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Preface

The first Algorithmic Number Theory Symposium (ANTS) conference was hosted
by Cornell University, Ithaca, New York, USA in 1994. The goal of the conference
was to bring together number theorists from around the world, and to advance
theoretical and practical research in the field. ANTS I was soon followed by con-
ferences in Bordeaux, France in 1996, Portland, Oregon, USA in 1998, Leiden,
in the Netherlands in 2000, Sydney, Australia in 2002, and Burlington, Vermont,
USA in 2004. Technische Universität Berlin in Germany hosted ANTS VII during
July, 23-28 2006.

Five invited speakers attended ANTS VII. Thirty seven contributed papers
were presented and a poster session was held. The invited speakers were Nigel
Boston of the University of Wisconsin at Madison, John Cremona of the Univer-
sity of Nottingham, Bas Edixhoven of Universteit Leiden, Jürgen Klüners of Uni-
versität Kassel, and Don Zagier from the Max-Planck-Institut für Mathematik,
Bonn.

Each submitted paper was reviewed by at least two experts external to the
Program Committee which decided about acceptance or rejection on the basis of
their recommendations. The Selfridge prize in computational number theory was
awarded to the authors of the best contributed paper presented at the conference.

The organizers of ANTS VII express their gratitude and thanks to former or-
ganizers Duncan Buell, John Cannon, Henri Cohen, David Joyner, Blair Kelly III
and Peter Stevenhagen for their important and valuable advice. We also appre-
ciate the sponsorships by the Deutsche Forschungsgemeinschaft and the Math-
ematical Institute of Technische Unversität Berlin.

July 2006 Florian Hess
Sebastian Pauli
Michael Pohst

The ANTS VII Organizers



Organization

Program Committee

Karim Belabas, Université Bordeaux 1
Johannes Buchmann, Universität Darmstadt
John Cannon, University of Sydney
Gerhard Frey, Universität Duisburg-Essen
István Gaál, Debreceni Egyetem
François Morain, École Polytechnique Paris
Ken Nakamula, Tokyo Metropolitan University
Enric Nart, Universitat Autònoma de Barcelona
Takakazu Satoh, Tokyo Institute of Technology
Peter Stevenhagen, Universiteit Leiden
Fernando Villegas, University of Texas
Hugh Williams, University of Calgary

Conference Website

The names of the winners of the Selfridge prize, material supplementing the
contributed papers and errata for the proceedings, as well as the abstracts of
the posters and the posters presented at ANTS VII, can be found under

http://www.math.tu-berlin.de/~kant/ants.
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Computing Pro-P Galois Groups�

Nigel Boston and Harris Nover

Department of Mathematics, University of Wisconsin, Madison, WI 53706
{boston, nover}@math.wisc.edu

Abstract. We describe methods for explicit computation of Galois
groups of certain tamely ramified p-extensions. In the finite case this
yields a short list of candidates for the Galois group. In the infinite case it
produces a family or few families of likely candidates.

1 Introduction

Throughout this paper K will denote a number field, p a rational prime, and
S a finite set of primes, none of which lies above p. Furthermore, Kun,p will
denote the maximal everywhere unramified p-extension of K. Our aim is to
compute the Galois group G of the maximal p-extension of K unramified outside
S. Whereas much is known about p-extensions ramified at p [16],[23], those
unramified at p are poorly understood. Wingberg [26] calls them among the
most mysterious objects in number theory. They are, however, important test
cases for the Fontaine-Mazur conjecture [13], which here implies that G has no
infinite p-adic analytic quotient. The first author’s work on this conjecture [5],
[6] suggests that in fact G should have nontrivial actions on locally finite, rooted
trees, providing glimpses of a theory of arboreal Galois representations in parallel
to the well-developed theory of p-adic Galois representations.

We will focus on 2-extensions. The sort of information available is the abelian-
ization of low index (usually 1, 2, 4, and 8) subgroups, computed as quotients of
ray class groups thanks to class field theory, and exact values of, or at least
bounds on, the generator and relation ranks of G. In addition, in the cases that
G is infinite, class field theory gives the further information that every subgroup
of finite index has finite abelianization (such a group is called FAb). In certain
cases, such as K = Q, something is known about the form of the relations.

If a finite index subgroup H has cyclic abelianization, then Burnside’s basis
theorem forces H ′ = {1} and so G is finite. Moreover, a finite index subgroup H
with abelianization the Klein 4-group forces G to be finite since by an old result
of Taussky H has a cyclic subgroup of index 2. This allowed Boston and Perry
[8] to find the Galois groups of several 2-extensions of Q. On the other hand, the
method is limited since in most cases these conditions do not hold at low index.

Boston and Leedham-Green [7] next introduced a new method for computing
G in more general circumstances. The idea is to search for G in O’Brien’s tree [20],
� The authors would like to thank Rafe Jones, Jeremy Rouse, Rob Rhoades and Jayce

Getz for useful discussions. Nigel Boston was partially supported by the NSF. Harris
Nover was supported by the Office of Naval Research through an NDSEG fellowship.

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 N. Boston and H. Nover

which contains every 2-group H with d generators once (up to isomorphism),
organized in such a way that edges go from H/Pk(H) to its immediate descendant
H/Pk+1(H), where Pk(H) is the kth group in the p-central series of H . The
computer software, Magma [4], provides an implementation that computes all
immediate descendants of a given 2-group.

By imposing filters that passed only those immediate descendants satisfying
certain number-theoretical constraints, this tree was drastically pruned and in
many cases the process terminated in a small collection of groups that could
be G. The number-theoretical constraints included consequences of G having as
many generators as relations (this occurs in the case K = Q), the form of the
relations (for K = Q they all come from local tame relations), and the structure
of the abelianizations of index 1 and 2 subgroups. For many finite sets S of
rational primes, the Galois group of the maximal 2-extension of Q unramified
outside S was computed, up to a small ambiguity. Often more than one group
(usually two) resulted but these groups were so similar that the answer to most
questions regarding them would be the same regardless.

Eick and Koch [12] then proved results on the abelianizations of index 2
subgroups for entire families of S, partially verifying conjectures of Boston and
Leedham-Green on the structure of G. These conjectures suggested that the
order and other properties of G should depend quite simply on the form of
S. It is notable that whereas G cannot be determined uniquely, there are still
apparently few 2-groups that can arise as G for some choice of S (with K = Q).

The next development was the work of Bush [10] on extending the method of
Boston and Leedham-Green to apply to 2-class towers of imaginary quadratic
fields. In particular, Stark had asked whether the 2-class tower (i.e. S = ∅) of
K = Q(

√
−2379) is infinite. If so, then the upper bound on root discriminants

in infinite families of totally complex number fields [15] would be drastically
reduced. Bush showed, however, that this 2-class tower has finite Galois group.
He also explored the Galois groups of similar 2-class towers, finding none that
were infinite, but obtaining ones of derived length 3, answering a question of
Benjamin, Lemmermeyer, and Snyder [1],[2]. It is still an open problem whether
any such Galois group can have finite derived length greater than 3. Steurer
[25] has refined the results of Boston and Leedham-Green and of Bush by closer
analysis of the candidates’ lattice of subgroups. For instance, in the case of
Q(

√
−2379) and S = ∅, she eliminates half the candidates for G.

In this paper we describe two recent developments. First, the work of the
second author systematizing computation of Galois groups of 2-class towers of
imaginary quadratic fields is presented. After Bush’s work the question arose as
to whether other such fields might have infinite 2-class tower but small enough
root discriminant to lower the known upper bound. The next likely candidate
was Q(

√
−3135), but existing methods led to a combinatorial explosion even

in the pruned O’Brien tree. Nover’s improved techniques, however, showed that
this and several other fields have finite 2-class tower. Work by Benjamin, Lem-
mermeyer, and Snyder [3] on imaginary quadratic fields whose class group has
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order 8 and exponent 2 had found G explicitly in all but one situation. Nover’s
work tackles many examples of that remaining case.

The second new development is the work of the first author [6] on computing
G in cases where it is known to be infinite. For instance, if K = Q and S = {q, r}
where q and r are odd primes 5 (mod 8) such that q is a 4th power modulo r
but not vice versa, then G is known to be infinite by a refinement of the Golod-
Shafarevich criterion due to Kuhnt [17]. In this case, G has two generators and
two relations, whose general form is known. Relations of this form are chosen
at random and filters employed that save those groups for which, within the
computing range of Magma, the 2-central quotients do not stabilize and the
abelianizations of low index subgroups are finite.

Amazingly, one special family of candidates for G emerges. This echoes the
finite case in that we expect to obtain a short list of very similar groups. The
groups that arise have interesting properties, besides being an apparently new
class of FAb pro-2 groups. In particular their Lie algebras all appear isomorphic
to a Lie algebra arising from quantum field theory [9],[22]. Also, they have torsion
but all have a normal subgroup H of index 4 with Lie algebra isomorphic to
that of F × F , where F is the free pro-2 group on 2 generators. This group H
is conjecturally a mild group. This comes out of the recent surprising work of
Labute [18], who proved that for various S, p the Galois group G of the maximal
p-extension (p odd) of Q unramified outside S is mild. This implies that such a G
is of cohomological dimension 2 and thus torsion-free. It also has implications for
the Fontaine-Mazur conjecture [19]. Schmidt [21] and Bush-Labute [11] provided
refinements of Labute’s work.

We begin with background on the tools that will be employed in our search
for G. There follows a section on Nover’s work establishing new results on finite
Galois groups of 2-class towers. Finally, Boston’s work on the infinite case is
expounded upon, leading to various speculations as to where the future devel-
opment of the subject may lead.

2 Mathematical Background

We make use primarily of two theoretical tools: class field theory and the O’Brien
tree. We review each here. Let K be a field and Clp(K) the p-primary part of its
class field. Then class field theory tells us that there is a correspondence between
unramified abelian p-extensions of K and subgroups of Clp(K), and further that
the maximal unramified abelian p-extension has Clp(K) as its Galois group over
K. Put another way, if G is Gal(Kun,p/K) (that is, S = ∅) and G′ the clo-
sure of its commutator subgroup, then the abelianization of G, G/G′ ∼= Clp(K).
As the Galois correspondence associates closed subgroups of G with unrami-
fied p-extensions of K, we further have that the lattice of subgroups of G with
abelianizations attached corresponds to the lattice of unramified p-extensions of
K with Clp’s attached. This simple observation will be quite powerful.
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The second theoretical tool we use is the O’Brien tree. We start with a defini-
tion. The lower p-central series of a p-group G is defined recursively as P0(G) = G
and Pk+1(G) = Pk(G)p[G, Pk(G)].1 The smallest c such that Pc(G) = {1} is
called the p-class of G. It follows easily from our definitions that the p-class of
G/Pk(G) is the smaller of k and the p-class of G. Note that if G is a pro-p group,
then Pk(G) is the closed subgroup defined as above and in particular P1(G) is
the Frattini subgroup of G. For reasons that will shortly become apparent, we
say that a p-group G is a descendant of H , and that H is an ancestor of G,
if G/Pk(G) = H for some k. Further, G is an immediate descendant of H if
additionally the p-class of G is k + 1.

Any group has a finite number of immediate descendants, and so given some
starting group we can compute all of its descendants by computing its immediate
descendants, their immediate descendants, and so forth. We may organize this
information as a tree where the root is our starting group, the next level is its
immediate descendants, the level after that their immediate descendants, and
so on, where we put an edge between groups exactly when one is an immediate
descendant of the other. We call this the O’Brien tree for the initial group.
An algorithm described by O’Brien [19] allows us to compute the immediate
descendants of a p-group and correspondingly compute the tree to finite depth.
By Burnside’s basis theorem, given a p-group G with exactly d generators, we
know that G/P1(G) will be elementary abelian of rank d. Thus G will appear
in the O’Brien tree with root the rank d elementary abelian p-group. Further,
infinite pro-p groups with exactly d topological generators correspond to infinite
ends of that tree.

3 Finite Galois Groups

Let G = Gal(Kun,2/K). We want to determine G. Our algorithm can be broken
down into 3 steps.

3.1 Step 1: Generating Lattice Data

Galois theory tells us that the low index subgroups of G correspond to unramified
low degree extensions of K. Explicit class field theory gives us a method of
producing these extensions. First we compute the 2-class group of K, and use
explicit class field theory to construct the corresponding unramified degree 2
extensions. Then for each of these extensions we compute its 2-class group and
its degree 2 extensions, checking for duplicates as some degree 4 extensions will
have more than 1 intermediate subfield. Then we compute the 2-class groups of
the degree 4 extensions. As described in Sect. 2, by class field theory this tells
us quite a bit of information about G. We now know the lattice of subgroups
with abelianizations for index at most 4.

1 Be aware that some authors define P1(G)=G, and arrive correspondingly at different
definitions of p-class, etc.



Computing Pro-P Galois Groups 5

3.2 Step 2: Pruning the Tree

Now we use the O’Brien tree to get a (hopefully finite) list of candidates for G.
If Cl2(K) has 2-rank d, then we already know that G/P1(G) is an elementary
abelian 2-group of rank d, which is to say that we know the root of an O’Brien
tree which must contain G. We proceed with a recursive algorithm to pick out
a subtree which will contain G. Assume we are working on a group Q of p-class
k − 1 which might have G as a descendant. We first use O’Brien’s algorithm to
generate each immediate descendant P , which will be of p-class k.

Now for each P , we are interested in two questions. The first question is
whether any descendant of P , immediate or not, could be G, that is, could
P ∼= G/Pk(G). We have two necessary conditions on P for this to be possible.
The first condition is to see if P is compatible with the lattice data we collected
earlier. Essentially, we compute the subgroup lattice of P up to index 4 with
abelianizations, and then try to match up the subgroups of P with the extension
fields of the lattice data. For each subgroup H of G, if Pk(G) ≤ H , then the
isomorphism theorems tell us that the lattice of P must contain an entry for H
whose abelianization is a quotient of the abelianization of H . Further, for large
enough k, Pk(G) ≤ H ′ and so the abelianizations must in fact be equal. Given
the index of H and the known size of its abelianization, it is straightforward to
compute the k at which Pk(G) ≤ H, H ′. For example, if H is an index 4 subgroup
of G, then Pk(G) ≤ H if k ≥ 3. We must have equality of abelianizations if
k ≥ 2v([H : H ′])− v([H0 : H ′

0])+ 3, where H0 is an index 2 subgroup containing
H and v is the 2-adic valuation. We can improve this to 2 and v([H : H ′]) + 2
if H is contained in 3 subgroups (that is, if there are three intermediate fields
between the corresponding field and K), as this implies H is normal.

The second condition is essentially cohomological in nature. Let r(G) and
d(G) be, respectively, the relation and generator ranks of G. We require that
the difference in ranks between the p-multiplicator and the nucleus of P is less
than or equal to d(G)+1. These terms are defined in [20]. This follows from the
following two propositions.

Proposition 1. If G = Gal(Kun,2/K) for K a totally imaginary number field,
then r(G) − d(G) ≤ [K : Q]/2.

Proof. This follows easily from [23]. �

Proposition 2. Let G be a pro-p group with finite abelianization and let Gi =
G/Pi(G). Then for i ≥ 1 the difference between the ranks of the p-multiplicator
and the nucleus of Gi is at most r(G).

Proof. This is a generalization of a proposition in [12] inspired by a lemma in
[7]. We follow the proof in the former.

Let M(Gi) and N(Gi) be, respectively, the p-multiplicator and nucleus of Gi.
M(Gi) is elementary p-abelian, so it suffices to bound the rank of M(Gi)/N(Gi).
Let G = F/R be a free presentation where R is a normal subgroup of F . For any
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subgroup U ≤ F , let U∗ = [U, F ]Up. Let K = Pi(F ). We have that Gi = F/KR,
which implies that M(Gi) = KR/(KR)∗ and N(Gi) = K(KR)∗/(KR)∗. So

M(Gi)/N(Gi) = (KR/(KR)∗)
/

(K(KR)∗/(KR)∗) ∼= KR/K(KR)∗ .

As K and R are normal in F , the latter group is KR/KR∗ ∼= R/(R ∩ KR∗),
which is a quotient of R/R∗, the p-multiplicator of G. This has rank at most r(G)
(by, for example, a group homological argument using the Universal Coefficient
Theorem), as desired. �

If P meets these two conditions it might be an ancestor of G. In that case,
we ask if P might itself be G. There are again two conditions, corresponding
once again to lattice and cohomological data. First, if k is small enough that we
have not already done so, we check that the lattice for P matches our lattice
data exactly, requiring equality of abelianizations. Second, for each subgroup in
P up to some chosen index, we compute the generator and relation ranks by
computing the abelianization and the second homology group. We then check
to see if this is compatible with Proposition 1 above. We say that groups which
pass these two conditions are candidates to be G. Given how quickly the bound
of the proposition grows, we did not find it profitable to check subgroups of
particularly large index. In fact, we did not find any otherwise candidates which
had failing subgroups of index larger than 2, although we check up to index 16
for completeness.

We have now evaluated for each immediate descendant P of Q if it is a
potential ancestor or candidate for G. If it is a candidate, we save it to a list
of candidates. If it might be an ancestor, then we use it for Q, computing its
immediate descendants, checking them, and recursing accordingly. Each of these
calls on potential ancestor P ’s, if they terminate, will return a list of candidates,
which we append to our current list of candidates. When we have tried all the
P ’s, we return the list of candidates we have compiled, which are all the descen-
dants of Q which might be G. By calling this algorithm on the known G/P1(G),
we are guaranteed that if it terminates, it will return a finite list of candidates
for G. In the event that it does not terminate, we still gain some information
about G as we at least know its possible quotients by the lower p-central series,
particularly if we modify the algorithm to only produce the subtree to some
specified depth.

3.3 Step 3: Narrowing Candidates

If step 2 terminates, we know that G is on the list of candidates and in particular
that it, and so the 2-tower, is finite. The number of candidates for G may still be
somewhat large. We narrow it as follows. All candidates at this point have the
same index 4 lattice, so we compute the index 8 lattices (with abelianizations)
of each candidate group. We then find an index 4 subgroup whose subgroups in
the index 8 lattice differ among the different candidates. We then map this back
to our lattice data and determine which degree 4 extension of K corresponds to
this subgroup. As all we have are the lattice data it is possible several degree 4
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extensions might conceivably correspond. For each of them, we use their class
group to compute their degree 2 extensions, and then compute the 2-class groups
of those extensions. This lets us expand our lattice data and eliminate some of
the candidates. After culling the candidates, we repeat the process until all our
candidates have the same index 8 data.

3.4 An Example

The algorithm has been entirely implemented in a collection of Magma programs
controlled by BASH scripts. As an example, we report the results of the algo-
rithm on K = Q(

√
−3135). We chose this group since, by [3], among imaginary

quadratic fields with 2-class group (2, 2, 2) (by which we mean C2×C2×C2) and
derived length at least 3 it has the smallest discriminant. If this group had infi-
nite 2-tower, it would provide a much reduced upper bound of 56.0 on the root
discriminant problem, as the current best bound, found in [15], is 82.2. Unfortu-
nately, this is not the case. The algorithm narrows G down to one of 84 possible
groups, each of derived length 3. In particular, each of these groups is finite,
which shows that Q(

√
−3135) has finite 2-class tower, a previously unknown

result. Assuming GRH, we are further able to narrow G to one of 4 groups. We
have also used the algorithm to show the finiteness of the 2-class tower for over
a dozen other fields with 2-class group (2, 2, 2) where this was unknown, such as
Q(

√
−966), Q(

√
−969), Q(

√
−1554), and Q(

√
−16296).

First we compute the lattice data. The 2-class group of K is (2, 2, 2) and so
we know that, for G = Gal(Kun,2/K), G/P1(G) is (2, 2, 2). Continuing, we find
that there are 7 degree 2 extensions. Three have 2-class field (2, 2, 2), two have
(2, 8), and there is one each of (2, 2, 2, 2) and (2, 16). Taking further degree 2
extensions and eliminating duplicates, we find 31 degree 4 fields and compute
their class groups.

Next we run our modified O’Brien algorithm to produce the subtree of the
O’Brien tree with root (2, 2, 2). Although (2, 2, 2) has 67 descendants, 4 of them
fail the cohomological condition, another 44 have too large an abelianization,
and another 18 have subgroups which will not fit with our lattice up to index 2.
This leaves 1 descendant group, which must be an ancestor of G. This group, of
2-class 2 and order 32, has 186 descendants. 82 of these fail the cohomological
condition and another 88 have lattices which cannot be quotient lattices in the
appropriate sense at index 4. This leaves 16 descendant groups, each of order
256, to explore. At this point the width of our subtree broadens considerably
and so we cease our description of this stage of the algorithm. After examining
several thousand groups we are left with a finite subtree in which 240 groups
pass the lattice conditions for candidacy.

For implementation reasons we leave the test on relation ranks of subgroups
until after the tree portion of the algorithm is completed. Applying that test
leaves us with 84 candidates with 24 unique index 8 lattices. At this point,
without GRH, we are stuck, as we cannot unconditionally compute the class
groups of the extensions of degree 4 extensions of K due to memory limitations.
However, Magma allows a more efficient computation of the class group whose
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correctness is conditional on GRH, and so we use that from here on. Computing
the 7 extensions with 2-class groups of a particular degree 4 extension of K
leaves only 30 compatible candidates with 8 different index 8 lattices. Computing
another set of extensions for a particular field yields 8 candidates with 2 different
lattices. We then compute extensions of another 4 fields which leaves us with
4 groups, all sharing the same index 8 lattice. These 4 groups are similar in
many other ways as well. They are all of order 8192, derived length 3, and
2-class 7. They also all have G/G3 isomorphic to the group 32.033 (Hall-Senior
notation), consistent with the results in [3], where G3 = [G, G′]. In fact, they
are all immediate descendants of the same group, and so their quotients by the
non-trivial terms in the lower p-central series are all isomorphic, and this is also
true for the lower central series.

4 Infinite Galois Groups

If L/K is an infinite p-extension unramified at finitely many primes, none above
p, then the structure of Gal(L/K) is mysterious, although the conjecture of
Fontaine-Mazur [13] says that it should not be p-adic analytic. In fact, no explicit
presentation of such a group is known.

One might try to shed some light on the structure of such a Galois group (and
simultaneously put the Fontaine-Mazur conjecture to test) by the methods of
the previous section, since finitely generated pro-p groups arise as the ends of
O’Brien trees. This, however, is fruitless, since typically there will be combina-
torial explosion in the pruned tree. As we shall see, this illustrates the fact that
there are too many candidate groups to organize this way. On the other hand,
the results in the finite case suggest that we should expect the possible groups
to have some restricted form and to occur in families.

It follows that the computation should be organized differently. In [6], Boston
introduced the method of picking relations at random (of the permitted form)
and then examining the pro-2 groups so presented. Magma allows us to filter out
groups H such that H/Pn(H) is no larger than H/Pn−1(G) for n up to about 63.
This first filter eliminates many pro-2 groups that are actually finite. Secondly
we filter out groups H having a subgroup of index 1, 2, 4, 8, or 16 with infinite
abelianization, since such a group cannot satisfy FAb. “Drilling” into the group
by computing successive index 2 subgroups and checking their abelianizations
allows random tests of subgroups of index up to 2048 to see if FAb is violated.

In particular, let K = Q and S = {q, r} where q and r are distinct odd primes.
The Galois group of the maximal 2-extension of Q unramified outside S, G, is
the finitely presented pro-2 group with presentation < x, y|xa = xq, yb = yr >
for some a, b in the free pro-2 group on x, y [16]. The simplest situation in which
we can ensure that G is infinite arises by requiring that q, r ≡ 5 (mod 8), so
that the abelianization is (4, 4), and additionally requiring that q is a 4th power
modulo r but not vice versa (for example, {61, 5}). In this case a refinement
of Golod-Shafarevich due to Kuhnt [17] shows that G is infinite. The filtering
process described above works well, leaving one family of groups.
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Conjecture 1. There exists a subset F of the free pro-2 group on x, y such that
the Galois groups G above have presentations < x, y|xc = x5, y4 = 1 > with
c ∈ F .

The shortest elements in F have length 6. There are 48 of them of this length,
for instance y2xyxy, y2xyx−1y−1, .... Moreover, the sequence log2(|G/Pn(G)|) is
always the same, namely

2, 5, 8, 11, 14, 16, 20, 24, 30, 36, 44, 52, 64, 76, 93, 110, 135, 160, 196, 232, 286,
340, 419, 498, 617, 736, 913, 1090, 1357, 1634, . . .

Δn := log2|Pn(G)/Pn+1(G)| is identified by inputting it in Sloane’s On-Line
Encyclopedia of Integer Sequences [24]. It arises in [9], namely as, for n ≥ 4,
Δ2n−2 = Δ2n−1 =

∑n
m=1(1/m)

∑
d|m μ(m/d)(Fd−1+Fd+1), where μ is the usual

Möbius function and Fn the nth Fibonacci number (so that in fact Fd−1 + Fd+1
is the dth Lucas number). Letting L(G) = ⊕Pn(G)/Pn+1(G), the Fp-Lie algebra
of G, its graded pieces have the same dimensions as (i) the free Lie algebra
generated by one generator in degree 1 and one in degree 2 (arising in work on
multi-zeta values and quantum field theory [9]) and (ii) Cameron’s permutation
group algebra of C2 �A, where A is the group of all order-preserving permutations
of the rationals. This suggests the following amazing possibility.

Conjecture 2. If G is in the family of groups above, then L(G) is the Fp-Lie
algebra in (i) or (ii) above.

The groups G just found appear always to have a normal subgroup H satisfying
G/H ∼= C4 and having generator and relation ranks both equal to 4. We call this
the critical subgroup of G. It confirms the suggestion of Boston that these Galois
groups should always have a subgroup of finite index that violates the Golod-
Shafarevich criterion. Moreover, the growth of H/Pn(H) is consistent with the
conjecture that H is a mild pro-2 group in the sense of Labute [18], which would
then imply that G has virtual cohomological dimension 2.

This method has been tried in other, similar circumstances. For example, it
appears that the only infinite pro-3 group satisfying FAb and having presen-
tation of the form < x, y|xa = x4, yb = y4 > is the Sylow pro-3 subgroup S
of PSL2(Z3). To improve this process, we are now investigating the degree to
which a candidate’s presentation can be “deformed” to yield another candidate
- S would be rigid to this sort of deformation.
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Abstract. Tabulating elliptic curves has been carried out since the ear-
liest days of machine computation in number theory. After some histor-
ical remarks, we report on significant recent progress in enlarging the
database of elliptic curves defined over Q to include all those of conduc-
tor N ≤ 130000. We also give various statistics, summarize the data,
describe how it may be obtained and used, and mention some recent
work regarding the verification of Manin’s “c = 1” conjecture.

1 Background and History

Tabulating elliptic curves has been carried out since the earliest days of ma-
chine computation in number theory. In this article we concentrate on tables
which claim to contain complete lists of elliptic curves with conductors in cer-
tain ranges. Other tables exist, notably tables of curves with prime conductor
by Brumer and McGuinness [4] and, more recently, by Stein and Watkins [21].

We first review the tables existing before 1990, and then describe the tables
we have compiled since then, concentrating on the large increase in the data
available since mid-2005. We will describe the origins of the tables and give
some information on the methods used to compile them. We give a summary of
the data obtained to date, describe how to obtain and use the data, and mention
some recent work regarding the verification of Manin’s “c = 1” conjecture.

1.1 The Antwerp Tables

For many years the only published tables giving data on elliptic curves of small
conductors were those in the volume [2], popularly known as “Antwerp IV”,
which forms part of the Proceedings of an International Summer School in Ant-
werp, July/August 1972, with the title Modular Functions of One Variable IV
(edited by Birch and Kuyk).

The Antwerp tables consist of the following:

Table 1: All elliptic curves of conductor N ≤ 200, arranged into isogeny classes,
with the structure of the Mordell-Weil group (in most cases) and local
data for primes of bad reduction. The origin of this table is discussed
below.

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 11–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 2: Generators for the curves of positive rank (one in each isogeny class) in
Table 1, which all have rank 1. These were determined independently
by Nelson Stephens and James Davenport; there are two omissions
(143A and 154C) and two errors (155D and 170A).

Table 3: Hecke eigenvalues for primes p < 100 for the newforms associated to
the elliptic curves in Table 1; due to Vélu, Stephens and Tingley.

Table 4: All elliptic curves whose conductor has the form N = 2a3b, arranged
in isogeny classes (with no information on the Mordell-Weil groups);
due to Coghlan.

Table 5: Dimensions of the space of newforms for Γ0(N) for N ≤ 300, including
the dimensions of eigenspaces for the Atkin-Lehner involutions Wq

and the splitting of the space of newforms over Q; due to Atkin and
Tingley.

Table 6: Factorized polynomials in Fp[j], for primes p ≤ 307, whose roots are
the supersingular values of j in characteristic p; due to Atkin.

To quote [2], “The origins of Table 1 are more complicated”; two pages of [2]
are devoted to explaining this further. Briefly, the list 749 curves in this table
evolved as follows.

– Swinnerton-Dyer searched for curves with small coefficients and kept those
with conductor N ≤ 200; he added curves obtained via a succession of 2- and
3-isogenies. Only the coefficients, discriminant and conductor were tabulated
at first.

– Higher degree isogenies were checked using Vélu’s method [24], adding some
curves.

– Tingley used modular symbols to compute the space of newforms for N ≤
300, together with the action of the Hecke algebra and hence its splitting
into eigenspaces. This revealed 30 “gaps”, isogeny classes which had previ-
ously been missed. These were then filled, either by twisting known curves
or by extending the original search region. For example, in isogeny class 78A
the curve with smallest coefficients is1 78a1 = [1, 1, 0,−19, 685] which is un-
likely to have been found by a search. Subsequently, Tingley went on to find
equations of the associated elliptic curves directly from the newforms, using
a method very similar to the one which we later developed, as described in
[7]. Much of Tingley’s work was never published except in the contribution
to the Antwerp tables, and can only be found in one of three existing type-
script copies of his thesis [23] (Oxford 1975). For the higher levels in the
range N ≤ 300, Tingley’s 1975 program was slow and he only computed
the elliptic curves for newforms where there was no corresponding curve yet
known. By contrast (and to show how both the algorithms and hardware
have improved in 30 years), in 2006 our program can find these curves (for
N ≤ 300) in around 20 seconds.

1 We always specify curves by giving the coefficients [a1, a2, a3, a4, a6] of a minimal
Weierstrass model. See section 3.2 below for more on labelling conventions.
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– The Mordell-Weil ranks were computed by James Davenport, using the
method of 2-descent as described in [3]. In eight cases these were not certain;
in seven cases the rank is given as “0?” and is in fact 0; in one case it is
given as “1?” but is 0.

– The list was known to be complete for certain conductors N , such as N =
2a3b and several prime N .

– Tingley’s 1975 thesis [23] contains further curves with 200 < N ≤ 320 found
via modular symbols, newforms and periods.

In the review by Vélu for Mathematical Reviews (MR0389726 (52 #10557)) a
number of other minor errors in these tables are corrected.

No more systematic enumeration of elliptic curves by conductor occurred (as
far as we are aware) between 1972 and the mid 1980s.

1.2 The 1992 Tables

During the 1980s my research and computations mainly concerned modular sym-
bols and elliptic curves over imaginary quadratic fields. For this, methods were
developed and implemented for handling modular symbols over such fields (ini-
tially, only those of class number one), including the computation of Hecke eigen-
values and periods, and also for dealing with the easier aspects of the arithmetic
of elliptic curves (conductors and point searching, but not ranks). This work
included a need to have information concerning elliptic curves defined over Q
whose conductor lay beyond the range of the Antwerp tables, which led to the
development of a new implementation of the modular symbol method over Q.
At around this time, conversations with Richard Pinch led me to implement
modular symbols over Q with quadratic character (as described in [5]).

One obstacle to the writing up of much of this work was the lack of any
suitable reference in the literature to the modular symbol method over Q for
Γ0(N). The new implementation was now not only recomputing from scratch all
the curves listed in Antwerp IV, but also extending the list to larger conductors.
Although these tables did not at this point include isogenous curves or ranks
or generators, they did contain some data not in the Antwerp tables pertaining
to the Birch–Swinnerton-Dyer conjectures: specifically, they contained for each
curve E the rational number L(E, 1)/ΩE (where ΩE is the least real period
of E), whose value is conjectured to be 0 if and only if E(Q) has positive rank,
and is given by a conjectural formula involving the order of the Tate-Shafarevich
group when E(Q) has rank 0.

As a result, although the use of modular symbols to compute elliptic curves
over Q was not in itself original, I decided that there was enough new material
here to be worthy of publication, and in 1988 submitted a paper to Mathematics
of Computation containing a table of elliptic curves of conductor up to 600. At
this point only one curve was listed for each newform: no isogenies, ranks or gen-
erators. This paper was rejected in 1989, on two grounds: there were too many
implementation details, and the referee wanted fuller information to be given for
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each curve – including the isogenous curves, and their ranks and generators.
I was invited to resubmit the paper with this extra data included. Carrying
this out required considerable effort, most significantly in re-implementing the
2-descent method of Birch and Swinnerton-Dyer to compute the ranks. James
Davenport had been asked if his program for this still existed, but had replied
that the only copy in existence was on a magnetic tape containing machine code
for a computer which no longer existed; so this had to be done from scratch.
Programs to compute isogenies and find Mordell-Weil group generators also had
to be developed and written.

In 1990 I resubmitted the paper to Mathematics of Computation. The tables
now covered all conductors to 1000, as well as containing all the requested infor-
mation on ranks and generators. The text of the paper was still only 27 pages
long, but it was accompanied by more than 200 pages of tables. The journal
did offer to publish the paper, but with the tables as a microfiche supplement.
However, while the refereeing was taking place, I was approached by several pub-
lishers who had seen the spiral-bound preprint and were interested in publishing
it as a book. As nobody wanted the tables to be available only in microfiche
format (which was rather old-fashioned even in 1990) I therefore withdrew it
from Mathematics of Computation and signed up with Cambridge University
Press.

Now, of course, 27 pages of text were insufficient for a book. In the first
edition [6] of “Algorithms for Modular Elliptic Curves” the text was expanded
to around 90 pages, with tables for curves to conductor 1000. It was published
on 8 October 1992 and contained 5089 curves (those for N = 702 were missing
through a stupid error: the number should have been 5113).

1.3 The 1997 Tables

By around 1995 the book [6] was out of print and CUP asked me to prepare
a revised version. This duly appeared as [7] in 1997. As well as containing cor-
rections and the missing curves of conductor 702, some sections were rewritten
and a new section and table on the degree of the modular parametrization were
added. However, the range of the printed tables was not extended, though links
were given to online data which extended the range to N ≤ 5077. In addition,
the period between 1992 and 1997 also saw the proof of the Shimura-Taniyama-
Weil conjecture, which changed the status of some of the statements in the text
as well (obviously) as the status of the tables themselves, which could now be
described as listing all elliptic curves of conductor N ≤ 1000 rather than just
those which were modular.

The full text of [7] has been available online since around 2002.

2 Algorithms and Implementation

The method we use to find all (modular) elliptic curves of a given conductor N
uses modular symbols for Γ0(N), as is explained in detail in [7]. The original
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method was similar to that used by Tingley, though with certain improvements.
Moreover, there have been many improvements in the details of the algorithm
since the publication of [7], some of which have been developed in collaboration
with William Stein. As these are rather technical we do not go into details, but
give a brief summary. For some more details (but not the more technical and
recent improvements), see Chapter 2 of [7].

2.1 Finding the Newforms

For each level N , one first computes the space of Γ0(N)-modular symbols, and
the action of the Hecke algebra on this space, to find one-dimensional eigenspaces
with rational integer eigenvalues. Each of these corresponds to a rational new-
form f , where “rational” means that the Hecke eigenvalues, and hence the
Fourier coefficients, are rational integers. Actually constructing the space of mod-
ular symbols is fast, though (for large levels) requires sparse matrix methods in
order to fit in available machine memory. Sparse methods are also crucial when
finding Hecke eigenspaces; this step is the most expensive in terms of memory
requirements, and is also time-consuming, when the dimension of the space of
modular symbols is large.

2.2 Finding the Curves

Given the newform f , we then integrate 2πif(z)dz along certain paths in the
upper half-plane, which are also given in terms of modular symbols, to obtain first
the periods and then the equation of the associated elliptic curve of conductor N
and L-series L(E, s) = L(f, s). Finding E in practice involves computing the
period lattice of f to sufficiently high precision; which in turn requires knowing
many terms of the Fourier expansion of f , i.e. many Hecke eigenvalues. From
the (approximate) period lattice of E, we obtain the invariants c4, c6 of E, at
least approximately; but they are known to be integers. [This was first made
explicit by Edixhoven in [13], following Katz-Mazur; (see also [1]).] Hence c4
and c6 can be determined exactly if we have sufficient precision. The precision
requirement means that many Hecke eigenvalues are needed (up to 3500 for levels
around 130000), so for this step it is also important for the implementation to be
very efficient. The memory requirements for this step, and the time to compute
the periods themselves, are negligible.

2.3 Reliability of the Data

Clearly no large-scale computation such as this can every guarantee 100% accu-
racy, and the software undoubtedly will always have bugs. Most errors to date
have arisen through data processing mistakes: much of the handling of the large
data files produced by our programs was done manually. More recently we have
automated most of this and incorporated checks into our scripts wherever possi-
ble. Occasionally, at certain levels we missed newforms and hence elliptic curves;
this has happened most often just after major rewriting of the code. When curves
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are missed at level N , we usually discover the fact when processing level 2N ,
since then certain oldforms are not recognised as such. The online data is updated
regularly and such corrections are logged; the data imported into packages (see
below) may not be quite so up-to-date.

2.4 Obtaining Information About the Curves

For each elliptic curve found, we determine the analytic rank from the newform;
when this is greater than 1 we check that it equals the Mordell-Weil rank using
2-descent.

Generators are found using a combination of the traditional methods: (1)
search; (2) 2-descent, using our program mwrank [10]; (3) Heegner points (we
now use Magma [16] for these, as the current implementation by Watkins, based
on earlier versions by Cremona, Womack, Watkins and Delaunay, is extremely
efficient); plus saturation methods.

We also compute isogenies, and all data on the isogenous curves. Since the
computation of isogenies is rather delicate (it is easy to miss some if the precision
is insufficient) this is done independently, as a check, using a program of Mark
Watkins; as a benefit, Watkins’s program also computes the degree of the mod-
ular parametrization and determines the curve in each isogeny class of minimal
Faltings height. This method of computing the modular degree (described in
[25]) is very much more efficient than the original one described in [8], which we
stopped using at around N = 14000. The Faltings height information also allows
verification of Stevens’s Conjecture [22], that the curve with minimal Faltings
height in each isogeny class is the one associated with Γ1(N) (which is usually,
though not always (especially for smaller N), the same as the curve associated
with Γ0(N)).

2.5 Software

The original program was written in the 1980s in Algol68, and converted to
C++ in the early 1990s. We use either Victor Shoup’s NTL library (see [15]) or
the LiDIA library (see [14]) for high-precision arithmetic, as well as STL (the
Standard Template Library for C++). The sparse matrix code has been completely
redeveloped, based on an earlier version by Luiz Figueiredo. This is probably
the most important single programming improvement, and is essential both to
physically allow levels as high as 100000 to be run on a machine with 2GB of
RAM, and also for greatly increased speed of execution. Even so, some levels
around 130000 require more than 2GB or RAM in which to run.

Without many low-level efficiency and algorithmic improvements it would not
have been possible to have progressed so far. Some of these have been developed
in collaboration with William Stein, who has written more general programs for
computing with higher weights and characters: implemented originally in C++,
then in Magma, and most recently in his package SAGE (see [18] and [19]).

One example: in [21] an example is given of a curve of rank 2 and ratio-
nal 5-torsion of conductor 13881, which was then (2002) “beyond the range of
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Cremona’s tables”; computing the four curves (up to isogeny) of this conductor
now takes less than 2 minutes to run, requiring about 60MB of RAM. Most
of the computation time is taken up finding the eigenspaces for the first Hecke
operator T2 on the modular symbol space of dimension 1768.

2.6 Hardware

The other factor which has had an enormous impact on the expansion of the
tables since spring 2005 is the availability at the University in Nottingham of
a 1024-processor High Performance Computing “GRID” cluster, on which each
user may (normally) use up to 256 processors simultaneously. This has enabled
the processing of a hundred or more levels at a time. The GRID processors are
arranged in pairs in 512 nodes, with each node (a “V20z dual Opteron”) having
access to its own 2GB of RAM. No parallel code is used (yet), so the advantage
of the cluster is simply that of having a large number of machines controlled via
a scheduling system to keep them all busy with the minimum amount of human
intervention.

The nodes in the cluster have “only” 2GB or RAM each; hence for some larger
levels it is necessary to perform separate runs on a different machine, with more
RAM (8GB). So far this has sufficed, but further developments in the code are
under way to enable the current upper bound of 130000 to be passed.

2.7 Milestones

Before using the HPC GRID we used between 0 and 3 machines, all shared with
other users and jobs.

Date Conductor reached
Mar 2001 10000
Nov 2001 12000
Aug 2002 13000
Oct 2002 15000
Jan 2003 16000
Feb 2003 18000
Mar 2003 19000
Apr 2003 20000
Mar 2004 21000
Apr 2004 23000
May 2004 24000
Jun 2004 25000
Oct 2004 26000
Nov 2004 27000
Jan 2005 29000
Feb 2005 30000
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After starting to use the HPC GRID, the pace increased considerably:

Date Conductor reached
22 Apr 2005 40000
27 May 2005 50000

9 Jun 2005 60000
20 Jun 2005 70000
14 Jul 2005 80000

26 Aug 2005 90000
31 Aug 2005 100000
18 Sep 2005 120000
3 Nov 2005 130000

Currently the program is undergoing further refinements in the expectation
that it will be able to make further progress without moving wholesale to
machines with more RAM. It would be interesting to cover all levels to N =
234446, which is the smallest known conductor of a curve with rank 4, namely
234446b1 = [1,−1, 0,−79, 289]. Level N = 234446 itself has been run success-
fully; as well as the rank 4 curve there are two others with this conductor,
both of which have rank 3: 234446a1 = [1, 1, 0,−696, 6784] and 234446c1 =
[1, 1, 1,−949,−7845].

2.8 Using the GRID

To use the HPC GRID we use a fairly simple shell script, which loops over a
range of values of N . This script runs simultaneously on however many nodes
are available. At each pass through the loop, shell commands are used to de-
tect the existence of a log file associated with the value of N in question, which
would indicate that another node was already working on this level. If so, N is
incremented; otherwise a series of C++ programs is run with N (and other pa-
rameters) as input, which result in all the necessary computations being carried
out for that level with the output suitably recorded. One minor technical issue
here is that the system has to be able to handle several hundreds of thousands of
data files, something of which system administrators may disapprove. [We keep
the data for each level accessible for later runs, since our method of eliminating
oldforms currently involves accessing the data at levels M dividing N , rather
than using degeneracy maps.]

A typical extract from the log file of one node follows:

running nfhpcurve on level 120026 at Fri Sep 23 18:26:48 BST 2005
running nfhpcurve on level 120197 at Fri Sep 23 20:12:31 BST 2005
running nfhpcurve on level 120224 at Fri Sep 23 20:58:18 BST 2005
running nfhpcurve on level 120312 at Fri Sep 23 23:35:19 BST 2005
running nfhpcurve on level 120431 at Sat Sep 24 04:19:54 BST 2005
running nfhpcurve on level 120568 at Sat Sep 24 10:42:18 BST 2005
running nfhpcurve on level 120631 at Sat Sep 24 13:56:49 BST 2005
running nfhpcurve on level 120646 at Sat Sep 24 14:48:21 BST 2005
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running nfhpcurve on level 120679 at Sat Sep 24 15:59:54 BST 2005
running nfhpcurve on level 120717 at Sat Sep 24 18:11:20 BST 2005
running nfhpcurve on level 120738 at Sat Sep 24 19:13:11 BST 2005
running nfhpcurve on level 120875 at Sun Sep 25 02:20:27 BST 2005
running nfhpcurve on level 120876 at Sun Sep 25 02:20:28 BST 2005
running nfhpcurve on level 120918 at Sun Sep 25 04:58:32 BST 2005
running nfhpcurve on level 120978 at Sun Sep 25 08:08:00 BST 2005

The program being run here is called “nfhpcurve”, where “nf” stands for
newform, “hp” for “H+

1 ” indicates that we use the plus part of the modular
symbol space, and “curve” that we compute the equations for the curve from
each newform. Separate programs are run to find isogenous curves and Mordell-
Weil generators and other data.

The levels here are in the range 120000–121000; those not listed are being run
on other nodes. Approximately 10 levels per processor per day are completed,
though the time for each individual level varies greatly, depending on several
factors: highly composite N have modular symbol spaces of higher dimension,
which has a major effect on the time required for linear algebra; levels with no
newforms obviously save on the time required to compute many Hecke eigen-
values ap; and curves with very large c4, c6 invariants require working to higher
precision with more ap needing to be computed.

Certain values of N are known not to be possible conductors (specifically,
N which are divisible by 29 or by 36 or by p3 with p ≥ 5) and these are
skipped.

3 Summary of Data and Highlights of Results

3.1 Availability of the Data

Full data is available from [9]. The data is mostly in plain ascii files for ease
of use by other programs, rather than in typeset tables as in the book. A mir-
ror is maintained by William Stein at http://modular.math.washington.edu/
cremona/. (Stein’s Modular Forms Database at http://modular.math.
washington.edu/Tables/ also has links to many other tables.) Currently there
is approximately 106MB of data (as a gzipped tar file) which unpacks to 260MB.
This only includes ap for p < 100, as further values can obviously be recomputed
from the curve itself.

Recently, in collaboration with various other people, other more convenient
ways of accessing and processing the data have been developed.

– A web-based interface by Gonzalo Tornaria is at
http://www.math.utexas.edu/users/tornaria/cnt/cremona.html,
covering N < 100000. This provides an attractive interactive interface to the
data; as a bonus, information on quadratic twists is included.

– The free open-source number theory package pari/gp (see [17]) makes the
full elliptic curve database available (though not installed by default). For
example
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(12:05) gp > ellsearch(5077)
%1=[["5077a1", [0, 0, 1, -7, 6], [[-2, 3], [-1, 3], [0, 2]]]]
(12:05) gp > ellinit("5077a1")
%2 = [0, 0, 1, -7, 6, 0, -14, 25, -49, 336, -5400, 5077, ...
(12:05) gp > ellidentify(ellinit([1,2,3,4,5]))
%3 = [["10351a1", [1, -1, 0, 4, 3], [[2, 3]]], [1, -1, 0, -1]]

The output of ellsearch contains all matching curves with their generators.
The output of ellidentify, whose input need not be given in minimal or
standardised form, includes the standard transformation [u, r, s, t] mapping
the input curve to standard minimal form. Full integration of this capability
with standard pari/gp elliptic curve functions is ongoing (thanks to Bill
Allombert).

– William Stein’s free open-source package SAGE (Software for Algebra and
Geometry Experimentation, see [18] and [19]) also has all our data available
and many ways of working with it, including a transparent interface to many
other pieces of elliptic curve software. For example:

sage: E = EllipticCurve("389a")
sage: E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: E.rank()
2
sage: E.gens() # Cremona’s mwrank
[(-1 : 1 : 1), (0 : 0 : 1)]
sage: L = E.Lseries_dokchitser(); L(1+I) # Tim Dokchitser’s program
-0.63840993858803874 + 0.71549523920466740*I
sage: E.Lseries_zeros(4) # Mike Rubinstein’s program
[0.00000000000, 0.00000000000, 2.8760990715, 4.4168960843]

– Magma has the database for conductors up to 70000 (as of version 2.12-16):

> ECDB:=CremonaDatabase();
> NumberOfCurves(ECDB);
462968
> LargestConductor(ECDB);
70000
> E:=EllipticCurve(ECDB,"389A1");
> E;
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
> Rank(E);
2

3.2 The Naming of Curves

Since many authors refer to individual elliptic curves by means of their label in
the database, it is desirable to use a sensible naming convention which is concise,
informative and only changes when absolutely necessary.

The Antwerp tables use a labelling system for the elliptic curves which consists
of the conductor followed by a single upper case letter. The order of these is
not easy to define; the curves are grouped into isogeny classes, but one cannot
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determine this from the label alone. For example, the curves of conductor 37 are
in two classes, {37A} and {37B, 37C, 37D}. Clearly this system cannot be used
once we have more than 26 curves per conductor.

For the tables of [7] we introduced an additional layer into the notation. The
isogeny classes have labels similar to those of individual curves in the Antwerp
system, consisting of a single uppercase letter following the conductor. The
curves in the class are indicated by suffixing (or occasionally subscripting) the
class code with an integer. For example at conductor 37 the classes are {37A1}
and {37B1, 37B2, 37B3}.

The ordering of the isogeny classes is determined by the order in which the
newforms are found with our modular symbols program; this has changed over
the years and so is now, unfortunately, almost impossible to define precisely.
However for all levels between 451 and 130000 the order is lexicographical order
of the Hecke eigenvalues of the newforms, with the eigenvalues of the Atkin-
Lehner involutions Wq (for bad primes q) listed first, and the eigenvalues for Wq

ordered +1,−1 those for Tp as 0, +1,−1, +2,−2, . . . . It is planned to change
this system for N > 130000 to one based on simple lexicographical order of the
complete eigenvalue sequence, with all primes in their natural order; but there
will be no further change in the labels for N ≤ 130000!

The order of the curves within each isogeny class is likewise difficult to define
precisely. The first curve in each class is the curve variously called the “strong
Weil curve” or the Γ0(N)-optimal curve; that is, the curve whose period lattice
(of a minimal model) is exactly that of the normalised newform. After that, the
order is determined by our algorithm for finding isogenies.

In the tables in [7], for N ≤ 200 the Antwerp codes were given alongside the
new ones.

When the tabulation reached N = 1728, where there are for the first time
more than 26 isogeny classes (there are 28), something new was required. With-
out sufficient thought for “future-proofing” we simply followed the sequence
A, B, . . . , Z by AA, BB, . . . , ZZ and then (at level N = 4800 which has 72 ra-
tional newforms) AAA, BBB, . . . and so on. In 2005 this system was becoming
unworkable. At level 100800 there are 418 rational newforms with codes from
100800A to 100800BBBBBBBBBBBBBBBBBBBBBBBBBBB.

It was therefore decided to use a new coding system for the isogeny class
labels, and after widespread consultation the following scheme was decided upon
(thanks to David Kohel in particular). We now use a base 26 number system,
with the letters a, . . . , z for the “digits” 0, . . . , 25 and leading as omitted. So
after z comes ba, and the last class at level 100800 has label 100800qb. For
conductor 37, the classes are now {37a1} and {37b1, 37b2, 37b3}. When we reach
a conductor where the number of classes is more than 262 = 676, all we need do
is follow zz with baa. [In the Stein-Watkins database of elliptic curves there are
conductors with many thousands of isogeny classes.]

Lower case letters were used to avoid confusion between old and new coding
systems; so (happily) the only difference for curves of conductor less than 1728
is the change of case.
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The online tables have been altered to reflect this change of coding, as have
the databases available in SAGE and pari/gp, but Magma V2.12 still uses the
old system.

3.3 Numbers of Curves

In Table 1 we give the numbers of isogeny classes of curves for ranges of con-
ductors of the form 10000k ≤ N < 10000(k + 1), together with the numbers for
each value of the rank. One very remarkable feature is that the number in each
range is close to constant. This feature is maintained in smaller ranges: in each
range of 1000 consecutive conductors there are very close to 4400 isogeny classes
of curves.

Table 1. Numbers of isogeny classes of curves, by rank

range of N # r = 0 r = 1 r = 2 r = 3

0-9999 38042 16450 19622 1969 1
10000-19999 43175 17101 22576 3490 8
20000-29999 44141 17329 22601 4183 28
30000-39999 44324 16980 22789 4517 38
40000-49999 44519 16912 22826 4727 54
50000-59999 44301 16728 22400 5126 47
60000-69999 44361 16568 22558 5147 88
70000-79999 44449 16717 22247 5400 85
80000-89999 44861 17052 22341 5369 99
90000-99999 43651 16370 21756 5442 83

100000-109999 44274 16599 22165 5369 141
110000-119999 44071 16307 22173 5453 138
120000-129999 44655 16288 22621 5648 98

0-129999 568824 217401 288675 61840 908

The chart in Figure 1 shows the overall distribution of ranks.
In Table 2 we give the total number of curves up to isomorphism. This reveals

that the average size of the isogeny classes found is currently about 1.487. This
average seems to be steadily but gradually decreasing (the value for N ≤ 1000
was just over 2.0). Mark Watkins has pointed out that if one considers curves in
a large box with |c4| < X2 and |c6| < X3, then the average size of the isogeny
class tends to 1 as X →∞. Also, Duke has shown in [12] that almost all curves
(ordered in this way) have no exceptional primes, and in particular no rational
isogenies.

The sizes of individual isogeny classes are given in Table 3. Here we clas-
sify isogeny classes by the maximal degree D of an isogeny (with cyclic kernel)
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38.37 %

rank 0

50.76 %

rank 1 0.15 %

rank 3

10.72 %

rank 2

Fig. 1. Overall distribution of ranks

Table 2. Numbers of isogeny and isomorphism classes of curves

range of N # isogeny classes # isomorphism classes

0-9999 38042 64687
10000-19999 43175 67848
20000-29999 44141 66995
30000-39999 44324 66561
40000-49999 44519 66275
50000-59999 44301 65393
60000-69999 44361 65209
70000-79999 44449 64687
80000-89999 44861 64864
90000-99999 43651 63287

100000-109999 44274 63410
110000-119999 44071 63277
120000-129999 44655 63467

0-129999 568824 845960
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Table 3. Distribution of isogeny class sizes and degrees

D Size # classes %

1 1 372191 65.43
2 2 123275 21.67
3 2 31372 5.52
4 4 27767 4.88
5 2 2925 0.51
6 4 3875 0.68
7 2 808 0.14
8 6 2388 0.42
9 3 2709 0.48

10 4 271 0.05
11 2 60 0.01
12 8 286 0.05
13 2 130 0.02

D Size # classes %

14 4 28 < 0.01
15 4 58 0.01
16 8 270 0.05
17 2 8 < 0.01
18 6 162 0.03
19 2 12 < 0.01
21 4 30 0.01
25 3 134 0.02
27 4 33 0.01
37 2 20 < 0.01
43 2 7 < 0.01
67 2 4 < 0.01

163 2 1 < 0.01

between curves in the class. For each possible value of D, there is a uniquely
determined shape of the graph of curves and isogenies of prime degree between
them. (See Table 1 of Antwerp IV for examples of most of these.)

3.4 Mordell-Weil Groups

For almost all the elliptic curves found we have determined the full Mordell-Weil
group. In a very small number of cases we can only (at present) guarantee that
the generators listed in the tables generate a subgroup of finite index. In all cases
where the analytic rank is 2 or 3 we have verified by 2-descent that the rank is
equal to the analytic rank. When the analytic rank is 0 or 1 this is known to be
true by results of Rubin, Kolyvagin and Gross and Zagier.

In most cases of positive rank, searching for points suffices to find the ex-
pected number of independent generators, following which we apply a satura-
tion procedure to obtain the full Mordell-Weil group. The exceptional cases are
those for which we were not able to determine a bound on the index, on ac-
count of the bound on the difference between the logarithmic and canonical
heights being rather large. This situation should improve after full implementa-
tion of the improved height bound algorithm described elsewhere in this volume:
see [11].

For curves where searching for points was insufficient, most had rank 1 and
generators could be found using Heegner points. Since 2004, techniques for com-
puting Heegner points of large height have improved very significantly, thanks
to work of Delaunay and Watkins. The Magma implementation is now ex-
tremely fast and we have used it extensively for all the larger generators in the
tables.
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The current record is curve 108174c2, whose generator P has canonical height
ĥ(P ) = 1193.35. Here P = (a/c2, b/c3) where
a = −13632833703140681033503023679128670529558218420063432397971439281876168936925608099278686103768271165751

437633556213041024136275990157472508801182302454436678900455860307034813576105868447511602833327656978462

242557413116494486538310447476190358439933060717111176029723557330999410077664104893597013481236052075987

42554713521099294186837422237009896297109549762937178684101535289410605736729335307780613198224770325365111

296070756137349249522158278253743039282375024853516001988744749085116423499171358836518920399114139315005,

b = 776845386159678589635077615346492181601035042768002014396646962333772688446303892162606526955979081249211

185106671917236143678971202347339963247386055808925185619325909681380265508543158979491984235466881248491

978341526711100575326744746030922470291782156359389005809065313914236892470866399096616908015986267206085

816145609347461468770147859622405813347969542380216159923828490925517451952455079424426512616714569247069

065790676549942365146817589522964032348349807255751358289869629122053879780510640219504941970766697032823

589255263953926885142009701275092664710953135501372398976396568319085695054751879368605289437600720585853

465424006259176930980665902501637183477157293942231705607887213321716750749368884791336280387610317598902

0330254326477036682714837827401377115084796691,

c = 113966855669333292896328833690552943933212422262287285858336471843279644076647486592460242089049033370292

485250756121056680073078113806049657487759641390843477809887412203584409641844116068236428572188929747

7694986150009319617653662693006650248126059704441347.

In Magma, finding this generator is as easy (and quick) as this:

> E:=EllipticCurve([1,1,0,-330505909530535,-2312687660697986706251]);
> time HeegnerPoint(E);
true (-13632833.../12988444... : 77684538.../14802521... : 1)
Time: 36.340

At the other extreme, the minimal height of a generator is for curve 61050cs1
= [1, 0, 0,−23611588, 39078347792], whose generator (−3718, 276584) has canon-
ical height 0.0148.

In the small number of cases where curves of rank greater than 1 have gen-
erators too large to be found easily by searching, we found the generator us-
ing 2-descent and in some cases 4-descent. The latter, for which algorithms
were developed by Siksek and Womack, is now efficiently implemented
in Magma.

3.5 Torsion Structures

The distribution of the 15 possible structures for the torsion subgroups of the
curves is given in Table 4. Here Cn denotes a cyclic group of order n.

3.6 Degrees of Modular Parametrizations

As already mentioned, for most of the range the modular parametrization de-
grees were computed using a program of Mark Watkins (see [25] for the method).
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Table 4. Torsion structures

Structure # curves %

C1 432622 51.14
C2 344010 40.67
C3 18512 2.19
C4 12832 1.52

C2 × C2 33070 3.91
C5 698 0.08
C6 3155 0.37
C7 50 < 0.01
C8 101 0.01

C2 × C4 793 0.09
C9 16 < 0.01

C10 28 < 0.01
C12 11 < 0.01

C2 × C6 58 < 0.01
C16 4 < 0.01

Odd 451898 53.42
Even 394062 46.58

All 845960 100.00

Here we only mention that the largest degree so far is for 96054k1, for which
deg(ϕ) = 32035843840 = 28 · 5 · 7 · 112 · 13 · 2273.

3.7 (Analytic) Orders of X

For each curve E in the tables, we have computed all the quantities appear-
ing in the Birch–Swinnerton-Dyer conjecture for E, with the exception of the
order of the Tate-Shafarevich group X. It is customary to define the “analytic
order of X” to be the order predicted by the Birch–Swinnerton-Dyer conjec-
ture, which we can determine from this data. In the case of curves of rank 0
this is computed as an exact rational number, which turns out in every case to
be an integral perfect square. For curves of positive rank it is computed as a
floating-point approximation (using approximations for the regulator, the real
period and L(r)(E, 1)); we again always find a value close to an integer which is
a perfect square. In Table 5 below, we do not distinguish between the different
status of these values. The current record is 676 = 262 for curve 95438a1 (which
has rank 0 so this is an exact value).

We should also mention here recent work of Stein and others (see [20]) towards
verifying precisely the Birch–Swinnerton-Dyer conjecture for non-CM curves of
rank at most 1 and conductor up to 1000.



The Elliptic Curve Database for Conductors to 130000 27

Table 5. Analytic orders of X

|X| #

22 37074
32 11512
42 4013
52 1954
62 426
72 468
82 250
92 85

102 52
112 73
122 20
132 19

|X| #

142 9
152 2
162 6
172 4
192 2
202 3
212 2
232 4
262 1

all > 1 55979

3.8 The Manin Constant

Recall that the Manin constant for an elliptic curve E of conductor N is the
rational number c such that

ϕ∗(ωE) = c(2πif(z)dz),

where ωE is a Néron differential on E, f is the normalized newform for Γ0(N)
associated to E, and ϕ : X0(N) → E is the modular parametrization. A long-
standing conjecture is that c = 1 for all elliptic curves over Q which are optimal
quotients of J0(N) (or “strong Weil curves” in the older terminology). A result
already cited [13] is that c ∈ Z, and there are many results restricting the primes
which may divide c.

Recent developments, described in [1], have strengthened these conditions
considerably. Also in [1] there is an account of numerical verifications we have
carried out which establish the conjecture for most of the curves in our tables.
The following result is taken from [1].

Theorem 1. (a) For all N ≤ 60000, every optimal elliptic quotient of J0(N)
has Manin constant equal to 1.

(b) For all N in the range 60000 < N ≤ 130000, every optimal elliptic quotient
of J0(N) has Manin constant equal to 1, except for the following cases where
the Manin constant is either 1 or 2:

67664a, 71888e, 72916a, 75092a, 85328d, 86452a, 96116a,

106292b, 111572a, 115664a, 121168e, 125332a.

In each of the 12 undecided cases listed, the isogeny class consists of two curves
linked by 2-isogenies, and we have not yet verified which of the two curves is the
optimal quotient of J0(N). See [1] for details.
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Abstract. We give an overview of the recent result by Jean-Marc Cou-
veignes, Bas Edixhoven and Robin de Jong that says that for l prime
the mod l Galois representation associated to the discriminant modular
form Δ can be computed in time polynomial in l. As a consequence, Ra-
manujan’s τ (p) for prime numbers p can be computed in time polynomial
in log p.

The mod l Galois representation occurs in the Jacobian of the mod-
ular curve X1(l), whose genus grows quadratically with l. The challenge
therefore is to do the necessary computations in time polynomial in the
dimension of this Jacobian. The field of definition of the l2 torsion points
of which the representation consists is found via a height estimate, ob-
tained from Arakelov theory, combined with numerical approximation.
The height estimate implies that the required precision for the approxi-
mation grows at most polynomially in l.

The results in this note have been obtained in collaboration with Jean-Marc
Couveignes and Robin de Jong. A rather lengthy report on our work, written
in the context of a contract between the University of Leiden and the French
CELAR (Centre Électronique de l’Armement) will be available on arxiv very
soon from today (April 14, 2006), see [4]. A concise research article by Cou-
veignes, Edixhoven and de Jong is in preparation. The length of this note is kept
rather short because of the existence of the lengthy report.

Edixhoven is partially supported by the European Marie Curie Research
Training Network “arithmetic algebraic geometry”, contract MRTN-CT2003-
504917, and, since January 2005, supported by NWO.

1 Statement of the Main Results

We recall that Ramanujan’s τ -function is defined by the following identity of
formal power series with integer coefficients:

x
∏
n≥1

(1 − xn)24 =
∑
n≥1

τ(n)xn. (1)
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Theorem 1. There exists a probabilistic algorithm that on input a prime num-
ber p gives τ(p), in expected running time polynomial in log p.

We note that from the definition of τ(n) above it is not clear how to compute τ(p)
as fast as in the theorem. Behind the theorem is the existence of certain Galois
representations. The function Δ on the complex upper half plane IH give by:

Δ : IH → C, z �→
∑
n≥1

τ(n)e2πinz (2)

is a modular form, the so-called discriminant modular form. It is a new-form
of level 1 and weight 12. Deligne showed in [3] that, as conjectured by Serre,
for each prime number l there is a (necessarily unique) semi-simple continuous
representation:

ρl : Gal(Q/Q) → Aut(Vl), (3)

with Vl a two-dimensional IFl-vector space, such that ρl is unramified at all
primes p �= l, and such that for all p �= l the characteristic polynomial of ρl(Frobp)
is given by:

det(1 − xFrobp, Vl) = 1 − τ(p)x + p11x2. (4)

In particular, we have trace(ρlFrobp) = τ(p) mod l for all primes p �= l. Theo-
rem 1 above is then a rather easy consequence of the next theorem.

Theorem 2. There exists a probabilistic algorithm that computes the mod l Ga-
lois representation associated to Δ in time polynomial in l. More precisely, on
input a prime number l it gives:

1. a Galois extension Kl of Q, given as a Q-basis e and the products eiej (i.e.,
the ai,j,k in Q such that eiej =

∑
k ai,j,kek are given);

2. a list of the elements σ of Gal(Kl/Q), where each σ is given as its matrix
with respect to e;

3. an injective morphism ρl from Gal(Kl/Q) into GL2(IFl),

such that Kl is unramified outside {l}, and for all prime numbers p different
from l we have trace(ρlFrobp) = τ(p) mod l and det(ρlFrobp) = p11mod l. The
expected running time of the algorithm is polynomial in l.

The reader notices that the algorithms in Theorems 1 and 2 are probabilistic. It
is almost certain that these two results can be strengthened from probabilistic
polynomial time to deterministic polynomial time (for this, it suffices that [1] be
generalised from the modular curves X0(l) to for example X1(5l)).

2 Some Context

Before we discuss the proofs of the main results, we provide some context for
them.

First of all, there is a relation with Schoof’s algorithm for counting points on
elliptic curves over finite fields. Let E be an elliptic curve over Q. For p a prime of
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good reduction for E, Schoof’s algorithm computes #E(IFp) in time polynomial
in log p. This is done by writing #E(IFp) as p +1− ap(E), interpreting ap(E) as
the trace of the Frobenius endomorphism of the reduction EIFp of E mod p, and
computing ap(E) modulo small prime numbers l via the action of the Frobenius
endomorphism on the l-torsion points of EIFp

. The Hasse bound |ap(E)| ≤ 2p1/2

implies that only primes l of size O(log p) are needed. Nowadays, since Wiles,
modularity of elliptic curves over Q is known, and the ap(E) are indeed the
coefficients at qp of the new-form fE associated to E. Hence Schoof’s algorithm
shows that the coefficients ap(E) of fE can be computed in time polynomial
in log p. The new-form fE has weight 2 and its level is the conductor of E.
Pila’s generalisation of Schoof’s algorithm in [7] implies that for f a new-form
of weight 2 the coefficients ap(f) can be computed in time polynomial in log p
(we stress that f is fixed here; the dependence of the running time on the degree
over Q of the field generated by the coefficients of f is exponential).

A general method to count rational points on varieties over finite fields is to
apply the Lefschetz fix-point theorem for the Frobenius endomorphism, acting on
the cohomology of some suitable type. Schoof’s algorithm is no exception to this,
as the two-dimensional IFl-vector space EIFp

(IFp)[l] is the dual of H1(EIFp,et, IFl),
the first étale cohomology group with IFl-coefficients of EIFp

. A natural question
that arises is then the following:

are there other interesting cases where cohomology groups can be used
to construct polynomial time algorithms for counting rational points of
varieties over finite fields?

The answer to this question is a clear yes. Since about 6 years ago, methods based
on p-adic cohomology theories have been developed mainly by Satoh, Kedlaya,
Lauder and Wan. An appropriate reference for this is certainly [6]. In 2001,
Kedlaya gave an algorithm for counting the rational points on hyper-elliptic
curves over finite fields IFpm with p > 2, with running time polynomial in m and
the genus g. Higher degree cohomology groups, and hence higher dimensional
varieties can also be treated. Summarising this recent progress, one can say that,
at least from a theoretical point of view, the problem of counting the solutions
of systems of polynomial equations over finite fields of a fixed characteristic p
and in a fixed number of variables has been solved. On the other hand, the
algorithms obtained from p-adic methods have in common that their running
time is at least linear in the characteristic p. If p is not bounded, then almost
nothing is known about the existence of polynomial time algorithms.

The main results of the previous section prove that there are interesting higher
degree cohomology groups that are accessible to computation for point counting,
i.e., where the characteristic polynomials of Frobenius elements can be computed
efficiently. Indeed, by the so-called Eichler-Shimura isomorphism, the modular
forms of a fixed weight k > 1 and of a fixed level n form a piece of the de Rham
cohomology in degree k−1 of a k−1-dimensional variety (the k−2 self-product
of the universal elliptic curve with level n structure). Each new-form gives rise
to a 2-dimensional subspace of this cohomology group. Therefore, the direction
in which our main results go is that of the computation of the mod l étale
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realisations of motives over Q of fixed rank (rank 2 in the present case), but of
arbitrary weight (more precisely, the length of the Hodge filtration is arbitrary).

An important difference between our main results, using étale cohomology
with coefficients in IFl, and the p-adic methods, is that the Galois representa-
tions on IFl-vector spaces that we obtain are global in the sense that they are
representations of the absolute Galois group of the global field Q. The field exten-
sions such as the Kl = Q[x]/(fl) arising from Δ discussed in the previous section
have the advantage that one can choose to do the required computations over the
complex numbers, approximating fl, or p-adically at some suitable prime p, or
in IFp for sufficiently many small p. Also, as we have already said, being able to
compute such field extensions Kl, that give mod l information on the Frobenius
elements at all primes p �= l, is very interesting. On the other hand, the p-adic
methods force one to compute with p-adic numbers, or, actually, modulo some
sufficiently high power of p, and it gives information only on the Frobenius at p.
The main drawback of the étale cohomology with IFl-coefficients seems to be that
the degree of the field extensions as Kl to be dealt with grows exponentially in
the dimension of the cohomology groups; for that reason, we do not know how
to use étale cohomology to compute #X(IFq) for X a curve of arbitrary genus
in a time polynomial in log q and the genus of X .

Another piece of context for our main results are the well known congruences
(see [8]) for Ramanujan’s τ -function, of which the most famous one is:

τ(p) ≡ 1 + p11 mod 691. (5)

The primes l modulo which one has these congruences are precisely those for
which Vl is exceptional, in the sense that the image of Gal(Q/Q) in Aut(Vl)
does not contain SL(Vl); these are 2, 3, 5, 7, 23 and 691. In what follows we will
assume that l is not exceptional.

3 The Strategy for the Computation

Deligne’s construction of Vl takes place in the degree 11 étale cohomology group
with coefficients in IFl of the 11-dimensional variety obtained by taking the 10-
fold self-product of the universal elliptic curve. It seems to be unknown how to
treat such cohomology groups directly in terms of their definition.

