete or imprecise even ill-defined database and to use the
concepts of rough sets to define equivalence class encoding input data,
and eliminate redundant or insignificant attributes in data sets, and in-
corporate the significant factor of the input feature corresponding to
output pattern classification to constitute a class membership function
which enhances a mapping characteristic for each of object in the input
space belonging to consequent class in the output space.

Keywords: Ill-defined database, rough sets, fuzzy approach, redundant
data, Rough-Fuzzy.

1 Introduction

Data process technique is a critical stage in knowledge discovery from data.
The techniques that have been developed to address the classification problems
using analytical methods; statistical techniques or rule-based approaches have
generally been inadequate. See, for example, [1]-[3]. The last decade brought
tremendous advances in the availability and applicability of pattern classifica-
tion for many applications, for detail, see [4]-[9]. One of the problems is that
in many practical situations the information collected in a database may be
either incomplete or imprecise even ill classification, or contain redundant or
insignificant attributes.

In this paper, we discuss data process of pattern classification case in point.
Firstly we try to use fuzzy approach to deal with either incomplete or impre-
cise even ill-defined database, then use the concepts of rough sets to define
equivalence class encoding input data, and eliminate redundant or insignificant
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attributes in data sets, and incorporate the significant factor of the input feature
corresponding to output pattern classification to constitute a class membership
function which defines a mapping characteristic for each of object in the input
space belonging to consequent class in the output space. It is use for data process
of pattern classification but also for all of data process techniques.

2 Knowledge Encoding and Attribute Reduction

In a general setting the dada process, the first step is data acquisition which
depends on the environment, within which the objects are to be classified, and
data preprocessing which includes noise reduction, filtering, encoding, and en-
hancement for extracting pattern vectors. The second step is input feature com-
putation and selection that significantly influences the entire data process. The
main objective of feature selection is to retain the optimum salient characteristics
necessary for data process and to reduce the dimensionality of the measurement
space, so that effective and easily computable algorithms can be devised for
efficient classification.

Let S = 〈U, A〉 be a universe of training sets. Divide S = 〈U, A〉 into Q tables
Sl = 〈Ul, Al〉 corresponding to the Q decision classes for all l = 1, 2, · · · , Q, where
U = U1∪U2∪· · ·∪UQ and attributes A1 = C∪{dl}, and C, dl are the antecedent
and decision attributes respectively. Suppose that there is nk objects of Ul that
occur in Sl for l = 1, 2, · · · , Q and

∑Q
l=1 nlk = N for all k = 1, 2, · · ·.

[(xi)]R = {xi :
(xmax − xmin)k − 1

L
≤ xik ≤ (xmax − xmin)k

L
} (1)

for k = 1, 2, · · · , L.
A significant factor of the an input feature xi corresponding to output pattern

classification W is defined by

αxi(W ) =
Card[POSX(W ) − POSX−xi(W )]

Card[U ]
, (2)

for i = 1, 2, · · · , n, Where U is the domain of discourse in training set, Card[·]
is the cardinality of a set, POSX(W ) − POSX−xi(W ) is a change of positive
region of input vector with respect to output pattern classification when an
input feature xi is reduced.

That αxi(W ) denotes dependency relation of the output pattern classifica-
tion W with respect to the input feature xi (i = 1, 2, · · · , n) can be taken into
account for enhancing a classifying ability of the decision algorithm since the
larger αxi(W ) is, the more significant of input attribute xi is with respect to the
classification of output patterns, and input attribute xi can be reduced when
αxi(W ) = 0.

Sometime input feature reduction means that the number of antecedent at-
tributes is reduced with the help of a threshold value of significant factor αxi(W ).
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Then consider only those attributes that have a numerical value greater than
some threshold Th (for example, let 1

5 ≤ Th ≤ 1).
Let us consider an information system shown as in Table 1. According to

the objects given above the decision table 1, where (a, b, c) denotes antecedent
attributes and (d, e) denotes decision attributes.

Table 1. A Decision Table of An Information System

U a b c d e
1 − 5 2 2 1 0 0
6 − 8 1 2 3.2 0 1
9 − 11 3.1 1 2 1 1
12 − 16 2 2 2 1 0
17 − 20 2 0.9 1 1 2
21 − 24 3 3.1 2 1 1
25 − 28 3 2 3 0 1
29 − 31 0.9 3 3 1 2

Based on formula (1), an input feature is normalized by partitioning the value
of input features into 3 intervals. If we label the training sets shown in table 1
as 1, 2, · · · , 8, an equivalence class of an input vector (a, b, c)is expressed by

U |(a, b, c) = {{1}, {5}, {2}, {8}, {3}, {4}, {6}, {7}}.

An equivalence class of an output vector (d, e) is expressed by

U |(d, e) = {{1}, {2, 7}, {3, 6}, {4}, {5, 8}}.

Reduced an input feature a, an equivalence class of an input vector (b, c) is
expressed by

U |(b, c) = {{1}, {5}, {2}, {8}, {7}, {3}, {4}, {6}}.

Reduced an input feature b, an equivalence class of an input vector (a, c) is
expressed by

U |(a, c) = {{1, 5}, {2, 8}, {3, 6}, {4}, {7}}.

Reduced an input feature c, an equivalence class of an input vector (a, b) is
expressed by

U |(a, b) = {{1, 4}, {2}, {8}, {3}, {5}, {6}, {7}}.

Based on rough sets,a positive region of input vector with respect to output
pattern classification is

POSP (W ) = {1, 2, 3, 4, 5, 6, 7, 8}, POSP−a(W ) = {1, 2, 3, 4, 5, 6, 7, 8},

POSP−b(W ) = {3, 4, 6, 7}, POSP−c(W ) = {2, 8, 3, 5, 6, 7}.
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Based on formula (2), a significant factor of the input features corresponding
to output pattern classification are expressed by

αa(W ) =
8
8

− 8
8

= 0, αb(W ) =
8
8

− 4
8

= 0.5, αc(W ) =
8
8

− 6
8

= 0.125.

It is easy to see that some of input attributes are more significant than others
since their significant factors are larger. In this information system, an input
feature a can be reduced since αa(W ) = 0.

3 Fuzzy Representation and Input Pattern Reduction

In process of pattern classification, however, real processes may also possess
imprecise or incomplete input features. The impreciseness or ambiguity even
ill-defined database at the input may arise from various reasons. In this case
it may become convenient to use linguistic variables and hedges to augment
or even replace numerical input feature information. Each input feature can be
expressed in terms of membership values of fuzzy membership function.

A fuzzy membership function is chosen by Gaussian function as follows

μA(x) = exp(−1
2
(
x − ci

σi
)2), (3)

where ci is to determine the center of a membership function, and σi is to
determine the distribution of a membership function. σi is generally chosen that
membership functions is fully overlapped, and ci is defined by

ci =
xmax − xmin

C − 1
(i − 1) + xmin, i = 1, 2, · · · , C, (4)

where C denotes the numbers of linguistic variables, and an input feature xi is
real number in the interval (xmin, xmax). For example, here we let C = 3 that
linguistic variables denotes small, medium, large that is overlapping partition as
Fig. 1.

Suppose that an input vector is reduced to s-dimensional vector with the help
of αa(W ), a fuzzy membership function is used to express linguistic variables and
an input vector Xj = (x1j , x2j , · · · , xsj) in input s-dimension space is expressed
by

μ(Xj) = (μl(x1j), μm(x1j), μs(x1j), · · · , μl(xsj), μm(xsj), μs(xsj))

in 3 × s-dimensional fuzzy vectors, where μl(xij), μm(xij), μs(xij) denote the
membership function of linguistic variables large, medium and small for an input
feature xi, respectively.

Similarly, μ(Xj) = (μl(x1j), μm(x1j), μs(x1j), · · · , μl(xnj), μm(xnj), μs(xnj))
is normalized by partitioning the value of input fuzzy features into L intervals.
An equivalence class of a linguistic variable is defined as:

[s(xi)]R = {s(xi) :
k − 1

L
≤ μs(xik) ≤ k

L
}, k = 1, 2, · · · , L, (5)
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[m(xi)]R = {m(xi) :
k − 1

L
≤ μm(xik) ≤ k

L
}, k = 1, 2, · · · , L, (6)

[l(xi)]R = {l(xi) :
k − 1

L
≤ μl(xik) ≤ k

L
}, k = 1, 2, · · · , L. (7)

Based on the definition of an equivalence class of a linguistic variable, we make a
decision table in which μ(Xj) = (μl(x1j), μm(x1j), μs(x1j), · · · , μl(xsj), μm(xsj),
μs(xsj)) is normalized (clamped) as L value partitions. For example, let L = 5,
and μl(xij), μm(xij), μs(xij) be 0, 1/5, 2/5, 3/5, 4/5, 1. respectively.

Input pattern reduction means that the size of each Sl is reduced with the
help of a threshold value of membership function for all l = 1, 2, · · · , Q. Then
consider only those attributes that have a numerical value greater than some
threshold Th (for example, let 1

5 ≤ Th ≤ 1).
Considering an information system with reduction of input feature a, a fuzzy

membership function is chosen by Gaussian function μA(− 1
2 (x−ci

σi
)2) to get 3 lin-

guistic variables that denote small, medium, large which is expressed by μ(Xj) =
(μl(x2j), μm(x2j), μs(x2j), μl(x3j), μm(x3j), μs(x3j)) in 2 × 3-dimensional fuzzy
vectors for 2 input features. A decision table in which

μ(Xj) = (μl(x2j), μm(x2j), μs(x2j), μl(x3j), μm(x3j), μs(x3j))

is clamped as L = 5 value partitions, that is μl(xij), μm(xij), μs(xij) be 0, 1/5,
2/5, 3/5, 4/5 and 1 respectively. Then from (3)-(7) input patterns are reduced
with the help of a threshold value Th = 1

5 of membership function as shown in
Table 2. Where we label the training sets shown in table 1 as 1, 2, · · · , 8, and
x1, x2, x3 denotes a, b, c, and Wl denotes decision classification for l = 1, 2, · · ·5.

Based on Table 2, Pattern classification can be realized by a fuzzy neural
network [5,8].

4 Conclusion

In this paper, we try to use fuzzy approach to deal with either incomplete or
imprecise even ill-defined database and to use the concepts of rough sets to define
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Table 2. A Fuzzy Membership Function Decision Table of An Information System

U μl(x2) μm(x2) μs(x2) μl(x3) μm(x3) μs(x3) W
1 0.1 0.95 0.1 0 0.1 0.9 W1
2 0 0.1 0.9 0.98 0.05 0 W2
3 0 0.1 0.9 0.1 0.95 0.1 W3
4 0.1 0.95 0.1 0.1 0.95 0.1 W4
5 0 0.1 0.95 0 0.1 0.9 W5
6 0.98 0.05 0 0.1 0.95 0.1 W3
7 0.1 0.95 0.1 0.95 0.05 0 W2
8 0.95 0.05 0 0.95 0.05 0 W5

equivalence class encoding input data, and eliminate redundant or insignificant
attributes in data sets, and incorporate the significant factor of the input feature
corresponding to output pattern classification to constitute a class membership
function which enhances a mapping characteristic for each of object in the input
space belonging to consequent class in the output space. A decision classification
algorithm can be realized by a fuzzy neural clustering network that will be fully
parallel and distributive. The merits of proposed techniques are that a fuzzy
neural classifier accommodate overlapping clusters (fuzzy class memberships)
and therefore increase the performance of nonlinear mapping classification.
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Abstract. The notion of the fuzzy assertion based on propositional
modal logic is introduced and the properties of the fuzzy reasoning based
on fuzzy assertions are studied. As an extending of the traditional se-
mantics of modal logics, the fuzzy Kripke semantics is considered and a
formal fuzzy reasoning system based on fuzzy constraint is established.
In order to decide whether a fuzzy assertion is a logical consequence of
a set of fuzzy assertions, the notion of the educed set based on fuzzy
constraint is introduced and the relation between the fuzzy reasoning
and the satisfiability of the educed set is revealed.
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1 Introduction

Modal logic ([1])is an important logic branch, and has been now widely used as a
formalism for knowledge representation in artificial intelligence and an analysis
tool in computer science ([2],[3],[4]). Modal logic has a close relationship with
many other knowledge representation theories, especially a strong connection
with Rough set theory. The most well-known result is the connection of the
possible world semantics for the modal epistemic logic S5 with the approximation
space in Rough set theory ([5]). However, as a fragment of the first order logic,
modal logics are limited to dealing with crisp assertions as its possible world
semantics is crisp. In order to deal with the notion of vagueness and imprecision,
fuzzy mechanism is introduced in the study of the traditional logics. Fuzzy logic
has been now used in many research areas such as Interval mathematics ([6]),
Possibility theory ([7]), Rough set theory ([8],[9]) or artificial neural networks. By
combining with the fuzzy logic, traditional modal logic has been extended. For
example, Hájek ([10],[11]) studied the fuzzy modal logic and provided a complete
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axiomatization of fuzzy S5 system where the accessibility relation is the universal
relation, Godo and Rodŕıguez ([12],[13]) gave a complete axiomatic system for
the extension of Hájek’s logic with another modality corresponding to a fuzzy
similarity relation, Zhang, etc. ([14]) introduced the notion of fuzzy assertion and
established a formal reasoning system based on the fuzzy propositional modal
logic (FPML). The notion of fuzzy assertion, as a pair of the form 〈ϕ, n〉 , is
similar to that of the basic wffs in possibilistic logic ([15]), where ϕ considered
in 〈ϕ, n〉 is a proposition formula of the modal logic. This paper is a further
study of the fuzzy reasoning based on propositional modal logic. In this paper
the notion of the educed set is introduced and the relation between the fuzzy
reasoning and the satisfiability of the fuzzy constraints is investigated.

2 Fuzzy Propositional Modal Logic

Definition 1. A fuzzy assertion based on PML is a pair 〈ϕ, n〉, where ϕ is a
wff of PML and n is a number such that n ∈ [0, 1]. A fuzzy assertion 〈ϕ, n〉
is called atomic if ϕ is a propositional symbol. For any fuzzy assertion 〈ϕ, n〉,
number n expresses the believable degree of ϕ.

The formal logic formed by replacing wffs of PML with fuzzy assertions
is called fuzzy propositional modal logic (FPML) and its semantics will be
called fuzzy Kripke semantics. A fuzzy Kripke model for FPML is also a triple
M = 〈W ,R,V〉, where W is a set of possible worlds, R is an accessibility relation
on W , and now V is a function V : W × PV → [0, 1], called a believable degree
function, such that for each p ∈ PV and n ∈ [0, 1], V(w, p) = n means that the
believable degree of proposition p is n in possible world w. The function V can
be easily extended to all wffs of PML.

Definition 2. Let M = 〈W ,R,V〉 be a model defined as above, w ∈ W be a
possible world and 〈ϕ, n〉 be a fuzzy assertion in FPML. The fuzzy assertion
〈ϕ, n〉 is satisfied in possible world w of M , denoted by Sat(w, 〈ϕ, n〉), will be
defined as follows:

(1) Sat(w, 〈p, n〉) iff V(w, p) ≥ n for every proposition symbol p ;
(2) Sat(w, 〈∼ ψ, n〉) iff V(w, ψ) ≤ 1 − n;
(3) Sat(w, 〈ψ1 ∧ ψ2, n〉) iff both Sat(w, 〈ψ1, n〉) and Sat(w, 〈ψ2, n〉);
(4) Sat(w, 〈ψ1 ∨ ψ2, n〉) iff either Sat(w, 〈ψ1, n〉) or Sat(w, 〈ψ2, n〉);
(5) Sat(w, 〈ψ1 → ψ2, n〉) iff either V(w, ψ1) ≤ 1 − n or Sat(w, 〈ψ2, n〉);
(6) Sat(w, 〈�ψ, n〉) iff for all w′ with 〈w′, w〉 ∈ R, Sat(w′, 〈ψ, n〉);
(7) Sat(w, 〈�ψ, n〉)iffthere exists w′ such that 〈w′, w〉 ∈ R and Sat(w′, 〈ψ, n〉).

Moreover, for any fuzzy assertion 〈ϕ, n〉 of FPML, if there exists a w ∈ W
such that Sat(w, 〈ϕ, n〉) then 〈ϕ, n〉 is said to be satisfiable in M, denoted by
M |≈w 〈ϕ, n〉. If for all possible worlds w ∈ W, M |≈w 〈ϕ, n〉 then 〈ϕ, n〉 is said
to be valid in M or M is a model of 〈ϕ, n〉, and is denoted by M |≈ 〈ϕ, n〉.

Notice that the connective symbols ∧,∨ and � can be defined by ϕ∧ψ =def∼
(ϕ →∼ ψ), ϕ∨ ψ =def (∼ ϕ → ψ) and �ϕ =def∼ � ∼ ϕ, thus we shall just use
∼,→ and � as the basic connections for the further study in this paper.
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3 Formal Reasoning System Based on Fuzzy Constraint

Let Σ be a set of fuzzy assertions and 〈ϕ, n〉 be a fuzzy assertion. A Kripke
semantics M = 〈W ,R,V〉 is said to be a model of Σ if it is a model of every
fuzzy assertion in Σ. Fuzzy assertion 〈ϕ, n〉 is said to be a logical consequence
of Σ, denoted by Σ |≈ 〈ϕ, n〉, if every model of Σ is a model of 〈ϕ, n〉. In the
rest of this section, some basic notions of the formal reasoning system based on
fuzzy constraint will be listed. The fuzzy reasoning procedure described in [14]
is a “fuzzy” analog of the well known method from the ordinary modal logic,
called “semantic tableaux”([16]). Our idea is formed by combining the constraint
propagation method introduced in [17] with the semantic chart method presented
in [18]. The former is usually proposed in the context of description logics ([19]),
and the latter is used to solve the decidability problem of modal propositional
calculus ([16]).

The alphabet of our fuzzy reasoning system contains the symbols used in
PML, a set of possible worlds symbols w1,w2, ..., a set of relation symbols
{<,≤, >,≥} and a special symbol R.

Definition 3. An expression in the fuzzy reasoning system is called a fuzzy
constraint if it is of form 〈w : ϕ rel n〉 or 〈〈w,w′〉 : R ≥ 1〉, where ϕ ∈ PML,
n ∈ [0, 1] and rel ∈ {<,≤, >,≥}. A fuzzy constraint 〈w : ϕ rel n〉 is called
atomic if ϕ is a propositional symbol.

Definition 4. An interpretation I of the system contains an interpretation
domain W such that for any w, its interpretation wI ∈ W is a mapping from PV
into [0, 1], and the interpretation RI is a binary relation on W . An interpretation
I satisfies a fuzzy constraint 〈w : ϕ rel n〉 (resp.〈〈w,w′〉 : R ≥ 1〉 ) if wI(ϕ) rel n
(resp.〈wI ,w′I〉 ∈ RI ). I satisfies a set S of fuzzy constraints if I satisfies every
fuzzy constraint of S. A set of fuzzy constraints S is said to be satisfiable if there
exists an interpretation I such that I satisfies S.

Definition 5. The system contains the following reasoning rules:

• The reasoning rules about R:
(Rr) ∅ =⇒ 〈〈w,w〉 : R ≥ 1〉;
(Rs) 〈〈w,w′〉 : R ≥ 1〉 =⇒ 〈〈w′,w〉 : R ≥ 1〉;
(Rt) 〈〈w,w′〉 : R ≥ 1〉, 〈〈w′,w′′〉 : R ≥ 1〉 =⇒ 〈〈w,w′′〉 : R ≥ 1〉.

• The basic reasoning rules:
(∼≥) 〈w :∼ ϕ ≥ n〉 =⇒ 〈w : ϕ < 1 − n〉;
(∼≤) 〈w :∼ ϕ ≤ n〉 =⇒ 〈w : ϕ > 1 − n〉;
(→≥) 〈w : ϕ → ψ ≥ n〉 =⇒ 〈w : ϕ < 1 − n〉 | 〈w : ψ ≥ n〉;
(→≤) 〈w : ϕ → ψ ≤ n〉 =⇒ 〈w : ϕ > 1 − n〉 and 〈w : ψ ≤ n〉;
(�≥) 〈w : �ϕ ≥ n〉 , 〈〈w′,w〉 : R ≥ 1〉 =⇒ 〈w′ : ϕ ≥ n〉;
(�≤) 〈w : �ϕ ≤ n〉 =⇒ 〈〈w′,w〉 : R ≥ 1〉 and 〈w′ : ϕ ≤ n〉,

There are 6 additional basic reasoning rules for the cases with < and >, which
can be by interchanging ≤ and < or ≥ and >. The additional reasoning rules
are denoted by (∼>), (∼<), (→>), (→<), (�>) and (�<) respectively.
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4 Educed Set and Its Satisfiability

In this section, the notion of the educed set will be introduced and satisfiability
of which will be investigated.

Definition 6. A set of fuzzy constraints S′ is educed by S (or a educed set of
S) if S′ ⊇ S and every constraint in S′ is either a constraint in S or a deduced
result of some constraint of S. If S′ is a educed set of S and S′′ is a educed set
of S′, then S′′ is also called a educed set of S.

Following are some propositions (discussed in [19]) that will be used as the
basic results for further study.

Proposition 1. Let S be a set of fuzzy constraints. If S is satisfiable and 〈w :∼
ϕ rel n〉 ∈ S, then S∪{〈w : ϕ rel∗ 1−n〉} is satisfiable, where rel ∈ {≥,≤, >, <}
and rel∗ is the converse of rel.

Proposition 2. Let S be a set of fuzzy constraints. If S is satisfiable and
〈w : ϕ → ψ ≤ n〉 ∈ S, then S ∪ {〈w : ϕ ≥ 1 − n〉, 〈w : ψ ≤ n〉} is satisfiable.
The proposition is also correct if the symbols ≥ and ≤ are replaced by > and
<, respectively.

Proposition 3. Let S be a set of fuzzy constraints. If S is satisfiable and
〈w : ϕ → ψ ≥ n〉 ∈ S, then at least one of S ∪ {〈w : ϕ ≤ 1 − n〉} and
S ∪ {〈w : ψ ≥ n〉} is satisfiable. The proposition is also correct if the symbols ≥
and ≤ are replaced by > and <, respectively.

Proposition 4. Let S be a set of fuzzy constraints. If S is satisfiable and
〈w : �ϕ ≥ n〉 ∈ S and 〈〈w′,w〉 : r ≥ 1〉 ∈ S, then S ∪ {〈w′ : ϕ ≥ n〉} is
satisfiable. It is also correct if the symbol ≥ is replaced by >.

Proposition 5. If S is satisfiable and 〈w : �ϕ ≤ n〉 ∈ S, then S ∪ {〈〈w′,w〉 :
R ≥ 1〉, 〈w′ : ϕ ≤ n〉} is satisfiable, where w′ is a possible world symbol which
dose not appear in S. The proposition is also correct if the relation symbol ≤ is
replaced by <.

Definition 7. Two fuzzy constraints ξ, ζ are said to be a conjugated pair if one
of the following conditions holds:

(4.2.1) ξ = 〈w : ϕ ≥ n〉, ζ = 〈w : ϕ ≤ m〉 and n > m;
(4.2.2) ξ = 〈w : ϕ ≥ n〉, ζ = 〈w : ϕ < m〉 and n ≥ m;
(4.2.3) ξ = 〈w : ϕ > n〉, ζ = 〈w : ϕ ≤ m〉 and n ≥ m;
(4.2.4) ξ = 〈w : ϕ > n〉, ζ = 〈w : ϕ < m〉 and n ≥ m.

A set of fuzzy constraints S contains a clash if it contains a conjugated pair.

Proposition 6. If S, a set of fuzzy constraints, contains a clash then S can not
be satisfied in any interpretation I.

Definition 8. A fuzzy constraint 〈w : ϕ rel n〉 ∈ S is said to be available iff

(i) 〈w : ϕ rel n〉 is not in the form 〈w : �ψ rel n〉, where rel ∈ {>,≥}, and
ϕ is not a propositional symbol, and 〈w : ϕ rel n〉 has not been used by any
reasoning rule to produce new constraint during the reasoning procedure, or
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(ii) 〈w : ϕ rel n〉 is of the form 〈w : �ϕ rel n〉, where rel ∈ {>,≥}, and there
is a w′ such that 〈〈w′,w〉 : R ≥ 1〉 ∈ S and 〈w′ : ϕ rel n〉 �∈ S.

Definition 9. Let S′ ⊇ S be a set of fuzzy constraints educed by S during
our reasoning procedure. S′ is said to be complete with respect to S if no fuzzy
constraint in S′ is available.

Proposition 7. Let S be a set of fuzzy constraints. If S is finite then every
educed set S′ of S can be extended to a complete educed set of S. Moreover, if
S is satisfiable then there exists a complete educed set S′ of S such that S′ is
satisfiable.

Proof : Let S be a finite set of fuzzy constraints. The proof is by induction
on the structure of wff ϕ in the available fuzzy constraints of S. Without loss
of generality, we may assume that S contains just one fuzzy constraint, i.e.
S = {〈w, ϕ rel n〉}.

For the base step suppose that ϕ is a propositional symbol p. Then there is
nothing to do since 〈w, p rel n〉 is not available and S is complete itself.

Induction step contains following cases:

Case 1: ϕ is ∼ ψ and rel ∈ {≥, >,≤, <}. By Proposition 1, there is an educed set
S1 = S∪{〈w, ψ rel∗ 1−n〉}. Notice that in S1 the fuzzy constraint 〈w, ϕ rel n〉 is
not available, thus if 〈w, ψ rel∗ 1−n〉 is not available then S1 is what we needed.
Otherwise, by the induction hypothesis for 〈w, ψ rel∗ 1 − n〉, there will be an
educed set S′ of S1 such that S′ is complete. Moreover, if S is satisfiable then
S1, by Proposition 1, and thus S′, by the induction hypothesis, is satisfiable.
Case 2: ϕ is ψ1 → ψ2 and rel ∈ {≥, >,≤, <}. Then the fuzzy constraint in S
is 〈w, ψ1 → ψ2 rel n〉. As an example, we just consider the condition that rel
is ≥ and leave the others to readers. By Proposition 3, we have either S1 =
S ∪ {〈w, ψ1 ≤ 1 − n〉} or S2 = S ∪ {〈w, ψ2 ≥ n〉} as an educed set of S, and at
least one of them is satisfiable under the condition that S is satisfiable. Assume
that S1 (same for S2 ) is satisfiable, then if the fuzzy constraint 〈w, ψ1 ≤ 1−n〉 is
not available then S1 is what we needed, otherwise by the induction hypothesis
for 〈w, ψ1 ≤ 1 − n〉, there will be an educed set S′ of S1 such that S′ is both
complete and satisfiable.
Case 3: ϕ is �ψ and rel ∈ {≥, >,≤, <}. In this case we just discuss the condition
that rel is ≤ as an example. By Proposition 5, the educed set of S is S1 =
S ∪ {〈〈w′,w〉,R ≥ 1〉, 〈w′ : ψ ≤ n〉}, where w′ is a possible world symbol such
that w′ �= w. Notice that in S1 the fuzzy constraint 〈w, �ψ ≤ n〉 is not available,
thus if 〈w′, ψ ≤ n〉 is not available then S1 is what we needed. Otherwise, by the
induction hypothesis for 〈w′, ψ ≤ n〉, there will be an educed set S′ of S1 such
that S′ is complete. Moreover, if S is satisfiable then S1, by Proposition 5, and
thus S′, by the induction hypothesis, is satisfiable.

This completes the induction and the proposition is proved. �

Proposition 8. Let S′ be a complete educed set of S. If S′ contains no clash
then there exists an interpretation I such that S′ is satisfied in I.
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Proof : If S′ ⊇ S is a complete educed set with respect to S then we may see that
each propositional symbol appearing in some fuzzy constraint of S will appear
in some atomic fuzzy constraint of S′. Thus, if S′ contains no clash then we may
define an interpretation I such that wI(p)rel n for every atomic fuzzy constraint
〈w : p rel n〉 in S′. It is obvious that S′ is satisfied by this interpretation I. �

Proposition 9. Let S be a finite set of fuzzy constraints. S is satisfiable iff there
exists a set S′ such that S′ is complete with respect to S and contains no clash
in it.

Proof : If S is satisfiable then by Proposition 7 there will be a educed set S′

of S such that S′ is both complete with respect to S and satisfiable, thus by
Proposition 6 S′ contains no clash. If there is an educed set S′ of S such that S′

is complete with respect to S and contains no clash then by Proposition 8 S′ is
satisfiable, which implies that S is satisfiable. �

5 Relationship Between the Reasoning Problem and the
Satisfiability of Educed Set

The soundness and completeness of our reasoning procedure is based on the
satisfiability. More precisely, to decide whether Σ |≈ 〈ϕ, n〉, let

SΣ = {〈w : ψ ≥ nψ〉 : 〈ψ, nψ〉 ∈ Σ̃} and
S = SΣ ∪ {〈w : ϕ < n〉}.

We shall show that Σ |≈ 〈ϕ, n〉 iff S is not satisfiable.

Proposition 10. If fuzzy constraint 〈w : ϕ rel n〉 is satisfiable in some inter-
pretation I then there exists a model M = 〈W ,R,V〉 such that wI ∈ W and
for each w ∈ W , V(w, ϕ)rel n.

Proof : We prove the proposition by the structural induction on ϕ.
If ϕ is a proposition symbol, we define W = {wI}, R = {〈wI ,wI〉} and

V(wI , p) = wI(p) for every p ∈ PV. Model M = 〈W ,R,V〉 is what we need.
Assume that ϕ is ∼ ψ. Since 〈w : ϕ rel n〉 is satisfiable in I, 〈w : ψ rel∗ 1−n〉

is satisfiable in I, where rel∗ is the converse of rel. By induction assumption, we
have a model M such that wI ∈ W and for every w ∈ W , V(w, ψ) rel∗ 1 − n.
Notice that V(w, ψ) rel ∗ 1 − n iff V(w,∼ ψ) rel n. Therefore, M is also the
model we need.

Assume that ϕ is ψ1 → ψ2. There are two cases according to rel ∈ {>,≥} and
rel ∈ {≤, <}. If rel ∈ {>,≥} then either 〈w : ψ1rel

∗ 1 − n〉 or 〈w : ψ2rel n〉 is
satisfiable in I. By induction hypothesis, the model obtained according to either
〈w : ψ1rel

∗ 1 − n〉 or 〈w : ψ2rel n〉 is what we need. If rel ∈ {<,≤} then the
both 〈w : ψ1rel

∗ 1−n〉 and 〈w : ψ2rel n〉 are satisfiable in I. Thus, by induction
hypothesis, we have two models, say M1, M2, obtained by the facts that the
both 〈w : ψ1rel

∗ 1 − n〉 and 〈w : ψ2rel n〉 are satisfiable in I respectively. Since
wI is in the both M1 and M2, W1∩W2 �= ∅. Let W = W1∩W2 and R = RI!W ,
where
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RI!W = {〈w1, w2〉 ∈ RI : w1, w2 ∈ W},

Then the model M = 〈W ,R〉 satisfies the lemma’s condition.
Assume that ϕ is �ψ and that 〈w : �ψrel n〉 is satisfiable in I. If rel ∈ {>,≥}

then 〈w : ψrel n〉 is also satisfiable in I, thus the model exists. If rel ∈ {<,≤}
then there exists a symbol w1 such that 〈wI

1 ,wI〉 ∈ RI and 〈w1 : ψrel n〉 is
satisfiable in I. By induction hypothesis, there exists a model M1 such that
wI

1 ∈ W1 and V(w, ψ)rel n for any w ∈ W1. Let W = W1 ∪ {wI}, R = RI!W .
It is easy to verify that M is the model we need. �

Corollary 11. Let S = {〈w : ϕireli ni〉 : 1 ≤ i ≤ m} be a set of fuzzy
constraints. If S is satisfiable then there exists a model M such that the in-
terpretation of w is in W and V(w, ϕi)reli ni for each w ∈ W and each 〈w :
ϕireli ni〉 ∈ S.

Proposition 12. If Σ is a finite set then Σ |≈ 〈ϕ, n〉 if and only if SΣ ∪ {〈w :
ϕ < n〉} is not satisfiable.

Proof : If SΣ ∪{〈w : ϕ < n〉} is satisfiable in some I, then by Corollary 11 there
exists a model M such that wI ∈ M. M is obviously a model of Σ, but not
a model of 〈ϕ, n〉. Because for all w ∈ M, V(w, ψ) ≥ nψ for any 〈ψ, nψ〉 ∈ Σ
and wI(ϕ) < n, thus Σ |�≈ 〈ϕ, n〉. Conversely, if Σ |�≈ 〈ϕ, n〉, then there exists a
model M = 〈W ,R,V〉, and a possible world w ∈ W such that V(w, ψ) ≥ m for
any 〈ψ, m〉 ∈ Σ and V(w, ϕ) < n. Let I be an interpretation such that wI = w.
Then SΣ ∪ {〈w : ϕ < n〉} is satisfied by the interpretation I. �

By Proposition 9 and Proposition 12, we immediately have:

Theorem 13. Assume that Σ is a finite set of fuzzy assertions and 〈ϕ, n〉 is a
fuzzy assertion. Let SΣ = {〈w : ψ ≥ nψ〉 : 〈ψ, nψ〉 ∈ Σ̃} and S = SΣ ∪ {〈w :
ϕ < n〉}. Then

(i) If Σ |≈ 〈ϕ, n〉 then there exists a complete educed set S′ of S such that S′

contains no clash in it;
(ii) If Σ |�≈ 〈ϕ, n〉 then any complete educed set of S contains a clash.

6 Conclusion and Further Works

In this paper the properties of FPML have been studied. To decide whether Σ |≈
〈ϕ, n〉 or not, a formal reasoning system based on fuzzy constraint is introduced,
and the relationship between the reasoning Σ |≈ 〈ϕ, n〉 and the satisfiability of
fuzzy constraints set is revealed. Our further work is to find a efficient mechanism
which can be used to decide whether a set of fuzzy constraints is satisfiable.

Acknowledgement. The authors are grateful to the anonymous referees of the
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Abstract. Since there may exist many relative reducts for a decision
table, some attributes that are very important from the viewpoint of
human experts may fail to be included in relative reduct(s) computed
by certain reduction algorithms. In this paper we present the concepts
of M-relative reduct and core where M is a user specified attribute set
to deal with this problem. M-relative reducts and cores can be obtained
using M -discernibility matrices and functions. Their relationships with
traditional definitions of relative reduct and core are closely investigated.

Keywords: Rough Sets, discernibility matrix and function, M -discerni-
bility matrix and function, reduct and core, M -relative reduct and core.

1 Introduction

The reduct problem of Rough Sets [1] is NP complete [2], and researchers pre-
sented many heuristic algorithms (see, e.g., [3]) to find one or more (relative)
reducts. In a previous work [4] we have presented the M -reduct problem of in-
formation tables. In this paper we apply the same idea on decision tables and
investigate whether or not respective properties still hold.

2 Preliminaries

In this section we enumerate basic concepts introduced by Pawlak [5]. Nonessen-
tial revisions are made to facilitate our discussion.

Formally, a decision table is a triple S = (U, C, {d}) where d �∈ C is the
decision attribute and elements of C are called conditional attributes or simply
conditions. Table 1 lists a decision table where U = {p1, p2, p3, p4, p5, p6},
C = {Headache, Muscle-pain, Temperature} and d = Flu.

Any ∅ �= B ⊆ C ∪ {d} determines an indiscernibility relation I(B) on U . A
partition determined by B is denoted by U/I(B), or simply by U/B. Let BX
denotes B−lower approximation of X , the positive region of {d} with respect to
B ⊆ C is defined as POSB({d}) =

⋃
X∈U/{d} B(X).

Property 1. Given a decision table S = (U, C, {d}) and P, Q ⊆ C ∪ {d},

I(P ∪ Q) = I(P ) ∩ I(Q). (1)

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 170–175, 2006.
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Table 1. An Exemplary Decision Table

Patient Headache Muscle-pain Temperature Flu

p1 no yes high yes
p2 yes no high yes
p3 yes yes very high yes
p4 no yes normal no
p5 yes no high no
p6 no yes very high yes

Property 2. Given a decision table S = (U, C, {d}) and P, Q ⊆ C,

I(P ) = I(Q) ⇒ POSP ({d}) = POSQ({d}). (2)

Definition 1. Any B ⊆ C is called a decision relative reduct (or a relative
reduct for briefness) of S = (U, C, {d}) iff:

1. POSB({d}) = POSC({d}), and
2. ∀a ∈ B, POSB−{a}({d}) ⊂ POSC({d}).

Definition 2. Let Red(S) denotes the set of all relative reducts of S, the deci-
sion relative core (or the relative core for briefness) of S is

Core(S) =
⋂

Red(S). (3)

3 The M -Relative Reduct Problem

In this section we firstly propose the concepts of M -relative reduct and core with
a user specified attribute set M . Then we define the M -discernibility matrix and
function that are helpful in finding all M -relative reducts. We focus especially
on relationships between our definitions and traditional ones.

3.1 M-Relative Reducts and Core

Based on Definition 1 and 2, the following definitions are straightforward.

Definition 3. Given a decision table S = (U, C, {d}) and a set of user specified
attributes M ⊆ C, any B ⊆ C is called an M -relative reduct of S iff:

1. M ⊆ B and
2. POSB({d}) = POSC({d}), and
3. ∀a ∈ (B − M), POSB−{a}({d}) ⊂ POSC({d}).

Definition 4. Let Red(S, M) denotes the set of all M -relative reducts of S =
(U, C), the M -relative core of S is given by

Core(S, M) =
⋂

Red(S, M). (4)

Clearly, these definitions coincide with Pawlak’s definitions (Definition 1 and 2)
when M = ∅. We will discuss this issue further in Subsection 3.3.
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3.2 M-Discernibility Matrix and Function

Based on the discernibility matrix, the M -discernibility matrix of S = (U, C, {d})
is constructed as follows:

mij =
{

cij , if cij ∩ M = ∅,
∅, otherwise. (5)

The M -discernibility matrix where M = {H} has only three non-empty en-
tries: m41 = {T}, m53 = {M, T} and m64 = {T}.

Similar to the process of extracting the core from the discernibility matrix,
we have

Property 3. The M -core of S = (U, C, {d}) is the union of M and the set of
all single element entries of the M -discernibility matrix, i.e.,

Core(S, M) = M ∪ {a ∈ C|mij = {a}, for some i, j}. (6)

Proof. We only need to prove that ∀a ∈ {a ∈ C|mij = {a}, for some i, j},

POSC−{a}({d}) ⊂ POSC({d}). (7)

Since a is a single element entry of the discernibility matrix, there exists at least
one object pair (xi, xj) �∈ I({a}), w(xi, xj) and

(xi, xj) ∈ I(C − {a}). (8)

If xi ∈ POSC({d}) and xj �∈ POSC({d}), then xj �∈ POSC−{a}({d}), accord-
ing to Equation (8), xi �∈ POSC−{a}({d}).

If xi �∈ POSC({d}) and xj ∈ POSC({d}), similarly we have xj �∈ POSC−{a}
({d}).

If xi, xj ∈ POSC({d}) and (xi, xj) �∈ I({d}), according to Equation (8),
xi, xj �∈ POSC−{a}({d}).

Under all three cases of w(xi, xj) Equation (7) holds and the proof is com-
pleted

In the example it is easily seen that Core(S, M) = {H} ∪ {T} = {H, T}.
Then the M -discernibility function of S = (U, C, {d}) can be defined by the

formula
f(S, M) =

∏
M

∏
1≤i<j≤|U|,mij 
=∅

∑
mij . (9)

The following property establishes the relationship between disjunctive normal
form of the function f(S, M) and the set of all reducts of S.

Property 4. All constituents in the minimal disjunctive normal form of the
function f(C, M) are all M -relative reducts of S.

Similar to the proof of Property 4 in [4], we can borrow the idea from Leung [6]
to prove this property. In the example, because f(S, M) = f(S, {H}) = HT, {H,
T} is the only M -relative reduct of S.
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3.3 Relationships with Traditional Reducts and Core

For any given M -relative reduct, we can always find a reduct which is a subset
of it. In other words, an M -relative reduct may be further reduced to obtain at
least one relative reduct.

Property 5. Given S = (U, C, {d}) and M ⊆ C, ∀P ∈ Red(S, M), ∃Q ∈
Red(S), such that

Q ⊆ P. (10)

Proof. This can be drawn immediately from Definition 1 and 3.

The following property shows that if we try to obtain a reduct from an M -relative
reduct, only non-core attributes in M may be disposed of.

Property 6. Given S = (U, C, {d}) and M ⊆ C, ∀P ∈ Red(S, M), Q ∈ Red(S)
and Q ⊆ P ,

P − Q ⊆ M − Core(S). (11)

Proof. Firstly we prove that
P − Q ⊆ M. (12)

As shown by Property 5, ∀P ∈ Red(S, M), respective Q ⊆ P is always obtain-
able. Assume that P − Q �⊆ M , ∃a ∈ P − Q − M = (P − M) − Q,

Q ∈ Red(S) ⇒ POSC({d}) = POSQ({d})
Q ⊆ P
a �∈ Q

}
⇒ Q ⊆ P − {a} ⇒ POSQ({d}) ⊆ POSP−{a}({d})

P ∈ Red(S, M)
a ∈ (P − M)

}
⇒ POSP−{a}({d}) ⊂ POSC({d})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⇒

⇒ POSC({d}) ⊂ POSC({d}),

which is a contradiction. Hence Equation (12) holds.
Secondly, because Q ∈ Red(S), Core(S) ⊆ Q, we have

(P − Q) ∩ Core(S) = ∅. (13)

Combine equations (12) and (13) we obtain equation (11) and the proof is com-
pleted.

There is a strong relationship between Core(S, M) and Core(S).

Property 7. Given S = (U, C, {d}) and M ⊆ C,

Core(S, M) = Core(S) ∪ M. (14)

Property 7 indicates that we can construct an M -relative core directly from
a core, for instance, Core(S) = {T}, let M = {M}, then Core(S) ∪ M =
{T, M} = Core(S, M). However, we cannot construct M -reducts in a similar
way, for instance, Q = {H, T} ∈ Red(S), but Q∪M = {H, T, M} �∈ Red(S, M).
In fact, we have the following property:
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Property 8. Given S = (U, C, {d}), M ⊆ C and Q ∈ Red(S),

I(Core(S) ∪ (M − Q)) = I(Core(S)) ⇒ (Q ∪ M) ∈ Red(S, M). (15)

It should be noted that the reverse of Property 8 does not hold., i.e.,

(Q ∪ M) ∈ Red(S, M) �⇒ I(Core(S) ∪ (M − Q)) = I(Core(S)). (16)

For example, in the simple decision table listed in Table 2, Core(S) = ∅. Let
Q = {a3} and M = {a1}, then Q ∈ Red(S), and Q∪M = {a1, a3} ∈ Red(S, M).
But I(Core(S) ∪ (M − Q)) = I(a1) �= I(∅) = I(Core(S)).

Table 2. One Counterexample

object a1 a2 a3 a4 d

x1 0 0 0 0 0
x2 0 0 0 0 1
x3 1 1 1 1 1
x4 1 1 2 2 0

Table 3. Another Counterexample

object a1 a2 a3 a4 d

x1 0 0 0 0 0
x2 0 0 0 0 1
x3 1 1 1 0 1
x4 1 1 2 1 0

It should also be noted that

POSCore(S)∪(M−Q)({d}) = POSCore(S)({d}) �⇒ (Q ∪ M) ∈ Red(S, M). (17)

For example, in Table 3, let Q = {a2, a4} and M = {a1}, then Q ∈ Red(S),
and POSCore(S)∪(M−Q)({d}) = POS{a1}({d}) = ∅ = POSCore(S)({d}). But
(Q ∪ M) = {a1, a2, a4} �∈ Red(S, M).

Property 8 indicates under what condition could we construct an M -relative
reduct from a given relative reduct, in contrast, the following property indicates
under what condition could we obtain the set of all M -relative reducts from the
set of all relative reducts.

Property 9. Given S = (U, C, {d}) and M ⊆ C,

I(Core(S) ∪ M) = I(Core(S)) ⇒
Red(S, M) = {Q ∪ M |Q ∈ Red(S)}. (18)

The reverse of Property 9 does not hold, either. E.g, in Table 2, Red(S) = {{a3},
{a4}}. Let M = {a1}, Red(S, M) = {{a1, a3}, {a1, a4}}. Hence Red(S, M) =
{Q ∪ M |Q ∈ Red(S)}. But I(Core(S) ∪ M) = I({a1}) �= I(∅) = I(Core(S)).

Again, we have POSCore(S)∪M ({d}) = POSCore(S)({d}) �⇒ Red(S, M) =
{Q ∪ M |Q ∈ Red(S)}.

For example, in Table 3, Red(S) = {{a1, a4}, {a2, a4}, {a3}}, let M = {a1},
POSCore(S)∪M ({d}) = POS{a1}({d}) = ∅ = POSCore(S)({d}), but Red(S, M)
= {{a1, a3}, {a1, a4}} �= {{a1, a3}, {a1, a2, a4}, {a1, a4}} = {Q∪M |Q ∈ Red(S)}.

Now we investigate under what condition the M -relative reduct problem co-
incides with the traditional reduct problem.

Based on Property 7, the following property can be immediately obtained.
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Property 10. Given S = (U, C, {d}) and M ⊆ C,

Core(S, M) = Core(S) ⇔ M ⊆ Core(S). (19)

This property gives the condition under which the M -relative core is a relative
core. The next property gives the condition under which the set of all M -reducts
coincides with the set of all reducts.

Property 11. Given S = (U, C, {d}) and M ⊆ C,

Red(S, M) = Red(S) ⇔ M ⊆ Core(S). (20)

Properties 10 and 11 show that the traditional reduct problem can be viewed as
the M -relative reduct problem where M is any subset of the core. An interesting
corollary is then straightforward:

Corollary 1. Given S = (U, C, {d}) and M ⊆ C,

Core(S, M) = Core(S) ⇔ Red(S, M) = Red(S). (21)

4 Conclusion

In this paper we proposed the concepts of M -relative reduct (Definition 3) and
core (Definition 4) which ensure that user specified attributes are always in-
cluded. We focused especially on their relationships with traditional definitions
of reduct and core in detail (see Properties 5 through 11). The traditional reduct
problem is a special case of the M -relative reduct problem where M ⊆ Core(S).
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Abstract. Formal Concept Analysis (FCA) is a method mainly used for
the analysis of data, which identifies conceptual structures among data
sets. Central to FCA is the notion of a formal context. In this paper,
we mainly introduce some extended formal contexts to FCA in virtue of
some methods from rough set theory. The definitions for formal concepts
in these extended contexts and the basic properties about these extended
contexts are also given.
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1 Introduction

Formal Concept Analysis (FCA), proposed by Wille [1] in the early 1980’s, has
been successfully applied to the resolution of practical problems from a wide
range of scientific disciplines including data mining [2], information retrieval [3],
and soft engineering [4], etc.

In FCA, a many-valued context C is a triple (U, A, R), where U is an universe,
its elements are called objects; A is a set of attributes, for every a ∈ A, a has a
domain Da; R is a function from U × A to

⋃
a∈A Da such that for any x ∈ U

and a ∈ A, R(x, a) ∈ Da [1, 5, 10].
For any subset X ⊆ U of objects, define

X ′ = {(a, v) ∈ A ×
⋃
a∈A

Da : ∀x ∈ X(R(x, a) = v)}, (1)

and for any subset B ⊆ A ×
⋃

a∈A Da of attribute-value pairs, define

B′ = {x ∈ U : ∀(a, v) ∈ B(R(x, a) = v)}. (2)

A pair α = (X, B) is a formal concept in context C if X ′ = B and B′ = X ,
and X is the extent of α, B the intent of α [1, 10]. In the remainder of the paper
we shall use E(α) to denote the extent of concept α, I(α) the intent of α.

Let L(C) be the set of all the concepts in C. Define a partial order " on L(C)
such that for any α, β ∈ L(C), α " β if E(α) ⊆ E(β), and we say that α is a
subconcept of β, or β is a super-concept of α [1]. Then L(C) is a lattice under ",
where given any α, β ∈ L(C), if α = (X1, B1) and β = (X2, B2) then

α ∩ β = (X1 ∩ X2, (B1 ∪ B2)′′), (3)
α ∪ β = ((X1 ∪ X2)′′, B1 ∩ B2). (4)
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In this paper, we aim to introduce two kinds of extended many-valued con-
text to FCA. We shall give the definitions of formal concepts in these extended
contexts and discuss the basic properties about these contexts. The remainder
of this paper is organized as follows. In the next section, we define a kind of ex-
tended context — rough context from a standard many-valued context of FCA.
In section 3, we further propose another kind of extended context — rough-valued
context for FCA. Section 4 concludes the paper.

2 Rough Contexts

As we mentioned above, the indiscernibility relation is a fundamental concept of
rough set theory. Rough set theory, proposed by Pawlak in 1982, is a model of
approximate reasoning [6, 7, 8]. The main idea is based on the indiscernibility
relation that describes indistinguishable objects. Concepts are represented by
lower and upper approximations. In recent years, there has been a fast growing
interest in this theory. The successful applications of the rough set model in a
variety of problems have amply demonstrated its usefulness and versatility.

In rough set theory, IS = (U, A) is said to be an information system, if U is
a finite nonempty set (universe) and A a finite nonempty set of attributes on U ,
i.e. for any a ∈ A, a : U → Da, where Da is the domain of attribute a. Given an
information system (U, A), for any attribute subset B ⊆ A there is associated a
binary relation IND(B) on U , which is called B-indiscernibility relation and it
can be defined as:

IND(B) = {(x, y) ∈ U × U : ∀a ∈ B(a(x) = a(y))}. (5)

If (x, y) ∈ IND(B), objects x and y can not be distinguished from the knowl-
edge of the attributes belonging to B. Obviously, the indiscernibility relation
IND(B) is an equivalence relation. For any object x of U , the equivalence class
of IND(B) containing x is denoted by [x]IND(B) [8, 9].

It is easy to see that the standard many-valued context C = (U, A, R) of FCA
is in fact an information system of rough set theory. Therefore, just as we do
in rough set theory, given a standard context C = (U, A, R), we may consider
the indiscernibility between objects of U in context C. For any attribute subset
B ⊆ A and x, y ∈ U , the indiscernibility relation IND(B) is a relation on U
defined as: (x, y) ∈ IND(B) iff R(x, a) = R(y, a) for all a ∈ B.

Since B is an arbitrary attribute subset of A, we can define many different
indiscernibility relations depending on different attribute subsets. We first con-
sider a special one of them — IND(A) or A-indiscernibility relation. Then we
can define a kind of extended context — rough context with respect to IND(A).

Definition 1. Given a standard context C = (U, A, R), let θ be the indiscernibil-
ity relation defined on U such that for any x, y ∈ U , xθy iff ∀a ∈ A(R(x, a) =
R(y, a)). Define a context C/θ = (U/θ, A, R/θ), where A remains unchanged;
U/θ is the set of all indiscernibility classes of U under θ; R/θ is a function from
(U/θ) × A to

⋃
a∈A Da such that for any [x]θ ∈ U/θ and a ∈ A, R/θ([x]θ, a) =

R(x, a). We call C/θ the rough context with respect to indiscernibility relation θ.
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For any subset X ⊆ U/θ of indiscernibility classes, define

X ′ = {(a, v) ∈ A ×
⋃
a∈A

Da : ∀[x]θ ∈ X(R/θ([x]θ, a) = v)}, (6)

and for any subset B ⊆ A ×
⋃

a∈A Da of attribute-value pairs, define

B′ = {[x]θ ∈ U/θ : ∀(a, v) ∈ B(R/θ([x]θ , a) = v)}. (7)

A pair α = (X, B) is a formal concept in rough context C/θ if X ′ = B and
B′ = X , and X is the extent of α, B the intent of α. Let L(C/θ) be the set of
all the concepts in C/θ. Then, L(C/θ) is also a lattice under the partial order "
defined on L(C/θ).

Proposition 1. Let L(C), L(C/θ) respectively be the concept lattices of C and
C/θ. Then L(C/θ) is isomorphic to L(C).

Proof. Define a mapping f : L(C) → L(C/θ) as follows: given any α ∈ L(C),
f(α) is such that

E(f(α)) = {[x]θ : x ∈ E(α)};
I(f(α)) = I(α),

Since for any [x]θ ∈ U/θ and a ∈ A, R/θ([x]θ, a) = R(x, a), we have that

I(f(α)) = I(α) = (E(α))′C = {(a, v) ∈ A ×
⋃

a∈A

Da : ∀x ∈ E(α)(R(x, a) = v)}

= {(a, v) ∈ A ×
⋃

a∈A

Da : ∀[x]θ ∈ {[x]θ : x ∈ E(α)}(R/θ([x]θ, a) = v)}

= {(a, v) ∈ A ×
⋃

a∈A

Da : ∀[x]θ ∈ E(f(α))(R/θ([x]θ , a) = v)} = (E(f(α)))′C/θ ,

where (•)′C and (•)′C/θ respectively denote that the derivation operators are de-
fined on context C and C/θ.

Analogously, we can prove that E(f(α)) = (I(f(α)))′C/θ . So f(α) is a concept
in L(C/θ). Next we prove that f is an isomorphism from L(C) to L(C/θ). Since
for any α, β ∈ L(C) and α �= β, I(f(α)) = I(α) �= I(β) = I(f(β)). It is easy to
see that f is an injection. In fact, the reverse mapping g of f can be defined as:
for any α′ ∈ L(C/θ), g(α′) is such that

E(g(α′)) = {y ∈ [x]θ : [x]θ ∈ E(α′)};
I(g(α′)) = I(α′).

Similarly we can prove that g(α′) ∈ L(C). Therefore f is a bijection. For any
α, β ∈ L(C), if α "L(C) β, I(f(β)) = I(β) ⊆ I(α) = I(f(α)), where α "L(C) β
denotes that α is a subconcept of β in L(C). Therefore f(α) "L(C/θ) f(β); For
any α′, β′ ∈ L(C/θ), if α′ "L(C/θ) β′, then I(g(β′)) = I(β′) ⊆ I(α′) = I(g(α′)),
g(α′) "L(C) g(β′). Hence, f is an isomorphism from L(C) to L(C/θ). �

In rough set theory, a set X is said to be exact if there exists an equivalence
relation r such that X = X [6, 7, 8]. It is obvious that an exact set X is the
union of some equivalence classes of r. So we have the following corollary.
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Corollary 1. For any concept α ∈ L(C), E(α) is an exact set.

Proof. From proposition 1, for any α ∈ L(C), there is a bijection f such that
f(α) ∈ L(C/θ), and there is a reverse mapping g of f such that E(g(f(α))) =
{y ∈ [x]θ : [x]θ ∈ E(f(α))}. And α = g(f(α)). So E(α) = E(g(f(α))) =
{y ∈ [x]θ : [x]θ ∈ E(f(α))}. Therefore E(α) is the union of all indiscernibility
(equivalence) classes in E(f(α)) ⊆ U/θ, that is, E(α) is an exact set. �

Indiscernibility relations are equivalence relations. We call one equivalence rela-
tion a refinement of another equivalence relation if each equivalence class of the
first one is a subset of an equivalence class of the second one. Therefore, for the
indiscernibility relation θ we discussed above (that is, θ is an A-indiscernibility
relation), we can further discuss all refinements of θ.

Definition 2. Given a standard context C = (U, A, R), let θ be the indiscernibil-
ity relation defined on U such that for any x, y ∈ U , xθy iff ∀a ∈ A(R(x, a) =
R(y, a)). For any equivalence relation θ′ defined on U , we say that θ′ is com-
patible with C, if θ′ is a refinement of θ, that is, for any x, y ∈ U , if xθ′y then
∀a ∈ A(R(x, a) = R(y, a)).

Given a standard context C, for every equivalence relation that is compatible
with C, we can define a corresponding rough context.

Definition 3. Given a standard context C = (U, A, R), θ′ is an equivalence
relation on U and θ′ is compatible with C. Define context C/θ′= (U/θ′, A, R/θ′),
where A remains unchanged; U/θ′ is the set of all equivalence classes of U under
θ′; R/θ′ is a function from (U/θ′)×A to

⋃
a∈A Da such that for any [x]θ′ ∈ U/θ′

and a ∈ A, R/θ′([x]θ′ , a) = R(x, a). We call C/θ′ the rough context with respect
to equivalence relation θ′.

Analogously, we can define the formal concept in rough context C/θ′ with respect
to equivalence relation θ′.

Next, for any given standard context C = (U, A, R), we consider other kinds of
indiscernibility relation between objects of U in C. For any proper subset B of A
(B ⊂ A), define an indiscernibility relation θB on U such that for any x, y ∈ U ,
xθBy iff for every a ∈ B, R(x, a) = R(y, a). Then we can define a rough context
with respect to indiscernibility relation θB.

Definition 4. Given a standard context C = (U, A, R), let B ⊂ A be an arbi-
trary proper subset of A. Define a context CB = C/θB = (U/θB, B, R/θB), where
θB is the indiscernibility relation defined as above; U/θB is the set of all equiva-
lence classes of U under θB; R/θB is a function from (U/θB) × B to

⋃
a∈B Da

such that for any [x]θB ∈ U/θB and a ∈ B, R/θB([x]θB , a) = R(x, a). We call
CB the rough context with respect to indiscernibility relation θB.

Analogously, we can define the formal concept in rough context CB with respect
to indiscernibility relation θB.
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Theorem 1. Let L(C), L(CB) respectively be the concept lattices of C and CB.
Then there is a surjective supremum-preserving map between L(C) and L(CB).
That is, there is a surjective mapping f : L(C) → L(CB) such that for any
α, β ∈ L(C), f(α ∪ β) = f(α) ∪ f(β).

Proof. Define a mapping f : L(C) → L(CB) as follows: given any α ∈ L(C), f(α)
is such that

E(f(α))={[x]θB ∈ U/θB :
!∀(a, v) ∈ I(α) ∩ (B ×

⋃
a∈B

Da) (R/θB([x]θB , a) = v)},

I(f(α))=I(α) ∩ (B ×
⋃

a∈B

Da).

Since (I(f(α)))′CB
= {[x]θB ∈ U/θB : ∀(a, v) ∈ I(f(α)) (R/θB([x]θB , a) = v)}

= {[x]θB ∈ U/θB : ∀(a, v) ∈ I(α) ∩ (B ×
⋃

a∈B

Da) (R/θB([x]θB , a) = v)}

= E(f(α)),

I(f(α)) ⊆ (E(f(α)))′CB
⊆ B ×

⋃
a∈B Da. And it is easy to prove that I(f(α)) =

(E(f(α)))′CB
. Hence f(α) is a concept in L(CB).

Next, we prove that f is a surjection. For any α′ ∈ L(CB), there exists a
concept α ∈ L(C) such that E(α) = (I(α′))′C and I(α) = (E(α))′C . It is easy to
verify that I(α′) = I(α) ∩ (B ×

⋃
a∈B Da). So f(α) = α′.

Finally, for any α, β ∈ L(C), I(f(α ∪ β)) = I(α ∪ β) ∩ (B ×
⋃

a∈B Da) =
I(α) ∩ I(β) ∩ (B ×

⋃
a∈B Da). And I(f(α) ∪ f(β)) = I(f(α)) ∩ I(f(β)) =

I(α) ∩ (B×
⋃

a∈B Da) ∩ I(β) ∩ (B×
⋃

a∈B Da) = I(α) ∩ I(β) ∩ (B×
⋃

a∈B Da).
Therefore f(α ∪ β) = f(α) ∪ f(β). �

3 Rough-Valued Contexts

Given a standard context C = (U, A, R), for every attribute a ∈ A, a has a
domain Da, Da is a set contains all values of attribute a in context C. For every
a ∈ A, we can consider an equivalence relation on domain Da. It should be
noted that this equivalence relation is not defined on U of C, as we have done
in section 2. Then we can define another kind of extended many-valued context
— rough-valued context with respect to this equivalence relation.

Definition 5. Given a standard context C = (U, A, R), let a ∈ A be an arbitrary
attribute. Assume that there is an equivalence relation θa on Da. Define Ca =
(U, A, Ra), where U and A remain unchanged; Ra is a function from U × A to⋃

b∈A−{a} Db ∪ Da/θa such that for any x ∈ U and b ∈ A,

Ra(x, b) =
{

R(x, b) b ∈ A − {a};
[R(x, a)]θa b = a,

(8)

Da/θa is the set of all equivalence classes of Da under equivalence relation θa.
We call Ca the rough-valued context with respect to equivalence relation θa.
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For any subset X ⊆ U of objects, define

X ′ = {(b, w) ∈ A × (
⋃

b∈A−{a}
Db ∪ Da/θa) : ∀x ∈ X (Ra(x, b) = w)}, (9)

and for any subset B ⊆ A× (
⋃

b∈A−{a} Db ∪ Da/θa) of attribute-value pairs or
pairs of attribute and equivalence class, define

B′ = {x ∈ U : ∀(b, w) ∈ B (Ra(x, b) = w)}. (10)

A pair α = (X, B) is a formal concept in Ca if X ′ = B and B′ = X .
For any concept α in standard context C, if there is (a, v) ∈ I(α), then we can

construct a corresponding concept in rough-valued context Ca from α.

Proposition 2. Given any concept α in standard context C = (U, A, R) such
that (a, v) ∈ I(α). If we define β by

I(β) = (I(α) − {(a, v)}) ∪ {(a, [v]θa)}; (11)
E(β) = E(α) ∪ {x ∈ U − E(α) : ∀(b, w) ∈ I(α) − {(a, v)} (R(x, b) = w)

∧ (R(x, a) ∈ [v]θa)}. (12)

Then β = (E(β), I(β)) is a concept in Ca.

Proof. Since ∀(b, w) ∈ I(α) − {(a, v)} (Ra(x, b) = R(x, b)), and

∀(b, w) ∈ {(a, [v]θa)} (Ra(x, b) = w) ⇔ Ra(x, a) = [v]θa

⇔ [R(x, a)]θa = [v]θa ⇔ R(x, a) ∈ [v]θa ,

we have that

(I(β))′Ca
= {x ∈ U : ∀(b, w) ∈ I(β) (Ra(x, b) = w)}

= {x ∈ U : ∀(b, w) ∈ I(α) − {(a, v)} (Ra(x, b) = w) ∧
∀(b, w) ∈ {(a, [v]θa)} (Ra(x, b) = w)}

= {x ∈ E(α) : ∀(b, w) ∈ I(α) − {(a, v)} (R(x, b) = w) ∧ (R(x, a) ∈ [v]θa)} ∪
{x ∈ U − E(α) : ∀(b, w) ∈ I(α) − {(a, v)} (R(x, b) = w) ∧ (R(x, a) ∈ [v]θa)}

= E(β).

(E(β))′Ca
= {(b, w) ∈ A × (

⋃
b∈A−{a}

Db ∪ Da/θa) : ∀x ∈ E(β) (Ra(x, b) = w)}

= {(b, w) ∈ (A − {a}) ×
⋃

b∈A−{a}
Db : ∀x ∈ E(β) (R(x, b) = w)} ∪

{(b, w) ∈ {a} × Da/θa : ∀x ∈ E(β) ([R(x, b)]θa = w)}.

And we can prove that {(b, w) ∈ (A−{a})×
⋃

b∈A−{a} Db : ∀x ∈ E(β)(R(x, b)
= w)} = I(α) − {(a, v)} and {(b, w) ∈ {a} × Da/θa : ∀x ∈ E(β) ([R(x, b)]θa =
w)} = {(a, [v]θa)}. We omit the details here due to space limitations.

Hence (E(β))′Ca
= (I(α)−{(a, v)}) ∪ {(a, [v]θa)} = I(β). So β = (E(β), I(β))

is a concept in Ca. �
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Given a standard context C = (U, A, R), for every a ∈ A there is an equivalence
relation θa on Da. If we assume that for every a, a′ ∈ A and a �= a′, Da∩Da′ = ∅.
Then θ = {θa : a ∈ A} is an equivalence relation on

⋃
a∈A Da. And we can define

a rough-valued context with respect to θ.

Definition 6. Given a standard context C = (U, A, R), assume that for every
a, a′ ∈ A and a �= a′, Da ∩ Da′ = ∅. Let θ = {θa : a ∈ A} be an equivalence
relation on

⋃
a∈A Da, where θa is an equivalence relation on Da for every a ∈ A.

Define Cθ = (U, A, Rθ), where U and A remain unchanged; Rθ is a function from
U ×A to

⋃
a∈A Da/θa such that for any x ∈ U and a ∈ A, Rθ(x, a) = [R(x, a)]θa .

We call Cθ the rough-valued context with respect to equivalence relation θ.

For any subset X ⊆ U of objects, define

X ′ = {(a, [v]θa) ∈ A ×
⋃
a∈A

Da/θa : ∀x ∈ X (Rθ(x, a) = [v]θa)}, (13)

and for any subset B ⊆ A ×
⋃

a∈A Da/θa of pairs of attribute and equivalence
class, define

B′ = {x ∈ U : ∀(a, [v]θa) ∈ B (Rθ(x, a) = [v]θa)}. (14)

A pair α = (X, B) is a formal concept in Cθ if X ′ = B and B′ = X , and X is
the extent of α, B the intent of α. Let L(Cθ) be the set of all the concepts in Cθ.
Then, L(Cθ) is a lattice under the partial order " defined on L(Cθ).

For any concept α in standard context C, we can construct a corresponding
concept in rough-valued context Cθ from α.

Proposition 3. Given any concept α in C. If we define β by

E(β) = E(α) ∪ {x ∈ U − E(α) : ∀(a, v) ∈ I(α) (R(x, a) ∈ [v]θa)}; (15)

I(β) = (E(β))′Cθ
= {(a, [v]θa) : (a, v) ∈ I(α)} ∪ {(b, [w]θb

) ∈ B ×
⋃
b∈B

Db/θb :

∀x ∈ E(β) (R(x, b) ∈ [w]θb
)}, (16)

where B = A − {a ∈ A : (a, v) ∈ I(α)}. Then β is a concept in Cθ.

Since the proof of proposition 3 is similar to that of proposition 2, we omit it.

4 Conclusion

In this paper, we extended the many-valued context of FCA by presenting two
new kinds of context — rough context and rough-valued context. Rough contexts
are defined by virtue of indiscernibility relations on the universe of objects in
a standard context of FCA. The extent of every concept in a rough context is
not a set of objects, but a set of indiscernibility classes. Whereas rough-valued
contexts are defined by virtue of equivalence relations on the attribute domains
in a standard context of FCA. Accordingly, the intent of every concept in a
rough-valued context is not a set of attribute-value pairs, but a set of attribute-
value pairs or pairs of attribute and equivalence class. Furthermore, we also
discussed the issue on how to apply FCA to these extended contexts.
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Combination Entropy and Combination

Granulation in Incomplete Information System
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Taiyuan, 030006, People’s Republic of China
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Abstract. Based on the intuitionistic knowledge content characteristic
of information gain, the concepts of combination entropy CE(A) and
combination granulation CG(A) in incomplete information system are
introduced, their some properties are given. Furthermore, the relation-
ship between combination entropy and combination granulation is estab-
lished. These concepts and properties are all special instances of those
in in complete information system. These results will be very helpful for
understanding the essence of knowledge content and uncertainty mea-
surement in incomplete information system.

Keywords: Incomplete information system, combination entropy, com-
bination granulation.

1 Introduction

Rough set theory, introduced by Pawlak [1, 2], is a relatively new soft comput-
ing tool for the analysis of a vague description of an object. The indiscernibility
relation generated constitutes a mathematical basis of the rough set theory; it
induces a partition of the universe into blocks of indiscernible objects, called ele-
mentary sets, that can be used to build knowledge about a real or abstract world
[1-4]. The use of the indiscernibility relation results in information granulation.

The entropy of a system as defined by Shannon gives a measure of uncertainty
about its actual structure [5]. It has been a useful mechanism for characterizing
the information content in various modes and applications in many diverse fields.
Several authors (Düntsch and Gediga, [6]; Beaubouef et al., [7]; Klir and Wier-
man, [8]; Liang and Xu, [9]; Liang et al. [10]) have used Shannon’s concept and
its variants to measure uncertainty in rough set theory. But Shannon’s entropy is
not fuzzy entropy, and cannot measure the fuzziness in rough set theory. A new
information entropy is proposed by Liang in [11-13], some important properties
of this entropy are also derived. In [14], Combination entropy and combination
granulation in complete information system are proposed, their gain function
possesses intuitionistic knowledge content characteristic. Combination entropy
can be used to measure the uncertainty of knowledge and knowledge content.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 184–190, 2006.
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This paper introduces combination entropy CE(A) and combination granula-
tion CG(A) in incomplete information system. The gain function considered here
possesses intuitionistic knowledge content characteristic, i.e., the whole number
of pairs of elements which can be distinguished each other on the universe.
Furthermore, the relationship between combination entropy and combination
granulation is established. These results will be very helpful for understanding
the essence of knowledge content, uncertainty measurement and the significance
of an attribute in incomplete information system.

2 Incomplete Information System

An information system is a pair S = (U, A), where,

(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of attributes;
(3) for every a ∈ A, there is a mapping a, a : U → Va, where Va is called the

value set of a.

If Va contains a null value for at least one attribute a ∈ A, then S is called
an incomplete information system, otherwise it is complete. Further on, we will
denote the null value by ∗.

Let S = (U, A) be an information system, P ⊆ A an attribute set. We define
a binary relation on U as follows

SIM(P ) = {(u, v) ∈ U × U | ∀a ∈ P, a(u) = a(v) or a(u) = ∗ or a(v) = ∗}.
In fact, SIM(P ) is a tolerance relation on U , the concept of a tolerance

relation has a wide variety of applications in classification [15]. It can be eas-
ily shown that SIM(P ) =

⋂
a∈P SIM({a}). Let SP (u) denote the set {v ∈

U |(u, v) ∈ SIM(P )}. They constitute a covering of U , i.e., SP (u) �= Ø for every
u ∈ U , and

⋃
u∈U SP (u) = U .

Let S = (U, A) be an incomplete information system, P, Q ⊆ A. We say that
Q is coarser than P (or P is finer than Q), denoted by P " Q, if and only if
SP (ui) ⊆ SQ(ui) for ∀i ∈ {1, 2, · · · , |U |}. If P " Q and P �= Q, we say that Q
is strictly coarser than P (or P is strictly finer than Q) and denoted by P ≺ Q.
In fact, P ≺ Q ⇔ for ∀i ∈ {1, 2, · · · , |U |}, we have that SP (ui) ⊆ SQ(ui), and
∃j ∈ {1, 2, · · · , |U |}, such that SP (uj) ⊂ SQ(uj).

3 Combination Entropy

In this section, combination entropy in an incomplete information system is
introduced. Its some properties are discussed.

Definition 1. Let S = (U, A) be an incomplete information system, U/SIM(A)
= {SA(u1), SA(u2), · · · , SA(u|U|)}. The combination entropy of knowledge A is
defined by

CE(A) =
1

|U |

|U|∑
i=1

C2
|U| − C2

|SA(ui)|
C2

|U|
=

1
|U |

|U|∑
i=1

(1 −
C2

|SA(ui)|
C2

|U|
), i ≤ |U |, (1)
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where
C2

|U|−C2
|SA(ui)|

C2
|U|

denotes the probability of pairs of elements which are prob-

ably distinguishable each other within the whole number of pairs of elements on
the universe U .

Obviously, we have that 0 ≤ CE(A) ≤ 1.

Proposition 1. Let S = (U, A) be an incomplete information system, U/SIM
(A) = {SA(u1), SA(u2), · · · , SA(u|U|)}, U/IND(A) = {X1, X2, · · · , Xm}. Then
the combination entropy of knowledge A degenerate into

CE(A) =
m∑

i=1

|Xi|
|U | (1 −

C2
|Xi|

C2
|U|

). (2)

Proof. Let U/IND(A) = {X1, X2, · · · , Xm}, Xi = {ui1, ui2, · · · , uisi} (i ≤ m),

where |Xi| = si, and
m∑

i=1
|si| = |U |, then the relationships among elements in

U/SIM(A) and elements in U/IND(A) are as follows

Xi = SA(ui1) = SA(ui2) = · · · = SA(uisi),
|Xi| = |SA(ui1)| = |SA(ui2)| = · · · = |SA(uisi)|.

Hence, one have that

CE(A) =
m∑

i=1

|Xi|
|U| (1 − C2

|Xi|
C2

|U|
)

= 1 − 1
|U|

m∑
i=1

|Xi| ×
C2

|Xi|
C2

|U|

= 1 − 1
|U|

m∑
i=1

|SA(ui1)|+|SA(ui1)|+···+|SA(uisi
)|

|Xi| × C2
|Xi|

C2
|U|

= 1 − 1
|U|

m∑
i=1

C2
|SA(ui)|
C2

|U|

= 1
|U|

|U|∑
i=1

(1 − C2
|SA(ui)|
C2

|U|
).

This completes the proof.

Remark. In [14], the combination entropy of a complete information sys-
tem S = (U, A) with U/IND(A) = {X1, X2, · · · , Xm} is defined as CE(A) =
m∑

i=1

|Xi|
|U| (1 − C2

|Xi|
C2

|U|
). Proposition 1 states that the combination entropy in com-

plete information system is a special instance of the combination entropy in
incomplete information system.

Proposition 2. Let S = (U, A) be an incomplete information system, P, Q ⊆ A
two subsets on A. If P ≺ Q, then CE(P ) > CE(Q).
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Proof. Let U/SIM(P ) = {SP (u1), SP (u2), · · · , SP (u|U|)}, U/SIM(Q) =
{SQ(u1), SQ(u2), · · · , SQ(u|U|)}. If P ≺ Q, then for ∀i ∈ {1, 2, · · · , |U |}, one have
that SP (ui) ⊆ SQ(ui) and there exists j ∈ {1, 2, · · · , |U |} such that SP (ui) ⊂
SQ(ui), i.e., |SP (uj)| < |SQ(uj)|.

Hence, one have that
|SP (uj)| < |SQ(uj)|

=⇒ C2
|SP (uj)| < C2

|SQ(uj)|

=⇒
|U|∑
i=1

C2
|SP (uj)| <

|U|∑
i=1

C2
|SQ(uj)|

=⇒ 1 − 1
|U|

|U|∑
i=1

C2
|SQ(uj)|
C2

|U|2
< 1 − 1

|U|

|U|∑
i=1

C2
|SP (uj )|
C2

|U|2

=⇒ CE(Q) < CE(P ).

This completes the proof.
Proposition 2 states that combination entropy of knowledge increases as tol-

erance classes become smaller through finer classification.

4 Combination Granulation

In this section, combination granulation in an incomplete information system is
introduced. It has some very useful properties. The relationship between combi-
nation entropy and combination granulation in incomplete information system
is established.

Definition 2. Let S = (U, A) be an incomplete information system, U/SIM(A)
= {SA(u1), SA(u2), · · · , SA(u|U|)}. Then combination granulation of A is defined
by

CG(A) =
1

|U |

|U|∑
i=1

C2
|SA(ui)|
C2

|U|
, (3)

where
C2

|SA(ui)|
C2

|U|
denotes the probability of pairs of elements on tolerance class

SA(ui) within the whole number of pairs of elements on the universe U .

Clearly, one have that 0 ≤ CE(G) ≤ 1.

Proposition 3. Let S = (U, A) be an incomplete information system, U/SIM
(A) = {SA(u1), SA(u2), · · · , SA(u|U|)}, and U/IND(A) = {X1, X2, · · · , Xm}.
Then knowledge granulation of knowledge A degenerates into

CG(A) =
m∑

i=1

|Xi|
|U |

C2
|Xi|

C2
|U|

. (4)

Proof. Similar to proposition 1, we have that

CG(A) =
m∑

i=1

|Xi|
|U|

C2
|Xi|

C2
|U|
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= 1
|U|

m∑
i=1

|SA(ui1)|+|SA(ui2)|+···+|SA(uisi
)|

|Xi|
C2

|Xi|
C2

|U|

= 1
|U|

|U|∑
i=1

C2
|SA(ui)|
C2

|U|
.

This completes the proof.

Remark. In [14], the combination granulation of a complete information sys-
tem S = (U, A) with U/IND(A) = {X1, X2, · · · , Xm} is defined as CG(A) =
m∑

i=1

|Xi|
|U|

C2
|Xi|

C2
|U|

. Proposition 3 states that the combination granulation in complete

information system is a special instance of the combination granulation in in-
complete information system.

Proposition 4. Let S = (U, A) be an incomplete information system, P, Q ⊆ A
two subsets on A. If P ≺ Q, then CG(P ) < CG(Q).

Proof. Let U/SIM(P ) = {SP (u1), SP (u2), · · · , SP (u|U|)} and U/SIM(Q) =
{SQ(u1), SQ(u2), · · · , SQ(u|U|)}. If P ≺ Q, then SP (ui) ⊆ SQ(ui) (i ∈ {1, 2, · · ·,
|U |}), and ∃j ∈ {1, 2, · · ·, |U |} such that SP (ui) ⊂ SQ(uj), i.e., |SP (uj)| <
|SQ(uj)|.

Hence, it follows that

|SP (uj)| < |SQ(uj)|
=⇒ C2

|SP (uj)| < C2
|SQ(uj)|

=⇒
|U|∑
i=1

C2
|SP (ui)| <

|U|∑
i=1

C2
|SQ(ui)|

=⇒ CG(P ) = 1
|U|

|U|∑
i=1

C2
|SP (ui)|
C2

|U|
< 1

|U|

|U|∑
i=1

C2
|SQ(ui)|
C2

|U|
= CG(Q).

This completes the proof.
Proposition 4 states that combination granulation of knowledge decreases as

tolerance classes become smaller through finer classification.
Here, we will establish the relationship between combination entropy and

combination granulation in incomplete information system as follows.

Proposition 5. Let S = (U, A) be an incomplete information system, U/SIM
(A) = {SA(u1), SA(u2), · · · , SA(u|U|)}, then the relationship between the combi-
nation entropy CE(R) and combination granulation CG(R) is as follows

CE(A) + CG(A) = 1. (5)

Proof. It is straightforward.

Remark. Proposition 5 shows the relationship between combination entropy
and combination granulation is strict complement relationship, i.e., they possess
the same capability on depicting the uncertainty of an incomplete information
system.
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5 Conclusions

In the present research, the concepts of combination entropy CE(A) and com-
bination granulation CG(A) in incomplete information system are introduced,
their important properties are obtained, the relationship between them is estab-
lished. The relationship can be expressed as CE(A)+CG(A) = 1. These concepts
and properties in complete information system are all special instances of those
in in complete information system. These conclusions have a wide variety of ap-
plications, such as measuring knowledge content, measuring the significance of
an attribute, constructing decision trees and building the heuristic function in
a heuristic reduct algorithm in incomplete information system. They will paly a
significant role in further researches in incomplete information system.
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Abstract. In knowledge discovery, Pawlak’s flow graph is a new mathe-
matical model and has some distinct advantages. However, the flow graph
can not effectively deal with some situations, such as estimating consis-
tence and removing redundant attributes. A primary reason is that it is
a quantitative graph and requires the network to be steady. Therefore,
we propose an extension of the flow graph which takes objects flowing
in network as its basis to study the relations among the information in
this paper. It not only has the capabilities of the flow graph, but also
can implement some functions as well as decision table.

Keywords: Flow graphs, decision tables, rough sets.

1 Introduction

Pawlak in his recent paper [1] proposes a new mathematical model, which is
called flow graph (for short, FG), of flow networks used to finding and mining
knowledge in databases. Later, he combines FG with decision algorithms for
the first time and then discusses the relationships among FG, Bayes’ Theorem,
Rough Sets and decision systems in theory aspects [2,3,4,5], and these works pave
the way for its application in every field [6]. Since FG was promoted, however,
it has immediately gained much investigation from some scholars. For example,
Butz et al. addressed the problem of computational complexity of inference in
FG and showed that a rough sets FG is a special case of conventional Bayesian
network [7]. While Kostek and Czyzewski successfully applied FG in musical
metadata retrieval [8,9].

Compared with decision tables, FG has some advantages, such as intuition-
istic representation, straightforward computation, explicit relations and parallel
processing. Since the FG is based on information flow distribution and represents
relationships among nodes in quantity of flow, however, it is deficient in such
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cases as follows: As a result of its static and steady structure, FG is unsuitable
for adjusting itself to the desirability in real-time; The FG can not measure con-
sistence or implement reduction of knowledge for it is a quantitative network;
Once the values of certainty and coverage factors in FG have been calculated,
however, it is a big problem to change them; Moreover, if there exist some re-
lationships between nodes n1 and n2 and between n2 and n3 in FG, there also
exist some relationships between nodes n1 and n3. However, this is not always
true in practice, that is, nothing maybe exists between the nodes n1 and n3.

Therefore, we will present an extension of FG, which is based on objects in the
flow among nodes in networks, in this paper. It not only has the capabilities of the
FG, but also can be competent for coping with the problems mentioned above
and for accurately interpreting relationships between FG and decision table.
Meanwhile, the extension can be transferred to the approximate FG [5] and the
default decision rules [10] respectively, after thresholds of rule and decision are
introduced.

2 Basic Concepts

In this section, some concepts of decision tables and flow graphs will be recalled
briefly. More notations can be consulted [5].

Formally, a decision table is S=(U, C, D), where U ,C and D are finite,
nonempty sets called the universe, the set of condition and decision attributes,
respectively. With ∀a ∈C∪D, we associate a set Va of its values . Let S=(U, C, D)
be a decision table,C(x)→D(x)(in short C→xD) is a decision rule induced by x,
where x ∈U, C(x)=∧(a, v),D(x)=∨(d, w), a ∈C, d ∈Dand a(x)=v, d(x)=w. The
number suppx(C, D)=|C(x)∩D(x)| is support of C→xD,where |X | denotes the
cardinality of X . Moreover, the certainty and coverage factors of C→xD are de-
fined cerx(C, D)=suppx(C, D)/|C(x)|,covx(C, D)=suppx(C, D)/|D(x)|, respec-
tively.

In decision table S, decision rules which have the same conditions but different
decisions are called inconsistent(conflicting); otherwise the rules are consistent
(non-conflicting). Decision tables containing inconsistent decision rules are called
inconsistent; otherwise the table is consistent.

Let S=(U, C, D) be a decision table, attribute a is dispensable in C if IND(
C − {a}, {d})=IND(C, {d}), otherwise a is indispensable. If ∀a ∈C are indis-
pensable, then C will be called orthogonal. Subset C′⊆C is a reduct of C, iff C′

is orthogonal and IND(C′, {d})=IND(C, {d}).
For the sake of simplicity, we assume that the set D of decision attributes has

a single one, i.e.{d}, in decision table S. If D has multi-attributes, many ways
can be adopted to integrate the multi-attributes into a single one [11].

A flow graph(FG) is a directed,finite graph G=(N, B, ϕ), where N is a set of
nodes,B ⊆N×N is a set of directed branches, ϕ:B →R+ is a flow function and R+

is the set of non-negative reals [5]. If (ni, nj)∈B then ni is an input of nj and nj

is an output of ni. ϕ(ni, nj) is a troughflow from ni to nj . I(ni),O(ni) are the sets
of all inputs or outputs of ni,respectively. Input and output of G are defined as
I(G)={ni∈N |I(ni)=∅}, O(G)={ni∈N |O(ni)=∅}. The inflow and outflow of ni
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are denoted by ϕ+(ni)=
∑

nj∈I(ni) ϕ(nj , ni), ϕ−(ni)=
∑

nj∈O(ni)ϕ(ni, nj). The
troughflow of G is ϕ(G)=

∑
x∈I(G) ϕ−(x)=

∑
x∈O(G) ϕ+(x).

3 An Extension of Flow Graph

Since FG is a quantificational graph, that is, it represents relations among nodes
using quantity of flow, it can not exactly describe the characters of decision
systems. Therefore, we propose an extension of FG in the light of objects flowing
in the network. The extension can not only show the relations among nodes in
quantity, but also accurately depict the decision system.

Definition 1. An extension of flow graph(for short, EFG) is a directed, acyclic,
finite graph G = (E, N, B, ϕ, α, β), where E is the set of objects flowing in the
graph,N is a set of nodes,B ⊆ N×N is a set of (directed) branches,ϕ : B → 2E is
the set of objects which flow through branches and α, β : B → [0, 1]are threshold
of certainty and decision, respectively.

Definition 2. Let G be an EFG,ni, nj ∈ N .If (ni, nj) ∈ B then ni is input
(father) of nj and nj is output(child) of ni.I(ni) and O(ni) are respectively the
sets of fathers and children of ni. Node ni is called a root if I(ni) = ∅ holds.
Similarly,ni is a leaf if O(ni) = ∅. Inflow and outflow of node ni are respectively
defined as ϕ+(ni) =

⋃
nj∈I(ni) ϕ(nj , ni) and ϕ−(ni) =

⋃
nj∈O(ni) ϕ(ni, nj).

Definition 3. Let G be an EFG, the certainty and coverage factors of (ni, nj)
are denoted as cer(ni, nj)=|ϕ(ni, nj)|/|ϕ(ni)|and cov(ni, nj)=|ϕ(ni, nj)|/
|ϕ(nj)| , respectively, where ϕ(ni), ϕ(nj) �= ∅.

From definitions, we observe ϕ−(ni)=ϕ(ni) or ϕ+(ni)=ϕ(ni) if ni is a root or
leaf; otherwise ϕ+(ni)=ϕ−(ni)=ϕ(ni). Inflow (set of roots) and outflow (set of
leaves) of G are represented by I(G)={ni∈N |I(ni)=∅} and O(G)={ni∈N |O(ni)
=∅}, respectively. Likewise, Inflow and outflow of an subsetN ′ ⊆ N are I(N ′)=⋃

x∈N ′ I(x) and O(N ′)=
⋃

x∈N ′ O(x), respectively. However, every node in G
satisfies

∑
nj∈O(ni) cer(ni, nj)=

∑
nj∈I(ni) cov(nj , ni)=1.

Definition 4. Let G be an EFG, ni ∈ N , sequence of nodes n1, ..., nm will be
called a (directed) path from n1 to nm, denoted by [n1...nm], if

⋂m−1
i=1 ϕ(ni, ni+1)

�=∅ and (ni, ni+1) ∈ B for 1≤i≤m − 1.

Definition 5. Let G be an EFG,support,certainty and coverage of [n1..nm] are
ϕ(n1..nm)=

⋂m−1
i=1 ϕ(ni, ni+1), cer(n1..nm)=|ϕ(n1..nm)|/|ϕ(n1..nm−1)| and cov(

n1..nm)=|ϕ(n1..nm)|/|ϕ(nm)|, respectively, where ϕ(n1..nm−1), ϕ(nm)�=∅.

Definition 6. Let G be an EFG, n1,i ∈ I(G)and nl,j ∈ I(O(G)). Path [n1,i...nl,j

...nm,t] is called consistence(non-conflicting) if [n1,i...nl,j ] meets ϕ(n1,i...nl,j) �=
∅ and ϕ(n1,i...nl,j) ⊆ ϕ(nm,t) for a leaf nm,t ∈ O(G); otherwise the path is incon-
sistence(conflicting). The degree of consistence of the path is γ(n1,i...nl,j ..nm,t) =
|ϕ(n1,i...nl,j ..nm,t)|/|ϕ(n1,i...nl,j)|.
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Definition 7. Let G be an EFG,G is inconsistence if G contains inconsistent
paths; otherwise G is consistence. The factor of consistence of G is γ(G)=1 −
|
⋃

k=1..t ϕk(n1,i...nl,j)|/|E| , where ϕk(n1,i...nl,j) is a set of objects which flow
through the k-th inconsistent path and t is the number of inconsistent paths.

In an EFG G, the certainty threshold α means that the certainty of every (ni, nj)
in G is greater than the threshold,i.e.cer(ni, nj) ≥ α. Similarly, the decision
threshold β denotes that the consistence of each path[n1,i...nm,t]in G satisfies
γ(n1,i...nm,t) ≥ β. For an EFG G, if we only cast our lights on quantity of objects
flowing through nodes and branches rather than concrete objects, and α, β = 0,
then ϕ(ni, nj) is the quantity of flow of (ni, nj). Hence EFG turns into FG and,
what’s more, NFG [5], if ϕ(ni, nj) is normalized.

Similarly, EFG can also be interpreted as decision tables or decision al-
gorithms [4]. Let S = (U, C, {d}) be a decision table. The set E in an EFG
G = (E, N, B, ϕ, α, β) can be interpreted as U in S,i.e.E = U , and ∀ci,j ∈ VC

in S is regarded as a node which is not a leaf denoting dk ∈ Vd in G, that
is,N = VC ∪ Vd.The troughflow of (ni,s, nj,t) is ϕ(ni,s, nj,t) = {x ∈ U |ci(x) =
ci,s ∧ cj(x) = cj,t} = suppx(ci,s, cj,t), where ni,s, nj,t are nodes corresponding to
values ci,s, cj,t of attributes ci, cj , respectively. A path [n1,s...nj,t, nk] from root
to leaf, where 1 ≤ j ≤ m and nj,t is one of fathers of leaf nk, can be understood
as one decision rule n1,s...nj,t → nk. Hence, the support ,certainty and coverage
of n1,s...nj,t → nk will be associated with support ,certainty and coverage of the
path[n1,s...nj,t, nk], respectively.

Example 1. Let us consider a decision table S=(U, C, D) presented in Table 1 [5], where

U={p1, p2, p3, p4, p5, p6},C={Headache(H),Musclepain(M),Temperature(T )}, D =

{F lu(F )}.(h=high,v=very high,n=normal,y=yes,n=no).

Table 1. Decision Table

P T H M F

p1 h n y y
p2 h y n y
p3 v y y y
p4 n n y n
p5 h y n n
p6 v n y y

{p4}

{p2}

1,1

{p2, p5, p1}

1,2

{p3, p6}

1,3

{p4}

3,1

{p2, p5}

3,2

{p1, p4, p3, p6}

d1

{p4, p5}

d2

{p2, p1, p3, p6}

{p2, p5}

{p1}

{p6}

{p4}

{p5}

{p1, p3, p6}

Temperature Muscle-pain Flu

2,1

{p2, p5, p3}

2,2

{p1, p4, p6}

Headache

{p3}

{p2, p5}

{p3}

{p1, p4, p6}

Fig.1. An EFG G of the Decision Table S

According to the interpretation mentioned above, we get an EFG G (Fig. 1)
of the decision table S, where α, β = 0, E = {p1, ..., p6} and N = {c1,1, c1,2, c1,3,
c2,1, c2,2, c3,1, c3,2, d1, d2}. $%
For convenience, we associate an EFG with a decision table and indistinguishably
use them in this paper. After introducing the EFG’s illustration with decision
table, we present properties between an EFG and its representations.

Proposition 1. Let G be an EFG and a decision table S be its representation, a
conflicting path from root to leaf in G uniquely determines a conflicting decision
rule in S, and the same with its counterpart.
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Algorithm 1. SIP(Supports of Inconsistent Paths)
Input : An EFG G, A node nl, The support ϕ(nl, nj) of path [nl, nj ].
Output: Supp: the supports of inconsistent paths [...nl].
Supp←− ∅;
for each pair (ni, nl) in B1 = {(nt, nl)|∀(nt, nl) ∈ B} do

if (B1 = ∅) and (|ϕ(nl, nj)| ≥ 2) then
Supp←− ϕ(nl, nj); //nl is a root

end
if |ϕ(ni) ∩ ϕ(nl, nj)| ≥ 2 then

Supp←−Supp ∪ SIP(G,ni,ϕ(ni) ∩ ϕ(nl, nj));
end

end

Algorithm 2. SIG(Supports of Inconsistent EFG)
Input : An EFG G.
Output: The supports of conflicting paths in G.
Supp←− ∅;
for each node nl,j ∈ I(O(G)),where |O(nl,j)| ≥ 2 do

B1 ←−{(nl−1,s, nl,j)|∀(nl−1,s, nl,j)∈B};//B1 is the set of inflow of nl,j

D ←− {dk|ϕ(nl,j) ∩ ϕ(dk) �= ∅}; //D is the set of leaves of nl,j

for each (nl−1,s, nl,j) ∈ B1, where ϕ(nl−1,s, nl,j) is not included in ϕ(dk) do
//there maybe exists inconsistent path
Supp ←−Supp ∪ SIP (G, nl−1,s, ϕ(nl−1,s, nl,j));

end
end

Proposition 2. Let G be an EFG and a decision table S be its representation,
the consistence of G is identical with the ones of S, and the same with their
factors of consistence.

4 Consistence Estimation and Reduction

4.1 Consistence Estimation

Assuming that G is an EFG and a decision table S is its representation, we can
calculate the factor of consistence of G in order to get ones of S in the light of
Proposition 1 and 2. However, Def. 6 tells us that if ϕ(n1,i...nl,j)is not included
byϕ(nk1) for paths [n1,i...nl,j ], where n1,i ∈ I(G),nk1 ∈ O(G) and nl,j ∈ I(nk1),
then some inconsistent paths likely exist in the paths and their supports are a
subset of ϕ(n1,i...nl,j). Furthermore, the supports of the inconsistent paths can be
obtained by calculating each part of paths from nl,j ∈ I(nk1) to root n1,i ∈ I(G)
according to Def. 5.

For the purpose of consistence estimation, two algorithms are given as follow-
ing, where Alg. 1 obtains the supports of inconsistent paths [...nl,j ] and Alg. 2
calculates all supports of inconsistent paths in G. The factor of consistence of G



196 J. Sun, H. Liu, and H. Zhang

Algorithm 3. Reduction Of Layer
Input : An EFG G.
Output: The new EFG G.
γ(G) ←− 1 − |SIG(G)|/|E|; //using Alg. 2 to get γ(G)
for each layer ni ∈(n1, ..., nk), where nk is the last condition layer do

for each node ni,j ∈ ni do
for each branches (ni−1,s, ni,j) do

if ϕ(ni−1,s, ni,j)∩ϕ(ni,j , ni+1,t) �= ∅ then
Create branch(ni−1,s, ni+1,t);
ϕ(ni−1,s, ni+1,t)←−ϕ(ni−1,s, ni,j)∩ϕ(ni,j , ni+1,t);

end
end
Remove the node ni,j and all its branches connecting to the node ni,j ;

end
γ(G′) ←− 1 − |SIG(G′)|/|E|; //To get γ(G′)
if γ(G′) = γ(G) then

G ←− G′; //layer ni is dispensable
end

end

is γ(G) = 1 − |SIG(G)|/|E|. For instance, the support of all inconsistent paths
in Fig. 1 is the set {p2, p5}. Thus, the factor of consistence is γ(G) = 2/3.

4.2 Reduction

Since reduction may remove redundant condition attributes and preserve the de-
cision capability, it plays a vital role in decision systems. Although many reduc-
tion algorithms have been applied in different decision systems by now [12,13,14],
algorithms about reduction on EFG will only be offered here. In contrast to re-
duction of attributes and attributes’ value in decision table, the reduction of
EFG will be called reduction of layers and nodes reduction, respectively.

A layer, in EFG, corresponding with a indispensable attribute in decision table
will be called indispensable layer; otherwise, it is a dispensable layer. Therefore,
a reduction of layer will be obtained by continually removing dispensable layer
until all layers in EFG are indispensable layers. What’s more, we can find out
whether a layer is indispensable or not by the change of factor of consistence of
EFG after the layer has been removed. Thus the algorithm of layer reduction is
shown in Alg. 3.

Although redundant layers can be eliminated, on the whole, by reducing layer
in EFG, there are still some superfluous nodes for some paths from root to leaves.
Therefore, it is necessary to remove redundant nodes in order to shorten the paths
and preserve information by all means.This is the reduction of nodes.

In the process of value reduction of attributes, two cases will happen after
a value has been removed for a decision rule. One is that the new rule would
conflict with others and this change can be caught by the factor of consistence
of decision table, otherwise nothing will be changed. However, this principle can
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Algorithm 4. Reduction Of Node
Input : An EFG G.
Output: The new EFG G.
γ(G) ←− 1 − |SIG(G)|/|E|;//using Alg. 2 to get γ(G)
for each layer ni∈(n1, ..., nk), where nk is the last condition layer do

for each node ni,j ∈ ni do
for each objects pt∈ϕ(ni,j) do

//find the branches which inflow or outflow including
if (pt∈ϕ(ni−1,s, ni,j)) and (pt∈ϕ(ni,j , ni+1,t)) then

Create (ni−1,s, ni+1,t);
ϕ(ni−1,s, ni+1,t) ←− {pt};

end
//remove the object pt from branches and nodes in next three steps
ϕ(ni,j)←−ϕ(ni,j) − {pt}; ϕ(ni−1,l, ni,j)←−ϕ(ni−1,l, ni,j) − {pt};
ϕ(ni,j , ni+1,m)←−ϕ(ni,j , ni+1,m) − {pt};
γ(G′)←−1 − |SIG(G′)|/|E|;//To get γ(G′)
if γ(G) = γ(G′) then

G←−G′;//ni,j is dispensable
end

end
end

end

also be used in node reduction of EFG. Demonstrations of node reduction will
be given in Alg. 4.

Example 2. Consider the EFG G in Fig. 1. After executing Alg. 3, we obtain a
layer reduction, depicted in Fig.2, of the G. What’s more, a new EFG G in Fig.3
is a node reduction of the G by Alg. 4. However, different sets of decision rules
can be achieved by tuning the threshold βfrom Fig.3. For example, let β = 1/2,
five decision rules can be obtained by back-tracking:

1). If (T, h)and(M, n) then (F, n) CF=1/2;2). If (T, h)and(M, n) then (F,y)
CF=1/2;
3). If (T, h)and(M, y) then (F, y) CF=1; 4). If (T, v) then (F, y) CF=1;
5). If (T, n) then (F,, n) CF=1, where CF is certainty factor of decision rule. $%
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5 Conclusions

Flow graph is a new mathematical model of mining knowledge in databases
and does well in some applications. Although it has some predominance, such
as intuitionistic representation, straightforward computation, explicit relations
and parallel processing, compared with decision table, it is not excellent at some
important characters of decision table. Therefore, an extension of flow graph
(EFG) has been presented in this paper. It not only has the characters of flow
graph, but also does a good job in consistence estimation and reduction aspects
as same as decision table does.

For example, we can work out consistence of a decision system by determining
consistence of EFG, since the consistence of EFG is the same with that of decision
table. In addition EFG can also carry out reduction of knowledge by removing
redundant layers and nodes in preserving information.

However, decision data are always nondeterministic and incomplete, or even
miss some values. Therefore, how to use EFG to represent nondeterministic or
incomplete decision systems will appear in our forthcoming papers.
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Abstract. Many researchers study rough sets from the point of view
of description of the rough set pairs (a rough set pair is also called a
rough set), i.e. <lower approximation set, upper approximation set>.
In this paper, it is showed that the collection of all the rough sets in
an approximation space can be made into a distributive Brouwer-Zadeh
lattice. The induced Brouwer-Zadeh lattice from an approximation space
is called the rough Brouwer-Zadeh lattice. The rough top equation and
rough bottom equation problem is studied in the framework of rough
Brouwer-Zadeh lattices.

Keywords: Rough sets, Brouwer-Zadeh lattices, orthocomplementation.

1 Introduction

Rough set theory was introduced by Pawlak [1] to account for the definability
of a concept with an approximation in an approximation space (U, R), where
U is a set, and R is an equivalence relation on U. It captures and formalizes
the basic phenomenon of information granulation. The finer the granulation is,
the more concepts are definable in it. For those concepts not definable in an
approximation space, their lower and upper approximations can be defined.

Lin and Liu [2] replaced equivalence relation with arbitrary binary relation,
and the equivalence classes are replaced by neighborhood at the same time.
By means of the two replacements, they defined more general approximation
operators. Yao [3] interpreted rough set theory as an extension of set theory
with two additional unary set-theoretic operators referred to as approximation
operators. Such an interpretation is consistent with interpreting modal logic as
an extension of classical two-valued logic with two added unary operators. Zhu
and Wang [4] studied covering generalized rough sets. Düntsch [5] studied alge-
bras of rough relations. In [6], a survey of results was presented on relaionships
between the algebraic systems derived from the approximation spaces induced
by informaiton systems and various classes of algebras of relations. Cattaneo et
al. [7] constructed two modal-like unary operators in the frame of de Morgan
BZMV algebras. The two operators give rise to rough approximation. In [8],
Cattaneo and Ciucci obtianed a de Morgan Brouwer-Zadeh distributive lattice
from a Heyting Wajsberg algebra. Modal-like operators were defined generat-
ing a rough approximation space. Based on atomic Boolean lattice, Jarvinen [9]
proposed a more general framework for the study of approximation. Dai [10]

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 200–207, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Rough Sets and Brouwer-Zadeh Lattices 201

introduced molecular lattices into the research on rough sets and constructed
structure of rough approximations based on molecular lattices.

At the same time, researchers also studied rough sets from the point of view
of description of the rough set pairs, i.e. <lower approximation set, upper ap-
proximation set>. Iwiński [11] suggested a lattice theoretical approach. Iwiński’s
aim, which was extended by Pomykala and Pomykala [12] later, was to endow
the rough seubsets of U with a natural algebraic structure. In [13], Gehrke and
Walker extended Pomykala and Pomykala’s work in [12] by proposing a precise
structure theorem for the Stone algebra of rough sets which is in a setting more
general than that in [12]. Pomykala and Pomykala’s work was also improved by
Comer [14] who noticed that the collection of rough sets of an approximation
space is in fact a regular double Stone algebra when one introduced another
unary operator, i.e. the dual pseudo-complement operator. In [15], Pagliani in-
vestigated rough set systems within the framework Nelson algebras under the
assumption of a finite universe. Banerjee and Chakraborty [16] used pre-rough
algebras adding some structure topological quasi-Boolean algebras. In [17], Itur-
rioz presented some strong relations between rough sets and 3-valued �Lukasiewicz
algebras. Under some conditions, rough sets of an approximation can be inter-
preted as 3-valued Post algebras. Pagliani also studied the relationships between
rough sets and 3-valued structures in [18] based on the assumption of finite uni-
verse. All these algebras have rough sets as their models. They can be called
rough algebras. In [19], Dai constructed the relationships among the studies
of Banerjee and Chakraborty [16], Comer [14] and Pagliani [15]. Dai [20] also
constructed a logic system with rough algebraic semantics.

In this paper, we study rough sets from the point of view of description of the
rough set pairs, i.e. <lower approximation set, upper approximation set>. We
intend to interpret rough sets in the framework of Brouwer-Zadeh lattices.

2 Definitions and Notations

Let (U, R) be an approximation space, where U is the universe and R is an
equivalence relation on U. With each approximation space (U, R), two operators
on P(U) can be defined. For any X ⊆ U , then the lower approximation of X
and the upper approximation of X are defined as:

R−(X) =
⋃

{[X ]R|[X ]R ⊆ X} (1)

R−(X) =
⋃

{[X ]R|[X ]R ∩ X �= ∅} (2)

The pair < R−(X), R−(X) > is called a rough set. X is termed definable set(also
termed exact set) in approximation space (U, R) if and only if R−(X) = R−(X).
For the sake of simplicity, the lower approximation and upper approximation are
also denoted as X and X respectively. Then

∀X ⊆ U, r(X) =< X, X >
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is used to describe X . In this paper, we denote the collection of all the rough
sets of an approximation space (U, R) as

RS(U) = {r(X)|X ⊆ U}.

Definition 1. A structure (
∑

,∨,∧,¬,∼, 0) is a distributive Brouwer-Zadeh lat-
tice if

1. (
∑

,∨,∧, 0) is a (nonempty) distributive lattice with minimum element 0 ;
2. The mapping ¬ :

∑
→
∑

is a Kleene orthocomplementation, that is
(a) ¬(¬a) = a,
(b) ¬(a ∨ b) = ¬a ∧ ¬b,
(c) a ∧ ¬a ≤ b ∨ ¬b.

3. The mapping ∼:
∑

→
∑

is a Brouwer orthocomplementation, that is
(a) a∧ ∼∼ a = a,
(b) ∼ (a ∨ b) =∼ a∧ ∼ b,
(c) a∧ ∼ a = 0.

4. The two orthocomplementations are linked by the following interconnection
rule:

¬ ∼ a =∼∼ a.

The mapping ¬ is also called the �Lukasiewicz (or fuzzy, Zadeh) orthocomplemen-
tation while the mapping ∼ is an intuitionistic-like orthocomplementation. The
element 1 :=∼ 0 = ¬0 is the greatest element of

∑
.

Definition 2. A distributive de Morgan BZ-lattice(BZdM -lattice) is a distribu-
tive BZ-lattice for which the following holds:

∼ (a ∧ b) =∼ a∨ ∼ b.

3 Rough Sets and Brouwer-Zadeh Lattices

We now show that the collection of all rough sets of (U, R), denoted by RS(U),
can be made into a distributive Brouwer-Zadeh lattice.

Theorem 1. Let (U,R) be an approximation space and RS(U) the collection
of all the rough sets of (U,R). Then RS(U) can be made into a distributive
Brouwer-Zadeh lattice

(RS(U),⊕,⊗,¬,∼, < ∅, ∅ >),

where < ∅, ∅ > is the least element. The union operator ⊕, join operator ⊗,
Kleene orthocomplementation ¬ and Brouwer orthocomplementation ∼ are de-
fined as follows:

< X, X > ⊕ < Y , Y >=< X ∪ Y , X ∪ Y > (3)

< X, X > ⊗ < Y , Y >=< X ∩ Y , X ∩ Y > (4)

¬ < X, X >=< U − X, U − X >=< (X)c, (X)c > (5)

∼< X, X >=< U − X, U − X >=< (X)c, (X)c > (6)
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Proof. (1). It is obvious that (RS(U),⊕,⊗, < ∅, ∅ >) is a distributive lattice
with minimum element < ∅, ∅ >.

(2). We now prove that ¬ is the Kleene orthocomplementation. Let a =<
A, B >∈ RS(U), then we get ¬a =< Bc, Ac > by Equation (5).

(a) Let a =< A, B >∈ RS(U), then ¬¬a = ¬ < Bc, Ac >=< A, B >= a.
(b) Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, then ¬(a ⊕ b) = ¬ <

A ∪ C, B ∪ D >=< Bc ∩ Dc, Ac ∩ Cc >=< Bc, Ac > ⊗ < Dc, Cc >= ¬a ⊗ ¬b.
(c) Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, then a ⊗ ¬a =< A, B >

⊗ < Bc, Ac >=< A ∩ Bc, B ∩ Ac >. Since A ⊆ B, it follows that Bc ⊆ Ac.
Hence, A ∩ Bc = ∅,i.e.,a ⊗ ¬a =< ∅, B ∩ Ac >. At the same time, b ⊕ ¬b =<
C, D > ⊕ < Dc, Cc >=< C ∪ Dc, D ∪ Cc >. Since C ⊆ D, it follows that
Dc ⊆ Cc. Hence, D ∪ Cc = U , i.e. b ⊕ ¬b =< C ∪ Dc, U >. It is obvious that
< ∅, B ∩ Ac >≤< C ∪ Dc, U >, i.e. a ⊗ ¬a ≤ b ⊕ ¬b.

(3). We now prove that ∼ is the Brouwer orthocomplementation. Let a =<
A, B >∈ RS(U), then we get ∼ a =< Bc, Bc > by Equation (6).

(a) Let a =< A, B >∈ RS(U), then ∼∼ a =∼< Bc, Bc >=< B, B >. It
follows that a⊗ ∼∼ a =< A, B > ⊗ < B, B >=< A, B >= a.

(b) Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, then ∼ (a ⊕ b) =∼<
A ∪ C, B ∪ D >=< Bc ∩ Dc, Bc ∩ Dc >=< Bc, Bc > ⊗ < Dc, Dc >=∼ a⊗ ∼ b.

(c) Let a =< A, B >∈ RS(U), then a⊗ ∼ a =< A, B > ⊗ < Bc, Bc >=<
A ∩ Bc, ∅ >. Since, A ⊆ B, it follows that Bc ⊆ Ac, i.e., A ∩ Bc = ∅. Hence,
a⊗ ∼ a =< ∅, ∅ >= 0.

(4). We now consider the relationship between the two orthocomplementa-
tions. Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, then ¬ ∼ a = ¬ <
Bc, Bc >=< B, B >. On the other hand, ∼∼ a =∼< Bc, Bc >=< B, B >. It is
obvious that ¬ ∼ a =∼∼ a.

From (1)-(4) above , together with Definition 1, we can prove this theorem.
$%

Definition 3. Given an approximation space (U, R), let RS(U) be all the rough
sets of (U, R). The algebra (RS(U),⊕,⊗,¬,∼, < ∅, ∅ >) constructed in Theorem
1 is called the rough BZ-lattice induced from (U, R).

Theorem 2. Let (U, R) be an approximation space and (RS(U),⊕,⊗,¬,∼, <
∅, ∅ >) be the induced rough BZ-lattice. Then (RS(U),⊕,⊗,¬,∼, < ∅, ∅ >) is
also a de Morgan BZ-lattice.

Proof. We only need to prove ∼ (a ⊗ b) =∼ a⊕ ∼ b.
Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, then∼ (a⊗ b) =∼< A∩C, B ∩

D >=< Bc ∩ Dc, Bc ∪ Dc >=< Bc, Bc > ⊕ < Dc, Dc >=∼ a⊕ ∼ b. $%

Definition 4. [7,8] In any BZ-lattice (
∑

,∨,∧,¬,∼, �, 0), let ¬ be the Kleene or-
thocomplementation and ∼ be the Brouwer orthocomplentation. Let � be a third
kind of complementation. Then � is called anti-intuistionistic orthocomplemen-
tation if the following conditions hold:
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1. ��a ≤ a;
2. �a ∨ �c = �(a ∧ c);
3. a ∨ �a = 1.

Now we investigate the anti-intuitionistic orthocomplementation ◦ in rough BZ-
lattice (RS(U),⊕,⊗,¬,∼, < ∅, ∅ >). We have the following theorem.

Theorem 3. In any rough BZ-lattice (RS(U),⊕,⊗,¬,∼, < ∅, ∅ >), one can
define the anti-intuitionistic orthocomplementation ◦

∀a =< A, B >∈ RS(U), ◦a =< Ac, Ac > .

Proof. (1) Let a =< A, B >∈ RS(U), then ◦ ◦ a = ◦ < Ac, Ac >=< A, A >≤ a.
(2) Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, then◦a ⊕ ◦b =< Ac, Ac >

⊕ < Cc, Cc >=< Ac ∪ Cc, Ac ∪ Cc >. On the other hand, ◦(a ⊗ b) = ◦ <
A ∩ C, B ∩ D >=< (A ∩ C)c, (A ∩ C)c >=< Ac ∪ Cc, Ac ∪ Cc >. It is follows
that ◦a ⊕ ◦b = ◦(a ⊗ b).

(3) Let a ∈ RS(U), a =< A, B >, b =< C, D >, then a ⊕ ◦a =< A, B >
⊕ < Ac, Ac >=< U, B ∪ Ac >. Since A ⊆ B, it follows that Bc ⊆ Ac. Hence,
B ∪ Ac ⊆ B ∪ Bc = U . It is obvious that a ⊕ ◦a =< U, U >.

From (1)-(3) above, together with Definition 4, we can prove this theorem. $%

Definition 5. Let (P,≤) be a partially ordered set and g : P → P an order
preserving mapping, that is ∀a, b ∈ P, a ≤ b implies g(a) ≤ g(b). Then,

1. g is said to be idempotent operator if ∀a ∈ P, g(g(a)) = g(a);
2. g is said to be closure operator if g is idempotent and ∀a ∈ P, a ≤ g(a);
3. g is said to be kernel operator if g is idempotent and ∀a ∈ P, g(a) ≤ a.

Theorem 4. Let RS(U) be a rough BZ-lattice and ∼, ◦ be the Brouwer ortho-
complementation, anti-intutionistic orthocomplementation respectively. Then

1. The operator ∼∼ is a closure operator;
2. The operator ◦◦ is a kernel operator.

Proof. (1) Let a, b ∈ RS(U), a =< A, B >, b =< C, D >. If a ≤ b, thenA ⊆
C, B ⊆ D. Hence ∼∼ a =< B, B >≤< D, D >=∼∼ b. Namely, ∼∼ is order-
preserving. Moreover, ∼∼∼∼ a =∼∼< B, B >=∼< Bc, Bc >=< B, B >. It
means that ∼∼ is an idempotent operator. Since ∼∼ a =< B, B > and A ⊆ B,
we get a ≤∼∼ a.

(2) Let a, b ∈ RS(U), a =< A, B >, b =< C, D >. If a ≤ b, thenA ⊆ C, B ⊆
D. Hence ◦ ◦ a =< A, A >≤< C, C >= ◦ ◦ b. Namely, ◦◦ is order-preserving.
Moreover, ◦ ◦ ◦ ◦a = ◦◦ < A, A >= ◦ < Ac, Ac >=< A, A >. It means that ◦◦ is
an idempotent operator. Since ◦ ◦a =< A, A > and A ⊆ B, we get ◦ ◦a ≤ a. $%

Now we come to the rough top equation and rough bottom equation problem.
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Definition 6. Let (U, R) be an approximation space. Two sets X, Y ⊆ U are
called rough top equal X∼Y iff R−(X) = R−(Y ). Two sets X, Y ⊆ U are called
rough bottom equal X∼Y iff R−(X) = R−(Y ).

Theorem 5. Let (U, R) be an approximation space RS(U) the collection of all
the rough sets in (U, R). Let X, Y ⊆ U and r(X) = a, r(Y ) = b ∈ RS(U). Then
the following are equivalent:

1. X∼Y ;
2. ∼∼ a =∼∼ b;
3. ¬ ∼ a = ¬ ∼ b;
4. ◦ ∼ a = ◦ ∼ b;
5. ◦¬a = ◦¬b;
6. ∼ a =∼ b.

Proof. (1) ⇒ (2). Let a =< A, B >, b =< C, D >. Since X∼Y , we get B = D.
∼∼ a =∼< Bc, Bc >=< B, B >. On the other hand ∼∼ b =∼< Dc, Dc >=<
D, D >. It follows that ∼∼ a =∼∼ b.

(2) ⇒ (3). Let a =< A, B >, b =< C, D >. Since ∼∼ a =∼∼ b, we get
B = D. By definition we know ¬ ∼ a = ¬ < Bc, Bc >=< B, B > and ¬ ∼ b =
¬ < Dc, Dc >=< D, D >. It follows that ¬ ∼ a = ¬ ∼ b.

(3) ⇒ (4). Let a =< A, B >, b =< C, D >. Since ¬ ∼ a = ¬ ∼ b, we
get B = D. By definition we know ◦ ∼ a = ◦ < Bc, Bc >=< B, B > and
◦ ∼ b = ◦ < Dc, Dc >=< D, D >. It follows that ◦ ∼ a = ◦ ∼ b.

(4) ⇒ (5). Let a =< A, B >, b =< C, D >. Since ◦ ∼ a = ◦ ∼ b, we get
B = D. By definition we know ◦¬a = ◦ < Bc, Ac >=< B, B > and ◦¬b = ◦ <
Dc, Cc >=< D, D >. It follows that ◦¬a = ◦¬b.

(5) ⇒ (6). Let a =< A, B >, b =< C, D >. Since ◦¬a = ◦¬b, we get B = D.
By definition we know ∼ a =< Bc, Bc > and ∼ b =< Dc, Dc >. It follows that
∼ a =∼ b.

(6) ⇒ (1). Let a =< A, B >, b =< C, D >. Since ∼ a =∼ b, we get <
Bc, Bc >=< Dc, Dc >. It follows that B = D. $%

Theorem 6. Let (U, R) be an approximation space RS(U) be the collection of
all the rough sets in (U, R). Let X, Y ⊆ U and r(X) = a, r(Y ) = b ∈ RS(U).
Then the following are equivalent:

1. X∼Y ;
2. ◦ ◦ a = ◦ ◦ b;
3. ¬ ◦ a = ¬ ◦ b;
4. ∼ ◦a =∼ ◦b;
5. ∼ ¬a =∼ ¬b;
6. ◦a = ◦b.
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Proof. (1) ⇒ (2). Let a =< A, B >, b =< C, D >. Since X∼Y , we get A = C.
◦ ◦ a = ◦ < Ac, Ac >=< A, A >. On the other hand ◦ ◦ b = ◦ < Cc, Cc >=<
C, C >. It follows that ◦ ◦ a = ◦ ◦ b.

(2) ⇒ (3). Let a =< A, B >, b =< C, D >. Since ◦ ◦ a = ◦ ◦ b, we get A = C.
By definition we know ¬ ◦ a = ¬ < Ac, Ac >=< A, A > and ¬ ◦ b = ¬ <
Cc, Cc >=< C, C >. It follows that ¬ ◦ a = ¬ ◦ b.

(3) ⇒ (4). Let a =< A, B >, b =< C, D >. Since ¬ ◦ a = ¬ ◦ b, we get
A = C. By definition we know ∼ ◦a =∼< Ac, Ac >=< A, A > and ∼ ◦b =∼<
Cc, Cc >=< C, C >. It follows that ∼ ◦a =∼ ◦b.

(4) ⇒ (5). Let a =< A, B >, b =< C, D >. Since ∼ ◦a =∼ ◦, we get
A = C. By definition we know ∼ ¬a =∼< Bc, Ac >=< A, A > and ∼ ¬b =∼<
Dc, Cc >=< C, C >. It follows that ∼ ¬a =∼ ¬b.

(5) ⇒ (6). Let a =< A, B >, b =< C, D >. Since ∼ ¬a =∼ ¬, we get A = C.
By definition we know ◦a =< Ac, Ac > and ◦b =< Cc, Cc >. It follows that
◦a = ◦b.

(6) ⇒ (1). Let a =< A, B >, b =< C, D >. Since ◦a = ◦b, we get <
Ac, Ac >=< Cc, Cc >. It follows that A = C. $%

4 Conclusion

In this paper, we have studied rough sets from the point of view of description of
the rough set pairs, i.e. <lower approximation set, upper approximation set> in
the framework of Brouwer-Zadeh lattices. It is showed that the collection of all
the rough sets in an approximation space (U, R) can be made into a distributive
Brouwer-Zadeh lattice. The induced BZ-lattice from an approximation space is
called the rough BZ-lattice. A rough BZ-lattice is also a de Morgan BZ-lattice.
The anti-intuitionistic orthocomplementation in the rough BZ-lattice has been
investigated. The rough top equation and rough bottom equation problem has
been studied in the framework of rough BZ-lattices.
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Abstract. This paper presents a general framework for the study of
covering-based rough fuzzy sets in which a fuzzy set can be approxi-
mated by some elements in a covering of the universe of discourse. Some
basic properties of the covering-based lower and upper approximation
operators are examined. The concept of reduction of a covering is also
introduced. By employing the discrimination matric of the covering, we
provide an approach to find the reduct of a covering of the universe.
It is proved that the reduct of a covering is the minimal covering that
generates the same covering-based fuzzy lower (or upper) approximation
operator, so this concept is also a technique to get rid of redundancy
in data mining. Furthermore, it is shown that the covering-based fuzzy
lower and upper approximations determine each other.

Keywords: Rough fuzzy sets, reduction, covering, covering-based lower
and upper approximations.

1 Introduction

Rough set theory [1,2], proposed by Pawlak in 1982, is an extension of set theory
for the study of intelligent systems characterized by insufficient and incomplete
information. Using the concepts of lower and upper approximations in rough set
theory, the knowledge hidden in the system may be discovered and expressed in
the form of decision rules.

A partition or an equivalent relation plays an important role in Pawlak’s
original rough set model. However, the requirement of an equivalence relation
seems to be a very restrictive condition that may limit the applications of rough
set theory. To address this issue, several interesting and meaningful extensions
of equivalence relation have been proposed in the literature such as tolerance
relations [3,4], similarity relations [4,5], neighborhood systems [6] and others
[7]. Particularly, Zakowski [8] has used coverings of a universe for establishing
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the covering generalized rough set theory, and an extensive body of research
works has been developed [9,10]. The covering generalized rough set theory is
a model with promising potential for applications to data mining. Meanwhile,
generalizations of rough set to fuzzy environment have also been discussed in
a number of studies [11,12,13,14,15,16]. For example, by using an equivalence
relation on the universe, Dubois and Prade introduced the lower and upper
approximations of fuzzy sets in a Pawlak approximation space to obtain an
extended notion called rough fuzzy set [11]. Alternatively, a fuzzy similarity
relation can be used to replace an equivalence relation. The result is a deviation of
rough set theory called fuzzy rough set [11,12]. Based on arbitrary fuzzy relations,
fuzzy partitions on the universe, and Boolean subalgebras of the power set of
the universe, extended notions called rough fuzzy sets and fuzzy rough sets have
been obtained [13,14,15,16]. Alternatively, a rough fuzzy set is the approximation
of a fuzzy set in a crisp approximation space. The rough fuzzy set model may
be used to deal with knowledge acquisition in information systems with fuzzy
decisions [17]. And a fuzzy rough set is the approximation of a crisp set or a
fuzzy set in a fuzzy approximation space. The fuzzy rough set model may be
used to unravel knowledge hidden in fuzzy decision systems.

This paper extends Pawlak’s rough sets on the basis of a covering of the
universe. In the next section, we review basic properties of rough approximation
operators and give some basic notions of fuzzy sets. In Section 3, the model of
covering-based generalized rough fuzzy sets is proposed. In the proposed model,
fuzzy sets are approximated by some elements in a covering of the universe. The
concepts of minimal descriptions and the covering boundary approximation set
family are also introduced. Some basic properties of the covering-based fuzzy
approximation operators are examined. In Section 4, we study the reduction of
a covering of the universe. By employing the discrimination matric of a covering,
we present an approach to find a reduct of the covering. This technique can be
used to reduce the redundant information in data mining. It is proved that the
reduct of a covering is the minimal covering that generates the same covering-
based fuzzy lower or upper approximation operator. We then conclude the paper
with a summary in Section 5.

2 Preliminaries

Let U be a finite and nonempty set called the universe of discourse. The class
of all subsets (fuzzy subsets, respectively) of U will be denoted by P(U) (F(U),
respectively). For any A ∈ F(U), the α−level and the strong α−level of A will
be denoted by Aα and Aα+ respectively, that is, Aα = {x ∈ U : A(x) ≥ α} and
Aα+ = {x ∈ U : A(x) > α}, where α ∈ I = [0, 1], the unit interval.

Let R be an equivalence relation on U . Then R generates a partition U/R =
{[x]R : x ∈ U} on U , where [x]R denotes the equivalence class determined by
x with respect to (wrt.) R, i.e., [x]R = {y ∈ U : (x, y) ∈ R}. For any subset
X ∈ P(U), we can describe X in terms of the elements of U/R. In rough set
theory, Pawlak introduced the following two sets:
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R(X) = {x ∈ U : [x]R ⊆ X};
R(X) = {x ∈ U : [x]R ∩ X �= ∅}.

R(X) and R(X) are called the lower and upper approximations of X respectively.
The following Theorem [2,18] summarizes the basic properties of the lower

and upper approximation operators R and R.

Theorem 1. Let R be an equivalence relation on U , then the lower and up-
per approximation operators, R and R, satisfy the following properties: for any
X, Y ∈ P(U),

(1) R(U) = U = R(U);
(2) R(∅) = ∅ = R(∅);
(3) R(X) ⊆ X ⊆ R(X);
(4) R(X ∩ Y ) = R(X) ∩ R(Y ), R(X ∪ Y ) = R(X) ∪ R(Y );
(5) R(R(X)) = R(R(X)) = R(X), R(R(X)) = R(R(X)) = R(X);
(6) R(∼ X) =∼ R(X), R(∼ X) =∼ R(X);
(7) X ⊆ Y =⇒ R(X) ⊆ R(Y ), R(X) ⊆ R(Y );
(8) ∀K ∈ U/R, R(K) = K, R(K) = K.

Where ∼ X is the complement of X in U .

For the relationship between crisp sets and fuzzy sets, it is well-known that the
representation theorem holds [16].

Definition 1. A set-valued mapping H : I → P(U) is said to be nested if for
all α, β ∈ I,

α ≤ β =⇒ H(β) ⊆ H(α).

The class of all P(U)-valued nested mapping on I will be denoted by N (U).

Theorem 2. Let H ∈ N (U). Define a function f : N (U)→ F(U) by:

A(x) := f(H)(x) = ∨α∈I(α ∧ H(α)(x)), x ∈ U,

where H(α)(x) is the characteristic function of H(α). Then f is a surjective
homomorphism, and the following properties hold:

(1) Aα+ ⊆ H(α) ⊆ Aα;
(2) Aα = ∩λ<αH(λ);
(3) Aα+ = ∪λ>αH(λ);
(4) A = ∨α∈I(α ∧ Aα+) = ∨α∈I(α ∧ Aα).

3 Concepts and Properties of Covering-Based
Generalized Approximations

In [8,9,10], the authors introduced the concept of covering-based approximations.
Any subset of a universal set U can be approximated by the elements of a
covering of U . A covering C ⊆ P(U) of U is a family of subsets of U , in which
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none of them is empty and ∪C = U . The ordered pair 〈U, C〉 is then called a
covering-based approximation space.

Let 〈U, C〉 be a covering-based approximation space, x ∈ U . The set family

md(x) = { K ∈ C : x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K =⇒ K = S)}

is called the minimal description of x.
In what follows, the universe of discourse U is considered to be finite. C ⊆

P(U) is always a covering of U . We now study the approximations of a fuzzy set
A ∈ F(U) with respect to a covering C of U .

Definition 2. For a fuzzy set A ∈ F(U), the set family

C∗(A) = {αK : K ∈ C , K ⊆ A0+, α = ∧{A(x) : x ∈ K}}

is called the covering-based fuzzy lower approximation set family of A.
Define A∗(x) = ∨αK∈C∗(A)αK(x), ∀x ∈ U , we call A∗ the covering-based

fuzzy lower approximation of A.
The set family

Bn(A) = {αK : There exists x ∈ U, K ∈ md(x), A(x) − A∗(x) > 0, α = A(x)}

is called the covering-based boundary approximation set family of A.
The set family

C∗(A) = {αK : αK ∈ C∗(A)} ∪ {αK : αK ∈ Bn(A)}

is called the covering-based fuzzy upper approximation set family of A.
Denote A∗(x) = ∨αK∈C∗(A)αK(x), ∀x ∈ U , then A∗ is called the covering-

based upper approximation of A.
If C∗(A) = C∗(A), then A is said to be definable, otherwise it is rough.

The following properties can be proved by the definitions:

Proposition 1. The covering-based fuzzy approximation set family operators C∗
and C∗ satisfy the following properties: ∀ X, Y ∈ F(U),

(1) C∗(∅) = C∗(∅) = ∅; C∗(U) = C∗(U) = C,
(2) C∗(X) ⊆ C∗(X);
(3) C∗(X∗) = C∗(X) = C∗(X∗);
(4) X ⊆ Y ⇒ C∗(X) ⊆ C∗(Y ).

Proposition 2. If C is a partition of the universal set U , then for all X ∈ F(U),
X∗ is the lower approximation of X defined by Dubois and Prade in [11].

Proposition 3. For all X ∈ F(U), C∗(X) = C∗(X) if and only if there are
some elements of C, say K1, K2, ..., Kn, such that X(x) = ∨n

i=1αiKi(x), αi =
∧{X(x) : x ∈ Ki}.

Proposition 4. ∀X ∈ F(U), X∗ = X if and only if C∗(X) = C∗(X).
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Proposition 5. ∀X ∈ F(U), X∗ = X∗ if and only if C∗(X) = C∗(X).

Corresponding to the properties of Pawlak’s approximation operators listed in
Section 2, we have the following results.

Proposition 6. For a covering C of U , the covering-based lower and upper ap-
proximation operators have the following properties:

(1L) U∗ = U ; (1H) U∗ = U ;
(2L) ∅∗ = ∅; (2H) ∅∗ = ∅;
(3L) X∗ ⊆ X ; (3H) X ⊆ X∗;
(4L) (X∗)∗ = X∗; (4H) (X∗)∗ = X∗;
(5L) X ⊆ Y =⇒ X∗ ⊆ Y∗;
(6L) ∀K ∈ C, K∗ = K; (6H) ∀K ∈ C, K∗ = K.

4 Reduction of Coverings

After dropping any of the members of a partition, the remainder is no longer a
partition, thus, there is no redundancy problem for a partition. As for a covering,
it could still be a covering by dropping some of its members. Furthermore, the
resulting new covering might still produce the same covering-based lower and/or
upper approximation. Hence, a covering may have redundant members and a
procedure is needed to find its smallest covering that induces the same covering
lower and upper approximations.

Definition 3. Let C be a covering of a universe U and K ∈ C. If K is a union of
some elements in C −{K}, we say that K is a reducible element of C, otherwise
K is an irreducible element of C. If every element of C is irreducible, then C is
called irreducible; otherwise C is reducible.

Let C be a covering of a universe U . If K is a reducible element of C, then it is
easy to see that C − {K} is still a covering of U .

Proposition 7. Let C be a covering of U , K ∈ C be a reducible element of C,
and K1 ∈ C − {K}. Then K1 is a reducible element of C if and only if it is a
reducible element of C − {K}.

Proposition 7 guarantees that, after deleting reducible elements in a covering,
the remainder will not change the reducible property of the every element in C.

Now we propose an approach to deleting reducible elements of a covering by
employing its discrimination matric.

Definition 4. (Discrimination function) Let C = {A1, · · · , An} be a cover-
ing of U , Ai, Aj ∈ C, define

f(Ai, Aj) =
{

1, Aj ⊂ Ai

0, otherwise

Then the binary function f(·, ·) is called discrimination function of C.
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Let |Ai| be the cardinality of Ai. Arranging the sequence A1, A2, . . . , An by the
cardinality of Ai satisfying |A1| ≤ |A2| ≤ · · · ≤ |An|, then we have the following
discrimination matric:

A1 A2 · · · An

A1 0
A2 f(A2, A1) 0
...

...
...

An f(An, A1) f(An, A2) · · · 0

For any i, if there exists j such that f(Ai, Aj) �= 0, and |
⋃

{Aj : f(Ai, Aj) �=
0}| = |Ai|, then Ai is a reducible element, thus we can delete Ai.

Example 1. Let U = {1, 2, 3, 4, 5}, C = {A1, A2, A3, A4, A5}, where A1 = {1},
A2 = {3, 4, 5}, A3 = {2, 3, 4}, A4 = {1, 3, 4, 5}, A5 = {2, 3, 4, 5}, then we have
∪Ai = U , so C is a covering of U .

Because the cardinalities of Ais satisfy |A1| ≤ |A2| ≤ |A3| ≤ |A4| ≤ |A5|. We
have the following discrimination matric:

A1 A2 A3 A4 A5

A1 0
A2 0 0
A3 0 0 0
A4 1 1 0 0
A5 0 1 1 0 0

For A4, f(A4, A1) �= 0, f(A4, A2) �= 0, and |A1 ∪ A2| = 4 = |A4|.
For A5, f(A5, A2) �= 0, f(A5, A3) �= 0, and |A2 ∪ A3| = 4 = |A5|.

Therefore, A4, A5 are reducible elements, we can delete them from the covering.

Definition 5. For a covering C of a universe U , an irreducible covering is called
the reduct of C, and denoted by REDUCT (C).

Proposition 7 guarantees that a covering has only one reduct. We can obtain the
reduct of a covering through the above discrimination matric method.

Proposition 8. Let C be a covering of U , and K a reducible element of C,
then C − {K} and C have the same md(x) for all x ∈ U . Particularly C and
REDUCT (C) have the same md(x) for all x ∈ U .

Proposition 9. Suppose C is a covering of U , K is a reducible element of C,
X ∈ F(U), then the covering-based fuzzy lower approximation of X generated
by the covering C and the covering C − {K}, respectively, are same.

Proof. Suppose the covering lower approximations of X generated by the cov-
ering C and the covering C − {K} are X1, X2 respectively. From the definition
of covering lower approximation, we have that X2(x) ≤ X1(x) ≤ X(x), for all
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x ∈ U . On the other hand, from Proposition 6 and Corollary 1, there exists
K1, K2, . . . , Kn ∈ C, such that X1(x) = ∨n

i=1αiKi(x), αi = ∧{X(x) : x ∈ Ki}.
If none of K1, K2, . . . , Kn ∈ C is equal to K, then they all belong to C − {K},

and the corresponding αi are the same. Thus, X2(x) = ∨n
i=1αiKi(x), αi =

∧{X(x) : x ∈ Ki}. If there is an element of {K1, K2, . . .Kn} that is equal to K,
say K1 = K. Because K is a reducible element of C, K can be expressed as the
union of some elements T1, T2, . . . , Tm ∈ C−{K}, that is, T1∪T2∪. . .∪Tm = K1.
Thus

X1(x) = ∨m
j=1α1Tj(x) ∨ ∨n

i=2αiKi(x) ≤ ∨m
j=1βjTj(x) ∨ ∨n

i=2αiKi(x)

where βj = ∧{X(x) : x ∈ Tj}, T1, T2, . . . , Tm, K2, . . . , Kn ∈ C − {K}. So
X1(x) ≤ X2(x), thus X1 = X2.

Proposition 10. Suppose C is a covering of U , K is a reducible element of
C, and X ∈ F(U), then the covering-based fuzzy upper approximations of X
generated by the covering C and the covering C − {K}, respectively, are same.

Proof. It follows from Definition 2 and Proposition 8.

Combining Corollaries 5 and 6, we have the following conclusion.

Theorem 3. Let C be a covering of U , then C and REDUCT (C) generate the
same covering-based fuzzy lower and upper approximations.

Proposition 11. If two irreducible coverings of U generate the same covering-
based fuzzy lower approximations for all X ∈ F(U), then the two coverings are
same.

Proof. It can be induced directly from Proposition 12 in [10].

From Theorem 3 and Propositions 8 and 11, we have:

Theorem 4. Let C1, C2 be two coverings of U , C1, C2 generate the same covering-
based fuzzy lower approximations if and only if they generate the same covering-
based fuzzy upper approximations.

Theorem 4 shows that the covering lower approximation and the covering upper
approximation determine each other.

5 Conclusion

We have developed in this paper a general framework for the study of the
covering-based generalized rough fuzzy set model. In our proposed model, fuzzy
sets can be approximated by a covering of the universe. The properties of the
covering-based fuzzy approximation operators have been studied in detail. We
have also presented an approach to obtaining the reduct of a covering by em-
ploying the discrimination matric. We have shown that the reduct of a covering
is the minimal covering that generates the same covering-based fuzzy lower and
upper approximations, and furthermore, the covering-based fuzzy lower and up-
per approximations determine each other. Another issue should be studied in
the future is how to approximate a fuzzy set on the basis of a fuzzy covering of
the universe of discourse.
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Abstract. Rough set theory was proposed by Pawlak to deal with the
vagueness and granularity in information systems that are characterized
by insufficient, inconsistent, and incomplete data. Its successful applica-
tions draw attentions from researchers in areas such as artificial intel-
ligence, computational intelligence, data mining and machine learning.
The classical rough set model is based on an equivalence relation on a
set, but it is extended to generalized model based on binary relations and
coverings. This paper reviews and summarizes the axiomatic systems for
classical rough sets, generalized rough sets based on binary relations, and
generalized rough sets based on coverings.

Keywords: Rough set, Covering, Granular computing, Data mining.

1 Introduction

Across a wide variety of fields, data are being collected and accumulated at
a dramatic pace, especially at the age of Internet. Much useful information is
hidden in the accumulated voluminous data, but it is very hard for us to obtain
it. In order to mine knowledge from the rapidly growing volumes of digital data,
researchers have proposed many methods other than classical logic, for example,
fuzzy set theory [1], rough set theory [2], computing with words [3,4], granular
computing [5], computational theory for linguistic dynamic systems [6], etc.

Rough set theory was originally proposed by Pawlak [2]. It provides a system-
atic approach for classification of objects through an indiscernability relation. An
equivalence relation is the simplest formulization of the indiscernability. How-
ever, it cannot deal with some granularity problems we face in real information
systems, thus many interesting and meaningful extensions have been made to
tolerance relations [7,8], similarity relations [9], coverings [10,11,12,13,14,15,16],
etc.
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In this paper, we summarize axiomatic systems for classical rough sets, bi-
nary relation based rough sets, and covering based rough sets. The remainder
of this paper is structured as follows. Section 2 is devoted to axiomatic systems
for classical rough sets from various points of view. In Section 3, we formulate
axiomatic systems for generalized rough sets based on general binary relations,
reflexive relations, symmetric relations, and transitive relations. Section 4 de-
fines a new type of generalized rough sets based on coverings and establishes
axiomatic systems for its lower and upper approximation operations. This paper
concludes in Section 5.

2 Axiomization of Classical Rough Sets

People use algebraic, topological, logical and constructive methods to study
rough sets and try to formulate axiomatic systems for classical rough sets from
different views [18,19,20,21].

Lin and Liu obtained the following axiom system for rough sets [18] through
topological methods.

Theorem 1. For an operator L : P (U) → P (U), if it satisfies the following
properties:
1. L(U) = U , 2. L(X) ⊆ X, 3. L(X ∩ Y ) = L(X) ∪ L(Y ),
4. L(L(X)) = L(X), 5. −L(X) = L(−L(X)),
then there is an equivalence relation R such that L is the lower approximation
operator induced by R.

Yao established the following result about axiomatic systems for classical rough
sets [22,23].

Theorem 2. For a pair of dual operators H : P (U) → P (U), if H satisfies the
following five properties:
1. H(φ) = φ, 2. X ⊆ H(X), 3. H(X ∪ Y ) = H(X) ∪ H(Y ),
4. H(H(X)) = H(X), 5. X ⊆ −H(−H(X)),
then there is an equivalence relation R such that H is the upper approximation
operator induced by R.

The following two axiomatic systems for rough sets belong to Zhu and He [19].
They discussed the redundancy problems in axiomatic systems.

Theorem 3. For an operator L : P (U) → P (U), if it satisfies the following
properties:
1. L(X) ⊆ X, 2. L(X) ∩ L(Y ) = L(X ∪ Y ), 3. −L(X) = L(−L(X)),
then there is an equivalence relation R such that L is the lower approximation
operator induced by R.

Theorem 4. For an operator L : P (U) → P (U), if it satisfies the following
properties:
1. L(U) = U , 2. L(X) ⊆ X, 3. L(L(X) ∩ Y ) = L(X) ∪ L(Y ),
then there is an equivalence relation R such that L is the lower approximation
operator induced by R.
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Sun, Liu and Li established the following three axiomatic systems for rough
sets [20]. They focused on replacing equalities with inequalities to achieve certain
minimal property.

Theorem 5. For an operator L : P (U) → P (U), if it satisfies the following
properties:
1. L(X) ⊆ X, 2. L(X ∩ Y ) ⊆ L(X) ∪ L(Y ), 3. −L(X) ⊆ L(−L(X)),
then there is an equivalence relation R such that L is the lower approximation
operator induced by R.

Theorem 6. For an operator L : P (U) → P (U), if it satisfies the following
properties:
1. L(X) ⊆ X, 2. L(X)∪L(Y ) ⊆ L(L(X)∪ Y ), 3. −L(X) ⊆ L(−L(X)),
then there is an equivalence relation R such that L is the lower approximation
operator induced by R.

Theorem 7. For an operator L : P (U) → P (U), if it satisfies the following
properties:
1. L(X) ⊆ X, 2. L(−X∪Y ) ⊆ −L(X)∪L(Y ), 3. −L(−X) ⊆ L(−L(−X)),
then there is an equivalence relation R such that L is the lower approximation
operator induced by R.

3 Axiomization of Binary Relation Based Rough Sets

Paper [21,23,24,25] have done an extensive research on algebraic properties of
rough sets based on binary relations. They proved the existence of a certain
binary relation for an algebraic operator with special properties, but they did
consider the uniqueness of such a binary relation. We proved the uniqueness of
the existence of such binary relations in [26].

3.1 Basic Concepts and Properties

Definition 1 (Rough set based on a relation [23]). Suppose R is a bi-
nary relation on a universe U. A pair of approximation operators, L(R), H(R) :
P (U) → P (U), are defined by:

L(R)(X) = {x|∀y, xRy ⇒ y ∈ X}, and H(R)(X) = {x|∃y ∈ X, s.t. xRy}.

They are called the lower approximation operator and the upper approximation
operator respectively. The system (P (U), ∩, ∪,−, L(R), H(R)) is called a rough
set algebra, where ∩,∪, and - are set intersection, union, and complement.

Theorem 8 (Basic properties of lower and upper approximation op-
erators [23]). Let R be a relation on U . L(R) and H(R) satisfy the following
properties: ∀X, Y ⊆ U ,
(1) L(R)(U) = U (2) L(R)(X ∩ Y ) = L(R)(X) ∩ L(R)(Y )
(3) H(R)(φ) = φ (4) H(R)(X ∪ Y ) = H(R)(X) ∪ H(R)(Y )
(5) L(R)(−X) = −H(R)(X)
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3.2 Axiomatic Systems of Generalized Rough Sets Based on
Relations

Theorem 9. [23,26] Let U be a set. If an operator L : P (U) → P (U) satisfies
the following properties:

(1)L(U) = U (2)L(X ∩ Y ) = L(X) ∩ (Y )
then there exists one and only one relation R on U such that L = L(R).

Theorem 10. [23,26] Let U be a set. If an operator H : P (U) → P (U) satisfies
the following properties:

(1)H(φ) = φ (2)H(X ∪ Y ) = H(X) ∪ H(Y )
then there exists one and only one relation R on U such that H = H(R).

Theorem 11. [23,26] Let U be a set. An operator L : P (U) → P (U) satisfies
the following properties:

(1)L(U) = U (2)L(X ∩ Y ) = L(X) ∩ (Y ),
then,

(A) L also satisfies L(X) ⊆ X if and only if there exists one and only one
reflexive relation R on U such that L = L(R).

(B) L also satisfies L(X) ⊆ L(−L(−X)) if and only if there exists one and
only one symmetric relation R on U such that L = L(R).

(C) L also satisfies L(X) ⊆ L(L(X)) if and only if there exists one and only
one relation R on U such that L = L(R).

4 Axiomization of Covering Based Rough Sets

In this section, we present basic concepts for a new type of covering generalized
rough sets and formulate axiomatic systems for them. As for their properties,
please refer to [27,11,12,13,28,29].

4.1 A New Type of Covering Generalized Rough Sets

Paper [30] introduced a new definition for binary relation based rough sets.
The core concept for this definition is the neighborhood of a point. As we can
see from [13,31,23], binary relation based rough sets are different from covering
based rough sets, thus we introduce the neighborhood concept into covering
based rough sets [27].

Definition 2 (Neighborhood). Let U be a set, C a covering of U . For any
x ∈ U , we define the neighborhood of x as Neighbor(x) = ∩{K ∈ C|x ∈ K}.
Definition 3 (Lower and upper approximations). ∀X ⊆ U , the fourth
type of lower approximation of X is defined as X+ = ∪{K|K ∈ C and K ⊆ X}
and the fourth type of upper approximation of X is defined as X+ = X+ ∪
{Neighbor(x)|x ∈ X − X+}.

Operations IL and IH on P (U) defined as ILC(X) = X+, IHC(X) = X+

are called fourth type of lower and upper approximation operations, coupled with
the covering C, respectively. When the covering is clear, we omit the lowercase
C for the two operations.
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4.2 Axiomatic Systems of Generalized Rough Sets Based on
Coverings

We present axiomatic systems for lower and upper approximation operations.

Theorem 12 (An axiomatic system for lower approximation opera-
tions [12,13]). Let U be a non-empty set. If an operator L : P (U) → P (U)
satisfies the following properties: for any X, Y ⊆ U ,
(1) L(U) = U (2) X ⊆ Y ⇒ L(X) ⊆ L(Y )
(3) L(X) ⊆ X (4) L(L(X)) = L(X)
then there exists a covering C of U such that the lower approximation operation
IL generated by C equals to L.

Furthermore, the above four properties are independent.

Theorem 13 (An axiomatic system for upper approximation opera-
tions [27]). Let U be a non-empty set. If an operation H : P (U) → P (U) is a
closure operator, e. g., H satisfies the following properties: for any X, Y ⊆ U ,
(cl1) H(X ∪ Y ) = H(X) ∪ H(Y ) (cl2) X ⊆ H(X)
(cl3) H(φ) = φ (cl4) H(H(X)) = H(X)
then there exists a covering C of U such that the fourth type of upper approxi-
mation operation IH generated by C equals to H.

Furthermore, the above four properties are independent.

5 Conclusions

This paper is devoted to reviewing and summarizing axiomatic systems for clas-
sical rough sets, generalized rough sets based on binary relations, and generalized
rough sets based on coverings.
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Abstract. In this paper, we proposed a new method to diagnose the
combustion status in the boiler. It was based on the rough sets theory, us-
ing image characteristics of the combustion in the boiler. We introduced
the lightness threshold segmentation of the green channel with an im-
proved polar coordinate method to reduce the effects of the background
radiation and to assure the integrity of the flame core. In the diagnosis,
the weight coefficients of the condition attributes to the decision-making
attributes in the decision-making table are determined by the approxi-
mation set conception in the rough sets theory. At last, an experiment
has been done with a group spot fire images gained from different com-
bustion status, and compare the experiment results with the spot status.
It shows that the method is feasible.

Keywords: Rough sets, image process, threshold segmentation, com-
bustion diagnosis.

1 Introduction

The boiler’s combustion status is directly related to safety and economy of the
thermal power plants. The traditional detection technologies are hardly satisfied
to the flame detection and combustion diagnosis in the boiler. As the devel-
opment of digital image technologies, the flame image supervision system is
increasingly becoming a mainstream and an important part of the Furnace Safe-
guard Supervisory System (FSSS). In addition, there are many characteristics
about the flame shape in the images, such as flame area, centroid excursion
etc, which can reflect the status in the furnace. We proposed using the green-
channel lightness in the image segmentation. A polar coordinate method is used
to confirm the order of the flame, which can keep an integral order of the flame
core. Through these processes, we can get many image characteristics about the
combustion status and form the decision-making table according to the deci-
sion rule in the rough sets theory. Then the weight coefficients, from condition
attributes to decision-making attributes, can be conformed according to the con-
cept of approximation set in rough sets theory. The results can objectively reflect
the influence degree from condition attributes to decision-making attributes, so
provide effective basis for the combustion diagnosis in the boiler furnace.
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c© Springer-Verlag Berlin Heidelberg 2006



Rough-Sets-Based Combustion Status Diagnosis 223

2 The Flame Image Characteristics and
Computation [1, 2, 3]

The flame characteristics are usually computed according to the brightness. The
flame area is a number of pixels whose brightness is higher than a threshold
or between two thresholds. Because the combustion is very acute, the flame
area fluctuates greatly. The change of flame area can reflect the stability of the
combustion in the furnace.

The flame in the boiler can be divided into two sections, the complete combus-
tion section and the incomplete combustion section. The effective flame area Si

is the sum area of the two sections. It reflects the bright status of the flame in the
furnace, showed in the figure 1. The high-temperature area Sk is the complete
combustion section and the flame core with the highest brightness.

The flame high-temperature area ratio Hi can reflects the degree of the flame
combustion in the furnace. Higher ratio means higher complete combustion. The
computation of Hi is showed as equation 1.

Hi =
Sk

Si
(1)

The combustion process of the flame is a pulsatory process. The combustion
region will change, as the quantity change of coal powder and wind. In this
paper, the centroid is (x, y) and the geometry center of the image is (xs, ys).
We set the distance between (x, y) and (xs, ys) as the centroid excursion d. The
centroid excursion is showed as figure 1.

The segmentation of flame images is usually a kind of grey value segmentation.
It easily segments the flame images including the background radiation. We
propose segmenting the image and compute the flame characteristics with the
green channel value. The variety of the green and blue channel change greatly.
It is easy to be understood, because the wave length of the red light is longer
than the other two. So the other two lights are easy to be absorbed in the boiler.
Therefore, the green or blue channel is fitter for the threshold segmentation than
red channel and the grey image.

In this paper, we propose the polar coordinate methods in the flame image
segmentation. This method can remove the big error in some radials and ensure
the accordance of the flame area.

Fig. 1. Flame Effective Area,

High-temperature Area and

the Centroid

Fig. 2. The 36 Shares Seg-

mented Flame Image of this

Method

Fig. 3. The Image

after Threshold

Segment
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The figure 2 shows the flame image after 36-share segmentation with this
method. The real line denotes the order of the flame core in this figure. We can
see that this method successfully segments the core. In the figure 3, this method
successfully confirms the order after the common threshold segmentation, which
are bits and pieces.

3 Rough-Set Conception [4, 5]

3.1 Upper and Lower Approximation

Use the Rough-set approximation set conception: R−(X) = {x ∈ U ; [x]R ⊆ X},
R−(X) = {x ∈ U ; [x]R

⋂
X �= Φ} and BNR(X) = R−(X) − R−(X), define

several parameters as follows.

(1) Decision attribution support

If U |C = {x1, x2, · · · , xn}, U |D = {y1, y2, · · · , ym}, define the support of the
condition attribution to the decision-making attribution as follows:

supportC(D) =
1

|U |

m∑
i=1

|POSC(yi)|, yi ∈ U |D (2)

Here, |U | and |POSC(yi)| are the numbers of elements in the set. Apparently,
0 ≤ sptCD ≤ 1, the value of supportC(D) reflects the support of the C to D.
The supports of every condition attribution to the decision-making attribution
are different.

(2) Decision attribution significance

The decision attribution significance of condition attribution to decision attri-
bution is defined:

impD
ci

(ci) = supportC(D) − supportC−{ci}(D) (3)

here, supportC−{ci}(D) is the support of the attributions except ci. The signifi-
cation of the condition accords the value of impD

ci
(ci).

(3) Weighting coefficient of condition attribution

The proportion of every condition attribution significance to the whole condition
attribution set can reflect its effect to decision-making. The weighting coefficient
of ith condition attribution is defined as

ai =
impD

ci
(ci)∑n

j=1 impD
ci

(ci)
(i = 1, 2, · · · , n) (4)
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3.2 Diagnosis System

Process a group furnace flame images gained from different statuses, regard the
image characters as condition attributions, denoted as C = c1, c2, · · · , cn; regard
the furnace statuses as decision-making attributions, denoted as D = yi; This
group furnace flame images in different status form the universe, denoted as
U = u1, u2, · · · , um. Firstly, confirm the value of the condition attribution. Here,
according to the status we divide them by threshold to several values. Denote ’big
effective area’, ’big high temperature area’, ’big area ratio’, ’long centroid offset’
and ’steady status’ by ’1’; denote ’small effective area’, ’small high temperature
area’, ’small area ratio’, ’short centroid offset’ and ’unsteady status’ by ’2’. Thus,
a decision-making table is formed showed in table 1(here list 5 pieces of images).

Calculate the support of the four image characters to the combustion status
by formula (2)

supportCD = 0.9524 (5)

Calculate the significant of every images character impD
C−{ci}(ci) and weighting

coefficient of every condition attribution and weighting coefficient of every con-
dition attribution ai by the formula (3) and (4), here i = 1, 2, 3, 4, the results
are showed in table 3.

Judge the furnace status by this method, and compare the judgments with the
real statuses. The judgment of the status can gain by calculate the support to the
status with the results in table 2 and table 3. For example, in image u1 the four
image characters are all denoted by ’1’, so its support to the steady status is 1
(= 0.1428 + 0.1428 + 0.2588 + 0.4286) and its support to the unsteady status is
0. The comparison is showed in table 3. The veracity of this method is 85.71%.

Table 1. The Decision-making Table of the Boiler Diagnosis

Image
Condition attribution

Combustion
Effective area High temperature area Area ratio Centroid offset status

u1 1 1 1 1 1
u2 1 1 1 1 1
u3 2 1 1 1 2
u4 1 1 1 1 1
u5 1 1 1 1 1

Table 2. Support, Significance and Weighting Coefficient of the Indices

Effective area High temperature area Area ratio Centroid offset

Decision attribution
0.9048 0.9048 0.8571 0.8095

support

Decision attribution
0.0476 0.0476 0.0953 0.1429

significance

Weighting coefficient
0.1428 0.1428 0.2858 0.4286

of condition attribution
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Table 3. Results of Evaluation and the Practice Status

Image The results of this method (There is probability in the bracket) Real status

u1 (1.0000) steady Steady
u2 (1.0000) steady Steady
u3 (0.8570.143) steady Unsteady
u4 (1.0000) steady Steady
u5 (1.0000) steady Steady

4 Conclusion

In this paper, we proposed the threshold segmentation with green light after the
analysis of the flame image characteristics in the boiler furnace, and use the polar
coordinate method to fix the flame core order, which effectively avoid the ’bits
and pieces’ problem. After the experiment compare, we can conclude that this
method keep the integrity of the flame core after segmentation. It is an effective
image segmentation method for the further research of the diagnosis. Use the
decision-making reasoning knowledge of the rough sets, and set up the decision-
making table with the decision-making attributes from the image characteristics.
And we computed the effective weight coefficients of the condition attributes
to the decision-making attributes for the judgment of the furnace status. The
experiment can prove that our method is effective for the diagnosis.
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Abstract. Due to various inherent uncertain factors, system uncer-
tainty is an important intrinsic feature of decision information systems. It
is important for data mining tasks to reasonably measure system uncer-
tainty. Rough set theory is one of the most successful tools for measuring
and handling uncertain information. Various methods based on rough set
theory for measuring system uncertainty have been investigated. Their
algebraic characteristics and quantitative relations are analyzed and dis-
closed in this paper. The results are helpful for selecting proper uncer-
tainty measures or even developing new uncertainty measures for specific
applications.
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1 Introduction

Due to the inherent existence of many unavoidable uncertain factors, system
uncertainty is an important intrinsic feature of decision information systems.
Usually, system uncertainty affects not only data mining processes, but also the
performances of mined knowledge. Thus, it is necessary for data mining tasks to
effectively measure and handle system uncertainty. In fact, various theoretical
models and mathematical tools, such as probability theory, evidence theory,
fuzzy set, and vague set etc, have already been applied in solving this problem.
Rough set theory [1] is an important tool for handling uncertain information.
Many approaches for measuring system uncertainty have been proposed based on
this theory [2,3,4,5,6]. These methods measure system uncertainty from various
perspectives, and thus describe different facets of information systems.

