
Liberalizing Protocols for Argumentation
in Multi-agent Systems

Gerard A.W. Vreeswijk

Dept. of Computer Science
Utrecht University, The Netherlands

gv@cs.uu.nl

Abstract. This paper proposes a liberalized version of existing truth-
finding protocols for argumentation, such as the standard two-agent
immediate-response protocol for computing the credulous acceptance
of conclusions in an argument system. In the new setup agents decide
autonomously which issues need to be discussed, when to query other
agents, when to keep on querying other agents, and when to settle for
an answer. In this way, inter-agent disputes are regulated by the agents
themselves, rather than by following an outlined protocol. The paper
concludes with a prototype implementation and with a comparison of
related work on conversation analysis and computational dialectic.1

1 Introduction

Argumentation has become increasingly important in multi-agent system (MAS)
research. Modern MAS models require that agents are able to argue, for example
to support their position in a negotiation or to explain a possibly controversial
decision.

A great deal of research on defeasible reasoning and formal argumentation has
been done in the past few years, and also a great deal of research on inter-agent
inquiry dialogue has been accomplished. However, most research on argumen-
tation in AI is devoted to monological (single-agent) algorithms and dialogical
two-party immediate response dialectics that are sound and complete with re-
spect to a particular argument semantics. Examples of such semantics are the
grounded extension semantics, the stable extension semantics and the preferred
extension semantics [8, 32]. Research on inter-agent inquiry, on the other hand,
is concerned with studying sequences of conversation at the speech act level that
are useful, orderly, effective [11, 25, 28] and sufficiently controllable by the agents
that use them [2].

A remarkable difference between the two approaches is that argumentation
dialogues are often extremely constrained and deterministic, while inter-agent
inquiry dialogues are less constrained but also less concerned with getting the
underlying argument semantics right [31]. Recently, a number of proposals have

1 A (colorful and instructive) poster based on a shorter version of this paper was
presented at AAMAS’05 [34]. The poster itself can be viewed at
http://www.cs.uu.nl/~gv/abstracts/liberal protocol poster.pdf.

S. Parsons et al. (Eds.): ArgMAS 2005, 4049, pp. 182–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

LNAI

Liberalizing Protocols for Argumentation in Multi-agent Systems 183

been made to connect the two approaches, for example by dropping proto-
col constraints [23] or, conversely, by formulating desiderata for argumentation
protocols [15, 17].

This paper proposes a minimalistic but complete model for inter-agent argu-
mentation that is less constrained than existing argumentation protocols. The
model is minimalistic in the sense that the agent architecture, the internal knowl-
edge representational language and the message format are minimalistic and con-
tain just enough detail to “keep the agents going”. The model is complete in the
sense that it describes the entire setup—from agent internals to communication
language—and possesses enough detail to obtain a runnable MAS.

The purpose of the model is give the minimal means with which agents can
engage in a dispute that is brought about by the agents themselves (autonomous
agent perspective) rather than that the agents follow a fixed and external proto-
col (defeasible argumentation perspective). The resulting system is suitable for
parametrization, experimentation and analysis.

The paper is structured as follows. In Sec. 2 the global setup is described.
Sec. 3 describes the agents architecture, and Sec. 4 describes agents actions
in more detail. The paper concludes with a discussion of a prototype imple-
mentation and with a comparison of related work on conversation analysis and
computational dialectic.

2 Global Setup

The global setup consists of a set A = {A1, . . . , An} of agents (n ≥ 2) and a
public communication medium T , called the table. T can be seen as a blackboard,
or as “open air,” by means of which agents are able to exchange messages in
public. More specifically, T is a passive object with two essential methods, viz.

put(m: message)
get(t1: time, t2: time): setofMessages

By way of the second method agents can retrieve all messages that were uttered
between time points t1 and t2.

Experiments are performed in runs. A run is a complete session in which agents
are initialized by the programmer, and then exchange messages autonomously
until no agent activity is observed within some fixed time period. At the start of
each run each agent receives a number of propositions from the programmer to
fill its belief base with. The initial goal base of each agent cannot be programmed
and consists of one action, viz. listen. A typical run starts with one or more
agents that have a computed interest in determining the credibility of one or
more propositions. These propositions are put on the table in the form of queries.
These queries invoke a dispute. This dispute ends as soon as all agents have lost
all incentives to utter speech acts (typically queries and answers to queries).

For the sake of simplicity the present setup assumes that agents comply to
specific (and admittedly often unrealistic) maxims of co-operation. In particular,
it is assumed that agents are honest and credulous. Honesty corresponds to the

184 G.A.W. Vreeswijk

Gricean maxim that agents are forbidden to put forward information they do
not believe; credulousness corresponds to the property that agents believe what
they are told. I do not think that it is difficult to extend the present setup to a
scenario where these constraints are dropped. Evidently this avenue goes beyond
the scope of this paper.