Via the fibration of the 11-dimensional variety over the j-line one can see the
dual of Vl in the first degree cohomology group of a locally constant sheaf of
11-dimensional IFl-vector spaces on the j-line. This cohomology group is made
explicit more easily: it is the set of isomorphism classes of torsors under the sheaf
in question. However, it seems to be unknown how to deal with this computa-
tionally (it is possible that using the algorithm of Theorem 2 one can deal better
with such a group).

A standard technique in étale cohomology is to make locally constant sheaves
constant by passing to a cover. In our case, this boils down to the fact that
Vl occurs in the l-torsion of the Jacobian J1(l) of the modular curve X1(l).
Using this, one is back in the familiar situation of torsion points on Abelian
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varieties. The main problem, however, is that now the dimension of J1(l) is not
bounded, so that one cannot apply the results of Jonathan Pila in [7]. In fact, the
dimension of J1(l) grows quadratically in l. This means that our 2-dimensional
IFl-vector space Vl is embedded in the very large space consisting of the l-torsion
of J1(l). It is now easy to write down equations for Vl, but standard methods
from computer algebra for solving such equations usually take an amount of time
that is exponential in the dimension, hence in l2.

In February of 1999, Edixhoven discussed this problem with Couveignes when
Couveignes visited Rennes as a speaker in the algebraic geometry seminar. He
suggested another method. He said that as the goal was to compute the number
field Kl, one should try to construct a generator of Kl, and approximate it,
numerically, with a precision so high that the exact minimal polynomial Pl of
the generator is determined by the approximation. The precision that is required
is determined by the height of the generator. A way to construct a generator
would be to take a function on J1(l), defined over Q, and evaluate it at the
points of Vl. However, it was not clear at that time what function one could take
that would give values of small enough height, and that could be approximated
easily enough.

Finally, in October 2000 Edixhoven had an idea that allows to carry out
Couveignes approach. The idea was simply to consider a suitable function on
the curve X1(l) instead of on its Jacobian J1(l), and use the description of
points on J1(l) in terms of divisors on X1(l); the function can then be used to
push divisors to the projective line, and get equations for their image. There are
then two problems to be dealt with. The first problem is to give a construction
of a generator of the field to be computed and show that the height of that
generator is polynomial in l when l varies. It was decided that Edixhoven would
study this problem, using Arakelov theory. The second problem is to show that
the necessary approximations can be done in time polynomial in l. This seems
reasonable, using the complex uniformisation of X1(l) and of J1(l), however, to
really prove that it works is a very different matter. Couveignes would try to
solve the approximation problem.

Let us now discuss in some more detail how generators for Kl are produced.In
order to describe such generators it is good to use the modern version of Galois
theory that says that the functor A �→ HomQ(A, Q) is an anti-equivalence from
the category of finite separable Q-algebras to that of finite discrete (continuous)
Gal(Q/Q)-sets.An inverse is givenby themap that sends X toHomGal(Q/Q)(X, Q),
the Q-algebra of functions f from X to Q such that f(gx) = g(f(x)) for all g in
Gal(Q/Q) and all x in X . Under this correspondence, fields correspond to transi-
tive Gal(Q/Q)-sets, and the field Kl corresponds to an orbit in the Gal(Q/Q)-set
Isom(IF2

l , Vl) of IFl-bases of Vl.
Instead of looking at Kl, we look at Vl −{0} and let K ′

l denote the Q-algebra
that corresponds to it; it is a field extension of degree l2 − 1 of Q, and Kl is its
splitting field. If the minimal polynomial of a generator of K ′

l is known, then we
get the field Kl using factoring algorithms, or by more direct methods.
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For technical reasons, we consider Vl embedded into J1(5l). We show that we
can take an effective cuspidal divisor D of degree gl (the genus of X1(5l)) on
X1(5l), defined over Q(ζl), such that for every x �= 0 in Vl there is a unique
effective divisor D′

x = Qx,1 + · · · + Qx,gl
on X1(5l)Q such that x is the divisor

class of D′
x −D. We choose a function f : X1(5l)Q → IP1

Q such that all f∗D′
x are

distinct (we can find such a function of small degree and with small coefficients
by first choosing such an f over a suitable finite field and then lifting it). The f
that we choose has its poles at the cusps. As the D′

x are permuted transitively
under Gal(Q/Q(ζl)) they all have the same cuspidal part, and we let D′′

x =∑
1≤i≤dl

Qx,i denote their non-cuspidal parts.

With these two choices, D and f , and a choice of d ∈ {1, . . . , dl}, we get an
element kD,f,d of the Q(ζl)-algebra K ′

l,Q(ζl)
corresponding to the Gal(Q/Q(ζl))-

set Vl − {0} as follows. We put:

kD,f,d : Vl − {0} → Q, x �→ Σd(f(Qx,1), . . . , f(Qx,dl
)), (6)

where Σd is the elementary symmetric polynomial of degree d in dl variables.
By construction, these kD,f,d generate the field K ′

l,Q(ζl)
as Q(ζl)-algebra. Then

a suitable ZZ[ζl]-linear combination:

k :=
∑

1≤d≤dl

adkD,f,d (7)

will be a generator of K ′
l,Q(ζl)

over Q(ζl). Finding such ad can be done using
reduction modulo the same finite place as the one that was used to find f . We
let:

Pl :=
∏

x∈Vl−{0}
(T − k(x)) (8)

in Q(ζl)[T ] be the minimal polynomial over Q(ζl) of k.

4 The Height Bound

The work on this part was done in collaboration with Robin de Jong. The main
result here is the following.

Theorem 3. There is an integer c such that for all l we can take D, f and
the ad in such a way that the (logarithmic) heights of the coefficients of Pl in
Q(ζl)[T ] as above are bounded above by lc.

In order to prove this result, heights are related to Arakelov intersection numbers
on the arithmetic surface X with generic fibre X1(5l), over the spectrum B of
the ring of integers of a sufficiently large number field K. The next step, the
most interesting one, is an application of Faltings’s arithmetic Riemann-Roch
theorem on X , leading to the following inequality (we state it here just in order
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to show what such things look like, there is no place to explain what all the
terms are):

(D′
x, P ) + log #R1p∗OX (D′

x) ≤ −1
2
(D, D − ωX/B) + 2g2

l

∑
s∈B

δs log #k(s)

+
∑

σ

log ‖ϑ‖σ,sup +
gl

2
[K : Q] log(2π)

+
1
2

deg det p∗ωX/B + (D, P ) ,

(9)

where P is in X (B), where s runs through the closed points of B, and where the
sup-norm ‖ϑ‖σ,sup is taken over Picgl−1(Xσ).

Once this inequality is known, it is clear which quantities need to be bounded
polynomially in l in order to prove Theorem 3: the Faltings height of X1(5l),
the log of the sup-norm of a certain theta function, and, finally, the sup of the
so-called Arakelov-Green functions ga,μ associated to points a in X1(5l)(C).

Sinnou David, who visited Leiden for a workshop during the Summer of 2003,
provided a suitable upper bound for the sup-norm of the theta function. His
arguments, based on results by him and Philippon are not the ones that are
now in [4], as Edixhoven and de Jong found more direct arguments for it, using
ingredients that are also used for bounding the other two quantities. The result is:

log ‖ϑ‖sup = O(l6). (10)

Getting a bound for the height of X1(5l) was not so much of a problem, as
it would suffice to generalise the method used in a previous article by Coleman
and Edixhoven for estimating the height of X0(l). The result is:

habs(X1(5l)) = O(l2 log(l)). (11)

The last main hurdle to overcome was to get suitable upper bounds for the
Arakelov-Green functions. Suitable upper bounds for these were supplied by
Franz Merkl (see Section 18.2 in [4]), and by Jorgenson and Kramer in [5].
Applying Merkl’s general results to the case of X1(5l) we have:

sup
a�=b

ga,μ(b) = O(l6). (12)

A nice byproduct of our estimates from Arakelov theory is an upper bound for
the number of prime numbers where the geometry of our methods (uniqueness
of divisors on X1(5l), poles of certain functions on X1(5l)) does not specialise
well. Here is the technical statement.

Theorem 4. There is an integer c with the following property. Let l > 5 be a
prime number, and let D and the D′

x be as before. We recall that X1(5l) has
good reduction outside 5l. A prime number p � |5l is said to be l-good if for all x
in Vl − {0} the following two conditions are satisfied:
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1. at all places v of Q over p the specialisation (D′
x)IFp

at v is the unique
effective divisor on the reduction X1(5l)IFp

such that the difference with DIFp

represents the specialisation of x;
2. the specialisations of the non-cuspidal part D′′

x of D′
x at all v above p are

disjoint from the cusps.

Then we have: ∑
p not l-good

log p = O(l14). (13)

As a consequence, it is then possible to do all necessary computations over finite
fields. Couveignes results on the feasibility of such computations are described
in the next section.

5 The Approximation Methods

Theorem 3 says that the heights of the coefficients of the polynomials Pl that
we want to compute grow at most polynomially with l. Hence, in order to find
the coefficients of Pl, it is enough to have complex or p-adic approximations
of them with a precision that is polynomial in l (with precision we mean the
number of significant digits). Likewise, it is enough to know the specialisations
of those coefficients to sufficiently many finite fields; the required number of such
specialisations is at most polynomial in l.

Couveignes has developed methods for dealing with such approximation prob-
lems in time polynomial in l and the required precision for all of the three ap-
proaches just mentioned: complex, p-adic or finite fields. Moreover, it is he who
suggested the last two alternatives to the complex approach in August of 2003.

Let us first discuss the complex approach. Complex points of a complex mod-
ular curve X can be represented by elements of IH∪ IP1(Q). Each point lies in a
disk around some cusp, and in such a disk we have an appropriate notion of pre-
cision. A basis ω = (ω1, . . . , ωg) of the space of holomorphic differentials is given
by the theory of new-forms. With such a basis, one identifies the Jacobian J
of X with Cg modulo the period lattice Λ, hence there too one has an appropri-
ate notion of precision. Given g points P1, . . . , Pg on X the map φ that sends a
g-tuple Q = (Q1, . . . , Qg) of points of X to the divisor class

∑
i Qi −
∑

i Pi in J
is given by integration:

φ : Xg �� �� J Cg/Λ

Q � �� [Q1 + · · ·+ Qg − P1 − · · · − Pg]
g∑

i=1

Qi∫
Pi

(ω1, . . . , ωg).

(14)

In the case of the modular curves X0(l) with l prime he has proved the following
results (Theorems 1 and 2 of [1]).
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Theorem 5 (Couveignes). The operations of addition and subtraction in the
complex Jacobian J0(l)(C) of X0(l) can be done in deterministic polynomial
time in l and the required precision. More precisely, given elements P , Q and
R of X0(l)g, elements S and D of X0(l)g can be computed in time polynomial
in l and the required precision, such that φ(S) = φ(Q) + φ(R) and φ(D) =
φ(Q) − φ(R) hold within the required precision. Moreover, for x in Cg/Λ, one
can compute Q in X0(l)g in time polynomial in l and the required precision, such
that φ(Q) = x holds within the required precision.

Of course, for our purposes, we need to show that we can approximate the
divisors D′

x = Qx,1 + · · ·+ Qx,gl
with the required precision in polynomial time.

For that, one must control the difference between the notions of precision in
Xg and J , i.e., one must control the norm of the inverse of the tangent map of
φ at Q. This question is also addressed in [1]. Using the height bounds on D′

x

from the previous section, one finds that the difference between the notions of
precision in X1(5l)gl and J1(5l) at Qx and φ(Qx) is at most polynomial in l.

The results of [1] will almost certainly be generalised to all curves X1(n),
so that the deterministic variant of Theorem 2 is then a consequence of that
generalisation and Theorem 3.

For the moment, we do not have such a generalisation, but Couveignes has the
following result (Theorem 2 of [2]) on the finite field approach for the modular
curves X1(5l).

Theorem 6 (Couveignes). There is a probabilistic algorithm that on input l
computes for p a prime that is l-good as in Theorem 4, the reductions (D′

x)IF of
the divisors D′

x on X1(5l)IF, where IF is a suitable extension of any residue field
of ZZ[ζl] at p, with an expected running time that is polynomial in l and p.

This theorem, together with Theorems 4 and 3 easily imply Theorem 2.
For proving Theorem 6, Couveignes starts by showing that the standard op-

erations on divisors on X1(5l)IF, such as computing H0(X1(5l)IF, O(D1 − D2)),
as well as the standard operations on J1(5l)IF(IF) such as addition and apply-
ing Hecke operators Tn, can be computed in probabilistic polynomial time in l,
log #IF, deg Di, and n.

The reason for which the expected running time of Couveignes algorithm
is not polynomial in l and log p is simply that he needs to compute the nu-
merator of the zeta function of X1(5l)IF. Modular symbols methods are used
to compute the characteristic polynomial of the Hecke operator Tp on the Jaco-
bian J1(5l); the Eichler-Shimura relation then gives the characteristic polynomial
of the Frobenius endomorphism of J1(5l)IFp

. It is only the modular symbols part
of Couveignes algorithm of which the running time is not polynomial in log p.

6 Examples

Johan Bosman, who started working as a PhD-student in June 2004, has done
computations using modular symbols packages and the complex uniformisation
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of X1(l) and J1(l), without using special properties of these Jacobians. For the
primes l = 13, 17 and 19, he has been able to find good approximations of the
polynomials of degree l2 − 1 and l + 1 describing Vl −{0} and IP(Vl). The genus
of X1(l) being (l − 5)(l − 7)/24, the curves with which he has been computing
have genus 2, 5 and 7, respectively.

These approximations lead to polynomials with rational coefficients, of which
we have no proof that they are correct, but which pass the following tests: the ring
of integers of the corresponding number field ramifies only at l, the reductions
modulo small primes p correspond to the orbit structures of ρl(Frobp) on Vl−{0}
and IP(Vl).

In the three cases, the required precision as suggested by Bosman’s compu-
tations is about 80 digits for l = 13, 400 digits for l = 17 and 830 digits for
l = 19. For l = 19 the computations were distributed over several machines and
still took a couple of months. Hence it seems that it is hard to get much further.
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Abstract. We establish a link between some heuristic asymptotic for-
mulas (due to Cohen and Lenstra) concerning the moments of the p–part
of the class groups of quadratic fields and formulas giving the frequency
of the values of the p–rank of these class groups.

Furthermore we report on new results for 4–ranks of class groups of
quadratic number fields.

1 Introduction and Notations

In [1], Cohen and Lenstra have built a probabilistic model to guess the frequency
of some algebraic properties of the narrow class group CD of the ring of integers
of the quadratic fields Q(

√
D), where the letter D is reserved to fundamental dis-

criminants, throughout this paper. Their idea was, roughly speaking, to attach
to each abelian group a weight which is the inverse of the number of its auto-
morphisms. These heuristics, the proof of which must lie very deep, are strongly
supported by numerical evidence and explain why, for instance, the odd part
of CD is a cyclic group with a higher frequency than one could think at first
approach. From these heuristics, they deduce several facts and the aim of our
work is to show that some of these deductions imply another ones.

To present the results, we shall use the following notations. The letter p is
reserved to prime numbers. For A a finitely generated abelian group, the p–rank
of A is defined as rkp(A) = dimFp(A/Ap). For an integer k ≥ 0 and t > 1, we
introduce the functions ηk and η∞ defined by

ηk(t) =
∏

1≤j≤k

(
1 − t−j

)
and

η∞(t) =
∏
j≥1

(
1 − t−j

)
.

If f(D) is a real valued function defined on the set of positive or negative
discriminants, we say that f(D) has the average value c0(∈ R), if, as X → +∞,
we have
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0<±D<X

f(D) = (c0 + o(1))
∑

0<±D<X

1. (1)

In the particular case, where f(D) is the characteristic function of the set of
discriminants satisfying some indicated property, we say that c0 is the density
of this set.

One of the consequences of the Cohen–Lenstra heuristics is to describe the
distribution of the values of rkp(CD) as D ranges over the set of positive or
negative discriminants, and p a fixed odd prime. These heuristics do not concern
the special prime p = 2. To circumvent this defect, Gerth [4], [5] had the idea
to generalize these heuristics to the group C2

D. He was led to this generalization
by meeting with the densities quoted in Conjectures 2 and 4 (for p = 2) below
again, when studying the sets of D with a fixed number of prime factors and a
fixed value of the 2–rank for C2

D (see [4, (1.5) & (1.6)]). From [1], generalized
by Gerth, we extract the four conjectures, anyone of which is a consequence of
these heuristics.

Conjecture 1. For every positive integer α, for every prime p, the average value
of ∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to 1, when D ranges over the set of negative fundamental discriminants.

Conjecture 2. For every non-negative integer r, for every prime p, the density
of negative fundamental discriminants D such that rkp(C2

D) = r is equal to

p−r2

η∞(p) ηr(p)−2.

Conjecture 3. For every positive integer α, for every prime p, the average value
of ∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to p−α, when D ranges over the set of positive fundamental discrimi-
nants.

Conjecture 4. For every non-negative integer r, for every prime p, the density
of positive fundamental discriminant D such that rkp(C2

D) = r is equal to

p−r(r+1)η∞(p)ηr(p)−1ηr+1(p)−1.

For p ≥ 3, Conjectures 1, 2, 3 and 4 are the conjectures (C.6), (C.5), (C.10) and
(C.9) of [1, p. 56 & 57], respectively. Note that for p ≥ 3, we have the equality
rkp(C2

D) = rkp(CD), and, by definition we have rk2(C2
D) = rk4(CD), the 4–rank

of CD.
Very little is known about these conjectures : Conjectures 1 and 3 are trivially

true for any p and α = 0. These conjectures are also proved for p = 3 and α = 1,
this is the famous work of Davenport and Heilbronn [2]. Both authors of this
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paper recently proved that Conjectures 1 and 3 are true for p = 2 and any α ≥ 0
(see [3, Theorem 1]) and that they remain true if the narrow class group CD is
replaced by the ordinary class group ClD.

The aim of this paper, roughly speaking, is to prove that if for some p, Con-
jecture 1 is true for every α, then Conjecture 3 is also true for this p and every
r. The same implication holds between Conjecture 2 and Conjecture 4. More
precisely, we shall prove

Theorem 1. Let p a prime and assume that for every integer α ≥ 0 the average
value of ∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to 1, when D ranges over the set of negative fundamental discriminants.
Then for every integer r ≥ 0 the density of the set of negative fundamental
discriminants D such that rkp(C2

D) = r is equal to

p−r2

η∞(p)ηr(p)−2.

and

Theorem 2. Let p a prime and assume that for every integer α ≥ 0 the average
value of ∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to p−α, when D ranges over the set of positive fundamental discrimi-
nants. Then, for every integer r ≥ 0, the density of the set of positive funda-
mental discriminants D such that rkp(C2

D) = r is equal to

p−r(r+1)η∞(p)ηr(p)−1ηr+1(p)−1.

Since Conjectures 1 and 3 are proved in the particular case p = 2 and for every
α, see Theorem 3 and [3, Theorem 1], we now state the following corollary.

Corollary 1. For ever integer r ≥ 0 the density of the set of negative funda-
mental discriminants such that rk4(CD) = r is equal to

2−r2

η∞(2)ηr(2)−2.

and for positive discriminants, this density is equal to

2−r(r+1)η∞(2)ηr(2)−1ηr+1(2)−1.

We remark that this corollary implies that the probability for a discriminant D
to satisfy rk4(CD) = 0 is twice larger when it is positive than when it is negative.
It would be interesting to have a direct proof of that phenomenon.

Reciprocally, it seems difficult to deduce Conjecture 1 from Conjecture 2
or Conjecture 3 from Conjecture 4 in the form they are written above. Such
implications may require a more precise statement for Conjectures 2 and 4
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(for instance, with a control of the term o(1) in the formulas (1), corresponding
to the densities in question).

In Section 3 we report on results obtained in [3]. We show that Conjectures 1
and 3 are true for all α ≥ 0 in the case p = 2.

2 A Transition to Moments

In [3] an equivalent form of Conjectures 1 and 3 is proved in terms of the func-
tion N (α, p) which denotes the total number of vector subspaces of Fα

p . This
equivalent form was an important step in our proof of Conjectures 1 and 3, for
p = 2 and appears to be more natural in terms of analytic methods : to study
the values of an arithmetic function f . These methods are more adapted to deal
with the moments fα of this function f rather than with expressions of the
form
∏

0≤i<α

(
f −pi
)

even if these expressions have been introduced to seize the
algebraic properties of an abelian group (see [1, p.50], for the particular case
f(D) = prkp(CD)).
We have

Proposition 1. [3, Prop.1] Let p be a fixed prime and α0 be a fixed positive
integer. Then the average value of∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to 1, for every 0 ≤ α ≤ α0, when D ranges over the set of negative
fundamental discriminants, if and only if, under the same conditions, the average
value of

pα rkp(C2

D)

is equal to N (α, p), for every 0 ≤ α ≤ α0 .
The same holds for positive discriminants if the above average values 1 and

N (α, p) are replaced by p−α and p−α
(
N (α + 1, p)−N (α, p)

)
, respectively.

We now give expressions of the function N (α, p) in terms of the function η. Since
the number of vector subspaces of dimension � of Fα

p is equal to

�−1∏
i=0

pα − pi

p� − pi
=

�∏
i=1

pα−i+1 − 1
pi − 1

= p�(α−�) ηα(p)
η�(p) · ηα−�(p)

,

and since, uniformly in k ≥ 0, we have

1 �p ηk(p) ≤ 1,

we get

Lemma 1. For every integer α ≥ 0 and every p ≥ 2, we have the equalities

N (α, p) = ηα(p)
α∑

�=0

p�(α−�)

η�(p) · ηα−�(p)
,
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In particular, the function N (α, p) satisfies

N (α, p) = Op

(
p

α2

4

)
.

3 4–Ranks of Class Groups

The aim of this section is to report on results on 4–ranks of the class group
obtained in [3]. We do not give proofs in this section and refer the reader to [3].

We remark that the 4–rank of an abelian group A is the same as the 2–rank of
A2. Therefore we like to study rk2(C2

D) and rk2(Cl2D), respectively. We remark
that the ordinary class group ClD and the narrow class group CD are the same
when D < 0. For positive discriminants they are the same if and only if the
fundamental unit of Q(

√
D) has norm -1. In order to simplify we will consider

4–ranks of the narrow class group CD.
In order to present our results we need the following definition.

Definition 1. Let (a|b) : Q∗ × Q∗ → {0, 1}, where (a|b) = 1 if and only if the
equation x2 − ay2 − bz2 = 0 has a solution (x, y, z) ∈ Q3 \ {(0, 0, 0)}.

The 4–rank of the narrow class group can be described by the following theorem
which is already implicitly contained in [8, p. 56].

Theorem 3

2rk4(CD) =
1
2
#{a | a > 0 squarefree, a | D, (a| − b) = 1},

where b ∈ Z is squarefree such that aD = bc2 for a suitable c ∈ Z. Let us
further simplify and concentrate on the case of negative discriminants which are
congruent to 1 modulo 4. Then |D| is squarefree as well as the numbers a, b
occurring in Theorem 3. Furthermore b < 0 in this case and therefore −b > 0. It
is an easy exercise to see that for coprime integers a and b the symbol (a|b) = 1
if and only if a is a square mod b and b is a square mod a. Therefore we get.

Lemma 2. Let D < 0 be a fundamental discriminant with D ≡ 1 mod 4. Then
we have the equality

2rk4(D) =
1
2

#
{
(a, b) | a, b ≥ 1,−D = ab, a is a square mod b

and b is a square mod a
}

.

Now we use the Jacobi symbol
(

a
b

)
(for odd b ≥ 1) to detect if a is a square

mod b with the formula

1
2ω(b)

∏
p|b

(
1 +
(

a

p

))
=

1
2ω(b)

∑
c|b

(a
c

)
.
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By Lemma 2, we get

2rk4(CD) =
1

2 · 2ω(−D)

∑
−D=ab

⎛⎝∑
c|b

(a
c

)⎞⎠⎛⎝∑
d|a

(
b

d

)⎞⎠
which gives us with the change of variables a = D2D3, b = D0D1, c = D0, and
d = D3 the following:

2rk4(D) =
1

2 · 2ω(−D)

∑
−D=D0D1D2D3

(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)
,

always under the assumption that D < 0 is congruent to 1 modulo 4.
In [3] we show how to do the summation over all D0, D1, D2, D3 such that

−D0D1D2D3 is a fundamental discriminant. We show that this sum has linear
asymptotics, where the main term can be obtained by choosing (D0 = 1 or
D2 = 1) and (D1 = 1 or D3 = 1). This choice implies that all the four symbols
are 1 and the summation can be easily done. In all the other cases we get
an oscillating sum. By using large sieve techniques and Siegel-Walfisz theorem,
respectively, we are able to show that those oscillating sums are bounded by
Oε(X log(X)−

1

2
+ε) for all ε > 0.

For the higher moments, i.e. the average of 2rk4(CD) we use many tricks
described in [7], where geometry over F2 plays a crucial role.

Let us state the main results of [3]. For this we introduce the sums:

S−(X, k, a, b) :=
∑

0<−D<X
D≡a mod b

2k rk4(CD)

and
S+(X, k, a, b) :=

∑
0<D<X

D≡a mod b

2k rk4(CD).

Theorem 4. For every positive integer k and every positive ε the following
equalities are true, where R(X, ε, k) := X(log X)−2−k+ε:

S−(X, k, 1, 4) = N (k, 2)
( ∑

0<−D<X
D≡1 mod 4

1
)

+ Oε,k(R(X, ε, k))

S+(X, k, 1, 4) =
1
2k

(
N (k + 1, 2)−N (k, 2)

)( ∑
0<D<X

D≡1 mod 4

1
)

+ Oε,k(R(X, ε, k))

S−(X, k, 0, 8) = N (k, 2)
( ∑

0<−D<X
D≡0 mod 8

1
)

+ Oε,k(R(X, ε, k))

S+(X, k, 0, 8) =
1
2k

(
N (k + 1, 2)−N (k, 2)

)( ∑
0<D<X

D≡0 mod 8

1
)

+ Oε,k(R(X, ε, k))
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S−(X, k, 4, 8) = N (k, 2)
( ∑

0<−D<X
D≡4 mod 8

1
)

+ Oε,k(R(X, ε, k))

S+(X, k, 4, 8) =
1
2k

(
N (k + 1, 2)−N (k, 2)

)( ∑
0<D<X

D≡4 mod 8

1
)

+ Oε,k(R(X, ε, k)).

Now can we apply Proposition 1 and get

Theorem 5. Conjectures 1 and 3 are true for p = 2 and all α ≥ 0.

The results remain true when we replace the narrow class group by the ordinary
class group in the definition of S+(X, k, a, b).

4 Proof of Theorem 1

We consider first the case of negative discriminants and prove Theorem 1. We
postpone the proof of Theorem 2 to §5, where we shall omit details. We follow
some ideas contained in [7, p. 359–362]. Since p ≥ 2 is considered as fixed,
we shall forget the dependence on this number in several quantities. Under the
hypothesis of Theorem 1 and by Proposition 1, we deduce that for each k ≥ 0,
the average value of pk rkp(C2

D) is equal to N (k, p).
For X ≥ 1, let

N(x) := �
{

D ; 0 < −D < X} and N(X, r) := �
{

D ∈ N(X) ; rkp(C2
D) = r
}

.

For every X ≥ 1 and every k ≥ 0, the definition of N(X, r) and the assertion of
Theorem 1 implies

∞∑
r=0

N(X, r)
N(X)

pk r =
1

N(X)

∑
0<−D<X

pk rkp(C2

D) = N (k, p) + ok(1). (2)

We apply (2) with k replaced by 2k + 1 and appeal to Lemma 1 to write

N(X, r)
N(X)

p(2k+1)r ≤
∞∑

�=0

N(X, �)
N(X)

p(2k+1)� = Ok(1),

from which we deduce that N(X, r)/N(X) goes quickly to 0 as r → +∞ under
the form

N(X, r)
N(X)

�k p−(2k+1)r, (3)

uniformly in X ≥ 1 and r ≥ 0.
For each r, the sequence n �→ N(n, r)/N(n) is a real sequence in the compact
set [0, 1]. By a diagonal process, there exists real numbers dr ∈ [0, 1] (r ≥ 0) and
an infinite subset M of positive integers such that

N(m, r)/N(m) → dr (m ∈M, m →∞),
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for each r ≥ 0. Write (2) in the particular form

∞∑
r=0

N(m, r)
N(m)

pk r = N (k, p) + ok(1), (4)

for m ∈M, note that (3) implies

∞∑
r=0

N(m, r)
N(m)

pk r = Ok(1)

uniformly in m ∈ M, then apply the Lebesgue Dominated Convergence Theorem
(see for instance [9, p. 27]) to (4) to finally write, by definition of the dr, the
equality

∞∑
r=0

drpk r = N (k, p),

which is true for every integer k.
Let (S−) be the infinite linear system

(S−)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x0 +x1 +x2 +x3 + · · · + · · · =N (0, p)

x0 +x1p +x2p2 +x3p3 + · · · + · · · =N (1, p)

x0 +x1p2 +x2p4 +x3p6 + · · · + · · · =N (2, p)

x0 +x1p3 +x2p6 +x3p9 + · · · + · · · =N (3, p)
· · ·

in positive unknowns (xi)i≥0. Note that each (dr)r≥0 obtained by the above
diagonal procedure is a solution to (S−). Hence this system has at least one
solution. We shall first give an explicit solution to (S−): the numbers appearing
in Theorem 1 (see Proposition 2), and prove that (S−) has at most one system
of solutions (see Proposition 3). This will imply that for each r ≥ 0, the sequence
N(X, r)/N(X) has only one limit point as X tends to infinty and that this limit
point is p−r2

η∞(p)η−2
r (p).

4.1 A Special Solution of (S−)

We shall prove

Proposition 2. The sequence of numbers (xr)r≥0 with xr = p−r2

η∞(p)η−2
r (p)

is a solution to (S−).

The proof of this is based on formulas around the theory of partitions. Let p(n)
be the partition function, then classically for any x with |x| < 1 we have the
equality ∑

n≥0

p(n)xn =
1

(1 − x)(1 − x2)(1 − x3) · · · = η∞(1/x)−1.
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This formula has been extended into

Lemma 3. [6, Thm 351] For any |x| < 1, we have

1
(1 − x)(1 − x2)(1 − x3) · · ·

= 1 +
x

(1 − x)2
+

x4

(1 − x)2(1 − x2)2
+

x9

(1 − x)2(1 − x2)2(1 − x3)2
+ · · ·

In other words, we have the formula η∞(1/x)−1 =
∑∞

k=0
xk2

η2

k(1/x) . By choosing
x = 1/p, we proved that the sequence (xr) satisfies the first equation of (S−).
We must continue this checking to the other equations of (S−).

We shall first generalize Lemma 3 in

Lemma 4. Let t ≥ 0 be an integer. Then for any |x| < 1, we have

1
(1 − x)(1 − x2)(1 − x3) · · ·

=
∞∑

r=t

xr(r−t)

(1 − x)2 · · · (1 − xr−t)2(1 − xr−t+1) · · · (1 − xr)
.

In other words, we have the formula

η∞(1/x)−1 =
∞∑

r=t

xr(r−t)

ηr−t(1/x)ηr(1/x)
.

Proof. This formula for instance is in [1, Cor. 6.7,p.51], where the authors say
that a proof can be given directly or as a consequence of combination of theorems
of their work. For sake of completeness, we give a proof which follows the proof
of [6, Thm 351]. The integer t ≥ 0 is now fixed, and we define the Durfee
rectangle with defect −t of a partition of an integer n as the largest rectangle of
size (r, r − t) that can be inserted in the northwest corner of this partition. For
instance, choose t = 1 and n = 29, and consider

• • • • • • • •
• • • • • • •
• • • •
• • • •
• • •
• •
•

The above drawing explains for the partition

29 = 8 + 7 + 4 + 4 + 3 + 2 + 1,
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what is the Durfee rectangle of defect −1. It has size (4, 3). Note that there are
� = 10 points out of this Durfee rectangle, southwards, and this � appears as
decomposed in partition with summands ≤ r = 4 (10 = 4+3+2+1). Similarly,
eastwards, it remains m = 7 points, written in partition with summands ≤
r − 1 = 3 (7 = 2 + 2 + 2 + 1).

More generally, given a partition of n, with a Durfee rectangle of defect −t,
with dimension (r, r − t), we write n = r(r − t) + � + m and the number of
partitions of � in parts ≤ r is the coefficient of x� in

1
(1 − x)(1 − x2) · · · (1 − xr)

.

Similarly, the number of partitions of m in parts ≤ r − t is the coefficient of xm

in
1

(1 − x)(1 − x2) · · · (1 − xr−t)
.

Hence the number of partitions of n, with Durfee rectangle of size (r, r − t) is
the coefficient of xn−r(r−t) in the fraction

1
(1 − x)2(1 − x2)2 · · · (1 − xr−t)2(1 − xr−t+1) · · · (1 − xr)

.

Summing over all the possible of r ≥ t, we obtain the expected expression of the
function

∑
p(n)xn. ��

We shall also prove

Lemma 5. Let r ≥ k ≥ 0 be integers. Then for every |x| < 1 we have the
equality

xr(r−k)

(1 − x)2 · · · (1 − xr)2
=

k∑
�=0

n(k, �, 1/x)xr(r−�)

(1 − x)2 · · · (1 − xr−�)2(1 − xr−(�−1)) · · · (1 − xr)
,

where

n(k, �, 1/x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�∏

i=1

(1/x)k−i+1 − 1
(1/x)i − 1

, for 0 ≤ � ≤ k

0, for � > k.

Proof. Remark first that n(k, �, p) is equal to the number of vector subspaces of
Fk

p with dimension �, and that this function satisfies the recursive formula (see
[3, Lemma 1]):

n(k + 1, �, 1/x) = n(k, � − 1, 1/x) +
1
x�

n(k, �, 1/x). (5)

By multiplication, we see that Lemma 5 is proved if and only if we proved

xr(r−k) =
k∑

�=0

n(k, �, 1/x)xr(r−�)(1 − xr−(�−1)) · · · (1 − xr),
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or equivalently

k∑
�=0

n(k, �, 1/x)xr(k−�)(1 − xr−(�−1)) · · · (1 − xr) = 1. (6)

Actually, the fact that r is an integer is useless in the proof of (6), and defining
y = xr, we shall prove

k∑
�=0

n(k, �, 1/x)yk−�
(
1 − y

x�−1

)
· · ·
(
1 − y

x

)
(1 − y) = 1, (7)

for every real positive numbers x and y and any positive integer k ≥ 0. The
proof of (7) works by induction on k.

This formula is true for k = 0 and k = 1, since n(0, 0, 1/x) = n(1, 0, 1/x) =
n(1, 1, 1/x) = 1. It is also true for k = 2, since n(2, 0, 1/x) = n(2, 2, 1/x) = 1 and
n(2, 1, 1/x) = 1 + 1/x. Suppose now that (7) is true for some value k ≥ 3. So we
now study

k+1∑
�=0

n(k + 1, �, 1/x)yk+1−�
(
1 − y

x�−1

)
· · ·
(
1 − y

x

)
(1 − y), (8)

and replace the term n(k + 1, �, 1/x) by the recursive formula (5). The contribu-
tion of the second term on the right–hand side of (5) is equal to

k∑
�=0

n(k, �, 1/x)
yk+1−�

x�

(
1 − y

x�−1

)
· · ·
(
1 − y

x

)
(1 − y)

=−
k∑

�=0

n(k, �, 1/x)yk−�
(
1 − y

x�

)
· · ·
(
1 − y

x

)
(1 − y)

+
k∑

�=0

n(k, �, 1/x)yk−�
(
1 − y

x�−1

)
· · ·
(
1 − y

x

)
(1 − y).

By hypothesis, the last sum of the above equation is equal to 1, and the first sum
annihilates with the contribution to (8) of the first term n(k, � − 1, 1/x) coming
from the right–hand side of (5) (make the change of variable � �→ � − 1). Hence
(7) is proved, and subsequently (6). The proof of Lemma 5 is complete. ��

We now turn to the proof of Proposition 2. To check that the equation of order
k + 1 of (S−) is satisfied by the values of (xr) given in Proposition 2, we have
to compute, for x = 1/p the quantity

Sk :=
∞∑

r=0

xrpk r = η∞(p)
∞∑

r=0

xr(r−k)

(1 − x)2 · · · (1 − xr)2
. (9)
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By Lemma 5, this is equal to Sk =

η∞(p)
k∑

�=0

n(k, �, 1/x)
∞∑

r=0

xr(r−�)

(1 − x)2 · · · (1 − xr−�)2(1 − xr−(�−1)) · · · (1 − xr)
,

and finally, by Lemma 4, we obtain the equality (still having x = 1/p)

Sk = η∞(p)
k∑

�=0

n(k, �, 1/x)
η∞(1/x)

= N (k, p). (10)

This completes the proof of Proposition 2.

4.2 Unicity of Solutions of an Infinite Linear System

Let a be a real integer > 1, and (Ck)k≥0 an infinite sequence of positive real
numbers. We are searching for growth conditions on (Ck) to ensure that the
linear system with infinitely many equations

∞∑
s=0

xsask = Ck (k = 0, 1, . . . ) (11)

has at most one solution (xi)i≥0 with xi ≥ 0. Such a system was considered by
Heath–Brown [7, Lemmas 17&18] in the particular case a = 4, with an appeal
to the properties of Vandermonde determinants. We shall rather use Jensen’s
formula (see Lemma 6 below).

A condition on the growth of Ck is obligatory to ensure the unicity of solutions
of (11) in non-negative xs as can be seen in the following example.

Example 1. Let a be a positive integer and Ck = sinh(πak). Then define the
coefficients xs and x′

s by the Taylor expansions sinh(πt) =
∑

xsts, and sin(πt)+
sinh(πt) =

∑
x′

sts. Both sequences (xs) and (x′
s) consist of non-negative numbers

and are solutions of (11).
However the particular coefficients Ck chosen before do not satisfy (13) below.

So let (xi)i≥0 be a positive solution to (11). By positivity we deduce the inequal-
ity

xs ≤ a−skCk, (12)

for any s ≥ 0 and k ≥ 0. To push further the computations, we suppose that
there exists an absolute c0 such that

Ck ≤ c0a
k2

2 (k = 0, 1, . . . ). (13)

By choosing k = s in (12), we get

0 ≤ xs ≤ c0a− s2

2 . (14)
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Now let (xs) and (x′
s) be two solutions of (11) and consider

f(z) =
∞∑

s=0

(xs − x′
s)z

s, (15)

considered as a function of the complex variable z. The radius of convergence of
this power series is +∞, by (14). It is an entire function, which is zero at each
ak (k = 0, 1, . . . ). It also satisfies the inequality

|f(z)| ≤ 2c0

∞∑
s=0

a− s2

2 |z|s.

In particular, if |z| = ak, for some absolute c′0, we get

|f(z)| ≤ 2c0

∞∑
s=0

a− s2

2 aks ≤ c′0a
k2

2 . (16)

We shall first prove

Lemma 6. Let � ≥ 0 be an integer and a ∈ C such that |a| > 1. Furthermore
let g(z) be an entire function which has a zero of order � at z = 0 and satisfying
g(ak) = 0 for any k ≥ 0. Then for every k ≥ 0 the function g satisfies the
inequality

sup
|z|=|a|k

|g(z)| ≥ |g(�)(0)|
�!

|a|
k(k+1)

2
+k�.

Proof. This is an application of Jensen’s formula (see for instance [9, Thm
15.18]), applied to the function h(z) = z−�g(z). With ρ denoting any zero of
h, we have the relations

|h(0)||a|
k(k+1)

2 = |h(0)|
∏

0≤�≤k

|a|k
|a�| ≤ |h(0)|

∏
ρ, |ρ|≤|a|k

|a|k
|ρ|

= exp
{ 1

2π

∫ π

−π

log
∣∣h(|a|keiθ)

∣∣ dθ
}
≤ sup

|z|=|a|k
|h(z)| = |a|−k� sup

|z|=|a|k
|g(z)|,

which gives the result. ��
Now suppose that we have two distinct solutions (xs) and (x′

s) to (11). Let � be
the least index s such that xs �= x′

s. Hence the function defined in (15) is not
identically equal to 0. Then we apply Lemma 6 to f(z), and by comparing with
(16), we are led to the lower bound a

k2

2 � a
k(k+1+2�)

2 . This is impossible for k
sufficiently large. Hence f ≡ 0. In conclusion we proved

Proposition 3. If the coefficients (Ck) satisfy the conditions (13), then the
infinite linear system (11) has at most one solution in positive (xs)s≥0.

To prove Theorem 1, it remains to combine Proposition 1, 2, 3, and Lemma 1 in
order to deduce that, under the hypothesis of this theorem, for each r ≥ 0, for
X → +∞, the function N(X, r)/N(X) has only one limit point which is equal
to p−r2

η∞(p)ηr(p)−2.
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5 The Case of Positive Discriminants

The strategy is the same. We study the limit points of the sequence
N(X, r)/N(X), where

N(x) := �
{

D ; 0 < D < X} and N(X, r) := �
{

D ∈ N(X) ; rkp(C2
D) = r
}

.

These limit points are solutions to (S+) where S+ the infinite linear system

(S+)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x0 +x1 +x2 +x3 + · · · + · · · =M0(p)

x0 +x1p +x2p2 +x3p3 + · · · + · · · =M1(p)

x0 +x1p2 +x2p4 +x3p6 + · · · + · · · =M2(p)

x0 +x1p3 +x2p6 +x3p9 + · · · + · · · =M3(p)
· · ·

where we defined

Mk(p) =
1
pk

(
N (k + 1, p)−N (k, p)

)
.

We first notice

Lemma 7. For every k ≥ 1, we have

Mk(p) =
Mk−1(p)

p
+ N (k − 1, p).

Proof. This is an easy consequence of the equality

N (k + 1, p) = 2N (k, p) + (pk − 1)N (k − 1, p) (k ≥ 1).

which is proved in [3, Lemma 3]. ��

We are now in position to prove

Proposition 4. The sequence of numbers (xr)r≥0 with

xr = p−r(r+1)η∞(p)ηr(p)−1ηr+1(p)−1

is a solution of (S+).

Proof. By linear combination and by Lemma 7, we see that (S+) is equivalent
to the system (Σ+) defined by

(Σ+)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x0 +x1 +x2 + · · · = M0(p)

x0(1 − p−1) +x1(p − p−1) +x2(p2 − p−1) + · · · = N (0, p)

x0(1 − p−1) +x1(p2 − 1) +x2(p4 − p) + · · · = N (1, p)

x0(1 − p−1) +x1(p3 − p) +x2(p6 − p3) + · · · = N (2, p)
· · ·
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where the line of order k + 1 (k ≥ 1) is given by

∞∑
r=0

xr

(
pkr − p(k−1)r−1) = N (k − 1, p). (17)

The first line is satisfied with the above choice of the (xr), since we have the
equality

∞∑
r=0

xr = η∞(p)
∞∑

r=0

(1/p)r(r+1)

ηr(p)ηr+1(p)
= η∞(p)

∞∑
r=1

(1/p)r(r−1)

ηr−1(p)ηr(p)

= η∞(p)η∞(p)−1 = 1 = M0(p)

by Lemma 4.
To study the line of order k + 1 (k ≥ 1) of (Σ+), we write the equalities

∞∑
r=0

xr

(
pkr − p(k−1)r−1)

= η∞(p)
∞∑

r=0

(1/p)r(r+1) · (1/p)−k r(1 − (1/p)r+1)
(1 − (1/p))2 · · · (1 − (1/pr))2(1 − (1/pr+1))

= Sk−1,

where Sk−1 is the expression introduced in (9) to study the linear system (S−).
By (10), we know that this is equal to N (k − 1, p). This ends the proof of (17)
for all the values of k, hence (Σ+) and (S+) are satisfied with the chosen values
of xr . The proof of Proposition 4 is now complete. ��

5.1 Unicity of Solutions

By definition of Mk(p) and by Lemma 1, we get the relation

Mk(p) = O(p
k2

4
− k

2 ).

Hence Mk(p) satisfy the conditions (13). By Proposition 3, the infinite linear
(S+) system has at most one solution. As for the case of negative discrimi-
nants, we deduce that, for any r ≥ 0, the function N(X, r)/N(X) has only one
limit point as X → +∞. By Proposition 4, these limit points have the values
announced in Theorem 2. The proof of this theorem is complete.
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Abstract. For an abelian number field F and an odd prime number p
which does not divide the degree [F : Q ], we propose a new algorithm for
computing the p-primary part of the ideal class group of F using Gauss
sums and cyclotomic units.

1 Introduction

It is a fundamental task in algebraic number theory to compute explicitly the
structure of the ideal class group ClF for a number field F of finite degree and
especially important in Iwasawa theory to compute the p-primary component
ClF {p} of ClF for a prime number p.

There is a well-known Buchmann’s algorithm which computes ClF for an
arbitrary number field F and is implemented in several software packages. A
feature of Buchmann’s algorithm resides in a parallel computation of the ideal
class group and the fundamental units. It sometimes needs GRH (Generalized
Riemann Hypothesis) to finish the computation in a reasonable time for a field
of large discriminant.

For a cyclotomic field F of prime conductor, there are some preceding works
by Schoof [9], [10] and Cornacchia [2]. In [9] and [2], the cyclicty of ClF as a
Galois module for such a field was studied. As they wrote in [9] and [2, p.2], if
ClF is cyclic as a Galois module, the Galois module structure of ClF is described
by using the Stickelberger ideal for the minus part and the certain annihilator
ideal for the plus part which is constructed by developing the Kolyvagin-Rubin-
Thaine’s method. In [2], Cornacchia treated only the 2-part, but his method
seems to be adaptable for the odd p-part. Further in [10], Schoof investigated
the order of a certain subgroup of the plus part of ClF by using cyclotomic units.

In this paper, we will give a new algorithm for computing the structure of
ClF {p} for an abelian number field F and a prime number p which satisfies the
following assumptions.
� This paper is supported by the 21 COE program “Constitution of wide-angle math-

ematical basis focused on knots”.
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Assumptions.
I. p �= 2.
II. p does not divide the degree [F : Q ].

Fix a prime number p satisfying the above assumptions and set AF = ClF {p}.
By the assumption I, AF is decomposed to AF = A+

F ⊕ A−
F , where A±

F = {x ∈
AF | Jx = ± x } and J is the complex conjugation. We study the minus part
A−

F and the plus part A+
F separately. It is known that Stickelberger element is

a good annihilator for the minus part A−
F and Gauss sum gives a generator of

the principal ideal obtained by acting Stickelberger element to a representative
ideal of the class. For the plus part A+

F , there are Kolyvagin-Rubin-Thaine’s
annihilators and cyclotomic units, which are analogue to Stickelberger elements
and Gauss sums. We compute Gauss sums for A−

F and cyclotomic units for A+
F

to give explicitly the generators of AF using auxiliary prime numbers � and �∗,
and finally determine the structure of AF .

In Iwasawa theory, it is important to decompose AF in a more precise manner
into the χ-parts AF,χ (definition is given in §2). In the case of Buchmann’s algo-
rithm, it is necessary to compute the whole ideal class group ClF to determine
AF,χ. On the other hand, our algorithm determines AF,χ directly.

Our algorithm is carried out in Z and determines rigorously the structure
of AF without assuming GRH and without computing the fundamental units.
This work was motivated by a recent result of Sumida [11] which enables us to
compute the order of A+

F . The authors express our gratitude for his generosity
providing us with his manuscript in an early stage. The authors are also grateful
to referees for their careful reading and many apt suggestions. It is entirely
thanks to referees that we were able to make the manuscript much clearer.

2 Notations and Main Results

Let F be an abelian number field and set Δ = Gal(F/Q). Fix a prime number
p satisfying the assumptions I and II in §1. We denote by Zp, Qp and Qp the
ring of p-adic integers, the field of p-adic numbers and the algebraic closure of
Qp respectively.

For a character χ : Δ → Q
×
p , we define the idempotent eχ by

eχ =
1
|Δ|
∑
σ∈Δ

Tr(χ−1(σ))σ ∈ Zp[Δ],

where Tr : Qp(χ(Δ)) → Qp is the trace map. For any Zp[Δ]-module M , we
define the χ-part Mχ of M by Mχ = eχM . Let Oχ be the extension ring of Zp

generated by the values of χ. Then Mχ is Oχ-module in the following way:

χ(σ)a = σa for any a ∈ Mχ and σ ∈ Δ.

By the assumption II, we have AF = ⊕χAF,χ, where χ runs over all represen-
tatives of Qp-conjugacy classes of characters of Δ. Hence it is enough to study
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the Oχ-module AF,χ for each χ. For a character χ of Δ, we denote by F χ the
field fixed by the kernel of χ. We can regard χ as a character of Gal(F χ/Q). By
an easy argument, we get an isomorphism AF,χ � AF χ,χ as Oχ-module. Hence
it is enough to study AF,χ in the case F = F χ.

From now on, for a fixed character χ of Δ, we put K = F χ, Δ = Gal(K/Q)
and A = AK . Note that K is totally imaginary or totally real according as χ is
odd or even. For the Teichmüller character ω and trivial character 1, we know
Aω = A1 = 0. Hence we assume χ �= ω, 1. We denote the conductor of χ (it is
also the conductor of K) by f = pef0 with p � | f0 (e ≤ 1 by the assumption II),
and define Gauss sums and cyclotomic units as follows. For a positive rational
integer n, we denote by ζn a primitive n-th root of unity and by μn the group
generated by ζn.

Definition 1 (Gauss sum). Let � be a rational prime satisfying � ≡ 1 (mod f)
and L̃ (resp. L ) a prime ideal of Q(μf ) (resp. K) satisfying the inclusion of
prime ideals L̃ ⊃ L ⊃ (�). We define the Gauss sums τL ∈ Q(μf�)× and τL ∈
K(μ�)× by

τL =
�−1∑
a=1

χL(a)ζa
� , τL = NQ(μf�)/K(μ�)

(
τL
)
,

where χL : (Z/�Z)× → μf is the character given by χL(a) ≡ a−(�−1)/f (mod L̃)
and NQ(μf�)/K(μ�) : Q(μf�)× → K(μ�)× is the norm map. Note that τL is defined
independently of a choice of L̃.

Definition 2 (Cyclotomic unit). Let n be a positive rational integer. We
define the cyclotomic unit ξn ∈ K(μn)× by

ξn = NQ(μfn)/K(μn)(ζfn − 1).

For n = 1, we abbreviate ξ1 as ξ.

Let d0
[Oχ:Zp] = |AK,χ|. For our algorithm, we choose d which is a power of p

satisfying the following condition.

The condition on d : d = d0 if χ is odd and d ≥ d0 if χ is even. (1)

Remark 1. It is easy to obtain such d. In fact, we quickly get d0 from the gen-
eralized Bernoulli number B1,χ−1 in the odd case and get an upper bound of d0
using Lemma 1 below in the even case. Note the following remarks on d0.

1) If χ is odd, it is well known that the equality

|Aχ| = |B1,χ−1 |−[Oχ:Zp]
p (2)

holds, where | |p is the p-adic valuation normalized by | p |p = p−1. This
is a direct consequence of Iwasawa main conjecture proved by Mazur-Wiles
(cf. [6, p.216 Theorem 2]). Hence d0 is the maximal power of p dividing B1,χ−1 .
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2) If χ is even, the computation of d0 is difficult. Let E denote the group of
units in K and set Eχ = (E ⊗Z Zp)χ. By the Dirichlet unit theorem and the
assumption χ �= 1, we have Eχ � Oχ. We define the χ-part of the group of
cyclotomic units Cχ to be the Oχ-module generated by ξeχ ∈ Eχ. Then it is well
known that the equality

|Aχ| = |Eχ/Cχ|, (3)

which is a part of Gras conjecture, is proved also as a consequence of Iwasawa
main conjecture (cf. [3, Proposition 9]). Hence d0 is the maximal power of p
satisfying ξeχ ∈ Ed0

χ . It is easy to see that ξeχ �∈ Ed
χ but difficult to see that

ξeχ ∈ Ed
χ because it needs computations in a global field.

3) There are another proofs of (2) and (3) for cyclotomic cases using Euler system
(cf. [7] and [8]). It is not difficult to modify these proofs applicable to a general
abelian number field F and an odd prime number p satisfying p � | [F : Q ].
4) Recently, Sumida [11] gave a nice algorithm for computing d0 when χ is even
and satisfies χ−1ω(p) �= 1. On the other hand, Theorem 2 below enables us to
compute the structure of Aχ even when χ−1ω(p) = 1.

For any x ∈ Zp[Δ], we define a truncation xpn of x to be an element of
Z[Δ] such that xpn ≡ x (mod pn). Of course xpn is not unique. The choice of
xpn has no influences on the following arguments unless a particular one is not
specified. When the truncation for x is clear, we will substitute x for xpn to avoid
complicated expressions.

Lemma 1. Let χ(�= 1) be an even character. If there exists a prime number �
which is congruent to 1 modulo pn+1 and totally decomposed in K and satisfies

(ξeχ,pn+1 )
�−1

pn+1 �≡ 1 (mod L) (4)

for some prime ideal L of K lying above �, then we have |Aχ| ≤ pn[Oχ:Zp].

Proof. Since � is totally decomposed in K, the residue field OK/L (OK is the
ring of integers of K) is isomorphic to Z/�Z. Hence its multiplicative group has
order �− 1 and the condition (4) implies ξeχ �∈ Epn+1

χ . Hence |Aχ| = |Eχ/Cχ| ≤
pn[Oχ:Zp]. ��
Next, we choose two finite sets L, L∗ of rational primes which satisfy the following
conditions.

In the case that χ is odd
• L is a finite set of primes � satisfying � ≡ 1 (mod f).
• L∗ is a finite set of primes �∗ satisfying �∗ ≡ 1 (mod df0�) for every � in L.

In the case that χ is even
• L is a finite set of primes � which are congruent to 1 modulo d2 satisfying the
following conditions:

χ(�) = 1, (5)(
ξeχ
) �−1

dp �≡ 1 (mod L) (6)
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for some prime ideal L of K lying above � and(
ξeχ
) �−1

d ≡ 1 (mod L) (7)

for any prime ideal L of K lying above �.
• L∗ is a finite set of primes �∗ satisfying �∗ ≡ 1 (mod d2f0�) for every � in L.

Note that eχ in (6) or (7) means eχ,dp or eχ,d respectively. A prime � ∈ L is
totally decomposed in Q(μf ) in the odd case and in K in the even case because
of (5). On the other hand, a prime �∗ ∈ L∗ is totally decomposed in Q(μft) in
both cases, where t =

∏
�∈L �. According to these properties on � and �∗, we can

pursue almost all calculations in Z.
As we show later, we try to choose L so that its elements generate Aχ and

use L∗ to guarantee that primes in L actually generate Aχ. Put

r =
{

1 if χ is odd,∏
�∈L � if χ is even,

and JL∗ =
∏

�∗∈L∗
(OK(μr)/L∗)×,

where �∗ runs over all primes of L∗ and L∗ is a prime ideal of K(μr) lying above
�∗ (we choose one L∗ for each �∗). We denote by WL∗,χ the Oχ-submodule
of (K(μr)×/K(μr)×

d
E)χ generated by all elements whose representatives are

prime to �∗ for all �∗ ∈ L∗. If χ is odd, then we have (K(μr)×/K(μr)×
d
E)χ =

(K×/K×d)χ because r = 1 and χ �= ω. If χ(�= 1) is even, then the Oχ-module
(E/Ed)χ is isomorphic to Oχ/dOχ. Let ε ∈ E be a generator of (E/Ed)χ as
Oχ-module. We define the subgroup E of JL∗ by

E =
{

1 if χ is odd,

〈 (εσ mod L∗)L∗ ∈ JL∗ | σ ∈ Δ 〉 if χ is even.

Note that E is dependent on a choice of ε but JL∗/Jd
L∗E is determined indepen-

dently of ε.
Hence we can define the diagonal map D∗ : WL∗,χ → JL∗/Jd

L∗E by a �→
(a, · · · , a) (mod Jd

L∗E). We fix a generator σ� of the cyclic group Gal(K(μ�)/K)
and set D� =

∑�−2
i=0 iσ�

i.
Before giving the definition of ML,L∗, which is the most important object in

this paper, we recall the well-known fact that τ
eχ,pn

L (n > 0) is contained in K×

if a truncation eχ,pn of eχ is suitably chosen. This is an immediate consequence
of [13, Lemma 6.4] and p2 � | f .

In the following definition, eχ means a well-chosen eχ,d if χ is odd and any
eχ,d if χ is even.

Definition 3. We define the Zp-submodule ML,L∗ of JL∗/Jd
L∗E by

ML,L∗ =
{

D∗(〈 τ
eχ

L mod K×d | L | �, � ∈ L 〉Oχ

)
if χ is odd,

D∗(〈 ξ
D�eχ

� mod K(μr)×
d
E | � ∈ L 〉Oχ

)
if χ is even,
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where 〈 ∗ 〉Oχ denotes the Oχ-submodule of WL∗,χ generated by ∗, and L | � means
that we choose one prime ideal L of K lying above �.

Remark 2. Note that the Gauss sum τ
eχ

L and cyclotomic unit ξ
eχ

� are in WL∗,χ,
because ξ� is a unit and the principal ideal (τL) is a product of primes lying
above �.

Our results are summarized to the following theorems. Theorem 2 enables us to
determine the structure of Aχ via ML,L∗ if we choose d, L and L∗ appropriately
and Theorem 1 guarantees that there always exist L and L∗ for which Theorem
2 holds if we take d = d0, where d0 is the power of p such that |Aχ| = d0

[Oχ:Zp]

as before.

Theorem 1. For d = d0, there exist finite sets L and L∗ of rational primes
satisfying |ML,L∗| = d0

[Oχ:Zp].

Theorem 2. For d, L and L∗ which satisfy |ML,L∗| = d[Oχ:Zp], we have Aχ �
ML,L∗ as Zp-module.

As will be seen in §5, the order |ML,L∗| is computed numerically. It is difficult
to determine d0 beforehand in the even case and we start with an upper bound d
of d0. But, once the equality |ML,L∗| = d[Oχ:Zp] holds, we can conclude d = d0.
We start with a rough bound d and sharpen it until we reach the equality
|ML,L∗| = d[Oχ:Zp]. In both odd and even cases, there are no known nice methods
to seek L and L∗. We first choose the smallest �, �∗ and continue to change them
until we reach the equality. It may be meaningful to note that we have reached
the equality after a few trials (sometimes the first trial) in computations in §5.
Note that Zp-module structure of Aχ describes its Oχ-module structure because
p is a prime element of Oχ and Oχ/paOχ � (Z/paZ)[Oχ:Zp].

3 Proofs of Theorems 1 and 2

Let d be a power of p satisfying the condition (1), which means Ad
χ = 0. We

define the Oχ-homomorphism ψ as follows.

ψ : Aχ → (K×/K×d
E)χ

cl(a) �→ α mod K×d
E

where cl(a) means the ideal class containing a and α ∈ K× is given by ad = (α).
Clearly ψ is well defined and injective. Note that if χ is odd and χ �= ω, then
we have (K×/K×d

E)χ = (K×/K×d)χ. Set ν = |ClK/A| and define the Oχ-
submodule B(L)χ of Aχ by B(L)χ = 〈 cl(L)νeχ | L|�, � ∈ L 〉Oχ . For a finite set
L of primes, we think about the image of B(L)χ by the map ψ. We prepare two
lemmas. The first is well known result of Stickelberger.

Lemma 2 (Stickelberger). Let χ(�= ω) be an odd character and L a prime
ideal of K lying above a rational prime � ∈ L. Then we have Lud2deχ,d2 =
(τ

eχ,d2

L )(bd) in K for some b ∈ K× and some u ∈ Zp[Δ]×, where ud2 and eχ,d2

are suitably chosen truncations of u and eχ respectively.
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As a reference to Lemma 2, we cite Theorem 2.2 of Chapter 1 in [5] for a
cyclotomic case and the proof of Theorem 6.10 in [13] for a general abelian case.

For the plus part, we refer to the following result which was proved by
Kolyvagin-Rubin-Thaine for cyclotomic case (cf. [4, Theorem 5], [7, Lemma 2.2,
Proposition 2.4] and [12]). It is proved quite similarly for an abelian number field
K and a prime number p satisfying the assumptions I and II in §1. We sketch
out the arguments for convenience to readers.

They constructed an annihilator of L by using the cyclotomic unit ξ. They
showed that for a certain Galois module isomorphism ϕL : (OK/�OK)× �
(Z/(�− 1)Z)[Δ], the element ϕL(ξ) of (Z/(�− 1)Z)[Δ] annihilates L in IK/I�−1

K

(IK is the ideal group of K). Namely they showed (κ�) ≡ LϕL(ξ) (mod I�−1
K )

for some κ� ∈ K×, and hence (κ�) ≡ LϕL(ξ) (mod Id2

K ). By the assumptions (6)
and (7), we can show ϕL(ξeχ) = du mod d2Oχ in (Z/d2Z)[Δ]eχ � Oχ/d2Oχ for

some u ∈ O×
χ . Further they showed the congruence κ� ≡ ξD�

� (mod K(μ�)×
d2

).
Putting these results together, we get the following lemma.

Lemma 3 (Kolyvagin-Rubin-Thaine). Let χ(�= 1) be an even character and
L a prime ideal of K lying above a rational prime � ∈ L. Then there exists
an element κ� ∈ K× which is determined modulo K×d2

and satisfies κ� ≡ ξD�

�

(mod K(μ�)×
d2

)). Furthermore, we have Lud2deχ,d2 = (κ
eχ,d2

� )(bd) in K for some
b ∈ K× and some u ∈ Zp[Δ]×, where ud2 and eχ,d2 are arbitrary truncations of
u and eχ respectively.

Lemmas 2 and 3 combining the definition of B(L)χ lead to the following.

Lemma 4. There holds

ψ(B(L)χ) =
{ 〈 τ

eχ

L mod K×d | L|�, � ∈ L 〉Oχ if χ is odd,

〈κ
eχ

� mod K×d
E | � ∈ L 〉Oχ if χ is even.

Let r be the integer defined in §2. Since χ �= ω and the natural map
(K×/K×d)χ → (K(μr)×/K(μr)×

d)χ is injective, the map ir : (K×/K×d
E)χ →

(K(μr)×/K(μr)×
d
E)χ is also injective. The composition map ir ◦ ψ : Aχ →

(K(μr)×/K(μr)×
d
E)χ is an injective Oχ-homomorphism and we have

ir ◦ ψ(B(L)χ) =
{ 〈 τ

eχ

L mod K×d | L|�, � ∈ L 〉Oχ if χ is odd,

〈 ξ
D�eχ

� mod K(μr)×
d
E | � ∈ L 〉Oχ if χ is even,

because of κ� ≡ ξD�

� mod K(μ�)×
d by Lemma 3.

Let D∗ : WL∗,χ → JL∗/Jd
L∗E be the diagonal map (this is not an Oχ-

homomorphism but a Zp-homomorphism) and ML,L∗ the Zp-module defined
in Definition 3. The following lemma is an immediate consequence of Lemma 4
and plays an essential role in our algorithm.
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Lemma 5. We have ML,L∗ = D∗ ◦ ir ◦ ψ(B(L)χ).

Now we give the proof of Theorem 1 which depends essentially on the density
theorem of Chebotarev.

Proof of Theorem 1. We will choose finite sets L and L∗ of rational primes which
satisfy the conditions on L and L∗ in §2 and |ML,L∗| = d0

[Oχ:Zp].

In the case χ is odd

Applying the Chebotarev density theorem to the maximal unramified abelian
p-extension over Q(ζf ), we choose prime ideals L of K which lie above rational
primes � satisfying � ≡ 1 (mod f) and whose classes generate Aχ over Oχ. Let
L be a finite set of such primes �. We have Aχ = B(L)χ � ir ◦ ψ(B(L)χ) =
〈 τ

eχ

L mod K×d0 | L|�, � ∈ L 〉Oχ . Hence it is enough to choose L∗ such that
the restriction of the diagonal map D∗ to ir ◦ ψ(B(L)χ) is injective. Set K ′ =
K(μd0f0t) with t =

∏
�∈L �. We can regard the Oχ-submodule ir ◦ ψ(B(L)χ) of

(K×/K×d0)χ as the Oχ-submodule of
(
[K ′×/K ′×d0]Gal(K′/K)

)
χ

by the natural
isomorphism

(K×/K×d0)χ � ([K ′×/K ′×d0 ]Gal(K′/K))χ. (8)

Consider the Kummer extension

K ′
L = K ′({ d0

√
a | a mod K×d0 ∈ ir ◦ ψ(B(L)χ)}).

The extension K ′
L/K ′ is a finite abelian extension. By the Chebotarev density

theorem, we can choose generators of the Galois group Gal(K ′
L/K ′) to be the

Frobenius substitutions (L̃∗, K ′
L/K ′) with prime ideals L̃∗ of K ′ which are to-

tally decomposed in K ′/Q. Let �∗ be the rational prime divisible by L̃∗, and
L∗ be a finite set of such primes �∗. Note that L and L∗ satisfy the condi-
tions in §2. We will show that the restriction map of D∗ to ir ◦ ψ(B(L)χ)
is injective. Let L∗ be the prime ideal of K satisfying L̃∗ ⊃ L∗ ⊃ (�∗). Let
a ∈ ir ◦ ψ(B(L)χ) = 〈 τ

eχ

L | L|�, � ∈ L 〉Oχ , and suppose that D∗(a) = 0,
that is, a mod L∗ ∈ (OK/L∗)×d0 for every L∗. By the natural isomorphism

OK/L∗ � OK′ /L̃∗, we get a mod L̃∗ ∈ (OK′ /L̃∗)×
d0

for every L̃∗. This implies
the restriction of (L̃∗, K ′

L/K ′) to K ′( d0

√
a) is trivial for every L̃∗. Since K ′( d0

√
a)

is a subfield of K ′
L/K ′ and Gal(K ′

L/K ′) is generated by the Frobenius substi-
tutions (L̃∗, K ′

L/K ′) with L̃∗, we obtain K ′ = K ′( d0

√
a). Hence we conclude

a ∈ K ′×d0 , which means a ∈ K×d0 by (8), and get the conclusion.

In the case χ is even

For every generator c of Aχ as Oχ-module, we can choose its representative
L lying above a rational prime � such that � ≡ 1 (mod d2

0f) and satisfying
ξeχ mod L �∈ (OK/L)×d0p because we have ξeχ �∈ K×d0p by the definition of
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d0 (cf. [13, Proposition 15.4]). Let L be a finite set of such primes �. Since
(OK/L)× is a cyclic group of order �− 1, we have (ξeχ )(�−1)/d0p �≡ 1 (mod L).
Further, since ξeχ ∈ Eχ is a generator of the group of cyclotomic units Cχ and
Eχ/Cχ � Oχ/d0Oχ as Oχ-modules, we have ξeχ mod L ∈ (OK/L)×d0 . Hence we
have (ξeχ)(�−1)/d0 ≡ 1 (mod L). Next we choose a finite set L∗ of primes. Set
Kt = K(μt) and K ′ = K(μd2

0
f0t) with t =

∏
�∈L �. We regard the Oχ-submodule

X = 〈 ξ
D�eχ

� mod K×
t

d0 | � ∈ L 〉Oχ(EK×
t

d0

/K×
t

d0)χ

of (Kt
×/K×

t
d0)χ as the Oχ-submodule of

(
(K ′×/K ′×d0)Gal(K′/Kt)

)
χ

in the same

way as odd case. Set K ′
L = K ′({ d0

√
a | a mod K×

t
d0 ∈ X }. We choose generators

of the Galois group Gal(K ′
L/K ′) to be the Frobenius substitutions (L̃∗, K ′

L/K ′)
with prime ideals L̃∗ of K ′ which are totally decomposed in K ′/Q. Let �∗ be
the rational prime divisible by L̃∗, and L∗ be a finite set of such primes �∗.
Let L∗ be the prime ideal of Kt satisfying L̃∗ ⊃ L∗ ⊃ (�∗). To show that
the restriction map of the diagonal map D∗ to ir ◦ ψ(B(L)χ) is injective, it is
enough to show that (a mod L∗)L∗ ∈ Jd0

L∗E implies a ∈ K×
t

d0

E for every a mod
K×

t
d0

E ∈ 〈 ξ
D�eχ

� mod K×
t

d0

E | � ∈ L 〉Oχ . Let a mod K×
t

d0

E ∈ 〈 ξ
D�eχ

� mod

K×
t

d0

E | � ∈ L 〉Oχ and suppose that for every L∗, a ≡ bi
d0u mod L∗ with some

bi ∈ OKt and some u ∈ E. We get au−1 mod L∗ ∈ (OKt/L∗)×d0 for every L∗.
By the same arguments as in the odd case, we obtain au−1 ∈ K×

t
d0 . Hence we

conclude a ∈ K×
t

d0

E. ��
Next, we prove Theorem 2.

Proof of Theorem 2. We have |Aχ| ≥ |B(L)χ| = |ir ◦ ψ(B(L)χ)| ≥ |D∗ ◦ ir ◦
ψ(B(L)χ| = |ML,L∗|. By the assumption, we have |ML,L∗ | = d[Oχ:Zp]. On the
other hand, we have d[Oχ:Zp] ≥ |Aχ| by the definition of d. Hence we conclude
that |Aχ| = |B(L)χ| = |D∗ ◦ ir ◦ ψ(B(L)χ)| = |ML,L∗| = d[Oχ:Zp]. Since B(L)χ

is the submodule of Aχ, we have Aχ = B(L)χ. Further, we obtain the Zp-
isomorphism Aχ � ML,L∗ because the composition map D∗ ◦ ir ◦ ψ is Zp-
homomorphism. ��

4 Algorithms for ML,L∗

In order to determine the structure of Aχ using Theorem 2, we continue to seek
d, L and L∗ until we reach the equality |ML,L∗ | = d[Oχ:Zp]. In this section,
we explain how to determine the structure of ML,L∗ when we fix d, L and
L∗. Several techniques are used to decrease the calculating time and almost all
calculations are reduced to those in Z.

4.1 The Odd Case

First we note that we can use any truncation of eχ in Definition 1 because we
work in the large field Q(μf�) and �∗ splits completely in Q(μf�)/Q.
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Let � be a prime in L and ρ a primitive root of �. Then the character χL :
(Z/�Z)× −→ μf which appears in Definition 1 is determined by the image of ρ.
Note that if ζf is any primitive f -th root of unity, then there exists some prime
ideal L̃ of Q(μf ) lying above � such that χL(ρ) = ζf . Since we do not need
specify L̃, we can set χL(ρ) = ζf for an arbitrarily given ζf .