It is important to apply proper uncertainty measures in specific applications.
That requires a careful study on characteristics of different uncertainty measures.
Some measures based on rough set theory have already been briefly discussed in
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[7].Herein, more measures based on rough set theory are involved and more in-
teresting conclusions are got. Those results would be helpful for selecting proper
uncertainty measures or even developing new measure methods for specific ap-
plications.

2 Basic Knowledge of Rough Set Theory

Def. 1. A 4-tuple DS=(U, V, f, C∪D) is an decision information system, where
U is a finite set of instances, C is a finite set of condition attributes, D is a
finite set of decision attributes, Vα is the domain of α ∈ C ∪ D and V = ∪Vα,
f : U → V is an information function mapping instances to attribute space.

The vaule of instance x on attribute α is denoted by α(x), i.e. f(x, α) = α(x).

Def. 2. Given DS=(U, V, f, C∪D) and A⊆C∪D, A defines an indiscernibility
relation IND(A) on U : IND(A) = {(x, y)|(x, y)∈U × U ∧ ∀α ∈ A(α(x) =
α(y))}.

IND(A) is obviously an equivalence relation on U . It results in a partition on
U marked by U/IND(A). By notation of [x]IND(A), we refer to the equivalence
block of attributes set A containing instance x. Specialy, X∈U/IND(C) is a
condition class, and Y∈U/IND(D) is a decision class.

Def. 3. Given DS=(U, V, f, C ∪ D) and X∈U/IND(C), TX = max({X∩Y |Y∈
U/IND(D)}) is the dominant component of X; |Tx|/|X | is the dominant
ratio of X.

Def. 4. Given DS=(U, V, f, C ∪ D) and x∈ U , if ∃y∈U (y ∈ [x]IND(C) ∧ y /∈
[x]IND(D)), x is uncertain, and x is inconsistent with y; if ∀y∈U (y ∈ [x]IND(C) →
y ∈ [x]IND(D)), x is certain or deterministic.

A condition class is uncertain if it contains uncertain instances; a decision infor-
mation system is uncertain if it has at least one uncertain condition class.

For the sake of convenience, we might assume that given a DS=(U, V, f, C ∪
D), U/IND(C) = {X1, · · · , Xt} and U/IND(D) = {Y1, · · · , Ys}. We further
assume that elements of U/IND(C) and U/IND(D) are arranged in a sequence
satisfying ∃c∀i∃j(1 ≤ c ≤ t ∧ 1 ≤ i ≤ c ∧ 1 ≤ j ≤ s ∧ Xi ⊆ Yj), and ∃cβ

∀i∃j(1 ≤
cβ ≤ t ∧ 1 ≤ i ≤ cβ ∧ 1 ≤ j ≤ s ∧ |TXi |/|Xi| ≥ β), where β is a threshold in
(0.5, 1]. It is obvious that if 1 ≤ i ≤ c, Xi is certain and TXi = Xi; else TXi ⊂ Xi.

Def. 5. Given DS=(U, V, f, C ∪ D) and 0.5 < β ≤ 1, V0 = ∪1≤i≤cXi is the
positive region of C to D, V1 = ∪1≤i≤cβ

Xi is the β-positive region of C to
D, and V2 = ∪1≤i≤cβTXi

is the modified β-positive region of C to D.

V0 is defined based on traditional rough set theory. V1 and V2 are defined based on
variable precise rough set model [8],where β is the precise threshold. Obviously,
V0 ⊆ V2 ⊆ V1.
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Def. 6. Given DS=(U, V, f, C∪D) and B⊆C∪D, if U/IND(B)={X1, · · · , Xn},
the probability distribution of B on U is:

[U/IND(B) : P ] =
[

X1 · · · Xn

p(X1) · · · p(Xn)

]
, Where p(Xi)= |Xi|/|U |, i = 1, · · · , n.

Def. 7. Given DS=(U, V, f, C ∪ D) , if X∈U/IND(C) and Y∈U/IND(D),the
conditional probability of Y to X is p(Y |X) = |X ∩ Y |/|X |.

Def. 8. Given DS=(U, V, f, C ∪D), its information entropy of C on U is:
H(C) = −

∑
1≤i≤t p(Xi) log(p(Xi)) its conditional entropy of D on U to C

is H(D|C) = −
∑

1≤i≤t p(Xi)
∑

1≤j≤s(p(Yj |Xi) log(p(Yj |Xi))).

3 Rough Set Based System Uncertainty Measures

3.1 Measures in Algebra View

Def. 9. Given DS=(U, V, f, C ∪D), its uncertainty ratio based on positive
region[2] is μpos = |U − V0|/|U | = 1 − |V0|/|U |; its average uncertainty
ratio[2] is μaver =

∑
1≤i≤t p(Xi)(|Xi − TXi |/|Xi|) = 1 −

∑
1≤i≤t P (Xi)|TXi |/

|Xi|; its whole uncertainty ratio[3,4] is μwhl = 1 − (
∑

1≤i≤t |TXi |)/|U |.

Both μaver and μwhl measure system uncertainty based on the certainty of condi-
tion classes. μaver computes the average value in probability sense of uncertainty
ratios of all condition classes, while μwhl measures system uncertainty in the way
similar to μpos. Essentially, μwhl takes ∪1≤i≤tTXi rather than V0 as the positive
region of DS. The conclusion is obvious if the equality between

∑
1≤i≤t |TXi |

and | ∪1≤i≤t TXi | is noticed.
Approaches based on positive region or the certainty of condition classes mea-

sure system uncertainty in algebra view. The positive region based measure is
relevant to basic concepts of rough set theory. However, it may exaggerate sys-
tem uncertainty to some extent, for the positive region of an information system
will exclude a whole condition class even if it only contains a negligible part of
uncertain instances. Whereas, approaches based on the certainty of condition
classes take the dominant component of a condition class as certain. The cer-
tainty of a condition class is computed based on an intuition, that is, in a given
condition class, the decision value which meets most instances is the most possi-
ble value, thus all instances with such decision value can be regarded as certain.
With such ideas in mind, average uncertainty ratio gets the average value
of uncertainty ratios of all condition classes, while whole uncertainty ratio
computes the ratio of all uncertain instances to the whole universe.

3.2 Measures in Information View

In [5], decision information systems DS=(U, V, f, C ∪ D) are grouped into three
types based on their capabilities of expressing domains. Different entropy func-
tions are defined to measure system uncertainty accordingly.

The first kind: DS provides all information about the domain space.
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Def. 10. Given DS=(U, V, f, C∪D), its knowing-it-all entropy is H loc(C →
D) = H(C) + H(D|C); its uncertainty ratio based on knowing-it-all en-
tropy is μloc = 1 − (H loc(C → D) − H(D))/(log(|U |) − H(D)).

The second kind: The mapping function from C to D is deterministic only for
certain instances, but completely random for all uncertain instances.

Def. 11. Given DS=(U, V, f, C∪D), its playing-it-safe entropy is Hdet(C →
D) = −

∑
1≤i≤c(P (Xi) log(P (Xi))) + log(|U |)|U − V0|/|U |; its uncertainty

ratio based on playing-it-safe entropy is μdet = 1 − (Hdet(C → D) −
H(D))/(log(|U |) − H(D)).

Hdet(C → D)includes two separate parts: the entropies of positive region and
all uncertain instances. The former part is typically in information view while
the latter is essentially in algebra view. Thus, the concept is simultaneously with
characteristics of information and algebra views.

According to Def.11, if 1 ≤ i ≤ c, Xi contributes −p(Xi) log(p(Xi)) to
Hdet(C → D); if c < i ≤ t,Xi contributes log(|U |)(|Xi|/|U |) = p(Xi) log(|U |)
since U − V0 = ∪c<i≤tXi and |U − V0| =

∑
c<i≤t |Xi|.

The third kind: The first kind treats too obscurely the edge between certain
and uncertain parts of an information system, while the second kind deals with
that edge too abruptly. Thus, the third view handles that edge in a compro-
mising way. The distribution of uncertain instances was thought to be neither
completely deterministic nor completely random. Unfortunately, no such entropy
function is given in [5].

Dr. Chen et al also think the probability distribution is deterministic for cer-
tain instances but random for uncertain ones. For treating the edge between
certain and uncertain instances more flexibly, the positive region of an infor-
mation system is extended from V0 to either V1 or V2 by utilizing variable precise
rough set model. Accordingly, two entropy functions are defined to express sys-
tem uncertainty [6].

Def. 12. Given DS=(U, V, f, C ∪ D) and 0.5 < β ≤ 1, its entropy based on
β-positive region is H1(C → D) = −

∑
1≤i≤cβ

p(Xi) log(p(Xi))+log(|U |)|U −
V1|/|U |; its entropy based on modified β-positive region is
H2(C → D) = −

∑
1≤i≤cβ

p(TXi) log(p(TXi)) + log(|U |)|U − V2|/|U |.
Measures based on variable precise rough set model are more flexible, since the
positive regions can be adjusted by setting proper thresholds. However, their
performances depend on the precise threshold β. Moreover, neither H1(C → D)
nor H2(C → D) is properly normalized, that makes their measured results
incomparable on information systems with different scales.

4 Algebraic Characteristics and Quantitative Relations
of System Uncertainty Measures

Theorem 1. Given DS=(U, V, f, C ∪ D), μaver = μwhl.

Proof: It is obvious that μaver = μwhl according to Def.6 and Def.9.
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Theorem 2. Given DS=(U, V, f, C ∪ D), μwhl ≤ 1 − 1/ND, where ND is the
number of decision classes of DS, i.e. ND = |U/IND(D)|.

Proof: μwhl = 1− (
∑

1≤i≤t |TXi |)/|U | = 1−
∑

1≤i≤t((|TXi |/|Xi|)× (|Xi|/|U |)) =
1 −
∑

1≤i≤t(P (Xi)|TXi |/|Xi|).
According to Def.3, |TX | would be minimum for a given X ∈ U/IND(C) if

all possible decision values appear in X at equal probability. |TX |/|X | = 1/ND

under that condition. Thus, |TX |/|X | ≥ 1/ND holds for all X ∈ U/IND(C).
Accordingly, μwhl ≤ 1 − 1/ND.

Theorem 3. Given DS=(U, V, f, C ∪ D), μpos ≥ μwhl.

Proof: It is obvious that TXi = Xi if 1 ≤ i ≤ c. Accordingly, V0 = ∪1≤j≤cXi =
∪1≤i≤cTXi ⊆ ∪1≤i≤tTXi . Then,|V0| ≤ | ∪1≤i≤t TXi | =

∑
1≤i≤t |TXi |. So, μpos ≥

μwhl.

Theorem 4. Given DS=(U, V, f, C ∪ D), μloc ≥ μdet.

Proof: It is proved that H loc(C → D) ≤ Hdet(C → D)[5]. Hence, the conclusion
of μloc ≥ μdet holds according to Def.s of 10 and 11.

Lemma 1. Given DS=(U, V, f, C ∪ D), if DS is certain, H(D|C) = 0.

Theorem 5. Given DS=(U, V, f, C ∪ D), if DS is certain, μloc = μdet.

Proof: If DS is certain,H(D|C) = 0 and then H loc(C → D) = H(C)+H(D|C) =
H(C); meanwhile, it is easy to see that Hdet(C → D) = H(C) from Def. 8 and
Def.11, since c = t and V0 = U . Then, H loc(C → D) = Hdet(C → D).

Thus, μloc = μdet.

Theorem 6. Given DS=(U, V, f, C ∪ D), if μpos = 1, μdet = 0.

Proof: If μpos = 1, then |V0| = 0 and V0 = ∅. Thus, Hdet(C → D) = log(|U |)
and μdet = 0.

Given DS = (U, V, f, C ∪ D), if its μpos is 1, it is intuitively natural that
Hdet(C → D) gets its maximum value, i.e. log(|U |), since the positive region
of DS is null and all instances are uncertain. But ridiculously, μdet is 0! Obvi-
ously, that cannot reflect the real uncertainty degree of DS. This suggests that
the mathematical results of μdet could not well express the characteristics of
information systems in some special cases.

Theorem 7. Given DS =(U, V, f, C ∪ D) and 0.5 < β ≤ 1, H1(C → D) ≤
H2(C → D) ≤ Hdet(C → D).

Proof: 1) Firstly, prove H1(C → D) ≤ H2(C → D).
If 1 ≤ i ≤ c, each Xi contributes −p(Xi) log(p(Xi)) to both H1(C → D)

and H2(C → D) since TXi = Xi; similarly, if cβ < i ≤ t, each Xi con-
tributes p(Xi) log(|U |) to H1(C → D) and H2(C → D); however, if c < i ≤
cβ , each Xi contributes Z1

i = −p(Xi) log(p(Xi)) to H1(C → D) while Z2
i =

−p(TXi) log(p(TXi))+ log(|U |)p(Xi −TXi) to H2(C → D). Thus, H2(C → D)−
H1(C → D) =

∑
c<i≤cβ

Z2
i − Z1

i . If considering p(Xi) = p(TXi) + p(Xi − TXi),
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then: Z2
i − Z1

i = p(TXi)(log(p(Xi))) − log(p(TXi)) + p(Xi − TXi)(log(|U |) +
log(p(Xi))) = p(TXi) log(p(Xi)/p(TXi)) + p(Xi − TXi) log(|Xi|) ≥ 0.

Therefore, H2(C → D) − H1(C → D) ≥ 0 and H1(C → D) ≤ H2(C → D).
2)Similarly, one can get that H2(C → D) ≤ Hdet(C → D).
Thus, Theorem 7 holds.
Given DS=(U, V, f, C∪D), H1(C → D), H2(C → D) and Hdet(C → D) mea-

sure its uncertainty based on the same idea, that is, the probability distribution
is deterministic for its positive region while random for all the other instances.
All of them conceptually exaggerate the uncertainty of uncertain instances to
extreme. The difference among them is that those three entropy functions take
V1, V2, and V0 as their positive regions, respectively.

Theorem 8. Given DS=(U, V, f, C ∪ D) and β = 1, H1(C → D) = H2(C →
D) = Hdet(C → D).

Proof: If β = 1, then c = cβ , V0 = V1 = V2. Thus, Theorem 8 holds.

5 Conclusion

Uncertainty is an intrinsic feature of decision information systems. Herein, vari-
ous system uncertainty measures based on rough set theory are discussed; their
algebraic characteristics and quantitative relations are analyzed and disclosed.
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Abstract. Conflict analysis and conflict resolution play an important
role in negotiation during contract-management situations in govern-
ment and industry. The problem to be solved is how to model conflict
situations where there is uncertainty about agreement, neutrality and
disagreement among agents in a conflict situation. The solution to this
problem includes modeling a conflict situation relative to basic binary
relations on a universe of agents, introducing a measure of the degree of
conflict, and encapsulating a conflict situation in an information system.
The basic approach to modeling conflict situations is illustrated in the
context of contract negotiation during the initial phases of requirement
negotiation for a systems engineering project. An example of a high-level
requirements negotiation for an automated lighting system is presented.
The contribution of this paper is a rough set based requirements deter-
mination model using a conflict relation for representing requirements
agreements (or disagreements).

Keywords: Conflict, conflict graph, conflict resolution, negotiation, re-
quirements engineering, rough sets.

1 Introduction

Conflict analysis and resolution play an important role in government and indus-
try where disputes and negotiations about various issues are the norm. To this
end, many mathematical formal models of conflict situations have been proposed
and studied, e.g., [2,4,6,10,11,14,20,19,18]. More recently, conflict analysis as a
basic issue in e-service intelligence has been proposed by [15]. Knowledge dis-
covery in databases consists of searching for functional dependencies in the data
set. The approach used in this paper, is based on a different kind of relationship
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in the data. This relationship is not a dependency, but a conflict [15]. Formally,
a conflict relation can be viewed as a special kind of discernibility, i.e., negation
(not necessarily, classical) of indiscernibility relation which is the basis of rough
set theory [13]. Thus indiscernibility and conflict are closely related from logical
point of view. It is also interesting to note that almost all mathematical mod-
els of conflict situations are strongly domain dependent. Previous work on the
application of rough sets to conflict resolution and negotiations between agents
made it possible to introduce approximate reasoning about vague concepts [15].
Recent work in the application of rough sets to handling uncertainty in software
requirements can be found in [9]. Rough sets have also been applied to accep-
tance of software designs [16], analysis of software quality data [17]. However,
the basic assumption in all of these papers, is that requirements have already
been decided and the analysis of gathered requirements data is then performed.

By way of illustration of the rough set approach to conflict analysis and resolu-
tion, sample negotiation typically found during a system requirements engineer-
ing (SRE) project is considered. SRE is that portion of software engineering
that focuses on the functional and non-functional requirements to be included
in a system. The study of conflicts in software engineering has been studied
extensively (see, e.g., [3,5,7]). A typical requirements negotiation process for a
large system requires intense collaboration between project stakeholders that be-
gins with requirements identification and leads to negotiated commitments by all
concerned. In this paper, our approach is to represent and analyze conflicts dur-
ing a requirements-gathering process even before the requirements are decided.
This entails representing and analyzing conflicts during a collaborative process
of requirements identification by all stakeholders of a project. Our approach is
based on the Win-Win approach [1,21]. The Win-Win approach has two princi-
pal features. First, one defines a decision rationale model using a minimal set of
conceptual elements, such as win conditions, issues, options and agreements, that
serves as an agreed upon ontology for collaboration and negotiation. Second, one
defines a support framework to reason about decision rationale.

The contribution of this paper is a rough set based requirements determination
model using a conflict relation for representing requirements agreements (or dis-
agreements). Conflict graphs are used to analyze conflict situations, reason about
thedegreeof conflictandexplore coalitions.We illustrateourapproach indetermin-
ing high-level requirements of a complex engineering system through negotiation.

This paper is organized as follows. An introduction to basic concepts is given
Sect. 2. Conflicts and information systems are discussed in Sect. 3. Sect. 4 begins
with a model for a conflict situation during requirements identification, followed
by an illustration high-level requirements negotiation for an automated lighting
system in Sect. 4.1. Analysis of requirements conflicts are discussed in Sect. 4.2.

2 Basic Concepts of Conflict Theory

The basic concepts of conflict theory that we use in this paper are due to [15].
Let us assume that we are given a finite, non-empty set Ag called the universe.
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Elements of Ag will be referred to as agents. Let a voting function v : Ag →
{−1, 0, 1}, or in short {−, 0, +}, be a number representing his/her voting re-
sult about some issue under negotiation, to be interpreted as against,neutral
and favorable, respectively. The pair CS = (Ag, V ), where V is a set of voting
functions, will be called a conflict situation.

In order to express relations between agents, we define three basic binary
relations on the universe: agreement, neutrality, and disagreement. To this end,
for a given voting function v, we first define the following auxiliary function:

φv(ag, ag′) =

⎧⎨⎩ 1, if v(ag)v(ag′) = 1 or ag = ag′

0, if v(ag)v(ag′) = 0 and ag �= ag′

−1, if v(ag)v(ag′) = −1.
(1)

This means that, if φv(ag, ag′) = 1, agents ag and ag′ have the same opin-
ion about an issue v (agree on issue v); if φv(ag, ag′) = 0 means that at least
one agent ag or ag′ has no opinion about an issue v (is neutral on v), and if
φv(ag, ag′) = −1, means that both agents have different opinions about an issue
v (are in conflict on issue v). In what follows, we will define three basic re-
lations R+

v ,R0
v and R−

v on Ag2 called agreement, neutrality and disagreement
relations respectively, and defined by (i) R+

v (ag, ag′) iff φv(ag, ag′) = 1; (ii)
R0

v(ag, ag′) iff φv(ag, ag′) = 0; (iii) R−
v (ag, ag′) iff φv(ag, ag′) = −1. It is eas-

ily seen that the agreement relation is an equivalence relation. Each equivalence
class of the agreement relation will be called a coalition with respect to v. For the
conflict or disagreement relation we have: (i) not R−

v (ag, ag); (ii) if R−
v (ag, ag′)

then R−
v (ag′, ag); (iii) if R−

v (ag, ag′) and R+
v (ag′, ag′′) then R−

v (ag, ag′′). For the
neutrality relation we have: (i) not R0

v(ag, ag); (ii) R0
v(ag, ag′) = R0

v(ag′, ag).
In the conflict and neutrality relations there are no coalitions. In addition,
R+

v ∪ R0
v ∪ R−

v = Ag2. All the three relations R+
v , R0

v , R−
v are pairwise dis-

joint.
With every conflict situation CS = (Ag, v) we will associate a conflict graph.

Examples of conflict graphs are shown in Figure 1.
In Figure 1(a), solid lines denote conflicts, dotted line denote agreements, and

for simplicity, neutrality is not shown explicitly in the graph. As one can see B,

(a) Exemplary Conflict
 

conflict between 
coalitions 

1 

0 
sh2, sh3, 

sh4 

-1 

sh5, 
sh8 

sh1, sh9, 
sh6, sh10, 
sh7, sh11 

(b) Requirement Conflict (see R4 in Table 2)

Fig. 1. Sample Conflict Graphs
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C, and D form a coalition. A conflict degree Con(CS) of the conflict situation
CS = (Ag, v) is defined by

Con(CS) =

∑
{(ag,ag′): φv(ag,ag′)=−1} |φv(ag, ag′)|

2!n
2 ( × (n − !n

2 () . (2)

where n = Card(ag). Observe that Con(CS) is a measure of discernibility be-
tween agents from Ag relative to the voting function v. For a more general
conflict situation CS = (Ag, V ) where V = {v1, . . . , vk} is a finite set of voting
functions each for a different issue/requirements the conflict degree in CS (ten-
sion generated by V ) can be defined by Con(CS) =

∑k
i=1 Con(CSi)/k where

CSi = (Ag, vi) for i = 1, . . . , k.

3 Conflicts and Information Systems

An information system is a table rows of which are labeled by objects (agents),
columns by attributes (issues) and entries of the table are values of attributes
(votes), which are uniquely assigned to each team member and attribute, i.e.
each entry corresponding to row x and column a represents opinion of an agent
x about issue a. Formally an information system can be defined as a pair S =
(U, A), where U is a nonempty, finite set called the universe; elements of U
will be called objects and A is a nonempty, finite set of attributes [13]. Every
attribute a ∈ A is a total function a : U → Va, where Va is the set of values
of a, called the domain of a; elements of Va will be referred to as opinions, and
a(x) is opinion of agent x about issue a. The above given definition is general,
but for conflict analysis we will need its simplified version, where the domain of
each attribute is restricted to three values only, i.e. Va = {−1, 0, 1}, for every
a, meaning disagreement, neutral and agreement respectively. For the sake of
simplicity we will assume Va = {−, 0, +}. Every information system with the
above mentioned restriction will be referred to as a situation.

We now observe that any conflict situation CS = (Ag, V ) can be treated as
an information system where Ag = {ag1, . . . , agn} and V = {v1, . . . , vk} with
the set of objects Ag (agents) and the set V of attributes (issues).

4 Requirements Identification and Conflicts

A typical system requirements engineering process leads to conflicts between
project stakeholders. A stakeholder is one who has a share or an interest in the
requirements for a systems engineering project. Let Ag be represented by the
set SH (stakeholders). Let V denote the set of requirements. Let CS = (SH, V )
where SH = {sh1, . . . , shn} and V = {v1, . . . , vk}.

4.1 Example: System Requirements Identification

Cost effective engineering of complex software systems involves a collabora-
tive process of requirements identification through negotiation. This is one of
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the key ideas of the Win-Win approach [1] used in requirements engineering.
This approach also includes a decision model where a minimal set of concep-
tual elements, such as win conditions, issues, options and agreements, serves
as an agreed upon ontology for collaboration and negotiation defined by the
Win-Win process. System requirements (goals) are viewed as conditions. If all
members agree on a requirement (i.e., no conflicts), then that requirement be-
comes an agreement. Otherwise, the requirement becomes an issue for further
negotiation. Each issue could have an option (i.e., an alternate requirement)
suggested by the team. We illustrate our ideas with a problem of achieving
agreement on high-level system requirements for a home lighting automation
system (HLAS) [8]. The initial HLAS requirements user group consists of mem-
bers drawn from a stakeholders list which is comprised of builders, distributors,
electrical contractors, homeowners, system development team, marketing team
and management. The user group (the set SH of agents) prepares the pre-
liminary list of requirements. Then a questionnaire based survey (on a wide
audience) is conducted and the result of the initial votes is presented in Ta-
ble 1. Let R = {Ri | 1 ≤ i ≤ 16} denote a set of project requirements shown in
Table 1. Support for each requirement from members of SH is indicated by

Table 1. Initial Requirements

Voting Results

ID Requirements Votes or Support

R1 Custom Lighting Scenes 120
R2 Automatic Time Setting for lights 110
R3 Built-in security features 104
R4 100% System Reliability 100
R5 Vacation Setting 95
R6 Easy-to-program non-PC control unit 93
R7 Any light can be dimmed 90
R8 Interface to Home Security System 80
R9 Voice Activation 70
R10 Close garage doors 67
R11 Easy to Install 55
R12 Easily expanded when remodeling 39
R13 Automatically turn on lights when someone approaches the door 60
R14 Restore after power fail 30
R15 International User Interface 10
R16 Control Lighting via phone 43

the number of votes for each option. Votes (Support) for each requirement is
defined as: V otes (CSv) =

∑
{ag∈SH:v(ag)=1} 1 where CSv = (SH, v), v ∈ R.

Hence, we are counting the number of votes for the issue v by members of SH .
After the initial round of voting, the HLAS requirements user group decides
to prioritize the requirements where requirements with card(V otes(CSv)) less
than 40 will be discarded. We now have a new conflict group (situation) with
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a smaller set of team members SH ′ and a subset of requirements defined as
follows: CS′ = (SH ′, V ′), where V ′ = {R1, . . . , R11, R13}. The new user group
SH ′ will now consist of sh1, sh2 representing electrical contractors responsi-
ble for installation and support, sh3, sh4 representing builders who are general
contractors responsible to the homeowners, sh5 is a marketer of the product,
sh6, sh7, sh8, sh9 representing the systems development team and sh10, sh11
representing the management that is responsible for approving funding for the
project. The new user group (team) will vote on the new set of requirements
(win conditions) to establish agreements. The voting result is given in Table 2.
From the voting results the indiscernibility relations IndRi(V ′) for i = 1, . . . ,

Table 2. Win Conditions

Voting Results

SH ′ R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R13

sh1 0 1 0 -1 1 1 0 1 -1 1 1 0
sh2 0 1 0 0 1 1 0 1 -1 1 1 0
sh3 1 1 1 0 1 1 1 1 0 1 0 1
sh4 1 1 1 0 1 1 1 1 0 1 0 1
sh5 1 1 1 1 1 1 1 1 1 1 0 1
sh6 1 1 1 -1 1 0 1 1 -1 1 1 1
sh7 1 1 1 -1 1 0 1 1 1 1 1 1
sh8 1 1 1 1 1 0 1 1 -1 1 1 1
sh9 1 1 1 -1 1 0 1 1 -1 1 1 1
sh10 0 1 1 -1 1 1 1 0 -1 0 -1 1
sh11 0 1 1 -1 1 1 1 0 -1 1 -1 1

11, 13 (see [13]) identified by partitions of V ′ are defined. For example: IndR1(V ′)
= {{sh3, sh4, sh5, sh6, sh7, sh8, sh9} , {sh1, sh2, sh10, sh11}}.

Algorithm 1. Algorithm for determining win agreements
Input : Equivalence Classes (EC) defined by IndR1 , IndR2 , . . . ,

IndR11 , IndR13

Output: Non-conflicting requirements from {R1, . . . , R11, R13}
(all e ∈ EC) select e where e = R−1

i {0} = {sh ∈ SH ′ : Ri(sh) =
0} or e = R−1

i {1} = {sh ∈ SH ′ : Ri(sh) = 1} and i ∈ {1, . . . , 11, 13};
// select all equivalence classes corresponding to the values 0 or 1 of
voting functions

The output of Alg. 1 will now consist of a set of requirements that are deemed
as agreement between all stakeholders. This means that the team disagrees on
the following three requirements: R4, R9 and R11. Also, note that an abstention
(vote of 0) for any requirement is considered a tacit approval for the purposes of
requirements negotiation. The conflict graph CS′

R4
= (SH ′, R4) can be presented
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in a simplified form as a graph with nodes represented by coalitions and edges
representing conflicts between coalitions as shown in Fig. 1(b).

4.2 Requirements Conflict Analysis and Negotiation

Since win conflict negotiation necessitates agreement on each requirement, we
do not use the definition of a more general conflict situation. From this graph,
one can compute the conflict degree using using Eqn. 2 where Con(CS′

R4
) =

0.4. The degree of conflict for the remaining two requirements are Con(CS′
R9

)
= 0.5 and Con(CS′

R11
) = 0.4. Clearly, there is disagreement over the following

requirements: 100% System Reliability, Voice Activation and Ease of installa-
tion. This indicates that the team is not comfortable with such stringent (100%
reliability) or unclear (easy to install) requirements. Since this situation calls for
a new round of negotiations with a new set of options (modified requirements),
it would interesting to look at coalitions.

The conflict degree Con(CS′) in CS′ = (SH ′, V ′) (tension generated byV ′)
for this round of negotiations can be calculated using formula for Con(CS) and
is equal to 13/120. This means that we have a new conflict situation defined
as follows: CS′′ = (SH ′, V ′′) where V ′′ represents new options for the three
requirements. The options could include a more granular definition of reliability
(e.g., 80 to 90% or 80 to 85% ), a more quantifiable definition of ease of installa-
tion requirement (e.g., installation time between 3-5 hours). Notice we retain the
same number of team members (SH ′). So the voting and negotiation continues
until there is complete agreement on the high-level requirements for the system.

5 Conclusion

This paper introduces rough set based requirements determination model us-
ing the notion of conflict relations for representing requirements agreements,
disagreements and neutrality. Conflict graphs are used to analyze conflict situa-
tions, reason about the degree of conflict and explore coalitions. An application
of this approach is given using a complete example of a home lighting automa-
tion system high level requirements. The model takes into account only the first
level of negotiation. However, this can be extended to the second level, where
each agreement (requirement) will now consist of several low-level requirements.
In other words, there will be an implicit hierarchical relationship between re-
quirements. So the stakeholders will now have to negotiate by voting on the
lower-level requirements. At the lower level, coalitions (like-minded team mem-
bers) and conflict degrees amongst coalitions become important. The proposed
attempt to conflict analysis offers deeper insight into structure of conflicts, en-
ables analysis of relationship between stakeholders and requirements being de-
bated. Finally, the simplicity of the mathematical model of conflicts considered,
suggests the possibility of automated tool support for requirements negotiation.
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Abstract. Knowledge discovery approaches based on rough sets have
successful application in machine learning and data mining. As these ap-
proaches are good at dealing with discrete values, a discretizer is required
when the approaches are applied to continuous attributes. In this paper,
a novel adaptive discretizer based on a statistical distribution index is
proposed to preprocess continuous valued attributes in an instance in-
formation system, so that the knowledge discovery approaches based on
rough sets can reach a high decision accuracy. The experimental results
on benchmark data sets show that the proposed discretizer is able to
improve the decision accuracy.

Keywords: Knowledge discovery, rough sets, continuous attribute dis-
cretization, decision-making, data preparation.

1 Introduction

Based on rough set theory, knowledge discovery, machine learning and data min-
ing approaches [1,2] have been developed. For example, the multi-knowledge ap-
proach [3,4] is based on multiple reducts from rough set theory. Multi-knowledge
approach can extract more useful knowledge from a training set so that a high
decision accuracy can be reached. Because this approach prefers dealing with dis-
crete data, a transformation from continuous values to discrete values is required.
This is done using a continuous attribute discretizer. Two classes of discretiz-
ers (unsupervised and supervised discretizers) have been proposed in [5,6,7]. In
this paper a new adaptive discretizer is proposed to solve the data type trans-
formation problem in approaches based on rough sets. In this new discretizer,
a distributional index is defined and applied to determine the splitting point
within an interval. Based on the index decrement, the discretizer can adaptively
discretize any continuous attribute without involvement of users. The discretizer

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 241–246, 2006.
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can share statistical information with the multi-knowledge approaches and the
Bayes classifier. The discretizer can also be applied to other machine learning
approaches for discretization of continuous attributes. In Sect. 2, a statistical
distribution is introduced. In Sect. 3, a algorithm for discretization is proposed.
Experimental results and analysis are given in Sect. 4. Sect. 5 concludes the
paper.

2 Statistical Distribution

2.1 Instance Information System

Following the notation in [2,4,8,12], let I =< U, A ∪ D > represent a in-
stance information system, where U = {u1, u2, , ui, , un} is a finite non-empty
set, called an instance space or universe, and where ui is called an instance in
U . A = a1, a2, a3, , ai, , am, also a finite non-empty set, is a set of attributes of
the instances, where ai is an attribute of a given instance. D is a non-empty
set of decision attributes, and A ∪ D = ∅. For every a ∈ A there is a domain,
represented by Va, and there is a mapping a(u) : U → Va from U to the domain
Va , where a(u) represents the value of attribute a of instance u and is a value
in the set Va. For a given universe U , a domain of attributes is as follows.

Va = a(U) = a(u) : u ∈ Ufor a ∈ A. (1)

The domain of a decision attribute is represented by

Vd = d(U) = d(u) : u ∈ Ufor d ∈ D. (2)

2.2 Value Number Distribution

In order to obtain a statistical table, a set of distribution numbers are defined
as follows. Suppose that there is an instance information system I =< U, A ∪
D >. Let Ndk,ai,vx represent the number of instances with decision value dk and
attribute value vx ∈ Vai for attribute ai.

Ndk,ai,vx = |u : d(u) = dk and a(u) = vx for all u ∈ U |. (3)

Let Nai,vx represent the number of instances with attribute value vx ∈ Vai for
attribute ai.

Nai,vx = |u : a(u) = vx for all u ∈ U |. (4)

2.3 Definition of Distributional Index

Based on principles of entropy of information [10,11], we construct a distribu-
tional index. Let vst → ven represent an interval of attribute value from value
vst to ven and Ndmain,ai,vst→ven represent the number of instances that satisfies

Ndmain,ai,vst→ven = max
d∈Vd

(Nd,ai,vst→ven). (5)
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The distributional index is defined as follows.

E(vst → ven) =
−Ndmain,ai,vst→ven

|U | logn(
Ndmain,ai,vst→ven

Nai,vst→ven

). (6)

where |U | is the total number of instances in the instances information sys-
tem, and n is the number of decision values. If vst → ven covers whole range
of attribute values, Nai,vst→ven = |U |. Suppose that all the values within this
interval support one decision, i.e. Ndmain,ai,vst→ven = Nai,vst→ven . Therefore, we
have the minimum of E(vst → ven) = 0. If the Ndk,ai,vst→ven is an uniform
distribution over the decision space, the maximum of E(vst → ven) is equal to
Nai,vst→ven/|U |. This number decreases as more intervals are split.

3 Algorithm of Discretization

Based on the definition of the distributional index, a very simple algorithm is
proposed to discretize continuous attributes. In order to discretize a continuous
attribute, the number of intervals and the borders of intervals have to be deter-
mined. Let vborder represent the value of splitting point. The best splitting point
can be found using following expression.

vborder = arg min
vbd∈vst→ven

(E(vst → vbd) + E(vbd → ven)). (7)

According to the property of distribution index, the distribution index always
becomes smaller when a interval is split into two intervals. Suppose that inter-
val vst → ven is split into two intervals vst → vbd and vbd → ven. The index
decrement is defined as

ΔEvst→ven(vbd) = {E(vst → ven) − [E(vst → vbd) + E(vbd → ven)]}. (8)

Based on this definition the splitting point can be rewritten as follows.

vborder = arg max
vbd∈vst→ven

ΔEvst→ven(vbd). (9)

For example, row 1 to 3 in Fig. 1 show a number distribution of Attribute
2 in the Wine data set. Applying Eq. 9 to this attribute, two intervals are
obtained by splitting at the border v32 with maximal ΔE as shown in row 4
in Fig. 1. Applying Eq. 9 to the new intervals, the maximal decrement of the
index can be obtained for splitting each interval. These new intervals and their
the maximal decrements are put into a candidate list. The interval with largest
maximal decrement in the candidate list is selected to split further. This splitting
procedure is repeated until index decrement is zero for all the intervals or the
desired number of intervals is reached. This is very different from the existing
discretization approaches [5,6,7]. Row 4 to 7 in Fig. 1 show the discretization
procedure of Attribute 2 in the Wine data set. Each row shows the curve of
ΔE vs splitting point within the selected interval. The circle indicates the the
splitting point with the maximal decrement.



244 Q. Wu et al.

Fig. 1. Procedure of Discretization

4 Experimental Results

A set of 13 benchmark data sets from the UCI Machine Learning Repository [9]
was applied to test both multi-knowledge approaches with the discretizer and
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without the discretizer. The decision accuracies under the ten-fold cross valida-
tion standard are given in Table 1. Column ‘No’ lists decision accuracies for
multi-knowledge approach without the discretizer. Column ‘Dp’ lists decision
accuracies for multi-knowledge approach with the discretizer. In order to com-
pare with an unsupervised discretizer, column ‘5e’ lists decision accuracies for
multi-knowledge approach with a 5-identical-interval discretizer. It can be seen
that multi-knowledge approach with the adaptive discretizer improved decision
accuracies for 13 data sets. The average accuracy over 13 data sets is better
than multi-knowledge approaches without the adaptive discretizer and with a
5-identical-interval discretizer. Column C-type Attributes gives the number of
continuous attributes contained in corresponding data set. The names with ‘*’
indicate that some attribute values are missing in the data set.

Table 1. Comparison Results for New Discretizer An: Attribute Number, Cn: Con-
tinuous Attributes, In: Instance Number, No: No-Discretizer, Dp: Using the Proposed
Discretizer, 5e: Using 5-Equal Discretizer

Data An Cn In No Dp 5e

Sonar 60 60 208 77.8 97.1 91.4
Horse-colic* 27 7 300 80.0 86.3 80.3
Ionosphere 34 34 351 90.6 93.7 92.6
Wine 13 13 178 98.9 99.4 97.8
Crx-data* 15 6 690 85.1 86.5 85.0
Heart 13 6 270 83.3 86.3 85.1
Hungarian* 13 6 294 85.4 85.4 84.0
SPECTF 44 44 80 73.8 98.8 92.5
Bupa 6 6 345 65.5 70.2 67.0
Iris-data 4 4 150 96.7 96.7 93.3
Ecoli 6 6 336 71.5 75.3 75.0
Anneal* 38 6 798 99.4 99.7 99.7
Bands* 39 20 540 77.8 79.6 76.5
Average 83.5 88.8 86.2

5 Conclusion

In this paper a new discretizier based on the distributional index is proposed.
The minimum of the distributional index is applied to determine the border
value for splitting an interval. The maximum of index decrement is applied to
select the new intervals to split further. This discretizier has combined with both
information entropy and statistical distributions so that quality of rules exacted
from data sets can be improved after the discretization. Therefore, high decision
accuracies can be obtained. As number distributions are also applied in the naive
Bayes classifier and the multi-knowledge approaches [4,12], this discretizier can
be combined with the naive Bayes classifier and the multi-knowledge approaches
with very little increase of computational cost. The discretizer has been combined
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with the multi-knowledge approach to making decision. The experimental results
on 13 benchmark data sets show that the average accuracy has been improved.
This discretizer can be combined with other machine learning approaches for
further study.
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Abstract. Recognition of financial risk (investment risk and profit risk)
has attracted more and more attention of investors, because each investor
is threaten by the financial risk. Function S-rough set (function singular
rough set) has law characteristic and the law has heredity characteris-
tic. Using function S-rough set, this paper advances the recognition of
financial risk law and gives its recognition model and an application ex-
ample. Function S-rough set is defined by R-function equivalence class
[u], ui ∈ [u] is a function (or a law). Function S-rough set is the general
form of S-rough set (singular rough set) and S-rough set is the special
case of function S-rough set. The results of this paper have lots of im-
portant applications.

Keywords: Function one direction S-rough set, financial risk law,law
recognition model, law heredity, law mining, applications.

1 Introduction

Using Z. Pawlak rough set[1], in 2005, [2] put forward function S-rough set
(function singular rough set), which is defined by R-function equivalence class
[u], where u is a function and R is the equivalence relation. Function S-rough
set has two forms: function one direction S-rough set and function two direction
S-rough set. Function S-rough set is the general form of S-rough set (singular
rough set), and S-rough set is the special case of function S-rough set. In 2002,
[4] advanced S-rough set, and [4-9] gave further discussion about the character-
istics of S-rough set. Function S-rough set has dynamic function characteristic
(one direction dynamic function characteristic, two direction dynamic function
characteristic), and function S-rough set is an important tool in law mining[3].
Using function one direction S-rough set, this paper studies the recognition of
risk law in the financial system and gives the recognition model and applications.
All the research results are new and can be used in the analysis of financial risk.

What is a law? In the point of system science, the function (discrete func-
tion, continuous function) on the interval [a, b] is the law on [a, b]. Obviously, the
function of investment capital on [a, b] is the capital law on [a, b].
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To be easy to accept the results given in the paper, we introduce function
one direction S-rough set[2] in Section 2, and these concepts are important for
understanding this paper.

2 Function One Direction S-Rough Set

Assumption: In section 2, for simplicity, R- function equivalence class [u(x)] is
denoted as [u]; the functions u(x),v(x) are denoted as u,v; the universe of func-
tion D(x) is denoted as D ; the function set Q(x) = {u(x)1, u(x)2, · · · , u(x)m} ⊂
D(x) is denoted as Q = {u1, u2, · · · , um} ⊂ D . Where R is the set of attributes.

Definition 2.1. Suppose D be a function universe and Q = {u1, u2, · · · , um} ⊂
D be a function set, if there is an element transfer[4-9] f ∈ F , which can transfer
v(v ∈ D , v∈Q) into f(v) = u ∈ Q, then f ∈ F is called function transfer on D
and F = {f1, f2, · · · , fm} is called the function transfer family; or

∃v ∈ D , v∈Q ⇒ f(v) = u ∈ Q (1)

Definition 2.2. Given Q ⊂ D , Q◦ is called one direction S-function set of Q, if

Q◦ = Q ∪ {v|v ∈ D , v∈Q, f(v) = u ∈ Q} (2)

Qf is called f -extension of Q, moreover

Qf = {v|v ∈ D , v∈Q, f(v) = u ∈ Q} (3)

Definition 2.3. (R, F )◦(Q◦) is called the lower approximation of Q◦ ⊂ D , if

(R, F )◦(Q◦) = ∪[u]

= {u|u ∈ D , [u] ⊆ Q◦} (4)

(R, F )◦(Q◦) is called the upper approximation of Q◦ ⊂ D , if

(R, F )◦(Q◦) = ∪[u]

= {u|u ∈ D , [u] ∩ Q◦ �= φ} (5)

where F �= φ and [u] is R-function equivalence class.

Definition 2.4. The set pair composed by (R, F )◦(Q◦) and (R, F )◦(Q◦) is called
function one direction S-rough set of Q◦ ⊂ D , moreover

((R, F )◦(Q◦), (R, F )◦(Q◦)) (6)

BnR(Q◦) is called the R-boundary of Q◦ ⊂ D , moreover

BnR(Q◦) = (R, F )◦(Q◦) − (R, F )◦(Q◦) (7)

Definition 2.5. As(Q◦) is called the assistant set generated by function one
direction S-rough set ((R, F )◦(Q◦), (R, F )◦(Q◦)), if

As(Q◦) = {u|v ∈ D , v∈Q, f(v) = u∈̃Q} (8)

where ”∈̃” means that part of v is transferred into Q by f ∈ F .
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The structure of function two direction S-rough set can be seen in [1].
Using the conception introduced in section 2, section 3 and 4 will give the

law heredity generation of [u] and law model.

3 Law and Its Heredity Generation

Assumption: Function equivalence class [u] = {u1, u2, · · · , um}, α = {α1, α2,

· · · , αλ} is the set of attributes of [u], x
(0)
i is has the characteristic data sequence

of ui ∈ [u], and x
(0)
i = (x(0)(1)i, x

(0)(2)i, · · · , x(0)(n)i), x(0)(k)i ∈ R+. This sec-
tion is based on function one direction S-rough set.

Definition 3.1. Given [u] ∈ D , card([u]) = 1, x(1)(k) is the characteristic value
generated from [u] at the point k, x(1)(k) ∈ R+; x(1) is the polyline law gener-
ated by [u], moreover

x(1) = (x(1)(1), x(1)(2), · · · , x(1)(n)) (9)

if ∀k, x(1)(k) satisfies

x(1)(k) =
k∑

i=1

x(0)(i) (10)

where x(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) is the characteristic value of [u] at
the point k = 1, 2, · · · , n, x(0)(k) ∈ R+.

Obviously, x(1) is increasing.

Definition 3.2. p(k + 1) is called the law generated by [u] ∈ D , moreover

p(k + 1) = (1 − ea)(x(0)(1) − ϕ

a
)e−ak (11)

where a, ϕ are undetermined parameters, which can be determined from
section 4.

Definition 3.3. Given [u] ∈ D , card([u]) = t, t ∈ N+, t < m, [u]f ∈ D is called
f -heredity class of [u], if the attribute set αf of [u]f and the attribute set α of
[u] satisfy

card(α) ≤ card(αf ) (12)

where ∃β∈α, f(β) = αλ+1 ∈ α; α = {α1, α2, · · · , αλ}, αf = α ∪ {f(β)} = {α1,
α2, · · · , αλ, αλ+1}. f -heredity equivalence class [u]f means that each attribute
αi of [u] is in the attributes set αf of [u]f .

Definition 3.4. p(k + 1)f is called f -heredity law of p(k + 1) generated by
[u] ∈ D , moreover

p(k + 1)f = (1 − eb)(x(0)(1) − μ

b
)e−bk (13)

where p(k + 1)f is the law generated by [u]f ∈ D and b, μ are undetermined;
[u]f ⊂ [u].
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It is easy to get the following propositions.

Proposition 1. f -heredity law p(k + 1)f has the same law characteristic as
p(k + 1), vice versa.

Proposition 2. f -heredity law p(k + 1)f and the law p(k + 1) satisfy

p(k + 1)f ≤ p(k + 1). (14)

4 Law Generation and Its Model

Given a data sequence x(0), moreover

x(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)), ∀x(0)(k) ∈ R+ (15)

x(1) is obtained from x(0), moreover

x(1) = (x(1)(1), x(1)(2), · · · , x(1)(n)) (16)

where x(1)(k) =
∑k

j=1 x(0)(j), k = 1, 2, · · · , n.
We get the differential equation from (16), moreover

dx(1)

dt
+ ax(1) = u (17)

The solution of (17) is x̂(1)(k + 1), moreover

x̂(1)(k + 1) = (x(0)(1) − u

a
)e−ak +

u

a
(18)

The parameter u, a can be gotten from the following formula.(
a
u

)
= (BT B)−1BT YN

B =

⎛⎜⎜⎝
−(x(1)(1) + x(1)(2))/2 1
−(x(1)(2) + x(1)(3))/2 1

· · ·
−(x(1)(n − 1) + x(1)(n))/2 1

⎞⎟⎟⎠ , YN = (x(0)(2), x(0)(3), · · · , x(0)(n))T

(15) generates the law x̂(0)(k + 1), moreover

x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k)

= (1 − ea)(x(0)(1) − u

a
)e−ak (19)

(20) can be used to enhance the precision of x̂(0)(k + 1), moreover

αi =
1
α

− 1
eα − 1

(20)

where the initial value of α is 0.5 and i is the iterative time.
From the discussion of section 1-4, section 5 will give the application of func-

tion one direction S-rough set in the recognition of financial risk.
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5 Function One Direction S-Rough Set and Recognition
of Financial Risk

Assumption: To simplify the analysis, in the following discussion we assume
that (R, F )◦(Q◦) = (R, F )◦(Q◦), (R, F )◦(Q◦) = ∪[u] = [u] = {u1, u2, u3, u4}.
R-function equivalence class [u] is a subsystem of the investment system Ω, and
α is the attribute set of the investment risk [u], α = {α1, α2, α3}, where the name
of αi is omitted. x

(0)
j is the sequence of characteristic values of uj ∈ [u] on the

integer interval [1,5], j = 1, 2, 3, 4, and we list x
(0)
j in Table 1.

Table 1. The Sequence of Characteristic Values

x(0)(1)i x(0)(2)i x(0)(3)i x(0)(4)i x(0)(5)i i = 1, 2, 3, 4

x
(0)
1 2.13 2.21 2.73 2.62 3.17

x
(0)
2 2.87 2.91 3.18 3.76 3.98

x
(0)
3 3.12 3.64 3.52 4.13 3.64

x
(0)
4 2.96 3.27 3.82 3.97 4.16

By x(0)(k) =
∑4

i=1 x(0)(k)i and k = 1, 2, 3, 4, 5, we get the compound character-
istic data sequence x(0) of [u] in Table 1, moreover

x(0) = (x(0)(1), x(0)(2), x(0)(3), x(0)(4), x(0)(5))

= (11.08, 12.03, 13.25, 14.48, 14.95) (21)

From (21) we get the broken line law generated by [u].

x(1) = (x(1)(1), x(1)(2), x(1)(3), x(1)(4), x(1)(5))

= (11.08, 23.11, 36.36, 50.84, 65.79) (22)

From (15)-(20) in Section 4, we get the P(k + 1) generated by [u], moreover

P(k + 1) = (1 − ea)(x(0)(1) − ζ

a
)e−ak

= (1 − e−0.0722)(x(0)(1) + 152.27)e0.0722k = 11.38e0.0722k (23)

(23) is the law that we expect before investment or the subsystem [u] should
behave; in another words, the investor will obtain the expected profits if the
subsystem [u] behave following the law (23) on the interval [1,5].

But the movement law of capital in the course of investment does not ac-
cord with people’s wishes, some unknown risk attributes β∈̄α often attack the
attribute set α of the subsystem [u]. There exists such a fact: the risk at-
tributes β1, β2, β3 invade the attribute set α of [u], or β1, β2, β3∈α ⇒ f(β1) =
αi, f(β2) = αj , f(β3) = αk, and f(β1), f(β2), f(β3) ∈ α; α changes to αf =
α∪{f(β1), f(β2), f(β3)} = {α1, α2, α3, αi, αj , αk}. If the risk attributes emerge,
the investors hope to foreknow and pre-estimate the law state of the subsystem.
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Suppose the risk attributes exist, the attribute set α of [u] changes into αf ,
moreover

αf = α ∪ {f(β1), f(β2), f(β3)}
= {α1, α2, α3, αi, αj , αk} (24)

Under the condition of (24), f -heredity equivalence class [u]f is gotten from [u],
moreover

[u]f = {u1, u3} (25)

The characteristic data sequence of [u]f is listed in Table 2.

Table 2. The Characteristic Data Sequence of Heredity Equivalence Class

x(0)(1)i x(0)(2)i x(0)(3)i x(0)(4)i x(0)(5)i i = 1, 3

x
(0)
1 2.13 2.21 2.73 2.62 3.17

x
(0)
3 3.12 3.64 3.52 4.13 3.64

From Table 2, it is easy to get the compound characteristic data sequence x
(0)
f

of f -heredity equivalence class [u]f , moreover

x
(0)
f = (x(0)

f (1), x(0)
f (2), x(0)

f (3), x(0)
f (4), x(0)

f (5))

= (5.25, 5.85, 6.25, 6.75, 6.81) (26)

From (15)-(20) in section 4, we get the law P(k + 1)f generated from [u]f ,
moreover

P(k + 1)f = (1 − eb)(x(0)(1) − η

b
)e−bk

= (1 − e−0.052)(x(0)(1) + 105.47)e0.052k = 5.63e0.052k (27)

(27) means when the risk attributes attack the investment system, f -heredity
law P(k + 1)f hidden in P(k + 1) can be discovered. The movement state of
the capital will be pre-estimated. Obviously, the investors do not expect the
appearance of P(k + 1)f .

From the reverse side, to make the investment system steady (to obtain the
expected investment profit) and avoid the appearance of P(k+1)f , the investors
should try to prevent the risk attributes β from attacking the attribute set α
and make the subsystem [u] constant.

The difference and connection between function S-rough set and rough set,
and the defination of function equivalence class can be seen in [2].
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Abstract. Knowledge reduction is one of the main problems in the
study of rough set theory. This paper deals with knowledge reduction
in incomplete information systems based on Dempster-Shafer theory of
evidence. The concepts of plausibility and belief consistent sets as well
as plausibility and belief reducts in incomplete information systems are
introduced. It is proved that a plausibility consistent set in an incom-
plete information system must be a consistent set and an attribute set
in an incomplete information system is a belief reduct if and only if it is
a classical reduct.

Keywords: Belief functions, incomplete information systems, knowledge
reduction, rough sets.

1 Introduction

One of the most important problems which can be solved using the rough set con-
cept [1] is reducing attributes. In recent years, many authors proposed different
concepts of reducts in classical information systems in rough set research, each
of which aimed at some basic requirements [2,3,4,5,6,7,8,9,10,11,12]. These types
of reducts are based on the classical Pawlak rough-set data analysis which uses
equivalence relations in complete information systems. Pawlak’s rough set model
may be generalized to nonequivalence relations. The extensions of Pawlak’s rough
set model may be used in reasoning and knowledge acquisition in incomplete in-
formation systems and incomplete fuzzy systems [13,14,15,16,17,18,19,20,21].

Another important method used to deal with uncertainty in information sys-
tems is the Dempster-Shafer theory of evidence [22]. There are strong connections
between rough set theory and Dempster-Shafer theory of evidence. It has been
demonstrated that various belief structures are associated with various rough
approximation spaces such that the different dual pairs of lower and upper ap-
proximation operators induced by rough approximation spaces may be used to
interpret the corresponding dual pairs of belief and plausibility functions induced

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 254–261, 2006.
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by belief structures [23,24,25]. Thus the Dempster-Shafer theory of evidence may
be used to analyze knowledge reduction in information systems. Zhang et al. [11]
proposed the concepts of belief and plausibility reducts in classical information
systems without decisions. Wu et al. [10] discussed knowledge reduction in clas-
sical decision systems via the Dempster-Shafer theory of evidence. In this paper,
we attempt to investigate knowledge reduction in incomplete information sys-
tems within evidence theory.

2 Incomplete Information Systems

The notion of an information system (IS) provides a convenient basis for the rep-
resentation of objects in terms of their attributes. A complete information system
(CIS) S is an ordered pair (U, AT ), where U is a nonempty finite set of objects
called the universe of discourse and AT is a nonempty finite set of attributes such
that a : U → Va for any a ∈ AT , i.e., a(x) ∈ Va, where Va is called the domain
of attribute a. When the precise values of some of the attributes in an information
system are not known, i.e., missing or known partially, then such a system is called
an incomplete information system (IIS) and is still denoted without confusion by
S = (U, AT ). Such a situation can be described by a set-based information system
[16] in which the attribute value function a is defined as a mapping from U to the
power set P(Va) of Va where there is an uncertainty on what values an attribute
should take but the set of acceptable values can be clearly specified. For example,
the missing values a(x) can be represented by the set of all possible values for the
attribute, i.e., a(x) = Va; and if a(x) is known partially, for instance, if we know
that a(x) is not b, c ∈ Va (for example, “the color was red or yellow but not black
or white”), then the value a(x) is specified as Va − {b, c}.

Table 1. An Exemplary Incomplete Information System

Car Price Mileage Size Max-Speed
1 High Low Full Low
2 Low ∗ Full Low
3 ∗ ∗ Compact Low
4 High ∗ Full High
5 ∗ ∗ Full High
6 Low High Full ∗

Table 2. A Set-based Information System

Car Price Mileage Size Max-Speed
1 {High} {Low} {Full} {Low}
2 {Low} {Low, High} {Full} {Low}
3 {Low, High} {Low, High} {Compact} {Low}
4 {High} {Low, High} {Full} {High}
5 {Low, High} {Low, High} {Full} {High}
6 {Low} {High} {Full} {Low, High}
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Example 1. Table 1 depicts an IIS with missing values containing information
about cars in [14]. The associated set-based information system is given as Ta-
ble 2. From Table 1 we have: U = {1, 2, 3, 4, 5, 6}, AT = {P, M, S, X}, where
P, M, S, X stand for Price, Mileage, Size, Max-Speed respectively. The attribute
domains are as follows:
VP ={High, Low},VM ={High, Low},VS = {Full, Compact},VP = {High, Low}.

3 Belief Functions

Definition 1. Let U be a non-empty finite set, a set function m : P(U) → I
(where P(U) is the power set of U and I = [0, 1], the unit interval) is referred
to as a basic probability assignment or mass distribution, if it satisfies axioms:

(M1) m(∅) = 0, (M2)
∑

X⊆U

m(X) = 1.

A set X ∈ P(U) with nonzero basic probability assignment is referred to as a
focal element. We denote by M the family of all focal elements of m. The pair
(M, m) is called a belief structure. Associated with each belief structure, a pair
of belief and plausibility functions can be derived [22].

Definition 2. Let (M, m) be a belief structure. A set function Bel : P(U) → I
is referred to as a belief function on U if

Bel(X) =
∑

M⊆X

m(M), ∀X ∈ P(U).

A set function Pl : P(U) → I is referred to as a plausibility function on U if

Pl(X) =
∑

M∩X 
=∅
m(M), ∀X ∈ P(U).

Belief and plausibility functions based on the same belief structure are connected
by the dual property Pl(X) = 1−Bel(∼ X), and furthermore, Bel(X) ≤ Pl(X)
for all X ∈ P(U).

4 Rough Set Approximations and Belief Structures in
Incomplete Information Systems

4.1 Similarity Relations

Let S = (U, AT ) be an IIS. Each nonempty subset A ⊆ AT determines a simi-
larity relation:

RA = {(x, y) ∈ U × U : a(x) ∩ a(y) �= ∅, ∀a ∈ A}.

We denote SA(x) = {y ∈ U : (x, y) ∈ RA}, SA(x) is called the similarity class of
x w.r.t. A in S, the family of all similarity classes w.r.t. A is denoted by U/RA,
i.e., U/RA = {SA(x) : x ∈ U}.
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Property 1. B ⊆ A ⊆ AT =⇒ SA(x) ⊆ SB(x) for all x ∈ U.

Example 2. In Example 1, the similarity classes determined by AT are:
SAT (1) = {1}, SAT (2) = {2, 6}, SAT (3) = {3},
SAT (4) = {4, 5}, SAT (5) = {4, 5, 6}, SAT (6) = {2, 5, 6}.

4.2 Set Approximations

Let S = (U, AT ) be an IIS, A ⊆ AT , and X ⊆ U , one can characterize X by a
pair of lower and upper approximations w.r.t. A:

A(X) = {x ∈ U : SA(x) ⊆ X}, A(X) = {x ∈ U : SA(x) ∩ X �= ∅}.
Since a similarity relation is reflexive and symmetric, the approximations have

the following properties [26]:

Property 2. Let (U, AT ) be an IIS, A, B ⊆ AT , then: ∀X, Y ∈ P(U),
(1) A(X) ⊆ X ⊆ A(X),
(2) A(∼ X) =∼ A(X),
(3) A(U) = A(U) = U , A(∅) = A(∅) = ∅,
(4) A(X ∩ Y ) = A(X) ∩ A(Y ), A(X ∪ Y ) = A(X) ∪ A(Y ),
(5) X ⊆ Y =⇒ A(X) ⊆ A(Y ), A(X) ⊆ A(Y ),
(6) X ⊆ A(A(X)), A(A(X)) ⊆ X ,
(7) A ⊆ B ⊆ AT =⇒ A(X) ⊆ B(X), B(X) ⊆ A(X).

Example 3. In Example 1, if we set X = {2, 5, 6}, then we can obtain that
AT (X) = {2, 6}, and AT (X) = {2, 4, 5, 6}.

4.3 From Approximations to Belief Structures

There are strong connections between rough set theory and the Dempster-Shafer
theory of evidence. Since a similarity relation is reflexive, by [24,25] we can
conclude the following theorem, which shows that the pair of lower and upper
approximation operators w.r.t. an attribute set in an IIS generates a pair of
belief and plausibility functions.

Theorem 1. Let (U, AT ) be an IIS, A ⊆ AT , for any X ⊆ U , denote

BelA(X) = P (A(X)), PlA(X) = P (A(X)), (1)

where P (X) = |X |/|U | and |X | is the cardinality of the set X. Then BelA and
PlA are belief and plausibility functions on U respectively, and the corresponding
mass distribution is

m
A
(Y ) = P (jA(Y )), Y ∈ P(U),

where jA(Y ) = {u ∈ U : SA(u) = Y }.
Combining Theorem 1 and Property 2 we have the following Lemma:

Lemma 1. Let (U, AT ) be an incomplete information system, B ⊆ A ⊆ AT ,
then for any X ⊆ U ,

BelB(X) ≤ BelA(X) ≤ P (X) ≤ PlA(X) ≤ PlB(X).
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5 Attribute Reductions

In this section, we propose the concepts of belief and plausibility reducts in an
IIS and compare them with the existing classical reduct.

Definition 3. Let S = (U, AT ) be an IIS, then
(1) an attribute subset A ⊆ AT is referred to as a consistent set of S if

RA = RAT . If B ⊆ AT is a consistent set of S and no proper subset of B is a
consistent set of S, then B is referred to as a (classical) reduct of S.

(2) an attribute subset A ⊆ AT is referred to as a belief consistent set of S if
BelA(X) = BelAT (X) for all X ∈ U/RAT . If B ⊆ AT is a belief consistent set
of S and no proper subset of B is a belief consistent set of S, then B is referred
to as a belief reduct of S.

(3) an attribute subset A ⊆ AT is referred to as a plausibility consistent set
of S if PlA(X) = PlAT (X) for all X ∈ U/RAT . If B ⊆ AT is a plausibility
consistent set of S and no proper subset of B is a plausibility consistent set of
S, then B is referred to as a plausibility reduct of S.

Theorem 2. Let S = (U, AT ) be an IIS and A ⊆ AT . Then
(1) A is a consistent set of S iff A is a belief consistent set of S.
(2) A is a reduct of S iff A is a belief reduct of S.

Proof. (1) Assume that A is a consistent set of S. For any C ∈ U/RAT , since
SA(x) = SAT (x) for all x ∈ U , we have

SA(x) ⊆ C ⇐⇒ SAT (x) ⊆ C.

Then by the definition of lower approximation we have

x ∈ A(C) ⇐⇒ x ∈ AT (C), x ∈ U.

Hence A(C) = AT (C) for all C ∈ U/RAT . By Eq.(1) it follows that BelA(C) =
BelAT (C) for all C ∈ U/RAT . Thus A is a belief consistent set of S.

Conversely, if A is a belief consistent set of S, that is,

BelA(SAT (x)) = BelAT (SAT (x)), ∀x ∈ U.

Then
P (A(SAT (x))) = P (AT (SAT (x))), ∀x ∈ U.

By Lemma 1 and Property 2 we have A(SAT (x)) = AT (SAT (x)) for all x ∈ U.
Hence by the definition of lower approximation we have

{y ∈ U : SA(y) ⊆ SAT (x)} = {y ∈ U : SAT (y) ⊆ SAT (x)}, ∀x ∈ U.

That is,
SA(y) ⊆ SAT (x) ⇐⇒ SAT (y) ⊆ SAT (x), ∀x, y ∈ U. (2)

Let y = x, clearly, SAT (y) = SAT (x) ⊆ SAT (x). Then by Eq.(2) we have SA(x) ⊆
SAT (x) for all x ∈ U. Therefore, by Property 1 we conclude that SA(x) = SAT (x)
for all x ∈ U. Thus A is a consistent set of S.

(2) It follows immediately from (1).
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Denote

U/RAT = {C1, C2, . . . , Ct}, M =
t∑

i=1

BelAT (Ci).

By Theorem 2 we can obtain the following Theorem 3:

Theorem 3. Let S = (U, AT ) be an IIS and A ⊆ AT . Then
(1) A is a consistent set of S iff

∑t
i=1 BelA(Ci) = M.

(2) A is a reduct of S iff
∑t

i=1 BelA(Ci) = M , and for any nonempty proper
subset B ⊂ A,

∑t
i=1 BelB(Ci) < M.

Example 4. In Example 1, P (x) = 1/|U | = 1/6 for all x ∈ U . It can be calculated
that

6∑
i=1

Bel{P,S,X}(Ci) =
6∑

i=1
P ({P, S, X}(Ci)) =

6∑
i=1

|{P, S, X}(Ci)|/|U |

=
6∑

i=1
Bel{AT}(Ci) = 8/6.

On the other hand, it can be computed that

6∑
i=1

Bel{P,S}(Ci) = 2/6,
6∑

i=1

Bel{P,X}(Ci) = 3/6,
6∑

i=1

Bel{S,X}(Ci) = 2/6.

Thus by Theorem 3 we see that {P, S, X} is the unique belief reduct of S. It can
also be calculated by the discernibility matrix method [13] that the system has
the unique reduct {P, S, X}.

Theorem 4. Let S = (U, AT ) be an IIS and A ⊆ AT . If A is a consistent set
of S, then A is a plausibility consistent set of S.

Proof. Assume that A is a consistent set of S. For any C ∈ U/RAT , since
SA(x) = SAT (x) for all x ∈ U , we have

RA(x) ∩ C �= ∅ ⇐⇒ SAT (x) ∩ C �= ∅.

Then by the definition of upper approximation we have

x ∈ A(C) ⇐⇒ x ∈ AT (C), ∀x ∈ U.

Hence A(C) = AT (C) for all C ∈ U/RAT . By Eq.(1) it follows that PlA(C) =
PlAT (C) for all C ∈ U/RAT . Thus A is a plausibility consistent set of S.

The following example shows that the reversion of Theorem 4 does not hold.

Example 5. Table 3 gives an IIS with missing values S = (U, AT ), where U =
{x1, x2, x3, x4} and AT = {a, b, c}. It can be verified that the system has two
reducts: {a, b} and {b, c}. But the plausibility reducts of S are {a} and {b, c}. We
see that {a} is a plausibility consistent set of S, but it is not a consistent set of S.
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Table 3. An Exemplary Incomplete Information System

U a b c
x1 1 1 1
x2 2 2 ∗
x3 2 ∗ 2
x4 2 3 ∗

6 Conclusion

We have introduced in this paper the notions of belief and plausibility reducts in
incomplete information systems. We have examined the relationships between
the new concepts of reducts and the classical reduct by Kryszkiewicz [13,14].
We have proved that an attribute set in an incomplete information system is a
reduct if and only if it is a belief reduct. Though an attribute set in a complete
information system is a belief reduct if and only if it is a plausibility reduct [10],
we have shown that the belief reduct and plausibility reduct in an incomplete
information system are different concepts. In this paper, we only discussed the
issue of knowledge reduction via the Dempster-Shafer theory of evidence in in-
complete information systems without decision. We will investigate this issue in
incomplete decision systems and apply the theory for knowledge acquisition in
the form of rule induction in our further study.
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Abstract. The rationality of a reduction approach for decision rules
with discernibility matrix is analyzed and proved true theoretically. And
a rules extraction strategy based on bit-coded discernibility matrix is
presented. By bit-coding the description of discernibility matrix, the in-
formation is depicted by a series of binary code, which makes it easy to
actualize the algorithm on a computer. And then, a hybrid algorithm
of rules extraction is presented.That means the attribute and rules re-
duction work synchronously. The results that is applied for the rules
extraction of the cement kiln operation has shown that its efficiency and
availability.

Keywords: Rough set theory, decision table, discernibility matrix, re-
duction, rule extraction.

1 Introduction

Reduction is one of the main methods of KA based on Rough sets theory[1,2].
For example, we can reduce a decision table with the precondition that the de-
pendence relationship of the condition and decision attributes would not change,
and then pick up the decision rules with stronger adaptability.The conception of
discernibility matrix(DM) was used in the attributes reduction, which was put
forward in 1991 by Pro. Skowron[3]. Recently, it is attended from more and more
researchers[4,5,6,7].

Firstly, the discernible relationship between samples is analyzed and then the
reduction of attribute-value with it is proved rational. When DM had been coded
by binary number, a synthetical reduction algorithm is put forward. Described by
”0” and ”1”, the discernibility matrix turned to an abstract information system.

2 Reduction of Decision Tables Based on DM

S = 〈U, R, V, f〉 is a decision table system, where U = {x1,x2, · · · ,xn } is a
non-empty finite set called universe demoting the set of all objects,R = C ∪D
is attributes set, C = {ci|i = 1, · · · ,m} and D = {d} are respectively called
condition attributes set and decision attributes set, V = ∪r⊂RVr is attribute
value set, Vr denotes the value domain of attribute r ∈ R and f : U ×R → V is
information function appointing the attribute value for each object x ∈ U .

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 262–267, 2006.
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Proposition 1. Suppose MD = (mij)n×n is the DM of decision table system
S. If mij ⊆ MD, the value core of object xi can be calculated as follows:

corexi(C) = {c ∈ C : ∃j,mij = c}. (1)

Proof. If ∃mij ⊆ MDand mij �= φ,there are at least one condition attribute
whose value is different to discern the different decision attribute of object xi

and xj .
If mij = {ct ∈ C}, object xi and xj are only distinguished by condition

attribute ct. Omission of ct will lead system inconsistent. According to the defi-
nition of core [2], ct ∈ core(xi).

If mij = {ct, cs ∈ C}, object xi and xj can be distinguished by ct or cs. If ct

is omitted, there still is cs to distinguish object xi and xj . ct is called dispensable
for object xi and xj . That means if only omit ct for object xi, will not lead to
classification error. Accordingly, ct is not always included in core(xi).

Obviously, if Ai ⊆ C is a relative attribute value reduction of object xi, ∃mij ∈
MD and mij �= φ, then Ai ∩mij �= φ.

Proposition 2. Suppose core(xi) is the relative value core of object xi,mij ∈
MD and mij = {ct, cs}, where ct, cs ∈ C, if ∃j, core(xi) ∩mij = φ, the relative
attribute value reduction of object xi is represented as

V R(Xi) = core(xi) ∧ (ct ∨ cs). (2)

Proof. According to proposition 1, if ∃j, core(xi) ∩ mij = φ , it implies that
all the condition attributes included in core(xi) are not enough to distinguish
object xi and xj unless together with at least one other condition attribute in
mij . Therefore, the relative attribute value reduction of object xi should include
at least one attribute in mij except core(xi).

3 Bit Description of DM

Definition 1. Suppose MD = (mij)n×n is the DM of decision table system S,
the bit-coded DM of decision table system S is defined as follows:

mij =
{

{b(k) = 1, b(g) = 0|ck(xi) �= ck(xj) ∩ cg(xi) = cg(xj)},d(xi) �= d(xj),
0,d(xi) = d(xj)

(3)

Where b(i) is the ith bit in a string of binary number. Therefore, mij is described
by a binary string of m bits, one bit denotes the state of an condition attribute
in discernible relationship. ”0” denotes undiscernible by the condition attribute
and ”1” denotes discernible. For example, c12=1010 shows that the decision
attributes of object xi and xj are different and that can be reflected by the
value of the first and the third condition attribute.

Bit coded DM describes how an attribute distinguishes the objects in the
universe. Each nonzero binary string contains enough information to differentiate
the two objects.
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Proposition 3. Suppose MD = (mij)n×n is the DM of decision table system
S, if ∃i, j,mij is a string with only one ”1”, the attribute core is

CORED(C) = {mij}. (4)

Else
CORED(C) = (0)m. (5)

Proposition 4. Suppose MD = (mij)n×n is the DM of decision table system
S, CORED(C) is its attribute core. As one attribute value reduction of object
xj , bi should meets the condition as follows:

bj ∧mij �= 0. (6)

Where ” ∧ ” denotes logic”and”.

4 Synthetical Reduction Algorithm and Application
Example

Based on above analysis, a synthetical reduction algorithm is presented.
The program is composed of two parts. The algorithm process is described as
following.

Program 1
Input: decision system with samples and condition attributes
Output: the least reductions of S
step 1 Calculate MD = (mij)n×n and CORED(C);
step 2 Calculate attribute value reduction for each object

for (each (mij) �= 0) do
if (∧mij) �= 0 do RED1(j) ←− (∧mij);
else run Program 2; Output RED1;
end

end
step 3 Calculate attribute reduction Unite the sameness in RED1 and put

the result to R;
step 4 Input R to Program 2; Output RED2;
step 5 Decode the reduction result to S;
step 6 Output S.

Program 2
Input: Bit coded list A
Output: The reduction of A
step 1 g ←− 1;

when g ≤ m do
if ∃t, s, ∀b ∈ A, b(t) = 0 and b(s) = 0

AR = b(i), b(i) =
{

1 , i = t
0 , i �= t

}
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turn to step 4;
else g ←− g + 1
end

end
step 2 Cg

m ←− {c = (b)m|∃t, s, h �= t, s, (b(t) = 1) ∩ (b(s) = 1) ∩ (b(h) = 0) };
step 3 Delete all the items covered by Z from Cg

m;
if Cg

m �= φ,AR = Cg
m; Turn to step 2;

else g ←− g + 1 and turn to step 2;
end

step 4 Output AR.

Algorithm analysis: algorithm 1 and 2 realize the decision rules reduction
for decision table system by doing Boolean calculation such as ”and”, ”or” and
”not” etc. The reduction process is based on the definitions and propositions
discussed above and the property of binary string. Therefore, the validity of
algorithm is ensured.

Use above algorithm to reanalysis the record of operations to run some ce-
ment kiln by a stoker[8]. The decision table of the record includes 52 objects.
table 1 shows it after united same objects. Where, count denotes the number

Table 1. Decision table of operations to run a cement kiln

U Count a b c d e f

1 3 3 3 2 2 2 4
2 6 3 2 2 2 2 4
3 2 3 2 2 1 2 4
4 4 2 2 2 1 1 4
5 4 2 2 2 2 1 4
6 3 3 2 2 3 2 3
7 5 3 3 2 3 2 3
8 5 4 3 2 3 2 3
9 5 4 3 3 3 2 2
10 8 4 4 3 3 2 2
11 2 4 4 3 2 2 2
12 3 4 3 3 2 2 2
13 2 4 2 3 2 2 2

that the same object appears in the original record. a, b, c and d are condi-
tion attributes, respectively denotes burning zone temperature BZT, burning
zone color BZC, clinker granulation CG and kiln inside color KIC; e and f
are decision attributes, respectively describes kiln revolution KR and coal worm
revolution CWR.

The material name title and value universe of the attributes in table 1
see [8].
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Input table 1 to program 1, the results of RED1 and Ti are shown in
table 2 and table 3. The result of RED2 is 1011, implying attribute b is redundant
and the attributes reduction is acd. Table 3 lists all the possible reductions of
table 1.

Table 2. RED1

1 2 3 4 5 6 7 8 9 10 11 12 13

1001 1001 1001 1000 1000 1001 1001 1010 0010 0010 0010 0010 0010
0011 0011 0011

Table 3. Final reduction result

1 2 3 4 5 6 7 8 9 10 11 12 13

T1 ad ad ad a a ad ad ac c c c c c
T2 ad ad ad a a cd cd cd c c c c c

It is obvious that there are two reductions and the interpretation for them
are descript as ⎧⎪⎪⎨⎪⎪⎩

a3(d1 ∨ d2) −→ e2f4 ,
a2 −→ e1f4 ,

c2d3 −→ e2f3 ,
c3 −→ e2f2 ,

(7)

⎧⎪⎪⎨⎪⎪⎩
a3(d1 ∨ d2) −→ e2f4 ,

a2 −→ e1f4 ,
a3d3 ∨ a4c2 −→ e2f3 ,

c3 −→ e2f2 ,

(8)

The result is accord with the reduction by Pawlak Z.[8], which shows the new
algorithm is effective.

5 Conclusions

This paper analyzes and theoretically proves the rationality of the reduction
method of decision rules with DM. The application of DM in decision rules
extraction is improved. And a decision rules reduction method based on bit-
coded DM is presented. By coding the description of discernibility matrix with
binary number, the complicated content is abstracted as binary information
that makes it possible to simplify the reduction algorithm as the work at binary
strings which is easy to calculate with computer. The algorithm has been used
to pick up the decision rules for cement kiln and the result has shown that it
was efficient and available.
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Abstract. In the paper we propose a novel approach to finding rough
set reducts in information systems. Our method combines an apriori-like
scheme of space traversing with an efficient pruning condition based on
attribute set dependence. Moreover, we discuss theoretical and imple-
mentational aspects of our pruning procedure.
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1 Introduction

The rough set theory gained numerous advocates in the field of knowledge dis-
covery. It has been combined with many valuable tools, including statistical
methods, neural networks [1], fuzzy sets, etc. In the past few years, suggestions
have also appeared for using data-mining techniques to rough set problems [2].

The paper refers to the reduct set problem, defined as finding all the reducts
of an information system. In order to apply the already known solutions, the
problem is frequently transformed into the problem of finding the prime impli-
cants of a monotonous boolean function. The classic methods employ the notions
of discernibility matrix and discernibility function [3]. On the other hand, there
are some algorithms that efficiently traverse an attribute set space by means
of pruning conditions employing concise representations [4,5]. In practical prob-
lems, it is often enough to compute only a subset of all the existing reducts.
Most basic approaches focus on finding only the best reduct according to some
criteria [6] or multiple reduct [7]. Moreover, some heuristic, evolutionary ideas
have been proposed [8].

The algorithms presented in the paper follow the Apriori scheme of set gener-
ation [9]. We propose a novel pruning condition based on the notion of set depen-
dence. The convexity of complement subspaces of dependent and independent
sets has been demonstrated. Our method traverses the subspace of independent
sets. We also show how to construct an algorithm in order to test the condition
efficiently and to avoid maintaining additional structures.

One of the major challenges is to efficiently employ rough set methods in
large databases. In the case of reduct computation the large number of objects
increases strongly the cost of discernibility calculation for a given attribute set.
� The research has been partially supported by grant No 3 T11C 002 29 received from

Polish Ministry of Education and Science.
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Therefore, we performed several tests to prove the usefulness of our pruning
strategy in reducing the number of these operations.

Section 2 provides selected elements of the rough set theory and border rep-
resentations. In Sect. 3 we consider the notions of discernibility and dependence,
and give theoretical background for a proposed pruning approach. The algo-
rithm is presented in Sect. 4 and followed by a brief analysis and comments on
their implementation provided in Sect. 5. Section 6 contains results obtained for
several popular data sets. Tests focus on the efficiency of our pruning condition.
The paper is summarized in Sect. 7.

2 Preliminaries

Let an information system be a pair (U ,A), where U = {u1, .., u|U|}(universum)
is a non-empty, finite set of objects and A is a non-empty finite set of attributes.
The domain of an attribute a ∈ A is denoted by Va and its value for an object
u ∈ U is denoted by a(u).

Consider B ⊆ A. An indiscernibility relation IND(B) is defined as follows:
IND(B) = {(u, v) ∈ U × U : ∀a∈B a(u) = a(v)}. An attribute a ∈ B is
dispensable in B, iff INDB−{a} = INDB, otherwise a is indispensable. We call
B independent, iff all its members are indispensable, otherwise it is dependent.

An attribute set B ⊆ A is an upper reduct, iff IND(B) = IND(A). An
independent upper reduct is called a reduct. Finding all the reducts of an infor-
mation system is called a reduct set problem. For the sake of convenience, we
introduce the following collections.

Definition 1. Independent set collection ISC = {B ⊆ A : B is independent}.
Dependent set collection DSC = {B ⊆ A : B is dependent}. Upper reduct
collection URED = {B ⊆ A : IND(B) = IND(A)}. Reducts collection RED =
ISC ∩ URED.

The property of set dependence generates a binary partition {ISC,DCS} in
P (A) = 2A. Moreover, it can be easily demonstrated that every subset of an in-
dependent set is independent and every superset of a dependent set is dependent.
These facts are expressed formally below.

Lemma 1. Let B,S ⊆ A, we have: S ⊆ B ∧B ∈ ISC =⇒ S ∈ ISC.

Lemma 2. Let B,S ⊆ A, we have: B ⊆ S ∧B ∈ DSC =⇒ S ∈ DSC.

A discernibility matrix C is a matrix |U| × |U| with elements Cij = {a ∈ A :
a(ui) �= a(uj)} for i, j = 1..|U|. This matrix can be used to check whether a
given attribute set differentiates objects as well as A does. Let EC be a set of all
elements of a matrix C. The following measure allows to make inferences about
discernibility avoiding direct usage of comparison of relations.

Definition 2. Let B ⊆ A. We define as:

covcount(B) = |{X ∈ EC : X ∩B �= Ø}|.
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Lemma 3. Let B,S ⊆ A such that S ⊂ B, we have: IND(S) = IND(B) ⇐⇒
covcount(S) = covcount(B).

In the paper, we decided to use concise set representations to describe regions
of the search space P (A). It requires the following notions.

Consider a set S. A border is an ordered pair < L,R > such that L,R ⊆ P (S)
are antichains and ∀X∈L∃Z∈RX ⊆ Z. L and R are called a left and a right
bound, respectively. A border < L,R > represents a set interval [L,R] = {Y ∈
P (S) : ∃X∈L∃Z∈RX ⊆ Y ⊆ Z}. The left and right bounds consist, respectively,
of minimal elements and maximal elements of a set, assuming inclusion relation.

The collection F ⊆ P (S) is a convex space (or is interval-closed) if we have:
∀X,Z∈F∀Y ∈P (S)X ⊆ Y ⊆ Z ⇒ Y ∈ F . Definitions of a border and a convex
space lead to a conclusion that every convex space has a unique border and
every collection that has a border is convex.

For brevity, we use the following notation: an expression k-set denotes a k-
element set. Moreover, for a given set collection F we introduce a convenient
notation Fk = {B ∈ F : |B| = k}, i.e ISCk, REDk, Pk(A), etc. For a given
set S, we call its subset (superset) direct when it has the cardinality smaller
(greater) by 1 than the cardinality of S.

3 Discernibility and Dependency

In the reduct set problem we deal with an exponentially-large search space P (A).
Therefore, the algorithms that solve the problem by traversing the space have
to use such strategies that avoid examining all possible attribute sets.

These methods are constructed around to main issues. The first one is to give
efficient pruning conditions. The basic idea is to visit only those regions about
which we cannot infer from the already examined subspace. The second issue is
strongly influenced by the pruning strategy and concerns the way of traversing
the search space. It has two objectives: to make the pruning stage as efficient as
possible and not to generate exponentially-large set collections.

We begin our consideration with a discussion of pruning conditions and then
combine them with the appropriate ways of space traversing.

Basic criteria originate from works related to monotonous boolean functions.
In particular, the following two conditions are extensively discussed in [4].

Theorem 1 ([4]). Let B ⊆ A, we have: S ⊂ B ∧B �∈ URED =⇒ S �∈ RED.

Theorem 2 ([4]). Let B,S ⊆ A, we have: B ⊂ S∧B ∈ URED =⇒ S �∈ RED.

The former uses the notion of discernibility and states that we do not need to
examine actual subsets of a non-upper reduct B, since they cannot differentiate
more object pairs than B does. The latter tells us that actual supersets of a
reduct cannot be minimal, so they can be also excluded from examination.

In the text we propose a strategy that is based solely on set dependence. The
following theorem refers to convexity and the next one generalizes Theorem 2.
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Theorem 3. Collections ISC and DSC are convex. There exist subcollections
MISC,mDSC ⊆ P (A) such that ISC has a border < Ø,MISC > and DSC
has a border < mDSC, {A} >, where the symbols MISC and mDSC stand
for maximal independent set collection and minimal dependent set collection,
respectively.

Proof. It is sufficient to show that both collections have specified borders.
Let us focus on ISC first. Consider ISC ⊆ [{Ø},MISC]. Let B ∈ ISC.

Obviously, B ⊇ Ø. Notice that inclusion partially orders elements in ISC, so
also ∃S∈MISCB ⊆ S. Conversely, ISC ⊇ [{Ø},MISC]. Let B ∈ [{Ø},MISC].
From the definition of a border we have ∃S∈MISCØ ⊆ B ⊆ S. According to
Lemma 1 B is independent, so B ∈ ISC. Summing up, we have found that ISC
has a border < {Ø},MISC > and, consequently, is convex.

A proof for DSC is analogical and employs Lemma 2.

Theorem 4. Let B,S ⊆ A, we have: B ⊆ S ∧B ∈ DSC =⇒ S �∈ RED.

Proof. Consider B ∈ DSC and S ⊆ A such that B ⊆ S. From Lemma 2 we
have S ∈ DSC. Thus, S �∈ ISC and S cannot be a reduct.

According to the definition, it is possible to test set dependence by examining
all direct subsets of a given set. In practice, it is convenient to use covcount to
verify set dependence.

Theorem 5. Let B ⊆ A, we have: ∃a∈Bcovcount(B) = covcount(B−{a}) ⇐⇒
B ∈ DSC.

Proof. From the definition attribute a ∈ B is dispensable in B iff IND(B) =
IND(B−{a}). From Lemma 3, where S = B−{a}, we have: a ∈ B is dispensable
iff covcount(B) = covcount(B − {a}).
However, every covcount computation can be costly when very large databases
are concerned. Therefore, first we perform pruning using information on depen-
dent sets and reducts visited so far. We check whether all direct subsets of a
tested set are independent and are not reducts. Otherwise, the set is dependent
basing on Lemma 2 or Theorem 2.

Theorem 6. Let B ⊆ A, we have: ∃a∈B(B−{a}) �∈ (ISC|B|−1−RED|B|−1) =⇒
B ∈ DSC.

Proof. Let B ⊆ A and a ∈ B such that (B − {a}) �∈ (ISC|B|−1 − RED|B|−1).
Since |B−{a}| = |B|−1, so (B−{a}) ∈ P|B|−1(A)− (ISC|B|−1 −RED|B|−1) =
DSC|B|−1 ∪ RED|B|−1. Therefore, (B − {a}) ∈ DSC|B|−1 or (B − {a}) ∈
RED|B|−1. Let us consider both cases separately.

Let (B−{a}) ∈ DSC|B|−1 ⊆ DSC. In accordance with Lemma 2 we have (B−
{a}) ⊆ B ∧ (B−{a}) ∈ DSC =⇒ B ∈ DSC. Let, now, (B−{a}) ∈ RED|B|−1.
It means that IND(B − {a}) = IND(A) = IND(B), so a is dispensable in B
and B ∈ DSC.

Let us move to a brief example. We classify attribute sets according to two binary
characteristics: dependence and discernibility. The information system IS and
its search space are depicted in Table 1 and Fig. 1, respectively.
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Table 1. The Information System IS = ({u1, u2, u3, u4, u5}, {a, b, c, d, e})

a b c d e

u1 0 0 1 0 0
u2 1 1 1 1 0
u3 1 1 1 2 0
u4 0 2 0 1 0
u5 2 3 1 1 1

MISC = {{a, c}, {a, d}, {b, d}, {c, d, e}}
mDSC = {{a, b}, {a, e}, {b, c}, {b, e}}
RED = {{a, d}, {b, d} {c, d, e}}

Fig. 1. The Search Space P ({a, b, c, d, e}) with Element Properties Computed for IS.

Independent Sets - ovals,Dependent sets - rectangles,Upper Reducts - gray Background.

4 Algorithm Overview

In the paper we present a novel approach to finding all the reducts of an infor-
mation system. Our method is a combination of apriori-like set generation and
an efficient pruning technique based on Theorems 5 and 6.

The general scheme of our algorithm follows the classic apriori structure [9]. In
every step we generate a family of k-sets and use pruning techniques to remove
reducts and dependent sets. The final family of every step Lk contains only
independent sets that are not reducts.

The collections RED and ISC are created incrementally. In k-th step all
their k-element members are computed. When the algorithm stops we obtain
collections: RED =

⋃
k=1..|A|REDk.

1: RED1 = {all 1-reducts}
2: ISC1 = {all 1-sets}
3: L1 = {all 1-sets} −RED1
4: for (k = 2;Lk−1 �= Ø; k + +) do
5: Ck = apriori-gen-join(Lk−1)
6: Dk = prune-with-subsets(Ck, Lk−1)
7: ISCk = Dk − find-dependent(Dk)
8: REDk = find-RED(ISCk)
9: Lk = ISCk −REDk

10: end for
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Candidate Set Generation. The function apriori-gen-join is responsible for can-
didate set generation. A new collection of sets Ck is generated according to the
join step of apriori-gen function described in [9]. The generation of Ck is based
on a collection of independent sets Lk−1 obtained in the previous iteration. As
a result we obtain a collection of all possible k-element sums of two elements
chosen from Lk−1.

Pruning with Subsets. The function prune-with-subsets removes from family
Ck all members B that are supersets of any dependent attribute set or reduct.
Direct pruning by maximal independent sets found so far would be a costly
operation. However, in accordance to Theorem 6, it is enough to test whether
{B − {a} ⊆ Pk−1(A) : a ∈ A} ⊆ ISCk−1 − REDk−1 = Lk−1. It needs at most
|B| membership tests in a collection Lk−1 computed in a previous step.

Finding Dependent Sets. Even if all actual subsets of a given B are independent,
B can be dependent. When we cannot prove dependency basing on Theorem 6,
we have to check it by means of Theorem 5. Otherwise,B ∈ ISCk. This operation
requires computing covcount(B). We compare this value with covcount(S), for
all S such that S is a direct subset ofB. Notice that, each S is an independent non
reduct asB passed through a phase of dependent superset pruning. Moreover, the
value of covcount(S) will have already been computed to prove the independence
of S.

Finding Reducts. Notice that, REDk ⊆ ISCk. Thus, in every iteration we have
to find these B ∈ ISCk for which covcount(B) = covcount(A). Notice that,
covcount is already computed for elements of ISCk, so this step requires simply
traversing ISCk.

5 Algorithm Analysis

Implementation Remarks. The algorithm scheme, presented in Section 4, gives
a brief overview of our method. We decided on the notation of set sequences to
emphasize the connection between the presented theorems and particular algo-
rithmic steps. However, it is easy to notice that steps 6, 7, 8, 9 can be performed
during and apriori-gen-join function in order to avoid additional computations.
Consider k-th iteration and B ∈ Ck generated from E,F ∈ Lk−1. Firstly, we
have to examine a collection DS = {B − {a} : a ∈ B} that contains direct sub-
sets of B. Obviously, E,F can be omitted, since they are independent, not upper
reducts. Now, for each direct subset S ∈ DS−{E,F} we check S ∈ Lk−1. Find-
ing any S not holding this condition causes a rejection of B and repeating the
whole procedure for the next candidate. Otherwise, covcount(B) is calculated
and the condition covcount(B) = maxS∈DS(covcount(S)) is checked. If it holds,
we reject B. Otherwise, B ∈ ISC. If, additionally, covcount(B) = covcount(A),
B is accepted as an independent, not upper reduct. Notice that this maximum
can be easily calculated while elements of DS are being examined. Summing up,
for a given B we check a membership of S ∈ DS in collection Lk−1 exactly once.
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Another observation refers to temporary collections stored in memory. Basi-
cally, we maintain and successively update the resulting collection RED. More-
over, in every iteration the only historical collection needed is Lk−1. It is used
both: for candidate generation and for efficient pruning. Notice that we do not
have to remember the collection ISCk−1, since pruning by dependent subsets
and reducts is performed in the same algorithmic step (Theorem 6) and employs
only the whole collection Lk−1.

Testing the membership of a set in a collection is also a significant operation,
which can be efficiently implemented using a tree structure or hashing methods.

Complexity Remarks. Our algorithm traverses the search region ISC and, ad-
ditionally, examines not pruned, direct supersets of MISC − RED in order
to prove their independence. Although the approach uses the concept of concise
(border) representation we avoided costly checking whether a collection contains
a subset/superset of a given set. Pruning is performed by membership tests only.

Thorough emphasis should also be placed on covcount computation, which is
a basic operation in our algorithm. According to Lemma 3 and the definition of
an upper reduct, we can infer about dependence and discernibility only by means
of covcount measure. The operation appears to be costly, when large databases
are concerned, so it should be optimized and performed as rarely as possible.
For sure, the covcount has to be computed at least for the elements of ISC and
for A. Notice that we compute covcount for each examined set only once.

Moreover, it can be easily demonstrated that for computing covcount we do
not need to examine all sets from EC but only the minimal elements within a
collection of all non-empty elements of EC. Formally, we define this collection
as RC = {B ∈ EC : B �= Ø ∧ ∀S∈EC(S = Ø ∨ S �⊂ B)}. Most often, this simple
optimization reduces strongly the size of EC, and thus, the operation cost.

However, for very large databases it may be infeasible to construct and reduce
the indiscernibility matrix, since these operation have time and space cost of
O(n2). In such a situation, for a given B ∈ A the value of covcount(B) can
be computed directly from an information system after computing the sizes of
blocks of the partition generated by B. This operation involves sorting U on
attribute set B with time cost O(nlog(n)), in situ.

6 Practical Experiments

When we deal with a NP -hard problem, the time cost of algorithms depends
strongly on the structure of input data. Thus, we resigned from a comparison
with other classic methods and focused mainly on proving the efficiency of our
pruning approach in reducing the search space.

Input information systems (Table 2), originating from [10], are provided with
a preliminary hardness assessment. The size of the search space indicates how
many sets have to be examined by an exhaustive approach. On the other hand,
the minimal reduct length shows when an apriori-like algorithm starts to find
minimal reducts. The time cost of covcount computation for a given attribute
set is determined by the size of RC and the number of attributes.
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Table 3 contains experimental results. Our algorithm (Algorithm 1), is com-
pared with a similar apriori-like algorithm (Algorithm 2), which prunes the can-
didate collection only with reducts found so far. In other words, we use as a
reference an algorithm based on Theorem 2, that is weaker than Theorem 4.

Table 2. Dataset Characteristics

Name
Number of Number of Size of the Minimal |RED| |RC|

objects attributes search space reduct length

austra 690 15 3.0e+04 4 13 7
diab 768 9 5.0e+02 3 27 18
dna 500 21 2.0e+06 9 577 50
geo 402 11 2.0e+03 7 1 7

heart 270 14 1.0e+04 3 55 26
lymn 148 19 5.0e+05 9 132 45

mushroom 8124 23 8.0e+06 15 1 15
vehicle 846 19 5.0e+05 3 1714 240

zoo 101 17 1.0e+05 11 7 12

The results advocate the efficiency of our pruning approach. First of all, the
sets generated by Algorithm 1 constitute only a small region of the respective
search space. More precisely, in the considered cases ISC contains less sets by
1-2 orders of magnitude. Secondly, a comparison with Algorithm 2 shows that
Theorem 4 has significantly better pruning properties than Theorem 2. Last
but not least, Algorithm 2 is more prone to data set characteristics such as
the minimal reduct length and the number of reducts related to the size of the
search space. These parameters determine the frequency of pruning. Conversely,
the performance of our algorithm depends more on the characteristics of more
numerous and diversified collection MISC.

The time cost is described by two dominant operations: covcount computa-
tion and testing the membership of a set in a collection. As a result of stronger
space reduction the number of covcount computations performed by Algorithm 1
is much lower in comparison to Algorithm 2, often by 1-2 orders of magni-
tude. Moreover, we do not compute covcount for these generated sets, which are
pruned by a condition based on Theorem 6. In presented data sets this condition
holds more often than the one based on Theorem 5.

7 Summary

In the paper we have proposed an apriori-like algorithm for the reduct set prob-
lem. It employs a novel pruning method based on the notion of attribute set
dependence. We have demonstrated that supersets of the independent set collec-
tion (ISC) cannot be reducts. Moreover, it has been explained how to efficiently
perform a pruning test and avoid maintaining ISC.

According to tests, introduction of a new pruning approach reduces greatly
the search space and the number of discernibility computations for attribute



276 P. Terlecki and K. Walczak

Table 3. Experimental Results Summary

Dataset
Algorithm 1 Algorithm 2

Generat. Pruned by Pruned by covcount Membership Generat. covcount
sets Theorem 5 Theorem 6 comput. tests sets comput.

austra 476 64 179 297 500 28855 28825
diab 205 22 45 160 209 288 264
dna 157220 868 59585 97635 526204 2060148 2057656
geo 165 34 0 165 201 2035 2033

heart 1259 130 473 786 1713 7615 7446
lymn 38840 203 1908 36932 175599 517955 515191

mushroom 32923 148 0 32923 180241 8388479 8388353
vehicle 11795 2112 3518 8277 24982 91916 84796

zoo 7910 40 189 7721 30686 130991 130903

sets, important aspects when large databases are concerned. The same idea can
be adopted for finding other types of reducts, i.e reducts related to a decision.

An apriori-like scheme used for candidate set generation allows efficiently to
infer about set dependence and prune large regions of the search space. However,
such an approach precludes the use of discernibility pruning conditions. In future
work we plan to consider a combination of both pruning approaches.
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Abstract. The categorical equivalence of three different approaches to
roughness is discussed: the one based on the notion of abstract rough
approximation spaces, the second one based on the abstract topological
notions of interior and closure, and the third one based on a very weak
form of BZ lattice.
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1 Introduction

The main motivation of this paper is the unification of different abstract ap-
proaches to rough theory, under theoretical proofs of categorical equivalence of
the involved structures. Indeed, in literature one can found at least three differ-
ent points of view: the one based on the notion of rough approximation space
[1], the second essentially based on the topological notion of interior and closure
operations [2], and a third one based on two kinds of non usual complemen-
tations, the so–called BZ approach [3, 4]. We investigate under what conditions
these three approaches can be considered equivalent, and so from the applicative
point of view indistinguishable. For completeness let us quote another approach
based on modal–like operators of necessity and possibility [5, 6, 7] which is not
treated in the present paper and also rough mereology [8, 9] whose relationship
with the present work wil be analyzed in a forthcoming paper.

Now, let us explain the role of equivalence between structures exemplifying
the involved questions in the context of the well know �Lukasiewicz approach
to many–valued logic [10]. To this purpose, let us first consider the notion of
Wajsberg algebra (W algebra for short) introduced in 1931 by Wajsberg [11]
in order to give an algebraic axiomatization to �Lukasiewicz many valued logic.
In this axiomatization the primitive propositional connectives are implication
→ and negation −, giving rise to the structure 〈A,→, −, 1〉. Several years later
(1958), another algebraic approach to many–valued logic has been proposed by
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Chang in [12], with the notion of MV algebra 〈A,⊕, −, 0〉 which has, as primitive
operators, a truncated sum and a negation.

At a first glance these two seem to be quite different algebraic structures.
However it is possible to prove (see [13]) that they are categorically equivalent:
from any MV algebra it is possible to obtain a W algebra and vice versa.

This result assures that any theorem proved in one of the two structures can
be “translated” as a theorem of the second one: the algebras are categorical
equivalent. They are indistinguishable. It will be very misleading to “impose”
one of them as “better” with respect to the second one. One can prefer the
Wajsberg approach as the one nearer to the original language of �Lukasiewicz
logic, and this is a meta–theoretical (probably aesthetic) choice. But it is out
of doubt that any result obtained in the context of the Chang approach to MV
logic is also a result true in the Wajsberg–�Lukasiewicz context, and vice versa.
For instance, the completeness theorem given by Chang in the context of MV
algebras is immediately translated as a completeness about Wajsberg algebras.

2 Equivalent Structures

2.1 Abstract Rough Approximation Spaces

The abstract approach to roughness introduced in [1] is based on a family of
“approximable” concepts, with associated two well defined subfamilies describing
“inner” and “outer” definable concepts respectively. In the formal description of
this situation imprecise (vague, unclassified) concepts , with the associated inner
and outer (precise, crisp, sharp) knowledge about them, are mathematically
realized by points of an abstract set.

In this context some criteria must be given in order to “approximate” any
vague concept by a pair consisting of a unique inner definable concept and a
unique outer definable concept. Since we want that these approximations are
the best possible inside the classes of corresponding definable concepts, it is
necessary to have also a criterium to state how an approximation is sufficiently
good. Abstractly, this is realized by a partial order relation ≤ on the set of all
approximable elements which mathematical describes the fact that an element
a is a better approximation of the element b, written a ≤ b.

Definition 2.1. An abstract approximation space is a system
A := 〈Σ, L(Σ), U(Σ)〉, where:

(1) 〈Σ,∧,∨, 0, 1〉 is a lattice with respect to the partial order relation a ≤ b
iff a = a ∧ b, bounded by the least element 0 and the greatest element 1.
Elements from Σ are interpreted as concepts, data, etc., and are said to be
approximable elements;

(2) L(Σ) and U(Σ) are bounded subposet of Σ (and thus 0, 1 ∈ L(Σ), U(Σ))
consisting, respectively, of all available lower (inner) and upper (outer) de-
finable elements;

This system must satisfy the following axioms:
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(Ax1) For any approximable element a ∈ Σ, there exists one element i(a) s.t.
i(a) is an inner definable element (i(a) ∈ L(Σ)); i(a) is an inner definable
lower approximation of a (i(a) ≤ a); i(a) is the best lower approximation of a
by inner definable elements (let e ∈ L(Σ) be such that e ≤ a, then e ≤ i(a)).

(Ax2) For any approximable element a ∈ Σ, there exists one element o(a) s.t.
o(a) is an outer definable element (o(a) ∈ U(X)); o(a) is an outer definable
upper approximation of a (a ≤ o(a)); o(a) is the best upper approximation
of a by outer definable elements (let f ∈ U(X) be such that a ≤ f , then
o(a) ≤ f).

It is easy to prove that, for any approximable element a ∈ Σ, the inner de-
finable element i(a) ∈ L(Σ), whose existence is assured by (Ax1), is unique.
Thus, it is possible to introduce the mapping i : Σ �→ L(Σ), called the inner
approximation mapping, associating with any approximable element a ∈ Σ its
lower (or inner) approximation: i(a) := max{α ∈ L(Σ) : α ≤ a}. Similarly,
for any approximable element a ∈ Σ, the outer definable element o(a) ∈ U(Σ),
whose existence is assured by (Ax2), is unique. Thus, it is possible to introduce
the mapping o : Σ �→ U(Σ), called the outer approximation mapping, associat-
ing with any approximable element a ∈ Σ its upper (or outer) approximation:
o(a) := min{γ ∈ U(Σ) : a ≤ γ}.

The rough approximation of any approximable element a ∈ Σ is then the
inner–outer pair r(a) := (i(a), o(a)), with i(a) ≤ a ≤ o(a), which is the image of
the element a under the rough approximation mapping r : Σ �→ L(Σ) × U(Σ).

We denote by LU(Σ) := L(Σ) ∩ U(Σ) the set of all innouter (simultaneously
inner and outer) definable elements. This set coincides with the collection of
“sharp” (or “crisp”, “exact”; also “definable,” if one adopts the original Pawlak
terminology) of Σ, that is, elements whose inner approximation is equal to the
outer one, i.e., i(x) = o(x). The rough approximation of any sharp element is
therefore the trivial one r(x) = (x,x).

2.2 Inner and Outer Approximation Spaces

These being stated, in order to introduce the first categorical equivalence between
two abstract approaches to rough theory, let us premise the following definitions.

Definition 2.2. An interior de Morgan lattice is a system 〈Σ,∧,∨, ′, 0, 1〉 where
(IdM1) the structure 〈Σ,∧,∨, 0, 1〉 is a lattice, bounded by the least element 0

and the greatest element 1. The mapping ′ : Σ → Σ is a unary oper-
ation on Σ, called de Morgan complement, that satisfies the following
conditions for arbitrary a, b ∈ Σ:
(dM1) a = a′′ (dM2) (a ∨ b)′ = a′ ∧ b′.

(IdM2) The mapping o : Σ → Σ, that associates to any element a from Σ its
interior ao ∈ Σ, is an interior operation, i.e., it satisfies the followings:

(I1) 1o = 1 (normalized)
(I2) ao ≤ a (decreasing)
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(I3) ao = aoo (idempotent)
(I4) (a ∧ b)o ≤ ao ∧ bo (sub–multiplicative)

Given an interior operator, the subset of open elements is defined as the collection
of elements which are equal to their interior O(Σ) = {a ∈ Σ : a = ao}.
Definition 2.3. A structure 〈Σ,∧,∨,′ ,∗ , 0, 1〉 is a closure de Morgan lattice iff

(CdM1) 〈Σ,∧,∨,′ 0, 1〉 is a De Morgan lattice;
(CdM2) The mapping ∗ : Σ → Σ, that associates to any element a from Σ its

closure a∗ ∈ Σ, is a closure operation, that is, it satisfies the properties:

(C1) 0∗ = 0 (normalized)
(C2) a ≤ a∗ (increasing)
(C3) a∗ = a∗∗ (idempotent)
(C4) a∗ ∨ b∗ ≤ (a ∨ b)∗ (sub–additive)

In a closure de Morgan lattice, the subset of closed elements is defined as the
collection of elements which are equal to their closure O(Σ) = {a ∈ Σ : a = a∗}.
Both the set of open and closed elements are not empty, since 0, 1 are at the
same time open and closed.

The notions of interior de Morgan lattice and closure de Morgan lattice are
strictly linked, since in any interior de Morgan lattice it is possible to define a
closure operator by the law ∀a ∈ Σ : a∗ := ((a′)o)′. Vice versa in any closure
de Morgan lattice an interior operator can be naturally induced by the law
∀a ∈ Σ : ao := ((a′)∗)′. Hence the de Morgan complement determines a duality
relation between the closure and the interior of any element a.

Theorem 2.1. (i) Suppose a rough approximation space A = 〈Σ, L(Σ), U(Σ)〉
and for arbitrary a ∈ Σ let us define ao := i(a) and a∗ := o(a). Then,
A� := 〈Σ, o, ∗ 〉 is a lattice equipped with an interior and a closure opera-
tions such that O(Σ) = L(Σ) and C(Σ) = U(Σ).

(ii) Suppose a lattice equipped with an interior and a closure operations A =
〈Σ, o, ∗ 〉 and let us define L(Σ) := O(Σ) and U(Σ) := C(Σ). Then, A� :=
〈Σ, L(Σ), U(Σ)〉 is a rough approximation space in which for arbitrary a it
is i(a) = ao and o(a) = a∗.

(iii) Let A = 〈Σ, L(Σ), U(Σ)〉 be a rough approximation space. Then: A�� =
A.

(iv) Let A = 〈Σ, o, ∗ 〉 be a lattice equipped with an interior and a closure
operator. Then: A�� = A.

In this way we have shown the indistinguishability between the structure
〈Σ, L(Σ), U(Σ)〉 of rough approximation space based on the lattice Σ and sat-
isfying axioms (Ax1) and (Ax2), and the structure 〈Σ, o, ∗ 〉 based on the same
lattice Σ and equipped with an interior and a closure operation, satisfying condi-
tions (I1)-(I4) and (C1)–(C4) respectively. Clearly, the set of definable elements
LU(Σ) of a rough approximation space conincide with the set of clopen elements,
i.e., elements which are both closed and open.
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Finally, let us note that in any interior (equiv., closure) de Morgan lattice, we
have both an interior and a closure operator, thus applying Theorem 2.1, it is
possible to define an equivalent rough approximation space.

2.3 Pre–Brouwer Zadeh Lattice and Interior–Closure Spaces

In this section, we want to investigate another structure based on two weak
form of negations and which turns out to be categorically equivalent to closure
de Morgan lattices (and hence to rough approximation spaces).

Definition 2.4. A system 〈Σ,∧,∨,′ ,∼ , 0, 1〉 is a pre Brouwer Zadeh (pBZ) lat-
tice iff

(BZ1) the substructure 〈Σ,∧,∨,′ , 0, 1〉 is a de Morgan lattice;
(BZ2) the unary operation ∼ satisfies the properties:

(i) 1 = 0∼

(ii) if a ≤ b then b∼ ≤ a∼ (contraposition)
(BZ3) the two complementations are linked by the following interconnection

rules:
(i) a∼ ≤ a′ (minimal interconnection)
(ii) a′∼ ≤ a′∼′∼ (weak interconnection)

Note that 1∼ = 0, indeed by minimal interconnection 1∼ ≤ 1′ = 0.
The properties of pre Brouwer Zadeh lattices allow one to define an interior

and a closure operator on a lattice structure. Indeed, we can see that any pre-BZ
lattice is equivalent to a closure (resp., interior) de Morgan lattice.

Theorem 2.2

(i) Let T = 〈Σ,∧,∨, ′, ∼, 0, 1〉 be a pre BZ lattice. Let us introduce the
mapping ∗ : Σ �→ Σ defined for every a ∈ Σ as a∗ := a∼ ′, then the
structure T C = 〈Σ,∧,∨, ′, ∗, 0, 1〉 is a closure de Morgan lattice.

(ii) Let T = 〈Σ,∧,∨, ′, ∗, 0, 1〉 be a closure de Morgan lattice. Let us intro-
duce the mapping ∼ : Σ �→ Σ defined for every a ∈ Σ as a∼ := a∗ ′ then
the structure T B = 〈Σ,∧,∨, ′, ∼, 0, 1〉 is a pre BZ lattice.

(iii) If T = 〈Σ,∧,∨, ′, ∼, 0, 1〉 is a pre BZ lattice, then T = T CB.
(iv) If T = 〈Σ,∧,∨, ′, ∗, 0, 1〉 is a closure de Morgan lattice, then T = T BC.

By the result (i) of this theorem, and considering the equivalence between interior
and closure de Morgan lattices, in a pre BZ lattice the closure and interior
operator are defined for every element a ∈ Σ as a∗ = a∼′ and ao = a′ ∼ (with
a∼′ ≤ a ≤ a′ ∼). Thus, we have that pre BZ lattices are the weakest lattice
structure in which we are able to define an interior operator, and a closure
operator and consequently a rough approximation space.

Definition 2.5. A closure de Morgan lattice is said to be topological iff the clo-
sure operator satisfies the additive property: a∗∨b∗ = (a∨b)∗. Dually, an interior
de Morgan lattice is said to be topological iff the interior operator satisfies the
multiplicative property: ao ∧ bo = (a ∧ b)o.
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The following three structures are equivalent among them

(1) pre–BZ lattice satisfying also the join de Morgan property (a∨b)∼ = a∼∧b∼;
(2) topological closure de Morgan lattices;
(3) topological interior de Morgan lattices.

3 Conclusion

We have shown a categorical equivalence among rough approximation spaces,
interior–closure spaces and preBZ lattices. The Pawlak approach to rough set
theory is a concrete example of these structures. Indeed, given a universe X
equipped with an equivalence relation R, one can obtain the rough approxi-
mation space 〈P(X), E(X), E(X)〉 where the power set of X , P(X), is the col-
lection of approximable elements and the exact elements E(X) are all subsets
of X which are set theoretical union of equivalence classes with respect to R,
plus the empty set. Trivially, axioms (Ax1) and (Ax2) are satisfied by the triple
〈P(X), E(X), E(X)〉 which in this way turns out to be a concrete model of rough
approximation space. Hence, all the results one can derive from the abstract en-
vironment sketched in section 2 are immediately true in the particular Pawlak
environment. Thus, we hope to have clarified that all the approaches of section 2
are equivalent among them, and can play the same role in the abstract approach
to roughness.
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Abstract. In this paper, it is remarked that BZ lattice structures can
recover several theoretical approaches to rough sets, englobing their in-
dividual richness in a unique structure. Rough sets based on a similarity
relation are also considered, showing that the BZ lattice approach turns
out to be even more useful, since enables one to define another rough
approximation, which is better than the corresponding similarity one.

Keywords: topological operators, BZ lattices, similarity approxima-
tions.

1 Introduction

The main goal of this second part can be summarized in the slogan: against
theoretical defragmentation in investigating a particular field of research. To be
a little bit more precise, there could be the case that a scientific community
studies its own arguments of interest treating them by several different points
of view, each formalized by a particular formal theory (the fragments of the
involved research). Each fragment furnishes a lot of results, but sometimes the
unification of the various fragments under a unique point of view recover all the
original results of each of them but furnishes some more pregnant theorem which
allows one to enter in a deep knowledge with respect to the considered field.

A similar situation might occur in the case of rough theory if it is claimed that
there are a lot of different abstract approaches to roughness quoting for instance
Boolean complete lattices and topological closure spaces, and considering the BZ
approach as another fragment at the same level of the others. In this second part
we show that on the contrary the BZ approach furnishes a unified context of these
fragments, playing in the rough context the same role of unification played by
Banach space with respect to the fragments of vector spaces and metric spaces.
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Automata: Theory and Application”.
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2 Brouwer Zadeh Lattice Structure of Rough Set Theory

In [1] we have shown the categorical equivalence between rough approximation
spaces, interior–closure spaces (subsection 2.2 of part I), and pre–BZ lattices
(subsection 2.3 of part I). The Pawlak approach to rough set theory based on
a universe X equipped with an equivalence relation R is a concrete model of
these structures. Anyway, Pawlak rough approximation spaces satisfy some fur-
ther characteristic properties which lead to investigate stronger structures with
respect to the above considered ones. From the methodological point of view
resting in weaker environments assures the immediate validity of the general
results, but has the withdraw that some, probably deeply relevant, information
could be definitively lost. Thus, in this section, we study from an abstract point
of view another structure (introduced in [2]) based on two weak forms of negation
and analyze its relation with interior–closure spaces.

Definition 2.1. A system 〈Σ,∧,∨, ′, ∼, 0, 1〉 is a Brouwer Zadeh (BZ) lattice
iff the following properties hold:

(i) 〈Σ,∧,∨, ′, ∼, 0, 1〉 is a Kleene lattice;
(ii) The unary operation ∼ : Σ �→ Σ is a Brouwer complementation. In other

words for arbitrary a, b ∈ Σ:
(B1) a∧a∼∼ = a (equivalent to the weak double negation law: a ≤∼∼ a);
(B2) (a ∨ b)∼ = a∼ ∧ b∼ (equivalent to the contraposition law: a ≤ b

implies ∼ b ≤∼ a);
(B3) a ∧ a∼ = 0 (the noncontradiction law).

(iii) The two complementations are linked by the interconnection rule:
(in) a∼∼ = a∼′

A Brouwer Boolean (BB) lattice is a BZ lattice in which condition (i) is enriched
by the requirement that the involved structure is a Boolean lattice.

Trivially, according to the definition and results of [1] any BZ lattice is a pre–
BZ lattice too, and consequently it gives rise to an interior–closure space, once
defined the interior and closure respectively as ao = a′∼ and a∗ = a∼′. But,
differently from the general case, in these BZ structures the families of inner
and outer definable elements coincide: L(Σ) = U(Σ) . As to the categorical
equivalence with respect to some closure operator we must introduce a modified
version of closure (resp., topological closure) operator according to the following.

Definition 2.2. A pseudo closure operator is a mapping ∗ : Σ �→ Σ which
satisfies the following conditions for arbitrary a, b ∈ Σ:

(C1) 0∗ = 0 (normalized)
(C2) a ≤ a∗ (increasing)
(sC3) a∗ ′ ∗ = a∗ ′ (interconnection)
(C4) a∗ ∨ b∗ ≤ (a ∨ b)∗ (sub–additive)
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A pseudo closure is a closure tout court if condition (sC3) is substituted by the
(weaker) condition:

(C3) a∗ = a∗∗ (idempotent)

A pseudo closure or a closure operator is said to be topological if in condition
(C4) the inequality ≤ is substituted by the identity =.

In [3, p.673] (see also [4, 5]), it is shown that any pseudo closure (resp., pseudo
topological closure) operator is a closure (resp., topological closure) operator
too. The inverse does not generally hold.

Generalizing a notion introduced in [3], in [6] a Kleene lattice equipped with
a pseudo topological closure operator has been called generalized �Lukasiewicz
algebra. This being stated, we have the following result.

Theorem 2.1. [6]

(i) Let T = 〈Σ,∧,∨, ′, ∼, 0, 1〉 be a BZ lattice. Then the closure lattice T C =
〈Σ,∧,∨, ′, ∗, 0, 1〉 induced according to the (i) of theorem 2.2 of part I
(recall that a∗ = a∼′) is a Kleene lattice with pseudo topological closure.

(ii) Let T = 〈Σ,∧,∨, ′, ∗, 0, 1〉 be a Kleene lattice with pseudo topological clo-
sure. Then the structure T B = 〈Σ,∧,∨, ′, ∼, 0, 1〉 induced according to the
(ii) of theorem 2.3 of part I (recall that a∼ = a∗ ′) is a BZ lattice.

(iii) Let T = 〈Σ,∧,∨, ′, ∼, 0, 1〉 be a BZ lattice, then T = T CB.
(iv) Let T = 〈Σ,∧,∨, ′, ∗, 0, 1〉 be a generalized �Lukasiewicz algebra, then T =

T BC.

It is easy to verify that the usual Pawlak approach to rough sets is a concrete
model of a BZ structure based on a Boolean algebra, i.e., a BB lattice. Hence,
it satisfies all the above properties, plus some stronger condition, such as the
Stone condition ∀a ∈ Σ, a′ ∨ a∗ = 1.

Summarizing, a Brouwer Zadeh (resp., Boolean) complete lattice is an al-
gebraic structure which contains (and summarizes in an equivalent way) the
richness of the following structures (fragments):

(P1) It is a Kleene (resp., Boolean) complete lattice.
(P2) It is a pseudo topological closure space, and so a fortiori also a topological

(or Kuratowski) closure space. A similar discourse can be done for duality
with respect to the interior.

3 Quasi BZ Lattices and Induced Rough Approximation

The relationship among interior–closure spaces, BZ lattices and rough sets be-
comes more complex when considering similarity rough sets, i.e., rough sets based
on a tolerance relation [7, 8, 9, 10] instead of an equivalence one. In such a case,
the upper (resp., lower) approximation map is not a closure (resp., interior) op-
erator since it is not idempotent. Indeed, as a consequence of the fact that the
collection of exact sets E(X) is a covering and not a partition of the universe
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X , the lower and upper approximation maps satisfies only the weaker properties
(see [10, 11]): ∀H ⊆ X L(L(H)) ⊆ L(H), U(H) ⊆ U(U(H)).

Thus, an algebraic approach of similarity rough sets cannot rely on topological
operators but must be given in a different environment. To this purpose, in the
following of this section we are going to study quasi BZ lattices.

Definition 3.1. A system 〈Σ,∧,∨, ′, ∼, 0, 1〉 is a quasi Brouwer Zadeh (BZ)
lattice if it satisfies all the conditions of definition 2.1 except the interconnection
rule (in) which is substituted by the weaker condition:

(win) a∼ ≤ a′

In this context, the mappings ao = a′∼ and a∗ = a∼′ can be considered, in some
sense, as approximation operators because for every element a ∈ Σ the following
order chain ao ≤ a ≤ a∗ holds. However, in general, they do not satisfy the
idempotent property, but only the following weaker condition:

aoo ≤ ao and a∗ ≤ a∗∗ (3.1)

As a consequence, it can be stated that

– the two operators a → ao and a → a∗ satisfy conditions (3.1) and thus in
general they cannot be considered as inner and outer operators respectively.
According to the categorical equivalence quoted in the part I, on their ba-
sis it is impossible to construct a rough approximation space satisfying the
requirements about the inner and the outer approximations of any approx-
imable element (see [12, 1]);

– from another point of view, it is impossible to define an abstract rough
approximation space based on the set of inner (resp., outer) exact elements
L(Σ) = {a ∈ Σ : a = ao} (resp., U(Σ) = {a ∈ Σ : a = a∗}) since in general
it is not assured that ao ∈ L(Σ) (resp., a∗ ∈ U(Σ)).

However, it is possible to define another kind of rough approximation by
a pair of mappings which turns out to consist of a real interior and closure
operator [13, 11].

Proposition 3.1. Let 〈Σ,∧,∨, ′, ∼, 0, 1〉 be a quasi BZ distributive lattice.
Then, the mapping i : Σ → Σ, i(a) := a = a′∼∼′ (where a := a′∼′) is
an interior operator. Dually, the mapping c : Σ → Σ, c(a) := a∼∼ is a closure
operator.

In quasi BZ lattices the operator i (resp., c) is not multiplicative (resp., additive),
i.e., it is not topological (Kuratowski) operator. Furthermore, in general it does
not hold the property c(c′(a)) = c′(a) characterizing pseudo closure operators.

The above considerations and the equivalence of closure-interior spaces with
rough approximation spaces lead to say that the structure 〈Σ, O(Σ), C(Σ)〉 is
a real rough approximation space according to [1], where O(Σ) (resp., C(Σ)) is
the set of open (resp., closed) elements.

Considering again the approximation based on the operators ao and a∗, it can
be seen that it associates to any approximable element a ∈ Σ the closed–open
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pair rm(a) = 〈ao, a∗〉 ∈ C(Σ)×O(Σ). The major drawback of this approximation
is that it is worst than the corresponding one based on the interior i and closure
c operators, r(a) = 〈i(a), c(a)〉, in the sense that it captures less information
about approximable elements. In fact, the following order chain holds for any
element a ∈ Σ:

ao ≤ i(a) ≤ a ≤ c(a) ≤ a∗. (3.2)

and so the rough approximation of a by the pair 〈i(a), c(a)〉 is always better
than the one obtained by the pair 〈ao, a∗〉. Let us remark that in BZ lattice
we do not have this pathological behavior since the two rough approximations
coincide, i.e., ao = i(a) and c(a) = a∗.

Coming back to the case of a concrete Information System, the opposite of
a similarity relation is a preclusive relation, i.e., an irreflexive and symmetric
relation, which we denote by #. Using this relation, it is possible to define for
any subset H ⊆ X its preclusive complement as H# := {x ∈ X : ∀y ∈ H (x#y)}.
We remark that, in the context of modal analysis of rough approximation spaces,
the operation # is called sufficiency operator [14].

In [13] it has been proved that the structure
〈
P(X), ∩, ∪, c, #, ∅, X

〉
, based

on the power set P(X) of the universe X is a quasi BZ (Boolean) lattice. Thus,
for any subset H ⊆ X , it is possible to define its preclusive rough approximation
〈L#(H),U#(H)〉 =

〈
Hc##c,H##

〉
. In this framework, the rough approximation

based on the similarity relation obtained by logical negation of the preclusive
one, can be expressed by the preclusive operator # (and the usual set theoretical
complementation) according to the following: L(H) = Hc# and U(H) = H#c.
Hence, applying to the present case equation (3.2), we can conclude that the
preclusive approximation is always better than the corresponding similarity one:
L(H) ⊆ L#(H) ⊆ H ⊆ U#(H) ⊆ U(H).

4 Conclusions

As a consequence of the above discussion, we can claim that in studying the
approach to rough sets from an abstract point of view BZ structures are very
relevant, at least as a compact form containing a lot of different other algebraic
structures as summarized in points (P1) and (P2). In this way a unified very
useful environment handy to use for further theoretical investigations is given
and schematized in the following diagram.

Rough App. Space ⇐⇒ de Morgan Closure Space ⇐⇒ pre BZ Lattice
⇑ ⇑

Kleene pseudo Closure ⇐⇒ BZ Lattice
⇑

BB Lattice

where the abstract framework of the usual Pawlak approach corresponds to the
third line, the stronger BZ environment. Indeed, moving from the bottom to the
top we pass from a stronger to a weaker situation schematized by the symbol ⇑.
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Further, when considering the geralizition to tolerance rough sets, the BZ–like
structure has the advantage to capture the usual approximations as well as a
better one, based on preclusivity, and made of a pair of really interior and closure
operators

As a conclusion, we want now to point out some considerations.
(MT1) As stressed in the introduction, the fact that this algebraic structure is

categorically equivalent to a very strong version of closure de Morgan
lattice does not allow one to give some priority to one of them with
respect to the other one.

(MT2) The BZ structure is very reach to inglobe a lot of other well known struc-
tures. A structure is valid for the powerful of its results and applications,
and must (or should) be judged prevalently (if not exclusively) from this
point of view.
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Abstract. In this paper greedy algorithms with weights for construc-
tion of partial tests (partial superreducts) and partial decision rules are
considered. Lower bounds on minimal weight of partial reducts and par-
tial decision rules based on information about greedy algorithm work are
obtained.
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1 Introduction

The paper is devoted to investigation of partial reducts and partial decision rules
[1]. If a decision table contains noise then exact reducts and rules can be over-
learned i.e. depend essentially on noise. If we see constructed reducts and rules
as a way of knowledge representation [2] then instead of long exact reducts and
rules it is more appropriate to work with relatively short partial reducts and
rules. Last years in rough set theory partial reducts and partial decision rules
are studied intensively [3,4,5,6,7,8,9].

In the paper we study the case where each attribute in decision table has
its own weight, and we must minimize the total weight of attributes in partial
reduct or in partial decision rule. We consider greedy algorithms with weights
for construction of partial tests (partial superreducts) and partial decision rules
which are similar to known greedy algorithm with weights for partial cover con-
struction [10]. Last algorithm is a generalization of well known greedy algorithm
with weights for exact cover construction [11]. We obtain lower bounds on min-
imal weight of partial reducts and partial decision rules based on information
about the work of greedy algorithms. These bounds generalize bounds obtained
in [12,13,14] for the case when the weight of each attribute is equal to 1. Also
we consider results of some experiments.
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This paper consists of four sections. The second section is devoted to consid-
eration of partial reducts. The third one is devoted to consideration of partial
decision rules. The fourth section contains short conclusions.

2 Partial Tests and Reducts

In this section we consider lower bound on the minimal weight of partial reducts,
and results of some experiments.

2.1 Main Notions

Let T be a table with n rows labeled by nonnegative integers (decisions) and
m columns labeled by attributes a1, . . . , am. This table is filled by nonnegative
integers (values of attributes). The table T is called a decision table. Let w be a
weight function which corresponds to each attribute ai a natural number w(ai).

Denote by P (T ) the set of unordered pairs of different rows of T with different
decisions. We will say that an attribute ai separates a pair of rows (r1, r2) ∈ P (T )
if rows r1 and r2 have different numbers at the intersection with the column
ai. For i = 1, . . . , m denote by P (T , aj) the set of pairs from P (T ) which the
attribute ai separates.

Let α be a real number such that 0 ≤ α < 1. A set of attributes Q ⊆
{a1, . . . , am} will be called an α-test for T if attributes from Q separates at least
(1 − α)|P (T )| pairs from the set P (T ). An α-test is called an α-reduct if each
proper subset of the considered α-test is not α-test. If P (T ) = ∅ then each subset
of {a1, . . . , am} is an α-test, and only empty set is an α-reduct. For example,
0.01-test means that we must separate at least 99% of pairs from P (T ).

The number w(Q) =
∑

ai∈Q w(ai) will be called the weight of the set Q. If
Q = ∅ then w(Q) = 0. Denote by Rmin(α) = Rmin(T , w,α) the minimal weight of
α-reduct for T . It is clear that Rmin(T , w,α) coincides with the minimal weight
of α-test for T .

Describe a greedy algorithm with threshold α which constructs an α-test for
given decision table T and weight function w.

If P (T ) = ∅ then the constructed α-test is empty set. Let P (T ) �= ∅. Denote
M = !|P (T )|(1 − α)(. Let we make i ≥ 0 steps and construct a set Q with i
attributes (if i = 0 then Q = ∅). Describe the step number i + 1.

Denote by D the set of pairs from P (T ) separated by attributes from Q (if
i = 0 then D = ∅). If |D| ≥ M then we finish the work of the algorithm. The
set of attributes Q is the constructed α-test. Let |D| < M . Then we choose an
attribute aj with minimal number for which P (T , aj) \ D �= ∅ and the value

w(aj)
min{|P (T , aj) \ D|, M − |D|}

is minimal. Add the attribute aj to the set Q. Pass to the step number i + 2.
Denote by Rgreedy(α) = Rgreedy(T , w,α) the weight of α-test constructed by

the considered algorithm for given table T and weight function w.
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2.2 Lower Bound on Rmin(α)

In this subsection we fix some information about greedy algorithm work and find
best lower bound on the value Rmin(α) depending on this information.

Apply the greedy algorithm with threshold α to decision table T with P (T ) �=
∅ and weight function w. Let during the construction of α-test the greedy algo-
rithm choose consequently attributes aj1 , . . . , ajt . Denote δ0 = 0 and P (T , aj0) =
∅. For i = 1, . . . , t denote

δi = |P (T , aji) \ (P (T , aj0) ∪ . . . ∪ P (T , aji−1))|

and wi = w(aji ).
As information on the greedy algorithm work we will use the number M =

!|P (T )|(1 − α)( and tuples Δ = (δ1, . . . , δt) and W = (w1, . . . , wt).
For i = 0, . . . , t − 1 denote

ρi =
⌈

wi+1(M − (δ0 + . . .+ δi))
min{δi+1, M − (δ0 + . . .+ δi)}

⌉
.

Define parameter ρR(α) = ρR(T , w,α) as follows:

ρR(α) = max{ρi : i = 0, . . . , t − 1} .

Theorem 1. The best lower bound on Rmin(α) depending on M , Δ and W is

Rmin(α) ≥ ρR(α) .

Best means that for each decision table T , each weight function w and each α
there exist a decision table T ′ and a weight function w′ such that the informa-
tion on the greedy algorithm work for T ′, w′,α is the same as for T , w,α, and
Rmin(T ′, w′,α) = ρR(T ′, w′,α) = ρR(T , w,α).

Theorem 2. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the following inequalities hold:

ρR(α) ≤ Rmin(α) < ρR(α− ε)
(

ln
1
ε

+ 1
)

.

For example, ln 1
0.1 + 1 < 3.31.

2.3 Experimental Results for Reducts

In this subsection we consider results of some experiments that allow to compare
values ρR(α) and Rgreedy(α) which are lower and upper bounds on Rmin(α).

We choose natural n, m, v and real α, 0 ≤ α < 1. For each chosen tuple
(n, m, v,α) we generate randomly 10 pairs (T , w) where T is a decision table
with n rows, m attributes with values from the set {0, 1} and decisions from the
set {0, 1}, and w is a weight function with values from the set {1, . . . , v}. After
that we find mean values of Rgreedy(T , w,α) and ρR(T , w,α) for generated 10
pairs (T , w). Results of experiments can be found in Table 1. These results and
Theorem 2 show that the use of the parameter ρR(α) allows to obtain nontrivial
lower bounds on the value Rmin(α).
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Table 1. Results of Experiments for Reducts

n m v α mean Rgreedy mean ρR

5000 40 100 0.01 66.2 21.7
3000 40 1000 0.1 417.5 178.6
1000 100 1000 0.1 138.5 58.7
1000 100 1000 0.01 399.5 123.9
1000 40 1000 0.001 1243.9 301.8
100 40 100 0.001 141.3 38.4

3 Partial Decision Rules

In this section we consider lower bound on the minimal weight of partial decision
rules, and results of some experiments.

3.1 Main Notions

Let T be a decision table with n rows and m columns labeled by attributes
a1, . . . , am. Let w be a weight function which corresponds to each attribute ai a
natural number w(ai). Let r = (b1, . . . , bm) be a row of T labeled by a decision d.

Denote by U(T , r) the set of rows from T which are different from r and are
labeled by decisions different from d. For i = 1, . . . , m denote by U(T , r, ai) the
set of rows from U(T , r) which attribute ai separates from the row r.

Let α be a real number such that 0 ≤ α < 1. A decision rule

ai1 = bi1 ∧ . . . ∧ ait = bit → d (1)

is called an α-decision rule for T and r if attributes ai1 , . . . , ait separate from r
at least (1−α)|U(T , r)| rows from U(T , r). The number

∑t
j=1 w(aij ) is called the

weight of the considered decision rule. If U(T , r) = ∅ then for any ai1 , . . . , ait ∈
{a1, . . . , am} the rule (1) is an α-decision rule for T and r. Also, the rule (1)
with empty left-hand side (when t = 0) is an α-decision rule for T and r. The
weight of this rule is equal to 0. For example, 0.01-decision rule means that we
must separate from r at least 99% of rows from U(T , r).

Denote by Lmin(α) = Lmin(T , r, w,α, ) the minimal weight of α-decision rule
for T and r.

Describe a greedy algorithm with threshold α which constructs an α-decision
rule for given T , r and weight function w. Let r = (b1, . . . , bm), and r be labeled
by the decision d.

The right-hand side of constructed α-decision rule is equal to d. If U(T , r) = ∅
then the left-hand side of constructed α-decision rule is empty. Let U(T , r) �= ∅.
Denote M = !|U(T , r)|(1−α)(. Let we make i ≥ 0 steps and construct a decision
rule R with i conditions (if i = 0 then the left-hand side of R is empty). Describe
the step number i + 1.
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Denote by D the set of rows from U(T , r) separated from r by attributes from
R (if i = 0 then D = ∅). If |D| ≥ M then we finish the work of the algorithm, and
R is the constructed α-decision rule. Let |D| < M . Then we choose an attribute
aj with minimal number for which U(T , r, aj) \ D �= ∅ and the value

w(aj)
min{|U(T , r, aj) \ D|, M − |D|}

is minimal. Add the condition aj = bj to R. Pass to the step number i + 2.
Denote by Lgreedy(α) = Lgreedy(T , r, w,α) the weight of α-decision rule con-

structed by the considered algorithm for given table T , row r and weight function
w.

3.2 Lower Bound on Lmin(α)

In this subsection we fix some information about greedy algorithm work and find
best lower bound on the value Lmin(α) depending on this information.

Apply the greedy algorithm with threshold α to decision table T , row r and
weight function w. Let U(T , r) �= ∅. Let during the construction of α-decision
rule the greedy algorithm choose consequently attributes aj1 , . . . , ajt .

Denote δ0 = 0 and U(T , r, aj0) = ∅. For i = 1, . . . , t denote

δi = |U(T , r, aji) \ (U(T , r, aj0) ∪ . . . ∪ U(T , r, aji−1))|
and wi = w(aji ).

As information on the greedy algorithm work we will use the number M =
!|U(T , r)|(1 − α)( and tuples Δ = (δ1, . . . , δt) and W = (w1, . . . , wt).

For i = 0, . . . , t − 1 denote

ρi =
⌈

wi+1(M − (δ0 + . . .+ δi))
min{δi+1, M − (δ0 + . . .+ δi)}

⌉
.

Define parameter ρL(α) = ρL(T , r, w,α) as follows:

ρL(α) = max{ρi : i = 0, . . . , t − 1} .

Theorem 3. The best lower bound on Lmin(α) depending on M , Δ and W is

Lmin(α) ≥ ρL(α) .

Best means that for each decision table T , each row r of T , each weight function
w and each α there exist a decision table T ′, row r′ of T ′ and a weight function
w′ such that the information on the greedy algorithm work for T ′, r′, w′,α is the
same as for T , r, w,α, and

Lmin(T ′, r′, w′,α) = ρL(T ′, r′, w′,α) = ρL(T , r, w,α) .

Theorem 4. Let ε be a real number, and 0 < ε < 1. Then for any α such that
ε ≤ α < 1 the following inequalities hold:

ρL(α) ≤ Lmin(α) < ρL(α− ε)
(

ln
1
ε

+ 1
)

.

For example, ln 1
0.01 + 1 < 5.61.
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Table 2. Results of Experiments for Decision Rules

n m v α mean Lgreedy mean ρL

5000 40 100 0.01 66.3 21.2
3000 40 1000 0.1 246.3 102.7
1000 100 1000 0.1 96.4 41.6
1000 100 1000 0.01 231.1 82
1000 40 1000 0.001 839.7 311.6
100 40 100 0.001 47.1 23

3.3 Experimental Results for Decision Rules

In this subsection we consider results of some experiments that allow to compare
values ρL(α) and Lgreedy(α) which are lower and upper bounds on Lmin(α).

We choose natural n, m, v and real α, 0 ≤ α < 1. For each chosen tuple
(n, m, v,α) we generate randomly 10 pairs (T , w) where T is a decision table with
n rows, m attributes with values from the set {0, 1} and decisions from the set
{0, 1}, and w is weight function with values from the set {1, . . . , v}. After that we
find mean values of Lgreedy(T , r1(T ), w,α) and ρL(T , r1(T ), w,α) for generated
10 pairs (T , w) where r1(T ) is the first row of T . Results of experiments can
be found in Table 2. These results and Theorem 4 show that the use of the
parameter ρL(α) allows to obtain nontrivial lower bounds on the value Lmin(α).

4 Conclusions

We obtain lower bounds on minimal weight of partial reducts and partial deci-
sion rules based on information about greedy algorithm work. Theoretical and
experimental results show that these bounds can be useful in investigations of
decision tables.
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9. Wróblewski, J.: Ensembles of classifiers based on approximate reducts. Fundamenta
Informaticae 3,4 (2001) 351–360.

10. Slav́ık, P.: Approximation algorithms for set cover and related problems. Ph.D.
thesis. University of New York at Buffalo (1998).
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Abstract. This paper critically analyzes reduct construction methods
at two levels. At a high level, one can abstract commonalities from the
existing algorithms, and classify them into three basic groups based on
the underlying control structures. At a low level, by adopting different
heuristics or fitness functions for attribute selection, one is able to derive
most of the existing algorithms. The analysis brings new insights into the
problem of reduct construction, and provides guidelines for the design of
new algorithms.

Keywords: Reduct construction algorithms, deletion strategy, addition-
deletion strategy, addition strategy, attribute selection heuristics.

1 Introduction

The theory of rough sets has been applied in data analysis, data mining and
knowledge discovery. A fundamental notion supporting such applications is the
concept of reducts, which has been studied extensively by many authors
[5,7,9,10,12,14,15]. A reduct is a subset of attributes that is jointly sufficient
and individually necessary for preserving the same information under consider-
ation as provided by the entire set of attributes. A review of the existing reduct
construction algorithms shows that most of them tie together search strategies
(i.e., control structures) and attribute selection heuristics. This leads to diffi-
culties in analyzing, comparing, and classifying those algorithms, as well as the
trend of introducing new algorithms constantly.

There are two basic search strategies. The addition strategy starts with the
empty set and consecutively adds one attribute at a time until we obtain a
reduct, or a superset of a reduct. The deletion strategy starts with the full
set and consecutively deletes one attribute at a time until we obtain a reduct.
By considering the properties of reducts, the deletion strategy always results
in a reduct [15]. On the other hand, algorithms based on a straightforward
application of the addition strategy only produce a superset of a reduct [3,4,6,8].
In order to resolve this problem, many authors considered a combined strategy
by re-applying the deletion strategy on the superset of a reduct produced by
the addition strategy [1,12,14]. According to the above discussion, we have three

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 297–304, 2006.
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control strategies used by reduct construction algorithms. They are the deletion
strategy, the addition-deletion strategy, and the addition strategy.

With a clear separation of control structures and attribute selection heuris-
tics, we can critically analyze reduct construction algorithms with respect to
the high level control strategies, and the low level attribute selection heuristics,
respectively. This allows us to conclude that the differences between the exist-
ing algorithms lie more on the attribute selection heuristics than on the control
strategies.

2 Basic Concepts and Notations

We assume that data are represented by an information table, where a finite set
of objects are described by a finite set of attributes.

Definition 1. An information table S is the tuple:

S = (U, At, {Va|a ∈ At}, {Ia|a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, Va is a nonempty set of values for an attribute a ∈ At, and Ia : U → Va

is an information function. For an object x ∈ U , an attribute a ∈ At, and a
value v ∈ Va, Ia(x) = v means that the object x has the value v on attribute a.

A discernibility matrix stores attributes that differentiate any two objects of the
universe [9].

Definition 2. Let |U | denote the cardinality of U . Given an information table
S, its discernibility matrix, denoted by M , is a |U | × |U | matrix with mx,y ∈ M
defined by:

mx,y = {a ∈ At | Ia(x) �= Ia(y),x, y ∈ U}.

The physical meaning of mx,y is that objects x and y are distinguished by any
of the attributes in mx,y.

For any subset A ⊆ At, there is an associated equivalence relation EA ⊆ U×U ,
i.e.,

EA = {(x, y) ∈ U × U | ∀a ∈ A [Ia(x) = Ia(y)]},

which partitions U into disjoint subsets. Such a partition of the universe is
denoted by U/EA.

The partition U/EAt is the finest partition, and the partition U/E∅ is the
coarsest partition. Given an arbitrary attribute set A ⊆ At, the partition U/EA

is not necessarily equivalent to the partition U/EAt. A set of attributes that
individually necessary and jointly sufficient preserve the partition of U/EAt is
called a reduct [7].

Definition 3. Given an information table S, a subset R ⊆ At is called a reduct
of At, if R satisfies the two conditions:
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(i). U/ER = U/EAt;
(ii). for any a ∈ R, U/E(R−{a}) �= U/EAt.

Based on a discernibility matrix M , a reduct can be redefined as follows [9],
which is equivalent to Definition 3.

Definition 4. Given a discernibility matrix M , a subset R ⊆ At is called a
reduct of At, if R satisfies the two conditions:

(i). for all m ∈ M , m ∩ R �= ∅;
(ii). for any a ∈ R, there exists at least one m ∈ M such that

m ∩ (R − {a}) = ∅.

In many cases, we consider decision-relative reducts instead of (absolute) reducts
in a decision table. A decision table is an information table, with At = C ∪ D,
where C stands for a set of condition attributes that describe the features of
objects, and D is a set of decision attributes.

Definition 5. Given a consistent decision table S = {U, At = C∪D, {Va}, {Ia}},
a subset R ⊆ C is called a relative-reduct of C with respect to D, if R satisfies the
two conditions:

(i). U/ER " U/ED;
(ii). for any a ∈ R, ¬(U/E(R−{a}) " U/ED),

where " stands for the refinement relation between partitions.

Based on a decision table, we can easily construct a discernibility matrix that
only keeps track of the differences between any two objects that have different
decision values. We can use this redefined discernibility matrix to compute the
decision-relative reduct based on the same two conditions in Definition 4.

In this paper, we focus on computing the absolute reducts. The decision-
relative reducts can be computed in a similar manner.

Given an information table, there may exist many reducts. The intersection
of all reducts is called the core. The union of the singleton matrix elements
composes the core of the attribute set [9].

An attribute set R′ ⊆ At is called a super-reduct of a reduct R, if R′ ⊇ R; an
attribute set R′ ⊂ At is called a partial reduct of a reduct R, if R′ ⊂ R. Given
a reduct, there exist many super-reducts and many partial reducts.

3 Three Reduct Construction Strategies

3.1 Reduct Construction by Deletion

By a deletion method, we take At as a super-reduct, which is the largest super-
reduct. Deletion methods can be described generally as in Figure 1. Many algo-
rithms are proposed based on this simple control strategy [3,15].

A deletion method starts with the trivial super-reduct, i.e., the entire attribute
set. It has to check all the attributes in At for deletion. It is not efficient in the
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Input: An information table.
Output: A reduct R.

(1) R = At,CD = At.
(2) While CD �= ∅:

(2.1) Compute fitness of all the attributes in CD using a fitness function δ;
(2.2) Select an attribute a ∈ CD according to its fitness, let CD = CD −{a};
(2.3) If R − {a} is a super-reduct, let R = R − {a}.

(3) Output R.

Fig. 1. Deletion Method for Computing a Reduct

cases when a reduct is short, and many attributes are eliminated from the super-
reduct after checking.

The order of attributes for deletion is essential for reduct construction. Dif-
ferent fitness functions determine different orders of attributes, and result in
different reducts. The attribute selection heuristic is given by a fitness function:

δ : At −→ +, (1)

where + is the set of real numbers. The meaning of the function δ is determined
by many semantic considerations. For example, it may be interpreted in terms
of the cost of testing, the easiness of understanding, or the actionability of an
attribute, the information gain it produces, etc.

Many algorithms use entropy-based heuristics, such as information gain and
mutual information [2,6,11,13]. For example, the attribute entropy is given by:

δ(a) = H(a) = −
∑
x∈Va

p(x) log p(x). (2)

Some algorithms use frequency-based heuristics with respect to the discernibility
matrix, such as the ones reported in [7,10,12]. For example, we have:

δ(a) = |{m ∈ M | a ∈ m}|. (3)

This is, we attempt to delete first an attribute that differentiates a small number
of objects.

3.2 Reduct Construction by Addition-Deletion

By the addition-deletion strategy, we start the construction from an empty set or
the core, and consequently add attributes until a super-reduct is obtained. The
constructed super-reduct contains a reduct, but itself is not necessary a reduct
unless it is shown that all the attributes in it are necessary. We need to delete
the unnecessary attributes in the super-reduct till a reduct is found [14,15]. The
addition-deletion methods can be described generally as in Figure 2.

The addition-deletion strategy has been proposed and studied, since the dele-
tion strategy is not efficient, and the over-simplified addition methods normally
find a super-reduct, but not a reduct. A lack of consideration of the latter prob-
lem has produced many incomplete reduct construction algorithms, such as the
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Input: An information table.
Output: A reduct R.

Addition:
(1) R = ∅, CA = At.
(2) While R is not a super-reduct and CA �= ∅:

(2.1) Compute fitness of all the attributes in CA using a fitness function σ;
(2.2) Select an attribute a ∈ CA according to its fitness, let CA = CA − {a};
(2.3) Let R = R ∪ {a}.

Deletion:
(3) CD = R.
(4) While CD �= ∅:

(4.1) Compute fitness of all the attributes in CD using a fitness function δ;
(4.2) Select an attribute a ∈ CD according to its fitness, let CD = CD −{a};
(4.3) If R − {a} is a super-reduct, let R = R − {a}.

(5) Output R.

Fig. 2. Addition-deletion Method for Computing a Reduct

ones reported in [3,4,6,8]. An addition-deletion algorithm based on the discerni-
bility matrix has been proposed by Wang and Wang [12], which can construct a
super-reduct, and reduce it to a reduct efficiently.

For the addition-deletion strategies, the orders of attributes for addition and
deletion are both essential for reduct construction. By using the fitness function
σ, we add the fit attributes to the empty set or the core to form a super-reduct;
by using the fitness function δ, we delete the fit attributes from the super-reduct
to form a reduct. σ and δ can be two different heuristics, or the same heuristic.
If one can order the attributes according to a fitness function δ from the most
fit attribute to the least fit attribute, then this order can be used for adding
them one by one until the sufficient condition is met, and the reversed order
can be used for deleting the unnecessary attributes. By this means, one heuristic
determines two orders, and a reduct composed of more fit attributes is obtained.

3.3 Reduct Construction by Addition

The goal of an addition method is to construct a reduct from an empty set or
the core, and consequently add attributes until it becomes a reduct. The essen-
tial difference between the addition method and the addition-deletion method
is that, the addition method takes in one attribute if the constructed set is a
partial reduct. On the other hand, the addition-deletion method continuously
adds attributes until a super-reduct is produced. In this case, superfluous at-
tributes could be added, and the deletion process is required to eliminate them.
The addition methods can be described generally as in Figure 3.

The process to check if a constructed attribute set is a partial reduct is not
a trivial step. Zhao and Wang have proposed an algorithm to carry out this
task [14]. Before we introduce this algorithm, we need to introduce two basic
operations defined on a discernibility matrix:
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Input: An information table.
Output: A reduct R.

(1) R = ∅, CA = At.
(2) While R is not a reduct and CA �= ∅:

(2.1) Compute fitness of all the attributes in CA using a fitness function σ;
(2.2) Select an attribute a ∈ CA according to its fitness;
(2.3) If R ∪ {a} is a partial reduct, let R = R ∪ {a}, and CA = CA − {a}.

(3) Output R.

Fig. 3. Addition Method for Computing a Reduct

Absorb is an absorption operation on the discernibility matrix. One can
absorb a matrix element m ∈ M if there exists another matrix element
m′ ∈ M such that m′ ⊆ m. It means that if two objects can be distinguished
by any attribute in the matrix element m, then they can also be distinguished
by any attribute in a subset of m. We do not need to track the supersets,
but only the subsets, the absorbers. The operation is defined as:

Absorb(M) : For any m, m′ ∈ M, if m′ ⊆ m, then M = M − {m}.

Group is a grouping operation on elements of a discernibility matrix. A set
of matrix elements can be grouped together with respect to an attribute by
collecting all the individual matrix elements containing the attribute. Since
each matrix element is associated with two objects, the grouping reflects the
fact that a set of objects associated with the grouped matrix elements can be
distinguished by this common attribute. We only need to track this common
attribute for simplicity. For an attribute a ∈ At, the grouping is defined as:

Group(a) = {m ∈ M | a ∈ m}.

An addition algorithm for computing reducts based on a discernibility matrix
is described in Figure 4.

The fitness function σ can be the one discussed in Sections 3.2. We need to
discuss more about the fitness function dm. To ensure that the chosen attribute
a is in a partial reduct, we need to choose one element m ∈ Group(a), and
delete m from all the matrix element in M , and update M accordingly. This
deletion, here for simplicity, is called “delete the tail of a”, ensures that a has
to be a reduct attribute, otherwise, at least one pair of objects cannot be distin-
guished. We should note that the fitness function dm of the proposed addition
algorithm is different from the fitness function δ of the general deletion algorithm
we discussed in Section 3.1. That is because δ evaluates the fitness of one single
attribute at a time, dm evaluates the fitness of a matrix element m, which is a
set of attributes. Typically, dm is the summation or the average fitness of all the
included attributes.

The selection of a matrix element for deletion can be described by a mapping:

dm : {m | m ∈ Group(a)} −→ +. (4)
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Input: A discernibility matrix M .
Output: A reduct.

R = ∅, CA = At.
Do while M �= ∅:
(1) M = Absorb(M).
(2) Compute fitness of all the attributes in CA using a fitness function σ;
(3) Select an attribute a ∈ CA with Group(a) �= ∅ according to its fitness, let

R = R ∪ {a}, CA = CA − {a};
(4) Compute fitness of all the matrix elements in Group(a) according to a fitness

function dm;
(5) Select a matrix element mi ∈ Group(a) based on its fitness, update M by two

steps:
(5.1) Delete Group(a) from M : M = M − Group(a),
(5.2) Update matrix elements: M = {m − mi | m ∈ M}.

Output the reduct R.

Fig. 4. An Addition Algorithm by Using a Discernibility Matrix

The meaning of the mapping function dm is determined by many semantic
considerations as well.

A frequency-based heuristic can be defined as follows. The higher the value,
the more matrix elements are to be updated, and most possibly, after absorption,
a smaller matrix can be obtained. That is,

dm(mi) = |{m ∈ M | m ∩ mi �= ∅}|. (5)

We can also define the fitness function dm as the information entropy, i.e.,
the joint entropy of all the attributes in the attribute set mi −{a}. For example,
if mi − {a} = {b, c}, then

dm(mi) = H(mi − {a})
= H({b, c})
= −

∑
x∈Vb

∑
y∈Vc

p(b, c) log p(b, c). (6)

4 Conclusion

This paper provides a critical study of the existing reduct construction algo-
rithms based on a two-level view: a high level view of control strategy and a
low level view of attribute selection heuristic. Three basic groups are discussed.
They are the deletion strategy, the addition-deletion strategy, and the addition
strategy. Several attribute selection heuristics are examined. The analysis not
only produces valuable insights into the problem, but also provides guidelines
for the design of new reduct construction algorithms.
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Abstract. We investigate association reducts, which extend previously
studied information and decision reducts in capability of expressing com-
pound, multi-attribute dependencies in data. We provide Boolean, discer-
nibility-based representation for most informative association reducts.

Keywords: Rough sets, reduction, discernibility, boolean reasoning.

1 Introduction

Association rules [1] proved to be very useful in deriving and representing data-
based knowledge. There are many algorithms extracting (in)exact association
rules [6], also including methods based on the theory of rough sets [7].

Knowledge can be represented at different levels. In many applications, rules
expressed by means of conjunctions of descriptors are too specific and should be
reconsidered as global dependencies. Among many approaches [6], one can base
on information and decision reducts – irreducible subsets of attributes providing
information about other, optionally preset attributes [8,9].

We investigate a novel notion of association reduct [11] – a non-improvable pair
(Bl, Br) of subsets of attributes such that data-supported patterns involving Br

are determined by those based on Bl. Non-improvability means that Bl cannot
be reduced and Br – extended without losing determination of Br by Bl.

Association reducts are analogous to association rules, now reformulated at
more global level. Support and confidence of rules [1,6] can be reformulated
using, e.g., prior and conditional entropy for reducts [10,11]. Complexity and
algorithms for association reducts are further studied in [12].

In this paper, we construct discernibility-based Boolean functions with prime
implicants corresponding to exact association reducts. It helps in better under-
standing differences in comparison to information/decision reducts, at their most
fundamental level [8,9]. It also complements with our studies in [11,12].

The paper is organized as follows: Section 2 recalls information reducts. Sec-
tion 3 introduces association reducts. Section 4 recalls discernibility matrices.
Section 5 provides matrices for association reducts. Section 6 provides Boolean
representation of association reducts. Section 7 discusses further research.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 305–312, 2006.
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2 Information Reducts

Attribute (feature) reduction is one of the phases of knowledge discovery in
databases [6]. Once we selected the data dimensions, we should examine whether
their number can be reduced, before further mining. In general, we should con-
sider dependencies among the sets of attributes, because attributes which seem
to be less informative separately may provide crucial information together.