For the same reasons of simplicity, the

Listen

Evaluate

Speak

Table

Agent

Fig. 1. Serial deliberation

model does not assume that agents are per-
fect reasoners or communicators. In particu-
lar an agent can be programmed such that
it prioritizes communication at the expense
of logical inference. Conversely, it is possi-
ble to program “ponderers” that prioritize
internal inference at the cost of communica-
tion. Obviously, both extremes are undesir-
able and the programmer is responsible for
achieving the right balance. The programmer
can achieve this balance by ensuring that
(most) communication actions invoke logical
actions and conversely (which is a natural
phenomenon).

3 Agent Architecture

An agent A = (B, P, G) is a daemon that possesses a declarative belief base B,
a procedural belief base P , and a goal base, or agenda, G.

- The declarative belief base B contains propositions about the state of the
world, formulated in a simple logical object language, annotated with infor-
mation that pertains to the proposition’s origin, the proposition’s degree of
belief, and other attributes.

- The procedural belief base P contains information that is concerned with
internal procedural matters. An example of a procedural item is a (private)
method that returns a pointer to the next unread message (a so-called book-
mark).

- The goal base G is a (private) priority queue filled with actions. Actions can
either be internally or externally directed. Thus, agents can schedule belief
updates as well as sending messages.

Agents are not able to inspect, modify, or communicate about the contents of
P . Therefore, the objective in designing A is to put as much as possible of P in
B and G, so that agents can reason and communicate about their beliefs.

3.1 Deliberation Cycle

Each agents runs an eternal loop, also called a cycle [3], or a deliberation cycle
[6, 12]. Contrary to first-generation deliberation cycles this loop is not serial

Liberalizing Protocols for Argumentation in Multi-agent Systems 185

(Fig. 1) but prioritized (Fig. 2).2 At every pass of the loop the agent takes
an action from the priority queue and executes it. A typical execution of an
action amounts to doing a few operations in the internal representation format
of the agent, interspersed with (or followed by) scheduling some new actions.
The priority of these new actions depends on their type and the priority and
contents of the action that caused the scheduling of the new actions.

Actions are not executed in

Agent

ListenListenListenListenListen

EvaluateEvaluateEvaluateEvaluateEvaluate
SpeakSpeakSpeakSpeakSpeak

Table

Fig. 2. Prioritized deliberation

the order in which they are put
on the agenda, but according to
they priority. If a set of actions
nevertheless must be executed
in succession, this can be ac-
complished in two ways.
(1) The first way is to simply
concatenate the actions as a plan
in the body of the action state-
ment a. In this way, all actions
in the body of a are executed
immediately if the head of a is
taken from the priority queue.
(2) The second way is to assign decreasing priorities but equal activation factors
to a list of actions. In this way the actions are guaranteed to be executed in
succession, be it that they are likely to be interleaved with other actions. For
many types of actions this is no problem.

An example of a typical action is “Listen” (Action 1). When this action is
taken from the queue, the agent fetches the last unread message from the table.
If this action succeeds, and the message is not from the agent itself and not
addressed to another agent, the agent schedules a “process-message” activity.
Independently a next listen activity is scheduled.

3.2 Goal Base

An agent’s goal base, or agenda, is a priority queue filled with actions. To ensure
that all actions are eventually executed, this priority queue is equipped with a
scheduler that is derived from the standard priority schedulers used in operating
systems theory [27].

The scheduler works as follows. Contrary to [3, 6, 12], actions do not have pre-
conditions but possess, besides an action-inherent priority, a so-called activation
factor . (If one of them is missing, a reasonable default is used.) When the agenda
is initialized, the agenda is given its own activation factor as well. The activation
factor of an agenda represents the nominal speed with which scheduled actions
rise (“bubble”) to the top of the priority queue, once they are put on the agenda.
Thus, agendas as well as prioritized actions possess an activation factor.

Each time an agent puts a new action a on its agenda, the priority of a is
increased with a’s activation factor times the activation factor of the agenda. The
2 Cf. relation work in Section 7.

186 G.A.W. Vreeswijk

Action 1. Listen
1: table.get(procedural.first-unread-message)
2: if defined message then
3: if message.from == my-own-name then
4: Purge message # because it is my own
5: else if defined message.to ∧ message.to != my-own-name then
6: Purge message # not addressed to me
7: else
8: G.schedule(“process-message”, message)
9: else

10: Pass
11: G.schedule(“listen”, :priority⇒-5, :activation⇒1)

result of this mechanism is that actions with a low priority and a high activation
factor will rise relatively fast to the top of the agenda during successive insertions.
Conversely, actions with a low activation factor will probably remain on the
agenda for a long time, unless they were already given a high priority from the
start. Actions that should receive low priorities but high activation factors are
typically low-level actions that must be executed on a regular basis “to keep an
agent going,” without blocking the more important high-level actions. Listening
is an example of such an action (and the only example in my model). Conversely,
high-level actions, such as logical inference and inquiry, typically receive a high
priority but a low activation factor.