Let �∗ be a prime in L∗ and g a primitive root of �∗. Take s, t ∈ Z such that
s ≡ g(�∗−1)/f (mod �∗) and t ≡ g(�∗−1)/� (mod �∗). Then ζf ≡ s (mod L̃∗)
and ζ� ≡ t (mod L̂∗) for some prime ideals L̃∗ of Q(μf ) and L̂∗ of Q(μ�) lying
above �∗. Let L∗ be the prime ideal of Q(μf�) lying above both L̃∗ and L̂∗. Hence
we have

τL =
�−2∑
i=0

ζi
f ζρi

� ≡
�−2∑
i=0

sitρi

(mod L∗)

in Q(μf�). In order to get τ
eχ

L , we need to calculate

τσr

L ≡
�−2∑
i=0

sritρi

(mod L∗)

for each σr, where σr is defined by ζσr

f = ζr
f and runs over Gal(Q(μf )/Q).

According to [11], we calculate τσr

L mod L∗ (r ∈ (Z/fZ)×) in O(� log �) times
using FFT and get x ∈ Z such that τ

eχ

L ≡ x (mod L∗) in K, where L∗ is the
prime ideal of K divisible by L̃∗.

Next we determine the structure of ML,L∗. If |L| = |L∗| = 1, it is quite
easy because JL∗/Jd

L∗ is a cyclic group. Let d = pa and τ
eχ

L ≡ x (mod L∗)
with x ∈ Z. If x(�∗−1)/pi ≡ 1 (mod �∗) and x(�∗−1)/pi+1 �≡ 1 (mod �∗), then
|ML,L∗| = pa−i. This requires O(a log �∗) times.

When |L∗| > 1, it becomes slightly difficult. We shall explain the case |L| =
|L∗| = m (|L| ≤ |L∗| in general). Let L = {�1, · · · , �m}, L∗ = {�∗1, · · · , �∗m} and
gi be a primitive root of �∗i . We get xi,j ∈ Z such that

τ
eχ

Li
≡ xi,j (mod L∗

j ), (9)

where Li (resp. L∗
j ) is a prime ideal lying above �i (resp. �∗j). An integer yi,j

such that

(xi,jg
yi,j

j )
�∗
j −1

d ≡ 1 (mod �∗j )

is obtained in O(d log �∗j) times. If (d1, · · · , dm) is the elementary divisors of the
m ∗ m matrix N = (yi,j) in Zp, then we have

ML,L∗ �
m∏

i=1

Zp/(d/di)Zp

as abelian group. We can determine ML,L∗ in reasonable time (i.e. O(p(log �∗1 +
· · ·+log(�∗m))) if d = p. Since it scarcely occurs that |L∗| > 1 and d = pa (a > 1)
with large p, we can handle almost all cases in this manner.
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4.2 The Even Case

First we seek several d and � which satisfy (5), (6) and (7). Lemma 1 implies
that these d give upper bounds of |Aχ|. We choose minimum d in our trial, which
probably realizes the equality d[Oχ:Zp] = |Aχ|.

A slight difficulty lies in this process. We require that � splits completely not
in Q(μf ) but in K. This is necessary to pick up a small � and calculate the
cyclotomic unit ξ� in reasonable time. We checked the conditions (6) and (7) as
follows. Let [K : Q ] = n and {v1, · · · , vn} an integral basis of K. We calculate
approximate values of ξρ (ρ ∈ Gal(K/Q)) and get coefficients xi ∈ Z of ξ with
respect to {vi} by solving

n∑
i=0

xiv
ρ
i = ξρ (ρ ∈ Gal(K/Q))

approximately. It is easy to get yi,ρ ∈ Z such that vρ
i ≡ yi,ρ (mod L). We have

ξρ ≡
n∑

i=1

xiyi,ρ (mod L) (10)

and finally get z ∈ Z such that ξeχ ≡ z (mod L). Then the conditions (6)
and (7) are equivalent to z(�−1)/dp �≡ 1 (mod L) and z(�−1)/d ≡ 1 (mod L)
respectively.

It seems difficult to determine the structure of ML,L∗ in the even case because
ML,L∗ is a subgroup of JL∗/Jd

L∗E and the calculation of fundamental units is
considered as difficult as that of ideal class group. However we can avoid the
effects of units as in the following way.

Consider the typical case that [K : Q ] divides p − 1 and assume |Aχ| = d. In
order to calculate ML,L∗ , it is enough to be able to decide whether x̄ = (x, · · · , x)
is contained in Jd

L∗E for each x ∈ OK(μr). Since |Aχ| = d, η = d
√

ξeχ generates
(E/Ed)χ and

x̄ ∈ Jd
L∗E ⇐⇒ ∃ ε ∈ (E/Ed)χ, ∀ L∗, xε ∈ (OK(μr)/L∗)×d

⇐⇒ ∃ ε ∈ (E/Ed)χ, ∀ L∗, (xε)
�∗−1

d ≡ 1 (mod L∗)

⇐⇒ ∃ i (0 ≤ i < d), ∀ L∗, (xηi)
�∗−1

d ≡ 1 (mod L∗)

⇐⇒ ∃ i (0 ≤ i < d), ∀ L∗, (xdξieχ)
�∗−1

d2 ≡ 1 (mod L∗).

Analyzing this procedure when |L∗| = 1, one can easily find that the inequality
|ML,L∗| < d always holds if (ξeχ)(�

∗−1)/d2 �≡ 1 (mod L∗). Therefore we request
further condition on L∗ including the case |L∗| > 1:

(ξeχ)
�∗−1

d2 ≡ 1 (mod L∗) (11)

for any prime ideal L∗ of K lying above �∗ and any �∗ in L∗. Once one assumes
(11), the structure of ML,L∗ is easily determined because JL∗/Jd

L∗E = JL∗/Jd
L∗ .
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Note that the inequality d[Oχ:Zp] ≥ |Aχ| is enough to conclude E ⊂ Jd
L∗ under the

assumption (11). We note that the above argument and Theorem 1 guarantees
we can always find �∗ satisfying (11) when |L∗| = 1. There is no theoretical
assurance that we are able to find such �∗ when |L∗| > 1. But we succeeded in
finding such �∗ in all our practical calculations. So (11) seems to be a reasonable
condition in spite of its highly technical looks.

Furthermore, it is not difficult to find �∗ which satisfies (11). Indeed, we al-
ready have xi ∈ Z such that ξ =

∑n
i=1 xivi and verify (11) by congruence

calculation similar to (10). The seeking time is ignored in comparison with the
calculation of ξ�.

The calculation of ξ� is straightforward. Let ρ (resp. g) be a primitive root of
� (resp. �∗) and ζf (resp. ζ�) a primitive f -th (resp. �-th) root of unity. Then

ζf ≡ g
�∗−1

f (mod L̃∗)

for some prime ideal L̃∗ of Q(μf ) lying over �∗ and

ζ� ≡ g
�∗−1

� (mod L̂∗)

for some prime ideal L̂∗ of Q(μ�) lying over �∗. Let L∗ be the prime ideal of K

such that L∗ ⊂ L̃∗ and L∗ a prime ideal of K(μr) lying above both L∗ and L̂∗.
Then we have

ξD�

� ≡
∏
j∈H

�−2∏
i=0

(
g

�∗−1

f j+ �∗−1

� ρi

− 1
)i

(mod L∗),

where H is the subgroup of (Z/fZ)× corresponding to K. This is an O(f�)
algorithm.

Finally we remark a possibility of fast computation of ξD�

� . Let G(X) be the
minimal polynomial of ζf over K. Then we have

ξD�

� =
∏
j∈H

�−2∏
i=0

(ζj
f ζρi

� − 1)i

≡
�−1∏
i=1

∏
j∈H

(ζ−i
� − ζj

f )ν�(i) (mod K(μr)×d2

)

=
�−1∏
i=1

G(ζ−i
� )ν�(i),

where ν�(i) is an integer satisfying i ≡ ρν�(i) (mod �). It is well known that
G(ζ−i

� ) (1 ≤ i ≤ �− 1) are computable in O(� log �) times using FFT. A discrete
logarithm function ν� is easily calculated because ν�(i) mod d2 is enough for our
purpose. Hence ξD�

� is computable in O(� log �) times if we can get G(X) quickly.
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5 Examples

We show several numerical examples. Let K = Q(
√

m, μ5) with square-free in-
teger m different from 1 and 5. Then K/Q is an abelian extension of degree 8.
Let χ be the character of Q(

√
m) and ω the Teichmüller character of Q(μ5).

Then the set of characters of Δ is {1, ω, ω2, ω3, χ, χω, χω2, χω3}. Since the class
number of Q(μ5) is one, we see Aω = Aω2 = Aω3 = 0. The fixed fields of χ and
χω2 are Q(

√
m) and Q(

√
5m) respectively. So we are interested in χω and χω3

which correspond to the cyclic subfield of K with degree 4.
In the following typical examples, we try to illustrate how we use Theorem 2

to determine A = AK .

5.1 The Case p = 5

When p = 5, we have A = Aχ ⊕ Aχω ⊕ Aχω2 ⊕ AK,χω3 . For each character ψ of
Δ, we see Oψ = Z5.

Example 1. Let m = 36227 and ψ = χω3. Then f = 724540 and ψ is an odd
character. We see |Aψ | = 53 by calculating B1,ψ−1 and set d = 53. The prime
numbers � which satisfy � ≡ 1 (mod f) are 8694481, 15939881, 26807981, . . ..
We choose � = 8694481 and L = {�}. Though a theoretical condition for �∗ is
�∗ ≡ 1 (mod df0�), we require a technical condition �∗ ≡ 1 (mod 2df0�) to write
a FFT program easily. Then �∗ are 6614474226927001, 12284023564293001, . . ..
We choose L∗ = {6614474226927001}. Since ML,L∗ is cyclic in this case, it is
quite easy to see |ML,L∗| = 53. Hence we have Aψ � ML,L∗ � Z/53Z from
Theorem 2.

Example 2. Let m = 1111 and ψ = χω. Then f = 22220 and ψ is an odd
character. We see |Aψ | = 52 by calculating B1,ψ−1 and set d = 52. The prime
numbers � which satisfy � ≡ 1 (mod f) are 133321, 177761, 266641, . . .. First
we choose L = {133321}. Then we see |ML,L∗| ≤ 5 for several L∗. We also see
|ML,L∗| ≤ 5 for L = {177761} and several L∗. This suggests a possibility that
Aψ is not cyclic. So we choose �1 = 133321, �2 = 177761 and L = {�1, �2}. Then
prime numbers �∗ which satisfy �∗ ≡ 1 (mod 2df0�1�2) are 126383489885716801,
221171107300004401, 289628830988101001, 384416448402388601 . . .. We choose
L∗ = {126383489885716801, 221171107300004401}. Then we have

N =
(

10 5
5 10

)
∼
(

5 0
0 5

)
and |ML,L∗ | = 52, where N is the matrix defined in 4.1. Hence Theorem 2
implies Aψ � ML,L∗ � Z/5Z⊕ Z/5Z.

Example 3. Let m = −14606 and ψ = χω. Then f = 292120 and ψ is an
even character. Using Lemma 1 with � = 43818001, we see |AK,ψ| ≤ 52 and
set d = 52. As a finite set of � which satisfy � ≡ 1 (mod d2) and (5), (6),
(7), we choose L = {�1 = 11251, �2 = 22501}. We pick up the smallest two
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prime numbers �∗ which satisfy �∗ ≡ 1 (mod d2f0�1�2) and (11). Namely we
set L∗ = {6868360202024395001, 13662767669706670001}. We mention that the
checking time for (11) is O(f + log �∗). Since JL∗/Jd

L∗E = JL∗/Jd
L∗ by (11), the

calculation of ML,L∗ is same as in the odd case (replace τLi in (9) by ξ�i). We
have

N =
(

15 15
0 15

)
∼
(

5 0
0 5

)
and |ML,L∗ | = 52. Hence Theorem 2 implies Aψ � ML,L∗ � Z/5Z⊕ Z/5Z.

We show some other examples in Table 1 with calculating time using Alpha
21264 667MHz, where (5, 5) means Z/5Z⊕Z/5Z for example. We mainly picked
up K with non-cyclic 5-ideal class groups to show that Theorem 2 works well.

Table 1. p = 5

m AK,χ AK,χω AK,χω2 AK,χω3 time

1111 (5) (5, 5) 0 0 24s
7523 0 0 (5) (52, 5) 7m22s

36227 0 0 0 (53) 9m36s
36293 0 0 0 (52) 2m54s
36322 (5) (53, 5) 0 0 29m28s
42853 (5) (53, 5) 0 (5) 8m47s
−5657 0 0 (5, 5) (52) 24m33s

−14606 (5, 5) (5, 5) 0 0 6h42m

5.2 The Case p = 3

When p = 3, we have A = Aχ ⊕ Aχω ⊕ Aχω2 because the character χω3 is
conjugate to χω. In this case, Oχ = Oχω2 = Z3 and Oχω = Z3[μ4].

Example 4. Let m = 15338 and ψ = χω. Then f = 306760 and ψ is an odd char-
acter. We see |Aψ| = 34 by calculating B1,ψ−1 and set d = 32. We choose L =
{920281, 1840561} and L∗ = {53939200897513698455715841, 6129454647444738
4608768001, 90715928782182129220976641, 129944438525828455370588161}.
Then we have

N =

⎛⎜⎜⎝
0 6 3 0
3 6 3 6
3 0 6 6
0 3 3 6

⎞⎟⎟⎠ ∼

⎛⎜⎜⎝
3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

⎞⎟⎟⎠
and |ML,L∗| = 34 = d2. Hence Theorem 2 implies Aψ � ML,L∗ � Z/3Z ⊕
Z/3Z ⊕ Z/3Z ⊕ Z/3Z as abelian group. We see Aψ � Oψ/3Oψ ⊕ Oψ/3Oψ as
Oψ-module.

We show other examples in Table 2.
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Table 2. p = 3

m AK,χ AK,χω AK,χω2 AK,χω as O = Oχω-module

853 0 (32, 32) 0 O/32O
9546 0 (33, 33) 0 O/33O

11703 0 (33, 33) 0 O/33O
13767 (3) (33, 33) (3) O/33O
13894 0 (33, 33) (32) O/33O
15338 0 (3, 3, 3, 3) (3) O/3O ⊕ O/3O

5.3 Cyclotomic Cases

When the conductor f of K is small, we can use the condition � ≡ 1 (mod f)
in place of (5). In exchange for a growth of the size of �, we get an advantage of
verifying (6), (7) and (11) without using an integral basis of K. This situation
often happens in cyclotomic cases.

There is an extensive work of Schoof [10] dealing with the order h+
� of the

ideal class group Q(ζ� + ζ−1
� ) for a prime number �. He introduced the number

h̃+
� , which is the order of a certain group and a divisor of h+

� , and calculated h̃+
�

for � < 10000. His heuristic arguments lead to the assertion that h̃+
� coincides

with h+
� in this range with 98% probability. The whole class number h+

� is very
hard to compute and h̃+

� is also. On the other hand, the p-part of h+
� is easy.

For example, one can verify immediately that h+
167 is not divisible by 3 using

Lemma 1 with n = 0 and � = 14029 (cf. [10, p. 914]). It is also easy to verify that
the non-trivial p-part of h̃+

� is the p-part of h+
� for any prime number � < 10000

and any odd prime number p such that � �≡ 1 (mod p) combining a lower bound
obtained by Schoof and an upper bound obtained by Lemma 1. The following
shows an another approach using Theorem 2.

Example 5. Let p = 3 and F = Q(ζ521+ζ−1
521). We are interested in the 3-part AF

of ClF . Let K be the subfield of F with [K : Q ] = 26. Fix a primitive 26-th root
of unity ζ26 in Q3 such that ζ26 +ζ3

26 +ζ9
26 ≡ 4 (mod 9) and define the character

ψ : Gal(K/Q) → Q3(ζ26)× by ψ(σ) = ζ26, where σ is the generator of Gal(K/Q)
induced by ζ521 �→ ζ3

521. Then, applying Theorem 2 with L = {18757} and
L∗ = { 9322866739, 51363718633, 98153955469 } (this is the first pair satisfying
the conditions for L and L∗), we see AK,ψ � Z/3Z ⊕ Z/3Z ⊕ Z/3Z. For other
subfields K ′ and injective characters ψ′ which are not conjugate to ψ over Q3,
Lemma 1 implies AK′,ψ′ = 0. Hence we have AF � Z/3Z⊕ Z/3Z⊕ Z/3Z.

6 Running Time of the Algorithm

We have not yet succeeded in giving explicit upper bounds for L and L∗ in the
proof of Theorem 1 because we have no idea to evaluate the discriminant and
the degree of the maximal unramified abelian p-extension of Q(ζf ), which are
needed to apply an effective version of Chebotarev density theorem (cf. [1]). So
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we can not estimate the running time of the algorithm. The time of computing
ML,L∗ essentially depends on the size of � in L and little depends on the size of
�∗ in L∗. So the estimate for L is important.

Finally we argue how big fields K can be handled by Theorem 2. There are
three important objects to be calculated, namely eχ, τL and ξD�

� . The complexity
depends on the conductor f and the degree n of K. The calculation of eχ becomes
hard when n is large because we have to calculate TrQp(ζn)/Qp

(ζn). The limit of
n may be 103 as long as we rely on a brute force method of factoring the n-th
cyclotomic polynomial over Zp. The calculating time of τL and ξD�

� depends only
on f , not on n.

For the minus part, the experiments suggest that we will compute τL within
a hour if f < 106.

For the plus part, we need an integral basis of K to verify (6), (7) and (11) as
explained in 4.2. The calculating time of an integral basis increases as n increases.
An actual limit of n may be 102 except for cyclotomic fields of small conductors
as in 5.3. The experiments also suggest the limit of f for ξD�

� is about 106.
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Abstract. We show that the locally free class group of an order in a
semisimple algebra over a number field is isomorphic to a certain ray
class group. This description is then used to present an algorithm that
computes the locally free class group. The algorithm is implemented in
MAGMA for the case where the algebra is a group ring over the rational
numbers.

Introduction

Throughout this paper we fix a number field K with ring of integers OK , a finite-
dimensional semisimple K-algebra A and an OK -order A in A. The purpose of
this paper is to give an algorithm that computes the locally free class group
cl(A), cf. [4, (39.12)] for a definition. This was done in [1] in the case that
A is commutative, where cl(A) is isomorphic to the Picard group Pic(A), cf.
[4, (55.26)]. Here we treat the general case. As in [1] we can show that cl(A)
is isomorphic to a quotient of a certain ray class group in the center of A,
cf. Corollary 1.9. This is achieved in several steps. We choose a maximal order
M in A containing A, and a full ideal f of M which is contained in A. A canonical
pull-back diagram involving A and A/f gives rise to a Mayer-Vietoris sequence
and the induced exact sequence

K1(A/f) ∂
��
���
���
���
���
���
�

������������������ cl(A, f) ��
���
���
���
���
���
�

������������������ cl(A) ��
���
���
���
���
���
�

������������������ 0 ,

cf. (5), with a term cl(A, f) coming directly from the Mayer-Vietoris sequence.
In Theorem 1.5 we use Wilson’s idèle theoretic description of locally free class
groups, cf. [14], in order to show that the term cl(A, f) is isomorphic to a ray
class group.

In the proof of this theorem we make repeatedly use of Theorem 2.2 which is
of independent interest. It determines the image under the reduced norm map
of higher principal unit groups in the maximal order of a division algebra over
a p-adic field.
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In the last section we present an algorithm that computes cl(A) using the ray
class group description of cl(A, f) in the case of group algebras A = KG, where
G denotes a finite group. A maximal order M containing A can be computed
using an algorithm of Friedrichs, cf. [7]. We then describe how one can compute
an ideal f, the relevant ray class group, generators of K1(A/f), and the map ∂
which turns out to be a reduced norm map. We also show how our approach
can be used to compute the kernel group D(A) := ker(cl(A) → cl(M)). It is well
known that D(A) does not depend on the choice of the maximal order M.

This algorithm is implemented in MAGMA for group algebras A = QG
over the rational numbers. The program and tables of locally free class groups
of integral grouprings Z[G] for many small groups G are available at
http://www.mathematik.uni-kassel.de/~bley/pub.html.

1 Locally Free Class Groups in Terms of Ray Class
Groups

Throughout this paper we fix the following notation:

1.1 Notation. Let OK ⊂ K and f ⊆ A ⊆ M ⊂ A be as in the introduction.
We set M := M/f and A := A/f so that A ⊆ M are finite rings. The canonical
map M → M will be denoted by m �→ m. We will denote the center of a ring R
by Z(R). We set C := Z(A) and denote by OC the integral closure of OK in C.
The primitive idempotents of C will be denoted by e1, . . . , er. For i = 1, . . . , r,
we set Ai := Aei. Then

A = A1 ⊕ · · · ⊕ Ar (1)

is a decomposition into the indecomposable ideals Ai of A. Each Ai is a K-algebra
with identity element ei. By Wedderburn’s Theorem, the centers Ki := Z(Ai)
are finite field extensions of K via K → Ki, α �→ αei, and we have K-algebra
isomorphisms Ai

∼= Matni(Di) for each i = 1, . . . , r, where Di is a division ring
with Z(Di) ∼= Ki. The Wedderburn decomposition (1) induces decompositions

C = K1 ⊕ · · · ⊕ Kr (2)

and
OC = OK1

⊕ · · · ⊕ OKr , (3)

where OKi denotes the ring of algebraic integers of Ki for i = 1, . . . , r. Since M is
a maximal OK-order of A, it contains the central idempotents ei and decomposes
into M = M1 ⊕ · · · ⊕ Mr with Mi := Mei. As a consequence, the ideal f of M

also decomposes into f = f1 ⊕ · · · ⊕ fr with ideals fi = fei of Mi.

1.2. We consider the OK-order

D := D(A, f) := {(a1, a2) ∈ A ×A | a1 ≡ a2 mod f}

in A × A which fits into the pull-back diagram
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D
q1

��
���
���
���
���
��
��

������������������ A

q2

��
���
���
���
���
���
�

��
���
���
���
���
���
�

��
���
���
���
���
���
�

��
���
���
���
���
���
�

p1

A
p2

��
���
���
���
���
���
�

������������������ A

of rings. By [4, Theorem 49.27], this leads to an exact sequence

K1(A) × K1(A) p1/p2
��
���
���
���
��
���
��

������������������ K1(A) ∂
��
���
���
���
��
���
��

������������������ cl(D) (q1, q2)
��
���
���
���
��
���
��

������������������ cl(A) × cl(A) ��
��
���
���
���
���
��

������������������ 0 .

Here, the first map is given by (x, y) �→ (K1(p1))(x) · (K1(p2))(y)−1 and the
second map is defined as follows. Every element of K1(A) is represented by an
element u ∈ A

×
and such an element is mapped to the class of the locally free

D-module
M(u) := {(a1, a2) ∈ A ×A | a1 · u = a2} , (4)

cf. the proof of [4, Theorem 49.27]. We set

cl(A, f) := ker
(
q2 : cl(D) → cl(A)

)
and obtain a short exact sequence

K1(A) p1
��
���
���
���
���
��
��

������������������ K1(A) ∂
��
���
���
���
���
��
��

������������������ cl(A, f) q1
��
���
���
���
���
��
��

������������������ cl(A) ���
���
���
���
���
���

������������������ 0 , (5)

as can be easily verified.

1.3. In the following p will usually stand for a maximal ideal of OK . For an
OK-module M we write Mp for the completion at p. We let

J(A) := {(ap)p ∈
∏
p

A×
p | ap ∈ A×

p for almost all p}

denote the idèles of A and write U(A) =
∏

p A×
p for the subgroup of unit idèles.

Here p runs through all maximal ideals of OK . One has canonical isomorphisms

Ap
∼= Kp ⊗K A ∼=

r⊕
i=1

Kp ⊗K Ai
∼=

r⊕
i=1

Kp ⊗K Ki ⊗Ki Ai

∼=
r⊕

i=1

⊕
P

(Ki)P ⊗Ki Ai
∼=
⊕
i,P

Ai,P (6)

involving various completions, where, for given i ∈ {1, . . . , r}, P runs through
all maximal ideals of OKi dividing p and Ai,P is defined as (Ai)P. Using the
above isomorphism, we will often interpret elements of J(A), resp. Ap, as tuples
(ai,P)i,P, where P ranges over all maximal ideals of OKi , resp. over those that
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contain p. Note that J(A) does not depend on the order A. Similarly we denote
by J(C) the group of idèles of C. Again one has a canonical isomorphism

Cp
∼=
⊕
i,P

Ki,P

and we will interpret elements of J(C), resp. Cp, often as tuples (αi,P)i,P.
By nr : J(A) → J(C) we denote the reduced norm map (which translates

into the component-wise reduced norm maps nr : A×
i,P → K×

i,P after the above
identifications). We recall from [4, Proposition 45.8 and Theorem 7.48] that

nr(J(A)) = J(C) and nr(A×) = C×+ ,

where

C×+ := {c ∈ C× | c is positive at quaternionic components} .

The last condition means that if c = (ci) with ci ∈ K×
i then τ(ci) > 0 whenever

i ∈ {1, . . . , r} and τ : Ki → R is a real embedding such that the corresponding
scalar extension Ai ⊗Ki,τ R is a full matrix ring over the quaternions. Further-
more, we define the subgroup

Uf(A) := {(ap)p ∈ U(A) | ap ≡ 1 mod fp}

of U(A).

1.4. Next we define commutative invariants in C of the non-commutative data
A, A and f. With f also the ideal g := f∩C of OC decomposes into g = g1⊕· · ·⊕gr

with ideals gi = gei of OKi . We denote by Ig = Ig(C) the group of fractional
OC -ideals of C that are coprime to g and have

Ig(C) = Ig1
(K1) × · · · × Igr (Kr) .

For each i ∈ {1, . . . , r} we write ∞i for the formal product over real archimedian
places τ : Ki → R such that A⊗Ki,τ R is a full matrix ring over the quaternions,
and we define the ‘ray modulo g∞’ by

P +
g := {(αiOKi)i ∈ Ig | αi ≡ 1 mod× gi∞i, for all i = 1, . . . , r} .

Note that P +
g is a subgroup of Ig.

The next theorem gives both an idèle and ideal theoretic description of cl(A, f).
Note that the ideal theoretic part only involves ‘commutative data’ located in
the center C of A.

1.5 Theorem. There are canonical isomorphisms

cl(A, f) ∼= J(C)
/
(C×+nr(Uf(A))) ∼= Ig/P +

g .
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1.6 Remark. It is immediate from the above theorem that cl(B, f) ∼= cl(M, f)
for any OK-order B such that f ⊆ B ⊆ M. We also note that Uf(B) = Uf(M). In
fact, if bp ∈ M×

p and bp ≡ 1 mod fp, then b−1
p ≡ 1 mod fp, and since fp ⊆ Bp,

both bp and b−1
p are elements of Bp.

Proof. (of Theorem 1.5.) From [14, Theorem 1] we obtain natural isomorphisms

ω : cl(D) ∼=
J(C) × J(C)

(C×+ × C×+)nr(U(D))
(7)

and

cl(A) ∼=
J(C)

(C×+)nr(U(A))
.

Inspecting the definition of these isomorphisms one verifies easily that the map
induced by q2 is translated into a map between the right hand sides of the above
equations that is induced by the projection map J(C)× J(C) → J(C) onto the
second component. Therefore, we obtain an isomorphism

cl(A, f) ∼=
J(C) × C×+nr(U(A))

(C×+ × C×+)nr(U(D))
.

We will show that the map

J(C) × C×+nr(U(A))
(C×+ × C×+)nr(U(D))

σ
��
���
���
���
���
���
�

������������������

J(C)
C×+nr(Uf(A))

(8)

induced by (
(ap)p, (bp)p

)
�→ (ap/bp)p ∈ J(C)

for ((ap)p, (bp)p) ∈ J(C) × C×+nr(U(A)) is an isomorphism. The map is obvi-
ously well-defined. Let τ denote the map in the inverse direction induced by

J(C) # (xp)p �→
(
(xp)p, (1)p

)
∈ J(C) × C×+nr(U(A)) .

Again it is straightforward to verify that τ is well-defined. Obviously σ ◦ τ = id.
In order to show that τ ◦ σ = id we have to prove that(

(ap)p, (bp)p

)
≡
(
(ap/bp)p, (1)p

)
mod (C×+ × C×+)nr(U(D)) .

But this is equivalent to the statement(
(bp)p, (bp)p

)
∈ (C×+ × C×+)nr(U(D)),

which is immediate from (bp)p ∈ C×+nr(U(A)). This concludes the proof of
cl(A, f) ∼= J(C)

/
(C×+nr(Uf(A))) .

Next we will show that J(C)
/
(C×+nr(Uf(A))) ∼= Ig/P +

g . First note that
Uf(A) = Uf(M), by Remark 1.6. Therefore, J(C)

/
(C×+nr(Uf(A))) breaks up

into a direct product of components, one for each i = 1, . . . , r. So obviously does
Ig/P +

g , and we may work component-wise. So we fix i ∈ {1, . . . , r}, set L := Ki



Computation of Locally Free Class Groups 77

and rename gi by g, an ideal of OL, fi by f and Mi by M for the remainder of
the proof. Then it suffices to show that

J(L)/L×+nr(Uf(M)) ∼= Ig/P +
g .

We define a map
ψ0 : J(L) → Ig/P +

g .

as follows. For α = (αP) ∈ J(L), we apply the approximation theorem to choose
an element β ∈ L×+ with

vP(αPβ − 1) � vP(g) for all P with P | g

and set

ψ0(α) :=

⎛⎝∏
P

PvP(αPβ)

⎞⎠ · P +
g .

Then, by [10, Proposition IV.8.1] and its proof, ψ0 induces an isomorphism

ψ : J(L)/L×+ · Ug(OL) → Ig/P +
g , (9)

where

Ug(OL) := {(αP) ∈
∏
P

(OL)×P | αP ≡ 1 mod× gP for all P | g} .

But, by Corollary 2.4, we have Ug(OL) = nr(Uf(M)) and the proof is complete.
��

1.7. Using the isomorphisms in Theorem 1.5, the short exact sequence (5)
yields a short exact sequence

K1(A) ∂̂
��
���
���
���
���
��
��

������������������ Ig/P +
g

q2
��
���
���
���
���
��
��

������������������ cl(A) ���
���
���
���
���
���

������������������ 0 . (10)

Since A is a semilocal ring, the canonical map π : A
× → K1(A) is surjective

(cf. [4, Theorem 40.31]) and the image of ∂̂ in (10) is equal to the image of the
composition

ν : A
× π

��
���
���
���
���
��
��

������������������ K1(A) ∂̂
��
���
���
���
���
��
��

������������������ Ig/P +
g . (11)

The map ν is given explicitly by the next proposition.

1.8 Proposition. Let x ∈ A
×

and let a ∈ A such that a = x. Then ν(x) is
equal to the class of the ideal nr(a)OC ∈ Ig in Ig/P +

g .

Proof. The map ν is the composite

A
× ∂ ◦ π

��
���
���
���
��
���
��

������������������ cl(D) ω
��
���
���
���
��
���
��

������������������

J(C) × J(C)
(C×+ × C×+)nr(U(D))

ψ ◦ σ
��
���
���
���
��
���
��

������������������ Ig/P +
g ,
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where ∂ originates from the Mayer-Vietoris sequence and ω, σ, ψ are defined in
(7), (8), (9), respectively.

By the theory of Mayer-Vietoris sequences, cf. proof of [4, Theorem (49.27)],
we have (∂ ◦ π)(ā) = M(ā), cf. (4). In order to describe the image of the class
of M(ā) under ω we have to find a Dp-basis λp of M(ā)p for each p. For each
p, the ring Ap is semilocal, so that we may choose ap ∈ A×

p satisfying ap ≡ a
mod fp, cf. [4, Lemma 50.7]. One easily shows that one can choose

λp =

{
(1, 1), if fp = Mp,

(1, ap), if fp �= Mp.

By the definition of ω, the image of the class of M(ā) is therefore represented
by (yp, zp) ∈ J(C) × J(C) with

(yp, zp) =

{
(1, 1), if fp = Mp,

(1, nr(ap)), if fp �= Mp.

It follows from the definition of σ together with Corollary 2.4, that we may
choose β = nr(a) in the definition of ψ. The result now follows easily. ��

The following corollary is now immediate.

1.9 Corollary. If a1, . . . , as are elements in A such that π(a1), . . . , π(as) are
generators of K1(A), and if U is the subgroup of Ig/P +

g generated by the classes
of the ideals nr(aj)OC , j = 1, . . . , s, then there exists an isomorphism

cl(A) ∼=
(
Ig/P +

g

)
/U .

2 A Local Result

The aim of this section is to provide Corollary 2.4 which was needed in the proof
of Theorem 1.5.

2.1 Notation. Throughout this section we assume the following notation. We
deviate from our general assumption in the introduction and assume (for this
section only) that K is a finite extension field of the field Qp of p-adic numbers.
We write OK or just O for its valuation ring, p for its maximal ideal, and choose
a prime element π (so that p = πO).

Furthermore, we denote by D a division ring with Z(D) = K. We refer
the reader to [11, Section 14] for standard results in this situation. One has
[D : K] = n2 for some n ∈ N. We denote by Δ the maximal order of D, and
by PD the unique maximal (two-sided) ideal of Δ. Every non-zero (two-sided)
ideal of Δ is of the form Pk

D for some k ∈ N0.
If q := |O/p|, then we can choose a root of unity ω of order qn − 1 in Δ.

For given π ∈ O and ω there exist an element πD ∈ PD and a natural number
r ∈ {1, . . . , n} which is coprime to n such that
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PD = πDΔ = ΔπD , πn
D = π , πDωπ−1

D = ωqr

. (12)

By nr : D → K we denote the reduced norm map.

2.2 Theorem. For every k ∈ N0 and t ∈ {1, . . . , n} one has

nr(1 + Pkn+t
D ) = 1 + pk+1 .

Proof. The unramified extension W := K(ω) of K has degree n and is a splitting
field for D. Moreover, by the paragraphs preceding [11, Theorem 14.5], the set
{1, πD, . . . , πn−1

D } is an OW -basis of Δ. We denote by θ the Galois automorphism
of W over K with θ(ω) = ωqr

. Note that θ generates the Galois group Gal(W/K).
As in the proof of [11, Theorem 14.6], we obtain an isomorphism W ⊗K D →
Matn(W ) of W -algebras such that

1 ⊗ πD �→

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . .
...

0 · · · 0 1
π 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠
and

1⊗ w �→

⎛⎜⎜⎜⎝
w

θ(w)
. . .

θn−1(w)

⎞⎟⎟⎟⎠
for w ∈ W . If δ = a0 + a1πD + . . . + an−1πn−1

D , ai ∈ OW , is an arbitrary element
in Δ, then 1⊗ δ �→ A(δ) with

A(δ) =

⎛⎜⎜⎜⎜⎜⎝
a0 a1 a2 · · · an−1

θ(an−1)π θ(a0) θ(a1) · · · θ(an−2)
θ2(an−2)π θ2(an−1)π θ2(a0) · · · θ2(an−3)

...
...

...
...

θn−1(a1)π θn−1(a2)π θn−1(a3)π · · · θn−1(an−1)π θn−1(a0)

⎞⎟⎟⎟⎟⎟⎠
An elementary computation using πn

D = π shows that

A(δπkn+t
D ) =

⎛⎜⎝an−tπ
k+1 ∗ · πk

. . .
∗ · πk+2 θn−1(an−t)πk+1

⎞⎟⎠
for any k ∈ N0 and t ∈ {1, . . . , n}. There are always n consecutive diagonals
involving a factor πk+1, including the main diagonal. For t = 1 this block of n
diagonals extends from the bottom left corner to the main diagonal. For t = n it
extends from the main diagonal to the top right corner. While t moves from 1 to n
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this block moves diagonally from the lower left to the upper right corner. Every
entry to the left and below this block is divisible by πk+2 and every entry to the
right and above this block is divisible by πk. Since nr(1 + δ) = det(1 + A(δ)), it
follows immediately that

nr(1 + Pkn+t
D ) ⊆ 1 + pk+1 ,

for k ∈ N0 and t ∈ {1, . . . , n}.
Next we will show that

1 + Pkn+t
D

1 + P
(k+1)n+t
D

nr
��
���
���
���
���
��
��

������������������

1 + pk+1

1 + pk+2 (13)

is surjective for k � 0 and t ∈ {1, . . . , n}. Without loss of generality we may
assume t = n. For b ∈ O we have to find δ ∈ Δ such that

nr(1 + δπ
(k+1)n
D ) ≡ 1 + bπk+1 mod 1 + pk+2 .

Since W/K is unramified, there exists an element a ∈ OW such that TrW/K(a) =
b. Setting δ = a we obtain

nr(1 + aπ
(k+1)n
D ) ≡ det

⎛⎜⎜⎜⎝
1 + aπk+1 ∗

0 1 + θ(a)πk+1

. . .
0 1 + θn−1(a)πk+1

⎞⎟⎟⎟⎠
≡ 1 + TrW/K(a)πk+1 ≡ 1 + bπk+1 mod pk+2 .

By induction on l it follows easily that

nrl :
1 + Pkn+t

D

1 + P
(k+l)n+t
D

��
���
���
���
���
���
�

������������������

1 + pk+1

1 + pk+l+1

is surjective for all k � 0 and l � 1. Hence we have a short exact sequence of
projective systems (indexed by l) of finite abelian groups

0 → (ker(nrl))l
��
���
���
���
���
���
�

������������������

(
1 + Pkn+t

D

1 + P
(k+l)n+t
D

)
l

nr
��
���
���
���
���
���
�

������������������

(
1 + pk+1

1 + pk+l+1

)
l

→ 0 .

Since ker(nrl) is a finite abelian group for all l, it satisfies clearly the Mittag-
Leffler condition, so that

lim←−
l

1 + Pkn+t
D

1 + P
(k+l)n+t
D

nr
��
���
���
���
���
��
��

������������������ lim←−
l

1 + pk+1

1 + pk+l+1 (14)

is surjective by [8, Proposition II.9.1]. Since Δ, resp. O, is complete relative
to the PD-adic, resp. p-adic, valuation, we derive from (14) immediately the
assertion of the theorem. ��
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2.3 Corollary. Let K/Qp be a finite field extension and let A ∼= Matm(D) be
a finite dimensional central simple K-algebra, where D is a division ring with
Z(D) = K and [D : K] = n2. Furthermore, let M be a maximal O-order in A
and let PM be the maximal ideal of M. Then

nrA/K(1 + Pkn+t
M ) = 1 + pk+1

for all k ∈ N0 and all t ∈ {1, . . . , n}.

Proof. This is an immediate consequence of Theorem 2.2, [11, Theorem 17.3]
and the formula

nrA/K(X) = nrD/K(Ddet(X))

for any X ∈ GLm(D) (see [4, Equation (7.42)]). Here Ddet : GLm(D) → D×
ab

denotes the Dieudonné determinant. ��

2.4 Corollary. Let K/Qp be a finite field extension and let A be a finite-
dimensional central simple K-algebra. Furthermore, let M be a maximal OK-
order of A, let f be a proper (two-sided) ideal of M and set g := K ∩ f. Then

nrA/K(1 + f) = 1 + g .

Moreover, nrA/K(M×) = O×
K .

Proof. The last statement is included for the sake of completeness and can be
found in [4, Proposition 45.8]. In order to prove the first statement, we can
assume that A = Matm(D) for some m ∈ N and some division ring D with
Z(D) = K. Using the notation from 2.1 and applying [11, Theorem 17.3], we
can also assume that M = Matm(Δ) and that f = Pkn+t

M for some k ∈ N0
and t ∈ {1, . . . , n} with PM denoting the maximal ideal of M. Now the first
statement follows from Corollary 2.3 and from g = pk+1. ��

3 An Algorithm to Compute cl(A) in the Group Algebra
Case

In this section we present an algorithm which computes the locally free class
group cl(A) of any OK -order A in the group algebra KG of a finite group G.
Moreover, the algorithm computes the so-called kernel group D(A), namely the
kernel of the canonical map cl(A) → cl(M), where M is a maximal OK -order of
KG containing A. It is well-known that D(A) does not depend on the choice
of M. The algorithm presented here has been implemented in Magma, cf. [9],
however only for K = Q. We expect it to be straightforward to extend it to
arbitrary K.

3.1. Input: We assume that we are given a number field K, its ring of integers
R := OK , a finite group G and an R-order A of KG.
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3.2. Computation of Ig/P +
g :

(a) Compute the order n of G, the exponent e of G, and the character table
of G. The character table comes with a set C of representatives of conjugacy
classes of G.

(b) Define L := K(ζ), where ζ ∈ C is a root of unity of order e and compute
Ω := Gal(L/K).

(c) Compute representatives χ1, . . . , χr of the Ω-orbits of the set Irr(G) of
irreducible characters of G. Denote by Xi the Ω-orbit of χi. Furthermore, for
i = 1, . . . , r, compute the number field Ki := K({χi(g) | g ∈ C}) and its ring of
integers Ri := OKi .

(d) For χ ∈ Irr(G) let eχ := χ(1)
|G|
∑

g∈G χ(g−1)g be the corresponding prim-
itive central idempotent of the group algebra LG. Then, ei :=

∑
χ∈Xi

eχ, i =
1, . . . , r, are the primitive central idempotents of A := KG.

(e) Using the Round 2-algorithm described in [7, Kapitel 3 and 4] compute a
maximal R-order M in A that contains A.

(f) Applying [7, Algorithmus (2.16)] compute the left conductor cl := {x ∈
A | xM ⊂ A}, the right conductor cr := {x ∈ A | Mx ⊂ A} and f := cr · cl. Then
f is an ideal of M that is contained in A. Compute fi := f · ei for i = 1, . . . , r.

(g) Compute the unique K-algebra map Ki → Ai with the property that
χi(g) �→

∑
χ∈Xi

χ(g)eχ. This map identifies Ki with Z(Ai). Using this identifi-
cation, compute the ideal gi := Ri ∩ fi of Ri for i = 1, . . . , r .

(h) For i = 1, . . . , r compute the Frobenius-Schur indicator c(χi) := |G|−1∑
g∈G χi(g2) of χi. It is known that c(χi) ∈ {−1, 0, 1}, cf. [12, Section 13.2].

Obviously, c(χ) = c(χi) for every χ ∈ Xi. A Galois automorphism τ ∈ Ω is a
real embedding such that Ai ⊗Ki,τ R is a matrix algebra over the quaternions if
and only if the Schur-Frobenius indicator equals −1, cf. [12, Section 13.2]. This
allows to compute ∞i for i = 1, . . . , r.

(i) Using Algorithm 4.3.1 of [3] component-wise compute the ray class group
Ig/P +

g .

3.3 Remark. For computational reasons we wish to choose f as large as pos-
sible. For special orders A there may be better ways to compute an ideal f than
the one described in (f). For example, if A = OKG is the integral group ring,
then cr = cl, cf. [4, Theorem (27.8)], so that we can take f = cr = cl. Then f is
the largest ideal of M that is contained in A. We are grateful to the referee to
point out that, in many cases, the ideal f := cM with c := cr ∩C = cl ∩C = {c ∈
C | cM ⊆ A} is a better choice.

3.4. Before we turn to the algorithm for the computation of generators of
K1(A) we state two preparatory lemmas.

Let g =
∏

P∈P PeP be the prime ideal decomposition of g in OC , and set
P′ := {P ∩ A | P ∈ P}, a set of prime ideals of A ∩ OC . For every p ∈ P′

consider the ideal

q :=
⋂

P∈P
P∩A=p

(PeP ∩ A) .
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These are precisely the factors in the primary decomposition of g,
cf. [1, Prop. 3.2]. We write Q for the set of ideals q.

3.5 Lemma. Assume the above notations. Then one has

f =
⋂
q∈Q

(qA + f) =
∏
q∈Q

(qA + f) .

Proof. For q1, q2 ∈ Q, q1 �= q2, one has

(q1A + f) + (q2A + f) = A, (q1A + f)(q2A + f) = (q2A + f)(q1A + f).

It follows easily that
⋂

q∈Q(qA + f) =
∏

q∈Q(qA + f). Since g =
∏

q∈Q q we
conclude f ⊆

⋂
q∈Q(qA + f) =

∏
q∈Q(qA + f) ⊆ f. ��

3.6 Lemma. Let π : T → S be an epimorphism of rings. Suppose that ker(π)
is contained in the Jacobson radical J(T ) of T . If s ∈ S×, then every preimage
t of s is a unit in T .

Proof. This follows immediately from tT + ker(π) = T = T t + ker(π) and
Nakayama’s lemma. ��

3.7. Computation of generators of K1(A):
(a) Applying the Chinese remainder theorem, cf. [13, Theorem A10], to the

decomposition of Lemma 3.5, we obtain

A/f ∼=
∏
q∈Q

A/(qA + f) , (15)

This induces a decomposition K1(A) ∼=
∏

q∈Q K1(A/qA + f) and our task is
reduced to finding generators of the group K1(A/qA + f) for every q ∈ Q.

Let q ∈ Q and let p ∈ P′ be the associated prime ideal of A ∩ OC . Then we
have a natural surjective ring homomorphism A/qA + f → A/pA + f and there
exists a unique prime number p such that p ∈ p. Thus, the latter ring is an
algebra over the field Fp with p elements. We have a commutative diagram

1 ��
���
���
���
���
���
�

������������������

1 + pA + f

1 + qA + f
��
���
���
���
���
���
�

������������������ (A/qA + f)× ��
���
���
���
���
���
�

������������������ (A/pA + f)× ��
���
���
���
���
���
�

������������������ 1

��
���
���
���
���
��
��

��
���
���
���
���
��
��

��
���
���
���
���
��
��

��
���
���
���
���
��
��

��
���
���
���
���
��
��

��
���
���
���
���
��
��

1 ��
���
���
���
���
���
�

������������������ U ��
���
���
���
���
���
�

������������������ K1(A/qA + f) ��
���
���
���
���
���
�

������������������ K1(A/pA + f) ��
���
���
���
���
���
�

������������������ 1

with natural maps, where U is defined as the kernel of the bottom right horizontal
map. Since A/qA + f and A/pA + f are semilocal rings, the middle and right
vertical maps are surjective, cf. [4, Theorem 40.31]. By a result of Vaserstein,
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cf. [4, Remark 40.32(ii)], the kernel of the right vertical map is generated by all
elements of the form (1 + xy)(1 + yx)−1 with x, y ∈ A/pA+ f such that (1 + xy)
and (1+yx) are units in A/pA+ f. The same statement holds for A/qA+ f. Since
pl ⊆ q for some l ∈ N, the ideal pA+f/qA+f is contained in the Jacobson radical
J(A/qA + f). Thus, every lift of a unit of A/pA + f to A/qA + f is a unit, cf.
Lemma 3.6. This implies that the top right horizontal map is surjective, as well
as the induced map between the kernels of the middle and right vertical maps.
The snake lemma now implies that the left vertical map is surjective. Thus, we
obtain an exact sequence

1 + pA + f

1 + qA + f
→ K1(A/qA + f) → K1(A/pA + f) → 1 .

So our task is reduced to finding generators of 1+pA+f
1+qA+f and K1(A/pA + f).

(b) In order to compute generators of the multiplicative group 1+pA+f
1+qA+f we use

the filtration

pA + f ⊇ (q + p2)A + f ⊇ (q + p4)A + f ⊇ · · · ⊇ (q + p2l−1

)A + f ⊇ qA + f

with l minimal such that p2l ⊆ q. For each integer m � 0, the map x �→ x − 1
induces an isomorphism

1 + (q + p2m

)A + f

1 + (q + p2m+1)A + f
→ (q + p2m

)A + f

(q + p2m+1)A + f

of abelian groups. Assuming that each of the modules can be represented by a
Z-basis, we apply Hermite normal form techniques to compute a Z-basis for the
right hand side. Lifting generators of 1+(q+p2

m
)A+f

1+(q+p2m+1)A+f
to 1 + (q + p2m

)A + f and
collecting these elements for m = 0, . . . , l−1 yields a set of elements of A, whose
classes modulo 1 + qA + f generate 1+pA+f

1+qA+f .
(c) We put B := A/pA + f and note that B is a finite Fp-algebra. In order to

compute generators of K1(B) we use the same arguments as above to obtain an
exact sequence

1 + J → K1(B) → K1(B/J) → 1 ,

where J denotes the Jacobson radical of B. Algorithms for the computation of
the Jacobson radical of associative algebras over Fp are, for example, discussed
in [5, Sec. 2.3] or [6].

This reduces the problem to the computation of generators of K1(B/J(B))
and of 1 + J(B). The finite ring B/J is semisimple and thus isomorphic to a
direct product of matrix rings Mats(F ) over finite fields. In order to compute
these simple components one can adapt the algorithms described in [5, Sec. 2.4]
(see also [7, Sec. 5.2.1]). This leads to a probabilistic algorithm, which performs
very well in practice.

Let now Mats(F ) be a simple component of B. Using the fact that the canon-
ical maps F× → K1(F ) → K1(Mats(F )) are isomorphisms, leaves us with the
problem of finding a generator of F×, which we solve by trial and error.
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Finally, we still have to find generators of 1+J . For that purpose we consider
again a filtration, namely

1 + J ⊇ 1 + J2 ⊇ 1 + J4 ⊇ · · · ⊇ 1 + J2l−1

⊇ 1 ,

with l minimal such that J2l

= 0. Then we use the isomorphisms 1 + J2m

/1 +
J2m+1 → J2m

/J2m+1

induced by x �→ x − 1, for m = 0, . . . , l − 1. The latter
groups are Fp-vector spaces and we compute a basis and proceed similar as in
part (b).

3.8. Computation of the image of ∂̂ : K1(A) → Ig/P +
g : In the previous sub-

section, generators of K1(A) of the form (u) with u ∈ A
×

were computed. Each
such u we lift to an element a ∈ A. Then, by Proposition 1.8, it suffices to
compute the ideal nr(a)OC . Instead of computing nr(a)OC we write a = (ai)i

with ai ∈ Ai and compute the norm αi := NAi/Ki
(ai) ∈ Ri. If dimKi Ai = ni,

then one has NAi/Ki
(ai) = nr(ai)ni . But knowing the ideal NAi/Ki

(ai)Ri allows
us to compute the ideal nr(ai)Ri in the free abelian group I(Ki) of fractional
ideals. Now we only have to compute the representative of (nr(ai)Ri)i in Ig/P +

g

by component-wise application of [3, Algorithm 4.3.2].

3.9. Computation of D(G): Consider the commutative diagram

K1(A) ��
���
���
���
���
���
�

������������������
Ig/P +

g
��
���
���
���
���
���
�

������������������ cl(A) ��
���
���
���
���
���
�

������������������ 0

��
���
���
���
���
��
��

��
���
���
���
���
��
��

��
���
���
���
���
��
��

��
���
���
���
���
��
��

��
���
���
���
���
��
��

��
���
���
���
���
��
��

0 ��
���
���
���
���
��
��

������������������ 0 ��
���
���
���
���
��
��

������������������ I1/P +
1

∼
��
���
���
���
���
��
��

������������������ cl(M) ��
���
���
���
���
��
��

������������������ 0

with exact rows as in (10), where we write I1 for IOC and P +
1 for P +

OC
. Since

the vertical maps are surjective with respective kernels K1(A), (Ig ∩ P +
1 )/P +

g ,
and D(A), the snake lemma yields an exact sequence

K1(A) ∂̂
��
���
���
���
���
��
��

������������������ (Ig ∩ P +
1 )/P +

g
���
���
���
���
���
���

������������������ D(A) ���
���
���
���
���
���

������������������ 0 .

Generators of K1(A) have already been computed in 3.7, and the image of these
generators under ∂̂ is computed as in 3.8.

3.10 Remark. We conclude the paper with a remark on our implentation.
We decided to choose the algebra system MAGMA because it includes both
algorithms for group and representation theory and number theory. Many of the
features that we need are already implemented in MAGMA, most importantly
the computation of character tables and the computation of ray class groups
in number fields. Moreover, we use many of the MAGMA functions which deal
with associative algebras over finite fields. Here we should at least mention the
computation of Jacobson radicals.
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We computed a large number of locally free class groups for integral group
rings ZG. Our implementation performs well as long as the character fields
Ki, i = 1, . . . , r, are small, say [Ki : Q] < 20. This is explained by the fact,
that from the algorithmic point of view the computation of ray class groups is
a very hard problem. It seems to be the most difficult and time-consuming part
of the algorithm.
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Abstract. Using techniques described in [3], we have computed the class
number and class group structure of all imaginary quadratic fields with
discriminant Δ for 0 < |Δ| < 1011. A novel verification algorithm based
on the Eichler Selberg Trace Formula [15] was used to ensure that the
correctness of our results does not rely on any unproved hypothesis. We
present the results of our computations, and remark on specific evidence
that was found pertaining to a number of heuristics. In particular, we
present data which supports some of the Cohen-Lenstra heuristics [8],
Littlewood’s bounds on L(1, χ) [14], and Bach’s bound on the maximum
norm of the prime ideals required to generate the class group [1].

1 Introduction

To increase the range of numerical evidence supporting various heuristics and
asymptotic conjectures, we have computed the class number and class group
structure for all imaginary quadratic fields with discriminant Δ for 0 < |Δ| <
1011. Currently, the most comprehensive experimental computation for imagi-
nary quadratic fields was performed by Buell [6], who looked at discriminants Δ
for 0 < |Δ| < 2.2 ·109. Buell called his work the “last” computation of such class
numbers due to a number of reasons, most notably of which was feasibility.

This issue of feasibility has been overcome by using a more efficient algorithm
for computing the class number. Buell’s method for unconditionally computing
class numbers is based on counting reduced binary quadratic forms for each
discriminant, and requires O(|Δ|1/2) steps for each discriminant Δ. Our approach
is to compute class numbers using a O(|Δ|1/4) algorithm whose correctness is
conditional on the Extended Riemann Hypothesis (ERH), and then to verify the
results unconditionally using a novel procedure derived from the Eichler Selberg
Trace Formula [15]. This verification procedure is very efficient, so the combined
algorithm still requires only O(|Δ|1/4) steps per discriminant, allowing us to
increase the upper bound to 1011. The computations required just over 1561
days of CPU time, or about 6 days of real time using a cluster. The verification
required just over 2242 days of CPU time, or about 8 days of real time on the
same cluster.
� All three authors are supported in part by NSERC of Canada.
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In this paper, we present the results of our computation with respect to a
number of heuristics. We have tested some of the Cohen-Lenstra heuristics [8]
regarding the class number hΔ by calculating frequencies of various events. We
have also tested Littlewood’s bounds on the L(1, χΔ) function [14] and Bach’s
bound on the maximum norm of the prime ideals required to generate the class
group [1].

2 Computing the Structure of the Class Group

The computation was performed using two algorithms; one for computing the
structure of the class group, and one for verifying the class numbers. The veri-
fication was necessary in order for our results to be unconditional.

2.1 Computation

To compute the class number hΔ, the first step is to compute an estimate h∗

such that h∗ ≤ hΔ ≤ 2h∗. This is accomplished using methods found in [10],
under the assumption of the ERH. Once h∗ is found, both the structure of
the class group and the class number are computed using an algorithm given by
Buchmann, Jacobson and Teske (BJT) [3], which is an improvement on Shanks’s
well-known baby-step giant-step algorithm [16]. Let ClΔ be the class group of the
quadratic order OΔ ∈ Q(

√
Δ). We produce prime ideals pi of increasing norm,

and iteratively compute subgroups Gi = 〈p1, p2, ..., pi〉 of ClΔ. We continue to
add generators until the order of Gi is greater than or equal to h∗. Then, we
know that ClΔ = Gi. In this way, if hΔ = |Gi| is incorrect, it will always be
a divisor of the real class number, a fact that is important for our verification
algorithm. This method is quite efficient, and it also allows us to collect data
on Bach’s bounds [1], such as the number and size of prime ideals which are
required to generate the class group.

This method of computation requires O(i2
l
2

√
|G|) steps, where i is the number

of prime ideals used to generate G, and l is the number of elementary divisors
of G. Therefore, this algorithm is more efficient than Shanks’ algorithm, but is
exponential in the rank of the class group. A more recent algorithm for computing
the structure of the class group given by Buchmann and Schmidt (BS) [4] is
not exponential in the rank of the class group, requiring O(

√
|G|) steps. We

considered this algorithm as an option for computing the class numbers, but
found that most groups in our computation range required less than 4 prime
ideals to generate the group. In practice, the BS algorithm required more than
8 prime ideals before it became more efficient than the BJT algorithm, due to a
larger big-O constant. Consequently, we chose to use the BJT algorithm for our
computations.

2.2 Verification

In order to remove the dependence of our results on the ERH, we implemented a
second algorithm for verifying the class numbers unconditionally. Our verification
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algorithm is based on the Eichler Selberg Trace Formula [15, Theorem 2.2]. It
relates the trace of the Hecke operator Tn acting on the space Sk(Γ0(N), χ) of
cusp forms of weight k, level N and character χ to a sum of class numbers of
imaginary quadratic fields. It is well known that for N = 1, k = 2 and χ = 1,
the space S2(Γ0(1), 1) has dimension zero. Therefore, the traces of all Hecke
operators are zero in this case. We use this equality to verify the correctness of
our class numbers, as described below.

For Δ = e(Δ)f(Δ)2, let e(Δ) be a fundamental discriminant, that is, e(Δ)
is square free, and e(Δ) ≡ 1 (mod 4) or e(Δ) ≡ 8, 12 (mod 16). Let H(Δ) =
hw(e(Δ))K(Δ) denote the Kronecker class number of the quadratic order OΔ,
where

hw(Δ) =

⎧⎪⎨⎪⎩
hΔ if |Δ| > 4
1
2 if Δ = −4
1
3 if Δ = −3 ,

and

K(Δ) =
∑

t|f(Δ)

t
∏
q|t

⎛⎝1 −

(
e(Δ)

q

)
q

⎞⎠ .

Using Theorem 2.2 and 2.5 from [15] with k = 2, we have the equality

T r(Tn) = A1 + A2 + A3 + A4 = 0 , (2.1)

where

A1 =
1
12

χ(n) , A2 = −1
2

H(−4n)−

√4n�−1∑

t=1

H(t2 − 4n) ,

A3 = −

⎛⎜⎜⎝ ∑
d|n

d<
√

n

d

⎞⎟⎟⎠− 1
2

χ(n)
√

n , A4 =
∑
d|n

d ,

and χ(n) = 1 if n is a square, and 0 otherwise. Rearranging (2.1) gives us

H(−4n) + 2

√4n�−1∑

t=1

H(t2 − 4n)

= 2

⎛⎝∑
d|n

d

⎞⎠− 2

⎛⎜⎜⎝ ∑
d|n

d<
√

n

d

⎞⎟⎟⎠− χ(n)
√

n +
1
6

χ(n) . (2.2)
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We verify all the class numbers for discriminants Δ for 0 < |Δ| < 1011 by
verifying that (2.2) is satisfied for a certain series of values of n. This is done in
such a way that each discriminant in our range is incorporated into at least one
equation. We compute the required number of n values using a simple brute force
preprocessing approach. Starting with a maximum value of n = % |Δ|

4 & where Δ
is the discriminant with the smallest absolute value, we mark each discriminant
that is incorporated into the sum

∑
√4n�−1
t=1 H(t2 − 4n). Then, we reduce n by

1 and repeat until all discriminants have been incorporated into at least one of
the equations.

The verification process is carried out by computing the left hand side of
(2.2) for each value of n produced by the preprocessing step. This is done in
parallel on a cluster, with different intervals of discriminants Δ in the range of
0 < |Δ| < 1011 being computed by separate nodes. For each interval, the values
of t2 − 4n that lie above the lower bound of the interval are computed for all
values of n. Then, for each value of n, a sieve is used to factor out all square
parts of the discriminants to give us a list of fundamental discriminants in the
given interval. Finally, the sums of the class number of the discriminants whose
fundamental parts lie in the given interval are all computed.

Once the left hand side of the equations in all intervals are computed, the
master node sums them up to produce one value for each n. We then compute
the right hand side of each equation and compare the two values. The equality
will be violated if we discover a class number which was calculated erroneously.
Due to the nature of our algorithm, if the number we computed is not equal to
the class number, it is always a divisor of hΔ. Therefore it is smaller than or
equal to hΔ. Thus, if all the equalities hold, then we are able to unconditionally
verify our results.

3 Numerical Results

We implemented the algorithms for computation and verification using the C++
programming language, coupled with the number theory library NTL [19]. We
used the 64-bit long long data type to represent discriminants and ideals, and
NUCOMP [18,7] for ideal arithmetic. The class groups of 30396355052 imaginary
quadratic fields were computed using a cluster with 256 2.4 GHz Xeon processors
running Linux, each with 1 GB of RAM.

The entire computations required approximately 15 days of real time. The
verification was successful, and all the results agreed with Buell’s [6]. The com-
putation itself took 1561 days of CPU time, or about 6 days of real time using
the cluster. The verification took 2242 days of CPU time, or about 8 days of real
time using the cluster. A separate program was used to tabulate the data and
compare it to the heuristic results in question. This program ran in just under
237 days of CPU time, or approximately 22 hours of real time. The results are
outlined in the following sections.
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3.1 Bounds on L(1, χ)

There has been significant interest [5,6,9,17] in the extreme values of L(1, χΔ)
due to the relationship between it and the class number hΔ. This can be seen in
the analytic class number formula,

L(1, χΔ) =
hΔπ√
|Δ|

,

where extreme values of L(1, χΔ) correspond to extreme values of hΔ.
In [14], Littlewood developed bounds on L(1, χΔ), namely that under the

ERH,

{1 + o(1)}(c1 log log Δ)−1 < L(1, χΔ) < {1 + o(1)}c2 log log(Δ) , (3.1)

where c1 and c2 are defined as follows:

c1 = 12eγ/π2 and c2 = 2eγ when 2 � Δ

c1 = 8eγ/π2 and c2 = eγ when 2 | Δ .

In [17], Shanks investigated Littlewood’s bounds, and defined two values he
termed the upper and lower Littlewood indices

ULI = L(1, χΔ)/(c2 log log Δ)
LLI = L(1, χΔ)c1 log log Δ .

These indices effectively ignore the o(1) given in Littlewood’s bounds. We would
expect extreme values of the LLI and the ULI to approach 1.

In order to test the validity of these conditional bounds, we recorded succes-
sive minimum and maximum values, and corresponding ULI and LLI values,
of L(1, χΔ) for discriminants Δ, with Δ ≡ 0 (mod 4), Δ ≡ 1 (mod 8) and
Δ ≡ 5 (mod 8). The maximum L(1, χΔ) found was 8.09414... (ULI = 0.70996)
for Δ = −45716419031. The maximum ULI value was 0.73202... (L(1, χΔ) =
4.14624...) for Δ = −27867502724. The minimum L(1, χΔ) found was 0.17448...
(LLI = 1.2188...) for Δ = −8570250280. The minimum LLI value was 1.10314...
(L(1, χΔ) = 0.39502...) for Δ = −1012.

In Table 1 we list successive maximum L(1, χΔ) and corresponding ULI values
with Δ ≡ 1 (mod 8), as the values in this congruence class are the overall
maximum. We also list successive minimum L(1, χΔ) and corresponding LLI
values with Δ ≡ 5 (mod 8), as the values in this congruence class are the overall
minimum. The L(1, χΔ) values correspond to Buell’s previous tabulations [6]
and so we only display the maximum and minimum values which follow after
Buell’s data.

Following Buell, we also calculated the mean values of L(1, χΔ) for discrimi-
nants Δ ≡ 0 (mod 4) and Δ ≡ 1 (mod 4). These values, 1.18639... and 1.58185...
are similar to Buell’s findings [6].
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3.2 The Cohen-Lenstra Heuristics

In [8], Cohen and Lenstra presented a number of heuristics regarding class groups
of quadratic number fields. During our computations, we tested the frequency
with which odd primes p divide the class number hΔ, the frequency that the
odd part of the class group is non-cyclic, and the number of non-cyclic factors
of the p-Sylow subgroups.

Divisibility of hΔ by Odd Primes. For an imaginary quadratic field with
discriminant Δ, the probability that an odd prime p divides the class number
hΔ is conjectured in [8] as

prob(p | hΔ) = 1 − η∞(p) , (3.2)

where η∞(p) =
∏

k≥1 1−p−k . As observed by Buell [6], under the same heuristic

assumptions, p2 divides the class number hΔ with probability 1− pη∞(p)
p−1 and p3

divides the class number with probability 1 − p3η∞(p)
(p−1)2(p+1) . We define the value

pl(x) as the observed ratio of discriminants less than x with l | hΔ divided by
the conjectured probability shown in (3.2). As x increases, we would expect the
value of pl(x) to approach 1. Similarly, we define the ratios pl2(x) for l2 dividing
the class number, and pl3(x) for l3 dividing the class number.

In Table 2, we present the values of pl(x) for small primes l. The values appear
to approach 1 from below. The values of pl2(x) and pl3(x) approach 1 from below
in a similar fashion, and so are not presented here. It should be noted that the
ratios approach 1 at a slower rate for l2 and an even slower rate for l3.

Cyclic Cl∗Δ. Define Cl∗Δ to be the odd part of ClΔ. The heuristics given in [8]
state that the probability that Cl∗Δ is cyclic is equal to

prob(Cl∗Δ cyclic) =
ζ(2)ζ(3)

3ζ(6)C∞η∞(2)
, (3.3)

where C∞ =
∏

i≥2 ζ(i). This value is roughly 97.7575%. We define c(x) as the
observed ratio of discriminants less than x with Cl∗Δ cyclic divided by the con-
jectured probability shown in (3.3). As x increases, we would expect the value
of c(x) to approach 1.

In Table 3, we present values of c(x), along with the total number of discrimi-
nants less than x with Cl∗Δ non-cyclic. As expected, the values of c(x) approach
1 from above.

Non-Cyclic Factors of p-Sylow Subgroups. For an odd prime p, define the
p-rank of ClΔ as the number of non-cyclic factors of the p-Sylow subgroup of
ClΔ. The heuristics given in [8] state that the probability that the p-rank is
equal to r is

prob(p-rank of ClΔ = r) =
η∞(p)

pr2ηr(p)2
. (3.4)
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We define pl,r(x) as the observed ratio of discriminants less than x with l-rank
equal to r divided by the conjectured probability shown in (3.4). As x increases,
we would expect the value of pl,r(x) to approach 1.

In Table 4, we present values of pl,r(x) for various values of small primes l
and r = 2, 3, 4. As expected, the values tend to approach 1 from below fairly
smoothly, but slowly.

3.3 First Occurrences of Non-cyclic p-Sylow Subgroups

In [6], Buell looked at what he called “exotic” groups, particular non-cyclic p-
Sylow subgroups for various odd primes p. Following Buell, we have recorded
both the first occurrence and the total number of discriminants for which a
specific p-Sylow subgroup is “exotic”. When dealing with the prime p = 2,
we consider only the 2-Sylow subgroup of the principal genus (the subgroup of
squares) of the class group, as was done in [9] and [6]. For brevity, data for
p = 2 is not presented here but is available at [11]. In the following tables, only
new occurrences of specific p-Sylow subgroups for odd primes p which were not
discovered by Buell in [6] are listed. Full tables are available at [11].

In Table 5, we present the discriminants Δ with the smallest absolute value
for which ClΔ has a rank 2 p-Sylow subgroup of the form C(pe1 )×C(pe2) for an
odd prime p. We have tabulated and displayed those discriminants where Δ ≡ 0
(mod 4) and those where Δ ≡ 1 (mod 4) separately. We also list the number
of discriminants |Δ| < 1011 for which each p-Sylow subgroup has the specified
structure. We found several fields for which the p-Sylow subgroup has rank 2 for
all odd primes p ≤ 173.

In Table 6, we present the discriminants Δ with the smallest absolute value for
which ClΔ has a rank 3 p-Sylow subgroup of the form C(pe1 )×C(pe2)×C(pe3)
for an odd prime p. Once again, we list discriminants in different congruence
classes separately, and also the number of discriminants for which each p-Sylow
subgroup has the specified structure. We found fields with p-Sylow subgroups
of rank 3 for all odd primes p ≤ 13. Although fields with 11 and 13-Sylow
subgroups of rank 3 were already known [12,13], the discriminants we found are
unconditionally the smallest in absolute value of any fields with these properties.

We found numerous examples of fields with rank 4 3-Sylow subgroups. This
data is not included here, as Belabas [2] has listed all of these fields and minimal
discriminants with 3-rank ≤ 5. We did not observe any fields with p-rank equal
to 4 for p > 3.

In Table 7 we present the first occurrences of doubly non-cyclic class groups,
and in Table 8 we present the first occurrences of trebly non-cyclic class groups.
The most “exotic” of these class groups, for Δ = −61164913211, is isomorphic
to C(3 ·7 ·19)×C(3 ·7 ·19). In addition, we were able to find 4 discriminants for
which the corresponding class groups are quadruply non-cyclic with respect to
the primes 2, 3, 5 and 7. The smallest of these discriminants is Δ = −20777253551
with ClΔ ∼= C(4 · 3 · 5 · 7) × C(4 · 3 · 5 · 7).
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3.4 Number of Generators

In [1], Bach proved a theorem stating that under the ERH, prime ideals of norm
less than 6 log2 |Δ| are sufficient to generate the class group of a quadratic field.
However, in [7], a tighter bound of O(log1+ε |Δ|) was conjectured. Other authors,
such as [6] and [9], have observed that in practice, Bach’s bound seems to be
excessive and attempt to find a constant c for which the tighter bound could
hold.

We define maxp(Δ) as the maximum norm of the prime ideals required to
generate the class group of Q(

√
Δ). If Bach’s theorem is true, we would ex-

pect that maxp(Δ)/ log2 |Δ| ≤ 6. To test this theorem, we maintained values of
maxp(Δ) for all discriminants Δ with 0 < |Δ| < 1011. In order to test the tighter
bound given in [7], we tried to find the magnitude of the constant c for which
maxp(Δ) ≤ c log |Δ|. To do this, we looked at the ratio of maxp(Δ)/ log |Δ|.

Throughout our computations, the maximum value of maxp(Δ) we found
was 353 for Δ = −42930759883 and Δ = −88460711448. The maximum value
of maxp(Δ)/ log2 |Δ| was 0.780042... for the discriminant Δ = −424708, and
the average value was 0.02481.... The maximum value of maxp(Δ)/ log |Δ| was
14.41825... for the discriminant Δ = −42930759883, and the average value was
0.60191.... The maximum value of maxp(Δ)/ log2 |Δ| remained constant for most
of the computation, whereas the maximum of maxp(Δ)/ log |Δ| increased very
slowly, suggesting that a bound of O(log1+ε |Δ|) may indeed be the truth. Com-
plete data for maxp(Δ) and both ratios can be found in [11].