One of approaches to such phenomena is based on the theory of rough sets
[8]. It handles data as the information systems A = (U, A), where U consists of
objects and A consists of attributes. Every a ∈ A corresponds to the function
a : U → Va where Va is a’s value set. For illustration, the following A = (U, A)
has 6 binary attributes, A = {a, b, c, d, e, f}, and 7 objects, U = {u1, . . . , u7}:

A a b c d e f
u1 1 1 1 1 1 1
u2 0 0 0 1 1 1
u3 1 0 1 1 0 1
u4 0 1 0 0 0 0
u5 1 0 0 0 0 1
u6 1 1 1 1 1 0
u7 0 1 1 0 1 0

Definition 1. [8] Let information system A = (U, A) be given. For every subset
B ⊆ A, we define the binary B-indiscernibility relation

IND(B) = {(x, y) ∈ U × U : ∀a∈B a(x) = a(y)} . (1)

We say that B is an information reduct in A, if and only if IND(B) = IND(A)
and there is no proper subset B′ � B, for which analogous equality holds.

Relation IND represents all the differences between objects in the system,
which need to be preserved while removing attributes. One should expect many
reducts as independent solutions. For instance, for A = (U, A) above, we have
{abcf}, {acef}, {adef}, {bcdf}, {bdef}, {cdef}. Extraction of all or minimal
(or optimal due to various criteria) reducts is widely studied in literature (cf.
[3]).

3 Association Reducts

Information reducts correspond to association rules [1,6,7], but considered at
global level. Reduct B ⊆ A generates exact rules with premises involving values
of B and consequences involving values of A\B. Analogous correspondence may
be drawn between inexact rules and reducts [7,10,11]. In this paper, however,
we restrict ourselves to the exact case. For the example of A = (U, A) in Section
2, reduct {adef} induces the following rules, among the others:

a = 1 ∧ b = 1 ∧ c = 1 ∧ f = 1 ⇒ d = 1 ∧ e = 1,
a = 0 ∧ b = 0 ∧ c = 0 ∧ f = 1 ⇒ d = 1 ∧ e = 1. (2)
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The rules can be further optimized by simplifying premises and/or extending
consequences. For instance, we may remove premise’s constraints to get a =
1 ∧ b = 1 ∧ c = 1 ⇒ d = 1 ∧ e = 1 and/or move them to the consequence to get
a = 0 ∧ b = 0 ∧ c = 0 ⇒ d = 1 ∧ e = 1 ∧ f = 1 in (2). It can be achieved using
algorithms for decision rules [3] and association rules [1], respectively.

Optimization may be also performed at the global level of attributes and the
whole collections of rules. It may be more interesting for practitioners, if they
need more general, compact information. (See also discussion in Section 7.)

Definition 2. Let information system A = (U, A) be given. For every subsets
B, C ⊆ A, we say that B determines C in A, denoted by B � C, if and only if

IND(B) = IND(B ∪ C). (3)

If we interpret information reducts B ⊆ A as B � A\B, we obtain the following
multi-attribute dependencies for the example of A = (U, A) in Section 2:

abcf � de acef � bd adef � bc,
bcdf � ae bdef � ac cdef � ab.

(4)

Now, the question is whether dependencies in (4) are really most informative.
For example, consider adef � bc and let us note that requirement (3) is also
satisfied for ade � bc. As another example, consider adef � bc. Here, the
premise part cannot be reduced directly, but if we focus only on attribute b at
the consequence part, then we would be able to write aef � b.

Definition 3. [11] Let information system A = (U, A) be given. For every sub-
sets Bl, Br ⊆ A, we say that the pair (Bl, Br) forms an association reduct, if
and only if we have Bl � Br and there is neither proper subset B′

l � Bl nor
proper superset B′

r � Br, for which B′
l � Br or Bl � B′

r would hold.

Here we list all association reducts for the example of A = (U, A) in Section 2:

abc � de ace � bd acf � d ade � bc aef � b
bcd � ae bde � ac cdef � ab cdf � a cef � b

(5)

Statements in (4) are derivable from (5) using the following inference rules:

(X � Z) ⇒ (XY � Z) and (X � Y Z) ⇒ (X � Z). (6)

Actually, one can say that the set of all association reducts is a complete and
irreducible knowledge base of multi-attribute dependencies.

4 Discernibility Matrices

Discernibility matrices provide useful characteristics of information and decision
reducts [9]. Here, we adapt them as the first step towards Boolean representation
of collections of association reducts, like those illustrated by (5).
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Definition 4. [9] Let A = (U, A), U = {u1, . . . , uN}, be given. By discernibility
matrix M(A) = [Cij ] we mean the N ×N matrix filled with the attribute subsets
Cij ⊆ A defined as follows, for any i, j = 1, . . . , N :

Cij = {a ∈ A : a(ui) �= a(uj)}. (7)

M(A) is symmetric and we have always Cii = ∅. Hence, we focus on its lower
part. This is how M(A) for the example of A = (U, A) in Section 2 looks like:

U 1 2 3 4 5 6
2 abc
3 be ace
4 acdef bdef abcdf
5 bcde ade cd abf
6 f abcf bef acde bcdef
7 adf bcdf abdef ce abcef ad

Proposition 1. [9] Let A = (U, A) be given. For any B ⊆ A, B is an informa-
tion reduct, if and only if

∀i<j Cij �= ∅ ⇒ B ∩ Cij �= ∅. (8)

and there is no proper subset B′ � B, which would hold analogous statement.

For association reducts, consider the pair of objects (ui, uj) and a hypothetic
reduct (Bl, Br). If any element of Cij is going to be included into Br, then we
need at least one element of Cij included into Bl to keep discernibility between
ui and uj . Otherwise, if Br ∩ Cij = ∅, we do not need to care about (ui, uj).

Proposition 2. Let A = (U, A) be given. For any attribute subsets Bl, Br ⊆ A,
the pair (Bl, Br) forms an association reduct, if and only if

∀i<j Br ∩ Cij �= ∅ ⇒ Bl ∩ Cij �= ∅. (9)

and there is neither proper subset B′
l � Bl nor proper superset B′

r � Br, for
which pairs (B′

l , Br) or (Bl, B
′
r) would hold analogous statement.

5 Association Matrices

For information reducts, one can simplify M(A) by removing any Cij such that
there is (k, l) �= (i, j) satisfying Ckl �= ∅ and Ckl ⊆ Cij (and Cij was not used
before to remove Ckl if Cij = Ckl). Most of simplification power lays in the core
attributes occurring in all information reducts [8,9]. For above-illustrated exam-
ple of M(A), C16 = {f} eliminates all other Cij containing f . For association
reducts (Bl, Br), the core attributes may occur in Bl but not in Br.

One may also expect attributes with constant values. They do not occur in
information reducts. If we put Bl = ∅ and Br consisting of such attributes, we
get association reduct. The pair (∅, ∅) expresses a lack of constant attributes.
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Let us now focus on simplified discernibility matrices for association reducts.
If Ckl ⊆ Cij , then conjunction of conditions Br ∩ Ckl �= ∅ ⇒ Bl ∩ Ckl �= ∅ and
Br ∩ Cij �= ∅ ⇒ Bl ∩ Cij �= ∅ can be equivalently rewritten as

Br ∩ Ckl �= ∅ ⇒ Bl ∩ Ckl �= ∅ ∧ Br ∩ (Cij \ Ckl) �= ∅ ⇒ Bl ∩ Cij �= ∅. (10)

Hence, if we are able to cover completely a given Cij by its subsets occurring at
other places in M(A), then we are able to eliminate it from the matrix.

Definition 5. Let A = (U, A), U = {u1, . . . , uN}, be given. For every i, j, k, l =
1, . . . , N , consider the following relation:

(k, l) <M (i, j) ⇔ (Ckl � Cij) ∨ (Ckl = Cij ∧ (k, l) < (i, j)). (11)

where (k, l) < (i, j) ⇔ (k < i)∨ (k = i∧ l = j). For every i, j = 1, . . . , N , define:

A∗
ij = Cij \

⋃
(k,l)<M (i,j)

Ckl Aij =
{

Cij \ A∗
ij iff A∗

ij �= ∅
∅ iff A∗

ij = ∅ (12)

By the association matrix we mean the N ×N matrix M∗(A) filled with the pairs
of attribute sets (Aij , A

∗
ij), i, j = 1, . . . , N ; In short, M∗(A) = [(Aij , A

∗
ij)].

Proposition 3. Let A = (U, A) be given. For any Bl, Br ⊆ A, the pair (Bl, Br)
forms an association reduct, if and only if

∀i<j Br ∩ A∗
ij �= ∅ ⇒ Bl ∩ (Aij ∪ A∗

ij) �= ∅. (13)

and there is neither proper subset B′
l � Bl nor proper superset B′

r � Br, for
which pairs (B′

l , Br) or (Bl, B
′
r) would hold analogous statement.

Association matrix does not need to include boxes where A∗
ij = ∅. Otherwise,

we have Aij ∪ A∗
ij = Cij , Aij ∩ A∗

ij = ∅. For clarity, we label the elements of A∗
ij

with ∗. M∗(A) for the example of A = (U, A) in Section 2 looks as follows:

U 1 2 3 4 5 6
2 a∗b∗c∗

3 b∗e∗ a∗ce
4 bd∗ef
5 ade∗ c∗d∗ a∗b∗f
6 f∗

7 b∗cdf c∗e∗ a∗d∗

For instance, we write a∗b∗c∗ in coordinates (1, 2) because no simplification is
possible. On the other hand, some coordinates are ”cleaned”, e.g., (1, 4) because
C14 ⊆ C16 ∪C46 (so A∗

14 = ∅). We have also ade∗ in (2, 5) – we are able to move
ad to A25 because of C67, but e remains in A∗

25.
The above M∗(A), using the law (13), provides association reducts listed in

(5). Consider e.g. ade � bc. It satisfies (13). Further, we cannot extend it to
ade � bcf because of box (1, 6). Also, we cannot reduce it to ad � bc because
of (1, 3), to ae � bc because of (2, 7), and to de � bc because of (1, 2).
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6 Boolean Representation

The main objective of this paper is to specify Boolean functions [4] with their
prime implicants corresponding exactly to the association reducts, as it was
developed in [9] for classical case of information and decision reducts.

Consider Boolean function τ . Product term t (conjunction of non-contradicto-
ry literals – variables or their negations) is called an implicant of τ , if and only
if τ is true for all input combinations that make t true. Consequently, t is a
prime implicant for τ , if and only if it is its implicant and there is no proper t’s
subterm (with some literals removed), which would be still its implicant.

Theorem 1. [9] Let A = (U, A) be given. Consider the following Boolean func-
tion, where every Boolean variable a is identified with attribute a ∈ A:

τA ≡
∧

i,j:Cij 
=∅

∨
a∈Cij

a. (14)

Then, every given subset B ⊆ A is an information reduct for A, if and only if
the product term tB ≡

∧
a∈B a is a prime implicant for τA.

Using absorption laws, we remove from τA clauses corresponding to any reducible
sets Cij . For the example of M(A) in Section 4, we get the following function,
with prime implicants corresponding to information reducts (4):

τA ≡ (a ∨ b ∨ c) ∧ (b ∨ e) ∧ (f) ∧ (c ∨ d) ∧ (c ∨ e) ∧ (a ∨ d) . (15)

In case of association reducts (Bl, Br), we need to consider within a Boolean
function both types of requirements, following (9): Non-empty intersections of
discernibility sets with the premise attribute sets and, otherwise, their empty
intersections with the consequence sets. Therefore, we use two types of Boolean
variables, corresponding to every a ∈ A:

1. Variable a is true if and only if attribute a belongs to Bl

2. Variable a∗ is true if and only if attribute a ∈ A does not belong to Br

A simple way would be to encode every Cij as
∨

a∈Cij
a ∨
∧

a∈Cij
a∗. For the

example of M(A) in Section 4, we would then obtain the following Boolean
representation (we omit symbols ∧ inside brackets for clarity):

(a ∨ b ∨ c ∨ a∗b∗c∗) ∧ (b ∨ e ∨ b∗e∗) ∧ (f ∨ f∗) ∧ (a ∨ c ∨ e ∨ a∗)∧
(b ∨ d ∨ e ∨ f ∨ d∗) ∧ (a ∨ d ∨ e ∨ e∗) ∧ (b ∨ c ∨ d ∨ f ∨ b∗)∧
(c ∨ d ∨ c∗d∗) ∧ (a ∨ b ∨ f ∨ a∗b∗) ∧ (c ∨ e ∨ c∗e∗) ∧ (a ∨ d ∨ a∗d∗) .

(16)

However, for example, consider implicants t ≡ a∧b∧c∧f and t′ ≡ a∧b∧c∧f∗.
t′ yields association reduct (abc, de) while t yields (abcf, de). Hence, we need to
strengthen interpretation of a∗ as ”not included in Br”. We do it as follows:

∧
i,j:Cij 
=∅

⎛⎝ ∨
a∈Cij

(a ∧ a∗) ∨
∧

a∈Cij

a∗

⎞⎠ . (17)
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Here, we force a∗ whenever a occurs. For example, the above terms need to take
the following form to remain implicants: t ≡ a∧ b∧ c∧ f ∧ a∗ ∧ b∗ ∧ c∗ ∧ f∗ and
t′ ≡ a ∧ b ∧ c ∧ a∗ ∧ b∗ ∧ c∗ ∧ f∗. Now, only t′ remains prime implicant.

Let us note that we can simplify (17) working along the procedure described
in Section 5. Another simplification is possible whenever A∗

ij is a singleton. In our
case study, we can see that (ff∗∨f∗) should occur in the corresponding Boolean
function, but it is equivalent to f∗. It corresponds to our previous observation
that the core attributes cannot belong to Br.

Theorem 2. Let A = (U, A) be given. Consider the following Boolean function:

τ∗A ≡
∧

i,j:|A∗
ij |=1

⎛⎝a∗ij ∨
∨

a∈Aij

(a ∧ a∗)

⎞⎠∧
∧

i,j: |A∗
ij |>1

⎛⎝ ∧
a∈A∗

ij

a∗ ∨
∨

a∈Aij∪A∗
ij

(a ∧ a∗)

⎞⎠ ,

(18)
where: Aij , A

∗
ij ⊆ A are defined by (12); |A∗

ij | denotes the cardinality of A∗
ij; a

∗
ij

denotes the element of A∗
ij in case of |A∗

ij | = 1;
∨

a∈Aij
(a ∧ a∗) is regarded false

in case of Aij = ∅. Then, for every Bl, Br ⊆ A, (Bl, Br) forms the association
reduct, if and only if there is the following prime implicant t(Bl, Br) for τ∗

A
:

t(Bl, Br) ≡
∧

a∈Bl

a ∧
∧

a/∈Br

a∗. (19)

For the example of A = (U, A) in Section 2, we obtain the following:

τ∗
A

≡ (f∗) ∧ (cc∗ ∨ ee∗ ∨ a∗) ∧ (bb∗ ∨ ee∗ ∨ ff∗ ∨ d∗) ∧ (aa∗ ∨ dd∗ ∨ e∗) ∧ (cc∗ ∨
dd∗ ∨ ff∗ ∨ b∗) ∧ (aa∗ ∨ bb∗ ∨ cc∗ ∨ a∗b∗c∗) ∧ (bb∗ ∨ ee∗ ∨ b∗e∗) ∧ (cc∗ ∨ dd∗ ∨
c∗d∗) ∧ (aa∗ ∨ bb∗ ∨ ff∗ ∨ a∗b∗) ∧ (cc∗ ∨ ee∗ ∨ c∗e∗) ∧ (aa∗ ∨ dd∗ ∨ a∗d∗)

(20)
First ten of the following prime implicants of τ∗

A
correspond to reducts in (5).

The last one yields (∅, ∅), i.e. there are no attributes with constant values.

abca∗b∗c∗f∗ acea∗c∗e∗f∗ acfa∗b∗c∗e∗f∗ adea∗d∗e∗f∗

aefa∗c∗d∗e∗f∗ bcdb∗c∗d∗f∗ bdeb∗d∗e∗f∗ cdefc∗d∗e∗f∗

cdfb∗c∗d∗e∗f∗ cefa∗c∗d∗e∗f∗ a∗b∗c∗d∗e∗f∗

(21)

7 Conclusion and Discussion

We introduced the notion of an association reduct representing most informa-
tive global dependencies between the sets of attributes. We showed its corre-
spondence to association rules and to other types of reducts developed so far
within the theory of rough sets. In this paper, we focused on formal represen-
tation of association reducts, adapting discernibility and Boolean approaches to
modelling information and decision reducts. In this way, we stated foundations
for comparative study of the new and previously known types of reducts.
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Association reducts represent more than just pairwise attribute dependencies,
insufficient in many cases. For instance, let us consider gene expression data [2],
where attributes correspond to genes and objects – to experiments.1 One of
the goals is to discover general dependencies between genes-attributes. Then,
pairwise gene correlations, used so far in gene clustering [5], need to be extended
onto the whole sets of genes. One of our future objectives is to combine clustering
and association reducts in the gene expression data analysis.

Surely, real data applications require approximate association reducts, as
stated in [11]. Moreover, for large data, exhaustive search for all reducts is im-
possible (cf. [9]). In [12], we discuss complexity of optimization problems related
to association reducts and suggest some heuristics, analogous to those used for
other types of reducts [3]. Our objective in this area is to formulate universal
complexity and algorithmic framework for all types of reducts.

Acknowledgements. Research reported in this paper was supported by the re-
search grant from Natural Sciences and Engineering Research Council of Canada.
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Abstract. We introduce a general framework to compare and combine
Formal Concept Analysis and Rough Set Systems and some mathemati-
cal properties and limits of application of some approaches are discussed.
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1 Introduction

In Formal Concept Analysis (or FCA, see [12]) data are organized into pairs of
the form 〈A, B〉 where A is a set of objects which fulfills at least all the elements
of a set of properties B. Rough Set Theory (or RST, see [9]) aims at finding
meaningful patterns of data based on equivalence classes modulo the relation
“fulfilling the same attribute-values”. So, the basic difference between FCA and
RST is that the former is based on the notion “to fulfill at least the same ...”,
while the latter is founded on the notion “to fulfill exactly the same ...”. There
are good reasons to study the combination of the two notions, but it is not that
clear how to combine them. In this paper we shall frame the problem in a general
setting which is able to encompass old and new approaches and compare them.

2 Basic Structures and Operators

Definition 1 (Property System). A P-system is a triple C = 〈G, M, �〉,
such that G and M are sets and �⊆ G×M . If g � m we say that object g fulfills
property m. C is a dichotomic P-system, or a DP-system, if for all m ∈ M there
is m ∈ M such that for all g ∈ G, g � m if and only if g �� m.

Definition 2 (Attribute System). An A-system is a structure of the form
〈G, At, {Va}a∈At, 〉, where G, At and Va are sets (of objects, attributes and, re-
spectively, attribute values) and for each a ∈ At, a : G �−→ Va is a function.

Definition 3. Let A be an A-system. Let us associate each attribute a with the
family N (a) = {av}v∈Va . We set N (At) =

⋃
a∈At

N (a). Let us set g �N av iff

a(g) = v, all g ∈ G, a ∈ At, v ∈ Va. We call the resulting system, N (A) =
〈G,N (At), �N 〉, the “nominalisation of A”.
� Research supported by ARCHIMEDE srl, Contents & Solutions for the Public Sec-

tor, via Crispi 15, 52100 Arezzo, Italy, info@archimedeonline.it.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 313–320, 2006.
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Obviously, N (A) is a P-system, where for each value v, av is the property “taking
value v for attribute a”. If we consider a P-system, as a bi-valued A-system (i.
e. for all a ∈ At, Va = {0, 1}), then we may nominalise it. Moreover (cf. [7]),

for any P − system C, N (C) is a DP − system. (1)

In [6] a series of basic constructors has been defined by means of �:

Definition 4 (Basic constructors). Let C = 〈G, M, �〉 be a P-system:

– 〈e〉 : ℘(M) �−→ ℘(G); 〈e〉(Y ) = {a ∈ G : ∃b(b ∈ Y & a � b)};
– [e] : ℘(M) �−→ ℘(G); [e](Y ) = {a ∈ G : ∀b(a � b ⇒ b ∈ Y )};
– [[e]] : ℘(M) �−→ ℘(G); [[e]](Y ) = {a ∈ G : ∀b(b ∈ Y ⇒ a � b)};
– 〈i〉 : ℘(G) �−→ ℘(M); 〈i〉(X) = {b ∈ M : ∃a(a ∈ X & a � b)};
– [i] : ℘(G) �−→ ℘(M); [i](X) = {b ∈ M : ∀a(a � b ⇒ a ∈ X)};
– [[i]] : ℘(G) �−→ ℘(M); [[i]](X) = {b ∈ M : ∀a(a ∈ X ⇒ a � b)}.

The decoration i stems from “intensional”, while e stems from “extesional”, for
obvious reasons. Further, we can combine the above basic operators, obtaining:

Definition 5 (Formal operators). Let 〈G, M, �〉 be a P -system. For all X ⊆
G and Y ⊆ M we define: (a) int(X) = 〈e〉[i](X); (b) cl(X) = [e]〈i〉(X);
(c) est(X) = [[e]][[i]](X); (d) A(Y ) = [i](〈e〉(Y )); (e) C(Y ) = 〈i〉[e](Y ); (f)
IT S(Y ) = [[i]][[e]](Y ).

Note: If needed, we shall decorate operators with the name of the system they
are derived from (e. g., clC). C will denote an arbitrary P-system 〈G, M, �〉. For
all R ⊆ Z ×W , X ⊆ Z we set R(X) = {w : ∃x ∈ X ∧ 〈x, w〉 ∈ R}.

There is a fundamental relationship fulfilled by the above operators.

Definition 6 (Galois adjunction). Let O = 〈O,≤〉 and O′ = 〈O′,≤′〉 be two
partially ordered sets. Let σ : O �−→ O′ and ι : O′ �−→ O be two maps. Then we
say that ι and σ fulfill an adjointness relation if the following holds:

∀p ∈ O, ∀p′ ∈ O′, ι(p′) ≤ p if and only if p′ ≤′ σ(p) (2)

If the above condition holds, then σ is called the upper adjoint of ι and ι the lower
adjoint of σ, denoted with O′ ,ι,σ O (or ι , σ, the two orders are understood)
and we say that ι and σ form a Galois adjunction between O and O′1.

If we set G = 〈℘(G),⊆〉 and M = 〈℘(M),⊆〉, then we can prove that the
following holds in any P-system C:

(i) M ,〈e〉,[i] G; (ii) G ,〈i〉,[e] M. (3)

(i) M ,[[e]],[[i]] Gop; (ii) G ,[[i]],[[e]] Mop. (4)

The main consequences of this result are discussed in [6]. Here we recall that:
(a) int and C are interior operators, (isotonic, idempotent and descreasing);

1 Or a Galois connection between Oop, the dual ordered set of O, and O’.
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(b) cl, A, est and IT S are closure operators (isot., idemp. and increasing).
(c) The set of fixed points of any operator can be made into a complete lattice.
(d) In the lattice SatIT S(P) of fixed points of IT S,

∨
i∈I Xi = IT S(

⋃
i∈I

Xi);

(e) In the lattice Satest(P) of fixed points of est,
∨

i∈I Yi = est(
⋃
i∈I

Yi).

(f) [[i]] is an isomorphism between Satest(P) and SatIT S(P);
(g) [[e]] is an isomorphism between SatIT S(P) and Satest(P).

3 Concept Lattices

In this framework, a formal concept is any pair of the form 〈A, B〉 where A ⊆
G, B ⊆ M , A = [[e]](B) and B = [[i]](A) or, stated in an equivalent way (for
(f) and (g) above), A = est(B) and B = IT S(A). The family of all formal
concepts induced by a P-system C is denoted with B(P) and by means of (d)
and (e) above we can make it into a complete lattice. The standard example of
a Concept Lattices is derived from the following. P-system (from [12]):

� Size Distance from sun Moon
small medium large near far yes no

Mercury x x x
Venus x x x
Earth x x x
Mars x x x

Jupiter x x x
Saturn x x x
Uranus x x x
Neptune x x x
Pluto x x x

Let us call it the “planet context”, denoted with P. Notice that P is nomi-
nalised. Using some abbreviations, G = {Me, V, E, Ma, J, S,U, N, P} and M =
{Ss, Sm, Sl, Dn, Df, My, Mn}. Any extent is obtained by an application of est.
For instance est({J, S, P}) = [[e]][[i]]({J, S, P}) = [[i]]{Df, My} = {J, S, P,U,
N}. Dually, any intent is an application of IT S. For example, ITS({Dn, My}) =
[[i]][[e]]({Dn, My}) = [[i]]({E, Ma}) = {Dn, My, Ss}. Then, we may use state-
ments (f) and (g) to couple isomorphic elements of the two lattices Satest(P) and
SatITS(P). For instance, [[i]]({J, S, P,U, N}) = {Df} and [[e]]({Dn, My, Ss}) =
{E, Ma}. Thus, 〈{J, S, P,U, N}, {Df, My}〉 and 〈{E, Ma}, {Dn, My, Ss}〉 are
formal concepts. One can verify that formal concept formation is not additive.

4 Approximation Operators

Definition 7 (Upper and lower approximations). Given an A-system let
us define an equivalence relation E = {〈g, g′〉 : ∀a ∈ At(a(g) = a(g′))}. Then
(uE)(X) =

⋃
{[x]E : [x]E ∩ X �= ∅} is called upper approximation of X and

(lE)(X) =
⋃

{[x]E : [x]E ⊆ X} lower approximation of X (via E).
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For our purposes, instead of the above usual approximation operators, we need
the generalisation of [6], where it is shown that if both � and its reverse �� are
totally defined, then for all X ⊆ G, cl(X) ⊇ X ⊇ int(X). Hence:

Definition 8. Given a P-system C, we set A(C) = 〈G, intC, clC〉 and call it a
Pre-topological Approximation Space.

From any P-system, C, we define a binary relation RC between objects:

Definition 9. Let C be a P-system. Let us set 〈g, g′〉 ∈ RC iff 〈i〉({g}) ⊆
〈i〉({g′}). We call the P-system Q(C) = 〈G,G, RC〉 an Information Quantum
Relation System, or IQRS.

In other terms, 〈g, g′〉 ∈ RC if and only if g′ manifests at least the same properties
as g (i. e. for all m ∈ M, g � g′ =⇒ g � m). Obviously, 〈g, g′〉 ∈ RC iff
g ∈ clC({g′}). In particular we have (cf. [7]):

Proposition 1. 1. If C is a DP-system, then RC is an equivalence relation.
2. If C is a nominalised system, then RN (C) = RC.

Example. P/RP = {{Me, V }, {E, Ma}, {J, S}, {U, N}, {P}}.

For any IQRS is a P-system we can apply the formal operators. But in IQRS we
have the following properties:

〈i〉Q(C) = clQ(C); 〈e〉Q(C) = AQ(C); [i]Q(C) = intQ(C); [e]Q(C) = CQ(C). (5)

All the above operators are topological, so we arrive at the following definition:

Definition 10. For any P-system C, A(Q(C)) = 〈G, clQ(C), intQ(C)〉 is called
a Topological Approximation Space. ←−A (Q(C)) = 〈G, CQ(C),AQ(C)〉 is called an
inverse Topological Approximation Space.

Definition 11. If E is an equivalence relation, then the P-system E = 〈G,G, E〉
is called an Indiscernibility Space and 〈G, intE, clE〉 is called a Pawlak Approx-
imation Spaces, or PAS.

Trivially, if RC is an equivalence relation A(Q(C)) and ←−
A (Q(C)) coincide and

are PAS. Moreover, from this, (1) and Proposition 1, we have that if C is a nom-
inalised system, then A(Q(C)) is a PAS, so that RC is an equivalence relation.

Note: Given a P-system C, from now on E will denote an arbitrary Pawlak
Approximation Space 〈G, clE, intE〉 over the same set G.

5 Formal Concepts and Approximation Operators

Thus, Concept Lattices are defined by means of the two basic operators [[i]] and
[[e]]. Variations have been introduced by exploiting the other operators, namely
“object oriented concepts” of the form 〈int(X), [i](X)〉 (see [11]) and “property
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oriented concepts” of the form 〈cl(X), 〈i〉(X)〉 (see [1]) (we use our own termi-
nology and notation). In the Conclusions, we shall briefly see how to generalise
them. However, in the present paper we mainly want to discuss other approaches
to combine FCA and RST. First, let us verify that extents of formal concepts in
general differ from either (generalised) lower or upper approximations or both.
Here are some cases from the standard example P:

Given set est int cl intQ(P) clQ(P)

{E, Ma, J, S} {E, Ma, J, S, U, N, P} {J, S} {E, Ma, J, S, P} {E, Ma, J, S} {E, Ma, J, S}
{E, P} {Me, V, E, Ma, P} ∅ {Me, V, E, Ma, P} {P} {Ma, V, P}

Indeed, given a P-system C, estC(X) collects all the elements of G which are
glued together by means of the properties which are shared by all the elements
of X , that is [[i]](X) which is a sort of “intensional backbone” of X , On the
contrary, for any Pawlak Approximation Space E, intE (clE, respectively) adds
together all the equivalence classes modulo E in order to get the maximal (resp.
minimal) definable set (i. e. union of a set of equivalence classes) which is included
in X (which includes X , resp.). In a sense, the two generalised approximation
operators, intC and clC represent an intermediate approach, in that the operator
[i]C(X) in intC(X) looks for those properties whose extensions are included in
X , hence something similar to a sort of “intensional core” of X . Similarly, [e]C in
clC(X) looks for those objects whose intension is included in the union of all the
properties fulfilled by the elements of X , hence for “subconcepts” of 〈i〉C(X).
Finally, intQ(C) and clQ(C) are the topological versions of intC and, respectively,
clC. Notice that RC reverses the informational partial order, so that g ∈ clQ(C)

if and only if g manifests at most the same properties as g′, in a continuous
way2.

However, for any nominalised C we have an interesting relation:

∀g ∈ G, clC({g}) = estC({g}) = intQ(C)({g}). (6)

From the above equations it follows that in a nominalised P-system, C, extents
induced by singletons coincide with equivalence classes modulo the equivalence
relation induced by the system. That is, for any g ∈ G, estC({g}) = [g]RC

3.

Example. estP({Me}) = [[e]]P({Ss, Dn, Mn}) = [Me]RP .

We can show a general relationship between extents and upper approximations:

Lemma 1. Let C = 〈G, M, �〉 be a P-system and let E be any equivalence
relation on G. Then for all X ⊆ G, est(X) ⊆

⋃
x∈est(X)

[x]E = (uE)(est(X)).

2 That is, clQ(C)(X) =
⋃

x∈est(X)
clQ(C)(x). An early application of continuous closure

operators induced by Galois connections can be find in [8].
3 Trivially, from Definition 4 〈i〉({g}) = [[i]]({g}), for any singleton {g}, so that we

immediately obtain Proposition 1 of [10].
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The proof comes trivially from the fact that E is reflexive. Therefore, we must
notice that upper approximations defined by arbitrary binary relations (as, for
instance, in [3]) must have more irregular relationships with the operator est.

Now, let us analyse the case in which E is the equivalence relation induced
by the given P-system (viewed as a bi-valued A-system).

Proposition 2. Let C = 〈G, M, �〉 be a P-system and let E� be the equivalence
relation defined by 〈g, g′〉 ∈ E� iff 〈i〉(g) = 〈i〉(g′), for g, g′ ∈ G. Then for all
X ⊆ G, est(X) =

⋃
x∈est(X)

[x]E� = (uE�)(est(X)).

Proof. From Lemma 1, est(X) ⊆
⋃

x∈est(X)
[x]E� . Vice-versa, if g ∈

⋃
x∈est(X)

[x]E�

there is g′ ∈ est(X) such that 〈i〉(g) = 〈i〉(g′). Hence g ∈ est(X). qed

Thus, any extent is a definable set modulo E�. However, for (uE�) is addi-
tive on ℘(G) while est is not, the family of extents {est(X) : X ⊆ G} is a subset
of the family of definable sets {(uE�)(X) : X ⊆ G}.

Corollary 1. For any P-system C and Pawlak Approximation Space E on the
same set of objects, G, for any X ⊆ G, estC(X) ⊆ clE(estC(X)). If for any X,
clE(X) = E�(X), then estC = clEestC.

6 Combining FCA and Approximation Spaces

Those above are some basic relationships between Pawlak’s Approximation
Spaces and Formal Concepts. Moreover, a number of researches have been de-
veloped to understand general relationships between Approximation Spaces and
FCA and to combine the two approaches (see [4], [5], [2], [11], [10]). Particu-
larly [2] is a basic reference. Using our notation and concepts, we can recast it
as follows: let us define an E-upper approximation of the P-system, clE(C), as
follows:

Definition 12. clE(C) =def 〈G, M, �clE〉, where �clE is defined point-wise by
setting for each m ∈ M , 〈e〉clE(C)({m}) =def cl

E〈e〉C({m}).

In other words, for all g ∈ G and m ∈ M , g �clE m iff there is g′ ∈ G
such that g′ ∈ clE({g}) and g′ � m. Next, formal concepts are formed accord-
ing to the transformed P-system; thus, a formal concept is a pair of the form
〈estclE(C)(X), [[i]]clE(C)(X)〉 for X ⊆ G. Now two considerations are in order.

First, we wonder whether the operator clEestC of Corollary 1 and the operator
estclE(C) give the same result. The answer is negative:

Lemma 2. For all m ∈ M , 〈e〉clE(C)({m}) ⊇ 〈e〉C({m}).

Proof. For 〈e〉clE(C)({m}) = clE(〈e〉C({m})) and clE is increasing. qed

Corollary 2. For all X ⊆ G, [[i]]clE(C)(X) ⊇ [[i]]C(X).
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Proof. From the above Lemma,
⋂

x∈X

〈i〉clE(C)(x) ⊇
⋂

x∈X

〈i〉C(x). qed

Proposition 3. For all X ⊆ G, estclE(C)(X) ⊆ clE(estC(X)).

Proof. Clearly for all g ∈ G, g ∈ clE(estC(X)) iff for all m ∈ [[i]]C(X),
g ∈ clE〈e〉C(m). Thus suppose g /∈ clE(estC(X)). Then there is m ∈ [[i]]C

such that g /∈ clE〈e〉C(m). That is g /∈ 〈e〉clE(C)(m). Now, from the above Corol-
lary we have m ∈ [[i]]clE(C), too. But, obviously, g ∈ estclE(C)(X) iff for all
m ∈ [[i]]clE(C)(X), g ∈ 〈e〉clE(C)(m). Thus g /∈ estclE(C)(X). qed

Second, we can ask what happens with estCclE, which is the approach followed
in [10]. Actually, this operator has an unpredictable behaviour with respect to
both estclE(C)

and clEestC.

Example: Let P be the planet context of the above examples, let N be a
Pawlak Approximation Space induced by an equivalence relation which classifies
the planets inside the asteroid belt, {Me, V, E}, or outside, {Ma, J, S,U, N, P},
and let X be a Pawlak Approximation Space induced by an equivalence rela-
tion gathering together {Me, P} (the two extremes of the Solar system) and
{V, E, Ma, J, S,U, N} (the intermediate planets). Then:

(i) clN(estP({E})) = clN({E, Ma}) = G. (ii) estclN(P)({E}) = {Me, V, E}.
(iii) estP(clN({E})) = estP({Me, V, E}) = {Me, V, E, Ma}.
(iv) clN(estP({J})) = clN({J, S}) = {Ma, J, S,U, N, P}.
(v) estP(clN({J})) = estP({Ma, J, S,U, N, P}) = {E, Ma, J, S,U, N, P}.
(vi) estP(clX({Me})) = {Me, V, E, Ma, P}. (vii) estclX(P)({Me}) = G.

According to (i), (ii) and (iii), we have estclN(P) � estPclN � clNestP. Ac-
cording to (iv) and (v), clNestP � estPclN. Finally, according to (vi) and (vii)
estPclX � estclX(P). Incidentally, examples (i) and (ii) show that the reverse
inclusion of Proposition 3 does not hold.

By applying intE〈e〉C(m) to each m ∈ M , [2] defines the E-lower approx-
imation intE(C) in a dual manner. From the decreasing properties of int we
immediately have that for all X ⊆ G, [[i]]intE(C)(X) ⊆ [[i]]C(X), so that:

Proposition 4. For all P-systems C and Pawlak Approximation Spaces E, for
all X ⊆ G, estintE(C)(X) ⊇ intE(estC(X)).

Thus: intE(estC(X)) ⊆ estintE(C)(X) ⊆ estclE(C)(X) ⊆ clE(estC(X)), X ⊆ G.

7 Conclusions

The two transforms clE(C) and intE(C) are described in [2] in an elegant manner
within Relation Algebra and this description is generalised in [5]. Indeed, they are
mathematically appealing. However, one must take care while applying Kent’s
approach, because in the case of dichotomic contexts it may lead to contradic-
tions, easily. For instance, if we transform the planet context by means of the
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Approximation Space N, then we have clN(〈e〉P({My})) ∩ clN(〈e〉P({Mn})) =
{Me, V, E}, so that according to the upper approximation of the planet context
Mercury, Earth and Venus would fulfill both Moon-yes and Moon-no. The alter-
native operators introduced in this paper, clEestC and intEestC, are too coarse
or, respectively, too fine, so that the intension of their outputs may be meaning-
less (for example, 〈i〉(clN(estP({E}))) = 〈i〉(G) = ∅). The operators introduced
in [10], estCclE and estCintE, do not have these drawbacks. However, they fail
to have the well defined relationships with Kent’s operators fulfilled by the oper-
ators provided by us. We think that this analysis is a basis to explore a number
of other approaches. For instance, notice that instead of clE we can apply 〈i〉E to
estC and obtain the same result because E is based on a reflexive relation E. But
if E were not reflexive, then we should obtain different operators. Further, one
should analyse what happens in case of particular relationships between C and
E (for instance, when clE = clRC). Finally, one should analyse what happens
when C is a nominal or dichotomic system. In addition, we can generalise all the
above approaches by applying after or before estC any applicable operator from
any P-system or A-system or I-Quantum Relation System on G. Similar maneu-
vers can be considered in order to generalise the property oriented and object
oriented concepts approaches. Clearly, the relationships between these operators
must be studied case by case, as well as their application meanings and limits.
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Abstract. Due to the existence of large numbers of local and global
optima of high dimension complex functions, general particle swarm op-
timization methods are slow speed on convergence and easy to be trapped
in local optima. In this paper, an adaptive particle swarm optimizer with
a better search performance is proposed, which employ a novel dynamic
inertia weight curves and mutate global optimum to plan large-scale
space global search and refined local search as a whole according to the
fitness change of swarm in optimization process of the functions, and to
quicken convergence speed, avoid premature problem, economize com-
putational expenses, and obtain global optimum. We test the proposed
algorithm and compare it with other published methods on several high
dimension complex functions, the experimental results demonstrate that
this revised algorithm can rapidly converge at high quality solutions.

Keywords: Particle swarm optimizer, convergence, premature problem.

1 Introduction

Since PSO introduction, numerous variations of the basic its algorithm have been
developed in the literature to avoid the premature problem and speed up the
convergence process, which are the most important two topics in the research
of stochastic search methods[1, 2, 3]. To make search more effective, there are
many approaches suggested by researchers to solve the problems, such as variety
mutation and select a single inertia weight value methods, etc, but these methods
have some weakness in common, they usually can not give attention to both
global search and local search, preferably, so to trap local optima, especially in
complex problems [4, 5, 6].

In this paper, we modified the standard PSO (SPSO) algorithm with novel
dynamic inertia weight curves and mutate global optimum operator. The mod-
ified algorithm bas better search performance to lead the convergence at early
stage. Experimental results on several famous test functions demonstrate that
this is a very promising way to improve the solution quality and convergence
rate.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 321–326, 2006.
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2 Algorithm Background

In the original PSO, particle i is denoted as Xi = (xi1,xi2, ...,xiD), which rep-
resents a potential solution to a problem in D-dimensional space. Each particle
maintains a memory of its previous best position, and a velocity along each di-
mension, represented as Vi = (vi1, vi2, ..., viD). At each iteration, the position
of the particle with the best fitness in the search space, designated as g, and
the P vector of the current particle are combined to adjust the velocity along
each dimension, and that velocity is then used to compute a new position for
the particle.

In SPSO, the velocity and position of particle i at (t + 1)th iteration are
updated as follows[4]:

vt+1
id = w ∗ vt

id + c1 ∗ rt
1 ∗ (pt

id − xt
id) + c2 ∗ rt

2 ∗ (pt
gd − xt

id), (1)

xt+1
id = xt

id + vt+1
id . (2)

Constants c1 and c2 are learning rates; r1 and r2 are random numbers uni-
formly distributed in the interval [0,1];w is an inertia factor.

To speed up the convergence process and avoid the premature problem, Shi
proposed the PSO with linearly decrease weight method (LDWPSO),which can
dynamically adjust the velocity over time [4, 5]. Suppose wmax is the maximum
of inertia weight, wmin is the minimum of inertia weight, run is current iteration
times, runmax is the total iteration times, the inertia weight is formulated as:

w = wmax − (wmax − wmin) ∗ (run/runmax). (3)

3 Adaptive Particle Swarm Optimizer (APSO)

Due to the complexity of high dimension complex functions , SPSO is revised as
APSO by three adaptive strategy to adapt its optimization.

3.1 Adaptive Harmonization Strategy of Inertia Weight w

The w has the capability to automatically harmonize global search abilities and
local search abilities, avoid premature and gain rapid convergence to global op-
timum. First of all, larger w can enhance global search abilities of PSO, so to
explore large-scale search space and rapidly locate the approximate position of
global optimum, smaller w can enhance local search abilities of PSO, particles
slow down and deploy refined local search, secondly, the more difficult the opti-
mization problems are, the more fortified the global search abilities need, once
located the approximate position of global optimum, the refined local search will
further be strengthen to get global optimum[7, 8, 9, 10]. According to the con-
clusions above, we constructed (4) as new inertia weight decline curve for PSO,
demonstrated in figure 1:

w = wmax ∗ exp(−30 ∗ (run/runmax)n). (4)

where n is a constant larger than 1, taken 50 in the paper.
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Fig. 2. Dynamic Inertia Weight Curves Brought by(4)

3.2 Adaptive Dynamic Transition Strategy of Inertia Weight w

In search process, global search and local search are two key aspects of PSO. It
is usually hard to determine, at a given time, when to end the large-scale global
search, to start refined local search in order to gain quick convergence [8].

In figure 2, If A is a transformation point, the algorithm switch to refined
local search to global convergence point D, or continue current global search
to transformation point B; If B is a transformation point, the algorithm switch
to refined local search to global convergence point E, the rest may be deduced
by analogy. To confirm the transformation point A, B,. . . , N, the algorithm is
designed to combine iteration times of current global optimum of functions. If
the current global optimum is not improved after the search of an interval of
definite iterations, the algorithm switch to refined local search with smaller n,
or continue current global search with current n. The computed equation is:

if pK−T
gd ≤ pK

gd, n = (1/3) ∗ n; else pK−T
gd > pK

gd, n = n. (5)

where pK−T
gd , pK

gdare the (K-T )th , Kth taken values of pt
gd, respectively, T is an

interval of definite iterations.

3.3 Adaptive Difference Mutation Strategy of Global Optimum pt
gd

Considering that the particles may find the better global optimum in the cur-
rent best region, the algorithm is designed to join mutation operation with the
perturbation operator. The runmaxl, which is an iteration times of the transfor-
mation point, divides runmax into two segment to respectively mutate according
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to themselves characteristics, and further enhance the global search abilities and
local search abilities to find a satisfactory solution. The computed equation is:

if run ≤ runmaxl, p
t
gd = pt

gd ∗ (1 + 0.5η); else pt
gd = pt

gd ∗ (1 − 0.5η). (6)

where ρ is its mutation probability within (0.1,0.3), η is Gauss(0,1) distributed
random variable.

SPSO, which is modified as APSO, has the excellent search performance to
optimize complex problems. The flow of APSO is as follows:

Step1. Randomly initialize the speed and position of each particle;
Step2. Evaluate the fitness of each particle and determine the initial values

of the individual and global best positions:pt
idandpt

gd;
Step3. Update velocity and position using (1),(2) and (4);
Step4. Evaluate the fitness and determine the current values of the individual

and global best positions:pt
idandpt

gd;
Step5. Check runmaxl to mutate using (5),check pK−T

gd andpK
gd using (6);

Step6. Loop to Step 3 and repeat until a given maximum iteration number
is attained or the convergence criterion is satisfied.

4 Computational Experiments

To test the APSO and compare it to other techniques in the literature, we adopt
large variety of benchmark functions [8,9,10,11], among which most functions
are multimodal, abnormal or computational time consuming, and can hardly get
favorable results by current optimizers. We only list four representative functions
in the paper.

f1(x) =
1

400

∑n

i=1
x2

i −
∏n

i=1
cos(

xi√
i
),−600 ≤ xi ≤ +600. (7)

f2(x) =
∑n

i=1
[100 ∗ (x2

i − xi+1)2 + (1 − xi)2],−30 ≤ xi ≤ +30. (8)

f3(x) = −20exp(−1
5

√
1
n

∑n

i=1
x2

i ) − exp(
1
n

∑n

i=1
cos(2πxi)) + 20 + e,

−30 ≤ xi ≤ +30. (9)

f4(x) =
∑n

i=1
[x2

i − 10cos(2πxi) + 10],−100 ≤ xi ≤ +100. (10)

Parameters is set to be: c1=c2=1; w=0.7, wmax =1, wmin=0.1; runmax
=1000; T=20(50 for f1(x)); population size is 50; take f1(x), f2(x), f3(x)andf4(x)
as fitness value function. We run each testing function 50 times with SPSO, LD-
WPSO and APSO, the comparison of statistical results of 60 and 100 dimen-
sions functions are shown in Tab.1 and Tab.2, respectively; in addition, the da-
tum of literature [11] (LPSO) list in table. The running environment is: MAT-
LAB6.5,Pentium IV 2GHz CPU,256M RAM, Win XP OS.
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Table 1. Comparison of 60 Dimensions Functions Statistical Results

Best Average Average Average Average
Function Algorithm Error optimum optimum iteration convergence convergence

steps time (s ) rate(%)

SPSO 0 12.365 491.2 18.784 22.4
f1(x) LDWPSO 10−5 0 10.664 547.7 19.155 28.4

LPSO 0 0 67.6 8.739 100
APSO 0 0 62.6 8.459 100

SPSO 668.821 4829.55 1000 85.359 0
f2(x) LDWPSO 0.1 692.358 4281.38 1000 95.278 0

LPSO 2.72e-5 0.0414 744.0 15.866 100
APSO 7.64e-6 0.0137 656.7 14.563 100

SPSO 7.453 1467.419 1000 82.461 0
f3(x) LDWPSO 10−5 17.328 2175.951 1000 82.528 0

LPSO 8.8e-16 5.97e-12 59.7 8.362 100
APSO 6.7e-16 8.94e-16 54.4 7.877 100

SPSO 47.321 1891.537 1000 96.350 0
f4(x) LDWPSO 10−5 78.422 2729.578 1000 102.381 0

LPSO 0 0 45.665 4.739 100
APSO 0 0 35.548 4.532 100

Table 2. Comparison of 100 Dimensions Functions Statistical Results

Best Average Average Average Average
Function Algorithm Error optimum optimum iteration convergence convergence

steps time (s ) rate(%)

SPSO 0 107.821 834.8 38.8 7.8
f1(x) LDWPSO 10−5 0 96.359 879.3 45.7 10.1

LPSO 0 1.11e-16 89.2 9.765 100
APSO 0 0 83.29 9.564 100

SPSO 1271.36 26783.4 1000 156.332 0
f2(x) LDWPSO 0.1 1325.71 2471.54 1000 167.328 0

LPSO 9.79e-6 0.0510 894.2 24.844 100
APSO 6.57e-6 0.0355 864.5 23.611 100

SPSO 56.73 2561.87 1000 127.312 0
f3(x) LDWPSO 10−5 62.83 3248.92 1000 135.932 0

LPSO 8.8e-16 5.53e-11 84.51 9.825 100
APSO 0 0 80.37 9.765 100

SPSO 182.57 2467.21 1000 113.721 0
f4(x) LDWPSO 10−5 234.82 2893.17 1000 124.318 0

LPSO 0 0 69.7 5.364 100
APSO 0 0 63.6 5.238 100
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5 Conclusion

From table 1 and table 2, we can educe that: the effectiveness of the algorithm
is validated; the algorithm outperformed the known best ones in the in quality
of solutions and the running time.

For high dimension complex functions optimization, the algorithm proposed
in this paper harmonizes global search abilities and local search abilities much
thoroughly. It has rapid convergence and can avoid premature. In addition, it
can easily be applied to other optimization problems.
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Abstract. Particle swarm optimization (PSO) is a new robust swarm
intelligence technique, which has exhibited good performance on well-
known numerical test problems. Though many improvements published
aims to increase the computational efficiency, there are still many works
need to do. Inspired by evolution programming theory, this paper pro-
poses a new adaptive particle swarm optimization in which the velocity
threshold dynamically changes during the course of a simulation. Seven
benchmark functions are used to testify the new algorithm, and the re-
sults showed clearly the new adaptive PSO leads to a significantly better
performance, although the performance improvements were found to be
dependent on problems.

Keywords: Particle swarm optimization, velocity threshold, evolution
programming.

1 Introduction

Particle swarm optimization[1] (PSO) is a new population-based evolutionary
computation technique, and has been applied many areas including: data mining
[2], image compression[3],Ad Hoc Networks design[4], multi-objective optimiza-
tion[5] etc. Each individual (called particle),owning two characters: position and
velocity, represents a potential solution of the search space. The velocity vector
of each particle represents the forthcoming motion tendency information and the
update equations of particle j of standard PSO at time t + 1 are presented in
equation (1):

vjk(t + 1) = wvjk(t) + c1r1(pjk(t) − xjk(t)) + c2r2(pgk(t) − xjk(t)). (1)

and the corresponding position vector updated by
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xjk(t + 1) = xjk(t) + vjk(t + 1). (2)

where the kth dimensional variable of velocity vector Vj(t+1) = (vj1(t+1), vj2(t+
1), ..., vjn(t + 1)) (n denotes the dimension of problem space) limited by

|vjk(t + 1)| ≤ vmax. (3)

where vjk(t) and xjk(t) are the kth dimensional variables of velocity and posi-
tion vectors of particle j at time t, pjk(t) and pgk(t) are the kth dimensional
variables of historical positions found by particle j and the whole swarm at time
t respectively. w is inertia weight between 0 and 1, accelerator coefficients c1 and
c2 are two random numbers generated with uniform distribution within (0, 1).

Many published works deal with parameter selection principles[6][7], though
few are concerned about velocity threshold vmax. Large vmax increases the search
region, enhancing the global search capability, as well as small vmax decreases
the search region, adjusting the search direction of each particle frequency. Since
then, a proportional threshold vmax selection principle can balance the exploita-
tion and exploration capability of PSO greatly, making use of more information
of search directions. Inspire by the evolution programming theory, this paper
introduces an adaptive version of PSO modified threshold vmax dynamically.

Section 2 gives a similarity comparison between particle swarm optimization
and evolution programming, discusses the details of the adaptive PSO. In sec-
tion3, seven well-known benchmark functions are used to test the new algorithm
efficiency. Finally, further research aspects are proposed.

2 Adaptive Velocity Threshold Particle Swarm
Optimization

Since first proposed by L.J.Fogel[8], evolutionary programming (EP) has been
successfully applied to many optimization problems. The individual of EP is a
pair of real-valued vectors (xj , ηj) (j=1,2,...,m) where xj is a position vector
while ηj is a standard deviation vector, and the offspring (x

′
j , η

′
j) is computed

with
x

′
j(k) = xj(k) + ηj(k)Nk(0, 1). (4)

η
′
j(k) = ηj(k)exp(τ

′
N(0, 1) + τNk(0, 1)). (5)

where xj(k) is the kth variable of individual xj(k=1,2,...,n), Nk(0, 1) and N(0, 1)
are the two random numbers generated with mean zero and standard deviation
one while Nk(0, 1) is renewed for different dimension. The factors τ and τ

′
are

commonly set to (
√

2
√

n)−1 and (
√

2n)−1 respectively[9]. In [10], X.Yao intro-
duced a fast EP with Cauchy mutation strategy, and the offspring is computed
with

x
′
j(k) = xj(k) + ηj(k)δk(t). (6)

where δk(t) represents a Cauchy random variable with the scale t for each dimen-
sion of individual j and the update equation of η

′
j(k) is the same as formula (5).
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Experiments show that Gaussian mutation has a good performance for some uni-
modal functions and multimodal functions with only a few local optimal points,
whereas Cauchy mutation works well on multimodal functions with many local
optimal points[10].

New kth variable xjk(t + 1) of position vector of particle j at time t + 1 falls
into the interval [xjk(t) − vmax,xjk(t) + vmax] with a constant length of 2vmax,
no matter the selection of vmax is corrected or not. On the country, in GP, the
kth variable xjk(t + 1) of offspring of individual j at time t + 1 falls into the
whole axis with some probability density and the length is a random variable.
It means the offspring of GP pays more attention to exploration capability if
ηjk(t) larger than vmax as well as more exploitation capability on the country.

From the above mentioned, the particle j of the swarm of PSO can represent
with (xj , vmax) as well as the individual j of GP represented with (xj , ηj). There
are some similarity between the update equations of PSO and GP.

Inspired by the above mentioned similarity, PSO processes more information
combining position and velocity vectors as well as EP only utilizes the position
information. Since then, a new modified version of PSO, called adaptive velocity
threshold particle swarm optimization(AVPSO,in briefly), is proposed combining
the advantages of PSO and EP. It uses position and velocity information, as
well as provides more exploration and exploitation capabilities and dynamic
adaptation of search directions.

The new AVPSO introduces a different velocity threshold vmax for each di-
mension of each particle of the swarm, and dynamically adjusts its values using
genetic programming method. The AVPSO is implemented as follows in this
study.

The above proposed AVPSO gives a dynamic velocity threshold so that the
search direction can adaptive changed though the exploration capability not im-
proved. Meanwhile, xjk(t+1) still falls into the interval dominated by xjk(t) and
(vmax)jk(t + 1) restricting the exploration capability. Since then, an enhanced
AVPSO is used to own a larger global search capability with only adding addi-
tional second velocity threshold update equation after formula (10) defined as
follows:

(vmax)jk(t + 1) = (vmax)jk(t + 1) ∗ ProbabilityDensity. (7)

where ProbabilitDensity means some ordinary probability densities such as
Gauss and Cauchy.

3 Simulation Results

The benchmark functions in this section provide a balance of unimodal, multi-
modal with many local minima and only a few local minima as well as easy and
difficult functions. In this section, Sphere Model, Schwefel Problem 2.22,Schwefel
Problem 2.26, Rastrigin, Griewank, Shekel’s Foxholes and Goldstein-Price are
used to test. Though these test suits are normal benchmark functions and can
be found in traditional references on evolutionary computation.
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Algorithm 1. Adaptive Velocity Threshold Particle Swarm Optimization
Input : Position Xj and velocity Vj .
Output: Global best position Pg.
while True do

Generate the initiate swarm with m particles, and set the value of vmax of
each dimension of each particle as v0. The position vector of each particle is
selected within the domain region as well as velocity vector of each particle
is chosen within the interval [0, vmax] uniformly,set t := 0;
for Each particle, update the position and velocity vectors at time t + 1 do

xjk(t + 1) = xjk(t) + vjk(t + 1). (8)

vjk(t + 1) = wvjk(t) + c1r1(pjk(t) − xjk(t)) + c2r2(pgk(t) − xjk(t)). (9)

and each dimensional variable of velocity vectors satisfied

|vjk(t + 1)| ≤ (vmax)jk(t + 1). (10)

where (vmax)jk(t + 1) represents the kth dimension of velocity threshold
of particle j at time t + 1, and is updated by:

(vmax)jk(t + 1) = (vmax)jk(t + 1)exp(τ
′
N(0, 1) + τNk(0, 1)). (11)

Update the historical best position of each particle and the whole
swarm. t := t + 1;

end
end

Sphere modal, Schwefel problem 2.22 are the unimodal functions, Schwefel
problem 2.26, Rastrigin and Griewank are multimodal functions with many local
minima, while Schefel’s foxholes and Goldstein-Price are multimodal functions
with only a few local minima.

AVPSO is designed with vmax computed by formula (10) and additional
formula (11) with Cauchy distribution with the scale 1.0. For each experiment
the simulation records the mean (Mean Value), standard deviation (Standard
deviation Value), respectively. The coefficients of standard PSO (SPSO) and
AVPSO are set as follows. The inertia weight w is decreased linearly form 0.9 to
0.4, and two accelerator coefficients are set to 2.0. Total individuals are 100, and
vmax is set to 10% of the upper bound of domain in SPSO as well as the initialized
vmax set to 3.0 in AVPSO. Each experiment the simulation run 30 times while
each time the largest evolutionary generation is 1500 for Sphere modal, 2000
for Schwefel problem 2.22 and Griewank, 5000 for Schwefel problem 2.26 and
Rastrigin, 1000 for Schefel’s foxholes and 100 for Goldstein-Price,respectively.
To avoid the velocity threshold falling too low to zero, a low bound 1.0e − 5
should be put on vmax. The same consideration is given to τ

′
N(0, 1)+ τNk(0, 1)

to avoid the system overflow, the upper and low bound are set to 1.0e − 5 and
1.0e + 2,respectively.
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Table 1. Comparison Results of Benchmark Functions

Function Algorithm Mean Value Standard deviation Value

f1 SPSO -6.837424e+003 6.830506e+002
f1 AVPSO -1.034020e+004 4.186488e+002
f2 SPSO 3.746575e-011 6.048403e-011
f2 AVPSO 1.162798e-015 1.781931e-015
f3 SPSO -6.837424e+003 6.830506e+002
f3 AVPSO -1.034020e+004 4.186488e+002
f4 SPSO 2.752718e+001 7.973942e+000
f4 AVPSO 2.275138e+001 6.990306e+000
f5 SPSO 1.148748e-002 1.338324e-002
f5 AVPSO 1.483552e-002 1.254681e-002
f6 SPSO 1.163675e+000 3.767850e-001
f6 AVPSO 9.980038e-001 0.000000e+000
f7 SPSO 3.000000e+000 1.959722e-008
f7 AVPSO 3.000000e+000 7.451596e-015

Table 1 is the comparison results for seven benchmark functions. From it,
we found the AVPSO are always better than SPSO no matter mean value and
standard deviation value.

4 Conclusion

Inspired by the evolutionary programming, a new version of particle swarm op-
timization, adaptive velocity threshold PSO, is proposed. New AVPSO is con-
sidered to combing the advantages of PSO and EP using dynamically changed
velocity threshold. This character is used provides enhanced exploration capa-
bility for increased thresholds as well as exploitation capability for decreased
thresholds.

New research aspects will include the combing other techniques of EP, and
provides some other selection principles of vmax.
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Abstract. Inclusion measure and entropy of fuzzy sets are two basic
concepts in fuzzy set theory. In this paper, we investigate the relationship
between inclusion measure and entropy of fuzzy sets in detail, propose
two theorems that inclusion measure and entropy of fuzzy sets can be
transformed by each other based on their axiomatic definitions and give
some formulas to calculate inclusion measure and entropy of fuzzy sets.

Keywords: Inclusion measure, entropy, fuzzy set.

1 Introduction

Since fuzzy set was introduced by Zadeh[1] in 1965, inclusion measure and en-
tropy of fuzzy sets have become two important topics in fuzzy set theory and
have successfully been applied in many different fields such as image processing,
fuzzy neural network, fuzzy reasoning and fuzzy control.

Inclusion measure of fuzzy sets indicates the degree to which a fuzzy set A
is contained in another fuzzy set B. Zadeh[1] first gave the definition of fuzzy
set inclusion and pointed out that inclusion is a crisp relation, in another word,
a fuzzy set A is either included or not included in a fuzzy set B. After that,
Sinha and Dougherty[2] introduced an axiomatic definition of inclusion mea-
sure of fuzzy sets. Young[3] proposed a different axiomatic definition from Sinha
and Dougherty and the concept of fuzzy subsethood. Cornelis et al.[4] revised
Sinha and Doughtery axiom, Bandler and Kohout[5] introduced the concept of
subsethood and investigated the relationship between subsethood and fuzzy im-
plication operators, Kehagias and Konstantinidou[6] introduced the concept of
L-fuzzy valued inclusion measure and investigated the relationship between in-
clusion measure of fuzzy sets and fuzzy distance of fuzzy numbers, Bustince[7]
proposed indicator of inclusion grade for interval-valued fuzzy sets and applied
it to approximate reasoning of interval-valued fuzzy sets. Recently, inclusion
relation has also been applied by some scholars in the rough set community.
Polkowski and Skowron[8,9] investigated rough inclusion, rough mereology and
� Supported by the Nature Science Foundation of China (Grant No.60474023), Re-

search Fund for Doctoral Program of Higher Education (20020027013), Science Tech-
nology Key Project Fund of Ministry of Education (03184) and Major State Basic
Research Development Program of China (2002CB312200).
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rough mereological calculi of granules, and proposed a new paradigm for approx-
imate reasoning, Zhang et al.[10] proposed a rough set approach to knowledge
reduction based on inclusion degree and evidence reasoning theory.

Entropy of fuzzy set describes the fuzziness degree of fuzzy set and was first
mentioned in 1965 by Zadeh[1] . Several scholars have studied it from different
points of view. For example, in 1972, De Luca and Termini[11] introduced some
axioms which capture people intuitive comprehension to describe the fuzziness
degree of fuzzy set. Kaufmann[12] proposed a method to measure the fuzziness
degree of fuzzy set by a metric distance between its membership function and
the membership function of its nearest crisp set. Another way given by Yager[13]
was to view the fuzziness degree of fuzzy set in terms of a lack of distinction be-
tween fuzzy set and its complement. Aimed at these two concepts, Kosko[14,15]
investigated fuzzy entropy in relation to subsethood measure. Liu[16] investi-
gated the relation among entropy, distance measure and similarity measure of
fuzzy sets. Fan[17,18] studied the relationship among distance measure and in-
duced fuzzy entropy and subsethood measure of fuzzy sets. Zeng[19] investigated
the relationship between similarity measure and entropy of fuzzy sets and gave
some conclusions which similarity measure and entropy of fuzzy sets could be
transformed each other based on their axiomatic definitions.

Considering that inclusion measure and entropy of fuzzy sets are two impor-
tant numerical indexes in fuzzy set theory and rough set theory, and they have
many successful applications in real life. In this paper, we focus on studying the
relationship between inclusion measure and entropy of fuzzy sets based on their
axiomatic definitions, propose two theorems that inclusion measure and entropy
of fuzzy sets can be transformed by each other and give some new formulas to
calculate inclusion measure and entropy of fuzzy sets.

The rest of our work is organized as follows. In section 2, we recall some
notions of inclusion measure and entropy of fuzzy sets. In section 3, we discuss the
relationship between inclusion measure and entropy of fuzzy sets and propose two
theorems that inclusion measure and entropy of fuzzy sets can be transformed by
each other based on their axiomatic definitions. The final section is conclusion.

2 Inclusion Measure and Entropy of Fuzzy Sets

Throughout this paper, we write X to denote the universal set, F(X) and P(X)
stand for the set of all fuzzy sets and crisp sets in X , respectively. A expresses
a fuzzy set and A(x) is its membership function, Ac is the complement of fuzzy
set A, i.e. Ac(x) = 1 − A(x),x ∈ X , ∅ stands for the empty set.

Zadeh[1] extended classic set inclusion and introduced the definition of fuzzy
set inclusion. After that, Sinha and Doughterty[2] and Young[3] introduced some
axioms to define inclusion measure of fuzzy sets, respectively.

For A, B ∈ F(X), we call I(A, B) inclusion measure of fuzzy sets A and B, if
the mapping I : F(X) × F(X) → [0, 1] satisfies the following properties:

(I1) I(X, ∅) = 0;
(I2) I(A, B) = 1 ⇐⇒ A ⊆ B;



Relationship Between Inclusion Measure 335

(I3) For all A, B, C ∈ F(X), if A ⊆ B ⊆ C, then I(C, A) ≤ I(B, A), I(C, A) ≤
I(C, B).

Known by the above three axioms, some formulas to calculate inclusion mea-
sure of fuzzy sets A and B are listed in the following for finite set X = {x1,x2, · · · ,
xn} and continuous set X = [a, b], respectively.

I1(A, B) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

(
A(xi) ∧ B(xi)

)
n∑

i=1

A(xi)

, A �= ∅

1, A = ∅

(1)

I2(A, B) =
1
n

n∑
i=1

min
(
1, 1 − A(xi) + B(xi)

)
(2)

I3(A, B) = 1 − 1
b− a

∫ b

a

|A(x) − A(x) ∧ B(x)|dx (3)

where the integral in Eq.(3) is Lebesgue integral.
Entropy of fuzzy set describes the fuzziness degree of fuzzy set. De Luca and

Termini[11] introduced an axiomatic definition of entropy of fuzzy set. Some
authors[3,16,17,19] have considered different applications and improved the ax-
iomatic definition of entropy of fuzzy set. A ∈ F(X), we call E(A) entropy of
fuzzy set A, if the mapping E : F(X) → [0, 1] satisfies the following properties:

(E1) E(A) = 0 iff A is a crisp set;

(E2) E(A) = 1 iff ∀x ∈ X, A(x) ≡ 1
2
;

(E3) E(A) ≤ E(B) if A is less fuzzy than B, i.e. A(x) ≤ B(x) ≤ 1
2

or

A(x) ≥ B(x) ≥ 1
2

for every x ∈ X ;

(E4) E(A) = E(Ac).

For finite set X = {x1,x2, · · · ,xn} and continuous set X = [a, b], we give
some formulas to calculate entropy of fuzzy set A in the following.

E
(p)
1 (A) = 1 − 1

n

(
n∑

i=1

|A(xi) − Ac(xi)|p
) 1

p

, p > 0 (4)

E2(A) =
2
n

n∑
i=1

|A(xi) − A0.5(xi)| (5)

E3(A) =
2

b− a

∫ b

a

(
A(x) ∧ Ac(x)

)
dx (6)

E4(A) = 1 − 1
b − a

∫ b

a

|A(x) − Ac(x)|dx (7)
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where A0.5 is 0.5-cut set of fuzzy set A, i.e. A0.5 = {x|A(x) ≥ 0.5} and the
integral in Eq.(6) and Eq.(7) is Lebesgue integral.

Property. For A ∈ F(X), then we have

E2(A) =
2
n

n∑
i=1

|A(xi) − A0.5(xi)| =
2
n

n∑
i=1

(
A(xi) ∧ Ac(xi)

)
. (8)

3 Relationship Between Inclusion Measure and Entropy

At first blush, inclusion measure and entropy of fuzzy sets do not seem related.
However, with respect to a specific pair of entropy and inclusion measure of fuzzy
sets, Kosko[15] showed the result E(A) = I(A∪Ac, A∩Ac). In this section, we will
investigate the relationship between inclusion measure and entropy of fuzzy sets
and extend Kosko’s results to more general situation, propose two theorems that
inclusion measure and entropy of fuzzy sets can be transformed by each other
based on their axiomatic definitions and give some new formulas to calculate
inclusion measure and entropy of fuzzy sets.

For fuzzy set A, we define f(A), g(A) ∈ F(X), for every x ∈ X ,

f(A)(x) =
1 + |A(x) − Ac(x)|

2
, g(A)(x) =

1 − |A(x) − Ac(x)|
2

then we have the following theorem.

Theorem 1. Suppose I be inclusion measure of fuzzy sets, A ∈ F(X), then
I(f(A), g(A)) is entropy of fuzzy set A.

Proof. (E1) If A is a crisp set, then for every x ∈ X , we have A(x) = 1, Ac(x) = 0
or A(x) = 0, Ac(x) = 1. Thus, for every x ∈ X , we can get |A(x)−Ac(x)| = 1, it
means that f(A)(x) ≡ 1, g(A)(x) ≡ 0. Thus, we have f(A) = X and g(A) = ∅,
therefore, I(f(A), g(A)) = 0.

(E2) Known by the definitions of f(A) and g(A), f(A), g(A) ∈ F(X), thus,

I(f(A), g(A)) = 1 ⇐⇒ f(A) ⊆ g(A)
⇐⇒ A(x) = Ac(x), ∀x ∈ X

⇐⇒ A(x) ≡ 1
2
, ∀x ∈ X

(E3) For every x ∈ X , since A(x) ≥ B(x) ≥ 1
2

implies Ac(x) ≤ Bc(x) ≤ 1
2
,

therefore, we can get

1 − |A(x) − Ac(x)|
2

≤ 1 − |B(x) − Bc(x)|
2

≤ 1 + |B(x) − Bc(x)|
2

≤ 1 + |A(x) − Ac(x)|
2

It means that g(A) ⊆ g(B) ⊆ f(B) ⊆ f(A). Therefore,

I(f(A), g(A)) ≤ I(f(B), g(A)) ≤ I(f(B), g(B))
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With the same reason, we can prove that for every x ∈ X , A(x) ≤ B(x) ≤ 1
2
,

thus, we have I(f(A), g(A)) ≤ I(f(B), g(B)).
(E4) Known by the definitions of f(A) and g(A), we have f(A) = f(Ac),

g(A) = g(Ac), therefore, I(f(A), g(A)) = I(f(Ac), g(Ac)).
Hence, we complete the proof of Theorem 1.

Corollary 1. Suppose I be inclusion measure of fuzzy sets, A ∈ F(X), we define
m(A), n(A) ∈ F(X), for every x ∈ X and p > 0,

m(A)(x) =
1 + |A(x) − Ac(x)|p

2
, n(A)(x) =

1 − |A(x) − Ac(x)|p
2

then I(m(A), n(A)) is entropy of fuzzy set A.

Example 1. When X = {x1,x2, · · · ,xn}, A ∈ F(X), and

I(A, B) = I1(A, B) =

n∑
i=1

(
A(xi) ∧ B(xi)

)
n∑

i=1

A(xi)

then

I(f(A), g(A)) =

n∑
i=1

(
f(A)(xi) ∧ g(A)(xi)

)
n∑

i=1

f(A)(xi)

=

n∑
i=1

g(A)(xi)

n∑
i=1

f(A)(xi)

=

n −
n∑

i=1

|A(xi) − Ac(xi)|

n +
n∑

i=1

|A(xi) − Ac(xi)|

(9)

is entropy of fuzzy set A.
For fuzzy sets A and B, we define h(A, B) ∈ F(X), for every x ∈ X ,

h(A, B)(x) =
1 + |A(x) − A(x) ∧ B(x)|

2

then we have the following theorem.

Theorem 2. Suppose E be entropy of fuzzy set A, A, B ∈ F(X), then E(h(A,
B)) is inclusion measure of fuzzy sets A and B.

Proof. (I1) For every x ∈ X , we have X(x) = 1, ∅(x) = 0, thus, for every x ∈ X ,
we can get |X(x)−∅(x)| = 1. It means that h(X, ∅) = X is a crisp set, therefore,
E(h(X, ∅)) = 0.
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(I2) Known by the definition of entropy of fuzzy set,

E(h(A, B)) = 1 ⇐⇒ h(A, B)(x) ≡ 1
2
, ∀x ∈ X

⇐⇒ |A(x) − A(x) ∧ B(x)| = 0, ∀x ∈ X
⇐⇒ A(x) = A(x) ∧ B(x), ∀x ∈ X
⇐⇒ A(x) ≤ B(x), ∀x ∈ X
⇐⇒ A ⊆ B

(I3) If A ⊆ B ⊆ C, then for every x ∈ X , we have A(x) ≤ B(x) ≤ C(x), and

known by the definition of h(A, B)(x), we can get h(A, B)(x) ≥ 1
2
, and

h(C, A)(x) =
1 + |C(x) − C(x) ∧ A(x)|

2
=

1 + |C(x) − A(x)|
2

≥ 1 + |C(x) − B(x)|
2

=
1 + |C(x) − C(x) ∧ B(x)|

2
= h(C, B)(x) ≥ 1

2

Therefore, E(h(C, A)) ≤ E(h(C, B)).
And we also have

h(C, A)(x) =
1 + |C(x) − C(x) ∧ A(x)|

2
=

1 + |C(x) − A(x)|
2

≥ 1 + |B(x) − A(x)|
2

=
1 + |B(x) − B(x) ∧ A(x)|

2
= h(B, A)(x) ≥ 1

2

Therefore, E(h(C, A)) ≤ E(h(B, A)).
Hence, we complete the proof of Theorem 2.

Corollary 2. Suppose E be entropy of fuzzy set A, A, B ∈ F(X), then E((h(A,
B))c) is inclusion measure of fuzzy sets A and B.

Corollary 3. Suppose E be entropy of fuzzy set A, A, B ∈ F(X), we define
q(A, B) ∈ F(X), for every x ∈ X and p > 0,

q(A, B)(x) =
1 + |A(x) − A(x) ∧ B(x)|p

2

then E(q(A, B)) and E((q(A, B))c) are inclusion measures of fuzzy sets A and B.

Example 2. When X = {x1,x2, · · · ,xn}, A, B ∈ F(X), and

E(A) = E2(A) =
2
n

n∑
i=1

(A(xi) ∧ Ac(xi))
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then

E(h(A, B)) =
2
n

n∑
i=1

1 − |A(xi) − A(xi) ∧ B(xi)|
2

= 1 − 1
n

n∑
i=1

|A(xi) − A(xi) ∧ B(xi)|
(10)

is inclusion measure of fuzzy sets A and B.

Example 3. When X = [a, b], A, B ∈ F(X), and

E(A) = E3(A) =
2

b− a

∫ b

a

(
A(x) ∧ Ac(x)

)
dx

then

E(h(A, B)) = 1 − 1
b− a

∫ b

a

|A(x) − A(x) ∧ B(x)|dx (11)

is inclusion measure of fuzzy sets A and B.

4 Conclusion

In this paper, we investigate the relationship between inclusion measure and
entropy of fuzzy sets in detail, propose two theorems that inclusion measure and
entropy of fuzzy sets can be transformed by each other based on their axiomatic
definitions and give some formulas to calculate inclusion measure and entropy
of fuzzy sets. These conclusions can be applied in some fields such as image
processing, fuzzy neural network, fuzzy reasoning and fuzzy control.
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Abstract. The relationship of vague sets and fuzzy sets is analyzed and
the problem of transforming vague sets into fuzzy sets is studied in this
paper. It is found to be a many-to-one mapping relation to transform a
vague set into a fuzzy set. A general model for transforming vague sets
into fuzzy sets is proposed. The two transforming methods proposed by
Fan Li in [1] are proved to be two special cases of this general transform-
ing model.
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1 Introduction

In 1965, Zadeh proposed the theory of fuzzy sets [2]. It has been used in many
uncertain information processing systems successfully. Gau, et al, proposed the
concept of vague sets [3]. All membership function values of a vague set are
a subinterval of [0, 1]. Vague sets are more accurate to describe some vague
information than fuzzy sets [4 − 8]. Many researchers are interested in the vague
sets theory in recent years, and have got some good results in many fields [9 − 13].
Some researchers developed several methods for transforming vague Sets into
fuzzy Sets in order to study the properties of vague sets and the relationship
between vague sets and fuzzy sets [1, 14, 15].

In this paper, the relationship between vague sets and fuzzy sets is further
analyzed, and the problem of transforming vague sets into fuzzy sets is also
studied. It is found to be a many-to-one mapping relation to transform a vague
set into a fuzzy set. A general model for transforming vague sets into fuzzy sets is
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proposed. The two transforming methods developed by Fan Li in [1] are proved
to be two special cases of this general transforming model.

The rest of this paper is organized as follows. In section 2, we discuss some
existing methods for transforming vague sets into fuzzy sets. In section 3, we
propose a general model for transforming vague sets into fuzzy sets, and discuss
their properties. In section 4, The transforming model’s validity is explained by
examples. In section 5, we conclude our studies on the relationship of fuzzy sets
and vague sets.

2 Related Methods for Transforming Vague Sets into
Fuzzy Sets

Fan Li proposed two methods for transforming vague sets into fuzzy sets in [1].
For the convenience of illustration in the following sections, we call them method
one and method two respectively.

Method one [1]: ∀A ∈ V (U) (V (U) is all vague sets of the universe of discourse
U), let u ∈ U , and its vague value is [tA(u), 1−fA(u)], then the membership func-
tion of u to AF (AF is the fuzzy set corresponding to vague set A) is defined as:

μAF = tA(u) + [1 − tA(u) − fA(u)]/2 =
1 + tA(u) − fA(u)

2
. (1)

Method one can be interpreted by the following voting model: value ”1” means
the vote for a resolution of favor, while ”0” for against, and ”0.5” for abstention.
For example, vague value [0.3, 0.7] means that the vote for a resolution is 3 in
favor, 3 against, and 4 abstentions. Its corresponding fuzzy membership degrees
is (3 × 1 + 4 × 0.5 + 3 × 0)/10 = 0.5.

Let’s look at another example. If the vote for a resolution is 8 in favor, 1
against, and 1 abstention. Usually, the attitude of the person voting for absten-
tion might not be absolutely neutral. His attitude might be influenced by the
other voting people. It is more likely that he might tend to vote in favor in-
stead of against, since there are more affirmative votes than negative votes. It is
unreasonable to assign ”0.5” to this abstention.

Fan Li proposed another method(method two) to solve this problem.
Method two [1]: ∀A ∈ V (U) (V (U) is all vague sets of the universe of discourse

U), let u ∈ U , and its vague value is [tA(u), 1−fA(u)], then the membership func-
tion of u to AF (AF is the fuzzy set corresponding to vague set A) is defined as:

μAF = tA(u)+ [1− tA(u)− fA(u)] · tA(u)/[tA(u)+ fA(u)] =
tA(u)

tA(u) + fA(u)
. (2)

There are some unreasonable problems for some cases when we use method
two to transform vague sets into fuzzy sets. For example, vague value [0,0.2], in
this voting model, there are 0 votes in favor, 8 against. The abstention persons’
voting attitude tends to vote against instead of in favor, since there are more
negative votes than affirmative votes. However, the abstention persons’ in favor
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voting attitude in this model is 0. It means that abstentions persons’ voting
attitude is absolutely against. Obviously, it is unreasonable. For this reason, Zhi
Gui Lin proposed a new transforming method in [14]. We call it method three
in this paper.

Method three [14]: ∀A ∈ V (U)(V (U) is all vague sets in the universe of
discourse U ), let u ∈ U , and its vague value is [tA(u), 1 − fA(u)], then the
membership function of u to AF (AF is the fuzzy set corresponding to vague set
A) is defined as :

μAF =

⎧⎪⎨⎪⎩
tA(u) + [1 − tA(u) − fA(u)] · 1−fA(u)

tA(u)+fA(u) , tA(u) = 0,

tA(u) + [1 − tA(u) − fA(u)] · tA(u)
tA(u)+fA(u) , 0 < tA(u) ≤ 0.5,

tA(u) + [1 − tA(u) − fA(u)] · (0.5 + tA(u)−0.5
tA(u)+fA(u) ), 0.5 < tA(u) ≤ 1.

(3)
Let’s look at the following cases using this model.
Case 1 : when tA(u) = 0, in the voting model, there are 0 votes in favor, the

abstentions persons’ favorite voting attitude is [1 − fA(u)] · 1−fA(u)
fA(u) .

Case 2: when 0 < tA(u) ≤ 0.5, method three is the same as method two.
Case 3: when 0.5 < tA(u) ≤ 1, the abstentions persons’ favorite voting attitude

is [1 − tA(u) − fA(u)] · (0.5 + tA(u)−0.5
tA(u)+fA(u) ). In this case, the abstentions persons’

voting attitude tends to vote in favor instead of against, since there are more
affirmative votes than negative votes.

Method three is an improvement of method one and method two, and Zhi Gui
Lin also illuminated the validity of his method. However, we find that there are
still some unreasonable cases in this model. Let’s look at the following example.

Example 1:∀A ∈ V (U), if u = [0, 0.9], the membership degrees of u to AF

using all three transforming methods are shown in Table 1.

Table 1. Memberships of Methods 1, 2 and 3

Method Method 1 Method 2 Method 3

μAF 0.45 0 8.1

The domain of μAF is between 0 and 1. So, we know μAF = 8.1 resulted from
method three is unreasonable.

There will be some problems when method 3 is used to calculate the fuzzy
membership if tA(u) = 0. If tA(u) = 0, μAF should satisfy the following condi-
tions according to formula (3):{

0 ≤ μAF ≤ 1 − fA(u),
μAF = tA(u) + [1 − tA(u) − fA(u)] · 1−fA(u)

tA(u)+fA(u) .

Thus, fA(u) ≥ 1
2 . We know fA(u) ∈ [0, 1]. Then, 1

2 ≤ fA(u) ≤ 1.
So, when tA(u) = 0 and 1

2 ≤ fA(u) ≤ 1, the method three is reasonable.
However, when tA(u) = 0 and 0 ≤ fA(u) ≤ 1

2 , it is unreasonable.
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3 A General Model for Transforming Vague Sets into
Fuzzy Sets

In this section, we will analyze the mapping between the elements of vague sets
and the points on a plane, and propose a general model for transforming vague
sets into fuzzy sets.

∀A ∈ V (U), u is an element in the universe of discourse U . Its vague value is
[tA(u), 1− fA(u)]. We take tA(u) and fA(u) as the axes of ordinate and abscissa
respectively on a plane.

Here, 0 ≤ tA(u) ≤ 1, 0 ≤ fA(u) ≤ 1, and tA(u) + fA(u) ≤ 1.
So, each element in vague set A can correspond to a point on the plane in this

way. All points are in the area of triangle OAB as shown in Fig.1.
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Fig. 1. The Mapping between Vague Sets

and Points on Plane
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Fig. 2. A General Model for Transforming

Vague Sets into Fuzzy Sets

All elements in vague set A can be shown in the area of the isosceles right-
angle triangle AOB in Fig.2. It is obvious that |OA| = |OB| = 1. The points on
the border line segment AB correspond to fuzzy sets. These points’ coordinates
satisfy tA(u) + fA(u) = 1. The points on the line segment OA correspond to
those vague sets whose false membership function is fA(u) = 0. The points on
the line segment OB correspond to those vague sets whose true membership
function is tA(u) = 0.

In Fig.2, the radial OC is the bisector of the first quadrant. The point C is the
intersection of the radial OC and the Line AB. It is obvious that tA(u) = fA(u)
for all points on the line segment OC. The point C corresponds to the vague
value [0.5, 0.5]. By intuitive understanding, we can assign all points on the line
OC the same fuzzy membership value 0.5 as point C. In the voting model, the
attitude of a person voting for abstention might not always be absolutely neutral.
His attitude might be influenced by the others. It is more likely that he might
tend to vote in favor instead of against when there are more affirmative votes
than negative votes and vice versa.
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In Fig.2, in order to map the same fuzzy member degree 0.5 to all points on
the line OC, we extend line CO to D(it will be discussed later how to choose
the point D). We use the radial l to scan the area of the triangle AOB, where
D is an end point of l, and the line segment FG is the line of it’s intersection
with the triangle AOB. We assign the points on the line segment FG the same
fuzzy member degree as the point G. Assume that |OD| = λ,λ ≥ 0, when the
point G moves from point A to B along the line segment AB, the radial l can
exactly scan the whole area of the triangle AOB. We can transform the vague
sets into fuzzy sets through this method. In this method, it is more possible that
the person voting for abstention might tend to vote in favor instead of against,
when there are more affirmative votes than negative votes and vice versa.

According to the above discussion, we could develop a general model for trans-
forming vague Sets into fuzzy Sets(Method four). ∀A ∈ V (U), where V (U) is all
vague sets in the universe of discourse U . ∀A ∈ V (U), and the vague value is
[tA(u), 1 − fA(u)]. Let λ be the distance of the line segment OD in Fig.2, and
λ > 0. The membership function of u to AF (AF is the fuzzy set corresponding
to vague set A ) is defined as :

μAF = tA(u) +
1
2
[1 +

tA(u) − fA(u)
tA(u) + fA(u) + 2λ

][1 − tA(u) − fA(u)]. (4)

In Fig.2, when we transform vague sets into fuzzy sets, we assign the vague
values of all points on the line segment FG to the same membership degree of
the point G. The above formula (4) is thus derived.

The formula (4) denotes that it is more possible that a person voting for
abstention might tend to vote in favor instead of against, when there are more
affirmative votes than negative votes and vice versa. From (4), we can easily get
the limits of μAF when λ → 0 and λ→ +∞ respectively, that is,

lim
λ→0

μAF =
tA(u)

tA(u) + fA(u)
,

lim
λ→+∞

μAF =
1 + tA(u) − fA(u)

2
.

We found that method one by Fan Li is the special case of our general model
when λ → +∞, and method two by Fan Li is another special case when λ→ 0.

Furthermore, we will analyze the effect of the distance of the line segment OD
(λ) for transforming vague sets into fuzzy sets.

From (4) we can have dμ
AF

dλ = − [tA(u)−fA(u)]·[1−tA(u)−fA(u)]
[tA(u)+fA(u)+2λ]2 .

If tA(u) > fA(u), then dμ
AF

dλ ≤ 0,
Thus, μAF is descending monotonically with λ.
The greater the value of λ is, the smaller the value of μAF will be. The person

voting for abstention might tend to vote less favorably, and

μAF ∈ (tA(u) +
1 − tA(u) − fA(u)

2
,

tA(u)
tA(u) + fA(u)

). (5)
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It is obvious that the voting tendency of the person voting for abstention
tends to vote in favor from (5).

If tA(u) < fA(u), then dμAF

dλ ≥ 0, μAF is increasing monotonically with λ. The
greater the value of λ is, the greater the value of λ will be. The person voting
for abstention might tend more to vote in favor and

μAF ∈ (
tA(u)

tA(u) + fA(u)
, tA(u) +

1 − tA(u) − fA(u)
2

). (6)

It is obvious that the voting tendency of the person voting for abstention is
likely to vote against from (6).

In the process of transforming vague sets into fuzzy sets, the value of λ is the
distance of the line segment OD. It adjusts the influence degree of the voting
tendency of persons voting for abstention affected by others.

In this general transforming model, if there are more affirmative votes than
negative votes, and the value of λ is much greater, then the voting tendency of
the person voting for abstention to favor is less. If there are more negative votes
than affirmative votes, and the value of λ is much greater, the voting tendency
of the person voting for abstention against is less. This is also why we choose
formula (4). The method one and method two proposed by Fan Li are two special
cases of our general transforming model on the condition that the parameter λ
equals to 0 and +∞ respectively.

4 Case Study for the General Transforming Model

We assign λ = 1 in the general transforming model in order to compare it with
the existing transforming methods. Thus, we can get the method four for our
general transforming model.

Method four: ∀A ∈ V (U) (V (U) is all vague sets in the universe of discourse
U), let u ∈ U , and its vague value is [tA(u), 1−fA(u)], then the membership func-
tion of u to AF (AF is the fuzzy set corresponding to vague set A) is defined as :

μAF = tA(u) +
1
2

× [1 +
tA(u) − fA(u)

tA(u) + fA(u) + 2
][1 − tA(u) − fA(u)]. (7)

In order to compare it with other methods, the examples in Ref [5] are used
here.

Example 2: ∀A ∈ V (U), let u be an element in the universe of discourse U ,
it’s vague value be [0, 0.9], the membership degrees of u to AF using all four
transforming methods are shown in the 1st line of Table 2.

Obviously, the result of Method 4 is reasonable. It is similar with the result
of Method 1. The results of Method 2 and 3 are unreasonable.

Example 3: ∀A ∈ V (U), let u be an element in the universe of discourse U ,
it’s vague value be [0, 0.3], the membership degrees of u to AF using all four
transforming methods are shown in the 2nd line of Table 2.
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Table 2. Comparative Results of Methods 1, 2, 3, and 4

Example Method 1 Method 2 Method 3 Method 4

2 0.45 0 8.1 0.429

3 0.15 0 0.129 0.111

4 0.95 1 0.994 0.966

In Method 2, the voting tendency of the person voting for abstention is ab-
solutely against. It is unreasonable. The result of Method 4 is similar with the
results of method 1 and 3. This result is rather reasonable.

Example 4: ∀A ∈ V (U), let u be an element in the universe of discourse U ,
it’s vague value be [0.9, 1], the membership degrees of u to AF using all four
transforming methods are shown in the 3rd line of Table 2.

It is unreasonable that the voting tendency of the person voting for abstention
is taken as absolutely in favor in method two. The results of method four, method
one and method three are reasonable. The results of the method four and method
three are much better than method one, since the voting tendency of the person
voting for abstention has no relation with other people in method one.

Now, let’s analyze the effect of the value of λ to the membership degree of u
to AF .

Example 5: ∀A ∈ V (U), let u be an element in the universe of discourse
U , and it’s vague value be [0.2, 0.7], the membership degrees of u to AF using
transforming method four are shown in Table 3 by taking different values of λ,
e.g., 0.5, 0.8, 10, 100.

Table 3. Membership of Method 4 by Different λ

λ 0.5 0.8 10 100

μAF 0.433 0.438 0.449 0.450

The vague value [0.2, 0.7] can be interpreted as ”the vote for a resolution is
2 in favor, 3 against, and 5 abstentions”. There are more negative votes than
affirmative votes. The greater the value of the parameter λ is, the higher the
membership degree of u to AF will be. The voting tendency of favor of the
person voting for abstention is increasing with λ monotonically.

5 Conclusion

The relationship between vague sets and fuzzy sets is studied in this paper. The
many-to-one mapping relation for transforming a vague set into a fuzzy set is
discovered. A general model for transforming vague sets into fuzzy sets is also
developed. The validity of this transforming model is illustrated by comparing it
with other related transforming models. The two transforming methods proposed
by Fan Li in [1] are proved to be its two special cases. The transforming method
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in paper [14] is found to be unreasonable for some special cases. The relationship
among vague sets, rough sets, fuzzy sets and other non-classical sets could also
be studied in similar way.
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Abstract. This paper presents an iterative method for solving a class
of generalized quasi-variational-like inclusions with fuzzy mappings. The
method employs step size controls that enable applications to problems
where certain set-valued mappings do not always map to empty set. The
algorithm also adopts the recently introduced (H,η)-monotone concept
which unifies many known monotonicities. Thus generalized many exist-
ing results.

Keywords: Generalized quasi-variational-like inclusion, iterative algo-
rithm, fuzzy mapping, resolvent operator.

1 Introduction

It is well known that variational inclusions, an important generalization of clas-
sical variational inequalities, have been widely used in many fields, for exam-
ple, mechanics, physics, optimization and control, nonlinear programming, eco-
nomics, engineering sciences and so on. A tremendous amount of work on varia-
tional inclusions have been carried out recently. For details, we refer the readers
to [1-6, 8, 9] and the references therein. In 1989, Chang and Zhu [3] introduced
and studied a class of variational inequalities for fuzzy mappings. Since then, sev-
eral classes of variational inequalities with fuzzy mappings have been extensively
studied by Chang and Huang [2], Park and Jeong [8,9].

In this paper, we study a class of generalized quasi-variational-like inclusions
with fuzzy mappings. Al-Shemas et al. [1] investigated generalized set-valued
nonlinear mixed quasi-variational inequalities and produced an algorithm which
does not require the multi-valued operator always maps to a non-empty set.
Fang, Huang and Thompson [5] studied more general variational inclusions with
(H, η)-monotone set-valued mappings and proved that the corresponding resol-
vent operator is no longer non-expansive any more under the (H, η)-monotone
assumption. Motivated and inspired by their work, this paper discusses a class of
variational inclusions in which the (H, η)-monotone multi-valued mappings are
induced by some fuzzy mappings. An algorithm to find a solution is suggested
and analyzed under some appropriate conditions.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 349–356, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Preliminaries

Let H be a real Hilbert space with a norm ||·|| and inner product 〈·, ·〉. Let F (H)
be a collection of all fuzzy sets over H. A mapping F : H → F (H) is said to be
a fuzzy mapping, if for each x ∈ H, F (x) (denote it by Fx in the sequel) is a
fuzzy set on H and Fx (y) is the membership function of y in Fx.

A fuzzy mapping F : H → F (H) is said to be closed if for each x ∈ H, the
function y → Fx (y) is upper semicontinuous, i.e., for any given net {ya} ⊂ H
satisfying ya → y0 ∈ H, lim sup

a
Fx (ya) ≤ Fx (y0). For B ∈ F (H) and λ ∈ [0, 1],

the set (B)λ = {x ∈ H|B(x) ≥ λ} is called a λ-cut set of B. Suppose that α :
H → [0, 1] is a real valued function. We claim that (Fx)α(x) is a closed subset of
H if F is a closed fuzzy mapping over H. In fact, let {ya}a∈Γ ⊂ (Fx)α(x) be a
net and ya → y0 ∈ H. Then Fx (ya) ≥ α (x) for each a ∈ Γ . Since F is closed,
we have Fx (y0) ≥ lim sup

a∈Γ
Fx (ya) ≥ α (x) . This implies that y0 ∈ (Fx)α(x) and

so (Fx)α(x) ∈ C (H) where C (H) denotes all the closed subsets of H. Let E, F :
H → F (H) be two closed fuzzy mappings and α,β : H → [0, 1] be two real-
valued functions. Then, for each x ∈ H, we have (Ex)α(x)and (Fx)β(x) ∈ C (H).
Therefore we can define two set-valued mappings, Ẽ, F̃ : H → C(H) by Ẽ (x) =
(Ex)α(x) and F̃ (x) = (Fx)β(x). In this paper, we say that the multi-valued
mappings Ẽ and F̃ are induced by the fuzzy mappings E and F respectively.

Let N , η : H × H → H and p : H → H be two single-valued mappings
and let E, F : H → F (H) be two fuzzy mappings. Let α, β : H → [0, 1] be
two given functions. Let A : H → 2H be a multi-valued mapping and p (H) ∩
domA(p (x)) �= ∅. We will consider the following generalized quasi-variational-
like inclusion problem with fuzzy mappings. Find x, u, v ∈ H such that Fu (x) ≥
α (u), Fu (y) ≥ β (u) and

0 ∈ N(x, y) + A (p (u)) . (1)

In order to make this paper self-contained, we start with the following
definitions.

Definition 1. A mapping g : H → H is said to be

(1) strongly monotone if there exists a constant γ > 0 such that

〈g (x) − g (y) ,x− y〉 ≥ γ ||x− y||2 ∀x, y ∈ H;

(2) Lipschitz continuous if there exists a constant γ > 0 such that

||g (x) − g (y)|| ≤ γ ||x− y|| ∀x, y ∈ H.

Definition 2. Let N : H × H → H be a single valued operator. We say that N
is

(1) strongly monotone if there exists a constant δ > 0 such that

〈N (x, y) ,x− y〉 ≥ δ ||x− y||2 ∀x, y ∈ H;
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(2) Lipschitz continuous with respect to the first argument if there exists a con-
stant β > 0 such that

||N (u1, ·) − N (u2, ·)|| ≤ β ||u1 − u2|| ∀u1, u2 ∈ H.

Definition 3. A set-valued mapping Ẽ : H → C (H) is said to be

(1) strongly monotone with respect to the first argument of N (·, ·) if there exists
a constant α > 0 such that

〈N (u, ·) − N (v, ·) ,x− y〉 ≥ α ||x− y||2 ∀x, y ∈ H, u ∈ Ẽ (x) , v ∈ Ẽ (y) .

(2) Lipschitz continuous if there exists a constant η > 0 such that

M
(
Ẽ (u) , Ẽ (v)

)
≤ η ||u − v|| ∀u, v ∈ H,

where M : 2H × 2H → R ∪ {+∞} is a pseudo-metric defined by

M (Γ,Λ) := max
{

sup
u∈Γ

d(u,Λ), sup
v∈Λ

d(v,Γ )
}

,

where d(u, S) = infv∈S ||u − v||.

Similarly, we can define the Lipschitz continuity of N (·, ·) with respect to the
second argument and the strong monotonicity with respect to the second argu-
ment of N (·, ·).

Definition 4. Let H, p : H → H be two single-valued mappings. H is said to be

(1) Strongly monotone with respect to p if there exists a contant δ > 0 such that

〈u − v,H (p (u)) −H (p (v))〉 ≥ δ ‖u − v‖2 ∀u, v ∈ H;

(2) Lipschitz continuous with respect to p if there exists a consant σ > 0 such
that

‖H (p (u)) −H (p (v))‖ ≤ σ ||u − v|| ∀u, v ∈ H.

Definition 5. Let η : H × H → H and H : H → H be two single valued
mappings and A : H → 2H be a set-valued mapping. A is said to be

(1) monotone if 〈x− y, u − v〉 ≥ 0 for all u, v ∈ H, x ∈ Au, and y ∈ Av;
(2) η-monotone if 〈x− y, η (u, v)〉 ≥ 0 for all u, v ∈ H, x ∈ Au, and y ∈ Av;
(3) strictly η-monotone if A is η-monotone and equality holds if and only if

u = v;
(4) strongly η-monotone if there exists some constant τ > 0such that

〈x− y, η (u, v)〉 ≥ τ ||u − v||2 , ∀u, v ∈ H, x ∈ Au, y ∈ Av;

(5) maximal monotone if A is monotone and (I + λA) (H) = H, for all λ > 0
where I denotes the identity operator on H;
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(6) maximal η-monotone if A is η-monotone and (I + λA) (H) = H for all λ >
0;

(7) H-monotone if A is monotone and (H + λA) (H) = H, for all λ > 0;
(8) (H, η)-monotone M is η-monotone and (H + λM) (H) = H for all λ > 0.

Obviously, the class of (H, η) monotone operators provides a unifying framework
for classes of maximal monotone operators, maximal η-monotone operators and
H-monotone operators. Therefore more general results are expected.

Lemma 1. (See[5,4]) Let η : H × H → H be a single-valued operator, H :
H → H be a strictly η-monotone operator and A : H →2H be an (H, η)-monotone
operator. Then, the operator (H + λA)−1 is single-valued.

By this lemma, we define the resolvent operator RH,η
A,λ as follows.

Definition 6. (See[5,4]) Let η : H × H → H be a single-valued operator, H :
H → H be strictly η-monotone operator and A : H →2H be an (H, η)-monotone
operator. The resolvent operator RH,η

A,λ is defined by

RH,η
A,λ (u) = (H + λA)−1 (u) , ∀u ∈ H.

It is worth of being mentioned here that the resolvent operator RH,η
A,λ is not non-

expansive any more. This is quite different from other similar resolvent operators
(see [1,4]). Fortunately, we still have

Lemma 2. (See [5,4]) Let η : H × H → H be a single-valued Lipschitz contin-
uous operator with constant τ . Let H : H → H be strictly η-monotone operator
with constant r and A : H →2H be an (H, η)-monotone operator. The resolvent
operator RH,η

A,λ is Lipschitz continuous with constant τ
r .

3 Existence and Iterative Algorithm

In this section, using the resolvent technique, we prove the equivalence between
the generalized quasi-variational-like inclusions with fuzzy mappings and fixed
point problems.

Lemma 3. (u,x, y) is a solution of problem (1) if and only if (u,x, y) satisfies
the following relation

p (u) = RH,η
A,ρ (H (p (u)) − ρN (x, y)) (2)

where x ∈ Ẽ (u) , y ∈ F̃ (u) , RH,η
A,λ = (H + ρA)−1is the resolvent operator and

ρ > 0 is a constant.

Proof. Assume that (u,x, y) satisfies relation (2), i.e., u ∈ Ẽ (x), v ∈ F̃ (x) and
such that p (u) = RH,η

A,λ (H (p (u)) − ρN (x, y)). Since RH,η
A,λ = (H + λA)−1, the

above equality holds if and only if x ∈ Ẽ (u), u ∈ F̃ (u) such that−N (u, v) ∈
A (p (u)) . This relation holds if and only if x ∈ Ẽ (u), y ∈ F̃ (u) such that
0 ∈ N (x, y) + A (p (u)). �
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Algorithm 1. Iterative Algorithm
Input : ρ > 0 be a constant, u0 ∈ int(dom(Ẽ) ∩ dom(F̃ )) and x0 ∈ Ẽ (u0) and

y0 ∈ F̃ (u0)
Output: xn+1, yn+1, zn+1

while True do

un+1 ←− un + αn(−p (un) + RH,η
A,λ (H (p (un)) − ρN (xn, yn))); (3)

// αn ∈ (0, 1] such that un+1 ∈ int(dom(Ẽ) ∩ dom(F̃ ));
Choose εn+1 ≥ 0 and choose xn+1 ∈ Ẽ (un+1), yn+1 ∈ F̃ (un+1) satisfying

||xn+1 − xn|| ≤ (1 + εn+1) M(Ẽ (un+1) , Ẽ (un)), (4)

||yn+1 − yn|| ≤ (1 + εn+1) M(F̃ (un+1) , F̃ (un)); (5)

If xn+1, yn+1 and un+1 satisfy a given accuracy, False; otherwise, set
n ←− n + 1

end

To develop a fixed point algorithm, we rewrite (2) as follows

u = u − p(u) + RH,η
A,λ (H (p (u)) − ρN (x, y)) .

This fixed point formula allows us to suggest Algorithm 1.
In order to ensure convergence, we will need to make the additional assump-

tion that
∑∞

n=0 αn = ∞ and at least one of the subsequences of αn does not
converges to 0. Note that, if αn = 1, then the algorithm reduces to the case
purposed by Huang et al. [6].

4 Convergence Theorem

This section proves, under similar conditions use in [6,1], that the iterates pro-
duced by the above algorithm converge to a solution of problem (2). For the
following theorem, define C (H) to be the collection of all closed subsets of H.

Theorem 1. Let N, η : H × H → H be two single-valued mappings and N be
Lipschitz continuous with respect to the first and second argument with constants
β and ξ respectively. Let E, F : H → F (H) be two closed fuzzing mappings and
Ẽ, F̃ : H → C (H) be their induced set-valued mappings. Ẽ, F̃ are M -Lipschitz
with constants ϑ, γ respectively. Let p : H → H be strongly monotone and
Lipschitz continuous with constants δ and σ, respectively. Let H : H → H be
strongly monotone and Lipschitz continuous with respect to p with constants μ
and ε respectively. H and η satisfies assumptions in Lemma 2. Suppose that Ẽ
is strongly monotone with respect to the first argument of N(·, ·) with constant
ζ and suppose that int(dom(Ẽ) ∩ dom(F̃ )) �= ∅ and

θ = 1 − τ

r
{
√

1 − 2μ+ ε2 + ρξγ +
√

1 − 2ρζ + ρ2β2ϑ2} −
√

1 − 2δ + σ2, (6)
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where τ , r are constants in Lemma 2. If εn → 0,
∑
αn = ∞ and at least one of

subsequences of αn does not converges to 0, then there exist u ∈ H, x ∈ Ẽ (u),
y ∈ F̃ (u) satisfying problem (2) and the sequences {un}, {xn}, {yn} generated
by Algorithm 1 converge strongly in H to u,x, y respectively.

Proof. For n = 0, 1, 2, · · · , define

Γn := −p (un) + RH,λ
A,ρ (H (p (un)) − ρN (xn, yn)) (7)

and note that
un+1 = un + αnΓn. (8)

We will first establish a bound on ||Γn||. Let tn = H(p(un)) − ρN(xn, yn). By
(7) and (8),

‖Γn‖ = ‖(un − un−1)/αn−1 + Γn − Γn−1‖
≤ ‖(un − un−1)/αn−1 − (p(un) − p(un−1))‖

+ ‖RH,λ
A,ρ (tn) − RH,λ

A,ρ (tn−1)‖. (9)

The last term in (9) is bounded by

‖RH,λ
A,ρ (tn) − RH,λ

A,ρ (tn−1)‖ ≤ τr−1 ||un − un−1 − (H (p (un)) −H (p (un−1)))||
+τr−1 ||un − un−1 − ρ (N (xn, yn) − N (xn−1, yn−1))||

+ρτr−1 ||N (xn−1, yn) − N (xn−1, yn−1)|| .

Since H is strongly monotone and Lipschitz continuous with respect to p,

||(un − un−1) − (H (p (un)) −H (p (un−1)))||2

≤
(
1 − 2μ+ ε2

)
||un − un−1||2 . (10)

Similarly, since Ẽ is strongly monotone with respect to the first argument of N
and N is Lipschitz continuous with respect to the first argument,

||un − un−1 − ρ (N (xn, yn) − N(xn−1, yn)||2

≤
(
1 − 2ρζ + ρ2β2ϑ2 (1 + εn)2

)
||un − un−1||2 . (11)

Using the Lipschitz continuity of N and M-Lipschitz continuity of F̃ , for all
yn ∈ F̃ (un), we have

||N (xn−1, yn) − N (xn−1, yn−1)|| ≤ ξγ (1 + εn) ||un − un−1|| . (12)

Finally, by similar arguments to the derivation of (10),

||(un − un−1) /αn−1 − (p (un) − p (un−1))||2

≤ 1
α2

n−1

(
1 − αn−1 + αn−1

√
1 − 2δ + σ2

)2
||un − un−1||2 .
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The last inequality holds (see [1]). This together with (8)-(12) yields

||Γn|| ≤ (1 − αn−1θn) ||un − un−1|| /αn−1 = (1 − αn−1θn) ||Γn−1|| .

where

θn = 1 − τ

r

{√
1 − 2μ+ ε2 + (1 + εn) ρξγ +

√
1 − 2ρζ + ρ2β2ϑ2 (1 + εn)2

}
−
√

1 − 2δ + σ2.

Since εn → 0 we know that θn → θ. By (6), thus, for all n sufficiently large,
θn ≥ θ

2 > 0. Define Φ = θ
2 . Without loss of generality, we can assume θn ≥ Φ > 0

for all n. It follows that ||Γn|| ≤ ||Γ0||Πn−1
i=0 (1 − αiΦ) . Since

∑
αn = ∞, we

conclude that limn→∞ ||Γn|| = 0 and therefore limn→∞ ||un − un−1|| = 0. Next,
we show that {un} converges. Let m be an arbitrary index. Since

∑
αi = ∞

and αi ≤ 1, there exists a sequence {kj} of indices, with k0 = m such that
1 ≤

∑kj+1−1
i=kj

αi < 2. Let

κj = (Πkj+1−1
i=κj

(1 − αiΦ))1/(kj+1−kj), τj = (
kj+1−1∑

i=kj

(1 − αiΦ))/ (kj+1 − kj) .

Note that κj and τj are the geometric and arithmetic means, respectively, of(
1 − αkjΦ

)
,
(
1 − αkj+1Φ

)
, ...,

(
1 − αkj+1−1Φ

)
so κj ≤ τj . Thus, it is easy to

deduce

Π
kj+1−1
i=kj

(1 − αiΦ) = κ
(kj+1−kj)
j ≤ τ

(kj+1−kj)
j ≤ e−Φ.

It follows that ∣∣∣∣Γkj+1

∣∣∣∣ ≤ e−Φ
∣∣∣∣Γkj

∣∣∣∣ ≤ (e−Φ
)j+1 ||Γm|| .

Thus, it follows that

||un − um|| ≤
n∑

i=m

αi ||Γi|| ≤ 2 ||Γm||
∞∑

j=0

(
e−Φ
)j

= 2 ||Γm|| /
(
1 − e−Φ

)
.

Since limm→∞ ||Γm|| = 0, it follows that limn,m→∞ ||um − un|| = 0. Therefore
{un} converges strongly to some fixed u ∈ H.

Now we prove that xn → x ∈ Ẽ (u), from (4) we have

||xn − xn−1|| ≤ (1 + εn)M
(
Ẽ (un) , Ẽ (un−1)

)
≤ 2η ||un − un−1|| ,

which implies that {xn} is a Cauchy sequence in H. Thus there exist x ∈ H such
that xn → x. Furthermore

d(x, Ẽ(u)) ≤ ||x− xn|| + d
(
xn, Ẽ (u)

)
≤ ||x− xn|| + η ||un − u|| → 0.

Since Ẽ (u) is closed, it gives that x ∈ Ẽ (u). Similarly, {yn} converges to some
fixed y ∈ F̃ (u). By continuity, (u,x, y) solves (1). �
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5 Summary

Theorem 1 shows that the Algorithm 1 converges to a solution under conditions
similar to those used in Huang et al. [6] and the proof of the convergence is
similar to Al-Shemas and Billups [1]. However, the set-valued mappings are
induced by some fuzzy mappings in this paper and under the (H, η)-monotonicity
assumption, the resolvent operator are quite different from those defined by
maximal monotone, η-monotone and so on. We thus have reached most general
form of problems of this kind since the (H, η)-monotonicity is the most general
case so far. Also, the idea used in this paper could also be extended to similar
variational inclusions. For example, the function A (x), p (x) could be extended
to mappings with several variables.
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Abstract. Skowron’s discernibility matrix is one of representative ap-
proaches in computing relative core and relative reducts, while redundant
information is also involved. To decrease the complexity of computation,
the idea of granular computing is applied to lower the rank of discernibil-
ity matrix. In addition, the absorptivity based on bit-vector computation
is proposed to simplify computation of relative core and relative reducts.
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1 Introduction

Reduction of Knowledge[1], one of crucial parts in rough set theory[5], plays a
very important role in the fields of knowledge discovery[4], decision analysis[6],
clustering analysis[2] and so on. The knowledge having been simplified can de-
crease the complexity of computing and improve the adaptability of knowledge
in certain extent.

Information Granulation[3] is helpful to problem solving. Observing things on
different levels of granularities, one can acquire various levels of knowledge, as
well as inherent knowledge structures, and then choose what he needs, which
can improve the efficiency of algorithm in reduction of knowledge.

One approach about reduction of knowledge proposed by Skowron, is named
discernibility matrix[7], a representative way in computing all the reduction of
attributes in knowledge representation system. However, it is on the basis of ob-
jects. As the number of objects increases, the computing process of the approach
is unimaginable, which, in fact, contains lots of redundant information.

In this paper, we use the idea of granular computing to eliminate the redun-
dant information in discernibility matrix. Thus, the workload is diminished, and
the space of storage is saved. In addition, a new kind of method called absorptiv-
ity, based on bit-vector, is also proposed to decrease the computing complexity
and could be easily operated by computer. An example is presented at the end
of the paper.
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2 Basic Conception

Decision table is a kind of important knowledge representation system. Most
decision problems can be expressed by it. So now we describe a decision table
to expatiate on the application in reduction of attributes by means of the idea
of granular computing. If we discuss the corresponding problems in information
table, we only need to weaken the relative core and relative reducts.

Definition 1. Decision Discernibility Matrix[7]. Let DT = (U, C
⋃

D, V,
f) is a decision table, where U is any nonempty finite set called a universe,U =
{x1,x2, · · · ,xn} . Then we define

Mn×n = (cij)n×n =

⎡⎢⎢⎢⎣
c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
c11 c12 · · · c1n

∗ c22 · · · c2n

...
...

. . .
...

∗ ∗ · · · cnn

⎤⎥⎥⎥⎦
as a decision discernibility matrix, where for ∀i, j = 1, 2, · · · , n

cij =

⎧⎨⎩{a|(a ∈ C) ∨ (fa(xi) �= fa(xj))}, fD(xi) �= fD(xj);
∅, fD(xi) �= fD(xj) ∧ fC(xi) = fC(xj);
−, fD(xi) = fD(xj).

(1)

The definition of the discernibility matrix is very familiar to us, so the meaning
of cij would not be explained here. We just recite several necessary propositions.

Property 1. In a consistent decision table, the relative D core is equal to the
set which is composed by all the simple attribute (single attribute), namely

COREC(D) = {a|(a ∈ C) ∧ (∃cij , ((cij ∈ Mn×n) ∧ (cij = {a})))}. (2)

Property 2. Let ∀B ⊆ C,if satisfies the two conditions below: (1) For ∀cij ∈
Mn×n , when cij �= ∅, cij �= −, always gets B

⋂
cij �= ∅ .(2) If B is relative

independent to D , then B is a relative reduct of the decision table.

From the upper statement, we can get the relative core and relative reducts.
But in fact, many elements in the original discernibility matrix are redundant.
It is unnecessary to compare with the objects which are in the same equivalent
classes, because the value of cij obtained in the discernibility matrix is either ”−”
or ∅. It occupies much storage space and increases the complexity of computing.

Definition 2. Discernibility Matrix Based on Information Granule. Let
DT =(U, C

⋃
D, V, f) be a decision table, U/IND(C)={Ei|∀Ei = [u]IND(c),

1 ≤ i ≤ m}, where the universe U is a nonempty finite set, U = {x1,x2, · · · ,xn},
then we define
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MG
m×m = (rG

ij)n×n =

⎡⎢⎢⎢⎣
r11 r12 · · · r1m

r21 r22 · · · r2m

...
...

. . .
...

rm1 rm2 · · · rmm

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
r11 r12 · · · r1m

∗ r22 · · · r2m

...
...

. . .
...

∗ ∗ · · · rmm

⎤⎥⎥⎥⎦
as the discernibility matrix based on the information granule, where for

∀i, j = 1, 2, · · · , m.

rG
ij =

⎧⎨⎩
{a|(a ∈ C) ∨ (fa(Ei) �= fa(Ej))}, fD(Ei) �= fD(Ej);
∅, fD(Ei) �= fD(Ej) ∧ fC(Ei) = fC(Ej)
−, fD(Ei) = fD(Ej).

(3)
In common situation,m 0 n, so we can reduce the rank of discernibility

matrix by the ideal of granular computing, then the work of computation can
be decreased. The approach is also suitable to the information table.

We just need replace the objects xi,xj with Ei, Ej , then the definition of the
discernible function (Boolean function) based on the information granule can be
obtained. Also we can prove easily:

1) The relative D core is equal to the set which is composed of all the simple
attribute (single attribute);
2) If B is a relative reduct of a decision table, it satisfies

(1) For ∀rG
ij ∈ MG

m×m, when rG
ij �= ∅, rG

ij �= −, always gets B
⋂

rG
ij �= ∅;

(2) If B is relative independent to D.

3 Absorptivity Based on Bit-Vector

Generally speaking, the process of obtaining core and reducts by discernibility
matrix always converses to find the minimal disjunction normal form. If the
number of the items is huge, the cost will be very large. Therefore we propose
an approach called absorptivity based on a bit operation in binary system to
simplify computing and save storage space. The unnecessary elements will be
deleted through absorptivity. The measure is benefit to operate on a large scale
of data or information, and can improve the efficiency of attributes reduction
algorithm.

Definition 3. Absorptivity Based on Bit-Vector. Given a discernibility
matrix based on information granule of a decision table, for any rG

ij ∈ Mm×m,
vG

ij = {•, •, · · · , •} represents a vector with the dimension of Card(C), where
every component is either ”1” or ”0”. If ai ∈ C ∧ ai ∈ rG

ij , then we let the ith be
”1”, else be ”0”; τ =

∑
• represents the rank of vij , we define

1) ∀al ∈ rG
ij , al /∈ rG

ks(i �= k ∨ j �= s). It means vG
ij and vG

ks are independent
to each other, and can not replace by each other, namely the values of their
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corresponding components are not all ”1” in vector expression. We record the
two different vectors;
2) ∃al ∈ rG

ij , al ∈ rG
ij(i �= k ∨ j �= s). It means vG

ij and vG
ks are relative to each

other. If τij < τks, then we replace vG
ks with vG

ij , it says vG
ij absorbs vG

ks; else vG
ij

is replaced by vG
ks, it says vG

ks absorbs vG
ij ; If τij = τks, we say they can replace by

each other, or absorb each other; If we append a criterion function(sort function)
to select attributes, we can choose the priority attributes judged by the function.

Through the absorptivity, we can find the relative core and relative reducts easily.
But there are some tips need to be noticed.

1) If we just need to get the relative core, then when vG
ij and vG

ks are relative to
each other and τij = τks, we need not record the different vector, the vector we
get at last is the relative core.
2) If we need to find all the relative reducts, then when vG

ij and vG
ks are relative

to each other and τij = τks, we can not drop the different vector. Because we
know the relative reduct is not unique, the different vectors also contain the
information about one relative reduct. At last all the vectors recorded consist of
a matrix, then we choose the ”1” in different rows and different columns, and
get all the relative reducts.

In the next paragraph, we illustrate how to use the absorptivity in detail.

4 Analysis

Example: We make an expatiation on the approach through a decision table(see
the bibliography[8]).
Solve: We get the relative core and the relative reduct of the decision table by
discernibility matrix of Skowron, then

M31×31 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
− −

{a, d} {a} −
...

...
...

. . .
{a, b, c, d} {a, b, c, d} . . . . . . −
{a, b, c, d} {a, b, c, d} . . . . . . − −

⎤⎥⎥⎥⎥⎥⎥⎥⎦
According to the discernible function of discernibility matrix and traditional

absorptivity of logic operation, we get the conjunction normal formal. Then
the minimal disjunction normal formal of the conjunction normal formal of dis-
cernible function can be obtained by logic operation:

L∧(M) =
∧

cij 
=∅∧cij 
=−
(cij) = L∨(M) = (a ∧ c ∧ d).

Then the relative core and relative reduction of this decision table are {a, c, d},
that is REDD(C) = CORED(C) = {{a, c, d}}.
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In common situation, the relative core is unique, while the relative reduct
is not. The simplify process of logic operation upper will cause ”combination
explode” as the cardinal number of universe increases. Therefore, we improve
the efficiency of this algorithm by the ideal of granular computing and absorp-
tivity based on bit-vector. Then we can get the discernibility matrix based on
information granule, according to definition 2:

M13×13 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
− −
− − −

{a, b, d} {a, d} . . . −
{a, b} {a} . . . −

...
...

...
...

. . .
{a, c} {a, b, c} . . . . . . . . . −

{a, b, c} {a, b, c} . . . . . . . . . − −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m = 13 ≤ n = 31.
We can see the rank of discernibility matrix has been largely decreased.
Then we try to get the relative core and relative reducts through absorptivity

and the operation of database.
From the matrix, we first get a vector (1, 1, 0, 1). Then we use a table to

represent, namely
a b c d rank
1 1 0 1 3

Following we add the vector (1, 1, 0, 0), according to absorptivity we replace
the vector with (1, 1, 0, 0), so the table will be:

a b c d rank
1 1 0 0 2

Add the vector (1, 0, 1, 0), then this vector and the upper vector can replace
with each other according to absorptivity, but we do not get the criterion func-
tion, so it is not necessary to replace. But it can not be dropped, it must be
recorded in the table, then we get:

a b c d rank
1 1 0 0 2
1 0 1 0 2

Repeat the upper process until the difference of all information granules have
been compared, we get the table finally:

Table 1

a b c d rank
1 0 0 0 1
0 0 1 0 1
0 0 0 1 1
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According to the definition of absorptivity, we select the ”1” in different
columns and different rows, then constitute a vector (1, 0, 1, 1), represent the
relative reduct {a, c, d}. Moreover, we can see the rank of every vector is 1. That
means the attributes which these vectors represent are all single attribute in the
discernibility matrix, consequently we can get the relative core {a, c, d}.

5 Conclusion

Reduction of knowledge is the kernel problem in rough set theory. Skrown’s dis-
cernibility matrix is a kind of effective approach to seek for the relative core and
all the relative reducts in knowledge representation system, but we find that
there is lots of redundant information in operation which is unnecessary. As a
result, the idea of granular computing is used to lower the rank of discernibility
matrix. What’s more, the computing of logic conjunction and disjunction oper-
ation is so much complicated that the new absorptivity based on bit-vector is
proposed. It is different from the absorptivity in logic operation, and can sim-
plify computation greatly. At last, we give an example to analyze the results to
support our ideas.
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Abstract. The quotient space theory uses a triplet, including the uni-
verse, its structure and attributes, to describe a problem space or simply
a space. This paper improves the quotient space’s model so as to absorb
the methods of rough set. It also generalizes the false-preserving princi-
ple and true-preserving principle to the case of probability. Some basic
operations on quotient space are introduced. The significant properties
of the fuzzy quotient space family are elaborated. The main applications
of quotient space theory are discussed.
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1 Introduction

The quotient space theory(QST) was introduced by Ling Zhang and Bo Zhang in
1989 [1,2,3,4]. It combines different granularities with the concept of mathemat-
ical quotient set and represents a problem by a triplet, including the universe,
its structure and attributes, and the problem spaces with different grain size can
be represented and analyzed hierarchically by a set of quotient spaces. In [5]
they have obtained several characteristics of the hierarchical problem solving
and developed a set of its approaches in heuristic search and path planning.

Ever since granular computing as a term was introduced by Lin and Zadeh
in 1997 [6,7], it has been rapidly developed by the practical needs for problem
solving [8,9,10,11,12]. Just as a big umbrella it covers all the research on the
theories, methodologies, technologies, and tools about granules, it also includes
QST. QST and some other methods on granular computing have something in
common such as the grain sizes are defined by equivalence relations, the concepts
are described under different grain sizes. But it mainly focus on the relationship
among the universes at different grain size and the translation among different
knowledge bases rather than single knowledge base.
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This paper summarizes the quotient space’s model and its main principle.
Then some basic operations on quotient space are introduced, and the significant
properties of the fuzzy quotient space family are elaborated. Finally the main
applications of quotient space theory are discussed.

2 The Model of Quotient Space and Its Main Features

QST combines different granularities with the concept of mathematical quotient
set and uses a triplet (X,f,T ) to describe a problem space or simply a space,
where X is the universe; f is the attribute function of X ; T is the structure of
X, namely the interrelations of elements. In order to absorb the methods of rough
set which is relatively mature at the present time we substitute C ∪D for f and
(X, C ∪D) is a rough set model, where C and D denote the sets of its condition
and decision attribute functions respectively, which may be multidimensional.

When we view the universe X from a coarser grain size, that is, when we give
an equivalence relation R on X, we can get a corresponding quotient set [X ], and
then viewing [X] as a new universe, we have the corresponding coarse-grained
space ([X ],[f ],[T ]) called a quotient space of (X, f, T ), where [T ] = {u|p−1(u) ∈
T , u ⊂ [X ]}(p : X → [X ] is a natural projection). The approach for defining [f ]
is not unique, when X is unstructured we can defined [f ](a) as any statistic of
f(a), some point in C(f(a)), or some combination function g(f(x),x ∈ a), where
f(a) = {f(x)|x ∈ a}(a ∈ [X ]) and C(B) is the convex closure of B. When X is
structured a variety of [f ] can be defined (see more details in [5,13]).

Definition 1. Assume R is the whole equivalent relations on X , R1, R2 ∈ R. If
when xR1y we have xR2y, then R1 is called finer than R2, denoted by R2 < R1.

Definition 2. A problem space ([X ], [f ], [T ]) is called a semi-order space if
there exists a relation “<” among part of elements on X and satisfies: if x < y
and y < x, then x = y; if x < y and y < z, then x < z.

In a coarser grain-size space, some information is lost, thus we can simplify a
problem when we discuss it in a coarser grain-size space, but the most important
thing is to solve the problem. Generally we have some features as follows:

Proposition 1. (False-preserving principle) If a problem has no solution in its
quotient space, then there must be no solution in its original space.

Proposition 2. (True-preserving principle I) If a problem has a solution in
([X ],[f ],[T ]), ∀[x] ∈ [X ], p−1([x]) is a connected set in X, then there must be a
solution in (X, f,T ), where p : X → [X ] is a natural projection.

Proposition 3. (True-preserving principle II) If a problem has a solution in
two semi-order quotient spaces (X1, f1,T1) and (X2, f2,T2), then there must be
a solution in their combination space (X3, f3,T3).

By statistic theory we can generalize the false-preserving principle and true-
preserving principle to the case of probability.
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Proposition 4. (Weak false-preserving principle) Assume that a conclusion is
false when its degree of belief is less than a(0 < a < 1). If the conclusion of
a problem deduced from a coarse-grained space is false, then the conclusion
deduced from the original space must be false.

Proposition 5. (Weak true-preserving principle) If the probability of a problem
with a solution is a in its quotient space, then the probability of the problem
with a solution is more than a(0 < a < 1) in its finer quotient space.

The false-preserving and true-preserving principles are very important in the
reasoning process of quotient space model. By the false-preserving principle, we
know if we want to judge that a problem has no solution, we can judge it in its
corresponding coarse-grained space, the size of which is smaller, so the amount
of calculation is smaller. By the true-preserving principle, we can also reduce
the computational complexity of problem solving, because we can transform a
problem space into two smaller quotient spaces.

Proposition 6. (Quotient approximation principle) If the series {(Xi,Ti)} of
quotient spaces converges to (X,T ) with respect to their grain-sizes, then fi

converges to f , where f and fi are the performance of the system (X,T ) and
(Xi,Ti) respectively.(see the definition of converge in [17])

3 Basic Operations

3.1 Projection of Quotient Space

The projection is to obtain the inference structure of X1 through the known
inference structure of X . In general if an equivalent relation R is given, then
the natural projection p is unique, and thus quotient topology T1 are uniquely
defined. If the global information method denoting attribute a extracted from
the local information of a set is determined, then f1 is also unique. When T is a
semi order while R and T1 are incompatible(T1 is not a semi-order structure), we
should change R to R1 which is compatible with T1. Then let the quotient space
corresponding to R1 be X2, we can replace X1 by X2 to carry on projection,
reasoning and analysis, where {a′i = {at|at < ai, ai < at} and ai ∈ X1.

3.2 Combination of Quotient Spaces

The combination problem is how to obtain the new states and properties of a
finer quotient space (X3, f3,T3) from the known states and properties of the two
semi-order quotient spaces of (X, f,T ), (X1, f1,T1) and (X2, f2,T2). X3 is the
least upper bound of X1 and X2, X3 = {ai∩bj |ai ∈ X1, bj ∈ X2}. The relation <
is defined as: for any x1,x2 ∈ X3,x1 < x2 ↔ a1 < a2, b1 < b2(x1 = a1 ∩ b1,x2 =
a2 ∩ b2). In [5] they present the combination rules of attributes and successfully
explained the CT approach of axon tomography which is a special case of the
combination model. They also successfully deduced D-S composition law by the
methods of least square and maximum entropy.
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3.3 Quotient Operation

An operation also indirectly presents certain relationship among the elements
of the domain. Given an operation N on the domain X , our concern is how to
get the quotient operation N1 on the corresponding quotient space X1, and p :
(X, N) → (X1, N1) is a homomorphism map. In general, that quotient operation
does not exist, but the least upper bound and greatest lower bound quotient
operation are unique. Their corresponding quotient spaces are the finest and the
coarsest respectively, which may be not very ideal, but can be improved by step-
by-step subdivision or cut and try method. If we want to obtain the combination
of two quotient operations N1 and N2, we can get it by the preceding methods
on X3 which is the least upper bound of X1 and X2.

3.4 Quotient Constraint

While carrying on analysis, inference and diagnosis to a system, we are often
faced with various constraints. It is necessary to know how the constraints are
transformed in these spaces when we construct different grain space models.

Definition 3. Assume that C is a constraint of X and Y , X1 and Y1 are X
and Y ’s quotient spaces respectively. if C = C, then C(C) is called a quotient
constraint of X1 and Y1, where C(C) is an inner(outer) quotient constraint,C =
{(a, b)|∀x ∈ a, y ∈ b, (x, y) ∈ C, (a, b) ∈ X1 × Y1}, C = {(a, b)|∃x ∈ a, y ∈
b, (x, y) ∈ C, (a, b) ∈ X1 × Y1}.

To increase the speed of problem solving, we can reduce C properly, and choose
C∗(C ⊂ C∗ ⊂ C) as a constraint of X1 and Y1. It, however, cannot generally sat-
isfy homomorphism principle, and we can improve it by different back trace tech-
niques. If there are more than one constraints of X and Y , we can choose certain
combination of them as a constraint C. If we are to obtain the combination of two
quotient constraints C1 and C2, we can choose C∗(C ⊂ C∗

3 ⊂ C3) as a constraint
of X3 and Y3 by the preceding methods, where C3 = p−1

1 (C1) ∩ p−1
2 (C2), C3 =

p−1
1 (C1) ∪ p−1

2 (C2), pi : (X3, Y3) → (Xi, Yi)(i = 1, 2).

3.5 Quotient Approximation

If the performance of a system (X,T ) is described by an attribute function f ,
the quotient function is [f ] in its corresponding quotient space ([X ], [T ]), then
the analysis of its performance is the analysis of f , and the study of quotient
approximation is that of the quotient function approximation, where the quotient
function [f ](a) on [X ] is defined as the convex closure of f on X .

Proposition 7. Assume that (X, d) is a metric space and f : X → Rn is a mea-
surable function. The necessary and sufficient condition for the quotient space
approachability of f is that f is bounded on X ; the necessary and sufficient con-
dition for quotient space absolutely approachability of f is that f is consistently
continuous on X .(see the proof in [17])
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When we discuss the above quotient space approximation, we partition X into
subsets with different grain-size and the subsets can overlap each other. In this
case, we call the quotient spaces pseudo-quotient spaces. The above conclusions
we got still hold for a series of pseudo-quotient spaces.

Proposition 8. Let fi be a series of quotient function approximations to func-
tion f on a metric space (X, d), then we have

(1) The i-th quotient function fi({fik}) is the f(x)’s coefficient of the general
Haar wavelet expansion with respect to the scaling basis functions;

(2) The i-th quotient increment function {dim} is the f(x)’s coefficient of
the general Haar wavelet expansion with respect to the basis functions (see the
definitions of {fij} and {dij} in [17]).

The proposition connects the quotient approximation of function with multi-
resolution analysis. The wavelet analysis as viewed from functional perspective
is to find a proper set of basis functions (wavelets) in a function space for a given
function so that the function can be expanded by the basis and then be analyzed.
It owns better versatility, but generally it’s rather difficult to construct a proper
set of basis functions according to the characteristics of a concrete research
object. The quotient space approximation is to choose a proper partition on line
for a given function and use a proper quotient function to approach. This is an ad
hoc approach and has some flexibility. It is relatively easier to present a method
of constructing a proper quotient function according to the characteristics of a
concrete research object.

4 Fuzzy Quotient Space

Definition 4. Let R̃ be a family of all fuzzy sets on X × X and R̃ ∈ R̃.
R̃ is called a fuzzy equivalence relation on X , if it satisfies: ∀x, R̃(x,x) = 1,
∀x, y, R̃(x, y) = R̃(y,x) and ∀x, y, z ∈ X, R̃(x, z) ≥ supy(min(R̃(x, y), R̃(y, z))).

The definition is reasonable, because on a product space a set which satisfies
some certain conditions is an equivalence relation on X , then a fuzzy set which
satisfies some certain conditions naturally corresponds to a fuzzy equivalence
relation. It has the following characteristics:

(1) If R̃ = 0(or 1), then it is a crisp equivalence relation;
(2) If Rλ = {(x, y)|R̃(x, y) ≥ λ}(0 ≤ λ ≤ 1), then Rλ, a cut relation of R̃, is

also a crisp equivalence relation;
(3) If ∀a, b ∈ [X ], d(a, b) = 1 − R̃(x, y)(∀x ∈ a, y ∈ b), then d(·, ·) is a distance

function on [X ], and ([X ], d) is the quotient structure space corresponding to R̃;
(4) If [X ] is defined as X(λ) = {[x] = {y|R̃(x, y) ≥ λ|x ∈ X}, then (X(λ), dλ)

is the quotient structure space corresponding to R̃λ, where dλ([x], [y]) = 1 −
R′

λ(x, y)(x ∈ [x], y ∈ [y]), R′
λ = 1(R̃(x, y) ≥ λ), R′

λ = R̃(x, y)/λ(R̃(x, y) < λ).
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Proposition 9. The following statements are equivalent, i.e.,

(1) Given a fuzzy equivalence relation on X .
(2) Given a normalized equicrural distance on some quotient set of X .
(3) Given a hierarchical structure on X .

The third is the most essential, for a hierarchical structure presents a knowledge
with certain granular structure, which can be obtained by the following two
methods: one is to obtain a binary function f(x, y) on X from the problem space
(X, f,T ) and construct a hierarchical structure on X ; the other is to obtain a
unitary function f(x) on X from the problem space (X, f,T ).

Definition 5. Given a fuzzy equivanlence relation R̃(x, y) and a crisp set A on
X , its corresponding fuzzy set Ã can be defined. If μÃ(x)(Ã(x)) = supy{R̃(x, y)|y
∈ A}, then μÃ(x)(Ã(x)) is called a structural definition of membership function.

Therefore we can generalize a crisp set A to a fuzzy set Ã by a fuzzy equivalence
relation. The space constructed by these fuzzy sets is called its corresponding
fuzzy quotient space, and different fuzzy equivalence relations can correspond to
the same hierarchical structure.

Proposition 10. Given a family A = {A1, · · · , An} of crisp sets on X . From
fuzzy equivalence relations R̃1 and R̃2, the families of fuzzy subsets are Ã =
{Ã1, · · · , Ãn} and B̃ = {B̃1, · · · , B̃n} can be defined respectively. After perform-
ing a finite number of set operations (complement, intersection, union, etc.) over
them, we have new families of fuzzy subsets denoted by C̃ and D̃ respectively.
If R̃1 and R̃2 are isomorphic, then C̃ and D̃ are also isomorphic.

Thus although a membership function can be defined differently, we can get the
same or similar structural explanation by fuzzy inference, which suggests that
the fuzzy inference has great robustness.

5 Main Applications of Quotient Space Theory

QST is a very practical subject. It has born abundant fruits in many fields like
image processing [18,19], pattern recognition [20,21,22], data mining [20,21,22],
machine learning [23,24], biological sequence alignment [25], fuzzy control [26],
communication countermeasure reconnaissance [27], etc.

5.1 Machine Learning

We can first use the methods of quotient space to analyze a problem from dif-
ferent grain size spaces and different hierarchical structures, so as to make the
research objects conveniently change their fineness of grain size according to our
needs. And then on the suitable grain-size space we can use methods of machine
learning (such as covering algorithm, SVM, generic algorithm, etc.) to obtain
the rules among the objects (data).



Advances in the Quotient Space Theory and Its Applications 369

5.2 Fuzzy Control

By the methods of quotient space we can, in some sense, solve the problem of
exponential explosion of fuzzy control rules. Furthermore, through controlling
the continual changes of granularity we can roughly adjust the parameters of
control system on coarser granularities while make delicate adjustment on finer
granularities. In this way, we can improve the fuzzy control system in terms of
the control indexes of precision and speed so that the system can achieve ideal
performance of both stable state and transient state.

5.3 Communication Countermeasure Reconnaissance(CCR)

CCR refers to searching, intercepting and capturing of enemy radio commu-
nication signals by CCR equipments, and carrying on measurement, analysis,
recognition, goniometry and orientation of the signals so as to obtain some tech-
nical parameters (like signal frequency, electrical level, modulation system) and
information (like communication mode and characteristics, the structure and
attribute of communication network). By the methods of quotient space we can
search communication signals at different granular clusterings, analyze and deal
with the signals at different granularities so as to improve reconnaissance power.

6 Conclusions

QST aims at studying the relationship among different grain-size quotient spaces,
carrying on problem solving, reasoning and analysis at different grain-size quo-
tient spaces and getting a solution in the original problem space. It can absorb
the methods such as fuzzy set, rough set, analysissitus, evidence theory, probabil-
ity theory, wavelet analysis, etc., so it is undoubtedly one of the most challenging
theories for the development of contemporary artificial intelligence.
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Abstract. Granular computing is a new soft computing method. In
this paper, the bit representation of granular computing and inclusion
measures are used to analyze three soft rules of association rules, deci-
sion rules and extensional functional dependencies, and their measures
relationships are studied as well. Concretely, some basic concepts were
given. The support and the confidence of association rules, the degree of
functional dependencies on the decision rules and the degree of exten-
sional functional dependencies are discussed respectively. The measures
relationships among the three soft rules are investigated by inclusion
measures and granular computing. As a consequence, the united model
of these measures is established.
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1 Introduction

The term “granular computing” (or simply GrC) was first suggested by Profes-
sor Lin, T.Y., the basic ideas of granular computing, i.e., problem solving with
different granularities [1,2].

In paper [3], Lin et al. introduced the machine oriented model for data min-
ing by the bit representations with granular computing, and they used soft rules
to investigate various rules and extensional functional dependencies (EFD) in
reference [4]. Skowron et al. introduced information granule in distributed en-
vironment, rough mereological and the calculus of information granules[5,6]; in
addition, they presented granule inclusion and closeness. In paper [7], Berzal
et al. introduced α-partial functional dependency and exception relation. Then,
the studies on the relationship between extensional functional dependencies and
α-partial functional dependency, the relationship between information system
and exception relation and the relationships among association rules, decision
rules and extensional functional dependencies are of importance. In this paper,
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based on the previous results, the soft rules are used to analyze association rules,
decision rules and extensional functional dependencies. Moreover, the inclusion
measures and granular computing are used to investigate their measures rela-
tionships.

2 Preliminaries

Definition 1. Information granule. [5] Information granules are viewed as
linked collections of objects (data points, in particular) drawn together by the
criteria of indistinguishability, similarity or functionality. For an information
system IS = 〈U, A〉, elementary granule is defined by EFK(u), where EFK(u) is
a conjunction of selectors of the form Ai = Ai(u), ||EFK(u)||IS = || ∧Ai∈K Ai =
Ai(u)||IS , K ⊆ A, u ∈ U , where ||.|| is a function from formula Φ into power
set 2U .

Definition 2. Antecedent exception relation. [7] Let r be an instance of
the relational scheme R and X, Y ⊆ R be two sets of attributes. The relation of
antecedent exceptions with respect to X �→ XY in r is:

rae = {t ∈ r|∃t′ ∈ r, t[X ] = t′[X ] ∧ t[Y ] �= t′[Y ]}.

Definition 3. Tuple exception relation. [7] Let r be an instance of the re-
lational scheme R and X, Y ⊆ R be two sets of attributes. We say that re ⊂ r is
a relation of tuple exceptions (or simply an exception relation) with respect to
X �→ Y in r if and only if:

(1) (r − re) verifies X �→ Y .
(2) ∀t ∈ re, (r − re) ∪ {t} does not satisfy X �→ Y .
(3) � ∃r′e ⊂ r verifying (1) and (2) such that �(r′e) < �(re).

Definition 4. EFD and IFD. [4] X → Y is a extensional functional depen-
dency(EFD) if for every X-value there is a uniquely determined Y -value in the
relation instance R, where X and Y be two subsets of attributes sets. IFD:
X → Y is an intensional functional dependency if EFD is satisfied by all rela-
tion instances R under the scheme R .

According to Definition 1, we know that the concept of information system
is a generalization of a relation. Unlike relation in databases, an information
system may consist of duplicate rows (tuples) which have identical values for
all attributes [8]. Moreover, as a generalization relation, an information system
hasn’t the restriction of functional dependencies of classical relation and hasn’t
the concept of relation scheme. From the point of view, we find that an instance
of the relational scheme has some same properties as an information system
according to Definition 3. Definition 4 shows that the study background of the
extensional functional dependency only limits to a single relation (a classical
relation). So an information system, an instance of the relational scheme and a
classical relation can be considered a generalization relation(a classical relation
is a special generalization relation).
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Definition 5. Soft rule. [4] Let A = {A1, A2, . . . , An} and B = {B1, B2, . . . ,
Bm} be two sets of attributes of a relational database, c = (a1, a2, . . . , an) and
d = (b1, b2, . . . , bm) be two tuples of attributes values of A and B respectively.
Let Gai ,Gbi be elementary granules corresponding to ai and bi, i=1, 2,. . . , n,
j=1,2,. . . ,m respectively. Let Pc = ∩iGai , Pd = ∩jGbj be the respective inter-
sections. We say c → d is a soft decision rule, if Pc is softly or approximately
included in Qd, Pc ⊆ Qd (⊆ be soft inclusion).

Definition 6. Rough inclusion. [9] An approximation space is a system AS =
(U, I, ν), where

−U is a non-empty finite set of objects,
−I : U → P (U) is an uncertainty function, such that x ∈ I(x) for any x ∈ U ,
−ν : P (U) × P (U) → [0, 1] is a rough inclusion function.

A set X ⊆ U is definable in AS if and only if it is a union of some values of the
uncertainty function. The standard rough inclusion function VSRI defines the
degree of inclusion by

VSRI (X, Y ) =

{
Card(X∩Y )

Card(X) , if X �= ∅,
1, otherwise.

(1)

Definition 7. α-partial functional dependency. [7] Let r be an instance of
the relational scheme R, X, Y ⊆ R be two sets of attributes and re ∈ εX �→Y (r).
Then r satisfies an α-partial functional dependency X →α Y , and the α value
is:

α =
{

1, if Card(r) = 0,
1-Card(re)/Card(r), otherwise. (2)

where εX �→Y (r) is the set of all the possible relations of exceptions.

3 Soft Rules and Their Measures Relationships

3.1 Three Basic Rules and Their Measures

A mathematical model was proposed in paper [10] to address the problem of
mining association rules. An association rule is an implication of the form X →
Y , where X ⊂ I, Y ⊂ I, I = {i1, i2, . . . , im} be a set of literals, called items.
Let D be a set of transactions, where each transaction T is a set of items such
that T ⊂ I. Note that the quantities of items bought in a transaction are not
considered, meaning that each item is a binary variable representing if an item
was bought. X be a set of items, a transaction T is said to contain X if and only
if X ⊆ T .

Definition 8. Confidence and support . [10] The rule X → Y holds in the
transaction set D with confidence C if C% of transaction in D that contain
X also contain Y , we denote that Confidence(A → B) = Pr(B|A). The rule
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X → Y has support S in the transaction set D if S% of transactions in D
contain X ∪ Y , and we can denote that Support (A → B) = Pr(A ∪ B).

Let IS = 〈U, A〉 be an information system. P,Q ⊆ A are attribute subsets of
A, we say that Q depends in a degree K(0 ≤ K ≤ 1) on P, K = γp(Q) =
Card(POSp(Q))/Card(U), where POSp(Q) is the P positive discourse of Q, if
K = 1, we say that Q depends totally on P , if 0 < k < 1, we say that Q depends
partially (to a degree k) on P and if K = 0 we say that Q is totally independent
on P [11].

3.2 The Granular Interpretation of Three Soft Rules

Definition 9. Bit mapping. Let BIT be a mapping function, BIT : M →
bin1bin2 . . . bini . . . bin|U|, where M = . . . , vi, . . . , vj , . . . is the center of elemen-
tary granules, bini = 1 if vi ∈ M, bini = 0 if vi �∈ M .

Let b denote an attribute value, and B is the corresponding granule, b =
NAME(B), the frequency of bi is Card(Bi), the cardinal number of Bi is
Card(B), where B = ∩iBi, b is the name of the intersection of these elementary
granules [12].

Proposition 1. Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} be two sub-
sets of attributes sets, where A ∩ B = ∅, the association rule A → B holds if
Card(BIT (A ∩ B))/Card(BIT (U)) ≥ S% and Card(BIT (A ∩ B))/Card(BIT
(A)) ≥ C%, where Card(BIT (∗)) is the number of “1” in BIT (∗).
Proposition 2. Let A, B be two attributes of an information table, c and d be
two values of A and B respectively, NEIGH(c), NEIGH(d) be the elementary
granules of c and d respectively, the consistent rule c → d holds if and only if
BIT (NEIGH(c))∧BIT (NEIGH(d)) = BIT (NEIGH(c)) for ∀c ∈ A, ∃d ∈ B.

In traditional relational database, we can scan two columns to judge the clas-
sical functional dependencies. In rough set theory, we can judge the functional
dependencies by equivalence relations. And in the machine oriented model, the
functional dependencies can be confirmed by the “and” operation of bit repre-
sentations with two granules.

Proposition 3. Let A, B be two attributes of information table, c and d be two
values of A and B respectively, and NEIGH(c), NEIGH(d) be the elementary
granules of c and d respectively, the functional dependency A → B holds if
and only if BIT (NEIGH(c)) ∧ BIT (NEIGH(d)) = BIT (NEIGH(c)) and
Card(BIT (NEIGH(c)))/Card(BIT (NEIGH(c))∧BIT (NEIGH(d))) = 1 for
∀c ∈ A, ∃d ∈ B.

3.3 The Measures Relationships Among Three Soft Rules

As we know, the support of association rule can be represented as Support(A →
B) = Pr(A ∪ B), i.e.

Support(A → B) =
Support−count(A ∩ B)

Support−count(U)
=

Card(A ∩ B)
Card(U)
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= 1 − Card(A ∩ B)
Card(U)

(3)

where Support−count(∗) and Card(∗) are the cardinal numbers of transactions,
and Card(A ∩ B) is the cardinal number of supplement of A ∩ B, obviously
Card(A ∩ B) + Card(A ∩ B) = Card(U).

For decision rules, according to the above definition, we have that D de-
pends in a degree K(0 ≤ K ≤ 1) on C, denoted by C ⇒K D, K = γ(C, D) =
|POSC(D)|

|U| , where POSC(D) = POSC(dD), we have

K = γ(C, D) =
∑

X∈U/D

(
|C(X)|

|U | ) =
Support−count(A ∩ B)

Support−count(U)

=
Card(C(x) ∩ dD(x))

Card(U)
= 1 − Card(C(x) ∩ dD(x))

Card(U)
(4)

where C(x) is the equivalence granule created by condition attributes, dD(x) is
the equivalence granule created by decision attributes, and Card(C(x) ∩ dD(x))
is the cardinal number of supplement of C(x) ∩ dD(x), obviously, Card(C(x) ∩
dD(x)) +Card(C(x) ∩ dD(x)) = Card(U).

Comparing formulae (2) , (3) and (4), we find that the α-partial functional
dependency, the support of association rules and the degree of functional depen-
dencies with the decision rules have same form. According to the point of view
of granular computing, association rules and decision rules are granules, and the
support of association rules, the confidence of association rules and the degree of
functional dependencies are inclusion measures in substance, so we can change
formulae (2) , (3) and (4) into formulae (7):

VIS(α,β) =

{
1, if α = ∅,

Card(‖α‖IS∩‖β‖IS)
Card(‖α‖IS) , if α �= ∅, (5)

=

{
1, if α = ∅,

SupportIS(α,β)
Card(‖α‖IS) , if α �= ∅, (6)

=

{
1, if α = ∅,

1 − Card(‖β‖IS)
Card(‖α‖IS) , if α �= ∅, (7)

where SupportIS(α,β) = Card(||α ∧ β||IS) = Card(||α|| ∩ ||β||IS) ≥ t, α,β ∈
{EFB(x) : B ⊆ A & x ∈ U}, ||α||IS , ||β||IS are sets of objects from IS satisfying
α,β, and t is thresholds.

The support of association rules, the confidence of association rules and α-
partial functional dependency can use formulae (7) to measure. Obviously , for-
mulae (2) , (3) and (4) and (7) have the same representation form, so we can
draw the conclusion that the support of association rules, the confidence of as-
sociation rules and α-partial functional dependency are inclusion measures in
substance , and the formula (7) is the uniform measure model of these three soft
rules.
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Abstract. In this paper, an unstructured neural network based on the
mathematics of holographic storage is presented. While the holographic
process is analyzed by the distributed signal processing principles, the
neural network architecture is adapted to the generalized support vec-
tor machine. This work is inspired by similarities between brain waves
and the wave propagation and subsequent interference patterns seen in
holograms. Then the mathematics to produce a general mathematical
description of the holographic process is analyzed. From this analysis it
is shown that how the holographic process can be used as an associative
memory network. This aspect, makes this neural network formation pro-
cess particularly useful for control.

Keywords: Holographic processing, wave propagation, Green’s func-
tions, support vector machines, radial basis functions, feed-forward neu-
ral network.

1 Introduction

A hologram is formed when momochromatic, coherent light is reflected off an ob-
ject, then interfered with by another monochromatic, coherent reference beam[1].
Since the beams are monochromatic, they can be represented in rotating phasor
form

u(x, t) = +{A(x)ejφ(x)ej2πft} (1)

where x is a position, and f is the frequency. This monochromatic wave must
satisfy the Maxwell equation[2]. Since the time dependence is known a priori[3],
the complex phasor function

U(x) = A(x)ejφ(x) (2)

may be used. Equation 2 must then satisfy the Helmholtz equation[3],

(∇2 + k2)U = 0 (3)

where k = 2πv/c = 2πλ is the wave number. Equation 3 is also known as the
reduced wave equation, and has a known solution using Green’s functions(LG =
δ(xα − xβ))[4]. For a system with operator L, LU = h for all x in a volume V .

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 377–382, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Multiplying LU = h by G and LG = δ(xα −xβ) by U(xβ), then integrating and
subtracting the equation produce∫

V

(U(xβ)LG(xα,xβ) −G(xα,xβ)LU(xα))dV = U(xβ −
∫

V

G(xα,xβ)h(xα)dV

(4)
where the α-plane is the object plane and theβ-plane is the recording plane.

Equation 4 is in a general mathematical form, the specifics of the hologram
problem reduces the complexity. Therefore, Equation 4 may be simplified with
proper choice of the Green’s function[3] as∫

V

(U(xβ(∇2)G(xα,xβ) −G(xα,xβ)(∇2)U(xα)dV =
∫

∂V

U
∂G

∂n
dS (5)

where n is the normal to the surface ∂V of the volume V . A reference wave is now
added to the propagated wave. The reference will interfere with the propagating
wave and be recorded [2]

I(xβ) = |R(xβ) + U(xβ)|2 (6)

The propagated wave equation is actually an integral transform equation[5].
The kernel of the equation is

Kα−β(xα,xβ) =
∂G(xα,xβ)

∂n
(7)

The formation process may now be written in a general mathematical form.
Let Uα(xα) be the signal from the object. This signal propagates to a new
location xβ such that

Uβ(xβ) =
∫

Sα

Uα(xα)Kα−β(xα,xβ)dxα (8)

where Sα is the α-plane.

2 Hologram Reconstruction

If the magnitude and phase information are stored, an inversion process may be
used to recover Uα(xα)[6]. Let

Z(ξ) =
∫

Sβ

H(ξ,xβ)Uβ(xβ)dxβ (9)

be an invertible transform. Then,

Z(ξ) =
∫

Sβ

H(ξ,xβ)
∫

Sα

K(xα,xβ)Uα(xα)dxαdxβ

=
∫

Sβ

∫
Sα

H(ξ,xβ)K(xα,xβ)Uα(xα)dxαdxβ (10)
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At this point, a restriction needs to be placed upon the kernel K. The kernel
must be able to be written as

K(xα,xβ) = K(xβ − xα) (11)

With this restriction, the function for Uβ(xβ) becomes a convolution integral.
Then,

Z(ξ) =
∫

Sβ

H(ξ,xβ)
∫

Sα

K(xβ − xα)Uα(xα)dxαdxβ

=
∫

Sβ

H(ξ,xβ)K(xβ)dxβ

∫
Sα

H(ξ,xα)Uα(xα)dxα (12)

if,
xc = xβ − xα (13)

and
H(ξ,xβ + xα) = H(ξ,xα)H(ξ,xβ) (14)

Equation 12 is reorganized as follows;

Uα(xα) =
∫

Sβ

∫
H−1(xα, ξ)(

∫
Sβ

H(ξ,xβ)K(xβ)dxβ)−1H(ξ,xβ)dξUβ(xβ)dxβ

(15)
The reconstruction begins by multiplying I(xβ) and R(xβ). The new signal is

then propagated to the γ-plane[2], such that

Ufiltered(xγ) = R2
0

∫
Sβ

Kβ−γ(xβ ,xγ)
∫

Sα

Uα(xα)Kα−β(xα,xβ)dxαdxβ

= R2
0

∫
Sα

[
∫

Sβ

Kβ−γ(xβ ,xγ)Kα−β(xα,xβ)dxβ ]Uα(xα)dxα (16)

The bracketed term in Equation 16 has already been shown to be Kα−γ(xα,xγ)
by Kα−γ(xα,xγ) =

∫
Sβ

Kα−β(xα,xβ)Kβ−γ(xβ ,xγ)dxβ . Therefore, it is possible
to recover Uα(xα) by inverting the equation for Ufiltered(xγ).

3 Application of the Hologram Process to Neural
Networks

We will now show the hologram process can be used to create unstructured
neural networks. Then the derivation of the generalized support vector machine
algorithm by regularization theory will be analyzed. A neural network may be
viewed as a mapping from one space to another. An unknown system F , maps
the input vector x to the output y, such that y = F (x). A neural network can
approximate F by first creating a feature space to the output[7]. The output can
then be written as

y = F ∗(x) =
N∑

i=1

wiK(x,xi) (17)
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where F ∗ is the approximation of F , wi for i = 1, ..., N are the weights, and
K(x,xi) is the basis function. Equation 17 is assumed without coefficient. As
given in[7], the approximation F ∗ is the optimal solution to the cost function[7]

Γ (F ) = C

N∑
i=1

V (di − F (xi)) +
1
2
Ψ(F ) (18)

F ∈ H(Hilbertspace). Where di is the desired output, F (x) is output of the
support vector machine for the input xi, Ψ is a smoothness function, C is a
constant as a regularization parameter and V(x) is some error cost function that
is defined by[7]

V (x) = |x|ε =
{

0, if |x| < ε;
|x| − ε, otherwise; (19)

where |x|ε is the ε-intensive cost function defined. The ε-intensitive cost function
has the effect of making the solution robust to outliers and intensitive to errors
below a certain threshold ε. The smoothness functional Ψ(F ) is:

Ψ(F ) = ||F ||2H (20)

This is equivalent to assume that the functions in H have a unique expansion of
the form:

F (x) =
∞∑

n=1

cnφn(x) (21)

and that their norm is:

||F ||2H =
∞∑

n=1

c2n
λn

(22)

where λ is a decreasing, positive sequence. In this derivation we do not consider
the coefficient. We can think of the functional Γ (F ) as a function of the coeffi-
cients cn. In order to minimize H(F ) we take its derivative with respect to cn
and set it equal to zero, obtaining the following:

−C

N∑
i=1

V ′(di − F (xi))φ(x) +
cn
λn

(23)

Let us now define the following set of unknowns

ωi ≡ CV ′(di − F (xi)) (24)

Using (23) we can express the coefficients cn as a function of the ai:

cn = λn

N∑
i=1

ωiφ(xi) (25)

The solution of the variational problem has therefore the form:

F ∗(x) =
∞∑

n=1

cnφ(x) =
∞∑

n=1

N∑
i=1

ωiλnφ(xi)φ(xn) =
N∑

i=1

ωiK(x,xi) (26)
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This shows that, independently of the form of V , the solution of the regulariza-
tion functional (18) is always a linear superposition of kernel functions, one for
each data point. The cost function V affects the computation of the coefficients
ai. In fact, plugging (26) back in the definition of the ai we obtain the following
set of equations for the coefficients ai.