3.3 Belief Base

Each agent possesses a private belief base B that is only filled with propositions.
A proposition is an object with a number of attributes as described in Table 1.

Propositions can take the form of an atom, a literal, a rule, or the negation of
a rule. (The latter is established by naming rules, and then negating the name
of the rule.) In the current model the degree-of-belief of a proposition is an
element in [0, 1] that indicates to what extent an individual agent believes in
that proposition. The degree-of-support of a proposition is an element in [0, 1]
that indicates to what extent a proposition receives logical support from other
propositions via logical inference. The rules for propagation of support through
rules of inference are primitive but provide sufficient material to construct an
elementary logic for agents.

A trivial example of a proposition is the atomic proposition P . This propo-
sition has the following slots filled: name, DOB, DOS, supports, supported-by,
claimants, questioners, and last-questioned-by. The following slots are empty
(and stay empty): antecedent, consequent, strength and RDOS. The rest of the
slots are filled optionally.

A non-trivial example of a proposition is the negation of the rule

r : P, Q → S.

Liberalizing Protocols for Argumentation in Multi-agent Systems 187

The slots negation, DOB, DOS, supports, supported-by, claimants, question-
ers, and last-questioned-by are filled. The negation slot points to the proposition
object with name r. The following slots are empty (and stay empty): name,
antecedent, consequent, strength and RDOS. The rest of the slots are filled
optionally.

Table 1. Proposition

Key Description Accessibility
name agent’s private name for this proposition optional

negates reference to proposition that is negated optional
importance number that indicates how much importance

the agent attaches to the credibility of this
proposition

default 1

dob degree of belief ∈ [0, 1] default 0.0
DOS degree of support ∈ [0, 1] default 0.0

supports list of references to internal propositions
supported by this proposition

default []

supported-by list of references to internal that support this
proposition

default []

claimants list of agent names that have claimed this
proposition

default []

questioners list of agent names that have questioned this
proposition

optional

last-questioned-by agent that questioned this proposition last optional
consequent head of rule optional
antecedent body of rule optional

strength rule strength default 1.0
RDOS degree of support running through this rule default 0.0

The relation between P and r is that P occurs in the antecedent list of r
while r occurs in the supported-by list of P . In the line of Toulmin [29] rules can
support or deny other rules. Thus, the consequent of a rule can be another rule,
or the negation of another rule (called undercutter in Pollock [20] and subsequent
work in computational dialectic). (Explained in more detail in overview articles
such as [5, 32].)

3.4 The Underlying Argumentation Model

Internally, agents try to enhance their support of selected propositions by means
of arguments.

The underlying argumentation model that I use for the larger MAS is a
trimmed down version of formalisms as proposed in, e.g., [1, 13, 22, 33]. Accord-
ing to these formalisms, arguments are obtained by chaining rules into trees, and
arguments supply different degrees of support to their conclusions. How support
is computed depends on the modalities of the various rules and propositions,
and how we think these modalities should propagate through an argument. In

188 G.A.W. Vreeswijk

Table 2. Message

Key Description Accessibility
id message id (assigned by table) optional

from sender optional
to addressee optional

content type query | statement optional
subject the proposition that the message is about optional
priority priority, as perceived by the sender optional

consequent if the message is a justification, this field will
store the consequent of that justification

optional

antecedent if the message is a justification, this field
indicates its antecedent

optional

strength if the message is a justification, this field
indicates the strength as perceived by the
sender

optional

dob degree of belief as perceived by the sender optional
DOS degree of support as perceived by the sender optional

reference message to which the present message refers to optional

reality these modalities are often qualitatively specified (“weakly,” “strongly,”
. . . , “certainly”) or even plain absent. For the sake of simplicity, my model as-
sumes that modalities are elements of the real interval [0, 1] and that modalities
are always present on places where we expect them to be specified.

Definition 1 (Support). Let σ be an argument.
1. If σ is a singleton argument, i.e., if σ is of the form σ = {p} where p is a

proposition, then the degree of support of σ is equal to the degree of belief of
p:

DOS(σ) =Def DOB(p)

2. If σ is a compound argument with conclusion p, top-rule r : p ←(s)− p1, . . . pn

and sub-arguments σ1, . . . , σn, then the degree of support of σ is given by

DOS (σ) =Def max{ DOB (p)
min{ DOB (r), s ∗ min{ DOS (σ1), . . . ,DOS (σn)}} } (1)

The rationale behind (1) is the so-called weakest link principle, which says that
every construction (in this case: every argument) is as strong as its weakest link.
A convincing justification for the weakest-link principle can be found in work of
Pollock [20, 21]. Another principle that I have followed is that rules propagate
support with an amount that is proportional to their strength. I immediately
admit that (1) is an overly simplistic account of support. Nevertheless, the reason
to use (1) is that it provides agents with just enough logical machinery to perform
simple defeasible reasoning internally, and to engage in simple dialogues about
their own defeasible knowledge externally.