Following Buell [6], we also kept track of the first occurrences and total number
of discriminants for which all prime ideals of norm up to a certain bound were
necessary, with the maximum norm found being 353. We found that the total
number of discriminants requiring all prime ideals of norm up to a prime p tended
to decrease as p increased, except for when p = 181, where the number increased
by over 60 times.

We also looked at the number of prime ideals that were required to gener-
ate the class group. The maximum number of prime ideals required to gen-
erate all discriminants Δ for 0 < |Δ| < 1011 was 25 for the discriminant
Δ = −75948116920, but on average only 3.31359... were required, justifying
our use of [3] to compute class groups as opposed to [4]. The complete table
containing first occurrences of discriminants requiring k prime ideals and totals
can be found in [11].

4 Conclusions and Future Work

We intend to extend our computations to include all class groups of imaginary
quadratic fields with discriminant Δ for 0 < |Δ| < 1012, in order to provide
stronger evidence towards the heuristics mentioned in this paper. Additionally,
we plan on modifying our verification algorithm to work with real quadratic
fields, and carry out new computations in that setting.
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A Appendix

Table 1. Successive L(1, χ) maxima and minima

Successive maxima (Δ ≡ 1 (mod 8)) Successive minima (Δ ≡ 5 (mod 8))
Δ L(1, χ) ULI Δ L(1, χ) LLI

1514970551 7.49759 0.68985 1930143763 0.18764 1.24439
2438526191 7.52739 0.68757 2426489587 0.18655 1.24146
2570169839 7.56669 0.69062 2562211723 0.18470 1.23020
2772244991 7.58892 0.69186 3030266803 0.18445 1.23160
3555265271 7.59038 0.68945 3416131987 0.18152 1.21415
5111994359 7.64749 0.69097 6465681643 0.18082 1.22069
6194583071 7.69307 0.69318 6623767483 0.17973 1.21375
7462642151 7.70257 0.69221 15442196323 0.17843 1.21922
7979490791 7.70933 0.69217 21538327507 0.17609 1.20857
8462822759 7.77325 0.69733 45640185427 0.17604 1.22007

12123145319 7.80183 0.69642 84291143203 0.17599 1.22914
13005495359 7.82594 0.69790 85702502803 0.17448 1.21885
17833071959 7.89105 0.70071
29414861999 7.89941 0.69683
35535649679 7.94608 0.69923
42775233959 7.99504 0.70187
45716419031 8.09414 0.70996

Table 2. Values of pl(x)

x p3(x) p5(x) p7(x) p11(x) p13(x) p17(x) p19(x)

1000000000 0.97327 0.99348 0.99609 0.99576 0.99489 0.99474 0.99347
2000000000 0.97624 0.99453 0.99687 0.99664 0.99621 0.99585 0.99522
3000000000 0.97783 0.99515 0.99737 0.99701 0.99666 0.99646 0.99601
4000000000 0.97888 0.99558 0.99760 0.99724 0.99708 0.99672 0.99657
5000000000 0.97966 0.99586 0.99778 0.99751 0.99738 0.99698 0.99698
6000000000 0.98029 0.99610 0.99786 0.99769 0.99757 0.99724 0.99718
7000000000 0.98080 0.99622 0.99791 0.99780 0.99771 0.99742 0.99737
8000000000 0.98122 0.99635 0.99800 0.99795 0.99787 0.99753 0.99745
9000000000 0.98159 0.99645 0.99808 0.99803 0.99799 0.99763 0.99757

10000000000 0.98191 0.99653 0.99818 0.99810 0.99812 0.99771 0.99770
20000000000 0.98391 0.99712 0.99861 0.99852 0.99853 0.99823 0.99824
30000000000 0.98496 0.99744 0.99876 0.99875 0.99876 0.99850 0.99852
40000000000 0.98567 0.99761 0.99887 0.99890 0.99889 0.99871 0.99868
50000000000 0.98619 0.99776 0.99896 0.99901 0.99900 0.99884 0.99880
60000000000 0.98661 0.99786 0.99901 0.99904 0.99906 0.99891 0.99888
70000000000 0.98695 0.99796 0.99905 0.99908 0.99912 0.99902 0.99893
80000000000 0.98723 0.99804 0.99909 0.99912 0.99916 0.99907 0.99902
90000000000 0.98748 0.99810 0.99913 0.99917 0.99920 0.99911 0.99906

100000000000 0.98770 0.99815 0.99915 0.99919 0.99924 0.99914 0.99910
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Table 3. Number of noncyclic odd parts of class groups

x total non-cyclic percent c(x)

1000000000 303963510 5585092 1.83742 1.00414
2000000000 607927095 11356654 1.86809 1.00383
3000000000 911890759 17182389 1.88426 1.00366
4000000000 1215854223 23041817 1.89511 1.00355
5000000000 1519817699 28923395 1.90308 1.00347
6000000000 1823781240 34822620 1.90936 1.00341
7000000000 2127745010 40736296 1.91453 1.00336
8000000000 2431708386 46659753 1.91881 1.00331
9000000000 2735672001 52600902 1.92278 1.00327

10000000000 3039635443 58544601 1.92604 1.00324
20000000000 6079271092 118313612 1.94618 1.00303
30000000000 9118906425 178447518 1.95690 1.00292
40000000000 12158541989 238793386 1.96400 1.00285
50000000000 15198177465 299290965 1.96926 1.00280
60000000000 18237813070 359892824 1.97333 1.00275
70000000000 21277448334 420584966 1.97667 1.00272
80000000000 24317083860 481364092 1.97953 1.00269
90000000000 27356719791 542201863 1.98197 1.00267

100000000000 30396355052 603101904 1.98413 1.00264

Table 4. Values of pl,r(x)

x pr3,2(x) pr5,2(x) pr7,2(x) pr11,2(x) pr13,2(x) pr3,3(x) pr5,3(x) pr7,3(x) pr3,4(x)

1000000000 0.84360 0.95708 0.96014 0.94248 0.92552 0.44305 0.92707 0.33360 0.08031
2000000000 0.86065 0.96351 0.96570 0.95530 0.94096 0.49026 0.90254 0.38920 0.08031
3000000000 0.86959 0.96705 0.97262 0.96803 0.94671 0.51636 0.89927 0.59306 0.10708
4000000000 0.87560 0.96977 0.97550 0.97268 0.95343 0.53591 0.91726 0.63940 0.12047
5000000000 0.88013 0.97125 0.97670 0.97199 0.95713 0.55085 0.93099 0.73392 0.11244
6000000000 0.88365 0.97289 0.97885 0.97394 0.95893 0.56132 0.93770 0.83400 0.13385
7000000000 0.88658 0.97382 0.98039 0.97483 0.96086 0.57142 0.93968 0.82605 0.16062
8000000000 0.88904 0.97467 0.98048 0.97631 0.96206 0.58047 0.93627 0.83400 0.19074
9000000000 0.89126 0.97566 0.98150 0.97711 0.96586 0.58722 0.93415 0.79075 0.20524

10000000000 0.89309 0.97642 0.98224 0.97917 0.96762 0.59382 0.93394 0.73392 0.20881
20000000000 0.90470 0.98042 0.98737 0.98407 0.97719 0.63193 0.93614 0.76172 0.24896
30000000000 0.91096 0.98264 0.98868 0.98628 0.98298 0.65288 0.94064 0.78581 0.24361
40000000000 0.91516 0.98384 0.98918 0.98709 0.98517 0.66798 0.95491 0.83956 0.25298
50000000000 0.91828 0.98481 0.98996 0.98755 0.98684 0.67905 0.95385 0.84956 0.26503
60000000000 0.92072 0.98541 0.99060 0.98830 0.98749 0.68821 0.95707 0.87106 0.27707
70000000000 0.92272 0.98605 0.99119 0.98845 0.98738 0.69563 0.96477 0.87530 0.29141
80000000000 0.92444 0.98653 0.99168 0.98917 0.98795 0.70175 0.96398 0.89098 0.29916
90000000000 0.92591 0.98704 0.99198 0.98966 0.98824 0.70727 0.96729 0.91060 0.31143

100000000000 0.92721 0.98743 0.99223 0.99025 0.98900 0.71201 0.96636 0.91628 0.31803
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Table 5. Non-cyclic rank 2 p-Sylow subgroups

p e1 e2 first even Δ # even Δ first odd Δ # odd Δ

3 5 4 16887409796 45 4301015239 115
3 5 5 * * 6743415071 4
3 6 3 2671485416 443 636617543 1279
3 6 4 49547047976 1 7274282423 32
3 7 3 17668343384 42 3541241903 269
3 7 4 * * 47649110911 3
3 8 2 17082145064 241 1173834359 2289
3 8 3 * * 37703425007 18
3 9 1 11132690456 2153 1106108639 20187
3 9 2 93287426216 1 11901791639 221
3 9 3 * * 60543925679 1
3 10 1 98284577816 2 8795475911 2039
3 10 2 * * 65798421911 4
3 11 1 * * 52623967679 21
5 3 3 13603495364 16 1068156239 70
5 4 3 * * 10036313687 8
5 5 2 26611903016 9 5180829911 129
5 6 1 25411429364 205 1614153239 3578
5 6 2 * * 75913193999 1
5 7 1 * * 48662190359 51
7 3 2 5468598824 115 528784319 397
7 3 3 * * 40111506371 1
7 4 2 75003362216 1 16336216607 14
7 5 1 64461971636 18 5800676279 672

11 2 2 8124316712 19 4536377039 69
11 3 2 * * 91355041631 1
11 4 1 89983172564 1 7219509359 95
13 2 2 15290030216 2 10692322055 12
13 3 1 5247449576 493 781846103 2375
13 4 1 * * 55385334839 10
17 2 2 * * 94733724779 1
17 3 1 28205334296 10 5767994839 201
19 3 1 * * 5862529559 69
23 3 1 * * 74447537447 2
29 2 1 5614832984 137 296873471 534
31 2 1 14560212776 62 362103671 367
37 2 1 33184320308 6 2793641999 99
41 2 1 29030848244 6 12558317543 49
43 2 1 * * 28602441479 26
47 2 1 65816894324 2 20751947191 18
53 2 1 * * 34862413351 3
59 2 1 * * 65887828631 2
79 1 1 5114393428 154 888934163 445
83 1 1 2390420804 136 884989055 354
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Table 5. (continued)

p e1 e2 first even Δ # even Δ first odd Δ # odd Δ

89 1 1 2339707096 99 1941485183 259
97 1 1 9388308724 70 2179032511 177

101 1 1 4293806984 45 758562611 164
103 1 1 19084053944 45 787024943 132
107 1 1 4576627816 40 4041299887 125
109 1 1 2202664232 30 4903396807 97
113 1 1 3422486836 30 1047199379 71
127 1 1 7127111912 21 3482629127 46
131 1 1 16018714472 12 2884161823 45
137 1 1 37914915092 4 4549823483 38
139 1 1 50553654520 4 8396560295 29
149 1 1 56336668888 4 15233330011 20
151 1 1 42941394424 4 13310472899 19
157 1 1 19416052676 5 15661511531 24
163 1 1 46586000024 3 10302820679 15
167 1 1 20926233044 2 22669688623 13
173 1 1 84419230376 4 14602373903 14

Table 6. Non-cyclic rank 3 p-Sylow subgroups

p e1 e2 e3 first even Δ # even Δ first odd Δ # odd Δ

3 2 2 2 3457439416 18 364435991 35
3 3 2 2 18741973496 9 11037391871 8
3 3 3 2 * * 20687610651 1
3 4 2 2 12251300788 4 9766538987 7
3 4 3 1 2245873412 29 522302531 67
3 4 4 1 * * 26320580987 1
3 5 2 1 3130903236 272 413771887 625
3 5 2 2 * * 45248632247 2
3 5 3 1 43721231572 5 2232519167 15
3 6 2 1 19996254456 61 376424303 165
3 6 2 2 * * 9483757583 1
3 6 3 1 27291040424 1 53192765699 3
3 7 1 1 6382094504 373 461309711 1183
3 7 2 1 33828950744 4 4163792239 35
3 8 1 1 20594835764 24 5347129751 255
3 8 2 1 * * 59714529551 3
3 9 1 1 * * 12792023879 22
5 2 2 1 7095550408 9 6896149079 14
5 3 2 1 49468612564 1 29867315295 2
5 4 1 1 5871738932 32 3511272455 75
5 5 1 1 * * 25384593659 5
7 2 1 1 2760876184 34 648153647 70
7 3 1 1 32727392168 4 19379510159 9
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Table 6. (continued)

p e1 e2 e3 first even Δ # even Δ first odd Δ # odd Δ

11 1 1 1 3035884424 6 23235125867 5
13 1 1 1 * * 38630907167 2

Table 7. Doubly non-cyclic class groups

p1 p2 first even Δ # even Δ first odd Δ # odd Δ

3 29 3395393108 167 557577743 446
3 31 3792995864 122 386659943 314
3 37 6112785556 55 1455428855 146
3 41 17658330596 26 1166119039 80
3 43 3286197848 30 4075192859 71
3 47 16964359736 14 485163311 44
3 53 41696300984 5 457096511 23
3 59 49943038232 5 10227491279 19
3 61 32515774996 4 8522929927 17
3 67 84253538216 2 26792580191 8
3 71 * * 17614533947 8
3 73 * * 11752995103 9
3 79 85480238756 1 51762875627 6
3 83 * * 50476998239 4
3 97 * * 43344787079 2
3 103 * * 93069031703 1
3 109 * * 35029686023 1
3 113 * * 56428950647 1
5 19 3925533652 102 965381231 271
5 23 14260068616 33 336603767 108
5 29 15541379720 12 10138338695 29
5 31 11788579624 8 17205833747 23
5 37 10719968216 3 16249120831 8
5 41 * * 26948199679 8
5 43 51986729896 1 71114945339 1
5 47 * * 8182208159 4
5 53 * * 22759605719 2
5 71 * * 14917874303 1
5 73 * * 63515115611 1
7 17 6198957812 37 1851928807 87
7 19 24082268968 7 5166049215 53
7 23 22198579640 10 2591136407 20
7 29 * * 21164450935 8
7 31 18704562356 1 68200813691 1
7 37 * * 49918973471 1
7 43 * * 57006644887 1
7 47 * * 98533572251 1

11 13 31664474564 11 13609279311 31
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Table 7. (continued)

p1 p2 first even Δ # even Δ first odd Δ # odd Δ

11 17 50159859416 2 41219120419 10
11 19 * * 19439678123 2
11 23 * * 94266055451 1
13 17 72831993636 1 41507696303 4
13 19 * * 75779342435 2
17 23 * * 54134972891 1

Table 8. Trebly non-cyclic class groups

p1 p2 p3 first even Δ # even Δ first odd Δ # odd Δ

3 5 7 6890424056 78 1475373743 264
3 5 11 49957566964 6 4643885759 30
3 5 13 84831842696 2 13308756863 14
3 5 17 * * 60235736039 5
3 7 11 42843308072 2 * *
3 7 13 * * 38986878143 4
3 7 19 * * 61164913211 1
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Abstract. We study cyclic extensions arising from Kummer theory of
norm algebraic tori. In particular, we compute quintic cyclic polynomials
defining ‘Kummer extension’. The polynomials do not only give all the
quintic cyclic extensions over the rationals by choosing the parameters
but also classify all such extensions. Some arithmetic properties of the
polynomials are also derived.

1 Introduction

The aim of this paper is to study cyclic extensions arising naturally from Kum-
mer theory of norm algebraic tori. In particular, we compute defining polyno-
mials of the quintic cyclic extensions over the field of rational numbers. We can
expect that they have nice algebraic and arithmetic properties like the classical
Kummer polynomials. We will see that our expectation is considerably met.

In the second section, we briefly review the Kummer theory for norm algebraic
tori, which is a basis of the discussion in the subsequent sections. In the third
section, we search fields admitting the Kummer theory. By this consideration,
we find that our quintic case is a seemingly rare case where Q can be taken as a
base field. In the fourth section, we explain how to parameterize these fields by
the points in a projective space. In the fifth section we compute the quintic cyclic
polynomials defining ‘Kummer extensions’ and study some arithmetic properties.

2 Kummer Theory for Norm Tori

In this section, we explain the Kummer theory for the norm tori. For the proof,
we refer to [1].

The notation introduced in this section will be used throughout the paper.
Let k be a field containing a prime field k0. We fix an separable closure k̄

of k and assume that all separable extensions of k are contained in the fixed
separable closure k̄. For a positive integer n, we choose a primitive n-th root
of unity ζn such that ζd = ζ

n/d
n holds for any divisor d of n. Let m > 1 be an

integer prime to char(k) and K = k(ζm) and n = [K : k].
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The norm torus associated to K/k is defined by the exact sequence of algebraic
k-tori:

1 → R
(1)
K/kGm → RK/kGm

NK/k→ Gm → 1,

where the last map NK/k is the induced norm map. The algebraic torus R
(1)
K/kGm

is of dimension n − 1 and splits over K, namely we have an isomorphism
R

(1)
K/kGm

∼= Gn−1
m defined over K. As an algebraic variety it is defined as a

norm hyper-surface:

R
(1)
K/kGm = Spec

(
k[x1, . . . , xn]/(NK/k(x1, . . . , xn) − 1)

)
and the points on it can be identified with matrices of determinant 1 in the
regular representation of K over k for some fixed basis.

From now on we make the following assumptions:

(I) K/k is a non-trivial cyclic extension;
(II) m is square-free. Moreover if we write m = p1 . . . pr with distinct primes

pj (j = 1, . . . , r), we have pj ≡ 1 (mod n);
(III) [k0(ζpj ) : k ∩ k0(ζpj )] = n for each prime divisor pj of m;
(IV) every prime ideal of Z[ζn] lying above every pj is principal.

By (IV) there exists an element λ ∈ Z[ζn] of norm m. Let τj denote the el-
ement of Gal(k0(ζm)/k0) satisfying τj(ζm) = ζj

m. We identify G = Gal(K/k)
as a subgroup of Gal(k0(ζm)/k0) by the canonical homomorphism Gal(K/k) ∼=
Gal(k0(ζm)/k ∩ k0(ζm)) ↪→ Gal(k0(ζm)/k0). Under this identification, the group
G is generated by τs where s is an element of order n in (Z/mZ)∗. The assump-
tion (III) is equivalent to saying that s mod pj is also of order n. Using (III)
we can show that, by twisting λ by the action of Gal(Q(ζn)/Q) if necessary, λ
satisfies

s ≡ ζn (mod λ). (1)

We further assume that the following system of Diophantine equations has an
integral solution (t0, t1, . . . , tn−2):

(V)

{
t0 + t1ζd + · · · + tn−2ζn−2

d = 1 for all proper divisors d of n,

t0 + t1ζn + · · ·+ tn−2ζn−2
n = λ,

Under these assumptions, we can show that the element λ of Z[ζn] of norm m

induces an endomorphism, which we denote by the same symbol λ, of R
(1)
K/kGm

of degree m in a natural way and that λ fits for the Kummer duality in the
following theorem.

Theorem 1. If K/k satisfies these five assumptions, then there exists a cyclic
endomorphism λ of R

(1)
K/kGm of degree m which induces the Kummer duality:

R
(1)
K/kGm(k)/λ(R(1)

K/kGm(k)) ∼= Homcont(Gal(k̄/k), R
(1)
K/kGm[λ](k̄)). (2)
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Therefore if K/k satisfies our assumptions, then all the cyclic extensions of k
of degree m are obtained by adjoining the coordinates of the inverse image of a
point in R

(1)
K/kGm(k) by λ:

k(λ−1(P )) (P ∈ R
(1)
K/kGm(k)).

This description is remakable in the theoretical sense, but is not really helpful
for concrete studies of cyclic extension because it is usually given by a system of
algebraic equations with many variables. A single equation defining the extension
is more desirable. We shall compute polynomials defining these extensions in
Section 5 for a particular case.

As we will see in Section 4, the points on R
(1)
K/kGm(k) are rationally param-

eterized by the points on a projective space. Thus Noether’s problem in Galois
theory (see [2] and [3, pp. 115–124]) is completely solved in this case.

3 Fields Admitting Kummer Theory

In this section, we investigate which fields admits the descent Kummer theory in
the previous section. The first four assumptions (I),(II),(III) and (IV) are rather
easier to deal with. In [1, Section 5] we showed the following:

– If m is a prime number, the first three assumptions are satisfied.
– The assumption (IV) is satisfied particularly if Z[ζn] is a principal ideal

domain. There are 29 such n > 1 [4, Chapter 11].
– If n is a prime number and k �# ζpj for all pj dividing m, then (III) is satisfied.

Here we discuss the solubility of the system of Diophantine equations (V):{
t0 + t1ζd + · · · + tn−2ζn−2

d = 1 for all proper divisors d > 1 of n,

t0 + t1ζn + · · ·+ tn−2ζn−2
n = λ.

The determinant of the coefficient matrix of this linear system is of the form∏
i>j(ζ

i
n − ζj

n) and, in particular, is non-zero. Thus the equation always has a
unique rational solution.

If n is a prime, then 1, ζn, . . . , ζn−2
n are independent over Z and therefore the

solution of (V) is integral. But, in general, the determinant is a divisor of a power
of n and it seems difficult to determine precisely when it cancels. One easy case
is settled by the following lemma.

Lemma 1. The linear equations (V) has an integral solution if n = 4 for any
λ ∈ Z[ζ4] with odd norm.

Proof. We write λ = a + bζ4 with integers a, b ∈ Z. Since its norm is odd, we
have a �≡ b (mod 2).

On the other hand, the equation (V) for n = 4 is{
t0 − t1 + t2 = 1,

(t0 − t2) + t1ζ4 = λ.
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It is easy to observe that it has an integral solution if and only if there exists an
integer t2 satisfying 2t2 = 1 − a + b. This is equivalent to that b − a is odd. ��

From the above consideration, it follows that typical examples of the fields ad-
mitting the descent Kummer theory are given by relatively large subfields of
prime cyclotomic fields.

Now we make some numerical investigation for the general case. We shall
search the subfields of K = Q(ζm) (3 ≤ m ≤ 97) admitting the Kummer
theory. For each non-trivial subfield k = K〈τs〉 of K satisfying (I),(II),(III) and
(IV), we determine whether (V) has an integral solution or not. In the following
table, we list m and n = [K : k] and s and λ for which there exist an integral
solution of the equation (V) (we omit the cases where n is a prime number or 4):

m n s λ

13 6 4 [3,−4]
31 6 26 [1,−6]
37 9 16 [1, 0,−1, 0, 0, 1]
73 8 63 [−1,−2, 2, 0]
79 6 24 [3,−10]
89 8 52 [−3, 0, 2,−2]
97 8 47 [−2, 3,−1, 1]

Here λ’s are given with respect to the basis 1, ζn, . . . , ζ
ϕ(n)−2
n . Note that the

choice of λ depends on the choice of the primitive n-th root of unity (see (1)).

4 Parameterization of the Rational Points on Norm Tori

By the Kummer duality (2), the cyclic extensions of the base field k are parame-
terized by the group R

(1)
K/kGm(k) of k-rational points. Thus it is important to un-

derstand this group of rational points. Recall first that the points in R
(1)
K/kGm(k)

can be identified with elements of K∗ whose norm to k∗ are 1:

R
(1)
K/kGm(k) ∼= ker(NK/k : K∗ −→ k∗).

Under this identification, we consider the following map:

φ : K∗ −→ R
(1)
K/kGm(k), β �→ β

βτ

where τ =τs is the previously fixed generator of the Galois group Gal(K/k). By
Hilbert 90, this map is surjective. Furthermore, for a given element in
R

(1)
K/kGm(k), this β is uniquely determined up to multiplication with elements of

k∗ (see [5, Remark (3) after Lemma 10.2.4]). Regarding K as an n-dimensional
vector space over k, we obtain a map

φ : Pn−1(k) −→ R
(1)
K/kGm(k).
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Namely if u = (u1 : · · · : un) ∈ Pn−1(k), then

φ(u) =
β

βτ

with β = u1ξ1 + · · ·+unξn where ξ1, . . . , ξn is a fixed basis of K/k. We can write

β

βτ
= v1(u1 : · · · : un)ξ1 + · · ·+ vn(u1 : · · · : un)ξn

where all vi(u1 : · · · : un) are rational functions of u1, . . . , un.
For given α ∈ R

(1)
K/kGm(k), it is also possible to compute β satisfying φ(β) = α

explicitly. In fact we can take

β =
∑

0≤i<n

τ i(x)
∏

0≤k<i

τk(α),

where x ∈ K should be taken so that β �= 0 holds (see [5, Remark (1) after
Lemma 10.2.4]).

Remark 1. In [1] we took a parameterization coming from the geometry. Namely
since R

(1)
K/kGm is a rational variety if K/k is a cyclic extension, we have a mor-

phism from a projective space to the torus. But, in general, this morphism does
not induce a surjection on the rational points. Therefore the parameterization
used in [1, Example 5.3] is not complete. On the other hand, the parameter-
ization in [1, Example 5.2] is correct since the geometric parameterization is
surjective on the rational points.

5 Cyclic Quintic Polynomials over the Rationals

By the discussion in the end of Section 3, it seems rare that our Kummer duality
holds over the field of rational numbers. These seemingly rare cases happen
when (m, n) = (3, 2) and (5, 4). A cyclic cubic polynomial corresponding to the
former case is computed in [1, Example 5.2]. See also [6] for a different but
equivalent expression of this cyclic cubic polynomial. We deal with the latter
case (m, n) = (5, 4) here. Let k = Q and K = Q(ζ5). The aim is computing a
quintic Kummer polynomial parameterizing all cyclic quintic extensions over Q.
Throughout this section we simply write ζ for ζ5. The Galois group of K/k is
generated by τ = τ2 : ζ �→ ζ2. Hence we have s = 2. We take {ζ, ζ2, ζ4, ζ3} for a
basis of K/k (they form a normal basis of K/k) and consider the norm equation
N(x1, x2, x3, x4) with respect to this basis:

N = N(x1, x2, x3, x4)

= NK/k(x1ζ +x2ζ2 +x3ζ4 +x4ζ3)

= x4
1−x3

1x2−x3
1x3−x3

1x4 +x2
1x2

2 +2x2
1x2x3 +2x2

1x2x4 +x2
1x2

3−3x2
1x3x4

+x2
1x2

4−x1x3
2 +2x1x2

2x3−3x1x2
2x4−3x1x2x2

3−x1x2x3x4 +2x1x2x2
4

−x1x3
3 +2x1x2

3x4 +2x1x3x2
4−x1x3

4 +x4
2−x3

2x3−x3
2x4 +x2

2x2
3 +2x2

2x3x4

+x2
2x2

4−x2x3
3 +2x2x2

3x4−3x2x3x2
4−x2x3

4 +x4
3−x3

3x4 +x2
3x2

4−x3x3
4 + x4

4.
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Our model of R
(1)
K/kGm is

Spec (k[x1, x2, x3, x4]/(N(x1, x2, x3, x4) − 1)) .

Let ζ4 = i. There are two prime ideals (2 + i) and (2 − i) in Z[i] lying above 5.
In view of (1), we should choose λ = 2− i. We solve the system of Diophantine
equations (V) and obtain (t0, t1, t2) = (1,−1,−1). The endomorphism of the

character module ̂
R

(1)
K/kGm can be computed from (t0, t1, t2) (see [1, Proposition

2.1]), which induces an endomorphism of the split torus G3
m defined by

(X1, X2, X3) �→ (X1X−1
2 X−1

3 , X1X2
2 , X2X2

3 ). (3)

We compute the corresponding endomorphism λ on the above model of R
(1)
K/kGm:

λ : (x1, x2, x3, x4) �→ (x′
1, x′

2, x′
3, x′

4)

where

x′
1 =− x3

1 + 2x2
1x2 + x2

1x4 − 2x1x2x4 + x1x2
3 − x3

2

+ x2
2x3 + 2x2

2x4 − 2x2x3x4 − x3
3 + 2x3x2

4 − x3
4,

x′
2 =− x3

1 + 2x2
1x4 + x1x2

2 − 2x1x2x3 + 2x1x2
3 − 2x1x3x4

− x3
2 + 2x2

2x3 + x2x2
4 − x3

3 + x2
3x4 − x3

4,

x′
3 =− x3

1 + x2
1x3 + 2x1x2

2 − 2x1x2x4 + x1x2
4 − x3

2

+ x2x2
3 − 2x2x3x4 + 2x2x2

4 − x3
3 + 2x2

3x4 − x3
4,

x′
4 =− x3

1 + x2
1x2 + 2x2

1x3 − 2x1x2x3 − 2x1x3x4

+ 2x1x2
4 − x3

2 + x2
2x4 + 2x2x2

3 − x3
3 + x3x2

4 − x3
4.

On the other hand, a rational parameterization P3(k) −→ R
(1)
K/kGm(k) is induced

by

β = u1ζ + u2ζ2 + u3ζ4 + u4ζ3 �→ β/βτ = v1ζ + v2ζ2 + v3ζ4 + v4ζ3.

Explicitly we have

v1 =
1
N

(−2u3
1u2+u3

1u3+u3
1u4+2u2

1u2
2−u2

1u2u4−3u2
1u3u4−u1u3

2−u1u2
2u3

−2u1u2u2
3+6u1u2u3u4+u1u2u2

4+u1u2
3u4−u1u3u2

4−u1u3
4−u3

2u3+u3
2u4

+2u2
2u2

3−2u2
2u2

4−u2u3
3−3u2u3u2

4+2u2u3
4+u4

3−2u3
3u4+2u2

3u2
4),

v2 =
1
N

(−u3
1u2+2u3

1u3+u2
1u2u3−u2

1u2u4−2u2
1u2

3−3u2
1u3u4+2u2

1u2
4+u1u3

2

−u1u2
2u3−3u1u2

2u4+6u1u2u3u4+u1u2u2
4 +u1u3

3−2u1u3
4−2u3

2u3+u3
2u4

+2u2
2u2

3−u2u3
3−u2u2

3u4−2u2u3u2
4−u3

3u4+2u2
3u2

4−u3u3
4+u4

4),
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v3 =
1
N

(u4
1−2u3

1u2−u3
1u4+2u2

1u2
2 +u2

1u2u3−2u2
1u3u4+2u2

1u2
4−u1u2

2u3−3u1u2
2u4

−3u1u2u2
3+6u1u2u3u4+u1u3

3−u1u3u2
4−u1u3

4−u3
2u3+2u3

2u4+u2
2u3u4

−2u2
2u2

4+u2u3
3−u2u2

3u4+u2u3
4−2u3

3u4+2u2
3u2

4−u3u3
4),

v4 =
1
N

(−u3
1u2+u3

1u3−u3
1u4+2u2

1u2
2−u2

1u2u4−2u2
1u2

3+2u2
1u2

4−u1u3
2−2u1u2

2u4

−3u1u2u2
3+6u1u2u3u4+2u1u3

3+u1u2
3u4−u1u3u2

4−2u1u3
4+u4

2−2u3
2u3

+2u2
2u2

3+u2
2u3u4−u2u2

3u4−3u2u3u2
4+u2u3

4−u3
3u4+u3u3

4)

where N = N(β) = N(u1, u2, u3, u4). Now the system of equations

x′
1 = v1, x′

2 = v2, x′
3 = v3, x′

4 = v4

defines our cyclic extension L = k(x1, x2, x3, x4). Unfortunately it is difficult to
solve this system of equations for one particular variable. This difficulty can be
overcome by the method developed in [1]. The key observation is that, since our
extension is a Kummer extension, the Galois action on (x1, x2, x3, x4) is given
by the multiplication of an element in ker(λ)(k̄). Moreover the group ker(λ)(k̄)
is isomorphic to the group of m-th roots of unity in K∗ over K. Hence by

ζ(x1ζ +x2ζ2 + x3ζ4 + x4ζ3) = −x3ζ + (x1 − x3)ζ2 + (x4 − x3)ζ4 + (x2 − x3)ζ3,

we find that the action of a generator σ of Gal(L/k) on (x1, x2, x3, x4) is given
by

(x1, x2, x3, x4) �→ (−x3, x1 − x3, x4 − x3, x2 − x3).

Therefore the conjugates of x1 over k are

x1, −x3, x3 − x4, x4 − x2, x2 − x1.

From this it follows that L is generated only by x1 over k: L = k(x1). At this
stage, we do not know how to express these by the parameters u1, u2, u3 and u4.
For that purpose, we write x1, x2, x3, x4 in terms of X1, X2, X3. Since Xi’s are
the coordinates on the split torus, they relate by

Xi = x1ζτ i−1

+ x2(ζ2)τ i−1

+ x3(ζ4)τ i−1

+ x4(ζ3)τ i−1

(i = 1, 2, 3).

It is also natural to define X4 by this formula with i = 4. Then the equation
satisfied by x1 is

F (T ) =F (u1 : u2 : u3 : u4; T )
=(T − x1)(T − (−x3))(T − (x3 − x4))(T − (x4 − x2))(T − (x2 − x1))

=T 5 + (ξ3X1X3 + ξτ
3 X2X4)T 3

+ (ξ2X2
1X4 + ξτ

2 X1X2
2 + ξτ2

2 X2X2
3 + ξτ3

2 X3X2
4 )T 2

+ (−X1X2X3X4/25 + ξ11X3
1X2 + ξτ

11X3
2X3 + ξτ2

11 X3
3X4 + ξτ3

11 X43X1

+ ξ12X2
1X2

3 + ξτ
12X2

2X2
4 )T
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+ (ξ01X5
1 + ξτ

01X5
2 + ξτ2

01 X5
3 + ξτ3

01 X5
4

+ ξ02X3
1X3X4 + ξτ

02X1X3
2X4 + ξτ2

02 X1X2X3
3 + ξτ3

02 X2X3X3
4

+ ξ03X2
1X2

2X3 + ξτ
03X2

2X2
3X4 + ξτ2

03 X1X2
3X2

4 + ξτ3

03 X2
1X2X2

4 ),

where

ξ3 =
1
5
(3ζ + 2ζ2 + 3ζ4 + 2ζ3), ξ2 =

1
25

(2ζ − ζ2 − 2ζ4 + ζ3),

ξ11 =
1
25

(ζ + ζ4), ξ12 =
1
25

(−2ζ − ζ2 − 2ζ4 − ζ3), (4)

ξ01 =
1

625
(ζ − 2ζ2 − ζ4 + 2ζ3), ξ02 =

1
125

(ζ2 − ζ3)

ξ03 =
1

125
(−ζ − ζ2 + ζ4 + ζ3).

Setting

αi = v1ζτ i−1

+ v2(ζ2)τ i−1

+ v3(ζ4)τ i−1

+ v4(ζ3)τ i−1

(i = 1, 2, 3, 4),

we shall write the coefficients of F (T ) in terms of these αi’s. By (3) we have

X1X−1
2 X−1

3 = α1, X1X2
2 = α2, X2X2

3 = α3. (5)

We solve these for X5
1 and obtain

X5
1 = α4

1α2α2
3. (6)

At this point, it is easy to see

L(ζ) = K(X1, X2, X3, X4) = K

(
5

√
α4

1α2α2
3

)
. (7)

Now starting from the second equation of (5), we can express X2, X3, X4 using
only X1:

X2 = α−2
1 α−1

3 X2
1 , X3 = α−3

1 α−1
2 α−1

3 X4
1 , X4 = α1X−2

1 . (8)

Substituting these formulas, we obtain

F (T ) =T 5 +
1
2
Tr(ξ3α1α3)T 3 + Tr(ξ2α1)T 2

+
(
− 1

25
+ Tr(ξ11α2

1α2α3) +
1
2
Tr(ξ12α2

1α2
2)
)

T

+
(
Tr(ξ01α4

1α2α2
3) + Tr(ξ02α1α2α3) + Tr(ξ03α2

2α4)
)

,

where Tr is the trace map from K(u1, . . . , u4) to k(u1, . . . , u4). Similarly we can
compute a polynomial Fi for xi(i = 2, 3, 4). We state this as a theorem.
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Theorem 2. A polynomial having xi (i = 1, 2, 3, 4) as its zero is given by

Fi(T ) =T 5 +
1
2
Tr(ξτ i−1

3 α1α3)T 3 + Tr(ξτ i−1

2 α1)T 2

+
(
− 1

25
+ Tr(ξτ i−1

11 α2
1α2α3) +

1
2
Tr(ξτ i−1

12 α2
1α2

2)
)

T

+
(
Tr(ξτ i−1

01 α4
1α2α2

3) + Tr(ξτ i−1

02 α1α2α3) + Tr(ξτ i−1

03 α2
2α4)
)

,

where the constants ξ’s are given by (4). In particular, every cyclic quintic
extension of Q is obtained as the splitting field of F1 with some parameter
u1, . . . , u4 ∈ Q.

Of course, we can write down the equation using the original parameters
u1, u2, u3 and u4. But it would require a few hundred lines.

Other generic families of cyclic quintic polynomials with less parameters are
known (for example [7]). But our family has several advantages over previously
known ones, because it inherits good properties from the classical Kummer the-
ory. To tell a few, the Galois action is, as we have seen, easily deduced. Also we
can tell when two fields with different parameters are isomorphic. Moreover the
decomposition law of the fields can also be deduced from the classical framework
of Kummer theory. We shall see these properties in the following.

Example 1. We compute some numerical examples of quintic cyclic polynomials
for (u1 : u2 : u3 : u4) ∈ P3(Q).

(i) The point (u1 : u2 : u3 : u4) = (0 : 0 : −1 : 0) corresponds to ζ =
(1, 0, 0, 0) ∈ R

(1)
K/kGm(Q) and the corresponding polynomial is

F (0 : 0 : −1 : 0; T ) = T 5 − T 3 − 2
5

T 2 +
1

125
.

This polynomial defines a cyclic quintic extension L over Q with discrimi-
nant 58.

(ii) The point (u1 : u2 : u3 : u4) = (1 : −1 : 0 : 0) corresponds to ζ + ζ3 + ζ4 =
(1, 0, 1, 1) ∈ R

(1)
K/kGm(Q) and the corresponding polynomial is

F (1 : −1 : 0 : 0; T ) = T 5 − 2T 3 − 1
5

T 2 +
4
5

T +
7

125
.

We shall show that the corresponding two fields are isomorphic. We have

(1, 0, 0, 0)(−1, 0,−1, 0) = (1, 0, 1, 1) in R
(1)
K/kGm(Q).

Hence if (−1, 0,−1, 0) is contained in λ(R(1)
K/kGm(Q)), then it follows

(1, 0, 0, 0) ≡ (1, 0, 1, 1) (mod λ(R(1)
K/kGm(Q))).

From our Kummer duality (2) we can conclude that two fields defined by F (0 :
0 : −1 : 0; T ) and F (1 : −1 : 0 : 0; T ) are isomorphic.
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Now we show (−1, 0,−1, 0) ∈ λ(R(1)
K/kGm(Q)) by checking the corresponding

point in the split torus is in the image of (3). The first coordinate of the point
on the split torus corresponding to (−1, 0,−1, 0) is α1 = −ζ − ζ4. We also have
α2 = −ζ2 − ζ3, α3 = −ζ4 − ζ. In view of (8), the point (α1, α2, α3) ∈ G3

m(K) is
in the image of the map (3) if and only if (6) has a solution in K:

X5
1 = −5ζ3 − 5ζ2 − 8.

In fact, we can find a solution X1 = ζ2 + ζ4 corresponding to (0, 1, 1, 0) ∈
R

(1)
K/kGm(Q). Therefore we have λ((0, 1, 1, 0)) = (−1, 0,−1, 0) as desired.

Describing the decomposition law in L/Q is also an easy task since it is a Kum-
mer extension. Indeed, we have the following theorem.

Theorem 3. Let L be a cyclic quintic field over Q corresponding to the parame-
ter (u1 : u2 : u3 : u4) ∈ P3(Q). Let β = u1ζ +u2ζ2+u3ζ4 +u4ζ3. We may and do
assume that β is an algebraic integer in Q(ζ). Also let βi = βτ i−1

(i = 1, 2, 3, 4)
and B = β4

1β2
2β3β3

4 . Let p be a prime number and

pZ[ζ] = (p1 . . . pg)e, f = deg(pi)

the decomposition of p in Q(ζ). For each pi, let vpi be the normalized valuation.
Set vi = vpi(β). We define an integer u = up by the following formula:

u =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10v1 if p ≡ 2 or 3 (mod 5);
5(v1 + v2) if p ≡ 4 (mod 5);
4v1 + 3v2 + v3 + 2v4 if p ≡ 1 (mod 5);
10v1 if p = 5.

(i) The case where p �= 5. A prime number p is unramified in L/Q if and only
if 5 divides u. If it is the case, then p splits completely in L/Q if and only if
the congruence x5 ≡ B (mod p1+u) is soluble in x ∈ K.
If (5, u) = 1, then p ramifies totally and tamely in L/Q.

(ii) The case where p = 5. Let a be the maximal integer in the set

{k | x5 ≡ B (mod pk+u) is soluble in K}.

Then we have
(a) 5 splits completely if and only if a ≥ 6;
(b) 5 is inert if and only if a = 5;
(c) 5 ramifies totally if and only if a ≤ 4.
When p ramifies, the exponent of the different of L/Q at a prime ideal of L
lying above p is given by 9 − a.

Proof. This theorem is a consequence of Hecke’s theory describing the decom-
position law in Kummer extensions of prime degree [5, 10.2.3]. In fact the de-
composition in L/Q is completely determined by that of the classical Kummer
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extension L(ζ)/K. On the other hand, if we write α1 = β/βτ , then it follows
from (7) that L(ζ) = K( 5

√
α4

1α2α2
3) = K( 5

√
B), where we have B ∈ Z[ζ] by our

assumption.
On the other hand, the decomposition types of p in Q(ζ) are given by

p ≡ 2 or 3 (mod 5) =⇒ e = g = 1, f = 4
p ≡ 4 (mod 5) =⇒ e = 1, f = g = 2
p ≡ 1 (mod 5) =⇒ e = f = 1, g = 4

p = 5 =⇒ e = 4, f = g = 1.

From this it is easy to show that u = vp1
(B) holds in each case and that the

5-divisibility of u does not depend on the order of pi’s.
Now there is no difficulty to deduce the result by applying Hecke’s theorem

to K( 5
√

B)/K.
The claim for the different also follows from Hecke’s theorem and the chain

relation of the differents. ��

The important point here is that we can choose a Kummer generator of L(ζ)/K
canonically from the parameters (u1 : u2 : u3 : u4). In the case of other generic
cyclic polynomials such as Hashimoto-Tsunogai’s polynomial in [7], Kummer
generators are constructed usually by means of Lagrange resolvent (see below).
This form of the generator does not readily imply the ramification property and
the decomposition law.

Finally we study a relation between our polynomial and a well-known quintic
family of Emma Lehmer. For n ∈ Q, let

Gn
L(T ) = T 5 + n2T 4 − (2n3 + 6n2 + 10n + 10)T 3

+ (n4 + 5n3 + 11n2 + 15n + 5)T 2 + (n3 + 4n2 + 10n + 10)T + 1

be Lehmer’s quintic polynomial. It is known that it defines a cyclic quintic
extension over Q if the parameter n is chosen in Q. We embed Lehmer’s family
into our family. By doing so, we can tell how large Lehmer’s family is and when
two Lehmer type polynomials define the same field. Also the decomposition law
of the fields defined by Gn

L should be easily deduced from the theorem above.
Let us write n = u/v with u, v ∈ Z and (u, v) = 1, v > 0 and let G(u, v; T ) =

Gn
L(T ) (cf. [8]).

Theorem 4. The polynomials F (u− v : −2v : −4v−u : −3v; T ) and G(u, v; T )
define the same field.

Proof. Let LF and LG be the quintic cyclic fields defined by F (u−v,−2v,−4v−
u,−3v; T ) and G(u, v; T ) respectively. It is enough to show LF (ζ) = LG(ζ) since
LF and LG are the unique quintic subfields of LF (ζ) and LG(ζ) respectively. Let
β = (u− v)ζ − 2vζ2 + (−4v− u)ζ4 − 3vζ3. Writing βi = βτ i−1

(i = 1, 2, 3, 4), we
have LF (ζ) = Q(ζ)( 5

√
β4

1β2
2β3β3

4) by (7). We now compute a Kummer generator
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of LG(ζ). Let η be a root of Gn
L. In their paper [9], Schoof and Washington show

that a generator σ of Gal(Q(η)/Q) acts by

σ : η �→ (n + 2) + nη − η2

1 + (n + 2)η
.

Using this formula, we form a Lagrange resolvent ([5, Theorem 5.3.5 (4)]):

ϑ =
1
5

4∑
j=0

ζ−jσj(η).

Then ϑ is a Kummer generator of LG(ζ). Namely we have LG(ζ) = Q(ζ)(ϑ) and
ϑ5 ∈ Q(ζ). We compute

Bϑ5 = −(1 + 2ζ2 + 2ζ3)5(5v − 2uζ3 − uζ2 − 2uζ)5(uζ3 + 2u + 2uζ + 5v)5

× (2u + 2uζ2 + uζ + 5v)5(uζ3 + u + 5v − uζ2 − uζ)55−15v−10 ∈ (Q(ζ)∗)5.

This implies LF (ζ) = LG(ζ) as we desired. ��
Hence Lehmer’s quintics occupy the locus given by (u−v : −2v : −4v−u : −3v)
in the full parameter space P3(k).

Since the polynomial F (u− v : −2v : −4v−u : −3v; T ) is of moderate length,
we write it down here:

F (u − v,−2v,−4v − u,−3v; T ) = T
5 +

−u4
− 6u3v − 20u2v2

− 30uv3
− 25v4

u4 + 5u3v + 15u2v2 + 25uv3 + 25v4 T
3

+
−u3v − 4u2v2

− 10uv3
− 10v4

u4 + 5u3v + 15u2v2 + 25uv3 + 25v4 T
2+

u6v2 + 7u5v3 + 24u4v4 + 45u3v5 + 50u2v6 + 25uv7

(u4 + 5u3v + 15u2v2 + 25uv3 + 25v4)2
T

+
v3(u9 + 10u8v + 53u7v2 + 184v3u6 + 454u5v4 + 815v5u4 + 1050v6u3 + 925v7u2 + 500v8u + 125v9)

(u4 + 5u3v + 15u2v2 + 25uv3 + 25v4)3
.
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Abstract. In this note we report on the enumeration of totally real
number fields of discriminant at most 109 with no proper subfield and
give some statistics on their properties.

1 Introduction

The enumeration of number fields with bounded discriminant (and fixed degree)
has a long history. Often the aim was the determination of the field(s) with min-
imal possible absolute value of the discriminant for given degree and possibly
given Galois group of the Galois closure. See for example the article [10]. Re-
cently, the focus has shifted towards investigating the asymptotic behaviour of
the counting function

N(G, X) := #{K/Q | Gal(K/Q) = G and |d(K/Q)| ≤ X}

of fields with Galois group G and discriminant bounded by X , as X goes to
infinity, see for example [13,6]. The author has put forward in [13,14] a precise
conjecture predicting the main term in the asymptotic of N(G, X), which is
known to hold for abelian groups G as well as for all groups of degree at most 4
except the alternating group A4.

In this note we report on the computer calculation of all primitive totally
real number fields of discriminant at most 109 (and in some cases even with
larger discriminant). Here, a number field K/Q is called primitive if it contains
no proper subfield except Q. Previously, such lists were often only computed for
imprimitive fields, since for those the existence of intermediate fields provides
a natural reduction to two (easier) subproblems. Moreover, imprimitive fields
of degree less than 10 are solvable and thus lend themselves to methods from
class field theory. Thus our results complement earlier extensive computations
for imprimitive extensions.

By the unconditional Odlyzko bound [16, p.223], a totally real number field
of discriminant at most 109 has degree n = (K/Q) at most 9. Assuming the
generalized Riemann hypothesis, this can be improved to n ≤ 8. By the result
of Minkowski, for each fixed degree there exist only finitely many fields with
bounded discriminant. Thus there is a finite number of totally real number fields
of discriminant at most 109.

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 114–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Totally Real Primitive Number Fields of Discriminant at Most 109 115

Theorem 1. There exist exactly 389 013 654 totally real primitive number fields
of discriminant at most 109, as given in Table 1.

Table 1. Totally real primitive number fields

n number of fields
1 1
2 303,963,559
3 64,659,361
4 17,897,739
5 2,341,960
6 147,600
7 3,432
8 2

total 389,013,654

For degrees 2 and 3, as well as for degree 4 fields with Galois group A4, all
such fields were known before, see for example [7]. They can be found by using
methods from class field theory. For degree 4 extensions with group S4 as well
as for extensions of degree at least 5, our results are new. In particular this
seems to be the first time that large numbers of degree 5 and degree 6 fields
with primitive Galois group are enumerated.

The method used to find these fields is an adaptation to the totally real case
of the theorem of Hunter (see [4, Thm. 6.4.2] for example) which has already
often been used before. This theorem states that in order to enumerate primitive
elements of all primitive fields of fixed degree and bounded discriminant, an
explicitly given finite set of possible minimal polynomials has to be searched.
We have implemented this algorithm in the computer algebra system KANT
[9], suitably tailored to just produce totally real fields. The resulting lists of
polynomials were reduced using the Pari-gp command polredabs. The total
computations took several years of CPU-time on a SUN-workstation.

We use our results to study the distribution of class numbers, the maximal
number of extensions with fixed discriminant, and possible asymptotic expan-
sions of the counting functions N(G, X).

The leading term in the asymptotic behaviour of N(Sn, X) is known for n ≤ 5,
and there is a prediction by Bhargava for n ≥ 6. Our results show the following
phenomenon, which had previously already been observed in degrees n = 3, 4:
In the range of our tables, the actual number of Sn-fields is always below the
proven respectively expected leading term, and consequently the first error term
has a negative sign. Thus, for small discriminants, we find less Sn-extensions
than expected. Furthermore, compared to the Cohen-Martinet heuristic for class
numbers [8], we observe less fields than expected with class number larger than 1
in the range of our data. Nevertheless the proportion of such fields increases as
the discriminant increases. Finally, in the range of our data the proportion of
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pairs, triples, ... of fields with equal discriminant increases with the size of the
discriminant, so again there seem to be too few multiple discriminants at first.

2 Extensions of Degree 2 and 3

The only (primitive) group in degree 2 is the cyclic group C2 of order 2. The
number of real quadratic fields of discriminant at most 109 equals 303,963,559
by [7, Table 2.2], for example.

Both groups in degree 3, the cyclic group C3 and the symmetric group S3
are primitive. The number of totally real extensions of discriminant at most
109 can easily be computed using class field theory respectively the method
of Belabas [1], and it equals 5008 for C3-extensions respectively 64,654,353 for
S3-extensions by [7, Table 3.2 and 4.2].

3 Extensions of Degree 4

The primitive groups in degree 4 are the alternating group A4 and the symmetric
group S4.

According to [7, Table 8.3] there are 2037 totally real A4-extensions of Q of
discriminant at most 109. It is easy to reproduce this result, obtained by using
Kummer theory, with the Hunter method. The asymptotic of A4-extensions of
Q is expected to be given by

N(A4, X) = c1X
1

2 log X + c2X
1

2 + O(Xα)

for positive constants c1, c2 and some 1/4 < α < 1/2 by [7, 8.1] (see also [14]
for a prediction of the leading term). This, however, has not yet been proved
(see [5] for partial results).

Table 9.3 in [7] gives the number of totally real S4-fields of discriminant at
most 107. Computations using Hunter’s method yield the results in Table 2 for
discriminant at most 109. (Note that the estimate for totally real S4-fields up
to 108 made in [7, 9.2] is within 0.5 percent of the correct value.)

Table 2. Totally real S4-fields

X N(S4, X) E(S4, X) α1 α2 P (S4, X) Δ(S4, X)
104 13 240 0.595 0.952 19 0.19
105 449 2086 0.664 0.923 462 0.22
106 8301 17047 0.705 0.908 8384 0.32
107 120622 132855 0.732 0.892 120877 0.34
108 1529634 1005137 0.750 0.876 1529780 0.27
109 17895702 7464718 0.764 0.870 17896723 0.33



The Totally Real Primitive Number Fields of Discriminant at Most 109 117

By the theorem of Bhargava [3] the number of totally real S4-fields grows
linearly with the discriminant, with proportionality constant

c0 :=
1
48

∏
p≥2

(1 +
1
p2 − 1

p3 − 1
p4 ) = 0.0253477143104 . . .

where the product ranges over all primes p. It seems interesting to obtain in-
formation on the error term in this asymptotic behaviour. For this assume that
E(S4, X) := c0X − N(S4, X) ∼ λXα for some α < 1, λ > 0. Then

α1(S4, X) := log E(S4, X)/ log X

and
α2(S4, X) := log

(
E(S4, X)/E(S4, X/2)

)
/ log(2)

both converge to α when X → ∞. In the fourth and fifth column of Table 2
we give α1(S4, X) and α2(S4, X). In the range of our data, the first increases
monotonically, while the second decreases, suggesting that the exponent α of the
error term should satisfy 0.76 ≤ α ≤ 0.87.

In fact, the authors of [7] expect, following a communication by Yukie, that
α = 5/6, and more precisely an asymptotic behaviour of the form

N(S4, X) = c0X + c1X
5

6 + c2X
3

4 log X + c3X
3

4 + O(Xβ)

with some β < 3/4. Using their count up to discriminant 107 they present least
squares approximations to the constants c1, . . . , c3. Assuming this form of the
asymptotic expansion, using a least square method with our more extensive
results we get the following approximations

c1 = −0.354, c2 = 0.012, c3 = 0.418,

to the constants appearing in the conjectured expansion for N(S4, X). The value
of

P (S4, X) := c0X + c1X
5

6 + c2X
3

4 log X + c3X
3

4 ,

with c1, c2, c3 as before, is given in column 6 of Table 2. The last column gives
the quantity

Δ(S4, X) := log |N(S4, X)− P (S4, X)|/ log(X).

The predicted number of totally real S4-fields of discriminant at most 1010

equals 199 133 067, which seems out of the range of the Hunter method at present.
We have used our data for S4 to count multiplicities of discriminants. This

question has aroused some interest recently. For example, Klüners [11] has shown
that the number of S4-fields with discriminant D is at most equal to Oε(D1/2+ε)
for all ε > 0. It is conjectured, though, that this number should rather be of the
order Oε(Dε), an expectation consistent with our data in Table 3.

It may be remarked from the table that the number of 7-tuples of discriminants
is more than twice the number of 6-tuples. Most of these 7-tuples arise in the
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Table 3. k-tuples of S4-discriminants

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N(S4)

5 · 106 4117874 191762 150463 7913 1122 388 1016 52 5 5
107 8128708 400282 319821 18453 2588 973 2485 124 19 8 1 1 1

1.5 · 107 12103274 614573 494938 29990 4288 1623 4198 197 41 21 2 3 1 1

following way. Take an S3-field L of degree 3 whose class group contains an
elementary abelian subgroup E of order 8. For any of the seven subgroups of
E of order 2, there exists an unramified S4-extension of L, so this gives rise
to seven S4-fields with the same discriminant, all containing L in their Galois
closures. Similarly, one may obtain 24 − 1 = 15-tuples of equal discriminants
starting from S3-fields with 2-rank four.

We have also calculated the class numbers of all S4-fields in the range using
the bnfclgp-command in Pari-gp (so the correctness of the results relies on a
heuristic strengthening of the generalized Riemann hypothesis, as described in
the Pari-manual). The total number of fields with given class number is displayed
in Table 4.

Table 4. Class numbers of S4-fields

h 1 2 3 4 5 6 7 8 9 10 11 12
n(h) 15354301 2074924 187536 206241 22469 21858 5271 13859 1750 2362 722 1839

h 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
n(h) 322 541 176 683 103 143 51 166 36 70 17 84 16 27 13 35 2 9 2 17 6 4 6 8

h 38 39 40 42 43 44 45 46 48 51 52 53 59
n(h) 6 3 5 2 4 2 1 2 3 1 2 1 1

According to the heuristic of Cohen and Martinet [8, (8.3)] the probability
that the odd part h′

K of the class number of a totally real S4-extension K/Q of
degree 4 equals the odd integer h should be given by

pr(h′
K = h) = c4

⎛⎝h4
∏
pj |h

(1 − p−j)

⎞⎠−1

for some explicit constant c4 = .978989..., where the product runs over all (odd)
prime powers dividing h.

In Table 5 we give the relative proportions of the first few class numbers for
chunks of 4 500 000 consecutive S4-fields, as well as the proportion predicted
in [8]. One observes that all class numbers bigger than 1 appear less often than
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Table 5. Relative proportions of S4-class numbers

h′ 1 3 5 7 9 11 13
1 − 4500000 .9881 .1025E−1 .121E−2 .273E−3 .08E−3 .32E−4 .13E−4

4500001 − 9000000 .9863 .1183E−1 .142E−2 .316E−3 .09E−3 .43E−4 .22E−4
9000001 − 13500000 .9855 .1244E−1 .147E−2 .359E−3 .12E−3 .50E−4 .22E−4

13500001 − 17895702 .9852 .1274E−1 .150E−2 .360E−3 .13E−3 .53E−4 .22E−4
Cohen − Martinet .9790 .1813E−1 .196E−2 .476E−3 .25E−3 .74E−4 .37E−4

expected, but the proportion slowly increases with the discriminant. In particu-
lar, the data do not seem to contradict the Cohen–Martinet-heuristic.

4 Extensions of Degree 5

All transitive subgroups of S5 are primitive. There exist nine C5-extensions of Q
with discriminant at most 109, 302 totally real extensions with the dihedral group
D5 and 196 totally real extensions with the Frobenius group F20 of order 20.
The results for the alternating and the symmetric group are collected in Table 6.
All these can be obtained with Hunter’s method. For square discriminants, the
ideas presented in [14, Sect. 5.1] allow to get up to discriminant 1011.

Table 6. Totally real A5- and S5-fields

X N(A5, X)
107 7
108 80
109 398
1010 1874
1011 8121

X N(S5, X) E(S5, X) α1 α2

105 8 568 0.551 0.995
106 409 5348 0.621 0.970
107 9461 48106 0.668 0.947
108 162022 413648 0.702 0.927
109 2341055 3415647 0.726 0.912

2.109 5109739 6403665 0.732 0.907

By an as yet unpublished result of Bhargava (see [2]) the number of
S5-extensions of Q should grow linearly with the discriminant, with propor-
tionality factor

c0 :=
1

240

∏
p≥2

(1 +
1
p2 − 1

p4 − 1
p5 ) = 0.005756702 . . .

where again p ranges over all primes. Let E(S5, X) := c0X − N(S5, X). In
Table 6 for S5 we give

α1(S5, X) := log E(S5, X)/ log(X), α2(S5, X) := log
E(S5, X)

E(S5, X/2)
/ log(2),

which seem to indicate that the exponent α of the error term in the asymptotic

N(S5, X) = c0X + O(Xα)



120 G. Malle

Table 7. k-tuples of S5-discriminants

k 1 2 3 4
N(S5)

500000 496190 1881 16 0
1000000 991675 4114 31 1
1500000 1486819 6503 57 1
2000000 1981818 8970 78 2
2500000 2476933 11377 99 4

and also the position of the second right-most pole of the associated ζ-function
should satisfy 0.732 ≤ α ≤ 0.907. Note, though, that in the range of our table,
the error is still (slightly) larger than the main term.

In Table 7 we have recorded the numbers of multiplets of S5-discriminants
in the range up to 109. Again the growth of the maximal multiplicity is very
slow, consistent with the expectation that this maximal multiplicity should be
Oε(Xε).

Again using the Pari-gp command bnfclgp we have calculated the class num-
bers of the S5-fields in the range. The total number of fields with given class
number is displayed in Table 8.

By the heuristic of Cohen and Martinet the probability that the part h′
K prime

to 5 of the class number of a totally real S5-extension K/Q equals h should be
given by

pr(h′
K = h) = c5

⎛⎝h5
∏
pj |h

(1 − p−j)

⎞⎠−1

for some explicit constant c5 = 0.932929..., where the product runs over all prime
powers pj, with p �= 5, dividing h. In Table 9 we give the relative proportions of
the first few class numbers for chunks of 780 000 consecutive S5-fields, as well as
the proportion predicted in [8]. The same observations as in the S4-case apply.

Table 8. Class numbers of S5-fields

h 1 2 3 4 5 6 7 8 9 10 11 12 13
n(h) 2, 292, 467 41, 944 5, 094 901 508 72 43 13 7 3 1 1 1

Table 9. Relative proportions of S5-class numbers

h′ 1 2 3 4 6 7 8
1 − 780000 .9837 .01433 .00166 .00024 .000018 .000009 0

780001 − 1560000 .9785 .01874 .00232 .00042 .000027 .000019 .000006
1560001 − 2340000 .9762 .02066 .00253 .00049 .000047 .000027 .000010
Cohen − Martinet .9329 .05831 .00576 .00243 .000360 .000065 .000086
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5 Extensions of Degree 6

The primitive groups in degree 6 are the four non-solvable groups PSL2(5) ∼= A5,
PGL2(5) ∼= S5, A6 and S6. There are precisely two PGL2(5)-fields of discrimi-
nant at most 109. The data for the other three groups are collected in Table 10.

Table 10. Totally real PSL2(5)-, A6- and S6-fields

X N(PSL2(5), X)
108 3
109 23
1010 139
1011 720

X N(A6, X)
109 22
1010 159

X N(S6, X) α1

106 1 0.509
107 177 0.578
108 6513 0.629
109 147553 0.666

4 · 109 847116 0.684

The results for A6 and S6 were obtained by Hunter’s method, while the
A5- and S5-fields were converted from the corresponding lists in degree 5 using
a KANT-routine. According to a conjecture of Bhargava (see [2]), the number
of totally real S6-extensions of Q should grow linearly, with proportionality
constant

c1 :=
1

1440

∏
p≥2

(1 +
1
p2 +

1
p3 − 2

p5 − 1
p6 ) = 0.0011350200 . . .

In Table 10 we also give the value of α1(S6, X), defined as in the case of S4 and
S5.

In the range considered here, there are at most two S6-fields with the same
discriminant. The number of pairs of fields with the same discriminant among
the first N(S6) fields is given in Table 11.

In Table 12 we present the number n(h) of totally teal S6-fields of discriminant
at most 109 with class number h, again calculated with the Pari-gp command
bnfclgp. It turns out that all fields have class number at most 3.

Table 11. k-tuples of S6-discriminants

N(S6) singles pairs
200000 199822 89
400000 399540 230
600000 599292 354
800000 798978 511

Table 12. Class numbers of S6-fields

h 1 2 3
n(h) 146, 960 578 15
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6 Extensions of Degree 7

All transitive subgroups of S7 are primitive. The totally real number fields of
discriminant at most 109 can be enumerated by Hunter’s method. One finds that
there is one C7-extension, one extension with the dihedral group D7, and none
with the Frobenius groups of order 21 and 42 (see also [12, Thm. 12]). There
are two Kronecker-equivalent fields with group PSL2(7) and one with group A7.
The data for the symmetric group S7 are given in Table 13.

Table 13. Totally real S7-fields

X N(S7, X)
108 71
109 3427

According to Pari-gp, all S7-fields in the range have class number 1.

7 Extensions of Degree 8 and Higher

There are just two totally real primitive number fields of degree 8 with discrim-
inant at most 109, both with Galois group S8, with discriminants 483,345,053
respectively 707,295,133, as can be checked by Hunter’s method (see also [12,
Thm. 13]).

For degree 9, the bounds given by Hunter’s theorem are very small, and it
turns out that no primitive totally real fields of discriminant at most 109 exist.
(According to [15] the smallest discriminant equals 9 685 993 193.) Totally real
fields of degree n ≥ 10 have discriminant larger than 1010 by the unconditional
Odlyzko bound [16, p.223].

Acknowledgement. I thank Jürgen Klüners for useful conversations on the
topic of this paper.
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9. M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, K. Wildan-
ger, KANT V4. J. Symbolic Comp. 24 (1997), 267–283.

10. D. Ford, M. Pohst, The totally real A5 extension of degree 6 with minimum
discriminant. Experiment. Math. 1 (1992), 231–235.
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Abstract. We provide a modular method for computing the splitting
field Kf of an integral polynomial f by suitable use of the byproduct of
computation of its Galois group Gf by p-adic Stauduhar’s method. This
method uses the knowledge of Gf with its action on the roots of f over
a p-adic number field, and it reduces the computation of Kf to solving
systems of linear equations modulo some powers of p and Hensel liftings.
We provide a careful treatment on reducing computational difficulty. We
examine the ability/practicality of the method by experiments on a real
computer and study its complexity.

1 Introduction

This paper is a continuation of Section 5.3 in [21], where, in order to compute the
splitting field of an integral polynomial f , the use of the approximations of its
roots was suggested. Here we give its details, show its practicality by experiments
and provide its complexity study. Moreover we give some techniques in order to
increase the feasibility of this new method.

To compute the Galois group Gf of a monic integral polynomial f , the ap-
proach of p-adic approximation is very practical (see [21,9,8]). In this approach,
one used the approximation of roots of f in a p-adic number field Qp (or one of
its extensions) in order to find integral roots of the relative resolvents used in
Stauduhar’s method (see [18]).

For computing the splitting field Kf , there are two approaches: one is con-
structing this field as a simple extension and the other, which is ours, as a
successive extension given by the splitting ideal. Constructing the splitting field
as a simple extension can be done by rather simpler computation, where the
minimal polynomial of a primitive element of Kf is constructed. (Using p-adic
approximations of all its conjugates, it can be computed efficiently.) But, in this
setting, if one wants to compute products and sums of several roots of f , i.e.
� We wish to acknowledge the Japanese Ministry of Education, Science and Culture
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September 2004 where this collaboration has been initiated.
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one wants to do arithmetic operations in Kf
∼= Q[x1, ..., xn]/M, where each

variable corresponds each root of f and M is the splitting ideal generated by all
algebraic relations of roots of f , one have to compute the expressions of roots
with respect to the primitive element. On the other hand, in our approach, we
compute a Gröbner basis G of the splitting ideal M and hence, it is easy to
perform arithmetic operations in Q[x1, ..., xn]/M. Moreover, in general, expres-
sions by primitive elements tend to be suffered ”expression swell”, that is, huge
coefficients appear and those harm the efficiency. So, for our purpose, simple
extension does not seem suited.

In order to compute the splitting ideal M of a polynomial, there is a classical
approach due to Kronecker using algebraic factoring algorithms. But, as shown
in [2], it does not seem practical for polynomials having large Galois groups. Here,
to overcome the difficulty, we use the knowledge of certain algebraic structures:
the p-adic approximation of roots and the explicit action of the Galois group Gf .
For the computation of a Gröbner basis of M we compute a theoretical form of
our output with indeterminate coefficients representing the polynomials gener-
ating the basis. Then, we compute these polynomials by solving linear systems
modulo a power of p and Hensel liftings. For the theoretical form, there is a well
known dense generic one based on the knowledge of the degrees of the polyno-
mials (see [21,4]). In Section 3, we show how a careful study on the symmetric
representation of Gf allows to produce a sparser theoretical form and how to
avoid the computation of polynomials in the basis. From this study we obtain,
for a given symmetric representation of Gf , a scheme for the computation of G.
In Section 4, we show how to compute the polynomials of G with linear algebra
and Hensel lifting and provide an effective test for an early detection strategy.
We emphasise that one can combine other methods for the computation of G
with the proposed scheme. For example we could combine sparse interpolations
strategy effectively (dense interpolation formulas are given in [6,12]), this will be
study in a future work. We also note that it is possible to translate the results
presented in this article to polynomials over global fields.

2 Preliminaries

We provide necessary notions and summarize some results of [21].

2.1 Splitting Field and Galois Group over Q

Let f(x) be a monic square-free integral polynomial of degree n and α the set of
all its roots in an algebraic closure Q̄ of Q. The splitting field Kf of f is the exten-
sion field Q(α) obtained by adjoining α to Q. The group Gf of Q-automorphisms
of Kf acts faithfully on α, thus one can consider the permutation representation
Gf of this group. Fixing a numbering of the roots α = {α1, . . . , αn} of f , Gf is
viewed as a subgroup of Sn. The group Gf is called the Galois group of f .

To express Kf symbolically, the following epimorphism φ of Q-algebra is con-
sidered:

Q[x1, . . . , xn] # xi �−→ αi ∈ Kf
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For simplicity, we write X = {x1, . . . , xn} and, more generally, for a subset E of
{1, . . . , n} we write XE = {xi : i ∈ E}. Then Kf is represented by the residue
class ring A of the polynomial ring Q[X ] factored by the kernel M of φ. We call
M the splitting ideal of f associated with the assignment of the roots α1, . . . , αn.
In this setting, computing Kf means to compute a Gröbner basis G of M (see [5]).
If we choose the lexicographic order ≺ on terms with x1 ≺ · · · ≺ xn, then the
reduced Gröbner basis of M coincides with the generating set {g1, g2, . . . , gn}
obtained by successive extensions, that is, for each i,

1. gi is a polynomial in x1, . . . , xi and monic with respect to xi, and
2. Q(α1, . . . , αi) ∼= Q[X{1,...,i}]/〈g1, . . . , gi〉, where 〈F 〉 denotes the ideal gener-

ated by an element or a set F . This implies that gi is an irreducible factor
of f(xi) over Q[X{1,...,i−1}]/〈g1, . . . , gi−1〉 such that gi(α1, . . . , αi) = 0.

Thus this reduced Gröbner basis can be obtained by “algebraic factoring meth-
ods” (see [2]) and is said to be a triangular basis (see [11,6]). For a Gröbner
basis G ⊂ Q[X ] and a polynomial P , let NF(P,G) denote the normal form of P
in Q[X ] with respect to G (see [5]).

The group Sn acts naturally on Q[X ] with xσ
i = xiσ for 1 � i � n and σ ∈ Sn.

Thus Gf is the Q-automorphisms group of A denoted by AutQ(A) (see [2,1]).
We use the following notation for groups: for a group G acting on a set S, the
stabilizer in G of an element or a subset A of S is denoted by StabG(A), i.e.
StabG(A) = {σ ∈ G : Aσ = A}. If G is the full symmetric group on S,
we simply write Stab(A) for StabG(A). We denote by StabG([a1, . . . , ak]) the
pointwise stabilizer of a subset A = {a1, . . . , ak} of S, i.e. StabG([a1, . . . , ak]) =
{σ ∈ G | aσ

i = ai, ∀i ∈ {1, . . . , k}}. The set of right cosets of H in G is denoted
by H\G and the set of all representatives of H\G by H\\G.