ωi = CV ′(di −
N∑

j=1

ajKij) , i = 1, ..., N (27)

where we have defined Kij = K(xi,xj). Now if we consider equations (26) and
(27), their matrix forms are written as;

W = CV ′(d − WK∗) (28)

This is the generalized support vector machine model. In order to reach W, (28)
is calculated by choosing function V . In the generalized support vector machine,
If V (x) = x2 is taken, support vector machine represents a radial basis function
neural network and its equation is as the following.

W = (K∗ + γI)−1d (29)

where γ ≡ 1
C and I is the identity matrix. If the radial basis function neural

network is organized by Green’s functions, equation (17) is rewritten as

y = F ∗(x) =
N∑

i=1

wiG(x,xi) (30)

and it is solved by (29) as follows

W = (G∗ + γI)−1d. (31)

4 Generalized Neural Network Derived from Holograms

A generalized neural network can be naturally developed from the mathematics
of holograms. If we first consider the object plane as the input space, then each
location in the object plane represents an input vector of the x-space. Therefore,
if we let the input to the hologram be

Uα(xα) = δ(xα) (32)

then we have only the vector x as input into the network. The β-plane then
becomes the feature space, where

Uβ(xβ) = Kα−β(xα,xβ) (33)

The filtered output of the hologram is then

Ufiltered(xγ) =
∫

Sβ

R2
0Kβ−γ(xβ ,xγ)Kα−β(xα,xβ)dxβ (34)
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The output location xγ is arbitrary, therefore the generalized neural network
approximating the function F may be written as

F ∗(xα) =
∫

Sβ

R2
0Kβ−γ(xβ ,xγ)Kα−β(xα,xβ)dxβ (35)

By this way, creating a support vector machine neural network from the gener-
alized form is straight forward. First, the feature space of the generalized network
is continuous, so by making it discrete we have the same type feature space as
the radial basis network. The equation for the network is then

F ∗(xα) =
N∑

i=1

R2
0Kβ−γ(xβi ,xγ)Kα−β(xα,xβi)dxβ (36)

Comparing this to the support vector machine in (17), we see that

Kα−β(xα,xβi) = G(xα,xβi) = G(x,xi) (37)

and
wi = R2

0Kβ−γ(xβi ,xγ) (38)

where xγ is arbitrary. The main benefit of the generalized derivation compared
to the derivation found in[7] is that more information about the system may
be utilized. So, by changing the kernel, it should be possible to create different
classes of neural networks besides the support vector machine neural network.

5 Conclusion

We presented an unstructured neural network based upon the mathematical
description of holographic storage. The proposed neural network is applied to the
obtaining of the generalized support vector machines. We concluded by showing
how the hologram process is a superset of neural networks. The most important
feature of the process is the kernel. Any network may be created if the kernel is
known.

Acknowledgement. I would like to thank Dr.Levent Acar and Dr.Robert
Woodley of University of Missouri-Rolla for helpful discussions.
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Abstract. This paper deals with the application of segment procedure
neural networks to predict harm status of horsetail-pine worm. A novel
procedure neural networks is proposed to solve those problems which
are related to certain distinct segments of procedure. It is indicated that
this model is a generalized form of the known procedure neural net-
works, and it owns all properties of the known model. This paper also
presents learning algorithms for the segment procedure neural networks.
Horsetail-pine worm forecast is a hard work for forest experts, but it is
a typical segment procedure problem. In this paper a segment procedure
neural networks is applied to deal with this issue, and some simulation
experiment results are presented.

Keywords: Neural networks, topological structure, procedure neural
networks, segment, algorithm, learning, prediction.

1 Introduction

The invention of procedure neural network provides an unconventional model-
ing method to solve or stimulate problems related to a procedure [1]. And it
also offers an approach to study dynamic problems in classification and regres-
sion with a great deal of space-time information. Different from the traditional
neural networks, the procedure neural networks combines the spatio-temporal
information to a function together, namely neurons are provided with space and
time characteristics simultaneously [2]. The weight connecting the neurons is
usually a function on time. The output of the neurons are provided with time-
accumulation that neurons will not be inspired before a long enough time of
input accumulation. Compared with traditional artificial neurons, this kind of
neurons can simulate the physiology of the biology neuron better. Many prob-
lems in real life relate to procedures, for example, the growing procedure of crop,
the manufacturing procedure of industrial products, the procedure of chemical
reaction and so on [3]. Actually, it is very difficult to stimulate these kinds of
procedures by traditional method such as setting up some mathematical or phys-
ical equations and solving them. Segment procedure neural networks provide a

� This paper is supported by Zhejiang Nature Science Foundation (No.Y104107).
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feasible way to deal with these kinds of issues, especially for procedure problems
with distinct properties in different segments.

Horsetail-pine worm harm is a hard problem for forest protection workers. To
predict worm harm status is certainly a hope. Considering it is a typical segment
procedure problem, we introduce the segment procedure neural networks to deal
this issue. This paper includes five parts. The second part introduces the segment
procedure neural networks model, the third part deduces learning algorithm, the
forth provides the application instance and some stimulation results, and the last
one concludes the paper.

2 Segment Procedure Neural Network

There are some works focused on procedure neural networks as listed in Ref [1-5].
In order to control the intermediate results of a procedure or to enforce substate
objective programming, Ref [6] presents a model which takes the procedure into
different segments for individual consideration based on procedure neural net-
works. In brief, consider the segment form of procedure neural networks with
multiple input and single output, and it is easy to popularize to the case of
multiple outputs. Suppose that x1(t),x2(t), · · · ,xn(t)are certain vectors of input
functions for the procedure neural networks,while y1, y2, · · · , ym are the corre-
sponding intermediate results of the m different segments separately, together
with u1(t), u2(t), · · · , um(t) are the weight function and Y is the last output of
the networks. Then the segment procedure neural networks is as in figure 1. In
figure 1, x1(ti−1 ti),x2(ti−1 ti), · · · ,xn(ti−1 ti) indicate the continuous inputs
of the n input functions in the time range of (ti−1, ti),

∑
denotes the space

aggregation of the n inputs, fi and g are transfer functions and
∫ ti
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)~( 101 ttx
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Fig. 1. Segment Procedure Neural Networks
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the time aggregation of n input functions on the area (ti−1, ti). Then the output
of the ith phase is

yi =
∫ ti

ti−1

ui(t) · fi(
n∑

j=1

vijxj(t) + vi0)dt =
∫ ti

ti−1

ui(t) · fi(
n∑

j=0

vijxj(t))dt (1)

In which, ui(t) is the weight function of the corresponding input on time, vij is
the weight of the corresponding input on space and vi0 is the threshold corre-
sponding to x0(t) = 1. There for the final output of network is

y = g(
m∑

i=0

wiyi) = g(
m∑

i=1

wi

∫ ti

ti−1

ui(t) · fi(
n∑

j=0

vijxj(t))dt + w0) (2)

In which, wi is the weight corresponding to yi on space and w0 is the threshold
corresponding to y0 = 1. Considering the case with linear output function, for
instance, g(x) = x, then formula (2) can be simplified as

y =
m∑

i=0

wiyi =
m∑

i=1

wi

∫ ti

ti−1

ui(t) · fi(
n∑

j=0

vijxj(t))dt + w0 (3)

Clearly, this model is a generalized form of the known procedure neural network,
and it can be validated that it owns all properties of the known procedure neural
networks.

3 Learning Algorithm

Because the parameters w, v are different and independent in different segments,
it is enough to consider the learning algorithm in one segment as long as the
corresponding desire output is known. Take the ith segment for example, assume
that the desire output of yi be ŷi, then the error function can be defined as

Ei =
1
2
(yi − ŷi)2 =

1
2
(
∫ ti

ti−1

ui(t) · fi(
n∑

j=0

vijxj(t))dt − ŷi)2 (4)

According to the gradient descent method, there is

vij(k + 1) = vij(k) − αij
∂E

∂vij(k)
(5)

In which, αij is called learning rate, usually it is simplified as αij = α ∈ (0, 1),
and

∂E

∂vij
= (yi − ŷi) ·

∫ ti

ti−1

ui(t)f ′
i(

n∑
j=0

vijxj(t))xj(t)dt (6)

Generally, we take fi(x) = (1 + e−x)−1, then

∂E

∂vij
= (yi − ŷi) ·

∫ ti

ti−1

ui(t)fi(
n∑

j=0

vijxj(t))(1 − fi(
n∑

j=0

vijxj(t)))xj(t)dt (7)
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The methods to select ui(t) in the formula (7) can refer to Ref[5], in which just
take the Chebshov orthodoxy polynomial as following.

ui(t) =
sin((i + 1)arccos(2t

T − 1))√
1 − (2t

T − 1))2
(8)

Here, t ∈ [0,T ].Obviously, different segments are mutual independence and can
be solved parallel. Once the intermediate outputs ŷi (i = 1, 2, · · · , m) are known
for each segments and the desire output of the final layer neurons of the networks
is designed or known, the parameters in output layer, w, can be obtained by the
following way. Define the error sum of squares between the output of the final
networks and the desire output which is from samples as following.

Ei =
1
2
(y − ŷ)2 =

1
2
(

m∑
i=0

wiyj − ŷ)2 (9)

Recur to the gradient descent method,

wi(k + 1) = wi(k) − βi
∂E

∂wi(k)
(10)

In which, βi has the same meaning with αij , however

∂E

∂wi
= (

m∑
i=0

wiyi − ŷ)yi (11)

In the other case, not knowing the desire output for each segments, define

Ei =
1
2
(y − ŷ)2 =

1
2
(

m∑
i=0

wi

∫ ti

ti−1

ui(t) · fi(
n∑

j=0

vijxj(t))dt − ŷ)2 (12)

In reference to the gradient descent method and the differential chain rule, it
turns out

wi(k + 1) = wi(k) − βi(
m∑

i=0

wiyi − ŷ)yi (13)

vij(k + 1) = vij(k) − αij(y − ŷ)
m∑

i=0

wi

∫ ti

ti−1

ui(t)f ′
i(

n∑
j=0

vijxj(t)))xj(t)dt (14)

In which i = 1, 2, · · · , m; j = 0, 1, · · · , n, αij and βi have the same meaning as
above.

4 Forecast Harm Scale of Horsetail Pine Worm

The worm data provided is collected from 1981 to 2005, and each record is
departed into four segments, namely after generation of living through the win-
ter(AG), the first generation(FG), the second generation(SG), and before gener-
ation of living through the winter(BG). For each segment there are eight
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Table 1. Horsetail-pine Worm Harm Affection Records in Two Years Precision(%)

Year abbr light middle heavy total ave/tr ave/hmd area/hmd area/d1

1993 AG 42644 17525 0 60169 2.52 36.1 185503 125334
1993 FG 84343 32953 350 117646 4.7 51.7 354033 236387
1993 SG 85596 85609 13050 184255 4.68 52.5 422945 238690
1993 BG 84803 15963 0 100766 4.87 49.7 347067 246301
1994 AG 46674 17407 0 64081 4.98 51.4 316133 252052
1994 FG 37717 15005 95 52817 3.9 43.7 296282 243465
1994 SG 24939 606 0 25545 1.34 21.3 241561 216016
1994 BG 22663 4085 0 26748 3.54 44.6 228615 201867

Fig. 2. Comparison Results for the First Two Items of Prediction

observation items include light degree(from 2 to 3 degree), middle degree (from
4 to 6 degree), heavy degree (from 7 to 10 degree), total number of worms, aver-
age number of worms in one tree, average number of tree harmed, area harmed,
area harmed of one degree. Table 1 list two records of horsetail-pine worm harm
affection in 1993 and 1994. Data in one year are regarded as one record or sam-
ple for training the segment procedure neural networks. In each sample there
are four different parts corresponding to different segments of the network, there
eight items as listed in columns in Table 1 are the inputs of networks, and the
eight items in the first segment next year are the outputs of networks.

The topological structure of the network is constructed as following, the input
layer is 8*4, namely 4 segments and 8 units for each, there are 4 neurons in the
hidden layer and only one neuron in the output layer. Twelve years’ records are
used to train the networks, and the left for test.

From 8 items predictions, the two items are showed in Figure 2, in which
each provides comparing two curves corresponding to the actual value and the
prediction value computed by segment procedure neural networks. In Figure 2,
the solid line denotes the actual value, the dotted line denotes predictive one,
the X axes denote time of relative year corresponding to the years from 1986 to
1995 and the Y axes denote the unified value of all items.
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5 Conclusion

Segment procedure neural networks is adaptive to treat the those task program-
ming problems with different segments. It supports modeling on the data of dif-
ferent segments with opportunity of running parallel learning algorithm. Once
known the desire outputs for each segments, the task can be divided to several
individual procedure problems. But it is obvious that the large quantity of data
for the spatio-temporal problem brings non-neglected complexity in learning. So
the learning problem for the procedure neural networks will be the bottleneck
affecting its application.
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Abstract. A method for evaluation of parasitic frequency modulation
(wow) in archival audio is presented. The proposed approach utilizes sinu-
soidal components tracking as their variations correspond with the wow
defect. The sinusoidal modeling procedures are used to extract the tonal
components from severely distorted and significantly modulated audio
signals. A prediction module based on neural networks is proposed to
improve the tonal components tracking.

Keywords: Neural networks, prediction, audio restoration, wow
detection.

1 Introduction

Wow defect is a distortion defined as parasitic frequency modulation and it
is perceived as pitch fluctuation of audio program. It is introduced into audio
by motor speed fluctuations, tape damages or inappropriate editing techniques
[1]. As wow leads to undesirable variations of all tonal components in distorted
sound, the most straightforward approach is to evaluate a particular tonal com-
ponent in order to estimate the parasitic modulation. The evaluation of tonal
components in audio is performed by means of sinusoidal modeling. The suc-
cessive values of tonal components create the frequency track (or trajectory),
and are processed to obtain the wow modulation pattern, which is called Pitch
Variation Curve (PVC) [1].

Sinusoidal modeling approach was applied also in other audio restoration al-
gorithms [2][3] and lately for interpolation of gaps in audio signals using linear
prediction (LP) [4]. The last work showed that applying prediction in the track
matching process can effectively improve the quality of tonal components evalu-
ation. However, in this paper it is assumed that wow-modulated components can
be better predicted by means of neural-network-based prediction techniques.

2 Neural Networks

Time series forecasting is one of the most popular usage of artificial neural
networks (ANNs) as they provide many benefits comparing to other prediction

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 389–395, 2006.
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techniques. Different ANNs can be use in frequency forecasting application. Multi-
layer perceptron (MLP) was used in the reported experiments. The perceptron
architecture was chosen following a well-known guidelines [5,6]. As performed
experiments involved only one-sample-ahead forecasting only one hidden layer
and a single output node were used. Considering the number of inputs and hidden
nodes only the first was variable. The later was equal to the current input’s
number. Owing to the fast convergence and improve abilities to find local error
minima the Levenberg-Marquardt algorithm was used to train the ANN. As the
frequency tracks can have different base frequencies it was necessary to scale
them to a specific range. Such normalization can be applied following a popular
normalization techniques. Firstly an external normalization can be applied [5]:

xn =
(xnMax − xnMin) · (xn − xmin)

(xmax − xmin)
− xnMax. (1)

where xnMax is the normalization range maximum, xnMin is the normalization
range minimum, xn is the input data sample, xmin is the input data set minimum
and xmax is the input data set maximum.

Afterwards the statistical normalization can be performed [5]:

xn =
(xn − x̄)

s
. (2)

where xn is the input data sample, x̄ is the mean value of the input data set,
s is the standard deviation of the input data set. In the performed experiments
the mean square error (MSE) was computed as it allowed for direct comparison
of different prediction methods:

MSE =
∑

e2
t

N
. (3)

where et is an individual forecast error, N is a number of error terms.
Additionally, the median absolute percentage error (MdAPE, defined by

Eq.4) was evaluated to assess the relative forecasting accuracy of both meth-
ods:

MdAPE = median
(
| et |

)
. (4)

where et is an individual forecast error.

3 The Algorithm for Wow Evaluation

The block diagram of the algorithm for wow defect evaluation is presented in
Fig. 1. The parasitic modulation waveform PVC is obtained in two stages. In
the first stage the sinusoidal modeling is applied to extract the distorted tonal
components. In the second stage the tonal components are processed in order to
evaluate PVC. An input signal is divided into analysis frames (time-frames) by
means of windowing. The Hamming window is used in order to achieve a good
main-lobe to side-lobe rejection ratio. The zero-phase windowing is performed
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Fig. 1. Block Diagram of Sinusoidal Modeling Approach for Wow Evaluation

to remove linear trend from phase spectrum [7]. DFT of each analysis frame is
computed to obtain spectral representation. Candidates for tonal components are
evaluated as meaningful peaks of magnitude spectrum according to the following
formula:

Xm(k − 1) < Xm(k) ∧ Xm(k + 1) < Xm(k). (5)

The most significant peaks are selected to create tonal trajectories (partials) in
partial tracking step. The peaks from succeeding frames are matched to existing
trajectories if the following criterion is fulfilled [8]:∣∣f i−1

k − f i
l

∣∣ < Δf . (6)

where, f i−1
k is the frequency of the processed track in frame i − 1 and f i

l is the
frequency of matched peak in frame i. The parameter Δf (frequency deviation)
is the maximum frequency distance between track and its continuation. In this
paper the matching process is enhanced with neural predictor, which is depicted
in Fig. 1 as an optional operation. In case when the neural predictor is applied
the matching criterion is the same as in Eq.6 but instead of f i−1

k a predicted
frequency value f̂ i

k is used.
PVC can be computed from the evaluated track directly via simple normal-

ization. It can be also determined from a few tonal components using various
methods described in author’s earlier papers [1][9].

4 Experiments

4.1 Prediction Performance Comparison

In order to examine the LP and ANN performance in the frequency tracks pre-
diction two experiments were performed. In the performed experiments some
real frequency trajectories obtained from archival sound tracks were selected as
the input data. The external normalization to the range from xnMin = -0.9 to
xnMax = 0.9 was performed according to (1). After the linear operation the sta-
tistical normalization was executed following Eq.2. At the end the input vectors
were smoothed using a 3-rd order moving average zero-phase filter.
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4.2 Linear-Prediction

A sliding-time-window technique was used to divide the preprocessed input data
into subsets. In each subset the prediction filter was build and a sample value
was forecasted. The autocorrelation method of autoregressive (AR) modeling
was used to compute filter coefficients. The obtained results are given in Table 1
where can be noticed that the key factor influencing the prediction performance
is the LP length, i.e., the prediction error decreases with greater lengths. The
LP order plays less important role and according to obtained results a greater
number of LP coefficients can trigger a higher prediction errors. It is probably
due to the chaotic nature of the frequency trajectories, whereas, the LP tries to
model it as a linear process.

Table 1. LP-based Prediction Error

LP length LP order Error Measure
2 4 8 16

4 0.0116 MSE
0.3156 MdAPE

8 0.0045 0.0052 MSE
0.1838 0.2110 MdAPE

16 0.0029 0.0031 0.0037 MSE
0.1491 0.1512 0.1682 MdAPE

32 0.0020 0.0021 0.0022 0.0025 MSE
0.1226 0.1247 0.1275 0.1365 MdAPE

4.3 ANN-Based Prediction

The ANN training set (in-sample data) and testing set (out-of-sample) were built
of the preprocessed frequency trajectory. The sliding windowing technique over
the out-of-sample set was used in the ANN performance evaluation. After each
prediction the network’s weights and biases were changed allowing for the ANN
adaptation. Experiments on each MLP structure were repeated 200 times with
randomly initiated weights and biases. The obtained results are given in Table
2.It can be noticed from the Table 2 that with the increasing input’s number the
prediction error decreases. However, after reaching the point of 16 inputs it grows
up again. It is probably due to the under-fitting in the learning stage as the 32-
32-1 structure is quite large and a lower goal MSE should be used here. Yet the
most important observation is that the ANN performance is better then the LP-
based forecasting (see Tab. 1). Only the MSE for the simplest MLP structure is

Table 2. ANN-based Prediction Error

MLP Structures Error Measure
2-2-1 4-4-1 8-8-1 16-16-1 32-32-1

0.0086 0.0018 0.0009 0.0009 0.0035 MSE

0.0898 0.0777 0.0706 0.0679 0.0817 MdAPE
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greater then the LP prediction error. All the other error measurements indicate
lower values for the ANN-based forecasting.

4.4 ANN-Based Prediction for Wow Evaluation

The following experiment concerned the application of neural predictor for tonal
components evaluation in wow-modulated audio signal. The task for wow evalu-
ation algorithm is to determine the variations of tonal components most reliably
since even small differences between the estimated wow modulation and the
true wow modulation can lead to audible artifacts in the restored signal. Figure
2 presents the example of spectrogram representation of sound contaminated by
the wow distortion. The dark regions in such representation correspond to tonal
components of high magnitude and less intense regions correspond to noise or
some low-level components (such as side-lobes resulting from the analysis). Three
tonal components can be seen in the presented figure. The noticeable variations
of these components originate in wow modulation, which according to modula-
tion theory is stronger for high frequency components. It can be also noticed
that the level of the components is not steady over selected time-interval. Such
distortions make the tonal components evaluation ambiguous task. The standard
matching criterion, which is based on frequency distance measure Eq.6 is often
not capable of handling the mentioned problems. This can be seen in Fig.2 where
the solid line corresponds to tonal component evaluated by means of frequency
matching criterion Eq.6. Only one component (having the lowest frequency)
was evaluated correctly whereas the other two were matched erroneously. The
presented assumption that neural prediction could effectively enhance the track-
ing process was verified experimentally. The evaluated components are presented

time [s]

fre
qu

en
cy

 [H
z]

0.2 0.25 0.3 0.35 0.4
1200

1400

1600

1800

2000

2200

2400

2600

Fig. 2. Block-diagram of Frequency Track Evaluation Algorithm. Solid Line Corre-

sponds to Tonal Components Evaluated by Standard Frequency Matching Criterion.

Dashed Line Correspond to Components Evaluated by Criterion Enhanced by Neural

Prediction.
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in Fig. 2 using dashed line. On the contrary to the components evaluated on ba-
sis of Eq.6, the components determined by means of neural prediction can be
further used during restoration process.

5 Conclusions

The conducted experiments aimed at showing that a prediction module can en-
hance the sinusoidal modeling (that was also showed in some cited papers), how-
ever the experiments were focused on neural-networks-based prediction, since
LP-based prediction was assumed to not fit the non-linear model of wow-dis-
torted components. The main conclusion which can be drawn from the fore-
casting experiments in Sections 4.2 and 4.3 is that the ANNs outperforms the
simple LP methods used so far for the prediction of the future values of the tonal
components. The experiment presented in Sect. 4.4 showed that the matching
criterion enhanced with neural prediction gives better results than the simple
matching criterion based on frequency distance measurement. Further research
is needed, however, to determine the most appropriate MLP structure for the
forecasting task. Also, a greater attention must be laid on the preprocessing
stage as it can influence the obtained results.
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Abstract. This paper presents a new algorithm to construct a neu-
ral network ensemble (NNE) based on heterogeneous component neural
networks with negative correlation learning. The constructive algorithm
consists of two parts: a sub-algorithm to construct best heterogeneous
component neural networks with negative correlation learning dynami-
cally (CBHNN), and a sub-algorithm to construct heterogeneous NNE
with trained heterogeneous neural networks incrementally (CHNNE).
The experiment results showe that HNNE is better than the traditional
homological NNE method.

Keywords: Neural network ensemble, constructive algorithm.

1 Introduction

Neural Network ensemble (NNE) [1] is a learning paradigm where many com-
ponent neural networks (NNs) are jointly used to solve a problem. The typical
process of creating a neural network ensemble comprises of two steps: at first
being the judicious creation of the individual ensemble members and the second
their appropriate combination to produce the ensemble output.As for training
individual neural networks, the most prevailing approaches are Bagging and
Boosting. Optiz and Shavlik [2] proposed ADDEMUP that exploit genetic algo-
rithm to train diverse knowledge based individual networks. Rosen [3] introduced
a punishable function into the network error function to decorrelate the correla-
tion among individual networks. Liu [4] expanded the idea of Rosen and propose
a method to evolve all the individuals in a population of neural networks with
negative correlation learning. Zhou [5] only selected the best subset of trained
individual networks to combine a neural network ensemble by genetic algorithm.
In addition, Bakker [6] presented a clustering model to ensemble neural networks.

In this paper, we present a new method to construct heterogeneous neural
network ensemble (HNNE) with negative correlation. It combines ensemble’s
architecture design with cooperative training of individual NNs in an ensemble.
It determines automatically not only the number of NNs in an ensemble, but also
the number of hidden neurons in individual NNs. It uses incremental training
based on negative correlation learning in training individual NNs.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 396–401, 2006.
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2 Theoretical Analysis of Heterogeneous Neural Network
Ensemble

Suppose there exists a data set D = {(x1, y1), (x2, y2), . . . , (xN , yN)} , where xp

is the input sample and yp is the output result (1 ≤ p ≤ N). For a regression
problem, an ensemble S comprises component neural networks NNi to approxi-
mate a function f : Rn → Rm. Specify the weight of the ith component network
is wi (1 ≤ wi ≤ N ). Then to a sample {xp, yp} , the output of the ith compo-
nent network is fi(xp), and the output of the ensemble is:f(xp =

∑M
i=1 wifi(xp)).

Thus the generalization error of the ensemble in the whole data set is :

E =
∑

p

(yp − f(x(p))2. (1)

The generalization error of the ith component network in the whole data set is:

Ei =
∑

p

(yp − fi(x(p))2. (2)

The weighted generalization error of the ensemble is E =
∑

i wiEi. The diversity
of the ensemble is:

A =
∑

i

wi

∑
p

(fi(xp) − f(xp))2. (3)

So the generalization of the ensemble satisfies: E = E − A. This insight was
formalized by Optic[2], who showed that squared error of the ensemble when
predicting a single target is equal to the average squared error of the individual
networks, minus the diversity define as the variance of the individual network
output.

2.1 Improve the Diversity with Negative Correlation Learning

To improve the diversity of the component neural networks in an ensemble,
negative correlation learning can be used to guarantee dissimilitude [4]. The
correlation of the ith component network with the others is defined as follows:

Ci =
N∑

p=1

(fi(xp) − f(xp))
N∑

j=1,j 
=i

(fi(xp) − f(xp)). (4)

To mitigate this potential colinearity problem, Equation (2) is modified by
adding a decorrelation penalty to it.The new error function for an individual
network NNi is:

Ei =
∑

(yp − fi(x(p))2 + λCi. (5)

where λ(λ ≥ 0)is an adjustable parameter. If wi = 1/M , the error function for
any individual network NNi can be modified as:

Ei =
∑

p

(
1
2
yp − fi(xp))2 − λ(f(xp) − fi(xp))2. (6)
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The average error of all the component networks is:

Esum =
1
M

∑
i

∑
p

(
1
2
(yp − fi(xp))2 − λ(f(xp) − fi(xp))2). (7)

The partial derivative of Ei with respect to the output of network NNi on
the training sample (xp, yp)is:

∂Ei(xp)
∂fi(xp)

=
∑

p

(fi(xp) − yp − λ
2(M − 1)

M
(fi(xp) − f(xp))). (8)

When λ = 1
2 ,we can get E = Esum, then ∂Ei(xp)

∂fi(xp) ∝ ∂E(xp)
∂f(xp) . So the minimization

of the empirical risk function of the ensemble is achieved by minimizing the error
functions of the individual networks.

2.2 Constructing Individual Neural Network Incrementally

Networks that are too small cannot represent the required function, while net-
works that are too large are prone to overfitting. We modify Cascor algorithm
[7,8] to construct individual neural networks with best structure and good gen-
eralization performance. The constructive process of the dynamic component
neural networks can be divided two stages: the input training stage and the
output training stage.

To construct a component network NNi, the task of the output training stage
is to minimize Ei , where Ei acts as the residual error of NNi. If the input
function of the neurons is γ0(x), the minimal value of Ei can be evaluated by
gradient descent with following equation:

∂Ei

∂wko
=
∑

p

∂Ei

∂fi
γ′oIkp. (9)

where γ′o is the partial derivative of the activation function on the output units,
Ikp is the value of the sample (xp, yp) on a input unit or hide unit k, wko is
the connection weight between the unit k and the output unit o. To the sample
(xp, yp), if the value of the candidate unit is vp, and the residual error of the
output unit o is epo , then the task of the input training stage is to minimize the
correlation R between the residual errors of candidates and the value of output
unit through adjusting the connection weights of candidates. The correlation R
can be defined as follows:

R =
∑

o

|
∑

p

(vp − V )(epo − Eo)|. (10)

where V is the average value of vp , and Eo is the average value epo on whole
samples. The partial derivative of equation (12) is:

∂R

∂wk
=

∑
p

∑
o so(epo − Eo)γ′pIkp∑
p

∑
o(eop − eo)2

. (11)

where so (+ or -) is the sign of the correlation value between the candidate and
the output unit o, γ′p is the partial derivative of the activation function of the
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candidate on the sample p. Iip is the input value which the candidate accepted
from the unit k on the sample (xp, yp). Then the maximal value of equation (10)
can be evaluated by gradient descent method.

3 Constructive Algorithm for Heterogeneous Neural
Network Ensemble

The constructive process of HNNE also includes two sub-processes: at first to
construct the individual ensemble members and secondly to produce the ensem-
ble output. We describe it with two sub-algorithms: one is to construct the best
heterogeneous component neural networks dynamically with negative correlation

Algorithm 1. CHNNE Alg
Input : M, T1, e1, e2, D.
Output: S.
Step1: i = 0, f = 0, m = 0, c1 = 0, Emin = 1.
Step2: Divide the data set to 10 groups, among which 9 groups are selected
randomly as the training set and the remained set as the test set.
Step3: Call CBHNN algorithm to construct a new component neural network
NNi,c1 = c1 + 1 .
Step4: To evaluate the generalization error Ei with the equation
Ei = ΣN

p=1(yp − fi(xp))
2. If Ei > e1 continue; else go to Step 3.

Step5: To evaluate f̂i(xp) with the equation f̂m(xp) = 1
m

∑m
i=1 fi(xp), and

evaluate E with the equation E =
∑N

p=1(yp − f(xp))
2.

Step6: If E − Emin < 0 , add NNi to the current neural network ensemble
S,m = i, Emin = E; else go to Step 3.
Step7: If E < e2 or i > M or c1 > T1 , Combine S with f = 1

m

∑m
i=1 fi . Else

go to Step 3.

Algorithm 2. CBHNN Alg

Input: D, T2, e1, f̂i(xp), NNi−k, . . . , NNi, i
Output: NNi+1

Step1: Create the input layer and output layer of NNi with full connection.
Step2: Training all the connections by gradient descent. Minimize residual
error according the equation ∂Ei

∂wko
=
∑

p
∂Ei
∂fi

γ′
oIkp. When Ei does not decrease

or Ei ≤ e1 , or the loop times exceeds T2, NNi+1 is spitted out.
Step3: Creating candidate units. If i �= 0 , add NNi−k, . . . , NNi into the
candidate pool. Connect every candidate unit with all the input candidate units
and hidden units.
Step4: According the equation (11), training the connection weight of
candidate units to maximize the correlation R between residual error and these
candidate units. Until the value of R cannot be improved, the process stops.
Step5: Selecting the candidate unit that has the maximal correlation and fixing
the input weight. And then add the selected candidate unit to the current
component neural network NNi+1. At last create connection between this
candidate unit and the input units. Go to Step2.
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learning (CBHNN), and the other is to combine these trained heterogeneous com-
ponent neural networks to a heterogeneous neural network ensemble (CHNNE).
The component neural networks are three layer feedforward neural networks. We
specify the activation functions of hidden units to be sigmoid functions and the
output functions of output units to be linear functions. Also the number of the
output units and the input units is specified by the training dataset’s attributes.
In addition, two counters c1 and c2 are used to retain the iterative steps of CBHNN
and CHNNE. The algorithms of CHNNE and CBHNN are described as follows.

In CBHNN and CHNNE, the predefined threshold values e1 and e2 can be
used to control the constructive process of the heterogeneous neural network
ensemble. e1 can be used to eliminate those neural networks that have large error
to guarantee the precision of the component neural networks. e2 guarantees the
whole constructive process of HNNE to be complete incrementally.

4 Experiments and Result Analysis

Six datasets are used in our experiment[5,9]. Freidman#1 and Boston Housing
are used for regression problem; Breast Cancer, Pima Indians Diabetes and Chess
are used for classification problem. The information on the data sets is listed in
Table 1.

Table 1. Data Sets Used for Experiment

data sets size attributes type
Friedman#1 2000 5 regression
Boston Housing 506 13 regression
Breast cancer 699 8 classification
Diabetes 768 9 classification
Australian credit card 690 14 classification
Soybean 683 35 classification

Table 2. The Results of Three Methods on Different Data Sets

data sets HNNE TNNE SNN
Friedman#1 0.0486 0.0501 0.1262
Boston Housing 0.0105 0.0139 0.0228
Breast cancer 0.0147 0.0357 0.0985
Diabetes 0.2074 0.2387 0.2513
Australian credit card 0.0873 0.116 0.168
Soybean 0.081 0.082 0.091

10-fold cross validation is performed on each data set in our experiments.
Some parameters are set as follows: the number of candidate unit pool is 12, the
maximal number of hidden units is 20, and the maximal number of component
neural networks of the neural network ensemble is 20. T1 is 6000, e1 and e2 is
0.005. To compare with CHNNE, a traditional homological neural network en-
semble with 20 component neural networks (TNNE) is constructed. In addition,
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a single neural network (SNN) also is trained. Each approach is run 10 times
on every data set. The result is the average result of ten times. The experiment
results of HNNE, TNNE and SNN are showed in Table 2.

5 Conclusions

This paper presents a new method for constructing a heterogeneous neural net-
work ensemble based on heterogeneous neural networks with negation correla-
tion. Because the new constructive method not only modifies the component
network’s architecture but also adjusts the connection weights, it has more abil-
ity to improve the accuracy and diversity of the component neural networks. We
use six datasets to test the generalization error of the HNNE constructive algo-
rithm, which include two regression problems and three classification problems.
The empirical results show the constructive HNNE is better than the traditional
homologic neural network ensemble and individual neural network.
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Abstract. Discovering gene relationship from gene expression data is
a hot topic in the post-genomic era. In recent years, Bayesian network
has become a popular method to reconstruct the gene regulatory network
due to the statistical nature. However, it is not suitable for analyzing the
time-series data and cannot deal with cycles in the gene regulatory net-
work. In this paper we apply the dynamic Bayesian network to model the
gene relationship in order to overcome these difficulties. By incorporat-
ing the structural expectation maximization algorithm into the dynamic
Bayesian network model, we develop a new method to learn the regula-
tory network from the S.Cerevisiae cell cycle gene expression data. The
experimental results demonstrate that the accuracy of our method out-
performs the previous work.

Keywords: gene regulatory network, dynamic Bayesian network, struc-
tural expectation maximization, microarray.

1 Introduction

The reconstruction of gene regulatory network has become an important chal-
lenge and is viewed as the first step of the systems biology. The rapid develop-
ment of microarray technology, which helps measure expression levels of tens of
thousands of genes simultaneously, provides new opportunities to discover the
regulatory relationship among genes.

Several methodologies to the reverse engineering of genetic regulatory net-
work from gene expression data have been presented so far. In general, they
can be divided into three categories, including Boolean networks [2], differential
equations [3], and Bayesian networks [4,5].
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In contrast to the other two approaches, the probabilistic nature of Bayesian
networks makes it more realistic and particularly, is capable of introducing prior
knowledge readily. But the static version of Bayesian network can only recon-
struct acyclic networks, whereas a real gene regulation mechanism may have
cyclic regulations. Hence, dynamic Bayesian networks (DBN) [1, 5] are proposed
to model a gene network with cyclic regulations.

In this paper, we propose a new DBN model embedded with structural expec-
tation maximization (SEM), which is an efficient method to deal with missing
data. Although there have been some published literatures that use the SEM
to learn the Bayesian network, it is for the first time to introduce the SEM to
estimate the structure and parameters in the framework of the DBN.

The rest of the paper is organized as follows. In section 2, we propose our
DBN model embedded with SEM. In section 3, we implement our approach
based on the gene expression data of S. Cerevisiae and compare our results with
the previous work. Section 4 draws conclusions with some open problems.

2 Methodology

As a graphic model, Bayesian network is defined by two parts. One is a graphic
structure S, which is a directed acyclic graph (DAG) consisting of nodes and
directed acyclic edges.The other is a set of conditional probability distributions
(CPD) Θ in P (Xi|Pai), where Pai is the parent of current node Xi. Under the
Markov assumption, the joint probability distribution of network can be written

as: P (X1, X2, ..., Xn) =
n∏

i=1
P (Xi|Pai).

The objective is to learn the network from the data set D generated by mi-
croarray experiment, which requires finding the structure S∗ that maximizing
P (S|D) and the parameters that maximize P (Θ|D, S∗).To evaluate a network,
we need a scoring function assigned to the graph. There is an n∗p gene expression
profile D = d1, d2, ..., dp, where dj = dj

1, d
j
2, ..., d

j
n

′
. Note that each row represents

one gene and each column denotes one sample. The score based on the minimum
description length is given below: score(S,Θ|D) = log(P (D|Θ, S)) − |Θ|

2 log(p).
But static Bayesian network cannot handle the cyclic edges.Murphy and Mian

[6] first employed the DBN to tackle the problem as shown in Fig.1.
The following two assumptions are the basis for our transition from Bayesian

networks to the DBN: (1) the genetic regulation process is Markovian, and (2)
the dynamic casual relationships among genes are invariable over all time slices.
Therefore what we will do is to search for the DBN with the highest score.

In this paper, we use the SEM [8] to learn the network from partially observ-
able gene expression data. The score of the network is evaluated by the expected
sufficient statistics from the EM algorithm that has the two steps below.

The E step assigns some random values to the parameters Θ, and then the ex-
pected sufficient statistics for missing values are computed as E(pXi=k,Pai

=l) =
p∑

j=1
P (Xi = k, Pai = l|dj ,Θ, S).
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Fig. 1. Example of a cyclic network. A Bayesian network cannot handle the network

(left) that includes a cycle X1 → X2 → X3 → X4. The DBN can build a cyclic

structure by dividing states of a gene into different time slices (right).

In the M step, the expected sufficient statistics are considered to be real
sufficient statistics from a complete dataset D′. The value of Θ maximizes the
marginal likelihood

ΘpXi=k,Pai
=l

=
E(pXi=k,Pai

=l)∑
Xi

E(pXi=k,Pai
=l)

. (1)

In the structural EM,

E(pXi=k,Pai
=l)S′ ∼=

p∑
j=1

P (Xi = k, Pai = l|dj ,Θ,G). (2)

The resulting algorithm is shown in Algorithm 1.

Algorithm 1. Pseudo-code for Structural EM
choose an initial graphic structure S
while not converged do

for each S′ in neighborhoodof(S) do
compute (2) using an Bayesian inference algorithm [E step]
compute score(S′)

end for
S∗ := argmax

S′score(S′)
if score(S∗) > score(S)[improving parameters of S∗ using EM] then

S = S∗[Structural M step]
else

converged := true
end if

end while

3 Results

In order to compare our new model with [1], we applied our approach to the
S. Cerevisiae cell cycle gene expression data that were adopted to be the same



Gene Regulatory Network Construction Using DBN with SEM 405

as [1]. All these data were originally derived from the work given by Spellman
[6], which was treated using four different methods: cdc15, cdc28, alpha-factor,
and elutriation. To make accuracy analysis, we also exploited the previously es-
tablished gene regulatory relationships of the yeast cell cycle from the KEGG
database(www.kegg.org). The two experiments were done with Matlab’s Mur-
phy’s Bayesian Network Toolbox [5].

Experiment 1
There is no prior knowledge of the yeast cell cycle in our first experiment. This
implies that all potential regulator-target pairs are considered and the relation-
ships among the genes are identified just based on the time series data.

In contrary to the correct pathways shown in the left picture in Fig.2, we used
a circle to represent the correct estimation in Fig.3. Meanwhile, the Christ-cross
meant the wrong estimation, and the triangle indicated either a misdirected edge
or an edge skipping at most one node. The results are summarized in Table 1
for the accuracy analysis. As shown in Table 1, we denoted the learned network
based on [1] by DBN-[1] and that in experiment 1 by DBN-SEM-no priors.
Note that when we calculate the specificity and sensitivity, the total number of
pathways in the target network is 19.

Apparently, the number of the correctly identified edges increased from 4 in
the DBN-[1] to 6 in the DBN-SEM-no priors. All the specificity and sensitivity
calculated in the DBN-SEM-no priors are better than those from the DBN-
[1].The results showed that the DBN model with SEM when no priors had better
performance in reconstructing the regulatory network from time-series data than
that achieved in [1].

Table 1. Comparison of results achieved by our two experiments with that in [1]

DBN-[1] DBN-SEM-no priors DBN-SEM-priors

correct estimation 4 6 8

wrong estimation 2 6 5

misdirected and skipping 8 3 3

specificity 26.7% 40.0% 50.0%

sensitivity 21.1% 31.6% 42.1%

Experiment 2
In Li’s work [8], 11 genes were believed to be yeast TFs (SWI4, SWI6, STB1,
MBP1, SKN7, NDD1, FKH1, FKH2, MCM1, SWI5, and ACE2), and one cyclin
gene (CLN3) were known to activate cell-cycle dependent genes. In our data
set, there are 3 TFs, which are SWI4, SWI6, and MBP1. We incorporated this
information as prior knowledge into our DBN model with SEM. The inferred
genetic interactions are given graphically, as shown in Fig.3.

The learned regulatory network is shown in the right picture in Fig.3. The
results from experiment 2 are listed in the DBN-SEM-priors column of Table 1.
The number of correctly identified pathways is 8, which is improved to be two
times over the DBN-[1]. Compared the results in the DBN-SEM-priors with
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Fig. 2. The left picture gives the correct pathways picked from the KEGG, whereas

the right one is the result from [1]

Fig. 3. The left picture indicates the result of experiment 1 without any priors. The

right one demonstrates the result of experiment 2 when added prior knowledge.

those in the DBN-SEM-no priors in Table 1, it is readily observed that adding
prior knowledge indeed improved the inference accuracy and reduced the com-
putational cost. Thus the DBN-SEM model, whether with priors or not, outper-
formed the results obtained in the DBN-[1].

The analysis of yeast cell cycle expression data demonstrated that our method
is capable of efficiently identifying gene-gene relationships, which mainly bene-
fited from both dynamic characteristic of the DBN model and the handling of
missing data by use of the SEM algorithm.

4 Conclusion

In this paper we proposed a general model for reconstructing the genetic reg-
ulatory network. Our new approach is based on the framework of a dynamic
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Bayesian network. In order to deal with partially observable problems in gene
expression data, we developed the DBN model using the SEM, The DBN model
with SEM was tested on the data of the S. cerevisiae cell cycle. The experimen-
tal results showed that the prediction accuracy of our method was higher than
that of Kim et.al [1]. The main advantage of our model comes from the fact that
the SEM improves the accuracy through handling the missing data. Meanwhile,
either static Bayesian networks or the DBN are allowed to additionally introduce
the prior biological knowledge when conducting learning.

In fact, cell regulatory networks depend not only on transcriptional regulation
but also on post-transcriptional and even external signaling events. Until now,
the genetic regulatory interactions that are reconstructed from gene expression
data can only reveal part of the genetic regulatory pathways. In the future, our
goal is to employ the framework proposed here to improve the recovered network
by dealing with multiple data sources, such as protein-protein interaction, gene
annotation, and promoter sequence. We believe that the model presented in this
paper can be used not only for the gene network modeling but also in many
other biological applications.
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Abstract. In this paper, we propose a novel model, namely g-Cluster,
to mine biologically significant co-regulated gene clusters. The proposed
model can (1) discover extra co-expressed genes that cannot be found by
current pattern/tendency-based methods, and (2) discover inverted rela-
tionship overlooked by pattern/tendency-based methods. We also design
two tree-based algorithms to mine all qualified g-Clusters. The experi-
mental results show: (1) our approaches are effective and efficient, and (2)
our approaches can find an amount of co-regulated gene clusters missed
by previous models, which are potentially of high biological significance.

Keywords: bioinformatics, clustering, micro-array data.

1 Introduction

Clustering is a popular technique for analyzing microarray datasets. However,
the more recent pattern-based and tendency-based clustering algorithms still
have the following two major limitations in clustering co-regulated genes:

(1) Most pattern/tendency-based approaches discover co-regulated genes only
by grouping together genes whose expression values simultaneously rise and fall
along a certain subset of conditions, [1, 2]. However, recent research work [3, 4]
shows that beyond this case , inverted relationship is another important expres-
sion pattern of co-regulated genes. Figure 1(a) and 1(b) are two examples of the
inverted pattern found in the yeast data set. Yeast GRID [5] suggests these genes
should be in the same cluster, all of which are involved with protein translation
and translocation. Most pattern/tendency-based methods miss such clusters.

(2) Even for co-expression, most pattern/tendency-based clustering methods
will still risk missing significant co-regulated gene clusters, which are poten-
tially of high biological significance. We illustrate this case base on a typical
tendency-based model, i.e. OP-Cluster [6,7]. It translates the expression profiles
of each gene into a sequence by first sorting the conditions in non-descending
order and later grouping genes whose expression values show ′up′ pattern un-
der the same permutation of a subset of conditions. For genes YJL138C and
YJL143W in Figure 1(b), they rise and fall coherently under the original order
� Supported by National Natural Science Foundation of China under grant
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of attributes(<123456789>). However, they will not show ′up′ pattern simul-
taneously under any attribute permutation(Figure 2(a) and 2(b)). Evidently,
YJL138C and YJL143W will never be considered into a same cluster according
to the definition of tendency-based model. However, they both have been proven
to be really involved in protein translation and translocation [8].
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In this paper, we propose a novel method to address the above issues ignored
by current methods. The contributions of this paper include: (1) we propose a
new co-regulation model, namely gCluster, to capture both coherent tendency
and inverted tendency. It is a generalization of existing pattern-based methods;
(2) we develop two algorithms with pruning and optimization strategies, namely
depth-based search and breadth-based search, to mine all of qualified maximal
gClusters; (3) we conduct an extensive empirical evaluation on both real data sets
and synthetic data sets to show the efficiency and effectiveness of our algorithms.

The rest of the paper is organized as follows. Section 2 gives a formal defi-
nition of the gCluster model. Section 3 discusses our algorithms in detail. We
also present several advanced pruning and optimization methods to improve the
performance of the algorithms. In section 4, our methods are evaluated using
real and synthetic data sets. Finally, Section 5 concludes this paper and gives
future work.

2 gCluster Model

In this section, we define the g-Cluster model for mining co-regulated genes that
exhibit the positive or the negative correlation along a subset of conditions.

2.1 Preliminary

Let G = {g1, g2, · · · , gs} be a set of s genes, and A = {a1, a2, · · · , at} be a set of
t attributes. A microarray dataset is a real-valued s×t matrix D=G×A={ dij},
with i∈[1, s], j∈[1, t]. Table 1 show an example of the dataset that we will look
at in this paper. Below, we first define a few terms used consistently throughout
this paper.
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Table 1. Running Dataset

gene a b c d e f

g1 150 130 162 140 135 168
g2 125 120 115 136 125 110
g3 103 92 98 85 80 108
g4 55 65 60 70 78 74
g5 50 45 40 68 60 55
g6 15 20 30 25 35 45

Definition 1. L-segment. Assume T is an attribute sequence. Any consecutive
subsequence of T, say T ′, with length L+1 can be called a L-segment of T .

Definition 2. � operation. For a given 2-segment <a, b, c>, � (< a, b, c >)
= � (�(< a, b >),�(< b, c >)), where �(<a, b>) denotes the tendency of
expression values on <a, b>, which may be either “ ↘′′ or “ ↗′′. Operation �
has the following properties:

(1) � (↗ ,↗)=+; � (↘ ,↘)=+; (2) � (↗ ,↘)=−; � (↘ ,↗)=−

Definition 3. gCode. For any object oi ∈ O, its gCode on a given attribute
sequence T can be deduced by connecting all results of “�” operation for each
and every 2-segment of T in order.

Definition 4. gCluster. Pair(O,T ) forms a gCluster if for any oi, oj ∈ O, they
have the same gCode on T , where T is the original sequence of T . Further, a
gCluster is maximal if no other gClusters contain it.

3 Algorithm for Mining gClusters

The gCluster algorithm works in three major steps: (1)Preserve initial infor-
mation, (2)Construct 2-segment GS-tree to obtain the preliminary gClusters on
all intact 2-segments, and (3)Develop 2-segment GS-tree recursively to find all
maximal gClusters. There, we propose and evaluate two alternative methods,
i.e. depth-first development and breadth-first development,

3.1 Depth-First Algorithm

The depth-first algorithm generates a complete GS-tree in a depth-first way. It
works in the following steps.

Step 1. Create root node and insert all tendency information of intact 1-
segments into GS-tree according to the initial information table. Figure 3 shows
the result of this step. Two buckets are linked to any cell of every leaf node. The
bucket with key ‘↗’ (resp., ‘↘’) stores indices of rows with ‘up’ (resp., ‘down’)
pattern on the corresponding intact 1-segment.

Step 2. Generate 2-segment GS-tree. To generate a 2-segment <x, y, z>, the
buckets of <x, y> are pairwise intersected with that of <y, x> and four object
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Fig. 3. Initial GS-tree
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Fig. 4. 2-segment GS-tree

sets are thus obtained. For each generated set, the gCode of all objects in the
set is computed by ′�′ operation. Sets with the same gCode are merged. gCodes
are regarded as the keys of the new generated buckets.

Step 3. Develop 2-segment GS-tree and generate all k-segments (k ≥ 2) in a
depth-first recursive way.

3.2 Breadth-First Algorithm

The breadth-first algorithm also generates a complete GS-tree, but in a breadth-
first way. The difference between our two algorithms is that algorithm breadth-
first generates a (k+1)-segment by joining two connected k-segments with con-
nectivity k-2 while algorithm depth-first does it by joining a k-segment with a
connected 2-segment. It is obvious that a complete development of GS-tree is
not efficient. The nc-based and nr-based pruning rules can also be used here, as
Liu et al. did in [6, 7]. Our algorithms is shown as Algorithm 1.

Algorithm 1. gCluster Algorithm()
Input: D: a micro-array expression matrix; nr, nc: user-specific minimal number of rows and columns;
Output: the complete set of gClusters;
Method:

1: Create Regulation Significance Table;//step 1
2: Preserve initial information;
3: Compute MWGSs of every 2-segment;
4: Create 2-segment GS-tree ;//step 2
5: if DFS then
6: for the current leftmost list of buckets do
7: call recursive-DFS(currentPointer );
8: Prune genes by rules 2;
9: set the next leftmost list of buckets;
10: else if BFS then
11: if current level cannot be jumped by pruning rule 1 then
12: call recursive-BFS(currentPointer);
13: else
14: jump to level min(nr-1, 2k-1);
15: call recursive-BFD(currentPointer);
16: Output results in the result set;

4 Experiments

All experiments are done on a 2.0-GHz Dell PC with 512M memory running
Window 2000 and the algorithms are coded in Java. For convenience, the
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depth-first approach is called DFD, and the breadth-first approach is called BFD.
Both synthetic and real microarray datasets are used to evaluate our algorithms.
For the real dataset, we use AML-ALL dataset [9]. The synthetic datasets can
be obtained by a data generator algorithm [10].

4.1 Biological Significance Analysis

We applied our algorithms to ALL-AML leukemia Dataset with nr=100, nc=10,
and found some interesting results. We feed some clusters to Onto-Express [10].
Figure 5(a) shows a feedback ontology tree for a discovered gCluster. Figure 5(b)
and 5(c) are the further analysis of genes′ identity in the cluster.

(a) The gene ontology tree for genes
in cluster 7
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Fig. 5. The gene ontology tree and the distribution of function for genes in cluster 27

4.2 Scalability

In Figure 6(a), the number of columns is 30. The mining algorithms are invoked
with nc=10, nr=0.1N, where N is the number of rows of the synthetic data sets.
Figure 6(b) shows the scalability for these two approaches under different number
of columns, when the number of rows is fixed to 3000. The algorithms are invoked
with nr=200, nc=0.6C, where C is the number of columns of the synthetic data
sets. As the number of rows and the number of columns increase, the size of GS-
tree will be deeper and broader. Hence, the response time will become longer.
BFD need to decide which buckets(gClusters) can be joined with a given bucket
during the development of GS-tree, however, DFD need not. So BFD will spend
more time than DFD.

Next, we study the impact of the parameters(nr and nc) towards the response
time. The results are shown in Figure 7 and Figure 8. As nr and nc increase, the
response time shortened.
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Fig. 6. Response time vs # of columns and # of rows
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5 Conclusions

In this paper, we proposed a new model called gCluster to capture not only all of
strict or flexible coherent tendency (co-expression) but also all of strict or flex-
ible inverted tendency. It is a generalization of existing pattern-based methods.
Discovery of such clusters of genes is essential in revealing significant connections
in gene regulatory networks. We devised two approaches with pruning and opti-
mization strategies, which can efficiently and effectively discover all the gClusters
with a size larger than user-specified thresholds.
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Abstract. There were some traditional algorithms for mining global
frequent itemsets. Most of them adopted Apriori-like algorithm frame-
works. This resulted a lot of candidate itemsets, frequent database scans
and heavy communication traffic. To solve these problems, this paper
proposes a fast algorithm for mining global frequent itemsets, namely
the FMGFI algorithm. It can easily get the global frequency for any
itemsets from the local FP-tree and require far less communication traf-
fic by the searching strategies of top-down and bottom-up. It effectively
reduces existing problems of most algorithms for mining global frequent
itemsets. Theoretical analysis and experimental results suggest that the
FMGFI algorithm is fast and effective.

Keywords: Global frequent itemsets, distributed database, FP-tree, FP-
growth.

1 Introduction

There were various algorithms for mining frequent itemsets[1], such as Apriori,
PARTITION and SETM. However, the database for mining frequent itemsets
was generally distributed, traditional algorithms consumed a large amount of
time. In order to improve efficiency, some algorithms for mining global frequent
itemsets were proposed, including PDM [2], CD [3] and FDM [4]. Most of them
adopted Apriori-like algorithm frameworks, so that a lot of candidate itemsets
were generated and the database was scanned frequently. This caused heavy
communication traffic among the nodes.

Aiming at these problems, this paper proposes a fast algorithm for mining
global frequent itemsets based on a distributed database, namely the FMGFI
algorithm. It can easily get the global frequency for any itemsets from the local
FP-tree and require far less communication traffic by the searching strategies of
top-down and bottom-up.

2 Basic Facts

The global transaction database is DB, and the total number of tuples is M .
Suppose P1, P2, . . . ,Pn are n computer nodes, node for short, then there areMi
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tuples in DB i, if DB i (i=1,2,. . . ,n) is a part of DB and stores in Pi, then

DB =
n⋃

i=1
DBi, M =

n∑
i=1

Mi.

Mining global frequent itemsets in a distributed database can be described
as follows: each node Pi deals with local database DB i, and communicates with
other nodes, finally global frequent itemsets of a distributed database are gained.

Definition 1. For itemsets X , the number of tuples which contain X in local
database DB i(i=1,2,. . . ,n) is defined as the local frequency of X , symbolized as
X.si.

Definition 2. For itemsets X , the number of tuples which contain X in the
global database is the global frequency of X , symbolized as X.s.

Definition 3. For itemsets X , if X.si≥min sup*Mi(i=1,2,. . . ,n), then itemsets
X are defined as local frequent itemsets of DB i, symbolized as Fi. min sup is
the minimum support threshold.

Definition 4. For itemsets X , if X.s ≥min sup*M , then itemsets X are defined
as global frequent itemsets, symbolized as F .

Definition 5. FP-tree[5] is a tree structure defined as follow.

(1) It consists of one root labeled as ”null”, a set of itemset prefix subtrees as
the children of the root, and a frequent itemset header table.

(2) Each node in the itemsets prefix subtree consists of four fields: item-name,
count, parent and node-link.

(3) Each entry in the frequent-item header table consists of three fields: i,Item-
name. ii, Side-link, which points to the first node in the FP-tree carrying the
item-set. iii, Count, which registers the frequency of the item-name in the
transaction database.

FP-growth[5] algorithm adopts a divide-and-conquer strategy. It only scans
the database twice and does not generate candidate itemsets. The algorithm
substantially reduces the search costs. The study on the performance of the FP-
growth shows that it is efficient and scalable for mining both long and short
frequent patterns, and is about an order of magnitude faster than the Apriori
algorithm.

Theorem 1. If itemsets X are local frequent itemsets of DB i, then any non-
empty subset of X are also local frequent itemsets of DB i.

Corollary 1. If itemsets X are not local frequent itemsets of DB i, then the
superset of X must not be local frequent itemsets of DB i.

Theorem 2. If itemsets X are global frequent itemsets, thenX and all nonempty
subset of X are at least local frequent itemsets of a certain local database.

Theorem 3. If itemsets X are global frequent itemsets, then any nonempty
subset of X are also global frequent itemsets.
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Corollary 2. If itemsets X are not global frequent itemsets, then superset of X
must not be global frequent itemsets.

3 The FMGFI Algorithm

FMGFI sets one node P0 as the center node, other nodes Pi send local frequent

itemsets Fi to the center node P0. P0 gets local frequent itemsets F ′(F ′ =
n⋃

i=1
Fi)

which are pruned by the searching strategies of top-down and bottom-up. P0
sends the remains of F ′ to other nodes. For local frequent itemsets d ∈ the
remains of F ′, P0 collects the local frequency d.si of d from each node and gets
the global frequency d.s of d. Global frequent itemsets are gained. Setting of
the center node avoids repetitive calculations which are caused by local frequent
itemsets existing in many nodes.
F ′ is pruned by the searching strategies of top-down and bottom-up which

are adopted one after another. Pruning lessens the communication traffic.
The searching strategy of top-down is described as follow.

(1) Confirming the largest size k of itemsets in F ′, turn to(2).
(2) Collecting the global frequency of all local frequent k-itemsets in F ′ from

other nodes Pi, turn to(3).
(3) Judging each local frequent k-itemsets in F ′, if local frequent k-itemsets Q

are not global frequent itemsets, then itemsets Q are deleted from F ′, else
turn to (4).

(4) Adding Q and any nonempty subset of Q to global frequent itemsets F
according to theorem 3 . Deleting Q and any nonempty subset of Q from F ′.

The searching strategy of bottom-up is described as follow.

(1) Collecting the global frequency of all local frequent 2-itemsets in F ′ from
other nodes Pi .

(2) Judging all local frequent 2-itemsets in F ′, if local frequent 2-itemsets R
are global frequent itemsets, then itemsets R are added to global frequent
itemsets F and itemsets R are deleted from F ′, else turn to (3).

(3) Deleting R and any superset of R from F ′according to Corollary 2.

The requirement of global frequent items is the first step of FMGFI. Pi scans
DBi once and computes the local frequency of local items Ei. P0 collects the
global frequency of all items Ei from each node and gets all global frequent items
E. Finally, E is sorted in the order of descending support count. P0 sends E to
other nodes Pi.

Using global frequent items E, FMGFI makes each node Pi construct FP-
treei. Pi computes local frequent itemsets Fi independently by FP-growth al-
gorithm and FP-treei, then the center node exchanges data with other nodes
and combines using the strategies of top-down and bottom-up, finally global fre-
quent itemsets are gained. According to theorem 2, global frequent itemsets are
at least local frequent itemsets of one local database, hence the union of each
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node’s local frequent itemsets Fi must be the superset of global frequent itemsets
F. Computing local frequent itemsets may be carried out asynchronously, and
synchronization is implemented only twice.

The pseudocode of FMGFI is described as follows.

Algorithm: FMGFI
Data: The local transaction database DB i which has Mi tuples and M =

n∑
i=1

Mi, n nodes Pi(i=1,2,. . .n), the center node P0, the minimum support thresh-

old min sup.
Result: The global frequent itemsets F .
Methods: According to the following steps.
step1./*each node adopts FP-growth algorithm to produce local frequent

itemsets*/
for(i=1;i ≤ n;i++) /*gaining global frequent items*/
{Scanning DB i once;
computing the local frequency of local items Ei;
Pi sends Ei and the local frequency of Ei to P0;
}
P0 collects global frequent items E from Ei;
E is sorted in the order of descending support count;
P0 sends E to other nodes Pi; /*transmitting global frequent items to other

nodes Pi*/
for(i=1;i ≤ n;i++)
{creating the FP-treei; /*FP-treei represents the FP-tree of DB i*/
Fi=FP-growth(FP-treei, null); /*each node adopts FP-growth algorithm pro-

duces local frequent itemsets aiming at FP-treei */
}
step2. /*P0 gets the union of all local frequent itemsets and prunes*/
for(i=1;i ≤ n;i++)
Pi sends Fi to P0; /*Fi represents local frequent itemsets of Pi */

P0 combines Fi and produces F ′; /*F ′ =
n⋃

i=1
Fi, represents the union of all

local frequent itemsets */
Pruning F ′ according to the searching strategy of top-down;
Pruning F ′ according to the searching strategy of bottom-up;
/*The searching strategies of top-down and bottom-up are described in section

3.1 */
P0 broadcasts the remains of F ′;
step3. /*computing the global frequency of itemsets*/
for(i=1;i ≤ n;i++)
{ for each itemsets d ∈the remains of F ′

Pi sends d.si to P0; /*computingd.si aiming at FP-treei */
}
for each itemsets d ∈the remains of F ′
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d.s =
n∑

i=1
d.si ; /*d.s represents the global frequency of itemsets d */

step4./*getting global frequent itemsets*/
for each items d ∈the remains of F ′

if (d.s ≥min sup*M) /*M represents the number of tuples in DB */
F = F ∪ d;

4 Comparison Experiments of FMGFI

This paper compares FMGFI with classical distributed algorithm CD and FDM.
All tests are performed on 10M LAN, 5 Lenovo PC with P4 2.0G CPU and 256M
memory as distributed nodes and 1 Dell Server with P4 2.4G CPU and 512M
memory as center node. The experimental data comes from the sales data in
July 2003 of a supermarket. All programs are written in VC++ 6.0 and MPI.

Comparison experiment: It is a way of changing the minimum support thresh-
old while adopting fixed number of nodes. FMGFI compares with CD and FDM

Fig. 1. Comparison of Communication Traffic

Fig. 2. Comparison of Runtime
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in terms of communication traffic and runtime. The results are reported in Fig.1
and Fig.2.

The comparison experiment results indicate that under the same minimum
support threshold, communication traffic and runtime of FMGFI decreases while
comparing with CD and FDM. The less the minimum support threshold, the
better the two performance parameters of FMGFI.

5 Conclusion

FMGFI makes computer nodes calculate local frequent itemsets independently
by FP-growth algorithm, then the center node exchanges data with other com-
puter nodes and combines using the searching strategies of top-down and bottom-
up. At last, global frequent itemsets are gained. Theoretical analysis and exper-
imental results suggest that FMGFI is fast and efficient.
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Abstract. This paper presents a new approach for inducing decision
trees based on Variable Precision Rough Set Model(VPRSM). From the
Rough Set theory point of view, in the process of inducing decision trees,
some methods, such as information entropy based methods, emphasize
the effect of class distribution. The more unbalanced the class distribu-
tion is, the more favorable it is. Whereas the Rough Set based approaches
for inducing decision trees emphasize the effect of certainty. The more
certain it is, the better it is. Two main concepts, i.e. variable precision
explicit region, variable precision implicit region, and the process for in-
ducing decision trees are introduced and discussed in the paper. The
comparison between the presented approach and C4.5 on some data sets
from the UCI Machine Learning Repository is also reported.

Keywords: Variable precision rough set model, variable precision ex-
plicit region, variable precision implicit region, decision tree.

1 Introduction

The Rough Set theory, proposed by Poland mathematician Pawlak in 1982, is
a new mathematic tool to deal with vagueness and uncertainty [1]. It has been
widely used in many fields such as machine learning, data mining and pattern
recognition [2,3,4,5], etc. In [6], the authors proposed a new approach based on
the Rough Set theory for inducing decision trees. The approach was testified
to be a simple and feasible way for constructing decision trees. However, the
induced classifiers lack the ability to tolerate possible noises in real world data
sets. This is an important problem to be handled in applications [7,8,9,10]. In the
process of inducing decision trees[6], the Rough Set theory based approach tends
to partition instances too exactly. Thus, it tends to construct large decision trees
and reveal trivial details in the data. As a result, some leaf nodes’ comprehensive
abilities will be decreased for that they contain too few instances. This is usually
called over-fitting when inducing classifiers.
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Variable Precision Rough Set Model (VPRSM)[11,12,13,14] is an expansion
to the basic Rough Set model, which allows some extent misclassification when
classifying instances. The introduction of a limit β to classification error gives
it the power to consummate the theory of approximation space. This paper
proposes two new concepts based on VPRSM, and then ameliorates the Rough
Set theory based approach. The new approach has the advantage of allowing
misclassification to some extent when we partition instances into explicit region.
This consequently enhances the generalization ability of the induced decision
trees, and increases the ability for predicting future data.

2 Rough Set Based Approach for Inducing Decision Trees

The detailed descriptions of some basic concepts in the Rough Set theory can
be found in [1,4].

Given a knowledge representation system S = (U,Q, V, ρ), U is the universe
and Q denotes the set of attributes. Usually, Q is divided into two subsets, i.e. C
and D, which denote the sets of condition and decision attributes respectively.
ρ : U ×Q −→ V is an information function. V =

⋃
a∈Q Va and Va is the domain

of attribute a ∈ Q.
For any subset G of C or D, an equivalence relation G̃ on U can be defined

such that a partition of U induced by it can be obtained. Denote the partition
as G∗ = {X1, X2, · · · , Xn}, where Xi is an equivalence class of G̃. We usually
call (U, G̃) an approximation space.

Definition 1. Let A ⊆ C, B ⊆ D.A∗ = {X1, X2, · · · , Xn} and B∗ = {Y1, Y2,

· · · , Ym} denote the partitions of U induced by equivalence relation Ã and B̃

respectively. Equivalence relation Ã and B̃ are induced from A and B. The
explicit region is defined as:

ExpA(B∗) =
⋃

Yi∈B∗
A(Yi). (1)

A(Yi) denotes the lower approximation of Yi with respect to Ã.

Definition 2. Let A ⊆ C, B ⊆ D.A∗ = {X1, X2, · · · , Xn} and B∗ = {Y1, Y2,

· · · , Ym} denote the partitions of U induced by equivalence relation Ã and B̃

respectively. Equivalence relation Ã and B̃ are induced from A and B. The
implicit region is defined as:

ImpA(B∗) =
⋃

Yi∈B∗
((A(Yi)) − A(Yi)) = U − ExpA(B∗). (2)

A(Yi) denotes the upper approximation of Yi with respect to Ã.
Obviously, we have: ExpA(B∗)

⋃
ImpA(B∗) = U .

The initial idea of the Rough Set theory based approach for selecting decision
tree nodes lies in the following process:
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From an original data set to the final decision tree, the knowledge about
the system tends to gradually become explicit. Consequently, one will gradually
learn much about the system. Hence, in the process of constructing a decision
tree from the root to the leaves, one condition attribute will be selected as the
node, if its explicit region is greater than that of all other attributes. And thus
we can learn more knowledge about the system.

In the approach, when we evaluate a attribute, the data set is partitioned
into two parts: the explicit region and the implicit region. After partition we can
obtain the sizes of these regions. Similarly, we can obtain the explicit and implicit
regions and their sizes corresponding to all other attributes. We compare the sizes
of the explicit regions, and choose the attribute with the greatest explicit region
as the branch node. See Fig.1 as an example.

Root nl Dl An

Exp

Imp

BlBr

Ce

Ci

Fig. 1. Partial Decision Tree

In Fig.1, Each node (circled) corresponds to a condition attribute. The path
from Root to node nl and to D1 is a partial branch of the final tree. From Root
to the adjacent lower layer toward node nl, we can say that Root attribute fulfils
condition Br. Under branch nl=Bl is a data subset D1 to be partitioned. Each
available condition attribute is evaluated by computing its explicit region. For
an instance, attribute An is evaluated. Data subset D1 is partitioned into Exp
and Imp, which denote the explicit region and implicit region respectively. From
Br,. . . , Bl, and Ce to Exp, it implies that when condition Br,. . . , Bl, and Ce are
satisfied, a unique class label can be assigned to this leaf node unambiguously.
Whereas, from Br,. . . , Bl, and Ci to Imp, the class labels of the tuples are
different. It is apparent that the Exp of the greatest size is preferred and hence
the corresponding attribute should be chosen for partitioning D1.

In real applications, however, data always contains noises. It is not difficult to
find that even a small perturbation may totally reverse the result of the choice
of branch attribute. Hence, VPRSM is exploited to meet such robust demands.

3 VPRSM Based Approach for Inducing Decision Trees

3.1 Basic Concepts

Some basic concepts in Variable Precision Rough Set Model are reviewed in this
section.

Definition 3 [14]. Assume U denotes the universe to be learned. X and Y
denote the non-empty subsets of U . Let:
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C(X, Y ) =

{
1 − |X∩Y |

|X| , if |X | > 0,

0, otherwise.
(3)

Where |X | is the cardinality of X and c(X, Y ) is the relative classification error
of the set X with respect to set Y . That is to say, if all elements of the set
X were partitioned into set Y then in c(X, Y ) × 100% of the cases we would
make a classification error. Generally, the admissible classification error β must
be within the range 0 ≤ β < 0.5.

Suppose (U, R̃) is an approximation space, R∗ = {E1, E2, · · · , Em} denotes
the set containing the equivalence classes in R̃ .

For any subset X ⊆ U , the β lower approximation of X with respect to R̃ is
defined as:

RβX =
⋃

{Ei ∈ R∗|c(Ei, X) ≤ β}. (4)

The β upper approximation of X with respect to R̃ is defined as:

RβX =
⋃

{Ei ∈ R∗|c(Ei, X) < 1 − β}. (5)

3.2 VPRSM Based Approach for Inducing Decision Trees

Based on the above definitions, we introduce two new concepts.

Definition 4. Let A ⊆ C, B ⊆ D.A∗ = {X1, X2, · · · , Xn} and B∗ = {Y1, Y2,

· · · , Ym} denote the partitions of U induced by equivalence relation Ã and B̃

respectively. Equivalence relation Ã and B̃ are induced from A and B. The
variable precision explicit region is defined as:

ExpAβ(B∗) =
⋃

Yi∈B∗
Aβ(Yi). (6)

Where A(Yi) denotes the β lower approximation of Yi with respect to Ã.

Definition 5. Let A ⊆ C, B ⊆ D.A∗ = {X1, X2, · · · , Xn} and B∗ = {Y1, Y2,

· · · , Ym} denote the partitions of U induced by equivalence relation Ã and B̃

respectively. Equivalence relation Ã and B̃ are induced from A and B. The
variable precision implicit region is defined as:

ImpAβ(B∗) =
⋃

Yi∈B∗
(Aβ(Yi) − Aβ(Yi)). (7)

Where A(Yi) denotes the β lower approximation of Yi and A(Yi) denotes the β
upper approximation of Yi with respect to Ã.

In the process of inducing a decision tree based on variable precision explicit
region, the approach selects the attribute with the largest size of variable pre-
cision explicit region. From the above discussion, it will surely reduce the com-
plexity of the tree and consequently enhance the tree’s generalization ability.
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Table 1. Data Sets

No. Outlook Temperature Humidity Windy Class

1 Overcast Hot High Not N
2 Overcast Hot High Very N
3 Overcast Hot High Medium N
4 Sunny Hot High Not P
5 Sunny Hot High Medium P
6 Rain Mild High Not N
7 Rain Mild High Medium N
8 Rain Hot Normal Not P
9 Rain Cool Normal Medium N
10 Rain Hot Normal Very N
11 Sunny Cool Normal Very P
12 Sunny Cool Normal Medium P
13 Overcast Mild High Not N
14 Overcast Mild High Medium N
15 Overcast Cool Normal Not P
16 Overcast Cool Normal Medium P
17 Rain Mild Normal Not N
18 Rain Mild Normal Medium N
19 Overcast Mild Normal Medium P
20 Overcast Mild Normal Very P
21 Sunny Mild High Very P
22 Sunny Mild High Medium P
23 Sunny Hot Normal Not P
24 Rain Mild High Very N

4 An Example

Table 1 is selected from [15]. For simplification, the condition attribute ‘Outlook’
‘Temperature’ ‘Humidity’ ‘Windy’ are rewritten as ‘A’ ‘B’ ‘C’ ‘D’ and the deci-
sion attribute as ‘E’. Assume β=0.2. For convenience, set {A} with one element
of attribute A is simply denoted as A.

We evaluate each of the four condition attributes. The partitions with respect
to equivalence relation Ã, B̃, C̃, D̃ and Ẽ are:

A∗ = {{1, 2, 3, 13, 14, 15, 16, 19, 20}, {4, 5, 11, 12, 21, 22, 23}, {6, 7, 8, 9, 10, 17, 18, 24}}
B∗ = {{1, 2, 3, 4, 5, 8, 10, 23}, {6, 7, 13, 14, 17, 18, 19, 20, 21, 22, 24}, {9, 11, 12, 15, 16}}
C∗ = {{1, 2, 3, 4, 5, 6, 7, 13, 14, 21, 22, 24}, {8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23}}
D∗ = {{1, 4, 6, 8, 13, 15, 17, 23}, {2, 10, 11, 20, 21, 24}, {3, 5, 7, 9, 12, 14, 16, 18, 19, 22}}
E∗ = {{1, 2, 3, 6, 7, 9, 10, 13, 14, 17, 18, 24}, {4, 5, 8, 11, 12, 15, 16, 19, 20, 21, 22, 23}}

The sizes of the variable precision explicit regions with respect to the four
condition attributes are calculated as follows:
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card(ExpAβ(E∗)) = card(
⋃

Ei∈E∗
Aβ(Ei)) = 15

card(ExpBβ(E∗)) = card(
⋃

Ei∈E∗
Bβ(Ei)) = 5

card(ExpCβ(E∗)) = card(
⋃

Ei∈E∗
Cβ(Ei)) = 0

card(ExpDβ(E∗)) = card(
⋃

Ei∈E∗
Dβ(Ei)) = 0

Apparently, the size of the variable precision explicit region with respect to
attribute A is the greatest. Therefore, attribute ‘Outlook’ is chosen as the root
node. Consequently we partition the whole data set into three subsets, which
correspond to the three branches of the decision tree, see a) in Fig.2.

Outlook Outlook

TemperatureHumidity HumidityP(7) P(7)N(8)

N(5)
N(5) N(5)

P(4) P(4)

Sunny SunnyRain RainOvercast Overcast

Windy N(1)

P(1) N(1)

High HighNormal Normal
Mild Hot Cool

Not Very

a) Decision tree constructed by

b) Decision tree cinstructed by RS based approachVPRSM based approach

Fig. 2. Comparison between the decision trees induced by VPRSM and the rough set

based approach

The ‘Sunny’ branch has seven tuples, each tuple has class label of ‘P ’ that
means ‘Play’. This data subset needs no further partition, and this leaf node is
of course assigned ‘P ’ as the class label. The ‘Rain’ branch has eight tuples in
total, one tuple, No. 8, takes the class label ‘P ’. The other seven tuples take the
class label ‘N ’. However, we don’t further partition the subset either, and assign
the class label ‘N ’ to this leaf node for c(A2, E2) = 0.125 ≤ β = 0.2.

Now, we only need to partition the subset corresponding to branch ‘Overcast’.
We evaluate each of the rest condition attributes similarly. The sizes of the vari-
able precision explicit regions with respect to the three attributes are calculated
as follows:
card(ExpBβ(E∗)) = card(

⋃
Ei∈E∗

Bβ(Ei)) = 5

card(ExpCβ(E∗)) = card(
⋃

Ei∈E∗
Cβ(Ei)) = 9

card(ExpDβ(E∗)) = card(
⋃

Ei∈E∗
Dβ(Ei)) = 0

It is apparent that attribute ‘Humidity’ should be chosen. ‘N ’ and ‘P ’ are
assigned to the branch ‘High’ and ‘Normal’ respectively.

The final decision tree(β=0.2) is shown as a) in Fig. 2. The decision tree
constructed by the Rough Set theory based approach is shown as b) in Fig. 2.
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5 Comparisons on Some Real Data Sets from the UCI
Machine Learning Repository

In this section, we compare the VPRSM based approach with the popular algo-
rithm C4.5. We utilize some data sets from the UCI Machine Learning Repository
to test the presented approach (denoted as Ver4). Both the names of all data sets
and the results are shown in Table 2. The results with respect to classification
accuracy before and after pruning are shown in Fig.3 and Fig.4.

We use 16 kinds of data sets from the UCI Machine Learning Repository. In
the table, ‘β’ indicates the threshold of classification error used in Ver4. ‘size’

Table 2. Comparison of the Rough Set theory based approach and C4.5

Program dataset β
Before Pruning

size errors

After Pruning

size errors

C4.5 audiology 73 19(9.5) 52 21(10.5)
Ver4 audiology 0.085 175 115.5 37 41(20.5)
C4.5 balance 111 120(19.2) 41 156(25.0)
Ver4 balance 0 526 0 51 150(24)
C4.5 bands 217 18(3.3) 135 25(4.6)
Ver4 bands 0.06 304 17(3.1) 156 34(6.3)
C4.5 breast-cancer 151 8(1.1) 31 29(4.1)
Ver4 breast-cancer 0.005 171 5(0.7) 31 29(4.1)
C4.5 car 186 62(3.6) 182 64(3.7)
Ver4 car 0 442 9(0.5) 190 92(5.3)
C4.5 flare1 74 55(17) 36 64(19.8)
Ver4 flare1 0.19 137 45(13.9) 43 62(19.2)
C4.5 flare2 179 191(17.9) 48 235(22)
Ver4 flare2 0.33 198 187(17.5) 84 220(20.6)
C4.5 heart 62 14(5.2) 43 19(7.0)
Ver4 heart 0.09 66 12(4.4) 64 12(4.4)
C4.5 house-votes 37 9(2.1) 11 12(2.8)
Ver4 house-votes 0.014 45 7(1.6) 13 12(2.8)
C4.5 iris 9 3(2.0) 9 3(2.0)
Ver4 iris 0.05 9 3(2.0) 9 3(2.0)
C4.5 lung-cancer 29 3(9.4) 25 4(12.5)
Ver4 lung-cancer 0.15 25 1(3.1) 25 1(3.1)
C4.5 monks-1 43 12(9.7) 18 20(16.1)
Ver4 monks-1 0.1 38 1(0.8) 38 1(0.8)
C4.5 monks-2 73 24(14.2) 31 40(23.7)
Ver4 monks-2 0 81 23(13.6) 43 35(20.7)
C4.5 monks-3 25 4(3.3) 12 8(6.6)
Ver4 monks-3 0 27 4(3.3) 12 8(6.6)
C4.5 shuttle 9 3(20.0) 1 6(40.0)
Ver4 shuttle 0.25 9 2(13.3) 3 5(33.3)
C4.5 soybean-large 166 10(3.3) 104 15(4.9)
Ver4 soybean-large 0.03 307 9(2.9) 154 14(4.6)



428 S. Wang et al.

Fig. 3. Comparison between C4.5 and Ver4 before pruning

Fig. 4. Comparison between C4.5 and Ver4 after pruning

indicates the induced tree size. ‘errors’ indicates the learning error of the induced
decision tree. The value out of parenthesis is the number of tuples that were
misclassified by the induced tree. The value within parenthesis is the rate of
misclassification. It is computed by dividing the number of misclassified tuples
by the number of total tuples to be learned.

In Ver4, an attribute was chosen if its explicit region was the largest. When
the explicit regions of all available attributes were identical, the firstly processed
attribute was chosen as the node of the current branch.

In C4.5, we evaluate all possible attributes by calculating their corresponding
Info Gain. Info Gain is defined [9,16] as:

Info Gain(A,U) = Info(U) − Info(A,U).
Where U is the set of objects, A is a condition attribute.
If a set U of objects is partitioned into disjoint exhaustive classes on the basis

of the value of the categorical attribute, the information needed to identify the

class of an element of U is Info(U) = I(P ) = −
k∑

i=1
pi log(pi)

P is the probability distribution of the partition {Y1, Y2, · · · , Yk}
From Table 2, Fig.3 and Fig. 4, we can see that Ver4 shows to be more

competent especially before pruning. The figures show that suitable thresholds
of classification error can be found for the problems.
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In the process of inducing decision trees, the same methods as what are used
in C4.5 for pruning, for dealing with the attributes with missing values and for
discretizing continuous attributes were utilized in Ver4 for parallel comparison.

6 Conclusions

Two new concepts of variable precision explicit and implicit regions are pro-
posed based on Variable Precision Rough Set Model. A new decision tree induc-
ing approach using the new concepts is given. The new approach allows some
misclassification when partitioning instances into explicit regions. Experimental
results show that by finding an appropriate threshold of classification error, the
presented approach will enhance the generalization ability of decision trees.
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Abstract. A new fuzzy clustering algorithm is proposed. By using ker-
nel methods, this paper maps the data in the original space into a
high-dimensional feature space in which a fuzzy dissimilarity matrix is
constructed. It not only accurately reflects the difference of attributes
among classes, but also maps the difference among samples in the high-
dimensional feature space into the two-dimensional plane. Using the par-
ticularity of strong global search ability and quickly converging speed of
Differential Evolution (DE) algorithms, it optimizes the coordinates of
the samples distributed randomly on a plane. The clustering for ran-
dom distributing shapes of samples is realized. It not only overcomes the
dependence of clustering validity on the space distribution of samples,
but also improves the flexibility of the clustering and the visualization of
high-dimensional samples. Numerical experiments show the effectiveness
of the proposed algorithm.

Keywords: Fuzzy clustering, kernel methods, differential evolution.

1 Introduction

Clustering analysis has been widely applied to data analysis, pattern-recognition,
image processing and other fields [1,2,3]. And it is to study and cope unsuper-
vised classification of given objects with mathematical methods. Its aim is to dis-
tinguish and classify the given objects according to their similarity. The Fuzzy
c-means(FCM) clustering algorithm, which is one of the most widely applied
fuzzy cluster-ing algorithms. However, the fuzzy clustering algorithms, which
are represented by FCM, don’t optimize the features of samples. It is processes
directly using feature of samples. Thus it results in the fact that the effectiveness
of the algorithms depends on the space distribution of the samples considerably.
Only if the scale and the distribut-ing shape of the classes are similar in a
data set, could the clustering effect be good. And it is sensitive to the presence
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of noises and outlier in the data sets [4]. As we know, a complicated pattern
classification problem in high-dimensional feature space has more clearly linear
separability than in low-dimensional space. It is ideal to distinguish, attain and
amplify useful features through the nonlinear mapping. Thus a much more ac-
curate clustering can be realized. Therefore, in this paper, a new dy-namic fuzzy
clustering algorithm using DE and kernel method is proposed. Its aim is to real-
ize the clustering for random distributing shapes of samples. The algorithm not
only overcomes the dependence of clustering on the space distribution of input
sam-plesbut also improves its flexibility and visibility.

2 The Mercer Kernel and Differential Evolution

Kernel function method, a technique that extends standard linear methods to
nonlinear methods, is of great value in practice. And it has been a study fo-
cus in re-cent years. A high dimensional space used in SVM is denoted by H
here which is called the feature space,whereas the original space Rn is called the
data space. H is in general an infinite dimensional inner product space. Its inner
product is denoted by 〈·, ·〉, and the norm of H is denoted by ‖ · ‖H . A mapping
φ : Rn −→ H is employed and xk ∈ Rn(k = 1, 2, · · · , k) is transformed into
φ(x1), φ(x2), · · · , φ(xk).The explicit form of phi(x) is not known but the inner
product is represented by a kernel [5]:

K = (K(xi,xj))
k

i,j=1. (1)

There is a commonly used kernel functions. The Gaussian kernel function:
K(x, z) = exp(−‖x−z‖2

2σ2 ).
DE was proposed by Storn and Price in 1997 [6], and it has been success-

fully applied in various fields. The main operators of DE are mutation, crossover
and selection. The main operator in DE is rather different than in other evolu-
tionary algorithms.Given the population size is P and D is the dimensions of
the vector then each individual is represented as a real parameter target vec-
tor xi = [xi1,xi2, · · · ,xiD](i = 1, 2, · · · , P ) in the population. For each a target
vector, a so called mutant vector v is generated, as follows formula:

vi = xr1 + F × (xr2 − xr3), i = 1, 2, · · · , P. (2)

Where xr1 ,xr2 ,xr3are selected distinct vectors from the population at randomly,
and r1 �= r2 �= r3 �= i. F is a real constant parameter that controls the effect of
the differential vector (xr2 − xr3). It is called scaling factor and lies in the range
0 to 2.

The crossover operator of DE algorithm increases the diversity of the mutated
vector by means of the combination of mutant vector vi and target vector xi. The
algorithm generates new vector ui = [ui1, ui2, · · · , uiD] by as follows formula:

uji =
{

vji, if randb ≤ CR or j = randr,
xji, if randb > CR or j �= randr,

(3)
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Where randb is a uniform random number form [0, 1]. CR is a parameter in
[0, 1], which specifies the crossover constant.

The selection operation of DE uses a greedy selection scheme: If and only if the
new vector ui have a better fitness function value compared to the target vector
xi, the new vector ui becomes a new parent vector at next generation, otherwise
the old vector xi is retained to serve as a parent vector for next generation once
again.

3 DE Fuzzy Clustering Based on Kernel Methods

3.1 Introduction of the Algorithm

A complicated pattern classification problem has more clearly linear separability
in a high-dimensional feature space than in a low-dimensional space. It is better to
distinguish, to extract and amplify useful features using nonlinear mapping, so as
to realize much more accurate clustering. Fig. 1 showed the examples that the fea-
tures are mapped into two-dimensional feature space from two-dimensional sam-
ple space. The two-class nonlinear separability data in the sample space can be
linearly separated after mapped into the feature space through kernel function.
The algorithm proposed in this paper first maps the data in the input space
into a high-dimensional feature space using kernel method, and then constructs
the fuzzy dissimilarity matrix, which makes it accurately show the difference of
attributes among classes. And through the matrix, it can map the difference
among samples in the high-dimensional feature space into a two-dimensional
plane. That is to say, if each sample is described in two-dimensional plane ac-
cording to the fuzzy dissimilarity matrix, it is obvious that two similar samples
can have similar positions on the plane, thus the same samples should cluster
together. Therefore, in order to find out the position of each sample on the space,
the algorithm will randomly give each sample a pair of coordinates in the plane.
Then, it optimizes the coordinates of the samples using DE by reiteration, thus
the Euclidean distance between samples approximates to their fuzzy dissimilarity
gradually. Thus, clustering result could be given on the plane, and the dynamic
fuzzy clustering will be realized.

Fig. 1. The Distribution of Sample Space and Feature Space
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3.2 Fuzzy Dissimilarity Matrix in the Feature Space

The fuzzy dissimilarity matrix stores the dissimilarity measurement among the
samples. The algorithm can measure the similarities among every sample using
the attributes of the sample in the high-dimensional feature space. It can reflect
essential at-tributes of data much more efficiently. Therefore, the fuzzy dissim-
ilarity matrix is firstly constructed in the high-dimensional feature space. For
the purpose of constructing the matrix, the samples must be normalized in the
range of [0, 1] in advance.Assume that the sample space is X = {x1,x2, · · · ,xn},
for ∀xi ∈ X the feature vector is xi = (xii,xi2, · · · ,xip), where xik denotes the
k − th attribute of the i − th sample.

Using the cosine method the dissimilarity measurement among the samples
rij can be written as [7]: rij =

∑p
k=1 xikxjk/

√∑p
k=1 x

2
ik

√∑p
k=1 x

2
jk . Accord-

ing to mapping xk → φ(xk) and Eq. 1, in the high-dimensional feature space
rij is :

rij =
∑p

k=1
K(xik,xjk)/

√∑p

k=1
K(xik,xik)

√∑p

k=1
K(xjk,xjk). (4)

The fuzzy dissimilarity matrix (rij)nn is a n×n symmetrical matrix with diagonal
elements 1 and other elements nonnegative normally. The closer or more similar
xi and xj are, the closer to 1 the value of rij is. Otherwise, the closer to 0 it is.

3.3 DE Fuzzy Clustering Algorithm Based on Kernel Methods

Therefore, distributing the samples in a plane randomly, i.e. an assign random
coordinate pair (x, y) to each sample, where x, y ∈ [0, 1]. For a individual in the
algorithm, its code is xi = (ai1, ai2, · · · , aij , · · · , aic), i = 1, 2, · · · , n, where aij

denotes that the coordinate value of the j − th sample at the i − th clustering
situation is (xj1,xj2). Obviously, if the population size is n , then the sample can
be mapped into two-dimensional plane by n distributing modes, i.e. it represents
n clustering results.

The coordinates of the samples are optimized using the DE, such that the
Euclidean distance between samples approximates to their fuzzy dissimilarity.
So the error function is defined as E = 1

2n

∑n
i=1
∑n

j=i |r′ij − rij |.
Where r′ij is the Euclidean distance between the samples xi and xj , whose

coordinates are (ai, bi)i = (1, 2, · · · , n), and (aj , bj)j = (1, 2, · · · , n) respectively,
and r′ij is defined as r′ij =

√
|ai − aj |2 + |bi − bj |2. The smaller the value of the

error function is, the greater the fitness of the individual is, and thus the fitness
function is defined as f = 1

E+1000 .

4 Numerical Experiments

4.1 Experiment Parameters

In order to test the efficiency of the algorithm proposed in this paper, exper-
iments are given using two data sets. The first one is artificially constructed
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data set (from Japan Saitama University taste signals extracted from mineral
waters), which have 500 instances. Each instance has two attributes. There are
three classes. The first class includes 100 instances, the second includes 300 in-
stances, and the third includes 100 instances. The second data set is artificially
constructed (based on the data sets were used in [8]), which has 60 instances, 4
attributes and 3 classes, each class includes 20 instances.

The kernel function used in the experiment is the Gaussian kernel function.
The parameters of the DE are that, the population size is P = 30, the crossover
constant CR = 5, and scaling factor F = 0.6.

4.2 Experiment Results

Fig. 2.1 is the original distribution of data set 1 in two-dimensional plane. Fig. 2.2
shows the clustering results using the algorithm proposed in this paper. It’s
obvious that the samples are separate into three classes. Fig. 2.3 shows the

clustering results using FCM under the condition that designate three clustering
classes. The figure marks the clustering center of the three classes. It’s obvious
that compared with the algorithm proposed in this paper, the effect of FCM
is worse, especially the second type. This is because FCM has good effect only

2.1: The Original Data 2.2: The Algorithm Pro-
posed

2.3: FCM

Fig. 2. The Original Distribution and Clustering Results of Data Set 1

3.1: The Original Random Distribution 3.2: The Algorithm Proposed

Fig. 3. The Original Distribution and Clustering Results of Data Set 2
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for globosely distributing shape of samples. However, the algorithm proposed
doesn’t have this restrict.

As for the data set 2, Fig. 3.1 shows the original random distribution of each
sample in two-dimensional plane. Fig. 3.2 is the clustering result. It is obvious
that the final clustering result of the sample through iteration optimization is
accurate and very visual. If the data set 2 is clustered using FCM, Accuracy is
only 85%.

5 Conclusions

A new dynamic fuzzy clustering algorithm using DE and kernel function is pro-
posed. It not only overcomes the dependence of clustering validity on the space
distribution of the samples, but also improves the flexibility of the clustering
and the visualization of high-dimensional samples. Numerical experiments show
the effectiveness of the proposed algorithm.
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Abstract. The Particle Swarm Optimization(PSO) algorithm,is a ro-
bust stochastic evolutionary algorithm based on the movement and intel-
ligence of swarms. In this paper, a PSO-based algorithm for classification
rule mining is presented. Compared with the Ant-Miner and ESIA in
public domain data sets,the proposed method achieved higher predictive
accuracy and much smaller rule list than Ant-Miner and ESIA.

Keywords: Data mining, classification rule, particle swarm
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1 Introduction

In the last years information collection has become easier, but the effort required
to retrieve relevant information from large-scale databases become significantly
greater. With the rapid growth in the amount of information stored in databases,
the development of efficient and effective tools for revealing valuable knowledge
hidden in these databases becomes more critical for enterprise decision making.
One of the possible approaches to this problem is by means of data mining or
knowledge discovery from databases (KDD)[1]. Through data mining, interesting
knowledge can be extracted and the discovered knowledge can be applied in the
corresponding field to increase the working efficiency and to improve the quality
of decision making.

Classification rule mining is one of the important problems in the emerging
field of data mining which is aimed at finding a small set of rules from the train-
ing data set with predetermined targets[2]. The classification problem becomes
very hard when the number of possible different combinations of parameters is
so high that algorithms based on exhaustive searches of the parameter space
become computationally infeasible rapidly. The self-adaptability of evolutionary
algorithms based on population is extremely appealing when tackling the tasks
of data mining. Especially, there are numerous attempts to apply genetic algo-
rithms(GAs) in data mining to accomplish classification tasks[3].In addition, the
particle swarm optimization (PSO) algorithm[4], which has emerged recently as
a new meta-heuristic derived from nature, has attracted many researchers’ in-
terests[5,6]. The algorithm has been successfully applied to several minimization
optimization problems and neural network training. Nevertheless, the use of the
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algorithm for mining classification rule in the context of data mining is still a
research area where few people have tried to explore.In this paper, the objective
is to investigate the capability of the PSO algorithm to discover classification
rule with higher predictive accuracy and a much smaller rule list.

2 Overview of the PSO

PSO is a relatively new population-based evolutionary computation technique[4].
In contrast to genetic algorithms (GAs)which exploit the competitive character-
istics of biological evolution.PSO exploits cooperative and social aspects, such
as fish schooling, birds flocking, and insects swarming.In the past several years,
PSO has been successfully applied in many different application areas due to
its robustness and simplicity. In comparison with other stochastic optimization
techniques like genetic algorithms (GAs), PSO has fewer complicated operations
and fewer defining parameters, and can be coded in just a few lines. Because
of these advantages, the PSO has received increasing attention in data mining
community in recent years.

The PSO definition is described as follows.Let s denote the swarm size.Each
individual particle i(1 ≤ i ≤ s) has the following properties: a current position xi

in search space, a current velocity vi, and a personal best position pi in the search
space, and the global best position pgb among all the pi.During each iteration,
each particle in the swarm is updated using the following equation.

vi(t + 1) = k[wivi(t) + c1r1(pi − xi(t)) + c2r2(pgb − xi(t))], (1)

xi(t + 1) = xi(t) + vi(t + 1), (2)

where c1 and c2 denote the acceleration coefficients, and r1 and r2 are random
numbers uniformly distributed within [0,1].

The value of each dimension of every velocity vector vi can be clamped to
the range [−vmax, vmax] to reduce the likelihood of particles leaving the search
space. The value of vmax chosen to be k × xmax(where 0.1 ≤ k ≤ 1).Note that
this does not restrict the values of xi to the range [−vmax, vmax].Rather than
that, it merely limits the maximum distance that a particle will move.

Acceleration coefficients c1 and c2 control how far a particle will move in a
single iteration. Typically, these are both set to a value of 2.0, although assign-
ing different values to c1 and c2 sometimes leads to improved performance.The
inertia weight w in Equation (1) is also used to control the convergence behavior
of the PSO.Typical implementations of the PSO adapt the value of w linearly
decreasing it from 1.0 to near 0 over the execution. In general, the inertia weight
w is set according to the following equation[5]:

wi = wmax − wmax − wmin

itermax
· iter, (3)

where itermax is the maximum number of iterations, and iter is the current
number of iterations.
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In order to guarantee the convergence of the PSO algorithm, the constriction
factor k is defined as follows:

k =
2

|2 − ϕ−
√
ϕ2 − 4ϕ|

, (4)

where ϕ = c1 + c2 and ϕ > 4.
The PSO algorithm performs the update operations in terms of Equation (1)

and (2) repeatedly until a specified number of iterations have been exceeded, or
velocity updates are close to zero.The quality of particles is measured using a
fitness function which reflects the optimality of a particular solution.Some of the
attractive features of the PSO include ease of implementation and the fact that
only primitive mathematical operators and very few algorithm parameters need
to be tuned.It can be used to solve a wide array of different optimization prob-
lems, some example applications include neural network training and function
minimization.However, the use of the PSO algorithm for mining classification
rule in the context of data mining is still a research area where few people have
tried to explore.In this paper,a PSO-based classification rule mining algorithm
is proposed in later section.

3 The PSO-Based Classification Rule Mining Algorithm

The steps of the PSO-based classification rule mining algorithm are described
as follows.

Step1: Initialization and Structure of Individuals.In the initialization pro-
cess, a set of individuals(i.e.,particle) is created at random. The structure of
an individual for classification problem is composed of a set of attribute val-
ues.Therefore, individual i′s position at iteration 0 can be represented as the
vector X0

i = (x0
i1, . . . ,x

0
in) where n is the number of attribute numbers in at-

tribute table.The velocity of individual i(i.e.,V 0
i = (v0

i1, . . . , v
0
in))corresponds to

the attribute update quantity covering all attribute values,the velocity of each
individual is also created at random.The elements of position and velocity have
the same dimension.

Step2: Evaluation Function Definition.The evaluation function of PSO algo-
rithm provides the interface between the physical problem and the optimization
algorithm.The evaluation function used in this study is defined as follows:

F =
N

N + FP
· TP

TP + FN
· TN

TN + FP
, (5)

where N is the total number of instances in the training set,TP(true positives)
denotes the number of cases covered by the rule that have the class predicted by
the rule,FP(false positives) denotes the number of cases covered by the rule that
have a class different from the class predicted by the rule,FN(false negatives)
denotes the number of cases that are not covered by the rule but that have the
class predicted by the rule,TN(true negatives) denotes the number of cases that
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are not covered by the rule and that do not have the class predicted by the
rule.Therefore, F ′s value is within the range [0,1] and the larger the value of
F , the higher the quality of the rule.

Step3:Personal and Global Best Position Computation.Each particle i mem-
orizes its own F ′s value and chooses the maximum one, which has been better
so far as personal best position pt

i.The particle with the best F ′s value among
pt

i is denoted as global position pt
gb,where t is the iteration number. Note that in

the first iteration,each particle i is set directly to p0
i , and the particle with the

best F ′s value among p0
i is set to p0

gb.

Step4:Modify the velocity of each particle according to Equation(1).If v
(t+1)
i >

V max
i , then v

(t+1)
i = V max

i . If v
(t+1)
i < V min

i , then v
(t+1)
i = V min

i .
Step5:Modify the position of each particle according to Equation(2).
Step6:If the best evaluation value pgb is not obviously improved or the iteration

number t reaches the given maximum,then go to Step7. Otherwise, go to Step2.
Step7:The particle that generates the best evaluation value F is the output

classification rule.

4 Experimental Results

To thoroughly investigate the performance of the proposed PSO algorithm, we
have conducted experiment with it on a number of datasets taken from the UCI
repository[7].In Table 1, the selected data sets are summarized in terms of the
number of instances, and the number of the classes of the data set.These data
sets have been widely used in other comparative studies.All the results of the
comparison are obtained on a Pentium 4 PC(CPU 2.2GHZ,RAM 256MB).

In all our experiments,the PSO algorithm uses the following parameter val-
ues.Inertia weight factor w is set by Equation (3),where wmax = 0.9 and wmin =
0.4.Acceleration constant c1 = c2 = 2.The population size in the experiments
was fixed to 20 particles in order to keep the computational requirements low.
Each run has been repeated 50 times and average results are presented.

We have evaluated the performance of PSO by comparing it with
Ant-Miner[6], ESIA(a well-known genetic classifier algorithm)[8]. The first ex-
periment was carried out to compare predictive accuracy of discovered rule lists
by well-known ten-fold cross-validation procedure[9]. Table 2 shows the results

Table 1. Dataset Used in the Experiment

Data Set Instances Classes

Ljubljana Breast Cancer 282 2
Wisconsin Breast Cancer 683 2
Tic-Tac-Toe 958 2
Dermatology 366 6
Hepatitis 155 2
Cleveland Heart Disease 303 5
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comparing the predictive accuracies of PSO , Ant-Miner and ESIA, where the
symbol ”± ” denotes the standard deviation of the corresponding predictive ac-
curacy. It can be seen that predictive accuracies of PSO is higher than those of
Ant-Miner and ESIA.

Table 2. Predictive Accuracy Comparison

Data Set PSO(%) Ant-Miner(%) ESIA(%)

Ljubljana Breast Cancer 77.58±0.27 75.28±2.24 75.69±0.16
Wisconsin Breast Cancer 97.95±0.68 96.04±0.93 94.71±0.04
Tic-Tac-Toe 98.84±0.24 73.04±2.53 71.23±0.13
Dermatology 97.72±0.74 94.29±1.20 91.58±0.24
Hepatitis 95.38±0.35 90.00±3.11 90.36±0.21
Cleveland Heart Disease 78.68±0.52 57.48±1.78 76.23±0.25

In addition, We compared the simplicity of the discovered rule list by the
number of discovered rules. The results comparing the simplicity of the rule lists
discovered by PSO,Ant-Miner and ESIA are shown in Table 3. As shown in
those tables, taking into number of rules discovered, PSO mined rule lists much
simpler(smaller) than the rule lists mined by Ant-Miner and ESIA.

Table 3. Number of Rules Discovered Comparison

Data Set PSO Ant-Miner ESIA

Ljubljana Breast Cancer 6.13±0.25 7.10±0.31 26.63±0.25
Wisconsin Breast Cancer 4.37±0.53 6.20±0.25 23.90±0.32
Tic-Tac-Toe 6.68±0.47 8.50±0.62 37.43±0.15
Dermatology 6.59±0.65 7.30±0.47 24.82±0.42
Hepatitis 3.05±0.21 3.40±0.16 18.56±0.23
Cleveland Heart Disease 7.27±0.36 9.50±0.71 29.37±0.35

In summary, PSO algorithm needs to tune very few algorithm parameters,
taking into account both the predictive accuracy and rule list simplicity cri-
teria, the proposed PSO-based classification rule mining algorithm has shown
promising results.

5 Conclusions

The PSO algorithm,new to the data mining community,is a robust stochastic
evolutionary algorithm based on the movement and intelligence of swarms. In
this paper, a PSO-based algorithm for classification rule mining is presented.
Compared with the Ant-Miner and ESIA in public domain data sets,the proposed
method achieved higher predictive accuracy and much smaller rule list than Ant-
Miner and ESIA.
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Abstract. Similarity search is of importance in many new database ap-
plications. These operations can generally be referred as similarity search
in metric space. In this paper, a new index construction algorithm is
proposed for similarity search in metric space. The new data structure,
called bu-tree (bottom-up tree), is based on constructing the index tree
from bottom-up, rather than the traditional top-down approaches. The
construction algorithm of bu-tree and the range search algorithm based
on it are given in this paper. And the update to bu-tree is also discussed.
The experiments show that bu-tree is better than sa-tree in search ef-
ficiency, especially when the objects are not uniform distributed or the
query has low selectivity.

Keywords: Metric space, similarity search, clustering.

1 Introduction

Classical database indexes are often based on treating the records as points in
a multidimensional space and using what are called point access methods [1].
More recent applications involve data that have considerably less structure and
whose specification is therefore less precise. Some example applications include
collections of more complex data such as images, videos, audio recording, text
documents, time series, DNA sequences, etc. The problem is that usually the data
can neither be ordered nor is it meaningful to perform equality comparisons on
it. Instead, proximity is a more appropriate retrieval criterion. The goal in these
applications is often one of the following:

(1) Range query: Retrieve all elements that are within distance r to q. This
is {x ∈ S, d(x, q) ≤ r}.

(2) k nearest neighbor query (kNN): Retrieve the k closest elements to q in
S. This is, retrieve a set A ⊆ S such that |A| = k and x ∈ A, y ∈ S −A, d(x, q) ≤
d(y, q).

The most basic type of query is the range query. The process of responding
to these queries is termed similarity searching.

All those applications may have some common characteristics. There is a
universe S, and a nonnegative distance function d : S × S → R+ defined among

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 442–449, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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them. This distance satisfies the three axioms that make the set a metric space:
d(x, y) = 0 ⇔ x = y; d(x, y) = d(y,x); d(x, z) ≤ d(x, y) + d(y, z).

The last one is called the “triangle inequality” and is valid for many reasonable
similarity functions, such as Euclidean distance for time series and edit distance
for string. The smaller the distance between two objects, the more similar they
are.

The distance is considered expensive to compute for complex objects. Hence,
it is customary to define the complexity of the search as the number of distance
computations performed, disregarding other components such as CPU time for
side computations, and even I/O time. Given a database of |S| = n objects,
queries can be trivially answered by performing n distance computations. The
goal is to structure the database such that we perform less distance computa-
tions.

There are effective methods to search on d dimensional spaces, such as kd-trees
and R-trees [2]. However, for roughly 20 dimensions or more those structures
cease to work well [3]. We focus in this paper on general metric spaces, and the
solutions are also well suited for d dimensional spaces.

For the general metric space index methods, we use the given distance func-
tion to index the data with respect to their distance from a few selected objects,
which is called distance-based indexing. The advantage of distance-based index-
ing methods is that distance computations are used to build the index. But once
the index has been built, similarity queries can often be performed with a sig-
nificantly lower number of distance computations than a sequence scan of the
entire dataset, as would be necessary if no index exists [3].

In this paper we give a new distance-based index construction algorithm which
is different from traditional methods. The traditional methods use partition to
construct indexes. Our method is based on constructing the index tree from
bottom-up using hierarchical clustering, rather than the traditional top-down
approaches.

There are some traditional distance-based indexes in metric spaces, such as
vp-tree [4], gh-tree [5] and sa-tree [6] etc.

2 A Bottom-Up Index Tree (bu-Tree)

We know that all traditional algorithms are based on top-down decomposition
in every level to construct index trees. The aim of indexing for metric space is
to reduce the distance computation amount (the number of distance computa-
tions performed) between query objects and database objects. So for the index
construction, we hope that for every level, its covering radius is small and can
include more objects. Then when querying, according to triangle inequality, we
can exclude more objects using less distance computation amount.

In this paper, a bottom-up tree (called bu-tree) index construction algorithm is
proposed. For the bu-tree construction, we first make each object in the database
as a cluster whose pivot is the object itself and the radius is zero. Every time we
choose two clusters to compose a new cluster. The merging criterion is to choose
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two closest clusters and the new cluster can cover the two clusters with minimal
radius extension. Using this method from bottom up to gradually merge clusters,
we finally generate a binary index tree called bu-tree. In essence, bu-tree is based
on hierarchical clustering. The clustering criterion is to merge two clusters where
extension radius is minimal. Compared to traditional index algorithms, bu-tree
can increase the compactness of index tree. When query, we can get the results
using less distance computation amount.

2.1 The Algorithm for Constructing bu-Tree

First we give the data structure for each node in bu-tree.

struct node {
int pivot; //the object id as the pivot
double radius; //covering radius
node left,right; //the corresponding left and right children

}

Now we give the bu-tree construction algorithm. For the given database ob-
jects, we first construct the node set S, and every object in S is regarded as a
single node structure. Every node’s pivot is this object’s id, the initial radius is 0,
and the left and right children are null. At the same time we initialize a distance
matrix. The initial matrix[i,j] is the distance between object i and object j.
When processing, matrix[i, j] stores the minimum extension radius using object
i as pivot which can includes the cluster whose pivot is j. The detail algorithm
is presented in Alg. 1.

For the algorithm in Alg. 1, steps (1) and (2) find out two nodes which will
be merged, and the criterion is to make the merged new node’s radius minimal.
Steps (3) to (7) generate new parent node to merge the two children nodes,
and update S. For step (8) to (9), because S has been changed, we update the
corresponding elements of distance matrix for further merging operation.

Next we present the corresponding range query algorithm for bu-tree. Assume
n is the bu-tree root, q is a query object, and ε is the query radius. The algorithm
in Alg. 2 depicts the query process. The query algorithm is based on depth-first
search for bu-tree. It uses triangle inequality to reduce the query computation
amount for database.

Although we only present the algorithm about range query, the k nearest
neighbor query (kNN ) algorithm can be built based on range query algorithm
and is similar to it.

Sometimes, when the database changes, such as objects inserting and deleting,
the index should be updated accordingly. Now we give some ideas about how to
update bu-tree.

Insert: when there is a new object p to insert into the index, first we find
the leaf node r which is nearest to p. Then let p as a child node of r. After
this operation we update every node’s covering radius from root to r in the
corresponding path, making the new radius extended to include p.
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Algorithm 1. The bu-tree construction algorithm
Input : Distance matrix matrix, node set S.
Output: The bu-tree T .
while (the number of nodes in S > 1) do

(1) Scan matrix to find the minimum value, assume it is matrix[i, j];
(2) Find node1 and node2 in S where node1.pivot = i and node2.pivot = j;
(3) Generate parent node p, and let p.left = node1, p.right = node2;
(4) p.pivot = i;
(5) p.radius = matrix[i, j];
(6) Insert parent node p to S;
(7) Remove node1 and node2 from S;
(8) Update the ith column of the matrix, compute the minimum distance

from other node k(1 ≤ k ≤ |S|) to node i (the new inserted parent node)
as: matrix[k, i] = max(matrix[k, i], matrix[k, j]);

(9) Update the distance to ∞ for the jth row and the jth column of matrix,
and also set matrix[i, j] = ∞;

end
return T ∈ S;

Algorithm 2. Range Search Algorithm for bu-tree ( Search(n, q, ε)
Input : Root node n, query object q, query radius ε.
Output: The set of query results S.
S = ∅;
if (n = null) then

return S;
end
if (dist(n.pivot, q) ≤ n.radius + ε) then

if (dist(n.pivot, q) ≤ ε) then
S = S ∪ {n.pivot}, if n.pivot �∈ S;

end
S = S ∪ Search(n.left, q, ε);
S = S ∪ Search(n.right, q, ε);

end

Delete: while deleting an object p in the index, we can first make a pseudo-
deletion. This means to search the bu-tree to find the node which has node.pivot
= p and marked it as a deleted node. We do not do real deletion at this time,
only for later reconstruction.

If the update is frequent for the database, the bu-tree is not optimal anymore.
When possible we should reconstruct the index tree.

2.2 An Example of bu-Tree

We give an example to illustrate how to construct the bu-tree and query using it.
Assuming there are four objects in the database, every object is a 2-dimensional
time series: a(0, 0), b(0, 1), c(2, 0), d(2, 1). We use Euclidean distance as the dis-
tance function. According to bu-tree construction algorithm, first we choose two
nearest nodes to merge. Because the distance between a and b is 1, which is not
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larger than any two other nodes’ distance, we first merge a, b and choose a as
the parent node whose covering radius is 1. Now the remaining nodes become
a, c, d. Using the same process, next we merge c, d and use c as the parent node
whose covering radius is 1. The remaining clusters now become a, c. At last we
use a as the parent node and merge a, c clusters. In order to cover cluster c, the
radius of a should extend to

√
5. At last a becomes the root node of the index

tree. Now the bu-tree is constructed.
Fig. 1 gives the extension process for the four objects. We can see that the

leaf node’s radius is 0, which means it only includes itself. The root node is a,
and covering radius is

√
5, which covers all the objects in the database.
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Fig. 1. The Construction Process of bu-tree
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Fig. 2. The Intersection of Query Object q with the Database

Now we give a query example. There is a query object q(3, 0), and the range
query radius is 1. Fig. 2 depicts the query result for the process. According to
query algorithm, the distance between q and root a is first computed. Because
the query radius is intersected with the covering range of a, we should search the
left and right trees of a. The left tree’s root is still a, but now the covering radius
is 1. It is not intersected with q’s query radius, so we can stop searching the left
tree. For the right tree, the root node is c, and the covering radius is 1. After
computing the distance between q and c, we know that there is no intersection
between q’s query radius and c’s covering range. So we stop searching the right
tree. The final result is that q is computed with two objects a and c, and there
is no object in database whose distance to q is less than 1.
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3 Experiments

In this section, we present the experimental results. We only compare the per-
formance of bu-tree with that of sa-tree. Because in paper [6], they claimed that
sa-tree is better than any other metric indexes.

For the first experiment, the database is time series data. We randomly gen-
erate 3K time series, and each time series length is 100, the distance function is
Euclidean distance.

It is known that the distance is considered expensive to compute for complex
objects. Hence, in metric space it is usual to define the complexity of the search
as the number of distance computations performed (computation amount), and
use computation amount as the comparison criterion.

We randomly generate 100 query time series, and each result is the comparison
of the average computation amount of 100 trials using bu-tree and sa-tree when
query radius gradually increases. Fig. 3 gives the comparison result. It is shown
that bu-tree need less computation amount compared to sa-tree for the same
query radius.

In order to further show bu-tree’s superiority to sa-tree, we give the following
formula:

DecreasedRate = |sa−tree computation amount|−|bu−tree computation amount|
|sa−tree computation amount|−|the matched amount|

We hope to use this formula to illustrate when disregarding the actual matched
time series, how much better is bu-tree than sa-tree. Fig. 4 gives the decreased
rate. As the query radius decreases, bu-tree is gradually better than sa-tree. This
illustrates that our bu-tree is more suitable for finding few nearest neighbors.

Because many databases have clustering feature, in order to show the advan-
tage of bu-tree for clustering data, we give another experiment: the same as 3K
time series data set and each one’s length is 100. But the time series are in four
different clusters, all of them belong to one of the four clusters. Every object is
near to its own cluster and far away from other clusters. As above, we give the
computation amount comparison and the decreased rate in Fig. 5 and 6. Because
of clustering feature, Fig. 5 and Fig. 6 are trapezoid. But bu-tree is always better
than sa-tree.
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Fig. 3. The Computation Amount of bu-

tree and sa-tree for Random Data
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Fig. 5. The Computation Amount of bu-

tree and sa-tree for Clustering Data
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Fig. 6. The Decreased Rate of bu-tree

Compared to sa-tree for Clustering Data
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Fig. 7. The Computation Amount of Opti-

mal bu-tree and Incremental Construction
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Fig. 8. The Increased Rate of Incremental

Construction Compared to bu-tree

For the construction of bu-tree, it is known that only when the whole database
is known in advance can we construct an optimal bu-tree. In section 2, we give
the ideas of dynamic inserting objects into bu-tree. In order to show the effect
of insertion, we consider an extreme situation: all the objects are sequentially
inserted into bu-tree, now the algorithm becomes incremental construction. We
also randomly generate 3K time series and each one’s length is 100. And the
experiments are like above. Fig. 7 gives the computation amount comparison of
incremental construction and the optimal bu-tree, where the increment in Fig. 7
refers to the incremental constructed bu-tree and the bu-tree refers to optimal
constructed bu-tree when the data are known before construction. Fig. 8 gives
the increased rate for the computation amount of which incremental construction
is greater than optimal bu-tree. Even in this extreme situation, the incremen-
tal bu-tree’s performance does not drop too much than optimal situation. If we
already have a bu-tree, the performance will be between the two situations in
Fig. 7 when dynamic inserting. So we can say that bu-tree is a well-structured
index tree for update. But when the objects are updated too frequently, in or-
der to get an optimal bu-tree, we should reconstruct the whole index for the
database.
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4 Conclusions

A new distance-based index algorithm called bu-tree is presented in this paper.
Compared to traditional methods, it has better query efficiency. Different from
traditional index tree which is constructed from top-down, the bu-tree is built
from bottom-up and merges hierarchically. Using this method it can get more
compact structure. Therefore when query, it can reduce unnecessary distance
computation. At the same time, this paper also presents the corresponding range
query algorithm and dynamic update method. The experimental results show
that bu-tree is better than sa-tree for computation amount. So bu-tree is a well-
structured index tree.
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Abstract. Time series data naturally arise in many application do-
mains, and the similarity search for time series under dynamic time
shifting is prevailing. But most recent research focused on the full length
similarity match of two time series. In this paper a basic subsequence
similarity search algorithm based on dynamic programming is proposed.
For a given query time series, the algorithm can find out the most similar
subsequence in a long time series. Furthermore two improved algorithms
are also given in this paper. They can reduce the computation amount
of the distance matrix for subsequence similarity search. Experiments on
real and synthetic data sets show that the improved algorithms can sig-
nificantly reduce the computation amount and running time comparing
with the basic algorithm.

Keywords: Similarity search, time shifting, subsequence.

1 Introduction

Time series data naturally occur in many application domains, such as compu-
tational biology, meteorology, astrophysics, geology, multimedia and economics.
Many applications require the retrieval of similarity time series. Examples in-
clude financial data analysis and market prediction [1], moving object trajectory
determination [2], music retrieval [3] and DNA sequence similarity search [4]
etc. Studies in this area involve two key issues: the choice of a distance function
(similarity model), and the mechanism to improve retrieval efficiency.

Concerning the issue of distance function choosing, many distance functions
have been considered, including Lp-norms [1], edit distance with real penalty
(ERP) [5]. Lp-norms are easy to compute. However, they cannot handle local
time shifting, which is essential for time series similarity matching. ERP, DTW
and EDR etc. have been proposed to exactly deal with local time shifting. DTW
and EDR are non-metric distance functions. ERP is a metric function, which
means that it satisfies triangle inequality [5].

2 Subsequence Similarity Search

In this section, we use ERP as the distance function which allows time shifting.
The advantage of ERP is that it is a metric function satisfying triangle inequality.
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And in full length time series match, the accuracy is not less than L1-norm, EDR
and DTW distance functions [5]. But the algorithms presented in this paper
are not constrained to ERP distance function. They are also suitable to other
distance functions allowing time shifting such as DTW etc. First we give the
ERP distance function definition between two single values.

Disterp(ri, si) =

⎧⎨⎩ |ri − si| if risi not gaps
|ri| if si is a gap
|si| if ri is a gap

(1)

For the above definition, when ri and si are two real numbers, the distance
is L1-norm. When one value is a gap (null value), the distance is the absolute
value of another real number. For the given two time series Q and R, paper [5]
gives the algorithm to compute full length match distance Dist(Q, R) in ERP
distance. Generally speaking, for time series similarity search, the usual queries
include 1NN (1 nearest neighbor) query etc. Def. 1 gives the 1NN query for
subsequence match.

Definition 1. The 1NN query for subsequence refers that there are a long time
series R and a query time series Q. Find a subsequence R′ of R (R′ ⊂ R),
under the given distance function, the distance Dist(R′,Q) between R′ and Q
is minimum for all possible subsequence selections in R.

We first give the basic query algorithm for subsequence 1NN query. The idea
of the algorithm is to use dynamic programming to compute every cell in the
distance matrix. The computation equation is given in the following. For the cell
D(i, j), its value is the minimum of: D(i− 1, j − 1)+ |Q(i)−R(j)|, D(i− 1, j)+
|Q(i)|, D(i, j − 1) + |R(j)|.

D(i, j) = min

⎧⎨⎩D(i − 1, j − 1) + |Q(i) − R(j)|
D(i − 1, j) + |Q(i)|
D(i, j − 1) + |R(j)|

(2)

Alg. 1 gives the basic subsequence 1NN query algorithm. Because the whole
distance matrix need to be computed, the computation complexity of basic algo-
rithm in Alg. 1 is O(m ∗n). In order to reduce computation complexity, we give
two improved algorithms. The aim of the two improved algorithms is to reduce
the cells needed to compute in the distance matrix.

Alg. 2 gives this algorithm (improved algorithm 1). When computed column
by column, for the current MinDist, if all values after some position will be not
less than the current MinDist, we can stop the computation for the remaining
cells of this column. For each column, first compute to row Len. If needed,
continue to compute until getting the first cell whose value is larger than MinDist,
and get this position as new Len.

Next we give a further improved algorithm. It is based on improved algorithm 1.
In improved algorithm 1, because we do not know the initial MinDist value, we
set MinDist as ∞ (represent a very large value). If we can give estimation to



452 B. Liu et al.

Algorithm 1. The Basic Algorithm for Subsequence 1NN Query
Input : Time Series R, Query Q.
Output : Minimum Distance MinDist.
Insert a gap value before the first number of R as new R;
D(0, 0) = Q(0); //D is the distance matrix
//compute the first row of distance matrix
for ( j = 1; j < R.count; j + + ) do

D(0, j) = min(D(0, j − 1) + |R(j)|, |Q(0) − R(j)|);
end
//compute the first column of distance matrix
for ( i = 1; i < Q.count; i + +) do

D(i, 0) = D(i − 1, 0) + |Q(i)|;
end
//compute the majority in the distance matrix
for (i = 1; i < Q.count; i + +) do

for (j = 1; j < R.count; j + +) do
D(i, j) = min(D(i − 1, j − 1) + |Q(i) − R(j)|,

D(i − 1, j) + |Q(i)|, D(i, j − 1) + |R(j)|);
end

end
//query the minimum distance
MinDist = ∞;
for (j = 0; j < R.count; j + +) do

if (D(Q.count − 1, j) < MinDist) then
MinDist = D(Q.Count − 1, j);
Postion = j;

end
end
return MinDist;

MinDist before computing distance matrix, it will further reduce the amount of
cells needed to compute in distance matrix. Alg. 3 gives this improved algorithm
(improved algorithm 2).

3 Experiments

This section will give some experiments. We will compare the computation
amount and query time of the basic algorithm and two improved algorithms
for different query length. The computation amount refers to the number of
cells needed to compute in the distance matrix. Query time is used to compare
the actual running time for each algorithm.

We use two types of data. The first type is synthetic data and the data comply
with random walk model: pi = pi−1+xi, where xi is a random number between 0
and 10. Using this model to generate a long time series whose length is 10K. The
second type of data is real-world data: stock data from Dow Jones Industrials
in recent 30 years, and the length is also 10K.

For both types of data, query time series are generated in length 100, 200,
400, 600, 800, 1000, and for every length we generate 100 time series data. Each
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Algorithm 2. ImprovedFindMinDist1 for subsequence 1NN query
Input : Time Series R, Query Q.
Output : Minimum Distance MinDist.
Insert a gap value before the first number of R as new R;
Len = 0; //Len is used to represent the row number needed to compute to
MinDist = ∞;
D(0, 0) = Q(0);
//compute the first row of distance matrix
for (j = 1; j < R.count; j + +) do

D(0, j) = min(D(0, j − 1) + |R(j)|, |Q(0) − R(j)|);
end
//Column by column to compute distance matrix
for (j = 0; j < R.count; j + +) do

//if the values in this column have exceeded MinDist,
//do not compute the remaining of this column again
if (D[0, j] > MinDist and len = 0) then

len = 0;
end
else

if (len = Q.count) then
len = len − 1;

end
//compute this column to row Len
for (i = 1; i <= len; i + +) do

D[i, j] = Min(D(i − 1, j − 1) + |Q(i) − R(j)|,
D(i − 1, j) + |Q(i)|, D(i, j − 1) + |R(j)|);

end
if (D[len, j] > MinDist) then

Backtrack this column to the first value in reverse order, which is
less than MinDist and update the Len to this row number added 1;

end
else

Continue to compute this column until find the value, which is
larger than MinDist or this column have been computed all, and
mark Len as the last computed row number;

end
if (len = Q.count) then

MinDist = D[len − 1, j]; //update MinDist
end

end
end
return MinDist;

experimental result is the average of the 100 trials. For the first random walk
type data, the query time series is generated using the same method as for the
long time series. For the stock data, the query data come from a random selected
section of the Dow Jones Industrials, and each number in every time series is
added a random value to generate the query time series.

Fig. 1 gives the computation amount comparison for basic algorithm and
two improved algorithms in different query length for synthetic data. We can
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Algorithm 3. ImprovedFindMinDist2 for subsequence 1NN query
Input : Time Series R, Query Q.
Output : Minimum Distance MinDist.
Count = R.count/Q.count;
MinDist = ∞;
//estimate minimum distance MinDist
for (i = 0; i < Count; i + +) do

Total = 0;
for (j = 0; j < Q.count; j + +) do

Total+ = |Q[j] − R[j + Q.count ∗ i]|;
end
if (total < MinDist) then

MinDist = total;
end
Invoke ImprovedFindMinDist1 using this computed estimation MinDist;

end

see that improved algorithm 1 and 2 are nearly 10 times better than the basic
algorithm. Fig. 2 gives the running time comparison for the three algorithms.
Because the running time is approximately proportional to the computation
amount, improved algorithms are also nearly 10 times better than the basic
algorithm for running time.
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Fig. 3 gives the computation amount of the three algorithms in different query
length for Dow Jones Industrials. The improved algorithm 1 significantly reduces
the computation amount than basic algorithm. And improved algorithm 2 is also
one order of magnitude better than basic algorithms. Fig. 4 gives the comparison
of running time. From Fig. 4, we can obviously see than when we first estimate
MinDist, improved algorithms 2 is obviously better than improved algorithm 1
for running time.

In a conclusion, improved algorithm 2 is the best in the three algorithms for
computation amount and running time for different query length and data types.
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4 Conclusions

This paper has discussed the subsequence similarity search problem. We present
a basic algorithm based on dynamic programming to do 1NN subsequence query,
and furthermore give two improved algorithms to reduce the computation am-
ount. The experimental results have shown that improved algorithms are signif-
icantly better than basic algorithm in computation amount and running time.
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Abstract. In this paper, we present an evaluation of a rule evaluation
support method for post-processing of mined results with rule evaluation
models based on objective indices. To reduce the costs of rule evaluation
task, which is one of the key procedures in data mining post-processing,
we have developed the rule evaluation support method with rule evalu-
ation models, which are obtained with objective indices of mined classi-
fication rules and evaluations of a human expert for each rule. Then we
have evaluated performances of learning algorithms for constructing rule
evaluation models on the meningitis data mining as an actual problem
and five rulesets from the five kinds of UCI datasets. With these results,
we show the availability of our rule evaluation support method.

Keywords: Data mining, post-processing, rule evaluation support, ob-
jective indices.

1 Introduction

In recent years, it is required by people to utilize huge data, which are eas-
ily stored on information systems, developing information technologies. Besides,
data mining techniques have been widely known as a process for utilizing stored
data, combining database technologies, statistical methods, and machine learn-
ing methods. Although, IF-THEN rules are discussed as one of highly usable
and readable output of data mining, to large dataset with hundreds attributes
including noises, a rule mining process often obtains many thousands of rules.
From such huge rule set, it is difficult for human experts to find out valuable
knowledge which are rarely included in the rule set.

To support a rule selection, many efforts have done using objective rule eval-
uation indices[1,2,3] such as recall, precision and interestingness measurements
(called ‘objective indices’ later), which are calculated by the mathematical anal-
ysis and do not include any human evaluation criteria. However, it is also difficult
to estimate a criterion of a human expert with single objective rule evaluation
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index[4], because his/her subjective criterion such as interestingness is influenced
by the amount of his/her knowledge.

To above issues, we have been developed an adaptive rule evaluation support
method for human experts with rule evaluation models, which predict experts’
criteria based on objective indices, re-using results of evaluations of human ex-
perts. In this paper, we present a performance comparison of learning algorithms
for constructing rule evaluation models. Then we discuss about the availability
of our rule evaluation model construction approach.

2 Rule Evaluation Support with Rule Evaluation Model
Based on Objective Indices

We considered the process of modeling rule evaluations of human experts as the
process to clear up relationships between the human evaluations and features of
input if-then rules. Fig.1 shows the process of rule evaluation model construction
based on re-use of human evaluations and objective indices.

At the training phase, attributes of a meta-level training data set is obtained
by objective indices values. At the same time, a human expert evaluates the
whole or part of input rules at least once to join as class of each instance. After
obtaining the training data set, its rule evaluation model is constructed by a
learning algorithm. At the prediction phase, a human expert receives predictions
for new rules based on their values of the objective indices. Since the task of rule
evaluation models is a prediction, we need to choose a learning algorithm with
higher accuracy as same as current classification problems.

3 Performance Comparisons of Learning Algorithms for
Rule Model Construction

In this section, we firstly present the result of an empirical evaluation with
the dataset from the result of a meningitis data mining[5]. Then to confirm
the performance of our approach, we present the result on five kinds of UCI
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benchmark datasets [6]. In these case studies , we have evaluated the following
three view points: performances of learning algorithms, estimations of minimum
training subsets to construct valid rule evaluation models, and contents of learned
rule evaluation models.

To construct a dataset to learn a rule evaluation model, 39 objective indices [4]
have been calculated for each rule. To these dataset, we applied the following five
learning algorithms from Weka[7]: C4.5 decision tree learner[8] called J4.8, neu-
ral network learner with back propagation (BPNN)[9], support vector machines
(SVM) [10], classification via linear regressions (CLR) [11], and OneR[12].

3.1 Constructing Rule Evaluation Models on an Actual Datamining
Result

In this case study, we have taken 244 rules, which are mined from six dataset
about six kinds of diagnostic problems as shown in Table1. These datasets are
consisted of appearances of meningitis patients as attributes and diagnoses for
each patient as class. Each rule set was mined with each proper rule induction
algorithm composed by CAMLET[5]. For each rule, we labeled three evalua-
tions (I:Interesting, NI:Not-Interesting, NU:Not-Understandable), according to
evaluation comments from a medical expert.

Table 1. Description of the meningitis datasets and their datamining results

Dataset #Attributes #Class #Mined rules #’I’ rules #’NI’ rules #’NU’ rules
Diag 29 6 53 15 38 0
C Cource 40 12 22 3 18 1
Culture+diag 31 12 57 7 48 2
Diag2 29 2 35 8 27 0
Course 40 2 53 12 38 3
Cult find 29 2 24 3 18 3
TOTAL — — 244 48 187 9

Comparison on Performances. In this section, we show the result of the
comparisons of performances on the whole dataset, recall and precisions of each
class label. Since Leave-One-Out holds just one test instance and remains as the
training dataset repeatedly for each instance of a given dataset, we can evaluate
the performance of a learning algorithm to a new dataset without any ambiguity.

The results of the performances of the five learning algorithms to the whole
training dataset and the results of Leave-One-Out are also shown in Table2.

Table 2. Accuracies(%), Recalls(%) and Precisions(%) of the five learning algorithms

On the whole training dataset Leave-One-Out
Recall of Precision of Recall of Precision of

Acc. I NI NU I NI NU Acc. I NI NU I NI NU
J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0 75.8 27.1 92.0 0.0 37.1 82.3 0.0
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These learning algorithms excepting OneR achieve equal or higher perfor-
mance with combination of multiple objective indices than sorting with sin-
gle objective index. The accuracies of Leave-One-Out shows robustness of each
learningalgorithm. These learning algorithms have achieved from 75.8% to 81.9%.

Estimating Minimum Training Subset to Construct a Valid Rule Eval-
uation Model. Since the rule evaluation model construction method needs eval-
uations of mined rules by a human expert, we have estimated minimum training
subset to construct a valid rule evaluation model. Table3 shows accuracies to the
whole training dataset with each subset of training dataset. As shown in these
results, SVM and CLR, which learn hype-planes, achieves grater than 95% with
only less than 10% of training subset. Although decision tree learner and BPNN
could learn better classifier to the whole dataset than these hyper-plane learners,
they need more training instances to learn accurate classifiers.

Table 3. Accuracies(%) on the whole training dataset of the learning algorithms

trained by sub-sampled training datasets
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Rule Evaluation Models on the Actual Datamining Result Dataset.
In this section, we present rule evaluation models to the whole dataset learned
with OneR, J4.8 and CLR, because they are represented as explicit models such
as a rule set, a decision tree, and a set of linear models.

(a) (b) (c)

Fig. 2. Top 10 frequencies of indices of learned rule evaluation models by OneR(a),

J4.8(b), and CLR(c). Statistics are collected by 10,000 times bootstrap iterations.

As shown in Fig.2, indices used in learned rule evaluation models, they are not
only the group of indices increasing with a correctness of a rule, but also they
are used some different groups of indices on different models. Almost indices
such as YLI1, Laplace Correction, Accuracy, Precision, Recall, and Coverage
are the former type of indices on the models. The later indices are GBI[13] and
Peculiality[14], which sums up difference of antecedents between one rule and
the other rules in the same ruleset. This corresponds to the comment from the
human expert.
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3.2 Constructing Rule Evaluation Models on Artificial Evaluation
Labels

To confirm the performances without any human criteria, we have also evalu-
ated our method with rule sets from the following five datasets of UCI Machine
Learning Repository: Mushroom, Heart, Internet Advertisement Identification
(called InternetAd later), Waveform-5000, and Letter. From these datasets, we
obtained rule sets with bagged PART, which repeatedly executes PART[15] to
bootstrapped training sub-sample datasets. To these rule sets, we calculated the
39 objective indices as attributes of each rule. As for the class of these datasets,
we set up three class distributions with multinomial distribution. The left table
of Table4 shows us the datasets with three different class distributions.

Table 4. Datasets of the rule sets learned from the UCI benchmark datasets(the

left table), accuracies(%) on whole training datasets(the center table), and number of

minimum training sub-samples to outperform %Def. class(rhe right table)

Accuracy Comparison on Classification Performances. As shown in the
center table of Table4, J48 and BPNN always work better than just predicting
a default class. However, their performances are suffered from probabilistic class
distributions to larger datasets such as Heart and Letter.

Evaluation on Learning Curves. As shown in the right table of Table4,
to smaller dataset, such as Mushroom and InternetAd, they can construct valid
models with less than 20% of given training datasets. However, to larger dataset,
they need more training subsets to construct valid models, because their perfor-
mances with whole training dataset fall to the percentages of default class.

4 Conclusion

In this paper, we have described rule evaluation support method with rule eval-
uation models to predict evaluations for an IF-THEN rule based on objective
indices. As the result of the performance comparison with the five learning algo-
rithms, rule evaluation models have achieved higher accuracies than just predict-
ing each default class. Considering the difference between the actual evaluation
labeling and the artificial evaluation labeling, it is shown that the medical ex-
pert evaluated with certain subjective criterion. In the estimations of minimum
training subset for constructing a valid rule evaluation model on the dataset of
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the actual datamining result, SVM and CLR have achieved more than 95% of
achievement ratio compared to the accuracy of the whole training dataset with
less than 10% of subset of the training dataset with certain human evaluations.
These results indicate the availability of our method to support a human expert.

As future work, we will introduce a selection method of learning algorithms
to construct a proper rule evaluation model according to each situation.
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Abstract. This paper proposes an application of rough sets as a data
preprocessing front end for support vector classifier (SVC). A novel
multi-class support vector classification strategy based on binary tree
is also presented. The binary tree extends the pairwise discrimination
capability of the SVC to the multi-class case naturally. Experimental
results on benchmark datasets show that proposed method can reduce
computation complexity without decreasing classification accuracy com-
pare to SVC without data preprocessing.

Keywords: Rough sets, support vector classifier, dimension reduction.

1 Introduction

Recently, support vector classifier has become a popular tool in pattern recog-
nition, due to its remarkable characteristics such as good generalization perfor-
mance, the absence of local minimal and the sparse representation of solution
[1]. However, when the number of training samples is large and the dimension of
input vectors is high, support vector classifier will suffer from long training time
and large memory requirement. One way to decrease computation complexity of
SVC is to reduce the dimension of input vectors. Usually there are always exist
many redundant and irrelevant features in the data to the given classification
task. In some case, too many redundant and irrelevant features may overpower
key features for classification. If redundant and irrelevant features are removed,
the computation complexity can be decreased significantly.

Rough sets theory is an efficient tool in dealing with vagueness and uncertainty
information [2]. Attribute reduction is one of the most important concepts in
rough sets[3][4]. Redundant and irrelevant features can be removed from the
decision table without any classification information loss using rough sets.

Based on the above idea, rough sets theory is used to reduce the dimension
of training and test data of support vector classifiers in this paper.

2 Rough Sets

An information system is a 4-tuple S =< U, A, V, f >,where U is a non-empty
finite set of objects. A is non-empty finite set of attributes, V is the union of
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attributes domains, i.e., V =
⋃

Va for ∀a ∈ A, where Va denotes the domain of
the attribute of a, f : U × A → V is an information function which for ∀a ∈ A
and x ∈ U, f(x, a) ∈ Va. A 5-tuple T = (U, C

⋃
D, V, f)is called a decision table,

where C is the set of condition attributes and D is the set of decision attributes.
Each subset of attributes R ∈ A determines a binary indiscernibility relation:

IND(R) = {(x, y) ∈ U × U |∀a ∈ R, f(x, a) = f(y, a)} (1)

The indiscernibility relation IND(R) partitions U into some equivalent classes.
U/R denotes the family of all equivalent classes. [x]R denotes an equivalent class
which includes x.

The R lower and upper approximation of X ⊂ U are respectively defined as
follows:

RX = {x ∈ U |[x]R ⊆ X} (2)

RX = {x ∈ U |[x]R
⋂

X �= φ} (3)

C positive region of D is defined as:

POSC(D) =
⋃

X∈U/D

CX (4)

The degree of D relies on C denoted as γC(D) is defined as:

γC(D) = |POSC(D)|/|U | (5)

For attributes c ∈ C, if γC(D) = γC(C −c),attribute c is redundant with respect
to D, otherwise is indispensable. The significance of attribute c with respect to
D is defined as:

SSGF (c, C, D) = γC(D) − γC−c(D) (6)

For B ⊆ C, if B is indispensable relative to D, and γC(D) = γC−c(D),B is
called a relative reduction of D which is denoted as Rred(C).

In general, reduction of a decision table is not only one. The intersection of
all the reductions is kernel denoted as Ccore(D).

A reduction algorithm based on attribute significance is given as follow:

1) Compute relative kernel Ccore(C);
2) Compute γC(D) and Rred ← Ccore;
3) ∀ai ∈ C − Rred, B ← Rred + ai,compute SSGF (ai, B, D);
4)Rred ← Rred + aj

for aj satisfies SSGF (aj , B, D) = max
ai∈C−Rred

{SSGF (ai, B, D)};
5) Compute γred(D);
6) If γred(D) = γC(D), returnRred; otherwise go to 3).

3 Multi-class Support Vector Classifier

3.1 Support Vector Classifier

SVC constructs a classifier from a set of labeled pattern called training examples.
Let{(xi, yi) ∈ Rd ×{−1, 1}, i = 1, 2, ..., l} be such a set of training samples. The
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SVC try to find the optimal separate hyperplane wTx+b = 0 that maximizes the
margin of the nearest samples from two classes. To the nonlinear problem, the
original data are projected into a high dimension feature space F via a nonlinear
map Φ : Rd → F so that the problem of nonlinear classification is transformed
into that of linear classification in feature space F . By introducing the kernel
function K(xi,xj) = Φ(xi) ·Φ(xj), it is not necessary to explicitly know Φ(·) and
only the kernel function K(xi,xj) is enough for training SVC. The corresponding
optimization problem of nonlinear classificaiton can be obtained by

W (α) =
l∑

i=1

αi − 1
2

l∑
i=1

l∑
j=1

αiαjK(xi,xj) (7)

subject to :
l∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., l (8)

By solving the above problem, we can get the optimal hyperplane∑
i=1

αiyiK(xi,xj) + b = 0 (9)

Then we can get the decision function of the form:

f(x) = sgn[
∑
i=1

αiyiK(xi,xj) + b]. (10)

3.2 Multi-class Recognition Using SVC With Binary Tree

SVC are originally designed for two-class classification. Usually there are two
schemes to obtain a multi-class pattern recognition system: (1) the one-against-
all strategy to classify between each class and all the remaining; (2) the one-
against-one strategy to classify between each pair. While the former often leads
to ambiguous classification, we adopt the latter one for our multi-class in this
paper [5].

We propose to construct a bottom-up binary tree for classification. Suppose
there are eight classes in the dataset, the decision tree is shown in Fig.1, where
the numbers 1-8 encode the classes. Note that the numbers encoding the classes

1 2 3 4 5 6 7 8

2 3

3

5 8

5

5

Fig. 1. The Binary Tree Structure of Eight Classes Pattern Recognition Problem
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are arbitrary without any means of ordering. By comparison between each pair,
one class number is chosen representing the winner of the current two classes.
The selected classes (from the lowest level of the binary tree) will come to the
upper level for another round of tests. Finally, a unique class will appear on top
of the tree.

When c does not equal to the power of 2, we decompose it as: c = 2n1 +2n2 +
· · ·+2nM ,where n1 ≥ n2 ≥ ·· · ≥ nM . Because any natural number (even or odd)
can be decomposed into finite positive integrals which are the power of 2. If c is
an odd number,nM = 0; if c is even, nM > 0.Note that the decomposition is not
unique. After the decomposition, the recognition is executed in each binary tree,
and then the output classes of these binary trees are used again to construct
another binary tree. Such a process is iterated until only one output is obtained.

4 Experimental Results

To evaluate the efficiency of the presented method, two multi-class datasets
satimage and letter from the Stalog collection are used in this section. We give
dataset statistics in Table 1. In the last column we also give the best test rate
listed in stalog homepage [6].

Table 1. Dataset Statistics

Dataset #training samples #test samples #class #attributes Stalog rate (%)

Letter 15000 5000 26 16 93.6

Satimage 4435 2000 6 36 90.6

Figure 2 shows the whole architecture of the proposed method. The compu-
tational experiments were done on a AMD Athlon 1800+ with 256 MB RAM
using Libsvm [7] and Rose2 [8].

In the letter dataset, the number of classes c = 26, and the SVCs based on
methods are trained for c(c− 1)/2 = 325 pairs. To construct the binary tree for
testing, we decompose 26=16+8+2. So we have one binary tree which with 16
leaves, denoted as T1 and one binary tree with 8 leaves, denoted as T2 and one
binary tree with 2 leaves, denoted as T3 . The outputs of T1 and T2 construct
2-leaf treeT4 . Finally, the outputs of T3 and T4 construct 2-leaf tree T5 . The
true class will appear at the top of T5.

In the satimage dataset, the number of classes c = 6, and the SVCs based on
methods are trained for c(c− 1)/2 = 15 pairs. To construct the binary tree for
testing, we decompose 6=4+2. So we have one binary tree which with 4 leaves,
denoted as T1 and one binary tree with 2 leaves, denoted as T2 .The outputs of
T1 andT2 construct 2-leaf tree T3 . The true class will appear at the top of T3.

Using the proposed reduction algorithm, we can get a reduction {A3, A4, A6,
A7, A8, A9, A10, A11, A12, A14} of letter dataset which has 10 attributes. And we
also get a reduction {A0, A2, A9, A15, A19, A25, A33}of satimage dataset which
has 7 attributes.
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attributions

obtain a reduced
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Traing the SVCs
between pair

Test set

Reduced test set

Multi-class SVC
based on bianry tree

Classification
results

Fig. 2. The Whole Architecture of the Proposed Method

In this experiment, each binary SVC uses rbf kernel function and the corre-
sponding parameters are selected by five-fold cross validation. The experimental
results are reported in table 2 and table 3.

Table 2. Comparison of Training Time and Test Time

Datasets SVC RS+SVC

Training time (s) Test time (s) Training time (s) Test time (s)

Letter 155 52 134 47

Satimage 15 8 12 6.8

Table 3. Comparison of Number of Support Vectors and Test Accuracy

Datasets SVC RS+SVC

#SV Test accuracy (%) #SV Test accuracy (%)

Letter 8930 97.98 7637 97.99

Satimage 1689 91.2 1564 91.7

From experimental results we can see that the proposed method removes ir-
relevant and redundant attributes from the dataset and then decreases the com-
putation complexity and memory requirement a lot. And the presented method
can achieve equal or better classification accuracy with respect to the standard
support vector classifiers without data preprocessing.

5 Conclusion

In this article, we introduce rough sets to perform data preprocessing for SVC.
Experimental results show that this method is computationally feasible for high
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dimensional datasets compared to that using SVC without data preprocessing.
This method speeds up SVC for time critical applications and makes possible
feature discovery.
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Abstract. Consensus clustering refers to combining multiple cluster-
ings over a common dataset into a consolidated better one. This paper
compares three graph partitioning based methods. They differ in how
to summarize the clustering ensemble in a graph. They are evaluated in
a series of experiments, where component clusterings are generated by
tuning parameters controlling their quality and resolution. Finally the
combination accuracy is analyzed as a function of the learning dynamics
vs. the number of clusterings involved.

Keywords: Consensus clustering, graph partitioning, clustering ensem-
ble, consensus function, data mining.

1 Introduction

Clustering algorithms are valuable tools in data mining. They provide a means
to explore and ascertain structure within the data by organizing it into groups.
Although many clustering algorithms exist in the literature, they all underly
some concepts about data organization and cluster characteristics and no single
algorithm can adequately handle all sorts of cluster shapes and structures.

Theoretical and practical developments over the last decade have shown that
combining classifiers is a valuable approach to producing accurate recognition
results. The idea of combining the decisions of clustering algorithms for obtain-
ing better data partitions is thus a focus of recent research on data clustering.
Without any knowledge about the true clustering or the quality of the com-
ponent clusterings in the ensemble, we can only assume that they are equally
good. The objective is then transformed to seeking a combined clustering that
is as compatible as possible to the ensemble as a whole. Hence such a process
is referred to as consensus clustering. It is assumed that if the components are
good and diverse enough, closeness to a large ensemble is equivalent to closeness
to the true clustering. The key motivation is that the synergy of many such
components will compensate for their weaknesses.

The first aspect in consensus clustering is the production of an ensemble of
component clusterings . Methods for constructing ensembles include: manipula-
tion of the training samples, such as bootstrapping [1], reweighing the data [2]
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or using random subspaces [3]; injection of randomness into the learning algo-
rithm - providing random initialization into a learning algorithm, for instance, K-
means[4]; applying different clustering techniques[5] or their relaxed versions [3].

Another aspect concerns how to combine the individual clusterings, which
is often referred to as the consensus function. An underlying principle is of-
ten assumed that the similarity between objects is proportional to the fraction
of components that assign them together. Approaches differ in the way how
this similarity is represented and in the way the principle is implemented. One
can compute the co-association values for every pair of objects and feed them
into any reasonable similarity based partitioning algorithms, such as hierarchical
clustering [4] and graph partitioning [5,6]. In fact, a clustering ensemble directly
provides a new set of features describing the instances. The problem can be
transformed to clustering this set of categorical vectors, using the EM/K-means
algorithm to maximize likelihood/generalized mutual information [7,3].

This paper focuses on comparing three graph partitioning based methods,
where components in the ensemble are all generated from a hypothetical true
clustering by random relabeling. Thus the quality and diversity are under con-
trol. In particular, the following issues receive special attention in the evaluation.
How weak could input partitions be? How diverse should input partitions be?
How many components are needed to ensure a successful combination? The rest
of the paper is organized as follows. Background on graph partitioning for con-
sensus clustering is reviewed in Section 2. The three methods are introduced in
Section 3. Empirical results are reported in Section 4 and concluding remarks
are given in Section 5.

2 Background

2.1 Problem Formulation

The consensus function f is formulated as follows. Suppose we are given a set
of N objects X = {xi}N

i=1 and a set of M hard clusterings Φ = {Cm}M
m=1. Each

clustering Cm groups X into Km disjoint clusters. Denote the total number of
clusters by Kt =

∑M
m=1 Km. The job is to find a new partition C∗ = f(Φ) of

X that summarizes the information from the gathered partitions Φ. Our main
goal is to construct a consensus partition without the assistance of the original
patterns in X , but only from their cluster labels.

2.2 Graph Partitioning

All graph partitioning based methods summarize the clustering ensemble in a
graph and partition it to yield the final clustering. So first we review graph
partitioning briefly. A weighted graph G = (V, E) consists of a vertex set V
and an edge set E ⊆ V × V . All edge weights can be stored in a nonnegative
symmetric |V | × |V | matrix W , with entry W (i, j) describing the weight of the
edge linking vertices i and j. Given graph G and a prespecified number K,
the job is to partition the graph into K parts, namely, K disjoint groups of
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vertices. The edges linking vertices in different parts are cut. The general goal is
to minimize the sum of the weights of those cut edges. To avoid trivial partitions,
the constraint is imposed that each part should contain roughly the same number
of vertices. In practice, different optimization criteria have been defined, such as
the normalized cut criterion and the ratio cut criterion.

In this paper, METIS [8], a multilevel graph partitioning algorithm, is em-
ployed for its robustness and scalability. From a different angle, it partitions
a graph in three basic steps. First it coarsens the graph by collapsing vertices
and edges. Then it partitions the coarsened graph. Finally the partitions are re-
fined recursively until a desired number of clusters are formed. METIS is highly
efficient with quasi-linear computational complexity. It achieves competitive per-
formance, compared to other graph partitioning algorithms.

3 Three Graph Formulations

3.1 CSPA

Cluster-based Similarity Partitioning Algorithm (CSPA) [5] is most simple and
heuristic. Given M component clusterings, the overall similarity matrix W for
objects is just the co-association matrix, with entry (i, j) denoting the fraction
of components in the ensemble in which the two objects i and j are assigned
together. This induced similarity measure is then used to construct the similarity
graphG = (V, E). V contains N vertices each representing an object. The weight
of edge linking objects i and j is just set to their similarity W (i, j). The graph
is then partitioned using METIS to produce the final clustering.

CSPA’s complexity is O(N2Kt), since it needs to compute an N × N simi-
larity matrix, using binary vector representation for clusters in [5]. It reduces to
O(N2M) if using cluster labels directly.

3.2 MCLA

Meta-CLustering Algorithm (MCLA) [5] is based on grouping clusters. The re-
sulting clusters, called meta-clusters, compete for objects. In detail, it first con-
structs a meta-graph G = (V, E). V contains Kt vertices each representing an
original cluster in the ensemble. The similarity/edge weight between two clus-
ters Cm

i and Cn
j is computed using the Jaccard measure: |Cm

i ∩Cn
j |/|Cm

i ∪Cn
j |.

METIS is employed to partitioned the meta-graph. Each resulting cluster has
an association value for each object describing its level of association between
them. It is defined as the fraction of original clusters in the meta-cluster to which
the object is assigned. Finally the final clustering is obtained by assigning each
object to the meta-cluster with the largest association value.

MCLA’s complexity is O(NKt
2), since it needs to compute a Kt×Kt similarity

matrix. In practice, MCLA tends to be best in low noise/diversity settings, be-
cause MCLA assumes that there are meaningful cluster correspondences, which
is more likely to be true when there is little noise and less diversity.
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3.3 HBGF

CSPA considers similarity between instances, while MCLA considers similarity
between clusters. Another graph formulation, called Hybrid Bipartite Graph
Formulation (HBGF) [6], models both instances and clusters of the ensemble
simultaneously as vertices in the graph and only considers similarity between
instances and clusters.

In detail, HBGF constructs a graph G = (V, E). V = V c ∪ V i, where V c

contains Kt vertices each representing a cluster in the ensemble, and V i contains
N vertices each representing an instance. The binary weight matrix W is defined
as follows. The weight W (i, j) = 1 if and only if one of vertices i and j represents
a cluster and the other represents an instance belonging to that cluster. Hence

W is in the form
(

0, S
ST , 0

)
. Positive values only appear in the N ×Kt submatrix

S, where each row is for an instance and each column is for a cluster. The graph
is a bipartite actually. METIS partitions this bipartite and the final clustering
is obtained by assigning each object to the cluster where its vertex belongs.

Because of its special structure, the complexity of HBGF is O(NKt), the
size of S. It is significantly smaller than the size N2 of CSPA, assuming that
Kt 0 N . Empirical studies on several real datasets in [6] indicated that HBGF
compared favorably with CSPA and MCLA, which was attributed to the fact
that HBGF retains all of the information provided by a given ensemble, allowing
the similarity among instances and the similarity among clusters to be considered
collectively in forming the final clustering.

4 Experimental Evaluation

4.1 Evaluation Criteria

Because the true class labels in our experiments are known, we can measure the
quality of the clustering solutions using external criteria that measure the dis-
crepancy between the true classification and the obtained clustering. We employ
the symmetric normalized mutual information (NMI)[5]. Let T and C denote
the random variables corresponding to the true classification and a derived clus-
tering, respectively. NMI is computed as I(T , C)/

√
H(T )H(C), where I(T , C)

denotes the mutual information between T and C, and H(X) denotes the en-
tropy of X . NMI measures the shared information between T and C. It reaches
its maximal value of 1 when they are identical. It is minimized to 0 when they
are independent.