Liberalizing Protocols for Argumentation in Multi-agent Systems 189

Example 1 (Propagation of support). Consider the following set of propositions.

prop DOB prop DOB prop DOB name rule DOB
a b 0.7 c r1: a ←(0.5)− b, c 1.0
d 0.2 e f 0.8 r2: b ←(0.5)− d, e 1.0
g 0.1 h 1.0 i 0.6 r3: c ←(0.5)− f, g 1.0
j 1.0 r4: e ←(0.5)− h, i 1.0
k 0.8 r5: g ←(0.5)− j, k 1.0

Thus, we have eleven atomic propositions and five propositions of type rule, or
simply: rules. If all reasons are chained together, we obtain a representation of
an argument as displayed in Fig. 3. Agents spend resources in trying to discover
such arguments through backward chaining and to propagate support forwards
(upwards in Fig. 3) in case they receive new information about the credibility of
a specific proposition.

How agents schedule inference and communication actions that relate to sup-
port is further explained in Sec. 4.2.

4 Actions in More Detail

In the current implemen- a
0.0 0.1

b
0.7 0.7

d
0.2 0.2

e
0.0 0.3

h
1.0 1.0

i
0.6 0.6

c
0.0 0.2

f
0.8 0.8

g
0.0 0.4

j
1.0 1.0

k
0.8 0.8

0.5

0.5 0.5

0.5 0.5

left DOB, right DOS

Fig. 3. Propagation of support

tation agents can
schedule and execute ap-
proximately forty-five
different actions, ranging
from actions that are
concerned with internal
inference to actions that
are concerned with com-
munication. This section
discusses the interaction
between the different
types of actions and
explains how this inter-
action shapes the discus-
sion. For reasons of space,
I do not review all actions.

Roughly there are three
categories of actions. The first category of actions is epistemic and is concerned
with inquiry prioritization (which propositions to investigate next), logical in-
ference, and belief updates. Examples of such actions are “propagate-degree-of-
support-for p” or “compute-degree-of-support-for p,” where p is a proposition.
Other actions relate to the external world and are concerned with speaking and
listening. A third category of actions is concerned with linking the external to
the internal world. Examples of these type of actions are actions to process or
incorporate messages and translate them to proposition objects.

190 G.A.W. Vreeswijk

An important property of the model is that agents decide autonomously which
issues need to be discussed, when to query other agents about issues, when to
keep on querying other agents, and when to settle for an answer.

4.1 Inquiry

New queries arise due to a combination of importance and epistemic dissonance
[4, 24]:

urgency-to-enquire(p) = importance(p) ∗ DOS(p) ∗ DOS(¬p) (2)

In general, epistemic dissonance is the degree of conflict between two or more
competing beliefs, of which at least one belief is deemed important for reasons
that may be external to the logical or epistemological formalism (for example
for practical reasons) [9, 19]. Here, the epistemic dissonance of a proposition p is
simplified into a simple mathematical product.

In the present model, importance is an external factor that, if absent, de-
faults to 1.0. The principle of epistemic dissonance can be used as a threshold
to decide whether it is allowed to query others if there is doubt concerning a
proposition that cannot be resolved on the basis of an agent’s private beliefs.
For example, if the threshold is set to 0.8 then propositions are queried once
urgency-to-enquire(p) > 0.8. This leads to an elementary Action 2.

Action 2. Inquire(p: proposition, i: priority)
1: G.schedule(“compute-degree-of-support-for”,

p :priority⇒ i + 1, activation⇒1)
2: G.schedule(“compute-degree-of-support-for”,

¬p :priority⇒ i + 1, activation⇒1)
3: if urgency-to-enquire(p) ≥ 0.8 then
4: G.schedule(“query”, p :priority⇒ i, activation⇒1)

The priority settings in Action 2 enforce that the urgency-to-enquire is com-
puted only after the agent did an internal search into its own beliefs on the
credibility of that proposition.

4.2 Inference

Inference amounts to all actions that are internal to an agent and are aimed to
enhance the degree of support of propositions.

It must explicitly reiterated here that the underlying agent object logic is
extremely simplistic and only serves as a vehicle to demonstrate what agents
can do (and are supposed to do) if they engage in a discussion. More mature
theories of belief revision are to be found in philosophical logic [10] and the
theory of Bayesian belief updates [18].

Basically, there are two categories of inference actions, namely pull and prop-
agation (or: pull and push).