Definition 1. We call the ideal generated by t1+a1, . . . , tn+(−1)n−1an, where ti

is the i-th elementary symmetric function on X and f(x) = xn+a1xn−1+· · ·+an,
the universal splitting ideal of f and denote it by M0. We call the residue class
ring Q[X ]/M0 the universal splitting ring of f over Q and denote it by A0.

The reduced Gröbner basis of M0 is composed of the n Cauchy’s modules of
f (see [16]). Since Sn stabilizes M0, Sn also acts faithfully on A0, i.e. Sn ⊂
AutQ(A0). We have the following theorem (see [14,3,21] for details and other
references).

Theorem 1. There is a one-to-one correspondence between the set of all prim-
itive idempotents of A0 and the set of all prime divisors of M0. Let e be the
primitive element corresponding to the fixed prime divisor M. Then, Gf =
Stab(M) = Stab(e) and Mσ = {g ∈ Q[X ] | geσ = 0 ∈ A0}. Moreover, we
have M0 = ∩σ∈Gf\\Sn

Mσ and A0 = ⊕σ∈Gf\\Sn
eσA0 = ⊕σ∈Gf\\Sn

Q[X ]/Mσ.

2.2 Splitting Field over p-adic Number Field

Now we consider the relation between the splitting ring over Q and that over
a p-adic field Qp. The n-tuple α = {α1, . . . , αn} and the splitting ideal M
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associated with the assignment xi to αi are fixed. The primitive idempotent of
A corresponding to M is denoted by e. For a prime integer p, we denote by Z0

p

(resp. Zp) the localization of Z at p (resp. the completion of Z0
p). We denote by

πp the projection from Zp[X ] to Fp[X ] (the natural extension of the projection
from Z to Fp).

From now on, we fix a prime number p such that πp(f) is square-free. Let M̄0
denote the ideal πp(M0∩Z0

p[X ]) in Fp[X ] and G0 denotes the standard generating
set of M0. By construction, the Cauchy’s modules of f are polynomials with
integral coefficients and monic in their greatest monomial. Thus, the set πp(G0)
is a Gröbner basis of πp(M0 ∩ Z0

p[X ]). Moreover, G0 is a Gröbner basis of the
universal splitting ideal Qp ⊗Q M0 of f as a polynomial with coefficients in Qp

and that of Zp[X ]⊗Z0

p
(M0 ∩ Z0

p[X ]) over Zp. The ideal Qp ⊗Q M0 is denoted

by M(∞)
0 . We denote Fp[X ]/M̄0 by Ā0 and Qp[X ]/M(∞)

0 by A(∞)
0 .

Theorem 2. We have the following assertions:
1. The projection πp gives a one-to-one correspondence between the set of all
primitive idempotents of A(∞)

0 and that of Ā0. Moreover, for each pair (ē, e(∞))
of corresponding primitive idempotents, Stab(ē) = Stab(e(∞)).
2. The idempotent e of A0 is also an idempotent of A(∞)

0 . Let ē be a component
of πp(e) and e(∞) the primitive idempotent of A(∞)

0 corresponding to ē. Then
Stab(e) contains Stab(ē)(= Stab(e(∞))) and Stab(πp(e)) = Stab(e). Moreover,
by letting S = Stab(ē)\\Stab(e), πp(e) =

∑
σ∈S ēσ and e =

∑
σ∈S e(∞)σ

.

Now we fix a component ē of πp(e) and its corresponding idempotent e(∞) of
A(∞)

0 . Let M̄ be the maximal ideal of Fp[X ] corresponding to ē and M(∞) the
maximal ideal of Qp[X ] corresponding to e(∞). Moreover, let G(∞) and Ḡ be the
reduced Gröbner basis of M(∞) and that of M̄ respectively.

Definition 2. Let G(∞) = {g
(∞)
1 , . . . , g

(∞)
n }. For a positive integer k, we call the

set {g
(∞)
1 mod pk+1, . . . , g

(∞)
n mod pk+1} the k-th approximation to G(∞) and

denote it by G(k). We note that G(0) = Ḡ.

We can lift Ḡ to G(∞) by Hensel construction. More precisely we have:

Theorem 3. The reduced Gröbner basis G(∞) of M(∞) with respect to ≺ is
contained in Zp[X ], and Ḡ is lifted uniquely to G(∞) by Hensel construction.

Proof. Theorem 21 in [21] gives the result and a construction based on a linear
iteration Hensel lifting. Actually, its quadratic iteration version can be restated
for this construction (see [15]). �

3 The Computation Scheme

In this section, we propose a framework for the computation of a Gröbner basis
G = {g1, . . . , gn} of the splitting ideal M of f with indeterminate coefficients
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strategy. We now assume the Galois group Gf of f is already computed as a
subgroup of Sn. We show how the knowledge of the symmetric representation
Gf can give a good theoretical form of G, and then we provide some techniques
which permit us to avoid computations of some gi.

3.1 The Form of G
Since we compute polynomials gi with indeterminate coefficients strategy, we
need to know the potential terms which may appear in gi. The following allows
to deduce degi(gi), the degree in xi of gi, from Gf = Stab(M).

Proposition 1 (Theorem 5.3 [4]). The degree di of gi in xi is given by

di = |StabGf
([1, . . . , i − 1])|/|StabGf

([1, . . . , i])| .

Reciprocally, the next proposition gives the characterization of all the Gröbner
bases of M. Its proof is immediate (see [5]).

Proposition 2. Let G = {g1, . . . , gn} be a triangular set of polynomials of M
such that degi(gi) = di. Then, G is a Gröbner basis of M. Note that G is not
necessarily reduced but it is minimal (see [5]).

Thus, we want to compute such a triangular set G. A generic form for such a
Gröbner basis G can be retrieved from this: the terms of gi’s monomials are
potentially xki

i x
ki−1

i−1 · · ·xk1

1 with 0 � kj < dj . In this case, the number of inde-
terminate coefficients is of the order of Gf which may be very large (this dense
form is considered in [12]). Clearly, the sparser the basis G is, the most efficient
the computation is, thus we are interested in finding a sparse one. For this task
we introduce a definition.

Definition 3. Let i be an integer in {1, . . . , n}. A subset E of {1, . . . , i} con-
taining i is said to be an i-relation if there exists a polynomial ri in Q[XE ] such
that

αdi

i + ri(α) = 0 and degi(ri) < di .

An i-relation corresponds to a potential gi in any G, for example, the sets
{1, . . . , i}, for i = 1, . . . , n, are the i-relations corresponding to the generic form
of G. The following proposition permits us to easily find an i-relation which may
be smaller. Its proof is immediate by considering a minimal polynomial of αi

(see [15]).

Proposition 3. Let i be an integer in {1, . . . , n} and m be the minimal inte-
ger in {1, . . . , i − 1} such that |StabGf

([1, . . . , m])|/|StabGf
([1, . . . , m, i])| = di .

Then, there exists an i-relation in {1, . . . , m, i}.

If Ei is the maximal i-relation {1, . . . , i} then, as one can see above, it is easy
to identify the potential terms of the corresponding polynomial. The following
result, which is a consequence of classical Galois theory, gives us the way of doing
the same for more general i-relations:
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Proposition 4. Let E = {e1 < e2 < · · · < es = i} be an i-relation. Then, there
exists a polynomial ri as in Definition 3 such that

degj(ri) < |StabGf
([e1, . . . , ej−1])|/|StabGf

([e1, . . . , ej ])|, ∀j ∈ {1, . . . , s} .

The preceding proposition provides a relation between an i-relation and the
maximal degree of each variable of the corresponding polynomial gi. We now
want to know the size of gi.

Definition 4. Let Ei = {e1 < e2 < · · · < es = i} be an i-relation. We define
the finite sequence d(Ei)e1

, . . . , d(Ei)es by

d(Ei)ej = |StabGf
([e1, . . . , ej−1])|/|StabGf

([e1, . . . , ej])|, ∀j ∈ {1, . . . , s} .

The degree of Ei is defined by
∏s

j=1 d(Ei)ej and is denoted by D(Ei).

Given an i-relation Ei = {a < b < · · · < l = i}, then the number of terms
xka

a xkb

b · · ·xkl

l which potentially appear in the corresponding gi is D(Ei). There
might be different i-relations, so we give a partial order among all the i-relations.

Definition 5. Let i be an integer in {1, . . . , n}. An i-relation Ei is said to be
minimal if D(Ei) is minimal (among all the i-relation) and not any proper subset
of Ei is an i-relation.

We note that a minimal i-relation Ei = {e1 < e2 < · · · < es = i} verifies
d(Ei)ej � 2 for all j, 1 � j < s. Minimal i-relations for each i = 1, . . . , n
correspond to polynomials gi with a minimal number of coefficients and thus to
a Gröbner basis G which have a sparse form. Note that an i-relation satisfying
conditions of Proposition 3 may not be minimal.

3.2 Reducing the Number of Polynomials to Compute

We assume that the symmetric representation of Gf and an i-relation Ei for each
i in {1, . . . , n} are known. Here we give techniques to avoid some computations
of elements of G. These techniques were already used in [13] with a partial
knowledge of Gf . However, since we know the exact symmetric representation
of Gf , we make use here of the whole power of these techniques.

Cauchy modules technique. Let G = {g1, . . . , gn} be a triangular Gröbner
basis of the ideal M with degi(gi) = di. Let O = {i1 < i2 < · · · < ik} be the
orbit of i under the action of StabGf

([1, . . . , i − 1]). Then i1 = i and k = di.
For a multivariate polynomial g, we denote by E(g, u) the multivariate poly-
nomial obtained by replacing the greatest variable in g by a newly introduced
indeterminate u. Then, the di (generalised) Cauchy modules of gi are defined
by: c1(gi) = gi,

c2(gi) =
E(c1, xi2 ) − E(c1, xi1)

(xi2 − xi1)
, · · · , cdi(gi) =

E(cdi−1, xidi
)− E(cdi−1, xidi−1

)
(xidi

− xidi−1
)

.
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By construction, the following holds:

Lemma 1. The Cauchy module cj(gi) is a polynomial of Q[X{1,...,ij}] which is
monic as a polynomial in xij with degij (cj(gi)) = di − j + 1. Moreover, the
polynomial cj(gi) is in M.

As we know the symmetric representation of Gf we can know in advance if
cj(gi) has the same degree, in xij , as gij . In this case, in G, gij can be replaced
by cj(gi) and this set is still a Gröbner basis of M (see Proposition 2). So, in
the construction of G we avoid the computation of gij .

Transporters technique. Here we use the fact that the group Gf is the sta-
bilizer of the ideal M. Let Ei = {e1 < e2 < · · · < es = i} be an i-relation and
j ∈ {i + 1, . . . , n}. A permutation σ ∈ Gf is said to be an (i, j)-transporter if it
satisfies:

σ(i) = j and j = max({σ(e) : e ∈ Ei})

Proposition 5. Let σ be an (i, j)-transporter and gi the polynomial correspond-
ing to Ei. Then, NF(gσ

i , {g1, . . . , gj−1}) is a multiple of gj as polynomials in
A = (Q[X{1,...,j−1}]/〈g1, . . . , gj−1〉)[xj ].

Proof. Since σ is an (i, j)-transporter, the polynomial NF(gσ
i , {g1, . . . , gj−1}) can

be viewed as a univariate polynomial h in xj over Q(α1, . . . , αj−1). Moreover,
since gσ

i ∈M, we have h(αj) = 0. Thus h is a multiple of the minimal polynomial
of αj over Q(α1, . . . , αj−1), hence h is a multiple of gi as a polynomial of A. �

Corollary 1. With the same notations as in Proposition 5, if the degree dj is
equal to di then gσ

i can take the place of gj in G.

As for the Cauchy’s techniques, from the knowledge of an (i, j)-transporter σ
satisfying conditions of Corollary 1, we can avoid the computation of the poly-
nomial gj since it can be replaced by gσ

i .

4 Computing Splitting Fields by Linear Systems Solving

In this section, we assume the knowledge of Gf with its action over approxima-
tions of the roots of f in Q̄p. Moreover, we assume that the computation scheme
attached to Gf is known, in particular we know a corresponding i-relation Ei

for each polynomial gi of G. We show how these knowledges can be used for the
computation of G by linear systems solving. We denote by Z(I) the algebraic
variety associated to an ideal I of Q[X ] or Fp[X ].

4.1 Computation by Solving Systems of Linear Equations

Here we compute g1, . . . , gn by a method of indeterminate coefficients. Assume
that the n-tuple α = (α1, . . . , αn) of roots of f lie in Z(M). Recall that Gf is
already presented as a sub-group of Sn and Stab(M(∞)) = AutFp(Fp[X ]/M̄) =
Gπp(f) ⊂ Gf . We denote |Gf | and |Gπp(f)| by N and N̄ , respectively.
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Systems over the rationals. We fix an integer i ∈ {1, . . . , n}. Each coefficient
of gi is replaced with an indeterminate, for simplicity, the terms

∏
e∈Ei

xme
e ,

where 0 � me < d(Ei)e, are sorted with respect to the lexicographic order
and denoted by t1, . . . , tD(Ei). Then, with indeterminates a

(i)
j , we have gi =

xdi

i +
∑D(Ei)

j=1 a
(i)
j tj . Since G is supposed to be a Gröbner basis of M, the following

equation holds for i.

gi(γ) = 0 for every γ ∈ Z(M). (1)

Let Ei = {e1 < e2 < · · · < es} and γ = (γ1, . . . , γn) be an element of Z(M). We
denote by γ(Ei) the projection of γ on the indexes given by Ei (i.e. (γe1

, . . . , γes))
and Z(M)(Ei) = {γ(Ei) : γ ∈ Z(M)}. Thus, we have |Z(M)(Ei)| = D(Ei).
Let GEi be the group StabGf

([e1, . . . , es]) and GEi\\Gf = {σ1, . . . , σD(Ei)}.
Then, we have Z(M)(Ei) = {α(Ei)σ1 , . . . , α(Ei)σD(Ei)} and

gi(γ) = 0 for every γ ∈ Z(M)(Ei). (2)

The system (2) of equations becomes a linear system of D(Ei) equations and
D(Ei) variables with matrix representation −Vi = MiAi, where Ai = (a(i)

j ),
Vi = ((αdi

i )σr ) and Mi = (tc(α(Ei)σr ))r,c with (r, c) ∈ {1, . . . , D(Ei)}2. Since
the set {t1(α(Ei)), . . . , tD(Ei)(α(Ei))} is a Q-linear basis of Q({αe : e ∈ Ei}),
this system has a unique solution. Thus we can compute gi by solving the system
of linear equations if we already know the exact value of each root αi of f .

Systems over p-adic numbers. As we do not know the exact value of each
αi, we use the approximate value of roots of f in Q̄p. In the sequel we use the
same notations as Section 2. The ideal M may not be maximal if it is considered
as an ideal in Qp[X ], more precisely we have:

Proposition 6. Let S be the transversal Stab(ē)\\Stab(e). Then Qp ⊗Q M =
∩σ∈S(M(∞))σ, and πp(M∩ Z0

p) = ∩σ∈S(M̄)σ.

Proof. Let e be the idempotent of A0 corresponding to M. As M = {h ∈
Q[X ] | eg = 0 ∈ Q[X ]/M0}, the first equation can be derived directly from
Theorem 1 (2) and Theorem 2 (2). The second equation can be also derived by
considering the projection πp �

By Proposition 6, we can reduce the system (2) to the following.

gi(γ) = 0 for every γ ∈ ∪σZ((M(∞))σ)(Ei), (3)

where σ ranges in S = Gπp(f)\\Gf . The system (3) consists of D(Ei) variables
and D(Ei) linear equations over Qp[X ]/M(∞) and it is equivalent to

NF(gi, (G(∞))σ) = 0 for every σ ∈ GEi\\Gf . (4)

Moreover, replacing G(∞) with G(k), we have the following system which gi mod
pk+1 must satisfy.

NF(gi, (G(k))σ) ≡ 0 (mod pk+1) for every σ ∈ GEi\\Gf . (5)
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The system (5) is considered as a system of D(Ei) variables and D(Ei) linear
equations with coefficients in (Z/pk+1Z)[X ]/M(k). Especially, for the case k = 0,
the system (5) is translated to the following system which πp(gi) must satisfy: Fix
a zero ᾱ = (ᾱ1, . . . , ᾱn) in Z(M̄), and set πp(gi) = xdi

i +
∑D(Ei)

j=1 ā
(i)
j tj . Let Āi =

(ā(i)
j ), V̄i = ((αdi

i )σr ) and M̄i = (tc(ᾱ(Ei)σr ))r,c with (r, c) ∈ {1, . . . , D(Ei)}2.
Then we have the identity −V̄i = M̄iĀi.

Theorem 4. For each i, 1 � i � n, the following holds.
1. The linear system corresponding to −V̄i = M̄iĀi has a unique solution over
Fp which gives πp(gi).
2. For a positive integer k, the system (5) has a unique solution which gives
the approximation gi mod pk+1. Moreover, we can construct gi mod pk+1 from
πp(gi) by Hensel lifting.

Proof. Consider the expansion of det(Mi) and that of disc(f), where we consider
each root αi as an indeterminate yi. Then, it can be shown that disc(f) =∏

j �=k(yj − yk) and by discriminant composition formula (see [14]) there exist
integers ej,k such that det(Mi) =

∏
1�j<k�n(yj − yk)ej,k . As πp(f) is square-

free, we conclude that det(M̄i) �= 0 and so the linear system corresponding to
−V̄i = M̄iĀi has a unique solution and thus, the unique solution gives πp(gi).
We can show the second statement by the same argument and the fact that
det(M̄i) �= 0. For the Hensel lifting we would like to apply the same construction
as in Theorem 3. Since the ring A = Fp[X ]/πp(M∩Z0

p) is not a field, two cases
are possible when we compute the Bézout relation with the Extended Euclidean
Algorithm (EEA) with pseudo division in the first step of this lifting: At the
end of the EEA a gcd is computed and it is invertible, in this case the lifting
can continue; when EEA does not work, we can compute the Bézout relation
by other methods. In this second case, we may use combination of EEA over A
and Chinese Remainder Theorem or solving a system of linear equations derived
from this relation. One can see also [17] for a general study about Newton-Hensel
operator for general triangular sets. �

Remark 1. At each step k, the Hensel lifting of a polynomial gi which
corresponds to an i-relation Ei = {e1 < · · · < es = i} can be done with two
different points of view. The first one is to considerate gi as a univariate poly-
nomial with coefficients in the ring R2k = (Z/p2kZ)[X{1,...,i−1}]/〈g1, . . . , gi−1〉.
The second one is to see gi in the univariate polynomial ring with coefficients
in R′

2k = (Z/p2kZ)[XEi\{xi}]/〈g∗
1 , . . . , g∗

s−1〉 where the polynomials g∗
j lying in

(Z/p2kZ)[X{e1,...,ej}] are the approximations of the polynomials which defines
the extensions Q(αe1

), Q(αe1
, αe2

), . . ., Q(αe1
, αe2

, . . . , αes). ({g∗
1 , . . . , g∗

s−1, gi}
is the reduced Gröbner basis of the elimination ideal M∩Q[XEi ].) In the latter
case, we compute each g∗

j by solving linear system and Hensel lifting in the same
manner as computation of gi, recursively from g∗

1 to g∗
s−1. We may also obtain

g∗
j by transporter techniques by inspecting the action of Gf . In the former case,

at the end of the lifting procedure the Gröbner basis G is necessarily reduced,
but not in the latter case.
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Theorem 4 gives two possible strategies (which can be mixed) for the computa-
tion of Gk = {g1 mod pk+1, . . . , gn mod pk+1} a k-approximation of a triangular
Gröbner basis G of M:

1: By Hensel lifting, G(k) is constructed from G (see Theorem 3). From G(k) we
construct and solve the system 5 for each i, 1 � i � n, the solutions are then Gk.
2: From G we construct and solve the systems 5 for each i, 1 � i � n. The
solutions are G0 and we can construct Gk by Hensel lifting.

Now, assume Gk = {g1 mod pk+1, . . . , gn mod pk+1} is computed. Then we con-
vert each gi mod pk+1 to a polynomial over Q by the well-known rational recon-
struction technique. Let Bi be a bound on all absolute values of the numerators
and denominators of coefficients of gi. Then, as soon as 2B2

i < pk+1, the poly-
nomial converted from gi mod pk+1 coincides with gi (see [7]).

4.2 Estimation of the Bound Bi

Here we give details on the bound Bi for the rational reconstruction. Since
coefficients of gi correspond to the solution of the system (2), by Cramer’s rule,
the denominator of each coefficient of gi divides det(Mi) and the numerator of
the j-th coefficient of gi divides det(M (j)

i ), where M
(j)
i is the matrix obtained

by replacing the j-th column with Vi.

Lemma 2. Let B0 be the maximum of the absolute values of roots αi’s of f in
C. Then, for each i, Bi can be computed from {d(Ei)e : e ∈ Ei} and B0.

Proof. We assume w.l.o.g. that the bound B0 is greater than 1. For each row
of M

(j)
i and each row of Mi, by replacing each αk with B0 and by denoting

d(Ei)e by de we can bound the square-norm of these rows by the integer B2
i =∏

e∈Ei
(1 + B2

0 + · · · + B
2(de−1)
0 ) + B2di

0 =
∏

e∈Ei

B2de
0

−1
B2

0
−1 + B2di

0 . Thus, as the
determinant of a matrix is bounded by the product of square-norms of its rows
(by the inequality of Hadamard), we can set Bi = BD(Ei)

i . �

If B0 > 2, then we can set Bi as B
D(Ei)( e∈Ei

d(Ei)e)
0 and, since

∑
e∈Ei

d(Ei)e �∑
1�k�i dk �

∑
1�k�i k, the bit size of Bi is bounded by O(n2D(Ei) log(B0)).

For the denominator, we can give a precise bound (see [10]).

Lemma 3. For each i, there is a positive integer Ci computed from the set of
degrees {d(Ei)e : e ∈ Ei} such that each d(f)Cigi belongs to Z[X ].

Proof. By the discriminant identity given in the proof of Theorem 4, det(Mi) is
considered as a polynomial in each αi. Then estimating the degree of det(Mi) in
each αj , we can obtain a bound on the denominators of coefficients of gi. In fact,

the degree of det(Mi) in αj is bounded by Di =
D(Ei)( e∈Ei

de)
n0

, where n0 = n if
f is irreducible over Q, and n0 = 1 otherwise. Then, from the shape of disc(f),
it can be shown easily that Ci = Di

2 satisfies the statement. Moreover, if f is
irreducible, we can set Ci = Di

2(n−1) �
The bound Bi given in Lemma 2 is in general very pessimistic. We will see in
Section 4.3 how the problem of pessimistic theoretical bound can be avoided.
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4.3 Check of Correctness and Early Detection

To improve the efficiency of the method, we can incorporate “early detection
strategy” which is widely used in computer algebra. As the bound Bi tends to
be large compared to the exact value, the technique is supposed to work very
well in our case.

Conversion at Early Stage. Assume that we have computed Gk, even though
pk+1 does not exceed the theoretical bound. Suppose that we have obtained the
first j−1 polynomials {g1, . . . , gj−1} of G. We want to test if the Hensel lifting is
enough for gj mod pk+1. Thus, we try to convert it to a candidate polynomial
over Q by rational reconstruction. Then we first check the following:

1. The conversion is done successfully for every coefficients of gi mod pk+1.
2. The denominator of each coefficient of a candidate polynomial divides a cer-
tain power of disc(f) (See Lemma 3).

If the conversion does not satisfy the criteria above then pk+1 is not sufficient to
afford the correct gj . Thus, we continue the lifting process again. If, in the con-
trary, the conversion, say hj , satisfy the criteria we have to prove that hj = gj

this is what we do now.

Correctness of Solution. Assume that we have a candidate polynomial hj for
the polynomial gj corresponding to the j-relation Ej . We can check if hj = gj

by the following theorem.

Theorem 5. We have hj = gj if and only if NF(cj(f), {g1, . . . , gj−1, hj}) = 0.

Proof. The only-if-part is clear, we have only to show the if-part. Let H be
the triangular set {g1, . . . , gj−1, hj}. By the hypothesis, the ideal 〈H〉 contains
{c1(f), . . . , cj(f)} which is the reduced Gröbner basis of the elimination ideal
M0∩Q[X{1,...,j}]. Thus, 〈H〉 is contained in a maximal ideal M′ of Q[X{1,...,j}],
which coincides with Mσ ∩Q[X{1,...,j}] for some σ ∈ Sn. But, comparing the di-
mensions of the residue class rings, it follows that 〈H〉 = M′ = Mσ∩Q[X{1,...,j}].
Seeing their stabilizers, σ is the identity and hj = fj. �

By the similar manner and considering Q[XEj ], we have alternative test for hj

in the case where Hensel liftings are done over R′
2k, see Remark 1.

Theorem 6. Let h∗
j , . . . , h∗

s−1, hj be constructed polynomials by Hensel lifting
using R′

2k, where Ej = {e1, . . . , es−1, es = j}. We have hj = gj if and only if
NF(f(xem ), {g∗

1 , . . . , g∗
s−1, hj}) = 0 for all m, 1 � m � s.

5 Algorithms

Here we give a brief survey on the algorithms underlying of this method. We
first give an algorithm for the construction of a computation scheme, then we
give an algorithm for the computation of splitting ideals.
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5.1 A Database of Computation Schemes

Given a subgroup G of Sn the following algorithm computes a corresponding
computation scheme.

Algorithm 1: ComputationScheme(G)
Step 1 Compute the degrees degi(gi) for i = 1, . . . , n (see Proposition 1).
Step 2 Apply the Cauchy’s technique (see Lemma 1). Let I be the set of integers
corresponding to the indexes of the gi which cannot be obtained with this technique.
Step 3 For each integer i in I, compute a minimal i-relation and store it in E .
Step 4 Apply transporter technique on the i-relations in E . Let E be the set of
i-relations corresponding to the gi which must be computed.
Return E with the techniques for retrieving the other polynomials.

The set E depends only on the choice of the representative for G and on the
chosen i-relations in Step 3. This set represents all the linear systems which
are solved in our method. Thus, a measure of complexity is given by |E| =∑

E∈E D(E) and, in Algorithm 1, we compute E with minimal |E|.
Definition 6. For a given sub-group G of Sn, the minimal value of |E| is called
the c-size of G and is denoted by c(G).

A conjugate of G with minimal c-size is called c-minimal. In a conjugacy class
there may be a big difference, in term of c-size, between two of its representatives.
For example, in the conjugacy class of [24]S4 there are two representatives G1
and G2 with c(G1) = 8 and c(G2) = 632.

5.2 Algorithm for the Computation of Splitting Fields

Assume that the computation scheme of Gf is pre-computed (w.l.o.g. we can
choose a representative of Gf which is c-minimal). We also suppose that all
transversals of groups needed in our algorithm are pre-computed.

Given the polynomial f of degree n, our method for computing a Gröbner
basis G = {g1, g2, . . . , gn} is describe with the following algorithm. We give only

Algorithm 2: SplittingIdeal(G(k0),Gf ,p)
Let I be the indexes of the gi we have to compute with linear systems.
for i = 1 to n do

if i ∈ I then
Construct/Solve S the linear system mod pk0+1 corresponding to Ei.
S1: try to convert the solution si of S to a rational polynomial hi

if the conversion of si above succeed and hi satisfies the correctness test
then The polynomial hi is gi.
else Apply an Hensel lifting to si and goto step S1.

else
Apply a Cauchy/Transporter technique in order to obtain gi from gj with j < i

end if
end for
Return G, Gf .
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the algorithm where early detections are used. One could use the theoretical
bounds by applying some minor modifications (fix the exponent of p, cancel the
early detection tests). A variant of Algorithm 2 is presented in [15].

5.3 Complexity Analysis

In this section, we study the complexity of Algorithm 2 focusing on effects of
the quantity c(G). We assume that a database containing a computation scheme
of a c-minimal representative of each conjugacy class is already known. For
simplifying our analysis and extracting its typical behavior related to c(G), we
choose liftings over R′

2k (see Remark 1) and consider a case where k0 = 0 in
input and EEA with pseudo division always works in the first step of the lifting.
Also we assume that N = 1, as this property is desired in efficient Galois group
computation [9,21], and log log(B0) is quite small compared with n for B0 defined
in Lemma 2.

Since we use the early detection strategy, the complexity of our algorithm also
depends on the size of the coefficients of the output G. Let Btrue be the maximum
of the absolute values of denominators and numerators of coefficients of g∗

j and
gi appearing in the computation. By Lemma 2, the theoretical bound Bi on the
coefficients of gi can be also on those of g∗

j . Thus, Btrue is supposed very much
smaller than B1, . . . , Bn. In the sequel, for each integer k � 0, we denote by
M(k) the cost of arithmetic over Z/pk+1Z as number of word operations. As
the size of necessary pk+1 tends to be huge, we may apply fast multiplication
techniques over Z/pk+1Z. On the other hand, as the size n which can be handled
here is not so large, we use ordinary techniques for polynomial multiplication.

We now sketch the complexity of each step of Algorithm 2 for computing one
polynomial gi with respect to the pre-computed i-relation Ei = {e1, . . . , es}. We
note that the number of iterations is bounded by O(log log(Btrue)).

Linear algebra: To compute a polynomial gi mod p with respect to the
i-relation Ei, we have to construct the matrix M̄i and solve −V̄i = M̄iĀi for Āi.
Under the assumption, the matrix M̄i is constructed directly as a matrix over
Fp, and its construction takes O(D(Ei)2M(0)) word operations. Then we solve
the resulted D(Ei)× D(Ei) linear system which requires O(D(Ei)ωM(0)) word
operations. (Here, ω represents a feasible matrix multiplication exponent and
2 � ω � 3, see [20].) Thus, in total, it takes O(D(Ei)ωM(0)) word operations.

Hensel lifting: At each step k, gi mod pk is lifted to gi mod p2k and this com-
putation is executed over R′

2k = (Z/p2kZ)[XEi \ {xi}]/〈g∗
1 , . . . , g∗

s−1〉 (see Re-
mark 1). At this step, by using ordinary polynomial multiplication, it takes
O(n2) arithmetic operations over R′

2k, and hence it takes O(n2D(Ei)2M(2k−1))
word operations. At the first step of the lifting, we also compute s, t in R1[xi]
such that (Bézout relation) sπp(f(xi)) + t(gi mod p) = 1 by EEA, which takes
O(n2D(Ei)2M(0)) word operations. As we use quadratic Hensel construction,
the total cost is dominated by the same order for the final step, and thus, it
takes O(n2D(Ei)2M(log(Btrue))) word operations.
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Rational reconstruction: As each coefficient a
(i)
j of gi mod p2k can be con-

verted to a rational number by EEA of a
(i)
j and p2k. By applying fast GCD

computation techniques [20], it takes O(M(log(Btrue)) log log(Btrue)) word op-
erations for each a

(i)
j , as we can use the same symbol M(log(Btrue)) for the cost

of one multiplication of integers of word size O(log(Btrue)). Then, in total, it
takes O(D(Ei)M(log(Btrue))(log log(Btrue))2) word operations. From the com-
puted bound in Lemma 2 for Btrue, log log(Btrue) = O(n log(n)) and the total
cost of rational reconstruction is dominated by the cost of Hensel construction.

Auxiliary computation: As the computation of gi is executed over R′
2k,

g∗
1 , . . . , g∗

i−1 must already computed. (Some can be easily converted from already
constructed gj, j < i.) Each g∗

j is constructed by linear algebra and Hensel con-
struction in the same manner as gi, and it takes O(Dω

j M(0)+n2D2
j M(log(Btrue))

word operations, where Dj =
∏j

�=1 d(Ei)e�
. As Ei is set to be minimal, d(Ei)ej �

2 for each j < s and it follows easily that
∑s−1

�=1 n2D2
j = O(n2D(Ei)2) and∑s−1

�=1 Dω
j = O(D(Ei)ω). Hence the cost of auxiliary computation is dominated

by the cost of Hensel construction steps for gi.

Normal form computation: We use the same notation as in Auxiliary com-
putation. For the correctness of gi, normal forms of f(xe1

), . . . , f(xes−1
), f(xi)

with respect to {g∗
1 , . . . , g∗

s−1, gi} are computed. These computations can be ex-
ecuted via powers of xej and so it takes O(log(n)D2

1 + · · · + log(n)D2
s−1) =

O(log(n)D(Ei)2) arithmetic operations over Z.

Thus, by summing the quantities above among all the polynomials gi, we
obtain the following result:

Theorem 7. Algorithm 2 with k0 = 0 takes

O(c(G)ωM(k0) + n2c(G)2M(log(Btrue)) + L)

word operations, where L is the total cost of normal form computations in cor-
rectness tests. Letting B′ be the maximum of absolute values of integers appearing
in normal form computations, L can be bounded by O(log(n)c(G)2M(log(B′))
log log(Btrue)). (When k0 is general we have almost the same result.) Moreover,
for cases where the word size of B′ is the almost same order as that of Btrue, the
above estimation can be simplified to O(c(G)ωM(k0) + n2c(G)2M(log(Btrue)).

As Btrue is a bound on coefficients of g∗
j and gi, it might be greater than the

actual bound B on coefficients of gi’s. But, in many cases for computation of
successive extensions, the final element has coefficients of the maximal absolute
value. Thus, for representing actual behaviors of computation, it may be allowed
to use Btrue instead of B.

6 Experiments and Remarks

We have implemented Algorithm 2 with the computer algebra system Magma
(version 2.11) in the case of an irreducible monic integral polynomial. We choose
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Magma since it has all the functionalities needed (Galois group computation,
multivariate polynomial ring, permutation group). We have computed a database
of c-minimal representatives (with their computation scheme) of each conjugacy
class of transitive groups of degree up to 11. The experiments we made show
that this first implementation is already very efficient.

Choice of the prime p: By Tchebotarev’s density theorem, it is possible to
compute a prime p such that N = 1 and it may be found among O(|Gf |) number
of primes. In our implementation, we choose the smallest such prime. One can
see in the table that the time taken by this procedure is not significant compared
with the rest of the computation.

The power k0: In our implementation we take k0 = 10. In this case, none of
the tests presented in table need to be lifted after the linear resolution: the early
detection tests pass. We will investigate, in a future work, some other power k0
and compare the efficiency with the case where the Hensel lifting is needed.

Experiments timings: We tested polynomials from the database galpols of
Magma. We give, for each example, the name of the group G in Butler and

group |G| c(G) Tcheb. p Galois Matrix/Solve NF Total

6T12 60 60 + 60 0.13 929 0.06 0.22 / 0.17 0.04 0.66

6T13 72 12 0.11 619 0.03 0.01 / 0.01 0 0.18

6T14 120 120 0.15 1447 0.05 0.44 / 0.44 0.06 1.18

6T15 360 360 0.22 2437 0.0 3.69 / 6.51 0.21 10.79

7T5 168 42 0.19 1879 0.06 0.05 / 0.04 0.04 0.41

8T32 96 8 + 96 + 96 0.34 3413 0.13 0.55 / 0.59 0.14 1.870

8T33 96 96 + 32 0.23 2099 0.14 0.32 / 0.3 0.34 1.42

8T34 96 24 + 24 + 95 0.09 229 0.14 0.34 / 0.24 0.09 0.99

8T35 128 8 + 16 0.31 2909 0.06 0.01 / 0.01 0.01 0.45

8T36 168 168 + 168 0.06 211 0.14 1.78 / 1.59 1.63 5.360

8T37 168 168 + 168 0.31 2969 0.1 1.76 / 2.26 1.15 5.72

8T38 192 96 + 8 0.26 2503 0.1 0.29 / 0.29 0.05 1.09

8T39 192 8 + 192 0.16 947 0.06 1.14 / 1.44 0.2 3.11

8T41 192 24 + 96 0.4 4271 0.13 0.33 / 0.32 0.06 1.32

8T42 288 24 + 24 0.46 5051 0.1 0.05 / 0.02 0.02 0.71

8T43 336 336 0.29 3209 0.12 3.48 / 6.09 3.84 14.0

8T44 384 8 1.05 14071 0.06 0.01 / 0.01 0.05 1.24

8T45 576 24 + 576 0.36 3719 0.06 10.21 / 22.87 1.18 35.1

8T46 576 24 + 576 0.56 6269 0.1 10.25 / 23.72 1.1 36.14

8T47 1152 24 1.27 17299 0.05 0.03 / 0.02 0.0 1.44

8T48 1344 336 5.56 78497 0.08 3.56 / 8.56 20.33 38.3

9T21 162 54 + 54 0.59 6047 1.08 0.2 / 0.16 0.54 2.72

9T22 162 27 + 54 0.12 461 0.16 0.13 / 0.09 0.08 0.65

9T23 297 216 + 72 0.16 727 0.31 3.13 / 5.17 1.37 10.4

9T24 324 18 + 108 0.24 1801 1.07 0.4 / 0.38 2.23 4.45

9T25 324 27 + 324 0.16 953 1.03 3.41 / 5.49 0.33 10.63

9T26 432 72 0.98 10273 0.3 0.18 / 0.16 7.43 9.15

9T27 504 504 0.79 10103 0.42 7.98 / 18.6 105.49 133.64

9T28 648 27 0.33 3037 1.38 0.03 / 0.02 0.01 1.87

9T29 648 18 + 648 0.75 7883 0.43 13.17 / 38.74 1.44 55.21

9T31 1296 18 0.33 2801 1.0 0.01 / 0.01 0.03 1.53

9T32 1512 1512 + 1512 0.46 5167 0.27 142.17 / 608.1 1761.84 2523

McKay’s nomenclature,
the order of G and
the integer c(G) (as the
sum of the i-relations
degrees). The column
Tcheb. shows the tim-
ings of computing a
prime p such that N =
1, the column p gives
this prime. The col-
umn Galois shows the
timings of computing
the Galois group,
Matrix/Solve those for
constructions and res-
olutions of the matri-
ces respectively, NF the
timings for the normal
forms computations and
Total the total timing
of the procedure. The measurements were made on a personal computer with a
1.5Ghtz Intel Pentium 4 and 512MB of memory running GNU/Linux. As one
can see, the size of c(G) and the size of pk0 heavily influenced the timings of
constructions and resolutions of matrices like Theorem 7 shows. When c(G) is
big, two cases are possible: few big matrices to compute or a lot of little matrices
to compute. The first case is more time consuming than the second. This is why
there are some differences between examples with same size of c(G) and pk0 (for
example, see the lines 8T37 and 6T15).
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7 Conclusion and Future Works

We have presented a new method, with theoretical and practical aspects, for the
computation of the splitting field of a polynomial f where the knowledge of the
action of the Galois group over p-adic approximations of its roots is used.

We have introduced the notion of computation scheme. This new approach
seems a good way for efficient computation of splitting fields. This framework is
not limited to be used with linear systems solving. For example, we will study
the integration of sparse interpolation formulas (like the dense ones in [6,12]) in
our algorithm. Also, it would be interesting to study the possibility of using this
approach in a dynamical strategy like the one of Magma (see [19]).
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3. J.-M. Arnaudiès and A. Valibouze. Lagrange resolvents. J. Pure Appl. Algebra,
117/118:23–40, 1997. Algorithms for algebra (Eindhoven, 1996).

4. Ph. Aubry and A. Valibouze. Using Galois ideals for computing relative resolvents.
J. Symbolic Comput., 30(6):635–651, 2000. Algorithmic methods in Galois theory.
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Abstract. We give evidence that sums of 3 cubes have a positive den-
sity, the value of which, 0.0999425 . . ., is that given by a probabilistic
model we developed earlier.

1 Introduction

We are addressing a question concerning the statistical behaviour of the integers
which can be expressed as a sum of s integers which are sth-powers, and more
specifically of sums of 3 cubes.

In general, the number rs(n) of representations of the integer n as a sum of s
sth-powers is bounded on average, since one readily checks the following relation

x

s
∼

⎛⎝ ∑
m≤(x/s)1/s

1

⎞⎠s

≤
∑
n≤x

rs(n) ≤

⎛⎝ ∑
m≤x1/s

1

⎞⎠s

∼ x. (1)

One may thus expect that rs(n) should behave according to some sort of a
Poisson law and thus that the set of those integers n for which rs(n) > 0 has
a positive density. This approach was first considered by Erdős and Rényi in
1960 (cf. [4]), who built the first probabilistic model for the study of sums of s
sth-powers.

The case of squares (s = 2) has now been known for almost one century:
Landau (cf. [6]) showed that the number of integers which are sums of 2 squares
and less than x is equivalent to Cx/

√
log x for some explicit positive constant

C, which implies that sums of 2 squares have a zero density. The inadequacy of
the probabilistic model in this case can be related to the multiplicative struc-
ture of r2(.) or to the irregular distribution of sums of 2 squares in arithmetic
progressions.

No multiplicative relation for rs(.) is known when s ≥ 3 nor is likely to
exist. As regards the irregularity of the distribution of s sth-powers in arithmetic
progressions, we built a probabilistic model taking it into account and leading
to an almost sure positive density for the sums of s quasi sth-powers when s ≥ 3
and to an almost sure zero density when s = 2 (cf. [2]).

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 141–155, 2006.
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In a previous ANTS meeting (cf. [3]), we presented computations concerning
sums of 4 biquadrates (4th-powers) and showed their adequacy with our proba-
bilistic model. More precisely, if we denote by ν4(x) (resp. ν4

d(x)) the frequency
of the sums of 4 biquadrates up to x, taking into account all the representa-
tions (resp. only the representations with distinct summands), we saw that for
x ≤ 1014, the function ν4(x) (resp. ν4

d(x)) essentially behaves as a decreasing
(resp. increasing) function that would converge to the limit value given by our
probabilistic model.

The case of the cubes is surprisingly different. First, the functions ν3(x) and
ν3

d(x) (that will be respectively denoted by ν(x) and νd(x) in the sequel) start
to be decreasing (when suitably smoothed); moreover, for x around 1012, both
functions fall below the probabilistic value1. After a few weeks of computation,
reaching 1013, we saw that νd was changing its behaviour and was starting to
increase. However, the function ν was still decreasing; only after a few months, we
saw, around 1014, the function ν change its behaviour: computing up to 5 · 1014

led us to think that we could possibly not predict whether our probabilistic
model is adequate or not before reaching 1018, a value which cannot be attained
by actual computation. We thus changed our strategy, and stopped computing
ν(x) and νd(x) for all values of x, but only for values of x belonging to some
arithmetic progressions we thought of being “generic”; the different results match
perfectly well one with the other: We are now in a position to give strong
evidence that sums of 3 cubes have a positive density, the value of
which, 0.0999425. . . , is that given by our probabilistic model.

2 The Probabilistic Density

For any modulus K ≥ 1, and any integer k0, we denote by ρ(k0, K) the number
of integral triples (k1, k2, k3) ∈ [1, K]3 such that

k0 ≡ k3
1 + k3

2 + k3
3 (mod K). (2)

We put γ = Γ (4/3)3/6 = 0.1186 . . . , and introduce

δ(K) =
1
K

K∑
k=1

exp
(
− γρ(k, K)/K2). (3)

It is shown in [2] that δ(K) is multiplicatively increasing, in the sense that K|K ′

implies δ(K) ≤ δ(K ′). Thus by putting

KB =
∏

pα≤B

pα, (4)

we deduce that δ = limB→+∞ δ(KB) exists. It is also proved in [2] that δ < 1.
1 To check this point, it was convenient to compute this expected limit to seven dec-

imal places; we are indebted to Philippe Flajolet who suggested the use of Mellin’s
transform.
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Our aim is now to give arguments supporting the conjecture that 1− δ is the
asymptotic density of the sequence of sums of three cubes.

In order to compute the actual value of δ with a given precision, we shall use
the bounds given in [3, Lemma, p. 197] that we recall here: for each K, one has

0 ≤ δ − δ(K) ≤ γ2

2
(
S−S2(K)

)
, (5)

where

S2(K) =
1
K

K∑
k=1

(
ρ(k, K)

K2

)2

and S = lim
B→∞

S2(KB).

3 Expressing δ in Terms of Gauss Sums

As in [3], we proceed in two steps: we first compute δ(K) for a given suitable
value of K (as large as possible), which gives a lower bound for δ. We then
deduce an upper bound by computing the corresponding S2(K), and also the
limit value S. For this we write S2(K) as a product on prime divisors of K, and
thus S as an Eulerian product.

In the next section, we show that we have essentially two methods for com-
puting δ(K), either by expanding it into a power series, or by expressing it as
an integral over a complex line using inverse Mellin formula. We denote

τ(k, K) =
ρ(k, K)

K2 .

In both approaches, we are led to compute mean values

St(K) =
1
K

K∑
k=1

(
τ(k, K)

)t
which are well defined if t > 0. We extend the definition to the whole complex
plane by

Sz(K) =
1
K

K∑
k=1

ρ(k,K) �=0

(
τ(k, K)

)z (6)

Fortunately, Sz(K) is a multiplicative function of the modulus K, thus

Sz(K) =
∏

pα‖K

Sz(pα). (7)

This property will be crucial in our computations.

3.1 Evaluation of Sz(pα)

For any positive integer q and any integer h, let us consider the Gaussian cubic
sum

S(q, h) =
q∑

x=1

e

(
hx3

q

)
,
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where e(u) = exp(2iπu). Then

τ(k, pα) =
pα∑

h=1

(S(pα, h)
pα

)3
e
(
− hk

pα

)
= 1 + Ωk(p) + Ωk(p2) + · · · + Ωk(pα),

where

Ωk(q) =
q∑

h=1
(h,q)=1

(S(q, h)
q

)3
e
(
− hk

q

)
.

We now recall some standard properties of the Gaussian sums (see for example
[7]). For (p, h) = 1 we have

S(p�, h) =

⎧⎪⎨⎪⎩
p if 
 = 2 and p �= 3,

p2 if 
 = 3,

p2S(p�−3, h) if 3 < 
.

(8)

Thus for 
 ≥ 4 and any prime p, we get Ωk(p�) = Ωk/p3 (p�−3) if p3|k, and 0
otherwise. It thus suffices to compute Ωk(p�) for 
 = 1, 2, 3. For p �= 3, we have

Ωk(p2) =

⎧⎪⎨⎪⎩
0 if (p, k) = 1,

−1/p2 if p||k,

1/p− 1/p2 if p2|k,

Ωk(p3) =

⎧⎪⎨⎪⎩
0 if p2 � k,

−1/p if p2||k,

1 − 1/p if p3|k.

If p ≡ 2 mod 3, any residue is a cubic residue modulo p, thus for (p, h) = 1, we
have S(p, h) = 0, whence Ωk(p) = 0. For 1 ≤ k ≤ pα − 1, we write k = p3u+vk′

with (p, k′) = 1 and 0 ≤ v ≤ 2. This gives

τ(k, pα) =

{
1 + u(1 − 1/p2) if v = 0,

(u + 1)(1− 1/p2) otherwise.

Moreover for k = pα, then k′ = 1 and α = 3u + v, we have

τ(k, pα) =

{
1 + u
(
1 − 1/p2

)
if v = 0 or 1,

(u + 1)
(
1 − 1/p2

)
+ 1/p if v = 2.

We denote by (u) the integral part of u. For any complex number z, we obtain

Sz(pα) =
(

1 − 1
p

) α−1∑
β=0

1
pβ

(⌊β
3

⌋(
1 − 1

p2

)
+ 1 − εβ

p2

)z

+
1
pα

(⌊α
3

⌋(
1 − 1

p2

)
+ 1 + ε′α

(
1
p
− 1

p2

))z

, (9)

where εβ = 0 if 3|β and 1 otherwise, and ε′α = 1 if 3|(α − 2) and 0 otherwise.
We now consider p ≡ 1 mod 3. Let g be a primitive root modulo p. We write

indg(h) for the smallest nonnegative integers m such that gm ≡ h mod p. We put
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Hi =
p∑

x=1

e

(
gix3

p

)
, i = 0, 1, 2.

Let h be such that (p, h) = 1. Then indg(h) ≡ i modulo 3 for some i = 0, 1 or
2. It follows that S(p, h) = Hi. It is not difficult to see that H0, H1, H2 are the
solutions of the cubic equation H3 − 3pH − pa = 0, where a denotes the unique
integer ≡ 1 mod 3 such that 4p = a2 + 27b2, for some b. We obtain

Ωk(p) =

⎧⎪⎨⎪⎩
Ap := a(p − 1)/p2 if p|k,

Bp := (6p− a)/p2 if indg(k) ≡ 0 mod 3,

Cp := (−3p− a)/p2 if indg(k) ≡ 1 or 2 mod 3.

(10)

For 1 ≤ k ≤ pα − 1, we write k = p3u+vk′ with (p, k′) = 1 and 0 ≤ v ≤ 2, and
we get

τ(k, pα) =

⎧⎪⎨⎪⎩
1 + u
(
Ap + 1 − 1/p2

)
+ Bp if v = 0 and k′ is a cube mod p,

1 + u
(
Ap + 1 − 1/p2

)
+ Cp if v = 0 and k′ is not a cube mod p,

(u + 1)
(
Ap + 1 − 1/p2

)
otherwise.

If k = pα, whence α = 3u + v and k′ = 1, we have

τ(k, pα) =

⎧⎪⎨⎪⎩
1 + u
(
Ap + 1 − 1/p2

)
if v = 0,

(u + 1)
(
Ap + 1 − 1/p2

)
+ 1/p2 if v = 1,

(u + 1)
(
Ap + 1 − 1/p2

)
+ 1/p if v = 2.

Thus for any complex number z, we get

Sz(pα) =
(

1 − 1
p

)( α−1∑
β=0
3�β

1
pβ

(⌊
1 +

β

3

⌋(
Ap + 1 − 1

p2

))z

+
α−1∑
β=0
3|β

1
3pβ

(
β

3

(
Ap + 1 − 1

p2

)
+ 1 + Bp

)z

+2
(

β

3

(
Ap + 1 − 1

p2

)
+ 1 + Cp

)z )

+
1
pα

(⌊α
3

⌋(
Ap + 1 − 1

p2

)
+ 1 + εαAp + ε′α

(
1
p
− 1

p2

))z

, (11)

where εα = 0 if 3|α and 1 otherwise, and ε′α = 1 if 3|(α − 2) and 0 otherwise.
We finally treat the case p = 3. To easy the exposition, we restrict our atten-

tion to the case 3|α. For 1 ≤ k ≤ 3α we put k = 33u+vk′ with 0 ≤ v ≤ 2 and
(p, k′) = 1. We have

τ(k, 3α) =
min(3u+3,α)∑

t=0

Ωk(pt) =

{
u
(
τ(0, 27)− 1

)
+ τ(3vk′, 27) if 1 ≤ k < 3α,

1 + α
3

(
τ(0, 27)− 1

)
if k = 3α.
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By a direct computation, we easily check that τ(k, 27) = 0, if k ≡ ±4 mod 9, 1
if k ≡ ±2 mod 9, 1/3 if 3‖k, 2 if k ≡ ±1 mod 9 or 9‖k and 3 if 27|k, whence for
3|α and 3u + v ≤ α we have for (k′, p) = 1,

τ(33u+vk′, 3α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2u if v = 0 and k′ ≡ ±4 mod 9,
2u + 1 if v = 0 and k′ ≡ ±2 mod 9, or α = 3u,
2u + 2 if v = 0 and k′ ≡ ±1 mod 9, or v = 2,
2u + 1/3 if v = 1.

Thus for any complex number z, we get for 3|α,

Sz(3α)
α/3−1∑

t=0

1
27t+1

(
6(2t)z + 6(2t + 1)z + 6

(
2t +

1
3

)z

+ 8(2t + 2)z

)
+

1
3α

(
2α

3
+ 1
)z

. (12)

3.2 Evaluation of S

In order to compute S, it is suitable to rewrite it as an Eulerian product. For
this, we follow section 3.3 of [2], and we first get

S2(K) =
∏

pα‖K

α∑
β=0

Ω(pβ), where Ω(q) =
q∑

h=1
(h,q)=1

∣∣∣∣S(q, h)
q

∣∣∣∣6 .

We now observe that Ω(p) = 0 for p ≡ 2 mod 3 (since S(p, h) = 0 for (p, h) = 1),
and when p ≡ 1 mod 3, we get

Ω(p) =
p − 1
3p6 (H6

0 + H6
1 + H6

2 ) =
(p − 1)(18p + a2)

p4 ,

by Newton identities (recall that 4p = a2 +27b2 and a ≡ 1 mod 3). Moreover we
obtain from (8) that for p �= 3

Ω(p2) =
p− 1
p5 , Ω(p3) =

p − 1
p4 ,

and that for 
 ≥ 4, and any prime p, Ω(p�) = Ω(p�−3)/p3. We also compute
Ω(3) = 0, Ω(9) = 20/27 and Ω(27) = 2/81. We thus deduce that

S =
70
39

∏
p�=3

(
1 + T (p)

)
, where T (p) =

Ω(p) + 1/p3 − 1/p5

1 − 1/p3 .

For a convenient bound P , we get by a basic C-program a numerical value
of the partial Eulerian product

∏
p�=3,p≤P (1 + T (p)). For large p, p > P , we

use for p ≡ 1 mod 3 the upper bound a ≤ 2
√

p deduced from the identity
4p = a2 +27b2 to obtain the bound T (p) ≤ 22/p2 and for p ≡ 2 mod 3 the upper
bound 1 + T (p) ≤ 1/(1 − 1/p3). By this way, this yields the upper bound for
P = 109

S < 3.35141544. (13)
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4 Computing δ - The Inverse Mellin Transform

The value of δ(K) for given modulus K of the type KB, with B as large as
possible, may be obtained by summing the series

∞∑
i=1

(−1)i+1 γi

i!
Si(K),

The general term of the series is, as in the biquadrates case (cf. [3]), at first
decreasing for small values of i, then it quickly increases and finally goes to zero
for large values of i. In case of cubes, no sufficiently good estimation of δ(K) are
obtained in reasonable time by considering the bounds

2n∑
i=1

(−1)i+1 γi

i!
Si(K) ≤ 1 − δ(K) ≤

2n−1∑
i=1

(−1)i+1 γi

i!
Si(K).

Indeed for large K = KB given by (4), we have to compute Si(K) for i ≤ I(K)
which is also very large. For K =

∏
pα<6600 pα, we have I(K) � 18000, and it

only leads to 0.099919 < 1− δ < 0.099963. The computation of these bounds by
this method implies numbers with 2800 digits, and has needed 100 hours of cpu
time on a standard PC. We used for this Pari which enables to compute with
multiprecision.

To go further, as pointed out to us by Philippe Flajolet, the inverse Mellin
transform can be used for the computation of δ(K). Indeed, we know that for
any real numbers x > 0 and c > 0, we have

e−x =
1

2πi

∫ c+i∞

c−i∞
x−sΓ (s)ds.

By (3) and (6) we thus deduce that when 9|K we have

δ(K) =
2
9

+
1

2πi

∫ c+i∞

c−i∞
γ−sS−s(K)Γ (s)ds, (14)

by considering separately the classes k for which ρ(k, K) = 0 (there are 2K/9
such residues) from the others. We now recall the Stirling’s formula: for any
z ∈ C \ R−, we have

log Γ (z) =
(
z − 1

2
)
log z − z +

1
2

log 2π + E(z), (15)

where

E(z) =
∫ +∞

0

θ(u)
u + z

du, and θ(u) = (u) − u + 1/2.

We put Θ(u) =
∫ u

0
θ(t)dt and observe that 0 ≤ Θ(u) ≤ 1/8 for any u ≥ 0. By

partial summation, we thus obtain

|E(z)| ≤ 1
8

∫ +∞

0

du

|u + z|2 .
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For z = c + it where c > 0, this gives the bound

|E(c + it)| ≤ 1
8

∫ +∞

0

du

(u + c)2 + t2
=

1
8|t|

∫ +∞

c/|t|

dv

v2 + 1
≤ π

16|t| ,

for any t �= 0. We deduce from this

Re log Γ (c + it) =
(
c− 1

2
)
log |t| − π|t|

2
+

log 2π

2
+ Ec(t), (t �= 0),

where
|Ec(t)| ≤

π

16|t| .

We take c = 1
2 . By (14), this yields

∣∣∣e−x − 1
2πi

∫ c+iT

c−iT

x−sΓ (s)ds
∣∣∣ ≤ x− 1

2

(
2
π

) 3

2

exp(E1/2(T )) e−πT/2.

We thus obtain∣∣∣δ(K)− 2
9
− 1

2πi

∫ c+iT

c−iT

γ−sS−s(K)Γ (s)ds
∣∣∣

≤ γ−cS−c(K)
( 2

π

)3/2
e−πT/2+π/16T . (16)

We then compute for some large fixed T and c = 1
2 a numerical approximating

value of

1
2πi

∫ c+iT

c−iT

γ−sS−s(K)Γ (s)ds =
1
π

Re
∫ T

0
γ−c−itS−c−it(K)Γ (c + it)dt

In order to use a numerical integration method, namely Simpson’s rule, we need
to control the size of the derivatives of the function Λ(s) = γ−sS−s(K)Γ (s).
For s = c + it the j-th derivative of Γ satisfies |Γ (j)(s)| ≤ Gj(c) where Gj(c) =∫∞
0 | log(x)|jxc−1e−x dx. Now we denote by S′

−s(K), S′′
−s(K) and so on the

successive derivatives of S−s(K) according to the variable s.
We have

|S′
−s(K)| ≤ 1

K

K∑
k=1

ρ(k,K) �=0

| log(τ(k, K))|(τ(k, K))−c.

Using the fact that log t ≤ t1/e for t > 1 and | log t| ≤ t−1/e for t < 1 we get

|S′
−s(K)| ≤ S−c+1/e(K) + S−c−1/e(K).

For the successive derivatives, we have for j ≥ 1.

|S(j)
−s(K)| ≤ Sj(K, c) (17)

where Sj(K, c) = S−c+j/e(K) + S−c−j/e(K).
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From (17), we get for instance for the second derivative of Λ the upper bound

|Λ′′(c+it)| ≤ γ−c
(
(ln γ)2S−c(K)Γ (c)+2| lnγ| (S−c(K)G1(c) + S1(K, c)Γ (c))
+ S−c(K)G2(c) + 2G1(c)S1(K, c) + Γ (c)S2(K, c)) . (18)

Similar bounds can be obtained for Λ(j)(c + it) for any j ≥ 1.
Choosing K = KB with B around 108 in (4), our computation consists in

estimating Λ(c + it) for N values of t in the interval [0, T ]. For such t and
for each prime p such that pα‖K, we calculate, using (9), (11), (12) and Pari,
S−c−it(pα) giving by mulitplicativity S−c−it(K), and we obtain by quadrature
an approximation of δ(K). In order to bound the error term, we also calculate
for c = 1

2 , Sj(K, c) and Gj(c) (by numerical integration), 1 ≤ j ≤ 4. We thus
obtain an upper bound M

(4)
K,c for |Λ(4)(c+ it)| for 0 ≤ t ≤ T and an upper bound

for the error eT in the quadrature by Simpson’s rule which is given by

|eT | ≤
T 5M

(4)
K,c

2880N4 . (19)

We deduce from this in view of (5), (13) and (16) (with T = 15), and also taking
into account of the error term (19) entailed in the numerical integrating process
(with N = 212), the bounds

0.09994250 < 1 − δ < 0.09994254.

5 Comparing 1 − δ with the Experimental Densities -
First Observations

For x ≤ x0 = 5 · 1014, we have computed, on the one hand, the number N(x) of
integers up to x which are the sum of three cubes, and on the other hand, the
number Nd(x) of such integers restricted to sums of three distinct cubes (recall
that our model concerns sums of distinct terms of random sequences).

The difference N(x)−Nd(x) plainly is less than the number of integers n up
to x which are sums of the type n = 2n3

1 + n3
2 which is less than x2/3. Thus the

two functions ν(x) = N(x)/x and νd(x) = Nd(x)/x join together when x tends
to infinity, i.e. ν(x) − νd(x) = o(1).

To compute N(x) and Nd(x), we proceed by intervals: each interval I = [z, z+
Δ] corresponds to a large array of bits initialized to 0, which are switched to 1,
whenever the corresponding integer in I is a sum of three cubes: the computation
of the sums of three cubes in I is done by a three stage DO loops indexed by
(j, k, l) such that j ≥ k ≥ l or j > k > l according to the density we are dealing
with. It turns out that the order in programming the loops on respectively j, k
and l, have a strong influence on the cpu time: we notice that the loop indexed
by j is the shortest one compared to the loops indexed on k and l. It follows
that we save a lot of cpu time in programming it first. Here is the algorithm we
used for covering all the sums of three cubes in the interval (a, b].
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Initialize to 0 an array with b− a bits
Initialize j to (b1/3)
While j3 > a

Initialize k to min(j, ((b− j3)1/3))
While j3 + k3 > a and k ≥ 0

Initialize l to min(k, ((b − j3)1/3))
While s = j3 + k3 + l3 − a > 0 and l ≥ 0

Switch the bit s to 1
l ← l − 1

k ← k − 1
j ← j − 1

 0.09985

 0.0999

 0.09995

 0.1

 0.10005

 0  1e+12  2e+12  3e+12  4e+12  5e+12

Distinct summands density
Equal summands allowed density

Probabilistic density

Fig. 1. The experimental and probabilistic densities

We were first disappointed to discover in Figure 1 that for small values of x
the functions ν and νd are both decreasing, contrary to what we observed in
the biquadrates case (cf. [3]). Moreover they pass below the probabilistic density
1 − δ and continue to be globally decreasing.

Then around x � 5·1012, the distinct summands density function νd(x) begins
to grow up while ν(x) still decreases (see Figure 2).

We have to wait till x � 2 · 1014 to finally observe ν(x) going up as well (see
Figure 3).

We also computed for much larger x some values of (N(x + t) − N(x))/t for
t = 1012. In view of these random experimentations, the fact that sums of three
cubes has density 1 − δ remains plausible.
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 0.0999

 0.09992

 0.09994

 0.09996

 0.09998

 0.1

 0  5e+12  1e+13  1.5e+13  2e+13

Distinct summands density
Equal summands allowed density

Probabilistic density

Fig. 2. The experimental and probabilistic densities

 0.0999

 0.099905

 0.09991

 0.099915

 0.09992

 0.099925

 0.09993

 0.099935

 0.09994

 0.099945

 0.09995

 0  1e+14  2e+14  3e+14  4e+14  5e+14

Distinct summands density
Equal summands allowed density

Probabilistic density

Fig. 3. The experimental and probabilistic densities

6 Comparing 1 − δ with the Experimental Densities -
A Modular Approach

Let p be a prime number p ≡ 2 mod 3. Since the set of the cubes modulo p
coincides with the whole set of residues modulo p, we may reasonably expect
that sums of three cubes are well-distributed in the residue classes modulo p.
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Let a be an integer such that 0 ≤ a ≤ p − 1. Put N(x; a, p) be the number of
integers n up to x which are sums of three cubes and n ≡ a mod p. For x > 0, let
ν(x; a, p) = pN(x; a, p)/x be the relative density function of sums of three cubes
falling down in the residue class a modulo p. We define similarly νd(x; a, p) for
the sums of three pairwise distinct cubes.

The assumption of well-distribution of the sums of three cubes in the classes
modulo p would imply that ν(x; a, p) is close to ν(x), as x becomes enough large
in terms of p. The number of triples (u, v, w) of nonnegative integers such that
u3+v3+w3 ≤ x and u3+v3+w3 ≡ a mod p is ∼ γx/p, as x tends to infinity. Since
we need to have a good averaging process in the computation of ν(x; a, p), our
result will be significiant for comparison with the probabilistic density 1−δ, only
when x/p is enough large. We may observe in Figure 4 that for x ≤ 3 · 1014 the
relative density functions ν(x; 1, 503) and νd(x; 1, 503) look closely like the global
density functions ν(x) and νd(x). Moreover for larger x, the former ones seem to
prolong the later ones (see Figure 5). In Figure 6, we start to observe the effect of
the modulus on both density functions ν(x; 43, 50021) and ν(x; 43, 50021) when
x is not large enough. Afterwards, both lines become smoother, continuing to
increase slowly but surely.

In Figure 7, the general outline is slightly similar than in Figure 6. However, a
more pronounced chaotic behaviour of the density functions occurs for small x.

Let us explain how to compute N(x; a, p) where p ≡ 2 mod 3 is prime. As for
the global densities, we proceed interval by interval. Assume we want to compute
the number of integers congruent to a modulo p in the interval I = [z, z + Δ]
which are sums of three cubes. We first initialize to zero a large array of bits:
each bit corresponds to some integer congruent to a modulo p in the interval I.
For any sum of two cubes y less than z+Δ, we compute the cubic root c modulo

 0.0999

 0.09991

 0.09992

 0.09993

 0.09994

 0.09995

 0  2e+15  4e+15  6e+15  8e+15  1e+16

Distinct summands density
Equal summands allowed density

Probabilistic density

Fig. 4. The relative experimental and probabilistic densities in the class 1 mod 503
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 0.0999

 0.099905

 0.09991

 0.099915

 0.09992

 0.099925

 0.09993

 1e+14  2e+14  3e+14  4e+14  5e+14  6e+14  7e+14  8e+14  9e+14  1e+15

Experimental densities
Experimental relative densities in the class 1 mod 503

Fig. 5. Comparison between relative densities class 1 mod 503 and global densities

 0.09991

 0.099915

 0.09992

 0.099925

 0.09993

 0.099935

 0.09994

 0.099945

 0.09995

 0.099955

 0  5e+16  1e+17  1.5e+17  2e+17  2.5e+17  3e+17  3.5e+17

Distinct summands density
Equal summands allowed density

Probabilistic density

Fig. 6. The relative experimental and probabilistic densities in the class 43 mod 50021

p of a − y. Then to each sum y + (c + mp)3 in the given interval, we obtain a
sum of three cubes congruent to a modulo p, whose associated bit is switched if
necessary to 1.

Notice that for each interval I = [z, z + Δ], we need to compute all sums of
two cubes y, since they are too numerous to be stored once and for all in an
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 0.09992

 0.099925

 0.09993

 0.099935

 0.09994

 0.099945

 2e+18 1.5e+18 1e+18 5e+17

Distinct summands density
Equal summands allowed density

Probabilistic density

Fig. 7. The relative experimental and probabilistic densities in the class 2 mod 1000037

 0.0999

 0.09991

 0.09992

 0.09993

 0.09994

 0.09995

 0.09996

 0.09997

 0.09998

 1e+10  1e+11  1e+12  1e+13  1e+14  1e+15  1e+16  1e+17  1e+18  1e+19

Fig. 8. The extrapolated experimental densities and the probabilistic density viewed
in logarithmic scale

array. Moreover, when p is large compared to z, say p3 ≥ x, there is at most
one value of m for which y + (c + mp)3 is in I, and the most part of sums of
two cubes less than z +Δ do not provide any sum of three cubes in the required
class and in the given interval I.
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By gathering all these numerical results, putting the computed density func-
tions end to end on suitably chosen intervals, we obtain an extrapolated repre-
sentation of the global density functions up to x = 2 ·1018. It is given in Figure 8
using a logarithmic scale in abscissa, according to the following interval division:

modulus class interval

1 0 [0; 5 · 1014]

503 1 [5 · 1014; 1016]

50021 43 [1016; 3.5 · 1017]

1000037 2 [3.5 · 1017; 2 · 1018]

Similar computations have been done with others moduli and lead to very
close extrapolated densities.
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Abstract. Let M(x) = 1≤n≤x μ(n) where μ(n) is the Möbius func-
tion. The Mertens conjecture that |M(x)|/√

x < 1 for all x > 1 was
disproved in 1985 by Odlyzko and te Riele [13]. In the present paper, the
known lower bound 1.06 for lim sup M(x)/

√
x is raised to 1.218, and the

known upper bound −1.009 for lim inf M(x)/
√

x is lowered to −1.229. In
addition, the explicit upper bound of Pintz [14] on the smallest number
for which the Mertens conjecture is false, is reduced from exp(3.21×1064)
to exp(1.59 × 1040). Finally, new numerical evidence is presented for the
conjecture that M(x)/

√
x = Ω±(

√
log log log x).

1 Introduction

The Möbius function μ(n) is defined as follows

μ(n) :=

⎧⎨⎩ 1 if n = 1,
0 if n is divisible by the square of a prime number,

(−1)k if n is the product of k distinct primes.

Taking the sum of the values of μ(n) for all 1 ≤ n ≤ x, we obtain the function

M(x) :=
∑

1≤n≤x

μ(n),

which is the difference between the number of squarefree positive integers n ≤ x
with an even number of prime factors and those with an odd number of prime
factors. The Mertens conjecture [11] states that

|M(x)|/
√

x < 1 for x > 1.

This, but also the weaker assumption

|M(x)|/
√

x < C for x > 1 and some C > 1 (1)

would imply the truth of the Riemann hypothesis. The Mertens conjecture was
shown to be false by Odlyzko and te Riele in 1985 [13]. They proved the existence
of some x for which M(x)/

√
x > 1.06, and some other x for which M(x)/

√
x <

−1.009. In 1987, Pintz [14] gave an effective disproof of the Mertens conjecture
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by showing that |M(x)|/√x > 1 for some x ≤ exp(3.21× 1064). Nowadays, it is
generally believed that the function M(x)/

√
x is unbounded, both in the positive

and in the negative direction. In [8], for example, it is conjectured that

M(x)/
√

x = Ω±(
√

log log log x). (2)

In this paper, we improve the above results by showing that there exists an x
for which M(x)/

√
x > 1.218 and an x for which M(x)/

√
x < −1.229 (Section 2),

and that there exists an x < exp(1.59 × 1040) for which the Mertens conjecture
is false (Section 3). In addition, we provide new numerical evidence to support
(2) (Section 4).

Notation The complex zeros of the Riemann zeta function are denoted by
ρj = 1

2 + iγj (we work in the range where the Riemann hypothesis is known to
be true) with γ1 = 14.1347... and γj < γj+1, j = 1, 2, . . .. Furthermore, we write
ψj = arg ρjζ′(ρj) and αj = |ρjζ′(ρj)|−1. We also consider the zeros ρj ordered
according to non-increasing values of αj , and denote them by ρ∗

j = 1
2 + iγ∗

j

with the corresponding quantities ψ∗
j , α∗

j , j = 1, 2, . . .. For example, the first five
ρ∗

j ’s coincide with the first five ρj ’s, but ρ∗
6 = ρ7, ρ∗

7 = ρ10, and ρ∗
8 = ρ6 (with

α∗
6 = α7 = 0.0163 . . . , α∗

7 = α10 = 0.0141 . . . and α∗
8 = α6 = 0.0137 . . .).