4.2 Experimental Results

Following [5], we devise a set of experiments where components in the ensemble
are derived from a hypothetical true clustering with cluster labels 1, ..., K = 5
over N = 500 instances via random relabeling. In detail, at each noise level
ε ∈ [0, 1], a fraction ε of data are randomly chosen. Their true cluster labels
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Fig. 1. The behavior of the three methods as a function of noise level

are replaced with random values from the uniform distribution from 1, ..., k.
Such process is repeated M times to produce of an ensemble of size M . Note
that components may have different number of clusters, so k may vary from
component to component.

We study the consensus accuracy of the three methods as a function of noise
level ε, the resolution of partitions k, as well as its dependence on the number
of components M . Because we are mainly interested in the performance for very
weak components, first we roughly estimate the maximal noise level at which
they can still easily yield the true clustering. Since METIS always tries to output
balanced clusterings to avoid trivial partitions, we use the standard setting: the
true clustering is balanced with 100 data in each of five clusters, k = K and
M = 100. We test 21 noise levels evenly distributed in [0, 1]. All three methods
keep yielding the true clustering until around ε = 0.7. The results for ε > 0.6
are plotted in Fig. 1.

Next we concentrate on two noise levels ε = 0.7, 0.9. By varying M in [5, 1000],
we want to see which method converges fastest and first outputs the true cluster-
ing. In addition to setting k = K, two other types are tried. By setting k = 2K,
we want to check if performance can be improved by setting the number of clus-
ters in components higher than the true number of classes. By setting k to a
random number in [K, 2K], we want to check if a random number of clusters in
each partition ensures a greater diversity of components and increase combina-
tion accuracy, as shown in [4].

The results for the balanced true clustering are given in Fig. 2, where the
first and second rows are for ε = 0.7 and ε = 0.9, respectively. The first column
shows the comparison of the three methods when k = K. The comparison of
the three partition resolutions, K (denoted by K1), 2K (denoted by K2) and
a random number in [K, 2K] (denoted by Kr), is illustrated in the next three
columns for the three methods, respectively. Due to the computational cost, we
set Mmax = 500 for MCLA in the case of K2 and Kr. In general, at ε = 0.7, the
three methods behave similarly and all yield the true clustering around M = 100.
MCLA converges fastest slightly. Increasing k does not help much, except that
K2 improves performance for CSPA. Their difference becomes obvious when ε =
0.9. CSPA performs much better than the other two in terms of both accuracy
and stability. Its performance is consistently improved by increasing either k or
M . It is not hard to show that in CSPA, the expectations of similarity values
are (1 − ε)2 + ε/k and ε/k for two instances from the same and different true
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Fig. 2. Comparison of the three methods CSPAP, MCLA and HBGF as a function of
ensemble size M and component resolution k(K1,K2,Kr) in the case of the balanced
true clustering. The first and second rows are for ε = 0.7 and ε = 0.9, respectively.
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Fig. 3. Comparison of the three methods CSPAP, MCLA and HBGF as a function of
ensemble size M and component resolution k(K1,K2,Kr) in the case of the imbalanced
true clustering. The first and second rows are for ε = 0.7 and ε = 0.9, respectively.

clusters, respectively. Their ratio 1 + k(1 − ε)2/ε increases with k, which makes
METIS prefer to cut the right edges more. Increasing k also improves accuracy
for MCLA and HBGF, but HBGF becomes unstable after M > 500.

The results for the imbalanced true clustering are given in Fig. 3, where its five
clusters are of size 50, 100, 200, 50, 100, respectively. From the first row of ε = 0.7,
one can see that MCLA performs best. Increasing k only improves accuracy
for CSPA and HBGF, but impairs MCLA. Due to the balance constraint by
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Fig. 4. Quality vs. similarity for three types of component resolutions K1,K2 and
Kr at ε = 0.9. The first and second rows are for the balanced and imbalanced true
clusterings, respectively.

METIS, CSPA and HBGF cannot achieve perfect results, since each instance is
modeled as a vertex in them. Only when N 0 Kt, as demonstrated in Fig. 2c
with k = 2K and M = 300(N = 500 < Kt = 3000), it gets possible for
HBGF to achieve perfect results, for clusters are also modeled as vertices in it.
Similar changes happen again when ε = 0.9 and CSPA becomes the best. Its
accuracy keeps increasing with either M or k. HBGF gets very sensitive to M
after M > 500.

As for the complexity, in the case of weak components when a very large
ensemble is in need, MCLA (O(NKt

2)) soon overtakes CSPA (O(N2M)), due
to the quadratic term. In the case of k = 2K and M = 500, for instance, if
using binary representation for clusters, each of 500 instances is represented by
a 5000-D binary vector, which causes a higher dimensionality than data size.
MCLA’s cost O(500 × 50002) is much larger than CSPA’s cost O(5003), though
MCLA’s results are still much poorer than those of CSPA.

Finally, let us take a look at the impact of changing k (K1, K2 and Kr) on
the ensemble itself. For each of three cases, an ensemble of 30 components are
generated so that we have 30×29/2 pairs of components. For each pair (C1, C2),
we compute the quality as 1

2 (NMI(T , C1) + NMI(T , C2)) (T denotes the true
clustering), and the similarity as NMI(C1, C2). The results for noise ε = 0.9
are plotted in Fig. 4, where the first and second rows for the balanced and
imbalanced cases, respectively. It is said that an ensemble of high quality and
considerable diversity(low similarity) is needed for combination, so the ensemble
is prefered to be located in the upper-left corner in the figures. One can see that
changing k from K (the first column) to 2K (the second column) increases qual-
ity but decreases diversity. Nevertheless, the combination accuracy is generally
improved by all three methods. It suggests a limited and controlled diversity
is prefered for ensemble construction. Intuitively, we hope that the component
clusterings differ only in the instances whose assignment is incorrect and these
errors could be complemented or canceled during the combination. For those
instances assigned correctly, the more the components share, the better. The
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last column indicates that setting k to a random number in [K, 2K] does not
increase diversity, compared to the first column.

5 Concluding Remarks

This paper compared three graph partitioning based methods for consensus clus-
tering. They differ in how to summarize the clustering ensemble in a graph.
METIS was employed to partition the graph to yield the final clustering. They
were systematically evaluated over synthetical weak ensembles where quality
and diversity of components were under control. Regarding accuracy, at moder-
ate noise levels, MCLA performs slightly better than the other two. Note that
in the case of imbalanced true clusterings, this is partially due to the balance
constraint on CSPA by METIS. When components are of very low quality and
a large ensemble is needed, CSPA becomes the best, even for the imbalanced
case. Regarding computational cost, MCLA grows quadratically in the ensemble
size, while the other two grow linearly. Regarding stability, CSPA is the best and
HBGF is the worst. The instability of HBGF may be partially attributed to the
radical change in size ratio between clusters and instances as the ensemble size
increases. Our experiments also confirmed that increasing component resolution
generally improves accuracy, especially for very weak components. Setting it to
a random number, however, does not improve performance as much as setting
it to a fixed number higher than the true number of clusters.
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Abstract. Many studies have shown that association-based classifica-
tion can achieve higher accuracy than traditional rule based schemes.
However, when applied to text classification domain, the high dimen-
sionality, the diversity of text data sets and the class skew make classifi-
cation tasks more complicated. In this study, we present a new method
for associative text categorization tasks. First,we integrate the feature
selection into rule pruning process rather than a separate preprocess
procedure. Second, we combine several techniques to efficiently extract
rules. Third, a new score model is used to handle the problem caused by
imbalanced class distribution. A series of experiments on various real text
corpora indicate that by applying our approaches, associative text clas-
sification (ATC) can achieve as competitive classification performance as
well-known support vector machines (SVM) do.

Keywords: associative text classification, feature selection, rule extrac-
tion, score model .

1 Introduction

Since the first introduction of association rules in solving classification problem
[1], many associative classifiers have been proposed [2,6,11]. The main advan-
tage of these methods is that they can achieve higher accuracy than traditional
rule-based schemes such as C4.5 [3]. The applications of associative classifica-
tion are also involved in text categorization domain [4,5,10,12]. However, when
associative classification is applied to text domain, the main characteristics of
textual data such as high dimensional feature space, the diverse topics and the
imbalance of class distributions, have to be taken into account. Feature selection
is a useful method to reduce dimensionality and remove noise, and it has been
widely used in categorization systems [8,9,13,14]. It is strange that, current
ATC methods, either apply no feature selection method [5], or simply do fea-
ture selection in a separate preprocess procedure [4,6,12]. No one has considered
how to perform feature selection in the context of associative text classification.
The diverse topics of corpus makes it necessary to set minimum support lower,
and consequently, the lager number of candidate rules makes it more difficult
to extract rules. The general-to-specific ordering based pruning [2,4,5,11] is an
effective way to extract rules to form the end classifier. However, when adopting
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such a pruning strategy, it is very time consuming to remove all bad rules that
existing general-to-specific relationship.

In this paper, we conduct extensive research on ATC and then present some
specialized techniques for text categorization tasks. We first integrate feature
selection into rule pruning process rather than a separate preprocess procedure
in the context of ATC. To deal with the problem of large number of rules, several
techniques, such as vertical path pruning in a prefix tree, confidence and phi
coefficient based pruning, and sequential covering rule selection, are combined
together for efficient training. In addition, a new score model is presented to
handle the problem caused by imbalanced datasets.

2 Building Category Classifiers

2.1 The Integrated Feature Selection Process

Almost all text classification methods use feature selection as a preprocess pro-
cedure in order to improve efficiency. Feature selection method using an informa-
tion gain criterion works well with text and has been widely used (e.g. [7,9,13]).
However, in the situation of associative text classification, the features selected
by a separate preprocess procedure may not certainly be frequent items. So
it is no use to predetermine the number of features before mining association
patterns. In this study, we compute information gain metric the same time as
evaluating rules. Once the IG metric has been computed, it is quite easy to
choose the top K rules of length 1 with the highest IG in each category, and
the antecedents of these rules forms the feature set. Through this way, we can
dynamically determine the best feature number for ATC without additional cost.

2.2 Rule Extraction

One of the critical components in ATC is how to effectively extract rules for
accurate classification. The method used in this paper includes some efficient
pruning strategies in addition to a sequential covering algorithm. The first prun-
ing strategy is to evaluate these rules by their confidence. The second strategy is
to use phi coefficient to further prune rules negatively related. The third strategy
is to use general-to-specific ordering to prune rules with lower accuracy but more
specific rules since they only incur the risk of overfitting. This pruning strategy
is also used in [2,4,5]. However, our method is different from all previous works.
Assuming the association patterns are stored in a prefix tree structure, not only
rules along the vertical path may have super-subset relationships, but those
along the horizontal direction also do. The vertical check only needs one pass
of depth first traversal over the whole tree for all branches while the horizontal
check needs multiple passes traverse over the whole tree for each rule node in
the tree. So we only prune rules more specific and with lower confidence along
vertical direction, and defer the choosing step till classification time. As can be
seen later, such a method is quite efficient. After several pruning steps, we adopt
sequential covering technology to select the rules. The entire procedure is as
shown in Algorithm 1.
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Algorithm 1. Rule Extracting Alg.
Input : a training data set T, a set of candidate rules Ci, a confidence

threshold minconf, a phi coefficient minphi, a feature set size K
Output: a subset of rules of the end classifier Ci

1. Eliminate rules with confidence or phi coefficient value lower than minconf or
minphi from each Ci;
2. For rules whose antecedent length is 1 in each Ci, find the top K rules with
the highest information gain, and the antecedents in these K rules form feature
set Ki;
3. Eliminate rules containing items not included in Ki from each Ci;
4. For each rule r in Ci, find its specific rule r’ along the vertical directions, if r’
has a confidence value lower than r, then remove r’ from Ci;
5. Sort the rules in Ci according to their confidence in descending order, while r
is not the last rule in Ci, for each rule r ranked first in Ci, if r can correctly
classify at least one training instances, then r is selected and the instances
covered by r are removed from T ; otherwise r is removed from Ci. If the training
data set T is empty after removing training instances, then stop the iteration
and remove all the rules ranked behind current r from Ci.

3 Score Model

When predicting an unseen instance, all the matching rules work together to
predict that test document in our method since the decision made by multiple
rules is likely to be more reliable. The question is which label should be assigned
to the new data if those matching rules have different consequents. A simple
score model is just to sum the confidences of matching rules, as was done in [4].
However, in case of the skewed class distribution, the number of extracted rules
and the distribution of their confidences in different classifiers often vary in a
wide range. For a classifier consisting of a few hundreds of rules whose confidences
distributed from 0.6 to 1, and another classifier consisting of only tens of rules
whose confidences distributed from 0.8 to 1, the former is more liable to have a
higher recall but a lower precision while the latter is more liable to have a higher
precision but a lower recall. We utilize two approaches to solving this problem.
The first is to set a bound of confidence. Once the rule with the maximum
confidence rm is found, we set a bound by subtracting from rm a threshold value
τ . Only rules have confidences higher than this bound can participate in scoring
the test document. The second strategy we adopt is to normalize the scores by
a NormFactor, which is introduced to handle with the rule number discrepancy
among different classifiers. The score function of test document D to classifier
Ci is defined as follows:

Score(Ci, D)=

∑
rconf

NormFactor(Ci)
, (rεCi ∩ D,rm.conf − τ � r.conf �rm.conf)

NormFactor(Ci) =
RuleNumberInCi

RuleNumberInAllClassifiers
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4 Experimental Results

4.1 The Effect of Feature Selection

We have performed an extensive performance study to evaluate the effect of
feature number. The results show that a close to best classification performance
can be achieved when the number of features is 280 and 100 for Reuters and
WebKB collection, respectively.

4.2 Pruning Method Comparison: Vertical VS. Complete

We have argued that the complete pruning based on general-to-specific rela-
tionship [2,4,5] is too time-consuming and proposed a solution to pruning only
along vertical paths in the prefix tree. We illustrate the effectiveness of differ-
ent pruning methods in Table 1. From Table 1, it is clear that the training
time on all data sets is greatly reduced, and the testing time of two different
pruning methods is nearly equal. The results in Table 1 also reveal that the mi-
croF1 achieved by applying our vertical pruning is better than that by complete
pruning.

Table 1. Pruning Method Comparison (minsup = 0.05)

Methods Training Time (s) Testing Time (s) microF1

ReutersC 197 11 91.9

ReutersV 50 10 92.1

WebKbC 1840 6 88.7

WebKbV 135 6 89.1

4.3 The Best Result on the Datasets

Tables 2 and 3 show our results on two different datasets. The best result for
multi-class categorization of Reuters with SVM classifier is reported in [9]. The
microBEP value of Reuters achieved by our approach is 93.0 %, better than that
in [9] and any other methods. As for WebKB collection, since we randomly split
the data set into 80/20 fractions, we perform evaluation with a SVM classifier
on our data set. We use C-SVC in LIBSVM [15] as the SVM tool and choose
RBS functions as the kernel function. The comparison between our methods and
SVM on WebKB is shown in Table 3.

From Table 3, we can observe that both the micro and macro F1 values of
SVM are inferior to those of our method, and both the training and test time of
our method is less than those in SVM. Further more, SVM needs an additional
feature selection procedure, which takes up to 336 seconds, even longer than
the training time itself. On the other hand, without a separate feature selection
procedure, we cannot run the LIBSVM on our computer since it requires much
larger memory to load the term frequency matrix.
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Table 2. The Best Results of Reuters Dataset Parameter settings: minsup=0.04,
minconf =0.55, features=280, τ=0.4, δ=0.6, Training time: 111s, test time: 10s

category ATC ARC BC SATMOD HARMONY DT BayesNets LinearSVM

acq 97.1 90.9 95.1 95.3 89.7 88.3 93.6

corn 79.7 69.6 71.2 78.2 91.8 76.4 90.3

crude 90.3 77.9 90.6 85.7 85.0 79.6 88.9

earn 96.6 92.8 97.4 98.1 97.8 95.8 98.0

grain 90.0 68.8 91.3 91.8 85.0 81.4 94.6

interest 78.4 70.5 74.9 77.3 67.1 71.3 77.7

money-fx 87.7 70.5 86.6 80.5 66.2 58.8 74.5

ship 86.7 73.6 83.6 86.9 74.2 84.4 85.6

trade 88.0 68.0 84.9 88.4 72.5 69.0 75.9

wheat 76.0 84.8 75.2 62.8 92.5 82.7 91.8

micro-avg 93.0 82.1 92.2 92.0 88.4 85.0 92.0

macro-avg 87.1 76.7 85.1 84.5 82.2 78.8 87.1

Table 3. The F1 measures on WebKB. Parameter settings for our methods: min-
sup=0.04, minconf =0.53, features=120, τ=0.45. Training time: 312s, test time: 5s. Pa-
rameter settings for SVM: γ=0.01, features=450. Feature selection time: 336s, Training
time: 328s, test time: 14s.

category Ours LIBSVM

course 94.62 86.21

faculty 88.18 80.20

project 81.08 95.29

student 92.97 91.86

micro-avg 90.76 89.68

macro-avg 89.22 88.39

5 Conclusion

In this paper, we have presented several techniques to deal with the problems
of high dimensionality, the diversity of text data sets and the class skew en-
countered when associative classification is applied to textual data. Our method
has the following distinguished features: First, The integrated feature selection
avoids unnecessary preprocessing overhead. Second, our approach can effectively
and efficiently extract rules based on the vertical path pruning, confidence and
phi coefficient based rule evaluation and a database coverage. Finally, a nor-
malization factor and confidence bound introduced in the new score model can
handle with skewed class problem. Extensive study has been conducted on two
real data sets. Experimental results show that through our method, associa-
tive text classification can achieve as competitive performance as that of the
state-of-art SVM classifiers. Moreover, both training and testing are fast in our
implementation and the generated rules are interpretable.
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Abstract. In many domains, the data objects are described in terms of a large
number of features. The pipelined data mining approach introduced in [1] us-
ing two clustering algorithms in combination with rough sets and extended with
genetic programming, is investigated with the purpose of discovering important
subsets of attributes in high dimensional data. Their classification ability is de-
scribed in terms of both collections of rules and analytic functions obtained by
genetic programming (gene expression programming). The Leader and several
k-means algorithms are used as procedures for attribute set simplification of the
information systems later presented to rough sets algorithms. Visual data min-
ing techniques including virtual reality were used for inspecting results. The data
mining process is setup using high throughput distributed computing techniques.
This approach was applied to Breast Cancer microarray data and it led to subsets
of genes with high discrimination power with respect to the decision classes.

Keywords: Clustering, rough sets, reducts, rules, cross-validation, gene expres-
sion programming, virtual reality, grid computing, breast cancer, microarray data.

1 Introduction

As a consequence of the information explosion and the development of sensor, observa-
tion, computer and communication technologies, it is common in many domains to have
data objects characterized by a large number of attributes. This situation leads to high
dimensional databases in terms of the set of fields. For example, in biological gene ex-
pression experiments, the genetic content of samples are obtained with high throughput
technologies (microchips) with thousands of genes being investigated. In addition, some
kinds of bio-medical research involve samples described by large numbers of spectral
properties (infrared, ultraviolet, etc). The common denominator in many domains is that
the set of objects has a very high dimensional nature.

A hybrid soft-computing approach for finding relevant attributes in high dimensional
datasets based on a combination of clustering and rough sets techniques in a high
throughput distributed computing environment was presented in detail [2]. It also uses
virtual reality data representations to aid data analysis. The methodology was applied
to Leukemia gene expression data with good results. In this paper, that methodology is
extended by incorporating evolutionary computation techniques (genetic programming)
at a post processing stage, in order to analytically characterize the relationships between
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the interesting attributes emerging from the pipeline analysis and the decision classes.
This extended approach is applied to Breast Cancer gene expression data.

2 Basic Concepts

2.1 Experimental Methodology

The general idea is to construct subsets of relatively similar attributes, such that a sim-
plified representation of the data objects is obtained by using the corresponding attribute
subset representatives (NP completeness of reduct computation –exact solution– invites
the use of an approximation –clustering– when the attribute set is large). The attributes
of these simplified information systems are explored from a rough set perspective [3],
[4] by computing their reducts. From them, rules are learned and applied systematically
to testing data subsets not involved in the learning process (Fig-1) following a cross-
validation scheme, in order to better characterize the classification ability of the retained
attributes. The whole procedure can be seen as a pipeline.

Fig. 1. Data Processing Strategy Combining Clustering, Rough Sets Analysis and Crossvalidation

In a first step, the objects in the dataset are shuffled using a randomized approach
in order to reduce the possible biases introduced within the learning process by data
chunks sharing the same decision attribute. Then, the attributes of the shuffled dataset
are clustered using two families of clustering procedures: i) three variants of the the
leader algorithm [5] (forward, reverse and absolute best), and four variants of k-means
[6] (Forgy, Jancey, convergent and MacQueen). The leader and the k-means algorithms
were used with a similarity measure rather than with a distance; among the many pos-
sibilities, Gower’s general coefficient was used [7].

Each of the formed clusters of attributes is represented by exactly one of the orig-
inal data attributes. For the leader algorithm, the representative is the leader (called



484 J.J. Valdés and A.J. Barton

an l-leader), whereas for a k-means algorithm, a cluster is represented by the most
similar attribute with respect to the centroid of the cluster (the k-leader). As a next
step, a new information system is built by retaining the l-leaders (or the k-leaders).
The filtered information system undergoes a segmentation with the purpose of learning
classification rules, and testing their generalization ability in a cross-validation frame-
work. N-folds are used as training sets; where the numeric attributes present are con-
verted into nominal attributes via a discretization process, and from them, reducts are
constructed. Finally, classification rules are built from the reducts, and applied to a
discretized version of the test fold (according to the cuts obtained previously), from
which the generalization ability of the generated rules is evaluated. Besides the nu-
meric descriptors associated with the application of classification rules to data, the
use of visual data mining techniques, like the virtual reality space representation [8]
[9], enables structural understanding of the data described in terms of the selected
subset of attributes and/or the rules learned from them. Each stage feeds its results
to the next stage of processing, yielding a pipelined data analysis stream. This dis-
tributed and grid computing kind of knowledge discovery process is implemented via
Condor (www.cs.wisc.edu/condor/) which is a specialized workload manage-
ment system for compute-intensive jobs developed at the University of Wisconsin-
Madison.

A visual data mining technique -virtual reality spaces- (VR-spaces) was used as an
aid for data exploration and the interpretation of the datasets described in terms of
the subsets of attributes resulting from the data processing pipelines. This technique
extends the concept of 3D modelling to relational structures and was introduced in [8],
[9], www.hybridstrategies.com. The construction of a VR-space requires the
specification of several sets and a collection of mappings. Criteria for computing the VR
space may be measures of structure preservation, maximization of class separability or
combinations of several, possibly conflicting properties. A detailed explanation about
the implementation of the methodology is given in [1] [2].

2.2 Gene Expression Programming

Direct discovery of general analytic functions can be approached from a computational
intelligence perspective via evolutionary computation. There are other possibilities,
such as logistic regression, but they do not have as general model representation flexi-
bility. Genetic programming techniques aim at evolving computer programs, which ul-
timately are functions. Among these techniques, gene expression programming (GEP)
is appealing [10]. It is an evolutionary algorithm as it uses populations of individuals,
selects them according to fitness, and introduces genetic variation using one or more
genetic operators. GEP individuals are nonlinear entities of different sizes and shapes
(expression trees) encoded as strings. For the interplay of the GEP chromosomes and
the expression trees (ET), GEP uses a translation system to transfer the chromosomes
into expression trees and vice versa [10]. The chromosomes in GEP itself are composed
of genes structurally organized in a head and a tail [11]. The head contains symbols that
represent both functions (from a function set F) and terminals (from a terminal set T),
whereas the tail contains only terminals.
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3 Breast Cancer Experimental Settings and Results

The breast cancer data as used in [12] was downloaded from the Gene Expression Om-
nibus (GEO) (See http://www.ncbi.nlm.nih.gov/projects/geo/gds/
gds browse.cgi?gds=360) and consists of 24 core biopsies taken from patients
found to be resistant (greater than 25% residual tumor volume, of which there are 14
biopsies) or sensitive (less than 25% residual tumor volume, of which there are 10
biopsies) to docetaxel treatment. The number of genes placed onto the microarray is
12, 625. Therefore, the data contains two classes: resistant and sensitive. The experi-
mental settings used in the investigation of the breast cancer data with the distributed
pipeline [2] are reported in Table 1. A total of 168 k-leader experiments were com-
pleted, each requiring the generation of 86 files (for 10-fold cross-validation). For each
experiment, the discretization, reduct computation and rule generation algorithms are
those included in the Rosetta Rough Set system[4].

Table 1. The Set of Parameters and Values Used in the Experiments with the Breast Cancer Data
Set Using the Distributed Pipeline Environment

Algorithm/Parameter Values

K-means Variant Forgy, Jancey, Convergent, MacQueen
Number of Clusters 2, 5, 10, 100, 300, 500

Cross-validation 10 folds
Discretization BROrthogonalScaler(BROS), EntropyScaler(ES),

NaiveScaler(NS), RSESOrthogonalScaler(ROS), SemiNaiveScaler(SNS)
Reduct Computation JohnsonReducer, Holte1RReducer(H1R),

RSESExhaustiveReducer(RER), RSESJohnsonReducer
Rule Generation RSESRuleGenerator

From the series of k-leader Breast Cancer experiments performed, those experiments
having a mean cross-validated accuracy ≥ 0.7 using the rules as applied to test folds are
reported in Table-2. Experiment 227 is the overall best result from those selected, with
a mean (0.917), median (1.0), standard deviation (0.18), minimum (0.5) and maximum
(1.0) 10-fold cross-validated classification accuracy. Table-2 shows that 14 of the 22
selected experimental results have a median classification accuracy of 1.0, while all
selected experiments have a maximum classification accuracy of 1.0 over all of the 10
folds. In other words, the 22 selected experiments have classification accuracies skewed
towards the maximum obtainable, with the majority of those attaining the maximum in
at least one of the test folds. The k-means algorithms used, with the specific k, are also
shown in Table-2. The majority of the results use the MacQueen algorithm (9); with
Convergent (7), Forgy (3) and Jancey (3) having fewer experiments leading to results
that meet the selection criteria. The Convergent algorithm leads to experiments that rank
at the lowest and at the highest of the list, while the majority algorithm (MacQueen)
leads to experiments that rank second lowest, and second highest. The Forgy and Jancy
algorithms appear to come in pairs (e.g. experiments 129 and 130, experiments 177 and
154, and experiments 153 and 178).
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Table 2. k-leader Breast Cancer Experiments for Which Mean 10-Fold Cross-validated Classifi-
cation Accuracy ≥ 0.7. Experiment 227 is the Overall Best Result.

No. Experiment Mean Median Standard Min. Max. K-means k
Deviation

1 347 0.7 0.75 0.35 0.0 1.0 Convergent 10
2 344 0.7 0.75 0.35 0.0 1.0 MacQueen 5
3 127 0.717 0.583 0.25 0.5 1.0 Convergent 5
4 348 0.717 0.833 0.34 0.0 1.0 MacQueen 10
5 343 0.717 1.0 0.42 0.0 1.0 Convergent 5
6 359 0.717 1.0 0.42 0.0 1.0 Convergent 500
7 276 0.733 1.0 0.42 0.0 1.0 MacQueen 10
8 228 0.733 0.917 0.34 0.0 1.0 MacQueen 10
9 300 0.733 1.0 0.42 0.0 1.0 MacQueen 10
10 204 0.733 1.0 0.42 0.0 1.0 MacQueen 10
11 129 0.733 0.917 0.34 0.0 1.0 Forgy 10
12 130 0.733 0.917 0.34 0.0 1.0 Jancey 10
13 131 0.767 0.833 0.25 0.5 1.0 Convergent 10
14 296 0.767 1.0 0.34 0.0 1.0 MacQueen 5
15 272 0.767 1.0 0.34 0.0 1.0 MacQueen 5
16 177 0.783 1.0 0.34 0.0 1.0 Forgy 10
17 154 0.783 1.0 0.34 0.0 1.0 Jancey 10
18 153 0.783 1.0 0.34 0.0 1.0 Forgy 10
19 178 0.783 1.0 0.34 0.0 1.0 Jancey 10
20 355 0.85 1.0 0.34 0.0 1.0 Convergent 500
21 224 0.85 1.0 0.24 0.5 1.0 MacQueen 5
22 227 0.917 1.0 0.18 0.5 1.0 Convergent 10

Table 3. k-leader Breast Cancer Experiments for Which Mean 10-Fold Cross-validated Classifi-
cation Accuracy ≥ 0.7. Experiment 227 is the Overall Best Result. See Fig-1 for Abbreviations.

Exp. 347 344 127 348 343 359 276 228 300 204 129
Discr. BROS BROS ROS BROS BROS BROS SNS BROS NS ES ROS
Reduct H1R H1R RER H1R H1R H1R H1R RER H1R RER RER
Exp. 130 131 296 272 177 154 153 178 355 224 227
Discr. ROS ROS NS SNS NS SNS SNS NS BROS BROS BROS
Reduct RER RER H1R H1R RER RER RER RER H1R RER RER

Table-2 and Table-3 demonstrate at least two possible ways in which a small number
of attributes may be produced from the pipeline. If the investigated k value is small
then the rough-set portion of the pipeline will be constrained to output a set of genes of
cardinality less than or equal to k. If the investigated k value is large, then the rough-
set portion of the pipeline will be given many attributes from which to derive reducts.
In the afore-mentioned tables, the selected experiments with large k (the latter case)
used the Holte1RReducer algorithm. For example, experiment 359 has a large k value
and used a Holte1RReducer and likewise for experiment 355. Each experiment selects
a subset of the original attributes through preprocessing, which are then passed to a
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Table 4. The Reducts Computed Within Experiement 227 for Each of the 10-Fold Cross-validated
Results. Fold-9 Results in the Production of 1 Extra Reduct.

Fold 0-8 Reducts: {36480 at,31697 s at,36604 at} {38230 at} {1511 at}
{38445 at} {38010 at}

{39288 at} {1180 g at} {34211 at}
Fold-9 Reducts: {31697 s at, 36604 at} {38230 at} {1511 at}

{36480 at} {38445 at} {38010 at}
{39288 at} {1180 g at} {34211 at}

cross-validation procedure. This results in the creation of training and test sets, from
which a set of reducts and rules are generated.

From the set of selected experiments, the overall best (227) experiment’s reducts
for each of the 10 folds, are listed in Table-4. Nine of the ten folds produce the same
reducts, with the largest reduct containing 3 attributes, and all other reducts containing
1 attribute. The tenth fold results in the production of 1 extra reduct as compared to
the 9 other folds. Informally, the largest reduct has been split into 2 reducts in Fold 9.
These 2 reducts contain the same 3 attributes as the largest reduct in the other 9 folds,
indicating that the attributes still contain discrimatory power on the whole data matrix.

It can be seen that the reducts listed in Table-4 for experiment 227, the highest ranked
result, contain the following set of 10 attributes selected from the original 12, 625
attributes. They are listed here, along with their simplified identifier in parenthesis:
36480 at (v0), 38230 at (v1), 1511 at (v2), 38445 at (v3), 31697 s at (v4), 36604 at
(v5), 38010 at (v6), 39288 at (v7), 1180 g at (v8), and 34211 at (v9). The next best
mean cross-validated experiment (224) yielded 5 attributes from the original 12, 625,
which are: 1961 f at, 34811 at, 41293 at, 38449 at, and 41741 at. A further investi-
gation of the properties of these attributes should be performed. Therefore, experiment
227 was selected.

A VR-space of 10 attributes from the original 12, 625 given to experiment 227 is
shown in Fig-2. Convex hulls wrap each of the two classes. It is difficult to perceive on
a static medium, but one object from the sensitive class is contained within that of the
resistant class. In the dynamic virtual world, it is possible to, for example, rotate and
more closely inspect the properties of each of the objects. This virtual reality represen-
tation indicates the feasibility of possibly obtaining a class discrimination function.

The 10 attributes from experiment 227 were then provided to an expression finding
system (GEP), from which a functional model (discrimination function) was found. The
model contains 9 of the 10 attributes (v8 is not used) and the explicit model is:

f(v0 , v1, v2, v3, v4, v5, v6, v7, v8, v9) = (1)

v3
6 ∗ v0 ∗ v9 + (−2) ∗ v2

6 ∗ v0 ∗ v9 ∗ v7 + v2
6 ∗ v0 ∗ v9 ∗ v4 − v2

6 ∗ v0 ∗ v9 ∗ v3

−v2
6 ∗ v2

0 ∗ v9 + 2 ∗ v6 ∗ v2
0 ∗ v9 ∗ v7 + v6 ∗ v2

0 ∗ v9 ∗ v3 − v6 ∗ v2
0 ∗ v9 ∗ v4

+v6 ∗ v2
0 ∗ v4 ∗ v1 + v6 ∗ v2

0 ∗ v1 ∗ v5 − (v6 ∗ v2
0 ∗ v7 ∗ v5 + v6 ∗ v2

0 ∗ v7 ∗ v4)
−(v6 ∗ v3

0 ∗ v5 + v6 ∗ v3
0 ∗ v4) + v2

0 ∗ v7 ∗ v4 ∗ v2 − v2
0 ∗ v3 ∗ v4 ∗ v2

+v0 ∗ v3 ∗ v4 ∗ v1 ∗ v2 + v0 − v0 ∗ v7 ∗ v4 ∗ v1 ∗ v2 + v9.
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Fig. 2. The 2 Classes are Wrapped by Convex Hulls in This Static Virtual Reality Representation
of 10 Attributes From Experiment 227. Sammon Error: 0.07400. Number of Iterations: 150.

The model was found after 12, 954 generations. Additive, multiplicative and sub-
tractive binary operations along with quadratic and cubic unary operations are found.
The two variables v6 and v0 appear in the model containing both cubic and quadratic
forms. These two attributes, therefore, have a greater influence upon the overall func-
tional value of the model. The two attributes, v6 and v0 were extracted from the 10
attribute data matrix in order to construct a new 2 attribute data matrix. This 2 attribute
data matrix was then used in order to find a model that might have discriminatory power
over the 2 classes. The highly non-linear model that GEP found is:

f(v0, v6 ) = cos(tan(v0) ∗ v0) ∗ v0 ∗ tan(v6) + v0 ∗ tan(v6) (2)

+v0 ∗ log(v6) ∗ sin(tan(v6) − v6) − tan(v6) ∗ v6.

The model uses both of the attributes, and contains more complex functions (e.g. sine).
Superficially, no attribute seems to have higher influence than the other, so one partic-
ular attribute was chosen (v6) and a new 1 attribute data matrix was constructed (also
including the decision attribute). The GEP found the following highly non-linear model:

f(v6 ) = sin(v6) + cos(v6 ∗ (cos(v2
6) + sin(sin(v6)))) (3)

+sin(v6 ∗ (v6 ∗ cos(v6) + cos(v6))).

A property of each of the three models, is that they all produce high classification ac-
curacies over the 2 classes. The classification rule is If f(v6) ≥ 0.5)then class =
sensitive Else class = resistant.

4 Conclusions

Good results were obtained with the proposed high throughput pipeline for the discov-
ery of relevant attributes in high dimensional data. The attribute reduction procedure
using rough set reducts within a cross-validated experimental scheme applied to Breast
Cancer gene expression data demonstrates the possibilities of the proposed approach.
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More thorough studies are required to correctly evaluate the impact of the experimental
settings on the data mining effectiveness. The gene expression programming technique
produced sets of analytic functions with high discriminatory power. Visual exploration
of the results was useful for understanding the properties of the pipeline outputs, and
the relationships between the discovered attributes and the class structure.
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Abstract. Credit risk evaluation has been the major focus of financial
and banking industry due to recent financial crises and regulatory con-
cern of Basel II. Recent studies have revealed that emerging artificial
intelligent techniques are advantageous to statistical models for credit
risk evaluation. In this study, we discuss the use of least square support
vector machine (LSSVM) technique to design a credit risk evaluation
system to discriminate good creditors from bad ones. Relative to the
Vapnik’s support vector machine, the LSSVM can transform a quadratic
programming problem into a linear programming problem thus reducing
the computational complexity. For illustration, a published credit dataset
for consumer credit is used to validate the effectiveness of the LSSVM.

Keywords: Credit risk evaluation, least square support vector machine.

1 Introduction

Without doubt credit risk evaluation is an important field in the financial risk
management. Especially for any credit-granting institution, such as commercial
banks and certain retailers, the ability to discriminate good customers from bad
ones is crucial. The need for reliable models that predict defaults accurately is
imperative, in order to enable the interested parties to take either preventive or
corrective action. Due to its importance, various models, including traditional
techniques, such as linear discriminant analysis [1] and logit analysis [2], and
emerging artificial intelligent (AI) techniques, such as artificial neural networks
(ANN) [3] and support vector machine (SVM) [4], were widely applied to credit
scoring tasks and some interesting results have been obtained. A recent survey
on credit modeling is [5].

Although many classification techniques can be used to evaluate credit risk,
the performance and robustness of these methods need further improvement.
Furthermore, there are still some drawbacks in the existing approaches. For
example, the credit assessment model based upon statistical techniques usually
requires strong assumptions about the data, such as normal distribution and
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continuousness. Moreover, they generally cannot deal efficiently with the implicit
nonlinear relations between the characters and results. In the AI techniques,
ANN model often suffers local minima and overfitting problems, while SVM
model first proposed by Vapnik [6] has a large computational complexity when
solving large scale quadratic programming problem.

In this paper, we introduce a least square SVM (LSSVM) approach [7] to
evaluate credit risk. Relative to Vapnik’s SVM, the LSSVM can transform a
quadratic programming problem into a linear programming problem thus reduc-
ing the computational complexity. The main motivation of this study is to use a
relatively new machine learning method to the field of credit risk evaluation and
compare its performance with some typical credit risk evaluation techniques.

The rest of this study is organized as follows. Section 2 illustrates the method-
ology formulation of LSSVM. In Section 3, we use a real-world dataset to test
the classification potential of the LSSVM. Section 4 concludes the paper.

2 Methodology Formulation

Considering a training dataset {xk, yk}(k = 1, . . . , N) where xk ∈ RN is the kth
input pattern and yk is its corresponding observed result, and is a binary vari-
able. In credit risk evaluation models, xk denotes the attributes of applicants or
creditors; yk is the observed result of timely repayment. If the customer defaults
its debt, yk =1, else yk = −1.

Suppose that φ(·) is a nonlinear function that maps the input space into a
higher dimensional feature space. If the set is linearly separable in this feature
space, the classifier should be constructed as follows:{

wT φ(xk) + b � 1 if yk = 1,
wT φ(xk) + b � −1 if yk = -1. (1)

The separating hyperplane is as follows:

z(x) = wT φ(x) + b = 0. (2)

The nearest points of the two groups satisfy the following equations:

wT φ(x) + b = ±1. (3)

So the margin between the two parts is 2/||w||2. The training algorithm should
maximize the margin. Hence the model can be represented as{

max ||w||22/2
Subject to: yk(wT φ(xk) + b) � 1 for k = 1, . . . , N.

(4)

In the real world we usually cannot find the perfect separating hyperplane in
high dimensional feature space, which means we cannot find a perfect separating
hyperplane such that

yk[wT φ(xk) + b] � 1 for k = 1, . . . , N. (5)
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In this case we should introduce a soft margin to incorporate the possibility
of violation. Differing in Vapnik’s SVM [6], the error term of the LSSVM is
defined as

yk[wT φ(xk) + b] = 1 − ξk for k = 1, . . . , N. (6)

By this the error measure is the deviation from its goal (1 for group 1, -1 for
group 2), thus every training data includes both positive and negative deviation
even though it is unnecessary to have a positive deviation for a positive sample
and a negative deviation for a negative sample. Therefore, the total error term
is the sum of the squared deviation of each sample.

Subsequently the training should maximize the classification margin and min-
imize the sum of total error term simultaneously. Because the two goals are
usually conflicting, we have to make a trade-off and formulate the two group
classification problems with the following optimization problem:{

maxmin ζ(w, b, ξk) = 1
2wT w + c

∑N
k=1 ξ

2
k

Subject to: yk[wT φ(xk) + b] = 1 − ξk for k = 1, . . . , N.
(7)

where c is a constant denoting a trade-off between the two goals. When c is large,
the error term will be emphasized. A small c means that the large classification
margin is encouraged. Constructing its Lagrangian function:

max
αk,μk

min
w,b,ξk

ζ(w, b, ξk,αk) =
1
2
wT w + c

∑N

k=1
ξ2k

−
∑N

k=1
αk[yk(wT φ(xk) + b) − 1 + ξk]. (8)

where αk are Lagrangian multipliers. Differentiating (8) with w and b, we can
obtain ⎧⎪⎨⎪⎩

d
dw ζ(w, b, ξk;αk,μk) = w −

∑N
k=1 αkykφ(xk) = 0,

d
dbζ(w, b, ξk;αk,μk) = −

∑N
k=1 αkyk = 0,

d
dξk

ζ(w, b, ξk;αk,μk) = 2cξk − αk = 0.
(9)

Then by simple substitutions, we get the following linear equations.{∑N
k=1 αiyi = 0∑N
k=1 αiyiyjϕ(xi,xj) + 1

2cαj + b = 1 for j = 1, . . . , N.
(10)

From the N+1 equations in (10), we can derive the N+1 unknown variables,
b and αk. Comparing with the SVM proposed by Vapnik [6], the solution of αkis
obtained by solving a quadratic programming problem. While in the LSSVM,
the αk can be obtained from a series of linear equations. This is the difference
between the two. Now, we can obtain the solution of w from Equation (9), i.e.,

w =
∑N

k=1
αkykφ(xk). (11)
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Substituting the result into Equation (2), we can obtain the classifier:

z(x) = sign(wT φ(x) + b) = sign(
∑N

k=1
αkykφ(xi)φ(xj) + b). (12)

It is worth noting that φ(xk) is used to map the input vector into a higher-
dimension space such that the two groups are linearly separable. Let ϕ(x,xk) be
the inner product kernel performing the nonlinear mapping into higher dimen-
sional feature space, that is,

ϕ(xi,xj) = φ(xi)φ(xj). (13)

The choice of kernel function includes the linear kernel, polynomial kernel or
RBF kernel. Thus, the LSSVM classifier can be represented as

z(x) = sign(
∑N

k=1
αkykϕ(x,xk) + b). (14)

3 Experiment Analysis

In this section, a real-world credit dataset is used to test the performance of
LSSVM. The dataset in this study is from the financial service company of Eng-
land, obtaining from accessory CDROM of Thomas, Edelman and Crook [8].
Every applicant includes the following 14 variables: year of birth, number of
children, number of other dependents, is there a home phone, applicant’s in-
come, applicant’s employment status, spouse’s income, residential status, value
of home, mortgage balance outstanding, outgoings on mortgage or rent, outgo-
ings on loans, outgoings on hire purchase, and outgoings on credit cards. The
dataset includes detailed information of 1225 applicants, in which including 323
observed bad creditors.

In this experiment, LSSVM and SVM use RBF kernel to perform classification
task. In the ANN model, a three-layer back-propagation neural network with 10
TANSIG neurons in the hidden layer and one PURELIN neuron in the output
layer is used. The network training function is the TRAINLM. Besides, the
learning rate and momentum rate is set to 0.1 and 0.15. The accepted average
squared error is 0.05 and the training epochs are 1600. The above parameters
are obtained by trial and error. In addition, four evaluation criteria measure the
efficiency of classification.

Type I accuracy =
number of both observed bad and classified bad

number of observed bad
(15)

Type II accuracy =
number of both observed good and classified good

number of observed good
(16)

Total accuracy =
number of correct classification

the number of evaluation sample
(17)

KS statistic = |F (s |B ) − F (s |G )| . (18)
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where F (s |G ) is the cumulative distribution function among the goods and
F (s |B ) is the cumulative distribution function among the bads. It is worth
noting that KS statistic is an abbreviation of Kolmogorov-Smirnov statistic,
which is an important indicator in the credit risk evaluation. Theoretically, KS
statistic can range from 0 to 100. In fact, the range is generally from about 20 to
about 70. If the KS is lower than 20, it would be reasonable to question whether
the classifier is worth using. Above 70, it is probably too good to be true and
we should suspect problems with the way it is being calculated or classifier itself
[9]. Interested readers can refer to [8-9] for more details.

To show its ability of LSSVM in discriminating potentially insolvent cred-
itors from good creditors, we perform the testing with LSSVM. This testing
process includes four steps. First of all, we triple every observed bad creditor to
make the number of observed bad nearly equal the number of observed good.
Second we preprocess the dataset so that the mean is 0 and the standard devi-
ation is 1. Third the dataset is randomly separated two parts, training samples
and evaluation samples, 1500 and 371 samples respectively. Finally we train the
SVM classifier and evaluate the results. For comparison, the classification results
of liner regression (LinR), logistics regression (LogR), artificial neural network
(ANN), Vapnik’s support vector machine (SVM) are also reported in Table 1.

Table 1. The Credit Risk Evaluation Results with Different

Method Type I (%) Type II (%) Overall (%) KS-stat (%)

LinR 52.87 43.48 50.22 26.68
LogR 60.08 62.29 60.66 35.63
ANN 56.57 78.36 72.24 46.39
SVM 70.13 83.49 77.02 51.45

LSSVM 79.37 93.27 89.16 58.88

As can be seen from Table 1, we can find the following conclusions. (1) For
type I accuracy, the LSSVM is the best of all the approaches, followed by the
Vapnik’s SVM, logistics regression, artificial neural network model, and linear
regression model. (2) For Type II accuracy, the LSSVM and SVM outperforms
the other three models, implying the strong capability of SVM model in credit
risk evaluation. (3) From the general view, the LSSVM dominates the other four
classifiers, revealing the LSSVM is an effective tool for credit risk evaluation.
(4) Judging from KS statistic, the LSSVM performs the best. In this sense, the
proposed LSSVM model is a feasible solution to improve the accuracy of credit
risk evaluation.

4 Conclusions

In this study, a recently proposed and powerful classification and function esti-
mation method, least square support vector machine, is proposed to evaluate the
credit risk problem. Through the practical data experiment, we have obtained
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good classification results and meantime demonstrated that the LSSVM model
outperforms all the benchmark models listed in this study. These advantages im-
ply that the novel LSSVM technique can provide a promising solution to credit
risk evaluation.
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Abstract. Efficiently mining frequent itemsets is the key step in ex-
tracting association rules from large scale databases. Considering the
restriction of min support in mining association rules, a weighted sam-
pling algorithm for mining frequent itemsets is proposed in the paper.
First of all, a weight is given to each transaction data. Then according
to the statistical optimal sample size of database, a sample is extracted
based on weight of data. In terms of the algorithm, the sample includes
large amounts of transaction data consisting of the frequent itemsets
with many items inside, so that the frequent itemsets mined from sam-
ple are similar to those gained from the original data. Furthermore, the
algorithm can shrink the sample size and guarantee the sample quality
at the same time. The experiment verifys the validity.

Keywords: Data Mining, frequent itemsets, association rule, weighted
sampling, statistical optimal sample size.

1 Introduction

Mining the association rules is an important research field in data mining, while
finding frequent itemsets is the key step in this process. Because directly mining
the frequent itemsets from the large scale data may require high computational
(time and space) costs, the sampling is one of the most important solutions to
this problem.

Random sampling to mine the association rules with a high efficiency in [1,2].
However, the algorithms don’t take the particularities of data own distribu-
tion into consideration and blindly use the random sampling to mine frequent
itemsets. So the result may appear the data skew. Chernoff bound is used to
determined the sample size in [3]. However, the sample size determined accord-
ing to this method always exceeds the size of original data. Sampling is used
to distributed mining adjustable accuracy association in [4]. But the algorithm
takes more consideration to the accuracy than efficiency.

In order to take both sample size and sample quality into consideration,
the statistical optimal sample size is used to determine the sample size and
a weighted sampling algorithm for mining frequent itemsets is proposed. Firstly,
an algorithm of determining sample size, namely the algorithm of calculating
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statistical optimal sample size is introduced. Secondly, the principle and algo-
rithm of weighting are proposed. Thirdly, the estimating method of min support
of the sample is proposed. At last,the experiment verifies the validity.

2 Statistical Optimal Sample Size

The sample quality is an important standard to measure the sample. There are
many methods to measure the sample quality. In the paper, statistical sample
quality is used as the measure standard [5]. The mean of the statistical sample
quality is the similarity between the sample and the original data.

Given a large data set D (with r attributes) and its sample S, the sample qual-
ity of S is Q(S) =exp(-J), where averaged information divergence J is calculated
as in Eq.1.

J =
1
r

r∑
k=1

Jk(S, D) (1)

where Jk(S, D) is the Kullback information measure[6], and it stands for the
divergence on attribute k between S and D and can be calculated as in Eq.2.

Jk(S, D) =
Nk∑
j=1

(PSj − PDj)log
PDj

PSj
(2)

Where Nk is the count that attribute k contains values and Pij is the probability
of occurrence of the j-th value in population i(i =S,D and j=1,2,· · ·Nk ).

Apparently, the smaller J(S,D) is, the smaller divergence between S and D
is, so the bigger the Q, the better the sample quality. Otherwise, the poor the
sample quality. The relation between the sample size and the accuracy of mining
resultis showed in Fig.1.

It can be clearly seen from the figure that when the sample size gets large,
the accuracy of result increases. In the sight of sample quality, the larger the
sample size, the better the sample quality. When the sample size gets large,

Fig. 1. The relation curve between sample size and accuracy of result
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the divergence between the sample and original data is smaller, and the mining
results from them turn more similar.

The smallest sample size when the accuracy of mining result is guaranteed is
called optimal sample size (OSS for short). In the other words, the sample of
the OSS has the most optimal sample quality. From the Fig.1, when the sample
size changes from M to N, the accuracy of mining result basically stay consistent
and we can also say that the mining result from the sample of the M is basically
similar to that from the whole data.

However, because it is hard to compute the OSS, statistical optimal sample
size (SOSS for short) is used as the approximate solution to OSS. [6] has proved
that if a sample of the SOSS, its sample quality is approximate to 1.

For a large set D of size N,the SOSS of D is often calculated under the fol-
lowing steps: firstly, for a large set D of size N, n samples sizes Si spanning
the range of [1, N] are randomly selected from D, and |Si| is used to stand
for the size of sample Si, which statisfies |S1|<|S2|<· · ·<|Sn|, where i=1· · ·n;
secondly, for each sample Si, its corresponding sample quality Qi is calculated,
where i=1· · ·n; thirdly, use the coordinate value (Si,Qi) to depict a relation
curve between sample size and sample quality, where i=1· · ·n; fourthly, from the
first point (Si,Qi), a linenar of regression is drawed on the base of 5 points;
finally, to each regression line, if the 95 percent confidence interval of the slope
of the regressed line includes zero, then the size of the middle sample is the
SOSS.

3 Weighted Sampling for Mining Frequent Itemsets

For transaction database, different transaction data may have different contri-
butions to the mining frequent itemsets. The goal of Weighting is to give the
transaction data a weight according to its contribution to mining result.

The transaction data are weighted according to the following two aspects:

1. For transaction data, the more items the data contains, the more probabil-
ity that contains frequent itemsets with big size has. So the first weighting
algorithm according to the amount of transaction data containing the items
is proposed: firstly, calculate the amount of items in each transaction and
calculate their minimum; secondly, divide the amount by the minimum, then
use the result as the transaction’s weight w1.

2. Apparently, if the item occurs more frequent, the probability of occurrence
in the frequent itemsets with big size is larger. So the second weighting al-
gorithm according to the frequency of item’s occurrence is proposed: firstly,
compute the frequency of each item occurrence and calculate the their mini-
mum; secondly, divide the frequency by minimum,then use the result as the
item’s weight w2; thirdly, transfer the transaction database to itemsets data
and make a sort of itemsets data according to the item’s weight w2; fourthly,
give the corresponding weight to each transaction according to its affiliated
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item in the itemsets data. If a transaction is evaluated more than one time,
the biggest weight is selected as its weight w2.

At last, the final weight w of a transaction is calculated according to the equation
w= x1∗w1+ x2∗w2,where x1 and x2 stand for the importance of two weighing
algorithm and satisfy 0≤ x1 ≤ 1,0 ≤ x2 ≤ 1 and x1+x2=1.

4 Estimation of Min Support of Sample

In order to guarantee the consistency between the frequent itemsets gained from
sample and original data, modification of min support should be made when
mining the frequent itemsets from sample.

Because the weighted sampling algorithm proposed in the paper is for the
sake of frequent itemsets with big size, the min support of sample is basically
coincident with original min support size of the whole data. However, due to the
difference of data scale between sample and original data, the min support of
sample should be a little smaller.

For a large set D of size N, and a sample S of size n, and the min support is
m(0<m<1), the min support of sample is estimated under the following steps:
firstly, the sample quality Q(S) is calculated; secondly, calculate the high bound
of min support, num up= n*m and the low bound of min support, num down=
n*m*Q(S); finally, the min support of sample, min support sample= [num down
+ (num up - num down)/k]/N, where k=2, 3, · · ·

The min support of sample calculated according to the algorithm can not only
guarantee the consistency between sample and original data’s min support, but
also take the divergence of data scale between them into consideration.

5 Weighted Sampling for Frequent Itemsets

According above the analysis, for a transaction datbase D and its min support,
the weighted sampling algorithm for mining frequent itemsets is proposed: firstly,
compute the SOSS of D (discussed in section 2); secondly, the weight w is given
to the transaction data according to the two aspects (discussed in section 3);
thirdly, sort the transaction data according to their weight w in decreasing order;
fourthly, extract the ordered transaction data according the SOSS as the sample;
fifthly, compute the min support of sample according to the estimation algorithm
(discussed in section 4); finally, mining the frequent from the sample according
to the estimated min support of the sample.

6 Experiment and Analysis

If order to verify the validity of the algorithm, we use IBM data generator to
generate 6 transaction databases as experimental data. The result is proposed
in Table 1. Matching ratio is defined as the ratio of frequent itemsets existing
both in sample and original data to the result of original data.
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Table 1. The result of using Weighted Sampling for mining frequent

From the experiment result, we find that the frequent itemsets gained from
original data and sample have a good consistency, and the more the sample size
is, the consistency is better. According to the weighted sampling algorithm, the
sample contains the important transaction data. And because the paper uses the
SOSS to determine the sample size, there may be a bigger divergence when the
size of data is too small, such as the result of Database 2.

7 Conclusion

To satisfy the own features of mining association rules, such as the limits of min
support and min confidence, a weighted sampling algorithm for mining frequent
itemsets is proposed in the paper. The algorithm guarantees the consistency of
frequent itemsets between the sample and whole data and takes both sample
size and sample quality into consideration at the same time. But the algorithm
may require high time computational cost to calculate the SOSS, and the size of
database in experiment is limited, so how to simplify the process of calculating
the SOSS and apply it to the larger database are our future research work.
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Abstract. In this paper, we describe ECPIA (Email-Centric Personal
Intelligent Assistant), which provides Web-based environment to sup-
port the activities of a major time sink of our daily lives - the processing
of emails. The design of the system is with an agent-based infrastruc-
ture. In addition to capabilities that an email client should provide, the
novel features in ECPIA as a personal assistant include (1) user behavior
analysis for publishing bulletins, making appointments, multi-filters and
prioritizing emails; (2) ontology and multiple filtering agents based email
management for blocking junk mails.

Keywords: Intelligent assistant, information overload, junk email, email
filter, ontology-based email management, user behavior analysis.

1 Introduction

Email is a very popular way of communicating with others over the Internet.
Although it was originally designed as a communication application, the email
system is now being used for additional functions that were not designed for.
Such an issue is called email overload [1]. In particular, the e-mail system has
been integrated with World-Wide Web browser, such as Netscape and Microsoft
Internet Explorer, as a useful function of Web-based electronic commerce to
make it overused by enterprise to promote products and spread information. In
the meantime, much people’s work is based on email. They use the email to
arrange their own work plan, to track and dispatch tasks, to exchange ideas and
cooperate between the group teams, to publish bulletins, to make appointments,
and to exchange files and so on.

In other words, much people’s work is email-centric one and therefore email
overload and email-centric brought many problems to the people [2]. For ex-
ample, users often have cluttered inboxes containing hundreds of messages, in-
cluding outstanding tasks, partially read documents and conversational threads.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 502–509, 2006.
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Furthermore, users’ attempt to rationalize their inboxes by filing is often unsuc-
cessful, with the consequence that important messages get overlooked, or “lost”
in archives. These problems often cause serious consequence, such that a user fre-
quently forgets the important appointment, the important notice, the deadline
for acceptance of drafts or paper, cashes oneself the pledge, and so on. Hence,
there is a big real need for developing a software assistant to improve the man-
agement of personal or organizational emails, and enables the user to complete
his/her own email-centric tasks smoothly.

This paper describes an Email-Centric Personal Intelligent Assistant
(ECPIA), which provides many novel email-related capabilities, such as filtering,
indexing/retrieving, archiving, and prioritizing according to user behavior anal-
ysis in his/her past emails based communication history and so on. Although
some of capabilities mentioned above have been proposed in email client appli-
cations, few of them have addressed user behavior analysis and ontology-based
management for email-centric personal assistant. Moreover, the filtering method
in ECPIA is also different from existing methods.

The remainder of this paper is organized as follows. An overview of the ECPIA
architecture is provided in Section 2. How to utilize ontologies for concept-
based email management in ECPIA is described in Section 3, and user behavior
analysis and the filtering algorithm with experimental results are presented in
Section 4. Finally, we give concluding remarks and some future research direc-
tions in Section 5.

2 The Overview of ECPIA

Zhong et al. introduced a new research field, namely Web Intelligence (WI for
short) [3,4] by giving a complete picture of WI related topics for systematic study
on advanced Web technologies and developing Web-based intelligent information
systems. The ECPIA is a Web-based application which adopts Web agents to
implement its functions and a typical three-tier structure.

The first tier is the Representation Tier including “interface agents” and
Web server which are responsible for formatting data to display. The second one
is the Application Tier including “Filtering Agents”, “Information Extracting
Agents”, “Alerting Agents” and so on. The third tier is called the Data Tier,
in which email related information is stored in MySQL database, and ontologies
in OWL for email management are employed [5].

A typical scenario of ECPIA is as follows. After registered successfully, a
new user can use his/her own email address and proper password to login the
ECPIA. When a new email arrives, the “Filtering Agent” deals with it first;
then the “Information Extracting Agent” extracts information to be stored in
an ontology-based management system; finally, the “Interface Agent” displays
it in some categorization based on concepts generated by the ECPIA according
to a user’s needs of classifying emails. Furthermore, an “urgent information”
stored in the ontology can trigger the “Alerting Agent” in the ECPIA to remind
a user.
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3 Ontology-Based Email Management

3.1 Using Ontology in ECPIA

In previous applications, searching is based on keywords, and for this reason
precision and recall are not perfect. While the concept based searching method
can return results that a user really wants. Another main method used in previ-
ous applications is that of classifying emails into fixed folders. This method has
some disadvantages, including that (1) users often need to create a new folder or
delete existing folders; (2) an email cannot belong to multiple folders; (3) when
the number of folders is large, the searching efficiency becomes very low. In order
to solve these problems, researchers have proposed concept-based methods for
email management [6,7].

In ECPIA, email information is stored within an ontology in OWL whose
logical footstone is Description Logic (DL) [8]. The main motivation adopting
ontology to store emails is that we want to provide functions for retrieving,
classifying based on concepts, and use the inference engine of DL to answer
queries of a user in a reasonable time.

Figure 1 illustrates part of concepts and their relationship in the ECPIA. In
ECPIA, the following concepts are defined to distinguish the status of a sender:
family, colleague, friend, businessman, and scholar, whose instances are set by a
user. An alterative way for classifying emails is to use the following rules:

•EmailFromFamily ≡ Email ∩ ∃hasHead.(head ∩ ∃hasSender.family)
•EmailFromColleague ≡ Email∩∃hasHead.(head∩∃hasSender.colleague)
•EmailFromFriend ≡ Email ∩ ∃hasHead.(head ∩ ∃hasSender.friend)
•EmailFrombusiness ≡ Email ∩ ∃hasHead.(head ∩ ∃hasSender.business)
•EmailFromScholar ≡ Email ∩ ∃hasHead.(head ∩ ∃hasSender.scholar).

Fig. 1. Part of Concepts and Their Relationship in ECPIA

If a user of ECPIA wants to create a temporary and virtual folder to store
emails from the sender who is “scholar” and “friend”, the ECPIA will generate
a complex concept, as shown below, according to the user’s demand.



ECPIA: An Email-Centric Personal Intelligent Assistant 505

•EmailFromScholarAndFriend ≡
Email ∩ ∃hadHead.(head ∩ ∃hasSender.scholar)
∩(head ∩ ∃hasSender.friend)).

In the ECPIA, a user is able to use email to publish bulletins, make appoint-
ments, promise somebody to do something, etc. In order to differentiate between
such kinds of emails and ordinary emails, we need to define concepts, such as
conference, meeting, appointment, bulletin, request, and promise. Then, for ex-
ample, an email set with respect to appointment can be defined as a complex
concept:

• EmailAboutAppointment ≡ Email ∩∃ hasTopic.appointment.

If a user wants to display emails about “appointment” received from a sender
belonging to “friend”, the ECPIA will use the following concept to denote the
set of such emails.

•EmailAboutAppointmentByFriend ≡
(Email ∩ ∃hasT opic.appointment)∩ EmailFromFriend.

The key question is how the instances, such as “hasTopic(E1, T1)” and “ap-
pointment(T1)”, are generated. Here we use an example to explain our solution.
When a user wants to make an appointment with his/her friend in ECPIA, the
user needs to select a topic before sending the email about this appointment.
Then the ECPIA will remind the user to input information about the appoint-
ment. After that, the ECPIA will generate an attachment written in EACL which
is defined by us to store information about the appointment before sending this
email. Thus, the “Information Extracting Agent” of receiver will recognize the
topic. However, the ECPIA cannot identify the topic of emails sent by other
email clients, unless the user writes an attachment in EACL. It is fortunate that
Cohen’s work [6] is useful to solve such a problem.

4 Algorithms for User Behavior Analysis and Filtering

4.1 User Behavior Analysis

A prerequisite for developing systems providing personalized services is to un-
derstand user behavior represented by user profiles, that is, a representation of
preferences of any individual user. The intention tracking user behavior is to
display the emails that a user mostly wants to read and reply in the foreground.
Priority is used to represent the degree of importance of new emails. In ECPIA,
the intention tracking user behavior is to display the emails that a user mostly
wants to read and reply in the foreground. There are six types of priorities:
Read-based Priority (RP), Sender-based Priority (SP), Similarity-Based Prior-
ity (SIP), Task-Based Priority (TP), Group-Based Priority (GP), and Combined
Priority (CP). And they are defined according to following principle, respectively.

RP - More early read, more important.
SP - More frequency, more important.
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SIP - More similar to important emails, more important.
TP/GP - The task/group is more important, emails w.r.t. their importance.

Furthermore, ECPIA can recommend emails with a combined optimal value.
Here, we omitted formulae of these priorities because of the space limitation of
this paper.

4.2 Filtering Algorithm and Its Experimental Results

ECIPA uses Q “Filtering Agents” with the Multi-Variate Bernoulli Model [9]
to block spam. The training dataset is collected by an agent which is mainly
depended on the following rule to find junk emails. Furthermore, all non-junk
emails are used as a training dataset of legitimate.

•JunkMail ≡
(Email ∩ ∃hasHead.(head ∩ ∃hasSender.SpamSender))
∪(Email ∩ ∃hasHead.(head ∩ ∃hasEmailAddress.SpamEmailAddress)).

These Q filtering agents adopt our voting method called W-Voting to classify
new emails. We here give a method for computing the voting weight of each
agent, so that the filtering accuracy can be improved.

Let S and L represent the junk and legitimate training dataset, respectively.
Sampling data are obtained from S and L for Q times with return, respectively.
Thus, we get S1, . . . , SQ and L1, . . . , LQ. Let Si ∪ Li (i=1, . . . ,Q) be the training
dataset for the ith filter agent. After all agents are trained, each of them is tested
on S and L, and two matrixes named TS||S||×(Q+1) and TL||L||×(Q+1) are used.
Since similar methods are employed on TS and TL, we only discuss the approach
on TS below.

The TS||S||×(Q+1) junk is called the training matrix, where the ith line repre-
sents the ith junk training email, which mainly reflects the performance of each
filter on the ith training email. Let the ith line vector in TS be vi, and vi = 〈pi,1,
pi,2, . . . , pi,Q−1, pi,Q, pi,Q+1〉, where pi,k(k = 1, . . . ,Q) is the posterior probabil-
ity of the ith training email belonging to junk, which is computed by the kth

filter, and pi,Q+1 = 1.
Algorithm 1 shows the algorithm for computing each filter agent’s weight on

junk (WJi, i = 1, . . . ,Q). Similarly, such computing is also carried out on TL
to get the filter agent’s weight on legitimate (WLi, i = 1, . . . ,Q). After that, the
posterior probability of junk is computed by:

p(c1/e) =
Q∑

i=1

WJi ∗ pi(c1/e) (1)

where pi(c1/e) is the posterior probability of junk computed by the ith filter.
Similarly, the posterior probability of legitimate can be computed by p(c0/e).

If and only if p(c1/e)/ p(c0/e) ≥ (c10p0)/(c01p1), the ECIPA classifies e into
junk. Here, c10 is the cost of the error classifying legitimate into junk (reject-
error), and c01 is the cost of the inverse error (receive-error), p0 and p1 are the
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Algorithm 1. Generating a weight for each filtering agent
Data: TS. //Training matrix
Result: WJ1, WJ2, ..., WJQ. //Weight for each agent
begin

sum = ΣI
i=1Σ

J
j=1tsi,j ;

P = (1/sum)TS;
r = 〈r1, r2, . . . , rI〉, ri = P i+ (i = 1, 2, . . . , I);
c = 〈c1, c2, . . . , cJ 〉, ci = P+i (i = 1, 2, . . . , J);
Dr = diag(r1, r2, . . . , rI), Dc = diag(c1, c2, . . . , cJ );

P ′ = D
−1/2
r (P − rcT )D

−1/2
c ;

P ′ = UΣV T ;
Y = D

−1/2
r UΣ;

Z = D
−1/2
c V Σ;

WJi =
ΣK

j=1|Zij+Z(Q+1)j |
ΣK

j=1 |Zij−Z(Q+1)j |
(i = 1,. . . , Q);

return WJ1, WJ2,. . . , WJQ.
end

prior probabilities of junk and legitimate, respectively, and α is used to denote
the right hand below.

Experiments on two public available corpus, PU1 and Ling-Spam, have been
carried out to test the performance of the proposed voting method. For PU1, 488
legitimate and 384 junk emails are used as training data, and 122 legitimate and
96 junk emails are used as testing task. For Ling-Spam, 1929 legitimate and 384
junk emails are used to train the filter, and 483 legitimate and 97 junk emails
are used to test. In our experiments, the ratio of feature subset selection is 1%,
Q = 8, the feature subset selection method is based on Information Gain [10].
Furthermore, three criteria RJER, REER, TEC that were defined in [11] are
used to evaluate filters, respectively.

Figure 2 shows the comparative results of five filtering algorithms on the two
corpus. We can see that the W-Voting method has very low values of RJER,
REER, TEC on both PU1 and Ling-Spam. Furthermore, although C-SVM has
the lowest RJER on PU1, Values of both REER and TEC are larger than W-
Voting’s ones. Although Rocchio’s performance on Ling-Spam is the best, the
Rocchio method is not a cost-sensitive one and its performance on PU1 is worse
than W-Voting. It seems that C-SVM is the best filter from Figure 2 (a) and
Figure 2 (b), because that on both data sets, C-SVM makes 0 reject-error.
However, it makes more receive-errors than W-Voting. In fact, when α is set
to 1, the W-Voting only makes 1 reject-error on the two data sets. And when α
is set to an appropriate value, the W-Voting can archive very low RJER which
can be accepted by users as well as lower REER and TEC than other filters.

Figure 3 gives the performance of W-Voting when α is adjusted. Figure 3 (a)
shows the performance on PU1, and Figure 3 (b) shows the performance on Ling-
Spam. Furthermore, from Figure 3 (a), we can see that RJER becomes more
and more lower when α is adjusted to a larger value, while REER is opposite.
Although TEC becomes more and more lower at first when α is adjusted to
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Fig. 2. The performance of ECPIA’s filter on PU1 and Ling-Spam

Fig. 3. The performance changes with α on two dataset

a greater value, TEC starts to become a larger adagio when α arrives at a
threshold. Figure 3 (b) displays the same variety.

From Figure 3 (a), we know that TEC and RJER reach the lowest point when
α is set to 1 as the threshold value. And Figure 3 (b) tells us that the threshold
value for α should be set to 1.2 if we want to gain the lowest TEC and RJER on
Ling-Spam. In real-world applications, we suggest that users should adopt such
a value of α which is a little larger than the threshold at which TEC and RJER
gain their lowest value. For example, if we use PU1 as a dataset, we can set α
to 1.1, and if we use Ling-Spam as a dataset, we may set α to 1.3.

5 Concluding Remarks

We have built an email centric system that looks like a secretary of a user for
supporting his/her daily work. It is a Web-based and agent-based system with
full features which can be embedded into e-Business portals easily. A key goal of
such a design is that the assistant provides many email-centric capabilities, such
as making appointments by emails, publishing bulletins by emails, and building
communication channel of agents by emails and so on.
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The main contributions of this work are that (1) we use concept-based email
management by storing background knowledge of an email user and his/her
own emails into ontologies; and (2) we provide a method of combining multiple
filtering agents to block junk. The proposed method has been validated by our
experiments. In addition, we discuss our primary work on user behavior analysis.

The future work includes to complete interacting agents and to enhance the
capabilities of ECPIA by managing local materials as well as all resources with
respect to a user work.
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Abstract. This paper proposes a novel fuzzy c-means clustering al-
gorithm which treats attributes differently. Moreover, by analyzing the
Hessian Matrix of the new algorithm’s objective function, we get a rule
of parameters’ selection. The experiments demonstrate the validity of
the new algorithm and the guideline for the parameters’ selection.
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1 Introduction

There are numerous proposed clustering algorithms based on different theories
in the literature [2]. Fuzzy c-means algorithm first proposed by Dunn and then
generalized by Bezdek is one of the most efficient ones among fuzzy clustering
algorithms. However, fuzzy c-means algorithm take the same assumption that
the attributes of objects play the same role in clustering. This is not desirable in
some applications. Often in high dimensional data, many dimensions are irrel-
evant and can mask existing clusters in noisy data. Sometimes, part attributes
contribute more than others in deciding the cluster structure. How to distin-
guish the importance of these attributes? Variable selection and weighting are
important approaches in cluster analysis [3,4,5]. Modha and Spangler [3] pro-
posed a variable weighting k-means clustering algorithm. The idea of Modha
and Spangler is valuable. But the weights’ predefinition and the process of find-
ing the optimal are difficult because sometimes the space of weights is so large.
In [4], Huang et al. made an important discovery, which enlightened us. They
proposed a new k-means algorithm that can automatically compute attribute
weights, which measure the importance of each attribute.

Though Modha and Spangler [3] also gave a method to obtain the weights of
attributes, we follow the way similar to [4], which avoids the difficulty of finding
the suitable predefined weighting sets and the computing of generalized Fisher
ratio. In this paper, we have compared the performance of our proposed algo-
rithm with Modha’s. As for the Modha’s method, the minimal misclassification
number on real data set-Iris can reach 7, while our method can reach 6.
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2 The Attribute-Weight-FCM Type Algorithm and the
Analysis of Its Parameters

As it is valuable to find out the structure of attributes in some applications, we
propose a novel algorithm based on FCM. With that algorithm, the different
weight of each attribute can be found. Moreover, this algorithm can find the
latent structure of some attributes. By using wj to denote the weight of jth

attribute and subject to
∑s

j=1 wj = 1, the objective function of our proposed
algorithm can be defined:

J(u, v, w) =
c∑

i=1

n∑
k=1

s∑
j=1

um
ikwβ

j (xkj − vij)2. (1)

where c(2 ≤ c < n)is the number of clusters,
∑c

i=1 uik = 1,m(1 < m < +∞)
is called fuzzy exponent and β is called weighting exponent. By Lagrange mul-
tiplier’s approach, we can obtain the necessary conditions for the minimum of
J(u, v, w) as follows:

vij = (
n∑

k=1

um
ikxkj)(

n∑
k=1

um
ik)−1 (2)

uik = (
s∑

j=1

wβ
j ‖xkj − vij‖2)1/(1−m)(

c∑
t=1

(
s∑

j=1

wβ
j ‖xkj − vtj‖2)1/(1−m))−1 (3)

wj = D
1/(1−β)
j (

s∑
t=1

D
1/(1−β)
t )−1, where Dj =

c∑
i=1

n∑
k=1

um
ik(xkj − vij)2 (4)

Consequently, the process of the AWFCM can be implemented by iterative
method. By the same way in [4], it is easy to prove that given m and β, the
AWFCM algorithm converges to a local minimal solution or a saddle point in a
finite number of iterations.

As we know, the parameters play an important role in the fuzzy clustering
algorithm. The AWFCM algorithm in this paper is one of the fuzzy cluster-
ing algorithms. Then its outputs are also influenced by the parameters m and
β. It is well known that the number of points in the solution set may be so
large that some points may be not the desired result of the AWFCM. Gener-
ally speaking, when the data set is clustered into c(c > 1) subsets, each subset
is often expected to have a different prototype (or cluster center) than others.
Let U∗ = [1/c]c×n,x = (x1,x2, ...,xs), where xj =

∑n
t=1 xtj/n (j=1,2,...,s). It is

well known that U∗ belongs to the convergence set of the AWFCM’s objective
function. However, (U∗,x) is a fixed point of the AWFCM. Particularly, the out-
put of the AWFCM will be x if it is a local minimal solution of the AWFCM
algorithm. So, x should not be a stable point of AWFCM algorithm. Therefore,
it is important to judge the stability of x. According to [6], we focus on the
Hessian matrix Hu of ϕm,β(u) = minv,wJ(u, v, w), where v ∈ Rcs, w ∈ R. By
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computation, we can get the following condition under which (U∗,x) is a stable
point of the AWFCM.

Set Mlj = xlj −x, Tj = (
∑n

t=1 M2
tj)

1/(1−β), τ = (
∑s

j=1(
∑n

t=1 M2
tj)

1/(1−β))−β ,
GU∗ = (gkr)n×n, LU∗ = (lkr)n×n, DU∗ = diag(

∑s
j=1 M2

1jT
β
j ,
∑s

j=1 M2
2jT

β
j , ...,∑s

j=1 M2
njT

β
j ), gkr = τ1/β(

∑s
j=1 M2

kjT
β
j )(
∑s

j=1 M2
rjT

β
j )−

∑s
j=1 T

2β−1
j M2

kjM
2
rj,

lkr =
∑s

j=1 T
β
j MkjMrj, the Hessian Matrix of ϕm,β(u) can be given by Hu

cn×cn =
diag(Hu

1 ,Hu
2 , ...,Hu

c ), whereHu
i = m(m−1)c2−mτ [DU∗+(m/(m−1))(βc−1GU∗/

(β − 1) − 2LU∗/n)]. If define Zβ,U∗ = (D1/2
U∗ )−1Qβ,U∗(D1/2

U∗ )−1, where Qβ,U∗ =
βc−1GU∗/(β−1)−2LU∗/n, thenHu

i = m(m−1)c2−mτD
1/2
U∗ [In×n+mZβ,U∗/(m−

1)]D1/2
U∗ . If Hu

i is positive definite, (U∗,x) is the local minimal point of AWFCM
algorithm. And now the clustering algorithm is invalid. By mathematical
method, the following theorem can be got:

Theorem 4.1 : Let λmin(Zβ,U∗) be the minimum eigenvalue of Zβ,U∗ , if λmin

(Zβ,U∗) > −1 and m > 1/(1 + λmin(Zβ,U∗)), then (U∗,x) is a strict local min-
imum of Jm,β(u, v, w); If λmin(Zβ,U∗) < −1 and m > 1/(1 + λmin(Zβ,U∗)), the
algorithm hasn’t theoretically invalid weighting exponent on the given data set.

3 Numerical Experiments

In this section, experiment results are used to check the clustering performance
of the AWFCM algorithm and to test whether the AWFCM algorithm can iden-
tify insignificant (or noisy) attributes from given data sets. In the following
experiment, we choose m > 1, and β < 0 or β > 1.

Experiment 1: The data set(Data1) used in this experiment is a synthetic
one. The first three attributes x1, x2, x3 follow a normal distribution and can
be divided into 3 clusters. Each cluster has 100 points. x4 and x5 are random
attributes following uniform distribution. Fig.1 plots the points in Data1 in dif-
ferent two-dimensional subspaces.

Fig.2 shows the average misclassification number with c=3, different m and
β. The average misclassification number is calculated by summing the misclas-
sification numbers got by every time.

According to Fig.2, we implemented the AWFCM algorithm when β ranges
from 2 to 6 in order to test whether the algorithm can recover the different
importance of attributes. When m=2, c=3, tolerance=1e-5, Tcount=100, the
value of wj outputted by AWFCM algorithm is shown in Fig.3(a). It clearly
shows w1, w2, w3 are greater than w4 and w5, which is consistent with the real
structure.

The performance of AWFCM can be evaluated by the nonfuzziness index
NFI(u, c) = (c/(n×(c−1)))

∑c
i=1
∑n

k=1 u2
ik−1/(c−1)[7]. Since NFI(F (v), c) =

0 ⇐⇒ v = x, it is reasonable to use that to determine whether or not v =
x. If NFI(u, c) = 0, m is invalid for the data set X, otherwise, m is valid.
By computation, we can get when β = −10, 1/(1 + λmin(Zβ,U∗)) = 3.9125.
According to Theorem 4.1, when m > 3.9125 the AWFCM algorithm will output
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Fig. 1. The Points in Data1

Fig. 2. Misclassification Numbers on Data1 with Various m

the mass centroid of data set with greater probability. The value of NFI in
Fig.3(b) shows that clearly.

Experiment 2: Iris composed of 150 objects and divided into 3 clusters is used
in this experiment. More details about the Iris can be found in [8]. We test the
performance of AWFCM on Iris with the similar method in experiment 1.

The Table 1 tells us clearly that the average misclassification number of
AWFCM is 6 or 7, which is lower than that of traditional FCM[6].

In order to compare the performance of different algorithms, we choose the
better parameters respectively. The performance of Weight k-means proposed
by Huang et al.[4] is tested by choosing different β. The results in Fig.4 suggest
that the misclassification number of Weight k-means is not stable. Sometimes it
even can reach 0. However, the probability is very small. According to Fig.4, the
misclassification number is lowest when β = −1.25. The maximal and average
misclassification number got by Weight k-means when β = −1.25 and Convex
k-means algorithm proposed by Modha et al. are shown in Table 2. According to
above analysis, we implement the AWFCM algorithm 100 times by fixing m = 2
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Fig. 3. (a)Weights Got with Different β (b) NFI When β = −10

Table 1. The Average Misclassification Number of AWFCM on Iris with Various m, β

β,m 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

-6 11 12 12 13 13 14 13 13 14 15
-4 11 14 13 13 13 14 14 13 13 15
-2 15 15 15 15 14 14 14 14 14 15
2 6 6 6 7 19 21 23 26 27 26
4 6 6 6 7 10 11 14 17 18 18
6 8 8 8 10 12 14 16 18 18 18

Table 2. The Performance of Different Algorithms on Iris

algorithm parameters Maximal misclassification Average misclassification

FCM m=2 16 16
Weight k-means β = −1.25 50 19.13
Convex k-means × 62 23.18
AWFCM m=2,β = 2 6 6

Fig. 4. The Misclassification Number of Weight K-means on Iris

and β = 2. The maximal and the average misclassification number of FCM are
also shown in Table 2. Table 2 and Fig.4 indicate that FCM and AWFCM are
more stable than Weight k-means. Besides that, the data in Table 2 also suggest
that our algorithm is more effective than other three algorithms. As for how
to choose m and β when implementing AWFCM on Iris, the result in section 2
offers an useful guideline. When β = 2, λmin(Zβ,U∗) = −1.1859 < −1, so any
m > 1 is valid for AWFCM algorithm on Iris. When m ranging from 2 to 10,
we implemented the AWFCM by fixing β = 2. The experiment results showed
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that AWFCM algorithm could output the valid cluster centers and valid weight
of each attribute, which is consistent with the mathematical analysis.

4 Conclusion

We propose a novel algorithm-AWFCM. This algorithm can recover the clusters
in part attributes. The a theoretical rule of choosing the parameters m and β
are got by analyzing the Hessian Matrix of the AWFCM’s objective function.
The result of experiments demonstrates the validity of our algorithm and the
guideline of choosing appropriate parameters for the algorithm.
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Abstract. The aiNet is one of artificial immune system algorithms
which exploits the features of nature immune system. In this paper, aiNet
is modified by integrating K-means and Principal Component Analysis
and used to more complex tasks of document clustering. The results
of using different coded feature vectors–binary feature vectors and real
feature vectors for documents are compared. PCA is used as a way of
reducing the dimension of feature vectors. The results show that it can
get better result by using aiNet with PCA and real feature vectors.

Keywords: Artificial immune system, artificial immune network, docu-
ment clustering.

1 Introduction

Document clustering, is a very important and challenging problem in the area
of information retrieval and text mining. The Hierarchical Agglomerative Clus-
tering (HAC) and K-means are two commonly used clustering techniques for
document clustering. Most of these methods directly apply clustering techniques
to the raw collection of documents. However, with the explosion of information
available electronically, the size of document collections is becoming increasingly
large. In the case of large collections, more noise exists in the data, which causes
inferior clusters.

In the field of Web Content Mining, [1]proposes a novel immune-based learning
algorithm whose distributed, dynamic and adaptive nature offers many potential
advantages over more traditional models. [2]proposes the use of AIRS[3] for the
more complex task of hierarchical, multi-class document classification. In[4], it
proposed an approach of document clustering employing the aiNet (artificial
immune network)[5], which combines the desired preprocessing and clustering
procedures. PCA is introduced as an option to reduce the dimension of the
vectors. In this paper, both binary and real vectors are used to represent the
feature of documents in order to find a better way of improving the effect of
clustering by this method. K-means is used as another way of clustering after

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 516–521, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Document Clustering Based on Modified Artificial Immune Network 517

aiNet with PCA. aiNet with PCA(or without PCA) is combined with HAC and
K-means in several ways in order to compare the clustering results.

2 Document Clustering Based on aiNet

To perform the task of document clustering by aiNet, it is necessary to represent
a document in a concise and identifiable format or model. Usually, each docu-
ment is converted into an L dimensional vector, where L is determined by the
vocabulary of the entire document set. A collection of n documents then becomes
an n × L matrix A, where L is the size of the lexicon. Once the important fea-
tures have been selected, the data must be represented in a way that is suitable
for use by the aiNet.First, we use 0-1 vector[1]representation for aiNet,where the
value of A(i; j) is 1 if document i contains word j, otherwise 0. Then, we adopt
real vectors as the feature of documents. Methods used in feature selection of
real vectors include information gain.

2.1 The Modified aiNet for Document Clustering

Ab:available antibody set(Ab ∈ SN×L,Ab = Abd∪Abm); Abm:total memory anti-
body set(Abm ∈ Sm×L, m ≤ N);Abd:d new antibodies to be inserted in Ab(Abd ∈
Sd×L);Ag:population of antigens(Ag ∈ SM×L;fj :vectors containing the affinity
of all the antibodies Abi with relation to antigen Agj ,i, j = 1, ..., N ;S:similarity
matrix between each pair Abi−Abj ,with element si,j(i, j = 1, .., N);C:population
of clones generated from Ab(C ∈ SNc×L);C∗:population Cafter the affinity mat-
uration process;dj:vector containing the affinity between every element from the
set C∗ with Agj ; σs:the suppression threshold ,which defines the threshold to
eliminate redundant Abs. ς :the percentage of reselected Abs ; σd :the death rate,
which defined the threshold to remove the low-affinity Abs after the reselection.

C∗
k = Ck + αk(Agj − Ck),αk ∝ 1/fi,j, k = 1, ..., Nc, i = 1, ..., N, (1)

Nc =
n∑

i=1

round(N − Di,jN). (2)

After feature selection, each l dimensional vector representing a document
is created and treated as an antigen in the aiNet. aiNet generates a set of an-
tibodies to represent the original antigens via an evolutionary process. These
antibodies are the vectors containing the same features. The proposed method
then detects clusters among the constructed antibodies via HAC or K-means.
In order to obtain the cluster information of each document, the aiNet is also
modified to keep track of the antigens that are bound to each constructed anti-
body in the last iteration. In this way the cluster of a document is exactly the
cluster of the antibody that the antigen is bound to. The entire procedure in-
cluding antibody construction and clustering is referred to here as Binary(Real)
aiNet HAC(K-means), depending on the type of feature vectors and clustering
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Algorithm 1. Document Clustering by Modified aiNet
Input : Feature vectors of documents Ag
Output: Number of document clustering N .
Initialize Ab = []; Convert n Ags documents into n Ags via document
representation and feature selection; Randomly generate k Abs and put them
into Ab;
for each iteration do

for each Agj , j = 1, ...M, Agj ∈ Ag do
Calculate fi,j,i=1,...,N to all
Abi.fi,j = 1/Di,j , i = 1, ...N, Di,j = ‖Abi − Agj‖, i = 1, ..., N ;
Select Abn composed of n highest affinity antibodies
Clone the n selected antibodies according to (1),generating C
C is submitted to process of affinity maturation process according to
(2),generating C∗

Calculate dk,j = 1/Dk,j among Agj and all the elements of
C∗,Dk,j = ‖C∗

k − Agj‖, k = 1, ..., Nc

Reselect a subset ζ% of the antibodies with highest dk,j and put them
into Mj as memory clones;
Remove the meomory clones from Mj whose Dk,j > σd

Determine si,k among the memory clones:si,k = ‖Mj,i − Mj,k‖,∀i, k
Eliminate those memory clonew whose si,k¡σs

Concatenate the total antibody memory matrix with resultant clonal
memory M∗

j :Abm ← [Abm; M∗
j ]

end
Calculate si,k = ‖Abi

m − Abk
m, ∀i, k;

Eliminate all the antibodies whose si,k < σs;
Ab ← [Abm; Abd];

end
Cluster M which contains n Abs via HAC or K-means;
Check the Ags of each Ab in M to obtain each Ag’s cluster.

method it uses. The affinity is the distance between two vectors and calculated
according to the type of feature vectors. Hamming distance is for binary ones
and Euclidean distance is for real ones. PCA is introduced to achieve a degree of
dimensionality reduction before evolving the antibodies. Usually, the resulting
first few dimensions would account for a large proportion of the variability. For
the purpose of this paper, if n documents are to be clustered, an n × l matrix is
generated after the feature selection process. Here l is the number of the words
with the highest quality. Before directly set these n l-dimensional antigens as
the input for the aiNet,PCA is used to reduce l into a much smaller number
(say, 20) while still preserving about 65% of the information of the original doc-
ument matrix (calculated by the percentage of the explained variability). Also,
some noise information is removed to obtain better clustering results because
the data not contained in the first few components may be mostly due to noise.
Therefore, the n× l matrix is converted into an n×20 matrix via PCA. These n
20-dimensional vectors are taken as the input (antigens) of the aiNet algorithm.
Via the aiNet a compressed representation, i.e.,n′ 20-dimensional antibodies, are
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generated to represent the original n antigens (n′ < n ) and then clustered. Thus
the role of PCA is to compress the columns of the matrix and the role of aiNet is
to compress the rows of the matrix. The remaining clustering process is the same
as Binary(Real) aiNet HAC(K-means). This procedure, which combines PCA,
is referred to here as Binary(Real) aiNetpca HAC(K − means), depending on
the clustering method it uses.

3 Experimental Results

3.1 Accuracy

Experiments are conducted on the 20 Newsgroup data set. This data set contains
about 20,000 documents on different subjects from 20 UseNet discussion groups.
Four subsets of documents with various degrees of difficulty are chosen. For
example, the subset 1 contains 150 randomly selected documents from each of
the news groups sci.crypt and sci.space.

The most essential parameter σs controls final network size and is responsible
for the network plasticity. The different dimensionality of the antigens in these
procedures with and without PCA results in the different values of σs. Table 2
displays the results for 8 clustering procedures. Two metrics are used to evalu-
ate the clustering quality: accuracy (Acc.) and F-measure (F-mea.). Accuracy
is defined as the percentage of correctly classified documents. The F-measure is
another metric used in text mining literature for document clustering. It com-
bines the concepts of precision and recall. The setup of parameters ns,σs, ς, σd

for different modified algorithm are:2,0.7, 0.1,4(B aiNetHAC);2, 0.07,0.1,4(B
aiNetPCAHAC);3, 0.3, 0.1,5(R aiNetHAC);3, 0.4, 0.1,5(R aiNetPCAHAC); 2,
0.7,0.1,4(B aiNetK −means);2 , 0.07 ,0.1 ,4(B aiNetpcaK −means);3, 0.5,0.1,5
(R aiNetK − means); 3, 0.5, 0.1,5(R aiNetpcaK − means).B is Binary and R
is Real.

Table 1. The accuracy with size of document(HAC and K-means)

sizeofdocuments
Algorithms 160 300 600
RaiNetHAC 0.66 0.8 0.73
RaiNetpcaHAC 0.68 0.76 0.74
BaiNetHAC 0.52 0.66 0.65
BaiNetpcaHAC 0.52 0.74 0.65
RaiNetK − means 0.66 0.81 0.73
RaiNetpcaK − means 0.67 0.77 0.78
BaiNetK − means 0.54 0.70 0.65
BaiNetpcaK − means 0.52 0.66 0.65

Table 1 shows the clustering accuracies with different sizes of document sets
by different modified aiNet. All the documents are selected from two news groups
(sci.crypt and sci.electronics) but with different number of documents. Subset
A randomly selects 80 documents from each of the two news groups making a
total of 160 documents. Subset B randomly selects 150 documents from each,
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thus making 300 documents. Similarly, subset C randomly selects 300 documents
from each, making 600 documents. The results indicate that the modified aiNet
approach did improve clustering results when the size of the document set is
large.And the results of aiNet(HCA or K-means)with real feature vectors are bet-
ter than those of aiNet(HCA or K-means)with binary featue vectors. No matter
PCA is integrated or not.When the size of documents is 300, aiNetpca(HAC and
K-means) both get better clustering results than those of aiNet without PCA. In
Table 2, it shows that the clustering results are significantly improved when using
the aiNet (any way of the modified aiNet). The aiNetpca HAC and (aiNetpca

K − means) performs almost the same as aiNetHAC(aiNetK − means) when
the feature vectors are the same type and sometimes better. It shows that the
aiNet with PCA can retrieve better or at least comparable clustering results than
that without PCA. And what is more important is that Real aiNet(HAC and
K − means)with PCA generally perform better than Binary ones do, especially
for subset 2 and subset 4.When using binary feature vectors, aiNet HAC and
aiNet K − means) with or without PCA do not perform very well with the
subset 4[4]. But by using real feature vectors, the clustering result of subset 4
is improved. For all subsets,we can get the best result by using Real aiNetpca

K − means.

Table 2. Clustering results for different algorithms

subset1 subset2 subset3 subset4

Algorithms Acc. F − mea. Acc. F − mea. Acc. F − mea. Acc. F − mea.

HAC 0.500 0.665 0.557 0.654 0.723 0.700 0.610 0.631
BaiNetHAC 0.817 0.810 0.687 0.640 0.737 0.718 0.590 0.641
BaiNetpcaHAC 0.820 0.815 0.750 0.735 0.730 0.715 0.600 0.640
RaiNetHAC 0.845 0.823 0.789 0.774 0.797 0.783 0.660 0.657
RaiNetpcaHAC 0.879 0.868 0.806 0.792 0.805 0.801 0.694 0.688
K − means 0.777 0.794 0.580 0.580 0.507 0.513 0.597 0.624
BaiNetK − means 0.813 0.807 0.657 0.628 0.630 0.630 0.583 0.639
BaiNetpcaK − means 0.840 0.836 0.693 0.661 0.660 0.631 0.587 0.646
RaiNetK − means 0.856 0.845 0.734 0.745 0.736 0.732 0.636 0.632
RaiNetpcaK − means 0.873 0.867 0.78 0.775 0.755 0.748 0.674 0.662

4 Conclusion

The rationale of using the modified aiNet for document clustering is that it is
capable of reducing data redundancy and obtaining a compressed representation
of data. This approach is empirically tested with the 20 Newsgroup data sets.
It can get better results when using aiNet as a way of preprocessing compared
with traditional ways of clustering. The results of modified aiNet clustering by
binary feature vectors are compared with those of aiNet clustering by real ones.
The clustering results of aiNetpca with real feature vectors are generally better
than those of aiNet with binary ones. But for using the same type of feature
vectors,the results of clustering documents of are similar. For some subset on
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which binary aiNet doesn’t perform well,aiNet with real feature vectors also gets
better result.And it can get the best result of clustering documents by using Real
aiNetpca K − means. The experimental results also indicate that this approach
is especially good for large size document sets that contain data redundancy and
noise.
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Abstract. Concept lattice is an effective tool for data analysis and
knowledge discovery. Since one of the key problems of knowledge dis-
covery is knowledge reduction, it is very necessary to look for a sim-
ple and effective approach to knowledge reduction. In this paper, we
develop a novel approach to attribute reduction by defining a partial
relation and partial classes to generate concepts and introducing the no-
tion of meet-irreducible element in concept lattice. Some properties of
meet-irreducible element are presented. Furthermore, we analyze char-
acteristics of attributes and obtain sufficient and necessary conditions of
the characteristics of attributes. In addition, we illustrate that adopting
partial classes to generate concepts and the approach to attribute reduc-
tion are simpler and more convenient compared with current approaches.

Keywords: Concept lattice, attribute reduction, partial relation, meet-
irreducible element.

1 Introduction

Rough set theory [1] and formal concept analysis [2,3] are two efficient tools for
knowledge representation and knowledge discovery. In recent years, many efforts
have been made to compare or combine the two theories. Although formal con-
cept analysis has been researched extensively and applied to many fields, such as
construction of concept lattice [4,5,6], acquisition of rules [5,6], and relationship
with rough set [7,8,9,10,11,12,13,16] and so on, the time and space complexity
of the concept lattice is still a puzzle for its application. Whereas, knowledge re-
duction in concept lattice can make the discovery of implicit knowledge in data
easier and the representation simpler. Zhang, etc [14,15] present an approach to
attribute(object) reduction in concept lattice based on discernibility matrix. The
approach developed in [14,15] is to find the minimal set of attributes, which can
determine a concept lattice isomorphic to the one determined by all attributes
while the objects set unchanged.

In this paper, we mainly study attribute reduction in concept lattice. Firstly,
compared with rough set approximate operators, we define a partial relation
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and partial classes which can generate concepts in formal context. Then meet-
irreducible elements in concept lattices are introduced and some properties of
meet-irreducible elements are obtained. Following that a novel approach to at-
tribute reduction in concept lattice is developed based on meet-irreducible el-
ements. Unlike the current approach, the idea of this approach to attribute
reduction in concept lattice is to find the minimal set of attributes, which can
determine the same set of all meet-irreducible elements of concept lattice as the
one determined by all attributes. We also present necessary and sufficient condi-
tions about the absolute necessary, relative necessary and absolute unnecessary
attributes and illustrate that adopting the partial classes to generate concepts
and the approach to attribute reduction is simpler and more convenient com-
pared with current approaches.

In the following section, we recall basic definitions of formal context. A novel
approach to attribute reduction in concept lattice is presented in Sect. 3. In
addition, necessary and sufficient conditions about absolute necessary, relative
necessary and absolute unnecessary attributes are also given in Sect. 3. Finally,
we conclude the paper in Sect. 4.

2 Basic Definitions of Formal Context

A formal context is a triplet (U, A, R), where U is a non-empty finite set of
objects and A is a non-empty finite set of attributes, and R is a relation between
U and A, which is a subset of the Cartesian product U⊗A. In the formal context
(U, A, R), for a pair of elements x ∈ U and a ∈ A, if (x, a) ∈ R, we write xRa.
We can associate a set of attributes with an object x ∈ U and a set of objects
with an attribute a ∈ A, respectively (Yao [7,8]):

xR = {a ∈ A | xRa}, Ra = {x ∈ U | xRa}

For every X ⊆ U and B ⊆ A, we define:

α(X) = {a ∈ A | ∀x ∈ X,xRa}, β(B) = {x ∈ U | ∀a ∈ B,xRa}

Evidently,
α(X) =

⋂
x∈X

xR, β(B) =
⋂

a∈B

Ra.

Definition 1. Formal Concept. A formal concept of the context (U, A, R) is
a pair (X, B) with X ⊆ U, B ⊆ A, α(X) = B and β(B) = X. We call X
the extent and B the intent of the concept (X, B).(see [3])

The concepts of a formal context (U, A, R) are ordered by

(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2(⇔ B1 ⊇ B2)

Where (X1, B1) and (X2, B2) are two concepts. (X1, B1) is called a sub-concept
of (X2, B2), and (X2, B2) is called a super-concept of (X1, B1). The set of all
concepts of (U, A, R) ordered in this way is denoted by L(U, A, R) and is called
the concept lattice of the context (U, A, R) (see [3]).
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Theorem 1. Suppose (X1, B1) and (X2, B2) are two concepts, then

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2,α(β(B1 ∪ B2))),

(X1, B1) ∨ (X2, B2) = (β(α(X1 ∪ X2)), B1 ∩ B2).

The concept lattice L(U, A, R) is a complete lattice.(see [2])

3 Attribute Reduction in Concept Lattices

In this section, we introduce meet-irreducible elements in concept lattices and
present an approach to attribute reduction based on meet-irreducible elements in
concept lattice. And compared with current approaches to attribute reduction,
we illustrate that it is simpler and more convenient.

3.1 Properties of Meet-Irreducible Elements in Concept Lattices

Definition 2. An element a is meet-irreducible in a lattice L if for any b, c ∈
L, a = b ∧ c implies a = b or a = c; dually, an element a is union-irreducible in
a lattice L if for any b, c ∈ L, a = b ∨ c implies a = b or a = c. (see, [9])

Example 1. We denote an order relation as follows: a < b if and only if the circle
representing b can be reached by an ascending path from the circle representing
a. Fig. 1. indicates line diagrams for all ordered sets with up to three elements.
By Definition 2, we know that only the bottom element in (3) is not meet-
irreducible; dually only the top element in (4) is not union-irreducible. And the
others of Fig. 1. are both union-irreducible and meet-irreducible elements.

(1) (2) (3) (4) (5) (6)

Fig. 1. Line diagrams of all ordered sets with up to three elements

Theorem 2. Every element is the meet (union) of the meet-irreducible (union-
irreducible) elements.(see [3])

Saquer and Degun (see [10,11]) defined an equivalence relation on A as

a1Ja2 iff Ra1 = Ra2, where a1, a2 ∈ A

where Ra = {x ∈ U | xRa}.
Now we define a partial relation on A similar as the one used in [9].
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Definition 3. Suppose (U, A, R) is a formal context, a binary relation J on A
is defined as

a1Ja2 iff Ra1 ⊆ Ra2, where a1, a2 ∈ A

Then J is a partial relation on A. We denote partial class of a as [a], namely,
[a] = {b ∈ A | aJb}.

Lemma 1. Every pair (β([a]), [a]), a ∈ A is an element of L(U, A, R).

Proof. We only need prove that α(β([a])) = [a]. Followed the definition of [a],
it is easy to know that β([a]) = Ra. So, we have α(β([a])) = [a]. �

Let MI be a set of all the meet-irreducible elements of L(U, A, R), P = {(β([a]),
[a]), ∀a ∈ A}, Pm be the set of all the meet-irreducible elements of P .

Theorem 3. MI = Pm.

Proof. By Lemma 1, it is easy to know that MI ⊇ Pm. Contrarily, suppose
(β(B), B) is one of the meet-irreducible elements of L(U, A, R). Since β(B) ⊆
Ra, ∀a ∈ B, we have the following two cases :

Case 1. If there exists an attribute a ∈ B such that β(B) = Ra, then
(β(B), B) = (β([a]), [a]). Considering that (β(B), B) is meet-irreducible, (β([a]),
[a]) must be a meet-irreducible element. Therefore MI ⊆ Pm;

Case 2. If β(B) ⊂ Ra, ∀a ∈ B, and as a result of

β(B) =
⋂

ai∈B

Rai =
⋂

ai∈B

β([ai]),

then
(β(B), B) =

∧
ai∈B

(β([ai]), [ai]).

This contradicts the supposition which (β(B), B) is a meet-irreducible element.
Therefore, there must be an attribute a ∈ B such that β(B) = Ra. Namely,
MI ⊆ Pm. �

Remark 1. We can obtain MI directly by Definition 2. On the other hand,
considering that all elements except the bottom element of (3) in Fig. 1 are
meet-irreducible, it is simpler to look for the set MI by line diagrams of P .

Here, we only illustrate how to obtain meet-irreducible elements by line diagrams
in the following Example 2.

Example 2. Table 1 gives a formal context with U={1, 2, 3, 4} and A={a, b, c, d, e}
From Definition 3, partial class of attributes can be computed as follows:

[a] = {a, b}, corresponding concept is (124, ab);

[b] = {a, b}, corresponding concept is (124, ab);
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Table 1. A formal context (U, A, R)

U a b c d e
1 1 1 0 1 1
2 1 1 1 0 0
3 0 0 0 1 0
4 1 1 1 0 0

[c] = {a, b, c}, corresponding concept is (24, abc);

[d] = {d}, corresponding concept is (13, d);

[e] = {a, b, d, e}, corresponding concept is (1, abde);

Therefore,
P = {(1, abde), (13, d), (24, abc), (124, ab)}

According to Example 1 , we know that only (1, abde) is not meet-irreducible in
the line diagrams of P . Hence,

Pm = {(13, d), (24, abc), (124, ab)}.

(13, d) (124, ab)

(1, abde) (24, abc)

Fig. 2. Line diagrams of P

3.2 Attribute Reduction in Concept Lattices and Characteristics of
Attributes

Suppose (U, A, R) is a formal context, ∀D ⊆ A, D �= ∅, let,

PmA = {(β([a]), [a]) | (β([a]), [a]) ∈ MI, ∀a ∈ A};

PmD = {(β([a]), [a]) | (β([a]), [a]) ∈ MI, ∀a ∈ D}.

Definition 4. Suppose (U, A, R) is a formal context. If there is a subset of
attributes D ⊆ A, such that PmD = PmA, then D is called consistent set of
(U, A, R). Furthermore, if Pm(D−{d}) �= PmA for all d ∈ D , then D is an attribute
reduct of (U, A, R). The intersection of all the reducts of (U, A, R) is called the
core of (U, A, R).

Theorem 4. The reduct exists for any formal context.

Generally, it is possible that a formal context has more than one reducts.
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Definition 5. Suppose (U, A, R) is a formal context, the set {Di | Di is an
attribute reduct i ∈ τ}, (τ is an index set) includes of all the reducts of (U, A, R).
Then the attribute set A is divided into three parts:

1. Absolute unnecessary attribute set Ia: Ia = A −
⋃
i∈τ

Di.

2. Relative necessary attribute set Ka: Ka =
⋃
i∈τ

Di −
⋂
i∈τ

Di.

3. Absolute necessary attribute (core attribute) set Ca: Ca =
⋂
i∈τ

Di.

Suppose (U, A, R) is a formal context, for all a ∈ A we have the following results:

Theorem 5. a is an absolute unnecessary attribute ⇔ (β([a]), [a]) is not a
meet-irreducible element.

Proof. ⇐ By Definition 4 and 5, if a ∈ A, (β([a]), [a]) is not a meet-irreducible
element of L(U, A, R), then (β([a]), [a]) /∈ PmA = PmDi , ∀i ∈ τ . Therefore,
a /∈

⋃
i∈τ

Di, namely a is an absolute unnecessary attribute.

⇒ If a is an absolute unnecessary attribute, namely, a /∈
⋃
i∈τ

Di, then (β([a]),[a])

is not a meet-irreducible element of L(U, A, R). �
Theorem 6. a is a relative necessary attribute ⇔ (β([a]), [a]) is a meet-irr
educible element and there exits a1 ∈ A, a1 �= a such that (β([a1]), [a1]) =
(β([a]), [a]).

Proof. ⇐ Suppose a ∈ A, (β([a]),[a]) is a meet-irreducible element of L(U, A, R),
then there must exist a reduct Di, i ∈ τ such that a ∈ Di. If there exists b ∈ A
such that (β([a]), [a]) = (β([b]), [b]). Let, Dj = (Di − {a}) ∪ {b}. Evidently, Dj

is also a reduct. i.e, a is a relative necessary attribute.
⇒ If a is a relative necessary attribute, then there exist two reducts Di, Dj ,

i, j ∈ τ, i �= j, such that a ∈ Di, a /∈ Dj. So, (β([a]), [a]) ∈ PmDi = PmDj , then
there must exist b ∈ Dj such that (β([a]), [a]) = (β([b]), [b]). �
Theorem 7. a is an absolute necessary attribute ⇔ (β([a]), [a]) is a meet-
irreducible element and (β([a1]), [a1]) �= (β([a]), [a]), for all a1 ∈ A, a1 �= a.

Example 3. Let D1 = {a, c, d} and D2 = {b, c, d}. Then the corresponding
meet-irreducible elements are

PmA = {(13, d), (24, abc), (124, ab)},
PmD1 = {(β([a]), [a]), (β([c]), [c]), (β([d]), [d])}

= {(13, d), (24, abc), (124, ab)} = PmA,

PmD2 = {(β([b]), [b]), (β([c]), [c]), (β([d]), [d])}
= {(13, d), (24, abc), (124, ab)} = PmA,

It is easy to testify that Pm(D1−{a}) �= PmA, for all a ∈ D1 and Pm(D2−{b}) �=
PmA, for all b ∈ D2. Therefore, D1 and D2 are two reducts of the formal context
(U, A, R). Thus, c, d are absolute necessary attributes; a, b are relative necessary
attributes; and e is an absolute unnecessary attribute.
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Remark 2. In order to obtain all reducts of the concept lattice, firstly we require
computing the partial class [a] and Ra for all a ∈ A. Then using the method in
Remark 1, we can determine the set MI at once by the line diagrams of P . At the
same time, the absolute unnecessary attributes and relative necessary attributes
are obtained by Theorem 5 and 6. Finally, we find all attribute reducts.

Remark 3. Remark 2 shows us that there is no need to to generate all concepts
for attribute reducts adopting our approach. However, if we make use of the
approach to attribute reduction based on discernibility matrix, we are required
to obtain all concepts to generate discernibility matrix. Moreover, the current
method to generate concepts is very troublesome to calculate α(X), β(B) and
testify whether α(X) = B, β(B) = X hold for all X ⊆ U, B ⊆ A . Obviously,
our approach to attribute reduction is comparatively simple and convenient.

Object reduction in concept lattices is similar to attribute reduction. Due to the
limit of the space, we omit the results about object reduction in concept lattices.

4 Conclusions

In this paper, we have defined a partial relation and partial classes to gener-
ate concepts and presented a new approach to attribute reduction based on
meet-irreducible in concept lattice. The approach is to find the minimal set of
attributes, which can determine the same set of all meet-irreducible elements of
concept lattice as the one determined by all attributes. Furthermore, the charac-
teristics of attributes are analyzed and necessary and sufficient conditions about
the absolute necessary, relative necessary and absolute unnecessary attributes
are obtained. In addition, we have illustrated that using the partial classes and
this approach is simpler and easier to generate concepts and obtain all reducts
of the concept lattice. This approach to attribute reduction can also be used in
objected concept lattice which introduced by Yao [7,8] and information concept
lattice.
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Abstract. Bilevel decision addresses the problem in which two levels of
decision makers act and react in an uncooperative, sequential manner,
and each tries to optimize their individual objectives under constraints.
Such a bilevel optimization structure appears naturally in many aspects
of planning, management and policy making. There are two kinds of
bilevel decision models already presented, which are traditional bilevel
decision models and rule sets based bilevel decision models. Based on
the two kinds of models, granule sets based bilevel decision models are
developed in this paper. The models can be viewed as extensions of the
former two models, and they can describe more bilevel decision making
problems and possess some new advantages. We also discuss the compari-
son of the three models and present some new topics in this research field.

Keywords: Bilevel decision, granule set, rough set, tolerance granular
space.

1 Introduction

Bilevel decision making problems are hierarchical decision making problems
where the constraints of one problem (the so-called upper level problem) are
defined in part by a second parametric decision making problem (the lower level
problem). If the lower level problem as a unique optimal solution for all param-
eter values, this problem is equivalent to a one-level decision making problem
having an implicitly defined objective function. In such a bilevel decision situa-
tion, decision maker at each level has individual payoff function, and the upper
level the decision maker is at, the more important and global his decision is.
Therefore, a bilevel decision model intends to reach certain goals, which reflect
the upper level decision makers’ aims and also consider the reaction of the lower
level decision makers on the final decisions. Such a decision problem is called as
a bilevel decision problem. The decision maker at the upper level is known as
the leader, and at the lower level, the follower.

Bilevel decision problems have been introduced by Von Stackelberg in the
context of unbalanced economic markets in the fifties of the 20th century [1].
� This work is supported by the National Science Foundation of China No. 60435010,

National Basic Research Priorities Programme No. 2003CB317004 and the Nature
Science Foundation of Beijing No. 4052025.
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After that moment a rapid development and intensive investigation of these prob-
lems begun both in theoretical and in applications oriented directions [2,3,4,5,6].
However, bilevel decision making may involve many uncertain factors in a real
world problem. Therefore it is hard to determine the objective functions and
constraints when build a bilevel decision model. To handle the issue, as a new
exploration to model and solve a bilevel decision problem, we first formulates a
bilevel decision problem using decision rule sets[7,8]. Instead of linear or nonlin-
ear functions, the rule sets based bilevel decision problem uses decision rule sets
to model a bilevel decision problem.

In this paper, we integrate the traditional bilevel decision model[4,5,6] with
our rule sets based bilevel decision model[7,8], and then generalize them to a
new model, granule sets based bilevel decision model. In this new model, we use
granules in tolerance granular spaces to model the objectives and constraints of
a bilevel decision problem, and finally the bilevel problem is transformed to a
granule sets based bilevel decision model. The former two models can be viewed
as special cases of the granule sets based one, and the granule sets based bilevel
decision model inherits the advantages of the former models. It is more flexible
and can describe more complex bilevel problems.

2 Decision Granules and Granule Set Functions

2.1 Decision Granules

Granules are regarded as the primitive notions of granular computing. A gran-
ule may be interpreted as one of the numerous small entities forming a larger
unit.The entities are arranged together due to their similarity functional adja-
cency, indistinguishability, coherency or alike.

When constructing granules, we need to consider at least three basic proper-
ties of granules[9]:

1. Internal properties reflecting the interaction of elements inside a granule;
2. External properties revealing its interaction with other granules;
3. Contextual properties showing the relative existence of a granule in a par-

ticular environment.

From these viewpoints, we know that granule is not only a cluster (or set) of
objects as some existent granular theories, but also an abstraction of the cluster
(or set). So, we suppose that a granule includes two parts: the intension and
the extension. The intension is the general feature, rule or commonness of the
objects belonging to the granule according to the contexts. Besides, the inten-
sion can also represent the viewpoints of the user to this granule. The extension
of the granule includes the objects or smaller granules that are covered by the
granule. A granule without the intension and the extension is just a symbol or
a name. Based on above, we have the following definition.

Definition 2.1. (Decision Granules): A decision granule G is composed by two
parts: 1. The intension of the granule IG. It is a decision rule or function, etc,
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which reflects the relations between the variables and the decisions in a decision
problem. 2. The extension of the granule EG, that is, the objects or smaller
granules constructing the granule.

Usually, the objects in the extension satisfy the knowledge represented by the
intension.Different types of decision granules can be identified by definition 2.1,
such as:

1. Rule granules, whose intension is a rule and extension is the set of objects
covered by the intension.

2. Statistic granules, whose intension is a linear or nonlinear function and
extension is the object set whose elements satisfy the functions.

Of course, according to the forms of knowledge representations, we can con-
struct some other types of decision granules, so that different types of bilevel
decision models can be constructed.

2.2 Granule Set Fucntions

To present the model of granule sets based bilevel decision model, the definition
of granule set function is needed. Granule set function identifies the relations
between the variables and the decisions decided by a granule set.

Given a granule set GS = {G1, . . . ,Gl}, where l is the number of granules in
GS. Suppose x and y are two variables, where x ∈ X and X = V1 × · · · × Vm,
y∈Y. Vr is the domain of the rth dimension and Y is the domain of decisions.

Definition 2.2 (Granule set functions): A granule set function gs from X to Y
is a subset of the cartesian product X × Y, such that for each x in X, there is a
unique y in Y generated with GS such that the ordered pair (x, y) is in gs. GS
is called as the granule set related with the function, x is called as the condition
variable, y is called as the decision variable, X is the definitional domain and Y
is the value domain.

The aim of calculating the value of a granule set function is to make decisions
for undecided objects with granule sets, where undecided objects are objects
without decision values.

3 Tolerance Relation Based Granular Space[10,11]

To construct the granule sets based bilevel decision models, not only gran-
ules are needed but the relations among these granules should be generated.
The frameworks representing granules and the relations among them are gran-
ular spaces. There are several kinds of granular spaces corresponding to differ-
ent types of granules, such as quotient spaces for quotients[12], approximation
spaces for rough sets based granules[13], rough neural networks for information
granules[14], and tolerance granular space for tolerance granules[10,11], etc.

Here, we use the tolerance granular space developed by us to model granules
and their relations. Each granular space has their own advantages. The reasons
for using tolerance granular space are: 1) It uses tolerance relations to construct
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the relations between granules, which are broader than equivalence relations
based granules[12,13,14]; 2) In our research, we present that a definition of gran-
ules is not only a cluster (or set) of objects as most existent granular theories,
but also an abstraction of the cluster (or set); 3) The model can process both the
symbolized and consecutive data well; 4) We use an obvious hiberarchy to rep-
resent granular frameworks, in which some useful space structures are developed
in our model, such as granular lattices[10,11].

In the following, we briefly introduce the theory of tolerance granular space,
and the detailed can be referred from [10,11]. The aim of describing a problem
at different granularities is to enable the computer to solve the same problem at
different granule sizes hierarchically.

Suppose the triplet (OS, TR, NTC ) describes a tolerance granular space
TG, where

OS denotes an object set system;
TR denotes a tolerance relation system;
NTC denotes a nested tolerance covering system.
The object set system can be formulated as

OS = {
⋃
p

{O0p}}
⋃

... {
⋃
p

{Okp
}}
⋃

...

where Okp represents the a subset object of hiberarchy k. For example, in image
processing, O0 = (x, y, R, G, B) can be viewed as a pixel, where x, y are the
coordinates of a pixel and R,G,B are the pixel’s RGB color values. O1 can be
viewed as an image. O2 can be viewed as a video stream.

The tolerance relation system can be formulated as

TR = ∪tr(cp, ω, DIS, D).

where tr is a tolerance relation induced by compound tolerance proposition.
Proposition cp, weight vector ω, distance function vector DIS and radius vector
D are four important elements of a tolerance relation. Tolerance relation system
is composed by a set of tolerance relations.

The nested tolerance covering system is a (parameterized) granular structure,
which denotes different levels granules and the granulation process based on
above object system and tolerance relation system. It denotes a nested granular
structure to express the relationships among granules and objects.

With the methods developed in [10,11], the nested tolerance covering NTCk

over Ok can be generated from Ok−1 recursively. Finally, the nested tolerance
covering system is

NTC = {NTC1, . . . , NTCk, . . .}

In the tolerance granular spaces, a granule is a representation of knowledge
or concept extracted from primitive data or decomposed from bigger granules.
There are usually two kinds of methods to construct a tolerance granular space.
One is top-down constructing method, in which first constructing bigger granules
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and then smaller granules. The other is bottom-up constructing method, in which
first constructing the smaller granules, and then the bigger granules. We can
select the suitable levels of granules or a suitable set of granules to define the
granule set functions according to special applications, which is oriented from the
view: instead of the primitive data or the trivial data, human beings recognize
things and make decisions using granules. Based on a appropriate set of granules,
we can make decisions more quickly and exactly.

4 Granule Sets Based Bilevel Decision Model

In the following, the mathematical model of granule sets based bilevel decision
model is presented. Here, we suppose there are one leader and one follower. Be-
sides, we suppose that, if x is the undecided object of the leader and y is the
undecided object of the follower, then x⊕y is the combined undecided object of
the leader and the follower together.

Definition 4.1 (Model of granule sets based bilevel decision):

minx∈X gfL(x ⊕ y)
s.t. ggL(x⊕ y)
miny∈Y gfF (x⊕ y)

s.t. ggL(x⊕ y)

where x and y are undecided objects of the leader and the follower respectively.
gfL and ggL are the objective granule set function and constraint granule set
function of the leader respectively, gfF and ggF are the objective granule set
function and constraint granule set function of the follower respectively. GFL,
GGL, GFF and GGF are the corresponding granule sets of above granule set
functions respectively.

In our paper [7], we discuss that there are uncertainty when make decisions, so
rule trees are developed to deal with the problem. With the relations of granules
established by tolerance granular spaces, the problem can be solved naturally
and the detailed methods can refer to our paper[10]. This is also the advantage
of tolerance granular spaces.

Granule sets based bilevel decision model is an extension of rule sets based
one. With the definition of granules, it is obvious that rule set is a special case
of granule set, where a rule can be viewed as the intension of a granule and
the objects covered by the rule can be viewed as the elements in the extension.
However, even with above definition of granules, the granule sets in tolerance
granular space have more advantages than rule sets. First, the tolerance granular
space reflects the relations among the granules, which is an additional tool to
make decisions and solve the uncertainty problems; Second, tolerance granular
space generated from decision tables is a more complete knowledge framework
than rule sets[10,11]; Third, with the tolerance granular space, decisions can be
made not only with the intensions (rules) but the extensions (primitive object
sets), which is more effective in some special applications.
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Traditional bilevel decision model is mainly constructed by linear or nonlinear
functions. Sometimes it can be generated from primitive data with some methods
such as regression analysis and so on. So, if we define the intensions of granules
as linear functions or nonlinear functions and the extensions as primitive objects,
we can construct statistic granules. Thus, traditional bilevel decision model can
be viewed as a special case of granule sets based one.

The using of both kinds of granules can make the bilevel decision models more
flexible and describe more real-world problems.

5 Examples

In this section, we illustrate some examples of the three models to show the
difference among them.

Example 1. (An example of traditional bilevel decision model):

minx∈X F (x, y) = x− 4y
s.t.− x− y ≤ −3

− 3x+ 2y ≥ −4
miny∈Y f(x, y) = x+ y

s.t.− 2x+ y ≤ 0
2x+ y ≤ 12

Example 2. (An example of rule sets based bilevel decision model):

minx∈X fL(x⊕ y)
s.t. gL(x ⊕ y) ≥ 0
miny∈Y fF (x⊕ y)

s.t. gL(x ⊕ y) ≥ 0

where

FL = { x = 4 ⇒ d = 2
x = 3 ⇒ d = 1
(x = 2) && (y = 1) ⇒ d = 3
(x = 1) && (y = 4) ⇒ d = 4}

GL = { x = 4 ⇒ d′ = 1
x = 3 ⇒ d′ = 1}

FF = { y = 1 ⇒ d = 1
y = 4 ⇒ d = 3
(x = 2) && (y = 2) ⇒ d = 2}

GF = { y = 1 ⇒ d′ = 1
y = 4 ⇒ d′ = 1}
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FL, GL, FF and GF are the corresponding rule sets of above rule set func-
tions respectively. d is the decision attribute of objective rule sets, and d ’ is the
decision attribute of condition rule sets.

Example 3. (An example of granule sets based bilevel decision model):

minx∈X gfL(x ⊕ y)
s.t. ggL(x⊕ y)
miny∈Y gfF (x⊕ y)

s.t. ggL(x⊕ y)

where

GFL = { x = 4 ⇒ d = 2
x = 3 ⇒ d = 1

(x = 2) && (y = 1) ⇒ d = 3
(x = 1) && (y = 4) ⇒ d = 4}

GGL = { x+ y > 3}
GFF = { y = 1 ⇒ d = 1

y = 4 ⇒ d = 3
(x = 2) && (y = 2) ⇒ d = 2}

GGF = { 2x− y < 2}
GFL,GGL,GFF andGGF are the corresponding granule sets of above granule

set functions respectively. The contents between the brackets are the intensions
of granules, and the extensions of granules are omited because of page limit.

6 Conclusion

The use of data mining and machine learning techniques has became integral
to the design and analysis of most industrial and socio-economic systems. Great
strides have been made recently in the solution of large-scale problems arising
in many areas. However, standard data mining and machine learning models
are often inadequate in the situations because more than a single data miner
or a single learning machine are involved. Bilevel decision making, the focus
of this paper, is in a narrow sense of this situation. It addresses the problem in
which two decision makers(miners, learning machines), each with their individual
objectives or tasks, act and react in a noncooperative, sequential manner. The
actions of one affect the choices and payoffs available to the other but neither
player can completely dominate the other.

Bilevel decision making problem is a traditional one in optimization and pro-
gramming fields. However, we believe that the problem needs to be studied with
methods of data mining and machine learning. Thus, we presented rule sets based
bilevel decision model before. In this paper, we developed a new model- granule
sets based bilevel decision model, which is an extension of the former models, can
describe more bilevel decision making problems and have some new advantages.
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Abstract. Design and implementation of intrusion detection systems
remain an important research issue in order to maintain proper net-
work security. Support Vector Machines (SVM) as a classical pattern
recognition tool have been widely used for intrusion detection. However,
conventional SVM methods do not concern different characteristics of
features in building an intrusion detection system. We propose an en-
hanced SVM model with a weighted kernel function based on features
of the training data for intrusion detection. Rough set theory is adopted
to perform a feature ranking and selection task of the new model. We
evaluate the new model with the KDD dataset and the UNM dataset.
It is suggested that the proposed model outperformed the conventional
SVM in precision, computation time, and false negative rate.

Keywords: Intrusion detection, support vector machine, feature
selection, rough sets.

1 Introduction

Various intrusion detection systems are studied and proposed to meet the chal-
lenges of a vulnerable internet environment [1,3]. It is not an exaggerated state-
ment that an intrusion detection system is a must for a modern computer system.
Intrusion detection technologies can be classified into two groups: misuse detec-
tion and anomaly detection [1]. A misuse detection system detects intrusion
events that follow known patterns. These patterns describe a suspect set of se-
quences of actions or tasks that may be harmful. The main limitation of this
approach is that it cannot detect possible novel intrusions, i.e., events that have
never happened and captured previously. An anomaly detection based system
analyzes event data and recognizes patterns of activities that appear to be nor-
mal. If an event lies outside of the patterns, it is reported as a possible intrusion.
It is considered as a self-learning approach. We focus on anomaly intrusion de-
tection in this study.

Many artificial intelligence techniques have been used for anomaly intrusion de-
tection. Qiao et al. [12] presented an anomaly detection method by using a hidden
Markov model to analyze the UNM dataset. Lee et al. [9] established an anomaly
detection model that integrates the association rules and frequency episodes with
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fuzzy logic to produce patterns for intrusion detection. Mohajeran et al. [10] devel-
oped an anomaly intrusion detection system that combines neural networks and
fuzzy logic to analyze the KDD dataset. Wang et al. [14] applied genetic algorithms
to optimize the membership function for mining fuzzy association rules.

Support Vector Machines (SVM) have become one of the popular techniques
for anomaly intrusion detection due to their good generalization nature and the
ability to overcome the curse of dimensionality [2,13]. Although there are some
improvements, the number of dimensions still affects the performance of SVM-
based classifiers [2]. Another issue is that an SVM treats every feature of data
equally. In real intrusion detection datasets, many features are redundant or less
important [8]. It would be better if we consider feature weights during SVM
training. Rough set theory has proved its advantages on feature analysis and
feature selection [5,6,16]. This paper presents a study that incorporates rough
set theory to SVM for intrusion detection. We propose a new SVM algorithm for
considering weighting levels of different features and the dimensionality of intru-
sion data. Experiments and comparisons are conducted through two intrusion
datasets: the KDD Cup 1999 dataset1 and the UMN dataset that was recorded
from the trace of systems calls coming from a UNIX system2.

2 A Brief Overview of Support Vector Machines

An SVM model is a machine learning method that is based on statistical learning
theories [13]. It classifies data by a set of support vectors that represent data
patterns.

A general two-class classification problem is to find a discriminant function
f(x), such that yi = f(xi) given N data samples (x1, y1) . . . (xi, yi) . . . (xN , yN).
A possible linear discriminant function can be presented as f(x) = sgn(w ·
x − b) where w · x − b = 0 can be viewed as a separating hyperplane in the
data space. Therefore, choosing a discriminant function is to find a hyperplane
having the maximum separating margin with respect to the two classes. The final
linear discriminant is formulated as f(x) = sgn(

∑l
i=1 αiyi(xi · x − b), where l

is the number of training records, yi ∈ {−1, +1} is the label associated with the
training data, 0 ≤ αi ≤ C (constant C > 0), and xi is the support vectors.

When the surface separating two classes is not linear, we can transform the
data points to another higher dimensional space such that the data points will
be linear separable. The nonlinear discriminant function of SVM is:

f(x) = sgn(
l∑

i=1

αiyiK(xi, x) + b), (1)

where K(xi, x) is the kernel function that is used to transform data points.

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2 http://www.cs.unm.edu/∼immsec/systemcalls.htm
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Algorithm 1. Feature Weights Calculation
Input : Dataset D.
Output: A weight vector W .
Find out all the reducts of D using rough sets;
Nfeature ← number of features in D;
Nreduct ← number of reducts of D;
//Initialize the weight of each feature.
for (i ← 0 to Nfeature) do

wi ← 0;
end
// Calculate the weight of each feature.
for (i ← 0 to Nfeature) do

for (j ← 0 to Nreduct) do
if
(
feature i in the jth reduct Rj

)
then

m ← number of features in Rj ;
wi ← wi + 1

m
;

end
end

end
Scale the values of feature weights into the interval [0, 100];

3 Enhancing SVM Learning with Weighted Features

Various SVM kernel functions are proposed for users to choose from for different
applications [2,7]. The most common kernel functions are the linear function,
polynomial function, sigmoid function, and radial basis function. These kernel
functions do not consider the differences between features of data. From the
general SVM kernel function format K(xi, x), we can see that all features of
the training or test datasets are treated equally. Treating all features equally
may not be efficient and it may affect the accuracy of SVM. A possible solution
to consider the importance of different features is to add weights to a kernel
function. The weights are used to measure the importance of each feature. A
generic form of the new kernel function is formulated as K(wxi, wx), where w
is a vector consisting of weights of features of data set. A nonlinear discriminant
function with feature weights is formulated as,

f(x) = sgn(
l∑

i=1

αiyiK(wxi, wx) + b). (2)

This enhanced kernel is independent to particular kernel functions. For dif-
ferent applications, one may choose the most suitable kernel function to apply
the feature weights on. We use rough set theory to calculate and generate these
weights from training data in this study. The basic principles of weight calcula-
tion are: 1) if a feature is not in any reducts then the weight of this feature is
0; 2) the more times a feature appears in the reducts, the more important this
feature is; 3) the fewer the number of features in a reduct, the more important
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these features appearing in this reduct are. If a reduct has only one feature, the
feature belonging to this reduct is the most important.

Based on the above principles, we propose an algorithm as depicted in Al-
gorithm 1 that adopts rough set theory to rank features and calculate feature
weights. After the feature ranking process, we consider those features with 0
weights as the least important features and delete them. In Algorithm 1, feature
ranking and feature selection are conducted in the same process.

4 Experiments and Results Analysis

Two datasets, KDD and UNM, are used in experiments to evaluate the per-
formance of the proposed new model. The KDD dataset consists of network
connection records generated by a TCP/IP dump. It contains 4, 940, 000 con-
nection records. There are 41 features in each record. 10% of the original data
are training data with a label which identifies which category the record belongs.
We only discuss binary classification.

The system call dataset is from the University of New Mexico (UNM). It
consists of 4, 298 normal traces and 1,001 intrusion traces. Each trace is the list
of system calls issued by an lpr process from the beginning of its execution to
the end. There are 182 different system calls in the dataset.

Four measures adapted from information retrieval [4] are used to evaluate the
performance of an SVM model: precision = A

A+B , recall= A
A+C , false negative

rate= C
A+C , and false positive rate= B

B+D . A, B, C, and D represent the number
of detected intrusions, not intrusions but detected as intrusions, not detected
intrusions, and not detected non-intrusions respectively.

False negative occurs when an intrusion action has occurred but the system
considers it as a non-intrusive behavior. A false positive occurs when the system
classifies an action as an intrusion while it is a legitimate action. A good intrusion
detection system should perform with a high precision and a high recall, as well
as a lower false positive rate and a lower false negative rate. To consider both the
precision and false negative rate is very important as the normal data usually
significantly outnumbers the intrusion data in practice. To only measure the
precision of a system is misleading in such a situation. A poor intrusion detection
system may have a high precision but a high false negative rate.

There are four steps in our experiments. The first step is to remove redundant
intrusion records. Both KDD and UNM datasets have more intrusion data than
normal data. We filter the redundant intrusion records until the two resulting
datasets consisting of 1.5% intrusions and 98.5% normal records. There are no
obvious feature-value pairs in the dataset. We use a mapping method to convert
the dataset to feature-value format. The second step is to use rough set feature
ranking and selection to calculate weights of each feature and delete unimportant
features. After processing, the number of features of the KDD dataset is narrowed
down from 41 to 16 and the UNM dataset is narrowed down from 467 to 9. The
third step is to train the SVM. We generate one training set and three test sets
for each of the datasets. For the KDD dataset, each set has 50,000 randomly
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Table 1. Comparisons of the Experimental Results on the KDD Dataset

Nrecord Nfeature Precision (%) False Negative (%) CPU-second
test set 1

Conventional SVM 5 × 104 41 99.82 7.69 222.28
Enhanced SVM 5 × 104 16 99.86 6.39 75.63
Improvement 60.0% 0.4% 16.9% 66.0%

test set 2
Conventional SVM 5 × 104 41 99.80 8.25 227.03

Enhanced SVM 5 × 104 16 99.85 6.91 78.93
Improvement 60.0% 0.5% 16.2% 65.0%

test set 3
Conventional SVM 5 × 104 41 99.88 7.45 230.27

Enhanced SVM 5 × 104 16 99.91 5.49 77.85
Improvement 60.0% 0.3% 26.3% 66.0%

Table 2. Comparisons of the Experimental Results on the UNM Dataset

Nrecord Nfeature Precision (%) False Negative (%) CPU-second
test set 1

Conventional SVM 2 × 103 467 100 0 1.62
Enhanced SVM 2 × 103 9 100 0 0.28
Improvement 98% 83%

test set 2
Conventional SVM 2 × 103 467 100 0 1.71

Enhanced SVM 2 × 103 9 100 0 0.29
Improvement 98% 83%

test set 3
Conventional SVM 2 × 103 467 100 0 1.59

Enhanced SVM 2 × 103 9 100 0 0.25
Improvement 98% 84%

selected records. Each set has 2,000 records for the UNM dataset. Based on
previous research, we choose γ = 10−6 for RBF kernel e−||xi−x||2·γ [17]. The last
step is to build a decision function to classify the test data. Experimental results
for the two datasets are presented in Table 1 and 2.

Here are some observations from the experiments. The improvements of per-
formance are consistent for all of the six test sets. This suggests that the new
model has a good generalization ability. The new model outperforms the con-
ventional SVM in all three measures, namely, precision, false negative rate and
CPU time for the KDD dataset. Although the improvement for precision is only
0.4% on average, the improvement for the other two are significant. The im-
provements for false negative rate are between 16.2% and 26.8%. The time used
for the new model is only one third of the conventional SVM model. For the
UNM dataset, the precision and false negative rate of conventional SVM are
perfect with no room for improvement. These results are similar to the results
from other researchers with other methods on this dataset [9,15]. However, the
CPU time is significantly reduced with the new model.

5 Conclusion

We propose an enhanced SVM model for intrusion detection. The new model
adopts rough sets to rank the features of intrusion detection data. Only the
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important features will be counted when training an SVM. It is suggested that
the proposed new model is effective for the KDD dataset. Although the precision
levels of both the conventional SVM and the new model are about the same, the
false negative rates of the new model are lower than the conventional SVM
model. In addition, the time used to detect an intrusion of the new model is
much less than the conventional SVM. An additional set of experiments was
conducted with the UNM dataset. Both conventional SVM and the new model
performed perfectly in terms of accuracy. However, the new model still has an
advantage, i.e., the running time is much less as fewer number of features are
used for classification.
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Abstract. The K-Means clustering is by far the most widely used
method for discovering clusters in data. It has a good performance on
the data with compact super-sphere distributions, but tends to fail in
the data organized in more complex and unknown shapes. In this paper,
we analyze in detail the characteristic property of data clustering and
propose a novel dissimilarity measure, named density-sensitive distance
metric, which can describe the distribution characteristic of data clus-
tering. By using this dissimilarity measure, a density-sensitive K-Means
clustering algorithm is given, which has the ability to identify complex
non-convex clusters compared with the original K-Means algorithm. The
experimental results on both artificial data sets and real-world problems
assess the validity of the algorithm.

Keywords: K-Means clustering, distance metric, dissimilarity measure.

1 Introduction

Data clustering has always been an active and challenging research area in ma-
chine learning and data mining. In its basic form the clustering problem is defined
as the problem of finding homogeneous groups of data points in a given data
set, each of which is referred to as a cluster. Numerous clustering algorithms are
available in the literature. Extensive and good overviews of clustering algorithms
can be found in the literature [1]. One of the earliest and most popular meth-
ods for finding clusters in data used in applications is the algorithm known as
K-Means, which is a squared error-based clustering algorithm [2]. The K-Means
algorithm is very simple and can be easily implemented in solving many practical
problems. There exist a lot of extended versions of K-Means such as K-Median
[3], adaptive K-Means [4],and global K-Means [5].

In order to mathematically identify clusters in a data set, it is usually nec-
essary to first define a measure of dissimilarity which will establish a rule for
assigning points to the domain of a particular cluster center. The most popu-
lar dissimilarity measure is the Euclidean distance. By using Euclidean distance
as a measure of dissimilarity, the K-Means algorithm has a good performance
on the data with compact super-sphere distributions, but tends to fail in the
data organized in more complex and unknown shapes, which indicates that this
dissimilarity measure is undesirable when clusters have random distributions.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 544–551, 2006.
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As a result, it is necessary to design a more flexible dissimilarity measure for the
K-Means algorithm. Su and Chou [6] proposed a nonmetric measure based on
the concept of point symmetry, according to which a symmetry-based version of
the K-Means algorithm is given. This algorithm assigns data points to a cluster
center if they present a symmetrical structure with respect to the cluster center.
Therefore, it is suitable to clustering data sets with clear symmetrical structure.
Charalampidis [7] recently developed a dissimilarity measure for directional pat-
terns represented by rotation-variant vectors and further introduced a circular
K-Means algorithm to cluster vectors containing directional information, which
is applicable for textural images clustering.

In this paper, through observing the characteristic property of data cluster-
ing, we design a novel data-dependent dissimilarity measure, namely, density-
sensitive distance metric, which has the property of elongating the distance
among points in different high density regions and simultaneously shortening
that in the same high density region. Thus, this distance metric can reflect
the characters of data clustering. Introducing the dissimilarity measure into the
K-Means clustering, a density-sensitive K-Means clustering algorithm (DSKM)
is proposed. Compared with the original K-Means clustering, DSKM can be used
to group a given data set into a set of clusters of different geometrical structures.

2 Density-Sensitive Distance Metric

As we all known, no meaningful cluster analysis is possible unless a meaning-
ful measure of distance or proximity between pairs of data points has been
established. Most of the clusters can be identified by their location or density
characters. Through a large mount of observation, we have found the following
two consistency characters of data clustering, which are coincident with the prior
assumption of consistency in semi-supervised learning [8].

– Local consistency refers that data points close in location will have a high
affinity.

– Global consistency refers that data points locating in the same manifold
structure will have a high affinity.

For real world problems, the distributions of data points take on a complex
manifold structure, which results in the classical Euclidian distance metric can
only describe the local consistency, but fails to describe the global consistency.
We can illustrate this problem by the following example. As shown in Fig.1(a),
we expect that the affinity between point 1 and point 3 is higher than that of
point 1 and point 2. In other words, point 1 is much closer to point 3 than to
point 2 according to some distance metric. In terms of Euclidian distance metric,
however, point 1 is much closer to point 2, thus without reflecting the global
consistency. Hence for complicated real world problems, simply using Euclidean
distance metric as a dissimilarity measure can not fully reflect the characters of
data clustering.

In the following, we will consider how to design a novel dissimilarity measure
with the ability of reflecting both the local and global consistency. As an example,
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(a) (b)

Fig. 1. (a) Looking for a distance metric according to which point 1 is closer to point

3 than to point 2; (b) af + fe + ed + dc + cb < ab

we can observe from the data distribution in Fig. 1(a) that data points in the
same cluster tend to lie in a region of high density, and there exists a region of
low density where there are a few data points. We can design a data-dependent
dissimilarity measure in terms of that character of local data density.

At first, data points are taken as the nodes V of a weighted undirected graph
G = (V, E). Edges E = Wij reflect the affinity between each pair of data points.
We expect to design a dissimilarity measure that ascribes high affinity to two
points if they can be linked by a path running along a region of high density,
and a low affinity if they cannot. This concept of dissimilarity measure has
been shown in experiments to lead to significant improvement in classification
accuracy when applied to semi-supervised learning [9], [10]. We can illustrate
this concept in Fig. 1(a), that is, we are looking for a measure of dissimilarity
according to which point 1 is closer to point 3 than to point 2. The aim of
using this kind of measure is to elongate the paths cross low density regions, and
simultaneously shorten those not cross.

To formalize this intuitive notion of dissimilarity, we need first define a so-
called density adjusted length of line segment. We have found a property that a
distance measure describing the global consistency of clustering does not always
satisfy the triangle inequality under the Euclidean distance metric. In other
words, a direct connected path between two points is not always the shortest
one. As shown in Fig. 1(b), to describe the global consistency, it is required that
the length of the path connected by shorter edges is smaller than that of the
direct connected path, i.e. af + fe + ed + dc+ cb < ab.

Enlightened by this property, we define a density adjusted length of line seg-
ment as follows.

Definition 1. Density adjusted length of line segment
A density adjusted length of line segment is defined as

L(xi,xj) = ρdist(xi,xj) − 1. (1)

where dist(xi,xj) is the Euclidean distance between xi and xj ; ρ > 1 is the
flexing factor.
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Obviously, this formulation possesses the property mentioned above, thus can be
utilized to describe the global consistency. In addition, the length of line segment
between two points can be elongated or shortened by adjusting the flexing factor
ρ.

According to the density adjusted length of line segment, we can further
introduce a new distance metric, called density-sensitive distance metric, which
measures the distance between a pair of points by searching for the shortest path
in the graph.

Definition 2. Density-sensitive distance metric. Let data points be the
nodes of graph G = (V, E), and p ∈ V l be a path of length l =: |p| connecting
the nodes p1 and p|p|, in which (pk, pk+1) ∈ E, 1 ≤ k < |p|. Let Pi,j denote
the set of all paths connecting nodes xi and xj . The density-sensitive distance
metric between two points is defined to be

Dij = min
p∈Pi,j

|p|−1∑
k=1

L(pk, pk+1). (2)

Thus Dij satisfies the four conditions for a metric, i.e. Dij = Dji; Dij ≥ 0;
Dij ≤ Dik + Dkj for all xi,xj ,xk; and Dij = 0 iff xi = xj .

As a result, the density-sensitive distance metric can measure the geodesic dis-
tance along the manifold, which results in any two points in the same region
of high density being connected by a lot of shorter edges while any two points
in different regions of high density are connected by a longer edge through a
region of low density. This achieves the aim of elongating the distance among
data points in different regions of high density and simultaneously shortening
that in the same region of high density. Hence, this distance metric is data-
dependent, and can reflect the data character of local density, namely, what is
called density-sensitive.

3 Density-Sensitive K-Means Algorithm

According to the analysis in the previous section, we can conclude that the choice
of dissimilarity measure will greatly influence the clustering results. It is natural
to consider utilizing the density-sensitive distance metric as a dissimilarity mea-
sure in the original K-Means algorithm and expect to have better performance.
Consequently, we have a modified K-Means algorithm, called density-sensitive
K-Means algorithm (DSKM), whose detailed procedure is summarized in Alg. 1.
DSKM is a trade-off of flexibility in clustering data with computational com-
plexity. The main computational cost for the flexibility in detecting clusters lies
in searching for the shortest path between each pair of data points.

4 Simulations

In order to validate the clustering performance of DSKM, here we give the ex-
perimental results on artificial data sets and real-world problems. The results
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Algorithm 1. Density-Sensitive K-Means Algorithm
Input : n data points {xi}n

i=1; cluster number k; maximum iteration number
tmax; stop threshold e.

Output: Partition of the data set C1, . . . , Ck.
1. Initialization. Randomly choose k data points from the data set to initialize k

cluster centers;
2. For any two points xi, xj , compute the density-sensitive distance in terms of

Dij = min
p∈Pi,j

∑|p|−1
k=1 L(pk, pk+1);

3. Each point is assigned to the cluster which the density-sensitive distance of
its center to the point is minimum;

4. Recalculate the center of each cluster;
5. Continuation. If no points change categories or the number of iterations has

reached the maximum number tmax, then stop. Otherwise, go to step 2.

will be compared with the original K-Means algorithm. In all the problems, the
desired clusters number is set to be known in advance, and the maximum iter-
ative number is set to 500, the stop threshold 10−5. Both algorithms are run
10 times for each of the candidate parameters and the average result is finally
output.

4.1 Artificial Data Sets

In this section, we evaluate the performance of DSKM on some artificial data
sets. Here, we construct four ”challenge problems” with different distributions of
data points. Clustering results obtained by DSKM and KM are shown in Fig. 2.
We can see clearly that KM fails in obtaining the correct clusters for all the
problems. This is due to the complex structure of data points, which does not
satisfy convex distribution. On the other hand, DSKM can successfully recognize
these complex clusters, which indicates the density-sensitive distance metric is
very suitable to measure the complicated clustering structure.

We need to emphasize that the correct clusters are achieved by DSKM in a
wider range of parameters. We choose the two moons problem as an example.
With any flexing factor satisfying 1 < ρ < e18, DSKM can obtain the desired
clusters. Therefore, DSKM is not sensitive to the choice of free parameter.

4.2 Real-World Data Sets

We have conducted experiments on USPS handwritten digit data set and three
real data sets from UCI machine learning repository, i.e. Iris, Breast Cancer, and
Heart [11]. USPS data set contains 9298 16×16 gray images of handwritten digits
(7291 for training and 2007 for testing). The test set is taken as the clustering
data, and we perform experiments recognizing three groups of digits, i.e. 0, 8;
3, 5, 8 and 0, 2, 4, 6, 7.

Now that the ”true” clustering is available, we can use the class message
to evaluate the clustering performance of the algorithms. Let the true clus-
tering be Δtrue = {Ctrue

1 , Ctrue
2 , . . . , Ctrue

ktrue
} and the clustering produced be
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Fig. 2. Four ”challenge problems” are successfully clustered by DSKM (left). Cluster

membership is indicated by different marker symbol and colors. KM fails in all the

problems (right).



550 L. Wang, L. Bo, and L. Jiao

Δ = {C1, C2, . . . , Ck}. ∀i ∈ [1, . . . , ktrue], j ∈ [1, . . . , k], Confusion(i, j) denotes
the number of same data points both in the true cluster Ctrue

i and in the cluster
Cj produced. Then, the clustering error (CE) is defined as

CE(Δ,Δtrue) =
1
n

ktrue∑
i=1

k∑
j=1i
=j

Confusion(i,j). (3)

where n is the total number of data pints. Note that there exists a renumbering
problem. For example, cluster 1 in the true clustering might be assigned cluster
3 in the clustering produced and so on. To counter that, the CE is computed
for all possible renumbering of the clustering produced, and the minimum of all
those is taken.

The best clustering performance, i.e. the smallest CE achieved by DSKM and
KM on the four data sets is reported in Table 1, from which we can see that
DSKM has a dominant performance on these real world data sets compared with
the original KM.

Table 1. Performance Comparisons of DSKM and KM

Best CE
Problem DSKM KM

Iris 0.106 0.147
Breast Cancer 0.235 0.267

Heart 0.142 0.163
0,8 0.025 0.191

3,5,8 0.146 0.252
0,2,4,6,7 0.113 0.202

Finally, we can conclude from the simulations that DSKM not only has a sig-
nificant improvement on the clustering performance compared with the original
K-Means clustering algorithm, but also can be applied in the case where the dis-
tributions of data points are not compact super-spheres. And furthermore, the
experimental results also indicate the general applicability of density-sensitive
dissimilarity measure.

5 Conclusions

This paper presents a modified K-Means clustering based on a novel dissimi-
larity measure, namely, density-sensitive distance metric. The density-sensitive
K-Means algorithm can identify non-convex clustering structures, thus general-
izing the application area of the original K-Means algorithm. The experimental
results on both artificial and real world data sets validate the efficiency of the
modified algorithm.
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Abstract. The problem of kernel parameters selection for one-class clas-
sifier, ν-SVM, is studied. An improved constrained particle swarm op-
timization (PSO) is proposed to optimize the RBF kernel parameters
of the ν-SVM and two kinds of flexible RBF kernels are introduced. As
a general purpose swarm intelligent and global optimization tool, PSO
do not need the classifier performance criterion to be differentiable and
convex. In order to handle the parameter constraints involved by the
ν-SVM, the improved constrained PSO utilizes the punishment term to
provide the constraints violation information. Application studies on an
artificial banana dataset the efficiency of the proposed method.

Keywords: Swarm intelligence, particle swarm optimization, ν-SVM,
radical basis function, hyperparameters tuning.

1 Introduction

Due to the superior statistical properties and the successful application, the ker-
nel based one-class classifier have aroused attentions in recent years. Among
the kernel based approaches, ν-Support vector machine (ν-SVM) proposed by
Vapnik[1] and Support vector dada description by Tax[2] are two important and
fundamentally equivalent approaches. For kernel based approaches, the choice
of the kernel function is a crucial step which need skills and tricks. If the ker-
nel family is predetermined, e.g., the RBF (Radical Basis Function) kernel, the
problem reduces to selecting an appropriate set of parameters for the classifiers.
Such kernel parameters together with the regularization coefficient are called the
hyperparameters.

In practice, the hyperparameters are usually determined by grid search[3], i.e.,
the hyperparameters space is explored by comparing the performance measure
on fixed points and eventually, the parameter combination with the best per-
formance is selected. Due to its computational complexity, grid search is only
suitable for the low dimension problems. An alternative approach to optimize the
hyperparameters is gradient decent methods [4], which needs the kernel function
and performance assessing function to be differentiable with respect to the kernel
� This work is partially supported by National Natural Science Foundation of China
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and regularization parameters. This hampers the usage of some reasonable per-
formance criteria such as the number of support vectors. Furthermore, gradient
decent methods rely on the initial guess of the solutions and likely to converge to
a local optimal point especially for the high dimensional optimization problems.

In this paper, we propose a swarm intelligent approach, Particle Swarm Op-
timization (PSO), for the hyperparameters selection to overcome the deficien-
cies of mentioned above. As a swarm intelligent approach and general global
optimization tool, PSO was first proposed by Kennedy and Eberhart[5] which
simulates the simplified social life models. Since PSO has many advantages over
other heuristic and evolutionary techniques such as it can be easily implemented
and has great capability of escaping local optimal solution[6], PSO has been
widely applied in many engineering problems[7]. The performance criterion to
be optimized for the ν-SVM involves the weighed average of misclassification
rates on the target set and outlier set, where the outliers are assumed uniformly
distributed around the target set. Although only the RBF kernel is involved in
this paper, the swarm intelligent tuning methodology is general and can be easily
extended to other kernel families.

The rest of this paper is structured as follows. Section 2 introduces the fun-
damental elements and parameterization of the ν-SVM with RBF kernels, two
flexible RBF kernel formulations are introduced. A short summary of basic PSO
algorithm is given in Section 3. The proposed constrained-PSO based ν-SVM
hyperparameters tuning approach is presented in Section 4. The experimental
results on an artificial banana dataset are reported in Section 5 prior to a con-
cluding summary in Section 6.

2 ν-SVM and RBF Kernel Parameterization

The main idea of the ν-SVM is (i) to map the input vectors to a feature space
and (ii) to find a hyperplane with largest margin from the origin point which
separate the transferred data from the rest of the feature space.

Given a data set containing l target training examples, {xi ∈ +n, i=1,2,...,l},
the mapping Φ : x → F is implicitly done by a given kernel K : +n × +n → +
which compute the inner product in the feature space, i.e., 〈Φ(xi),Φ(xj)〉 =
K(xi,xj). The ν-SVM solves the following optimization problem:

min
w,b,ξ,ρ

1
2 〈w, w〉 − ρ+ 1

νl

l∑
i=1

ξi,

s.t. 〈w,Φ(x)〉 ≥ ρ− ξi, ξi ≥ 0
(1)

where w and ρ are the normal vector and offset of the separating hyperplane,
the distance between the hyperplane and the origin is ρ/ ‖w‖. 0 ≤ ν ≤ 1 is
the tuning parameter which controls the upper limit on the fraction of training
error on target class and a lower bound on the fraction of support vectors. ξi

represent the slack variables which allow the possibility that some of the training
examples can be wrongly classified and this is necessary for the problems that
are not linearly separable in the feature space.
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The dual problem of (1) is formulated as:

min
α

1
2

l∑
i=1

l∑
j=1

αiαjK(xi,xj),

s.t. 0 ≤ αi ≤ 1
νl ,

l∑
i=1

αi = 1
(2)

where αi are called Lagrange multipliers and the decision function for a data
vector z is:

f(z) =

⎧⎨⎩1 (target class),
l∑

i=1
αiK(xi, z) ≥ ρ

0 (outlier), else.
. (3)

2.1 RBF Kernel Parameterization

For the ν-SVM, the RBF is the most general purpose kernel formulation. In
current study, we consider the general RBF kernel with a symmetric positive
matrix S:

K(xi,xj) = exp(−(xi − xj)T S(xi − xj)). (4)

The ordinary RBF kernel[8] assumes S=sI, i,e, s is the only adjustable param-
eter. In addition to the ordinary RBF kernel, two more flexible RBF kernels are
considered in this paper: (i) Diagonal Kernel, S = diag[s1, s2, . . . , sn], si ≥0,
so the elements of x can be scaled at different levels; (ii) Arbitrary Kernel,
S = PT ΛP with Λ = diag[s1, s2, ..., sn], si ≥ 0 and P is an orthogonal rotat-
ing matrix, so the input space is scaled and rotated simultaneously[9][10]. The
orthogonal rotating matrix P can be further parameterized as in ref[10]:

P =
n−1∏
i=1

n∏
j=i+1

Ri,j ,Ri,j ∈ +n×n, (5)

where Ri,j are elementary rotating matrices determined by angles 0 ≤ θi,j ≤ π:

Ri,j =

⎡⎢⎢⎢⎢⎣
Ii−1 0

0

⎡⎢⎢⎣
⎡⎣ cos θi,j 0 − sin θi,j

0 Ij−i−1 0
sin θi,j 0 cos θi,j

⎤⎦ 0

0 In−j

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦ . (6)

Together with the parameter ν, Table 1 lists the hyperparameters p of ν-SVM
with different RBF kernel formulations:

2.2 Performance Criterion of ν-SVM

For one-class classifier, there are two kinds of error need to be minimized, i.e., (i)
the rejection rate of the target objects εT−(true negative error) and (ii) accep-
tation rate of outliers εF+(false positive error)[11]. The leave-one-out estimation
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Table 1. Parameters List of RBF ν-SVM

RBF Kernel Type Adjustable Parameters

Ordinary Kernel p = [ν, s]T ∈ �2

Diagonal Kernel p = [ν, s1, s2, ..., sn]T ∈ �n+1

Arbitrary Kernel p = [ν, s1, s2, ..., sn, θi,j ]
T ∈ �n+1+n(n−1)/2, 1 ≤ i < j ≤ n

of the former error is the fraction of support vectors, εT− = nSV/l, where nSV
indicates the number of support vectors.

With respect to the second error rate, one has to assume the outlier distri-
bution and to generate a set of artificial outliers to estimate the εF+. Tax[14]
proposed a natural assumption that the outliers are distributed uniformly in a
hypersphere enclosing the target classes. To generate the outliers, a uniform hy-
perspherical distribution generation method presented by Luban[12] is involved
and the fraction of accepted outliers gives an estimation of εF+.

On the basis of the above estimations of εT− and εF+, the performance cri-
terion of the ν-SVM on one training set is defined as:

ε = λεT− + (1 − λ)εF+ = λ · nSV/l + (1 − λ)εF+, (7)

where 0 ≤ λ ≤ 1 balances the two kinds of errors. In practice, in order to prevent
the over fitting of RBF parameters on one training set, the performance criterion
can be selected as the average ε on multiple training sets.