Liberalizing Protocols for Argumentation in Multi-agent Systems 191

Propagation is best explained in terms of belief updates related to incoming
messages. If an incoming message on a proposition p reports on a higher degree of
belief in p, then the receiving agent schedules an update to the degree of support
of its internal representation of p (remember that agents are credulous). This
update amounts to serially propagating the new degree of belief via (internal)
rules to other (internal) propositions. The actual propagation is scheduled as
well, so that propositional belief updates are interleaved with other actions. This
all depends on the priorities that are attached to the belief update actions. Thus,
it may well happen that an agents accidently reports misinformation because it
has it given a low priority to its internal belief update actions. (This behavior
can occasionally be enforced in the implementation by setting the start priority
of belief updates to a low values.)

Belief pull corresponds to the informal question “what do I actually know
about p? ” and is the result of an inquiry action (Action 2). Belief pull comparable
to backward chaining, with the restriction that agents must at each cycle decide
whether to search further backwards for justification, or to execute other actions
first. The present model solves this by attaching a priority to every backward
chaining action that is a function of the priority of the original action and the
expected maximal return of support.

4.3 Query

A query is a request for information about a particular proposition. Queries can
be open or addressed to a particular agent.

Open queries have no explicit addressee and can be taken up by any agent that
finds it important enough to process it. When an agent decides to query other
agents (compare Eq. 2), it composes a message with the name of the proposition
and a token indicating that the message emitted is a query.

An addressed, or directed, query is a request to a specific agent to explain or
justify a certain claim. The present model works with open queries only. On the
basis of the message format and the deliberation cycle mechanism it is safe to
predict that the existing model can be naturally extended to an agent model in
which agents know how to deal with addressed messages.

4.4 Response

Two types of messages can appear on the table, viz. queries and statements.
Queries have been discussed above.

A statement is simply a public announcement of an agent in which it declares
that it believes in a certain proposition to a certain degree of belief. Analogous
to queries, claims can be addressed to a particular agent, typically as an answer
to a previous query. Alternatively, claims can be addressed to no agent in par-
ticular. Such open claims can be seen as theses, or positions, meant to lure other
agents into a discussion. The present model works with directed statements only.
Further, the present model allows agents to update their beliefs with statements
(answers) that are directed to other agents. This possibility to overhear messages

192 G.A.W. Vreeswijk

that are aimed at other agents and to respond to such messages is a more or less
arbitrary commitment of the architecture.

The three essential actions in forming replies are Action 3, 4 and 5.

Action 3. Process-query(m: message)
1: B.incorporate-query(m)
2: reply = fabricate-reply(m)
3: if defined reply then
4: G.schedule(“speak”, reply)
5: G.schedule(“process-query”, m)
6: else
7: d = Message.new(:subject→no-answers, :referent→ m)
8: G.schedule(“speak”, d)

Action 4. Fabricate-reply(m: message)
1: reply = next-unpublished-answer-to(m.subject)
2: if defined reply then
3: return reply.into-message-format
4: else
5: return nil

Action 5. Next-unpublished-answer-to(s: subject)
1: prop = B.prop-retrieve(s)
2: if defined prop then
3: return prop unless P .published(prop)
4: for rule ∈ B.rule-retrieve(s) do
5: return rule unless P .published(rule)
6: prop = B.prop-retrieve(s.negation)
7: if defined prop then
8: return prop unless P .published(prop)
9: for rule ∈ B.rule-retrieve(s.negation) do

10: return rule unless P .published(rule)

With Action 3, the query is incorporated in B first. This means that the agent
creates a corresponding proposition in B (if such a proposition does not exist
yet), stores the name of the agent that queried the proposition and the time t
that this particular proposition is queried. If there is an unpublished answer,
then the receiving agent schedules a speech act in which it emits an answer and
schedules a new action to process this query (for there may be more answers).
If there are no more answers left, only a speech act is scheduled in which the
agent effectively says that it has no answers, either because it has no answers to
begin with, or else because it ran out of answers.

With Action 5, the action P .published/1 is a check on the procedural belief
base in which the agent verifies whether an agent (including the agent itself)
already has published the proposition in question.

Liberalizing Protocols for Argumentation in Multi-agent Systems 193

5 Implementation

To allow experiments with different set-ups, and to see whether the generated
dialogues make any sense, I have implemented the model in the oo-scripting lan-
guage Ruby. The purpose of the implementation is to experiment with different
inputs and with different parameter settings.

The results experiments can be reproduced with the help of an online proto-
type of which the URL is given at the end of this section.

5.1 Experiments

This section presents a simple example in which a group argues about the cred-
ibility of a certain proposition. The example is simple in that it does not involve
negation and auto-inquiry has been turned off for the sake of brevity and read-
ability. Examples with slightly more complex input already stir up an emormous
amount of actions and messages, so that the structure of the dialogue becomes
lost in the output. The reader is invited to try out more complex input at the
URL mentioned above.

Suppose we have three agents, Alice, Bob, and Charles, and suppose that Bob
is instructed to issue a query on C (Fig. 4).