2 Improvement of the Upper and Lower Bounds for
M(x)/

√
x

2.1 Background

We describe the approach which led to the disproof of the Mertens conjecture
and which is the basis of the experiments which we have carried out to extend
the results of Odlyzko and te Riele concerning the function M(x)/

√
x.

For large x, computational results on M(x) are generally based on the follow-
ing result due to Titchmarsh [18, Theorem 14.27].

Theorem 1. If all the zeros of the Riemann zeta-function are simple, then there
is an increasing sequence {Tn} such that

M(x) = lim
n→∞

∑
|γ|<Tn

xρ

ρζ′(ρ)
− R(x) +

∞∑
n=1

(−1)n−1(2π/x)2n

(2n)!n ζ(2n + 1)
(3)

where R(x) = 2 − μ(x)
2 if x is an integer, and R(x) = 2 otherwise.

On the Riemann hypothesis, we have ρ = 1
2+iγ, so that (3) can be rewritten as

M(x)√
x

= 2 lim
n→∞

∑
0<γ<Tn

cos(γ log x − ψγ)
|ρζ′(ρ)| + O(x−1/2), (4)

with ψγ = arg ρ ζ′(ρ), and where we have also taken into account that in Theorem
1, R(x) = O(1) and the second series is O(x−2). Hence, as n increases, the sum
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in (4) will eventually converge to M(x)/
√

x, with the remaining error on the
order of magnitude of 1/

√
x. However, very little is known about the rate of this

convergence, as the coefficients |ρζ′(ρ)|−1 do not form a monotonically decreasing
sequence, but instead behave quite irregularly. For some values of x up to 1014,
this rate of convergence has been studied computationally, and several thousands
of terms generally suffice to bring the error below 1% [8], but for much larger x
this approach is not feasible.

If instead of an isolated value of M(x)/
√

x, a weighted average of this function
in some x-range is of interest, the problem becomes somewhat more tractable.
Namely, in these cases the terms of the above sum are multiplied by a function
of bounded support, and the series in (3) is transformed into a finite sum. Two
such cases will appear in Theorems 2 and 3 below.

We write x = ey, −∞ < y < ∞, and define

m(y) := M(x)x−1/2 = M(ey)e−y/2,

and
m := lim sup

y→∞
m(y), m := lim inf

y→∞ m(y).

Then we have the following [5,6,7,13]

Theorem 2. Let

h(y, T ) := 2
∑

0<γ<T

[
(1 − γ

T
) cos(π

γ

T
) + π−1 sin(π

γ

T
)
] cos(γy − ψγ)

|ρ ζ′(ρ)| (5)

where ρ = β + iγ are the complex zeros of the Riemann zeta function which
satisfy β = 1

2 and which are simple. Then for any y0,

m ≤ h(y0, T ) ≤ m

and any value h(y, T ) is approximated arbitrarily closely, and infinitely often, by
M(x)/

√
x.

Since
(1 − t) cos(πt) + π−1 sin(πt) > 0 for 0 < t < 1

and since it is known that
∑

ρ |ρ ζ′(ρ)|−1 diverges [18, Section 14.27], the sum of
the coefficients of cos(γy − ψγ) in (5) can be made arbitrarily large by choosing
T large enough. Consequently, if we could find a value of y such that all of the
γy−ψγ are close to integer multiples of 2π, then we could make h(y, T ) arbitrarily
large. This would contradict, by Theorem 1, any conjecture of the form (1). If the
γ’s were linearly independent over the rationals, then by Kronecker’s theorem
(see, e.g., [4, Theorem 442]) there would indeed exist, for any ε > 0, integer
values of y satisfying

|γy − ψγ − 2πmγ | < ε

for all γ ∈ (0, T ) and certain integers mγ . This would show that h(y, T ), and
hence M(x)/

√
x, can be made arbitrarily large. On the same assumptions, a
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similar argument can be given to imply that h(y, T ), and hence M(x)/
√

x, can
be made arbitrarily large on the negative side. No good reason is known why
among the γ’s there should exist any linear dependencies over the rationals (see,
e.g., [1]).

The approach which actually led to a disproof of the Mertens conjecture was
based on the now well-known lattice basis reduction (L3–) algorithm of Lenstra,
Lenstra and Lovász [9] for finding short vectors in lattices. With this algorithm,
the above mentioned inhomogeneous Diophantine approximation problem could
be solved for a much larger number of terms in (5) than before. Any value of y
that would come out was likely to be quite large, viz., of the order of 1070 in size.
Therefore, it was necessary to compute the first 2000 γ’s with an accuracy of
about 75 decimal digits (actually, 100 decimal digits were used). The best lower
and upper bounds found for m and m were 1.06 and −1.009, respectively.

2.2 Computation of New Lower and Upper Bounds for M(x)/
√

x

In order to find a y such that each of the numbers

ηj := (γ∗
j y − ψ∗

j ) mod 2π, 1 ≤ j ≤ n, (6)

is small, Odlyzko transformed this problem into a problem about short vectors
in lattices, as described in [13]. The lattice L used is generated by the columns
v1, v2, . . . , vn+2 of the following (n + 2) × (n + 2) matrix (here [x] means the
greatest integer ≤ x):

−[
√

α∗
1ψ∗

12ν ] [
√

α∗
1γ∗

12ν−10] [2π
√

α∗
12

ν ] 0 ... 0

−[
√

α∗
2ψ∗

22ν ] [
√

α∗
2γ∗

22ν−10] 0 [2π
√

α∗
22

ν ] ... 0

.. . . . . .

.. . . . . .

.. . . . . .

−[
√

α∗
nψ∗

n2ν] [
√

α∗
nγ∗

n2ν−10] 0 0 ... [2π
√

α∗
n2ν ]

2νn4 0 0 0 ... 0

0 1 0 0 ... 0

(7)

where ν is an integer satisfying 2n ≤ ν ≤ 4n. The L3 algorithm produces a
reduced basis v′

1, v′
2, . . . , v′

n+2 for the lattice L, where each new basis vector is a
linear combination of the n+2 given basis vectors. Now the (n+1)-st coordinate
of v1, which has value 2νn4, is very large compared to all the other entries of
the original basis. Since the reduced basis is a basis for the lattice L, it should
contain precisely one vector w which has a nonzero coordinate in the (n + 1)-st
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position and that coordinate should be ±2νn4. Without loss of generality this
may be taken to be 2νn4. Given the original lattice basis, the j-th coordinate of
this vector w equals, for 1 ≤ j ≤ n:

z
[√

α∗
jγ∗

j 2ν−10
]
−
[√

α∗
jψ∗

j 2ν
]
− mj

[
2π
√

α∗
j2

ν
]

and the (n + 2)-nd coordinate is z, for some integers z, m1, m2, . . . , mn. If the
length of w is small, all of the

z
√

α∗
j γ∗

j 2ν−10 −
√

α∗
jψ∗

j 2ν − mj2π
√

α∗
j2

ν

will be small, i.e., all of the

βj =
√

α∗
j (yγ∗

j − ψ∗
j − 2πmj)

will be very small, where y = z/1024. The reason for the presence of the numbers
α∗

j in the lattice basis is that we want to make the sum

n∑
j=1

α∗
j cos(γ∗

j y − ψ∗
j − 2πmj)

large. If the cos-arguments are all close to zero, this sum will be approximately
n∑

j=1

α∗
j −

1
2

n∑
j=1

[
√

α∗
j (γ

∗
j y − ψ∗

j − 2πmj)]2,

and therefore we want the second sum to be small. This corresponds to mini-
mizing the euclidean norm of the vector (β1, β2, . . . , βn) which is what the L3

algorithm attempts to do.
In order to obtain values of y for which h(y, T ) will be negative, similar lat-

tices can be used with only one change, namely that ψ∗
j is replaced by ψ∗

j +π, so
that the cosine-arguments mod 2π will be close to π and the cosine-values close
to −1.

We have applied the L3 algorithm with the matrix (7) as input, for all the
combinations (ν, n) in the range ν = 8, 9, . . . , 400, n = [ν/4], [ν/4]+ 1, . . . , [ν/2].
To this end we used the function qflll from the PARI/GP package [15]. For a given
ν, the precision by which the computations were carried out was chosen to be
log10(22ν) decimal digits. For each combination of ν and n a number z = z(ν, n)
was generated as described above and we computed the local maximum of h(y, T )
as defined in (5) with y in the neighborhood of z/1024, and T = γ10000. The γj ’s
were computed to an accuracy of about 250 decimal digits using the Mathematica
package [10], and, as a check, using the PARI/GP package. The computing time
was about 600 CPU hours on the SGI Altix 3700 Aster system of the Academic
Computing Centre Amsterdam (SARA).

Figure 1 gives for each ν = 8, 9, . . . , 400 and for each value of z(ν, n) which
was found by the L3 algorithm, a scatter plot of the positive values of

h(z(ν, n)/1024, γ2000).
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Fig. 1.

For increasing values of ν, the corresponding h-values are increasing on average,
but at a rate that seems to decrease. For the negative values of h the pattern
is very similar. Reaching 1.3 and −1.3 would likely require a value of ν in the
neighborhood of 800.

For the most promising values of h obtained, we computed the local maxi-
mum resp. minimum of h(y, γ10000) in the neighborhood of y = z/1024. On the
positive side, our champion (found with ν = 379, n = 98) is

y = −233029271 5134531215 0140181996 7723401020 4456785091\
6681557518 6743434036 9240230890 8933261706 9029233958 2730162362.807965

with
h(y, γ10000) = 1.218429

and on the negative side, our champion (found with ν = 396, n = 102) is

y = −1608 7349754400 0919817483 9640165505 4685212472 2284778177\
5539303027 5350690810 7957194829 6433602695 1442102295 3212754000.679958

with
h(y, γ10000) = −1.229385.

Figure 2 compares the typical behaviour of M(ey)/ey/2 (top) with the behaviour
of h(y, γ10000) around the 1.218–spike (middle) and around the −1.229–spike
(bottom). Notice the four large negative spikes to the left and to the right of
the champion positive spike, and the four large positive spikes to the left and to
the right of the champion negative spike. This suggests that a very large spike
in one direction is usually accompanied by several large spikes in the opposite
direction. Notice also that the bottom graph, when inverted with respect to the
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Fig. 2.
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horizontal axis, very much resembles the middle graph. This is explained by the
fact that the two functions plotted there are sums of cosines of which the first
98 main terms are aligned very well in Δy = 0.

Part of the L3–output was also used to reduce the upper bound for which the
Mertens conjecture is known to be false (Section 3) and for the computations
concerning the growth rate of M(x)/

√
x (Section 4).

3 Reduction of the Smallest Known x for which
|M(x)/

√
x| > 1

Two years after Odlyzko and te Riele disproved the Mertens conjecture, Pintz
[14] published a theorem which gives an explicit upper bound for the smallest x
for which the Mertens conjecture is false:

Theorem 3. Let

hP (y, T ) := 2
∑

0<γ<T

e−1.5×10−6γ2 cos(γy − ψγ)
|ρζ′(ρ)| . (8)

If there exists a y ∈ [e7, e5×104

] with |hP (y, T )| > 1 + e−40 for T = 1.4 × 104,
then |M(x)|/

√
x > 1 for some x < ey+

√
y.

For the number y = y0 ≈ 3.2097×1064 as given by Odlyzko and te Riele in their
Table 3 (line i = 21) in [13], on request of Pintz, te Riele computed hP (y0, T ) and
found the value −1.00223, which implies, by Pintz’s Theorem, that the Mertens
conjecture is false for some x < exp(3.21× 1064).

We have computed hP (y, T ) for many smaller values of y, resulting from our
application of the L3 algorithm in Section 2.2, in order to attempt to further
reduce the upper bound for the smallest x for which the Mertens conjecture is
false. The smallest y for which we found a value of |hP (y, T )| > 1 + e−40 is:

y = 1 5853191167 3595000428 9014722171 6268116204.984802

with hP (y, T ) = −1.00819. This shows that there exists an

x < exp(1.59× 1040)

for which the Mertens conjecture is false. It is very likely that there is still
substantial room for improvement of this result. For example, in [8] it is suggested
that the first violation of the Mertens conjecture should occur not too far from
x ≈ exp(5 × 1023).

4 Estimation of the Order of Magnitude of M(x)/
√

x

4.1 Existing Results and Conjectures

The strongest unconditional results on the order of magnitude of M(x) are of
the general form M(x) = o(x). Thus Walfisz [19] proved that
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M(x) = O

(
x exp
(
−A

(log x)3/5

(log log x)1/5

))
for some A > 0

and Ford [2] has recently shown that we may take A = 0.2098. A proof of the
Riemann hypothesis would strengthen this to

M(x) = O(x1/2+ε) for every ε > 0.

It is also known that
M(x) = Ω±(x1/2)

and from the disproof of the Mertens conjecture by Odlyzko and te Riele it
follows that the multiplicative constant is larger than 1 into both the positive
and the negative direction. Nonetheless, the question whether M(x)/

√
x is un-

bounded remains open, although many experts suppose that this is the case, and
some arguments in favor of this have been presented in Section 2.1. During the
last decades, several conjectures on the order of magnitude of M(x)/

√
x have

been set forth. Good and Churchhouse [3], as well as Lévy in a comment to
Saffari [17], have conjectured that

lim sup
x→∞

|M(x)|√
x log log x

= C (9)

with C =
√

12
π = 1.1026 . . . according to Good and Churchhouse, whereas

C = 6
√

2
π2 = 0.8597 . . . according to Lévy. Conjectures of the type (9) seem

questionable, however, both on theoretical grounds and because of very poor
agreement with experimental observations (see e.g. [13, p. 140] and
[8, pp. 479–480]). More recently, Ng [12], partly building on unpublished work
by Gonek, conjectured that

lim sup
x→∞

|M(x)|√
x(log log log x)5/4 = B (10)

for some B > 0, while Kotnik and van de Lune [8] observed experimentally
that estimates of the largest positive and negative values of M(x)/

√
x in the

range 104 ≤ x ≤ 101010

are quite close to 1
2

√
log log log x and − 1

2

√
log log log x,

respectively. If this would also hold asymptotically, it would contradict both (9)
and (10). In a somewhat more conservative spirit, Kotnik and van de Lune finally
conjectured that

M(x)/
√

x = Ω±(
√

log log log x),

which is weaker than both (9) and (10), as these correspond to M(x)/
√

x =
Ω(

√
log log x) and M(x)/

√
x = Ω((log log log x)5/4), respectively.

4.2 New Results

Theorem 1 suggests that sums of the type

h1(y, T ) := 2
∑

0<γ<T

cos(γy − ψγ)
|ρζ′(ρ)|
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should, as T increases, eventually converge to the respective values of
M(ey)/

√
ey. As mentioned in Section 2.1, the essential problem of the estima-

tion of M(ey)/
√

ey by means of such sums is that their convergence can only be
estimated empirically. Observing that the sums obtained with the first ten thou-
sand ζ-zeros (T = γ104 = 9877.782...) and those obtained with the first million
ζ-zeros (T = γ106 = 600269.677...) consistently differ by less than 1% (see e.g.
Tables 3 and 4 in [8], as well as Figure 4 in the same source), Kotnik and van de
Lune used these sums in estimating the largest positive and negative values of
M(x)/

√
x in the range 104 ≤ x ≤ 101010

(see previous subsection), and thereby
came to the observations mentioned in the preceding subsection. In terms of y,
the range they investigated is 9.210... ≤ y ≤ 23025850929.940..., and the esti-
mates were obtained by sampling the sums in y-increments of 0.0005, and then
searching for the local extrema if an exceptionally large value was found. While
this approach practically eliminated the possibility of missing an exceptionally
large positive or negative value, due to uniform y-increments a significant exten-
sion of this approach (e.g., to the smallest values of y for which |M(ey)|/

√
ey is

known to exceed 1; see Section 3) would be impossible.
As the L3 algorithm can be used to generate isolated y-values for which either

M(ey)/
√

ey or −M(ey)/
√

ey is likely to be very large, this offered a possibility
to considerably extend the estimation of the order of magnitude of M(ey)/

√
ey

by means of the sums h1(y, T ).
In Figure 3, we extend the study of Kotnik and van de Lune [8] with the

estimates h1(y, γ104) obtained in this manner. The hollow squares and circles
give the increasingly large values of M(ey)/

√
ey and h1(y, γ106), respectively,

obtained in [8], and the solid circles give the values of h1(y, γ104) found by the
L3 algorithm. We observe that also with y up to ≈ 10110 (i.e.,

√
log log y up to

≈ 2.35), the estimates of the largest positive and negative values of M(x)/
√

x are
quite close to 1

2

√
log log log x and − 1

2

√
log log log x, respectively. Nevertheless,

Fig. 3.
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at the very largest y-values the positive and negative estimates appear to be
systematically somewhat above the first and somewhat below the second of these
two functions, respectively. This suggests that a further extension, perhaps to
y ≈ 10500, could provide some additional insight into these observations.

5 Conclusions and Discussion

We have presented improvements of lim sup M(x)/
√

x and lim inf M(x)/
√

x with
respect to the results obtained by Odlyzko and te Riele in 1985, and an improve-
ment of the upper bound of the smallest x for which |M(x)| >

√
x with respect

to the result obtained by Pintz in 1987. The approach that led to our results
was based on systematic application of the L3 algorithm to a relatively extensive
set of combinations (ν, n), and also on considerable increase in computing power
with respect to what was available to the researchers twenty years ago.

There are several directions in which our results could be improved further.
Concerning the lim sup and lim inf results, the methods described in Section 2
could be extended in an elementary manner to larger values of ν and n, and as
we state in that section, values of ν close to 800 would probably lead to lim sup
and lim inf values close to 1.3 and −1.3, respectively. In contrast, a further
improvement of the upper bound of the first violation of the Mertens conjecture
would very likely require a strengthening of Theorem 3, in the sense of reducing
the value of the constant 1.5 × 10−6 in the exponent occurring in (8). Namely,
there are values of y smaller than the upper bound presented in Section 3 for
which the sum in (8) only falls short of exceeding 1 by a small amount. An
example is

y = 35499 1618091406 4844654619 4090311725.687444

for which
hP (y, 1.4 × 104) = 0.991549.

Finally, as we discussed in Section 4, the largest positive and negative estimates
of M(x)/

√
x agree reasonably well with 1

2

√
log log log x and − 1

2

√
log log log x,

respectively, throughout the investigated range, but the estimates close to the
very end of this range slightly, yet consistently exceed these two functions. An
extension of the study presented here should clarify whether this behavior con-
tinues, and perhaps becomes more pronounced at even larger x.
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Abstract. Let P (n) denote the largest prime divisor of n, and let
Ψ(x, y) be the number of integers n ≤ x with P (n) ≤ y. In this paper
we present improvements to Bernstein’s algorithm, which finds rigorous
upper and lower bounds for Ψ(x, y). Bernstein’s original algorithm runs
in time roughly linear in y. Our first, easy improvement runs in time
roughly y2/3. Then, assuming the Riemann Hypothesis, we show how to
drastically improve this. In particular, if log y is a fractional power of
log x, which is true in applications to factoring and cryptography, then
our new algorithm has a running time that is polynomial in log y, and
gives bounds as tight as, and often tighter than, Bernstein’s algorithm.

1 Introduction

For a positive integer n, let P (n) denote the largest prime divisor of n. If
P (n) ≤ y, then n is said to be y-smooth. Smooth numbers are utilized by many
integer factoring and discrete logarithm algorithms, and hence they are of inter-
est in cryptography [19,22]. Define Ψ(x, y) to be the number of integers n ≤ x
that are y-smooth. In this paper, we present improvements to an algorithm of
Bernstein[4,5], based on discrete generalized power series, which gives rigorous
upper and lower bounds for Ψ(x, y).

1.1 Previous Work

To compute the exact value of Ψ(x, y), one could simply factor all the integers
up to x using a sieve. The Buchstab identity

Ψ(x, y) = Ψ(x, 2) +
∑

2<p≤y

Ψ(x/p, p)
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leads to a simple recursive algorithm. Bernstein presents several algorithms in
his thesis [3]. See [17] for several more. All of these algorithms are far too slow
for use in applications related to factoring and cryptography.

There are a number of asymptotic estimates for Ψ(x, y) in the literature
[8,10,11,13,14,15,18,20,21], many of which lead to algorithms.

Dickman’s function, ρ(u), is defined as the unique continuous solution to

ρ(u) = 1 (for 0 ≤ u ≤ 1),
ρ(u − 1) + uρ′(u) = 0 (for u > 1).

It is well-known that the estimate Ψ(x, y) ≈ xρ(log x/ log y) holds; for example
Hildebrand [13] proved that for ε > 0, we have

Ψ(x, y) = xρ(u)
(

1 + Oε

(
log(u + 1)

log y

))
where y ≥ 2 and u := u(x, y) = log x/ log y satisfies 1 ≤ u ≤ exp[(log y)3/5−ε].
This range can be extended if we assume the Riemann Hypothesis. Highly ac-
curate estimates for ρ(u) can be computed quickly using numerical integration;
see for example [27].

Hildebrand and Tenenbaum [14] gave a more complicated estimate for Ψ(x, y)
using the saddle-point method. Define

ζ(s, y) :=
∏
p≤y

(1 − p−s)−1,

φ(s, y) := log ζ(s, y),

φk(s, y) :=
dk

dsk
φ(s, y) (k ≥ 1).

Let a be the unique solution to φ1(a, y) + log x = 0. Then

Ψ(x, y) =
xaζ(a, y)

a
√

2πφ2(a, y)

(
1 + O

(
1
u

+
(log y)

y

))
uniformly for 2 ≤ y ≤ x. This theorem has led to a string of algorithms that, in
practice, appear to give significantly better estimates to Ψ(x, y) than those based
on Dickman’s function [17,24,25]. Recently, Suzuki [26] showed how to estimate
Ψ(x, y) quite nicely in only O(

√
log x log y) operations using this approach.

Bernstein’s algorithm [4,6] provides a very nice compromise between comput-
ing an exact value of Ψ(x, y) (which is very slow) and computing an estimate
(which is fast, but not as reliably accurate): compute rigorous upper and lower
bounds for Ψ(x, y). Bernstein’s algorithm introduces an accuracy parameter α,
and his algorithm creates upper and lower bounds for Ψ(x, y) that are off by at
most a factor of 1 + O(α−1 log x), implying a choice of, say, α , log x log log y.
As we will show in the next section, Bernstein’s algorithm has a running time of

O

(
y

log log y
+

y log x

(log y)2
+ α log x log α

)
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arithmetic operations, which is roughly linear in y. It also generates, for free,
rigorous bounds on Ψ(x′, y) for certain values of x′ < x.

1.2 New Results

We present two improvements to Bernstein’s algorithm.
Our first improvement is a simple one that Bernstein mentioned but did not

analyze. In essence, the idea is to use an algorithm to compute π(t), the number
of primes up to t, for many values of t with 2 ≤ t ≤ y, rather than use a prime
number sieve that finds all primes up to y. The result, Algorithm 3.1, has the
same accuracy as the original, with a running time of

O

(
α

y2/3

log y
+ α log x log α

)
operations.

Our second improvement is to choose a parameter z, with 1451 ≤ z < y
and z , α4(log α)2, and then use the π(t) algorithm for t ≤ z, but use the
fast-to-compute estimate

|π(t) − li(t)| <

√
t log t

8π
(t ≥ 1451)

for t > z, where li(t) is the logarithmic integral. The above inequality follows
from work of Schoenfeld [23] under the assumption of the Riemann Hypothesis
(see also [9, Exercise 1.36]). This improvement, Algorithm 4.1, leads to a running
time of

O

(
α

z2/3

log z
+ α log x log αy

)
operations, with a relative error of at most O(α−1 log x). In particular, if we
take α , log x(log log y)2, say, resulting in z , (log x)4(log log x)2(log log y)8, we
obtain the running time of

O((log x)11/3(log log x)1/3(log log y)22/3)

operations. In applications related to factoring and discrete logarithms, we have
log x ≈ (log y)3, so that our algorithm runs in time polynomial in log y. With
such a small running time, we can choose to make α larger, resulting in more
accurate upper and lower bounds for Ψ(x, y), in less time.

1.3 A Comparison

Below we compare the relative error and running times (with big-Oh understood)
for several different algorithms.
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For log x = (log y)2 so that u = log y we have:

Relative Error Algorithm Running Time

log log y/log y xρ(u) (log y)2

(log y)−1 Suzuki [26] (log y)3/2

(log y)−2 Bernstein [4,6] y

(log y)−2 Algorithm 4.1 (log y)44/3+o(1)

(log y)−3 Bernstein [4,6] y

(log y)−3 Algorithm 4.1 (log y)55/3+o(1)

y−1 Bernstein [4,6] y(log y)3

y−1 Algorithm 4.1 y(log y)3

For log x = (log y)3 so that u = (log y)2 we have:

Relative Error Algorithm Running Time

log log y/log y xρ(u) (log y)4

(log y)−1 Suzuki [26] (log y)2

(log y)−2 Bernstein [4,6] y
(log y)−2 Algorithm 4.1 (log y)55/3+o(1)

(log y)−3 Bernstein [4,6] y
(log y)−3 Algorithm 4.1 (log y)22+o(1)

y−1 Bernstein [4,6] y(log y)4

y−1 Algorithm 4.1 y(log y)4

1.4 Organization

The rest of this paper is organized as follows. In §2 we review Bernstein’s algo-
rithm and provide a running time analysis. In §3 we present and analyze our first
improved algorithm. In §4 we present the second improved algorithm, along with
a running time analysis. In §5 we perform an accuracy analysis of the algorithm
from §4. Finally in §6 we present some timing results.

2 Bernstein’s Algorithm

In this section, we review Bernstein’s algorithm [4,6] that gives rigorous upper
and lower bounds for Ψ(x, y). We also give a running time analysis.

Consider a discrete generalized power series

F (X) =
∑

r

arXr,
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where r ranges over the real numbers. The ar may lie in any fixed ring or field,
although we will limit our interest to the reals. We require that, for any real h,
the set {r ≤ h : ar �= 0} is finite. We write

distrhF :=
∑
r≤h

ar,

the sum of the coefficients of F on powers of X below h.
We make the reasonable restriction that x be a power of 2. Define lg x :=

log2 x, and let h := lg x so that 2h = x. Then for |X | < 1 we have

Ψ(2h, y) = distrh

∑
P (n)≤y

X lg n

= distrh

∏
p≤y

(
1 + X lg p + X2 lg p + · · ·

)
= distrh

∏
p≤y

(
1 − X lg p

)−1

= distrh exp
∑
p≤y

log
(
1 − X lg p

)−1

= distrh exp

⎛⎝∑
p≤y

∑
k≥1

1
k

Xk lg p

⎞⎠ .

Here we used the identity log(1− t)−1 =
∑

k≥1 tk/k for |t| < 1.
To reduce the number of terms in this power series, we approximate each

prime p using a fractional power of 2. Define p ≤ p and p ≥ p as such.
Replacing p with p in the series above, we denote the resulting series by

B+(x, y), which overestimates Ψ :

Ψ(2h, y) ≤ B+(x, y) := distrh exp

⎛⎝∑
p≤y

∑
k≥1

1
k

Xk lg p

⎞⎠ .

Replacing p with p, we denote the resulting series by B−(x, y) which underesti-
mates Ψ :

Ψ(2h, y) ≥ B−(x, y) := distrh exp

⎛⎝∑
p≤y

∑
k≥1

1
k

Xk lg p

⎞⎠ .

We now present the algorithm for computing a lower bound for Ψ(x, y). Com-
puting the upper bound is similar.

Algorithm 2.1. Recall that x = 2h. WLOG we are computing B−(x, y), the
lower bound.

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <
(log x)e

√
log y.
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2. Find the primes up to y, and for each p, compute p such that

α lg p = %α lg p& (1)

(and similarly α lg p = (α lg p) for the upper bound).
For example, if α = 10, then 2 = 2, 3 := 216/10 ≈ 3.03, 5 := 224/10 ≈ 5.28,
and 7 := 229/10 ≈ 7.46.

3. Compute G(X) :=
∑
p≤y

�h/ lg p�∑
k=1

1
k

Xk lg p.

4. Compute expG(X) using an FFT-based algorithm.
5. Compute distrh exp G(X) by summing the coefficients.

Note that one can compute distrh′ exp G(X) for any h′ ≤ h along the way, giving
a lower bound for Ψ(2h′

, y) as well, essentially for free.

Theorem 2.2. When y is sufficiently large, Algorithm 2.1 computes upper and
lower bounds, B+(x, y) and B−(x, y), for Ψ(x, y) satisfying

B−(x, y)
Ψ(x, y)

≥ 1 − log x

α lg 3
and

B+(x, y)
Ψ(x, y)

≤ 1 +
2 log x

α lg 3

using at most

O

(
y

log log y
+

y log x

(log y)2
+ α log x log α

)
arithmetic operations.

Proof. If we set

ε1 = max
p≤y

(
lg p

lg p
− 1
)

and ε2 = max
p≤y

(
1 −

lg p

lg p

)
and take ε ≥ max{ε1, ε2}, then one has

Ψ(x1/(1+ε), y) = distrh

∏
p≤y

(1 − X(1+ε) lg p)−1 ≤ B−(x, y)

and
Ψ(x1/(1−ε), y) = distrh

∏
p≤y

(1 − X(1−ε) lg p)−1 ≥ B+(x, y).

Hildebrand [16] shows that Ψ(cx, y) ≤ cΨ(x, y) when y is sufficiently large and
c ≥ 1 + exp(−

√
log y). Taking c = xε/(1±ε), we find that

B−(x, y)
Ψ(x, y)

≥ x−ε/(1+ε) ≥ 1− ε log x and
B+(x, y)
Ψ(x, y)

≤ xε/(1−ε) ≤ 1 + 2ε log x,

provided that x is sufficiently large and

exp(−
√

log y) < ε log x < 1/2.

In view of (1), we can take ε = 1/(α lg 3).
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As for the running time, Step 2 can be done with a prime sieve [2], taking
O(y/ log log y) operations. In Step 3, G(X) will have O(αh) nonzero terms, and
so takes O(hy/(log y)2) time to construct. The FFT-based exponentiation algo-
rithm in Step 4 takes only O(αh log(αh)) operations [7]. Finally, Step 5 takes
only O(αh) time. Adding this up gives the stated runtime bound. ��

In practice, likely one of the first two terms will dominate the running time.

3 The First Improvement

Define ni := π(2i/α) − π(2(i−1)/α), the number of primes p such that α lg p = i,
or equivalently α lg p = i − 1.

We improve Bernstein’s algorithm by first computing the ni values, and then
use them to compute G(X).

Algorithm 3.1. WLOG we are computing B−(x, y), the lower bound.

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <
(log x)e

√
log y.

2. Compute the ni values for α ≤ i ≤ α lg y.

3. Compute G(X) :=
�α lg y�∑

i=α

ni

�hα/i�∑
k=1

1
k

Xki/α.

4. Compute expG(X) using an FFT-based algorithm.
5. Compute distrh exp G(X) by summing the coefficients.

Similarly, for the upper bound we have

G(X) :=
�α lg y�−1∑

i=α−1

ni+1

�hα/i�∑
k=1

1
k

Xki/α.

Bernstein mentions this improvement in his paper [6], but gives no analysis, and
his code (downloadable from cr.yp.to) does not use it.

Theorem 3.2. When y is sufficiently large, Algorithm 3.1 computes upper and
lower bounds, B+(x, y) and B−(x, y), for Ψ(x, y) satisfying

B−(x, y)
Ψ(x, y)

≥ 1 − log x

α lg 3
and

B+(x, y)
Ψ(x, y)

≤ 1 +
2 log x

α lg 3

using at most

O

(
α

y2/3

log y
+ α log x log α

)
arithmetic operations.

Again, we expect the first term to dominate the running time.
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Proof. The accuracy analysis of Algorithm 3.1 is identical to that of Algorithm
2.1, so we only need to perform a runtime analysis. We can use the algorithm
of Deléglise and Rivat[12] to compute π(t) in time O(t2/3/(log t)2). This means
that it takes

O

(
α log y · y2/3

(log y)2

)
operations to compute all the ni values (Step 2). The time to construct G(X)
or G(X) (Step 3) is then proportional to

�α lg y�∑
i=α

α log x

i
= O(α log x log α).

The remaining steps have the same complexity as Algorithm 2.1. ��

4 The Second Improvement

Next we show how to make Bernstein’s algorithm faster and tighter, especially
when y is large. The idea is to choose a parameter z < y, and only compute the
ni values for i ≤ α lg z. For larger i, we estimate ni using the prime number the-
orem and the Riemann Hypothesis. This introduces more error, but the greatly
improved running time allows us to choose a larger α to more than compensate.

Assuming the Riemann Hypothesis, we have

|π(t) − li(t)| <

√
t log t

8π
(2)

when t ≥ 1451 (see [23,9]), so we require that z > 1451. We note that a very
good estimate for li(t) can be computed in O(log t) time (see equations 5.1.3 and
5.1.10, or even 5.1.56, in [1]).

Define n±
i , our upper and lower bound estimates for ni, as follows:

– For i ≤ α lg z, n−
i := n+

i := ni.

– For i > α lg z, n−
i := max

⎧⎨⎩0,

(
li(2i/α)−

√
2i/α log(2i/α)

8π

)
−
∑
j<i

n−
j

⎫⎬⎭,

and n+
i := max

⎧⎨⎩0,

(
li(2i/α) +

√
2i/α log(2i/α)

8π

)
−
∑
j<i

n+
j

⎫⎬⎭.

We define G−(X) by replacing ni with n−
i in the definition of G(X):

G−(X) :=
�α lg y�∑

i=α

n−
i

�hα/i�∑
k=1

1
k

Xki/α,

and define
A−(2h, y) := distrh exp G−(X).
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We define G+(X) and A+(x, y) in a similar way for the upper bound.
Note that, for A−(x, y) to be a rigorous lower bound on Ψ(x, y), it is not

necessary for n−
i ≤ ni, but merely that, for every i,∑

j≤i

n−
j ≤
∑
j≤i

nj = π(2i/α).

Similarly, for A+(x, y) to be a rigorous upper bound it suffices that, for every i,∑
j≤i

n+
j ≥
∑
j≤i

nj = π(2i/α).

We achieve this assuming the Riemann Hypothesis. This leads us to the following
algorithm.

Algorithm 4.1. WLOG we are computing A−(x, y).

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <
(log x)e

√
log y, and choose a parameter z < y with z , α4(log α)2.

2. Compute the n−
i values as defined above.

3. Compute G−(X) :=
�α lg y�∑

i=α

n−
i

�hα/i�∑
k=1

1
k

Xki/α.

4. Compute expG−(X) using the FFT.
5. Compute distrh exp G−(X) by summing the coefficients.

In the next section we prove the following:

Theorem 4.2 (RH). When y is sufficiently large, Algorithm 4.1 computes up-
per and lower bounds, A+(x, y) and A−(x, y), for Ψ(x, y) satisfying

A−(x, y)
Ψ(x, y)

≥ 1 − α log x log z

6
√

z
− log x

α lg 3
+

(log x)2 log z

6
√

z lg 3

and
A+(x, y)
Ψ(x, y)

≤ 1 +
α log x log z

3
√

z
+

2 log x

α lg 3
+

2(log x)2 log z

3
√

z lg 3
.

Because α � log x, asymptotically we can ignore the last term in each case. The
other two terms balance when α is asymptotic to z1/4/

√
log z. This justifies our

choosing z proportional to α4(log α)2 in Step 1 of the algorithm, and this implies
that

Ψ(x, y)
A±(x, y)

= 1 + O

(
log x

α

)
.

To achieve a tighter bound with A±(x, y) than is obtained with B±(x, y) in
Algorithm 3.1, we will simply choose α larger. For example, if in Algorithm 3.1
we used α , log x log log y, then in our improved algorithm we might use α ,
log x(log log y)2. As we will see in §6, we can tolerate a larger α and still get a
faster running time.



Fast Bounds on the Distribution of Smooth Numbers 177

Theorem 4.3. Algorithm 4.1 computes A+(x, y) and A−(x, y) in

O

(
α

z2/3

log z
+ α log x log αy

)
operations.

Proof. We have the following:

– It takes O(αz2/3/ log z) time to compute the n−
i for i ≤ α lg z in Step 2.

– It takes O(α log x log y) time to compute the n−
i for i > α lg z in Step 2.

– The remaining steps take at most O(α log x log α) steps, the same as in
Algorithm 3.1.

Adding this up completes the proof. ��

If we choose α , log x(log log y)2, say, making z , (log x)4(log log x)2(log log y)8,
then the running time is

O((log x)11/3(log log x)1/3(log log y)22/3).

In applications to factoring, we have, roughly, log x ≈ (log y)3, so in this case
our running time is (log y)11+o(1), which, asymptotically, is significantly better
than y2/3+o(1).

5 An Accuracy Analysis

In this section, we present the proof of Theorem 4.2.
For the purposes of accuracy analysis, we will redefine n−

i and n+
i for i >

α lg z as

n−
i := li(2i/α)−

√
2i/α log(2i/α)

8π
−
(

li(2(i−1)/α) +

√
2(i−1)/α log(2(i−1)/α)

8π

)

and

n+
i := li(2i/α) +

√
2i/α log(2i/α)

8π
−
(

li(2(i−1)/α)−
√

2(i−1)/α log(2(i−1)/α)
8π

)
.

On recalling (2), we may rewrite this as

n−
i = Li − Δi ≤ ni ≤ Li + Δi = n+

i , (3)

where
Li := li(2i/α) − li(2(i−1)/α)

and

Δi :=
2i/(2α) log 2

8πα

(
i +

i − 1
21/(2α)

)
≤ i2i/(2α) log 2

4πα
. (4)
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These n±
i values lead to weaker bounds on Ψ(x, y) than those used in

Algorithm 4.1, but they are much easier to work with, and the results we obtain
still apply to Algorithm 4.1.

It follows easily from (3) that

n−
i ≥ ni(1 − δi) and n+

i ≤ ni(1 + δi), (5)

where δi := 2Δi/ni. Moreover, it follows from (3) and (4) after some computation
that

π(w)−π(w/c) ≥ li(w)−li(w/c)−
√

w log w

4π
≥
(

1− 1
c

)
li(w)− w log c

c(log w)2
−
√

w log w.

Taking c = 21/α and noting that

1 − 1
c

=
∞∑

k=1

(−1)k+1(log 2)k

k!αk
≥ 0.9 log 2

α

for α ≥ 4, we find that

π(w) − π(2−1/αw) ≥ 0.9w log 2
α log w

− w

α(log w)2
≥ (log 2)2w

α log w
,

provided that w is sufficiently large and α ≤ w1/4. Thus on taking w = 2i/α, we
obtain

ni ≥
2i/α log 2

i

for i > α lg z, provided that α ≤ z1/4 and z is sufficiently large. Thus by (4) we
have

δi ≤
i2

4πα2i/(2α) ≤
α(lg z)2

4π
√

z
≤ α(log z)2

6
√

z
:= δ (6)

for i > α lg z, since the expression i2/2i/(2α) is a decreasing function of i for
i > 4α/(log 2). Write

gi(X) =
∞∑

k=1

Xki/α

k
,

and let t = h/ lg z = log x/ log z. Since the smallest power of X in gi(X) is at
least X lg z when i > α lg z, we have

distrh exp G−(X) = distrh

⎡⎣exp

⎛⎝∑
p≤z

∞∑
k=1

Xk lg p

k

⎞⎠exp

⎛⎝ �α lg y�∑
i=�α lg z�+1

n−
i gi(X)

⎞⎠⎤⎦
= distrh

⎡⎢⎣exp

⎛⎝�α lg z�∑
i=α

nigi(X)

⎞⎠ t∑
j=0

1
j!

⎛⎝ α lg y∑
i=�α lg z�+1

n−
i gi(X)

⎞⎠j
⎤⎥⎦

≥ (1 − δ)tdistrh exp G(X),

on recalling (5). It therefore follows from (6) that
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A−(x, y)
B−(x, y)

=
distrh exp G−(X)
distrh exp G(X)

≥ (1 − δ)t ≥ 1− tδ ≥ 1 − α log x log z

6
√

z
.

Similarly, since (1 + δ)t ≤ 1 + 2tδ whenever 2tδ ≤ 1, one has

A+(x, y)
B+(x, y)

≤ (1 + δ)t ≤ 1 +
α log x log z

3
√

z
,

provided that

α ≤ 3
√

z

log z log x
.

On combining these bounds with the conclusion of Theorem (2.2), we find that

A−(x, y)
Ψ(x, y)

≥ 1 − α log x log z

6
√

z
− log x

α lg 3
+

(log x)2 log z

6
√

z lg 3

and
A+(x, y)
Ψ(x, y)

≤ 1 +
α log x log z

3
√

z
+

2 log x

α lg 3
+

2(log x)2 log z

3
√

z lg 3
.

Thus we start to obtain reasonably accurate upper and lower bounds as soon as

2 log x < min
(

6
√

z

α log z
, α lg 3
)

,

and one can optimize the error terms by taking α , z1/4(log z)−1/2, as suggested
in Algorithm 4.1. This completes the proof of Theorem 4.2.

6 Timing Results

We estimated Ψ(2255, 228) using Algorithm 3.1 with α = 32 and using
Algorithm 4.1 with α = 64. We used z = 23216.

We obtained the following:

B−(x, y) ≈ 39235936× 1060

A−(x, y) ≈ 39259233× 1060

A+(x, y) ≈ 43345488× 1060

B+(x, y) ≈ 51166381× 1060

Algorithm 3.1 took 12.6 seconds, and Algorithm 4.1 took 2.1 seconds.
Note that we used a prime sieve in place of a π(t) algorithm to compute the

ni values for Algorithm 3.1 and to compute the ni values with i ≤ α lg z for
Algorithm 4.1.

This experiment was done on a Pentium IV 1.3 GHz running Fedora Core
v.4; we used the Gnu C++ compiler and Bernstein’s code (psibound-0.50 from
cr.yp.to) with modifications. (The code is available from the second author via
e-mail.)
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Notes

– If the FFT exponentiation algorithm is the runtime bottleneck (Step 4), then
Algorithm 3.1 will perform better in practice; Algorithm 4.1 only does better
when the bottleneck is finding the primes up to y (Step 2).

– Unless y is quite large, finding the primes up to y (or z) and using them to
compute the ni values is more efficient in practice than using an algorithm
for π(t).

– As with all timing experiments, the results depend on the platform, the
compiler, and the programmer.
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de Théorie des Nombres de Bordeaux, 5:411–484, 1993.

16. Adolf Hildebrand. On the local behavior of Ψ(x, y). Trans. Amer. Math. Soc.,
297(2):729–751, 1986.



Fast Bounds on the Distribution of Smooth Numbers 181

17. Simon Hunter and Jonathan P. Sorenson. Approximating the number of integers
free of large prime factors. Mathematics of Computation, 66(220):1729–1741, 1997.

18. D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm.
Theoretical Computer Science, 3:321–348, 1976.

19. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, 1997.

20. Pieter Moree. Psixyology and Diophantine Equations. PhD thesis, Rijksuniversiteit
Leiden, 1993.

21. Karl K. Norton. Numbers with Small Prime Factors, and the Least kth Power Non-
Residue, volume 106 of Memoirs of the American Mathematical Society. American
Mathematical Society, Providence, Rhode Island, 1971.

22. C. Pomerance, editor. Cryptology and Computational Number Theory, volume 42 of
Proceedings of Symposia in Applied Mathematics. American Mathematical Society,
Providence, Rhode Island, 1990.

23. L. Schoenfeld. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II.
Mathematics of Computation, 30(134):337–360, 1976.

24. Jonathan P. Sorenson. A fast algorithm for approximately counting smooth num-
bers. In W. Bosma, editor, Proceedings of the Fourth International Algorithmic
Number Theory Symposium (ANTS IV), pages 539–549, Leiden, The Netherlands,
2000. LNCS 1838.

25. K. Suzuki. An estimate for the number of integers without large prime factors.
Mathematics of Computation, 73:1013–1022, 2004. MR 2031422 (2005a:11142).

26. K. Suzuki. Approximating the number of integers without large prime factors.
Mathematics of Computation, 75:1015–1024, 2006.

27. J. van de Lune and E. Wattel. On the numerical solution of a differential-difference
equation arising in analytic number theory. Mathematics of Computation,
23:417–421, 1969.



Use of Extended Euclidean Algorithm in Solving
a System of Linear Diophantine Equations

with Bounded Variables
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Abstract. We develop an algorithm to generate the set of all solutions
to a system of linear Diophantine equations with lower and upper bounds
on the variables. The algorithm is based on the Euclid’s algorithm for
computing the GCD of rational numbers. We make use of the ability
to parametrise the set of all solutions to a linear Diophantine equation
in two variables with a single parameter. The bounds on the variables
are translated to bounds on the parameter. This is used progressively
by reducing a n variable problem into a two variable problem. Compu-
tational experiments indicate that for a given number of variables the
running times decreases with the increase in the number of equations in
the system.

1 Introduction

Consider the following problem:

Find all x ∈ ZZn such that Ax = b, l ≤ x ≤ u (1)

where m is the number of equations, n is the number of variables, A ∈ INm×n,
b ∈ INm, l and u ∈ INn. Without the bounds on the variables the problem
can be solved in polynomial time. The variable bounds make its NP-complete.
This problem has important applications in discrete optimisation. Literature
pertaining to the Frobenius problem and solution to a single linear Diophantine
equation is of relevance to the topic discussed here.

The Frobenius problem seeks the largest integer b′ such that ax = b′ does not
have a non-negative integer solution. Rödseth and Selmer and Beyer solves the
Frobenius problem in 3 variables [9,11]. The more general problem for an arbi-
trary number of variables is known to be NP-hard, the objective of the current
research being to refine bounds [4,12,2]. The solution to the Frobenius problem
has been used to solve a linear Diophantine equation in the field of non–negative
integers. Greenberg solve a linear Diophantine equation in three variables for
non–negative integers using the ability to solve the three variable Frobenius
problem [6]. Filgueiras and Tomás have given a complete characterisation of the
set of minimal solutions over non–negative integers for a Diophantine equation

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 182–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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with three unknowns using the known properties of congruence [5]. These are
some very special cases of the problem that is being addressed in this paper.

The procedures for finding the general solution of a single linear Diophantine
equation has been studied by Bond [3], Morito and Salkin [8], and Kertzner [7].
The general solution has been represented as a function of n − 1 independent
integer parameters for a problem in n variables. Though these methods have
represented the set of all solutions in a compact manner, the problem of locating
one or more solutions that satisfies the bounds on the variables is open.

Aardal et al. [1] have studied a very closely related problem that is being
discussed in this paper. The problem that they address seeks to identify if there
exists a x ∈ ZZn such that Ax = b, l ≤ x ≤ u. They propose a method that is
based on lattice basis reduction. The algorithm finds a short vector xd such that
Axd = b and the basis of the null space X0 such that AX0 = 0. The problem is
now recast as finding an integer multiplier λ such that l ≤ (xd + λX) ≤ u. The
algorithm branches on different linear combinations of columns of X0 in order
to satisfy the variable bounds. This algorithm has no guidance for the branching
algorithm. This make it very unreliable for generating the set of all solutions,
which is the topic of this paper.

In the approach that we take in this paper, we make use of the ability to
characterise the set of all solutions to a linear Diophantine equation in two
variables using a single parameter. The bounds on the variables are translated
into bounds on the parameter, which solves the two variable problem. For the
more general problem with n variables, the problem dimension is progressively
reduced to two, in which one of the variables is the actual variable and the
other an artificial one. Then we roll back the problem by solving for one variable
at a time using a branching scheme. The advantage of this approach is that it
will generate the set of all solutions and also provides a guide to the branching
scheme in terms on the bounds on the free parameter.

The rest of this paper is organised as follows. In Sect. 2 we discuss the problem
of a linear Diophantine equation in two variables. Specifically, the bounds on the
variables are translated to bounds on the parameter used to describe the set of all
solutions. Specifically we prove that the conversion of the bounds on the variables
into bounds on the parameter used to describe the set of all solutions leads to
a computationally efficient algorithm. Next in Sect. 3, we use these results in
developing an algorithm for the general problem. The algorithm reduces the
problem recursively into a two variable problem with progressive updates on
the bounds. Finally in Sect. 4, we discuss the results from our computational
experiments.

2 Two Variable Problem

We first consider the two variable single equation problem to develop bounds
on the parameter used to represent the set of all solutions. The algorithm to
solve a linear Diophantine equation without any constraints on the variables
is an extension of the Euclidean algorithm for finding the greatest common
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divisor (GCD) of two integers. This is a logarithmic time algorithm. Given two
natural numbers a1 and a2, the Euclidean algorithm determines the GCD of these
numbers a′ = gcd{a1, a2}, and also find integers γ and ε such that γa1+εa2 = a′.
The Euclidean algorithm can be summarised as follows [10]:

– Determine a series of 3 × 2 matrices A0, A1, A2, . . . as follows:

A0 =

⎡⎣a1 a2
1 0
0 1

⎤⎦ (2)

Ak =

⎡⎣a1,k a2,k

γk δk

εk ζk

⎤⎦ (3)

– Ak+1 is generated from Ak as follows:
• If k is even and a2,k > 0, subtract (a1,k/a2,k) times the second column

of Ak from the first column
• If k is odd and a1,k > 0, subtract (a2,k/a1,k) times the first column of

Ak from the second column
This step is performed until a1,k = 0 or a2,k = 0. If a1,k is zero, then a2,k is
a′ = g.c.d{a1, a2}, and vice-versa.

To solve a Diophantine equation in two variables a1x1 + a2x2 = b, there exists
an integer solution only if a′ evenly divides b, i.e, a′ | b. When this condition is
satisfied, an integral solution for the two variable Diophantine equation is given
by x0

1 = γb/a′ and x0
2 = εb/a′. WLOG, all other solutions can be generated

by [7],
x1 = x0

1 +
(a2

a′
)

t, x2 = x0
2 −
(a1

a′
)

t ∀t ∈ ZZ. (4)

However, there are no guarantees that any of these solutions will abide by the
bounding constraints on the variables.

If the variables have to abide by the binding constraints, then this has to be
achieved by way of choosing an appropriate value for the parameter t if such a
one exists. This leads to the following lemma on the bounded solution to a linear
Diophantine equation is two variables.

Lemma 1. Given the general solution to a linear Diophantine equation in two
variables a1x1+a2x2 = b by equation 4, there exists an integral solution satisfying
the boundary conditions l ≤ x ≤ u iff there exists a t ∈ ZZ such that

Max
{

(l1 − x0
1)a

′

a2
,
(x0

2 − u2)a′

a1

}
≤ t ≤ Min

{
(u1 − x0

1)a
′

a2
,
(x0

2 − l2)a′

a1

}
. (5)

Proof. The proof is rather direct. By applying the limits on the first variable x1,
the parameter t can be bounded by

(l1 − x0
1)a

′

a2
≤ t ≤ (u1 − x0

1)a
′

a2
, (6)
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and the bounds on the second variable x2 leads to

(l2 − x0
2)a

′

a1
≤ −t ≤ (u2 − x0

2)a
′

a1
. (7)

Since there are two bounds, the most restrictive bound dominates and hence the
bound on the parameter t given by eqn. 5. ��

Example 1. Consider the following instance of single equation two variable prob-
lem: find x ∈ ZZ2 such that:

17689x1 + 8345x2 = 15856125 0 ≤ x1 ≤ 543; 0 ≤ x2 ≤ 1267 (8)

By applying the Euclid’s algorithm the general solution to this problem can be
given by

x1 = 37483879500+ 8345t x2 = −79455042375− 17689t ∀t ∈ ZZ (9)

Use of bounds (5) the parameter t can be restricted to −4491777.01635 ≤ t ≤
−4491776.98705. The only integer value of t with in this range leads to a solution
of x1 = 435 and x2 = 978.

2.1 Analysis of the Parameter Bounds

A direct approach to the single equation two variable problem will be to branch
on the different combinations of permissible values for the two variables. Given
that l1 ≤ x1 ≤ u1, the number of possible values for x1 is given by w1 = u1−l1+1
and similarly w2 = u2 − l2 + 1. Hence the direct branching algorithm will have
to consider w1w2 possible solutions. However, as we show next, the bounds on
the parameter helps in reducing this computational effort.

Lemma 2. Let tl and tu be the lower and upper bounds on the parameter t as
defined by (5). Then tu − tl ≤ w1w2.

Proof. Let f1 = a′/a1 and f2 = a′/a2. Since a′ ≤ Min{a1, a2}, f1 ≤ 1 and
f2 ≤ 1. Given the bounds on the parameter t by (5) the following four cases
arise.

Case 1: Suppose that the limiting constraint on the parameter t is given by

(l1 − x0
1)a

′

a2
≤ t ≤ (u1 − x0

1)a
′

a2
. (10)

The number of permissible values of the parameter t is given by (u1−x0
1)f2−

(l1−x0
1)f2, which gets simplified to (u1− l1)f2, i.e., (w1−1)f2. Since f2 ≤ 1,

we obtain that (w1 − 1)f2 < w1w2.

Case 2: Suppose that the limiting constraint on the parameter t is given by

(x0
2 − u2)a′

a1
≤ t ≤ (x0

2 − l2)a′

a1
. (11)

Then we deduce as in Case 1 that (w2 − 1)f1 < w1w2.
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Case 3: Suppose that the limiting constraint on the parameter t is given by

(l1 − x0
1)a

′

a2
≤ t ≤ (x0

2 − l2)a′

a1
. (12)

Since,
(x0

2 − u2)α′

α1
≤ (l1 − x0

l )α
′

a2
, (13)

Case 2 provides the result (x0
2 − l2)f1 − (l1 − x0

1)f2 ≤ Max{(w2 − 1)f1,
(w1 − 1)f2} < w1w2.

Case 4: Suppose that the limiting constraint on the parameter t is given by

(x0
2 − u2)a′

a1
≤ t ≤ (u1 − x0

1)a
′

a2
. (14)

then as in Case 3, we obtain (u1 − x0
1)f2 − (x0

2 − u2)f1)≤Max{(w2 − 1)f1,
(w1 − 1)f2} < w1w2. ��

As the above Lemma 2 establishes, conversion of the bounds on the two variables
into bounds on the parameter t helps in reducing the computational effort.

2.2 System of Equations in Two Variables

A system of equations in two variables can be solved using Lemma 1, the use
of which will give raise a set of lower and upper bounds for the corresponding
parameters t. Let tl ∈ IRm be the set of lower bounds for the m equations,
and tu ∈ IRm be the set of upper bounds as specified by (5). Also, let aij be
the coefficient of the jth variable in ith equation. Now the two variable linear
Diophantine system problem can be restated as one to find all t ∈ ZZm : tl ≤
t ≤ tu that satisfies the following two equations.

x0
11 +
(

a12

a′
1

)
t1 = x0

21 +
(

a22

a′
2

)
t2 = · · · = x0

m1 +
(

am2

a′
m

)
tm (15)

x0
12 −
(

a11

a′
1

)
t1 = x0

22 −
(

a21

a′
2

)
t2 = · · · = x0

m2 −
(

am1

a′
m

)
tm (16)

We now give an algorithm in Fig. 1 to solve this problem.

Lemma 3. The algorithm SLDS-2V for computing the set of all solutions to
a linear Diophantine system in two bounded variables is correct. Given w =
Max(tu

i − tl
i), i = 1, 2, · · · , m, the algorithm finishes in time O(mw2).

Proof. If m = 1, the algorithm iterates over the set of all the integers in between
tl
1 and tu

1 and populates the solution set S. The IF clause at step 9 will never
be satisfied and hence the solution set will keep growing. If m ≥ 2 the IF clause
at step 9 might be satisfied for some of the solutions, and the corresponding
count gets incremented. Step 13 checks to see if a solutions satisfies all the m
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Algorithm SLDS-2V
Input: A ∈ INm×2, b ∈ INm, l, u ∈ IN2

Output: All x : Ax = b, l ≤ x ≤ u
Initialise: Set of solutions S = ∅
Notation: S(x1, x2).c is an integer used to track the number of equa-
tions that (x1, x2) solves

1. For i = 1 to m
2. Find {a′

i, γi, εi} such that a′
i = gcd{ai1, ai2} and γiai1+εiai2 = a′

i

3. x0
i1 = γibi/a′

i and x0
i2 = εibi/a′

i

4. tl
i = Max (l1 − x0

i1)a
′
i/ai2, (x0

i2 − u2)a′
i/ai1

5. tu
i = Min (u1 − x0

i1)a
′
i/ai2, (x0

i2 − l2)a′
i/ai1

6. For all t ∈ ZZ : tl
i ≤ t ≤ tu

i

7. x1 = x0
i1 + (ai2/a′

i)t
8. x2 = x0

i2 − (ai1/a′
i)t

9. If (x1, x2) ∈ S
10. then S(x1, x2).c + +
11. Else
12. S = S ∪ (x1, x2)
13. Remove all (x1, x2) from S if S(x1, x2).c �= m

Fig. 1. Algorithm SLDS-2V

equations and removes the ones that do not satisfy all the equations. Note that
all the candidate solutions in S will satisfy the lower and upper bounds on the
variables. The remaining solution in the set S will satisfy all the m equations
and also the variable bounds.

From Lemma 2, we know that a single Diophantine equation in two variables
has a running time of the order O(w) (since f ≤ 1). Steps 9 through 12 of
the algorithm searches to see if the solution has been already generated. In
the worst case it will finish in O(w). The SLDS-2V algorithm iterates over m
single Diophantine equations. Finally it filters out those solutions which are not
generated by all the m equations. Hence the total running time of this algorithm
will be O(mw2). ��

3 The General Problem

To solve a linear Diophantine system with n bounded variables we reduce the
problem recursively into a two variable problem with progressive update on the
bounds. For the kth equation, the Euclidean algorithm described earlier yields
a′

k1, γk1, and εk1 satisfying a′
k1 = g.c.d.{ak1, ak2} and γk1ak1 + εk1ak2 = a′

k1.
This is used to reduce a n variable equation into the following equation with
n − 1 variables

a′
k1ξk1 + ak3x3 + · · · + aknxn = bk l ≤ x ≤ u, l′k1 ≤ ξk1 ≤ u′

k1 (17)
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where ξk1 = ck1x1 + ck2x2, ck1 and ck2 are integers such that ak1 = a′
k1ck1 and

ak2 = a′
k1ck2. Furthermore, l′k1 = ck1l1 + ck2l2 and u′

k1 = ck1u1 + ck2u2. This
process of combining the variables is continued until it reduces to a two variables,

a′
kn−2ξkn−2 + aknxn = bk l ≤ x ≤ u, l′kn−2 ≤ ξkn−2 ≤ u′

kn−2 (18)

where l′kn−2 = c′kn−3l′kn−3 + ckn−1lkn−1 and u′
kn−2 = c′kn−3u′

kn−3 + ckn−1ukn−1.
Lemma 1 provides the bounds on the free parameter and algorithm SLDS-2V
will generate the set of all solutions with in the bounds. In this two variable
problem one of the variables xn is a given variable, and the other ξkn−2 is an
artificial variable constructed for the kth equation in the system. ξkn−2 will have
to be rolled back to the other variables. However not all the solutions generated
by SLDA-2V need to be considered. This is because if a solution needs to be
considered and rolled back the xn must have been generated for all the other
m − 1 equations. In other words for each equation only the common solutions
for the actual variable will have to be considered for the next stage. Having
identified the common solutions, xn will be used in back tracking into a new two
dimensional problem as follows:

a′
kn−3ξkn−3 + akn−1xn−1 = bk − aknxn l ≤ x ≤ u, l′kn−3 ≤ ξkn−3 ≤ u′

kn−3
(19)

Next we formally present the algorithm SLDS-nV in Fig. 3 that uses the
above described principle in deriving the set of all solutions for a linear Dio-
phantine system with variable bounds. This algorithm uses a pre-processing
procedure that rolls up the n variable problem into a 2 variable problem. This
is presented in the algorithm SLDA-Pre-nV in Fig. 2.

The pre-processing algorithm SLDA-Pre-nV works as follows. For each of
the m equations, it rolls up the actual variables two at a time except for the first
iteration. In the first iteration for equation i, the Euclidean algorithm is used to
compute γi1, εi1, and a′

i1 = gcd{ai1, ai2}. For the next n − 2 iterations it rolls
up the gcd from the previous iteration with the co-efficient of the next variable.
For instance in the second iteration for the ith equation the Euclid’s algorithm
is used to compute γi2, εi2, and a′

i2 = gcd{a′
i1, ai3}. Also the lower and upper

bounds on the artificial variables are computed at each stage.

Lemma 4. The SLDA-Pre-nV algorithm is correct. For any input A ∈ INm×n,
b ∈ INm, l, u ∈ INn it finishes in time O(mn).

The SLDS-nV algorithm in Fig. 3 uses the pre-processed data from SLDA-
Pre-nV as input. It is a depth-first search algorithm. The algorithm builds a
tree where each node corresponds to a variable. The root node is artificial that
ties together all the branches. There will be a total m levels to this depth-first
search tree with each level corresponding to a variable.

The SLDS-nV algorithm works as follows. The algorithm is invoked with the
root node as one of the arguments. Any node has the following attributes:
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Algorithm SLDS-Pre-nV
Input: A ∈ INm×n, b ∈ INm, l, u ∈ INn

Output: A′ ∈ INm×n−1, γ ∈ ZZm×n−1, ε ∈ ZZm×n−1,
L′ ∈ IRm×n−2, U ′ ∈ IRm×n−2

1. For i = 1 to m
2. Find {a′

i1, γi1, εi1} such that a′
i1 = gcd{ai1, ai2} and

γi1ai1 + εi1ai2 = a′
i1

3. Find c1 and c2 such that ai1 = a′
i1c1 and ai2 = a′

i1c2

4. l′i1 = c1l1 + c2l2 and u′
i1 = c1u1 + c2u2

5. For j = 2 to n − 1
6. Find {a′

ij , γij , εij} such that a′
ij = gcd{a′

ij−1, aij+1} and
γija

′
ij−1 + εijaij+1 = a′

ij

7. Find ci1 and ci2 such that a′
ij−1 = a′

ijc1 and aij+1 = a′
ijc2

8. l′ij = c1l
′
j−1 + c2lj+1 and u′

ij = c1u
′
j−1 + c2uj+1

Fig. 2. Algorithm SLDS-Pre-nV

1. node.b is the current right hand side vector for the linear Diophantine system.
After solving for a variable the right hand side is updated.

2. node.variable is the attribute that indicates the variable that need to be
solved next. For example, the root.variable will be set to m while invoking
the routine for the first time.

3. root.child is a list that maintains the list of its children
4. root.parent points to the parent of a node

The SLDS-nV procedure is invoked with the root node as its attribute, and the
recursive algorithm branches for all the possible values that solves the system at
all the stages.

3.1 Analysis of the SLDS-nV Algorithm

We next show that the SLDS-nV algorithm is correct. Next we give a bound
regarding the running time of this algorithm.

Lemma 5. The SLDS-nV algorithm that computes the set of all solutions to
a linear Diophantine system with bounded variables is correct.

Proof. We prove the correctness of the algorithm by induction on the number of
variables. If n = 2, the algorithm iterates through the set of equations in steps
2 through six and constructs the set of candidate solutions for the variable x2.
Step 7 filters them to only those that are generated by all the equations. Steps
9 through 13 creates a node for each of the remaining solutions to variable x2.
Since n = v = 2, the recursive call at step 15 is skipped. In steps 17 through 25
values for the variable x1 is computed and the program terminates.
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Algorithm SLDS-nV
Input: node, A ∈ INm×n, b ∈ INm, l, u ∈ INn, A′ ∈ INm×n−1,

γ ∈ ZZm×n−1, ε ∈ ZZm×n−1, L′ ∈ IRm×n−2, U ′ ∈ IRm×n−2

Output: All x : Ax = b, l ≤ x ≤ u
Initialise: Set of solutions S = ∅, root.b = b, root.variable = n
Notation: Ai refers to the ith column of matrix A

1. v = node.variable, y = ∅
2. For i = 1 to m
3. Solve the two variable problem corresponding to variables

ξiv−2 and xv to generate the solution set for the given variable xt
v

4. For all xv ∈ xt
v

5. If xv ∈ y then y(xv).c + +
6. Else y = y ∪ xv

7. Filter the solution set y to retain only those in which y(xv) = m
8. For j = 1 to |y|
9. newnode.variable= v − 1

10. newnode.value= yj

11. newnode.b = node.b−Avyj

12. newnode.parent = node
13. node.child.add(newnode)
14. If v > 2
15. then SLDS-nV(newnode)
16. Else
17. z = ∅
18. For i = 1 to m
19. xt

0 =newnode.bi/Ai1

20. z = z ∪ xt
o

21. If z is a set of identical numbers
22. newnode1.variable= v − 2
23. newnode1.value= z1

24. newnode1.parent = newnode
25. newnode.child.add(newnode1)

Fig. 3. Algorithm SLDS-nV

If n = 3, the recursive step is invoked for each of the possible solutions for
the variable x3. The recursive calls are made with nodes with the attribute
variable= 2, which takes us to the original case. ��

Lemma 6. The worst case running time of the SLDS-nV algorithm is O(mwn).

Proof. Each node first solves a two variable linear Diophantine system problem.
By Lemma 3, the running time of steps 2 through 7 is O(mw2). For a two
variable problem, the number of possible solutions is O(w). For each one of
these possible solutions a recursive call is made to SLDS-nV. This gives us the
following recursive relationship,
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T (n) = wT (n − 1) + O(mw2) (20)

and T (2) = O(mw2). Solving this recursive relationship yields a worst case time
running time O(mwn). ��

4 Computational Experience

The performance of the algorithm was tested using a sequential implementation
of the algorithm in Java on a workstation with AMD64 1.8 ghz CPU and 2 gb
RAM. Random problem instances were generated with bounds on the co-efficnet
matrix A and the vector b.

A set of experiments was conducted to test the effect of number of equations
on a given number of variables. Problem instances were randomly generated such
that A co-efficients were generated from the uniform distribution U [0, 100], and
the variable upper bound was fixed at 10 for all the variables. The results are
tabulated in Table 1 that are the average running times of 10 experiments each.
An interesting pattern emerges from the computational experiments. For given
number of variables, the running times decreases with the number of equations.
This can possibly be attributed to the decrease in the size of the set of all
solutions as the number of equations increases. The worst case complexity of
the algorithm also point in that direction with the number of variables alone
contributing significantly to the running times.

Table 1. Impact of number of equations

No of No. of variables
equations 5 7 9

2 0.0264151 0.1362856 11.9158421
3 0.0265163 0.1236470 5.4392386
5 0.0254278 0.1436144 4.4304221
10 0.0247979 0.0926015 2.2889441
50 0.0297468 0.0450302 0.3642787
100 0.0375549 0.0531305 0.3501732

References

1. K. Aardal, C.A.J. Hurkens, and A.K. Lenstra. Solving a system of Diophantine
equation with lower and upper bounds on the variables. Mathematics of Operations
Research, 25:427–442, 2000.

2. Matthias Beck and Shelemyahu Zacks. Refined upper bounds for the linear Dio-
phantine problem of Frobenius. Advances in Applied Mathematics, 32:454–467,
2004.

3. James Bond. Calculating the general solution of a linear Diophantine equation.
American Mathematical Monthly, 74:955–957, 1967.

4. P. Erdös and R. L. Graham. On a linear Diophantine problem of Frobenius. Acta
Arithmetica, 21:399–408, 1972.



192 P. Ramachandran

5. Miguel Filgueiras and Ana Paula Tomás. A fast method for finding the basis
of non–negative solutions to a linear Diophantine equation. Journal of Symbolic
Computation, 19:507–526, 1995.

6. Harold Greenberg. Solution to a linear Diophantine equation for nonnegative in-
tegers. Journal of Algorithms, 9:343–353, 1988.

7. Stanley Kertzner. The linear Diophantine equation. American Mathematical
Monthly, 88:200–203, 1981.

8. Susumu Morito and Harvey M. Salkin. Using the Blankinship algorithm to find the
general solution of a linear Diophantine equation. Acta Informatica, 13:379–382,
1980.
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Abstract. We present the pseudosquares prime sieve, which finds all
primes up to n. Define p to be the smallest prime such that the pseu-
dosquare Lp > n/(π(p)(log n)2); here π(x) is the prime counting func-
tion. Our algorithm requires only O(π(p)n) arithmetic operations and
O(π(p) log n) space. It uses the pseudosquares primality test of Lukes,
Patterson, and Williams.

Under the assumption of the Extended Riemann Hypothesis, we have
p ≤ 2(log n)2, but it is conjectured that p ∼ 1

log 2 log n log log n. Thus,
the conjectured complexity of our prime sieve is O(n log n) arithmetic
operations in O((log n)2) space. The primes generated by our algorithm
are proven prime unconditionally. The best current unconditional bound
known is p ≤ n1/(4

√
e−ε), implying a running time of roughly n1.132 using

roughly n0.132 space.
Existing prime sieves are generally faster but take much more space,

greatly limiting their range (O(n/ log log n) operations with n1/3+ε space,
or O(n) operations with n1/4 conjectured space). Our algorithm found
all 13284 primes in the interval [1033, 1033 + 106] in about 4 minutes on
a 1.3GHz Pentium IV.

We also present an algorithm to find all pseudosquares Lp up to n
in sublinear time using very little space. Our innovation here is a new,
space-efficient implementation of the wheel datastructure.

1 Introduction

A prime number sieve is an algorithm that finds all prime numbers up to a
bound n. The fastest known sieves take O(n/ log log n) arithmetic operations
[2,10,18,23], which is quite fast, considering there are π(n) ∼ n/ log n primes to
find. However in practice, the utility of a prime number sieve is often limited by
how much memory space it needs. For example, a sieve that uses O(

√
n) space

[2,19,23] cannot, on current hardware, generate primes larger than about 1018.
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Even with Galway’s clever improvements [11] to the Atkin-Bernstein sieve [2],
the space requirement is still n1/3+ε, giving an effective limit of roughly 1027.
Galway also has a sieve with conjectured space use of O(n1/4) that runs linear
time [12, ch. 6]. (Note that the space needed to write down the output, the
primes up to n, is not included.)

If we applied trial division to each integer up to n separately, we would only
need O(log n) space, but the time of O(n

√
n/ log n) would be prohibitive. We

could sieve by a few primes, then apply a quick base-2 pseudoprime test to
remove most composites [17] and then use a prime test. If we used the AKS test
[1] with Bernstein’s complexity improvements [8], the result would be a sieve
that takes n(log n)2+o(1) operations. (The modified AKS test is (log n)4+o(1) bit
operations; we save a log n factor with the 2-psp test, and another log n factor
because in this paper we count arithmetic operations instead of bit operations.)
We can improve the time to O(n(log n)2) by using Miller’s prime test [16], but
then our output is correct only if the ERH is true. And of course if we are willing
to accept probable primes, the Miller-Rabin [20] or Solovay-Strassen [22] tests
could give us O(n log n) operations. But in most applications for prime sieves,
we need to be certain of our output.