3 Particle Swarm Optimization

PSO is an algorithm first introduced by Kennedy and Eberhart[5]. In PSO,
each solution of the optimization problem, called a particle, flies in the problem
search space looking for the optimal position according to its own experience as
well as to the experience of its neighborhood. The performance of each particle is
evaluated using the criterion in Eq.(7). Two factors characterize a particle status
in the m-dimensional search space: its velocity and position which are updated
according to the following equations at the jth iteration:{

Δpj+1
i = u ·Δpj

i + ϕ1r
j
1(p

j
id − pj

i ) + ϕ2r
j
2(p

j
gd − pj

i )
pj+1

i = pj
i +Δpj+1

i

, (8)

where Δpj+1
i ∈ +m, called the velocity for particle i, represents the position

change by this swarm from its current position in the jth iteration, pj+1
i ∈ +m

is the particle position, pj
id ∈ +m is the best previous position of particle i,

pj
gd ∈ +m is the best position that all the particles have reached, ϕ1,ϕ2 are

the positive acceleration coefficient, u is so called inertia weight and ri
1, r

j
2 are

uniformly distributed random numbers between [0, 1].
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4 PSO Based Hyperparameters Tuning of ν-SVM

Particle Swarm Optimization, in its original form, can only be applied to the
unconstrained problems while the RBF ν-SVM introduces a set of constrains on
the parameters. In this section, a novel constrained PSO with restart and rules
to select its parameters are presented. A general PSO hyperparameters tuning
framework for the ν-SVM is given as well.

4.1 Constrained PSO with Restart

The purpose of hyperparameters tuning is to find a optimal combination of pa-
rameters which minimize the misclassification rate defined by Eq.(7). With N
training datasets of target class at hand, the general formulation of the opti-
mization problem is given as follows:

min ε̄

s.t. ε̄ =
n∑

i=1
εi/N, εi ← Eq.(2)(7)

pL ≤ p ≤ pU ,p = [p1, p2, ..., pm]T
. (9)

With respect to the parameter constraints pL ≤ p ≤ pU , the penalty term is
added to the objective function to provide the information on constraint viola-
tions. In current study, the penalty term is in the form of:

Pe(p) =
m∑

i=1

b2i ,bi =

⎧⎨⎩
B(pi − pU

i )2, pi > pU
i

0, pU
i > pi > pL

i

B(pi − pL
i )2, pi < pL

i

, (10)

where B is a positive constant, e.g. of value 100. The penalty term Pe(p) de-
creases to zero if and only if no constraints are violated. Adding the penalty term
to the objective function of (9) leads to the following constrain free formulation:

min ε̄+ Pe(p)

s.t. ε̄ =
n∑

i=1
εi/N ; εi ← Eq.(2)(7) . (11)

There are several ways of determining when the PSO algorithm should stop.
The most common adopted criterion is reaching a maximum number of iterations
IMAX. However, it is pointless for PSO to proceed if the algorithm no longer
possesses any capability of improvement. In this study, an improved PSO algo-
rithm with restart is presented, i.e., a new particle population will be generated
when current one has no potential to explore better solutions. Such potential is
measured with the following criterion which indicates whether all the particles
are clustered around the same spot:

max
i,j

(‖pi − pj‖Σ) < δ, 1 ≤ i ≤ j ≤ nSwarm, (12)

where ‖pi − pj‖Σ =
√

(pi − pj)T Σ(pi − pj)is the norm of a vector, Σ is a pos-
itive weighting matrix, e.g. Σ = diag−1(pU −pL). δ is the predefined tolerance,
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e.g. 10−3 and nSwarm is the population size. With the restart scheme proposed
above, the exploring capability of PSO algorithm is further improved and it is
more possible to find global solution in limited iterations.

4.2 PSO Parameters Setting

There are several parameters needed to be predefined before PSO is carried out.
There are some rules of thumb reported in the literatures[5][6] to select the PSO
parameters.

Population size (nSwarm). This parameter is crucial for PSO algorithm. A
small population does not create enough interaction for the emergent behavior
to PSO to occur. However, the population size is not problem specific, a value
ranging from 20 to 50 can guarantee the exploring capability of PSO, especially
for unconstrained optimization problems. To our experience, for the ν-SVM hy-
perparameters tuning problem, which includes a set of constraints, 40 to 80
population size is usually enough.
Inertia coefficient (u). This parameter controls the influence of previous veloc-
ity on the current one. Generally speaking, large u facilitates global exploration,
whilst low u facilitates local exploration. According to the suggestion of Par-
sopoulos and Varhatis [6], a initial value around 1.2 and gradual decline towards
0 can be taken as a good choice of u.
Acceleration coefficient (ϕ1,ϕ2). Proper tuning of these parameters can im-
prove the probability of finding global optimum and the speed of convergence.
The default value is ϕ1 = ϕ2 = 2.

5 Experimental Evaluations

We applied the proposed tuning approach on an artificial 2-dimensional banana
shape target set. 10 training datasets, each with 100 targets and 1000 artificial
outliers uniformly distributed around the targets, were generated to train and
evaluate the performance of the candidate RBF kernel parameters.

The value of the mean misclassification rate defined in Eq.(9) over 10 training
datasets with respect to ν and s (for ordinary RBF kernel and λ=0.5) is illus-
trated in Fig.1. It reveals that the hyperparameters tuning problem has multi
local optimal points and it is very likely for the gradient based method to con-
verge to such points and miss the global optimal solution. In contrast, the PSO
based swarm intelligent tuning approach does not suffer the above limitations.

For each of the three kinds of RBF kernels listed in Table 1, PSO with the
same parameter settings(nSwarm=40, u decreases from 1.2 to 0,ϕ1 = ϕ2= 2,
IMAX=100, λ=0.5, B=500 and δ=10−3) were performed to find the best hyper-
parameters. The optimization results over 10 training sets are listed in Table 2.
The first row gives the optimal solution by PSO, note that more flexible kernel
has more parameters to tune. The second row shows the average misclassification
rate on the target set εT− and the third row represents the average fraction of
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Fig. 1. ε̄ value for different combination

of ν and s (Banana)

Fig. 2. Decision bound of the ν-SVM with

optimal RBF kernel (Banana)

Table 2. Results obtained by PSO over 10 training datasets (Banana)

RBF Kernel Type Ordinary Kernel Diagonal Kernel Arbitrary Kernel

pT [ν, s]=[0.0977,0.2951] [ν, s1, s2]=[0.0987,
0.2948, 0.3000]

[ν, s1, s2, θ1,1]=[0.1295,
0.2370, 0.3667, 0.6003]

ε̄T− 0.1751(0.0471) 0.1767(0.0469) 0.1709(0.0338)
ε̄F+ 0.3697(0.0474) 0.3681(0.0473) 0.3308(0.0412)
ε̄ 0.2724(0.0225) 0.2724(0.0224) 0.2509(0.0223)

accepted outliers εF+, both over 10 datasets. The number in the bracket gives
the standard deviation. The last row shows optimal value of the performance
criteria, i.e., the weighed average of the above two error rates.

From Table 2, it can be seen that replacing the ordinary kernel with the di-
agonal kernel does not improve the performance of the ν-SVM, the two kernels
give the approximately identical solution (note that s1 ≈ s2 for the diagonal
kernel). However, when the arbitrary kernel formulation is utilized, the aver-
age misclassification rate decreases from 0.2724 to 0.2509, or an improvement
of about 6%, so we can conclude that arbitrary kernel yield significant better
results. The decision bound of the ν-SVM with optimal arbitrary RBF kernel
for one training dataset is illustrated in Fig.2. Note that the Banana shape is
rotated clockwise about 40̊ compared with the original one in ref[14].

6 Conclusion

The purpose of one-class classifier is to separate the target class from the other
possible objects. In this paper, a constrained-PSO based hyperparameters tuning
approach is proposed for the ν-SVM and two flexible RBF kernel formulation are
introduced. Application study demonstrates that diagonal and arbitrary RBF
kernels can lead to better performance than the ordinary kernel.
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Abstract. Derived from regularization theory, an adaptive entropy reg-
ularized likelihood (ERL) learning algorithm is presented for Gaussian
mixture modeling, which is then proved to be actually a generalized
competitive learning. The simulation experiments demonstrate that our
adaptive ERL learning algorithm can make the parameter estimation
with automatic model selection for Gaussian mixture even when two or
more Gaussians are overlapped in a high degree.

Keywords: Gaussian mixture, model selection, regularization theory,
competitive learning.

1 Introduction

Many problems in data analysis, especially in clustering analysis and classifi-
cation, can be solved through Gaussian mixture modeling [1]. Actually, several
statistical methods have been proposed to do such a task, e.g. EM algorithm [2]
for maximum likelihood(ML) [3]. Usually, it is assumed that the number k of
Gaussians in the data set is pre-known. However, in many instances, this key
information is not available and then the selection of an appropriate number
of Gaussians must be made before or during the estimation of parameters in
the mixture. Since the number k of Gaussians is just the scale of the mixture
model, its determination is actually the problem of model selection for Gaussian
mixture modeling.

Conventionally, this kind of model selection problem can be solved by choosing
the optimal number k∗ of Gaussians via cost function based criteria such as the
Akaikes information criterion [4] or Bayesian inference criterion [5]. But the
process of evaluating these criteria incurs a large computational cost since we
need to repeat the entire parameter estimation process at a number of different
values of k. Moreover, all these criteria have their limitations and often lead to
a wrong result.

As for competitive learning [6], the well-known rival penalized competitive
learning (RPCL) algorithm [7] can make automatic model selection for artifi-
cial neural networks via such a mechanism that for each input, the winner of

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 560–567, 2006.
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the units (i.e., weight vectors) is rewarded to adapt to the input, but the rival
(the second winner) is penalized (or de-learned) by a smaller learning rate. It
is demonstrated that the RPCL algorithm has the ability of automatically al-
locating an appropriate number of units for a sample data set, with the other
extra units being pushed far away from the sample data. However, some the-
oretic analysis is required for the RPCL algorithm in order to generalize it to
make Gaussian mixture modeling.

With the help of regularization theory [8,9], this paper aims to solve the above
problems, through implementing the entropy regularized likelihood (ERL) learn-
ing [10] on the Gaussian mixture via an adaptive gradient algorithm. We then
give a theoretic analysis of the adaptive algorithm and find a generalized com-
petitive learning mechanism implied in the ERL learning. It is further demon-
strated by the simulation experiments that the adaptive ERL learning algorithm
can automatically detect the number of Gaussians during learning, with a good
estimation of the parameters in the mixture at the same time, even when two
or more Gaussians are overlapped in a high degree. We also observe that the
adaptive ERL learning algorithm enforces a mechanism of rewarding and penal-
izing competitive learning among all the Gaussians, which further shows that
our algorithm is actually a generalized competitive learning.

2 The Adaptive ERL Learning Algorithm

We consider the following Gaussian mixture model:

p(x | Θ) =
k∑

l=1

αlp(x | θl),
k∑

l=1

αl = 1, αl ≥ 0, (1)

p(x | θl) =
1

(2π)n/2|Σl|1/2 e−(1/2)(x−ml)
T Σ−1

l
(x−ml), (2)

where n is the dimensionality of x, k is the number of Gaussians, and p(x |
θl)(l = 1, ..., k) are densities from Gaussian parametric family with the mean
vectors and covariance matrices θl = (ml,Σl).

Given a sample data set S = {xt}N
t=1 from a Gaussian mixture model with

k∗ Gaussians and k ≥ k∗, the negative log-likelihood function on the mixture
model p(x | Θ) is given by

L(Θ) = − 1

N

N∑
t=1

ln(
k∑

l=1

(p(xt | θl)αl)). (3)

The well-known ML estimation is just an implementation of minimizing L(Θ).
With the posterior probability that xt arises from the l-th Gaussian compo-

nent

P (l | xt) = p(xt | θl)αl/

k∑
j=1

p(xt | θj)αj , (4)
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we can get the discrete Shannon entropy of these posterior probabilities for the
sample xt

E(xt) = −
k∑

l=1

P (l | xt) ln P (l | xt), (5)

which can be made minimized when

P (l0 | xt) = 1, P (l | xt) = 0(l �= l0), (6)

that is, the sample xt is classified into the l0-th Gaussian component.
When we consider the mean entropy over the sample set S:

E(Θ) = − 1

N

N∑
t=1

k∑
l=1

P (l | xt) ln P (l | xt), (7)

all the samples can be classified into some Gaussian component determinedly by
minimizing E(Θ) with some extra Gaussian components being discarded.

Hence, the learning on Gaussian mixture can then be implemented by mini-
mizing the entropy regularized likelihood function

H(Θ) = L(Θ) + γE(Θ), (8)

where γ is the regularization factor. Here, E(Θ) is the regularization term which
determines the model complexity, and the Gaussian mixture model can be made
as simple as possible by minimizing E(Θ). Moreover, L(Θ) is the empirical error
[9] of learning on the data set S, and the ML learning by minimizing L(Θ) is
only a special case of the ERL learning with no regularization term.

In order to make the above minimum problem without constraint conditions,
we can implement a substitution

αl = exp(βl)/

k∑
j=1

exp(βj). (9)

We now consider the case that the samples come one by one, and all the
parameters in the Gaussian mixture are updated after each input is presented.
For the newer coming sample xt, by the derivatives of H(Θ) with regard to the
parameters ml, Σl and βl, respectively, we have the following adaptive gradient
learning algorithm:

Δml = ηξl(t)P (l | xt)Σ
−1
l (xt − ml), (10)

ΔΣl =
η

2
ξl(t)P (l | xt)Σ

−1
l [(xt − ml)(xt − ml)

T − Σl]Σ
−1
l , (11)

Δβl = η
k∑

j=1

ξj(t)P (j | xt)(δjl − αl), (12)

where

ξl(t) = 1 + γ
k∑

j=1

(δjl − P (j | xt)) ln(p(xt | θj)αj), (13)
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and η denotes the learning rate that starts from a reasonable initial value and
then reduces to zero with the iteration number.

As compared with the EM algorithm for Gaussian mixture modeling, this
adaptive algorithm implements a regularization mechanism on the mixing pro-
portions during the iterations, which leads to the automated model selection.
The regularization factor can then be selected by experience.

3 Theoretic Analysis of the Adaptive Algorithm

We further analyze the learning mechanism implied in the above adaptive gradi-
ent learning algorithm. As for the special case Σl = σ2

l I, we can get the following
updating rule for ml:

Δml = ηξl(t)P (l | xt)σ
−2
l (xt − ml). (14)

Let ηl = ηξl(t)P (l | xt)σ−2
l , and then we have

Δml = ηl(xt − ml), (15)

which is just some kind of competitive learning.
Moreover, when ξl(t) > 0, ml is rewarded to adapt to the input xt. On the

contrary, when ξl(t) < 0, ml is penalized (or de-learned). As for ξl(t), we have
the following theorem:

Theorem 1. For each sample xt, let T (t) = e−( 1
γ +E(xt)), and we have:

(i)If P (l|xt) > (≤)T (t), then ξl(t) > (≤)0;
(ii)If lc = arg max

l=1,...,k
P (l|xt), then ξlc(t) > 0 and P (lc|xt) > T (t);

(iii) lim
γ→0

T (t) = 0, and lim
γ→+∞

T (t) = e−E(xt).

Proof. (i)According to (5) and (13), we have

ξl(t) = 1 + γ

k∑
j=1

(δjl − P (j | xt)) ln(p(xt | θj)αj)

= 1 + γ[ln(p(xt | θl)αl) −
k∑

j=1

P (j | xt) ln(p(xt | θj)αj)]

= 1 + γ[ln
p(xt | θl)αl

k∑
r=1

p(xt | θr)αr

−
k∑

j=1

P (j | xt) ln
p(xt | θj)αj

k∑
r=1

p(xt | θr)αr

]

= 1 + γ[lnP (l | xt) −
k∑

j=1

P (j | xt) lnP (j | xt)]

= 1 + γ[lnP (l | xt) − E(xt)].
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If P (l|xt) > (≤)T (t), then ξl(t) > (≤)1 + γ[lnT (t) − E(xt)] = 0.
(ii)If lc = arg max

l=1,...,k
P (l|xt), i.e., P (l|xt) ≤ P (lc|xt) for any l, then

ξlc(t) = 1 + γ[lnP (lc | xt) −
k∑

j=1

P (j | xt) lnP (j | xt)]

≥ 1 + γ[lnP (lc | xt) −
k∑

j=1

P (j | xt) lnP (lc | xt)]

= 1 > 0.

With ξlc(t) > 0, we then have

ξlc(t) = 1 + γ[lnP (lc | xt) − E(xt)] > 0,

that is, P (lc|xt) > e−( 1
γ +E(xt)) = T (t).

(iii)With lim
γ→0

e−
1
γ = 0 and lim

γ→+∞
e−

1
γ = 1, we then have lim

γ→0
T (t) = 0 and

lim
γ→+∞

T (t) = e−E(xt).

According to Theorem 1, the threshold T (t) is floating with the sample xt

and dominates which Gaussian component should be rewarded or penalized with
regards to the input. That is, when T (t) is low, there are generally several com-
ponents with ξl(t) > 0 ; otherwise, when T(t) is high, there are only a few
components or just one component with ξl(t) > 0. If P (l|xt) is the maximum
one at the sample xt, ξl(t) must be positive. On the other hand, if P (l|xt) is
relatively very small, ξl(t) becomes negative.

Note that T (t) varies with the sample xt via the Shannon entropy of the
posterior probabilities P (l|xt) of the components in the Gaussian mixture. As
E(xt) is high, i.e., the belonging component of xt is obscure, T (t) becomes low
and there are generally several components with ξl(t) > 0; otherwise, as E(xt)
is low, i.e., the belonging component of xt is clear, T (t) becomes high and there
are a few components or just one component with ξl(t) > 0.

Moreover, the regularization factor γ also has effect on such a mechanism
of rewarded and penalized competitive learning, since T (t) increases with γ. If
γ is high, T (t) becomes high and there are only a few or just one component
with ξl(t) > 0. On the contrary, if γ is low, T (t) becomes low and there are
generally several components with ξl(t) > 0. Hence, the regularization factor γ
also dominates which Gaussian component should be rewarded or penalized and
further determines the model complexity.

4 Simulation Results

Several simulation experiments are carried out for Gaussian mixture modeling
with the adaptive ERL learning algorithm to demonstrate that the algorithm
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can detect the number of Gaussians automatically. The data sets used in simu-
lations are eight sets of samples drawn from a mixture of four or three bivariate
Gaussian densities (i.e., n = 2). As shown in Fig.1, each data set of samples is
generated at different degree of overlap among the clusters (i.e., Gaussians) in
the mixture by controlling the mean vectors and covariance matrices of the Gaus-
sian distributions, and with equal or unequal mixing proportions of the clusters
in the mixture by controlling the number of samples from each Gaussian density.
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Fig. 1. Eight Sets of Sample Data Used in the Experiments

Using k∗ to denote the true number of Gaussians in the sample set, we im-
plement the adaptive ERL algorithm always with k ≥ k∗ and η =0.1. Moreover,
the other parameters are initialized randomly within certain intervals. In all the
experiments, the learning is stopped when |ΔH | < 10−6.
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Fig. 2. The experiment Results of Automatic Detection of the Number of Gaussians
on the Sample Set from Fig.1.4 by the Adaptive ERL Learning Algorithm
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Fig. 3. The Experiment Results of Automatic Detection of the Number of Gaussians
on the Sample Set from Fig.1.8 by the Adaptive ERL Learning Algorithm

Typically, we give the experimental results of the adaptive ERL learning algo-
rithm on the sample data set from Fig.1.4 in which k∗ = 4. For the regularization
factor γ = 0.8, the results by the algorithm with k = 8 are shown in Fig.2. We
can observe that four Gaussian components are locally located accurately, while
the mixing proportions of the other four Gaussian components are reduced to
below 0.001, i.e, these Gaussian components are extra and can be discarded.

We also make experiment on the sample set from Fig.1.8, which contains
three Gaussian components (i.e., k∗ = 3) with two ones overlapped in a high
degree. Additionally, the three Gaussian components have different numbers of
samples, which makes it harder to learn on this sample set. As shown in Fig.3,
the adaptive ERL learning algorithm with k = 8 and γ = 0.3 still detects the
three Gaussian components correctly, with the five extra Gaussian components
being canceled automatically once their mixing proportions are reduced to below
0.001.

The further experiments on the other sample sets have also been made suc-
cessfully for the correct number detection in the similar cases. Actually, in many
experiments, a failure on the correct number detection rarely happens when we
adjust the regularization factor carefully. Additionally, it is observed that the
adaptive ERL learning algorithm enforces a mechanism of rewarding and penal-
izing competitive learning among all the Gaussian components, which is very
similar to that of RPCL. Therefore, the adaptive ERL learning principle may
provide a new approach to analyze RPCL in theory, and our adaptive algorithm
can then be thought to be a generalized competitive learning.

iN addition to the correct number detection, we further compare the converged
values of parameters (discarding the extra Gaussian components) with those
parameters in the mixture from which the samples come. We check the results in
all the above empirical experiments and find that the adaptive learning converges
with a lower average error less than 0.1 between the estimated parameters and
the true parameters.
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Finally, we test the adaptive learning algorithm for clustering on some sample
data sets in which each cluster is not subject to a Gaussian. The experiment
results have shown that the correct number of clusters can be still detected.
Also, under the principle of the maximum posteriori probability P (l | xt) of
the converged parameters Θ∗, the clustering result is generally as good as the
k-means algorithm with k = k∗.

5 Conclusions

We have investigated the automated model selection for Gaussian mixture mod-
eling via an adaptive ERL learning algorithm, which is then proved to be ac-
tually a generalized competitive learning. The simulation experiments demon-
strate that our adaptive ERL learning algorithm can automatically determine
the number of actual Gaussians in the sample data, with a good estimation of
the parameters in the original mixture at the same time, even when two or more
Gaussian components are overlapped in a high degree.
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Abstract. The generalization performance is the main purpose of ma-
chine learning theoretical research. This note mainly focuses on a theo-
retical analysis of learning machine with negatively associated dependent
input sequence. The explicit bound on the rate of uniform convergence
of the empirical errors to their expected error based on negatively associ-
ated dependent input sequence is obtained by the inequality of Joag-dev
and Proschan. The uniform convergence approach is used to estimate the
convergence rate of the sample error of learning machine that minimize
empirical risk with negatively associated dependent input sequence. In
the end, we compare these bounds with previous results.

Keywords: NA sequence, learning machine, generalization performance,
ERM, bound, sample error, uniform convergence, empirical error, ex-
pected error, covering number.

1 Introduction

The key property of learning machines is generalization performance: the empir-
ical errors must converge to their expected errors when the number of examples
increases. The generalization performance of learning machine has been the topic
of ongoing research in recent years. The important theoretical tools for studying
the generalization performance of learning machines are the principle of em-
pirical risk minimization (ERM) [7], the stability of learning machines [1] and
the leave-one-out error (or cross validation error) [3]. Up to now, for almost all
the research on the generalization performance of learning machine, the training
samples are supposed to be independent and identically distributed (i.i.d.) ac-
cording to some unknown probability distribution [2,7]. However, independence
is a very restrictive concept [8]. So Vidyasagar [8] considered the notions of
mixing dependent and proved that most of the desirable properties(e.g. PAC
property) of i.i.d. sequence are preserved when the underlying sequence is mix-
ing. Nobel and Dembo [6] proved that, if a family of functions has the property
� Supported in part by NSFC under grant 60403011.
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that empirical means based on i.i.d. sequence converge uniformly to their values
as the number of samples approaches infinity, then the family of functions con-
tinues to have the same property if the i.i.d. sequence is replaced by β-mixing
sequence. Karandikar and Vidyasagar [5] extended this result to the case where
the underlying probability distribution is itself not fixed, but varies over a family
of measures.

In this note we extent the case of i.i.d. sequence to the case of negatively
associated (NA) sequence. We mainly establish the bound on the rate of uniform
convergence of learning machine based on NA sequence. The rest of this paper is
organized as follows: In section 2, we introduce some notations and main tools.
In section 3 we obtain the rate of uniform convergence of learning machine with
NA sequence. We bound the sample error of learning machine by this bound in
section 4. In section 5 we compare our main results with previous results.

2 Preliminaries

We introduce some notations and do some preparations in this section. Let
Z = {zi}i≥1, be a stationary real-valued sequence with unknown distribution P ,
which implies zi, i ≥ 1, all have the same distribution P . Let Cov{ξ, η} denote
the covariance of random variables ξ, η, and use the notation E[ξ] to mean the
expectation of random variables ξ with respect to distribution P .

Definition 1. [4] Random variable sequence Z are said to be negatively as-
sociated (NA), if for every pair disjoint subsets A1, A2 of {1, 2, · · · , }, and all
non-decreasing functions f1, f2, Cov{f1(zi, i ∈ A1), f2(zj , j ∈ A2)} ≤ 0, that is
E[f1(zi, i ∈ A1)f2(zj , j ∈ A2)] ≤ E[f1(zi, i ∈ A1)]E[f2(zj , j ∈ A2)].

Let a sample set S = {z1, z2, · · · , zm} drawn from the first m observations of
NA sequence Z. The goal of machine learning from random sampling is to find
a function fα

S that assigns values to objects such that if new objects are given,
the function fα

S will forecast them correctly. Here α is a parameter from the set
Λ. Let

R(fα
S ) =

∫
L(fα

S , z)dP, α ∈ Λ (1)

be the expected error(or expected risk) of function fα
S , α ∈ Λ, where the function

L(fα
S , z), which is integrable for any fα

S ,α ∈ Λ and depends on z ∈ Z and fα
S ,

is called loss function. Throughout the article, we require that 0 ≤ L(fα
S , z) ≤

M, α ∈ Λ. Let Q = {L(fα
S , z) , α ∈ Λ} be a closed set of uniformly bounded

functions L(fα
S , z),α ∈ Λ with respect to the sample set S. For the sake of

simplicity, we use the notation α ∈ Λ to mean L(fα
S , z) ∈ Q.

According to the idea that the quality of the chosen function can be evaluated
by the expected error (1), the choice of required function from the set Q is to
minimize the expected error (1) based on the sample set S [7]. We can not
minimize the expected error (1) directly since the distribution P is unknown.
By the principle of ERM, we minimize, instead of the expected error (1), the so
called empirical error (or empirical risk) Remp(fα

S ) = 1
m

∑m
i=1 L(fα

S , zi), α ∈ Λ.
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Let fα0
S be a function minimizing the expected error R(fα

S ) over α ∈ Λ. We define
fαm

S to be a function minimizing the empirical error Remp(fα
S ) over α ∈ Λ. Let

the error of the function L(fα
S , z) ∈ Q be RQ(fα

S ) = R(fα
S ) − R(fα0

S ). It follows
equality above that R(fαm

S ) = RQ(fαm

S ) + R(fα0
S ). The first term RQ(fαm

S ) is
called the sample error. The second term in this sum dependents on the choice
of Q, but is independent of sampling, we call it the approximation error. The
approximation error should be estimated by the knowledge from approximation
theory [2], so we be concerned with only the sample error in the sequel. By
Definition 1, Joag-dev obtained the following inequality [4].

Lemma 1. Let {Ai}n
i=1 be disjoint subsets of {1, 2, · · · , m}, {fj}n

j=1 be positive
functions. Then {zk}m

k=1 are NA implies

E
( n∏

i=1

fi(zj , j ∈ Ai)
)

≤
n∏

i=1

E
(
fi(zj , j ∈ Ai)

)
. (2)

3 Bounds of Uniform Convergence
The study we describe in this section intends to bound the difference between
the empirical errors and their expected errors on the set Q based on the sample
set S. For any ε > 0, our goal is to bound the term

P{sup
α∈Λ

|R(fα
S ) − Remp(fα

S )| > ε}. (3)

To bound (3), intuition suggests that we might have to regulate the size of Q.
One measure of the size of a collection of random variables is covering number,
packing numbers and entropy numbers, VC-dimension for indicator functions
[7], Vγ-dimension (or Pγ-dimension) for real-valued functions. We introduce the
covering numbers of function set in this paper.

Let (M, d) be a pseudo-metric space and U ⊂ M a subset. For every ε > 0,
the covering number of U by balls of radius ε with respect to d is defined as the
minimal number of balls of radius ε whose union covers U , that is

N (U, ε, d) = min{k ∈ N : ∃{sj}k
j=1 ⊂ M such that U ⊂

k⋃
j=1

B(sj , ε)}.

Where B(sj , ε) = {s ∈ M : d(s, sj) ≤ ε} is the ball in M. Let dp denote the
normalized lp-metric on the space Rn given by dp(a,b) = ( 1

m

∑m
i=1 |ai − bi|p)

1
p ,

for a = (ai)m
i=1,b = (bi)m

i=1. Let Q|z = {
(
L(fα

S , zi)
)m
i=1,α ∈ Λ}. For 1 ≤ p ≤ ∞,

we denote Np(Q, ε) = supm∈N supz∈Z N (Q|z, ε, dp). Because the closed set Q is
uniformly bounded, the covering number Np(Q, ε) is finite for a fixed ε > 0, then
we have the following lemmas and theorem.

Lemma 2. Let Z be a NA sequence and define LS(fα
S ) = Remp(fα

S ) − R(fα
S ).

Assume variance D[L(fα
S , zi)] ≤ B2 for all i ∈ {1, 2, · · · , m}, and any positive

constant t satisfying tM ≤ 1. Then for any ε > 0, we have

P{|LS(fα
S )| > ε} ≤ 2 exp

( −mε2

2(2B2 + Mε)
)
. (4)



The Generalization Performance of Learning Machine 571

Proof. Let ξi = L(fα
S , zi) − EL(fα

S , z1). We have LS(fα
S ) = 1

m

∑m
i=1 ξi. Since

|L(fα
S , zi) − EL(fα

S , z1)| ≤ M , it follows that for any i ∈ {1, 2, · · · , m}, t|ξi| =
t|L(fα

S , zi) − EL(fα
S , z1)| ≤ tM ≤ 1. Thus we get

E exp[tξi] =
∞∑

k=0

E[tξi]k

k!
≤ 1 + t2E[ξi]2{

1
2!

+
1
3!

+ · · ·}.

It follows that E(exp[tξi]) ≤ 1 + t2E[ξi]2 ≤ exp(t2E[ξi]2). Using Markov’s in-
equality and Lemma 1, for any ε > 0,

P{
m∑

i=1

ξi > ε} ≤ e−tεE[e(t
∑m

i=1 ξi)] ≤ e−tε
m∏

i=1

E[etξi ] ≤ e−tε+t2
∑m

i=1 E(ξi)2 . (5)

By symmetry we also get P{
∑m

i=1 ξi < −ε} ≤ e−tε+t2
∑m

i=1 E(ξi)2 . Combin-
ing these bounds and noticing D[L(fα

S , zi)] ≤ B2 leads to following inequal-
ity P(|

∑m
i=1 ξi| > ε) ≤ 2 exp(−tε + mt2B2). The statement now follows from

inequality above by replacing ε and t by mε and ε
2mB2+Mε respectively.

Lemma 3. Let Q = S1 ∪ S2 ∪ · · · ∪Sl, Λ = Λ1 ∪Λ2 ∪ · · ·Λl. For any ε > 0, we
have P

{
supα∈Λ |LS(fα

S )| ≥ ε
}
≤
∑l

j=1 P
{
supα∈Λj |LS(fα

S )| ≥ ε
}
.

Proof. We denote L(fα
S , z) ∈ Si by α ∈ Λi. If supα∈Λ |LS(fα

S )| ≥ ε, then there
exists j, 1 ≤ j ≤ l, such that supα∈Λj |LS(fα

S )| ≥ ε. Lemma 3 follows from the
inequality above and the fact that the probability of a union of events is bounded
by the sum of the probabilities of these events.

Theorem 1. Let Z be a NA sequence, and assume variance D[L(fα
S , zi)] ≤ B2

for all i ∈ {1, 2, · · · , m}. Then for any ε > 0, we have

P{sup
α∈Λ

|LS(fα
S )| > ε} ≤ 2Np(Q,

ε

4
) exp

( −mε2

4(4B2 + Mε)
)

(6)

Proof. Let l = Np(Q, ε
2 ) and consider L(fα1

S , z),L(fα2
S , z), · · · ,L(fαl

S , z) such
that the disks Dj centered at L(fαj

S , z), j ∈ {1, 2, · · · , l} and with radius ε
2 cover

Q. For any z ∈ Z and all L(fα
S , z) ∈ Dj , we have

|R(fα
S ) − R(fαj

S )| ≤ dp

(
(L(fα

S , zi))m
i=1, (L(fαj

S , zi))m
i=1
)
,

and |Remp(fα
S )−Remp(f

αj

S )| ≤ dp

(
(L(fα

S , zi))m
i=1, (L(fαj

S , zi))m
i=1

)
. It follows that

|LS(fα
S ) − LS(fαj

S )| ≤ 2dp

(
(L(fα

S , zi))m
i=1, (L(fαj

S , zi))m
i=1
)
≤ 2 · ε

2
= ε.

Since this holds for any z ∈ Z and all L(fα
S , z) ∈ Dj , we get supα∈Λj |LS(fα

S )| ≥
2ε =⇒ |LS(fαj

S )| ≥ ε. Thus we conclude that for any j ∈ {1, 2, · · · , l},

P
{

sup
α∈Λj

|LS(fα
S )| ≥ 2ε

}
≤ P
{
|LS(fαj

S )| ≥ ε
}
.

By using Lemma 2, we get P{supα∈Λj |LS(fα
S )| > 2ε} ≤ 2 exp

( −mε2

2(2B2+Mε)

)
. The

statement now follows from Lemma 3 by replacing ε by ε
2 .
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Remark 1. Given ε, δ > 0, to have P{supα∈Λ |LS(fα
S )| ≤ ε} ≥ 1−δ. By Theorem

1, it is sufficient that the number m of samples satisfies m ≥ 4(4B2+Mε)
ε2 ln

2Np(Q, ε
4 )

δ . To prove this, take δ = 2Np(Q, ε
4 ) exp −mε2

4(4B2+Mε) and solve for m.

Since Q be a set of uniformly bounded functions, there exists the closed ball BR

of radius R centered at the origin covering Q, i.e., Q ⊆ BR. Let κ = dimBR,
then we have the following Corollary.

Corollary 1. With all notation as in Theorem 1, and assume p = ∞ in no-
tation of Np(Q, ε). For any ε > 0, P{(supα∈Λ |LS(fα

S )| > ε} ≤ 2(16R
ε )κ exp( −mε2

4(4B2+Mε)

)
.

Proof. By Theorem 2 and Proposition 5 in [2], we have Np(Q, ε
4 ) ≤ (16R

ε )κ.
Using Theorem 1 and inequality above, we get the desired inequality.

4 Bounds of the Sample Error

According to the principle of ERM, we shall consider the function fαm

S as an
approximation to the function fα0

S . However, how good can we expect fαm

S to
be as an approximation of fα0

S ? Theorem 2 below gives an answer.

Lemma 4. With all notation as in Theorem 1. Let ε > 0 and 0 < δ < 1 such
that P{supα∈Λ |LS(fα

S )| ≤ ε} ≥ 1 − δ. Then P{RQ(fαm

S ) ≤ 2ε} ≥ 1 − δ.

Proof. By the hypothesis of Lemma 4 we have that with probability at least 1−δ,
R(fαm

S ) ≤ Remp(fαm

S ) + ε and Remp(fα0
S ) ≤ R(fα0

S ) + ε. Moveover, since fαm

S

minimizes Remp(fα
S ), we have Remp(fαm

S ) ≤ Remp(fα0
S ). Then with probability

at least 1 − δ
R(fαm

S ) ≤ Remp(fα0
S ) + ε ≤ R(fα0

S ) + 2ε.

So we obtain RQ(fαm

S ) = R(fαm

S ) − R(fα0
S ) ≤ 2ε. The statement now follows

from inequality above.

Replacing ε by 2ε in Lemma 4, and using Theorem 1, we obtain the following
Theorem on the sample error based on NA sequence.

Theorem 2. Let Z be a NA sequence, and assume variance D[L(fα
S , zi)] ≤ B2

for all i ∈ {1, 2, · · · , m}. Then for any ε > 0,

P{RQ(fαm

S ) > ε} < 2Np(Q,
ε

8
) exp(

−mε2

8(8B2 + Mε)
). (7)

Remark 2. By Theorem 2, given ε, δ > 0, to have P{RQ(fαm

S ) ≤ ε} ≥ 1 − δ, it
is sufficient that the number m of samples satisfies m ≥ 8(8B2+Mε)

ε2 ln 2Np(Q, ε
8 )

δ .

To prove this, take δ = 2Np(Q, ε
8 ) exp( −mε2

8(8B2+Mε) ) and solve for m.
According to Theorem 2, we also have the following Corollary, which proof is

identical to that of corollary 1.

Corollary 2. With all notation as in Theorem 2, and assume p = ∞ in notation
of Np(Q, ε). Then for any ε > 0, P{RQ(fαm

S ) > ε} < 2(32R
ε )κ exp( −mε2

8(8B2+Mε) ).
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5 Conclusion

The bounds (6) and (7) describe the generalization ability of learning machine
that minimize empirical risk: Bound (6) evaluates the risk for the chosen func-
tion, and bound (7) evaluates how close fαm

S to be as an approximation of fα0
S

for a given function set Q.
Now we compare these results with previous results. Theorem 1(Theorem 2)

differs from what are studied in [2] and [7]. Firstly, in [2] and [7], they bounded
the term (3) based on i.i.d. sequence. In this paper, these results are extended to
the case where the sequence is not i.i.d., but NA dependent sequence. Theorem 1
differs from what are studied in [7]. Vapnik’s results [7] depend on the capacity
of the set of loss functions, the VC-dimension. Theorem 1 depends on the cov-
ering number of the set of loss functions. However, the covering number is more
suitable for real-valued function classes than the VC-dimension. Secondly, if loss
function L(fα

S , z),α ∈ Λ is the least squares error, Theorem 1 (Theorem 2) can
be regarded to be the extension of Theorem B (Theorem C) in [2], interested
readers are referred to that paper for details. By discussion above, we can con-
clude that this work is significance for us to understand how high-performance
learning may be achieved under the condition of dependent input samples.
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Abstract. A hybrid algorithm based on attribute reduction of Rough
Sets(RS) and classification principles of Support Vector Machine (SVM)
to detect new malicious executable codes is present. Firstly, the attribute
reduction of RS has been applied as preprocessor so that we can delete
redundant attributes and conflicting objects from decision making ta-
ble but remain efficient information lossless. Then, we realize classifica-
tion modeling and forecasting test based on SVM. By this method, we
can reduce the dimension of data, decrease the complexity in the pro-
cess. Finally, comparison of detection ability between the above detection
method and others is given. Experiment result shows that the present
method could effectively use to discriminate normal and abnormal exe-
cutable codes.

Keywords: Rough set, malicious code, support vector machine.

1 Introduction

Malicious code is any code added, changed, or removed from a software system
to intentionally cause harm or subvert the systems intended function[1]. Such
software has been used to compromise computer systems, to destroy their in-
formation, and to render them useless.Excellent technology exists for detecting
known malicious executables. Programs such as Norton AntiVirus are ubiqui-
tous. These programs search executable code for known patterns. One shortcom-
ing of this method is that we must obtain a copy of a malicious program before
extracting the pattern necessary for its detection.

Then there have been few attempts to use machine learning and data min-
ing for the purpose of identifying new or unknown malicious code. In an early
attempt, Lo et al.[2] conducted an analysis of several programs evidently by
hand and identified tell-tale signs, which they subsequently used to filter new
programs. Researchers at IBM’s T.J.Watson Research Center have investigated
neural networks for virus detection and have incorporated a similar approach for
detecting boot-sector viruses into IBM’s Anti-Virus software[3]. More recently,
instead of focusing on boot-sector viruses, Schultz et al.[4] used data mining

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 574–579, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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methods, such as naive Bayes, to detect malicious code. There are other methods
of guarding against malicious code, such as object reconciliation, which involves
comparing current files and directories to past copies. One can also compare
cryptographic hashes. These approaches are not based on data mining.

Our efforts to address this problem have resulted in a fielded application,
built using techniques from statistical pattern recognition. The Classification
System currently detects unknown malicious executable code without removing
any obfuscation.

In the following sections, we illustrate the architecture of our detect model.
Section 3 details the method of extraction feature from program, feature reduc-
tion based on RS, and stating the classification method. Section 4 details the
experiment results. We state our conclusion in Section 5.

2 Detector Frame

We first describe a general framework for detecting malicious executable code.
The framework is divided into four parts: application server, Virtual Computer,
detection server, and virus scanner module based on character code. Before a
file save to the application server, it will be scanned by the virus scanner. If the
file is infected with virus then quarantine it. Otherwise one copy will be sent to
the detection server. To avoid viruses infecting real computer system, a virtual
environment or machine would require to contain in the server. So the virtual
operating system- VMWare[5] was used in our experiments. The malicious codes
would be executed in the virtual environment to monitor its behavior. In this
environment, the malicious executable code would not destroy the real detection
system. Figure 1 illustrate the proposed architecture.

Fig. 1. Detection Model Structure

3 Detection Method

3.1 Feature Extracting

Our first intuition into the problem was to extract information from the PE exe-
cutables that would dictate its behavior. We choose the Windows API
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function calls as the main feature in our experiments. By monitor the behav-
ior of each sample program in the Virtual Computer, we could trace the API
function calls of them. After extracting the system call sequence, index the API
function in system call mapping file, then each function has a index value. We
save the numerical sequence correspond to the API function trace and slide a
window of size k across the trace, recording each unique sequence of length k
that is encountered.

We decide parameter value of SVM through training, so both normal and
abnormal short sequence are needed. By scanning the API traces of normal
program using k length slide window, benign system call short sequences can be
gotten. They are saved in a benign sample database. After got short sequence of
malicious program, we compare it with records in benign sample database, if it
matches with any item, it will be deleted from the malicious sample database.

3.2 Feature Reduction Based on RS

Obviously, the short trace obtain from the method above is redundant, so we
should firstly reduce the feature dimension of our detection model as a prepro-

Algorithm 1. Feature Reduction Alg

Input : Feature information table S =< S, C ∪ D, VA >, VA = {0, 1}.
Output : Reduction of features B
Calculate the condition entropy H(D∗|C∗) ;
Calculate core C0 ← CORED(C) ;
C ← ∅, Y ← C ;
while Y �= ∅ do

calculate sgfC−b(b), b ∈ Y ;
if sgfC−b(b) > 0 then

C0 ← C0 ∪ {b};
end
Y ← Y − {b} ;

end
calculate H(D∗|C∗

0 ) ;
if H(D∗|C∗

0 ) = H(D∗|C∗) then
B ← C0 is the minimal reduction set, then return B;

end
B ← C0;
for ∀c ∈ C − B do

sgfB∪C(D|c) ← H(D∗|B∗) − H(D∗|B ∪ {c}∗) ;
select the element c which maximize the value of sgfB∪C(D|c) ;
B ← B ∪ {c};
if H(D∗|B∗) = H(D∗|C∗) then

End loop ;
end

end
Return B = {b1, b2, ..., bd}.
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cessing step. We use the rough set reduction method[6] removes redundant input
attributes from data set. We could represent the knowledge of sample data set
in RST as an information system I =< U, C ∪ D, V, f >. In our experiment, U
is the samples of data set, the finite set C is the features of samples, D = {0, 1}.
where 0 is signed to normal samples, 1 is signed to abnormal samples.

Our reduction algorithm is given in Algorithm 1, where H(D∗|C∗) is the
condition entropy of C and D, CORED(C) is the core of set C with respect to
D, sgfC−b(b) is the significance of input attribute, b ∈ C. Finally, after reducing
the redundant feature, we collect the distribution of the short traces database
used in training and testing in our experiment, show in table 2.

3.3 Classification Process

Malicious code detecting can be look as a binary classification problem. Our
detecting model is based on SVM. Here we mainly discuss the method of calcu-
lating decision hyperplane and sample classification.

First we label the training data (x1, y1), ..., (xi, yi) ∈ Rk ×{0, 1}, i = 1, ..., l, yi

∈ {0, 1}, where 0 signed to normal samples, 1 signed to abnormal samples.
xi ∈ Rk. Suppose we have some hyperplane: ω · x + b = 0, in which separates
the positive from the negative examples. Where ω is normal to the hyperplane,
|b|/||ω|| being the perpendicular distance from the hyperplane to the origin.
||ω||, the Euclidean norm of ω, and ω · x, the dot product between vector ω
and vector x in feature space. The optimal hyperlane should be a function with
maximal margin between the vectors of the two classes, which subject to the
constraint as:

maxW (α) =
l∑

i=1

α− 1
2

∑
αiyiαjyjK(xi,xj), (1)

s.t.
l∑

i=1

αiyi = 0,αi ∈ [0, C], i = 1, ..., l.

where αi is Lagrange multipliers, K(xi,xj) is kernel function, C is a constant.
For a test sample x ,we could use decision function:

f(x) = sgn(
l∑

i=1

αiyiK(xi,x) + b), (2)

to determine which class, abnormal or normal, it is.
In reality, it is likely to be impossible to collect all normal variations in behav-

ior, so we must face the possibility that our normal database will provide incom-
plete coverage of normal behavior. If the normal were incomplete, false positives
could be the result. Moreover, the inaccuracy of the SVM itself also needs to set
some judge rules to improve the performance of the detecting systems. So we
judge whether a file contains malicious code based on the number of abnormal
API call short sequence. If the number is larger than a predefined threshold,the
file has been infected by virus, otherwise not. We decide the threshold value by
training.
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4 Experiment Results

The data used here composed of 423 benign program and 209 malicious exe-
cutable codes. The malicious executables were downloaded from vx.netlux.org
and www.cs.Columbia.edu/ids/mef/, the clean programs were gathered from a
freshly installed Windows 2000 server machine and labeled by a commercial virus
scanner with the correct class label for our method.

After preprocessing, lots of short traces as samples were used to training
and testing the SVM(see table 2 for details). To evaluate our system we were
interested in two quantities: False Negative, the number of malicious executable
examples classified as benign; False Positives, the number of benign programs
classified as malicious executables. We choose Radial Basic Function as kernel
and try variable values of C and σ. The detailed experiment result shows in
table 1. The present method has the lowest false positive rate, 3.08%.

In other experiments[7,8], we had used algorithms based on Fuzzy Pattern
Recognition algorithm(FPR) and K Nearest Neighbor(KNN) to classify the same
data. Those algorithms had the lowest false positive rate, 4.45%, 4.80% respec-
tively. Notice that the detection rates of these methods is nearly equal, but the
FPR and KNN algorithm use more training samples than SVM algorithm. This
shows that present method is fit to detect malicious executbles when the viruses
samples gathered is difficult.

Table 1. Results of Detection System

C σ2 False Negative False Positive

50 10 3.08% 5.44%
100 1 4.63% 6.03%
200 0.5 6.70% 9.67%

Table 2. Results of Feature Reduction by RS

Normal Traces Abnormal Traces
DataSet Before Reduction After Reduction Before Reduction After Reduction

Train Dataset 496 378 242 184
Test Dataset 2766 2099 876 665

5 Conclusion

We presented a method for detecting previously unknown malicious codes. As our
knowledge, this is the first time that using rough set theory and support vector
machine algorithm to detect malicious codes. We showed this model’s detect
accuracy by comparing our results with other learning algorithms. Experiment
result shows that the present method could effectively use to discriminate normal
and abnormal API function call traces. The detection performance of the model
is still good even the malicious codes sample data set size is small.
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Abstract. In data mining and knowledge discovery, the curse of dimen-
sionality is a damning factor for numerous potentially powerful machine
learning techniques, while rough set theory can be employed to reduce the
dimensionality of datasets as a preprocessing step. For rough set based
methods, finding reducts is an essential step, yet it is of high complexity.
In this paper, based on particle swarm optimization(PSO) which is an
optimization algorithm inspired by social behavior of flocks of birds when
they are searching for food, a novel method is proposed for finding useful
features instead of reducts in rough set theory. Subsequent experiments
on UCI show that this method performs well on whole convergence, and
can retrieve useful subsets effectively while retaining attributes of high
importance as possible.
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1 Introduction

Information systems are the main object of data mining and knowledge dis-
covery. With them, there are two major parameters of complexity leading to
intractable behavior: the number of attributes in an application domain, namely
dimensionality, and the number of examples in a dataset. The latter typically
applies only to the training stage of the system and, depending on intended use,
may be acceptable. Data dimensionality, on the other hand, is an obstacle for
both the training and runtime phases of a learning system. Many systems ex-
hibit non-polynomial complexity with respect to dimensionality, which imposes
a ceiling on the applicability of such approaches, especially to real world appli-
cations, where the exact parameters of a relation are not necessarily known,and
many more attributes than needed are used to ensure all necessary informa-
tion is present. The curse of dimensionality effectively limits the applicability of
learning systems to small, well-analyzed domains, rendering otherwise elegant
methodologies incapable of performing satisfactorily on arbitrary domains.

Rough set theory is a formal methodology that can be employed to reduce the
dimensionality of datasets as a preprocessing step. It was developed by Z.Pawlak
in the early 1980s [1], and after almost 20 years of pursuing and development, it
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has been successfully applied to knowledge acquisition, forecasting & predictive
modelling, expert systems and knowledge discovery in databases.

Generally, methods in rough set can be implemented in the following three
steps: data preprocessing, finding reduct and rules retrieving, of which finding
reduct is the most important one. The procedure of finding reduct is to delete
dispensable attributes one by one, until there is no dispensable one. In each
step, it will judge which attribute is dispensable attributes and then select one
to delete. However, if there is more than one dispensable attributes at some
step, which one will be selected for deletion? This will generate conflict, which
is the exact reason for high complexity of algorithms based on rough set the-
ory. Aiming at this, this paper studies this problem from the view of computing
intelligence, applying the idea of particle swarm optimization in finding useful
subsets instead of reducts. Firstly it will generate several candidate feature sets,
and then will be implemented iteratively in the following two steps: evaluating
candidate solutions, select the optimal one, and then modifying the other solu-
tions in the direction of similarizing the optimal one. Subsequent experiments on
UCI dataset show this method performs well in whole convergence, and retrieved
subsets is of almost the same classification accuracy as reducts.

The rest of the paper is organized as follows. In the following section, related
work are simply introduced, and next, we present basic concepts and theories in
rough set theory and particle swarm optimization. In the fourth section, algo-
rithm to find useful subsets based on Particle Swarm Optimization is illustrated
in detail. Simulated experiments on UCI dataset are shown in subsequent sec-
tion, and summaries and future work are given in the last section.

2 Related Work

This section introduces related algorithms for retrieving reducts. Suppose (U, A)
is the information system, in [2], J.W.Guan has computed the complexity to
find one reduct is O(|A|3|U |2), while to find all reducts or the minimal reduct is
NP-hard problem.

In [3,4], J.Bazan applied rough set theory in databases of large volume com-
bining with sampling techniques. First it will retrieve samples randomly to gen-
erate several sub-tables, and then gets the dynamic reducts as follows:

RED(A, d) ∩
⋂

B∈F

RED(B, d). (1)

while F ∈ P(A) is the set of all subsets of A, that is the power set of A, and
then it will use the dynamic reducts to retrieve the most ”stable” rules.

The reason that one information system may have more than one reduct is
that there exists conflict in retrieving reducts. In [5], we present one method
to solve the conflict, and we adopt the preference relation in the procedure
of retrieving reducts. We define a concept ”optimal reduct under preference
relation” and in order to ensure the uniqueness of the optimal reduct, we adopt
one special preference relation–dictionary order. We design a dictionary tree
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and corresponding access mode to retrieve the optimal reduct under dictionary
order. Also we propose the algorithm to retrieve the optimal reduct and prove
the correctness of the presented algorithm theoretically.

3 Preliminaries in Rough Set and PSO

3.1 Rough Set Theory

In rough set theory, an information table is defined as a tuple T = (U, A), where
U and A are two finite, non-empty sets, U is the universe of objects and A is
the set of attributes. Each attribute or feature a ∈ A is associated with a set Va,
called the domain of a. We may partition the attribute set A into two subsets
C and D, called condition and decision attributes, respectively.

Let P ⊂ A be a subset of attributes. The indiscernibility relation, denoted by
IND(P ), is an equivalence relation defined as:

IND(P ) = {(x, y)|(x, y) ∈ U × U, ∀a ∈ P, a(x) = a(y)}. (2)

where a(x) denotes the value of feature a of object x. If a(x) = a(y), x and
y are said to be indiscernible with respect to a. The family of all equivalence
classes of IND(P ) is denoted by U/IND(P ) . Each element in U/IND(P ) is a set
of indiscernible objects with respect to P . Equivalence classes U/IND(C) and
U/IND(D) are called condition and decision classes.

For any concept X ⊆ U and attribute subset R ⊆ A , X could be approx-
imated by the R-lower approximation and R-upper approximation using the
knowledge of R . The lower approximation of X is the set of objects of U that
are surely in X , defined as:

R∗(X) =
⋃

{E|E ∈ U/IND(R), E ⊆ X}. (3)

The upper approximation of X is the set of objects of U that are possibly in
X , defined as :

R∗(X) =
⋃

{E|E ∈ U/IND(R), E ∩X �= Φ}. (4)

The boundary region is defined as:

BNR(X) = R∗(X) −R∗(X). (5)

If the boundary region is empty, that is, R∗(X) = R∗(X), concept X is said
to be R-definable(or R-exact). Otherwise X is a rough set with respect to R, or
is called R-rough.

The positive region of decision classes U/IND(D) with respect to condition
attributes C is denoted by POSCD, defined as

POSCD =
⋃

X∈U/IND(D)

C∗(X). (6)
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Positive set is a set of objects of U that can be classified with certainty to
classes U/IND(D) employing attributes of C.

For a given attribute a ∈ A, if IND(A) = IND(A − {a}), we call that a is
dispensable; otherwise it is indispensable. If A is the union of two disjointed
subsets C and D , where C and D are condition classes and decision ones, then
a ∈ C is dispensable with respect to D if and only if POSCD = POSC−{a}D.

A subset R ⊆ C is said to be a relative-reduct of C if POSRD = POSCD
and there is no R′ ⊆ R such that POSR′D = POSRD. In other words, a
reduct is the minimal set of attributes preserving the positive region. As is
analyzed in [1], there may exist more than one reduct in an information table or
decision one.

3.2 Particle Swarm Optimization

Particle Swarm Optimization, simply denoted as PSO, is an optimization algo-
rithm, primarily oriented toward continuous-valued problems, devised by
Kennedy and Eberhart in the mid-1990s [6]. It is an algorithm that was in-
spired by social behavior of flocks of birds when they are searching for food.
A population, also called swarm, of potential solutions, denoted particles, flies
in the search space exploring for better regions. As in a flock of birds, where
the leader exchanges information with the rest of the other birds, in PSO, the
particle leader–the best solution will exchange information with the rest of the
particles. Additionally, each particle can profit from discoveries of new regions
in the search space. In this paper, we deal with discrete values instead of contin-
uous ones, and we only adopt the idea of PSO. Therefore, we will not introduce
the algorithm of it in detail, if required, [6] can be referenced.

4 Novel Algorithm for Finding Useful Features

This section will present the algorithm to find useful features. First the algorithm
will produce several attribute subsets at random, which are the particles in PSO
algorithm. Then we can find the best particle, called globally optimal particle,
according to the measure function, and all of the other particles will change
according to the attributes in the globally optimal particle, thus one generation
will be accomplished. And then we will find the globally optimal particle again, if
this optimal particle is the particle found in the former step, then the algorithm
will be stopped, otherwise, it will do as the former step, until the globally optimal
particle does not change. The algorithm is described formally in the following
figure.

As is seen from Fig.1., the quality of feature set depends on the particles
produced originally, and if one attribute is not selected originally, then it cannot
occur in the final optimal feature sets. Hence, in order to avoid such case, in the
real experiment, the program will start from all feature subset containing one
attribute, and then run according to the schedule of the pseudocode. It is thought
that this method is perhaps at the expense of time, but experiments on UCI
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Algorithm PSO_Features
Input: An Information Table(U,C,D);
Output:an Feature set GlobalFea;

Produce several attribute subsets randomly denoted as
S1,S2,...,Sk;

GlobalFea=EmptySet;
L1:

For i=1 to gens do
TempGlobalFea={Sq:|POS(Sq,D)|=max{|POS(Sp,D)|,p=1..k}};
If (TempGlobalFea==GlobalFea) then

Return GlobalFea;
End Algorithm;

Else
GlobalFea=TempGlobalFea;
For j=1..k do

Sj=Sj+GlobalFea;
End;
Goto L1;

End;
End;
return GlobalFea;

End.

Fig. 1. Pseudocode of Algorithm to Find Features Based on PSO

dataset show that constringency is good, and the process can be accomplished
in several generations.

5 Experiment

In order to verify the correctness of our algorithm, we do experiments on several
dataset from UCI repository. The result is shown in the following table.

Table 1. Experiments Result on UCI Repository

Dataset Reduct Features Retrieved

Lung-Cancer 3,4,5,6,7,9 2,4,7,13,15,41
Liver-Disorder 1,2,3 1,2,5
Iris 1,3,2 1,2,3
Glass 1,2 1,2
Monk-1 2,3,6 2,3,6
Monk-2 2,3,4,5,6,7 2
Monk-3 3,5,6 2,3,5,6

In order to verify the usefulness and adaptability of features retrieved by ap-
plying the method in this paper, also do we compare the classification accuracy
of the original dataset, dataset reduced from reduct, features retrieved in this
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paper. Stratified 10-fold cross-validation is adopted for estimating classifier ac-
curacy due to its relatively low bias and variance, and getting the classification
accuracy is by using Libsvm of Version 2.8.

Table 2. Comparison of Classification Accuracy From Reducts and Features

Dataset Accuracy1 Accuracy2

Lung-Cancer 56.2500% 54.8387%
Liver-Disorder 56.5271% 57.6812%
Iris 96.0000% 96.0000%
Glass 42.9907% 42.9907%
Monk-1 90.0463% 90.0463%
Monk-2 67.1296% 67.1296%
Monk-3 97.2222% 97.1222%

Notes: Accuracy1 is the classification accuracy on features retrieved by applying
method proposed in this paper, and Accuracy2 is corresponding accuracy on reduct.

From the table above, we can see that classification accuracy got from the
features retrieved in this paper is almost the same as that from reducts, while
is acceptable by users in real applications. Therefore, our algorithm to retrieve
the feature set is acceptable and credible.

6 Conclusions

This paper proposes one algorithm to retrieve one feature set in the decision
system. When it is applied to classification problem, the feature set seems to
have more efficiency because of the smaller number of attributes. Also, from
the comparison of classification accuracy, it seems that features retrieved are
acceptable, which also demonstrate the adaptability of the proposed algorithm.
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Abstract. In the process of uncertainties reasoning with universal logic,
T-norm is the mathematical model of “AND” operation. T-norm and
T-generator were defined on interval [0,1] in previous work. In the recent
relational work, authors put forward fractional logic based on continu-
ous radix [a, b]. This paper studied the T-norm and T-generator on any
interval [a, b], discussed the two kinds of generalized T-generators: “Au-
tomorphic increase T-generator” and “Infinite decrease T-generator”.
Authors found and proved the useful and important theorem: “gen-
erating theorem of generalized T-norm”. Using the integrated clusters
of generalized T-norm and T-generator, authors gave the mathematical
generating method for “AND” operation model of fractional logic based
on any interval [a, b]. The operation model is already used to uncertain-
ties reasoning and flexible control now.

Keywords: Universal logic, generalized interval, generalized T-norm,
generalized T-generator, generating theorem, operation model, flexible
control.

1 Introduction

Universal logic [1] is a kind of flexible logic. Based on fuzzy logic [2] [3], it puts up
two important coefficients: generalized correlation coefficient “h” and generalized
self-correlation coefficient “k”. The flexible change of universal logic operators
is based on “h” and “k” [1]. “h” and “k” were reflected by N-norm, T-norm
and S-norm. In universal logic and triangle-norm theories [4] [5] [6], T-norm was
defined as:

T (x, y) = f−1(max(f(0), f(x) + f(y) − 1)).

There are three difficulties for this model to solve some actual problems.

(1) T (x, y) is not on any interval [a,b] but only on [0,1], it can’t be used to
fractional logic [7]. We can’t simply convert interval [0,1] to [a,b] because
there are many “nonzero coefficients”, which can’t be displayed on [0,1]. So
the good way is build up the corresponding theory on interval [a,b] directly.
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(2) This expression can’t unify the two kinds of T-generator (See section 2.2).
For example, The Schweizer operators had to divide the real domain R into
two intervals: R− and R+. Let f(x) = xm, They are

T+(x, y) = (max(0m,xm + ym − 1))1/m,m ∈ R+

T−(x, y) = (xm + ym − 1)1/m,m ∈ R−.

(3) In universal logic, m = (1 − 2h)/(1 − h2). Let f(x) = xm, when h changes
from -1 to 1, m changes from +∞ to −∞. There exists a broken point on
the changing curve of the logic operator when m(h) equals to zero.

In this paper, after analyzing the expression of T (x, y) deeply, authors define
it as:

T (x, y) = f−1(max(a, f(x) + f(y) − b)).

Here T (x, y) is defined on any interval [a,b]. The generating theorem of gen-
eralized T-norm(See section 3) gave the uniform expression of the two kinds of
T-generators. T (x, y) is also continuous changeable on [a,b] with h and k. So
this definition resolves the above three problems, and has good application in
flexible reasoning and control [8].

2 Generalized T-norm and T-generator

2.1 Generalized T-norm and Generalized T-generator

Suppose f(x) is continuous and strict monotone function on generalized interval
[a,b], and f(b) = b, we consider the following binary operation T (x, y) generated
by f(x)

T (x, y) = f−1(max(a, f(x) + f(y) − b))

and six properties T1-T6:

T1: T (a, y) = a,T (b, y) = y; (Boundary condition)
T2: T (x, y) is monotone increase on x, y; (Monofonic property)
T3: T (x, y) is continuous on x, y; (Continuous property)
T4: T (T (x, y), z) = T (x,T (y, z)); (Combination law)
T5: T (x, y) = T (y,x); (Exchange law)
T6: x ∈ (a, b),T (x,x) < x. (Small-power property)

Definition 1
If it satisfies the T1,T2,T4,T5, T (x, y) is called “generalized T-norm on
[a,b]”. If it satisfies T1-T5, T (x, y) is called “generalized continuous T-norm
on [a,b]”. If it satisfies T1-T6, T (x, y) is called “generalized Archimedes T-norm
on [a,b]”.

if T (x, y) is generalized Archimedes T-norm on [a, b], f(x) is called “general-
ized T-generator”. If f(a) → ∞, f(x) is called “generalized strict T-generator”;
If f(a) is finite, f(x) be called “generalized zero power T-generator”.
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2.2 Types of Generalized T-generators

Fig. 1. Types of T-generators

According to the definitions of generalized
T-generator, there are many f(x), But the
research shows that they belong to two basic
types: “Automorphic increase T-generator”
and “Infinite decrease T-generator”. See
fig.1.

(1) “Automorphic increase T-generator”
means: If f(x) is monotone increase
function, and f(a) = a, f(b) = b,
that is, f(x) is automorphic function on
[a,b], then f(x) can generate generalized
Archimedes T-norm.

(2) “Infinite decrease T-generator” means:
Suppose f(x) is a monotone decrease
function with the exception of f(b) = b,
when x runs to a from a+, f(a) = +∞,
that is, f(a) is infinite. In this case, f(x)
can be as generalized T-generator to gen-
erate generalized Archimedes T-norm.

Fig.1(a) shows the automorphic increase T-
generator, and Fig.1(b) shows the infinite
decrease T-generator. Both of them can gen-
erate generalized Archimedes T-norm on gen-
eralized interval [a,b].

3 Generating Theorem of Generalized T-norm

Theorem 1. Generating theorem of generalized T-norm
For f(x), which is strict monotone and continuous on [a,b], if f(b) = b, and

satisfies one of the following two conditions:
(1) f(x) is increase function, and f(a) = a,
(2) f(x) is decrease function, when x runs to a from a+, f(a) = +∞.

Then f(x) can be taken as generalized T-generator, which means the following
operator generated by f(x)

T (x, y) = f−1(max(a, f(x) + f(y) − b))

is generalized Archimedes T-norm on [a,b].

Proof. Here proof the theorem according to the properties T1-T6.

(1) From f(x)’s properties, we know that f−1(x) exists.
T1: From f(a) = a, f(b) = b, we have a � f(y), f(y) � b, so
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T (a, y) = f−1(max(a, f(a) + f(y) − b)) = f−1(f(a)) = a
T (b, y) = f−1(max(a, f(b) + f(y) − b)) = f−1(f(y)) = y

T2: Since f(x) is monotone, T (x, y) satisfies the property T2.
T3: Since f(x) is continuous, T (x, y) satisfies the property T3.
T4: Since there exists a � a + f(x) − b, there are

T (T (x, y), z) = f−1(max(a,max(a, f(x) + f(y) − b) + f(z) − b))
= f−1(max(a, a + f(z) − b, f(x) + f(y) + f(z) − 2b))
= f−1(max(a, f(x) + f(y) + f(z) − 2b))

T (x,T (y, z)) = f−1(max(a, f(x) +max(a, f(y) + f(z) − b) − b))
= f−1(max(a, a + f(x) − b, f(x) + f(y) + f(z) − 2b))
= f−1(max(a, f(x) + f(y) + f(z) − 2b))

hence T (T (x, y), z) = T (x,T (y, z)), it satisfies the property T4.
T5: From the exchange law of addition, T (x, y) = T (y,x), it satisfies T5.
T6: Since f(x) is strict monotone increase, let x ∈ (a, b), a < f(x) < b, then

T (x,x) = f−1(max(a, f(x) + f(x) − b)) < f−1(f(x)) = x
So T (x, y) satisfies the property T6.

(2) f(x) is strict monotone decrease function, The proof is similar to the (1)
case.
In (1) case, f(x) is automorphic increase T-generator. And in (2) case, f(x)
is infinite decrease T-generator. Both types of them can generate generalized
Archimedes T-norm T (x, y), which satisfies all the properties T1-T6. We call
this theorem “Generating theorem of generalized T-norm”. �

4 The Fractional “AND” Operation Model on [a,b]

Here we import the conceptions of generalized correlation coefficient “h” and
generalized self-correlation coefficient “k” into generalized T-norm and
T-generator, and build up the fractional “AND” operation model on any in-
terval [a,b].

4.1 The Conception of Integrate Cluster

Definition 2
Suppose f(x) is generalized T-generator, if f(x) is continuous function on
[a,b], we write it as f(x, h),which is called “Integrate cluster of generalized
T-generator”.

Suppose T (x, y) is generalized T-norm, if T (x, y) is continuous function on
[a,b], we write it as T (x, y, h), which is called “Integrate cluster of generalized
T-norm”.

For f(x, h), when k=0, there is no error, it is called “Integrate cluster of
generalized 0-level T-generator”. when k �= 0, there is some error, it is called
“Integrate cluster of generalized 1-level T-generator”.

For T (x, y, h), when k=0, there is no error, it is called “Integrate cluster
of generalized 0-level T-norm”. when k �= 0, there is some error, it is called
“Integrate cluster of generalized 1-level T-norm”.
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Theorem 2. For f(x) = F (x, h) = (b − a)[(x − a)/(b − a)]m + a, it is Integrate
cluster of generalized T-generator. Where m = (1 − 2h)/(1 − h2),m ∈ R, h ∈
[−1, 1].

Proof.
(1) For power function f(x), it is continuous and strict monotone.
when m > 0, f(x) is increase, and f(a) = a, f(b) = b, so f(x) is automorphic

increase T-generator.
when m < 0, f(x) is decrease, and f(a) = +∞, f(b) = b, so f(x) is infinite

decrease T-generator.
(2) Since m = (1 − 2h)/(1 − h2), when h changes from -1 to 1, m from +∞

to −∞. So f(x) is integrate cluster of generalized T-generator. �

4.2 The Fractional “AND” Operation Model

Suppose F (x, h) is integrate cluster of generalized 0-level T-generator, put
F (x, h) into generating theorem of generalized T-norm, we have

T (x, y, h) = F−1(max(a, F (x, h) + F (y, h) − b), h)
= (b − a)[(max(a, ((x − a)m + (y − a)m)/(b − a)m−1

+2a − b) − a)/(b − a)]1/m + a

Here T (x, y, h) is the 0-level fractional “AND” operation model, which is no error
(k=0). When k �= 0, we have got the 1-level fractional “AND” operation model.

T (x, y, h, k) = F−1(max(a, F (x, h, k) + F (y, h, k) − b), h, k)
= (b − a)[(max(a, ((x − a)mn + (y − a)mn)/(b − a)mn−1

+2a − b) − a)/(b − a)]1/mn + a

Where m = (1 − 2h)/(1 − h2), n = ln 2/[ln 2 − ln(k + 1)], n ∈ R+,m ∈ R, k ∈
[−1, 1], h ∈ [−1, 1].

Fig. 2. The Continuous Change of Fractal “AND” Operation Model
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Fig.2 displays the dynamical continuous change of fractal “AND” operation
model. There are the following meanings:
(1) The fractional “AND” operation reflects the degree of truth for both flexible

propositions (x and y) at the same time. If any one proposition runs to false,
the T (x, y, h) runs to false.

(2) Seen from the three-dimensional graph, there are four unchangeable eigen-
vector: T (x, a, h, k) = a,T (a, y, h, k) = a,T (x, b, h, k) = x,T (b, y, h, k) = y.

(3) The truth-value of “AND” operation is continuously changeable by adjusting
the value of h(k). when h = −1(k = 1), the truth-value is minimum. When
k(h) is fixed, with the change of h(k) from -1 to 1, the degree of truth is
more and more true(false).

5 Conclusion

T-norm is very important conception in universal logic. Because it is not easy
for us to convert real [a,b] to ideal [0,1] in complex system, it is necessary for
fractal logic to study the relative theories on any interval [a,b] directly. There
are the following conclusions of this paper.

(1) Discussed the generalized T-norm and generalized T-generator on general-
ized interval [a,b], studied the two kinds of generalized T-generator.

(2) Found and proved the important theorem: “generating theorem of general-
ized T-norm”.

(3) Defined relative integrate clusters, and deduced the fractional “AND” oper-
ator on interval [a,b].

(4) The work offered important theory for fractal logic, enlarged its research do-
main, and made it more applied, flexible and controllable in the real complex
system.
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Abstract. Method based on extension rule is a new method for theorem
proving, whether or not it will behave well in theorem proving depends
on the efficiency. Moreover, the efficiency of propositional extension rule
will affect that of first order extension rule directly. Thus the efficiency
of the propositional extension rule is very important. ER and IER are
two extension rule methods Lin gave. We have improved the ER method
before. In order to increase the efficiency of IER, this paper improves
IER by some reduction rules. And then the soundness and completeness
of it is proved. We also report some preliminary computational results.

Keywords: Extension rule, propositional logic, reduced rule, theorem
proving.

1 Introduction

ATP (Automated Theorem Proving) has always been one of the central concerns
of AI. Fields where ATP has been successfully used include logic, mathematics,
computer science, engineering, and social science [1]. Many significant problems
have been, and continue to be, solved using ATP. The fields where the most
notable successes have been achieved are mathematics, software generation and
verification [2], protocol verification, and hardware verification [3].

The usually used deduction methods in TP include resolution based method,
tableau based method, sequent calculus and nature deduction method etc. The
traditional idea used in TP is to try to deduce the empty clause to check the
unsatisfiability. Resolution based TP is a paradigm of this idea. But extension
rule based TP [4] proceeds inversely to resolution. Namely, extension rule based
TP checks the unsatisfiability by deducing the set of clauses consisting of all the
maximum terms. Therefore, it is a new theorem proving method. IER is a faster
extension rule method Lin gave, in order to obtain the more speed, the method
is modified, so that it can be used in ATP better. The experiment results in
Sect. 4. show the improved methods achieve more efficient.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 592–597, 2006.
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2 Propositional Extension Rule and Its Improvement

We run back over the central idea of the extension rule method at first. The
details can be found in [4]. The extension rule is defined as follows.

Definition 1. Given a clause C and a atom set M: C′ = {C
∨
a, C

∨
¬a|a is

an atom, a ∈ M,¬a and a does not appear in C}. The operation proceeding from
C to C′ is the extension rule on C. C′ is the result of the extension rule.

The extension rule algorithm ER in proposition logic is given in [4]. In order to
obtain more efficiency, we presented a improved algorithm RER in [5], which
speed up the algorithm with several rules in DP method [6]. But we lose a
sentence which deal with the unsatisfiability result returned by the reduced rules
in algorithm RER. So we add it to RER in this section. Moreover, the examples
RER dealing with in [5] are simpler, we will use it to test some more complicated
examples in Sect. 4.

Tautology rule: Deleting all the tautologies in the clause set. Let the surplus
clause set be Φ′ Then Φ is unsatisfiable if and only if Φ′ is unsatisfiable.

Definition 2. Say the literal L in clause set Φ is pure if and only if ¬L is not
in Φ .

Pure literal rule: If the literal L in the clause set Φ is pure then delete all the
clauses including L. Let the surplus clause set be Φ′. (1) If Φ′ is empty then Φ
is satisfiable; (2) otherwise Φ′ is unsatisfiable

Definition 3. C1 and C2 are any two clauses in the clause set Φ , say C1
includes C2 if every literal in C1 is also in C2.

Inclusion rule: Suppose C1 and C2 are two clauses in the clause set Φ , where
C1 includes C2. Deleting the clause C2 from Φ and let the surplus clause set be
Φ′ ,then Φ is unsatisfiable if and only if Φ′ is unsatisfiable.

Single literal rule: If there is a single literal L in clause set Φ , then delete all
of the clauses including L. Let the surplus clause set be Φ′. (1) If Φ′ is empty
then Φ is satisfiable; (2) Otherwise delete all of the literals ¬L from the clauses
including it in Φ′,let the surplus clause set be Φ′′ ,then Φ′ is unsatisfiable if and
only if Φ′′ is unsatisfiable (suppose there is a unit clause ¬L in Φ′, a empty clause
� is achieved by deleting ¬L ).

Denote tautology rule by RT, pure literal rule by RP, inclusion rule by RI,
and single literal rule by RS. Let RL={RT, RP, RI, RS}, the reduced extension
rule algorithm in propositional logic is given below.

Algorithm RER (Reduced Extension Rule)
1. Let Φ = {C1, C2, · · · , Cn}.

While Φ satisfies any rule in RL

Loop

Φ1 := using RL to deal with Φ
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If Φ1 is empty then stop: return satisfiable

If Φ1 includes empty clause set then stop: return unsatisfiable

Φ := Φ1

End loop

2. Φ = {C1, C2, · · · , Cn}(p ≤ n),M(|M| = m) be its set of atoms be its set of

atoms

3. Call Algorithm ER [4] with Φ

Theorem 1. [5]Algorithm RER is sound and complete for proposition logic
theorem proving.

Proof. It has been proved that tautology rule, pure literal rule, inclusion rule and
single literal rule can not change the unsatisfiability of the primary clause set[6].
Thus by the soundness and completeness of algorithm ER[4], the soundness and
completeness of algorithm RER is straightforward. Q.E.D

3 Algorithm IER and Its Improvement

A faster algorithm IER (Improved Extension Rule) is given in [4]. The idea is to
use a more efficient but incomplete algorithm followed by a complete algorithm
and to hope that the problem can be solved by using the more efficient algorithm.
Algorithm IER works this way: When the ER Algorithm runs, it is actually
searching through the entire space of all maximum terms and are checking if
any maximum term cannot be extended, while in fact it is possible to search
through a subspace and check if any maximum term cannot be generated in this
smaller space. If so, it can be draw the conclusion that Φ is satisfiable. Otherwise,
it cannot tell whether Φ is satisfiable since it is possible that a maximum term
out of the subspace cannot be extended. In this case, fall back to the original
Algorithm ER.

Use the same reduction rules to improve the algorithm IER, the improved
algorithm RIER in propositional logic is given below.

Algorithm RIER (Reduced Improved Extension Rule)
1. Let Φ = {C1, C2, · · · , Cn}.

While Φ satisfies any rule in RL
Loop
Φ1 := using RL to deal with Φ
If Φ1 is empty then stop: return satisfiable
If Φ1 includes empty clause set then stop: return unsatisfiable
Φ := Φ1

End loop
2. Φ = {C1, C2, · · · , Cn}(p ≤ n),M(|M| = m) be its set of atoms, and let C
be an arbitrary clause whose atoms appear in M.
3. Φ′ := Φ
4. For all the clauses D in Φ′

(a) If D and C have complementary literal(s)
Then Eliminate D from Φ′
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(b) Call ER to check the satisfiability of Φ′

5. If Φ′ is satisfiable then return satisfiable
Else call Algorithm ER with Φ

Theorem 2. Algorithm RIER is sound and complete for proposition logic the-
orem proving.

Proof. It has been proved that tautology rule, pure literal rule, inclusion rule and
single literal rule can not change the unsatisfiability of the primary clause set [6].
Thus by the soundness and completeness of algorithm IER [4], the soundness
and completeness of algorithm RIER is straightforward. Q.E.D

4 Experimental Results

Lin gave a definition of complementary factor CF to complementary literal(s) [4].
Although it is difficult to calculate the time complexity precisely by using the
CF, but the experiment results in [4] show the higher the CF of a problem is,
the more efficient Algorithm ER can be expected to be. Our experiment results
show the efficiency of improved algorithms still has such relation to CF, but not
so close like Lin′s algorithms.

Here five algorithms are compared: they are RER and RIER we proposed, ER
and IER Lin gave as well as DR proposed in [8]. The instances are obtained by a
random generator. It takes as an input the number of variable n, the number of
clauses m and the most length of each clause k, and obtains each clause randomly
by choosing k variables from the set of variables which number less than or equal
to n and by determining the polarity of each literal with probability p=0.5.

(100, 30, 9) denotes a set of clauses, which has 30 variables and 100 clauses
and each clause length is not more than 9. There are two decimal fractions below
first five examples in table 1, they are the CF of primal and reduced clause set
respectively. There is just one decimal fraction below last two examples. It is just
the CF of primal clause set, because the satisfiability can be deduced directly
during reducing. Non-0 terms denotes the nonzero terms generated by ER, RER,
IER and RIER during reasoning. Res-numbers denotes the resolution performed
by DR during reasoning. Result denotes the returned result. Time denotes the
total time used by procedure, and the precision is 1 millisecond.

When the CF of the reduced clause set is smaller than that of primal clause
set, RER and RIER still outperform ER and IER. It is because though CF
becomes smaller the variable number and the clause number become smaller
corresponding. So that the number of the nonzero terms needed to extend is
cut down and the efficiency increase. When the CF of the reduced clause set is
larger, RER and RIER is of course faster than ER and IER. When the CF is not
change, the ER and IER are faster than RER and RIER because the reduction
rules do not work

When the CF is less than 0.4, the behavior of DR is better than the four ex-
tension rule based methods. On the contrary, it is slower than the four methods.

When the reduced clause sets are empty or contain empty clause. The ex-
perimental results show the efficiency of RER and RIER have nothing with CF



596 X. Wu et al.

Table 1. Computation Results

Examples DR
ER IER

ER RER IER RIER

(100,30,9)
Non-0 terms — 615724 521294 623506 527098

0.320000
Resolutions 1929 — — — —

0.313830
Conclusion UNSAT UNSAT UNSAT UNSAT UNSAT

Time(s) 0.265 52.813 38.547 66.797 44.188

(200,50,16)
Non-0 terms — 258799 39 1338 97

0.477855
Resolutions 4726 — — — —

0.468286
Conclusion SAT SAT SAT SAT SAT

Time(s) 69.062 23.625 0.078 0.110 0.078

(100,50,10)
Non-0 terms — 21551 12463 1542 1017

0.372627
Resolutions 378 — — — —

0.375000
Conclusion SAT SAT SAT SAT SAT

Time(s) 0.046 0.172 0.109 0.050 0.050

(300,30,16)
Non-0 terms — 128 128 411 411

0.768209
Resolutions 2534 — — — —

0.768209
Conclusion SAT SAT SAT SAT SAT

Time(s) 2.625 0.109 0.125 0.109 0.125

(200,40,16)
Non-0 terms — 21073 2329 21476 2451

0.616393
Resolutions 1569 — — — —

0.625793
Conclusion UNSAT UNSAT UNSAT UNSAT UNSAT

Time(s) 0.656 0.625 0.141 0.064 0.156

Non-0 terms — 14615 — 14748 —

(100,30,9) Resolutions 541 — — — —

0.390152 Conclusion UNSAT UNSAT UNSAT UNSAT UNSAT

Time(s) 0.046 0.266 0.046 0.25 0.046

Non-0 terms — 1599 — 53 —

(200,30,20) Resolutions 404 — — — —

0.689189 Conclusion SAT SAT SAT SAT SAT

Time(s) 0.156 0.109 0.094 0.125 0.094

any more. The behavior of RER and RIER is as good as DR or better than DR
sometimes. Furthermore, the behavior of them is much better than ER and IER.

5 Concluding Remarks

The experiment results show our improved extension rule methods are more
effective. Since first order ER method is reduced to a series of ground-level
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satisfiability problems [4], the behavior of propositional extension rule will affect
the behavior of first order extension rule directly. Thus our improvement will
make the first order extension rule method more effective.

Extension rule based theorem proving can be considered, in a sense, a method
dual to resolution based theorem proving. It outperforms resolution based
method when the complementary factor is relatively high. So it is potentially a
complementary method to resolution based methods. Our experimental results
also show the improved extension rule methods are still potentially a comple-
mentary method to resolution based methods. DR is the fastest resolution based
theorem proving method in propositional logic.
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Abstract. This study proposes a Web Services-based Digital Libraries
(DLs) using Case-based Reasoning as a space for collaborative learning.
In the Digital Library environment, cases were designed on the basis of a
list of loaned books and personal information. Using those data, a degree
of preference was computed and Case-based Reasoning was used to com-
pare among the cases in the case base. The proposed system recommends
suitable communities to an individual user based on his or her personal
preferences. As a result, DLs can play a role as a computer-supported
collaborative learning space in order to provide more plentiful and use-
ful information to users. In addition, this study demonstrates that DLs
can be effectively expanded by using Web-Services techniques and Case-
based Reasoning.

Keyword: Case-based reasoning, digital library, computer supported
collaborative learning, web services, recommendation.

1 Introduction

Digital Libraries (DLs) consist of refined digital content and information for
users. The characteristics of a DL can provide space for users to do collaborative
learning. The lending information of users especially shows a degree of personal
preference, so that it could facilitate learning and sharing knowledge with each
other.

Using these beneficial attributes, this system that applies the DL approach
to a Computer-Supported Collaborative Learning (CSCL) space is proposed.
Web Services techniques for sharing effectively the information of users such as
a profile, loaned books, communities, or learning resources were applied. In this
manner, various DLs and e-learning systems can be integrated. Moreover, intelli-
gent environments can be created by using personal information as accumulated
case-based data rather than as a common type database. Thereby, this system
can promote effective collaborative learning by recommending communities ap-
propriate to the preference of the user.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 598–603, 2006.
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2 Background

Case-based Reasoning is applied actively to the fields of electronic commerce
and Knowledge Management. Knowledge Management includes primarily the
study of Recommendation Systems and knowledge processing (see, e.g., [1,4,5]).
In general, the Case-based Reasoning technique is used to link an appropriate
book to a user at an on-line book-store or to recommend similar items at a por-
tal shopping-mall. Researchers are gradually processing studies for contenting
users or recommending books in the DL. Moreover, studies on recommending
books and providing learning contents in DLs are in progress (see, e.g., [2]). Re-
search is still, however, needed on providing learning spaces and recommending
appropriate communities for the users of DLs.

3 The Overview of DLs as CSCL Spaces

The proposed system recommends adaptive CSCL communities on the basis of
users’ preference and profile. To accomplish this, the proposed system computes
the preference value according to users’ information related to previously loaned
books. The system then searches the registered users and the cases with a high
rate of similarity by using the preference value. Finally, communities for CSCL
are recommended by the preference of each user.

Fig. 1. Web Services-based DLs as CSCL Spaces

The Web Services techniques used in formulating the structure of this sys-
tem allow various DLs and e-learning systems, especially, collaborative learning
systems, to be integrated by Universal Discovery Description and Integration
(UDDI) and shared. The shared information alters into cases and searched us-
ing the Web Services Description Language (WSDL).

When a user logs into the DL, the system loads the user’s profile and loan
information, thereby initiating a new case. The system next extracts similar cases
to the new case from the Case Library. The system recommends the community
information best suited to that user. The user selects the communities that he or
she desires to join. After joining a community, the user can find information on
a subject to study by collaborative learning. The system stores the information
concerning the communities joined by the user in the Case Library.



600 S.-J. Jun, S.-G. Han, and H.-Y. Kim

New Case

User ¡fls info . 
Loan info . 

Case library 
User 

Recommend 
Communities 

User ¡fls
Select 
/ join 

Learned 
Case

Retrieve Revice 

Retain 

User ¡fls info . Loan Info . 

Learning

New Case

User  ¡fis info .  
/ Loan Info . 

Si m i l ar  cases

Reuse 

Community Info . 

DL contents 

Metadata 

Fig. 2. The CBR Cycle for Recommending CSCL Spaces

4 Design and Development of the System

4.1 Case Extraction and Representation

The system extracts cases on the basis of personal information and loan history.
The cases are composed of decisive elements that determine the recommended
communities for users (see Fig. 3). A data entity consists of elements such as
personal information (number, name, major, job, interest, etc.), loan informa-
tion (loan number, library classification, loan date, contents name, et al.), and
information on the community to which the user joins.
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Registered date

The number of loan books

…

User information
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…

User information
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Library classification
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…
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Popularity 
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• Preference
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Input

Case Representation 

Community 
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• Preference
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Solution

Input

Case Representation 

Classifying

Fig. 3. Relationship among data entities

The system classifies the preference of the user using the ’Library classifica-
tion’ and ’Keyword’ provided in the loan book information. The date on which
the user registered on the DL, the number of books loaned and the date the
books were loaned can be used effectively to ascertain the preferences of the
user on the each classified preferences. Therefore, the case is represented by an
input with the preference, the major, the job and the interest and a solution
with the community information.
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4.2 Recommending Communities with User Preference

The recommendation of communities for CSCL is based on the preference of
the user. If the user borrowed books of a similar theme over a period of time,
the interest of the user regarding that time is considered to be reduced. Conse-
quently, the list of books loaned and date on which the books were loaned are
very important for establishing the degree of preference of the user. In order to
calculate the preference value, the system first classifies books borrowed by the
user according to similar domain. A book classification method, using metadata
such as keywords for classifying the books into similar domains, is used.

Preference =
n∑

i=1

(i × LBi). (1)

– n : joined period
– LBi : the number of books on i day after a user joined in.

Now 

n*1(n - 1)*2 … 0900(n*LB) 

23… 1302LB(books ) 

nn - 1 … 4321Date(n ) 

n*1(n - 1)*2 … 0900(n*LB) 

23… 1302LB(books ) 

nn - 1 … 4321Date(n ) 

n*1(n - 1)*0 … 8020(n*LB) 

23… 1302LB(books ) 

nn - 1 … 4321Date(n ) 

n*1(n - 1)*0 … 8020(n*LB) 

23… 1302LB(books ) 

nn - 1 … 4321Date(n ) 

n*2(n - 1)*3 … 4902(n*LB) 

23… 1302LB(books ) 

nn - 1 … 4321Date(n ) 

n*2(n - 1)*3 … 4902(n*LB) 

23… 1302LB(books ) 

nn - 1 … 4321Date(n ) 

Registered Date 

Business 

Programming 

Environment 

P1=0.6(*) 

P2=0.25 

P3=0.15 

¥=1.0 

Fig. 4. Example of Calculating the degree of Preference

The degree of preference was calculated in each classified area according to
the similarity of books. The sum of the degree of preference of the user at each
classification is 1.0. The loan period and the number of books loaned are used
to compute the degree of preference of the user. A degree of preference for a
specific area was computed using Equation (1) by multiplying the number of
books and that the number of days the book was checked out after the user
joined.

For example, if a the loan list of a user is classified into three categories such as
management theory, programming and the environment, the degree of preference
for that user has three values.

In the case library, the preference value is compared to stored cases. When a
user logs in or borrows a book, the value of preference is changed. If the system
assigns to a user the community information related to a domain, the value of
the preference is increased. The total similarity rate of a new case N and case O
in Case library can be calculated as follows (Equation 2). The formula illustrates
the calculation of each similarity rate of all elements among cases in the case
library. Each element is multiplied by the weight of each similarity, and all are
summed (see, e.g., [3]).

S(N, O) =
n∑

i=1

f(Ni, Oi) ×Wi. (2)
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– N : new case
– O : the case of the case library
– S(N, O) : total similarity between new case N and the case of the case library

O
– n : number of elements of case
– Ni : ist element of case N
– Oi : ist element of case O
– W i : a weight of each element
– F (Ni, Oi) : a function that measure the similarity between Ni and Oi

Fig. 5. Example of Community Recommendation by CBR

Applying the similarity rate commutated in Equation 2, if a user logs into the
system, the system compares the similarity among users with the similarity of
the case in case library. After that, the system searches cases that have a high
degree of similarity. Finally, the user is provided a recommendation concerning
the information about communities, that is, the user is notified which community
is popular among all communities. As illustrated in Fig. 5, a ”New Case” contains
a user’s preference and profile relating to interests, job and major. When a New
Case is created, the CBR engine compare with the other users’ preference in
case library. Moreover, the engine searches cases that has high preference value
among users who has a same preference as new case’s P1(business). The system
uses inference to determine an adaptive community that has similar preferences
on the theme ”New Case.” Eventually, the system provides recommendation lists
based on the popularity of communities. The top 10 cases are listed.

5 Conclusions

In this paper, we stress the recommendation system for the collaborative learning
space of Web-Services and the DL environment.

The design of this system can be summarized as follows. When a user logs
into the DL system, the system determines his or her preference value using the
personal information and the loan information. Moreover, the system searches
other users who have similar preferences and user profiles from the case library
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DB. Finally, the system recommends to the user the information on communities
that a large number of users have already joined.

This study suggests an effective way to develop existing DLs as spaces for
collaborative learning. Further study of the construction of advanced systems
by practical development and application is needed. Furthermore, it is necessary
to expand the effective learning system through connecting to e-learning systems.

References

1. C. Her, S. jin Joo, and H. Chung. Electronic commerce using on case-based reasoning
agent. Korean Institute of CALS/EC, 5(2):49–60, 2000.

2. J. Lee and S. Chung. Development of a book recomendation system using case-
based reasoning. In Proceedings of the KISS(Korea Intelligent Information Systems
Society) 2002, pages 305–314. KISS, 2002.

3. D. O’Sullivan, B. Smyth, and D. C. Wilson. Analysing similarity essence for case
based recommendation. In Lecture Notes in Computer Science, volume 3155, pages
717–731. Springer Berlin / Heidelberg, 2004.

4. Z. Sun. Case Based Reasoning in E-Commerce. PhD thesis, Bond University,
December 2002.

5. I. Vollrath, W. Wilke, and R. Bbergmann. Case-based reasoning support for online
catalog sales. IEEE INTERNET COMPUTING, 1089-7801:2–5, 1998.



Using Description Logic to Determine Seniority

Among RB-RBAC Authorization Rules

Qi Xie1,2, Dayou Liu1,2, and Haibo Yu1

1 College of Computer Science and Technology, Jilin University,
Changchun, 130012, P.R. China

2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry
of Education, Jilin University, Changchun, 130012, P.R. China

xieqi@jlu.edu.cn, dyliu@jlu.edu.cn

Abstract. Rule-Based RBAC (RB-RBAC) provides the mechanism to
dynamically assign users to roles based on authorization rules defined
by security policy. In RB-RBAC, seniority levels of rules are also intro-
duced to express domination relationship among rules. Hence, relations
among attribute expressions may be quite complex and security officers
may perform incorrect or unintended assignments if they are not aware
of such relations behind authorization rules. We proposed a formaliza-
tion of RB-RBAC by description logic. A seniority relation determination
method is developed based on description logic reasoning services. This
method can find out seniority relations efficiently even for rules without
identical syntax structures.

Keywords: Description Logic, RB-RBAC, authorization rule, attribute
expression, seniority level.

1 Introduction

Role-Based Access Control (RBAC) has emerged as a widely deployed alterna-
tive to traditional discretionary and mandatory access controls (see, e.g., [1,2]).
Usually, enterprise security officer manually assign users to roles based on criteria
specified by the enterprise. But in many environments, the number of users can
be in the hundreds of thousands or millions. This renders manual user-to-role
assignment a formidable task. Rule Based RBAC (RB-RBAC) (see, e.g., [3,4,5])
is introduced to automatically assign users to roles based on a finite set of au-
thorization rules defined by enterprise. RB-RBAC is an excellent authorization
model especially for distribution environments with a large number of users.

In RB-RBAC, the authorization rules take into account the attributes of users
that are expressed using attributes’ expressions. One user could have one or more
attribute expressions depending on the information he provides. Conversely, two
or more users may provide identical attribute expression. At the same time, se-
niority levels may lead conflict between authorization rules (see [5]). This makes
relations among authorization rules potentially quite complex, security officers
may perform incorrect or unintended assignments if they are not aware of some
relations behind individual authorization rules, which could result in information
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leaks or prevent access to information needed. Determining seniority relations
among authorization rules also will help to understand the organization of autho-
rization rules and classification of users, even authorization rules are defined by
different security officers. The management and maintenance of a large number
of distributed applications implementing RB-RBAC also need appropriate tools
to determine seniority relations among rules to help to analyze inconsistency of
authorization polices and resolve conflict that may occur.

In [3], seniority was defined. But additional declaration mechanism must be
integrated into RB-RBAC language (see, e.g., [3,5]) to define the order of at-
tribute values. And two attribute expressions that only have identical structures
can be compared to determine seniority, which is too restrict to discover the
some real relations between rules. In [6,7,8], policy based system was build.
But most of these works do not support complex attribute expression definition,
quasi-order relation definition among attribute values and RB-RBAC seniority
level reasoning.

In this paper, we propose a Description Logic (DL) (see [9]) based approach to
deal with components in RB-RBAC. The attribute expressions are represented in
a manner that makes seniority level reasoning become a simple work. Comparison
between attribute expressions is less restricted to allow insight on the relations
of authorization rules even they are not identical syntax structures.

2 Overview of RB-RBAC Model

The main components of the RB-RBAC model are users, attribute expressions,
roles and permissions. The component users, roles and permissions are imported
from RBAC96 (see [1]). In RB-RBAC, the security policies of the enterprise are
expressed in form of a set of authorization rules. Each rule takes as an input the
attributes expression that is satisfied by a user and produces one or more roles.

The following is an example of a rule rulei: aei⇒rg, where aei is attribute
expression and rg is the produced role. If user u satisfies aei, then u is authorized
to the role(s) in the right hand side of rulei. In fact, every attribute expression
specifies a user set with specific attribute values.

To compare two rules in terms of their attribute expressions to determine what
kind of relation exists between the two. In [3], the concept of seniority levels
was introduced. Seniority levels are first assigned to the basic building blocks of
attribute expressions, namely the attribute pairs, and satisfying an attribute pair
that has seniority level implies satisfying all the ones that have lower seniority
levels. To capture the seniority relations that might exist among authorization
rules, the dominance binary relation on attribute expressions is introduced: aei

is said to dominate aej only if aei implicates aej logically, denoted as aei→aej .
Another way of stating the above relation between aei and aej is to say that
rulei is senior to rulej (denoted by ≥):

rulei ≥ rulej ↔ (aei → aej).

This implies that users who satisfy rulei also satisfy rulej and, hence, are au-
thorized to the roles produced by rulej .
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Investigating seniority levels between authorization rules can help security
officers to pay attention to some special users. Those users may satisfy many
authorization rules and thus many roles will be assigned to them in direct or
indirect manners, of which security officers can not be aware just from a set
of individual authorization rules. In the system implementing RB-RBAC, an
entire survey of relations behind the authorization rules can give instructional
information for resolving detected conflicts.

3 Representing and Reasoning on RB-RBAC

We choose a DL language ALC (see [9]) to represent and reason on RB-RBAC
according to its features. Given a RB-RBAC system, we define a DL knowledge
base K and assume that users, roles, attributes and permissions are finite. The
vocabulary of K includes the following atomic concepts and atomic roles:

The atomic concepts CUser, CRole and CPermission, represent the users, roles
and permissions,

For each role ri in system, one atomic concept Rolei,
For each attribute expression aei, one atomic concept AEi,
For each attribute Ai, one atomic concept CAi, and for each attribute value

of attribute Ai, one atomic concept CAvalji ,
For each attribute Ai, one atomic role hasAi, represents the user hold attribute

value of attribute Ai,
The atomic role assignRole, indicate user is assigned the role automatically,
The atomic role holdPermission, represent the role hold the permission.
The TBox of K includes five catalogs of axioms:
Attribute inclusion axioms state the seniority levels among attribute values.

For each seniority relation: vj
i is senior to vk

i , we should setup axioms with the
form CAvalji 5 CAvalki . Moreover, each concept CAvalji is a subconcept of CAi,
so axioms CAvalji5CAi should be included for each attribute value.

For example, in a department of a company, there are two positions: de-
partment manger (DM) and project manager (PM) and a DM also acts as a
PM. First, we define atomic concepts CPosition, DM and PM, and an atomic
role hasPosition. Then, we set up axioms DM 5 CPosition, PM 5 CPosition and
DM 5 PM in TBox. Concept ∃hasPosition.DM is interpreted as users whose
position is department manager.

Role inclusion axioms declare the role hierarchies. Axiom Rolei5Rolej should
be included for each role hierarchy: role ri inherits permissions of rj . Each con-
cept Rolei is also a subconcept of CRole, we should set up axioms Rolei5CRole
for each role.

Attribute expression definition axioms define the attribute expressions and
specify the concrete attribute values which users should hold. For each autho-
rization rule rulei, definition axioms have the general form:

AEi ≡ ∃hasA1.CAvalj11 $ · · · $ ∃hasAn.CAvaljn
n .
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If some kinds of attributes do not exist in an attribute expression, they should
disappear in the definition axioms. If an attribute expression requires more then
one values about some kinds of attributes, they should be defined as such form:

∃hasAi.(CAvalk1
i $ · · · $ CAvalkm

i ).

Role assignment axioms express roles are assigned automatically to users who
satisfy attribute expressions of authorization rules. For each authorization rule
rulei, role assignment axioms have the general form:

AEi 5 ∃assignRole.(Rolek1 $ · · · $ Rolekm).

where Rolek1 · · ·Rolekm are roles produced by rulei. These axioms indicate if a
user satisfies the attribute expression of an authorization rule then it will be
assigned roles produced by that rule. Of course, we can set up such axiom as
AEi 5 ∃assignRole.Role1 $ ∀assignRole.¬Role2, which represents users who can
assume the role r1, but are prohibited to assume the role r2.

Authorization axiom declares users can get permissions by automatically as-
signed roles. For each role-permission assignment (rolei, pk), authorization ax-
ioms have the general form:

∃assignRole.Rolei 5 ∃holdPermission.Pk.

Concept ∃holdPermission.Pk is interpreted as the set of users that can be autho-
rized the permission pk, and concept assignRole.Rolei is interpreted as the set of
users that are automatically assigned to rolei. This axiom indicates that if a user
has been automatically assigned to the rolei then this user can be authorized
the permission pk.

The ABox of K includes five catalogs of assertions:
User concept assertions have the form CUser(u) and introduce users. Role con-

cept assertions have the form Rolei(ri) and declare that each role belongs to corre-
sponding role concept. Attribute value concept assertions have the form CAvalji (v

j
i )

and declare that each attribute value belongs to corresponding attribute value
concept. Permission concept assertions have the form CPermission(p) and specify
the permissions. User attribute assertions have the form hasAi(u, v) and indicate
that user u holds attribute value v of attribute Ai.

4 Seniority Determination

In [3,4,5], authorization rules as well as attributes expressions that have identical
syntax structures can be compared to determine seniority levels among them.
That is too restricted to allow the insight about relationships among rules. We
remove this restriction for comparisons and determine relations among rules only
based on comparison of user sets specified by attribute expressions on the left
hand sides of authorization rules.

By using reasoning service provided by description logic, seniority levels can
be determined through concept subsumption and satisfiablity. For arbitrary at-
tribute expression concepts AEi and AEj , if there is K |= AEi 5 AEj , which
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indicates each user satisfies aei also satisfies aej , and then we can say aei domi-
nates aej or rulei ≥ rulej . Following is concrete methods to determine seniority
levels between authorization rules.

When we add each of attribute expression definition axioms to TBox, we
must check whether that atomic concept is satisfiable by calling TBox coherence
check. That will preclude TBox from accepting incorrect attribute expression
definition. For example, in a department of a company, there are two positions:
department manger (DM) and project manager (PM). A department manger
also acts as a project manager. Then we define an attribute expression concept
AEmis as such

AEmis ≡ ∃hasPosition.DM $ ∀hasPosition.¬PM.

which specifies a set of user who is a department manger but not a project
manager. Because each department manager is also a project manager, which
can be expressed as attribute inclusion axiom DM 5 PM in TBox. From above,
the concept AEmis must be unsatisfiable.

We can query all relationship about an authorization rule rulei with others.
Before this work we should ensure that TBox is coherent, otherwise we may
omit some relations that do exist between rulei and other rules. First, for each
attribute expression concept AEj in TBox, we check whether concept AEi $AEj

is satisfiable with respect to TBox by calling TBox evaluation functions provided
by description logic engines. If there is K |= AEi $ AEj , then we add concept
pair (AEi, AEj) to a list IntersectAEs. Second, for each concept pair (AEi, AEj)
in IntersectAEs, we check if these two concept terms subsume each other by
querying TBox evaluation functions. If there is K |= AEi 5 AEj then we can
conclude rulei is senior to rulej, and else if there is K |= AEj 5 AEi then we
can conclude rulej is senior to rulei, otherwise we can conclude rulei and rulej

overlap. Now, we can survey all relations about rulei with other rules. Similarly,
we can get all relations of arbitrary two authorization rules in the system.

Relation determination can also help to resolve conflicts. If conflict is detected
between rulei and rulej, TBox must be not coherent. In order to determine
relation between rulei and rulej, role assignment axioms about AEi and AEj

should be removed from TBox to ensure that AEi and AEi are satisfiable. Then
we should check whether there is K |= AEi 5 AEj (or K |= AEj 5 AEi) to
determine which relation these two rules have.

If rulei is senior to rulej (or rulej is senior to rulei), then security officers can
reconstitute user set of rulej (or rulei) as the form ¬AEi $AEj (or AEi $¬AEj),
which represent users satisfying rulej but not rulei (or users satisfying rulei but
not rulej), and reassigned roles to AEi(or AEj) and ¬AEi $AEj (or AEi $¬AEj)
to resolve conflict according to some conflict resolution policy.

If they overlap, then security officers can split all users to three new users
set: AEi $ ¬AEj , which declares users satisfying rulei but not rulej , AEi $ AEj ,
which declares users satisfying both rules, and ¬AEi $AEj , which declares users
satisfying rulej but not rulei. These new user set should be defined with new
attribute expression concept axioms and assigned them roles according to some
conflict resolution policy.
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5 Conclusion

We have shown a description logic based formalization of RB-RBAC model,
which can effectively define attribute expressions and authorization rules of RB-
RBAC. We mainly demonstrated how to determine seniority relationships among
authorization rules without identical syntax structures restriction simply by us-
ing description logic reasoning service. Concept split in conflict resolution is also
briefly discussed.
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Abstract. Tuples in an information system are taken as terms in a log-
ical system, attributes as function symbols, a tuple taking a value at an
attribute as an atomic formula. In such a way, an information system is
represented by a logical theory in a logical language. The roughness of an
information system is represented by the roughness of the logical theory,
and the roughness of logical theories is a generalization of that of infor-
mation systems. A logical theory induces an indiscernibility relation on
the Herbrand universe of the logical language, the set of all the ground
terms. It is imaginable that there is some connection between the logi-
cal implication of logical theories and the refinement of indiscernibility
relations induced by the logical theories. It shall be proved that there is
no such a connection of simple form.

Keywords: Rough set theory, logical theories, refinement, logical impli-
cation.

1 Introduction

Usually we say that there are two kinds of the uncertainty in artificial intelli-
gence: imprecision and indiscernibility ([1,2]). A further problem is whether the
uncertainty is a property of a system or its formalized theory.

Assume that a system is formalized by a logical theory. If the uncertainty is
about a property of the system, i.e., we are not sure whether the property holds
for the system, then the system is in probability, and the corresponding logical
theory is a theory in the probability logic. Hence, we can say that the system is
certain (any property is either true or not in the system, where the truth value
may be probability-typed), and so complete. The uncertainty or incompleteness
occurs only in the logical theories formalizing the systems.

If the uncertainty is about the theory then first of all, then, by the same
discussion in Haack [5], the theory is precise, there is no imprecision in it; and
the theory may not be sufficient in two kinds of the decision: the indiscernibility
of the objects in the system, i.e., the theory is not complete to distinguish two
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objects of the system; and the incompleteness, i.e., the theory is not complete to
decide whether any sentence or its negation is true in the system and deducible
from the theory. The latter case is the incompleteness of theories; the first one
is the main topic we shall focus on.

Assume that the indiscernibility is not induced by the system. By Leibniz’s
law, for any two objects, there is a property to distinguish the objects. Hence,
the indiscernibility has two sources from the formalization: languages or logical
theories. In the relational databases, the indiscernibility of two tuples is induced
by the lack of sufficiently many attributive properties we could use. Assume
that the language is sufficiently expressive. The indiscernibility is induced by
the incompleteness of the logical theory. We can say that the indiscernibility is
the intrinsic property of the logical theory.

We shall discuss the roughness of logical theories in this paper, and consider
the existing rough logics first. The rough logics ([6,8,9]) can be classified into
two classes:

(1.1) The rough 2-valued models. The language contains symbols R and
�. If φ(x, y) is a first-order formula and x, y are the free variables then
so is �yφ(x, y) with free variable x. R is interpreted as a binary relation
on model M, say R, and �yφ(x, y) is satisfied in M if for any y ∈ M
with (x, y) ∈ R, φ(x, y) is satisfied in M. Hence, R is interpreted as an
indiscernibility relation R on M. This rough logical system is logically
equivalent to the first-order logic under the following translation: for any
formula φ(x), let tr(φ(x)) be the translation of φ(x), then

tr(φ(x)) =

⎧⎪⎪⎨⎪⎪⎩
p(x1, ...,xn) if φ(x) = p(x1, ...,xn)
tr(ψ) ∨ tr(δ) if φ(x) = ψ ∨ δ
¬tr(ψ) if φ(x) = ¬ψ
∀y(R(x, y) → ψ(x, y)) if φ(x) = �yψ(x, y).

(1.2) The rough set-valued models. The logical language contains a sym-
bol �. If φ is a formula then so is �φ. The model for the rough logic
consists of an information system (U, θ) and a model M, where U is a
non-empty universe, and θ is an equivalence relation on U. The truth
value of a formula φ in M is a subset of U, say v(φ), in terms of which
we define v(�φ) = v(φ)

θ
, where Xθ is the lower approximation of X ⊆ U

under θ. A formula φ is satisfied in M if v(φ) = U. This rough logical
system is logically equivalent to the modal logic system S5.

By the same discussion as in [5](p.243), the roughness of the set-valued truth
values has no sense in actual inferences. Another reason that the above rough
logics are not appropriate is that the indiscernibility relation is not encoded in
the logic, as R in the first kind of the rough logics, and as �, � in the second one.
The main point is that the indiscernibility relation is induced by the incomplete
formalization of systems, and the indiscernibility relation should be an intrinsic
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property of the formalization. Based on this point, we propose the roughness of
logical theories.

(1.3) The roughness of logical theories. The language contains no extra
symbols other than those in the first-order logic. Given a logical theory
T , T induces an indiscernibility relation θ on the set HU of all the ground
terms such that for any t, s ∈ HU, tθs means that under logical theory
T , t cannot be discernible from s. Formally, for any t, s ∈ HU,

tθs iff ∀φ(T 6 φ(t) ⇔ T 6 φ(s)).

In such a formalization, the indiscernability relation is not the essential or
internal property of structures, or of models, but is induced by the uncertainty
of our knowledge about the system to be described. The relation is the intrinsic
property of the logical theories we use to represent knowledge.

We shall use the rough set theory and the rough set database analysis to
analyze the logical theories, and discuss the functional dependencies and the
information-theoretic entropy of logical theories.

The paper is organized as follows. In the next section, we shall define the
equivalence relation θT on the ground terms induced by a logical theory T , and
the entropy of a logical theory; the third section will give a connection between
logical theories and the induced equivalence relations on the ground terms. The
last section concludes the paper.

Our notation is standard. We shall use x, y, to denote the meta-variables in
formal logics and denote also elements in universe U ; t, s denote terms, φ,ψ
formulas in formal logics, and use ≡ to denote a symbol in a logical language for
the equality, = to denote the equality.

2 The Roughness of Logical Theories

Fix a logical language L, let HU be the Herbrand universe of L, the set of all
the ground terms in L, i.e., these terms without variables.

Definition 3.1. Given a logical theory T , we define a relation θT on HU as
follows: for any t, s ∈ HU,

tθT s iff ∀φ(T 6 φ(t) ⇔ T 6 φ(s)).

Proposition 3.2. Given a logical theory T , θT is an equivalence relation.

Example 3.3. Let (U, A) be a relation, where U is a non-empty set of tuples,
and A is a set of attributes. For the simplicity, let A = {a} contain only one
attribute. Then, L contains a constant symbol r for every tuple r ∈ U, a constant
symbol v for every value v ∈ Da, the domain of attribute a, and for every a ∈ A,
a relation symbol ea.

HU = {r : r ∈ U} ∪ {v : v ∈ Da}.
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A formula in L is of form either ea(r,v) (which means that r(a) = v) or ea(x, y)
(which means that x(a) = y), where x, y are the variables for tuples and values,
respectively. The axioms for L include the ones for the first order logic and the
equality. The logical theory Ta for (U, A) contains the following sentences: for
every r ∈ U, ea(r,v) ∈ Ta iff r(a) = v; and ¬ea(r,v) ∈ Ta iff r(a) �= v. Then,
for any r, s ∈ U,

rθTas iff ∀φ(Ta 6 φ(r) ↔ Ta 6 φ(s)).

It can be proved that rθTas iff r(a) = s(a).
The example shows that the indiscernible relation in information systems is

a special case of that of logical theories.

Remark. Assume that there is a universe U such that for every individual u ∈ U
there is a term t representing u. By Leibniz’s law, we assume that for any two
individuals u, v ∈ U, there is at least one property φ such that either φ(u) is
satisfied in U and φ(v) is not, or φ(v) is satisfied in U and φ(u) is not.

Hence, we assume that the logical language contains all the predicates for the
properties which are sufficient to describe any individual in any possible ways.

Every logical theory T is a partial formalization of U, which is the whole
knowledge about U which is known or assumed to be known by human beings
at certain time. Hence, T evolves as the time lapses.

We consider θT for the following special logical theories T :

(1) Assume that T is inconsistent. We use T� to denote the inconsistent theory.
Then, for any formula φ, we have that T� 6 φ; and for any t, s ∈ HU,T� 6
φ(s), T� 6 φ(t). Hence, for any φ and any t, s ∈ HU, T� 6 φ(s) iff T� 6 φ(t).
Let θ� be the equivalence relation on HU induced by T�. Then, for any t, s ∈
HU, tθ�s.

(2) Assume that T is the first logic theory, i.e., the set of all the theorems in
the first order logic. We use T⊥ to denote the first order theory. Then, for any
formula φ and t, s ∈ HU, if T �6 φ, i.e., φ is not a theorem in the first order logic,
then T �6 φ(t) and T �6 φ(s). Hence, for any φ and any t, s ∈ HU, T⊥ 6 φ(s)
iff T⊥ 6 φ(t). Let θ⊥ be the equivalence relation on HU induced by T⊥. Then,
θ⊥ = θ�.

(3) Assume that Tmax is a logical theory distinguishing every term t ∈ HU,
that is, for any t, s ∈ HU, if t and s are different then there is at least one
formula φ(x) such that either Tmax 6 φ(t) and Tmax �6 φ(s), or Tmax 6 φ(s) and
Tmax �6 φ(t). Let θmax be the equivalence relation on HU induced by Tmax. Then,
for any t, s ∈ HU, tθmaxs iff t = s, that is, θmax = {(t, t) : t ∈ HU}.

In terms of the entropy of information systems, we can use the entropy to
describe logical theories. Given an information system (U, θ), if θ partitions U
into finitely many parts X1, ..., Xn, then the entropy of (U, θ) is defined by

E(U, θ) =
n∑

i=1

|Xi| log |Xi| − m logm,
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where m = |U |. When θ can discern every element in U, i.e., θ = {(x,x) : x ∈ U},
the entropy of (U, θ) is minimal and equal to −m log m; and when θ cannot
discern any element in U , i.e., U = {(x, y) : x, y ∈ U}, the entropy of (U, θ) is
maximal and equal to 0.

Definition 3.4. Given a logical theory T , the entropy E(T ) of T is the entropy
E(HU, θT ) of information system (HU, θT ).

Proposition 3.5. (i) If T is equal to the logical theory of an information system
(U, θ), that is, T = Th(U, θ) = {φ : (U, θ) |= φ}, the entropy of T is equal to the
entropy of (U, θ).

(ii) If T = T� or T⊥ then θT = {(t, s) : t, s ∈ HU}, and E(T ) is maximal.
(iii) If T = Tmax then θT = {(t, t) : t ∈ HU}, and E(T ) is minimal.
Proof. The proof is direct from the definition of the entropy.

Remark. If the logical language L contains the equality symbol ≡, then we can
define

Tmax = {t �≡ s : t, s ∈ HU, t �= s},
where t �= s means that as symbol strings, t is equal to s. Then, θmax = {(t, t) :
t ∈ HU}.

Generally, given a logic system L of language L and a logical theory T , if T
is the set of the theorems of L then the entropy of T should be maximal; and
if T is complete, that is, for any sentence φ of L, either T 6 φ or T 6 ¬φ, the
entropy of T should be minimal. In such a way, the entropy of a logical theory is
the measurement of the average amount of information contained in the logical
theory.

According to applications, we can define a similarity relation as follows: for
any t, s ∈ HU,

tθs
T s iff ∃φ(T 6 φ(t) ∧ T 6 φ(s));

and a pre-order by

tθo
T s iff ∀φ(T 6 φ(t) → T 6 φ(s)).

We can also define the roughness of terms. Let BU be the set of all the formulas
with one variable. Given a ground (closed) term t ∈ HU, there is an equivalence
relation θt on BU defined as follows: for any φ(x),ψ(x) ∈ BU,

φ(x)θT,tψ(x) iff T 6 φ(t) ↔ ψ(t).

Definition 3.6. Given two ground terms t and t′, we say that t′ is a refinement
of t in T if θt′ is a refinement of θt.

Directly from the definition we have the following

Proposition 3.7. Given two ground terms t and t′, if t′ is a refinement of t in
T then for any φ(x),ψ(x) ∈ BU, if T 6 φ(t′) ↔ ψ(t′) then T 6 φ(t) ↔ ψ(t).
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3 The Correspondence Between Logical Theories and
Equivalence Relations

Let T (L) be the set of all the logical theories in L. Define a partial order " on
T (L) such that for any T ,T ′ ∈ T (L), T " T ′ if T ′ 6 T , i.e., T ′ 6 φ for every
φ ∈ T.

Then, T�, the contradictory theory, is greatest, and T⊥, the set of all the
logical theorems, is least in T (L) under " . There is a class (called the middle
class) of logical theories T of which the entropy is minimal and of which the
corresponding equivalence relations θT is finest on HU. If L contains the equality
symbol ≡ then Tmax = {t �≡ s : t, s ∈ HU, t �= s} is a logical theory in the middle
class.

Remark. We call the middle class because it is at the middle of partial order
(T (L),").

Let E(HU) be the set of all the equivalence relations on HU and ⊆ be the inclu-
sion relation on E(HU), i.e., given two equivalence relations θ, θ′ ∈ E(HU), θ ⊆ θ′

if θ′ is a refinement of θ. Then, θ1 = {(t, s) : t, s ∈ HU} is greatest and
θ0 = {(t, t) : t ∈ HU} is least in E(HU) under ⊆. We have the following
diagram:

T⊥



�

Tmax

θ⊥= θ1 = {(t, s) : t, s ∈ HU}



�

θmax= θ0 = {(t, t) : t ∈ HU}

refinement6

�

= T� 


�

θ�= θ1 = {(t, s) : t, s ∈ HU}

refinement6

There is a mapping σ from (T (L),") to (E(HU),⊆) such that for any T ∈
T (L), σ(T ) = θT . It is clear that there are two theories T ,T ′ ∈ T (L) such that
θT = θT ′ . Hence, we define a relation R on T (L) : for any T ,T ′ ∈ T (L), (T ,T ′) ∈
R iff for any formula φ and any t, s ∈ HU,T 6 φ(t) iff T 6 φ(s), IFF, T ′ 6 φ(t)
iff T ′ 6 φ(s). Then, R is an equivalence relation on T (L).

Let T/R be the equivalence classe of R containing T , and T (L)/R = {T/R :
T ∈ T (L)}. There is a mapping τ from (E(HU),⊆) to (T (L)/R,") such that
for any θ, θ′ ∈ E(HU), τ(θ) = T/R, where T is a theory such that θT = θ.

Proposition 4.1. τ is well-defined, and for any T ∈ T (L), T ∈ τσ(T ); and for
any θ ∈ E(HU), θ = στ(θ).

Proof. By the definition of τ, given any θ ∈ E(HU), we have that τ(θ) ∈ T (L)
such that θτ(θ) = θ. By the definition of σ,στ(θ) = θτ(θ) = θ.

From the above discussion, we naturally hope to have the following commu-
tative diagram, which shows that there is a correspondence between the logical
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implication of logical theories and the refinement of the corresponding equiva-
lence relations on HU. I.e., Given two logical theories T and T ′,

(i) if T ′ " T then θT ′ is a refinement of θT ;
(ii) if θT ′ is a refinement of θT then T ′ " T.

T 


�

T ′

θT



�

θT ′

σ

σ

refinement6

The fact is that it is not true. Because we define the equivalence relation θT of T
as follows: for any formula φ and terms t, s ∈ HU, T 6 φ(t) iff T 6 φ(s). Given
a logical theory T ′ ⊇ T , it may be the case that neither θT ′ is a refinement of θT

nor θT is a refinement of θT ′ . Because T ′ may be such a theory that t ≡ s ∈ T ′

and t ≡ s �∈ T , so that in T ′, in terms of the equality axioms, we have that
(t, s) �∈ θT and tθT ′s. Conversely, let T ′ be such a theory such that

(1) ψ(t) ∈ T ′,ψ(s) �∈ T ′ for some formula ψ, and
(2) for any φ,T 6 φ(s) iff T 6 φ(t).

Then, we have that tθT s and (t, s) �∈ θT ′ .

Definition 4.2. Given two logical theories T and T ′, we say that T depends on
T ′ if θT ′ is a refinement of θT ; T functionally depends on T ′ if every equivalence
class of θT is included in one of the equivalence classes of θT ′ .

It is a routine to prove the following

Proposition 4.3. Let (U, A) be a relation, where U is a non-empty set of tuples
and A is a set of attributes. For every a ∈ A, let Ta be the logical theory defined
in example 3.3. Then, for any a, b ∈ A with a �= b, a depends on b iff Ta depends
on Tb; a functionally depends on b iff Ta functionally depends on Tb.

Assume that the logical language L contains a predicate symbol ≡ for the
equality, and the logical axioms for ≡ (≡ is an equivalence relation: and the
substitution axiom for ≡). Then, (HU,≡) is an information system.

Given a logical theory T in such a language L, we define an equivalence
relation ξT on HU such that for any t, t′ ∈ HU, (t, t′) ∈ ξT iff T 6 t ≡ t′.

Assume that a logical theory T in L contains only the positive statements
about ≡ . That is, if ≡ occurs in any sentence φ in T then ≡ does not occur in
any scope of ¬. Then, given two theories T and T ′, if T ⊆ T ′ or T ′ 6 T then for
any terms t and t′,T 6 t ≡ t′ implies T ′ 6 t ≡ t′, that is, ξT ′ is a refinement of
ξT . I.e., the commutative diagram holds for T ,T ′, ξT and ξT ′ .

Proposition 4.4. Assume that T contains only the positive statements about
≡. For any theories T ,T ′ ∈ L, if T ′ 6 T then ξT ′ is a refinement of ξT .

Proof. Assume that T ′ 6 T. Given any t, t′ ∈ HU, if (t, t′) ∈ ξT then T 6 t ≡ t′.
Because T ′ contains only the positive statements about ≡, we have that T ′ 6
t ≡ t′, i.e., (t, t′) ∈ ξT ′ .
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If we do not assume that T contains only the positive statements about ≡
then it is possible that there are two theories T and T ′ such that

(1) T ⊆ T ′,
(2) neither θT is a refinement of θT ′ nor θT ′ is a refinement of θT ,

where for any t, t′ ∈ HU, (t, t′) ∈ θT iff, for any φ(x), T 6 φ(t) iff T 6 φ(t′). Let
T be a theory such that for any φ(x),T 6 φ(t) iff T 6 φ(t′), and t ≡ t′, t �≡ t′ ∈ T ,
and T ′ ⊇ T such that t �≡ t′ ∈ T ′. Then, if T is consistent then so is T ′ and
(t, t′) ∈ θT , (t, t′) �∈ θT ′ .

4 Conclusion

The traditional rough set theory is to discuss the roughness of elements in an
information system. An information system can be taken as a logical theory
(Example 3.3) in which attributes are taken as function symbols, values as con-
stant symbols, and ≡ as the unique predicate symbol. Then, the roughness of
elements in the information system is represented by the roughness of terms in
the corresponding logical theory. Hence, we say that the roughness of terms in
logical theories is a generalization of that of elements in information systems.
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3. Hájek, P.: Basic fuzzy logic and BL-algebras, Soft Computing, 2 (1998) 124-128.
4. Hughes, G., Cresswell, M.: A new introduction to modal logic, Routledge, London,

1996.
5. Haack, S.: Deviant logic, fuzzy logic, beyond the formalism, The University of

Chicago Press, 1996.
6. Liau, C.: An overview of rough set semantics for modal and quantifier logics, Inter-

national J. of Uncertainty,Fuzziness and Knowledge-Based Systems, 8 (2000) 93-118.
7. Pawlak, Z.: Rough sets - theoretical aspects of reasoning about data, Kluwer Aca-

demic Publishers, 1991.
8. Pawlak, Z.: Rough sets, rough function and rough calculus, in S. K. Pal and

A. Skowron(eds.), Rough Fuzzy Hybridization: A New Trends in Decision-making,
Springer 1999, 99-109.

9. Pomykala, J., Pomykala, J. A.: The Stone algebra of rough sets, Bull. Polish Acad.
Sci. Math., 36 (1988) 495-508.

10. Yao, Y. Y., Wong, S. K. M., Lin, T. Y: A review of rough set models, in: Lin, T. Y.
and Cercone, N. (eds.), Rough sets and data mining: analysis for imprecise data,
Kluwer Academic Pub., 1997, 47-75.



Research on Multi-Agent Service Bundle

Middleware for Smart Space

Minwoo Son, Dongkyoo Shin, and Dongil Shin�

Department of Computer Science and Engineering, Sejong University
98 Kunja-Dong, Kwangjin-Ku, Seoul 143-747, Korea
{minwoo15, shindk, dshin}@gce.sejong.ac.kr

Abstract. Ubiquitous computing as the integration of sensors, smart
devices, and intelligent technologies to form a “smart space” environ-
ment relies on the development of both middleware and networking tech-
nologies. To realize the environments, it is important to reduce the cost
to develop various pervasive computing applications by encapsulating
complex issues in middleware infrastructures. We propose a multi-agent-
based middleware infrastructure suitable for the smart space: MASBM
(Multi-Agent Service Bundle Middleware) which is capable of making it
easy to develop pervasive computing applications. We conclude with the
initial implementation results and lessons learned from MASAM.

Keywords: Ubiquitous computing, Smart space, middleware, multi-
agent, OSGi.

1 Introduction

Ubiquitous Computing means that users can use computers naturally and con-
veniently, regardless of place and time [1]. It means that a computer existing
anywhere can use specialized services, and change its contents according to place
or time via sensing and tracking. Its ability to form a “smart space” environment
depends on the availability of networks, services, sensors, wireless communica-
tion and smart middleware technologies [2]. A smart space is a living and office
environment in which devices can be accessed and controlled either locally or
remotely.

By connecting smart devices and intelligent networks, a smart space allows
the user to access information efficiently and to connect directly to a range
of public and personal services (including banks, police, fire, and emergency re-
sponders). Convenience and efficiency are maximized by controlling information-
communication equipment, digital audio and video devices, other existing
electronic devices, smart sensors, etc.

Middleware for a smart space needs to have various capabilities such as con-
trolling home appliances and facilitating interaction among electronics. A variety
of middleware for home networks have been developed, including UPnP (Uni-
versal Plug and Play) [3] and HAVi (Home Audio Video Interoperability) [4].
� Corresponding author.
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The shortcomings of these network middleware are a lack of interoperability and
difficulty of distributing new middleware-specific services. OSGi (Open Service
Gateway Initiative) has been developed to overcome these problems by enabling
the easy deployment of services for local smart spaces [5,6].

OSGi is gradually extending its influence to the smart space middleware mar-
ket, and electronic devices based on OSGi are being used. And to control home
and office electronic devices based on OSGi, Service Bundles based on OSGi have
been developed and also available. Therefore a user’s need for an efficient man-
ager has suddenly increased by several service bundles. OSGi Spec. version 3 offers
many services. For example it includes Framework for a service bundle manager
and event processing, Log Service for logging information and retrieving current
or previously recorded log information in the OSGi Service Platform, and De-
vice Access Service for an electronic home appliance manager. However, the OSGi
Service Platform does not support updating, installing, or removing for the ac-
tive life-cycle of service bundles, and will not automatically check-in a device’s
state, or update a device driver, or distributed framework. Therefore we suggest
MASBM (Multi-Agent Service Bundle Middleware) to solve these problems.

This paper is composed of six sections. Section 2 introduces OSGi and project
based on OSGi. In Section 3, we propose MASAM to efficiently manage many
kinds of service bundles based on OSGi and describe the related implementation
results in Section 4. Finally we conclude in Section 5.

2 Background

Many kinds of projects are currently in progress with a shared perspective of
exploring a new research agenda. Some of these projects are Easy Living [7] and
the Smart-Its [8]. Microsoft’s “Easy Living” project is developing prototype ar-
chitectures and intelligent technologies which include multiple sensor modalities
combine, automatic or semi-automatic sensor calibration and model building,
and on the like for smart space environments.

Users use many smart devices that include each other’s middleware in smart
space. Therefore we implement smart space middleware with OSGi of smart
space environment because OSGi supports communication among several pieces
of middleware.

OSGi was created in 1999 in order to define an open standard for the delivery
of services in networked environments, (vehicles and homes, for example.) and
was supposed to solve problems involving the interaction among several kinds of
home network middleware and service distribution. The OSGi service platform is
an intermediary between the external network environment and the smart space
network environment.

Recently, research into the OSGi service platform suggests that a user in a
smart space environment can turn appliances on and off. In other words, a smart
space based on OSGi service platform supported a solid infrastructure so that
projects could focus on unifying the smart space with smart phone and other
smart applications [6].
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3 Design of MASBM

3.1 Smart Space Gateway Based on SBM

Several service bundles will be used by a user as a home network is widely used.
Therefore users will need easier and more efficient manager service bundles.
The OSGi service platform includes weaknesses for the management of service
bundles. We compensated for the OSGi platform’s passive service element, user
management, device manager component and non-distribution, etc. and built
SBM to manage service bundles.

Fig. 1. Smart Space Gateway Architecture

Figure 1 shows the SBM-based Smart Space Gateway Architecture. The De-
vice Driver and Wired/Wireless Device in the lower part decide the connection
system among devices and certainly need standardization. Because the operat-
ing system uses programs like WinCE, embedded Linux, and real-time OS, it
has less need of standardization. Connection systems for devices include wire-
less devices such as Wireless LAN, RFID (Radio Frequency Identification) [9]
and some of the wired devices consist of USB, IEEE 1394, and Ethernet. If a
device physically connects to a smart space network, it connects the new device
to middleware such as UPnP, HAVi and Jini, which automatically reconstruct
the smart space network.

Transformation Bridge supports communication between middleware. When
OSGi decides on supportable middleware, the home gateway uses the appropriate
Transformation Bridge.

Like the OS in a computer, Windows, Linux and Max decide on applications
for the computer system, SBM based on OSGi, which is a home gateway in a
smart space network, supports home network services, when SBM connects de-
vices inside or outside of the smart space. It is used to control service bundles
such as the Web Application Service, Camera Control Service, and the Device
Manager Service. SBM solves weaknesses in the service platform for OSGi Spec.
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version 3, such as passive service, User Management, Device Management and
non-distribution.

However, SBM alone cannot provide the following necessary capabilities.The
First, we like to provide automatic appliance-services for the user based on the
service-usage history. The second, we like to change a way to control home
appliances according to a user’s preference The last, we like to control home
appliances from various internet-connected terminals.

Our middleware needs to offer high level abstraction to specify appliances
that a user likes to control while satisfying the above issues.

3.2 Architecture Design of MASBM

Figure 2 shows MASBM architecture. To control home appliances, a user uses
two connection systems.

Fig. 2. Multi-Agent Service Bundle Middleware Architecture

The first method makes it possible for a user to control a service bundle in
MASBM, after the user is authenticated through a web browser.

The second method is a HIML (Human Interaction Markup Language) [10]
document, based on XML, that transmits using mobile devices such as PDA or
Web PAD using a Network Service to Service Bundle Manager Server approach.
A HIML document is stored to Service Using History Storage and the document
is analyzed. The HIML document pattern is made according to the data form of
the HIML document to divide electronic devices into image devices and sound
devices.
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To control electronic devices through using a web or mobile device, it accepts
data on access privileges by a user’s device in User Manager through a user ID
if users approach. After the Device Manager receives an electronic device ID
and device function services, it finds an appropriate driver through the device.
Finally, users can control devices by service bundles.

When each service bundle starts, the Service Bundle Manager Server checks
the Smart Rule Manager. The Smart Rule Manager then checks Rule Storage,
which includes start-rule lists of service bundles. If the service bundle’s start-
rule exists, Smart Rule Manager sends Service Bundle Manager Server service
bundle’s start-rule. The MASBM Server controls the service bundle through the
service bundle start-rule. Rule Storage includes theses that support auto-aware
system and are managed by the user (rule list installs, remove, modify, etc.).

The following is an implementation of modules and storages in the MASBM.
The storage section is divided into two parts: the User storage and Device

Driver storage. The User storage stores users’ personal information, such as id,
name, age, career, etc. and according to user id, it allows a certified user to access
device control. Finally the User Repository supports fitting device services to the
recognized user. The Device Driver storage saves driver of each device and always
uses the latest version.

The Modules section consists of ten parts: the Service Bundle Life-cycle Agent,
Service Bundle Monitor, Service Bundle Event Handler, User Authentication
Agent and so on. The following are representative modules in the MASBM.
The Service Bundle Life-cycle Agent controls several service bundles (such as
install, un-install, start, stop and resume each service bundle). The Service Bun-
dle Monitor observes each service bundle and logs the usage information for
each service. In addition, if a service bundle causes an event, the Service Bundle
Monitor sends the Service Bundle Agent information about this service bundle
event. The Service Bundle Event Handler processes events from each service.
The Network Service, which consists of the Web Service and the XML Service,
provides a web interface to the MASBM. The XML Parsing Agent analyzes XML
information from each user device, such as PDA, Web Pad, etc. The Rule-based
Pattern Agent analyzes the user’s service utilization patterns and selects the
proper service for the user based on the pattern analysis results. The Device
Access Agent sends proper driver which was find Driver Selector for the device
to Service Bundle Agent. The User Authentication Agent utilizes SSO (Single
Sign-On) [11] and the agents in the MASBM maintain trust-relationships. In
order to maintain these trust-relationships, the MASBM exchanges information
among these agents.

4 Implementation of MASBM

We suggest a scenario to test MASBM in home/office environments. After
MASBM recognizes a person’s location in the office through a Location-aware
service bundle, and sends awareness-information to the Smart Rule Manager.
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Then the Service Bundle Manager Server turns light on and off through Light
Control service bundle.

4.1 Light Control Service Bundle

Figure 3 shows the Light Control service bundle hierarchy. The Light Control
service bundle turns the lights of homes and offices on and off. It can turn
the light on and off automatically. MASBM detects a user’s location through
a Location-aware service bundle. The Smart Rule Manager supports several
services according to the user’s location. For example, MASBM automatically
turns a light on or off from information provided by the Smart Rule Manager.

Fig. 3. Light Control Service Bundle hierarchy

LightControl class controls which light goes on or off. After TimeZone class
checks time, according to time (AM/PM), but only Light turn off at AM and
turn on at PM automatically and at the same time Light Control Service Bundle
is controlled light on/off by user. MASBM manages the transmission of data
between Light Control Service and Client through the Client class to control the
Light’s Channel during the Light Control Service Bundle’s run-time.

4.2 Location-Aware Service Bundle

Location-aware service views a user’s location in home and office in real-time
through the application.

Figure 4 shows each class relation in Location-aware service bundle. Location-
AwareActivator class controls a bundles states, such as start, install and stop.
If calling start(), a service bundle scarcely starts when through CameraHandler,
PositionRecognition and VisionProcessor classes perform. After CameraHandler
class checks which camera attaches or detaches through CamDriver, the ser-
vice bundle receives the users location information from PositionRecognition
and VisionProcessor classes. After Location-aware service bundle compare tar-
get picture, which is nobody in smart space environment, with real-time picture,
the PositionRecognition and VisionProcessor class recognizes users location in
smart space. LogTracker Class processes the recording of events and errors. The
log() method logs a message with an exception associated with a specific service.
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Fig. 4. Location-aware Service Bundle hierarchy

Fig. 5. View Location-aware Service Bundle in Smart Space

The class starts as soon as the service bundle starts and if the service bundle
stops, the class calls the log.close() method to stop.

Figure 5 shows recognition of the user’s location in smart space environment
during the Location-aware service bundle’s run-time. Then MASBM turns light
on through Light Control service bundle on the user’s location.

5 Conclusion

This paper proposes MASBM, which efficiently manages several service bundles
and provides high level abstraction.

MASBM, which solves the OSGi service platform’s weaknesses, such as user
management and device management, permits certified users to control each
device and automatically designs a service for each device. After a user enters
MASBM using a web service and mobile device for the control of a device,
MASBM controls the sending of the device’s service information, which analyses
access privileges through User Manager and Device Manager, to the server. We
did research on service bundles in a smart space system and on a manager
for home appliances’ control and user’s location awareness service. MASBM
updates service bundles automatically and efficiently manages service bundles
by managing a user’s authorization and by controlling each device.
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Future work will be done on a study of MASBM to manage home appliances
and service bundles, after extending its services such as context awareness, au-
thenticated security and distribution.
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Abstract. While multi-agent systems seem to provide a good basis to
build complex system, the variety of agent-oriented(AO) methodologies
may become a problem for developer when it comes to select the best-
suited methodology for a given application domain. To solve the problem,
a development architecture is proposed to blend various AO methodolo-
gies, which can empower developer to assemble a methodology tailored
to the given project by putting appropriate models together. To verify its
validity, we derive a new approach from the architecture in the research
project for the construction of C4I system on naval warship.

Keywords: Agent-oriented, architecture, combination, layered mod-
eling.

1 Introduction

With modern industry becoming more and more large and complex, the con-
struction of complex system needs to break away from single traditional pattern.
Software agents own many excellent properties, such as autonomy, pre-action
and sociality. As higher-level abstraction of real world, they can exhibit sub-
stantial concurrency and make complex system easier to understand, manage
and construct. At present, agents are becoming a widely used alternative for
building complex system. As a result, a growing number of AO methods[1,2,3,4]
are proposed, with the aim to provide modeling tools and practical methods
for developing multi-agent system. Unfortunately, the variety may become an
obstacle in the development of AO methodology. Developer often feels that it’s
difficult to select a best-suited methodology for a given application domain.

However, current AO methods are not mature and still under rapid develop-
ment. It’s often infeasible or non-efficient to use a single kind of AO method
to solve all the problems in the construction of MASs. Depending on the con-
crete goal and requirement, different kinds of AO methodologies and strategies
might be necessary during each development phase to optimally control the de-
velopment process. Thus, the advantages of different AO methods can be taken
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advantage of and their drawbacks can be overcome. In the end, developers can
obtain a suited development process for particular application.

In the paper, a customized development architecture is proposed to achieve
the goal, which can cover the whole development lifecycle: from agent oriented
analysis to software implementation. As the application of the architecture, we
give an example of constructing C4I system on naval warship. In the research
project, a solution based on the architecture is derived to combine Gaia[4] analy-
sis models and MaSE[1] design models, which are the representatives of current
AO methodologies.

2 The MAS Development Architecture

2.1 The Problems Subject to Existing AO Modeling Methods

People have made a lot of attempts at AO modeling method. Some researchers
take existing OO modeling techniques as their basis, extend and adapt the mod-
els and define a methodology for their use, such as MaSE[1] and MESSAGE[2];
other approaches build upon and extend modeling techniques and methodologies
from knowledge engineering and other technology, such as Tropos[3] and Gaia[4].

In OO-extended approaches, agent is viewed as a particular object. Because
there are similarities between the OO paradigm and the AO paradigm, OO
methodologies and modeling languages (UML) are extended to support AO mod-
eling methods. The popularity and commonly usage of OO methodologies and
OO programming languages can be a key to facilitate the integration of agent
technology. Software engineers can take advantage of their OO experience for
learning the AO approaches more quickly. Knowledge engineering methodolo-
gies provide a good basis for depicting the characteristics of agents which are
different to objects, such as acquiring knowledge, planning process and sociality.
In these methods, MAS system is often viewed as an organization or a society,
and agent is viewed as a particular role in organization.

Unfortunately, we still have to face some problems of AO methods in practical
application: (i) the variety of AO methodologies may become a problem for
software developer when it comes to select the best-suited methodology for a
given application domain; (ii) no method can be perfect, they always stress
some aspects and ignore the other aspects. Some research works (e.g. [5]) provide
comparison studies between different AO methodologies, showing that each AO
method has its weaknesses and strengths; (iii) most of AO methodologies lack the
successful experience in practical application and the recognition in developer
community, which are still limited to laboratory. As a result, developers often
feel that it’s risky or unnecessary to implement AO models in project and take
it as appendant to OO during the development process.

In order to solve those problems, more and more researchers begin to care
about how to realize a engineering change in AOSE. (i) Some researchers[6] focus
on devising a framework for evaluating and comparing various AO methodolo-
gies, with the aim to help software engineer to select the most suitable method.
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Fig. 1. The MAS Development Architecture

(ii) FIPA and OMG have been focused on the identification of a general method-
ology for the analysis and design of AO systems, embracing current AO method-
ologies such as Gaia or MaSE. The idea is to identify the best development
process for specific MAS. This work is being complemented with the definition
of an agent-based unified modeling language(i.e. FIPA AUML work plan). (iii)
Recently, some researchers adopt the concept of Model Driven Architecture to
bridge the gap between AO design and software implementation[7]. They wish
to provide developers with more choices about agent implementation platforms.

2.2 An Architecture for Blending AO Methods

Current solutions can only solve the existing problems in a way. It’s difficult
for them to scale well for the ever-increasing number of AO methods and agent
platforms. A scalable and customized development architecture is demanded to
embrace all improvement measures systematically and cover the whole system
development life cycle both technically and managerially.

In figure 1, the proposed development architecture is shown, which is di-
vided into five phases: requirement analysis, MAS architecture, agent modeling,
software implementation and verification, which covers the whole development
lifecycle: from requirement analysis to software implementation. At the same
time, each phase is categorized into a layered model structure further. Meta
models can be created to handle all kinds of quality attributes and be filled into
the layers where appropriate. Together, the layers enable the configuration of a
new AO approach that can be customized for specific application by combining
various AO methodologies. The architecture is an innovative conceptual frame-
work based on agent and organization abstractions, which are the foundations
for understanding distinct abstractions and their relationships, so to support the
development of large-scale MASs. The presented development process is itera-
tive. The analyst or designer are allowed to move between steps and phases freely
such that with each successive pass, additional detail is added and eventually, a
complete and consistent system design is produced.

Based on the modular development process, each new project has its own
customized process, built up from components of other methodologies. If one
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part of the system requires a stringent view with respect to privacy, then a
methodology that incorporates privacy well can be adopted for that part. If
team structures need to be modeled in another part, choose a methodology that
supports teams for that part. The benefits of a modular approach are clear.
Instead of creating incompatible techniques, models and CASE tools for each
methodology, modular and reusable solutions can be created once, and shared
within different methodologies. It represents significant savings in development
cost and learning cost.

3 The Application of the Development Architecture

The C4I(command, control, communication, computer and Information) system
is the core of the whole naval warship, which is used as information process,
fighting support and weapon control. In order to improve the integrated per-
formance to a high degree, different components of the system needs to coop-
erate effectively. Apart from the(problem-solving) functionality, the C4I system
must also satisfy the demands such as reliability, fault-tolerance, maintainabil-
ity, transparency, scalability etc.. In order to achieve the goal, three main prob-
lems need to be solved during the construction of C4I system: firstly, how to
harmonize a number of components which may have been developed by teams
having worked separately on different portions of the system; secondly, how to
adopt new technology to deal with multiple, heterogeneous and even dynamic
application environments; thirdly, how to integrate many different technologies,
languages, paradigms and legacy systems together in an effective and fruitful
way. It’s difficult for traditional software engineering methodologies to deal with
those problems conveniently.

In the C4I system, different components can be viewed as autonomous, sit-
uated, and social agents and be devoted to controlling and directing different
stages of the physical process: information collection - information process - fight-
ing support - command - weapon control. Therefore, we attempt to apply agent
oriented technology as an original and more effective way to solve highly-complex
problems calling for system intelligence. At the beginning, we adopt Gaia method
to construct the whole system. The Gaia focuses on depicting complex system in
organization view, i.e. analysis phase and architecture design phase. According
to Gaia method, we can decompose the whole system into manageable modules
and define the structure relation and action relation between agents, which lays
solid foundation for the following detail design and software implementation.
However, we are puzzled about how to transform design models into software
implementation. The design models of Gaia method are still too abstract to give
much guide to software implementation.

The MaSE method provides a good basis in agent view for developers to
implement design models with OO technology. Therefore, we change to adopt
MaSE method, which can depict the details well in agent modeling phase, i.e.
agent’s class structure and functions. It accords with our OO experience, which
paves the way for the final software implementation. But soon, we find that it
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doesn’t make full use of the characteristics of agent to simplify the analysis work.
Developer can’t experience the benefits brought by AO fully.

In order to solve those problems, a combination development process based
on the above architecture is proposed, which can derive software implementation
from requirement analysis straightway. As shown in figure 2, the development
process combines the MAS architecture phase of Gaia and the agent modeling
phase of MaSE to make full use of their benefits.

Fig. 2. The Combination Sketch Map

According to the idea of “layered modelinig”, the selected models from Gaia
method and MaSE method are filled into the development architecture. Through
some adjustments, the main models used in the process are summarized in
figure 3, which can deal with both macro-level and micro-level aspects of sys-
tems. The agent model plays a key role in bridging the gap between the two AO
methods.

In the modeling process, each successive move introduces greater implemen-
tation to satisfy the original requirements statement. The increasingly detailed
models of the system to be constructed are developed step by step. Roles model
decomposes the whole system into organizational unit; interaction model and
service model depict the relationship between agents and construct the whole
system architecture; the details of single agent are illustrated in agent class model
and conversation model; cognitive model is created to depict the key reasoning
and learning mechanism; software implementation is concluded in agent archi-
tecture model and deployment model. In the end, we can obtain a sufficiently
detailed design that can be implemented directly from a depiction of system.

Fig. 3. The Main Models in Modeling Process
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In a research project, the new approach is adopted to solve the problems in
the construction of C4I system on naval warship. Through applying the method,
a large-scale complex C4I system is decomposed successfully and reconstructed
conveniently. We makes novel use object-oriented ontology for specifying the
content of agent messages, and employs the OMG’s common object request bro-
ker architecture(CORBA) to provide the foundation for agent communication.
The system owns the advantages of distributed system, e.g. resource sharing,
scalable, reliable and flexible. What’s more, many legacy systems can be encap-
sulated and taken advantage of, which makes system more robust and reliable.
The experimental results are satisfactory and system architecture becomes more
modularized and scalable.

4 Conclusions

This paper proposes a multi-agent system development architecture which can
be applied to combine different AO methods. Based on the architecture, devel-
oper can custom his own development process for particular application domain.
Thus, the advantages of different AO methods can be taken advantage of and
their drawbacks can be overcome. It will pave the way for the engineering change
in AOSE. As a practical application of the development architecture, we illus-
trate how to combine two classes representative AO methodologies(Gaia and
MaSE) to solve the problems in the construction of C4I system on naval war-
ship. The experimental results are satisfactory.
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Abstract. Focused crawlers are programs designed to selectively re-
trieve Web pages relevant to a specific domain for the use of domain-
specific search engines. Tunneling is a heuristic-based method that solves
global optimization problem. In this paper we use content block algo-
rithm to enhance focused crawler’s ability of traversing tunnel. The novel
Algorithm not only avoid granularity too coarse when evaluation on the
whole page but also avoid granularity too fine based on link-context. A
comprehensive experiment has been conducted, the result shows obvi-
ously that this approach outperforms BestFirst and Anchor text algo-
rithm both in harvest ratio and efficiency.

Keywords: Focused crawler, content block, anchor text, local relevance.

1 Introduction

Unlike general-purpose web crawler which automatically traverses the web and
collects all web pages, focused crawling is designed to gather collection of pages
on specific topic. A focused crawler tries to “predict” whether or not a target
URL is pointing to a relevant and high-quality Web page before actually fetching
the page.

The evaluation of relevant web page falls into two categories: one is based on
the whole page, each link of the page has the same weight, the other is based on
link-context, which give different weight for each link according to context. Both
methods have some drawbacks, evaluation on the whole page has lots of irrelevant
links which crawled first by focused crawler and its recall is low. Link-context
crawler usually ignores some of relevant links because it gains little information
and the precision is low. The improvement that focuses on the shortage under
these two circumstances was properly brought out by this article. The method
based on Content Block not only avoid granularity too coarse on the whole page
but also avoid granularity too fine based on link-context [1,2,3,4]. Our method
also improved recall and precision. The most important is that our method has
the ability of cross tunnel.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 632–637, 2006.
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During the process of parsing, extracting html page and eliminating noise, we
may frequently encounter below cases in pages. Web page, especially for com-
mercial page, usually consists of many information blocks. Apart from the main
content, it usually has some irrelative or noise blocks such as navigation bar,
advertisement panel, copyright notices, etc. Further, main content may fall into
multi-blocks that each belongs to different topic. For example, personal home-
pages may contain information relevant to hobbies as well as research interest.
Despite both are main content, they are different topic and arranged into two
blocks in reason. By observing these frequent cases, this paper raise below ques-
tions and then seeks efficient solutions to it.
Questions:

– Can any algorithm splits whole HTML page into unit blocks that each con-
tains only single topic.

– When traveling from page to page, can any algorithm exploits clues in refer-
ring page and decides for or against clicking on the link leading to relevant
page.

Enclosing above these two questions and corresponding solutions. This paper
describes the focused crawling with tunneling in Sect. 2. Notice that the most
important part of the paper that gives the algorithms for content block parti-
tion and cross tunneling in Sect. 3. There are experiments for evaluating our
algorithm in Sect. 4.

2 Focused Crawling with Tunneling

Focused crawling, while quite efficient and effective dose have some drawbacks.
One is that it is not necessarily optimal to simply follow a “best-first” search,
because it is sometimes necessary to go through several off-topic pages to get
to the next relevant one. With some probability, the crawl should be allowed to
follow a series of bad pages in order to get to a good one.

It is important here to recall our objective: to build collections of 25-50 URLs
of expository pages on given subjects. Thus precision is not defined in terms of
the number of crawled pages, but in terms of rank. In other words, downloading
and inspecting what amounts to trash does not hurt precision or impede effec-
tiveness; the only impact is on efficiency. The need is to obtain a high-precision
result within a reasonable timeframe.

Another application for tunneling is right at the start of the crawl. One does
not necessarily start with on-topic seeds. In our case where we build several
dozen collections at a time, the starting seed will certainly not apply equally
well to all collections. In this case, tunneling is useful for getting to desirable
parts of the Web.

Clearly, tunneling can improve the effectiveness of focused crawling by ex-
panding its reach, and its efficiency by pruning paths which look hopeless. So,
the main challenge now becomes how to decide when to stop tunneling, i.e.
terminate the direction in which the crawl is proceeding.
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To be more precise about tunneling, In [5] propose the following definitions.
A nugget is a Web document whose cosine correlation with at least one of the
collection centroids is higher than some given threshold. Thus the “nugget-ness”
of a document is represented by its correlation score. A dud, on the other hand,
is a document that does not match any of the centroids very high. A path is the
sequence of pages and links going from one nugget to the next. The path length
is 2 minus the number of duds in the path. A crawl is the tree consisting of all
the paths, linked together in the obvious way.

3 Our Methods

3.1 Content Block and Content Block Algorithm

A content block is a self-contained logical region within a page that has a well
defined topic or functionality. A page can be decomposed into one or more con-
tend blocks, corresponding to the different topics and functionalities that appear
in the page. For example, the Yahoo! homepage, http://www.yahoo.com can be
partitioned into the main directory block at the center of the page, the naviga-
tional bar block at the top, the news headlines block on the side, and so forth.
We propose that content blocks, as opposed to pages, are the more appropriate
unit for information retrieval. The main reason is that they are more structurally
cohesive, and better aligned.

In [6], There is a definition of content block, “A content block is a region of a
web page that (1) has a single well-defined topic or functionality: and (2) is not
nested within another region that has exactly the same topic or functionality.
That is, we have two contradicting requirements from a content block: (1) that it
will be “small” enough as to have just one topic or functionality; and (2) that it
will be “big” enough such that no other region may have a more general topic.”

Algorithm 1. Content Block Partition Alg.
Tp := HTML parse tree of P ;
Queue := root of Tp;
while (Queue is not empty) do

v := top element in Queue;
s := tree Height(root,0) ∗ α;
if (v has a child with at least k links and tree Height(v, 0) ≥ s + 1) then

push all the children of v to Queue;
end
else

declare v as a pagelet;
end

end

In order to partition a page into blocks, we partition a page into blocks, we
need a syntactic definition of blocks, which will materialize the intuitive require-
ments of the semantic definition into an actual algorithm. This problem was
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considered before by Chakrabarti et al. [7]; they suggested a sophisticated al-
gorithm to partition “hubs” in the context of the HITS/Clever algorithm into
content blocks. Since our primary goal is to design efficient hypertext clean-
ing algorithms that run in data gathering time, we adopt a simple heuristic to
syntactically define content blocks. This definition has the advantages of being
context-free, admitting an efficient implementation, and approximating the se-
mantic definition quite faithfully. Our heuristic uses the cues provided by HTML
mark-up tags such as tables, paragraphs, headings, lists, etc. We define page par-
titioning algorithm as Alg. 1:

In Alg. 1, tree Height(v, 0) refers to the height of subtree whose root is v in
Tp. α is a threshold, whose value is given by experience. We set the threshold
to 0.25.

3.2 Tunneling

Algorithm 2. Focused Crawler with Tunneling Alg.
Data: starting url: seed URL.
Result: the pages relevant to the topic.
enqueue(url queue, starting url);
enqueue(hot queue, dequeue(url queue));
while (not empty(hot queue) and not termination) do

page = dequeue(hot queue);
enqueue(crawledpages, (url, page));
block list = Content Block Partition(page);
for (each block in block list) do

for (each link in block) do
PriorityV alue = Wp ∗ Pp + Wb ∗ Pb + Wa ∗ Pa + Wu ∗ Pu;
//(Wp+Wb+Wa+Wu=1)
if (not((link,−) ∈ (url queue ∪ hot queue ∪ crawled pages)) then

enqueue(hot queue, (url, link, PriorityV alue));
end
else

enqueue(url queue, link);
end

end
end
reorder queue(url queue);
if (not empty(url queue) andnot full(hot queue)) then

enqueue(hot queue, dequeue(url queue));
end
reorder queue(hot queue);

end

Bergmark [5] proposed to use Tunneling technique to address the problems
of local search. Tunneling is a heuristic-based method that solves simple global
optimization problem. In the focused crawling scenario, a focused crawler using
Tunneling will not give up probing a direction immediately when an irrelevant
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page is encountered. Instead, it continues searching in that direction for a pre-
set number of steps. This allows the focused crawler to travel from one relevant
Web community to another when the gap (number of irrelevant pages) between
them is within a limit. Experiment results showed that focused crawlers with
Tunneling capability find more relevant pages than those without Tunneling.

The algorithm above shows our main idea of focused crawler cross tunnel. In
this algorithm, hot queue is crawler frontier, url queue is all URL-s that crawler
processed. The values Wp, Wb, Wa and Wu are weights used in order to nor-
malize the different factors. Pb denotes the interest ratio for content block to the
topic. Pl denotes the interest ratio for links to the topic, Pa denotes the interest
ratio for anchor text to the topic, Pp inherited it’s parent page value of Pb.