Fig. 5 shows a trace of the run. First Bob tries to find out how much C is
supported by its own beliefs. Then it decides to ask others about C. This query
is not related to previous messages, hence the empty reference --. The two
other agents process this question and burrow into their own beliefs to discover
to what extent they support C themselves. Alice responds with a justification.
This justification is received by Bob. Since the justification end in B and Bob
has no support for B, Bob decides to query further and ask others about B
(line three). Charles explains B with A → B. Finally, Bob says “ok’ at line five
because it can connect the antecedent of A 0.7 → B to its own support for A.

For reasons of space. the results displayed here are rather minimal. The reader
is therefore invited to experiment online at http://www.cs.uu.nl/~gv/code/

liberal. The online prototype is supplied with a Java-doc style documentation
and the code itself can be downloaded if desired.

Agent Alice
B 0.8=> C

Agent Bob
C?
A 0.9

Agent Charles
A 0.7=> B

Fig. 4. Input

194 G.A.W. Vreeswijk

Bob thinking, enquire
Bob thinking, compute_dos_for
Bob thinking, speak

1. Bob [--]: Why C?
Charles thinking, handle_question
Alice thinking, handle_question
Alice thinking, speak

2. Alice [1]: C, since B
Bob thinking, incorporate
Alice thinking, interpret
Bob thinking, compute_rdos_for
Alice thinking, handle_question
Bob thinking, propagate_rdos_of_rule
Bob thinking, question_antecedent
Bob thinking, attack_antecedent
Bob thinking, question_antecedent_element
Bob thinking, speak

3. Bob [2]: Why B?
Charles thinking, handle_question
Alice thinking, handle_question
Charles thinking, speak

4. Charles [3]: B, since A
Bob thinking, incorporate
Charles thinking, interpret
Bob thinking, compute_rdos_for
Charles thinking, handle_question
Bob thinking, propagate_rdos_of_rule
Bob thinking, question_antecedent
Bob thinking, attack_antecedent
Bob thinking, question_antecedent_element
Bob thinking, speak

5. Bob [4]: Ok

Fig. 5. Summary of run

6 Results

During the experiments, I noticed that all discussions terminate. This can be
understood as follows. Firstly, a finite number of queries may be linked to a
finite number of answers. Further, agents keep an account of which queries they
have answered. Since, queries are dealt with at most once, termination is ensured
for ach individual agent. Since a MAS contains a pre-determined of agents by
definition, eventually termination is ensured for the entire MAS.

I also observed that agents will reach a conclusion on accessible facts within a
reasonable amount of turns. This can be explained by the fact that explanations
(i.e., explanatory rules) cannot be chained indefinitely. A a consequence each jus-
tification has a stopping place, so that agents will either accept facts or abandon
search on explained statements within a bounded number of dialogue moves.

Liberalizing Protocols for Argumentation in Multi-agent Systems 195

Properties such as termination and response are proven formally in [17]. Intu-
itive results reported there indeed correspond with my model albeit my judge-
ment is based on observation rather than on model analysis. Other results do not
correspond to my model, for example that credulous agents can be convinced of
everything, even of propositions contrary to their beliefs [17, Prop. 6.8, p. 367].

Even though discussions terminate, I noticed that traces of runs are extremely
long, even for trivial input. This observation points to two further research
problems.

1. The problem to maintain overview on the activity in a MAS.
2. Estimating the number of actions in a MAS based on the size of the input.

Investigation of these problems falls beyond the scope of this paper, but is
briefly discussed in Section 8.

7 Related Work

The term of liberal dispute was earlier coined by Prakken in an article on relat-
ing protocols for dynamic dispute with logics for defeasible argumentation [23].
In Prakken’s work, a liberal dispute is an exchange of arguments (rather than
an exchange of propositions as is done in this paper) such that every move is
relevant (in Prakken’s sense) to the first argument in that dispute. The main
effort in Prakken’s work is to prove that liberal protocols are sound and fair.
It is possible to prove such a result because the formalism assumes that ar-
guments are exchanged in their entirety and that participants in a discussion
eventually respond to all utterances that are logically connected to their beliefs.
In turn, these assumptions rest on the hypothesis that agents are logically om-
niscient, communicate everything they know and are able to process everything
they receive. The model presented in this paper is less idealistic and thus cannot
guarantee such a result.

Although it is arguably one of the simpler types of dialogue, inquiry has
received less attention than negotiation or persuasion. An exception is the work
by McBurney and Parsons [14] on scientific investigation. Our purpose is very
similar to theirs. They describe a Risk Agora, as they call it, that allows the
storage of multiple arguments for and against some claim. However, they do not
treat multi-party issues explicitly. The Agora is an asynchronous channel; no
coordination rules are given.

My present work also relates to the Newscast protocol [30]. The Newscast
protocol is a kind of ‘gossiping’ protocol that can be used to disseminate infor-
mation in distributed systems. A difference is that the newscast protocol can
only pass on information. No mechanism exists to specify queries. The Newscast
protocol is also implemented and experimented with albeit on a much larger
scale, and the results are reported quantitatively.