In this paper, we present a new prime number sieve, the pseudosquares prime
sieve (Algorithm PSSPS), that uses very little space and yet is fast enough to
be practical. It uses an Eratosthenes-like sieve followed by the pseudosquares
prime test of Lukes, Patterson, and Williams [15] (which effectively includes a
base-2 pseudoprime test). Our sieve has a conjectured running time of O(n log n)
arithmetic operations and O((log n)2) bits of space. This is the complexity we
observed in practice, and is as fast as using one of the probabilistic tests men-
tioned above. Assuming the ERH, we obtain O(n(log n)2/ log log n) operations
and O((log n)3/ log log n) space. But in any case, the primes generated by our
sieve are unconditionally proven prime.

Often, the user actually needs to find all primes in a short interval. On average,
assuming reasonable conjectures, and after precomputation, our new algorithm
will find all primes in an interval containing n of length at least (log n)2 at a
cost of O(log n) operations per integer. In particular, we found all the primes in
the interval [1033, 1033 + 106] in just over 4 minutes on a 1.3 GHz Pentium IV
running Linux.

We also present a new, space-efficient implementation of the wheel data struc-
ture that leads to an algorithm for finding all pseudosquares Lp ≤ n in time
O(n · exp[−c log n/ log log n]) for a constant c > 0. This data structure may
prove to be useful in other areas of computational number theory.

For more on finding pseudosquares, see Wooding and Williams [28] in this
volume. For recent work on prime number sieves, see [2,11,12,23].

The rest of this paper is organized as follows. In §2 we discuss some prelim-
inaries, including pseudosquares, followed by a description of our algorithm in
§3. In §4 we present our new wheel data structure and give our algorithm for
finding pseudosquares. We conclude in §5 with some timings.
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2 Preliminaries

2.1 Model of Computation

Our model of computation is a RAM with a potentially infinite, direct access
memory. If n is the input, then all arithmetic and memory access operations on
integers of O(log n) bits are assigned unit cost. Memory may be addressed either
at the bit level or at the word level, where each machine word is composed of
O(log n) bits.

When we present code fragments, we use a C++ style that should be famil-
iar to most readers [25]. We occasionally declare integer variables with an INT
datatype instead of the int datatype. This indicates that these integers typically
exceed 32 bits in practice and may require special implementation (we used the
Gnu-MP mpz t datatype and associated functions [13]). We still limit INTs to
O(log n) bits.

The space used by an algorithm under our model is counted in bits. The space
used by the output of a prime number sieve (the list of primes up to n) is not
counted against the algorithm. For further discussion, see [10].

2.2 Some Definitions

p always denotes a prime, with pi denoting the ith prime, so that p1 = 2. For
integers a, b let gcd(a, b) denote the greatest common divisor of a and b. We say
a and b are relatively prime if gcd(a, b) = 1. For a positive integer m let φ(m)
be the number of positive integers up to m that are relatively prime to m, with
φ(1) = 1. The number of primes up to x is given by π(x). An integer x is a
square, or quadratic residue, modulo p if the Legendre symbol (x/p) = 1.

We say f(n) = O(g(n)) if there exists a constant c > 0 such that f(n) ≤ c·g(n)
for all sufficiently large n. We write f(n) = Θ(g(n)) if f(n) = O(g(n)) and
g(n) = O(f(n)). We say f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

2.3 Pseudosquares

The pseudosquare Lp is the least non-square positive integer satisfying these two
properties:

1. Lp ≡ 1 (mod 8), and
2. Lp is a quadratic residue modulo every odd prime q ≤ p.

Thus L3 = 73 and L5 = 241. See Williams [26, §16.2].

Lemma 2.1 (Lukes, Patterson, and Williams[15]). Let n and s be positive
integers. If

1. All prime divisors of n exceed s,
2. n/s < Lp for some prime p,



196 J.P. Sorenson

3. p
(n−1)/2
i ≡ ±1 (mod n) for all primes pi ≤ p,

4. 2(n−1)/2 ≡ −1 (mod n) when n ≡ 5 (mod 8),
p
(n−1)/2
i ≡ −1 (mod n) for some pi ≤ p when n ≡ 1 (mod 8),

then n is a prime or a prime power.

Note that if n is prime, then the conditions of the lemma hold with s = 1 and
n < Lp.

2.4 Useful Estimates

Here x, x1, x2 > 0, and except for (5), all sums and products are only over
primes. ∑

p≤x

1
p

= log log x + O(1); (1)

∑
p≤x

log p = x(1 + o(1)); (2)

∑
p≤x

1 = π(x) =
x

log x
(1 + o(1)); (3)

∏
p≤x

p − 1
p

= O

(
1

log x

)
; (4)

∑
x1<d≤x2

gcd(d,m)=1

1
d

=
φ(m)

m
log(x2/x1)(1 + o(1)). (5)

For proofs of (1)–(4), see Hardy and Wright [14]. For a proof of (5), see
[23, Lemma 1].

2.5 The Wheel

A wheel, as we will use it, is a data structure that encapsulates information
about the integers relatively prime to the first k primes. Generally speaking, a
wheel can often be used to reduce the running time of a prime number sieve by a
factor proportional to log pk. Pritchard was the first to show how to use a wheel
in this way [18,19]. We begin with the following definitions:

Mk :=
k∏

i=1

pi;

Wk(y) := {x ≤ y : gcd(x, Mk) = 1};
Wk := Wk(Mk).

Let #S denote the cardinality of the set S. We have (see (2) and (4)):

log Mk = pk(1 + o(1));
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#Wk = φ(Mk) = Mk

k∏
i=1

p − 1
p

= O

(
Mk

log log Mk

)
;

#Wk(n) = O

(
n

log log Mk

)
.

Our data structure, then, is an array W[] of records or structs, indexed by
0 . . . (Mk − 1), defined as follows:

• W[x].rp is 1 if x ∈ Wk, and 0 otherwise.
• W[x].dist is d = y − x, where y > x is minimal with gcd(y, Mk) = 1.

We say that W is the kth wheel, with size Mk. For our C++ notation, we will
declare W to be of class type Wheel(k), where k is an integer parameter. We can
construct a wheel of size Mk in O(Mk) operations.

For examples of the wheel data structure, see [19,24].

3 Algorithm PSSPS

3.1 Precomputations and Main Loop

We first construct a table of pseudosquares up to n/(log n)2 using the algorithm
we describe later in §4. In the code fragment below, this is stored in an array
pss[] of structs or records:

• pss[i].prime is the smallest prime p (an int) such that
• pss[i].pss is Lp (an INT).

So pss[1].prime=3 with pss[1].pss=73, and pss[2].prime=5 with pss[2].
pss= 241. In practice, we can use the table from Wooding [27, pp. 92–93], which
has 49 entries, with the largest being pss[49].pss = 295363487400900310880401,
pss[49].prime = 353. Storing this table requires O(π(p) log n) space.

Next we specify the parameters p, segment size Δ, and sieve limit s:

• Let p be the smallest prime such that the pseudosquare Lp > n/(π(p)(log n)2).
• Δ := Θ(π(p) log n). Note Δ � p.
• s := (n/Lp)+ 1 = Θ(Δ log n).

We conjecture p ∼ (1/ log 2) log n log log n (see below). Making Δ larger improves
overall performance; we choose here to give it roughly the same size as the
pseudosquares table so it does not dominate overall space use. Our choice for s
will balance the time spent in sieving versus the time applying the pseudosquares
prime test.

In practice, we might choose Δ first. One normally chooses Δ to be as large as
possible yet small enough to fit in cache memory, say around 220. Then choose
s = Θ(Δ log n), and pick the smallest prime p so that Lp > n/s. If this choice
for p is larger than our largest pseudosquares table entry, we simply set p to
the largest entry (353) and set s := (n/Lp) + 1. Once p and s are set, the
pseudosquares table is no longer needed.
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We wrap up precomputation by building a wheel of size Θ(log n). In practice,
a wheel of size 30 = 2 · 3 · 5 (k = 3) works fine. We must have pk ≤ p.

Our main loop iterates over segments of size Δ.

int p,s,delta;
INT l,r,n; // declare multiprec. ints
input(n);
pssentry pss[]; // Pseudosquare table
PssBuild(pss,n); // Builds the pseudosq. tbl.
Initialize(); // Compute p,delta,s etc.
Wheel W(pi(log(n))); // Wheel of size O(log n)

//** Main Loop
Primelist PL(p); // Find primes up to p
output(PL); // Output primes up to p
for(l=p; l<n; l=l+delta) // Loop over segments
{
r=min(l+delta,n);
sieve(l,r,p,s,PL,W); // Sieve the inverval [l+1,r]

}

Precomputation is dominated by the time to build the pseudosquares table;
this is o(n) operations and O(π(p) log n) space (we ”cripple” the running time of
our algorithm from §4 to meet the space bound). Constructing the wheel takes
O(log n) operations and space. The list of primes up to p takes at most O(p)
operations and space. We will analyze the cost of the main loop at the end of
this section.

3.2 Finding Primes in a Segment

Here we implement the sieve() function called in the main loop above. We
begin by sieving, then we perform the pseudosquares prime test, and we finish
by removing perfect powers.

Sieving. We sieve by the primes up to p, and then we sieve by integers from p
to s using the wheel.

Here our BitVector class is created with left and right endpoints (� and r),
of length Δ, that supports functions to set and clear bits. Also, the member
function first(x) will return the first integer larger than � divisible by x.

BitVector B(delta,l,r); // bit vector for the interval
B.setall(); // assume all are prime to start

//** Sieve by primes up to p
int i; INT x;
for(i=1; i<=PL.length(); i++)
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// Loop through multiples of PL[i]:
for(x=B.first(PL[i]); x<=r; x=x+PL[i])
B.clear(x);

//** Sieve by integers d up to s, gcd(d,m)=1
int d, m=W.size(); // m is the size of the wheel
for(d=W[p%m].next; d<=min(s,sqrt(l)); d=d+W[d%m].next)
// Loop through multiples of d:
for(x=B.first(d); x<=r; x=x+d)
B.clear(x);

At this point, B represents only those integers from the interval [�+1, r], with no
prime divisors smaller than min{s,

√
�}. In practice, one can implement this so

that all the work done in these inner loops requires only single-precision integers:
simply work with x − � rather than x.

The time to sieve by primes is proportional to∑
pi≤p

(
1 +

Δ

pi

)
= O(π(p) + Δ log log p) = o(Δ log n).

Sieving by integers generated by the wheel between p and s takes time propor-
tional to ∑

p<d≤s
gcd(d,m)=1

(
1 +

Δ

d

)
= O

(
φ(m)

m
(s + Δ log(s/p))

)

using (5). This simplifies to O((s + Δ log(s/p))/ log log log n) = o(Δ log n) using
(4). In total, this phase requires o(Δ log n) operations and O(Δ) space.

The Pseudosquares Prime Test. The next phase of our algorithm is based
on Lemma 2.1, due to Lukes, Patterson, and Williams [15]. We code this prime
test as function psspt(), which tests conditions (3) and (4) of the lemma. We
make sure to perform the 2(n−1)/2 mod n test first, for this has the effect of
performing a base-2 pseudoprime test [17].

INT x;
for(x=l+1; x<=r; x++) // loop over the interval
if(B[x]==1) // x meets conditions (1) & (2)
if(!psspt(x,p)) // if x fails the test

B.clear(x); // x is not prime

Because of our earlier sieving, only O(Δ/ log s) = O(Δ/ log log n) integers remain
that pass conditions (1) and (2) for our prime test. (Recall that s = Θ(Δ log n).)
Function psspt() will first effectively perform a base-2 pseudoprime test. This
takes O(log n) arithmetic operations per test, for a total time to this point of
O(Δ(log n)/ log log n) = o(Δ log n). From [17] and elsewhere in the literature,
we know that only O(n/ log n) integers up to n pass the base-2 pseudoprime
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test, or an average of O(Δ/ log n) per interval. (A particular interval could con-
ceivably have more than this.) The psspt() function performs π(p) − 1 more
modular exponentiations, at a cost of O(log n) arithmetic operations each, on
each remaining integer for an overall average cost of O(π(p)Δ) operations.

Removing Perfect Powers. At this point, the only remaining integers repre-
sented by B are either prime or the power of a prime. Note that if n ≤ 6.4 · 1037,
only primes remain and we are done [26, p. 417].

To remove the prime powers, in theory we use a perfect power testing al-
gorithm [6,7,9] which, in our model of computation, requires sublinear time per
integer on average, making the cost negligible (o(Δ) operations on average, since
we only perform the tests on the remaining O(Δ/ log n) integers). In practice,
one can very efficiently enumerate perfect powers using a priority queue data
structure; we leave the details to the reader in the interest of space.

3.3 Complexity

Let us summarize what we have from above:

• Precomputation takes o(n) operations and O(π(p) log n) space (dominated
by building the pseudosquares table).

• Sieving a segment takes o(Δ log n) operations; a segment takes O(Δ) =
O(π(p) log n) space.

• Performing base-2 pseudoprime tests and the pseudosquares prime test takes,
on average, O(π(p)Δ) operations per interval.

• Removing perfect powers takes o(Δ) operations on average.

By multiplying the average cost per segment by n/Δ, the number of segments,
we prove the following.

Theorem 3.1. Let p be defined as above. Algorithm PSSPS finds all primes up
to n using O(π(p)n) + o(n log n) arithmetic operations and O(π(p) log n) space.

The work of Bach and Huelsbergen [4] implies the following conjecture.

Conjecture 3.2. log Lp ∼ log 2 p
log p , or equivalently, p ∼ 1

log 2 log Lp log log Lp.

Lukes, Patterson, and Williams [15] studied the relationship between Lp and p for
all known pseudosquares, and their data supports the conjecture. See also [28].

Corollary 3.3. If Conjecture 3.2 is true, then Algorithm PSSPS finds all primes
up to n in O(n log n) arithmetic operations and O((log n)2) space.

Fortunately in practice, Conjecture 3.2 appears to hold.

Corollary 3.4. If the ERH is true, then Algorithm PSSPS finds all primes up
to n in O(n(log n)2/ log log n) arithmetic operations and O((log n)3/ log log n)
space.
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This follows from Bach’s Theorem [3], which implies p < 2(log n)2, or asymptot-
ically p < (1 + o(1))(log n)2. Note that this weaker result still outperforms the
use of Miller’s prime test [16] or AKS [1,8] in a prime sieve.

Currently the best unconditional result is p ≤ Lp
1/(4

√
e−ε) ≈ Lp

0.1516..., due to
Schinzel [21]. Since we use Lp ≈ n/p, we obtain that p ≈ n1/(4

√
e+1−ε) ≈ n0.132.

This implies the following much weaker result:

Corollary 3.5. Let ε > 0. Algorithm PSSPS finds all primes up to n in
O(n1+1/(4

√
e+1−ε)) ≈ n1.132 arithmetic operations and O(n1/(4

√
e+1−ε)) ≈ n0.132

space.

Algorithm 3.1 from [23] would require a running time of roughly n1.368 to stay
within the same space bound. Of course, an AKS-based sieve would give the
best unconditional result.

4 Finding Pseudosquares

In this section we present a sublinear-time algorithm to find all pseudosquares
Lp ≤ n. It makes use of a new way to implement a wheel-like datastructure that
uses significantly less space.

We begin by presenting our new wheel datastructure, after which we show
how to adapt it to find pseudosquares.

4.1 A New Wheel

As mentioned in §2.5, the wheel datastructure is used primarily to enumerate
integers relatively prime to Mk, like this:

for(x=1; x<n; x=x+W[x%m].dist)
output(x);

Here we present a new implementation of the wheel, which has the following
differences:

• The space used by the wheel is proportional to the sum of the moduli instead
of their product: O(log Mk

∑k
i=1 pi) = O((log Mk)3/ log log Mk) bits instead

of O(log pk

∏k
i=1 pi) = O(Mk log log Mk) bits. This is a huge savings.

• The integers relatively prime to Mk are not enumerated in ascending order.

An Example - Enumerating Primes up to 100. Sometimes it is best to
introduce a new datastructure with an example. We construct our new wheel
with moduli 2, 3, 5, 7 to enumerate 1, plus the primes pi with 7 < pi ≤ 100.

For each prime modulus pi except for 2, we create an array of structs or
records, indexed from 0 . . . pi − 1, each of which has 2 fields. Let mi be the input
modulus, which is mi := 2 · 3 · · · · pi−1. For our example, m2 = 2, m3 = 6, and
m4 = 30. Here 0 ≤ x < pi.
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• W[i][x].rp is 1 if gcd(x, pi) = 1, 0 otherwise (int),
• W[i][x].jump is the smallest multiple j > 0 of the input modulus mi such

that gcd(x + j, pi) = 1 (INT).

This gives us the following three datastructures:

p2 = 3: 0 1 2
rp 0 1 1

jump 2 4 2
(m2 = 2, φ(3) = 2)

p3 = 5: 0 1 2 3 4
rp 0 1 1 1 1

jump 6 6 6 6 12
(m3 = 6, φ(5) = 4)

p4 = 7: 0 1 2 3 4 5 6
rp 0 1 1 1 1 1 1

jump 30 30 30 30 30 60 30
(m4 = 30, φ(7) = 6)

We will explain how to compute the jump fields below.

Using Recursion. To enumerate the primes (and 1) we use the recursive func-
tion below.

Let k denote the number of prime moduli in the wheel; recall that 2 is not
given a datastructure, so there will be k−1 levels to the recursion. To enumerate
integers relatively prime to Mk up to n, we call enumerate(2,1,n). For our
example, we use enumerate(2,1,100) and k = 4.

function enumerate(int i,INT x,INT n)
{
//** make sure gcd(x,p[i])=1
if(!W[i][x%p[i]].rp) x=x+W[i][x%p[i]].jump;

if(i==k) // base case for the recursion
for( ; x<n; x=x+W[k][x%p[k]].jump) output(x);

else // recursive case for the recursion
{
for(int cnt=0; cnt<p[i]-1; cnt++)
{

enumerate(i+1,x,n); // recursive call
x=x+W[i][x%p[i]].jump;

}
}

}

Note that we are assuming pass-by-value here, so that changes to x in recursive
calls are not reflected in the calling function. Let xi denote the value of x during
the recursive call with input i.

So x2 will take the values 1 and 5.
When x2 is 1, x3 loops through 1, 7, 13, and 19. When x2 is 5, x3 loops through
11, 17, 23, and 29. (x2 = 5 is not relatively prime to p3 = 5, so the first if-
statement is triggered, adding 6 to get 11.)

The values x4 loops through are listed in the table below, giving the primes
from 11 to 100, plus 1.
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1 31 61 91 11 41 71
37 67 97 17 47
13 43 73 23 53 83
19 79 29 59 89

The values to the left of the line arise from x2 = 1; they are ≡ 1 mod 6. The
values to the right of the line arise from x2 = 5; they are ≡ 5 mod 6.

Computing jumps. Computing the rp field for each prime is the same as for
the basic wheel, and takes time linear in pi. Computing the jump fields is a bit
trickier, and takes O(p2

i log pi) operations.
For each column x = 0 . . . pi − 1, we do the following:

1. Compute a list of distances to all other residue classes that are relatively
prime to pi.
For pi = 7 and x = 5, we get the list 1, 3, 4, 5, 6.

2. For each distance d in the list, use the extended Euclidean algorithm [5, §4.3]
to find a multiple of the modulus, a · pi, such that d + api is divisible by mi,
the input modulus.

Continuing our example, for d = 1 we must use a = 17 to get 1 + 17 · 7 =
120. Repeating this for the entire list gives 120 = 17·7+1, 150 = 21·7+3, 60 =
8 · 7 + 4, 180 = 25 · 7 + 5, 90 = 12 · 7 + 6.

3. Write down the smallest number from the list computed in the last step.
In our example, it is 60.

The value of jump entries will not exceed pimi.
The total time to build a datastructure for the first k primes is proportional

to k · p2
k log pk = O(p3

k) operations. The space needed is proportional to k ·
pk log Mk = O(p3

k/ log pk).
If n > Mk, then analyzing the running time reduces to counting the number

of times output(x) is called, which gives us O((φ(Mk)/Mk)n) operations.

Theorem 4.1. Let n > Mk. Using our new implementation of the wheel datas-
tructure, we can enumerate integers up to n relatively prime to Mk in
O((φ(Mk)/Mk)n) operations. Precomputing the datastructure requires O(p3

k) op-
erations and O(p3

k/ log pk) space.

4.2 Enumerating Pseudosquares

To search for pseudosquares Lp ≤ n, we simply make a few minor changes to
our new wheel datastructure and enumerate() function from above:

1. We choose k so that Mk ≤ n, but as large as possible. We assume that
all pseudosquares Lpi with pi ≤ pk are already known. (If not, find them
recursively with a smaller n.)

2. Our first prime is p3 = 5, with input modulus m3 = 24; we know Lp ≡ 1
(mod 24) for p ≥ 3. Each successive input modulus satisfies mi := pi−1mi−1.
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3. We change the rp field to a qr field, set to 1 if x is a quadratic residue
modulo pi, and 0 otherwise. This can be computed in linear time by setting
all the qr bits to 0, then square each integer 1 . . . pi − 1 modulo pi and mark
the corresponding qr field with a 1.

4. Compute the jump field from the qr field as if it were the rp field.
5. Replace pi − 1 with (pi − 1)/2 in the loop control for the recursive case of

the enumerate() function.
6. Integers x that are output by the enumerate() function are checked to see

if they are quadratic residues modulo the primes pi with pk < pi ≤ p. If they
pass, then we check to see if they are squares. The average cost for this is
O(1) operations per x value if we precompute a table of quadratic residues
modulo several primes pi > pk.

7. An integer x that passes all these tests is Lp; output it, and find the next
prime to serve as p to begin the search for the next pseudosquare.

The algorithm described above can find all pseudosquares Lp ≤ n in
O(n2−k/ log pk) operations, as the output() function will be called roughly

1
4
·

k∏
i=1

(pi − 1)/2
pi

· n

times. By our choice for k, we have k = Θ(log n/ log log n). We have proven the
following.

Theorem 4.2. Our algorithm will find all pseudosquares Lp ≤ n in

O(n exp[−c log n/ log log n])

operations, for c > 0 fixed, using O(p + (log n)3/ log log n) space.

Conjecture 3.2 implies only O((log n)3/ log log n) space is needed; assuming the
ERH instead does not increase this bound.

We use this algorithm in our prime sieve with pk ≈ (log n)2/3 to keep our
space usage under control, yet maintain a o(n) running time.

Our crude implementation of this algorithm found L223 ≈ 1.16×1016 in about
17 hours on a single 1.3GHz Pentium IV processor.

Robert Threlfal observed that this wheel can be used to factor integers of the
form n = p2q, p, q prime, by using (−1/n), (2/n), (3/n), (5/n), etc. to initialize
the datastructures to search for q.

5 Timing Results

In our first set of results (Table 1), we compared our new sieve to the sieve of
Eratosthenes and the Atkin-Bernstein sieve to find the primes up to 109.

We used a 1.3 GHz Pentium IV running Linux, with the Gnu g++ com-
piler. The code for the Atkin-Bernstein and Eratosthenes sieves came, unmodi-
fied, from Dan Bernstein’s website (http://cr.yp.to). Our code for Algorithm
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Table 1. Sieve Algorithm Comparison

Algorithm Time in Seconds Δ

Atkin-Bernstein 7.2 —
Eratosthenes 5.9 —
PSSPS 58.1 25000
PSSPS 103.5 10000
PSSPS 183.0 5000
PSSPS 367.2 2500

Table 2. Finding all primes between n and n + 106

n Rem. Times s Primes Timep p Lp Timetot

1015 28845 1.25 31622776 28845 0 0 0 1.25
1016 28774 2.17 57063204 27168 17.51 67 1.75·108 19.68
1017 28286 4.19 111269821 25463 19.49 79 8.98·108 23.68
1018 31717 2.09 42343580 24280 24.55 103 2.36·1010 26.64
1019 31628 2.48 50951495 23069 27.36 113 1.96·1011 29.84

1020 27342 23.29 509514950 21632 39.73 113 1.96·1011 63.02
1021 28668 15.95 348208470 20832 44.59 131 2.87·1012 60.54
1022 31814 2.7 55885834 19757 55.63 173 1.78·1014 58.33
1023 30253 6.64 143644910 18939 55.84 181 6.96·1014 62.48
1024 30879 4.06 85900327 18149 63.90 211 1.16·1016 67.96

1025 27748 39.06 859003269 17549 63.43 211 1.16·1016 102.49
1026 29965 6.54 140326390 16587 67.00 233 7.12·1017 73.54
1027 30512 5.18 98057476 16139 74.55 263 1.01·1019 79.73
1028 29863 8.14 143167432 15606 80.97 277 6.98·1019 89.11
1029 30368 6.11 106761861 15002 107.82 293 9.36·1020 113.93

1030 30944 4.24 73264612 14496 117.25 331 1.36·1022 121.49
1031 30616 5.74 100509639 13955 116.26 347 9.94·1022 122.00
1032 28542 18.95 338566228 13653 122.46 353 2.95·1023 141.41
1033 26244 121.22 3385662272 13284 124.56 353 2.95·1023 245.78

PSSPS was not optimized for single-precision use; it used functions from the
GnuMP package for arithmetic, and in particular, to perform modular exponen-
tiations for the pseudosquares prime tests.

In Table 1, for each sieve we give the time to find the primes to 109 in seconds.
For our new algorithm, we also show different times for various choices for Δ,
the size of our interval. In every case, Algorithm PSSPS sieved up to s = 31622
and used p = 0, the largest entry from the pseudosquares table used for prime
tests (a value of 0 indicates no such tests were performed).

Our goal here was to verify our results and to see how bad the log n log log n
factor in the running time affects Algorithm PSSPS. When we used Δ = 500, we
were able to force the algorithm to use p = 17, but the running time became quite
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large. Simply put, our algorithm is not appropriate for inputs this small; it ends
up performing what is, essentially, the sieve of Eratosthenes in a non-efficient
way.

Next, in Table 2 we show how our sieve performs when finding all primes in
an interval of length 106 for much larger values for n. The first column gives n,
the starting point of the interval searched for primes. The next three columns
report the performance of the sieving stage, giving the number of integers that
are free of factors below s (the remainder), Times, the time sieving took in
seconds, and the value of s used. The next four columns present the results from
the pseudosquares prime tests, with the number of primes found first, followed
by the time in seconds (Timep), the value of p, and the approximate value of Lp

used by the prime test. The last column gives the total time, Timetot (sieving
plus prime tests). The number of tests performed (beginning with a base-2 psp
test) matches the number in column 2 (the remainder), with the Primes column
giving the number of integers that pass the test. Note that s ·Lp should match or
exceed n+106. When p = 0, sieving only was used, in which case s ≥ (

√
n + 106)

must hold.
Since L353 is currently the largest pseudosquare known, any increase in size

beyond 33 decimal digits would have to be absorbed entirely by using a larger
value for s, which will greatly degrade performance unless a correspondingly
longer interval is used.

Notice that the pseudosquares prime test was not even used until the input
was 16 digits in length.
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Abstract. This paper offers numerical evidence for a conjecture that
primality proving may be done in (log N)3+o(1) operations by examining
the growth rate of quantities known as pseudosquares and pseudocubes.
In the process, a novel method of solving simultaneous congruences—
doubly-focused enumeration— is examined. This technique, first
described by D. J. Bernstein, allowed us to obtain record-setting sieve
computations in software on general purpose computers.

1 Motivation

In August 2002, Agrawal, Kayal,and Saxena [1] described an unconditional, de-
terministic algorithm for proving primality with time complexity (log N)10.5+o(1).
This result was later improved by Lenstra and Pomerance (described in [5]) to
(log N)6+o(1). Bernstein [6] (and independently Cheng [10]) then generalized an
argument of Berrizbeitia [7] to produce a random-time primality provining al-
gorithm with complexity (log N)4+0(1). Given these results, an obvious question
to ask may be: “how far can the time complexity of unconditional, determinis-
tic primality proving be improved”? This paper offers numerical evidence for a
conjecture that primality may be proved with complexity (log N)3+o(1).

2 The Generalized Sieve Problem

Definition 1. Define a sieve ring, ρi, to be a modulus, Mi, together with a set
of j acceptable residues, Ri = {ri,j | 0 ≤ ri,j < Mi}. Given

1. A, B ∈ Z with B > A (the sieve bounds);
2. k ≥ 1 sieve rings ρi, . . . , ρk whose moduli M1, . . . , Mk are relatively prime

in pairs1.

The Generalized Sieve Problem (gsp) is the problem of finding all x ∈ Z such
that A ≤ x < B and

x (mod Mi) ∈ Ri for all i = 1, . . . , k

1 The requirement that sieve moduli be pairwise relatively prime is not strictly re-
quired. Since it greatly simplifies the discussion, however, relative primality of sieve
moduli will be assumed throughout this paper.
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These solutions, x, are called the solutions admitted by the sieve problem. k
is called the width of the sieve problem.

Equivalently, the sieve problem S may be expressed in terms of sets:

S =
k⋂

i=1

{x ∈ Z | x (mod Mi) ∈ Ri, A ≤ x < B}

Definition 2. The sieve problems

S1 =
⋂r

i=1 {x ∈ Z | x (mod Mi) ∈ Ri, A ≤ x < B}
S2 =
⋂s

j=1 {x ∈ Z | x (mod Mj) ∈ Rj , A ≤ x < B}

are equivalent if and only if S1 = S2 for all A, B ∈ Z; i.e. for any choice of
bounds the set of solutions admitted by each of the sieve problems is the same.

With this notion of equivalence, the following theorem may now be demon-
strated.

Theorem 1. Given a sieve problem,

S =
k⋂

i=1

{x ∈ Z | x (mod Mi) ∈ Ri, A ≤ x < B}

of width k > 1 an equivalent sieve problem of width k − 1 can be formed.

Proof. Consider any two sieve rings, ρ1 = {M1,R1} and ρ2 = {M2,R2}. Clearly,
any solution x ∈ S satisfies both x (mod M1) ∈ R1 and x (mod M2) ∈ R2.

Define the set R to be the Chinese Remainder Theorem (crt) combination of
all residues from the sets R1 and R2; i.e. let M = M1 ·M2, Ni = M

Mi
, ξi ≡ N−1

i

(mod Mi). Then

R = {r | r ≡ ξ1N1r1 + ξ2N2r2 (mod M), r1 ∈ R1, r2 ∈ R2}

Now, form a new sieve problem, replacing the sieve rings {M1,R1} and
{M2,R2} with the newly constructed ring {M,R}. The width of this new sieve
problem is k− 1. By the crt, x (mod M1M2) ∈ R if and only if x (mod M1) ∈
R1 and x (mod M2) ∈ R2. Equivalence of the sieve problems follows from
Definition 2. ��

Corollary 1. A sieve problem, S =
⋂k

i=1{x ∈ Z | x (mod Mi) ∈ Ri, A ≤ x
< B} consisting of k sieve rings can be replaced by an equivalent sieve problem
consisting of a single sieve ring:

S = {x ∈ Z | x (mod M) ∈ R, A ≤ x < B}

where M =
∏k

i=1 Mi, and R consists of the crt combinations of the sets Ri for
i = 1, 2, . . . , k.
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3 Transforming and Parallelizing Sieve Problems

3.1 Sieve Rotation

Recall that start (A) and end (B) values for a sieve problem are specified such
that any solution, x, lies in the interval A ≤ x < B. To offer the largest possible
sieve range to the underlying implementation2, sieve problems with a nonzero
start value are often translated to equivalent problems in the interval 0 ≤ x < H
by adjusting the acceptable residues, ri,j ∈ Ri; i.e. taking s = A in the (bijective)
map

σ[s] : ri,j �→ (ri,j − s) (mod Mi)
(A, B) �→ (A − s, B − s).

This is called a rotation of the sieve problem.

3.2 Normalization

When a sieve problem contains a modulus for which there is but a single ac-
ceptable residue, even greater savings may be achieved. In [15], D. H. Lehmer
described a technique for eliminating single-valued congruences from sieve prob-
lems. He called this technique normalization, and it works as follows. First,
all single-valued residue conditions are combined (via the crt) into the single
congruence

x ≡ r (mod m). (1)

Thus, any solution to this sieve problem must be of the form x = r + ym for
some y. Rather than searching for solutions x that satisfy all sieve congruences,
it is more efficient to search for acceptable values of y by using the relationship
in Equation 1 to translate the remaining sieve criteria; i.e. for all ri,j ∈ Ri, and
all Ri ∈ S, apply the (bijective) map:

η[m, r] : ri,j �→ (ri,j − r)m−1 (mod Mi) (2)

(0, H) �→
(

0,

⌈
(H − r)

m

⌉)
In practice,most sieve problems are transformedboth by rotation—to eliminate

all nonzero start values—and normalization—to eliminate any single-residue con-
gruence conditions. Since rotation affects all sieve rings including those which
give rise to the normalization map, the result of applying rotation to a sieve
problem, S, with acceptable residues ri,j ∈ Ri and normaliztion η[m, r] is given
by the map:

σ[s] : η[m, r] �→ η[m, (r − s) mod m] (3)
ri,j �→ (ri,j − s) (mod Mi)

2 To ensure that intermediate values fit into a machine word, for instance.
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Definition 3. Given a sieve problem S operating over the interval A ≤ x < B
for which the solutions satisfy x = my + r, we define its normalized form as the
(equivalent) sieve problem η[m, r](S) operating over the interval 0 ≤ y <

⌈
H−r

m

⌉
,

where H = B − A.

4 Parallel Implementation

An additional application of the normalization transformation arises if multiple
sieve units are employed in parallel. Consider a sieve ring ρ = {M,R} with |R|
acceptable residues. The sieve problem containing this ring may be partitioned
into |R| parallel problems by applying a normalization, η[M, rj ], for each of the
rj ∈ R to the remaining sieve rings, and running one normalized problem on
each of the available sieve devices. The solution set S is simply the union of the
results for each of the |R| parallelized sieve problems.

This optimization can be useful even if the normalized sieve problems are
solved consecutively. As demonstrated by Lehmer [16], an effective speedup of
Mi

|Ri| is achieved by executing each of the normalized sieve problems in series.
Lukes [18] called this technique multiple residue optimization. Bernstein [4] called
it singly-focused enumeration.

5 Doubly-Focused Enumeration

Doubly-focused enumeration, first described by Bernstein [4] makes use of an
explicit form of the Chinese Remainder Theorem to map a sieve problem, S into
two smaller sieve problems whose solutions may then be combined to retrieve
all x ∈ S. To illustrate this technique, we first require a lemma.

Lemma 1. Every x in the range 0 ≤ x < H may be expressed as the difference
tpMn − tnMp, where Mp, Mn are relatively prime, 0 ≤ tp <

⌈
H+MnMp

Mn

⌉
, and

0 ≤ tn < Mn.

Proof. Consider the arithmetic progression obtained by fixing tn and varying tp

in the expression3:
x = tpMn − tnMp

This progression is capable of producing any x ≡ −tnMp (mod Mn). Thus, if
tnMp (mod Mn) is made to range over all residue classes {0, 1, 2, . . . , Mn − 1},
the resulting arithmetic progressions can be used to produce all possible integers
x in an interval [0, H) by varying tp.

Consider tn ∈ {0, 1, 2, . . . , Mn − 1}. Since gcd(Mn, Mp) = 1, it is straight-
forward to show that the set {t | t ≡ tnMp (mod Mn), 0 ≤ tn < Mn} forms a
complete reduced residue system. If not, then for some 0 ≤ i, j < Mn, i �= j, the
3 Subtraction is used in the crt decomposition of x instead of the more traditional

addition to allow both sieve problems in the doubly-focused enumeration to operate
in the same direction. See Appendix A for a description of the algorithm.
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congruence: i · Mp ≡ j · Mp (mod Mn) would hold. Multiplying both sides by
M−1

p (mod Mn), however, gives i ≡ j (mod Mn), a contradiction.
Hence, it is sufficient to consider 0 ≤ tn < Mn to produce the necessary

arithmetic progressions. Since tn is always nonnegative, choose tp ≥ 0, and as

tn < Mn, it follows that tp <
⌈

H+MnMp

Mn

⌉
. ��

5.1 The Doubly-Focused Transformation

The doubly-focused transformation δ[Mn, Mp] works as follows. Consider a sieve
problem:

S =
k⋂

i=1

{x ∈ Z | x (mod Mi) ∈ Ri, 0 ≤ x < H} . (4)

Partition the moduli M1, M2, . . . , Mk into two distinct sets, Mn and Mp, and
define the quantities Mn and Mp as the products of the moduli in these sets:
Mn =
∏s

i=1 Mi and Mp =
∏k

j=s+1 Mj respectively.
From Lemma 1, a solution x ∈ S can be written x = tpMn − tnMp. Reducing

this expression modulo Mn and Mp respectively, it is clear that any solution x
must satisfy the congruences:

x ≡ −tnMp (mod Mn) ∈ Rn

x ≡ tpMn (mod Mp) ∈ Rp.

Thus, rather than sieving for solutions x in the original problem, we can search
instead for solutions tn, tp in two translated sieve problems, and recombine
these solutions to obtain solutions in the original interval as follows. Set Tp =
η[M∗

n, 0](Rp), Tn = η[M∗
p , 0](Rn), M∗

n = M−1
n mod Mp and M∗

p = (−Mp)−1

mod Mn. The doubly-focused map is given by:

δ[Mn, Mp] : S → (Sp,Sn),

where

Sp =
s⋂

i=1

{
tp ∈ Z | tp (mod Mp) ∈ Tp, 0 ≤ tp <

⌈
H + MnMp

Mn

⌉}
(5)

Sn =
k⋂

i=s+1

{tn ∈ Z | tn (mod Mn) ∈ Tn, 0 ≤ tn < Mn} . (6)

We call these new problems the positive and negative sieve problems, respec-
tively. The solutions of these new problems may be converted back into solutions
to the original sieve problem (4) using only a moderate amount of storage; i.e.
by considering one tn output at a time, and maintaining an array of solutions for
tp, where 0 ≤ tpMn−tnMp < H . See Appendix A for a more detailed description
of this algorithm.



Doubly-Focused Enumeration of Pseudosquares and Pseudocubes 213

6 The Calgary Scalable Sieve

cassie, the CAlgary Scalable SIEve, is a software-based tookit for representing
and solving congruential sieve problems. The toolkit implements the transfor-
mations of Sections 3-5 as a set of extension to the scripting language Tcl [20].
For parallel sieving, cassie was implemented on the University of Calgary’s Ad-
vanced Cryptography Lab (acl); a Beowulf cluster consisting of 152 dual-Xeon
Pentium iv processors running at 2.4 ghz.

cassie is written in portable c and was compiled using gcc (2.96 and later)
under Red Hat Linux 7.3 (kernel 2.4.18-27.7) on the Intel Pentium IV architec-
ture. It has since been ported to the amd 64-bit Opteron architecture, and the
Openbsd 3.8 operating system.

7 Pseudosquares and Primality Testing

The pseudosquare problem, first considered by Kraitchik [14] is characterized in
the following manner:

Definition 4. Given an integer x, a pseudosquare M2,x is defined as the least
positive integer satisfying:

1. M2,x ≡ 1 (mod 8)
2. The Legendre symbol

(
M2,x

q

)
= 1 for all odd primes q ≤ x

3. M2,x is not a perfect square.

In other words, the pseudosquare, M2,x behaves (locally) like a perfect square
modulo all small primes q ≤ x,

Perhaps the most interesting application of pseudosquares is in the area of
primality testing. In [19], Lukes et al. indicated that a sufficiently rapid growth
rate of pseudosquares would lead to a deterministic polynomial-time algorithm
for determining the prime character of an integer N .

Theorem 2. If

1. All prime divisors q|N exceed the bound B ∈ Z+,
2. N

B < M2,x for some integer, x,

3. p
N−1

2

i ≡ ±1 (mod N) for all primes pi, 2 ≤ pi ≤ x,

4. p
N−1

2

j ≡ −1 (mod N) for some odd pj ≤ x when N ≡ 1 (mod 8), or
2

N−1

2 ≡ −1 (mod N) when N ≡ 5 (mod 8)

then N is a prime or a power of a prime.

Note that if N is prime, the conditions of Theorem 2 hold with B = 1 and
N < M2,x. The main consequence of this result is that if M2,x grows sufficiently
quickly—i.e. if p < c(log M2,x)k for fixed constants c, k—then Theorem 2 offers
an unconditional, deterministic polynomial-time primality test.

One interesting applictaion of Theorem 2 was noted by D.J Bernstein [3].
He observed that, when combined with the Pollard rho technique, Theorem 2
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integers offers the fastest known method for proving the primality of 100-bit
integers.

7.1 Pseudosquare Growth

In [19], Lukes et al. appealed to a result of Bach [2] which, under the assumtions
of the Extended Riemann Hypothesis (erh), give a lower bound for the growth
of pseudosquares:

log M2,x >
√

x/2. (7)

In [21], Schinzel refined the bounds on M2,x to:4

(1 − ε)
√

x < log M2,x < (2 log 2 + ε)
x

log x

for any ε > 0 with x > x0(ε). Thus, under the conditions of the erh, Theorem
2 offers a deterministic polynomial-time primality test.

Lukes offers an alternate prediction for the growth rate of M2,x [18, pp. 111].
Assume solutions for M2,x are equidistributed in the range 0 < x < 8p2p3 · · · pn,
and so M2,x ≈ 8p2p3···pn

n
i=1

(pi−1)/2 . By Merten’s Theorem [12] and the Prime Number
Theorem, M2,x ≈ c2n log x for c = 2eγ where γ = 0.57721 is Euler’s constant.
Under these stated assumptions, M2,x would have a growth rate of the form
2(x/ log x)(1+o(1)); i.e.

log M2,x ≈ x · log 2
log x

(8)

If these predictions hold, then via Theorem 2, primality proving may be done
using (log N)1+o(1) modular exponentiations. Since performing modular expo-
nentiation incurs a complexity of (log N)2+o(1) (using, for instance, the tech-
niques of Schönhage and Strassen [22]) we may conjecture that the primality of
an arbitrary integer N may be proved with (log N)3+o(1) operations.

8 Pseudosquare Results

In [18], Lukes offered empirical evidence to support the growth estimates in (7)
and (8) by computing the pseudosquares for all primes q ≤ 277, and comparing
the results to (7) and (8). In [4], Bernstein extended this result to q ≤ 281. Using
cassie, the table of pseudosquares was extended to include all primes q ≤ 359
and it was shown that the predictions of (7) and (8) still hold. These results are
given in Section 8.1.

To achieve these new results, two separate computations were performed. The
first computation was a doubly-focused enumeration implemented on two AMD
Athlon MP 2000+ processors. To partition the problem over these processors,
4 Assuming the Extended Riemann Hypothesis (erh). In the same paper, an uncon-

ditional result is also given.
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the acceptable pseudosquare residues for 3, 5, and 8 were combined to produce
the normalizations x = 1 + 120y, and x = 49 + 120y. The primes from 7 to 73
were used as doubly-focused moduli, arranged in the following manner:

Mn = {7, 13, 29, 31, 71, 41, 43, 59, 61}
Mp = {11, 17, 19, 23, 73, 37, 47, 53, 67} .

Values emerging from the doubly-focused sieve were further filtered by ex-
amining their quadratic character modulo the primes 79–127. Remaining results
were filtered to remove the perfect squares, and then tested against the primes
up to 400 to determine where their pseudosquare behaviour broke down.

The run was completed on April 6, 2003, and achieved an effective canvass
rate of 2.06× 1015 trials per second. In addition to verifying the previous results
of [19] and [4], we were able to find 6 previously unknown pseudosquare values:
M2,293 through M2,317. These results are summarized in Table 1.

Table 1. Pseudosquare Results (2-processors)

p M2,p Source
283 533 552 663 339 828 203 681 Wooding, Williams (2003)

293,307 936 664 079 266 714 697 089 CASSIE
311,313,317 2 142 202 860 370 269 916 129 (2 processors)

Once cassie had proved successful in the initial run, the pseudosquare com-
putation was retooled for implementation in software over 180 processors. To
partition the problem in this manner, the acceptable pseudosquare residues for
3, 5, 8, 11, 13, and 17 were combined to produce 180 acceptable residue classes
(mod 120120). Using the MPI library [11], the cassie software running on each
of the ACL nodes was able to determine which normalization to use.

The rest of the problem setup was identical for each of the processors. The
primes from 17 to 83 were arranged into two sets:

Mn = {17, 23, 29, 31, 37, 41, 47, 53, 71}
Mp = {19, 43, 59, 61, 67, 73, 79, 83} .

Values emerging from the doubly-focused sieve were further filtered by ex-
amining their quadratic character modulo the primes 89–127. Remaining results
were filtered to remove the perfect squares, and then tested against the primes
up to 400 to determine where their pseudosquare behaviour broke down.

The run was completed on July 26, 2003 and achieved an effective canvass
rate of 1.05× 1018 trials per second. 6 previously unknown pseudosquare values
were obtained: M2,331 to M2,359. These results are summarized in Table 2.
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Table 2. Pseudosquare Results (180 processors)

p M2,p Source
331 13 649 154 491 558 298 803 281
337 34 594 858 801 670 127 778 801 Wooding, Williams (2003)

347, 349 99 492 945 930 479 213 334 049 CASSIE / ACL
353, 359 295 363 487 400 900 310 880 401 (180 processors)

367 > 120120 × 264
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Fig. 1. Pseudosquare and pseudocube growth vs. n

8.1 Numerical Confirmation of Growth Preditions

In Figure 1, pseudosquare growth is shown as a function of n, where pn is the
nth prime. The straight line represents the least squares line fitted to this data,
and is given by:

y = 0.67454x + 4.60704

Even with the relatively small number of data points, the slope of the least
squares fit in Figure 1 appears to be approaching the predicted value of log 2 =
0.69315, i.e. M2,pn has a growth rate of the form 2n(1+o(1)).
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To date, the pseudosquare results obtained using cassie support the pre-
dictions of Equations (7) and (8). This is at least empirical evidence that the
polynomial-time nature of the primality test of Theorem 2 holds even in the
absence of the erh.

9 Pseudocubes

The pseudocube problem may be defined in a manner analagous to that of the
pseudosquares.

Definition 5. Given an integer, x, the pseudocube M3,x is defined as the least
positive integer satisfying:

1. M3,x ≡ ±1 (mod 9)

2. M
q−1

3

3,x ≡ 1 (mod q) for all primes q ≤ x, q ≡ 1 (mod 3)
3. q � | M3,x for all primes q ≤ x, q �≡ 1 (mod 3).
4. M3,x is not a perfect cube.

In [8], Berrizbeitia et al. generalized the primality test of Theorem 2 (with B =
1) to involve pseudocubes. This definition makes use of the ring of Eisenstein
integers, Z[ω] where ω = e2πi/3. The general properties of these integers are
described in [13].

Theorem 3. Let N be odd, 3 � | N . Define N∗ = N if N ≡ 1 (mod 3) and
N∗ = −N if N ≡ −1 (mod 3). Furthermore, if q ≡ 1 (mod 3) and prime,
define αq ∈ Z[ω] by αqαq = q. If

1. N < (M3,x)2/3.

2.
(αq

N

)
3 ≡ λ

(N∗−1)

3

q (mod N) for all primes q ≡ 1 (mod 3), q ≤ x.
3. q � | N for all primes q ≡ 2 (mod 3), q ≤ x.

where α ∈ Z[ω], λq = αq/αq, then N is a prime or a power of a prime. ��

9.1 Pseudocube Growth

In [8], Berrizbeitia et al. conjectured that, under the same assumptions that
were used to forumulate (8), pseudocube growth should eventually outpace the
pseudosquares; i.e.

(Mqn)2/3

M2,pn

≈ c
(
22/3)32n/3(log qn)4/3

c12n log pn
≥ c

(
32/3

2

)n

> 1 (9)

where pn is the nth prime, and qn is the nth prime for which q ≡ 1 (mod 3).
Thus, the primality test of Theorem 3 should be more efficient than that of
Theorem 2 (where B = 1) for sufficiently large n.
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9.2 Pseudocube Results

To extend the table of known pseudocubes, the following computation was per-
formed. First, the acceptable residues for 2, 7, 9, 13 and 31 were combined to
produce 160 residue classes (modulo 50778). These classes were then used as
normalizations on each of 160 processors of the acl cluster.

The remaining primes congruent to 1 (mod 3) between 19 and 127 were then
arranged into two sets:

Mp = {19, 43, 79, 103, 37, 73}
Mn = {127, 61, 67, 97, 109} .

and used in a doubly-focused enumeration
Solutions emerging from the sieve were further filtered to exlude perfect cubes,

and all solutions divisible by the primes q ≡ 2 (mod 3).
The computation took (on average) 626102 seconds on each of 160 nodes to

test all solutions up to H = 1.45152× 1022, achieving an effective canvass rate
of 2.31× 1016 trials per second. In the end, 11 new pseudocubes were obtained,
M3,367 through M3,487. These results are summarized in Table 3.

9.3 Comparison with Growth Predictions

In Figure 1, pseudocube growth is shown as a function of n, where pn is the nth

prime. The straight line represents the least squares line fitted to this data, and
is given by:

y = 0.709325x + 0.245458

Unfortunately, even with the new pseudocube results of Section 9.2, primality
proving via pseudocubes is not yet more efficient than the pseudosquare method.
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Table 3. Least Pseudocubes for primes q ≡ 1 (mod 3)

q M3,q Source
367 996 438 651 365 898 469
373 2 152 984 914 389 968 651
379 12 403 284 862 819 956 587

397, 209, 421 37 605 274 105 479 228 611
433 205 830 039 006 337 114 403 Wooding, Williams (2005)
439 1 845 193 818 928 603 436 441 CASSIE/ACL
457 7 854 338 425 385 225 902 393 (160 processors)
463 12 904 554 928 068 268 848 739
487 13 384 809 548 521 227 517 303
499 > 1.45152 × 1022

However, if the trend illustrated in Figure 1 continues (and to a lesser degree,
Figure 2) , it would appear that the conjecture underlying Equation 9 is sound;
i.e. 0.709325 − 0.674538 = 0.034787 is approaching the predicted log 32/3

2 , and
hence, the efficiency of the pseudocube primality test should eventually exceed
that of the pseudosquares.

10 Summary

In this paper, we have offered additional numerical evidence for a conjecture that
primality proving may be done in (log N)3+o(1) operations. We have done this
by extending the tables of known pseudosquares and pseudocubes using cassie,
a software-based congruential sieve employing D. J. Bernstein’s technique of
doubly-focused enumeration.
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A Appendix—Enumeration Algorithms

Given a normalized sieve problem S, define an accessor function next(S) which
returns the next sieve output. Now, fix Mn, Mp and consider the doubly-focused
sieve problem given by δ [Mn, Mp] (S). This consists of an upper bound, H ,
and positive and negative sieve problems Sp, Sn. Given the current output of
positive and negative sieves (tp, tn respectively), Algorithm 1 (HUNT) describes
a method for obtaining an initial solution x ∈ S such that x = tpMn − tnMp,
0 ≤ x < H. Algorithm 2 (DFSIEVE) describes a method for obtaining all such
solutions x ∈ S in the given interval.
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Algorithm 1. HUNT: Find an initial solution
Inputs: H, Sp := {Rp, Mp} , Sn := {Rn, Mn} , tn, tp

Output: tp ∈ Sp, tn ∈ Sn such that x = tpMn − tnMp, 0 ≤ x < H .
1: x ← tpMn − tnMp

2: repeat
3: while x < 0 do
4: tp ← next(Sp)
5: x ← (tpMn − tnMp)
6: end while
7: while (x ≥ H) do
8: tn ← next(Sn)
9: x ← (tpMn − tnMp)

10: end while
11: until (x ≥ 0)
12: Return (tp, tn)

Algorithm 2. DFSIEVE: Doubly-focused enumeration of sieve solutions
Inputs: H, Sp := {Rp, Mp} , Sn := {Rn, Mn}
Outputs: All solutions x such that x = tpMn − tnMp, tp ∈ Sp, tn ∈ Sn, 0 ≤ x < H .
1: tp ← next(Sp)
2: tn ← next(Sn)
3: (tp, tn) ← HUNT (H,Sp, Sn, tp, tn)
4: while not DONE do
5: Append xlast = tpMn − tnMp

6: tp ← next(Sp); ap ← tpMn

7: while (ap − an < H) do
8: Extend x array with xlast ← ap − an

9: end while
10: for all xi in xfirst, . . . , xlast do
11: Filter and/or print xi

12: end for
13: δn ← next(Sn) − tn; Δn ← δnMp; an ← an + δn

14: if tn ≥ Mn then
15: return (DONE)
16: end if
17: for all xi in xfirst, . . . , xlast do
18: xi = xi − ΔnMp

19: if xi < 0 then
20: Delete xfirst

21: if x array empty then
22: tn ← next(Sn)
23: (tp, tn) ← HUNT (H,Sp, Sn, tp, tn)
24: end if
25: end if
26: end for
27: end while
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Abstract. We propose Simple Sampling Reduction (SSR) that makes
Schnorr’s Random Sampling Reduction (RSR) practical. We also intro-
duce generalizations of SSR that yield bases with several short basis
vectors and that, in combination, generate shorter basis vectors than
SSR alone. Furthermore, we give a formula for Pr[ ‖v‖2 ≤ x ] provided
v is randomly sampled from SSR’s search space. We describe two algo-
rithms that estimate the probability that a further SSR iteration will
find an even shorter vector, one algorithm based on our formula for
Pr[ ‖v‖2 ≤ x ], the other based on the approach of Schnorr’s RSR analy-
sis. Finally, we report on some cryptographic applications.

1 Introduction

Lattice basis reduction aims to efficiently compute lattice bases that consist of
vectors as short as possible. After the renowned LLL algorithm was published
[1], lattice reduction was no longer a topic for number theorists only, but it was
also applied in integer programming, coding theory, and cryptography. Over the
last twenty years, many algorithms were proposed that advance on LLL, trading
shorter base vectors for longer computing times.

Recently, Schnorr [2] proposed Random Sampling Reduction (RSR), a new lat-
tice reduction technique that combines LLL-like algorithms with the exhaustive
search of a lattice point set that is likely to contain short vectors. He concluded
that his new algorithms improves on the previous most efficient algorithms by
a fourth root. Unfortunately, the RSR algorithm as well as its analysis depend
on two assumptions on the Gram-Schmidt decomposition of LLL reduced bases.
It is clear that, in practice, LLL reduced lattice bases satisfy these assump-
tions only in some approximate sense, if at all. It turns out that in particu-
lar one assumption, the so called (GSA), fails regularly, which renders RSR
impractical.

We propose a modification of Schnorr’s RSR– named Simple Sampling Reduc-
tion (SSR) – that makes Sampling Reduction practical. We also describe several
generalizations of SSR that yield more short basis vectors and that proceed even
when SSR could not find shorter vectors anymore. SSR has to estimate the prob-
ability that it will find a vector shorter than the first basis vector. We propose
two algorithms that compute such estimates: The first one is very efficient, but
tends to return a rather pessimistic bound; the second algorithm gives a more
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exact result based on the convolution theorem, but is more expensive. Due to the
lack of space this paper omits some details and the proofs; they are presented in
full length in [3].

The rest of this paper is structured as follows: Sect. 2 introduces some
definitions and notations. Sect. 3 describes SSR, points out the differences be-
tween SSR and RSR, and reports on the typical behavior of SSR. Sect. 4 describes
the algorithms called by SSR that estimate the further success probability.
Sect. 5 proposes several generalizations of SSR and describes their impact
on the reduction result. Finally, Sect. 6 summarizes some empirical results
if Sampling Reduction is used to run lattice based attacks on some
cryptosystems.

2 Notation

We assume the Euclidean metric on Rd. A lattice L is a discrete subgroup of Rd,
its dimension is dim(L) := dim(L ⊗R R). The first minimum of L is λ1(L) :=
min{ ‖x‖ 0 �= x ∈ L }.

Every n-dimensional lattice L, n ≥ 1, has infinitely many (ordered) bases
B = [b1, . . . , bn] ∈ Rd×n such that L = L(B) := {Bx x ∈ Zn }. Two lattice
bases B, B′ generate the same lattice L if and only if there is a unimodular matrix
U ∈ Zn×n (i. e., detU = ±1) such that B′ = BU. We consider integer coefficient
lattices only, whence B ∈ Zd×n.

Throughout this paper, B = B̂R is the Gram-Schmidt decomposition of the
lattice basis B, i. e. the columns b̂j of B̂ ∈ Qd×n are pairwise perpendicular
and R = (ri,j) ∈ Qn×n is unit upper triangular. πj : Rd → lin{b1, . . . , bj−1 }⊥
denominates the orthogonal projection onto the orthogonal space of the first
j − 1 base vectors.

A basis B = B̂R is said to be δ-LLL reduced (δ ∈ (1/4, 1)) if and only if

|ri,j | ≤ 1/2 for all 1 ≤ i < j ≤ n,

‖b̂j+1‖2 ≥ (δ − r2
j,j+1)‖b̂j‖2 for all 1 ≤ j ≤ n.

An LLL variant due to Schnorr and Euchner [4] computes δ-LLL reduced bases
in, heuristically, O(dn4) arithmetic steps on O(n) bit integers, provided the in-
put basis vectors b satisfy log ‖b‖ ∈ O(n). (Nguyen and Stehlé [5] recently
proposed a floating-point LLL variant that guarantees this complexity.) We
have ‖b1‖ ≤ (δ − 1/4)−(n−1)/2λ1(L(B)) for any δ-LLL reduced basis B. δ is
3/4 in the original LLL algorithm, which leads to the norm bound ‖b1‖ ≤
2(n−1)/2λ1(L(B)).

3 Simple Sampling Reduction

We outline in this section our Simple Sampling Reduction algorithm that makes
Sampling Reduction practical, point out some differences to Schnorr’s Random
Sampling Reduction, and describe its empirical behavior.
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Algorithm 1. SSR

Input: – generating system G ∈ Zd×m of lattice L, dim(L) = n
– search space bound umax ∈ N

Output: LLL reduced basis B = B̂R of L such that
– 0.99‖b1‖2 < min{ ‖v‖2 v ∈ Sumax,B } or
– CSSS((‖b̂1‖2, . . . , ‖b̂n‖2), umax) = false.

procedure SSR(G, umax)
(B, b, R) ← LLL(G) /∗/∗/∗ B = B̂R, b = (‖b̂1‖2, . . . , ‖b̂n‖2) ∗/∗/∗/
while CSSS(b, umax) = true do

for x from 0 to 2umax − 1 do
v ← Sample(B, R, x)
if ‖v‖2 ≤ 0.99‖b1‖2 then break
if x = 2umax − 1 then terminate(“no short vector”)

end for

(B, b, R) ← LLL([v,b1, . . . , bn])

end while

terminate(“further progress unlikely”)
end procedure

3.1 The Simple Sampling Reduction Algorithm

The overall structure of Simple Sampling Reduction (SSR, Alg. 1) is as follows:
The algorithm operates on generating systems G of an n-dimensional lattice L.
SSR first applies some LLL-type reduction to G and obtains the basis B together
with its Gram-Schmidt decomposition. It then iterates the main loop as long
as the subalgorithm Check Search Space Size (CSSS) deems the probability of
finding a vector shorter than b1 sufficient; we defer the discussion of possible
CSSS implementations to Sect. 4.

In each iteration of the main loop, SSR enumerates the 2umax elements of some
search space Sumax,B ⊂ L – that we describe below – by means of the function
Sample. The enumeration loop is left as soon as the length of a sampled vector v
is at most

√
0.99‖b1‖. If there is no such vector in Sumax,B, then SSR terminates.

The last step in each iteration of the main loop is that SSR applies again the
LLL-type reduction to the new generating system G formed by prepending v to
the basis B.

In each iteration of the outer loop, b1 becomes shorter by a factor at most√
0.99. Before the first iteration, ‖b1‖ ≤ 2(n−1)/2λ1(L) because B is LLL reduced.

So SSR terminates after O(n) main loop iterations since then Sumax,B will not
contain a sufficiently short vector anymore.

We can express the length of a lattice vector v in terms of its Gram-Schmidt
vector representation; i. e., ‖v‖2 =

∑n
j=1 ν2

j ‖b̂j‖2 for v =
∑n

j=1 νjb̂j . Therefore,
if a vector v is short then we expect its Gram-Schmidt coefficients νj to be small
as well. However, the Gram-Schmidt vectors contribute to the length of v to
different degrees; the smaller ‖b̂j‖, the more leeway there is for νj . In an LLL
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reduced basis, the length of the Gram-Schmidt vectors b̂j typically decreases
with j. This observation motivates the following definition of the search space
Su,B.

Definition 1. Let B ∈ Zd×n be a lattice basis with Gram-Schmidt decomposition
B = B̂R and 1 ≤ u < n. The search space Su,B is the set of all lattice vectors
v =
∑n

j=1 νjb̂j ∈ L(B) such that

νj ∈

⎧⎪⎨⎪⎩
(−1/2, 1/2] if 1 ≤ j < n − u,
(−1, 1] if n − u ≤ j < n,
{ 1 } if j = n.

(1)

If v =
∑n

j=1 νjb̂j , v′ =
∑n

j=1 ν′
jb̂j ∈ L(B) and νj = ν′

j for j = j0 + 1, . . . , n,
then νj0 −ν′

j0
∈ Z. This implies that Su,B has 2u elements. Using a floating point

representation of the Gram-Schmidt coefficient matrix R ∈ Qn×n, we can con-
struct an algorithm Sample that implements a bijection { 0, . . . , 2u − 1 } → Su,B

in O(n2) integer and floating point operations [3].

3.2 Simple vs. Random Sampling Reduction

Schnorr’s RSR requires two assumptions. The first guarantees that RSR even-
tually terminates, the second determines a coefficient in a formula that RSR
evaluates in each outer loop iteration. Unfortunately, neither assumption holds
in practice, whence RSR as described by Schnorr is impractical. We describe in
the following both assumptions and point out how SSR works around them.

The Randomness Assumption (RA) states that the Gram-Schmidt coefficients
of the sampled lattice vectors behave like pairwise independent uniform random
variables on the intervals defined by (1). If this were strictly true, then sampling
would eventually produce a sufficiently short vector. However, Su,B is a finite
set. In practice, we will therefore encounter search spaces that do not contain
such a short vector; in such a situation the inner RSR loop becomes infinite.

Since RSR does indeed randomly sample the elements of the search space, it
cannot determine for sure that there is no sufficiently short vector in Su,B. SSR
systematically enumerates the search space elements and can terminate as soon
as it exhausted the search space. As a side effect, SSR searches Su,B faster than
RSR: The latter will sample some vectors repeatedly; if u > 8, the sampling loop
of RSR thus misses, on average, in |Su,B| iterations (1 − 1/|Su,B|)|Su,B||Su,B| ≥
(1 − 2−8)2

8 |Su,B| ≥ 1
3 |Su,B| lattice points.

According to the Geometric Series Assumption (GSA), there is for every LLL
reduced lattice basis B some (GSA) coefficient qB ∈ (0, 1) such that ‖b̂j‖2 =
qj−1
B ‖b1‖2 for all 1 ≤ j ≤ n. RSR relies on (GSA) in several ways. First, it com-

putes the search space size exponent u by a formula that explicitly refers to qB.
This leaves the question how to determine a suitable value for qB, since, in prac-
tice, we can only expect lattice bases to approximate the (GSA) if at all. In fact,
we observe that the lattice bases computed in the course of Sampling Reduction
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Fig. 1. Typical reduction by SSR

approximate (GSA) worse and worse, even if the Gram-Schmidt vector lengths
of the initial basis indeed resemble a geometric sequence. SSR, in contrast, relies
on a user defined search space size, so it does not need to reference qB.

Second, (GSA) guarantees that minj ‖b̂j‖2 will eventually become larger than
(6/k)(n−1)/k‖b1‖2, whereupon RSR terminates. Since we cannot rely on (GSA)
in practice, SSR delegates the decision when to leave the main loop to CSSS.
Unfortunately, without (GSA) we are no longer able to give an a priori bound on
the length of b1 that is better than the postcondition of the LLL-type reduction
used. We can only provide empirical data.

3.3 Typical Behavior of SSR

In the following, we give an example of typical SSR behavior.
Fig. 1 shows the results of SSR applied to a lattice basis in dimension n = 180

that were obtained as in Micciancio’s variant of the GGH cryptosystem [6,7].
The original lattice basis O was uniformly chosen from {−180, . . . , 180 }180×180

and then transformed into Hermite normal form H = HNF(O). H was finally
BKZ reduced with BKZ parameters (δ, β) = (0.99, 5).

We see in Fig. 1(a) the squared length of the nth shortest vector in the course
of SSR. The intermittent LLL-type reduction was always BKZ with parameters
(δ, β) = (0.99, 5). The squared length of the shortest vector in the SSR output is
reduced by a factor ≈ 1/2 compared to the shortest vector in the original BKZ-
reduced basis. The remaining base vectors also became shorter but less so; only
the first ten base vectors are particularly small. We therefore observe a much
larger gap between the length of the shortest and the 15th shortest vector than
between the 15th and the 30th shortest vector.

It stands out that most of the reduction happened in the first 15 iterations
within 108 seconds. The following iterations did not significantly improve the
minimum norm square but required much more sampled vectors (at a rate of
≈ 5200 samples per second on a 2.4GHz Intel Pentium 4 machine).

Fig. 1(b) exhibits the (GSA) behavior of the basis generated by sampling. We
see that the input basis B more or less approximates (GSA). However, inserting
the short vectors found by sampling and re-reducing the generating system with
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BKZ, (δ, β) = (0.99, 5) makes only the very first Gram-Schmidt vectors shorter.
In the end, the graph of ‖b̂j‖2 forms a distinct hump around j = 10. But SSR
does not affect the lengths of the Gram-Schmidt vectors b̂j with, say, j > 20
at all. Put differently, the length relative to ‖b1‖ of the vast majority of Gram-
Schmidt vectors grows with every iteration, whence the probability to find an
even shorter lattice vector by sampling drops.

4 Check Search Space Size

In this section we propose two non-trivial implementations of CSSS and discuss
their trade-offs.

A trivial implementation of CSSS always returns true. This implies that
Sumax,B is always exhaustively searched, no matter how small the success prob-
ability; in particular, in the last SSR iteration the search space will always be
enumerated once in vain. This may be acceptable for small umax, but it is not
practical if the enumeration of Sumax,B takes many hours, if not days. We propose
in the following two CSSS implementations that estimate the success probability
of the sampling loop and return true if and only if they deem the probability
≥ 1/2. The correctness proofs of both algorithms require (RA), but the failure
of (RA) in practice is likely to cause only a small error. Neither algorithm needs
(GSA), though.

4.1 Event Based CSSS

We describe CSSSevent, that is based on the approach of Schnorr’s analysis of
RSR. CSSSevent (Alg. 2) estimates the sampling loop’s success probability by
maximizing the probability of some probability event (Ek,u,r) over all parameters
that do not yield a too large conditional mean value for ‖v‖2.

Definition 2. Let B = B̂R ∈ Zd×n be a lattice basis, 1 ≤ u < n, 1 < k <
n − u, and r ∈ [0, 1]. Let v =

∑n
j=1 νjb̂j = Sample(B, R, x) for random x ∈R

{ 0, . . . , 2u − 1 }. The permutation σu,B ∈ Sym(n) sorts the first n−u− 1 Gram-
Schmidt vectors by non-increasing length, i. e.,

‖b̂σu,B(j)‖2 ≥ ‖b̂σu,B(j+1)‖2 for j ∈ { 1, . . . , n − u − 2 },
σu,B(j) = j for j ∈ {n − u, . . . , n }.

(2)

The event (Ek,u,r) is defined by

ν2
σu,B(j) ≤ 1

4rk−j for all j ∈ { 1, . . . , k }. (Ek,u,r)

Lemma 1. Assume (RA) and let B = B̂R, k, u, and r as in Def. 2. Set

sj(k, u, r) =

{
1
12rk−j if 1 ≤ j < k,
1
12 if k ≤ j < n − u,

sj(k, u, r) =

{
1
3 if n − u ≤ j < n,
1 if j = n.
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Algorithm 2. CSSSevent

Input: – b: vector of squared Gram-Schmidt vector lengths b = (‖b̂1‖2, . . . , ‖b̂n‖2)
where B = B̂R ∈ Zd×n, n > 3

– umax: log2 of maximum search space size
Output: ∃k ∈ { 1, . . . , n − umax − 1 }, u ∈ { 1, . . . , umax }, r ∈ [0, 1] :

E(B; k, u, r) ≤ 0.99‖b1‖2 and 2umax ≥ 1/ 1
2 Pr [ (Ek,u,r) ]

procedure LogProbBound(, k, u, ‖b1‖2) /∗/∗/∗ E(B; k, u, r) as in Lemma 1 ∗/∗/∗/
if E(B; k, u, 1) ≤ 0.99‖b1‖2 then return −1
if E(B; k, u, 0) ≥ 0.99‖b1‖2 then return −∞
rmax ← Solve(E(B; k, u, q) = 0.99‖b1‖2, r ∈ [0, 1]) /∗/∗/∗ e. g., RegulaFalsi ∗/∗/∗/

return �k(k−1)
4 log2(rmax) − 1�

end procedure

procedure CSSSevent(b, umax)
for u from umax downto 1 do

 ← (‖b̂σu,B(1)‖2, . . . , ‖b̂σu,B(n)‖2) /∗/∗/∗ σu,B as in Def. 2 ∗/∗/∗/

if umax ≥ − max1≤k<n−umax
LogProbBound(, k, u, ‖b1‖2) then return true

end for
return false

end procedure

Then we have E(B; k, u, r) :=
∑n

j=1 sj(k, u, r)‖b̂σu,B(j)‖2 = E
[
‖v‖2 (Ek,u,r)

]
as well as Pr[ (Ek,u,r) ] = rk(k−1)/4.

If E
[
‖v‖2 (Ek,u,r)

]
≤0.99‖b1‖2, then Pr[ ‖v‖2≤0.99‖b1‖2 ]≥ 1

2 Pr[ (Ek,u,r) ].

Since both E(B; k, u, r) and Pr[ (Ek,u,r) ] are continuous and strictly increasing in
r, LogProbBound is able to determine for given k and u the maximum rmax ∈ [0, 1]
such that E

[
‖v‖2 (Ek,u,r)

]
≤ 0.99‖b1‖2 by textbook root finding algorithms.