4 Experiments and analysis

4.1 Comparison Among Anchor-Text, BestFirst and Content Block

Breadthfirst without judging on the context of the unvisited URL-s, performed
not well. It depends heavily on the localization of the relevant pages and web
sites. Anchor text, like user’s query of a search engine, is typically very short,
consisting of very few terms on average, and contains rich, human-oriented infor-
mation of the linked document within the context of the source document being
visited. BestFirst predicts the relevance of page potential URL-s by referring to
the whole context of the visited web page. All out-links in one page have the
same priorities. It only grouped the unvisited URL-s based on the page picked
up from, and there is no difference within each group. So it has low accuracy
when there is a lot of noise in the page or the page contains multiple topics.

Fig. 1. BF:Best First crawler; CB:ContentBlock crawler; Anchor:Anchor Crawler

Content Block Algorithm first partition the page into different content blocks
based on different topics. Unlike BestFirst, it predicts the relevance of page
potential URL-s by referring to content block of the visited web page. Out-links
in one page have different priorities. We first visit the highest priority page
along outlink. BestFirst’s weakness is just content block crawler’s strength. The
experiments illustrated in Fig.1, (a) show comparison among these four methods
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on the same topic of Artificial Intelligence. It shows quite a good result about our
crawler. In this figure, the number of crawled relevant pages (Y-axis) is plotted
against the number of all downloaded pages (X-axis). The figure shows that our
crawler outperforms the other two crawlers significantly. The ability that it finds
relevant pages keeps quite a high level. In fact, after experimenting many times
using different seed URL-s, the results are almost the same. At the beginning,
the ContentBlock+BestFirst crawler’s ability of cross tunneling is the strongest,
but as the time goes by and more pages are fetched, its performance decreases
at a mild speed, and then stabilizes. (b) shows using CcontentBlock+BestFirst
algorithm in different topics such as Artificial Intelligence, Linux, Foods and
Sports. It shows that our method not only suits for one specific topic but also
has catholicity.
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Abstract. The Semantic Web builds a scenario of a new web based
architecture that contains content with formal semantics, which can en-
hance the navigation and discovery of content. As a result, the Semantic
Web represents a promising technology for realizing the e-Learning re-
quirement. In this paper, we present our approach for migrating the
Semantic Web technologies into the knowledge management in the e-
Learning environment. Based on the semantic layer, our e-Learning
framework provides dynamic knowledge management and representation,
including tightly integration with the related e-Learning standards.
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1 Introduction

Learning is a critical support mechanism for organizations to enhance the skills of
their employees and thus the overall competitiveness in the new economy. Time,
or the lack of it, is the reason given by most businesses for failing to invest into
learning. Therefore, learning processes need to be efficient and just-in-time [1].

Speed requires not only a suitable content of the learning material, but also
a powerful mechanism for organizing such material. Also, learning must be a
customized on-line service, initiated by user profiles and business demands. In
addition, it must be integrated into day-to-day work patterns and needs to rep-
resent a clear competitive edge for the business [2]. Learning needs to be relevant
to the (semantic) context of the business.

There are several problems with current approaches. Most providers of content
have large monolithic systems where adaptation will not significantly change the
underlying learning model. New techniques for collaboration, annotation, con-
ceptual modeling will not profit from such adaptation. The current perspective
on metadata is too limited. Anyone who has something to say about a learning
resource should be able to do so. This includes learners, teachers and content
contributors such as authors and providers. Communicating with this metadata
is equally important as it can help, direct or encourage others to actively par-
ticipate and learn.

The new generation of the Web, the so-called Semantic Web, appears as a
promising technology for implementing e-Learning.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 638–642, 2006.
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The Semantic Web constitutes an environment in which human and machine
agents will communicate on a semantic basis [3]. One of its primary characteris-
tics is based on ontologies as its key backbone. Ontologies enable the organization
of learning materials around small pieces of semantically annotated (enriched)
learning objects.

We developed a knowledge management system named R-ELKM for e-Learn-
ing. Amount of Semantic Web technologies have been migrated into R-ELKM,
including modeling, automatic mining, discovering and processing techniques.
Benefit of the power of Semantic Web, R-ELKM offers a multi-model based
framework for knowledge management and several intelligent services like auto-
matic knowledge expansion, clustering and dynamic knowledge representation.

2 Scenario and User Requirement

We present a prototypical scenario in this section to illustrate the ultimate goal
and purpose of our system. It will show several different tasks about finding and
organizing of e-Learning material. We will take the role of teacher as example
for the scenario; similar points could be made for the case of a learner in the
e-Learning environment.

Professor Lee, whose main fields of activity are NLP, is using a knowledge
management system to prepare for lectures and research projects. For the re-
search purpose, he has to be ware of the latest development in several domains;
and he expects to find a lot of material accessible from the web for one lecture
and manage amount of materials which are already annotated with LOM and
other educational standard.

To have a systematic overview of his materials, he may use a customized
ontology, which is created from a different viewpoint instead of a generic ontol-
ogy. Besides the conceptual content, the customized ontology may also contain
pointers to relevant resources like PDF files or PPT files. After constructing
the initial materials, he wants to find new resources either from World Wide
Web or several decentralized repositories about learning material. The new re-
sources retrieved need to be organized, similar documents should be grouped
and structured according to certain criteria. During these processes, querying of
the ontology based resources is also needed time to time. Both the management
and query tasks should be done through a convenient tool.

From proceeding scenario, several tasks can be derived that need to be sup-
ported by the knowledge management system: supporting educational stan-
dard data format; managing resources of different structures; organizing the
documents according to the ontology; querying semantically on the resource
repository.

3 Knowledge Management and Discovery

Metadata is fundamental in e-Learning applications for describing learning ma-
terials and other knowledge information. By capturing the knowledge domains
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associated with documents, learning sessions can be customized based on the or-
ganization and hierarchy of metadata. By considering the environment of prac-
tice applications, our system builds a multi-model based metadata management
framework for knowledge processing.

In practice e-Learning environments, several e-Learning knowledge reposito-
ries should be provided on different domains. As our system supports multiple
ontologies management, ontology should be designed for each learning domain.
Resources like text corpus and related files should be annotated and organized
according to the ontology.

Several natural language processing techniques are imported to help the man-
agement process. A text mining task is used to offer a text corpus abstraction,
which helps to organize the text corpus faster. To speed-up the process of mate-
rial preparation, a context analysis module and a similarity evaluation module
are employed to help the process of finding implicated relationship between the
new resources and the existing materials.

Besides the prepared materials, a crawler service is provided to retrieve new
resources from the WWW. A clustering module is used to find the document
relationships based on their metadata and content and group them according
to certain similarity measure. The clustering algorithm implemented in our sys-
tem is a modified version of the Fuzzy C-Means algorithm [4]. The relationships
among documents are generated through the analysis of the fuzzy memberships.
The output can be seen the clusters representing knowledge domains, which is
composite of the fuzzy relationships. Then the clustering results can be trans-
formed through the ontology manually.

All contents in our system are stored in the form of RDF [5], which naturally
supports the representing of resources and relationships between resources.

4 Knowledge Navigation and Representation

A navigation module, which is named knowledge portal in our system, is pro-
vided to browse the knowledge repository and represent the knowledge resources
in other formats. The basic navigation facility is based on the traversal along
the relationships (also can be treated as links) of learning resources, which are
maintained in previous modules.

For enabling personalized access to the resources, the knowledge portal imple-
ments an adaptive navigation system at the link-level. There are two principal
approaches to dynamically define the links. One is to log the users actions so
that the system can suggest links based on past information. The other approach
keeps a record of the users current knowledge and interests in a profile and then
search for pages that match the individuals needs.

We implement both approaches in R-ELKM. The users actions are logged
so that system can suggest relation to other learning resources based on past
information; the system also keeps a record of the users knowledge and interests
in a personalized profile as weighted concepts.

RDF based querying is included in the module to provide semantically query
for learning resources. The query service is represented in the form of path
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expressions [6], and helps to find any relationship or locates specific resources
according to constrains contained in the query. The query model can therefore
be seen a formal description of an RDF metadata record, and can be visualized
as a tree, rooted in the resource being described. This tree is a generic mirror of
how a full metadata record would be constructed and hence is also very suitable
as a visualization of the metadata profile.

Besides navigation and query facility, the knowledge portal also offers cus-
tomized representation service. The customization can be achieved through port-
let powered portal [7] and XSLT/CSS based stylish personalization. User can
specify portlets which represent entries of different knowledge domains to fill
his portal page and enjoy personal look and feel by customizing the XSLT/CSS
which can transform ordinary knowledge structures to different HTML pages.

The infrastructure of R-ELKM can be summarized as Fig. 1.

Fig. 1. The Infrastructure of R-ELKM

5 Related Works

Our system covers quite a few technologies in e-Learning research area. There
are several other approaches, which also try to build a scenario of migrating the
Semantic Web with e-Learning.

The Sybil system [8] uses an ontology of pedagogy for defining the context
of the learning course. The Collaborative Courseware Generating System [9]
uses modern web technologies, such as XML, XSLT, WebDAV, for describing
course structures, but without explicit ontology support. It also does not define
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the context and structure of the learning materials explicitly. The Ontology-
based Intelligent Authoring Tool [10] uses an intelligent training system in the
e-Learning scenario. It uses four ontologies (domain, teaching strategies, learner
model and interfaces ontology) for the construction of the learning model and
the teaching strategy model, but it fails in exploiting modern Web technologies.

6 Conclusion

We present a knowledge management system named R-ELKM in this paper.
The system focuses on the migration of Semantic Web technologies into knowl-
edge management for e-Learning environment. By supporting of storing and
coping with multiple ontologies, R-ELKM offers a multi-model based manage-
ment framework, which meets the requirement of multiple knowledge domains in
practical e-Learning environment. Based on the ontology modeling technique, R-
ELKM integrates several NLP modules to realize automatic knowledge discovery
and dynamic representation.
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Abstract. Multi-agent reinforcement learning is a challenging issue in
artificial intelligence researches. In this paper, the reinforcement learn-
ing model and algorithm in multi-agent system simulation context are
brought forward. We suggest and validate an opponent modeling learn-
ing to the problem of finding good policies for agents accommodated in
an adversarial artificial world. The feature of the algorithm exhibits in
that when in a multi-player adversarial environment the immediate re-
ward depends on not only agent’s action choose but also its opponent’s
trends. Experiment results show that the learning agent finds optimal
policies in accordance with the reward functions provided.

Keywords: Opponent modeling, multi-agent simulation, Markov deci-
sion processes, reinforcement learning.

1 Introduction

Modeling the behavior of agents in simulation environment may capture aspects
of behavior in the real world. In contrast to modeling behavior in the real world,
there are at least two great advantages enjoyed by a simulation approach: i) full
control of the simulation universe including full observability of the state, ii)
reproducibility of experimental settings and results. A completely autonomous
role that adapts by reinforcement learning [1] in response to the opponent’s
behavior and the environment during simulation advancing is appealing during
simulation advancing. Alternatively, such an adapting completely autonomous
agent may be useful at development time to create built-in AI adapted to varying
conditions, or even to systematically test built-in AI for exploitable weaknesses.

In this paper, we suggest and validate a reinforcement learning algorithm
named opponent modeling learning to the problem of finding good policies for
agents accommodated in an adversarial artificial world. The feature of the al-
gorithm exhibits in that when in a multi-player adversarial environment the
immediate reward depends on not only agent’s action choose but also its oppo-
nent’s trends. Experiment results show that the learning agent finds interesting
policies in accordance with the reward functions provided.

The paper is structured as follows. In Section 2 we brief some basics of re-
inforcement learning. In Section 3 we discuss multi-agent learning and propose
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the opponent learning algorithm. Section 4 describes simulation experiment re-
sults on the algorithm and discussions. Section 5 gives some related works and
conclusion.

2 Overview of Reinforcement Learning

2.1 Markov Decision Process

Markov Decision Processes (MDPs) are the mathematical foundation for Rein-
forcement Learning (RL) in single agent environment. Formally, its definition is
as follows:

Definition 1. (Markov Decision Process): A Markov Decision Process is a tuple
〈S, A,T , R〉, where S is a finite discrete set of environment states, A is a finite
discrete set of actions available to the agent, γ (0 �γ < 1) is a discount factor,
T : S×A→Dis(S) is a transition function giving for each state and action, a
probability distribution over states, R : S×A→ + is a reward function of the
agent, giving the expected immediate reward in real number received by the agent
under each action in each state.

Definition 2. (Policy): A policy π is denoted for a description of behaviors of
an agent. A stationary policy π : S→Dis(S) is a probability distribution over
actions to be taken for each state. A deterministic policy is one with probability
1 to some action in each state.

It can prove that each MDP has a deterministic stationary optimal policy noted
as π∗. In a MDP, the agent acts in a way as to maximize the long-run value it can
expect to gain. The discount factor controls how much effect future rewards have
on the decisions at each moment. Denoting by Q(s, a) the expected discounted
future reward to the agent for starting in a state s and taking an action a for
one step then following a policy π, we can define a set of simultaneous linear
equations for each state s, i.e., the Q-function for π:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s′, a′) ×
∑
a′∈A

π(s′, a′)Qπ(s′, a′),

where T (s′, a′) denotes the transition probability of choosing action a′ under the
state s′. The Q-function Qπ for the deterministic and stationary policy π that
is optimal for every starting states defined by a set of equations:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a′, s′)V ∗(s),

where V ∗(s) = maxa′∈AQ
∗(s′, a′) , defined as the value of optimal policy π∗

when starting at state s. We can write:

V π(st) 
 rt + γrt+1 + γ2rt+2 + . . . 

∞∑

i=0

γirt+i.
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2.2 Q-Learning

Q-learning [2] is a value learning version of reinforcement learning that learns
utility values (Q values) of state and action pairs. The objective of Q-learning is
to estimate Q values for an optimal policy using an iterative mode of exploration
and exploit. During the learning an agent uses its experience to improve its
estimate by blending new information into its prior experience.

In Q-learning the agent’s experience consists of a sequence of distinct episodes.
The available experience for an agent in an MDP environment can be described
by a sequence of experience tuples 〈st, at, s

′
t, rt〉. Table.1 shows the scheme of

Q-learning.

Table 1. Single Agent Q-Learning with Deterministic Actions and Rewards

Initialize Q̂(s, a) = 0, For all s, a
Repeat

observe the current state s
choose action a
get reward r
Observe the new state s′
Update:

Q̂(s, a) ← r + γmaxa′Q̂(s′, a′)
s ← s′

Until |new(Q̂(s, a)) − old(Q̂(s, a))| in stop tolerance

The individual Q-learning in discrete cases has been proved to converge to
optimal values with probability one if state action pairs are visited infinite times
and learning rate declines. Theorem in [2] provides a set of conditions under
which Qt(s, a) converges to Q∗(s, a) as t → ∞.

3 Opponent Learning

3.1 Multi-agent Learning

The difference between single-agent and multi-agent system exists in the envi-
ronment. In multi-agent system other adapting agents make the environment no
longer stationary, violating the Markov property that traditional single agent
behavior learning relies upon. A classic example is “rock, paper, scissors” in
which any deterministic policy can be consistently defeated.

Littman [4] extended the traditional Q-Learning algorithm for MDPs to zero-
sum stochastic games named Minimax-Q learning. The notion of Q value is ex-
tended to maintain the value of joint actions, and the backup operation computes
the value of states differently. To calculate the probability distribution or the op-
timal policy of the player, Littman simply used linear programming. Fig.1 gives
the matrix game and linear programming constraints corresponding to “rock,
paper, scissors”. In this example, linear programming finds (1/3, 1/3, 1/3) for π
when V = 0.
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Opponent

Agent

rock paper scissors

rock 0 1 -1

paper -1 0 1

scissors 1 -1 0

πpaper − πscissors � V (rock)
−πrock + πscissors � V (paper)

πrock − πpaper � V (scissors)
πrock + πpaper + πscissors = 1

Fig. 1. Matrix Game(left) & Linear Constraints(right) On “rock, paper, scissors”

Although the Minimax-Q learning algorithm manifest many advantages in the
domain of two player zero-sum stochastic game environment, an explicit draw-
back of this algorithm is that it is very slow to learn since in each episode and in
each state a linear programming is needed. The use of linear programming sig-
nificantly increases the computation cost before the system reaches convergence.

3.2 Opponent Learning

Learning in game theory studies repeated interactions of agents, usually with the
goal of having the agents learn to play Nash equilibrium. There are key differ-
ences between learning in game theory and multi-agent reinforcement learning
(MARL). In the former, the agents are usually assumed to know the game before
play, while in MARL the agents have to learn the game structure in addition
to learning how to play. Second, the former has paid little attention to the effi-
ciency of learning, a central issue in MARL. Despite the differences, the theory
of learning in games has provided important principle for MARL. One most
widely used MARL is fictitious play learning [3, 5]. In fictitious play algorithm,
the beliefs of other players policies are represented by empirical distribution of
their past play. Hence, the players only need to maintain their own Q values,
which are related to joint actions and are weighted by their belief distribution
of other players actions.

Each agent i keeps a count Cj
aj

, for each agent j and aj ∈ Aj , of the number
of times agent j has used action aj in the past. When the game is encountered,
i treats the relative frequencies of each of j’s moves as indicative of j’s current
(randomized) strategy. That is, for each agent j, i assumes j plays action aj ∈ Aj

with probability p(i, a−i) = Cj
aj
/Σbj∈Aj C

j
bj

.
This set of strategies forms a reduced profile Π−i, for which agent i adopts

a best response. After the play, i updates its counts appropriately, given the
actions used by the other agents. We think of these counts as reflecting the
beliefs that an agent regards the play of the other agents (initial counts can also
be weighted to reflect priors).

For stationary policies of other players, the fictitious play algorithm becomes
variants of individual Q-learning. For non-stationary policies of other players,
these fictitious-play-based approaches have been empirically used in either com-
petitive games where the players can model their adversarial opponents – called
opponent modeling. The algorithm is shown in Table 2. Explicit models of
the opponents are learned as stationary distributions over their actions (i.e.
C(s, a−i)/n(s) is the probability the other players will select joint action a-i
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Table 2. Opponent Modeling Q-Learning Algorithm

Initialize Q arbitrarily, for all s ∈ S, C(s) ← 0 and n(s) ← 0.
Repeat

From state s select action ai that maximizes∑
a−i

C(s,a−i)
n(s) Q(s,< ai, a−i >)

Observing other agents’ actions a−i, reward, and next state s′

Q(s, a) ← (1 − α)Q(s, a) + α(r + γV (s′))
C(s, a−i) ← C(s, a−i) + 1
n(s) ← n(s) + 1

where a =< ai, a−i >

V (s) = maxai

∑
a−i

C(s,a−i)
n(s) Q(s,< ai, a−i >)

based on past experience). These distributions combined with learned joint-
action values from standard temporal difference are used to select an action.
Uther & Veloso [6] investigated this algorithm in the context of a fully compet-
itive domain. The algorithm has essential similarities to fictitious play. It does
require observations of the opponent’s actions, but not of their individual re-
wards. Like fictitious play, its empirical distribution of play may converge to an
equilibrium solution, but its action selection is deterministic and cannot play a
mixed strategy.

4 Experiments

We build a demo, see in Fig.2(a), coded with Microsoft Visual C++ using
OpenGL in order to study explicitly the building-block actions like chasing,
evading and collision avoiding et al., which construct complex scenarios in multi-
agent simulation. With this testbed we can evaluate various learning algorithms
from observed execution and the effect of automatically generated advice.

4.1 Chasing Game

The classic chasing game is used to demonstrate the opponent learning algorithm
in an artificial environment. In chasing problem we distinguish two kinds of
agents: chaser, and chased with their own behavior. We supposed that agents
can not have a complete view of their environment (spatial locality), and no
complete history of past events, nor plan for future actions (temporal locality).
Each agent is able to perform a set of actions. These primitive actions includes: i)
watching, ii) chasing and iii) escaping. While in the watching mode the chaser
does not move until the chased appears in its range of view. It then aims at the
chaser and tracks it throughout the trial. If the chaser approaches the chased
then they flees until it is caught or successfully escapes. If the chased withdraws
from the chaser then the chaser will attempt to chase it.

4.2 Simulation and Results

The aim of this work is to find intelligent chasing and escaping strategy for the
chaser and chased. The chasing display is represented by a continuous space. To
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avoid the state space exponential grows, we use the relative distance between
the chaser and the chased to define the state space. When a chased runs into
the perceive range of the chaser, the state value can be calculated with:

stateDistance = ‖Position(chaser) − Position(chased)‖/‖velocity‖,
where ‖ ·‖ denotes Euclidean measure, the absolute distance divides the chaser’s
chasing velocity give the relative distance definition of chaser’s steps.

The chaser follows greedy policy according to the Q-value and trends to select
the action with maximum Q-value under current state. The immediate reward
function for the chaser is defined as:

reward =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if Case 1,
5, if Case 2,
0, if Case 3,

−5, if Case 4,
−1, if Case 5.

where scenarios are listed as:

– Case 1: the chaser seeing a target or chasing a target, the distance between
them is shorten;

– Case 2: the chaser catches his target;
– Case 3: the chaser is chasing a target, but the distance is unchanged;
– Case 4: the chaser loses the chasing target or keeps in the state of no target;
– Case 5: the chaser is chasing a target, the distance increases.

For the simulation, a discount factor γ of 0.9 is used along with an initial
learning rate α of 0.5 which was slowly decreased by 0.99 of its value at each it-
eration. We set up two teams with different learning algorithm which one adopts
normal Q-learning (QL) presented in Table 1 and the other adopts opponent Q-
learning (OQL) presented in Table 2. For each team, we played 500 games, each

(a) Snapshot of Simulation Scenario (b) MeanTime / Success Catches

Fig. 2. Simulation Scenario & QL vs OQL Differences in Cumulative Catches
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of which ends with the success catch of the chaser. And every 25 games the
mean time span of each game was recorded shown as Fig.2(b). The team size is
8 agents partitioned as a chaser (red icon) and 7 chased (white icon). As shown
in the Fig.2(b), the OQL acquires better performance over the QL in average
mean time over 500 games. That is agent using the OQL strategy catch the
target faster than the one using QL strategy.

Reviewing the simulation runs, we find that the performance improvement
of chasing strategy comes from such a fact: the standard Q-learning form a
direct chasing strategy while the opponent Q-learning forms a predictive one.
Direct chasing involves keeping aligned with the target and advance toward it,
see in Fig.3(a). Predictive chasing will not aim at the target directly, but try to
anticipate his movements and guess his intentions. Keep track of the position
history of the opponent and use that information to create a “predicted position”
some time in the future, see in Fig.3(b).

(a) Straight Chasing Strategy (b) Predictive Chasing Strategy

Fig. 3. Straight vs Predictive Chasing Strategy

5 Related Works and Conclusion

Sutton and Barto [1] provide excellent background reading in Reinforcement
Learning (RL) application for parameters and policy optimization. Comprehen-
sive literature surveys of pre 1996 research have been published in [7, 8]. There
are two ways to apply machine learning techniques to improve the quality of
scripted opponent AI. One is to employ offline learning prior to the run of sim-
ulation to deal with the problem of complexity [9]; the other is to apply online
learning during the simulating to deal with both the problem of complexity
and the problem of adaptability. Online learning allows the opponents to auto-
matically repair weaknesses in their scripts, and to adapt to changes in various
encounters emerged in the simulation. Recent work shows that unsupervised
online learning is of great potential for improving the built AI of autonomous
agents in Multi-agent simulation [10, 11].

This work demonstrates that reinforcement learning can be applied success-
fully to the task of learning behavior of agents in real-time simulation context.
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We propose an opponent modeling learning algorithm that realizes online adap-
tation of scripted AI in an artificial world and report on experiments to assess
the adaptive performance obtained with the technique.
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A Video Shot Boundary Detection Algorithm

Based on Feature Tracking
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Abstract. Partitioning a video sequence into shots is the first and key
step toward video-content analysis and content-based video browsing and
retrieval. A novel video shot boundary detection algorithm is presented
based on the feature tracking. First, the proposed algorithm extracts a
set of corner-points as features from the first frame of a shot. Then, based
on the Kalman filtering, these features are tracked with windows match-
ing method from the subsequent frames. According to the characteris-
tic pattern of pixels intensity changing between corresponding windows,
the measure of shot boundary detection can be obtained to confirm the
types of transitions and the time interval of gradual transitions. The ex-
perimental results illustrate that the proposed algorithm is effective and
robust with low computational complexity.

Keywords: Content-based video retrieval, shot boundary detection, cor-
ner detection, feature tracking, Kalman filter.

1 Introduction

In recent years, with the rapid development of multimedia and Internet tech-
nology, the more and more digital video information can be obtained easily, so
the amount of information becomes larger and wider. How to organize, manage
and index video information leads to a new research field of video processing,
content-based video retrieval and indexing. The first important task of content-
based video retrieval and indexing is the shot boundary detection. Shot boundary
detection provides a foundation for nearly all video abstraction and high-level
video segmentation approaches.

A video shot is defined as a series of interrelated consecutive frames taken
contiguously by a single camera and representing a continuous action in time
and space. Once a video sequence is segmented into shots, it becomes easy to
establish the context of the overall video with only some key-frames. For each
shot one or more frames can be chosen as representative of shot.

It is difficult to make a definition for a shot change. Pronounced object or
camera motions may change the content of the view frame drastically. So the
main problem, when segmenting a video sequence into shots, is the ability to
distinguish between shot change and normal changes that may be due to the
motion of large objects or to the motion of the camera (for instance, zoom, pan,
tracking and so on)[1].

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 651–658, 2006.
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In order to segment a video sequence into shots, a dissimilarity measure be-
tween two consecutive frames must be defined. In past decade, many measures
have been proposed [2]-[8][13], such as pixel-pixel comparison [3], histogram dif-
ference [3][4], motion based difference [5], edge change ratio [6]. In addition, some
research focus on compressed domain algorithms [9]-[11].

In this paper, we propose a novel shot boundary detection algorithm. The
proposed algorithm is capable of not only detecting cuts and gradual transitions,
but also distinguishing types of gradual transitions and locating.

In the rest of this paper, it is organized as follows. Section 2 introduces the
feature tracking algorithm. The shot boundary detection algorithm is proposed
in Section 3. In Section 4, the experimental results are presented. The final
section is conclusion.

2 Feature Tracking Algorithm

The shot boundary detection algorithm proposed in this paper employs a corner-
based feature tracking mechanism. Feature tracking is performed on the lumi-
nance channel for the video frames. Firstly, the corners are detected in the first
frame, and small image windows W centered on these feature points were called
feature windows. Then, feature tracking was performed using Kalman filter-
ing, in which a fast outlier rejection rule X84 [12] is adopted in order to esti-
mate robustly. Finally, according to the characteristic pattern of pixels intensity
change within corresponding windows, we can obtain the measure to identify
shot change. When a new shot begins, the process above was repeated to deal
with the remained sequence.

2.1 Corner Detection

Following [13], we utilize SUSAN principle to perform feature detection. The
principium illustrates in Fig.1, using a circular mask (having a center pixel which
shall be known as the “nucleus”) to traverse image. If the brightness of each pixel
within the mask is compared with the brightness of that mask’s nucleus then an
area of the mask can be defined which has the same (or similar) brightness as the
nucleus. This area of the mask shall be known as the “USAN” (Univalue Segment
Assimilating Nucleus). This concept of each image point having associated with
it a local area of similar brightness is the basis for the SUSAN principle.

c(r, r0) = exp

(
−
(

I(r) − I(r0)
t

)6)
(1)

Eq.(1) determines the comparison function, where r0 is the position of the nu-
cleus, r is the position of any other point within the mask, I(·) is the brightness
of any pixel, t is the brightness difference threshold and c is the output of the
comparison. This comparison is done for each pixel within the mask, and a run-
ning total, n, of the outputs c is made.
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Fig. 1. The Principle of SUSAN Algorithm

n(r0) =
∑

r 
=r0

c(r, r0) (2)

This total n is just the number of pixels in the USAN, i.e. it gives the USAN’s
area. The area of an USAN conveys the most important information about the
structure of the image in the region around any point. As can be seen from Fig. 1,
the USAN area is at a maximum when the nucleus lies in a flat region of the
image surface, it falls to half of this maximum very near a straight edge, and
falls even further when inside a corner. The initial edge response is then created
using the following rule:

R(r0) =
{

g − n(r0) if n(r0) < g
0 otherwise (3)

where g is a geometric threshold.
After discarding some false positives, non-maximum suppression was used to

find corners.

2.2 Feature Tracking

Feature tracking finds matching by tracking selected features as they move from
one frame to another. These feature windows are extracted from the first frame
of shot, and then tracked in subsequent frames of the sequence using Kalman
filter to estimate and predict their trajectory [14].

To the frame sequence, f0, f1, · · · , fk, · · ·, the state vector of Kalman filter is
defined as

Xk = [xk, yk, uk, vk,αk,βk], (4)

where (xk, yk), (uk, vk), αk,βk) are position, velocity and acceleration of each
feature point in the frame respectively. So the measurement matrix and the state
transition matrix are given by

H =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
, Φ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 1 0 1

2 0
0 1 0 1 0 1

2
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (5)
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The state covariance matrix Pk encodes the uncertainty of the current state.
The region of the phase space centered on the estimated state X̄, which contains
the true state with a given probability c2 is given by the ellipsoid.

(X − X̄)P−1
k (X − X̄)T ≤ c2 (6)

In order to find the position of a given feature windows in the current frame,
we search for the minimum of the SSD (Sum of Square Difference) error in a
neighborhood of the predicted position.

ε =
∑
W

[
I(X + D, t + τ) − I(X, t)

]2
(7)

Following the X84 rule, we discard those windows whose residuals differ more
than k · MAD (Median Absolute Deviations) from the median [12].

3 Shot Boundary Detection Algorithm

During feature tracking, the corresponding feature windows have similar visual
content within one shot, but display a significant change surrounding a shot
boundary. Based on this observation, the shot boundary detection algorithm is
proposed as follows.

3.1 Cut Detection

Cut is defined as abrupt changes of content in adjacent frames, so can be easily
detected by examining adjacent and accumulative SSD error. We defined two
measures to perform cut detection, average inter-frames sum of square difference
ASSDk

i and average accumulative sum of square difference ASSDk
c , given by

ASSDk
i =

1
N

N∑
n=1

∑
x∈Wn

[Ik
x − Ik−1

x ]2 (8)

ASSDk
c =

1
N

N∑
n=1

∑
x∈Wn

[Ik
x − I0

x]2, (9)

where I0
x, Ik

x, and Ik−1
x are the intensity of pixel x of corresponding feature

window Wn of first frame, frame k and frame k−1 respectively. N is the number
of feature windows. Once detecting ASSDk

i > Th, the frame k is marked as
potential cut. In order to discard the false alarms due to illumination variation,
if ASSDk

c > Th and ASSDk
c < Tl are met simultaneously, we believed that there

is not shot change. Where Th > Tl are two thresholds.

3.2 Detecting Gradual Transition

Because of variety of types and similar visual content of consecutive frames, the
detection of gradual transition is difficult for ages. The most familiar types of



A Video Shot Boundary Detection Algorithm Based on Feature Tracking 655

gradual transition are fade in/out and dissolve, so this paper focuses on detection
these transitions.

Illustrated in Fig. 2, in the gradual transition period, it always fulfils that
Tl < ASSDk

i < Th and ASSDk
c − ASSDk−1

c > 0. So once detecting Tl <
ASSDk

i < Th, the frame k is marked as potential beginning of gradual transition.
During times T . If ASSDk+t

c − ASSDk+t−1
c > 0, t ∈ [1,T ], and at the end,

ASSDk+T
i < Tl, ASSDk+T

c > Th, we can confirm the presence of a gradual
transition, the beginning frame is k, the end is k + T . Where T > Tr, and Tr is
the threshold of durative time.

Through above analysis, we realize that in the whole transition period, almost
all pixels intensity of corresponding feature windows always ascends for fade in
and descends for fade out [15]. But for dissolve, some pixels intensity ascends
and others descends [16]. According the characteristic, luminance increasing rate
was defined to distinguish fade in/out and dissolve as follows.

n(x) =
{

1 if I(x, t) − I(x, t − 1) > 0
0 otherwise (10)

rateI =
∑

x∈W n(x)
|W | (11)

Fig. 2. Characteristic Pattern of ASSDk
i and ASSDk

c of Gradual Transition

Fig. 3. Characteristic Pattern of rateI of Fade out and Dissolve Transition
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The change pattern of rateI during a fade out and dissolve course shown in
Fig.3. Every curve represents rateI of one window.

4 Experimental Results

In the following experiments, a selection of video clips that represent a variety
of different video genres (including news, advertisement, and movie) are used
for video shot detection, which is presented in Table 1. These sequences are
at a frame rate of 25 frame/sec with a 352×288 frame size and compressed in
MPEG-1 format.

Table 1. The Information of the Test Video Data Set

Duration (mm:ss) Cut Fade Dissolve

News 34:45 248 0 1
Advertisement 37:23 89 9 34
Movie 42:12 107 20 8

Table 2. Experimental Results of Shot Detection (1)

Recall (%) Precision (%)

Cut Fade Dissolve Cut Fade Dissolve
News 95.6 / 100 97.9 / 100
Ad. 88.7 88.9 73.5 85.9 100 62.5
Movie 84.1 70.0 75.0 91.8 100 85.7

Usually the performance of a shot boundary detection algorithm is evaluated
in terms of recall and precision. The recall parameter defines the percentage of
true detection with respect to the overall shot transition actually present in the
sequence. And the precision is the percentage of true detection with respect to
the overall declared shot transition.

recall =
Nc

Nc + Nm
× 100%, recall =

Nc

Nc + Nf
× 100% (12)

where, Nc is the number of correct detections, Nm is the number of missed
detections, Nf is the number of false detections, Nc + Nm is the number of the
existing shot transition and Nc + Nf is the number of overall declarations.

In the case of gradual transition, these two parameters do not take into ac-
count the precision of the detection, so for the situation shown in Fig.4, defined
two new parameters cover recall and cover precision as following [1].

recallcover =
b

a
× 100%, precisioncover =

b

c
× 100% (13)

where a is the length of the real dissolve, c is the length of the declared gradual
transition and b is the length of the real transition covered. The detection results
of shot boundary are listed in Table 2 and Table 3 respectively.
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Fig. 4. Possible relation of declared gradual transition and actual gradual transition

Table 3. Experimental Results of Shot Detection (2)

Cover Recall (%) Cover Precision (%)

Fade Dissolve Fade Dissolve
Ad. 86.0 79.2 92.5 75.7
Movie 81.6 83.3 98.7 63.0

5 Conclusion

In this paper we have presented our algorithm for detecting different types of
shot transition effects such as cuts, fades, and dissolves. Based on the corner-
based feature tracking mechanism, our algorithm can eliminate false positives
caused by camera and object motion during gradual transitions. The experimen-
tal results illustrate that the proposed algorithm is effective and robust with low
computational complexity.
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Abstract. In this paper, we propose a new image authentication al-
gorithm using curvelet transform. In our algorithm, we apply ridgelet
transform to each block which is subbanded from the image after wavelet
transform. Experimental results demonstrate this algorithm has good
property to localize tampering, and robust to JPEG compression.

Keywords: Authentication, ridgelet transform, curvelet transform.

1 Introduction

In the past, data authentication and integrity verification are done by append-
ing a secret key. The key is practically unique. However, with the development
of Internet and communications, the traditional approach has not satisfied the
data authentication and integrity verification of multimedia data. So a new ap-
proach such as authentication watermark has become popular in the research
community. As a branch of watermark technique, authentication watermark em-
beds semi-fragile watermark into a host image. The watermark is not visible
and not perceptible in the watermarked image. But semi-fragile watermark is
different from the fragile watermark. Fragile watermark is easy to be destroyed
by any manipulation, while semi-fragile watermark can tolerate some manipula-
tions, for example, JPEG compression. In this paper, we focus on the semi-fragile
watermark in curvelet domain.

The fragile watermark can achieve tampering localization easily because of at-
tacking on the host image will destroy the watermark correspondingly on the same
position. So many fragile watermark techniques were proposed for verifying in-
tegrity and tampering localization [1,2,3,4]. However, the disadvantage of fragile
watermark is that it cannot allow reasonable changes such as JPEG compression.

In this paper, we propose a new semi-fragile watermark algorithm for image
authentication. Experimental results demonstrate this algorithm has good prop-
erty to localize tampering, and keeps good tolerance against JPEG compression.

2 Ridgelet Transform

In 1998, E.J.Candés presents the essential theory frame of ridgelet transform in
doctor thesis [5]. Thus a new tool in harmonic analysis is proposed.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 659–664, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Definition 1. Continuous ridgelet transform.

If ψ satisfies the condition
∫

|
Λ

ψ(ξ)|2ξ−2dξ < ∞, then continuous ridgelet trans-
form is defined as in (1).

CRTf(a, b, θ) =
∫

R2
ψa,b,θ(x, y)f(x, y)dxdy (1)

Here, the ridgelet ψa,b,θ(x, y) is defined as in (2).

ψa,b,θ(x, y) = a−1/2ψ[(x cos θ + y sin θ − b)/a] (2)

Given an integral function f , its ridgelet coefficients are defined as in (3).

Rf (a, b, θ) =< f,ψa,b,θ >=
∫

f(x)ψa,b,θ(x)dx (3)

Here, ψ is the complex conjugation of ψ.
The reconstruction formula is defined as in (4).

f =
∫ 2π

0

∫ ∞

−∞

∫ ∞

0
Rf (a, b, θ)ψa,b,θ(x)

da

a3 db
dθ

4π
(4)

Given an image sized of n×n, after the ridgelet transform, it returns an array
of size 2n × 2n.

3 Curvelet Transform

Curvelet transform is a new multiscale representation suited for objects which are
smooth away from discontinuities across curves [6,7]. It can be seen as the combi-
nation of wavelet transform and ridgelet transform. Fig. 1 shows the flow graph
of curvelet transform. It contains two main steps. First, we apply two-dimension

Fig. 1. The Flow Graph of Curvelet Transform
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wavelet transform to decompose the image into subbands, and partition each
subband into blocks. Second, we apply ridgelet transform to each block.

Dealing with an image sized of n×n, curvelet transform algorithm is defined
as follows:

1. Subband decomposition. The image is decomposed into subbands. Suppose
I is the host image, we apply two-dimension wavelet transform to I. Then we
can get the result is (5).

I = CJ +
J∑

j=1

Dj (5)

Here, CJ is low frequency part of the image at the lowest scale, Dj is high
frequency part of the image at every scale.

2. Smooth partition each subband into blocks.
3. Renormalize each block.
4. Apply ridgelet transform to each block.

4 Algorithms

For improving the security of watermark, we adopt Arnold transform to the
origin watermark. The purpose of Arnold transform is making watermark chaos.
The function of Arnold transform is defined as in (6).(

x′

y′

)
=
(

1 1
k k + 1

)(
x
y

)
mod N (6)

Point (x,y) is shifted to another point (x′, y′).

Algorithm 1. Embedding watermark Alg.
Input : The host image I .
Output: The watermarked image I ′.
while True do

use Arnold transforms to origin watermark for n times;
decompose I into four subbands (LL1, LH 1, HL1, HH 1) using wavelet
transform;
partition LL1 subband into blocks(the size of block is 8×8);
for (each block in LL1 subband) do

ridgelet transform;
end
get the curvelet coefficient of each block;
for (each block in LL1 subband) do

select the maximum module of curvelet coefficient;
embed a bit watermark;

C’
k(i, j) ←− Ck(i, j)(1+αw’

k);
end
do inverse ridgelet transform, and then do inverse wavelet transform;

end
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Algorithm 2. Extracting watermark Alg.
Input : The host image I .
Input : The watermarked image I ′.
Output: The watermark wk.
while True do

do curvelet transform to I ;
get curvelet coefficient of each block, suppose curvelet coefficient is Ck(i, j);
do curvelet transform to I ′;
get curvelet coefficient of each block, suppose curvelet coefficient is C’

k(i, j);
for (each block in LL1 subband) do

select the location of the maximum module of curvelet coefficient;

wk ←− (C’
k(i, j)/Ck(i, j)-1)/α;

end
use Arnold transform to the obtained watermark for (T-n) times;

end

Algorithm 3. Authentication Alg.
Input : The watermarked image I .
Input : The retrieved image I ′.
Output: The difference between I and I ′.
while True do

do curvelet transform to I ;
get curvelet coefficient of each block, suppose curvelet coefficient is Ck(i, j);
do curvelet transform to I ′;
get curvelet coefficient of each block, suppose curvelet coefficient is C’

k(i, j);

do C’
k(i, j)-Ck(i, j);

do inverse ridgelet transform, and then do inverse wavelet transform;
end

4.1 Embed Watermark

The algorithm of embedding watermark into a host image is given in Alg. 1.
In Alg. 1, Ck(i, j) is the curvelet coefficient of each block of host image in LL1
subband, w’k is a watermark, and α is an embedding factor.

4.2 Extract Watermark

The algorithm of extracting watermark from a host image is given in Alg. 2. In
Alg. 2, T is the period of Arnold transform.

4.3 Authentication

The authentication algorithm is given in Alg. 3. If image is original, Ck’(i, j)
and Ck(i, j) should be identical. If not, the reconstructions should exhibit the
difference between them.
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5 Experimental Result

We select the Lena image sized of 512×512 as the host image, the watermark
image sized of 32×32. The watermark is shown in Fig. 2(b). Fig. 2 shows the
experimental result of embedding watermark.

(a) (b) (c)

Fig. 2. The Experimental Result Graph of Embedding Watermark. (a)Host image.

(b)Watermark. (c)Watermarked image.

The PSNR of Fig. 2(a) and Fig. 2(c) is: 46.73 db.

5.1 Extract Watermark

Fig. 3 shows the experimental result of extracting watermark.

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. The Experimental Result Graph of Extracting Watermark. (a)Extracting

watermark from watermarked image. (b)Extracting watermark from JPEG com-

pressed(90%)image. (c)Extracting watermark from JPEG compressed(80%)image.

(d)Extracting watermark from JPEG compressed(70%)image. (e)Extracting water-

mark from JPEG compressed(60%)image. (f)Extracting watermark from JPEG com-

pressed(50%)image. (g)Extracting watermark from cutting the top left corner of image.

5.2 Authentication

Fig. 4 shows the experimental result of authentication.

6 Conclusion

The curvelet transform is very good at image denoising. In this paper, we first
practical attempts using curvelet transform for image authentication. Experi-
mental results demonstrate this algorithm has very good property to localize
tampering, and keeps good tolerance against JPEG compression.
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(a) (b) (c) (d) (e)

Fig. 4. The Experimental Result Graph of Authentication. (a)JPEG compressed

image(compress rate is 50%). (b)The difference map of Fig. 2(c) and Fig. 4(a).

(c)Contrast enhanced of Fig. 4(b). (d)The tampered image. (e)The difference map of

Fig. 2(c) and Fig. 4(d).
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Abstract. Uneven illumination creates difficulty for image processing
and segmentation in general. This paper shows that an algorithm tech-
nique involving image classification and valley-edge based fragment
delineation is a highly efficient way of delineating densely packed rock
fragments for the images of uneven illumination. The result shows that
it is not affected much by fragment surface noise and image uneven illu-
mination. It is robust for densely packed rock fragments.

Keywords: Image segmentation, uneven illumination, densely packed,
fragments.

1 Introduction

In most applications, the quality of rock fragment images varies too much, which
make image segmentation hard. Therefore, this research subject becomes a hot
topic in the world during last twenty years. Today, a number of image systems
have been developed for measuring fragments in different application environ-
ments such as fragments on/in gravitational flows, conveyor belts, rock-piles,
and laboratories (see, e.g., [1,2,3]).

In a rock fragment image of size 768x576 pixels (e.g. ordinary CCD cam-
era), the number of fragments may reach up to 2000. Moreover, if there is no
clear void space (background) between fragments, the fragments often over-
lap and touch each other. If the illumination on the fragment surface is un-
even, the light intensities of fragments are different; and if in some cases, rock
types are varying, the edges between fragments are weak. All the mentioned
characteristics of rock fragment images make segmentation algorithm develop-
ment hard. It is not practical to have the same segmentation procedure for
images irrespective of quality and size distribution. Hence, it is crucial to ex-
tract qualitative information about a rock fragment image to characterize im-
ages before starting segmentation. Characterization of rock fragment images
have been thoroughly investigated by extensive tests on hundreds of images, us-
ing several packages of commercial software for image segmentation, and some
previous image segmentation algorithms(see, e.g., [1][3][6]) coded by the au-
thors.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 665–670, 2006.
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The paper stresses that our general approach is that of using two building
blocks for algorithms, which is called ”image classification and ”image segmen-
tation”. It is the cooperation between image classifications and ”image segmen-
tation” which creates good delineation of rock fragments.

2 Rock Fragment Image Classification Algorithm

Because of the large variation of rock fragment patterns and quality, the image
classification algorithm produces five different labels for the classes:

Class 1: images in which most of the fragments are of small size
Class 2: images in which most of the fragments are of medium size;
Class 3: images in which most of the fragments are of relative large size;
Class 4: images with mixed fragments of different sizes,
Class 5: images with many void spaces.

If most fragments in an image are very small, the fine-detail information in the
image is very important for image segmentation, and the segmentation algorithm
must avoid destroying the information. On the contrary, if fragments are large,
it is necessary to remove the detailed information on the rock fragment surface,
because it may cause image over-segmentation. If most fragments are of relative
large size (e.g. 200 pixels for each fragment), the segmentation algorithm should
include a special image enhancement routine that can eliminate noise of rock
fragment surface, while keeping real edges from being destroyed.

There is also a special class of images, Class 5. This class refers to any of
Classes 1 to 4 on a clear background, hence only partially dense. In this spe-
cial case, Canny edge detection [7]is a good tool for delineating background
boundaries for clusters of rock fragments.

Consider the case of an image containing closely packed rock fragments, which
can be approximated by ellipses in the image plane. The approximation is not
done for the purpose of describing individual fragment shape, but for setting up
a model for relating edge density to average size. The concept size is defined
below.

The ellipses are indexed i = 1, 2, · · · , n . Let minor and major axes be Wi and
Li, with Wi < Li,ri = Wi/Li. We use Li as a measure of size, and call it length.
Denote area and perimeter by Ai and Pi, respectively. Assume that there are
no boundaries in the interior of the ellipses. Define the following edge density
concept δ∗:

δ∗ =
P1 + P2 + · · · + Pn

A1 +A2 + · · · +An
. (1)

And relate to size Li:∑
i Pi∑
i Ai

=
∑

i 2LiE(
√

1 − r2i )∑
i πriL

2
i /4

≈ 4√
2
π
∑

i

√
1 + r2iLi

π
∑

i riL
2
i

=
4√
2

√
1 + (r(ξi))2

r(ξ2)
·
∑

i Li∑
i L

2
i

.

(2)
where E()is the complete elliptic integral,in general.



An Image Segmentation Algorithm 667∑
Li∑
L2

i

=
1
n

∑
Li

1
n

∑
L2

i

=
L̄

L̄2 + σ2
i

=
1

L̄+ σ2
i /L̄

(3)

L̄ is average length (L̄ = n−1∑L), and σ2
L the sample variance of L defined as

σ2
L = n−1∑(Li − L̄)2. We call si = (4/

√
2)
√

1 + r2i /ri the shape factor and call

s̄ =
4√
2

√
1 + (r(ξ1))2

r(ξ2)
, s̄exact =

8
πE(

√
1 − (r(ξ1))2)
r(ξ2)

. (4)

the ”average shape factor”.(When all ellipses are of the same form ri = r, ∀i, it is
easily seen that si = s̄.) One may note that the shape factor is closely related to
compactness P 2/A. The approximation E(

√
1 − r2) ≈ 0.5π

√
(1 + x2)/2 comes

from Spiegel (1992, p7), [8], and is fairly well known.
With known average shape factor=s̄, average size L̄ in a single frame can be

solved from Eq.2, using Eqs.3-4:

L̄+
σ2

L

L̄
=

s̄∑
P/
∑
A

=
s̄

δ̄∗
. (5)

We now have a relation between average length L̄ and a kind of edge density
δ̂∗. The measured edge density in our experiments δ̂ is related to δ̂∗ by δ̂∗ = β · δ̂
where β ≈ 1.2 accounts for the empty space between fragments (not included
in
∑
A ), as discussed earlier. Now, introduce the quantityσ̃L = σL/L̄ ,which is

a kind of normalized standard deviation. Then,L̄+σ2
L/L̄ = L̄+ σ̃2

L · L̄ leading to

L̄ =
s̄

βδ̂ · (1 + σ̃2
L)
. (6)

Of course, we should not expect to be able to calculate the average r(ξ1)
and r(ξ2) exactly. An approximation rm ≈ (ξ1), rm ≈ (ξ2) may be calculated
from crudely split-merge segmented data by using a kind of ”equivalent ellipse”
concept, yielding an estimate

s̄ = (4/
√

2) ·
√

1 + r2m/rm. (7)

which is the shape factor we use in the experiments.
If there are clear dark void spaces in an image, the algorithm can also be

used. Be-fore the classification, the void spaces can be detected by a simple
thresholding algorithm or by a Canny edge detector along the between-class
boundaries. Based on estimates of average number of fragments, images are
labelled automatically into four classes.

3 Rock Fragment Delineation Algorithm

An algorithm has been proved to be useful for rock fragments. In the example,
a valley point P is surrounded by strong negative and positive differences in the
diagonal directions:
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∇45 < 0,and �45 > 0,∇135 < 0,and�135 > 0,whereas, ∇0 ≈ 0,and �0 ≥
0,and �90 ≈ 0.

where � are forward differences:�45 = f(i + 1, j + 1) − f(i, j),and ∇ are
backward differences:∇45 = f(i, j) − f(i − 1, j − 1),ect.for other directions. We
use max(�α-∇α)as a measure of the strength of a valley point candidate. It
should be noted that we use sampled grid coordinates, which are much more
sparse than the pixel grid 0 ≤ x ≤ n,0 ≤ y ≤ m.f is the original grey value
image after weak smoothing. What should be stressed about the valley edge
detector is:

(a) It uses four instead of two directions;
(b) It studies value differences of well separated points: the sparse i ± 1 corre-
sponds to x ± L and j ± 1 corresponds to y ± L , where L 7 1 ;
(c) It is nonlinear: only the most valley-like directional response(�α-∇α) is used.
By valley-like, we mean (�α-∇α) value. To manage valley detection in cases of
broader valleys, there is a slight modification whereby weighted averages of (�α-
∇α)- expressions are used.
w1�α(PB) + w2�α(PA) − w2∇α(PB) − w1∇α(PA), where PA,PB are neigh-

bors of detecting point P, opposite. For example,w1=2 and w2=3 are in our
experiments.

After valley edge point detection, we have pieces of valley edges, and a valley
edge tracing subroutine, filling gaps is needed (Some thinning is also needed.).

As a background process, there is a simple grey value thresholding subroutine
which before classification creates a binary image with quite dark regions as the
bellow-threshold class. If this dark space covers more than a certain percentage
of the image, and has few holes, background is separated from fragments by a
Canny edge detector [9] along the between-class boundaries.

In that case, the image is then classified into Class 1 to 4, only after sepa-
ration of background. This special case is not unusual in rock fragment data.
This is reasonable cooperative process. If background is easily separable from
brighter rock fragments this is done, and dense sub-clusters are handled by the
image classification and valley-edge segmentation. This part of the segmentation
process is specific for rock fragment images where part of a homogeneous (dark)
background is discernible.

When one acquires (or takes) rock fragment images in the field, the lightning
is un-controlled; therefore, it cannot be avoided having uneven illumination im-
ages. Uneven illumination is a serious problem for image processing and image
segmentation not only for rock fragments and also for other object. Uneven illu-
mination correction is a hot topic in the research of image processing. In general,
the regular shadows can be removed by using some standard filters, but for the
random shadows, there is no standard filter or algorithm can be used for uneven
illumination correction.

Rock fragments are in field, lightning is from the natural sun (light strength
varies from time to time) , some natural objects (e.g. clouds, forest, mountains)
and large man-made objects (e.g. trucks) maybe nearby the area one wants
to take images, which may create uneven illumination (i.e. shadows) on the
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(a) original image (b) fragment delineation result

Fig. 1. Fragment delineation for the image of random shadows

images. Some times, in a fragment image, it includes high lightning area and
dark shadows, which make image segmentation extremely difficult. It is not
possible to use the segmentation algorithms based on grey level similarity. In
the newly studied fragment delineation algorithm, since it uses valley edges as
cues for object delineation, it is not affected by uneven illumination much. As
examples, we show two uneven illumination images in Fig. 1. The image in Fig.
1(a) has random shadows. By using the new algorithm, the fragment delineation
results are satisfactory too.

4 Conclusion

The presented rock fragment delineation algorithm has been tested for a number
of rock fragment images where fragments packed densely. The algorithm has been
com-pared to the other widely used fragment image segmentation algorithms, the
result shows that it is much robust than the other algorithms for densely packed
rock fragments under the condition of uneven illumination, it is not affected
much by the surface noise of rock fragments and image uneven illumination
which affect the other existing algorithms seriously. Therefore, it is powerful and
suitable for rock fragmentation images.
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Abstract. The methods of conventional encryption cannot be appli-
cable to images for the resistance to statistic attack, differential attack
and grey code attack. In this paper, the confusion is improved in terms
of chaotic permutation with ergodic matrix, and the diffusion is imple-
mented through a new chaotic dynamic system incorporated with a S-box
algebraic operation and a ’XOR plus mod’ operation, which greatly en-
hances the practical security of the system with a little computational
expense, and a key scheme is also proposed. Experimental and theoreti-
cal results also show that our scheme is efficient and very secure.

Keywords: Chaotic map,ergodic matrix,S-box, confusion, diffusion, at-
tack, encryption.

1 Introduction

Generally, there are mainly two kinds of approaches that are used to protect dig-
ital images. One is information hiding that includes watermarking, anonymity,
and steganography. The other is encryption that includes conventional encryp-
tion and others such as chaotic encryption. Chaotic systems have many
important properties, such as aperiodicity, sensitive dependence on initial con-
ditions and topological transitivity, ergodicity and random-like behaviors, etc.
Most properties are related to the fundamental requirements of conventional
cryptography. Therefore, chaotic cryptosystems have more useful and practical
applications. Moreover, chaotic systems with positive Lyapounov exponents[1]

lead to the sensitivity of trajectories to initial conditions and system parame-
ters, and these features characterize very good properties of bit diffusion and
confusion[2].

Recently there have been many papers on improvement of chaotic cryptosys-
tems. In [2], the properties of confusion and diffusion are improved in terms
of discrete exponential chaotic maps, and a key scheme is designed to resist
statistic attack, differential attack and gray code attack. A S-box algebraic op-
eration is included in the chaotic cryptosystem proposed in reference [3], which
considerably shrinks the basin of the error function and thus greatly enhances
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the practical security of the system with a little computational expense. In [4],
the two-dimensional chaotic cat map is generalized to 3D, which is employed to
shuffle the positions of image pixels and another chaotic map is used to confuse
the relationship between the cipher-image and the plain-image, which all aim at
the resistance to statistical and differential attacks. However, both theoretical
and experimental results in [5] show that the lack of security discourages the use
of the cryptosystems in [4] for practical applications. Some scholars have also
presented cryptanalysis of some chaotic image encryption method [6,7].

In this paper, we propose a new image encryption/decryption algorithm,
which aims at the improvement of resisting statistic attack, differential attack
and gray code attack.

2 Permutation

A quick scrambling of image pixel can be realized by ergodic matrix. For further
security and decorrelation, the shuffled image can be jumbled any more with a
chaotic sequence.

2.1 Ergodic Vector Generation

Firstly, an m×ncolor image can be denoted as Im×n={I(i,j)|1≤ i ≤ m;1≤ j ≤
n} and transformed to a vector V mn ={v(k)|1≤ k ≤mn}through the ergodic
matrix Em×n, where bothI(i,j) and v(k) are 24-bits integers composed of three
color components of a pixel . An ergodicity of a two dimensional matrix Im×n is
a bijective functionf from Qm×n={(i,j)|1≤ i ≤ m;1≤ j ≤ n} to the set {1,2,. . . ,
mn-1, mn},which is determined only by an ergodic matrix E.

f : (i, j) ↔ E(i, j) = k ∈ {1, 2, ...,mn} (1)

In other words, an ergodicity of a two dimensional matrix is an order in which
each element of the matrix is accessed exactly once. Four of the common ergodic
patterns are shown in Fig.1, and their corresponding ergodic matrices are shown
in Fig.2.

(a) (b) (c) (d)

Fig. 1. Four ergodicity patterns:(a) Row-prior zigzag ergodicity P1 (b) Column-prior

zigzag ergodicity P2 (c) Row-wise ergodicity P3 (d) Column-wise ergodicity P4

Then, the color image Im×n={I(i,j)| 1≤ i ≤ m;1≤ j ≤ n} can be convert to
a vector V mn ={v(k)| 1≤ k ≤mn} according to

V (E(i, j)) = I(i, j) (2)
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Where E can be determined through a selected ergodicity patterns P served as
a secret. ⎡⎢⎢⎢⎢⎣

1 2 6 7 ...
3 5 8 ... ...
4 9 ... ... ...
10 ... ... ... mn − 2
... ... ... mn − 1 mn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 3 4 10 ...
2 5 9 ... ...
6 8 ... ... ...
7 ... ... ... mn − 1
... ... ... mn − 2 mn

⎤⎥⎥⎥⎥⎦
(a) (b)⎡⎢⎢⎣

1 2 ... n
2n 2n − 1 ... n + 1
... ... ... ...
(m − 1)n + 1 (m − 1)n + 1 ... mn

⎤⎥⎥⎦
⎡⎢⎢⎣

1 2m ... mn
2 2m − 1 ... mn − 1
... ... ... ...
m m + 1 ... (n − 1)m + 1

⎤⎥⎥⎦
(c) (d)

Fig. 2. The ergodic matrices corresponding to ergodicity patterns in Fig.1: (a) Row-

prior zigzag matrix E 1, (b) Column-prior zigzag matrix E 2, (c) Row-wise matrix E 3,

(d) Column-wise matrix E 4

By performing the reverse operation defined as equation (2), the original image
can be constructed from a vector V mn. However, a confused image will be
obtained if the image matrix reconstruction is in an ordinary scan order.

2.2 Chaotic Permutation

Secondly, Consider the following Logistic map

ak+1 = μ ak(1 − ak) (3)

where3.5699456 < μ ≤ 4.From a given initial valuea0 ∈(0,1), a sequence
{ak|k=1,. . . , mn } can be calculated. And then they are sorted to a ’ by as-
cent and the original index of ak is recorded in vector b such that

a′
k = abk

(4)

wherebk is an integer ranging from 1 to mn.Thereon, the image vector V mn is
permuted into V’mn as follow

V ′(bk) = V (k). (5)

3 Chaotic Dynamical Systems and Diffusion

From the point of view of strict cryptography, chaotic sequences would better
satisfy uniform distribution. Furthermore, the chaotic map must be chosen in
detail. Piece-wise linear map (PLM) is an ideal chaotic map which has uni-
form invariant density function and δ-like correlation. But PLM depends on the
computing precision excessively, and has many weak keys [2]. We improve cryp-
tosystem by constructing a new nonlinear chaotic map to resist grey code attack
and preserving its uniform invariant density function to resist statistic attack.



674 X. He, Q. Zhu, and P. Gu

3.1 New Chaotic Dynamical Systems

Consider the maps Tn(x) defined on the interval I=[-1,1] by

Tn+1(x) = sin(n arcsin(x)), n ∈ Z (6)

The first three maps are given by T0(x)=0,T1(x) = x and T2(x) = 2x
√

1 − x2.
Further, Tn can be derived from the recursion relation

Tn+1(x) = 2Tn(x)
√

1 − x2 − Tn−1(x) (7)

Considering h : S1 → I,h(θ) = sin(θ) and noting that

h ◦ fn(θ) = sin(nθ) = Tn ◦ h(θ) (8)

whereS1 = [0, 2π],and the fn are the maps defined on the circle S1by

fn : S1 → S1, fn(θ) = nθ mod 2π (9)

From reference [1], we know that Tn are topologically semiconjugate to fn

whichare chaotic on S1 for n ≥ 2, so it can be seen that the dynamical sys-
tems defined via equation (10) are chaotic for n ≥ 2.

xk+1 = Tn(xk) = sin(n arcsin(xk)), x0 ∈ I = [−1, 1] (10)

Moreover, the periodic points of period p of Tn are given by

xp,j = sin
(

2jπ
np − 1

)
, j ∈ N (11)

And Tn all has the probability density function

v(x) =
1

π
√

1 − x2
(12)

In fact, the probability distribution v(y) of {xk} is the unique solution of the
Frobenius–Perron equation[1]

v(y) =
∑

x∈T−1
n

(y)

v(x)
|T ′

n(x)| (13)

To verify that v is indeed a solution of equation (13),the first step is to determine
the setT−1

n
(y)for arbitrary y ∈ I. By settingy = sin (θ), andθi = arcsin(y)+2(i−

1)π, i = 1, 2, ..., n , we get

T−1
n (y) =

{
xi = sin(θi) = sin

(
arcsin(y) + 2(i− 1)π

n

)
, i = 1, 2, ..., n

}
(14)

Furthermore,

T ′
n(xi) =

n cos(n arcsin(xi))√
1 − x2

i

=
n cos(nθi)√

1 − x2
i

=
n cos(arcsin(y))√

1 − x2
i

(15)
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From equation (12),(14),(15), and the following reasoning, we can reach the
desired conclusion.∑

x∈T−1
n

(y)

v(x)
|T ′

n(x)| =
n∑

i=1

√
1−x2

i

π
√

1−x2
i |n cos(arcsin(y))|

= n
π|n cos(arcsin(y))|

= 1
π
√

1−y2
= v(y)

Note that stochastic variable xdoes not distribute uniformly. It seems a good
idea to use the transform

yk =
2
π

arcsin(xk) (16)

Equation (15) converts{xk|k=0,1,2,. . . } to {yk|k=0,1,2,. . . },which has an uni-
form probability density function

v(y) =
1
2

(17)

In fact, the probability distribution function of yis

F (y) = P {Y ≤ y} = P
{ 2

π arcsin(X) ≤ y
}

= P
{
X ≤ sin

(
πy
2

)}
=
∫ sin( πy

2 )
−1

dx
π
√

1−x2 = y+1
2

(18)

By calculating the derivative of F (y), we come to the conclusion that the prob-
ability density function of yis v(y) as expressed in equation (17).

The Lyapounov exponent of the dynamical systems, which mean how strong
the sensitivity to the initial conditions is, is defined via equation (19).

lim
T→∞

1
T

T−1∑
k=0

log |T ′
n(xk)| = lim

T→∞

1
T

T−1∑
k=0

(
log(n) − log

∣∣∣∣∣cos(n arcsin(xk))√
1 − x2

k

∣∣∣∣∣
)
(19)

Obviously, for Tn(x), it is possible to increase the Lyapounov exponent (by
choosing a higher index n) without changing the probability distribution.

3.2 S-Box Algebra Operation

The nonlinearity of the S-box is said to be high[1,2], so S-box transform can
greatly increase the difficulty of attacks. Suppose a pixel p of color image is
composed of three 8-bits components C1, C2, and C3, then their S-box algebra
operation is defined as

C1 = (p >> 16)&255, C2 = (p >> 8)&255, C3 = p&255
C′

3 = C1 ⊕ C2 ⊕ C3, p
′ = SBox(p) = (C2 << 16) + (C1 << 8) + C′

3
(20)

The operation x >>y denotes a right shift of x by y bits and the & operator
is bitwise AND and ⊕ means bitwise XOR. Obviously, the inverse transform of
SBox is exactly itself, namelyp = SBox(p′).
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3.3 Chaotic Diffusion

There are two reasons for introducing diffusion in an encryption algorithm. On
one hand, the diffusion processing can render the discretized chaotic map non-
invertible. On the other hand, it can significantly change the statistical properties
of the plain-image by spreading the influence of each bit of the plain-image all
over the cipher-image. Otherwise the opponent can break the cryptosystem by
comparing a pair of plain-text and cipher-text to discover some useful informa-
tion. For the purpose of diffusion, the ’XOR plus mod’ operation will be applied
to each pixel in the new scheme.

Firstly, the chaotic sequence {yk|k=1,2. . . } is generated through equation
(16), which has to be amplified by a scaling factor (224-1) and round off to
integer-sequence {zk|k=0,1,2. . . 224-1} according to equation (21).

zk = round

((
224 − 1

)
× yk + 1

2

)
(21)

Secondly, the confused image vector V’mn is processed as follow

C(k) = zk ⊕
(
(V ′(k) + zk) mod 224)⊕ C(k − 1) (22)

Where V (k) is the currently operated pixel andC(k-1) is the previously output
cipher-pixel in a vector. One may set the initial value C(0) =S as a seed and
also a secret key. The inverse transform of the above is given by

V (k) =
(
(zk ⊕ C(k) ⊕ C(k − 1)) + 224 − zk

)
mod 224 (23)

Since in step k the previous value C(k-1) is known, the value C(k) can be
ciphered out.

4 Key Scheming

In view of the basic need of cryptology, the cipher-text should have close corre-
lation with the key. There are two ways to accomplish this requirement: one is
to mix the key thoroughly into the plain-text through the encryption process;
another is to use a good key generation mechanism.

The key directly used in the proposed encryption scheme is a vector of 6
parameters including serial number n0 of ergodicity patterns, parameter μ and
initial value a0 used in chaotic permutation, integer n and value x0 applied to
chaotic diffusion, initial value S of cipher-pixel, which are floating numbers or
integers, while the user’s input key Ku is a string of characters which can be
taken as a sequence of bits. Thus, there is a transform from Ku to 6 required
parameters as follow:

K = Ku (1) ⊕Ku (2) ⊕Ku (3) ⊕Ku (4) ⊕Ku (5) ⊕Ku (6) (24)

Km(i) = (Ku(i) ⊕K +Ku(i)) mod 256, i = 1, 2, ..., 6 (25)
n0 = Km (1) mod N, μ = 3.75 +Km (2) /1024, a0 = Km (3) /256,
n = 2 + (Km (4) mod 50) , x0 = Km (5) /256, S = Km (6) (26)

Where N is the total number of ergodicity patterns.
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5 Chaotic Cryptography with S-Box Algebra Operation

The complete image encryption scheme consists of five steps of operations, as
shown in Fig.3.

Step 1. Key generation. Select a sequence of 32 bits as the key, and split them
into five groups, which are further mapped onto several parameters, n0, a0, S,
and x0, as discussed in Section 3.3.

Step 2. Generate ergodic vector V mn of the two-dimensional image, as dis-
cussed in section 4.

Step 3. Chaotic permutation. Select the n0-th ergodic matrix to generate
transform the plain-image into a vector, then utilize the initial value a0 to per-
form chaotic permutation to obtain the confused image vector V’mn, as de-
scribed in section 2.2.

Step 4. Diffusion process. Firstly, Apply algebra operation SBox to each pixel
included in V’mn, and then perform the chaotic diffusion process once according
to the algorithm described in section 3.3

Step 5. Transform the one-dimensional vector back to a two-dimensional im-
age. The one-dimensional vector is appropriately arranged, laying back to a
two-dimensional image for display or for storage.

Note that the operations in Steps 3 and 4 are often performed alternatively
for several rounds according to the security requirement. The more rounds are
processed, the more secure the encryption is, but at the expense of computations
and time delays.

To this end, the decipher procedure is similar to that of the encipher pro-
cess illustrated above, with reverse operational sequences to those described in
Steps 3 and 4. Since both decipher and encipher procedures have similar struc-
tures, they have essentially the same algorithmic complexity and time consump-
tion.

6 Experiments

In this section, simulation results have shown the effectiveness of the above
algorithm. A color image ’LENA.BMP’ of size 512×512 is used as an example of
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Fig. 3. Comparison between plain-image and cipher-image: (a) Plain-image, (b) his-

togram of plain-image, (c) encrypted image by using key string ’abc123’, (d) histogram

of encrypted image
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plain-image (see Fig.3 (a)) which is transformed into a cipher-image (see Fig.3
(c)), where the user’s input key Ku is the string ’abc123’. From histograms of
plain-image and cipher-image (see Fig.3 (a) and (d)), we can see that a better
distribution of pixels of ciphered image than that in Refs.[2] is shown in Fig.
3(d).

On the other hand, we use ’abc123’ as the key string to decipher the ciphered
image correctly, but, let the key string be ’abc124’, we cannot obtain any useful
information about plain-image (see Fig. 4).

(a) (b) (c)

Fig. 4. Key sensitive test: (a) ciphered image encrypted image by using key string

’abc123’, (b) deciphered image by using key string ’abc123’; (c) deciphered image by

using key string ’abc124’

7 Conclusion

For the resistance to differential attack and linear attack, several nonlinear
chaotic maps of rather good statistic properties are applied in this paper, in-
corporated with which, a spatial S-box, and a key scheme for the resistance to
statistic attack and grey code attack are designed. In fact, our scheme can resist
to the error function attack which be regarded as a very effective attack recently.
Experimental results show that our scheme is efficient and highly secure.
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Abstract. A novel error correction scheme for image interpolation al-
gorithms based on support vector machines (SVMs) is proposed. SVMs
are trained with the interpolation error distribution of down-sampled
interpolated image to estimate interpolation error of the source image.
Interpolation correction is employed to the interpolated result of source
image with SVMs regression to obtain more accuracy result image. Error
correction results of linear, cubic and warped distance adaptive interpo-
lation algorithms demonstrate the effectiveness of the scheme.

Keywords: Image interpolation, support vector machines, support vec-
tor regression, error correction.

1 Introduction

In recent years there has been considerable interest in image interpolation.
A high-resolution image can be obtained from a low-resolution one by image
interpolation. Image interpolation has a wide range of applications in remote
sense, medical diagnoses, multimedia communication and other image process
applications.

The well-known approaches to image interpolation are linear interpolation and
cubic interpolation [1]. However these methods blue images particularly in edge
regions. Other algorithms have been extensively studied to solve the problem of
blurring [2], such as adaptive interpolation methods. For example, in [3], [4] and
[5] warped distance based adaptive interpolation approaches were proposed to
enhance result image edges and detail regions.

Most interpolation algorithms employ source images interpolation to establish
result images without error correction. However error correction approaches are
usually efficient to improve interpolation accuracy of result images. A novel
error correction scheme that is provided for different interpolation algorithms is
proposed in this paper to improve interpolated result image quality with support
vector regression.

2 Support Vector Machines

Support Vector Machines have been used successfully for many supervised clas-
sification tasks, regression tasks and novelty detection tasks [6]. A wide range

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 679–684, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



680 L. Ma, J. Ma, and Y. Shen

of image processing problems have also been solved with SVMs as a machine
learning tool.

The training set of SVMs in which each example is described by a d- di-
mensional vector, xεIRd, consists of n training examples. The labels are used
to describe categories that training examples belonging to. Following training,
the result is an SVM that is able to classify previously unseen and unlabeled
instances into a category based on examples learnt from the training set.

Support vector regression (SVR) is a function approximation approach applied
with SVMs. A training data set consists of n points {xi, yi}, i = 1, 2, .., n, xiεIRd,
yiεIRd, where xi is the i-th input pattern and yi is the i-th output pattern.
The aim of SVR is to find a function f(x) = w · x + b, under the constrains
yi − w · x − b ≤ ε and w · x + b − yi ≤ ε to allow for some deviation ε between
the eventual targets y and the function f(x) to model the data. By minimizing
‖w‖2 to penalize over-complexity and introducing the slack variables ξi, ξ∗i for
the two types of training errors, the regression weight results can be reached.
For a linear ε-insensitive loss function this task therefore refers to minimize

min ‖w‖2 + C
n∑

i=1

ξi + ξ∗i , (1)

subject to yi − w · x− b ≤ ε+ ξi and w · x+ b− yi ≤ ε+ ξ∗i , where all the slack
variables are positive.

For linearly non-separable case, a mapping function ϕ : IRd → IRs can be
found to map the current space into a higher dimensional one in which the data
point is separable. The dot product in the mapped space is avoided by kernel
function ψ(x, y) that can be selected as linear kernel, polynomial kernel, radial
basis function kernel or two layer neural kernel. More details about SVMs can
be found in [6].

3 Interpolation

3.1 Linear and Cubic Interpolation

Let x and f(xk) denote the coordinate value to be interpolated and available
data respectively. Assume that xk and xk+1 are nearest available neighbors of
x. Then the distance between x and neighbors can be defined as

s = x− xk, 1 − s = xk+1 − x (0 ≤ s ≤ 1). (2)

We have one-dimensional linear interpolation of x

f̂(x) = (1 − s)f(xk) + sf(xk+1). (3)

Similarly, we have one-dimensional cubic interpolation of x

f̂(x) = f(xk−1)((3 + s)3 − 4(2 + s)3 + 6(1 + s)3 − 4s3)
+ f(xk)((2 + s)3 − 4(1 + s)3 + 6s3)
+ f(xk+1)((1 + s)3 − 4s3)
+ f(xk+2)s3.

(4)
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Applying above two equators to image along the rows then columns we can
calculate two-dimensional bilinear or bicubic interpolation.

3.2 Warped Distance Adaptive Interpolation

Recently an adaptive linear space variant approach based on the evaluation
of warped distance was proposed in [3] and [4] . To sharpen edge regions the
concept of warped distance was introduced in [3] to evaluate image local activities
properties. To adjust the distance s in (3) and (4) an asymmetry operator was
denoted by

A =
|f(xk+1) − f(xk−1)| − |f(xk+2) − f(xk)|

L − 1
. (5)

For 8-bit gray images, L=256 and Aε[−1, 1]. In [4] adaptive interpolation expres-
sions of (3) and (4) were modified by replacing distance s with warped distance.
Then we have adaptive bilinear interpolation function

f̂(x) = (1 − s)cf(xk) + sdf(xk+1), (6)

and adaptive bicubic interpolation function

f̂(x) = cf(xk−1)((3 + s)3 − 4(2 + s)3 + 6(1 + s)3 − 4s3)
+ cf(xk)((2 + s)3 − 4(1 + s)3 + 6s3)
+ df(xk+1)((1 + s)3 − 4s3)
+ df(xk+2)s3,

(7)

where c = 1 − mA, d = 1 + mA, and m denotes a constant.

4 Proposed Interpolation Correction Scheme

The main objective of image interpolation is to reduce interpolation error es-
pecially in edges and detail regions where the interpolation error of gray value
is usually greater than one in smooth regions. Usually down-sampled images
have similar edges and detail regions distribution with the source images. So
an interpolation error image can be calculated by subtracting an interpolated
result image of the down-sampled image from the source image. Also the error
distribution of the interpolated result images of down-sampled images is similar
to the one of the interpolated result images of source images. And the interpo-
lation error of the source images can be estimated with the interpolation error
images of down-sampled images. Support vector regression is employed to esti-
mate the interpolation error distribution. Our proposed error correction scheme
is described as follows:

(a) Firstly a source image is down-sampled and interpolated to establish a
middle image that is the same scale as the source image. The interpolation
algorithm employed here can be chosen from extensive algorithms, such as linear,
cubic, adaptive or any other algorithm.
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(b) Secondly an interpolation error image is established by subtracting the
middle image from the source image. The points that are obtained by interpola-
tion calculation not the down-sampled source image determine the training data
set of SVMs. The input pattern of training set includes relative coordinates of
these points and output pattern is the corresponding error image values of these
points. Support vector regression is employed with training set to obtain image
interpolation error distribution.

(c) Thirdly interpolated result image is calculated by interpolating the source
image with the chosen interpolation algorithm.

(d) Fourthly the interpolation result image of the source image is corrected
by support vector regression whose input pattern is relative coordinates of in-
terpolated points and output pattern is error estimation value. The corrected
result image is the interpolation result image.

The error correction scheme above is easy to understand and can be employed
to most interpolation algorithms.

5 Experiment Results

We obtained similar results when the proposed error correction scheme was em-
ployed to some standard images with linear, cubic and warped distance adaptive
interpolation algorithms. Support vector regression was calculated by Libsvm[7].
In these tests ε-SVR and radial basis function kernel were employed. The peak
signal to noise ratio (PSNR) was compared with result images of different inter-
polation algorithms. PSNR for 8-bit gray image is defined as:

MSE =
1

MN

M−1∑
m=0

N−1∑
n=0

|x̂(m, n) − x(m, n)|2, (8)

PSNR = 10log
2552

MSE
, (9)

where the image size is M × N , x̂ is the interpolation result image of x. Three
times scale enlarge interpolation was tested for standard images.

5.1 Linear and Cubic Experiments

Results with linear interpolation, cubic interpolation and corresponding correc-
tion approaches are employed to the test image peppers are compared in Table
1. It is shown that error correction scheme improves both PSNR values of result
images based on linear interpolation and cubic interpolation. The results of the
warped distance adaptive algorithm for linear and cubic interpolation are also
compared in the table. It is interesting that the correction results of our proposed
scheme are superior to both the results of the warped distance adaptive linear
and cubic algorithm. That is to say when the interpolation correction scheme
is applied to simple linear interpolation approach, we obtain better results than
more complex interpolation approach.
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Table 1. PSNR of Linear and Cubic Interpolation

Algorithm PSNR

Linear 24.5995
Adaptive Linear 24.6112
Correction Linear 24.6657
Cubic 24.3633
Adaptive cubic 24.3808
Correction Cubic 24.4278

5.2 Adaptive Algorithm Experiments

For our proposed error correction scheme can be employed to most interpolation
algorithms, the warped distance adaptive algorithm can also be corrected with
this scheme. Correction results to the warped distance adaptive linear and cubic
algorithms are listed in Table 2. In the tests constant m was searched automati-
cally to obtain greatest PSNR value for the result images of the warped distance
adaptive algorithms. It is shown that the error correction scheme improves PSNR
of result images once again.

Table 2. PSNR of Warped Distance Adaptive Interpolation

Algorithm PSNR

Adaptive linear 24.6112
Correction adaptive linear 24.6991
Adaptive cubic 24.3808
Correction adaptive cubic 24.4128

6 Conclusion

A novel interpolation error correction scheme based on support vector regres-
sion has been proposed. The main advantage of this scheme is that it can be
employed to most interpolation algorithms to get more accuracy result images.
The effectiveness of the scheme is confirmed by experiments.
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Abstract. This study proposes an integrated neural network-based
crack imaging system to classify crack types of digital pavement im-
ages, which was named DENSITY-based neural network(DNN).The neu-
ral network was developed to classify various crack types based on the
subimages (crack tiles) rather than crack pixels in digital pavement im-
ages. The spatial neural network was trained using artificially generated
data following the Federal Highway Administration (FHWA) guidelines.
The optimal architecture of each neural network was determined based
on the testing results from different sets of the number of hidden units,
and the number of training epochs. To validate the system, computer-
generated data as well as the actual pavement pictures taken from pave-
ments were used. The final result indicates that the DNN produced the
best results with the accuracy of 99.50% for 1591 computer-generated
data and 97.59% for 83 actual pavement pictures. The experimental re-
sults have demonstrated that DNN is quite effective in classifying crack
type, which will be useful for pavement management.

Keywords: Pavement management system,neural network,digital pave-
ment images,crack types, pattern classification.

1 Introduction

The collection of pavement surface condition data is usually done by conven-
tional visual and manual approaches, which are very costly, time-consuming,
dangerous, labor-intensive, and subjective. These approaches have high degrees
of variability, are unable to provide meaningful quantitative information, and
almost always lead to inconsistencies in cracking details over space and across
evaluations. So the automatic pavement survey is required, and the approach
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based on neural network and computer vision, pattern recognition, and image-
processing techniques become the hotspot in the field of pavement distress au-
tomatic detection.

The collection of pavement surface condition data is usually done by con-
ventional visual and manual approaches, which are very costly, time-consuming,
dangerous, labor-intensive, and subjective. These approaches have high degrees
of variability, are unable to provide meaningful quantitative information, and
almost always lead to inconsistencies in cracking details over space and across
evaluations. So the automatic pavement survey is required, and the approach
based on neural network and computer vision, pattern recognition, and image-
processing techniques become the hotspot in the field of pavement distress auto-
matic detection. To overcome the limitations of the subjective visual evaluation
process, several at-tempts have been made to develop an automatic procedure.
Most current systems use computer vision and image processing technologies to
automate the process. However, due to the irregularities of pavement surfaces,
there has been a limited success in accurately detecting cracks and classifying
crack types. In addition, most systems require complex algorithm with high lev-
els of computing power. While many attempts have been made to automatically
collect pavement crack data, better approaches are needed to evaluate these
automated crack measurement systems [1][2].

This paper develops an integrated neural network system capable of auto-
matically determining a crack type from digital pavement images. The goal of
this research is to prove that DENSITY-based neural network(DNN) is effective
in automatically deter-mining a crack type from digital pavement images. The
inputs for DNN are pavement surface image feature value determined by one
method we named Distress Density Factor.

2 Background

The Distress Identifications Manual for the Long-Term Pavement Performance
Project (SHRP-P-338) defines the crack types for asphalt concrete pavement,
which includes an alligator crack, a block crack, a longitudinal crack, and a
transverse crack as follows: A longitudinal crack appears along the highway;
A transverse crack is a crack perpendicular to the pavement centerline caused
by temperature change;An alligator crack is a series of interconnected cracks,
which has many sided and sharp-angled pieces;A block crack is a pattern of
rectangular pieces of asphalt surface developed from transverse cracks due to
low temperature.

Due to the irregularities of pavement surfaces, many researchers tried to solve
it by neural network[3-7]. This paper develops an integrated neural network sys-
tem capable of automatically determining a crack type from digital pavement
images. A neural network consists of a number of autonomous processing ele-
ments called neurons or nodes. These nodes receive input signals, evaluate the
computation, and produce the output. These nodes are highly interconnected
with connection weights. A neuron has many input paths and the weighted sum
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of all incoming paths is combined. The neural network learns to approximate the
desired function by updating its connection weights on the basis of input and
output data. The neural network is recommended, especially, when it is difficult
to determine the class of proper and sufficient rules in advance[8,9]. Addition-
ally, the neural network is a promising approach when a traditional computing
approach is not efficient to represent a solution.

Recently, LeeByoung Jik.[3,4] presented an integrated neural network-based
crack imaging system called ”NeuralCrack” to classify crack types of digital pave-
ment images. This system includes three neural networks: 1) Image-based Neu-
ral Network, 2) Histogram-based Neural Network, and 3)PROXIMITY-based
Neural Network. These three neural networks were developed to classify vari-
ous crack types based on the sub-images (crack tiles) rather than crack pixels
in digital pavement images. The proximity value is determined by computing
relative distribution of crack tiles within the image. The PROXIMITY-based
Neural Network effectively searches the patterns of various crack types in both
horizontal and vertical directions while maintaining its position-invariance.The
final result indicates that the Proximity-based Neural Network produced the
best result with the accuracy of 95.2%.

3 Integrated NeuralCrack System

This study proposes an integrated neural network-based crack imaging system
to classify crack types of digital pavement images, which was named DENSITY-
based neural network(DNN).The neural network was developed to classify vari-
ous crack types based on the subimages (crack tiles) rather than crack pixels in
digital pavement images.The main limitation of pixel-based neural networks is
its processing time because it deals with a pavement image that typically cov-
ers 5 by 7 feet area with 381,024 (504 756) pixels. When we inject each pixel
into an input unit of the neural network, we need 381,024 input units and a
large number of hidden units. A typical neural network is fully connected be-
tween adjacent layers, and, therefore, a pixel-based neural network would require
very high level of computation in both training and testing. In addition, when
there is a significant amount noises in the image, a pixel-based approach could
produce unreliable results. The proposed neural network models in this paper
determine a crack type based on subimages of pavement rather than crack pix-
els. A pavement image is divided into 216 sub-images called ”tiles” and each
tile is composed of 1600 pixels (40 40). This tile-based computation significantly
reduces computational complexity over pixel-based computation. As a result, it
is possible to train the neural network in a reasonable period of time and quickly
determine the crack type. It is less affected by background noises because a few
noise pixels alone would not be sufficient for a tile to be classified as a crack tile.
Just as in reference[3,4],by the way,more details about what is a crack and what
features does a crack have are showed in reference[10].

The spatial neural network was trained using artificially generated data fol-
lowing the Federal Highway Administration (FHWA) guidelines. The optimal
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architecture of each neural network was determined based on the testing results
from different sets of the number of hidden units, and the number of training
epochs. To validate the system, computer- generated data as well as the ac-
tual pavement pictures taken from pavements were used. NeuralCrack system
was developed to determine crack types using spatial neural network concept.
it consists of four major module in this studies: 1)artificial training data gen-
eration, 2) training different neural network models, 3) crack tile generation,
and 4) crack type classification. The details about these four parts are omitted
here which are shown in reference[3,4].By the way, the 300 training samples and
1591 computer-generated testing samples for neural network are also the same
as those in reference[4].

4 The NeuralCrack Model

The neural network adopted in this paper is a three-layered feedforward neural
net-work,and have the same number of input nodes but different input values.
The output layer include five nodes which represent 1) alligator crack, 2) block
crack, 3) longitudinal crack, 4) transverse crack, and 5) no crack. Several different
neural network architectures were explored with different sets of hidden nodes
(30, 60, 90, 120, and 150), and number of training epochs (from 500 to 6000, at
step of 500) to find an optimal architecture. Artificially generated data set was
used to find an optimal structure for each of them. Eight three actual pavement
images and 1591 artificial images were used to test these neural network models.

4.1 Feature Extraction for DNN Inputs

The inputs for neural network are pavement surface image feature value de-
termined by one new method named by Distress Density Factor (DDF) which
effectively searches the patterns of variously irregular crack types in all direc-
tions while maintaining its position invariance. The structure of Distress Density
Factor was showed in fig.1and fig.2.

Suppose that the dimension of the Distress Density Factor is M and N; and
the dimension of the digital pavement image is ROW and COLUMN, then the
DDF method is defined as the following: Here, pixel value[ROW,COLUMN] is
the original value of one pavement image, template[M,N] is the matrix of DDF
adopted, and object value[ROW, COLUMN] is the result value based on DDF
method. Furthermore, the DDF method can avoid the intensive computation
which was the drawback of most methods needed to extract features for pavement
images[1,6], because a large number of sub-images are blank in most common
pavement images.For example, fig.3 is the binary matrix of a pavement image
(1 denotes crack tile, and blank denotes no crack tile), fig.4 is the result of fig.3
based on DDF.It is quite obvious that denser the crack around one position
is(such as in fig.3), bigger the corresponding value in that position is(such as in
fig.4). The result in such a way can reflect crack spatial distribution character,
which is the base for feature selection on pavement surface images.
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Algorithm 1. Algorithm of DDF Method
for i=0 to ROW-1;

for j=0 to COLUMN-1
if pixel_value[i,j]=0

object_value[i,j]=0
else

for m=0 to M-1
for n=0 to N-1

object_value[i,j]=object_value[i+m-INT(ROW/2),
j+n-INT(COLUMN/2).template[m,n]

end
end

end
end

end

1 1 1
1 1 1
1 1 1

Fig. 1. Distress Density Factor of 3*3 Matrix

0.5 0.5 0.5 0.5 0.5
0.5 1 1 1 0.5

 1  
0.5 1 1 1 0.5
0.5 0.5 0.5 0.5 0.5

Fig. 2. Distress Density Factor of 5*5 Matrix

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0
1 0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0

Fig. 3. The Original Matrix of One Pavement Image

4.2 Feature Selection for DNN Inputs

If the dimension of Distress Density Factor is M*N, then the summation of the
result matrix of one pavement original matrix with the DDF, was defined as
S[M,N].
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0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0
0 3 3 4 5 6 4 0 0 0 0 0
2 0 0 0 0 5 5 0 0 4 4 2
0 0 0 0 0 0 0 5 6 5 0 0
0 0 0 0 0 0 0 6 7 0 0 0
0 0 0 0 0 0 0 6 6 0 0 0
0 0 0 0 0 0 0 4 4 0 0 0

Fig. 4. The Result Matrix of fig.3 Based on DDF Method

S[M, N ] = {thesummationofresultmatrixwithM ∗ NDDF}. (1)

For example, the S[3,3] of fig.3,that is the summation of fig.4, is equal 103.The
summation of one pavement original matrix is by denoted by S[1,1]. The S[1,1] of
fig.3 is equal 23. Then we can obtain one recognition feature which was defined
as F[M,N,1,1]

F [M, N, 1, 1] = S[M, N ]/S[1, 1]. (2)

For example, F[3,3,1,1]= S[3,3]/ S[1,1]. So the F[3,3,1,1] of Fig.3 should be
103/23=4.478. Accordingly, we define F[ M,N,3,3] as:

F [M, N, 3, 3] = S[M, N ]/S[3, 3]. (3)

These three values, F[3,3,1,1] , F[ 5,5,3,3], and S[1,1]are selected as the features
of one pavement image to inject into the DNN input layer.

4.3 Simulation Experiments

When training the neural networks with self-adaptive learning rate and momen-
tum factor 0.9, training epochs begin with 500, and increase by degrees of 500,
till it reaches 6000; hidden units begin with 30, increase by degrees of 30, till it
reaches 150.The neural networks were trained using artificially generated data
following the FHWA (Federal Highway Administration) guidelines. The optimal
architecture of each neural network was determined based on the testing results
from different sets of the number of hidden units, and the number of training
epochs. To validate the system, actual pavement pictures taken from pavements
as well as the computer-generated data were used.

DNN can achieve its best classification effect when training epochs, hidden
units are 1000, and 60 respectively. As shown in Table 1 and 2, only 8 in 1591
artificial test samples and 2 in 83 actual images cannot be correctly classified,
which demonstrated that DNN is quite effective in classifying crack type, and the
experimental results will be useful for pavement management. In Table 1 and 2,
SCTC, AC, BC, LC, TC, NC, UE, AR and OE are the abbreviations of system
classification target classification, alligator crack, block crack, longitudinal crack,
transverse crack, no crack, under estimated, accuracy rate and over estimated,
respectively.
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Table 1. Performance of DNN for 83 Actual Images

SCTC AC BC LC TC NC UE AR

AC 15 0 0 0 0 0 100%

BC 2 18 0 0 0 5 90%

LC 0 0 10 0 0 0 100%

TC 0 0 0 10 0 0 100%

NC 0 0 0 0 28 0 100%

OE 2 0 0 0 0 2 97.59%

Table 2. Performance of DNN for 1591 Artificial Images

SCTC AC BC LC TC NC UE AR

AC 216 0 0 0 0 0 100%

BC 6 216 0 0 0 6 97.30%

LC 0 0 434 0 2 2 99.54%

TC 0 0 0 424 0 0 100%

NC 0 0 0 0 293 0 100%

OE 6 0 0 0 2 8 99.50%

5 Conclusion

This paper researches one spatial neural network to classify crack types of digital
pavement images: DENSITY-based neural network (DNN). The neural network
models utilize crack tiles instead of crack pixels. For training, three hundred ar-
tificial images were generated following FHWA guidelines. Eight three(83)actual
pavement images and 1591 artificial images were used as testing data. To find
the optimal architecture of each neural network, different sets of the number of
hidden units (30, 60, 90, 120, and 150), and training epochs (begin with 500,
and increase by degrees of 500, till it reaches 6000) were tested.

The final result indicates that the DENSITY-based neural network(DNN) pro-
duced the best results with the accuracy of 99.50% for 1591 computer-generated
data and 97.59% for 83 actual pavement pictures.The experimental results have
demon-strated that DDN is effective in classifying crack type. Because of the
small quantity (83 actual pavement images)of the testing data of actual pave-
ment images, it’s possible that the conclusion is of limitation. More actual pave-
ment images, including all kinds type crack as much as possible, should be
adopted to further validate the DNN.The neural network for simulation in this
paper was trained on artificial pavement images,which are the same as in ref-
erence[3,4]. To train the neural network successfully, artificial data should have
a reasonable range of possible patterns. Therefore selection of training samples
is very important for such system’s effective-ness, which await to our further
research.
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Abstract. At the moment ontology-based applications do not provide
a solution to handle vague information. Recently, some tentatives have
been made to integrate fuzzy set theory in ontology domain. This paper
presents an approach to handle the nuances of natural languages (i.e.
adjectives, adverbs) in the fuzzy ontologies context. On the one hand,
we handle query-processing to evaluate vague information. On the other
hand, we manage the knowledge domain extending ontology properties
with quality concepts.

Keywords: Fuzzy ontologies, query processing, natural language.

1 Introduction

“The Semantic Web is an extension of the current web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation." [1]

Thus, one of the key issues in the development of the Semantic Web is to
enable machines to exchange meaningful information/knowledge across hetero-
geneuos applications to reach the users’ goals. The aim is to allow both user
and system to communicate with other by the shared and common understand-
ing of a domain [2]. Ontology provides a semantic structure for sharing concepts
(data) across different applications in an unambiguous way. It consists of entities,
attributes, relationships and axioms [3,4].

A main open issue in this research area concerns the richness of natural lan-
guages used by humans. For instance, typically humans use linguistic adverbs
and adjectives to specify their interest and needs (e.g. the user can be interested
in finding “a car very fast”, “a drink a little colder”, and so on). To tackle this
challenging question, Fuzzy Set Theory introduced by Zadeh [5] allows to de-
note non-crisp concepts. Thus, a degree of truth (typically a real number from
the interval [0,1]) to a sentence is assigned. So, the previous statement “a drink
a little cold” might have truth-value of 0.4.

In literature, we can find some attempts to integrate directly fuzzy logic in
ontology, for instance in the context of medical document retrieval [6] and in
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Chinese news summarization [7]. A deeper study has been made in [8] where a
definition of fuzzy ontology is given. A fuzzy ontology is an ontology extended
with fuzzy values which are assigned on entities and relations of the ontology.
Furthermore, it has been showed how to insert fuzzy logic in ontological domain
extending the KAON [9] to directly handle uncertainty information during the
ontology definition, so that to enrich the knowledge domain.

In this paper, we present an application of the fuzzy ontology in the tourist
context. For example, a user could be interested in finding information using
web portals about the topic “A funny holiday”. But hot to define what his “a
funny holiday’ and carry out this type of request? To overcome this problem our
proposal enriches the fuzzy ontology by introducing, for example, the quality
concept“to be funny”. In this paper, we present the formal specification of the
integration of fuzzy ontology with quality concept in order to semantically enrich
ontological domain.

To resolve uncertain information retrieval is an important problem in differ-
ent areas of research. For example, in text retrieval area [10,11] in finding the
documents satisfying the user request. On the one hand, it needs to define a
fuzzy ontology-framework to support machines reasoning with uncertainty. On
the other hand it is necessary to accept user query written in natural languages.
In the literature, there are queries frameworks where the users to have follow
ad-hoc formal query languages [11]. In this paper, we show a parser that allows
to insert query without mandatory constraints.

The rest of the paper is organized as follows: Section 1 defines an application of
the fuzzy ontology definition presenting a semantic formalization too. Section 2
presents the syntactic and semantic analysis process of the parser used. In Section
3 a complete example of the application is given. In Section 4, we give an overview
on related work and future works.

2 Extending Fuzzy Ontology Model

In the areas of the Semantic Web (i.e. e-commerce, knowledge management, web
portals, etc.) handling nuances of the natural languages is a well-known prob-
lem [8,12]. It is necessary provide a reasoning mechanism to machines in order
to fulfil the user’s query. Thus, our model proposes a framework for reasoning
with imprecise and unstructured knowledge sources with an underlying fuzzy
ontological structure.

We have made a deeper investigation analyzing more semantically a sentence
like “a car very fast" introducing the quality concept in the ontological domain.
In this section, a high-level logical framework and a semantic definition of the
model developed is given.

2.1 Quality Concept

In order to develop a computational model to handle vague semantic of natu-
ral language terms, we introduce the idea of quality inside our fuzzy ontology.
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Informally, a quality is a predicate which associate a partial membership value
(as defined in [13]) to the value of a property.

Following, we give the definition of fuzzy ontology presented in [8].

Definition 1. A fuzzy ontology is an ontology extended with fuzzy values which
are assigned through the two functions
g : (Concepts ∪ Instances) × (Properties ∪ Prop_value) �→ [0, 1] ,
h : Concepts ∪ Instances �→ [0, 1] .

Given this definition, we can say that a quality is a function g that maps a
couple (Instance, Prop_value) into a real value between 0 and 1. For example,
the sentence like “this is a hot day” in the fuzzy ontology can be express how
g(day, hot) = 0.8.

2.2 Constraint Tree

Qualities and properties of the ontology, and the definition of intensity, can be
used to characterize the various instances present in the ontology by assigning
to them an intensity value. In the domain of information retrieval this inten-
sity value can be used to measure, for example, the relevance of an element to
the user’s requirements. This can be done in various way, by selecting what of
the qualities present in the ontology must be taken into consideration for each
evaluation.

To identify these qualities, we define the concept of constraint tree. Informally,
a constraint tree is just a hierarchical indication of what qualities should be
considered as significant when evaluating an instance of an object belonging to a
particular concept. A constraint tree which can be used to evaluate the instances
of a concept C is said to be valid for C.

Constraint tree formal definition is based upon the definition of the func-
tion g which maps concept instances to intensity values. In order to simplify
the definition of constraint tree we introduce the concept of quality evaluation
function.

Definition 2. A quality evaluation function is a fuzzy set in charge to represent
the semantic of a specific quality in our ontology. Formally, a quality evaluation
function related to a quality k of a concept C is a fuzzy-set fk,C :C�→ [0, 1] whose
membership values are defined as ∀x ∈ C, fk,C(x) = g(x, k).

Definition 3. A constraint tree can be recursively defined as follows:

– If C is a concept and fk,C is a q.e.f. whose domain coincides with C, then
fk,C is a constraint tree. We say that the tree is valid for the concept C.

– if T1,T2, . . . ,Tn are n constraint tree valid for the same concept C, then
(∨,T1, . . . ,Tn) and (∧,T1, . . . ,Tn) are constraint trees valid for C.

– if T1 and T2 are two constraint tree valid for the same concept C, then
(⊃,T1,T2) is a constraint tree valid for C.
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For example, the constraint tree related for an expression like “a cheap car, or a
fast one, but only if the price is affordable” will be formalized as the following
constraint tree (∧, fcheap,car, (⊃ faffordable,car, ffast,car))

Any instance of the concepts of our ontology can be evaluated with respect
to a constraint tree T . The function ConstrT (e) : Concepts �→ [0, 1] is used to
evaluate the adherence of any element e of the ontology to the set of constraint
described by T .
The function ConstrT (e) can be define as follows:

– If T is valid for the concept C and e /∈ C, then ConstrT (e) = 0.
– If T is in the form Fq,C and e ∈ C, ConstrT (e) = Fq,C(e).
– If T = (∨,T1, . . . ,Tn), then ConstrT (e) =

⊕
i ConstrTi (e) where ⊕ is a valid

t-conorm chosen to handle the semantic of the disjunction connective.
– T = (∧,T1, . . . ,Tn) then ConstrT (e) =

⊗
i ConstrTi(e) where ⊗ is a valid

t-norm chosen to handle the semantic of conjunction.
– If T = (⊃,T1, . . . ,Tn), then ConstrT (e) = ConstrT1 (e) → ConstrT2(e),

where → is the t-residuum related to the t-norm previously chosen (see [14]).

3 From Sentences to Constraint

In order to allow a high degree of human-machine interaction, the system we
are presenting can accept its input as a simple natural language query in which
the user can make use of the full meaning of adjectives and adverbs without
have to understand some ad-hoc formal query language. Since our goal is not
to understand whatever sentence, but only those fragments of sentences dealing
with qualities and adjectives, the parser and the semantic analyser we are going
to describe are unquestionably simper than most parsers proposed in the field
of natural language processing.

Our parser is composed by two stage process (as suggested in [15]): in the first
stage it tries to construct a parse tree using block of text as the tree’s constituents,
and in the second phase it deeply analyzes the significant nodes of the tree.

3.1 Chunk Parsing

The first stage of the analysis is based on the chunk parsing ideas of Abney
([16]). The parser accomplishes a shallow analysis of the input and isolates the
different macro-blocks (chunks) of text which constitutes the sentence. Chunks
have a larger granularity with respect to traditional syntagms, containing usually
more than one of them. For example, “not very fast” is a single chunk, while “a
bike not very fast, but quite expensive” is composed by the four chunks a bike,
not very fast, but and quite expensive.

There are four categories of chunks: goal chunks, which describe the kind of
entity (i.e. the concept) whom the constraint indicated in the sentence are re-
ferred to; constraint chunks represent a bound over a particular quality of the
goal; connective chunks are used to relate different constraint to each other,
and garbage chunks are those text fragments needed to build a sound English
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sentence, but that aren’t used by our system. This distinction allows us to imme-
diately discard the blocks containing no useful information, and to concentrate
to deeply analyze significant ones.

The selection between the different types of chunks is done mainly using lex-
ical knowledge: different chunks are classified on the basis of what terms have
been found inside the chunk itself. Goal chunks, for example, are tagged in this
way because they contain terms related to concepts, while constraint chunk will
contain terms related concept’s properties and qualities.

3.2 Constraint Parsing

Since constraint chunks have a more complex structure and contain more infor-
mation than the other types of chunks, they are further analysed in order to
understand their meaning.

This second stage of the parsing use an unification-based grammar ([17]) in
order to build a dependency tree for a given constraint chunk. To simplify the
parsing process, we make use of a semantic grammar (see [18]), using syntagms’
categories tightly related to the concepts we defined in our ontology: some of the
the are quality, property and modifier.

Fig. 1 and Fig. 2 shows a fragment of the rules and vocaboulary used in order
to analyse a constraint chunk, expressed using the feature structure formalism
(see [19]).

[
CAT Adj
RelT erm [1]

] [
CAT Property
RelProp [2]

]
�→ [3]

⎡⎣CAT Quality
RelProp [2]
Priority 5

⎤⎦
Sem(3) = λx.f[1],[2](x)

(1)

[1]
[
CAT Modifier

]
[2]

[
CAT Quality
RelProp [3]

]
�→ [4]

⎡⎣CAT Quality
RelProp [3]
Priority 12

⎤⎦
Sem(4) = λx.(Sem(2))Sem(3)

(2)

[1]
[
CAT MModifier

]
[2]
[
CAT Modifier

] �→ [3]

[
CAT Modifier
Priority 15

]
Sem(3) = λx.(Sem(1))(Sem(2))x

(3)

Fig. 1. Some Rules Used in the Analysis of Constraint Chunk (and Semantic Rules
Related to Them)

As shown in Fig. 2, some terms like “not” or “very” can have more than one
feature structure applicable. Those terms can be either linguistic modifiers, or
they can alter the semantic of other modifiers (in rule 3, this role is represented
by the category MModifier). This is in accord to the idea that in the phrase “not
very high price”, the syntagm “not very” should be considered a single modifier,
as in Fig. 3, and not a sequence of two modifiers.

To select what parse tree is to prefer (for example between or (not (very (high
price)) ), the parser make use of the proprity feature, selecting the rules whose
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syntagms’ average priority value is higher. For example, in Fig. 3, the syntagm
(not very) is preferred to (very (high price)) because its average priority is 7.5
rather than 5.

Term Feature
high CAT Adj, , RelTerm high, Priority = 5
not (1) CAT Modifier, Sem = λx.1 − x, Priority = 5
not (2) CAT MModifier, Sem = λx.f−1(x), Priority = 10
price CAT Property, RelTerm price, Priority = 5
very CAT Modifier, Sem = λx.x2, Priority = 5
very CAT MModifier, Sem = λx.2x, Priority = 10

Fig. 2. The Vocabulary Used by the Grammar in Figure 1

Fig. 3. The Parse Tree Generated by the Phrase “Not Very High Price”

3.3 Semantic Analysis

The goal of the semantic analyser is to build a constraint tree which represent
the input query, given the sequence of the chunks found in the input (and their
analysis in the case of constraint chunks). Each chunk identifiedby the parser
(whit the exception of garbage chunks) is used to build a part of the constraint
tree, following this scheme:

– goal chunks are used to group the constraint to the concepts they refer to.
The semantic analyser will return a constraint tree for each goal chunk
present in the input sentence, which contains all the constraints related to
the concept expressed in the chunk.

– connective chunks become the internal nodes of the constraint tree. The
exact type of node (∧, ∨ or ⊃ nodes) depends of the connective present in
the chunk.

– constraint chunks become the leafs of the constraint tree.
Each leaf contains a reference to the quality evaluation function which for-
malizes the semantic described by the quality present in the chunk.

The function to be used as quality evaluation function for each leaf is deter-
mined by applying the semantic rules associated to each term and each syntactic
rule present in the system. As shown in Figg. 1 and 2, each syntagm has an
associated semantic funciton (expressed as a λ-expression as in [20]). The eval-
uation of the λ-expression leads to a quality evaluation function, that is placed
appropriate position in the constraint tree.
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4 Example

To illustrate how the proposed system works, we are going to show how a sentence
like “I want a funny holiday at the sea, at not very high price” is represented in
our model. The sentence could have been inserted, for example, by an user in a
web portal of a touristic agency.

Chunk parser isolates the following chunks from the sentence: the garbage
chunk I want, the goal chunk holiday describing the entity the user is interested
to retrieve, and the three constraint chunks funny, at the sea and not very high
price There is also a connective chunk containing a comma.

Constraint chunks are further analyzed. For shake of simplicity, the only con-
straint chunk in the example whose analysis is non-trivial is the third one, and
its parse tree is shown in fig. 3.

Having complete the syntax analysis, the semantic analyzer starts to build the
constraint tree which describes the sentence, that will contains quality evaluation
functions related to the Holiday concept. In the generated constraint tree, the
all the leafs are child of a single ∨ node: for the case of the chunk “funny”, the
kind of coordination has been assigned on an heuristic basis.

The translation of the constraint chunks into quality evaluation functions
takes place at this stage. The semantic of the first two constraint is quite simple:
according to the rule 1 in Fig. 1, they are translated respectly ffunny,Holiday and
fAtSea,Holiday . The semantic of the third chunk is more complex, and is carried
out by a series of lambda-calculus operations. By rule 1, Sem(“high price”) =
λx.fhigh,price(x), while by rule 3 Sem(“not very”) = λx.f−1(x))λy.y2 = λx.

√
x.

Thus, applying rule 2 Sem(“(not very) (high price)” = λx.
√

fhigh,price(x). The
obtained cnstraint tree can be used to evaluate the different instances of the
holiday concept with respect to their relevance to the user query.

5 Conclusions and Future Works

In this paper, we have presented a solution to handle vague information in query-
processing into fuzzy ontology-based applications.

We have introduced the quality concept in the fuzzy ontology to better define
the degree of truth of the fuzzy ontology entities. The constraint tree has been
defined as a hierarchical indication of what qualities should be considered sig-
nificant to evaluate an instance of a concept. A strategy to parse a sentence in
a set of constraints is proposed. This allows us to submit queries to the system
using natural language requests. Finally, we have presented an example of an
application, in the touristic context, of the proposed approach.

In future works, we are intended to formalize the fuzzy ontology model with
the use of fuzzy description logic as defined in [12] which in turn extends the
Fuzzy-ALC defined by Straccia in [21]. Another interesting topic would be the
integration of some automatic reasoning mechanism, such as fuzzy expert sys-
tems ([22]), inside the fuzzy ontology formalization to allow making inferences
on the entities in the ontology.
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Abstract. The single-trial Visual Evoked Potentials estimation of brain-
computer interface was investigated. Communication carriers between
brain and computer were induced by ”imitating-human-natural-reading”
paradigm. With carefully signal preprocess and feature selection proce-
dure, we explored the single-trial estimation of EEG using ν-support
vector machines in six subjects, and by comparison the results using
P300 features from channel Fz and Pz, gained a satisfied classification
accuracy of 91.3%, 88.9%, 91.5%, 92.1%, 90.2% and 90.1% respectively.
The result suggests that the experimental paradigm is feasible and the
speed of our mental speller can be boosted.

Keywords: Brain-computer interface, visual evoked potentials, feature
selection, single-trial estimation, support vector machines.

1 Introduction

Brain computer interfaces give their users communication and control channels
that do not depend on the brain’s normal output channels of peripheral nerves
and muscles [1]. The main problems of current BCIs are their low interaction
speed between user and computer, which have maximum information transfer
rates of 5-27 bits/min [2]. To amend the defect, we are dedicated to construct
a BCI-based mental speller exploiting a so-called ”Imitating-Natural-Reading”
inducing paradigm [3]. One of the goals of our efforts is to boost up the com-
munication speed between users and computers with least recording leads. Dif-
ferent from other systems, the potential inducing mechanism used in this novel
paradigm is not by means of presenting stimulus abruptly to objects to induce
visual evoked potentials. Instead, we get event-related potentials (ERPs) in more
natural ones, as described in section 2.

In the past five years, a variety of machine-learning and pattern-classification
algorithms have been used in the design and development of BCI [4], [5]. These
methods are used in BCI to classifying user intentions embedded in EEG signals.
Such as Common Spatial Pattern (CSP) analysis, Continuous Wavelet Trans-
form with the t-Value Scalogram, Common Spatial Subspace Decomposition
with Fisher discriminant analysis, ICA-Based Subspace Projections, and Sup-
port Vector Machines [4-7], et al. These methods achieved comfortable results

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 701–706, 2006.
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in various BCI systems and won in the BCI Competition 2003 [5]. Almost all of
the methods mentioned above employ 8 64channel recordings to get satisfying
results. To beyond demonstrating in laboratories, and to facilitate the practical
usage in clinical or other applications, fewer EEG recording channels are pre-
ferred. But up to now, there were no the satisfying results of single-trial EEG
estimation in single-channel been seen in literatures. In the present study, we
utilized the ν -SVM [9] for classifying EEG signals to detect the absence or pres-
ence of the P300 components in event-related potentials, which is crucial for the
Brain-Computer Interfacing.

2 Methods

2.1 Experimental Setup and Data Acquisition

Experimental model and data come from the cognitive laboratory in South-
Central University for Nationalities of China. The objective of the experimental
data acquisition was to obtain EEG signals during Imitating-Natural-Reading
paradigm with target onset and non target onset. EEG activity was recorded
from Fz, Cz, Pz, and Oz sites of the International 10-20 system using Ag-AgCl
electrodes referenced to linked mastoids with a forehead ground. The filter band-
pass was 0.1-30 Hz. All impedances were kept below 5 k. All data were sampled
at 427 Hz using HP 4400 BOXCAR acquisition system and pre-amplified using
HP 5113 low noise amplifier.

Following EEG prep, six subjects were seated respectively in a comfortable
chair in an acoustic isolation chamber. They viewed a monitor which has a
window in the center and with a size of 16 by 16 pixels containing gray patterns
against a black background. The continuous symbol string which consists of
target and non-target symbols move through the window smoothly from right to
left at a speed of 160ms/symbol. This is called imitating human natural reading
modality. The only difference between this modality and the human normal
reading is that the moving object in the former is ”book”, whereas which in the
latter is eyes.

The non target symbol was a monochromatic gray pattern and the target
symbol just like the non target, but the only difference between them is that the
vertical thin line in the middle of the pattern of the later was colored to red (see
Fig.1.1 for detail).

The epoch was started at a short tune, which reminded the subject to focus
his eye to the window where non-target symbols were moving continuously. The
delay between start time and the target symbol to appear varied randomly be-
tween 1.5-3 s. Subject was instructed to keep alert to the appearing of the target
symbol among moving non-target symbols, which would elicit a robust VEP. In
each trial, acquisition of EEG started at 320ms (for subject 1, and 210ms for
other subjects ) before target onset and then halted at 880ms (for subject 1, and
990ms for other subjects) after target presenting, thus totally 512 samples in 1.2
seconds were sampled.
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1.1: Construction of Stimulus 1.2: A part of virtual keyboard.

Fig. 1. Construction of an Mental Speller. in 1.1, A: target symbol with vertical line
colored to red; B: gray non-target symbol; C: continuous symbol sentences which consist
of a series non-target symbols and one randomly positioned target symbol.

Using this modality, we can construct a virtual keyboard for BCI, in which
every key consist of a key label and a little window with sentences consisted of
target and non-target symbols moving in it. See Fig.1.2 for detail. The epoch of
stimulus passing through the window is different in difference keys, thus the time
intervals from beginning to the start of visual evoked potentials (VEP) induced
by staring at difference keys are difference. This can be used to determine which
key is being ”struck” [3].

The following steps are used to classify target evoked potentials from non-
target evoked potentials.

2.2 Data Preprocessing and Feature Selection

Before any signal analysis schemes were applied, any EEG epoch that contained
peak values exceeded baseline by 45v, typically due to facial EMG, were rejected
as artifact-contaminated ones. Ultimately, based on the above selection criteria,
168, 128, 400, 186, 120 and 312 trials were used from each of the six subjects
respectively. The EEG signals were preprocessed by a low-pass digital filter with
cutoff frequency at 30Hz, baselines were removed with a reference of the averaged
value of -300ms 0ms, and then sub-sampled to 107Hz by taking only a single point
out of four.

As a comparison, only the EEG signals from Fz and Pz were ultimately used
in the subsequent signal analysis procedure, and only the segment from 300ms
after the target onsets where the most discriminative component, P300, appears
was taken into the account for channel Pz; and the segment from 0ms after the
target onsets where P200 appears was taken into the account for channel Fz.
The variances of each trial are normalized to unit value using Matlab function
before the data as features input to a classification algorithm.

2.3 Single Trial Estimation of ERP Using SVM

The ν -Support Vector Machine, which has been one of the major kernel methods
for data classification, is used as a classifier. This is a method to map non-linearly
separable data space into a feature space where they are linearly separable.

The parameter ν ∈ (0, 1) is an upper bound on the fraction of training errors
and a lower bound of the fraction of support vectors. Given training vectors
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xi, i = 1, ..., l, xi ∈ Rn in two classes, and a vector y ∈ Rl , such that yi ∈
{+1,−1} , the primal form considered is

max
W,b,ξ,ρ

1
2
WTW − νρ+

1
l

l∑
i=1

ξi, (1)

subject to
yi(WT φ(xi) + b) ≥ ρ− ξi. (2)

The dual is
min

α

1
2
αTQα, (3)

subject to
eTα ≥ ν, yTα = 0. (4)

The decision function is

f(x) = sgn(
l∑

i=1

αiyiK(xi,x) + b). (5)

where the normal vector W and the threshold b determine the separating hy-
perplane, ρ is to be optimized to determine the margin of two classes. ξi is the
positive slack variables, αi is the positive Lagrange multipliers, e is the vector
of all ones, Q is an l by l positive semidefinite matrix Qij ≡ yiyiK(xi,xj), and
K(xi,xj) ≡ φ(xi)Tφ(xj) is the kernel. Here training vectors xi are mapped into
a higher dimensional space by the function φ. Details of the algorithm imple-
mented in LIBSVM can be found in [6], [7].

In our experiments, the OSU SVM Classifier Matlab Toolbox [8] was used to
perform the classification. The radial basis function was taken as kernel function,
K(xi,xj) = exp(−γ ‖xi − xj‖2). To prevent overfitting and underestimating the
generalization error during training, the dataset of all trials was equally divided
into two parts, the training set and testing set.

The model parameters of ν -SVM and the generalization error were estimated
by a 10-fold cross-validation procedure which only be performed on the training
set. Then, using these best parameters, we performed a leave-one-out procedure
10 times to evaluate the averaged classification accuracy on the testing set.

3 Results and Discussion

Six subjects(labelled with 1-6 respectively) were tested using P300 from channel
Pz and P200 from channel Fz as features by the above method. The average
classification accuracy is 91.3%, 88.9% 91.5%, 92.1%, 90.2% and 90.1%, respec-
tively with a little scatter in the results (50% by chance). Table 1 lists results
of the experiments using SVM. As described above, for every subject, all trials
were equally divided into two parts of training set and testing set, each consist of
half trials of target responses and half trials of non-target responses. The average
values are the results of ten repeated tests.
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Table 1. Classification Accuracy of Six Subjects

Subject 1 2 3 4 5 6
Channel Pz Fz Pz Fz Pz Fz Pz Fz Pz Fz Pz Fz

Max(%) 91.7 83.3 90.6 90.6 92 83.5 92.3 86.9 91.2 87.6 90.1 80.5
Min(%) 90.5 61.5 85.9 89.1 91 79.5 90.7 81.2 86.0 80.1 86.8 77.4

Average(%) 91.3 80.5 88.9 90.2 91.5 81.8 92.1 84.5 90.2 85.2 90.1 79.5

2.1: Pz. 2.2: Fz.

Fig. 2. The 200 trials of EEG maps and the grand averaged wave at the position of
Pz and Fz from subject T

Fig.2. shows the map and the grand average wave of every trial at the channel
of Pz and Fz. The position of 0 millisecond is the begin time of target onset.
Take an example of subject 3 ( Fig.2.1), there have P3 waves appearing at the
position of 300 milliseconds nearly in every trial after target onset in channel
Pz, with the duration of 400ms, and they appear a good coherence.

From the map and the grand average wave of every trial at the channel of
Fz from subject 2 and subject 1. We found that, in channel Fz, the state of the
wave before the start is ’quiet’ in the period from -210ms to 0ms. But there is big
disturbance in EEG wave after the presenting of the target, which proves that
VEP do occur in the channel Fz. However, we find that there is no regularity for
the wave of every trial and it makes the distribution to be disorder. Because of
the increased nonlinearity, the accuracy of classification will fall out of question.
The above analysis is verified from the table 1, there is 10% difference on the
feature classification rate between channel Pz and channel Fz. But for subject 2,
there is no obvious difference between the two methods of feature classification,
with an accuracy of 88.9% and 90.2% respectively. From the Fig.2.2 and the map
of subject 2 and subject 1, we notice that the P300 component in Fz is more
obvious and the coherence from subject 2 is better than those from subject 3
and subject 1. Those are just the reason of the above phenomena.
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4 Conclusion

Difference from the method of evoking P300 by abruptly present stimulus on
screen, we use a method based on imitating the natural reading mode to evoke
P2-P3 for building a BCI. The features of signals in a trial by our method
are more obvious and have better robustness. Moreover, very high classification
accuracy can be acquired by only use of the signals from one channel in single-
trial. According to the equation in the reference [2], we can see that our method
can improve the information transfer rate in a single-trial-selection-way in BCI
system.

As only those data of short period with 300ms long were adopted as features,
the classification speed is improved. The selection trials in unit time are also
increased to get a higher communication rate by the method, which establishes
the basis for the online application in the next step.

The flexibility requirements imposed on the classification strategy, in the
framework of BCI applications are satisfactorily fulfilled by an SVM based clas-
sifier. The solid theoretical foundations of the SVM allow us to optimize several
parameters of a Kernel function using analytical methods. The overfitting is clev-
erly avoided by controlling the tradeoff between the training error minimization
and the learning capacity of the decision functions. Finally, the decision function
parameters can be easily updated because they depend on the SVs only.
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Abstract. A new method is proposed to solve the difficult problem of
advanced radar emitter signal (RES) recognition. Different from tradi-
tional five-parameter method, the method is composed of feature extrac-
tion, feature selection using rough set theory and combinatorial classifier.
Support vector clustering, support vector classification and Mahalanobis
distance are integrated to design an efficient combinatorial classifier. 155
radar emitter signals with 8 intra-pulse modulations are used to make
simulation experiments. It is proved to be a valid and practical method.

Keywords: Modulation recogntion, radar emitter signal, rough set the-
ory, support vector clustering, support vector classification.

1 Introduction

Radar emitter signal (RES) recognition is one of the key procedure of signal
processing in ELINT, ESM and RWR [1]. As counter-measure activities in mod-
ern electronic warfare become more and more drastic, advanced radars increase
rapidly and become the main component of radars gradually [2]. Complex and
changeful signal waveform weakens greatly the validity of traditional recogni-
tion methods and makes the validity lose gradually. RES recognition has been
confronted with strange challenges.

In recent years, although RES recognition is paid much attention and some
recognition methods were presented, using conventional 5 parameters [1,3], tra-
ditional recognition methods and their improved methods encounter serious diffi-
culties in identifying advanced RESs. Furthermore, the existing intra-pulse char-
acteristic extraction approaches only analyze qualitatively two or three RESs
without considering the effects of noise nearly [1,2]. So the approaches cannot
meet the intelligentized requirements of modern information warfare for elec-
tronic warfare reconnaissance systems. For the difficult problem of recognizing
complicatedly and changefully advanced RESs, this paper presents a fire-new
thinking to solve the difficult problem of advanced RES recognition.
� This work was supported by the National Natural Science Foundation of China
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Lab Pre-research Foundation (NEWL51435QT220401).
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2 Intelligent Recognition Method (IRM)

Traditional recognition method of RESs is shown in Fig.1. In this method, pa-
rameter measurement obtains 5 conventional parameters including CF, TOA,
DOA, PW and PA [1,4]. Correspondingly, parameter database reserves the 5
parameters of RESs. Deinterleaving is a preprocessing procedure of recognition.
Recognition uses mainly parameter matching method.

Because only inter-pulse parameters are used in traditional method, advanced
RESs, such as LFM, NLFM, BPSK, QPSK and MPSK, cannot be recognized ef-
fectively. Traditional method is suitable for conventional RESs of which 5 param-
eters keep unchanging. But now, plenty of advanced RESs appear in electronic
warfare, how to recognize them quickly and validly is an emergent issue.

This section presents IRM to solve the problem. IRM is shown in Fig.2. Differ-
ent from traditional method, IRM includes several additional procedures: feature
extraction, feature selection, classifier design and feature database. Feature ex-
traction is used to extract valid features from advanced RESs. Because RESs
have many changes and plenty of noise, the best feature that can identify all
RESs cannot be found easily. For this difficult problem of RES recognition, mul-
tiple features need be extracted from RESs using multiple methods. Feature
selection is used to select the most discriminatory features from multiple ex-
tracted features so as to simplify the classifier structure and to decrease error
recognition rate (ERR). Thus, feature database reserves conventional parame-
ters and the extracted features. Some machine learning methods are used to
design classifiers to fulfill automatic recognition of RESs.

The main difference between IRM and traditional method is that IRM uses
new features to recognize RESs and emphasizes quantificational analysis instead
of qualitative analysis. So IRM can identify multiple advanced RESs instead of
2 or 3 advanced RESs.

RESs Parameter 
measurement 

deinterleaving

Parameter 
database

Recognition Result 
t t

Fig. 1. Traditional Recognition Method of RESs

RESs Parameter 
measurement 

deinterleaving

feature 
database

Feature 
extraction 

Result 

Feature 
selection 

Classifier 

Fig. 2. Intelligent Recognition Method of RESs
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3 Implementation of IRM

The core of IRM lies in feature extraction, feature selection and classifier de-
sign. This section introduces briefly feature extraction and feature selection and
presents classifier design in detail.

16 features have been extracted from RESs and they are respectively two
resemblance coefficient (RC), information dimension (ID), box dimension (BD),
correlation dimension (CD), Lempel-Ziv complexity (LZC), approximate entropy
(AE), norm entropy (NN) and 8 wavelet packet decomposition (WPD) features
[1,4,5]. Rough set theory is used to select the most discriminatory feature subset
from the original feature set composed of the 16 features. Discretization method
of continuous features and feature selection were presented in [5]. The obtained
feature subset is used as the input of classifiers.

Support vector machines (SVMs) are used to design classifiers. As a small-size
sample machine learning technique, SVM becomes a very popular classification
method because it has good robustness and generalization. SVMs were originally
designed for binary classification. Multi-class classification using SVMs is still
an ongoing research issue [6]. Some experimental results show that several com-
bination methods including one-against-all (OAA) [7], one-against-one (OAO)
[8], directed acyclic graph (DAG) [9] and bottom-up binary tree (BUBT) [10]
are valid ways for solving multi-class classification problem. However, when the
number of classes is large, the methods based on binary classification not only
need much training and testing time, but also get high ERRs.

This paper uses a combinatorial classifier of support vector clustering (SVC),
support vector classification and Mahalanobis distance. The structure of the
classifier is shown in Fig.3. The dash lines and solid lines represent training
and testing procedure, respectively. For N -class classification problem, train-
ing samples are clustered into k groups using support vector clustering in the
training phase. The k groups have n1, n2, · · · , nk classes, respectively. Thus, k
groups need design k multi-class SVMs: MSV M1, MSV M2, · · ·, MSV Mk. The
MSV Mi (i = 1, 2, · · · , k) is used to classify the ith (i = 1, 2, · · · , k) groups into
ni(i = 1, 2, · · · , k) classes. After clustering using SVMs, MSV M1, MSV M2, · · ·,
MSV Mk are trained respectively using their corresponding training samples. In

Training samples 

Support vector clustering 

MSVM1 MSVM2 MSVMk
…

Testing samples 

C1 C2 Cn1
… Cn1+1 … …Cn1+2 Cn1+n2 CN-nk+1 CN-nk+2 CN

Mahalanobis distance classifier 

MSVM1 MSVM2 MSVMk
…

Fig. 3. The Structure of Combinatorial Classifier
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testing phase, we use a two-layer classifier composed of Mahalanobis distance
classifier [11] and the k multi-class SVMs. Mahalanobis distance classifier is em-
ployed to classify the N classes into k groups. The k multi-class SVMs classify
k groups into N classes. For example, as shown in Fig.3, the testing samples of
the classes C1, C2, · · · , Cn1 are classified using MSV M1.

several components, each enclosing a separate cluster of points [12]. Based on
a kernel function, SVC is efficient algorithm because it avoids explicit calcula-
tions in the high-dimensional feature space [12]. Moreover, relying on the SVM
quadratic optimization, SVC can obtain one global solution. So the introduced
classifier has good clustering and classification performances. In the 4 multi-class
SVMs, DAG has good classification capability and easy implementation. This
paper uses DAG to design multi-class SVMs for each clustered group.

4 Experiments

155 RESs with different parameters are used to make simulation experiments
to test the validity of the introduced method. Each of the 155 RESs has one
of 8 intra-pulse modulations. The 8 modulations include CW, BPSK, QPSK,
MPSK, LFM, NLFM, FD and IPFE. Because of different parameters, CW has
15 different RESs and the rest 7 modulations have 20 RESs respectively. 16
features are extracted from the 155 RESs [6]. For every RES, 50 feature samples
are extracted in each signal-to-noise rate (SNR) point of 5 dB, 10 dB, 15 dB
and 20 dB. Thus, when SNR varies from 5 dB to 20 dB, every RES has 200
feature samples. CW has 3000 feature samples and other 7 modulations have
4000 feature samples respectively. The total feature samples of 155 RESs are
31000. These samples are classified equally into two groups: training group and
testing group.

Feature selection algorithm [5] is used to select the most discriminatory fea-
tures from the 16 RES features. Two features composed of RC and WPT are
selected to be inputs of classifiers. The combinatorial classifier in Section 3 is used
to recognize the 8 modulations. The training samples are grouped using SVC, in
which Gaussian kernel is chosen as kernel function [12]. We use the parameter
choice method in [12] to determine the two parameters: the scale parameter q of
the Gaussian kernel and the soft margin constant C. After many tests, we obtain
the suitable values 50 and 1 for the parameter q and C, respectively. After cluster-
ing, we obtain 5 groups. The first group is composed of BPSK, QPSK and MPSK.
The second group is composed of FD and IPFE. The rest modulation RESs
LFM, NLFM and CW construct the third, fourth and fifth groups, respectively.
Thus, we use Mahalanobis distance classifier to classify 8 modulation RESs into
5 groups and use DAG to design 2 multi-class SVMs (MSV M1 and MSV M2) to
fulfill automatic classification of the first and second groups. Gaussian function
in [12] is chosen as kernel function of SVMs. To decrease the effect of changing
parameters, 63 combinations of constant C = [100, 101, 102, 103, 104, 105, 106]
and kernel parameter q = [0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100] are used to test re-
spectively the multi-class SVMs. The lowest ERR among 63 results is used as
the final experimental result, which is shown in Table 1.
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Table 1. Experimental Results of RES Recogntion (%)

Methods Proposed OAA OAO DAG BUBT

BPSK 31.00 54.00 28.67 36.33 32.67

QPSK 31.67 62.67 36.67 31.00 46.00

MPSK 40.67 57.67 45.33 35.67 35.33

LFM 0.00 0.00 0.00 0.00 0.00

NLFM 0.00 0.00 0.00 0.00 0.00

CW 0.00 0.00 0.00 0.00 0.00

FD 3.00 14.33 1.67 4.33 1.33

IPFE 6.33 3.00 6.67 7.00 5.00

Average ERR 14.08 23.96 14.88 14.29 15.04

Training time (s) 773.85 37743.00 2813.17 3224.34 3015.34

Testing time (s) 12.75 100.36 207.88 61.34 59.22

To bring into comparison, OAA, OAO, DAG and BUBT are also used to rec-
ognize the 8 modulation RESs. The comparing performances include ERR and
recognition efficiency. The recognition efficiency includes training and testing
time. Experimental results are also given in Table 1. In the experiment, we use
firstly the samples of training group and testing group as training samples and
testing samples respectively. Then, we use the samples of testing and training
group as training and testing samples respectively. Table 1 shows the statisti-
cal results of two tests. The training time of the proposed classifier in Table
1 includes consuming time of SVC. Testing time includes consuming time of
Mahalanobis distance classifier.

From Table 1, we achieves the lowest ERR 14.08 % for 8 advanced RESs
with 8 intra-pulse modulations. Although the parameters of the 155 RESs vary
randomly in a certain range and SNR also varies from 5 dB to 20 dB, the
presented method obtains a good experimental result. What is more, this is a
satisfying result for this problem. Experimental results verify the validity of IRM
and its implementation method including feature extraction, feature selection
using rough set theory, and the combinatorial classifier of SVC, support vector
classification and Mahalanobis distance.

The introduced classifier obtains 14.08 % ERR, which is the best among 5
multi-class SVM classifiers including OAA, OAO, DAG, BUBT and the pro-
posed combinatorial classifier. Moreover, the introduced classifier achieves much
smaller training and testing time than OAA, OAO, DAG, BUBT. So the com-
binatorial classifier has good classification capability and recognition efficiency.

5 Conclusions

This paper presents a fire-new method for recognizing advanced RES. Different
from traditional 5-parameter method, the introduced method includes mainly
three components: feature extraction from multiple views, RST based feature
selection, and a combinatorial classifier. Experimental results of 155 RESs with
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8 intra-pulse modulations verify the feasibility and validity of the proposed
method. Though, several issues need be solved. For example, the ERR need
decrease further. The validity of the method is proven further by using factual
RESs in modern electronic warfare. These issues are our further work.
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Abstract. Based on multi-objective optimization, a novel approach to
blind image fusion (without the reference image) is presented in this
paper, which can achieve the optimal fusion indices through optimiz-
ing the fusion parameters. First the proper evaluation indices of blind
image fusion are given; then the fusion model in DWT domain is estab-
lished; and finally the adaptive multi-objective particle swarm optimiza-
tion (AMOPSO-II) is proposed and used to search the fusion parameters.
AMOPSO-II not only uses an adaptive mutation and an adaptive inertia
weight to raise the search capacity, but also uses a new crowding operator
to improve the distribution of nondominated solutions along the Pareto
front. Results show that AMOPSO-II has better exploratory capabilities
than AMOPSO-I and MOPSO, and that the approach to blind image
fusion based on AMOPSO-II realizes the optimal image fusion.

Keywords: Blind image fusion, particle swarm optimization (PSO),
adaptive multi-objective particle swarm optimization (AMOPSO-II).

1 Introduction

Blind image fusion denotes the category of image fusion without the reference
image. Image fusion can be defined as the process of combining two or more
source images into a single composite image with extended information content
[1]. Different methods of image fusion have the same objective, i.e. to acquire a
better fusion effect. Different methods have the given parameters, and different
parameters could result in different fusion effects. In general, we establish the
parameters based on experience, so it is fairly difficult to gain the optimal fusion
effect. If one image is regarded as one information dimension, image fusion can be
regarded as an optimization problem in several information dimensions. A better
result, even the optimal result, can be acquired through optimizing the param-
eters and discarding the given values in the process of image fusion. Therefore,
a proper search strategy is very important for the optimization problem.

In fact, there are various kinds of evaluation indices, and different indices
may be compatible or incompatible with one another, so a good evaluation in-
dex system of image fusion must balance the advantages of diverse indices. The
traditional solution is to change the multi-objective problem into a single ob-
jective problem using the weighted linear method. However, the relation of the

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 713–720, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



714 Y. Niu, L. Shen, and Y. Bu

indices is often nonlinear, and this method needs to know the weights of dif-
ferent indices in advance. So it is highly necessary to introduce multi-objective
optimization methods to search the optimal parameters in order to realize the
optimal image fusion, by which the solutions are more adaptive and competi-
tive because they are not limited by the given weights. In [2], an approach to
image fusion based on multi-objective optimization was explored, but this ap-
proach needed to make reference to the standard image that was inexistent in
most instances, thus, it could not meet the demand in practice. So we make an
improvement and present a new proposal, called “multi-objective blind image
fusion”, which can overcome the limitations.

At present, evolutionary algorithms are the most effective methods to solve
multi-objective optimization problems, including PASE (Pareto Archive Evo-
lutionary Strategy) [3], SPEA2 (Strength Pareto Evolutionary Algorithm 2)
[4], NSGA-II (Nondominated Sorting Genetic Algorithm II) [5], NSPSO (Non-
dominated Sorting Particle Swarm Optimization) [6], MOPSO (Multiple Objec-
tive Particle Swarm Optimization) [7], [8], etc., in which MOPSO has a better
optimization capacity and a higher convergence speed. While the number of ob-
jectives is greater than 3, MOPSO will need too much calculation time, and cause
failure in allocating memory even in integer format. So we presented an adaptive
multi-objective particle swarm optimization (AMOPSO-I) in [2], in which the
adaptive grid is discarded, and a crowding distance, an adaptive inertia weight
and an adaptive mutation are introduced to improve the searching capacity.
Moreover, AMOPSO-I was applied to optimize the parameters of image fusion.
But the crowding distance needs too much computing time in AMOPSO-I, so
we make an improvement and propose AMOPSO-II, which adopts a new dis-
tance operator based on Manhattan distance and reduces the computational
complexity. In contrast to AMOPSO-I and MOPSO, AMOPSO-II has a higher
convergence speed and better exploratory capabilities and the approach to blind
image fusion based on AMOPSO-II is more successful.

The remainder of this paper is organized as follows. The proper evaluation
indices of blind image fusion are established in Sect. 2. The methodology of
multi-objective blind image fusion is introduced in Sect. 3. The adaptive multi-
objective particle swarm optimization (AMOPSO-II) algorithm is designed in
Sect. 4. The experimental results of blind image fusion are given in Sect. 5.
Finally, a summary of our studies and the future researches are given in Sect. 6.

2 Evaluation Indices of Blind Image Fusion

In our approach to blind image fusion, the establishment of an evaluation index
system is the basis of the optimization that determines the performance of image
fusion. However, in the image fusion literature only a few indices for quantitative
evaluation of different image fusion methods have been proposed. Generally, the
construction of the perfect fused image is an illdefined problem since in most
case the optimal combination is unknown in advance [9], [10]. In this study, we
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explore the possibility to establish an impersonal evaluation index system and
get some meaningful results.

In fact, impersonal evaluation indices can overcome the influence of human
vision, mentality and knowledge, and make machines automatically select a su-
perior algorithm to accomplish the mission of image fusion. These indices can
be divided into two categories based on subjects reflected. One category reflects
the image features, such as entropy and gradient. The other reflects the relation
of the fused image to the source images, such as mutual information.

2.1 Image Feature Indices

Image feature indices are used to evaluate the quality of the fused image.

Entropy. Entropy is an index to evaluate the information quantity contained
in an image. If the value of entropy becomes higher after fusing, it indicates
that the information quantity increases and the fusion performance is improved.
Entropy is defined as

E = −
L−1∑
i=0

pi log2 pi. (1)

where L is the total of grey levels, pi is the probability distribution of level i.

Gradient. Gradient reflects the change rate in image details that can be used
to represent the clarity degree of an image. The higher the gradient of the fused
image is, the clearer it is. Gradient is given by

G =

∑M−1
x=1

∑N−1
y=1

√
[F (x, y) − F (x+ 1, y)]2 + [F (x, y) − F (x, y + 1)]2

√
2 (M − 1)(N − 1)

. (2)

where M and N are the numbers of the row and column of image F respectively.

2.2 Mutual Information Indices

Mutual information indices are used to evaluate the correlative performances of
the fused image and the source images. Let A and B be two random variables
with marginal probability distributions pA(a) and pB(b), and joint probability
distribution pAB(a, b), mutual information is defined as [11]

IAB =
∑

pAB(a, b) log [pAB(a, b)/(pA(a)pB(b)]. (3)

Mutual Information. A higher value of mutual information (MI) indicates
that the fused image contains fairly good quantity of information presented in
both the source images. MI is given by

MI = IAF + IBF . (4)

Information Symmetry. A high value of MI doesn’t imply that the infor-
mation from both the images is symmetrically fused. Therefore, information
symmetry (IS) is introduced [12]. IS is an indication of how much symmetric the
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fused image is, with respect to input images. The higher the value of IS is, the
better the fusion result is. IS is given by

IS = 2 − |IAF /(IAF + IBF ) − 0.5|. (5)

3 Multi-objective Blind Image Fusion

The approach to multi-objective blind image fusion in DWT (Discrete Wavelet
Transform) domain is as follows.

Step 1. Input the source images A and B. Find the DWT of each A and B
to a specified number of decomposition levels, at each level we will have one-
approximation sub band and 3 × J details, where J is the decomposition level.
In general, J is not greater than 3. When J equals 0, the transform result is the
original image and the fusion is performed in spatial domain.

Step 2. For the details in DWT domain, the salient feature is defined as a
local energy in the neighborhood of a coefficient [13].

Sj(x, y) =
∑∑

W 2
j (x+ m, y + n), j = 1, . . . , J. (6)

where Wj(x, y) is the wavelet coefficient at location (x, y), and (m, n) defines a
window of coefficients around the current coefficient. The size of the window is
typically small, e.g. 3 by 3.

The coefficient with larger salient feature is substituted for the fused coefficient
while the less is discarded. The selection mode is implemented as

WF j(x, y) =
{
WAj(x, y), SAj(x, y) ≥ SBj(x, y),
WBj(x, y), otherwise. (7)

where WF j(x, y) is the final fused coefficient in DWT domain, WAj and WBj

are the current coefficients of A and B at level j.
Step 3. For approximations in DWT domain, use weighted factors to calculate

the approximation of the fused image of F . Let CF , CA, and CB be the approx-
imations of F , A, and B respectively, two different fusion rules will be adopted.
One rule called “uniform weight method (UWM)” is given by

CF (x, y) = w1 · CA(x, y) + w2 · CB(x, y). (8)

where the weighted factors of w1 and w2 are the values in the range of [0, 1], and
they are also decision variables.

The other called “adaptive weight method (AWM)” is given by

CF (x, y) = w1(x, y) · CA(x, y) + w2(x, y) · CB(x, y). (9)

where w1(x, y) and w2(x, y) are decision variables.
Step 4. Using AMOPSO-II, we can find the optimal decision variables of blind

image fusion in DWT domain, and achieve the optimal image fusion.
Step 5. The new sets of coefficients are used to performance the inverse trans-

form to get the fused image F .
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4 AMOPSO-II Algorithm

Kennedy and Eberhart brought forward particle swarm optimization (PSO) in-
spired by the choreography of a bird flock in 1995 [14]. PSO has shown a high
convergence speed in single objective optimization [15], and it is also particularly
suitable for multi-objective optimization [7], [8]. In order to improve the perfor-
mances of the algorithm, we make an improvement on AMOPSO-I (adaptive
multi-objective particle swarm optimization) [2] and propose “AMOPSO-II”, in
which not only the adaptive mutation operator and the adaptive inertia weight
is used to raise the search capacities, but also a new crowding distance operator
based on Manhattan distance is used to improve the distribution of nondomi-
nated solutions along the Pareto front and maintain the population diversity.

4.1 AMOPSO-II Flow

The flow of AMOPSO-II algorithm is described in Alg. 1. First the position and
velocity of each particle in the population are initialized, and the nondominated
particles is stored in the repository; second the velocity and position of each
particle are updated, the partly particles mutate and the particles is maintained
within the decision space; third each particle is evaluated and their records and
the repository are updated; then the cycle begins. When the cycle number is
reached, the solutions are output. The functions ofGenerateV el, Nondominated
and AdaptiveMutate can be found in [2].

4.2 Crowding Distance

In order to improve the distribution of nondominated solutions along the Pareto
front, we introduce a concept of crowding distance from NSGA-II [5] that in-
dicates the population density in [2]. When comparing the Pareto optimality

Algorithm 1. AMOPSO-II Alg.
Input : Source Images A, B; Control Parameters p ∈ P .
Output: Fused Image F ; Fusion Weights w ∈ W .
for (all i ∈ NP) do

pop(i) ←− arbitrary; fun(i) ←− Evaluate(pop(i)); pbest(i) ←− pop(i);
vel(i) ←− 0; rep ←− Nondominated(pop(i));

end
while True do

for (all i ∈ NP) do
vel(i) ←− GenerateV el(i); pop(i) ←− pop(i) + vel(i);
pop(i) ←− AdaptiveMutate(pop(i)); Keepin(pop(i), vel(i));
fun(i) ←− Evaluate(pop(i)); pbest(i) ←− Compare(pbest(i), pop(i));
rep ←− Nondominated(pop(i));

end
end
w ←− SelectBest(rep); F ←− Fusion(A, B, w).
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between two individuals, the one with a higher crowding distance (located in
the sparse region) is superior. In [5], the crowding distance is defined as the size
of the largest cuboids enclosing the point i without including any other point in
the population, and it can be acquired through calculating average distance of
two points on either side of point of the objective. However, the definition has
O(mn log n) computational complexity, and may need too much time because of
sorting order. Here we propose a new crowding distance that can be calculated
using the Manhattan distance between the points and the barycentre of their
objectives based on the cluster analysis. It is defined as

Dis[i] =
NF∑
j=1

|fij −Gj |. (10)

where Dis[i] is the distance of particle i, NF is the number of objectives, fij is
objective j of particle i, Gj is the barycentre of all the objectives j.

The new crowding distance is superior to the crowding distance of NSGA-II
[5], for it doesn’t need to sort order and has less computational complexity, and
it is also superior to the grid [3], [7] because the later may fail to allocate memory
when there exist too many objectives.

5 Experiments

The performances of the proposed blind image fusion approach are tested and
compared with that of different fusion schemes. The source images of A and B
are shown in Fig. 1(a) and Fig. 1(b), where the background of A is fuzzy, and
the foreground of B is fuzzy, the entropy is 7.1708 and the gradient is 5.7938
in A, the entropy is 7.2010 and the gradient is 7.3697 in B. Use AMOPSO to
search the Pareto optimal weights of the multi-objective blind image fusion and
compare the results with those from MOPSO and AMOPSO-I.

The parameters of AMOPSO-II are as follow: the particle number of NP is
100; the objective number of NF is 4; the inertia weight of Wmax is 1.2, and
Wmin is 0.2; the learning factor of c1 is 1, and c2 is 1; the maximum cycle
number of Gmax is 100; the allowed maximum capacity of the repository is 100;
the mutation probability of pm is 0.05. The parameters of MOPSO are the same,
while the inertia weight of W is 0.4, the grid number of Ndiv is 20, for a greater
number may cause the failure of program execution, e.g. 30. The sum of the
weights at each position of two source images is limited to 1. All approaches are
run for a maximum of 100 evaluations.

Since the solutions to the optimization of image fusion are nondominated by
one another, we give preference to the four indices so as to select the Pareto
optimal solutions to compare, e.g. one order of preference is Entropy, MI, Gra-
dient, IS, for Entropy can effectively evaluate the change of information in the
fused image.

The optimal fused image from the Pareto optimal solutions is shown in Fig. 1(c).
Table 1 shows the evaluation indices of the fused images from different schemes,
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(a) Source image A (b) Source image B (c) Fused image

Fig. 1. Source and Fused Images

Table 1. Evaluation Indices of the Fused Images from Different Schemes

Schemes Level Entropy Gradient MI IS Time (s)

UMW 0 7.5296 6.2450 30.8142 1.9992 156.15
AWM 0 7.5269 6.5097 30.9979 1.9994 1962.05
UMW 3 7.5328 7.1679 30.6743 1.9991 295.08
MOPSO 3 7.5366 7.1917 30.7912 1.9994 233.31
AWM I 3 7.5361 7.1798 30.7600 1.9992 282.48
AWM II 3 7.5424 7.2153 30.7926 1.9998 216.42

where AWM I denotes AWM based on AMOPSO-I, AWM II denotes AWM based
on AMOPSO-II, MOPSO denotes AWM based on MOPSO.

From Table 1, we can see that when the decomposition level equals 0 in DWT
domain, which is in spatial domain, the indices of AWM is inferior to those of
UWM. The reason is that the run time of AWM must increase with the number
of decision variables, so AWM can only be regarded as an ideal method of image
fusion in spatial domain. In DWT domain, the indices of AWM at level 3 are
superior to those of AWM at other levels. The higher the decomposition level
is, the better the fused image is. Moreover, the indices of AWM are superior to
those of UWM because the weights of AWM are adaptive in different regions. The
indices of AWM I and MOPSO are inferior to those of AWM II at level 3, which
indicates that MOPSO needs too much memory for too many objectives, e.g. 4,
and the new crowding distance can increase the running speed and achieve better
solutions, Therefore, the approach to blind image fusion that uses AMOPSO-II
to search the adaptive fusion weights at level 3 in DWT domain is the optimal.

6 Conclusion

The approach to multi-objective blind image fusion is reasonably feasible which
can get the Pareto optimal fusion results without the reference image and sim-
plify the algorithm design for image fusion. AMOPSO-II proposed is an effective
algorithm and can also be applied to solve other multi-objective problems.
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One aspect that we would like to explore in the future is the analysis for the
evaluation indices system using PCA (Principal Component Analysis) to acquire
a meaningful measurement. This would improve the performance of blind image
fusion. The other is to study the applications of the optimization algorithm in
color and multi-resolution fusion images with other methods.
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Abstract. The paper proposes a new software design method of biopath-
way’s modeling and simulation application. In order for the software tool
can be used by biologists easily and intuitively, we use Petri net and
Stochastic Petri net to model biopathway, combining corresponding al-
gorithms then can do deterministic and stochastic simulation, add the
function that Petri net handle string, thus users can model biopathway
such as transcription and translation more effectively. We introduce how
to model and simulate biopathway with it in detail, it will be accepted
by biologist quickly and used widely.

Keywords: Petri net, Stochastic Petri net, modelling and simulation,
biopathway.

1 Introduction

In the post-genome era, The processing of biology information is one of the
most important research fields, through analyzing the biological function, gene,
proteins, RNA and small molecules rarely work solely, therefore, we should un-
derstand how genes and proteins work collectively, biologists need effective tool
to analyze them.

Biopathway itself has deterministic and stochastic characteristic. The valid-
ity of modeling biopathway using deterministic rate law have been validated,
however, there are discrete stochastic collision in chemical reactions, So both
deterministic and stochastic simulation are important.

Although there have been existed some applications, each has its advantages
and disadvantages, through analyzing them, we propose the new design method
to match the quickly development of system biology. In the paper, we first com-
pare the exist tools and propose our idea; second, introduce knowledge of Petri
net and how to modelling and simulating biopathway with Petri net and stochas-
tic Petri net in detail; then explain the function that Petri net handle string; at
last, summarize the advantages of our design method.
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2 Research Status

Because of the complexity and importance of modeling biopathway, there are
several software packages, we have selected five recent well-known applications,
Cell Illustrator, E-Cell, Copasi, Möbius and SBW summarized in Table 1.

Table 1. Comparison of Some Simulators

Tools Cell Illustrator Copasi E-Cell Möbius SBW

Algorithm
HFPN ODE

ODE/
SAN

ODE/
/method GD/ GB GD/ GB

In/output language CSML SBML EML C file SBML
Graphic Editor Yes No No Yes Yes
Script Language Yes(Pnuts) No Yes(python) No No
Commercialized Yes No No Yes No

Operating System W/L/U/M S/W/L/M L/W L/W L/F/W
Programming language Java C++ C++ Java/C++ C/C++

W-Windows, L-Linux, U-Unix, M-Mac OS X, S-Solaris, F-FreeBSD, GD-Gillespie
Algorithm [1], GB- Gillespie Gibson Algorithm [2].

With Cell Illustrator[3] users can create models and simulations combining
both their biological expertise and biopathways that can be automatically recon-
structed from biopathway databases such as KEGG [4]; Copasi [5] is a software
system for modelling chemical and biochemical reaction networks, Users need to
construct corresponding ordinary differential equation(ODE) according to chem-
ical reactions; E-Cell [6] is a generic software package developed for whole cell
modeling and simulation; Möbius [7] is a software tool for modeling the behavior
of discrete-event systems. The goal of the Systems Biology Workbench (SBW)
[8] project is to create an open-source, integrated software environment for sys-
tems biology that enables sharing models and resources between simulation and
analysis tools.

3 Model Biopathway with Petri Net

3.1 Advantages of Petri Net

Petri net [9] is a mathematical model for representation and analysis of con-
current processes. There were ODE form for modeling and simulating chemical
reactions, but due to poor GUI interfaces the applications are not acceptable.
To overcome this, models based on Petri net should be suitable because of their
intuitive graphical representation and the capabilities for mathematical analysis
[10]. At the same time, we can model deterministic or stochastic chemical reac-
tions with Petri net or stochastic Petri net respectively, combined corresponding
algorithms, thus can simulate biopathway effectively.
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3.2 Key Conception

A Petri Net [9] consists of places and transitions. Each place represents a distinct
molecular species, Places contain tokens which represent individual molecules,
Transitions represent chemical reactions. They are connected with places through
arcs, Input places represent reactants and output places represent products of the
reaction, Each arc has a weight which represents the stoichiometric coefficients
of the molecular species that participate in the reaction, the model constructed
with Petri net as Fig. 1.

p1 p2

p3

t1

t2

t3

Fig. 1. Modelling A Simple Biological Process with Petri Net

3.3 Deterministic Simulation

The fundamental empirical law governing reaction rates in biochemistry is the
law of mass action [11]. The reaction rate will be proportional to the concentra-
tions of the individual reactants. For example, given the simple Michaelis-Menten
reaction

S + E
k1

k−1

C
k2

E + P. (1)

The rate of production of complex C would be

dC+

dt
= k1SE. (2)

And the rate of destruction of C would be
dC−
dt

= k−1C + k2C. (3)

Combining the terms gives an expression for the rate of change of concentration
of C

dC

dt
=

dC+

dt
+

dC−
dt

= k1SE − (k−1 + k2)C. (4)

v =
Vmax.[S]
[S] + Km

. (5)

Where [S] is the substrate concentration, Vmax is the maximal velocity of the
reaction and Km is the Michaelis constant. The Petri net model as Fig. 2.

Using this law, similar expressions for the rate change of concentration of each
of the molecules can be built. Hence, we can express any chemical system as a
collection of non-linear differential equations, and we can easily express ODE
with Petri net.
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2.1: Modeling Michaelis-Menten re-
action with Petri net
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2.2: the concentration change of the
Product P

Fig. 2. Using Petri Net to Represent Michaelis-Menten Reaction

3.4 Stochastic Simulation

In a stochastic Petri net(SPN), each transition has an associated rate. If the
transition is enabled, in all of its input places there are at least as much tokens
as specified by the weight of the corresponding arc, then the transition fires with
an exponentially distributed delay. The SPN can be simulated by computing
the delay for each enabled transition and by executing the transition with the
smallest delay.

Below is the model constructed with stochastic Petri net as Fig. 3, which
contains a single copy of a gene, which is initially inactive, but may be sequencely
active or inactive. Protein may be produced when the gene is active[12].

Fig. 3. The Process from Gene to Protein Represented by Stochastic Petri Net[12]

One important simulation algorithm is developed by Gillespie [1], The way
to simulate model corresponds to SPN[13], and the algorithm includes Direct
reaction method and First Reaction method, which have exact procedure for
numerically simulating the time evolution of the chemical reaction system, the
chemical populations are altered according to the stoichiometry of the reaction
and the process is repeated. Gibson proposed the Next Reaction Method[2], an
improvement of First Reaction Method, which uses only one Random number per
iteration compared to the M(number of total reactions) random numbers in the
First Reaction Method, using the algorithm not only can avoid the combinatorial
exploding of Petri net, but also obtain better simulation speed.

3.5 How to Handle String with Petri Net in Cell Illustrator

In the original Petri net, the transcription and translation cannot be modeled
with sequence level but only be modeled with the number as in Fig. 4.1. However,
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m4

m3t1

Transcription

RNApolymerase
70

a2

a1
mRNA

4.1: Petri net just handle numbers

m1

m2

m3t1

m4DAN sequence
GAAAATTGCTTTCAT

Translation State
AUGAAAGC

RNApolymerase
70

mRNA

Transcriptiona3

a1

a4

a2

4.2: The extension of Petri net handle string

Fig. 4. Transcription Model with Original Petri Net and Improved Petri Net

with the extended features of the original Petri net in Cell Illustrator, transcrip-
tions and translations can be easily modeled with mRNA and DNA sequence
level as Fig. 4.2[14].