Recently, researchers in the European SOCS project proposed a model of
agency for global computing called the KGP model (knowledge, goals and plans)
[3, 26]. This model is particularly interesting because a number of researchers

196 G.A.W. Vreeswijk

that worked on this model have a strong background in argumentation. The KGP
model proposes a logical architecture that is concerned with agents that (for var-
ious reasons) have incomplete information about their environment, and want to
update that information by engaging in a conversation with other agents. Like
the model that is proposed in this paper, KGP uses uses priorities by defining
preference policies over the order of application of transitions. However, the pri-
oritization is more complex because entire logic programs are prioritized rather
than atomic actions. Every KGP-agent contains an argumentation component
that is a direct derivative of the classical argumentation theories that have pre-
ferred and admissible sets as their semantics. It is remarkable that, in other
publications, some of these authors argue that finding admissible and preferred
arguments can be very hard [7].

The lightweight version of 3APL, called 3APL-M does have a so-called plan
ranker [6]. This an internal class, part of the planner sub-system, which classifies
the plans in the plan base by calculating its utilities. This component drops the
plans that have negative utility from the Plan Base.

8 Future Work

A problem that I noted with ourthe experiments is that it is difficult to monitor
all the action. At present all activities are written to a linear log but this solution
is unsatisfactory from multiple viewpoints, even for small input. Although there
exist tools to monitor agent communication (e.g., JADE’s message sniffers [16]),
a larger problem is to monitor all pre-processing prior to message emission and
all processing of messages once they are received. Currently, I have colored the
output to create a global distinction. Each agent possesses its own color. Dark
colored log entries relate to internal processing, while light colored log entries
relate to agent activity that are more related to communication. Currently there
are four such color categories.

9 Conclusion

In this paper I proposed a liberalized version of existing argumentation protocols.
Within the resulting setup agents can construct arguments autonomously by
participating in an inquiry dialog, thus bringing ideas of computational dialectic
to bear in a multi-party inquiry. It is the connection between the two disciplines
that counts here. Obviously more work has to be done to consolidate and utilize
this connection.

Acknowledgement. I’d like to thank Martin Caminada, Mehdi Dastani, Henry
Prakken and two anonymous referees for their helpful comments. This research
was supported in part by a European Commission STReP grant ASPIC IST-
FP6-002307. This project aims to develop re-usable software components for
argumentation-based interactions between autonomous agents.

Liberalizing Protocols for Argumentation in Multi-agent Systems 197

References

1. P. Baroni, M. Giacomin, and G. Guida. Extending abstract argumentation systems
theory. Artificial Intelligence, 120(2):251–270, 2000.

2. Robbert-Jan Beun. On the generation of coherent dialogue: A computational ap-
proach. Pragmatics & Cognition, 9(1):37–68, 2001.

3. Andrea Bracciali, Neophytos Demetriou, Ulle Endriss, Antonis Kakas, Wenjin Lu,
Paolo Mancarella, Fariba Sadri, Kostas Stathis, Giacomo Terreni, and Francesca
Toni. The KGP model of agency for global computing: Computational model
and prototype implementation. In Proc. of the Global Computing 2004 Workshop,
volume 3267 of LNCS, pages 342–369. Springer Verlag, 2004.

4. Urszula Chajewska and Joseph Y. Halpern. Defining explanation in probabilistic
systems. In Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence, pages
62–71, 1997.

5. Carlos I. Chesñevar, Ana G. Maguitman, and Ronald P. Loui. Logical models of
argument. ACM Computing Surveys, 32(4):337–383, 2000.

6. Mehdi Dastani, Frank de Boer, Frank Dignum, and John-Jules Meyer. Program-
ming agent deliberation: An approach illustrated using the 3APL language. In
Proc. of the Second Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS’03), 2003.

7. Yannis Dimopoulos, Bernhard Nebel, and Francesca Toni. Finding admissible and
preferred arguments can be very hard. In Proc. of the 7th Int. Conf. on Principles of
Knowledge Representation and Reasoning, pages 53–61. Morgan Kaufmann, 2000.

8. Sylvie Doutre and Jérôme Mengin. On sceptical vs. credulous acceptance for ab-
stract argument systems. In Tenth International Workshop on Non-Monotonic
Reasoning (NMR 2004), pages 134–139, 2004.

9. N. Everitt and A. Fisher. Modern Epistemology: A New Introduction. McGraw-Hill,
1995.

10. Peter Gärdenfors. Knowledge in Flux: Modelling the dynamics of epistemic states.
MIT Press, London, 1988.

11. Charles L. Hamblin. Mathematical models of dialogue. Theoria, 37:130–155, 1971.
12. Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch.

Meyer. Agent programming in 3apl. Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

13. Fangzhen Lin and Yoav Shoham. Argument systems: A uniform basis for nonmono-
tonic reasoning. In R.J. Brachman, H.J. Levesque, and R. Reiter, editors, Proc.
of the 1st Int. Conf. on Knowledge Representation and Reasoning, pages 245–255.
Morgan Kaufmann Publishers, 1989.

14. Peter McBurney and Simon Parsons. Representing epistemic uncertainty by means
of dialectical argumentation. Annals of Mathematics and Artificial Intelligence,
32(1):125–169, 2001.

15. Peter McBurney, Simon Parsons, and Michael Wooldridge. Desiderata for agent
argumentation protocols. In Proc. of the First Int. Joint Conf. on Autonomous
Agents and Multiagent Systems, pages 402–409. ACM Press, 2002.

16. Pavlos Moraitis and Nikolaos I. Spanoudakis. Combining gaia and jade for multi-
agent systems development. In Proc. of the 17th European Meeting on Cybernetics
and Systems Research (EMCSR 2004), April 2004.

17. Simon Parsons, Michael Wooldridge, and Leila Amgoud. Properties and complexity
of some formal inter-agent dialogues. The Journal of Logic and Computation,
13(3):347–376, 2003.

198 G.A.W. Vreeswijk

18. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, Inc., Palo Alto CA, 2 edition, 1994.

19. J.L. Pollock. Knowledge and Justification. Princeton University Press, 1974.
20. John L. Pollock. Cognitive Carpentry. A Blueprint for How to Build a Person.

MIT Press, Cambridge, MA, 1995.
21. John L. Pollock. Implementing defeasible reasoning. Presented at the

Computational Dialectics Workshop, at FAPR’96, June 3-7, 1996, Bonn. Cf.
http://nathan.gmd.de/ projects/zeno/fapr/programme.html., 1996.

22. H. Prakken and Gerard A.W. Vreeswijk. Logics for defeasible argumentation.
In D.M. Gabbay et al., editors, Handbook of Philosophical Logic, pages 219–318.
Kluwer Academic Publishers, Dordrecht, 2002.

23. Henry Prakken. Relating protocols for dynamic dispute with logics for defeasible
argumentation. In Shahid Rahman and Helge Rückert, editors, New Perspectives
in Dialogical Logics, volume 127, pages 187–219. Synthese, 2001.

24. Anand S. Rao. Integrated agent architecture: Execution and recognition of mental-
states. In Intelligent Agent Systems: Theoretical and Practical Issues, volume 1087
of Lecture notes in computer science, pages 159–173. Springer-Verlag, Berlin, 1996.

25. John R. Searle. Conversation. In J.R. et al. Searle, editor, (On) Searle on Con-
versation, pages 7–30. John Benjamins, 1992.

26. Kostas Stathis, Antonis Kakas, Wenjin Lu, Neophytos Demetriou, Ulle Endriss,
and Andrea Bracciali. Prosocs: A platform for programming software agents in
computational logic. In J. Müller and P. Petta, editors, Proc. of the 4th Int. Sym-
posium “From Agent Theory to Agent Implementation” (AT2AI-2004), April 2004.

27. Andrew S. Tanenbaum. Operating Systems: Design and Implementation (Second
Edition). Prentice Hall, 1997.

28. Jasper A. Taylor, Jean Carletta, and Chris Mellish. Requirements for belief models
in co-operative dialogue. User Modelling and User-Adapted Interaction, 6:23–68,
1996.

29. Stephen Toulmin. The Uses of Argument. Cambridge University Press, 1985.
30. Spyros Voulgaris, Márk Jelasity, and Maarten van Steen. A robust and scalable

peer-to-peer gossiping protocol. In Proc. 2nd Int. Workshop on Agents and Peer-
to-Peer Computing (AP2PC 2003), 2003.

31. Gerard Vreeswijk and Joris Hulstijn. A free-format dialogue protocol for multi-
party inquiry. In Jonathan Ginzburg and Enric Vallduv́ı, editors, Proc. of the
Eighth Int. Workshop on the Semantics and Pragmatics of Dialogue (Catalog ’04),
pages 273–279, 2004.

32. Gerard Vreeswijk and Henry Prakken. Credulous and sceptical argument games
for preferred semantics. In Ojeda-Aciego et al., editor, Proc. of the 7th European
Workshop on Logics in Artificial Inteligence (JELIA 2000), volume 1919 of LNCS,
pages 239–253. Springer-Verlag, 2000.

33. Gerard A.W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence,
90:225–279, 1997.

34. Gerard A.W. Vreeswijk. Liberalizing protocols for argumentation in multi-agent
systems. In Proc. of the 4th Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems, pages 1259–1260, New York, NY, USA, 2005. ACM Press.

	Introduction
	Global Setup
	AgentArchitecture
	Deliberation Cycle
	Goal Base
	Belief Base
	The Underlying Argumentation Model

	Actions in More Detail
	Inquiry
	Inference
	Query
	Response

	Implementation
	Experiments

	Results
	Related Work
	Future Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