4 Conclusion

The modeling and simulation tool we designed have these advantages as follows:
First, have standard graphical interface, the biologists needn’t know too much

mathematical knowledge, just use biological knowledge to model what they want;
Second, both deterministic and stochastic simulation were implemented, users
can select the most appropriate method according to the characteristic of the
biopathway itself; Third, because major parts in a cell contain information sim-
ilar to strings such as DNA sequences, add the function that Petri net handle
string, thus users can model biopathway such as transcription and translation
more effectively.

Above all, we believe that this tool can be accepted by users quickly and
used widely. In the near future, we will make the modeling and simulation more
efficiently by improving the algorithms.
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Abstract. To extend object Petri nets (OPN) for modeling and ana-
lyzing complex time critical systems, this paper proposes a high-level
Petri net called timed hierarchical object-oriented Petri net (TOPN). In
TOPN, a duration is attached to each object accounting for the mini-
mal and maximal amount of time between which that the behavior of
the object can be completed once fired. On the other hand, the problem
of the state analysis of TOPN models is also addressed, which makes
it possible to judge the model consistency at a given moment of time.
In particular, a new way is investigated to represent and deal with the
objects with temporal knowledge. Finally, the proposed TOPN is used
to model and analyze a real decision making module in one cooperative
multiple robot system to demonstrate its effectiveness.

Keywords: Petri nets, Object-oriented methods, temporal knowledge.

1 Introduction

Characterized as concurrent, asynchronous, distributed, parallel, nondeterminis-
tic, and stochastic [1,2], Petri nets (PN) have gained more and more applications
these years. Basic Petri nets lack temporal knowledge description, so they have
failed to describe the temporal constraints in time critical or time dependent sys-
tems. Then in the improved models of Petri nets such as Timed (or Time) Petri
nets (TPN) [3,4] etc al, temporal knowledge has been introduced, which has in-
creased not only the modeling power but also the model complexity [5]. On the
other hand, when Petri nets are used to analyze and model practical systems in
different fields, models may be too complex to be analyzed. These years, object-
oriented concepts have been introduced into Petri nets. HOONet [6,7] is one of

� This work is jointly supported by the National Nature Science Foundation (Grant
No: 60405011, 60575057), China Postdoctoral Science Fund (Grant No: 20040350078)
and the National 863 Program(Grant No: 2003AA4Z5000).
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the typical object-oriented (OO) Petri nets (OPN), which is suggested on the
base of colored Petri Net (CPN) [8] and support all OO concepts. Although the
results of OPN studies have shown promise, these nets do not fully support time
critical (time dependent) system modeling and analysis, which may be complex,
midsize or even small. When time critical systems with any sizes are modeled,
it requires formal modeling and analysis method support temporal description
and OO concepts. That is to say, TPN and OPN need to be combined.

This paper formally proposes timed hierarchical object-oriented Petri net
(TOPN)— a high-level Petri net that supports temporal description and OO
concepts. Modeling features in TOPN support abstracting complex systems, so
the corresponding models can be simplified effectively. On the base of Yao’s ex-
tend state graph (ESG) [3], TOPN extended state graph (TESG) is presented
for incremental reachability analysis for temporal behavior analysis. We apply
TOPN to model and analyze a real example system in order to demonstrate its
effectiveness.

This paper is organized as the following. In Section 2, formal definitions and
behavioral semantics of TOPN are presented on the base of HOONet [6,7] and
TPN[3]. Then, its reachability analysis method is explained in Section 3. In
section 4, TOPN is used to model and analyze the decision module of one co-
operative multiple robot system. Section 5 concludes our paper and suggests
further research issues.

2 Basic Concepts

2.1 Timed Hierarchical Object-Oriented Petri Net

A TOPN model is a variant HOONet [6,7] representation that corresponds to
the class with temporal property in OO paradigm.

O IP

ION

DD

[a ,ß]OIP

ION

 

 

    

    

Fig. 1. The General Structure of TOPN

Definition 1. TOPN is a four-tuple: TOPN= (OIP, ION, DD, SI), where:
1)OIP and DD is similar to those in HOONet [6,7].
2)ION is the internal net structure of TOPN to be defined in the following. It

is a variant CPN [8] that describes the changes in the values of attributes and
the behaviors of methods in TOPN.

3)SI is a static time interval binding function, SI: OIP→Q*, where Q* is a set
of time intervals. �
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 B asic P lace Abstract P lace Common Transition Communication Transition  Abstr act Tr ansition

[a TABP,ßT AB P] [a T,ß T] [a TC OT ,ß TC OT] [a T AB T ,ßT AB T]

Fig. 2. Places and Transitions in TOPN

The general structure of TOPN is shown in Fig.1. Objects in TOPN own be-
havior properties. So not only transitions, but also all TOPN objects including
abstract places, etc al, need to be restricted by time condition. The temporal
knowledge in TOPN is represented as time intervals [s, t], where s is the earli-
est firing time (EFT) and t is the latest firing time (LFT). Similar to HOONet
[6,7], TOPN is also a kind of hierarchical net or object. Its realizing details are
depicted in ION, which may also be a TOPN object.

Definition 2. An internal object net structure of TOPN, ION = (P,T,A,K,N,G,
E,F,M0)

1) P and T are finite sets of places and transitions with time restricting
conditions attached respectively.

2) A, K, N, G, E, F and M0 are similar to those in HOONet and CPN. �

Similar to common OPNs, basic OPN components and additional restricting con-
ditions are included in the detailed ION structure. The basic OPN components
may include common components (transition and place) and abstract compo-
nents. If the model needs to be analyzed in details, the abstract components in
ION should be refined. At the same time, the ION is unfolded.

Definition 3. A set of places in TOPN is defined as P=PIP
⋃
TABP , where

1)PIP is the set of primitive places similar to those in PNs[1, 2].
2)Timed abstract place (TABP) is a four-tuple: TABP= TABP(pnT ABP , re-

fine stateT ABP , actionT ABP , SIT ABP ), where
a)pnT ABP , refine stateT ABP , and actionT ABP are similar to those in

HOONet [6,7].
b)SIT ABP is also a static time interval binding function from a set of TABPs

to a set of static time intervals. �

Abstract places are also associated with a static time interval. For representing
not only firing conditions but also the objects with behaviors.

Definition 4. A set of transitions in TOPN can be defined as T= TPIT
⋃

TABT
⋃
TCOT , where

1)Timed primitive transition TPIT = TPIT (BAT, SIT P IT ), where
a)BAT is the set of common transitions.
b)SIT P IT is a static time interval binding function, SI: TCOT→Q*, where

Q* is a set of time intervals.
2)Timed abstract transition TABT= TABT (tnT ABT , refine stateT ABT ,

actionT ABT , SIT ABT ), where
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a)tnT ABT , refine stateT ABT , and actionT ABT are similar to those in
HOONet[6,7].

b)SIT ABT is a static time interval binding function, SI:TCOT→Q*.
3)Timed communication transition TCOT=TCOT(TnT COT , targetTCOT ,

comm typeT COT , actionT COT , SIT COT ).
a)TnT COT is the name of TCOT.
b)targetT COT is a flag variable denoting whether the behavior of this TCOT

has been modeled or not. If targetT COT =”Yes”, it has been modeled. Otherwise,
if targetT COT =”No”, it has not been modeled yet.

c)comm typeT COT is a flag variable denoting the communication type. If
comm typeT COT =”SYNC”, then the communication transition is synchronous
one. Otherwise, if comm typeT COT =”ASYN”, it is an asynchronous communi-
cation transition.

d)actionT COT is the static reaction imitating the internal behavior of this
TCOT.

e)SIT COT is a static time interval binding function, SI: TCOT→Q*. �

Just like those in HOONet, there are three kinds of transitions in TOPN: timed
primitive transition, timed abstract transition and timed communication tran-
sition depicted in Fig.2.

Similar to HOONet, TOPN can be used to model systems hierarchically and
can be analyzed in different layers according to the requirments, even if the
detailed realization in lower layers have not been completed yet.

2.2 Execution Paths in TOPN

In TOPN, when one TABP is marked by enough hollow tokens compared with
the weight of internal arcs in its refined TOPN, it is also enabled at this time.
After its internal behaviors have completed, the color of tokens residing in it
becomes from hollow to solid. TABPs also manifest actions in TOPN.

Definition 5. In TOPN, if the state Mn is reachable from the initial state M0,
then there exists a sequence of marked abstract places and fired transitions from
M0 to Mn. This sequence is called a path or a schedule ω from M0 to Mn. It
can be represented as:Path = {PA1,PA2,. . .,PAn} or ω= {PA1,PA2,. . .,PAn},
where PAi∈T∪TABP; 1≤i≤n. �

Definition 6. Let t be a TOPN transition and {PA1,PA2,,PAn} be a path,
adding ti into the path is expressed as {PA1,PA2, ,PAn }�ti={PA1,PA2,. . .,
PAn,ti}. Let p be a TABP and {PA1,PA2,. . .,PAn} be a path, adding p into
the path is expressed as {PA1,PA2, ,PAn }�p={PA1,PA2,. . .,PAn,p}, where
PAi∈T∪TABP and 1≤i≤n. �

Definition 7. For a TOPN N with schedule ω, we denote the state reached
by starting in N’s initial state and firing each transition in ω at its associated
time φ(N,ω). The time of φ(N,ω) is the global firing time of the last transition
in ω. �
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When the relative time belongs to the time interval attached to the transition
or the TABP and the corresponding object is also enabled, then it can be fired.
If a transition has been fired, the marking may change like that in PN [1, 2].
If a TABP is fired, then the hollow token(s) change into solid token(s), and
the tokens still reside in the primary place. At this time, the new relative time
intervals of every object are calculated like those in [3].

2.3 Enabling Rules and Firing Rule

The dynamic behavior can be studied by analyzing the distribution of tokens
(markings) in TOPN. The TOPN enabling rule and firing rule are described like
the following:

Enabling Rule:
(1)A transition t in TOPN is said to be enabled if each input place p of t

contains at least the number of solid tokens equal to the weight of the directed
arcs connecting p to t: M(p)≥I(t, p) for any p in P, the same as in PN[1, 2].

(2)If the place is TABP, it will be marked with a hollow token and TABP
is enabled. At this time, the ION of the TABP is enabled. After the ION is
executed, the tokens in TABP are changed into solid ones. �

Firing Rule:
(1) For a transition:
a. An enabled transition in TOPN may or may not fire depending on the

additional interpretation [3], and
b. The relative time θ, relative to the absolute enabling time , is not smaller

than the earliest firing time (EFT) of transition ti, and not greater than the
smallest of the latest firing time (LFT) of all the transitions enabled by marking
M: EFT of ti≤θ≤min(LFT of tk) where k ranges over the set of transitions
enabled by M. c. After a transition ti (common one or abstract one) in TOPN is
fired at a time θ, TOPN changes to a new state. The new states can be computed
as the following: The new marking M’ (token distributions) can be computed as
the following:
If the output place of ti is TABP,
then M’(p)= attach (*, (M(p)-I(ti,p)+O(ti,p)));
else M’(p)=M(p)-I(ti,p)+O(ti,p);

The symbol ”*” attached to markings represents as hollow tokens in TABP.
The computation of the new firing interval I’ is the same as those in [3], as
I’=(max(0,EFTk-θk) , (LFTk-θk)) where EFTk and LFTk represents the lower
and upper bound of interval in I corresponding to tk in TOPN, respectively. The
new path can be computed as path’=path+ti .

(2) For a TABP
a.The relative time θ should satisfy the following conditions:
b.EFT of ti ≤ θ ≤ min (LFT of tk) , where tk belongs to the place and

transition which have been enabled by M.
c.After a TABP p in TOPN is executed at a time θ, TOPN states change.

The new marking can be computed as the following.
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The new markings are changed for the corresponding TABP p, as M’(p)=
Remove-Attach(*, M(p)) The symbol ”*” is removed from the marking of TABP.
Then the marking is the same as those of common places.

1)The token in TABP changes into solid ones represents that the internal
actions of TABP have been finished.

2)To compute the new time intervals is the same as that mentioned above.
The new path can be decided by path’=path�p. �

3 Reachability Analysis

On the base of Yao’s extended state graph (ESG)[3], an extended TOPN state
graph (TESG) has been presented to analyze TOPN models. In TESG, an ex-
tended state representation ”ES” is 3-tuple, where ES=(M, I, path) consisting of
a marking M, a firing interval vector I and an execution path. According to the
initial marking M0 and the firing rules mentioned above, the following marking
at any time can be calculated. The vector—”I” is composed of the temporal
intervals of enabled transitions and TABPs, which are to be fired in the follow-
ing state. The dimension of I equals to the number of enabled transitions and
TABPs at the current state. The firing interval of every enabled transition or
TABP can be got according to the formula of I’.

Definition 8. A TOPN extended state graph (TESG) is a directed graph. In
TESG, the initial node represents the TOPN model initial state. Arcs denote
the events to change model states. There are two kinds of arcs from one state
ES to another state ES’ in TESG.

1)The state change from ES to ES’ stems from the firing of the transition ti.
Correspondingly, there is a directed arc from ES to ES’, which is marked by ti.

2)If the internal behavior of the TABP-”pi” makes the TOPN model state
change from ES to ES’, then in TESG there is also a directed arc from ES to
ES’. It is marked by pi. �

The TESG of one TOPN model can be constructed by the following steps:
Step 1) Use the initial state ES1 as the beginning node of TESG, where

ES1=(M0, [0,0],φ).
Step 2) Mark the initial state ”New”.
Step 3) While (there exist nodes marked with ”new”) do

Step 3.1) Choose a state marked with ”new”.
Step 3.2) According to the enabling rule, find the enabled TOPN objects at

the current state and mark them ”enabled”.
Step 3.3) While (there exist objects marked with ”enabled”) do

Step 3.3.1) Choose an object marked with ”enabled”.
Step 3.3.2) Fire this object and get the new state ES2.
Step 3.3.3) Mark the fired object ”fired” and mark the new state ES2

”new”.
Step 3.3.4) Draw a directed arc from the current state ES1 to the new state

ES2 and mark the arc with name of the fired object and relative firing temporal
constraint.
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Step 3.4) Mark the state ES1 with ”old”. �

TESG describes state changes in TOPN models. TESG constructing procedure
is also a TOPN model reachability analysis procedure. Similar to the TPN state
analysis, its consistency determination theorem [3] can be used to judge the
consistency of TOPN models according to TESG. The theorem can be referenced
to Yao’s paper [3].

4 An Application Example

In distributed cooperative multiple robot systems (CMRS), every robot makes
control decisions according to the information: other robot states, its own states
and task assignment. The decision making procedure can be divided into 3 main
phases. Firstly, the above information is collected which may include different
detailed information. As the information may not be available simulataneously,
the temporal constraint about the conduction is needed. This collection proce-
dure should be completed in 50 unit time. Secondly, information fusion is used
to make control decisions, which will require 50 unit time. Thirdly, control in-
formation is transferred to other system modules, which will need 50 unit time.
Considering decision conditions and temporal constraints, the CMRS decision
TOPN model and its TESG are depicted in Fig.3 and Fig.4 respectively. From
the TESG, the design logical errors can be excluded. According to the Yao’s con-
sistency judging theorem and the TESG, the TOPN model in Fig.3 is consistent.

P 1

 

 

 

 

 

 

 

 

t1

t2

t 3

t4

t5

[ 0,0 ]

[ 0, 0]
[ a,b ]

[ a,b ]

[a, b]

V ar + C T  = b o o le an ;  /*  Tra nsf erri ng  Ta g  * /
/* C T  is set  to  "T"  in  th e
tr an s itio n -- "Da taF u s io n " * /
V ar + Tim e= In t eg e r; / *  C u rr en t  R el at iv e T ime* /
T T C  = wit h  h o ll o w  | so lid ;
T C O T (C o m Tr an s f)= {
F u n( C T = = F ?  ( a=T im e=b ) ):
   C o mT ran sf ( ) ?  C T= F ?  M ar k (p 1,C );
};
/*  M ark (P,C ): Ma rk  th e p la ce P wi th  C ? * /
T AB T (S tat eC o l)= {
F u n( C T = =  F ?  (a= Tim e= b)):
  Ow nSt ate C o l()?  M (p 5 ,C );
   };
/*  M (P,C ): Ma rk  th e  p la ce P w ith  C ? * /
M ark (Pl ace ,C ) ={
   Fu n (P lac e is  a T AB P ?  (a p =T ime= ß p)):
       OIP (Pl ace ) ?  M (Pl ace ,C ) ;
   Fu n (P lac e is  no t in  N .TA B P ): M(P l ac e, C );
}; /* m ark  d i ffer en t  p l aces * /

Fig. 3. The TOPN Model

M1 :P 1
l1 :t1 [0 ,0 ]
p at h1

M 2:P 2
l2: t2 [ 0, 50 ]
Pa th 2 :p 1

M 3 :P 3
l3 :t 3 [ 0, 50 ]
P at h 3:p1 ,p 2

M 4 :P 4
l4 :t 4[ 0,50 ] , t 5[ 0,50 ]
P at h4 :p 1 ,p 2, p3

M 5 :P 1
l5 :[ 0, 0]
P at h5 :p 1 ,p 2, p3 ,p 4

t 1:?=[0 ,0 ]
t2 :? =[ 0,50 ] t 3:?=[0 ,5 0 ]

t 4:?=[0 ,5 0 ]

t5 :? =[ 0,50 ]

Fig. 4. The TESG of the Decision Model
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5 Conclusions and Future Work

This paper proposes timed hierarchical object-oriented Petri net for modeling
complex time critical systems and analyzing states. It is on the base if the follow-
ing work: Hong’s hierarchical object-oriented Petri net (HOONet) [6,7], Marlin’s
timed Petri net [4] and Yao’s extended state graph [3].

With the introduction of temporal knowledge in TOPN, the temporal con-
straints need to be considered in state analysis. A state analysis method—
”TOPN extended state graph (TESG)” for TOPN has also been presented in
this paper. Not only state analysis, but also consistency can be analyzed by
means of TESG. On the other hand, TOPN can model complex time critical
systems hierarchically. So analysis of properties and state change becomes much
easier. A decision making example modeled by TOPN has been used to illustrate
the usefulness of TOPN.

In the future, temporal reasoning and TOPN reduction rules will be studied,
which can be used to refine and abstract TOPN models with preserving timing
property.
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Abstract. Within multi-agent systems, it is almost impossible for mul-
tiple Web agents to completely share a same vocabulary. This makes
multi-agent communication difficult. In this paper, we proposed an ap-
proach for better multi-agent communication using approximation tech-
nology of semantic terminology across multiple ontolgies. This method
uses description logic language for describing ontological information and
perform approximate query across multiple ontologies.

Keywords: Ontology, multi-agent system, description logic.

1 Introduction

Ontologies play a key role in communication among different agents because
they can provide and define a shared vocabulary about a definition of the world
and terms used in agent communication. Within Semantic Web, Web agents will
not be realized by agreeing on a single global ontology, but rather by weaving
together a large collection of partial ontologies that are distributed across the
Web [1]. Web agents will often use private ontologies that define terms in different
ways making it impossible for the other agent to understand the contents of
a message [2]. There are seldom exact terminological correspondences between
heterogeneous ontologies. Consequently, it is difficult for ontological engineers to
find out exact mappings between terminologies of these distributed ontologies.
In order to address non-exact terminology match problem above, we propose a
method of terminological approximation. We use description logic for describing
ontology because description logic [3] is regarded as an ideal ontology language
candidate [4]. We formally specify the mappings between distributed ontologies.
We introduce the concepts of upper bound (UB) and lower bound (LB) for
ontological terminology approximation. Through terminological approximation,
a query terminology can be replaced by another one that is most approximate
to the query terminology.

This paper is organized as follows: In section 2 and 3, we give formal represen-
tations of local distributed ontologies and mappings between these ontologies.
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Section 4 discusses approximation of classes. Section 5 uses terminological re-
placements for approximation of classes.In section 6, we discussed quality of
semantic queries and related work based on our method. Section 7 conclusion.

2 Representations of Local Ontologies

Definition 1. The set of atomic classes is denoted as AC, the set of properties
is denoted as P, and the set of complex classes is denoted as C. Complex classes
are constructed by some different class constructors, C includes some elements
as follows:

— C, where C ∈AC
— C $ D, C % D, ∃P.C, ∀P.C, ¬C, ≥ nP.C, ≤ nP.C

where C, D ∈C, P ∈P

Definition 2. An ontology O is a tuple, and O=(C, P, A), where
— C is the set of classes in ontology O
— P is the set of properties in ontology O
— A is the set of axioms of the form as follows:

— C 5 D, P 5 R, C 5 D, where C, D ∈C, and P, R ∈P
— C(a), P (a, b), where C ∈C, P ∈P, a, b ∈L, where L is a non-empty

set consisting of individual objects and literals.

Definition 3. The semantic representation of ontology O=(C, P, A) is defined
based on an interpretation I=〈L, ·I〉, where L is the non-empty set consisting
of individual objects and literal, and ·I is the interpretation function. Function
·I maps C ∈C into a set CI ∈L, and P ∈P into P I ∈ L×L. The axiom set A
must be ensured to keep consistent. A is consistent iff there exists a model I of
A; I is an interpretation of A iff for every axiom R ∈A, I |=R. A|=R iff for
every interpretation I of A such that I |=R.

3 Mappings Between Local Ontologies

Definition 4. The mapping specification from ontological Oi to ontology Oj is
expressed as a tuple M ij=(Oi, Oj , MAij), where :

— Oi=(Ci, P i, Ai) is the source ontology representation
— Oj=(Cj, P j , Aj) is the target ontology representation
— MAij is the axiom set of the form as follows:

— Ci 5 Cj , Ci 5 ¬Cj , Cj 5 Ci,Cj 5 ¬Ci, Ci ≡ Cj , where Ci ∈ Ci,
and Cj ∈ Cj

— P i 5 P j, P j 5 P i, P i ≡ P j, where P i ∈ Pi, P j ∈ Pj

In MAij , A ≡ B iff A 5 B and B 5 A. A ≡ B indicates that the terms A and
B are exactly matched. The axiom set of MAij also must be consistent.

Definition 5. Two local ontologies are Oi=(Ci, P i, Ai) and Oj=(Cj, P j , Aj).
Their mapping specification is M ij=(Oi, Oj , MAij). Then the shared ontology
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SharedOnto=(Csh, Psh, Ash), where Csh, Psh, Ash are the class set, property
set, and axioms set of SharedOnto, respectively. And

— For any concept C in Ash, C ∈ Csh, where C ∈ Ci or C ∈ Cj

— For any P in Ash, P ∈ Psh, where P ∈ Pi or P ∈ Pj

— Ash=AS ∪ MAij , where AS⊆Ai ∪ Aj

According to definition 5, we say that the shared ontology SharedOnto is called
the least shared ontology iff SharedOnto=(Csh, Psh, MAij).

Ontology mappings are used for achieving information sharing and interoper-
ability. Users can obtain the information that they need indeed by performing
semantic queries.

Definition 6. A semantic query is denoted as Q=QC ∧QP , where
— QC is a first order expression consisting of C(x), where C ∈ ∪i∈ICi,

and x ∈ ∪i∈IC
i ∪ V

— QP is a first order expression consisting of P (x, y), where P ∈ ∪i∈IPi,
and x, y ∈ ∪i∈IPi ∪ V

where V is the set of variables contained in the query Q.

The results of Q are denoted as ANS(Q).
ANS(Q(v1, v2, · · · , vn))={ (a1, a2, · · · , an) | (a1, a2, · · · , an)=δ(v1, v2, · · · , vn)

such that Q(a1, a2, · · · , an) is satisfiable, where (a1, a2, · · · , an)∈×i∈I (∪i∈IL
i),

and (v1, v2, · · · , vn)∈×i∈I ((∪i∈IL
i)∪V)}.

Definition 7. ANS(Q) ⊆ ANS(Q′) iff Q 5 Q′.

Example 1. In the followings, through a specific business example, we illustrate
the presentations of local ontologies and mappings between them. Local ontolo-
gies and mappings between them in the example are represented as follows:

Web agent 1 owns ontology O1=(C1, P 1, A1), where
C1={ SoftwareCompany, Staff, Device Maintenance, Programmer, Manager,
ComputerFittings, Indentifier}
P 1={ subClasssOf, Maintain, Indentifiable, Own}
A1={DeviceMaintenance5SoftwareCompany, Programmer5Staff, Manager5
Staff}

Web agent 2 owns ontology O2=(C2, P 2, A2), where
C2={ElectronicCompany, SaleDepart., Hardware, CPU, Memory, Peripheral
Eqipment, Barcode, Manufacturer}
P 2={subClasssOf, Sale, Maker, ID}
A2={SaleDepart5ElectronicCompany, CPU5Hardware, Memory5Hardware,
PeripheralEquipment5Hardware}

The mappings between the two ontologies M12=(O1, O2, MA12). The map-
ping axiom set MA12={ComputerFittings1 5 Hardware2, CPU2 5
ComputerFittings1, Memery2 5 ComputerFittings1, PeripheralEquipment2 5
ComputerFittings1}.

After constructing local ontology representations and mappings, we try to per-
form given semantic queries. But we find that such semantic queries probably
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cannot match to their exactly corresponding terminologies. For example, through
agent 1, we want to query some computer fittings manufactured by ’IBM’. For-
mally, the query can be represented as: ComputerFittings1(x)∧Maker2(IBM,x).
However, we find that agent 1 doesn’t know the term ’Maker’. In the situation,
it must coordinate with agent 2 for performing this task because agent 2 knows
the term. Another question is that, in the ontology owned by agent 2, there is no
terminologies which can exactly match the term ’ComputerFittings’. Therefore,
we adopt approximate technologies for tacking these problems. The followings
will work towards this goal.

4 Query Approximation

Assume that there are two agents in multi agent system. The shared ontology is
constructed according to section 4, denoted SharedOnto=(Csh, Psh, MAij).

Definition 8. Let C ∈ Csh. The concept Clb ∈ Csh is the lower bounds of C if
1) Clb 5 C and 2) there doesn’t exist any concept C′ ∈ Csh such that C′ 5 C
and Clb 5 C′.

Let lbSharedOnto(C) denote the set of all lower bounds of concept C in
SharedOnto.

Definition 9. Let C ∈ Csh. The concept Cub ∈ Csh is upper bounds of C if 1)
C 5 Cub and 2) there doesn’t exist the concept C′ ∈ Csh such that C 5 C′ and
C′ 5 Cub.

Let ubSharedOnto(C) denote the set of all upper bounds of concept C in
SharedOnto.

Example 2. From the example 1, according to the definitions 8 and 9, we can
find:
lbSharedOnto(ComputerFittings1) = {CPU2, Memory2, PeripheralEquipment2},
ubSharedOnto(ComputerFittings1)={Hardware2}.

Theorem 1. Let C be the set of concepts of SharedOnto, and x is an instance
of a concept of Csh. For any C ∈ Csh,
xI ∈ CI , if x : (

∨
C′∈lbSharedOnto(C) C′)

xI /∈ CI , if x : ¬(
∧

C′∈ubSharedOnto(C) C′)

Proof. (1) We first proof that xI ∈ CI if x : (
∨

C′∈lbSharedOnto(C) C′). Because x :
(
∨

C′∈lbSharedOnto(C) C′), we know that x is an instance of lower bounds of concept
C. According to the definition 8 about lower bounds, any concept belongs to
lower bounds of concept C is always subsumed by concept C. Therefore, all
instances of such concepts will be contained in concept C. We get the conclusion
that x : C, i.e., xI ∈ CI .

(2) Then we proof that, xI /∈ CI , if x : ¬(
∧

C′∈ubSharedOnto(C) C′). Because
x : ¬(

∧
C′∈ubSharedOnto(C) C′), we know that x is not instance of any upper bounds

of concept C. According to definition 9 related to upper bounds, any concept in
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upper bounds of concept C always subsumes concept C, and the jointed set
of their corresponding instance sets always contains the instance set of concept
C. Therefore, if x is not an instance of instance sets of upper bounds of con-
cept C, x is not an instance of concept C, either. So we get the conclusion that
x : ¬C, i.e., xI /∈ CI .

From (1) and (2), we conclude that the theorem holds. $%

Through the theorem and definitions above, we can say that the method of
terminological approximation is correct.

5 Approximation Algorithms

Definition 10. A query concept C in SharedOnto can be replaced according to
the following rules:

if x : C, then C is replaced by
∨

C′∈lbSharedOnto(C) C′.
if x : ¬C, then C is replaced by

∧
C′∈ubSharedOnto(C) C′.

We continue to discuss the query example in section 3. We need to perform the
query that is formally expressed as follows: Computerfittings1(x) ∧ Maker2

(IBM,x). But agent 1 cannot understand the semantics of ’Maker’, and agent
2 has no exact terminologies that can completely match the term ’Computer-
Fittings’. This makes it difficult for the two agents to efficiently and exactly co-
operate. We use the method of terminological approximation for addressing the
problems. Specifically speaking, according to relative definitions and example 2
in section 4, the previous query can be translated into the expression as follows:
(CPU2(x)∨Memory2(x)∨PeripheralEquipment2(x))∧Maker2(IBM,x). Now we
find that the two agents can easily cooperate and get the results of query. Because
agent 2 know well these terms such as CPU2, Memery2 and PeripheralEquipment2.
That is to say, agent 1 consigns the query task to agent 2. Let’s look at another
query example. We want to perform the query that is formally represented as
follows: ¬ComputerFittings1(x) ∧ Maker2(IBM,x). According to the definition
related to terminological replacements, because the term ’ComputerFittings’ is
negated in the query, it will be replaced by term Hardware2. The query will become
the presentation as follows: ¬Hardware2(x)∧Maker2(IBM,x). We also developed
a terminology replacement algorithm for approximate terminology replacements.

Lemma 1. The replacing concept is strictly subsumed by the replaced concept
in the query.

Proof. Assume that C is the original concept in query. If it is not negated.
Therefore, the replaced result of C is

∨
C′∈lbSharedOnto(C) C′, and its correspond-

ing concept just is %C′∈lbSharedOnto(C)C
′. If ¬C is the original concept and it

is negated, the replaced result of ¬C is ¬(
∧

C′∈ubSharedOnto(C) C′), its corre-
sponding concept just is ¬($C′∈ubSharedOnto(C)C

′). From theorem 1, definition
8 and definition 9, we can easily get the results: %C′∈lbSharedOnto(C)C

′ 5 C and
¬($C′∈ubSharedOnto(C)C

′) 5 ¬C. $%
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——————————————————————————-
Algorithm. ApproximateTermReplacement(C, T, Query)
——————————————————————————-
Require:The set of concepts(properties) in Query expression is denoted Query
Require:The set of shared concepts(properties) in SharedOnto is denoted SharedConcepts

Require:The whole knowledge base T is denoted O1 ∪ O2 ∪ MAij .
begin
ApproximateConcepts[C]=∅;
forall C in Query do
if C is negated then

GLB [C]:= lookupDirectSupers(C, T);
//extraction of upper bounds
GLBSet[C]:= extraction(GLB[C], SharedConcepts);
for all C′ in GLBSet[C] do

add(ApproximateConcepts[C], C′);
//checking intersection between each concept in ApproximateConcepts[C] and C’
ApproximateConcept:=intersection(ApproximateConcepts[C], C′);

endfor
else

LUB[C]:= lookupDirectSubs(C, T);
LUBSet[C]:=extraction( LUB[C], SharedConcepts);
forall C′ in LUBSet[C] do

add(ApproximateConcepts[C], C′);
// checking union between each concept in ApproximateConcepts[C] and C’
ApproximateConcept:= union(ApproximateConcepts[C], C′);

endfor
endif
ApproximateQuery := Replacement(Query, C, ApproximateConcept);
endfor
return ApproximateQuery
end
————————————————————————————————————–

Theorem 2. If the original query Q is replaced by the query Q′, then Q′ 5 Q.

Proof. Assume that Q = QC ∧QP , and Q′ = Q′
C ∧QP , where Q′

C is the replacing
concept of QC . According to lemma 1, we know that Q′

C 5 QC , i.e., the instance
set of Q′

C is a subset of the instance set of QC . Therefore, the answer set of
instance tuples obtained by performing Q′

C also is a subset of instance tuples of
QC . Then according to definition 7, we can conclude that Q′ 5 Q. $%

6 Discussion and Related Work

The method proposed in this paper has some obvious advantages: it is oper-
ated well and its theory is graceful and simple. The complexity of the main
algorithms is O(n2), which is rather low. Currently, some approximate query
methods [2,5,6] based on description logic aim to tackle information integration
and maintenance of information repositories. They didn’t consider incomplete
and non-exact matching of Web information. Schaerf and Cadoli [7] defined a
well founded logic and provided a fast algorithm for approximate reasoning. It
is difficult to decide which parameters can lead to a good approximation. In
this paper, our method is similar to the work of [2], but can differentiate with
each other. 1) We combine alignments of ontologies with mappings of ontologies.
As mentioned in previous section, we construct a shared ontology of distributed
ontologies. It at least contains some information such as terminological mapping
axioms and related concepts and properties. 2) from the viewpoint of seman-
tics, our method can strictly ensure correctness of queries and reduce failures
of queries. But their work cannot ensure the point, which means that users
probably get the results that they don’t want indeed.
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Another problem is the experimental evaluation of terminological approxima-
tion method. In this paper, we mainly focus on the theoretical foundation of
this method based on description logic. We have ensured that this method is
theoretically correct, which is main results of this paper. Its prototype system
and experimental evaluation will be deeply discussed in future work. Our future
work also needs to address the problem of automatically constructing approxi-
mate mappings of terminologies (concepts) from distributed ontologies. We have
concentrated on ontology learning for Semantic Web [8] and applied this method
to mine and learn new mapping rules.

7 Conclusion

We proposed an approximate query method for tackling this problem. The termi-
nologies contained in query are replaced by the ones that are semantically most
approximate to the query terminologies, which will make the query continue and
return the approximate results that users need.
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Abstract. An industrial process often has a large number of measured
variables, which are usually driven by fewer essential variables. An im-
proved independent component analysis based on particle swarm op-
timization (PSO-ICA) is involved to extract these essential variables.
Process faults can be detected more efficiently by monitoring the inde-
pendent components. On the basis of this, the diagnosis of faults is re-
duced to a string matching problem according to the situation of alarm
limit violations of independent components. The length of the longest
common subsequence (LLCS) between two strings is used to evaluate
the difficulty in distinguishing two faults. The proposed method is illus-
trated by the application to the Tennessee Eastman challenging process.

Keywords: Swarm intelligence, particle swarm optimization, indepen-
dent component analysis, fault detection and diagnosis.

1 Introduction

In the operation and control of industrial processes, automatic data logging sys-
tems produce large volumes of data. It is important for supervising daily opera-
tion to exploit the valuable information about normal and abnormal operation,
significant disturbance and changes in operational and control strategies. Various
multivariate statistical process control (MSPC) methods have been proposed in
the last decade, such as principal component analysis (PCA), and partial least
square (PLS) etc. However, these PCA based methods only employ second or-
der statistical information. Independent component analysis (ICA), as a new
signal processing technique, makes full use of high order statistical information,
and can separate the statistically independent components from observed vari-
ables. A number of applications of ICA have been reported in speech processing,
biomedical signal processing etc. [1]. Li and Wang [2] used ICA to remove the
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dependencies among variables. Kano et al.[3] employed ICA to extract the inde-
pendent variables from measured variables to detect fault, and obtained satisfy-
ing results. But their work did not concern the fault identification or diagnosis.
Furthermore, most available ICA algorithms have random behaviors, i.e. the al-
gorithms give different results according to different initial conditions [4]. For
instance, the widely adopted FastICA algorithm [5] and the natural gradient
algorithm [6] are carried out to optimize non-convex objective functions, i.e. ne-
gentropy and mutual information, but no global optimal solution is guaranteed.

In current study, we propose a novel PSO-ICA based approach to address
the global optimal analysis of independent component and fault diagnosis of
industrial processes. As a swarm intelligent technique and general global op-
timization tool, PSO was first proposed by Kennedy and Eberhart [7] which
simulates the simplified social life models. Since PSO has many advantages over
other heuristic techniques such as it can be easily implemented and has great
capability of escaping local optimal solution [8], PSO has been applied success-
fully in many computer science and engineering problems [8]. Once a fault is
detected by PSO-ICA, a string-matching based fault identification technique is
proposed for identifying the fault type.

The remainder of this paper is structured as follows. Section 2 describes the
proposed PSO-ICA algorithm in which a scheme is presented to convert tra-
ditional constrained ICA to a constraint free version. The framework for fault
diagnosis and diagnosis is presented in section 3. Section 4 gives the fault diction
and diagnosis results obtained by the application to Tennessee Eastman process.
Finally, section 5 gives some conclusions.

2 Particle Swarm Analysis of Independent Components

2.1 Independent Component Analysis Formulation

The ICA model assumes the existence of m independent source signals s1, s2, · · · ,
sm and the observations of n mixtures x1,x2, · · · ,xn(m ≤ n), these mixtures
being linear and instantaneous, i.e. can be represented by the mixing equation:

x = A · s, (1)

where s = [s1, s2, · · · , sm]T is a m×1 column vector collecting the source signals
and x = [x1,x2, · · · ,xn]T collects the measured variables. The A ∈ +n×m matrix
contains the mixture coefficient.

ICA problem can be formulated as the computation of a separating matrix
W ∈ +m×n whose output is an estimation of the source signals s:

ŝ = W · x = W · A · s ≈ s, (2)

where ŝ has zero mean and standard variation.
For the sake of computation efficiency, the mixed signals x is whitened first,

i.e. the cross correlation between entries of x is eliminated:

z = Qx ∈ +r, (3)
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where Q ∈ +r×n is the whitening matrix and r ∈ [m, n] is the number of retained
whitened signals. After the whitening process, equation(3) can be expressed as:

ŝ = BT z = BT Qx = W · x. (4)

ICA calculates the matrix B ∈ +r×m which maximizes the nongaussianity of
the projection ŝ = BT z under the constraint of ‖bi‖ =

√
bT

i bi = 1 and bi⊥bj ,
∀1 ≤ i �= j ≤ m, where bi is ith column of B, i.e. bi is the solution of the
following optimization problem:

bi = argmax
a∈�r

J(aT z)

s.t.
‖a‖ = 1,a⊥b1,a⊥b2, . . . ,a⊥bi−1. i = 1, 2, . . . , m

(5)

J(y) ≈ [E{G(y)} − E{G(v)}]2, (6)

where J(y) is the nongaussianity measurement function, y is a standardized
random vector, v is a Gauss white time series with the same deviation of y and
E{.} stands for the expectation. G{y} is chosen to approximate the negentropy:

G(y) =
1
a1

log cosh(a1y), (7)

where a1 ∈ [1, 2].
The objective function formulation in equation(6) is non-convex and the gra-

dient based algorithm are likely trapped at some local optimal solutions. In the
next section, a global optimization approach based on particle swarm is proposed
to obtain the separating matrix B.

2.2 Particle Swarm Optimization

In PSO algorithm, each solution of the optimization problem, called a particle,
flies in the problem search space looking for the optimal position according to
its own experience as well as to the experience of its neighborhood. Two fac-
tors characterize a particle status in the n-dimensional search space: its velocity
and position which are updated according to the following equations at the jth
iteration: {

Δxj+1
i = w ·Δxj

i + ϕ1r
j
1(p

j
id − xj

i ) + ϕ2r
j
2(p

j
gd − xj

i ),
xj+1

i = xj
i +Δxj+1

i ,
(8)

where Δxj+1
i ∈ +n, called the velocity for particle i, represents the position

change by this swarm from its current position in the jth iteration, xj+1
i ∈ +n

is the particle position, pj
id ∈ +n is the best previous position of particle i,

pj
gd ∈ +n is the best position that all the particles have reached, ϕ1,ϕ2 are the

positive acceleration coefficient, w is called inertia weight and ri
1, r

j
2 are uniformly

distributed random numbers between [0, 1].
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2.3 Particle Swarm Based Analysis of Independent Components

The standard PSO algorithm can only handle unconstrained problem but the
ICA optimization problem formulation equation(5) includes a set of constraints.
In this section, a novel approach (PSO-ICA) is presented to convert the ICA
problem to a series of constraint free problems which can be solved efficiently by
PSO algorithm.

The presented PSO-ICA approach is described as follows:

(1) The separating vector b1 (the first column of matrix B), corresponding to
most nongaussian (interesting) component, is obtained by solving the following
optimization problem with PSO algorithm:

b∗
1 = arg max

a∈�r

J(aT z/ ‖a‖),

b1 = b∗
1/ ‖b∗

1‖ .
(9)

Note that FastICA or the natural gradient algorithm can be involved to im-
prove the accuracy the solution after the PSO algorithm.

(2) From i=2 to m (the predetermined number of independent components),
repeat step (3)-(4).

(3) Define the following orthogonal projection matrix Mi as:

Mi = Ir −
i−1∑
j=1

bjbT
j , (10)

where Ir ∈ +r×r is the identity matrix.
(4) According to equation(5), the columns in B are orthogonal to each other.

Therefore, bi belongs to the orthogonal complement of the subspace Span{b1,b2,
...,bi−1} and can be defined as:

bi = Mia, a ∈ +r. (11)

The ith separator vector bi optimizes the following problem and is also ob-
tained by PSO algorithm:

b∗
i = arg max

a∈�r

J(aT MT
i z/ ‖Mia‖),

bi = Mib∗
i / ‖Mib∗

i ‖ .
(12)

The ith independent component is:

ŝi = bT
i z. (13)

3 Fault Detection and Diagnosis with PSO-ICA and
String Matching Approach

3.1 Fault Detection with PSO-ICA

In the present work, the measurement data XNOC ∈ +n×N (n is the number of
sensors, N the number of samples) under normal operating condition (NOC) is
analyzed by PSO-ICA,
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ŜNOC = WNOC · XNOC , (14)

where ŜNOC ∈ +m×N denotes the m independent components and WNOC ∈
+m×n is the separating matrix, both under NOC.

After the matrix ŜNOC is obtained, the upper and lower control limits of each
of independent components can be determined using the statistical method,
so that the percentage of samples outside the control limit is α% (predefined
confidence level). Let x ∈ +n be the measurement to be monitored, then we
have:

ŝ = WNOC · x, (15)

where the ith row of ŝ corresponds to the ith independent component. Each
component of ŝ is compared with the control limit obtained under NOC, and
the process is considered to be out of control if any independent component is
out of its control limit.

3.2 Application of String Matching Approach to Fault Diagnosis

In current study, we employs an string-matching pattern recognition approach.
We encode the situation of alarm limit violations of independent components
with a binary string. It is found that each independent component exhibits
the specific variation behavior under different abnormal operating condition.
The variation trends of independent components can be used to identify the
different faults. In order to characterize this variation trends, we use 0 and 1 to
describe whether the value of each independent component exceeds the control
limit or not at each time step. If the value of some independent component
exceeds the control limit, we mark it with 1, otherwise with 0. In fact, when an
abnormal event occurs, some independent components may exceed the control
limit. Therefore, the situation of exceeding the limits can be considered as the
fingerprints of the specific faults.

Suppose that there are m independent components in total. At each time step,
each independent component is marked with 0 or 1 according to its situation of
exceeding the control limit. Thus, a string composed of 0 and 1 can be formed at
every point along the time axis. This binary string can be converted to a decimal
string, and then converted to a character which can be used as pattern primitive.
For example, if the value of m is 7, the binary string can be converted to an ASCII
character. Therefore, all the characters at each time step are organized together
and formed a character string. This string composed of a series of primitives,
each representing a different situation of exceeding the limits, can be used as a
symbolic and non-numeric description of fault pattern. Different abnormal event
has a specific string. Thus, the diagnosis of fault can be reduced to the strings
comparison problem which has been encountered in many other fields.

In order to identify the type of the fault, a quantitative measure of differ-
ence between two sequences is needed. The longest common subsequence (LCS)
reflects structural similarities that exist between two strings and can be used
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to measure the difference. LCS problem has been extensively studied in the
literature[10]. The length of the longest common subsequence is denoted by
LLCS. LLCS can be used as a measure of similarity between two faults. Larger
LLCS leads more difficulty to distinguish two faults.

4 Case Study on Tennessee Eastman Process

The Tennessee Eastman process simulator was developed by Downs and Vogel
[11]. There are 12 manipulated variables and 41 measured variables. In this
study, a total of 16 variables, selected by Chen and McAvoy [12], are used for
monitoring.

In current study, the number of independent components is chosen as 7. Fig.1
illustrates the variations of seven independent components corresponding to fault
8 (feed concentration disturbance). The dashed line denotes the 99% upper and
lower control limit, and the fault 8 occurs at the first time step. An ASCII
character can be obtained at each time step according to the situation of ex-
ceeding the control limit. For example, at the time t=200 min, a binary string
‘1101011’(illustrated in Fig.1) is obtained and can be transcribed to an ASCII
character ‘k’.

After the ASCII character describing the patterns of alarm limit violations
is obtained at each time step, an ASCII string can be formed. Then, the LLCS
between two strings are computed and listed in Table 1. Note that the moving
window is essential to select the proper time span of the moving window. Small
window size may capture process changes quickly, but it is difficult to identify
the type of faults because of insufficient information. The LLCS listed in Table 1
provides a criteria of choosing the moving window size. From Table 1, we can
see that fault 1 and fault 7 have the largest LLCS which reaches 787, thus
it is difficult to distinguish them. But in most cases, the LLCS is around 130
indicating that the window size of 130 is enough to distinguish most faults.

Fig. 1. Monitoring results by PSO-ICA for the feed concentration disturbance of A,B,C
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Table 1. The length of longest common subsequence between faults for Tennessee
Eastman Control Challenging problem

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 — 88 4 4 4 121 787 241 4 123 4 4 130 4 4 117 124 113 4 97

2 88 — 16 16 16 88 106 91 16 89 10 12 95 9 16 88 88 89 16 88

3 4 16 — 113 111 0 0 21 64 32 19 38 27 24 99 12 29 33 103 35

4 4 16 113 — 108 0 0 21 69 32 19 38 27 23 104 14 29 33 117 35

5 4 16 111 108 — 0 0 20 69 32 19 40 27 23 93 12 34 33 98 35

6 121 88 0 0 0 — 121 122 0 123 2 6 121 0 0 117 121 113 0 97

7 787 106 0 0 0 121 — 241 0 123 3 8 132 0 0 117 123 114 1 97

8 241 91 21 21 20 122 241 — 20 124 15 18 132 16 20 117 124 114 20 98

9 4 16 64 69 69 0 0 20 — 28 19 38 27 23 69 12 29 33 69 35

10 123 89 32 32 32 123 123 124 28 — 16 23 123 16 32 117 123 113 32 97

11 4 10 19 19 19 2 3 15 19 16 — 19 15 18 19 10 15 15 19 15

12 4 12 38 38 40 6 8 18 38 23 19 — 23 17 39 12 26 25 38 23

13 130 95 27 27 27 121 132 132 27 123 15 23 — 16 27 117 123 114 27 97

14 4 9 24 23 23 0 0 16 23 16 18 17 16 — 23 11 16 16 23 16

15 4 16 99 104 93 0 0 20 69 32 19 39 27 23 — 14 29 33 115 35

16 117 88 12 14 12 117 117 117 12 117 10 12 117 11 14 — 118 114 12 97

17 124 88 29 29 34 121 123 124 29 123 15 26 123 16 29 118 — 113 29 97

18 113 89 33 33 33 113 114 114 33 113 15 25 114 16 33 114 113 — 31 97

19 4 16 103 117 98 0 1 20 69 32 19 38 27 23 115 12 29 31 — 35

20 97 88 35 35 35 97 97 98 35 97 15 23 97 16 35 97 97 97 35 —

All the strings that characterize the abnormal plant operation are collected
to construct a pattern database. When a fault is detected online, the recorded
snapshot data with proper size are transcribed to a string. Then, it is compared
to the strings in the pattern database using the LCS. The strings in the pattern
database having the large LLCS are labeled as the ‘candidates’ to the current
snapshot data. Then, the candidates are evaluated by the process engineer to
make a further decision, i.e., which kind of fault has occurred.

5 Conclusion

A novel strategy has been developed for the diagnosis of abnormal plant op-
eration based on PSO-ICA and string matching technique. According to the
situation of alarm limit violation, the diagnosis of fault is reduced to a string
matching problem. The longest common subsequence (LCS) between two strings
is searched in this new pattern-matching strategy and used to quantify the sim-
ilarity between two faults. For on-line fault diagnosis, the length of LCS (LLCS)
is used to search the most similar pattern in the pattern database. The strings
that have large LLCS are labeled as similar to the current snapshot data. The
proposed method is data driven and unsupervised because neither training data
nor a process model is required. The proposed approach has been evaluated by
the application on the Tennessee Eastman challenging process.
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Abstract. In the study, combining the concept of quality of classifica-
tion (QoC) in Variable Precision Rough Set (VPRS) Theory and judg-
ment matrix in Analytical Hierarchy Process (AHP), we design a method
to process the data in decision tables, and obtain the significance of risk
factors. Then, we explore the stable interval of variable precision factor
β on the significance.

Keywords: Variable precision rough sets, significance, risk factor, IT
project.

1 Introduction

For many companies that are implementing IT project, risk management is a
challenging task [1]. From different perspectives, there are many potential risk
that exists in IT project management, such as immature application technology,
misunderstanding users’ demand, lack of top managers’ support, and so on[2].
It is a valuable study to obtain the significance of IT project risk factors, which
will help managers to focus risk management on important factors. Although
there is much literature about risk management already, seldom is about the
significance of risk factor. If we find and get hold of main risk factors, other
unimportant factors will not cause big trouble.

We choose 255 representative companies which have developed and imple-
mented IT projects in the last few years from the member of Hubei Development
and Reformation Committee, China. Questionnaires are mailed to these compa-
nies’ CIO, who is requested to score risk exposure (RE) of the company’s latest
IT project and its 5 risk categories and 17 risk factors (see Table 1). Subsequently,
94 feedback questionnaires are valid, and we establish decision tables (see Table
2,3) based on the data of questionnaires. This study introduce a method com-
bining Variable Precision Rough Set (VPRS) and Analytical Hierarchy Process
(AHP) to process the data in the decision tables to obtain the significance of
risk factors in IT project management, and study the stable intervals of variable
precision factor β.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 750–757, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Significance of Risk Indices

Rough set theory (RST) is a mathematical tool with strong practicability, and it
has gained plentiful and substantial success in many fields [3]. However, there is
always error classification and inconsistent information in the human’s decision
data, and RST can not deal with those problem well [4]. VPRS is a development
of Pawlak rough set model, and allows for partial classification. It relaxes the
rigid boundary definition of the Pawlak rough set model by setting an approxi-
mate precision factor β(0.5 < β ≤ 1), which makes the model remove data noise
[5,6].

In VPRS model, suppose C, D ⊆ A are the condition attribute set and the
decision attribute set respectively. A is a finite set of attributes, and U is the
object set. Then with Z ⊆ U and P ⊆ C, Z is partitioned into three regions as
follow

POSβ
P (Z) =

⋃
Pr(Z|Xi)≥β

Supporti × {Xi ∈ E(P )} (1)

NEGβ
P (Z) =

⋃
Pr(Z|Xi)≤1−β

Supporti × {Xi ∈ E(P )} (2)

BNDβ
P (Z) =

⋃
1−β<Pr(Z|Xi)<β

Supporti × {Xi ∈ E(P )} (3)

where E(·) denotes a set of equivalence classes, i.e. the condition classes based
on P . Supporti means the number of objects with the same attribute value as
object i. The significance of P to D, also the quality of classification (QoC), is
defined as

γβ(P, D) =
card(POSβ

P (Z))
card(U)

(4)

where Z ∈ E(D) and P ⊆ C.
Suppose there are l risk categories and n risk factors in the index system,

which are independent with each other, in the risk index system. nt risk factors

are included in the tth risk category Ct,
l∑

t=1
nt = n, G denotes object (IT project)

risk. Ri,t denotes the ith risk factor in Ct, i = 1, 2, . . . , nt. Decision tables are
established based on the CIO’s score of each IT project’s and its indices’ RE.
From formula (4), the significance of Ri,t to Ct is

γβ(Ri,t, Ct) =
card(POSβ

Ri,t
(Ct))

card(U)
(5)

The significance of Ct to G is

γβ(Ct,G) =
card(POSβ

Ct
(G))

card(U)
(6)
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Let B = (B1, . . . , Bt, . . . , Bl) , Bt is the judgment matrix within Ct. According
to the pairwise comparisions between risk factors, AHP [7] is used to construct
the judgment matrix Bt, which consists of element rij .

Bt =

⎡⎢⎢⎢⎣
b11 b12 b13 . . . b1nt

b21 b22 b23 . . . b2nt

...
...

...
...

bnt1 bnt2 bnt3 . . . bntnt

⎤⎥⎥⎥⎦
rij is the element of the ith row and jth column in judgment matrix Bt, and it
denotes the relative significance between risk factors Ri,t and Rj,t, so that

bij =
γβ(Ri,t, Ct)
γβ(Rj,t, Ct)

=
card(POSβ

Ri,t
(Ct))/card(U)

card(POSβ
Rj,t

(Ct))/card(U)

=
card(POSβ

Ri,t
(Ct))

card(POSβ
Rj,t

(Ct))
(7)

As bij×bjk = bik, Bt is a matrix with complete consistency. In order to indicate
the significance of each risk factor within risk category Ct, the geometric mean
is adopted to endow Ri,t with weight WRi,t

Ct
. For Ri,t and Ct, we define

WRi,t = (
nt∏

j=1

bij)
1

nt (8)

WCt =
nt∑

i=1

(
nt∏

j=1

bij)
1

nt (9)

After normalization, we obtain the eigenvector of the judgment matrix Bt

W = (WR1,t

Ct
, . . . ,W

Ri,t

Ct
, . . . ,W

Rnt,t

Ct
)T (10)

which is also the significance set of risk factors in Ct. So the significance of Ri,t

in Ct is

W
Ri,t

Ct
=
WRi,t

WCt

(11)

In the same way, the judgment matrix C is constructed for significance of Ct within
G, whose element ctj is the relative significance between C1, . . . , Ct, . . . , Cl.

ctj =
γβ(Ct,G)
γβ(Cj ,G)

=
card(POSβ

Ct
(G))/card(U)

card(POSβ
Cj

(G))/card(U)

=
card(POSβ

Ct
(G))

card(POSβ
Cj

(G))
(12)
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Then the significance of risk category Ct in the system is defined as

WCt

G =
(

l∏
j=1

ctj)
1
l

l∑
t=1

(
l∏

j=1
ctj)

1
l

(13)

Therefore, the significance of each risk factor Ri in the system is defined as

WRi

G = W
Ri,t

Ct
×WCt

G (14)

The algorithm on obtain the significance of the risk indices is designed as follows

Algorithm 1. The significance of the risk indices Alg.
Input : Ri, Ct, G, β.
Output: WRi

G .
for (all Ri,t ∈ Ct, Ct ∈ G) do

γβ(Ri,t, Ct);
γβ(Ct,G);

end
while True do

Assign a weight to each risk factor in the evaluation system;
for (each γβ(Ri,t, Ct),γβ(Ct,G)) do

If γβ(Ri,t, Ct) = 0,γβ(Ct,G) = 0;
W

Ri,t

Ct
←− 0 ;

WCt

G ←− 0 ;
else
bij ←− γβ(Ri,t,Ct)

γβ(Rj,t,Ct)
;

WRi,t ←− (
nt∏

j=1
bij)

1
nt ;

WCt ←−
nt∑
i=1

(
nt∏

j=1
bij)

1
nt ;

W
Ri,t

Ct
←− WRi,t

WCt
;

WCt

G ←−
(

l∏
j=1

ctj)
1
l

l∑
t=1

(
l∏

j=1
ctj)

1
l

;

end
for (each Ri ∈ G) do

WRi

G ←− W
Ri,t

Ct
×WCt

G ;
end

end
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3 Stable Interval of β

In the following section, we will design an algorithm to find stable intervals of
β in a decision table based on algorithm 1. Ziarko gives two useful propositions
[5] as follows:

Proposition 1. If condition class X is given a classification with 0.5 < β ≤ 1,
then X is also discernible at any level 0.5 < β1 ≤ β.
Proposition 2. If condition class X is not given a classification with 0.5 < β ≤
1, then X is also indiscernible at any level β < β2 ≤ 1.

When C, D and β are definite, the significance of risk factors is also definite.
The stable interval is a range of β that the significance does not alter at any β
value in the range.

In a decision table, for any condition class Xi and decision class Yj , we define

δ1j = min
i

{β − card(Xi

⋂
Yj)

card(Xi)
| Xi ∈ U/R,

card(Xi

⋂
Yj)

card(Xi)
< β} (15)

δ2j = min
i

{card(Xi

⋂
Yj)

card(Xi)
− β | Xi ∈ U/R,

card(Xi

⋂
Yj)

card(Xi)
≥ β} (16)

Let δ1 = minj δ
1
j , b = minj δ

2
j , and a = max{β − δ1, 0.5}, the stable interval on

the significance of attribute X in the decision table when β = βi is

SI(X)β=βi = (a,βi + b] (17)

The stable interval of attribute significance in the system is denoted as

SI(G)β=βi = (
n⋂

i=1

SI(Ri)β=βi)
⋂

(
l⋂

t=1

SI(Ct)β=βi) (18)

From above analysis, the algorithm on obtain the stable interval of β is designed
as follows

Algorithm 2. The stable interval of β Alg.
Input : Ri, Ct, G, βi.
Output: SI(G).
for (all Xi ∈ X, Yj ∈ Y ) do

δ1j ←− mini{β − card(Xi

⋂
Yj)

card(Xi)
| Xi ∈ U/R,

card(Xi

⋂
Yj)

card(Xi)
< β} ;

δ2j ←− mini{ card(Xi

⋂
Yj)

card(Xi)
− β | Xi ∈ U/R,

card(Xi

⋂
Yj)

card(Xi)
≥ β} ;

δ1 ←− minj δ
1
j ;

b ←− minj δ
2
j ;

a←− max{β − δ1, 0.5};
SI(X)β=βi ←− (a,βi + b];
SI(G)β=βi ←− (

⋂n
i=1 SI(Ri)β=βi)

⋂
(
⋂l

t=1 SI(Ct)β=βi);
end
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4 An Example from Survey

According to experts’ opinion, previous experience and situation of China, we
design the questionnaire items including 5 categories (C1, C2, · · · , C5) and 17
risk factors (R1, R2, · · · , R17) (Table 1).

Table 1. Risk Items of IT Project

C1: Client risk R9: Limited ability to maintenance
R1: Lack of top management support C4: Development risk
R2: Improper demand orientation R10: Lack of users’ participation
R3: Financial crisis R11: Improper schedule
C2: Personnel risk R12: Number of links to existing systems
R4: Ambiguous responsibility among team R13: Large scale project
R5: Limited human resource R14: Demand alteration
R6: Improper personnel structure C5: Technique Risk
C3: Capability risk R15: Technique complexity
R7: Misunderstanding requirements R16: Technology platform
R8: Lack of project experience R17: Immature development tool

Decision tables are established based on the statistics of classification fre-
quency as follow (Table 2, Table 3). There are also decision tables consisting of
R4, R5, R6 and C2,. . . , and that of R15, R16, R17 and C5. As they are in the
same level as Table 2, we only list the result from them in the paper for space.
In the study, RE includes three levels, 1, 2 and 3, where 1 denotes low risk, 2
denotes middle risk, and 3 denotes high risk.

Table 2. Decision Table Consisting of R1, R2, R3 and C1

Condition attribute Decision attribute
Index Support

R1 R2 R3 C1

1 5 1 1 1 1
2 3 1 1 2 1
3 12 1 2 1 1
4 13 1 2 2 2
5 5 1 2 3 2
6 3 2 2 1 2
7 12 2 1 2 2
8 13 2 1 3 2
9 12 2 2 2 2
10 2 3 1 2 3
11 7 3 1 3 3
12 4 3 3 2 3
13 3 3 3 3 3
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Table 3. Decision Table Consisting of C1, C2, C3, C4, C5 and G

Condition attribute Decision attribute
Index Support

C1 C2 C3 C4 C5 G

1 5 1 1 1 2 1 1
2 8 1 1 1 1 2 1
3 7 1 1 2 2 2 1
4 9 2 2 2 1 1 2
5 13 2 2 2 2 1 2
6 11 2 1 1 2 2 2
7 9 2 2 2 2 1 2
8 7 2 2 3 3 3 3
9 9 2 3 3 2 1 3
10 8 3 3 3 3 2 3
11 5 3 3 2 1 3 3
12 3 3 3 3 3 3 3

The significance of risk factors in the system is obtained based on the Algo-
rithm 1 as in Fig.1.
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Fig. 1. The Significance of Risk Factors in the System with Different β

According to Algorithm 2, let β = 0.6, we can obtain the stable intervals
of risk items as follow, SI(R1)β=0.6 = (0.53, 1], SI(R2)β=0.6 = (0.59, 0.73],
SI(R3)β=0.6 = (0.5, 0.64], SI(R4)β=0.6 = (0.5, 0.7], SI(R5)β=0.6 = (0.52, 0.68],
SI(R6)β=0.6 = (0.52, 0.68], SI(R7)β=0.6 = (0.53, 0.67], SI(R8)β=0.6 = (0.5, 0.6],
SI(R9)β=0.6 = (0.56, 0.65], SI(R10)β=0.6 = (0.5, 0.7], SI(R11)β=0.6 = (0.5, 0.71],
SI(R12)β=0.6 = (0.56, 0.6], SI(R13)β=0.6 = (0.58, 1], SI(R14)β=0.6 = (0.5, 0.61],
SI(R15)β=0.6 = (0.5, 0.73], SI(R16)β=0.6 = (0.5, 0.86], SI(R17)β=0.6 = (0.54, 1],
and SI(C1)β=0.6 = (0.5, 0.72], SI(C2)β=0.6 = (0.5, 0.65], SI(C3)β=0.6 = (0.54,
0.72], SI(C4)β=0.6 = (0.5, 0.61], SI(C5)β=0.6 = (0.5, 0.69]. Therefore, the stable
interval of the system is SI(G)β=0.6 = (0.59, 0.6]. In the same way, we ob-
tain SI(G)β=0.7 = (0.69, 0.7], SI(G)β=0.8 = (0.78, 0.81], SI(G)β=0.9 = (0.86, 1],
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SI(G)β=1 = (0.86, 1]. As β = 0.9 and β = 1 are in the same stable interval
(0.86, 1], they have the same curve in Fig.1. Obviously, from Fig.1, we can see
that some risk factors are more important such as R4, R7, R9, R11 than others
and the significance changes with the value of β. The computation precision de-
pends upon the appropriate choice of β. Generally speaking, β ought to be high
when the distribution is uniform and the system is mature, or else low.

5 Conclusion

This is a new kind of method to discover knowledge from data in questionnaires,
and it can remove the data noise in human decision by adjusting the variable
precision factor β from different stable intervals. The study shows that the com-
bination of VPRS and AHP is an effective tool to process the data that judgment
matrix is always consistent. The emergence of the risk factors with greater sig-
nificance means the higher probability of IT project crisis. The method will help
project managers to know which risk factors are more important in IT project
management, and focus the risk management effort on the higher risk factors,
so the effeciency of risk management is improved.

Acknowledgment. This project is supported by National Natural Science Foun-
dation of China (70271031, 70571025) and Ministry of Education (20010487015)
and the grant from the NNSF of China and RGC of Hong Kong Joint Research
Scheme (Project No. N CityU103/02).

References

1. Xie, G., Zhang, J.L., Lai, K.K.: A Group Decision-making Model of Risk Evasion
in Software Project Bidding based on VPRS. Lect. Notes. Artif. Int.. 3642(2005)
530-538.

2. Blackburn, J. D., Hoedemaker, G.: Concurrent software engineering: prospects and
pitfalls. IEEE T Eng. Manage.. 43(1996) 179-188.

3. Pawlak, Z.: Rough sets. International J. Comp. Inform. Science. 11 (1982) 341–356.
4. Wang, G.Y, Liu, F.: The Inconsistency in Rough Set based Rule Generation. Lect.

Notes. Artif. Int.. 2005(2001) 370-377.
5. Ziarko, W.: Variable precision rough set model. J. Comp. Syst. Sci.. 1 (1993) 39-59.
6. Mi, J.S., Wu, W.Z, Zhang, W.X.: Approaches to knowledge reduction based on

variable precision rough set model. Inform. Sci.. 159 (2004) 255-272.
7. Saaty, T.L.: The Analytic Hierarchy Process.. McGraw-Hill, New York, (1980).



Mining of MicroRNA Expression

Data—A Rough Set Approach

Jianwen Fang1,� and Jerzy W. Grzymala-Busse2

1 Bioinformatics Core Facility
and

Information and Telecommunication Technology Center
University of Kansas, Lawrence, KS 66045, USA

jwfang@ku.edu
2 Department of Electrical Engineering and Computer Science, University of Kansas,

Lawrence, KS 66045, USA
and

Institute of Computer Science Polish Academy of Sciences, 01-237 Warsaw, Poland
jerzy@ku.edu

http://lightning.eecs.ku.edu/index.html

Abstract. In our research we used a microRNA expression level data set
describing eleven types of human cancers. Our methodology was based
on data mining (rule induction) using rough set theory. We used a novel
methodology based on rule generations and cumulative rule sets. The
original testing data set described only four types of cancer. We further
restricted our attention to two types of cancer: breast and ovary. Using
our combined rule set, all but one cases of breast cancer and all cases of
ovary cancer were correctly classified.

Keywords: MicroRNA, LERS data mining system, MLEM2 rule induc-
tion algorithm, LERS classification system, rule generations, cumulative
rule sets.

1 Introduction

Recently research on microRNA (or miRNA) has received a lot of attention
because of its role in gene regulation. MicroRNAs are small RNA molecules en-
coded in the genomes of plants and animals [1]. The newly discovered miRNAs
are about 22-nucleotide, non-coding RNAs that have critical functions across var-
ious biological processes [2,16]. Most of these short RNAs are thought to function
though binding to target mRNAs and consequently shutdown the target genes.
Currently 326 human miRNA sequences, including 234 that were experimentally
verified, have been identified [17]. The remaining miRNAs are easily identifiable
homologs of miRNAs from mice and rats. Many human miRNA appear to influ-
ence diseases. For example, many miRNAs exist in genomic regions associated
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with cancers [4,13]. It has been suggested that different types of cancers are as-
sociated with different miRNA expression patterns [3,10,11,12]. Recently Brown
et al. compared the expression level of more than 200 human miRNAs in tumor
and adjacent tissues of more than 60 patients with different cancers including
lung, colon, breast, bladder, pancreatic, prostate, or thymus cancer. They found
not only tumor and normal tissues have different miNRA expression profiles,
but also different tumors have different profiles [3]. Thus miRNAs are poten-
tial biomarkers for diagnosis of tumors. Furthermore, they may provide novel
approaches to develop better medicines to cure these deadly diseases.

In this paper we present results of our research on mining microRNA expres-
sion data using rough set methodology. The main tool for our experiments was
the MLEM2 ( Modified Learning from Examples Module, version 2) algorithm of
the LERS (Learning from Examples based on Rough Sets) data mining system,
[7,8]. LERS is based on rough set theory, for inconsistent data it induces two
sets of rules: certain rule set and possible rule set [7]. The first set is computed
from lower approximations of concepts, the second from upper approximations.
Moreover, the MLEM2 algorithm is based on LEM2 rule induction algorithm
[7,8]. LEM2 is a local algorithm, i.e., it searches the space of attribute-value
pairs. LEM2 learns the smallest set of minimal rules, describing the concept.
Rules are constructed from the pairs that are the most relevant to the concept
that is learned [8]. In general, LEM2 computes a local covering and then converts
it into a rule set.

The main idea of the LEM2 algorithm is an attribute-value pair block. For an
attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of all cases that
for attribute a have value v. For a set T of attribute-value pairs, the intersection
of blocks for all t from T will be denoted by [T ]. Let B be a nonempty lower
or upper approximation of a concept represented by a decision-value pair (d, w).
Set B depends on a set T of attribute-value pairs t = (a, v) if and only if

∅ �= [T ] =
⋂
t∈T

[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection
of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

(1) each member T of T is a minimal complex of B,
(2)
⋃

t∈T [T ] = B, and
(3) T is minimal, i.e., T has the smallest possible number of members.
MLEM2 has an ability to recognize integer and real numbers as values of

attributes, and labels such attributes as numerical. For numerical attributes
MLEM2 induces rules in a different way than for symbolic attributes. First, it
sorts all values of a numerical attribute. Then it computes cutpoints as averages
for any two consecutive values of the sorted list. For each cutpoint c MLEM2
creates two intervals, the first interval contains all cases for which values of the
numerical attribute are smaller than c, the second interval contains remaining
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cases, i.e., all cases for which values of the numerical attribute are larger than c.
Starting from that point, rule induction in MLEM2 is conducted the same way
as in LEM2.

The classification system of LERS [7] is a modification of the bucket brigade
algorithm. The decision to which concept a case belongs to is made on the basis
of support, defined as the sum of rule strengths, where strength is the total
number of cases correctly classified by the rule during training. The concept for
which the support is the largest is the winner and the case is classified as being
a member of that concept. Every rule induced by LERS is preceded by three
numbers: number of rule conditions, strength, and rule domain size.

In general, mining of microRNA data is associated with many technical prob-
lems. One of these problems is the small number of cases compared with the
number of attributes [19]. In our current research we used a similar approach
as in our previous research [6]. Our approach significantly differs from the usual
methodology of rule induction in data mining (or machine learning), where a
single rule set is induced. In our methodology we induce many generations of
rule sets. The customary rule set of traditional data mining is the first rule gen-
eration in our new methodology. Then we remove from the data set dominant
attributes, identified by the first rule generation and induce the second genera-
tion of rules form the modified data sets, and so on. Finally, all rule generations
are combined into one big rule set, however, we assign the largest rule strengths
for rules from the first rule generation, the second rule generation obtain smaller
strengths than rules from the first rule generation, and so on, rules from the last
rule generation obtain the smallest rule strengths.

2 Data Set

The data set used in the paper was reported by Lu et al. in a recent study using a
miRNA expression level for classifying human cancers [12]. The authors profiled
217 mammalian miRNA using bead-based flow cytometry. Using a Gaussian-
weight based nearest neighbor 11-class classifier trained on a set of 68 more-
different tumors, they were able to classify 17 poorly differentiated test samples
in an accuracy of 11 out of 17 correct. Thus, the training data set contained
68 cases and 217 attributes. Cases were distributed among 11 classes: 6 cases of
BLDR, 6 cases of BRST, 7 cases of COLON, 4 cases of KID, 5 cases of LUNG,
3 cases of MELA, 8 cases of MESO, 5 cases of OVARY, 8 cases of PAN, 6 cases
of PROST and 10 cases of UT. The testing data set had only 17 cases, with the
same set of 217 attributes, and only four classes: 1 case of COLON, 3 cases of
OVARY, 8 cases of LUNG, and 5 cases of BRST. We restricted our attention
to two classes: BRST and OVARY, since for these two classes our methodology
provided the best results.

3 Induction of Rule Generations

In our novel approach to data mining, instead of inducing a single rule set, as is
done routinely in data mining, we induced many rule sets, called rule generations.
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The first rule generation was induced in a typical way, from the entire data set.
The MLEM2 rule induction option of LERS induced exactly 11 rules, one rule
per class. Rules describing the two classes of interest, BRST and OVARY, were
the following:

3, 6, 6
(EAM335, 5.3581..7.30918) & (EAM238, 5..5.01569) &
(EAM208, 8.84719..11.7605) –> (Label, BRST)
3, 5, 5
(EAM335, 7.87172..11.003) & (EAM159, 7.95896..10.6737) &
(EAM233, 5..6.87862) –> (Label, OVARY)

Table 1. Number of Correctly Classified Cases of BRST and OVARY

Rule Set Number of correctly

classified cases

BRST Ovary

First rule generation 2 3

Second rule generation 4 2

Third rule generation 0 2

Combined rule set

(first and second rule generations) 4 3

We conducted additional research: we removed from the original training data
set all attributes involved in the eleven rules describing all eleven types of cancer,
and then tested rules, induced from the modified data set, on the testing data
set. No one case was correctly classified. Thus we established importance of
attributes selected by MLEM2.

The first condition of a rule induced by MLEM2 is the most important con-
dition for the rule. Therefore, in our next experiment, we removed from the
original data set 11 dominant attributes (i.e., attributes from the first condi-
tions): EAM184, EAM241, EAM249, EAM276, EAM288, EAM297, EAM305,
EAM321, EAM335, EAM363 and EAM335. Then the second rule generation
was induced from the data set with 206 attributes. The second rule generation,
restricted, again, to the two classes: BRST and OVARY, was

3, 6, 6
(EAM159, 5..7.56154) & (EAM238, 5..5.01569) &
(EAM208, 8.84719..11.7605) –> (Label, BRST)
2, 1, 1
(EAM159, 7.95896..8.14026) & (EAM233, 5..6.87862) –> (Label, OVARY)
4, 4, 4
(EAM159, 8.14026..10.6737) & (EAM317, 5..5.1027) &
(EAM186, 7.88734..10.8281) & (EAM233, 5..6.87862) –> (Label, OVARY)
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Table 2. MicoRNAs Selected by LERS - Known Connection to Cancers

ID Human miRNA Target genes [17,14,15] Cancer connection

EAM159 Hsa-miR-130a PM20, PM21; ribosomal protein hsa-miR-130a
S6 kinase alpha 5 target putative
(RSLK); SEC14 and spectrin MAPK activating
domains 1 (SECTD1); protein PM20,
trinucleotide repeat containg PM21. MAPK
(TNRC6A) signaling pathway is

associated with
certain cancers [18]

EAM233 Hsa-miR-196a Homeobox protein Hox-C8 Expressed from
(Hox-3A), transcription HOX gene clusters
factor GATA-6 (GATA and targets HOX
binding factor-6), E-selectin genes.
ligand 1 (ESL-1) Mutation of HOX

genes can cause
cancers [20].

EAM317 Hsa-miR-155 Membrane associated DNA Several types of B
binding protein (MNAB); cell lymphomas
triple functional domain have 10 to 30-fold
protein (PTPRF-interacting higher copy
protein); transcription factor numbers of miR-
Sp1 155 than normal

circulating B cells
[5]

In general, in the second rule generation, there were only seven dominant at-
tributes: EAM155, EAM159, EAM208, EAM258, EAM298, EAM338 and
EAM367. Furthermore, some concepts, such as OVARY, were described in the
second rule generation by more than two rules. The third rule generation, in-
duced from the data set with 199 attributes, was

2, 1, 1
(EAM304, 9.39729..9.59664) & (EAM261, 6.8182..9.79852) –>
(Label, BRST)
4, 5, 5
(EAM304, 9.59664..11.8053) & (EAM261, 6.8182..9.79852) &
(EAM238, 5..5.01569) & (EAM208, 8.84719..11.7605) –> (Label, BRST)
3, 5, 5
(EAM225, 5.125..9.1908) & (EAM317, 5..5.1027) &
(EAM233, 5..6.87862) –> (Label, OVARY)
The process of inducting consecutive rule generations continues until substan-

tial degradation of the quality of a new rule generation. As follows from Table 1,
the third rule generation was worse than the second rule generation, hence no
further rule generations were induced.
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Table 3. MicoRNAs Selected by LERS - Unknown Connection to Cancers

ID Human miRNA Target genes [17,14,15]

EAM186 Hsa-miR-106a Amyloid beta A4 protein
precursor (APP);
Spinocerebellar ataxia type 1
protein (Ataxin-1)

EAM208 Hsa-miR-141 Phosphatidylinositol-4-phosphate
5-kinase, type 1, alpha (PIP5K1A)

EAM238 Hsa-miR-1 Glucose-6-phosphate 1-
dehydrogenase (G6PD); brain-
derived neurotrophic factor
(BDNF)

EAM335 Hsa-miR-34b Sarcosine dehydrogenase,
mitochondrial precursor
(SarDH); Met proto-oncogene
tyrosine kinase) (c-met);
ortholog of mouse integral
membrane glycoprotein LIG-1

4 Cumulative Rule Sets

Rule generations were gradually collected together into new rule sets. In the
current experiments, from the first and second rule generations a new cumulative
rule set was created. This rule set, restricted to BRST and OVARY was as follows

3, 2, 2
(EAM335, 5.3581..7.30918) & (EAM238, 5..5.01569) &
(EAM208, 8.84719..11.7605) –> (Label, BRST)
3, 1, 1
(EAM159, 5..7.56154) & (EAM238, 5..5.01569) &
(EAM208, 8.84719..11.7605) –> (Label, BRST)
3, 2, 2
(EAM335, 7.87172..11.003) & (EAM159, 7.95896..10.6737) &
(EAM233, 5..6.87862) –> (Label, OVARY)
4, 1, 1
(EAM159, 8.14026..10.6737) & (EAM317, 5..5.1027) &
(EAM186, 7.88734..10.8281) & (EAM233, 5..6.87862) –>
(Label, OVARY)
Note that rule strengths were changed. We used a similar method of changing

rule strengths to the technique described in [9]. All rules from the first rule
generation have rule strengths twice as large as rule strengths from the second
rule generation. Additionally, rules describing only one case (the second number,
i.e., strength, among three numbers preceding the rule, was equal to one) were
removed since they are too weak (such rules are outliers).
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Results of our experiments are presented in Table 1. Table 1 shows the to-
tal number of correctly classified cases of BRST and OVARY, for consecutive
rule generations, and for the combined rule set, containing the first two rule
generations. Since the third rule generation was of a poor quality, we have not
attempted to create a new cumulative rule set, containing three rule generations.

5 Conclusions

First of all, our final combined rule set is very simple and it classifies accurately
all but one cases of breast cancer and all cases of ovary cancer. LERS rules
employed to predict the two types of cancers used expression levels of seven
miRNAs (Tables 2 and 3). The functions of four miRNAs have not been deter-
mined experimentally yet. For all three miRNAs with known functions, strong
connections to certain types of tumors have been uncovered. For example, the
Mitogen-Activated Protein Kinase (MAPK) activating protein PM20/PM21 has
been predicted as one of the target genes of EAM159 (Hsa-miR-130a). Thus Hsa-
miR-130a may mediate MAPK pathways via regulating PM20/PM21. MAPK
pathways relay signals in a broad range of biological events including cell prolif-
eration, differentiation and metabolism. Furthermore, aberrations of these path-
ways can initiate and support carcinogenesis [18]. EAM233 (Hsa-miR-196a) is
located inside of Homeobox (HOX) clusters and is believed to target HOX genes.
HOX genes play vital roles during normal development in oncogenesis. Some of
the genes can cause cancer directly when altered by mutations [20]. Recently,
reports suggest that several types of B cell lymphomas have 10- to 30-fold higher
copy numbers of miR-155 than normal circulating B cells [5]. In summary, all
three miRNAs with known functions have direct links to tumors.
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Abstract. Emails have brought us great convenience in our daily work
and life. However, Unsolicited messages or spam, flood our email boxes,
viruses, worms, and denial-of service attacks that cripple computer net-
works may secret in spam. which result in bandwidth, time and money
wasting. To this end, this paper presents a novel schema to do classifi-
cation for emails by using Variable Precision Rough Set Approach. By
comparing with popular classification methods like Naive Bayes classifi-
cation, our anti-Spam filter model is effectiveness.

Keywords: Spam, classification, junk mail, rough set, information fil-
tering.

1 Introduction

The increasing popularity and low cost of electronic mail have intrigued direct
marketers to flood the mailboxes of thousands of users with unsolicited messages.
These messages are usually referred to as spam. It was reported that American
government cost US$216 billion for anti-spam every year. many approaches have
been developed to deal with the spam issue, and have reached some positive
results in anti-spam war. Sahami et al. [1] experimented with an anti-spam filter
based on Naive Bayes. Pantel and Lin [2] found that Naive Bayes outperforms
Ripper in their anti-spam experiments. Cohen suggests new methods[4] for au-
tomatically learning rules for classifying email into different categories, however
he did not specifically address the category of junk mail in his paper. Genetic
Document Classifier [5] is the first published text classifier to use genetic pro-
gramming. Smokey [6] is an email assistant that can detect hostile messages.
Zhang presented a hybrid approach[7] and use it in a junk mail filtering task.
Almost all these algorithms classify the incoming emails into two categories –
spam and non-spam. However, this is far from satisfaction from the users point
of view. In this paper, we are going to focus on an extended version of the Rough
Set Model called Variable Precision Rough Set (VPRS). The rest of the paper is
structured as follows: The email classification model based on VPRS approach
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is discussed in Section 2. The experimental results based on some benchmark
spam base and the evaluation of the proposed model is given in are presented in
Section 3. Finally, Section 4 concludes the paper.

2 Variable Precision Rough Set Approach

Rough set theory was developed by Pawlak in 1982 [3], and the Variable Precision
Rough Set (VPRS) theory, proposed by Ziarko [10], inherits all basic properties
of the original Rough Sets model and aims at handling uncertain information.
For the sake of further discussion, the brief introduction to rough set theory and
VPRS are given first.

2.1 Brief Introduction to Rough Set Theory

The definition of an information system is given in Def. 1.

Definition 1. Information system
An information system is a pair S =< U, A >, where U = {x1,x2, ...xn} is a
nonempty set of objects (n is the number of objects); A is a nonempty set of
attributes, A = {a1, a2, ...am}(m is the number of attributes) such thata : U →
Va for every a ∈ A. The set Va is called the value set of a.

A decision system is any information system of the form L = (U, A∪{d}), where
d is the decision attribute and not belong to A. The elements of A are called
conditional attributes.

The definition of the B-indiscernibility relation is given in Def. 2.

Definition 2. B-indiscernibility relation
Let S =< U, A > be an information system, then with any B ⊆ A there is
associated an equivalence relation INDS(B):

INDS(B) = {(x,x′
) ∈ U2|∀a ∈ B a(x) = a(x

′
)}

INDS(B) is called the B-indiscernibility relation.

The equivalence classes of B-indiscernibility relation are denoted [x]B.
The objects in BX can be certainly classified as members of X on the basis

of knowledge in B, while the objects in BX can be only classified as possible
members of X on the basis of knowledge in B. Based on the lower and upper
approximations of set X ⊆ U , the universe U can be divided into three disjoint
regions, and we can define them in Def. 3.

Definition 3. Positive region, negative region and boundary region

POS(X) = BX

NEG(X) = U − BX

BND(X) = BX − B.

The equivalence classes of B-indiscernibility relation are denoted [x]B.
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2.2 Variable Precision Rough Set(VPRS) Approach

The original Rough Sets model, introduced by Pawlak, provides a formal tool for
data analysis. However, same limitations of this approach have been detected,
especially inability to extract knowledge from data with a controlled degree of
uncertainty. This limitation of the Rough Sets approach to deal with uncertainty
gave rise to a generalized version of the original approach called Variable Preci-
sion Rough Set(VPRS). The fundamental notion introduced by the VPRS model
is the generalization of the standard inclusion relation called majority inclusion
relation. The definition of the majority inclusion relation is given in Def. 4.

Definition 4. majority inclusion relation

c(X, Y ) =

{
1 − card(X∩Y )

card(X) , if card(X) ≥ 0,
0 , if card(X) = 0.

Denoting the relative degree of misclassification of the set X with respect to
set Y . Based on this measure, one can define the standard set inclusion relation
between X and Y as: X ⊆ Y if and only if c(X, Y ) = 0.

Given an approximation space K = (U, R) and an arbitrary set X ⊆ U , the
β − lowerapproximation of X in K, denoted as RβX , is described as:

RβX = {x ∈ U : [x]R ⊆β X}

or equivalently,
RβX = {x ∈ U : c([x]R, X) ≤ β}

The β − upperapproximation of an arbitrary set X ⊆ U in an approximation
space K = (U, R), denoted as RβX , is described as:

RβX = {x ∈ U : c([x]R, X) < 1 − β}

Therefore, these β − lower and β − upper approximations divide the universe
U in tree regions, called β − positive, β − boundary and β − negative regions,
which are defined as the same way that in Pawlak’s model. The new definition
of positive region, negative region and boundary region based on VPRS is given
in Def. 5.

Definition 5. Positive, negative and boundary region based on VPRS

POSR,β = RβX

NEGR,β = U − RβX

BNDR,β = RβX − RβX.

These new definitions reduce the indiscernible area of the universe. As we have
discussed, our purpose is to reduce the error rate that a non-spam is classified
as a spam. To manage this issue we will use classification algorithm based on
Variable Precision Rough Set theory, we will classify the incoming emails into
three categories: non-spam, spam and suspicious. According to VPRS theory,
they also called called β − positive, β − boundary and β − negative regions.
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2.3 Email Classification Model Based on VPRS

Based on the preliminary knowledge, our VPRS scheme is provided as follows.

Step 1: With the the incoming emails, first thing we need to do is to select
the most appropriate attributes to use for classification. Then the input dataset
is transformed into a decision system L, which is then split into the training
dataset (TR) and the testing dataset (TE). A classifier will be induced from the
TR and applied to the TE to obtain a performance estimation. For TR, do Step
2 and Step 3.

Step 2: Because the decision system has real values attributes, we use Boolean
reasoning algorithm[8] to finish the discretization strategies.

Step 3: We use genetic algorithms[9] to get the decision rules. Then For TE,
continue to Step 4.

Step 4: First, discretizes the TE employing the same cuts computed from
step 2. Then the rules generated in Step 3 are used to match every new ob-
ject in TE to make decision. Let Let b = 0.15 ∈ [0, 1

2 ) be the threshold for
positive region (as β in Definition 4), therefore, these b − lower and b − upper
approximations divide the the whole emails in tree regions, called 0.15−positive,
0.15−boundary and 0.15−negative regions, The algorithm is described as Alg. 1.

Algorithm 1. Variable Precision Rough Set Classification Alg.
Input : Dis TE,RUL,b.

/* Dis TE: Discretized TE using cuts obtained from step
2 and RUL – the rules generated in Step 3. Rel() denotes
an object x is relevant to non-spam. CERx denotes the sum
predicts number for object x. b = 0.15 ∈ [0, 1

2 ) */

Output : the three categories - non-spam, spam and suspicious.
for x ∈ Dis TE do

while RUL(x) = ∅ do
suspicious = suspicious ∪ {x};

end
Let all r ∈ RUL(x) cast a number in favor of the non-spam class. The
number of predicts a rule gets to cast is actually the membership degree
based on the decision rules;
R = {r ∈ RUL(x)|r predicts non-spam;
Estimate Rel(Dis TE|x ∈ non − spam);
Rel(Dis TE|x ∈ non − spam) =

∑
r∈R predicts(non − spam);

Certaintyx = 1
CERx

× Rel(Dis TE|x ∈ non − spam);

while Certaintyx ≥ 1 − b do
non − spam = non − spam ∪ {x};

end
while (b ≤ Certaintyx < 1 − b) do

suspicious = suspicious ∪ {x};
end
spam = spam ∪ {x};

end
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3 Experiments and Evaluation of the Proposed Model

To verify the effectiveness of our model, we carried out two experiments.The
experimental data used is from UCI Machine Learning Repository. There are
4601 instances in this benchmark spambase with 1813 instances are spam.

Based on the proposed model in Section 2, we select eleven attributes accord-
ing to the forward selection method. In the experiments, 2/3 of the benchmark
spambase (3083 objects) was allocated as TR, and 1/3 of it (1518 objects) is
as TE. The training stage takes the TR with 11 attributes as inputs, and the
outputs of this stage are set of cuts and decision rules.

Among the 1518 emails in the TE, 943 are non-spam and 575 are spam. The
prediction results based on the proposed model are shown in Table 1.

Table 1. Experimental Results with 2/3 as TR

Actual Prediction correct Prediction incorrect Suspicious
Non-Spam 763 4 169
Spam 27 229 326

The experimental results show among the 936 actual non-spam emails, 763
were classified as non-spam, 4 as spam, and 169 as suspicious by the proposed
model.

And we carried out another experiment with Naive Bayes algorithm [1] with
the same benchmark spambase. The experimental results are given in Table 2.

Table 2. Experimental Results with 2/3 as TR

Actual Prediction correct Prediction incorrect
Non-Spam 915 21
Spam 56 521

From Table 1 and Table 2, one can easily find that: with 2/3 as TR, there
are only 4 non-spam emails that were classified into spam by using the proposed
model; whereas there are 21 non-spam emails that were incorrectly classified
as spam by using Naive Bayes. From the results, it can be concluded that the
proposed VPRS based email classification model is effective.

4 Concluding Remarks

The main purpose of this paper is to reduce the error rate that discriminating
a non-spam to spam, a VPRS based email classification model was developed
and the experimental results show that VPRS based model can reduce the error
rate that discriminating a non-spam to spam. In the future, we will consider a
complete solution to anti-spam classifier, a combination of several techniques is
necessary, so another issue is that our work can be generalized to classify emails
using cooperated methods.
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Abstract. Facial expression recognition is becoming more and more im-
portant in computer application, such as health care, children education,
etc. Based on geometric feature and appearance feature, there are a few
works have been done on facial expression recognition using such meth-
ods as ANN, SVM, etc. In this paper, considering geometric feature only,
a novel approach based on rough set theory and SVM is proposed. The
experiment results show this approach can get high recognition ratio and
reduce the cost of calculation.

Keywords: Facial expression recognition, rough set, support vector ma-
chines, feature extraction.

1 Introduction

Facial expression recognition is becoming more and more important in computer
application, such as health care, children education, etc. Furthermore, facial
expression recognition is also becoming an aspect of research of computer vision,
artificial intelligence, robot, etc[1].

Nowadays researchers often label the facial expression in discrete categories.
For example, Ekman and Friesen[2] defined six basic emotions: happiness, sad-
ness, surprise, fear, anger and disgust. There are mainly two types of features for
facial expression recognition, geometric feature and appearance feature. Many
different geometric features have been proposed for facial expression recogni-
tion in the last years[3,4,5,6]. Based on the discrete expression, facial expression
recognition always consists of such modules as face detection, feature extraction
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and expression classifier. Moreover, the classifier is the most important module
for facial expression recognition system. On the other hand, it is very impor-
tant for developing classifiers to improve the recognition ratio and select useful
features. There are a few works have been done on facial expression recognition
using such methods as ANN, SVM, etc. In this paper, a novel method for facial
expression recognition based on rough set theory and SVM is proposed.

The rest of paper is organized as follows. In section 2, the extraction of ge-
ometric feature of face is described. In section 3 and section 4, some relevant
concepts of rough set theory and facial expression classification based on SVM
are introduced. Simulation results and analysis are presented in section 5. Con-
clusions and future works are discussed in the last section.

2 Feature Extraction

2.1 Active Appearance Model(AAM)

Human facial expression is performed by the shape and position of facial com-
ponents such as eyebrows, eyes, mouth, nose, etc. The geometric facial features
present the shape and location of facial components. AAM is a novel method for
interpreting images[7] and it has been successfully used for locating face feature
points. AAM elegantly combines shape and texture models in a statistical-based
framework. Statistical analysis is performed through consecutive PCAs respec-
tively on shape, texture and their combination. The combined model allows the
AAM to have simultaneous control of shape and texture by a single vector of
parameters.

The setting-up of the model relies on a set of annotated images. The an-
notation consists of a group of landmark points(Fig. 1) around the main facial
features, marked in each example. The precision of feature points locating on un-
seen facial images is depended on the precision of these landmark points marking,
and in our experiments a few feature points located inaccurately are adjusted
manually.

Fig. 1. 52 Feature Points
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2.2 Feature Definition

The MPEG-4 is a popular standard for feature point selection. It extends FACS
to derive Facial Definition Parameters(FDP) and Facial Animation Parameters
(FAP)[8]. In FAP, 66 low level parameters are defined to describe the motion
of human face. According to these parameters, 52 parameters, which are illus-
trated in Fig. 1, are chosen to represent the emotion in this paper. Based on
these 52 feature points, some research works have been done, which choose dif-
ferent features[3,4,5,6]. It is very important to choose indispensable features for
facial expression recognition. In this paper, based on the works of Pantic, Tian,
Seyedarabi and Liu[3,4,5,6], 33 geometric features described in Table 1 are ob-
tained, and feature selection algorithm based on rough set reduction is adopted
on these 33 features to find a suitable feature subset for emotion recognition.

The distance features may be different case by case. In order to remove the
difference we standardize them as: di = di

d , i=0,1,...,32. d is the distance between
point 23 and 27, and it relies on individual but not relies on facial expression.

Table 1. Distance Features

feature description feature description feature description

d0 dis(11,19) d11 dis(39,44) d22 dis(44,48)/2
d1 dis(18,31) d12 dis(39,48) d23 dis(45,51)
d2 dis(21,25) d13 dis(44,48) d24 dis(47,49)
d3 dis(20,26) d14 dis(46,50) d25 dis(14,23)
d4 dis(22,24) d15 dis(39,3) d26 dis(15,27)
d5 dis(29,33) d16 dis(21,A) d27 dis(19,23)/2
d6 dis(28,34) d17 dis(A,25) d28 dis(27,31)/2
d7 dis(30,32) d18 hei(A,44) d29 (wid(19,23)+wid(27,31))/2
d8 dis(39,46) d19 dis(29,B) d30 (hei(11,39)+hei(18,39))/2
d9 dis(23,44) d20 dis(B,33) d31 (hei(14,39)+hei(15,39))/2
d10 dis(27,48) d21 hei(B,48) d32 (hei(44,39)+hei(48,39))/2

A: midpoint of 19 and 23, B: midpoint of 27 and 31
dis: Euclid distance, hei: vertical distance, wid: horizontal distance

3 Attribute Reduction with Rough Set Theory

Rough set is a valid mathematical theory for dealing with imprecise, uncertain
and vague information. It has been applied successfully in such fields as machine
learning, data mining, pattern recognition, intelligent data analyzing and control
algorithm acquiring, etc, since it was developed by Z. Pawlak in 1982[9].

The expression of knowledge in rough set is generally formed as an information
table or information system. It is defined as S = (U, R, V, f), where U is a finite
set of objects and R = C ∪ D is a finite set of attributes, C is the condition
attribute set and D is the decision attribute set. With every attribute a ∈ R, set
of its values Va is associated. Each attribute a determines function fa : U → Va.

The most advantage of rough set is its great ability to compute the reductions
of information systems. In an information system there might be some attributes
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that are irrelevant to the target concept (decision attribute), and some redundant
attributes. Reduction is needed to generate simple useful knowledge from it. A
reduction is the essential part of an information system that can discern all
objects discernible by the original information system. It is a minimal subset of
condition attributes with respect to decision attributes.

There are a lot of research works on the attribute reduction. In this work,
we adopt many algorithms of attribute reduction to process the dataset, and
the reduced attribute subset got by the conditional entropy-based algorithm for
reduction of knowledge without core(CEBARKNC) proposed by Wang in [10] is
very reasonable.

4 Basic Concept of SVM

SVM(Support Vector Machine) is a new technique for data classification. Unlike
traditional classification techniques that aim at minimizing the Empirical Risk,
SVM solves the classification problem by approximately implementing of the
Structural Risk Minimization(SRM) induction principle, which is a reduction
form of an Expected Risk Minimization problem.

Let (xi, yi) be a set of training examples, where xi ∈ Rd belongs to a class
labeled by yi ∈ {+1,−1}. The aim is to define a hyperplane which divides the
set of examples such that all the points with the same label are on the same side
of the hyperplane. Among the separating hyperplanes, the one for which the dis-
tance to the closest point is maximal is called optimal separating hyperplane[11].
Though the hyperplane can only learn linearly separable dataset in principle, in
practice, nonlinearity is achieved by applying an SVM kernel that maps an input
vector onto a higher dimensional feature space implicitly. As SVM is originally
designed for binary classification, we will extend it for multiclass classifier for
facial expression which consists of seven categories: happiness, sadness, surprise,
fear, anger, disgust and neutral. Recently, there are many types of approaches
for multiclass SVM such as one-against-one, one-against-rest, DAGSVM, etc,
and one-against-one method may be more suitable for practical use[12].

5 Experiment Results

The Cohn-Kanade AU-Coded Facial Expression Database[13] is used in our
experiments. In the first experiment, 128 facial images of 16 persons are ran-
domly selected from database including six basic emotions and neutral as a
training set. The 33 geometric features shown in Table 1 are extracted using
AAM(implemented based on AAM-API[14]), and SVM based on the radial basis
function kernel forms multiclass classifier with one-against-one method. 255 fa-
cial images of 31 persons are used as testing set. The results are shown in Table 2.

In the second experiment, the training and testing data sets are same with the
ones in the first experiment. Dissimilarly, the reduction algorithm of CEBARKNC
is performed on the training set which contains 33 attributes(features), and 10
reduced attributes(d0, d8, d13, d14, d16, d17, d19, d21, d26, d30) are obtained. Then,
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Table 2. Recognition Rate of 33 Features

happiness surprise anger sadness disgust fear neutral

happiness 38 0 0 0 0 5 0
surprise 3 38 0 0 0 0 0
anger 0 0 28 0 1 0 0

sadness 0 0 4 23 0 2 1
disgust 0 0 0 1 32 0 0

fear 1 0 2 1 0 25 0
neutral 0 0 3 11 0 2 34

recognition rate(%) 90.48 100.00 75.68 63.89 96.97 73.53 97.14

Total recognition rate: 85.49%

these 10 features are inputted to SVM for classification, and the recognition rates
are shown in Table 3.

Table 3. Recognition Rate of 10 Features

happiness surprise anger sadness disgust fear neutral

happiness 39 0 0 0 0 6 0
surprise 0 37 0 0 0 0 0
anger 0 0 25 1 3 0 1

sadness 0 0 8 25 1 0 2
disgust 0 0 1 1 26 0 0

fear 3 0 0 1 1 26 1
neutral 0 1 3 8 2 2 31

recognition rate(%) 92.86 97.37 67.57 69.44 78.79 76.47 88.57

Total recognition rate: 81.96%

The latter recognition rate is a little lower than the former one. Although the
recognition rates of surprise, anger, disgust and neutral in the latter are lower
than the ones in the former, the rates of happiness, sadness and fear are even
higher than the former. Through the analysis of reduced attributes, it is found
that width of eyes, height of eyebrows, width of mouth, openness of mouth,
height of lip corner, nose tip-upper lip distance are obvious relevant to facial
expression, and the other features are not very important.

6 Conclusions and Future Works

In this work, a novel approach of facial expression recognition based on rough
set theory and SVM is proposed, and it is an effective approach proved by the
experiment results. Besides this, it is clear that there are redundant features in
the related works before. Lesser features of ten are got in the experiments, and
this can reduce the cost of calculation for classifier.

In the future, feature point will be located automatically, and the appearance
feature will be added to get a higher recognition rate.
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Abstract. The generic approach to cancer classification based on gene
expression data is important for accurate cancer diagnosis, instead of
using all genes in the dataset, we select a small gene subset out of
thousands of genes for classification. Rough set theory is a tool for re-
ducing redundancy in information systems, thus Application of Rough
Set to gene selection is interesting. In this paper, a novel gene selection
method called RMIMR is proposed for gene selection, which searches
for the subset through maximum relevance and maximum positive inter-
action of genes. Compared with the classical methods based on statis-
tics,information theory and regression, Our method leads to significantly
improved classification in experiments on 4 gene expression datasets.

Keywords: Rough sets, gene selection, bioinformatics, classification
learning.

1 Introduction

Recent studies on molecular level classification of cancer cells have produced
remarkable results, strongly indicating the utility of gene expression data as
diagnostic tools [1,2]. A major goal of the analysis of gene expression data is
to identify the sets of genes that can serve, via expression profiling assays, as
classification or diagnosis platforms [3]. The cancer classification procedure based
on gene expression includes the following two steps. First of all, in order to
decrease computational complexity and eliminate noisy genes, we have to choose
a certain gene selection method [2,3]; secondly, in order to distinguish the tumor
samples from the normal ones, we have to construct a fine-work classifier, which
can analyze the gene expression data. Though the capability of a classifier is
of great significance for the cancer classification, the gene selection method also
plays an important role in improving the performance of classifiers [4,5,6,7,8].
Generally speaking, the goal of the gene selection is to select genes as few as
possible while achieving better classification performance.

Since rough set theory (RS) was introduced by Pawlak in 1982, there has
been great development in both theory and applications [9]. Rough set theory
has been applied to feature selection for many years, and some achievements
� Supported by the National Key Research Program of China (No. 2003CSCA00200)

and the National Key Lab Open Research Foundation (No. 2005C012).
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have been made [10,11,12]. In this paper, a novel gene selection method using
rough set is proposed.

The organization of the rest is as follows. In section 2, a gene selection method
named RMIMR is described in details; then evaluation experiments and discus-
sion are presented in section 3; finally, conclusions are addressed in section 4.

2 Gene Selection Using Rough Set

Gene expression data can be represented by an matrix. The columns are MR-
NA/DNA samples, labelled sample1, sample2, ..., samplem, rows represent
genes, labelled gene1, gene2, ..., genen, where genes are more than samples. To
handle the high-dimensional gene expression data, researchers have proposed
different methods based on mutual information, statistical tests and regression
[4,5,6,7,8]. Those approaches to gene selection fall into two types: filters and
wrappers. In filter type, the characteristics in the gene selection are uncorre-
lated to that of the learning methods. Genes are selected based on the intrinsic
characteristics [4], which determine their relevance or discriminant powers with
regard to the targeted classes. In wrapper type methods, feature selection is
“wrapped” around a learning method: the usefulness of a gene subset is directly
judged by the estimated accuracy of the learning method [5]. The method pro-
posed in this paper is of the filter type.

Recently, the rough set is applied to the analysis of genes, and it is usually
used as a rule-based learning method[13]. Pawlak pointed out that one of the
most important and fundamental roles of the rough sets philosophy is the need
to discover redundancy and dependencies between features [9]. Although several
methods using RS have been proposed for feature selection on common data sets,
they can not be used for gene selection on gene expression data directly. The goal
of attribute reduction in RS is reducing the attributes as well as maintaining the
consistency of decision tables, which is defined as the power of classification[13].
According to Ron Kohavi’s research, the best subset in feature selection may
not be a reduct and even does not necessarily contains all core attributes, in fact
the reduct may lead to the unfavorable performance when being used to train
classifiers [12].

Then main contribution of this paper is that we define relevance of genes
and interaction of genes using rough set, and propose the method call RMIMR
(Rough Maximum Interaction-Maximum Relevance), which is verified to be ef-
fective and useful by analysis and experiments.

2.1 The Principle of Gene Selection

The goal of gene selection is to reduce the computational cost and noises so as
to improve the classification accuracy. Therefor which gene should be reduced is
the key issue. The common way is to reduce those genes that are irrelevant to the
class variable. There have been many attempts to define what is an irrelevant or
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relevant gene. Dependency of attributes is an important concept in RS, which
is used to denote the relativity degree between attributes and decision. In this
paper, genes’ relevance with respect to class variable is defined based on RS’s
dependency of attributes, then irrelevant genes can be reduced gradually or
relevant genes can be selected.

Definition 1. (the gene’s relevance with respect to the class variable) Gene ex-
pression data contains n genes and a class variable D, the gene set is denoted
by gene, gene = {gene1, gene2, ..., genen}, U is the universe of the data, |U |
denotes the cardinality of U . The relevance of genei can be written as:

relevance(genei) =
|pos{genei}(D)|

|U | , i = 1, 2, ..., n. (1)

Definition 1 gives a way to evaluate the relevance of the gene for classifica-
tion. One common practice of current filter type method is to simply select the
top-ranked genes according to the relevance. That is, rank genes according to
their relevance, then select the genes with high ranks into the gene subset. This
method is simple to be realized, but sometimes it gives bad results [5]. It is
frequently observed that simply combining a “very effective” gene with another
“very effective” gene often does not form a better feature set. One reason is that
these two genes may be highly interacted with each other. Some classifiers, such
as Naive-Bayes, are sensitive to the interaction of genes. When the interaction
is negative, performance of subset will decline rapidly. This raises the issue of
“redundancy” of gene set. Besides the relevance, the interaction of genes must
be considered. Based on the concept of dependency of attributes in RS, the
interaction of genes can be defined as follows.

Definition 2. (interaction of genes) Gene expression data contains n genes and
a class variable D, the gene set is denoted by gene, gene = {gene1, gene2, ...,
genen}, U is the universe of the data, |U | denotes the cardinality of U . Then the
interaction of genei and genej is defined as:

interaction(genei, genej) =
|pos{genei,genej}(D)|

|U | −
|pos{genei}(D)|

|U | −
|pos{genej}(D)|

|U | .

( ) (2)

Where |pos{genei}(D)|
|U| ,

|pos{genej}(D)|
|U| represents the relevance of genei and genej

for classification, respectively, while
|pos{genei,genej}(D)|

|U| represents the relevance
of the gene combination. interaction(genei, genej) reflects the interaction be-
tween genei and genej, it can be illustrated as follows:

(1) If interaction(genei, genej) > 0, gene combination is better than the sum
of isolated genes, combination has more relevance with class variable, there is
positive interaction between genei and genej;

(2) If interaction(genei, genej) < 0, gene combination is worse than the sum
of isolated genes, combination has less relevance with class variable, there is
negative interaction between genei and genej;
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(3) If interaction(genei, genej) = 0, gene combination is equivalent to the
sum of isolated genes.

2.2 Gene Selection Using RS

In order to evaluate a gene subset with better generalization property, we should
consider two basic rules: one is relevance of genes and the other is the interac-
tion of genes. In the paper, a criterion called Maximum Interaction-Maximum
Relevance is used to assess gene subset labelled geneset, which means that both
relevance of genes and positive interaction of genes are both maximized. The
criterion can be written as follows:

maxW W =
1

|geneset|
∑

genei∈ geneset

relevance(genei). (3)

maxV V =
1

|geneset|2
∑

genei,genej∈ geneset

interaction(genei, genej). (4)

V is the average interaction of genes in subset, and W is average relevance of
genes in subset, |geneset| is the cardinality of gene subset labelled geneset. A
well-performed gene subset has both maximum V and maximum W. Since value
of interaction is between -1 and 1, for simplicity, we normalize it to [0,1]. Thus
Eqs.4 can be amended as Eqs.5.

maxV V =
1

2 × |geneset|2
∑

genei,genej∈ geneset

(interaction(genei, genej) + 1).

(5)
The maximum interaction-maximum relevance condition is to optimize Eqs.3
and Eqs.5 simultaneously, it can be denoted by Eqs.6.⎧⎨⎩

maxW W = 1
|geneset|

∑
genei∈ geneset

relevance(genei)

maxV V = 1
2×|geneset|2

∑
genei,genej∈ geneset

(interaction(genei, genej) + 1).

(6)
The maximum interaction-maximum relevance gene subset is obtained by

optimizing Eqs.6 simultaneously. Optimization of these two conditions requires
combining them into a single criterion function. In this paper we treat the two
conditions equally important, and consider the simple combined criteria:

max(W + V ). (7)

According to the combined criteria Eqs.7, a method named RMIMR (Rough
Maximum Interaction-maximum Relevance) is proposed, it uses a simple heuris-
tic algorithm to resolve the RMIMR optimization problem. The algorithm of
RMIMR method is described as follows.
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Algorithm 1. RMIMR

Data: Gene expression data contains n genes and a class variable, the
gene set is denoted by gene = {gene1, gene2, ..., genen}

Result: Gene subset with s genes labelled subset
subset ← ø;
for i = 1 to n do

relevance(genei) is calculated according to Eqs.1;
end
for i = 1 to n do

if relevance(genei) ranks highest then
subset ← subset + {genei};
gene ← gene − {genei};
exit for;

end
end
while s genes are selected do

for i = 1 to n do
if genei satisfys the Eqs.7 and has not been selected then

subset ← subset + {genei};
gene ← gene − {genei};

end
end

end

3 Experiments and Discussion

In order to evaluate the usefulness of the RMIMR approach, we carried out
experiments on four gene expression datasets. The performance of the gene se-
lection is evaluated by training SVM and Naive-bayes.

3.1 Data Sets and Discretization

Two-class datasets Leukemia and colon cancer are used for experiments [1,14],
as well as other two multi-class datasets, Leukemia-3 and lung cancer [1,15],
the details are listed in Table 1. The data are continuous, we discretize data
beforehand. For each attribute, we assume that the mean of its data is μ, and
the standard deviation is σ. Any data less than μ− σ/2 are transformed to -1,
any data between μ − σ/2 and μ + σ/2 are transformed to 0, any data greater
than μ + σ/2 are transformed to 1, then three intervals are obtained, meaning
that genes are down-regulated, medium-regulated or up-regulated respectively.

3.2 Class Prediction Methods

SVM is a kernel-based learning method proposed by Vapnik, which has been
extensively employed as a classification. The naive-Bayes method is a simple
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Table 1. Datasets Used in Experiments

Dataset Leukemia Colon Cancer Leukemia-3 Lung

Gene 7129 2000 7129 1000

Sample 72 62 72 197

Name of class ALL AML Tumor Normal T-cell B-cell AML AD NL SQ CO

Sample in class 47 25 40 22 9 38 25 131 17 21 20

approach to probabilistic induction that has been successfully applied in a num-
ber of machine learning applications

3.3 Results and Discussion

The experiments are carried out in two steps. First of all, a gene subset is selected
using RMIMR; then the gene subset is used to train classifiers SVM and Naive-
Bayes, and we assess classification performance using the “Leave-One-Out Cross
Validation” (LOOCV). In order to demonstrate the advantages of RMIMR, we
will compare our classification accuracy with the results presented in [7,8], in that
paper information theory methods including MID, MIQ and statistical methods
including BASELINE, TCD, TCQ are used, the compare result is plotted in
Fig.1 to Fig.4.

In Fig.1 and Fig.2, we compare the RMIMR with TCD and TCQ on datasets
Leukemia and colon, the classifier is SVM. In Fig.1, our gene subsets with 4, 6
or 10 genes respectively lead to LOOCV error of zero. In Fig.2, LOOCV error
of RMIMR is less than those of other methods for each case, the advantage is
obvious. In Fig.3 and Fig.4, we compare RMIMR against Baseline, MID and MIQ
on datasets Leukemia and colon, the classifier is Naive-bayes. In fig.3, LOOCV
errors of RMIMR is zero using subsets with 6, 9, 15 or 21 genes respectively. In
Fig.4, though MIQ has higher accuracy than RMIMR when selecting 6 genes or
9 genes, average performance of RMIMR is better, and RMIMR has much less
errors using 21 genes or 24 genes.

Fig.5 and Fig.6 display the results of RMIMR on multi-class datasets
Leukemia-3 and Lung, Fig.5 shows the LOOCV error of Naive-bayes, while
Fig.6 shows LOOCV error using SVM. In summary, the error rate of RMIRM

Fig. 1. The Classification Accuracy on
Leukemia Data(SVM Classifier)

Fig. 2. The Classification Accuracy on
Colon Data(SVM Classifier)
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Fig. 3. The Classification Accuracy on
Leukemia Data(Naive-bayes Classifier)

Fig. 4. The Classification Accuracy on
Colon Data(Naive-bayes Classifier)

Fig. 5. The Classification Accu-
racy of RMIMR on Multi-calss
Datasets(Naive-bayes classifier)

Fig. 6. The Classification Accuracy of
RMIMR on Multi-class Datasets(SVM
classifier)

on Leukemia-3 are below 6% with 10˜40 genes by training both Naive-bayes
and SVM. Compared with the result obtained using partial least squares [8], in
which LOOCV error is 4 when 69˜100 genes are selected , our method has fewer
LOOCV errors with the small subset.

Experiment results suggest that RMIMR is an effective method for gene se-
lection, it leads to significantly improved cancer diagnosis accuracy, finally it can
results in a significant difference in a patient’s chances for remission.

4 Conclusion

Because of the high dimension of expression data, selecting a small subset of
genes out of the thousands of genes in Microarray is a crucial problem for ac-
curate cancer classification. In this paper we investigated the problem of gene
selection using RS, we proposed RMIMR method using RS. According to the
analysis and experiments, we have found that our method lead to significantly
improved classification accuracy, it is robust and generalized well to unseen data.
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Abstract. A lot of test cases need to be executed in statistical software
testing. A test case consists of a set of inputs and a list of expected out-
puts. To automatically generate the expected outputs for a lot of test
cases is rather difficult. An attribute reduction based approach is pro-
posed in this paper to automatically generate the expected outputs. In
this approach the input and output variables of a software are expressed
as conditional attributes and decision attributes respectively. The rela-
tionship between input and output variables are then obtained by at-
tribute reduction. Thus, the expected outputs for a lot of test sets are
automatically generated via the relationship. Finally, a case study and
the comparison results are presented, which show that the method is
effective.

Keywords: statistical software testing, attribute reduction, rough sets,
test case.

1 Introduction

The software engineering community has turned its attention to statistical soft-
ware testing recently [1,2]. A lot of test cases need to be generated and executed
to simulate the usage model of the Application Under Testing (AUT). A test
case has a set of inputs and a list of expected outputs. Very few techniques
have been developed to automatically generate the expected outputs. In most
cases, a tester is assumed to provide expected behavior of the software [3,4]. It
needs a lot of time and is often error-prone. Aggarwal explores neural networks
based approach to generate expected outputs [5]. However, it only deals with
classification problems. Schroeder generates the large combinatorial test suite
automatically [6] by generating the Input-Output (IO) relationship from the re-
quirements specification document manually. However, finding all IO relationship
manually is rather difficult. Moreover, the document may be inconsistent or not
integral. Memon presents a planning method to generate expected outputs [7],
which should model the software and each operator manually.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 786–791, 2006.
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The theory of rough sets [8,9] can be used to find dependence relationship
among data, reduce all redundant objects and attributes, and seek the mini-
mum subset of attributes. Unlike other intelligent methods, such as fuzzy set
theory, rough sets analysis requires no external parameters and uses only the
information presented in the given data. It has been widely used in attributes
reduction [11,13] and knowledge discovery [10]. It is used in this paper for auto-
matically generating expected outputs in statistical software testing .

2 Problem Domain

AUT in software testing is regarded as a black box. It accepts inputs from a user
or system, computes results, and outputs those results. AUT discussed in the
paper is a determined program. Let I = (I1, · · · , In) and O = (O1, · · · , Om) be
input and output vector respectively. Therefore, the relationship between input
and output variables is in nature some functions, i.e. O = f(I) and Oj = fj(I).
Let VI,O be the value set of I and O, VIi be the value set of Ii, and VI be the
value set of I. Therefore, VI includes every possible combination of the value
from VIi . Moreover, let Ii ∈ VI , then (Ii, Oi) is a test case ti ∈ VI,O, where
Oi = f(Ii) and VI,O is a test suite. The number of all test cases is |VI,O| = |VI |
because O is determined by I. To generate all test cases VI,O manually is difficult
and error-prone for that the number is very large. We explore an approach to
generate VI,O automatically by generating V

′
I,O ⊂ VI,O manually.

3 Rough Sets and Attribute Reduction

Rough sets theory, developed by Pawlak [8,9], has been employed to remove
redundant conditional attributes from discrete-valued data sets, meanwhile re-
taining their information content. Let K = (U, A) be an information system,
where U is a non-empty set of finite objects and A is a non-empty finite set of
attributes such that a : U → Va, ∀a ∈ A, Va being the value set of the attribute
a. In a decision system A = C ∪ U , where C and D are conditional attributes
and decision attributes respectively. For ∀P ⊆ A there is an equivalence relation:

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)}. (1)

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P . Let
PX and PX be P − lower approximation and P − upper approximation of the
set X ⊆ U respectively:

PX = {x|[x]p ⊆ X}, PX = {x|[x]p ∩ X �= ∅}. (2)

where [x]p denotes equivalence classes of the P−indiscernible relation. For P,Q ⊆
A, the positive region can be defined as:

POSP (Q) =
⋃

X∈U/Q

PX. (3)
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Q depends on P in a degree:

k = γP (Q) =
|POSP (Q)|

|U | , k ∈ [0, 1]. (4)

Q depends totally on P if k = 1. And Q depends partially on P if 0 < k < 1.
Otherwise, Q doesn’t depend on P if k = 0. A reduct is defined as any R ⊆ C,
such that γC(D) = γR(D). Minimal reduct Rmin is denoted by

Rmin = {X |X ∈ R, ∀Y ∈ R, |X | ≤ |Y |}. (5)

where
R = {X |X ⊆ C, γC(D) = γX(D)}. (6)

The problem of finding a reduct of an information or decision system has been
the subject of many research [12,14,15]. The most basic solution to locate such a
subset is to simply generate all possible subsets and retrieve those with a maxi-
mum rough sets dependency degree. Obviously, this is an expensive solution to
the problem and is practical only for very simple data sets. The QuickReduct
algorithm borrowed from [11] can calculate a reduct without generating all pos-
sible subsets exhaustively. QuickReduct does not necessarily produce a minimal
reduct. However, it does result in a close-to-minimal reduct which is still useful
in greatly reducing data set dimensionality.

Algorithm 1. QuickReduct
Input : C, the set of conditional attributes ; D, the set of decision attributes .
Output: R, the attribute reduction, R ⊆ C.
R ←− ∅;
repeat

T ←− R;
for (each x ∈ (C − R)) do

if γR∪{x}(D) > γT (D) then
T ←− R ∪ {x};

end
end
R ←− T ;

until (γR(D) = γC(D))
return R;

4 Generating Expected Results

For a software it is often true that some output variables are not influenced by
some input variables. For Oj = fj(I), where I = (I1, · · · , In) and Oj is the jth

component from O = (O1, · · · , Om), an input variable Ik influences an output
variable Oj iff there exists two input data items I1 = (a1, · · · , ak, · · · , an) and
I2 = (a1, · · · , a

′
k, · · · , an) such that fj(I1) �= fj(I2), ak, a

′
k ∈ VIk

, ak �= a
′
k. Let

SI = {I1, · · · , In}, SO = {O1, · · · , Om}, and WOi be the set of variables from SI
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that influence Oi. VI,Oi can be automatically generated by determining VWOi
,Oi

manually because Oi is not influenced by the input variables in SI −WOi . The
process to determine WOi is as follow.

Step 1: Generate initial test suite V
′
I,O ⊂ VI,O manually, where z = |V ′

I,O| is
determined by user.

Step 2: Take SI as conditional attributes and SO as decision attributes. V
′
I,O

in step 1 becomes a decision table denoted by DT .
Step 3: Generate a decision table DTi from DT for each Oi ∈ SO. The condi-

tional attributes of DTi is SI and the decision attribute is Oi.
Step 4: Use the algorithm QuickReduct to compute reduct for the decision

attribute Oi in the decision table DTi. Reduct obtained from DTi is
WOi .

VWOi
,Oi is then computed manually following the above steps. Note that the

size of the combination will be much smaller than |VI | if |WOi | < |SI |. A lot
of reduction in the size is obtained particularly for GUI or component-based
software. Finally, VI,O can be generated by searching in VWOi

,Oi , i = 1, · · · , m.

5 A Case Study and Comparison

The AUT adopted in the case is a software that has five input variables and three
output variables. Input and output vectors are defined as I = (I1, I2, I3, I4, I5)
and O = (O1, O2, O3). The relationship between I and O is:

O1 = I1 × I2, O2 = I2 × I3, O3 = I4 + I5. (7)

Black-box test data selection criteria (such as equivalence partitioning and
boundary value analysis) is applied to select characteristic values for Ii. Given
some characteristic values selected for Ii is {1,2,3,4,5}. We generate 60 groups
of test cases manually. Table 1 lists a part of test cases generated.

Table 1. A Part of Test Cases Generated Manually (Total Number is 60)

Test case Inputs Outputs
I1 I2 I3 I4 I5 O1 O2 O3

t1 1 3 5 3 2 3 15 5
t2 1 3 3 4 3 3 9 7
t3 1 1 3 2 1 1 3 3
...

...
...

...
...

...
...

...
...

The decision table DT1 is constructed by selecting I1, I2, I3, I4 and I5 as
conditional attributes and O1 as a decision attribute. By using the algorithm
QuickReduct on the DT1, the reduct is {I1, I2}. The reduct for decision at-
tributes O2 and O3 are generated based on the same method. They correspond
to {I2, I3} and {I4, I5} respectively. It shows that the relationship from input
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to output variables is generated correctly just by a part of test cases. Then the
approach computes the value for each Oi under characteristic values combina-
tion of input variables in the corresponding reduct, i.e. computing VWOi

,Oi . It
needs less effort than computing VI,Oi before attribute reduction. For example,
the number of values we should compute for O1 is |VI | = 5×5×5×5×5 = 3125
before attribute reduction. The number becomes |VWO1

| = |VI1,I2 | = 5 × 5 = 25
after attribute reduction. VI,O is then computed automatically by searching in
each VWOi

,Oi , i = 1, · · · , m.
Finally, our method is compared with the Aggarwal’s method [5] and Memon’s

method [7]. These two methods are all proposed recently. The comparison is
listed in the table 2. The row ”Time needed to generate expected outputs”
represents the time needed to generate expected outputs after training has been
finished or the model has been constructed. The row ”Type of AUT” represents
the AUT that can be tested by the method. It shows that our method can save
the time and labor in software testing as the Aggarwal’s method and can be
used to generate expected outputs for the GUI or component-based software.

Table 2. Comparison among Three Methods of Generating Expected Outputs

Our method Aggarwal’s method Memon’s method
Work needed
to be done
manually

Little (include gener-
ating a part of test
cases)

Little (include gener-
ating a part of test
cases and training
neural networks)

A lot (include con-
structing the model
for GUI software and
set the condition for
each operator)

Time needed
to generate
expected
outputs

Little (include
searching in the de-
cision table, usually
a few seconds)

Little (usually a few
seconds)

A lot (usually a few
hours)

Type of AUT GUI or component-
based software

Software which deal
with classification
problems

GUI software

6 Conclusion

In statistical software testing, a lot of test cases must be executed to simulate
the usage model of the software. We present a new approach based on attribute
reduction to generate expected outputs for these test cases by generating a rel-
atively small suite of test cases manually, which makes it possible to maintain a
suite of hundreds-of-thousands of test cases automatically as the software prod-
uct evolves. Our results can be applied to component-based or GUI software in
which cases some output variables are determined by a part of input variables.
The experiment described here is a first case study. The target application and
the relationship between input and output variables are relatively simple. The
next steps include determining the proper size of the initial test suite and devel-
oping experiments with more complex target applications.
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Abstract. In this paper, we propose a novel anomaly detection frame-
work which integrates soft computing techniques to eliminate sharp boun-
dary between normal and anomalous behavior. The proposed method
also improves data pre-processing step by identifying important features
for intrusion detection. Furthermore, we develop a learning algorithm to
find classifiers for imbalanced training data to avoid some assumptions
made in most learning algorithms that are not necessarily sound. Pre-
liminary experimental results indicate that our approach is very effective
in anomaly detection.

Keywords: Fuzzy theory, anomaly detection, data mining.

1 Introduction

Intrusion detection is the process of monitoring and analyzing the events occur-
ring in a computer system in order to detect signs of security problems [1]. Using
data mining techniques to build profiles for anomaly detection has been an active
research area for network intrusion detection. The ADAM [2] has been recognized
as the most widely known and well-published project in this field. Traditionally,
anomaly detection methods require training over clean data (normal data con-
taining no anomalies) in order to build a model that detects anomalies. There
are two inherent drawbacks of these systems. First, clean training data is not
always easy to obtain. Second, training over imperfect (noisy) data may result
in systems accepting intrusive behavior as normal. To address these weaknesses,
the possibility of training anomaly detection systems over noisy data has been
investigated recently [3,7]. Methods for anomaly detection over noisy data do
not assume that the data is labelled or somehow otherwise sorted according to
classification. These systems usually make two key assumptions about the train-
ing data. First, data instances having the same classification (type of attack or
normal) should be close to each other in feature space under some reasonable
metric. In other words, anomalous elements are assumed to be qualitatively dif-
ferent from the normal. Second, the number of instances in the training set that
represent normal behavior will be overwhelmingly larger than the number of
intrusion instances. Then, the anomalies, both different and rare, are expected
to appear as outliers that stand out from the normal baseline data.

G. Wang et al. (Eds.): RSKT 2006, LNAI 4062, pp. 792–798, 2006.
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Even though the intrusion detection problem has been studied intensively,
current techniques for intrusion detection still have limitations. In this paper, we
propose a novel anomaly detection framework that has three desirable features:

- employ soft computing techniques to eliminate sharp boundary between nor-
mal and anomalous behavior;

- improve data pre-processing step by identifying important features;
- develop a learning algorithm to find classifiers for imbalanced training sets

to avoid undesirable assumptions made in most learning algorithms.

2 Design and Development of a Fuzzy Anomaly Detection
System — FADS

In this section, we develop an anomaly detection system, called FADS – Fuzzy
Anomaly Detection System, based on fuzzy data mining techniques. The pro-
posed system is composed of two main modules: feature set selection and fuzzy
Bayesian classification for anomaly detection. First, we apply leave-one-out fea-
ture selection method to rank input features and delete unimportant features
from the feature set. Next, a fuzzy Bayesian classification algorithm is applied
to new training set to build a learning model which can identify anomalous ac-
tivities. In the following sections, we discuss these two modules in more details.

2.1 Feature Selection

The ability to identify important inputs and redundant inputs of a classifier
leads directly to the reduced size, faster training and possibly more accurate
results. A matrix as shown in Table 1 is typically used to evaluate performance
of a learning algorithm.

Table 1. Metrics for Evaluation of Intrusions

Predicted Label

Normal Attacks

Actual Normal True Negative (TN) False Positive (FP)

Label Attacks False Negative (FN) True Positive (TP)

From Table 1, metrics such as precision, recall and F-value can be derived as
follows:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F-value =
(1 + β)2 × Recall × Precision

β2 × Recall + Precision
,
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where β corresponds to the relative importance of precision versus recall and is
usually set to one. Here, precision denotes the percentage of true attacks among
all detected attacks, recall denotes the percentage of correctly detected attacks
among all true attacks, and F-value presents a combination of precision and
recall.

In addition, the average accuracy of a classifier is defined as the percentage of
testing examples correctly recognized by the system. According to Table 1, the
overall accuracy, OA, can be defined as:

OA =
TN + TP

TN + FN + FP + TP
.

Since F-values provides a combination of precision and recall, we only consider
two main performance metrics, overall accuracy (OA) and F-value (FV), when we
rank a feature. Obviously, a näıve way to determine the importance of the input
variables is a complete analysis which requires examination of all possibilities.
This, however, is infeasible due to time complexity. We apply the Leave-one-out
(LOO) technique of deleting one feature at a time to rank the input features and
identify the most important features for intrusion detection [9]. The basic steps
for input ranking is as follows:

(1) Delete one input feature from the data set at a time;
(2) The new data set is used for the training and testing of the classifier;
(3) The classifier’s performance is compared to the original classifier (based on

all features) in terms of two performance metrics (OA and FV);
(4) Rank the importance of the deleted feature based on comparison rules;
(5) Repeat steps (1) – (4) for each input feature.

Each feature is ranked into one of the three categories, important, secondary,
and unimportant, according to ranking rules given in Table 2. For example, if
both the values of FV and OA increase after deleting a feature, we can say for
sure that this feature is unimportant in the original data set, and thus, can be
removed from the feature set.

Table 2. Determine the Rank of a Feature

Rank FV Increase FV Decrease FV Unchanged

OA Increase Unimportant Secondary Unimportant

OA Decrease Secondary Important Important

OA Unchanged Unimportant Important Unimportant

2.2 Fuzzy Bayesian Classification for Anomaly Detection

There are two main reasons to introduce fuzzy logic for intrusion detection. First,
many quantitative features are involved in intrusion detection and can poten-
tially be viewed as fuzzy variables. Second, security itself includes fuzziness [6].
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Fuzzy logic has been recognized as a convenient tool for handling continuous
attributes in a human understandable manner. The fuzzy sets of attributes in-
terpret the value of an attribute as a membership degree (between 0 and 1) that
determines to what extent the example is described by the attribute. In other
words, an object can be entirely in the set (if membership degree = 1), entirely
not in the set (if membership degree = 0), or partially in the set (if 0 < mem-
bership degree < 1). In the rest of this section, we present how to apply fuzzy
logic to Bayesian classification for anomaly detection.

Let C denote a class attribute with a finite domain dom(C) of m classes, and
V1, ..., Vn a number of attributes with finite domains dom(V1), ..., dom(Vn). An
instance i is described by its attribute values vi

1 ∈ dom(V1), ..., vi
n ∈ dom(Vn).

Näıve Bayesian classifiers implement a probabilistic idea of classification — cal-
culate the class of a new instance i by estimating for each class from dom(C) the
probability that the instance is in this class, and select the most probable class
as the prediction of i. Formally, for all c ∈ dom(C) they estimate the probability

P (C = c|V1 = vi
1, V2 = vi

2, ..., Vn = vi
n) (1)

that an instance i with the given attribute values has the class c. To simplify,
we use P (c|vi

1, v
i
2, ..., v

i
n) to substitute the expression in (1).

The basic idea of Näıve Bayesian classification is to apply the Bayes theorem

P (Y |X) =
P (X |Y )P (Y )

P (X)
. (2)

In the fuzzy case, an instance i does not have exactly one value vi
j ∈ dom(Vj)

for each attribute Vj , but has each value vj ∈ dom(Vj) to a degree μi
vj

∈ [0, 1],
where the degree μi

vj
is determined by the membership function.

We first normalize each numerical attribute in the data set so that the mem-
bership function for all the numerical attributes can be defined in the same way.
Next, for any non-numerical attribute (e.g., protocol-type) we use the categori-
cal values to construct a crisp set (e.g., {tcp, udp}), and the membership degree
for each categorical value is either 0 or 1. No matter a numerical or categorical
attribute is considered, we assume all membership degrees are normalized for
each instance i: ∑

vj∈dom(Vj)

μi
vj

= 1.

Given an instance i, we use P (c|i) to denote the possibility that instance i
belongs to class c, and use P (vj |i) to denote the possibility that instance i has
an attribute vj , i.e., P (vj |i) = μi

vj
. First, we split overall fuzzy cases for the

actual attribute values, then we have

P (c|i) =
∑

v1∈dom(V1)...vn∈dom(Vn)

P (c|v1....vn)P (v1...vn|i). (3)
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Since we assume that the attribute values of instance i are independent, the
right-hand side of Equation (3) reduces to:

P (c|i) =
∑

v1∈dom(V1)...vn∈dom(Vn)

P (c|v1....vn)P (v1|i)...P (vn|i)

=
∑

v1∈dom(V1)...vn∈dom(Vn)

P (c|v1....vn)μi
v1
...μi

vn
. (4)

Now we apply Bayesian theorem, as shown in Equation (2), to Equation (4) and
we obtain:

P (c|i) =
∑

v1∈dom(V1)...vn∈dom(Vn)

P (v1...vn|c)P (c)
P (v1...vn)

μi
v1
...μi

vn
. (5)

The “Näıve” assumption made in Bayesian classification is that given the
class value, all attribute values are independent. Although the independence
assumption is Näıve in that it is in general not met, Näıve Bayesian classifiers
give quite good results in many cases, and are often a good way to perform
classification [8]. To deal with the dependencies among attribute values, one can
apply a more sophisticated classification approach, Bayesian Networks [4].

We apply the same näıve independence assumption and finally obtain the
following equation:

P (c|i) =
∑

v1∈dom(V1)...vn∈dom(Vn)

P (v1|c)...P (vn|c)P (c)
P (v1)...P (vn)

μi
v1
...μi

vn

= P (c)

⎛⎝ ∑
v1∈dom(V1)

P (v1|c)
P (v1)

μi
v1

⎞⎠ ...

⎛⎝ ∑
vn∈dom(Vn)

P (vn|c)
P (vn)

μi
vn

⎞⎠ . (6)

For intrusion detection, when we use Equation (6) to predict a testing in-
stance i, P (c|i) should be calculated for all c ∈ dom(C) = {normal, DoS, R2L,
U2R, Probing} to find the maximum value, pmax. If we have pmax < θ, where
θ is a user pre-specified possibility threshold, we assume a new type of attack
occurs. The value of θ can be determined by empirical testing. In this way, fuzzy
Bayesian classifiers facilitate the process of anomaly detection.

3 Preliminary Experimental Results

Experiments are conducted using 1998 DARPA intrusion detection data [5].
For each TCP connection, 41 various quantitative and qualitative features are
extracted. We first apply näıve Bayesian classification to build the anomaly
detection system based on all 41 features. Leave-one-out feature selection method
is then applied to identify important, secondary, and unimportant features in
feature space. Finally, important and secondary features are used in the fuzzy
Bayesian classification to detect anomalous behaviors.
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Among 41 TCP connection features, by LOO feature selection method, four
features are important because the removal of these features degrades the perfor-
mance of the system considering two evaluation metrics, F-value and accuracy.
Seven features are considered unimportant because the removal these features
improves the overall performance of the detection system. The rest of 30 fea-
tures are considered as secondary features because the overall performance is
not affected by these features.

Table 3 shows the performance of the system based on four metrics, i.e.,
precision, recall, F-value, and accuracy. We randomly divide the original test
data set into 200 subsets. Each subset contains about 10,000 connection records.
The experiments are conducted on each subset of the test data and the system is
evaluated based on the average performance. From Table 3, the näıve Bayesian
classification issues the worst performance, while the fuzzy Bayesian with feature
selection renders the best results. The value of recall in the näıve classification
is low because lots of real attacks are not successfully detected. However, after
removing unimportant features from training and test data sets, the value of
recall increases dramatically. Thus, with fewer number of features in the feature
space, the system becomes more efficient and at the same time more accurate.
Since there are 34 numerical attributes in the original feature set, the application
of fuzzy logic represents imprecise knowledge precisely and improves the overall
accuracy of the anomaly detection system.

Table 3. Comparison of Näıve and Fuzzy Bayesian Classifications

Precision Recall F-value OA

näıve w/o feature selection 94.7% 60% 1.47 97.5%

näıve w feature selection 93.3% 93.3% 1.87 99.2%

fuzzy w feature selection 96.5% 93.3% 1.89 99.5%

4 Conclusion

Current intrusion detection techniques have limitations because most of them
isolate data mining from other KDD steps, build the detection models based
on some non-trivial assumptions on training data, and assume the existence of
sharp boundaries between normal and abnormal activities. We discussed these
aspects in a critical manner and propose FADS – a fuzzy anomaly detection
system which aims at eliminating these limitations using the following two tech-
niques: (1) Remove unimportant features (or attributes) from original data set
using Leave-one-out (LOO) feature selection strategy. This data pre-processing
step improves the accuracy and efficiency of the system. (2) Apply fuzzy logic to
Bayesian classification for anomaly detection. Since intrusion detection involves
numerous numerical attributes, fuzzy logic provides a convenient tool for han-
dling continuous attributes in a human understandable manner. We evaluated
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the FADS system using real-life data. The preliminary experimental results show
the improvement of system accuracy by applying fuzzy logic and feature selec-
tion to the anomaly detection system. We plan to conduct extensive experiments
and compare the proposed system with other intrusion detection systems.
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Abstract. Recursive feature elimination based on non-linear kernel sup-
port vector machine (SVM-RFE) with parameter selection by genetic
algorithm is an effective algorithm to perform gene selection and can-
cer classification in some degree, but its calculating complexity is too
high for implementation. In this paper, we propose a new strategy to
use adaptive kernel parameters in the recursive feature elimination algo-
rithm implemented with Gaussian kernel SVMs as a better alternatives
to the aforementioned algorithm for pragmatic reasons. The proposed
method performs well in selecting genes and achieves high classification
accuracies with these genes on two cancer datasets.

Keywords: Feature selection, machine learning, support vector ma-
chine, recursive feature elimination.

1 Introduction

Recursive feature elimination based on SVM (SVM-RFE) discussed in [1,2] is con-
sidered a well-performing method in gene ranking, which is considered a central
challenge in the field of microarray data analysis by machine learning algorithm
design. In [3], an improved Gaussian kernel SVM-RFE with parameter selection by
genetic algorithm is proposed, and the experimental results showed this method
achieves better performance with fewer genes than linear kernel SVM-RFE. But
the calculating complexity of this method is very high. So, more pragmatic param-
eter selection strategy in Gaussian kernel SVM-RFE is needed in implementation.
In this paper, a strategy of adjusting kernel parameters within given adaptive rules
in each step of RFE is proposed to perform model selection within Gaussian kernel
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SVM-RFE. The proposed methods can effectively find important genes consistent
with the biological considerations, while achieving high classification accuracy on
two representative cancer diagnosis datasets, on one of which it performs better
than the algorithm proposed in [3].

2 Problem Formulation

Let Y = [y1, · · · , ym]T denote the class labels of m cancer samples, where
yi ∈ {−1, 1}, i = 1, · · · , m. The expression levels of all genes are denoted as X =
[x1, · · · , xm] are the m samples, where xi = [xi1,xi2, · · · ,xin]T , i = 1, · · · , m,xij

is the measurement of the expression level of the jth gene for the ith sam-
ple. The optimal hyper-plane f(x) =

∑m
i=1yiαiK(xi, x) + b, is used to clas-

sify the current training set, where αi, b are solved by SVM algorithm [4]; and
K(xi, x) = exp(− ‖xi−x‖2

2σ2 ) is Gaussian radius basis function here, σ is Gaussian
kernel width.

It is necessary to briefly describe the Gaussian kernel SVM-RFE. Two param-
eters C, and σ2 should be pre-fixed, when a Gaussian kernel SVM is trained. C
is penalty parameter used in SVM to deal with noise samples. When training the
SVM with the pre-fixed parameters, a cost function J(α) = (1/2)αT Hα−αT 1
is defined, where H = (Hij)i,j=1,···,m; Hij = yiyjK(xi, xj), α = (αi)i=1,···,m,
0 ≤ αi ≤ C . The importance of a gene for the decision machine could be
defined according to its contribution to the cost function, which is computed
as �J(i) = (1/2)(αT Hα − αT H(−i)α) , where H(−i) is H with ith gene
removed. After least informative gene with smallest �J is eliminated, a new
SVM will be retrained using X̂ which is defined as X with the puny gene re-
moved. This process is then repeated until the most important gene is obtained.
Finally, all genes are ranked in a list, on top of which is the most informative
one. The results of gene selection as well as the construction of classifiers are a
direct sequent of the parameters selected. In what follows, a strategy of selecting
parameters within given adaptive rules in each step of RFE is proposed.

3 Gaussian Kernel SVM Based RFE with Adaptive
Kernel Width Strategy

If penalty parameter C is big enough (e.g.,C ≥ 100 when noise in samples is
not so heavy, there will be little influence on the classifier performance [5]. This
situation is consistent with that in cancer classification datasets, little samples
are considered as noise points. So, selection of σ2 is the key problem; it’s not
necessary to optimize C. In [5], performance of Gaussian kernel SVM is ana-
lyzed when is set from 0 to infinite. Either too big or too small σ2 will bring
negative results. In fact, the selection of σ2 mostly lies on the numerical mag-
nitude of 2-norm distance between samples in training dataset. A consult value

σ2
0 =

∑m
i,j=1,i�=j 1yi �=yj

‖xi−xj‖2∑m
i,j=1,i�=j 1yi �=yj

is defined, where xi means sample i in current
training dataset, and 1yi 
=yj is a step function, when yi �= yj , its value is 1,
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otherwise is 0. By σ2
0 , the experiential results for selecting σ2 in SVM are con-

cluded as follows. If σ2 is much smaller than the mean distance σ2
0 in the training

dataset, e.g. they are not in a same magnitude, SVM with this σ2 will over-fit,
and a big error rate will be achieved on test dataset. In such case, the genes se-
lected as important ones on training dataset will perform badly on test dataset.
If σ2 is much bigger than mean distance σ2

0 in the training dataset, the trained
SVM will achieve a large leave-one-out error rate, which means many samples in
the training and test datasets will be not classified to a right class. Using such
large σ2 , genes selected as important ones perform badly not only on training
dataset but also on test dataset. Another problem occurs when Gaussian kernel
SVM-RFE is being performed: as genes are eliminated one by one, the mean
distance σ2

0 in the reconstructed training dataset decreases. So when a fixed σ2

is used in the whole process of SVM-RFE, some important genes will be elim-
inated by fault because the σ2

0s in every iteration of SVM-RFE are not same,
they may be either much bigger or smaller than the fixed σ2. So we propose to
use an adaptive kernel width to keep σ2 in a right place all along, namely, an
optimized σ2 should be selected in each step of RFE.

Margin/radius bound defined in [4] as μ = 1
m

R2

γ2 is introduced as an index to
optimize σ2 on current training dataset, where R is the radius of the smallest
sphere enclosing the training samples in a high dimensional feature space, m is
the size of the training set and γ2 is the square of the classifier’s margin, which is
calculated as γ2 = 1

2·
∑m

i=1 αi−αT Hα = 1
ω2 , where α = (αi)i=1,···,m, 0 ≤ αi ≤ C,

H = (Hij)i,j=1,···,m, Hij = yiyjK(xi, xj) . R is found by solving quadratic
optimization problem R2 = max

β

∑m
i=1 βiK(xi − xj) −

∑m
i,j=1 βiβjK(xi − xj)

under constraints
∑m

i=1 βi = 1 and ∀iβi ≥ 0. With a given C, μ is a function
of variable σ2. The σ2 minimizing μ is thought appropriate Gaussian kernel
width on the current training dataset, and σ2 is re-evaluated after each gene
elimination operation corresponding to reconstructed dataset. The derivative
of μ to σ2 is calculated as ∂μ

∂σ2 = 1
m (∂‖ω2‖

∂σ2 R2 + ∂R2

∂σ2 ‖ω‖2), where ∂‖ω‖2

∂σ2 =
−
∑

i,j αiαjyiyj
∂K(xi,xj)

∂σ2 , ∂R2

∂σ2 = −
∑

i,j βiβj
∂K(xi,xj)

∂σ2 , in which ∂K(xi,xj)
∂σ2 =

K(xi, xj)
‖xi−xj‖2

2σ4 [6]. δ2initial =
∑m

i,j=1,i�=j 1(yi �=yj,xi,xj∈support vectors)‖xi−xj‖2∑m
i,j=1,i�=j 1(yi �=yj,xi,xj∈support vectors)

is

set as the initialization value of σ2, in which the support vectors is achieved
by training a Gaussian kernel support vector machine with kernel width set

as σ2
0 =

∑m
i,j=1,i�=j 1yi �=yj

‖xi−xj‖2∑m
i,j=1,i�=j 1yi �=yj

. With δ2initial and the gradient of σ2 to mar-

gin/radius bound index, Sequential quadratic programming method is used to
search the optimal kernel parameter minimizing the radius/margin bound. By
this way, the Gaussian kernel width parameter used in RFE will be selected
adaptively with the reconstructed new training dataset.

4 Experimental Results

In our first experiment, we focus on two classes from small round blue-cell cancer
data, which are rhabdomyosarcoma and neuroblastoma tumors [7]. The data set
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is composed of 2308 genes, 35 tumor samples, 23 for RMS and 12 for NB. First
200 important genes are pre-selected by F-test score. Using this method, gene
2050 (Clone ID 295985) and gene 842 (Clone ID 810057) are selected as the very
top two, which are also listed as important gene in [7,8].

In order to evaluate the selected genes by our method, linear SVM and Gaus-
sian kernel SVM is adopted as classifiers based on the top 1 to the top 32 genes.
When linear SVM classifier is used as decision machine combined with the top 2
genes used, 0 leave-one-out errors are found. When the top 4 genes, top 8 genes,
top 16 genes and top 32 genes are used respectively, also no leave-one-out errors
are found. When Gaussian kernel SVM used as decision machine combined with
these selected genes, some similar results are achieved as that when linear kernel
SVM is used as classifier. More detailed results are listed in Table 1–2, where
the parameters are defined as in [1]: Vsuc is the number of samples classified
correctly in leave-one-out test at zero rejection, which is used for the common
leave-one-out error rate test as well as for the leave-one-out error rate test; Vacc is
maximum number of samples accepted in leave-one-out test to obtain zero error,
the rejection threshold lies on the biggest one of the absolute value of false soft-
decision; Vext is the difference between the smallest output of the positive class
samples and the largest output of the negative class samples (rescaled by the
largest difference between outputs); Vmed is the difference between the median
output of the positive class samples and the median output of the negative class
samples (rescaled by the largest difference between outputs); Vsuc,Vacc,Vext and
Vmed were used on training dataset; Tsuc,Tacc, Text and Tmed were evaluating
parameters with similar meaning as that used in the test dataset.

Leukemia data of [1] is used as our second dataset ( http://www-enome.wi.
mit.edu/cgi-bin/cancer/publications/pub). The microarray data contains 7,129
genes, 72 cancer samples. Following the experimental setup in [1], the data is
split into a training set consisting of 38 samples and a test set of 34 samples. The
data are preprocessed as recommended in [9]. First 200 important genes are pre-
selected by F-test score. By our method on training dataset, gene 4847 (Zyxin)

Table 1. Performance comparison of two gene ranking methods using linear SVM
classifier on small round blue cell cancer training dataset

Number of Training set (35 samples) classified by a linear SVM with C = 100
the top using genes ranked by different gene ranking methods

genes used Linear SVM-RFE Gaussian kernel SVM-RFE using
with C = 100 adaptive kernel width strategy

Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed

32 1.0000 1.0000 0.9225 0.9828 1.0000 1.0000 0.8535 0.9719
16 1.0000 1.0000 0.9417 0.9929 1.0000 1.0000 0.9105 0.9829
8 1.0000 1.0000 0.8630 0.9835 1.0000 1.0000 0.8633 0.9832
4 1.0000 1.0000 0.8704 0.9800 1.0000 1.0000 0.9041 0.9814
2 1.0000 1.0000 0.9333 0.9952 1.0000 1.0000 0.7293 0.9602
1 0.9429 0.8857 0.2269 0.9005 0.9429 0.0000 0.0000 0.9187
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Table 2. Performance comparison of two gene ranking methods using Gaussian kernel
SVM classifier on small round blue cell cancer training dataset

Number of Training set (35 samples) classified by a Gaussian kernel SVM
the top using genes ranked by different gene ranking methods

genes used Linear SVM-RFE Gaussian kernel SVM-RFE using
with C = 100 adaptive kernel width strategy

Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed

32 1.0000 1.0000 0.7248 0.9549 1.0000 1.0000 0.8938 0.9732
16 1.0000 1.0000 0.7244 0.9680 1.0000 1.0000 0.9356 0.9832
8 1.0000 1.0000 0.6857 0.9661 1.0000 1.0000 0.8792 0.9806
4 1.0000 1.0000 0.7902 0.9620 1.0000 1.0000 0.7316 0.9744
2 1.0000 1.0000 0.2714 0.9215 1.0000 1.0000 0.5535 0.9559
1 0.9714 0.9429 -0.1181 0.8906 0.9429 0.8571 -0.9915 0.8442

and gene 1882 (CST3 Cystatin C amyloid angiopathy and cerebral hemorrhage)
are selected as top two genes, in which gene 4847 is important gene listed in
[1,8], and gene 1882 is also listed in [8,10].

By our method, 0 leave-one-out errors are found using linear SVM classifier
with the top 4 genes on the training dataset; when the top 8 genes, top 16 genes
and top 32 genes are used respectively, there are also no leave-one-out errors
found. If Gaussian kernel SVM is used as decision machine with the top gene
4847, no leave-one-out errors are found. Similar results are achieved when number
of top genes is between 1 and 32. On test dataset, if linear kernel SVM combined
with the top 16 or 32 genes selected, no errors are found in test dataset; and
if Gaussian kernel SVM with top 8 or 16 genes, no errors are found. Note that
1 leave-one-out error is found using top 4 genes ranked based on gene selection
operated on the whole dataset in [1]. In [3], using the top 1-32 genes selected by
Gaussian kernel SVM-RFE with fixed parameters selected by genetic algorithm,
either using linear kernel or Gaussian kernel SVM as decision machine, there is
one error at least on the test dataset. The results achieved are better than the
results in [3] remarkably. More detailed performance evaluation of our algorithm
on training dataset and test dataset are listed in Table 3–6.

This algorithm is implemented with Matlab codes on an AMD 1800+ (1533M
HZ) processor with enough memory. By our method, the implementation returns
a ranked list in about 0.26 hours for the small round blue-cell tumors dataset
and 0.3 hours for the acute leukemia dataset, much faster than genetic algorithm
used to select one-off optimal kernel parameter in Gaussian kernel SVM-RFE [3]
(13.5 hours is spent on the acute leukemia dataset). The status of kernel width
used in these two experiments is described in Fig.1.

In fact, if the kernel width parameter is set as δ2initial in RFE cycle procedure,
the algorithm also performs well, the running time is about several times that
of linear kernel SVM-RFE, which may be used as a simple non-linear feature
selection tools used in practice.

A comparison between linear SVM-RFE and our method is done in the exper-
iments. The linear SVM classifier is used to perform gene selection and cancer
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Table 3. Performance comparison of two gene ranking methods using linear SVM
classifier on AML/ALL training dataset

Number of Training set (38 samples) classified by a linear SVM with C = 100
the top using genes ranked by different gene ranking methods

genes used Linear SVM-RFE Gaussian kernel SVM-RFE using
with C = 100 adaptive kernel width strategy

Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed

32 1.0000 1.0000 0.7709 0.9679 1.0000 1.0000 0.7753 0.9649
16 1.0000 1.0000 0.7418 0.9746 1.0000 1.0000 0.8771 0.9771
8 1.0000 1.0000 0.8166 0.9787 1.0000 1.0000 0.8730 0.9792
4 0.9474 0.9211 -0.4295 0.8925 1.0000 1.0000 0.7178 0.9825
2 0.9474 0.0000 -0.6240 0.9215 0.9474 0.0000 0.0000 0.8932
1 0.9211 0.0000 -0.6471 0.8355 0.7632 0.6316 0.0568 0.7097

Table 4. Performance comparison of two gene ranking methods using Gaussian kernel
SVM classifier on AML/ALL training dataset

Number of Training set (38 samples) classified by a Gaussian kernel SVM
the top using genes ranked by different gene ranking methods

genes used Linear SVM-RFE Gaussian kernel SVM-RFE using
with C = 100 adaptive kernel width strategy

Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed

32 1.0000 1.0000 0.5960 0.9008 1.0000 1.0000 0.7892 0.9504
16 1.0000 1.0000 0.7222 0.9251 1.0000 1.0000 0.7753 0.9496
8 1.0000 1.0000 0.5197 0.8596 1.0000 1.0000 0.7881 0.9596
4 0.9737 0.7895 -0.1061 0.6732 1.0000 1.0000 0.7428 0.9565
2 0.9474 0.0000 -0.7958 0.7631 1.0000 1.0000 0.7469 0.9725
1 0.8421 0.0000 -0.5845 0.6655 1.0000 1.0000 0.7275 0.9712

Table 5. Performance comparison of two gene ranking methods using linear SVM
classifier on AML/ALL test dataset

Number of Test set (34 samples) classified by a linear SVM with C = 100
the top using genes ranked by different gene ranking methods

genes used Linear SVM-RFE Gaussian kernel SVM-RFE using
with C = 100 adaptive kernel width strategy

Tsuc Tacc Text Tmed Tsuc Tacc Text Tmed

32 0.9118 0.6176 -0.0891 0.7608 1.0000 1.0000 0.4114 0.8704
16 0.8824 0.0000 -0.2132 0.7096 1.0000 1.0000 0.7287 0.9189
8 0.7353 0.0000 -0.5080 0.6322 0.9118 0.7647 -0.0513 0.8540
4 0.7353 0.0000 -1.0000 0.5060 0.9412 0.0000 0.0000 0.8514
2 0.7353 0.0000 -1.0000 0.5177 0.9118 0.0000 0.0000 0.8500
1 0.6765 0.0000 -1.0000 0.3821 0.5829 0.0000 -0.5548 0.7226
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Table 6. Performance comparison of two gene ranking methods using Gaussian kernel
SVM classifier on AML/ALL test dataset

Number of Test set (34 samples) classified by a Gaussian kernel SVM
the top using genes ranked by different gene ranking methods

genes used Linear SVM-RFE Gaussian kernel SVM-RFE using
with C = 100 adaptive kernel width strategy

Tsuc Tacc Text Tmed Tsuc Tacc Text Tmed

32 1.0000 1.0000 0.1586 0.6393 0.9706 0.9706 0.1682 0.6928
16 0.9118 0.8824 0.0227 0.6223 1.0000 1.0000 0.3760 0.7738
8 0.8235 0.5000 -0.3462 0.5049 1.0000 1.0000 0.0685 0.7693
4 0.7647 0.0000 -1.0000 0.3453 0.9412 0.8235 -0.3316 0.8440
2 0.7647 0.0000 -1.0000 0.4585 0.9412 0.0000 -0.6107 0.8478
1 0.6471 0.0000 -1.0000 0.3217 0.9118 0.0000 -1.0000 0.8188
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Fig. 1. The status of kernel width changed with the number of important genes left
in Gaussian kernel SVM-RFE with adaptive kernel width algorithm in the two exper-
iments. The results are achieved when data of all genes are standardized.

classification with C = 100 . With the same pre-processing procedures, the qual-
ity of gene selection and cancer classification is also listed in Table 1–6. As shown
in these tables, the results achieved by our proposed method are comparable with
or better than Linear SVM-RFE.

5 Conclusion

In this paper, we have studied the problem of gene selection by Gaussian kernel
SVM with adaptive kernel width strategy. This method is a better alternative to
the currently used common practice of selecting the apparent best parameters of
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Gaussian kernel SVM-RFE. Also the performance of the new method is better
than Gaussian kernel SVM-RFE with parameters selected by genetic algorithm,
and the calculating rate is much faster. The experimental results indicate that the
proposed method performs well in selecting genes and achieve high classification
accuracies with few genes.
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