Lemma 1 implies Pr[ ‖v‖2 ≤ ‖b1‖2 ] ≥ 1
2 Pr[ (Ek,u,rmax

) ]. LogProbBound returns
the logarithm of this bound, rounded towards −∞.

CSSSevent checks whether there are admissible parameters k, u such that the
search space size is larger than the reciprocal of the probability bound computed
by LogProbBound. Then we can expect to find a sufficiently short vector in Su,B

by the usual probability enhancement argument.
In practice, the success probability estimate by CSSSevent is rather pessimistic.

It takes only those short vectors into account that also satisfy (Ek,u,rmax
). We

found that the number of samples required is typically by a factor 210 smaller
than implied by the maximum result of LogProbBound.

4.2 Convolution Based CSSS

In the following, we explain CSSSFourier, that computes Pr[ ‖v‖2 ≤ ‖b1‖2 ] by
means of the convolution of the distribution functions of the sampled vectors’
Gram-Schmidt coefficients.
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Algorithm 3. CSSSFourier

Input: – b: vector of squared Gram-Schmidt vector lengths b = (‖b̂1‖2, . . . , ‖b̂n‖2)
where B = B̂R ∈ Zd×n, n > 3

– u: log2 of maximum search space size
Output: true if and only if Pr ‖v‖2 ≤ 0.99‖b1‖2 > 21−umax

procedure Density ((t1, . . . , tm), T, N) /∗/∗/∗ T > 2 t21 + · · · + t2m, N > 1 ∗/∗/∗/
for j from 0 to N/2 do

(Φj , k) ← (ϕt1,...,tm(j/T ), 0)
repeat

δΦ ← ϕt1,...,tm((j + kN)/T ) + ϕt1,...,tm((j − kN)/T )
(Φj , k) ← (Φj + δΦ, k + 1)

until δΦ < εFPA /∗/∗/∗ equality up to floating point precision ∗/∗/∗/
end for
return N

4T
DFT−1((Φ0, . . . , ΦN/2, ΦN/2−1, . . . , Φ1)t)

end procedure

procedure CSSSFourier (b, u)
(t1, . . . , tn−1) ← ( 1

2‖b̂1‖, . . . , 1
2‖b̂n−u−1‖, ‖b̂n−u‖, . . . , ‖b̂n−1‖)/‖b̂1‖

N ← 2D /∗/∗/∗ D global parameter, 2D DFT sample points ∗/∗/∗/

T ← min{ 2τ τ ∈ Z and 2τ > 2 t21 + · · · + t2n−1 }
(d0, . . . , dN−1)t ← Density((t1, . . . , tn−1), T, N)
p ← Quadrature(0.99 − ‖b̂n‖2/‖b1‖2, (d0, . . . , dN−1), T, N)
return log2(1 − p) ≤ −2−u

end procedure

Definition 3. The function

Fr : R → C : t �→
∫ t

0
e2πı x2

4 dx

is named Fresnel integral function. For positive real numbers t1, . . . , tn, n > 0,
define ϕt1,...,tn : R → C as the unique continuous function such that, for y > 0,

ϕt1,...,tn(y) =
n∏

j=1

Fr(2tj
√

y)
2tj

√
y

and ϕt1,...,tn(−y) = ϕt1,...,tn(y) .

Theorem 1. Let B = B̂R ∈ Zd×n, n > 2, be a lattice basis and 1 ≤ u < n. Let
v ∈R Su,B be uniformly sampled. For 1 ≤ j < n set tj = ‖b̂j‖ if n − u ≤ j < n

and tj = 1
2‖b̂j‖ else. Then, under (RA),

Pr
[
‖v‖2 ≤ x

]
=
∫ x−‖b̂n‖2

0
(F−1 ϕt1,...,tn−1

)(s) ds , (3)

where F−1 ϕt1,...,tn−1
: R → C : x �→

∫
R ϕt1,...,tn−1

(y)e−2πıxy dy is the inverse
Fourier transform of ϕt1,...,tn−1

.
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Sketch of Proof. By (RA), the probability Pr[ ν2
j ‖b̂j‖2 ≤ x ] is

√
x/tj if 0 < x <

t2j . Its distribution is dj(x) = 1/(2tj
√

x) if 0 < x < t2j and dj(x) = 0 else.
Since dj is a real function, F dj has the Hermitian property F dj(−y) = F dj(y).
Assume y > 0. Then

(F dt)(y) =
∫

R

dt(z)e2πıyz dz =
∫ t2

0

1
2t
√

z
e2πıyz dz

=
∫ 2

√
yt

0

2
√

y

2tx
e2πı x2

4

x

2y
dx =

1
2t
√

y

∫ 2t
√

y

0
e2πı x2

4 dx =
Fr(2t

√
y)

2t
√

y

by means of the substitution x(z) = 2
√

y
√

z. Therefore, ϕtj = F dj .
Let D : R → R be the distribution function of Pr[ ‖v‖2 ≤ x ]. Then D is the

convolution product d1 ∗ · · · ∗ dn−1 by the sum distribution formula and (RA).
Therefore, (3) follows by the convolution theorem. ��
CSSSFourier (Alg. 3) is a mostly straightforward numerical implementation of (3)
by means of the inverse discrete Fourier transform DFT−1 and integration by
some textbook quadrature formula (e. g., Simpson’s rule). To counteract the so
called aliasing effect [8], though, the subroutine Density determines the sample
values of the DFT−1 input as Φj =

∑
k∈Z ϕt1,...,tn−1

((j + kN)/T ). This series
converges sufficiently fast, since |ϕt1,...,tn−1

| ∈ O(|y|−(n−1)/2) and we are inter-
ested in highly dimensional lattices only.

The Fresnel integral can be efficiently evaluated up to arbitrary precision
[8]. There are freely available implementations that compute the (inverse) dis-
crete Fourier transform in O(N log N) time and achieve an L2 error as small as
O(

√
log N) [9]. Therefore, CSSSFourier is sufficiently efficient.

CSSSFourier determines the sample loop’s success probability much more pre-
cisely than CSSSevent, but it is also much more expensive. Thus, CSSSFourier offers
an advantage over CSSSevent if the search space is very large; then the sam-
pling loop outweighs the runtime of CSSSFourier and its higher precision is more
important.

5 Generalizations

We described the behavior of SSR in Sect. 3.3. Better results require either
that SSR enumerates larger search spaces or that the intermittent LLL-type
reduction has to return shorter basis vectors – the latter typically means that
BKZ is run with a larger block size. In this section we describe some Sampling
Reduction variants that yield more short vectors and, in combination, a better
SVP approximation than SSR alone.

5.1 Pool Sampling Reduction

SSR concentrates on reducing the length of the first base vector. Typically, it
significantly reduces the length of the very first base vector only. The Pool Sam-
pling Reduction (PoolSR) that we describe in the following generates more short
vectors in the result basis.
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Algorithm 4. PoolSR

Input: – generating system G ∈ Zd×m of lattice L, dim(L) = n
– search space bound umax ∈ N
– pool size s ≥ 1
– (randomized) acceptor algorithm A : L(B) → { true, false }

Output: LLL reduced basis B = B̂R of L such that
– 0.99‖b1‖2 < min{ ‖v‖2 v ∈ Sumax,B } or
– CSSS(B, R, umax) = false.

procedure PoolSR(G, umax, s, A)
(B, b, R) ← LLL(G) /∗/∗/∗ B = B̂R, b = (‖b̂1‖2, . . . , ‖b̂n‖2) ∗/∗/∗/

while CSSS(b, umax) = true do
t ← 0 /∗/∗/∗ Invariant: ‖p1‖ ≤ · · · ≤ ‖pt‖, t ≤ s ∗/∗/∗/
for x from 0 to 2umax − 1 do

v ← Sample(B, R, x)
if ‖v‖2 ≤ 0.99‖b1‖2 or A(v) = true then

jv ← min{ j ∈ { 1, . . . , t + 1 } j = t + 1 or ‖v‖ ≤ ‖pj‖ }
[p1, . . . ,pt+1] ← [p1, . . . ,pjv−1,v,pjv , . . . ,pt]
t ← min{ s, t + 1 }

end if
if t > 0 and ‖p1‖2 ≤ 0.99‖b1‖2 then break
if x = 2umax − 1 then terminate(“no short vector”)

end for

(B, b, R) ← LLL([p1, . . . , pt,b1, . . . ,bn])

end while
terminate(“further progress unlikely”)

end procedure

Before the sampling loop in SSR finds a sufficiently short vector, it is likely
to generate lattice points v that are about the same length as b1. SSR dis-
cards them even though they are shorter than most of the base vectors. PoolSR
(Alg. 4) includes some of the shortest sampled vectors in the generating sys-
tem the LLL reduction of which becomes the lattice basis in the next outer loop
iteration.

Besides the input generating system and the maximum search space size,
PoolSR expects a pool size s ≥ 1 and some (possibly randomized) acceptor al-
gorithm A. We suggest a reasonable acceptor below. PoolSR maintains a “pool”
[p1, . . . , pt], t ≤ s, of sampled lattice vectors, sorted in non-decreasing length or-
der. A sampled vector v is is added to the pool if its length is at most

√
0.99‖b1‖

or if the acceptor A returns true on input v. The longest pool vector is dropped if
otherwise the pool grew larger than s elements. PoolSR leaves the sampling loop
as soon as the length of the shortest pool vector falls below

√
0.99‖b1‖. The

generating system that is used to compute the next lattice basis B is formed
by prepending the complete pool to the current basis B. (SSR prepends p1
only.)
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Fig. 2. Typical runtime behavior of PoolSR

Vectors slightly longer than b1 are still shorter than most base vectors, so,
for our experiments, we wanted to included them in the pool. However, the op-
timal threshold length is not obvious. To address this we used an acceptor Rτ,α

that selects pool vector candidates v with a chance that decreases as ‖v‖2 in-
creases; more precisely, every invocation of Rτ,α is a random experiment such
that Pr[Rτ,α(v) = true ] = min{ 1, eα(τ−‖v‖2/‖b1‖2) } This ensures that all vec-
tors shorter than τb1 are always selected for the pool and the probability for
longer vectors to be included decreases quickly.

Fig. 2 shows the typical progress of PoolSR on the same input basis as in
Sect. 3.3 for poolsize s = 60 and with acceptors R1,1 as well as R1,25. PoolSR
does not significantly improve the SVP approximation compared to SSR. This
is because the lengths of the Gram-Schmidt vectors b̂j do not differ much when
comparing PoolSR with SSR. Therefore, The probability that the sampling loop
will succeed in finding a significantly shorter vector is about the same in PoolSR
and SSR. In contrast to SSR, however, we observe in the result basis a block of 15
to 30 vectors at the beginning that are about the same length as b1, independent
from the value of α. After this block the remaining base vectors suddenly become
longer; the gap in the squared length of the leading block vectors and the shortest
remaining base vectors is typically 30% to 50% of ‖b1‖2.

If we run PoolSR with R1,1, then the pool grows to its maximum size s = 60
in almost all iterations, even if the inner loop is left after less than 210 samples.
The mean squared length of the pool vectors varies from 1.2‖b1‖2 to 1.6‖b1‖2,
so the bulk of the pool vectors is not much shorter than the average base vector
and does not contribute much towards our objective to generate bases with
many short vectors. However, the reduction of that large generating systems is
expensive; In the experiment shown in Fig. 2(a), only 43 seconds were spent in
the sampling loop, but 481 seconds in the BKZ reduction.

The situation is different with large acceptor parameter α = 25: Then the pool
holds rarely more than 5 vectors and their average squared length is 1.1‖b1‖2. In
consequence, PoolSR spends much less time in the intermittent BKZ reduction
and the overall runtime is not much longer than the runtime of SSR. (149 seconds
spend in BKZ in the example depicted in Fig. 2(b), compared with 285 seconds
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Algorithm 5. ShortProjectionSR

Input: – generating system G ∈ Zd×m of lattice L, dim(L) = n
– search space bound umax ∈ N
– reduction factor γ ∈ (0, 1)
– set T of target indices, ∅ �= T ⊆ { 1, . . . , n − umax }

Output: LLL reduced basis B = B̂R of L such that ∀j ∈ T :
– γ‖bj‖2 < min{ πj(‖v‖2) v ∈ Sumax,B } or
– CSSS((‖b̂j‖2, . . . , ‖b̂n‖2), umax) = false.

procedure ShortProjectionSR(B, umax, γ, T, δ)
(B, b, R) ← LLL(G) /∗/∗/∗ B = B̂R, b = (‖b̂1‖2, . . . , ‖b̂n‖2) ∗/∗/∗/

while CSSS′(b, γ, T, umax) = true do

for x from 0 to 2umax − 1 do
v ← Sample(B, R, x)
t ← min{ j ∈ T ‖πj(v)‖2 ≤ γ‖b̂j‖2 } ∪ { ∞}
if t ∈ T then break
if x = 2umax − 1 then terminate(“no short vector”)

end for

(B, b, R) ← LLL([b1, . . . , bt−1,v,bt, . . . ,bn])

end while

terminate(“further progress unlikely”)
end procedure

spent on sampling.) The base vector lengths in the end result is similar to the
experiments with α = 1, though.

5.2 Short Projection Sampling Reduction

BKZ reduction of lattice bases that arise from the NTRU cryptosystem [10] yields
bases where ‖b1‖2 � maxj ‖b̂j‖2. It is therefore very unlikely that sampling will
find a vector shorter than b1 unless the search space is unfeasibly huge. Even if
we reduce some lattice basis that initially approximates (GSA) reasonably well,
the intermittent LLL-type reduction causes in practice a “bump” in the sequence
(‖b̂j‖2)j=1,...,n that brings the Sampling Reduction soon to a halt. Short Projec-
tion Sampling Reduction (ShortProjectionSR) addresses both problems by insert-
ing sampled vectors in between the base vectors rather than to prepend them.

ShortProjectionSR (Alg. 5) takes two parameters more than SSR, the reduction
factor γ and the set T of target indices. T specifies at which positions a sample
vector may be inserted into the lattice basis to form the new generating system.
The reduction factor determines when a sample vector projection is considered
short enough; ShortProjectionSR leaves the sampling loop if there is an index
j ∈ T such that the sample vector v satisfies ‖πj(v)‖2 ≤ γ‖b̂j‖. The minimum
index for which this condition holds is stored in the variable t. Then v is inserted
in B at column t and this generating system is reduced again with an LLL-type
reduction as in SSR.
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(a) Runtime behavior

stage algorithm parameters umax

1 PoolSR γ = 0.99, s = 60, A = R1,25 25
2 ShortProjectionSR γ = 0.75, T = { 1, 21, . . . , 25 } 24
3 ShortProjectionSR γ = 0.75, T = { 1, 41, . . . , 45 } 24
4 ShortProjectionSR γ = 0.75, T = { 1, 61, . . . , 65 } 24
5 PoolSR γ = 0.99, s = 60, A = R1,25 25
6 ShortProjectionSR γ = 0.85, T = { 1, 21, . . . , 25 } 24
7 ShortProjectionSR γ = 0.85, T = { 1, 41, . . . , 45 } 24
8 ShortProjectionSR γ = 0.85, T = { 1, 61, . . . , 65 } 24
9 ShortProjectionSR γ = 0.99, T = { 1, . . . , 5 } 24

(b) Algorithms and Parameters used

Fig. 3. Behavior of combined PoolSR and ShortProjectionSR

The CSSS implementations discussed in Sect. 4 assume γ = 0.99 and T = { 1 }.
It is very easy to modify them into implementations CSSS′ that take γ and T
into account as well.

ShortProjectionSR can be used to tackle the peak in the Gram-Schmidt vector
lengths of, e. g., NTRU bases. Here ShortProjectionSR is used to make Sampling
Reduction ignore the initial Gram-Schmidt vectors that impede the success of
the sampling loop. But also if the reduction of a basis that initially approximated
(GSA) well stops due to the mentioned bump in (‖b̂j‖2), ShortProjectionSR can
be used to reduce this bump and therefore make Sampling Reduction proceed.
Thus ShortProjectionSR is best used in turns with PoolSR. For optimal results,
these turns and the ShortProjectionSR parameters need to be interactively con-
trolled.

Fig. 3 exhibits the result of PoolSR and ShortProjectionSR applied to the
example used before. Subtable (b) shows the parameters used in this experiment;
with (tj , Nj) = (500, 75) if j ∈ { 1, 5 } and (tj , Nj) = (150, 60) else, stage j ran
until tj seconds were spent in the current stage, the outer reduction loop was
iterated Nj times, or CSSS′

event returned false, whatever happened first.
In the end, ‖b1‖2 was reduced to 6.6×107, i. e., a third of its original value.

Even more notably, the combination of PoolSR and ShortProjectionSR improved
the basis globally such that the average squared base vector length was finally
only 1.5×108, a reduction by 25% to 40% compared with the results of the pre-
vious algorithms. We can thus achieve approximately the same length reduction
for all base vectors, not only for the very first ones as with SSR. We pay for this
improvement with a runtime factor 2 to 3, compared with PoolSR.

5.3 Further Generalizations

Generalized Search Space. The Sample algorithm computes lattice vectors b =∑
j νjb̂j such that ν2

j > 1/4 only if n − u ≤ j. This is motivated by (GSA), that
implies b̂n−u, . . . , b̂n are the shortest Gram-Schmidt vectors of the LLL reduced
basis B. In practice, that is not always the case. If we choose the search space
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better adapted to the actual Gram-Schmidt vectors than we can expect that the
sampled vectors will be shorter on average.

Definition 4. Let B ∈ Zd×n be a lattice basis with Gram-Schmidt decomposition
B = B̂R. Let c = (c1, . . . , cn) ∈ Nn and assume there is j0 ∈ { 1, . . . , n } such
that cj = 0 if and only if j > j0. Then the generalized search space Vc,B is the
set of all lattice vectors v =

∑n
j=1 νjb̂j ∈ L(B) subject to νj ∈ (−cj/2, cj/2] if

1 ≤ j < j0, νj ∈ { 1, . . . , cj } if j = j0, and νj = 0 else.

The cardinality of Vc,B is N =
∏j0

j=1 cj . We have Su,B = Vc,B if and only if c =
(1, . . . , 1, 2, . . . , 2, 1) with exactly u entries equal 2. The necessary modifications
of the Sample algorithm and the CSSS implementations are covered in [3] in
more detail.

Distributed Sampling. Sampling Reduction does not modify the basis during the
sampling phase at all. It runs the same algorithm Sample again and again for
only slightly different input data. This is an algorithm pattern for which SIMD-
parallelization (single instruction, multiple data) excels. To implement such a
distributed Sampling Reduction, we partition the search space in disjunct parts
Vc,B =

⋃N
j=1 Vj where N is typically a small multiple of the number of available

computing nodes. Then we schedule the search space parts on the computing
nodes; for this we need to transfer only once the basis and the specification of the
Vj assigned. As soon as a node has exhausted its section of the search space, the
next available Vj is scheduled on this node. This continues until either a node
returns a sufficiently short vector – in which case all other nodes are notified
and abort their task – or all Vj were searched without success.

If N is large enough to keep all nodes busy but the search space parts are
not too small to avoid unnecessary communication overhead between the nodes
and the scheduler, then software packages for distributed computations in, say,
department LANs yield a near optimal efficiency, i. e., the attainable speedup
scales almost linearly in the number of nodes. For instance, our primary test
hardware computes 216 samples in dimension 180 in about 10 to 15 seconds. So
if each search packet covers at least 216 vectors, then we expect that a distributed
implementation results in a very high efficiency.

6 Cryptographic Applications

We tried SSR and its generalizations on some classes of lattice bases that stem
from cryptographic applications, namely public keys in Micciancio’s GGH vari-
ant [7], NTRU lattices [10], and Knapsack lattices [11]. For this experiments we
developed a C++ framework for lattice reduction and (re-)implemented both the
Schnorr-Euchner variant of LLL and BKZ based on the implementation found in
Shoups NTL [12] as well as the proposed algorithms. An interface to the script-
ing language Python made it possible to evaluate the reduction results and reset
arbitrary parameters between iterations. We will make this framework and its
Python binding available on our homepage.
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In our experiments we consistently found that we could break many instances
with a significantly smaller block size of the intermittent BKZ reduction com-
pared with BKZ only attacks.

The Sampling Reduction attacks were in some cases (mostly GGH and Knap-
sack lattices) up to three times faster, in other cases the overall runtime of
Sampling Reduction was a small multiple of the runtime of BKZ attacks with
larger block size. For example, a knapsack instance with 100 weights of maximum
bitlength 102 (i. e., density 0.9804) and a solution vector of Hamming weight 10
was solved by ShortProjectionSR in 1004 seconds. The intermittent BKZ reduc-
tion was done with block size β = 5. In contrast, BKZ alone needed 2500 seconds
with a block size of β = 30 to solve the same instance.

Sampling Reduction was in many, but not in every experiment faster than
BKZ alone. However, most of the time was spent on sampling; the accumulated
time spent in the BKZ algorithm when called from Sampling Reduction was
always significantly shorter than the runtime of the BKZ only attacks. (This was
also true for the GGH and NTRU experiments.) Since the sampling loop can
efficiently be distributed on cheap hardware – which is not the case for LLL-type
reduction – we expect that an attacker can benefit from Sampling Reduction.
[3] describes these experiments and their results in detail.

7 Conclusion

We demonstrated that Sampling Reduction can be made practical and proposed
several Sampling Reduction variants. We proposed alternative methods to esti-
mate the success probability of further sampling iterations; on of these methods
is based on a formula for the probability function of ‖v‖2 introduced in this
paper. Experiments have shown that lattice based attacks on cryptosystems can
succeed in less time than if run with BKZ alone, in particular if the attacker
takes advantage of Sampling Reduction’s potential for distributed computation.
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Abstract. Despite their popularity, lattice reduction algorithms remain
mysterious in many ways. It has been widely reported that they behave
much more nicely than what was expected from the worst-case proved
bounds, both in terms of the running time and the output quality. In
this article, we investigate this puzzling statement by trying to model the
average case of lattice reduction algorithms, starting with the celebrated
Lenstra-Lenstra-Lovász algorithm (L3). We discuss what is meant by
lattice reduction on the average, and we present extensive experiments
on the average case behavior of L3, in order to give a clearer picture of the
differences/similarities between the average and worst cases. Our work
is intended to clarify the practical behavior of L3 and to raise theoretical
questions on its average behavior.

1 Introduction

Lattices are discrete subgroups of Rn. A basis of a lattice L is a set of d ≤ n lin-
early independent vectors b1, . . . , bd in Rn such that L is the set L[b1, . . . , bd] ={∑d

i=1 xibi, xi ∈ Z
}

of all integer linear combinations of the bi’s. The integer d

matches the dimension of the linear span of L: it is called the dimension of the
lattice L. A lattice has infinitely many bases (except in trivial dimension ≤ 1),
but some are more useful than others. The goal of lattice reduction is to find
interesting lattice bases, such as bases consisting of reasonably short and al-
most orthogonal vectors. Finding good reduced bases has proved invaluable in
many fields of computer science and mathematics (see [9,14]), particularly in
cryptology (see [22,24]).

The first lattice reduction algorithm in arbitrary dimension is due to Her-
mite [15]. It was introduced to show the existence of Hermite’s constant and of
lattice bases with bounded orthogonality defect. Very little is known on the com-
plexity of Hermite’s algorithm: the algorithm terminates, but its polynomial-time
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507932 ECRYPT.
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complexity remains an open question. The subject had a revival with Lenstra’s
celebrated work on integer programming [19,20], which used an approximate
variant of Hermite’s algorithm. Lenstra’s variant was only polynomial-time for
fixed dimension, which was however sufficient in [19]. This inspired Lovász to
develop a polynomial-time variant of the algorithm, which reached a final form
in [18] where Lenstra, Lenstra and Lovász applied it to factor rational polyno-
mials in polynomial time, from whom the name L3 comes. Further refinements
of L3 were later proposed, notably by Schnorr [27,28]. Currently, the most effi-
cient provable variant of L3 known in case of large entries, called L2, is due to
Nguyen and Stehlé [23], and is based on floating-point arithmetic. Like L3, it
can be viewed as a relaxed version of Hermite’s algorithm.

Our Contribution. One of the main reasons why lattice reduction has proved
invaluable in many fields is the widely reported experimental fact that lattice re-
duction algorithms, L3 in particular, behave much more nicely than what could
be expected from the worst-case proved bounds, both in terms of the running
time and the output quality. However, to our knowledge, this mysterious phe-
nomenon has never been described in much detail. In this article, we try to
give a clearer picture and to give heuristic arguments that explain the situation.
We start by discussing what is meant by the average case of lattice reduction,
which is related to notions of random lattices and random bases. We then focus
on L3. Regarding the output quality, it seems as if the only difference between
the average and worst cases of L3 in high dimension is a change of constants:
while the worst-case behavior of L3 is closely related to Hermite’s constant in
dimension two γ2 =

√
4/3, the average case involves a smaller constant whose

value is only known experimentally: ≈ 1.04. So while L3 behaves better than
expected, it does not behave that much better: the approximation factors seem
to remain exponential in d. Regarding the running time, there is no surprise for
the so-called integer version of L3, except when the input lattice has a special
shape such as knapsack-type lattices. However, there can be significant changes
with the floating-point variants of L3. We give a family of bases for which the
average running time should be asymptotically close to the worst-case bound,
and explain why for reasonable input sizes the executions are faster.

Applications. Guessing the quality of the bases output by L3 is very important
for several reasons. First, all lattice reduction algorithms known rely on L3 at
some stage and their behavior is therefore strongly related to that of L3. A
better understanding of their behavior should provide a better understanding of
stronger reduction algorithms such as Schnorr’s BKZ [27] and is thus useful to
estimate the hardness of lattice problems (which is used in several public-key
cryptosystems, such as NTRU [16] and GGH [11]). Besides, if after running L3,
one obtains a basis which is worse than expected, then one should randomize the
basis and run L3 again. Another application comes from the so-called floating-
point (fp for short) versions of L3. These are very popular in practice because
they are usually much faster. They can however prove tricky to use because they
require tuning: if the precision used in fp-arithmetic is not chosen carefully, the
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algorithm may no longer terminate, and if it terminates, it may not give an
L3-reduced basis. On the other hand, the higher the precision, the slower the
execution. Choosing the right precision for fp-arithmetic is thus important in
practice and it turns out to be closely related to the average-case quality of the
bases output by the L3 algorithm.

The table below sums up our results, for d-dimensional lattices whose initial
basis vectors are of lengths smaller than B, with n = Θ(d) and d = O(log B).

‖b1‖
(det L)1/d Running time of L2 Required prec. for L2

Worst-case bound (4/3)d/4 O(d5 log2 B) ≈ 1.58d + o(d)
Average-case estim. (1.02)d O(d4 log2 B) → O(d5 log2 B) 0.18d + o(d)

Road map. In Section 2 we provide necessary background on L3. We discuss
random lattices and random bases in Section 3. Then we describe our experimen-
tal observations on the quality of the computed bases (Section 4), the running
time (Section 5) and the numerical behavior (Section 6).

Additional Material. All experiments were performed with fplll-1.2, avail-
able at http://www.loria.fr/~stehle/practLLL.html. The data used to
draw the figures of the paper and some others are also available at this URL.

2 Background

Notation. All logarithms are in base 2. Let ‖ · ‖ and 〈·, ·〉 be the Euclidean
norm and inner product of Rn. The notation %x) denotes a closest integer to x.
Bold variables are vectors. All the lattices we consider are integer lattices, as
usual. All our complexity results are given for the bit complexity model, without
fast integer arithmetic. Our fpa-model is a smooth extension of the IEEE-754
standard, as provided by NTL [30] (RR class) and MPFR [26].

We recall basic notions from algorithmic geometry of numbers (see [22]).

First Minimum. If L is a lattice, we denote by λ(L) its first minimum.

Gram Matrix. Let b1, . . . , bd be vectors. Their Gram matrix G(b1, . . . , bd) is
the d × d symmetric matrix (〈bi, bj〉)1≤i,j≤d formed by all the inner products.

Gram-Schmidt Orthogonalization. Let b1, . . . , bd be linearly independent
vectors. The Gram-Schmidt orthogonalization (GSO) [b∗

1, . . . , b∗
d] is the orthog-

onal family defined as follows: b∗
i is the component of bi orthogonal to the

linear span of b1, . . . , bi−1. We have b∗
i = bi −

∑i−1
j=1 μi,jb∗

j where μi,j =
〈bi, b∗

j 〉/‖b∗
j‖2. For i ≤ d, we let μi,i = 1. The lattice L spanned by the bi’s

satisfies det L =
∏d

i=1 ‖b∗
i ‖. The GSO family depends on the order of the vec-

tors. If the bi’s are integer vectors, the b∗
i ’s and the μi,j ’s are rational. In what

follows, the GSO family denotes the μi,j ’s, together with the quantities ri,j ’s
defined as: ri,i = ‖b∗

i ‖2 and ri,j = μi,jrj,j for j < i.
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Size-Reduction. A basis [b1, . . . , bd] is size-reduced with factor η ≥ 1/2 if its
GSO family satisfies |μi,j | ≤ η for all j < i. The i-th vector bi is size-reduced
if |μi,j | ≤ η for all j < i. Size-reduction usually refers to η = 1/2, but it is
essential for fp variants of L3 to allow larger η.

L3-Reduction. A basis [b1, . . . , bd] is L3-reduced with factor (δ, η) with 1/4 <
δ ≤ 1 and 1/2 ≤ η <

√
δ if the basis is η-size-reduced and if its GSO sat-

isfies the (d − 1) Lovász conditions (δ − μ2
κ,κ−1)rκ−1,κ−1 ≤ rκ,κ (or equiva-

lently δ‖b∗
κ−1‖2 ≤ ‖b∗

κ + μκ,κ−1b∗
κ−1‖2), which implies that the ‖b∗

κ‖’s never
drop too much. Such bases have useful properties (see [18]), like providing ap-
proximations to the shortest and closest vector problems. In particular, the first
vector is relatively short: ‖b1‖ ≤ β(d−1)/4(det L)1/d, where β = 1/(δ − η2). And
the first basis vector is at most exponentially far away from the first minimum:
‖b1‖ ≤ β(d−1)/2λ(L). L3-reduction usually refers to the factor (3/4, 1/2) ini-
tially chosen in [18], in which case β = 2. But the closer (δ, η) is to (1, 1/2), the
shorter b1 should be. In practice, one usually selects δ ≈ 1 and η ≈ 1/2, so that
β ≈ 4/3 and therefore ‖b1‖ <∼ (4/3)(d−1)/4(det L)1/d. The L3 algorithm obtains
in polynomial time a (δ, 1/2)-L3-reduced basis where δ < 1 can be chosen arbi-
trarily close to 1. The L2 algorithm achieves a factor (δ, η), where δ < 1 can be
arbitrarily close to 1 and η > 1/2 arbitrarily close to 1/2.

The L3 Algorithm. The L3 algorithm [18] is described in Figure 1. It computes
an L3-reduced basis in an iterative fashion: the index κ is such that at any stage
of the algorithm, the truncated basis [b1, . . . , bκ−1] is L3-reduced. At each loop

Input: A basis [b1, . . . ,bd] and δ ∈ (1/4, 1).
Output: An L3-reduced basis with factor (δ, 1/2).
1. Compute the rational GSO, i.e., all the μi,j ’s and ri,i’s.
2. κ:=2. While κ ≤ d do
3. Size-reduce bκ using the algorithm of Figure 2, that updates the GSO.
4. κ′:=κ. While κ ≥ 2 and δrκ−1,κ−1 ≥ rκ′,κ′ + κ′−1

i=κ−1 μ2
κ′,iri,i, do κ:=κ − 1.

5. For i = 1 to κ − 1, μκ,i:=μκ′,i. Insert bκ′ right before bκ.
6. κ:=κ + 1.
7. Output [b1, . . . ,bd].

Fig. 1. The L3 Algorithm

Input: A basis [b1, . . . ,bd], its GSO and an index κ.
Output: The basis with bκ size-reduced and the updated GSO.
1. For i = κ − 1 down to 1 do
2. bκ:=bκ − �μκ,i�bi.
3. For j = 1 to i do μκ,j :=μκ,j − �μκ,i�μi,j .
4. Update the GSO accordingly.

Fig. 2. The size-reduction algorithm
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iteration, κ is either incremented or decremented: the loop stops when κ reaches
the value d + 1, in which case the entire basis [b1, . . . , bd] is L3-reduced.

If L3 terminates, it is clear that the output basis is L3-reduced. What is less
clear a priori is why L3 has a polynomial-time complexity. A standard argu-
ment shows that each swap decreases the quantity Δ =

∏d
i=1 ‖b∗

i ‖2(d−i+1) by
at least a factor δ < 1, while Δ ≥ 1 because the bi’s are integer vectors and Δ
can be viewed as a product of squared volumes of lattices spanned by some of
the bi’s. This proves that there are O(d2 log B) swaps, and therefore loop iter-
ations, where B is an upper bound on the norms of the input basis vectors. It
remains to estimate the cost of each loop iteration. This cost turns out to be
dominated by O(dn) arithmetic operations on the basis matrix and GSO coef-
ficients μi,j and ri,i which are rational numbers of bit-length O(d log B). Thus,
the overall complexity of L3 is O((d2 log B) · dn · (d log B)2) = O(d5n log3 B).

L3 with fpa. The cost of L3 is dominated by the operations on the GSO coeffi-
cients which are rationals with huge numerators and denominators. It is therefore
tempting to replace the exact GSO coefficients by fp approximations. But doing
so in a straightforward manner leads to numerical anomalies. The algorithm is
no longer guaranteed to be polynomial-time: it may not even terminate. And
if ever it terminates, the output basis may not be L3-reduced. The main num-
ber theory computer packages [7,21,30] contain heuristic fp-variants of L3 à la
Schnorr-Euchner [29] suffering from stability problems. On the theoretic side,
the fastest provable fp variant of L3 is Nguyen-Stehlé’s L2 [23], whose running
time is O(d4n(d + log B) log B). The main algorithmic differences with Schnorr-
Euchner’s fp L3 are that the integer Gram matrix is updated during the execution
(thus avoiding cancellations while computing scalar products with fpa), and that
the size-reduction algorithm is replaced by a lazy variant (this idea was already
in Victor Shoup’s NTL code). In L2, the worst-case required precision for fpa
is ≤ 1.59d + o(d). The proved variant of fplll-1.2 implements L2.

3 Random Lattices

In this section, we give the main methods known to generate random lattices
and random bases, and describe the random bases we use in our experiments.

3.1 Random Lattices

When experimenting with L3, it seems natural to work with random lattices, but
what is a random lattice? From a practical point of view, one could just select
randomly generated lattices of interest, such as lattices used in cryptography
or in algorithmic number theory. This would already be useful but one might
argue that it would be insufficient to draw conclusions, because such lattices
may not be considered random in a mathematical sense. For instance, in many
cryptanalyses, one applies reduction algorithms to lattices whose first minimum
is much shorter than all the other minima.
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From a mathematical point of view, there is a natural notion of random
lattice, which follows from a measure on n-dimensional lattices with determi-
nant 1 introduced by Siegel [31] back in 1945, to provide an alternative proof
of the Minkowski-Hlwaka theorem. Let Xn = SLn(R)/SLn(Z) be the space
of (full-rank) lattices in Rn modulo scale. The group G = SLn(R) possesses
a unique (up to scale) bi-invariant Haar measure, which can be thought of as
the measure it inherits as a hypersurface in Rn2

. When mapping G to the quo-
tient Xn = G/SLn(Z), the Haar measure projects to a finite measure μ on
the space Xn which we can normalize to have total volume 1. This measure μ
is G-invariant: if A ⊆ Xn is measurable and g ∈ G, then μ(A) = μ(gA). In
fact, μ can be characterized as the unique G invariant Borel probability mea-
sure on Xn. This gives rise to a natural notion of random lattices. The recent
articles [2,4,12] propose efficient ways to generate lattices which are random in
this sense. For instance, Goldstein and Mayer [12] show that for large N , the
(finite) set Ln,N of n-dimensional integer lattices of determinant N is uniformly
distributed in Xn in the following sense: given any measurable subset A ⊆ Xn

whose boundary has zero measure with respect to μ, the fraction of lattices
in Ln,N/N1/n that lie in A tends to μ(A) as N tends to infinity.

Thus, to generate lattices that are random in a natural sense, it suffices to
generate uniformly at random a lattice in Ln,N for large N . This is particularly
easy when N is prime. Indeed, when p is a large prime, the vast majority of
lattices in Ln,p are lattices spanned by row matrices of the following form:

Rn
p =

p 0 0 . . . 0
x1 1 0 . . . 0

x2 0 1
. . .

...
...

...
. . .

. . . 0
xn−1 0 . . . 0 1

,

where the xi’s are chosen independently and uniformly in {0, . . . , p − 1}.

3.2 Random Bases

Once a lattice has been selected, it would be useful to select a random basis,
among the infinitely many bases. This time however, there is no clear definition
of what is a random basis, since there is no finite measure on SLn(Z). Since
we mostly deal with integer lattices, one could consider the Hermite normal
form (HNF) of the lattice, and argue that this is the basis which gives the
least information on the lattice, because it can be computed in polynomial time
from any basis. However, it could also be argued that the HNF may have special
properties, depending on the lattice. For instance, the HNF of NTRU lattices [16]
is already reduced in some sense, and does not look like a random basis at all.
A random basis should consist of long vectors: the orthogonality defect should
not be bounded, since the number of bases with bounded orthogonality defect
is bounded. In other words, a random basis should not be reduced at all.
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A heuristic approach was used for the GGH cryptosystem [11]. Namely, a
secret basis was transformed into a large public basis of the same lattice by
multiplying generators of SLn(Z) in a random manner. However, it is difficult
to control the size of the entries, and it looks hard to obtain theoretical results.

One can devise a less heuristic method as follows. Consider a full-rank integer
lattice L ⊆ Zn. If B is much bigger than (det L)1/n, it is possible to sample
efficiently and uniformly points in L ∩ [−B, B]n (see [1]). For instance, if B =
(det L)/2, one can simply take an integer linear combination x1b1+· · ·+xnbn of a
basis, with large coefficients xi, and reduce the coordinates modulo det L = [Zn :
L]. That is easy for lattices in the previous set Ln,p where p is prime. Once we
have such a sampling procedure, we note that n vectors randomly chosen in such
a way will with overwhelming probability be linearly independent. Though they
are unlikely to form a lattice basis (rather, they will span a sublattice), one can
easily lift such a full-rank set of linearly independent vectors of norm ≤ B to a
basis made of vectors of norm≤ B

√
n/2 using Babai’s nearest plane algorithm [5]

(see [1] or [22, Lemma 7.1]). In particular, if one considers the lattices of the
class Ln,p, it is easy to generate plenty of bases in a random manner in such a
way that all the coefficients of the basis vectors are ≤ p

√
n/2.

3.3 Random L3-Reduced Bases

There are two natural notions of random L3 bases. One is derived from the
mathematical definition. An L3-reduced basis is necessarily Siegel-reduced (fol-
lowing the definition of [8]), that is, its μi,j ’s and ‖b∗i ‖/‖b∗i+1‖’s are bounded.
This implies [8] that the number of L3-reduced bases of a given lattice is finite
(for any reduction parameters), and can be bounded independently of the lat-
tice. Thus, one could define a random L3 basis as follows: select a random lattice,
and among all the finitely many L3-reduced bases of that lattice, select one uni-
formly at random. Unfortunately, the latter process is impractical, but it might
be interesting to prove probabilistic statements on such bases. Instead, one could
try the following in practice: select a random lattice, then select a random basis,
and eventually apply the L3 algorithm. The output basis will not necessarily
be random in the first sense, since the L3 algorithm may bias the distribution.
However, intuitively, it could also be viewed as some kind of random L3 basis.
In the previous process, it is crucial to select a random-looking basis (unlike the
HNF of NTRU lattices). For instance, if we run the L3 algorithm on already
reduced (or almost reduced) bases, the output basis will differ from a typical
L3-reduced basis.

3.4 Random Bases in Our Experiments

In our experiments, besides the Goldstein-Mayer [12] bases of random lattices, we
considered two other types of random bases. The Ajtai-type bases of dimension d
and factor α are given by the rows of a lower triangular random matrix B with:

Bi,i = (2(2d−i+1)α

) and Bj,i = rand(−Bi,i/2, Bi,i/2) for all j > i.
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Similar bases have been used by Ajtai in [3] to show the tightness of worst-case
bounds of [27]. The bases used in Coppersmith’s root-finding method [10] bear
some similarities with what we call Ajtai-type bases.

We define the knapsack-type bases as the rows of the d × (d + 1) matrices:

A1 1 0 . . . 0
A2 0 1 . . . 0
...

...
...

. . .
...

Ad 0 0 . . . 1

,

where the Ai’s are sampled independently and uniformly in [−B, B], for some
given bound B. Such bases often occur in practice, e..g., in cryptanalyses of
knapsack-based cryptosystems, reconstructions of minimal polynomials and de-
tections of integer relations between real numbers. The behavior of L3 on this
type of bases and on the above Rd+1

p ’s look alike.
Interestingly, we did not notice any significant change in the output quality

or in the geometry of reduced bases between all three types of random bases.

4 The Output Quality of L3

For fixed parameters δ and η, the L3 and L2 algorithms output bases b1, . . . , bd

such that ‖b∗
i+1‖2/‖b∗

i ‖2 ≥ β = 1/(δ − η2) for all i < d, which implies that:

‖b1‖ ≤ β(d−1)/4(det L)1/d and ‖b1‖ ≤ β(d−1)/2λ(L).

It is easy to prove that these bounds are tight in the worst case: both are reached
for some reduced bases of some particular lattices. However, there is a common
belief that they are not tight in practice. For instance, Odlyzko wrote in [25]:

This algorithm [. . . ] usually finds a reduced basis in which the first vector is much
shorter than guaranteed [theoretically]. (In low dimensions, it has been observed
empirically that it usually finds the shortest non-zero vector in a lattice.)

We argue that the quantity ‖b1‖/(det L)1/d remains exponential on the average,
but is indeed far smaller than the worst-case bound: for δ close to 1 and η close
to 1/2, one should replace β1/4 ≈ (4/3)1/4 by ≈ 1.02, so that the approximation
factor β(d−1)/4 becomes ≈ 1..02d. As opposed to the worst-case bounds, the
ratio ‖b1‖/λ(L) should also be ≈ 1.02d on the average, rather than being the
square of ‖b1‖/(det L)1/d. Indeed, if the Gaussian heuristic holds for a lattice

L, then λ(L) ≈
√

d
2πe(det L)1/d. The Gaussian heuristic is only a heuristic in

general, but it can be proved for random lattices (see [2,4]), and it is unlikely to
be wrong by an exponential factor, unless the lattice is very special.

Heuristic 1. Let δ be close to 1 and η be close to 1/2. Given as input a random
basis of almost any lattice L of sufficiently high dimension (e.g., larger than 40),
L3 and L2 with parameters δ and η output a basis whose first vector b1 satis-
fies ‖b1‖/(det L)1/d ≈ (1.02)d.
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 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 50  60  70  80  90  100  110  120  130
 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 50  60  70  80  90  100  110  120  130

Fig. 3. Variation of 1
d

log ‖b1‖
(det L)1/d as a function of d

4.1 A Few Experiments

In Figure 3, we consider the variations of the quantity 1
d log ‖b1‖

(detL)1/d as the
dimension d increases. On the left side of the figure, each point is a sample of the
following experiment: generate a random knapsack-type basis with B = 2100·d

and reduce it with L2 (the fast variant of fplll-1.2with (δ, η) = (0.999, 0.501)).
The points on the right side correspond to the same experiments, but starting
with Ajtai-type bases, with α = 1.2. The two sides of Figure 3 are similar and the
quantity 1

d log ‖b1‖
(detL)1/d seems to converge slightly below 0.03 (the corresponding

worst-case constant is ≈ 0.10). This means that the first output vector b1 usually
satisfies ‖b1‖ ≈ (1.02)d(det L)1/d. The exponential quantity (1.02)d remains tiny
even in moderate dimensions: e.g., (1.02)50 ≈ 2.7 and (1.02)100 ≈ 7.2. These data
may explain why in the 80’s, cryptanalysts used to believe that L3 returns vectors
surprisingly small compared to the worst-case bound.

4.2 The Configuration of Local Bases

To understand the shape of the bases that are computed by L3, it is tempting to
consider the local bases of the output bases, i.e.., the pairs (b∗

i , μi+1,ib∗
i +b∗

i+1)
for i < d. These pairs are the components of bi and bi+1 which are orthogonal
to b1, . . . , bi−1.. We experimentally observe that after the reduction, local bases
seem to share a common configuration, independently of the index i. In Figure 4,
a point corresponds to a local basis (its coordinates are μi+1,i and ‖b∗

i+1‖/‖b∗
i ‖)

of a basis returned by the fast variant of fplll-1.2 with parameters δ = 0.999
and η = 0.501, starting from a knapsack-type basis with B = 2100·d. The 2100
points correspond to 30 reduced bases of 71-dimensional lattices. This distribu-
tion seems to stabilize between the dimensions 40 and 50.

Figure 4 is puzzling. First of all, the μi+1,i’s are not uniformly distributed
in [−η, η], as one may have thought a priori. As an example, the uniform
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and μi,i−10 (bottom right) for 71-dimensional lattices after L3

distribution was used as an hypothesis Theorem 2 in [17]. Our observation
therefore invalidates this result. This non-uniformity is surprising because the
other μi,j ’s seem to be uniformly distributed in [−η, η], in particular when i− j
becomes larger, as it is illustrated by Figure 5. The mean value of the |μi+1,i|’s
is close to 0.38. Besides, the mean value of ‖b∗

i ‖/‖b∗
i+1‖ is close to 1.04, which
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matches the 1.02 constant of the previous subsection. Indeed, if the local bases
behave independently, we have:

‖b1‖d

det L
=

d∏
i=1

‖b1‖
‖b∗

i ‖
=

d−1∏
i=1

(
‖b∗

i ‖
‖b∗

i+1‖

)d−i+1

≈ (1.04)d2/2 ≈ (1.02)d2

.

A possible explanation of the shape of the pairs (b∗
i , μi+1,ib∗

i +b∗
i+1) is as fol-

lows. During the execution of L3, the ratios ‖b∗
i ‖/‖b∗

i+1‖ are decreasing steadily.
At some moment, the ratio ‖b∗

i ‖/‖b∗
i+1‖ becomes smaller than

√
4/3. When it

does happen, relatively to b∗
i , either μi+1,ib∗

i + b∗
i+1 lies in one of the corners

of Figure 4 or is close to the vertical axis. In the first case, it does not change
since (b∗

i , μi+1,ib∗
i +b∗

i+1) is reduced. Otherwise bi and bi+1 are to be swapped
since μi+1,ib∗

i + b∗
i+1 is not in the fundamental domain.

4.3 Schnorr-Euchner’s Deep Insertion

The study of local bases helps to understand the behavior of the Schnorr-Euchner
deep insertion algorithm [29]. In deep-L3, instead of having the Lovász condi-
tions satisfied for the pairs (i, i + 1), one requires that they are satisfied for all
pairs (i, j) with i < j, i.e.:

‖b∗
j + μj,j−1b∗

j−1 + . . . + μj,ib∗
i ‖2 ≥ δ‖b∗

i ‖2 for j > i.

This is stronger than the L3-reduction, but no polynomial-time algorithm to
compute it is known. Yet in practice, if we deep-L3-reduce an already L3-reduced
basis and if the dimension is not too high, it terminates reasonably fast. On the
right side of Figure 4, we did the same experiment as on the left side, except
that instead of only L3-reducing the bases, we L3-reduced them and then deep-
L3-reduced the obtained bases. The average value of ‖b∗

i ‖/‖b∗
i+1‖’s is closer to 1

than in the case of L3: the 1.04 and 1.02 constants become respectively ≈ 1.025
and 1.012. These data match the observations of [6].

We explain this phenomenon as follows. Assume that, relatively to b∗
i , the

vector μi+1,ib∗
i +b∗

i+1 lies in a corner in the left side of Figure 4. Then the Lovász
condition between bi and bi+2 is less likely to be fulfilled, and the vector bi+2
is more likely to be changed. Indeed, the component of bi+2 onto b∗

i+1 will be
smaller than usual (because ‖b∗

i+1‖/‖b∗
i ‖ is small), and thus μi+2,i+1b∗

i+1 will
be smaller. As a consequence, the vector μi+2,ib∗

i + μi+2,i+1b∗
i+1 + b∗

i+2 is more
likely to be shorter than b∗

i , and thus bi+2 is more likely to change. Since the
corner local bases arise with high frequency, deep-L3 often performs insertions
of depths higher than 2 that would not be performed by L3.

5 The Practical Running Time of L3

In this section, we argue that the worst case complexity bound O(d4(d + n)(d +
log B) log B) is asymptotically reached for some classes of random bases, and ex-
plain how and why the running time is better in practice. Here we consider bases
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for which n = Θ(d) = O(log B), so that the bound above becomes O(d5 log2 B).
Notice that the heuristic codes do not have any asymptotic meaning since they do
not terminate when the dimension increases too much (in particular, the work-
ing precision must increase with the dimension). Therefore, all the experiments
described in this section were performed using the proved variant of fplll-1.2.

We draw below a heuristic worst-case complexity analysis of L2 that will help
us to explain the difference between the worst case and the practical behavior:

- There are O(d2 log B) loop iterations.
- In a given loop iteration, there are usually two iterations within the lazy size-

reduction: the first one makes the |μκ,i|’s smaller than η and the second one
recomputes the μκ,i’s and rκ,i’s with better accuracy. This is incorrect in full
generality (in particular for knapsack-type bases as we will see below), but is
the case most often.

- In each iteration of the size-reduction, there are O(d2) arithmetic operations.
- Among these, the most expensive ones are those related to the coefficients

of the basis and Gram matrices: these are essentially multiplications between
integers of lengths O(log B) and the xi’s, of lengths O(d).

We argue that the analysis above is tight for Ajtai-type random bases.

Heuristic 2. Let α > 1. When d grows to infinity, the average cost of the L2

algorithm given as input a randomly and uniformly chosen d-dimensional Ajtai-
type basis with parameter α is Θ(d5+2α).

In this section, we also claim that the bounds of the heuristic worst-case analysis
are tight in practice for Ajtai-type random bases, except the O(d) bound on size
of the xi’s. Finally, we detail the case of knapsack-type random bases.

5.1 L2 on Ajtai-Type Random Bases

Firstly, the O(d2 log B) bound on the loop iterations seems to be tight in practice,
as suggested by Figure 6. The left side corresponds to Ajtai-type random bases
with α = 1.2: the points are the experimental data and the continuous line is
the gnuplot interpolation of the type f(d) = a · d3.2 (we have log B = O(d1.2)).
The right side has been obtained similarly, for α = 1.5, and g(d) = b · d3.5.
With Ajtai-type bases, size-reductions contain extremely rarely more than two
iterations. For example, for d ≤ 75 and α = 1.5, fewer than 0.01% of the size-
reductions involve more than two iterations. The third bound of the heuristic
worst case analysis is also reached.

These similarities between the worst and average cases do not go on for the size
of the integers involved in the arithmetic operations. The xi’s computed during
the size-reductions are most often shorter than a machine word, which makes it
difficult to observe the O(d) factor in the complexity bound coming from them.
For an Ajtai-type basis with d ≤ 75 and α = 1.5, fewer than 0.2% of the non-
zero xi’s are longer than 64 bits. In the worst case [23], we have |xi| <∼ (3/2)κ−iM ,
where M is the maximum of the μκ,j’s before the lazy size-reduction starts, and κ
is the current L3 index. In practice, M happens to be small most of the time.
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Fig. 6. Number of loop iterations of L2 as a function of d, for Ajtai-type random bases

We argue that the average situation is |xi| ≈ (1.04)κ−iM . This bound remains
exponential, but for a small M , xi becomes larger than a machine word only in
dimensions higher than several hundreds. We define:

μ
(final)
κ,i = μ

(initial)
κ,i −

κ−1∑
j=i+1

xjμj,i = μ
(initial)
κ,i −

κ−1∑
j=i+1

⌊
μ
(final)
κ,j

⌉
μj,i.

We model the
(

μ
(final)
κ,κ−i

)
i

’s by the random variables Ui defined as follows:

U0 = R0 and Ui = Ri +
i−1∑
j=1

UjR′
i,j if i ≥ 1,

where the Ri’s and R′
i,j ’s are uniformly distributed respectively in [−a, a] for

some constant a and in [−η, η]. We assume that the Ri’s and R′
i,j ’s are pairwise

independent. These hypotheses on the μi,j ’s are strong. In particular we saw in
Section 4 that the μi,i−1’s are not uniformly distributed in [−η, η]. Nevertheless,
this simplification does not significantly change the asymptotic behavior of the
sequence (Ui) and simplifies the technicalities. Besides, to make the model closer
to the reality, we could have rounded the Uj ’s, but since these quantities are
growing to infinity, this should not change much the asymptotic behavior. The
independence of the Ri’s and R′

i,j ’s and their symmetry give:

E [Ui] = 0, E
[
U2

i

]
= E
[
R2

i

]
+

i−1∑
j=1

E
[
U2

j

]
· E
[
R′2

i,j

]
=

2a3

3
+

2η3

3

i−1∑
j=1

E
[
U2

j

]
.

As a consequence, for i growing to infinity, we have E[U2
i ] ≈
(

2η3

3 + 1
)i

. If we

choose η ≈ 1/2, we get 2η3

3 + 1 ≈ 13
12 ≈ 1.08. We thus expect the |xi|’s to be of

length <∼ (log2 1.04) · d ≈ 0.057 · d. To sum up, the xi’s should have length O(d)
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in practice, but the O(·)-constant is tiny. For example, the quantity (1.04)d

becomes larger than 264 for d ≥ 1100. Since we cannot reduce lattice bases which
simultaneously have this dimension and reach the other bounds of the heuristic
worst-case complexity analysis, it is at the moment impossible to observe the
asymptotic behavior. The practical running time is rather O(d4 log2 B).

5.2 L2 on Knapsack-Type Bases

In the case of knapsack-type bases there are fewer loop iterations than in the
worst case: the quantity Δ =

∏d
i=1 ‖b∗

i ‖d−i+1 of L3’s analysis satisfies Δ = BO(d)

instead of Δ = BO(d2). This ensures that there are O(d log B) loop iterations, so
that the overall cost of L2 for these lattice bases is O(d4 log2 B). Here we argue
that asymptotically one should expect a better complexity bound.

Heuristic 3. When d and log B grow to infinity with log B = Ω(d2), the av-
erage cost of the L2 algorithm given as input a randomly and uniformly chosen
d-dimensional knapsack-type basis with entries of length ≤ log B is Θ(d3 log2 B).

In practice for moderate dimensions, the phenomenon described in the previ-
ous subsection makes the cost even lower: close to O(d2 log2 B) when log B is
significantly larger than d.

First, there are Θ(d log B) main loop iterations. These iterations are equally
distributed among the different values of κmax: we define κmax as the maximum
of the indices κ since the beginning of the execution of the algorithm, i.e., the
number of basis vectors that have been considered so far. We have κmax = 2 at
the beginning, then κmax is gradually incremented up to d + 1, when the execu-
tion of L2 is over. The number of iterations for each κmax is roughly the same,
approximately Θ(log B). We divide the execution into d − 1 phases, according
to the value of κmax. We observe experimentally that at the end of the phase of
a given κmax, the current basis has the following shape:

a1,1 a1,2 . . . a1,κmax+1 0 0 . . . 0
a2,1 a2,2 . . . a2,κmax+1 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

aκmax,1 aκmax,2 . . . aκmax,κmax+1 0 0 . . . 0
Aκmax+1 0 . . . 0 1 0 . . . 0
Aκmax+2 0 . . . 0 0 1 . . . 0

...
...

. . .
...

...
...

. . .
...

Ad 0 . . . 0 0 0 . . . 1

,

where the top left ai,j ’s satisfy: |ai,j | = O
(

B
1

κmax

)
.

We subdivide each κmax-phase in two subphases: the first subphase is the first
loop iteration of L2 for which κ = κmax, and the second one is made of the other
iterations with the same κmax. The first subphase shortens the vector bκmax

:
its length decreases from ≈ B to ≤

√
κmax(maxi<κmax

‖bi‖2) + 1 <∼ B
1

κmax−1 .
This subphase costs O(d log2 B) bit operations (see [23]): there are O(log B/d)
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loop iterations in the lazy size-reduction; each one involves O(d2) arithmetic
operations; among them, the most costly are the integer multiplications between
the xi’s (that are O(d)-bit long) and the coefficients of the basis and Gram
matrices (their lengths are O(log B/d), except the 〈bκ, bi〉’s which occur with
frequency 1/O(κ)). The global cost of the first subphases is O(d2 log2 B). This
is negligible in comparison to the overall cost of the second subphases.

Let b′
i be the vector obtained from bi after the first subphase of the phase

for which κmax = i, that is, right after its first size-reduction. Let C(d, B) be
the overall cost of the second subphases in dimension d and for input Ai’s sat-
isfying |Ai| ≤ B. We divide the execution of the algorithm as follows: it starts
by reducing a knapsack-type basis of dimension (d/2); let

(
b′′

1 , . . . , b′′
�d/2�
)

be

the corresponding L3-reduced vectors; if we exclude the %d/2& remaining first
subphases, then L2 reduces the basis

(
b′′

1 , . . . , b′′
�d/2�, b

′
�d/2+1�, . . . , b′

d

)
, where

all the lengths of the vectors are bounded by ≈ B2/d. As a consequence, we have:

C(d, B) = C(d/2, B) + O(d5(log B/d)2) = C(d/2, B) + O(d3 log2 B),

from which one easily gets C(d, B) = O(d3 log2 B), as long as d2 = O(log B).

5.3 Many Parameters Can Influence the Running Time

We list below a few tunings that should be performed if one wants to optimize L3

and L2 for particular instances:

- Firstly, use as less multiprecision arithmetic as possible. If you are in a medium
dimension (e.g., less than 170), you may avoid multiprecision fpa (see Sec-
tion 6). If your input basis is made of short vectors, like for NTRU lattices,
try using chip integers instead of multiprecision integers.

- Detect if there are scalar products cancellations: if these cancellations happen
very rarely, use a heuristic variant that does not require the Gram matrix.
Otherwise, if such cancellations happen frequently, a proved variant using the
Gram matrix may turn out to be cheaper than a heuristic one recomputing
exactly many scalar products.

- It is sometimes recommended to weaken δ and η. Indeed, if you increase η
and/or decrease δ, it will possibly decrease the number of iterations within
the lazy size-reduction and the number of global iterations. However, relaxed
L3-factors require a higher precision: for a given precision, the dimension above
which L2 might loop forever decreases (see Section 6).

6 “Numerical Stability” of L3

In this section, we discuss problems that may arise when one uses fpa within L3.
The motivation is to get a good understanding of the “standard” numerical be-
havior, in order to keep the double precision as long as possible with low chances
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of failure. Essentially, two different phenomena may be encountered: a lazy size-
reduction or consecutive Lovász tests may be looping forever. The output may
also be incorrect, but most often if something goes wrong, the execution loops
within a size-reduction. We suppose here that either the Gram matrix is main-
tained exactly during the execution or that the problems arising from scalar
product cancellations do not show up.

It is shown in [23] that for some given parameters δ and η, a precision
of
(
log (1+η)2

δ−η2 + ε
)
· d + o(d) is sufficient for L2 to work correctly, for any con-

stant ε > 0. For δ close to 1 and η close to 1/2, it gives that a precision
of 1.6 · d + o(d) suffices. A family of lattice bases for which this bound seems
to be tight is also given. Nevertheless, in practice the algorithm seems to work
correctly with a much lower precision: for example, the double precision (53 bit-
long mantissæ) seems sufficient most of the time up to dimension 180. We argue
here that the average required precision grows linearly with the dimension, but
with a significantly lower constant.

Heuristic 4. Let δ be close to 1 and η be close to 1/2. For almost every lattice,
with a precision of 0.18 · d + o(d) bits for the fp-calculations, the L2 algorithm
performs correctly when given almost any input basis.

This heuristic has direct consequences for a practical implementation of L2: it
helps guessing what precision should be sufficient in a given dimension, and thus
a significant constant factor can be saved for the running time.

We now give a justification for the heuristic above. For a fixed size of mantissa,
we evaluate the dimension for which things should start going wrong. First, we
evaluate the error made on the Gram-Schmidt coefficients and then we will use
these results for the behavior of L3: to do this, we will say that L3 performs
plenty of Gram-Schmidt calculations (during the successive loop iterations), and
that things go wrong if at least one of these calculations is erroneous.

We consider the following random model, which is a simplified version of the
one described in Section 4 (the simplification should not change the asymptotic
results but helps for the analysis).

- The μi,j ’s for i > j are chosen randomly and independently in [−η, η]. They
share a distribution that is symmetric towards 0. This implies that E[μ] = 0.
We define μ2 = E[μ2] and μi,i = 1.

- The ri,i

ri+1,i+1

’s are chosen randomly and independently in (0, β]. These choices

are independent of those of the μi,j ’s. We define α = E
[

ri,i

ri+1,i+1

]
.

- The random variables μi,j and ri,i

ri+1,i+1
determine the Gram matrix of the

initial basis. Let r1,1 be an arbitrary constant. We define the following random
variables, for i ≥ j: 〈bi, bj〉 = r1,1

∑j
k=1 μj,kμi,k

∏k−1
l=1 (rl,l/rl+1,l+1)−1.

- We define the random variables ri,j = r1,1μi,j

∏j−1
l=1 (rl,l/rl+1,l+1)−1 (for i ≥ j).

- We assume that we do a relative error ε = 2−� (with � the working precision)
while translating the exact value ‖b1‖2 into a fp number: Δ‖b1‖2 = ε‖b1‖2.
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We have selected a way to randomly choose the Gram matrix and to perform
a rounding error on ‖b1‖2. To simplify the analysis, we suppose that there is
no rounding error performed on the other 〈bi, bj〉’s. Our goal is to estimate
the amplification of the rounding error Δ‖b1‖2 during the calculations of ap-
proximations of the ri,j ’s and μi,j ’s. We neglect high-order error terms. More
precisely, we study the following random variables, defined recursively:

Δr1,1 = Δ‖b1‖2 = ε‖b1‖2,

Δri,j = −
j−1∑
k=1

(Δri,kμj,k + Δrj,kμi,k − Δrk,kμi,kμj,k) when i ≥ j,

The μa,b’s and rb,b

rb+1,b+1

’s that may not be independent with Δri,k are those
for which b < k. As a consequence, Δri,k, μj,k,

rj−1,j−1

rj,j
,

rj−2,j−2

rj−1,j−1
, . . . ,

rk,k

rk+1,k+1

are
pairwise independent, Δrj,k, μi,k,

rj−1,j−1

rj,j
,

rj−2,j−2

rj−1,j−1

, . . . ,
rk,k

rk+1,k+1

are pairwise in-
dependent, and Δrk,k, μi,k, μj,k,

rj−1,j−1

rj,j
,

rj−2,j−2

rj−1,j−1
, . . . ,

rk,k

rk+1,k+1

are pairwise inde-
pendent, for all (i, j, k) satisfying i > j > k. Therefore, for any i > j:

E
[

Δri,j

rj,j

]
= −

j−1∑
k=1

(
j−1∏
l=k

E
[

rl,l

rl+1,l+1

])(
E
[

Δri,k

rk,k

]
E[μj,k] + E

[
Δrj,k

rk,k

]
E[μi,k]

−E
[

Δrk,k

rk,k

]
E[μi,k]E[μj,k]

)
.

Because E[μj,k] = E[μi,k] = 0, we get E
[

Δri,j

rj,j

]
= 0, for all i > j. Similarly, we

have, for i > 1:

E
[

Δri,i

ri,i

]
= μ2

j−1∑
k=1

(
i−1∏
l=k

E
[

rl,l

rl+1,l+1

])
E
[

Δrk,k

rk,k

]
= μ2

j−1∑
k=1

αi−kE
[

Δrk,k

rk,k

]
.

We obtain that E
[

Δri,i

ri,i

]
is close to (α(1 + μ2))iε. For example, if the μi,j ’s

are uniformly chosen in [−1/2, 1/2], if α = 1.04 (as observed in Section 4), and
if ε ≈ 2−53, we get E

[
Δri,i

ri,i

]
≈ 1.13i · 2−53. For i = 200, this is close to 2−17.

We have analyzed very roughly the influence of the rounding error made
on ‖b1‖2, within the Gram-Schmidt orthogonalization for L3-reduced bases. If
we want to adapt this analysis to L2, we must take into account the number
of ri,j ’s and μi,j ’s that are computed during the execution. To simplify we con-
sider only the rd,d’s, which are a priori the less accurate. We suppose that all
the computations of rd,d through the execution are independent. Let K be the
number of iterations for which κ = d. We consider that an error on rd,d is signif-
icant if Δrd,d

rd,d
is at least 2−3. If such an error occurs, the corresponding Lovász

test is likely to be erroneous. Under such hypotheses, the probability of failure is
of the order of 1− (1− 2−17+3)K ≈ K2−14. In case of several millions of Lovász
tests, it is likely that there is one making L3 behave unexpectedly.
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The above analysis is completely heuristic and relies on very strong hypothe-
ses, but it provides orders of magnitude that one seems to encounter in practice.
For random bases, we observe infinite loops in double precision arising around
dimensions 175 to 185, when there are a few millions Lovász tests.
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Abstract. Elementary functions such as sin or exp may naively be con-
sidered as good generators of random bits: the bit-runs output by these
functions are believed to be statistically random most of the time. Here
we investigate their computational hardness: given a part of the binary
expansion of expx, can one recover x? We describe a heuristic technique
to address this type of questions. It relies upon Coppersmith’s heuristic
technique — itself based on lattice reduction — for finding the small roots
of multivariate polynomials modulo an integer. For our needs, we improve
the lattice construction step of Coppersmith’s method: we describe a
way to find a subset of a set of vectors that decreases the Minkowski
theorem bound, in a rather general setup including Coppersmith-type
lattices.

1 Introduction

Using expansions of real numbers is a natural idea to build pseudo-random num-
ber generators (PRNG). In the paper [2] in which Blum, Blum and Shub in-
troduce the celebrated “x2 mod N” PRNG, they first investigate the so-called
“1/N” generator. A secret integer N is chosen, and the output bits are consecu-
tive bits of the binary expansion of 1/N , starting from a specified rank (the most
significant bits are hidden, otherwise one would recover N by simply applying
the inverse function). The PRNG is efficient but, unfortunately, it is crypto-
graphically insecure: with a run of 2 log2 N + O(1) bits, one can recover N in
time polynomial in the bit-size of N , and thus compute the bits that are to come
next. This bit-run is not random since one can predict the remainder from the
beginning of it. Instead of rationals, one could use algebraic numbers, i.e., roots
of a degree d monic univariate integer polynomial P (x), where d and a bound H
on the magnitude of the coefficients are specified. This question was raised by
Manuel Blum and answered negatively in [10]: if the first O(d2 + d log H) bits
of a root of P are known then one can recover P in polynomial time and thus
compute the sequence himself.

In the present paper, we address a generalization of this type of questions to
smooth mathematical functions like trigonometric functions, exponentials, loga-
rithms, . . . Let f be such a function over [0, 1] and x an n-bit long secret integer.

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 257–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The output of the PRNG is the bit-run of the binary expansion of f
(

x
2n

)
, starting

from a specified rank: the first bits (or digits, the base being irrelevant) are kept
hidden to make impossible the use of f−1 if it exists. These generated bits are
believed to be statistically random. They would correspond to so-called normal
numbers [1]. They were introduced by Borel [5] who showed they are overwhelm-
ing. Besides, statistical randomness is far weaker than unpredictability. Here we
will consider the PRNG as weak if from a sequence of length polynomial in n
one can recover the integer x in time polynomial in n.

The problem described above is connected to the so-called table maker’s
dilemma [11], a difficulty encountered while implementing an elementary math-
ematical function f in a given floating-point (fp for short) precision — for ex-
ample in double precision (with 53-bit long mantissæ). In tight to all cases, the
image f(x) of the fp-number x cannot be represented exactly. The value f(x) has
to be rounded to -(f(x)), where -(a) is a closest fp-number to a. Unfortunately,
the exact value f(x) can be extremely close to the middle of two consecutive
representable numbers (or even worse, it could be exactly the middle) and thus
many bits of f(x), that is to say a very sharp approximation to f(x), may be
needed to compute -(f(x)). The maximum of the number of needed bits, taken
over the input fp-numbers, helps getting an efficient implementation of f : for any
input x, one computes a close enough approximation to f(x), and then round
this approximation to the closest representable number. This quantity is usually
computed by finding the fp-numbers x for which f(x) has a long run of zeros,
or a long run of ones, starting just after the rounding bit. Instead of “inverting”
an arbitrary sequence of bits in the context of the PRNG described above, we
“invert” a sequence of zeros or a sequence of ones. The overall approach we de-
scribe generalizes and improves the technique developed in [21] to find bad cases
for the rounding of functions.

We tackle these issues with Coppermith’s lattice-based technique for calcu-
lating the small roots of multivariate polynomials modulo an integer [7]. It is
heuristic, which is the only reason why our result is heuristic. For our needs, we
improve the lattice construction step of this technique. In Coppersmith’s tech-
nique, a family of polynomials is first derived from the polynomial whose roots
are wanted. This family naturally gives a lattice basis and short vectors of this
lattice possibly provide the wanted roots. The main difficulty is to choose clev-
erly the family: the goal is to find polynomials for which the Minkowski bound
of the corresponding lattice is as low as possible, making possible the compu-
tation of larger roots. We present a general technique to choose a good subset
of polynomials within a family of polynomials. Boneh and Durfee already pre-
sented such a technique in [3] but it applies only to very specific lattice bases.
Our technique is more general, though slightly less powerful in the case of [3],
and could be of interest wherever Coppersmith’s method is used.

Road-Map of the Paper. In Section 2 we describe the problem we tackle
and related issues. In Section 3 we give the minimal background on lattices
and Coppersmith’s method. We describe our algorithm in Section 4, give its
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complexity analysis in Section 5 and demonstrate experimentally its efficiency
in Section 6. In Section 7, we discuss a few generalizations and open problems.
Notation. We define �a, b� as the set of integers in [a, b]. For any integer n, we
let [a, b)n denote the m

2n ’s where a ≤ m
2n < b and m ∈ Z. For example [1/2, 1)53

corresponds to the positive fp-numbers in double precision with exponent −1.
For any real x, we let (x), %x&, (x& and (x cmod 1) denote its floor, ceiling, closest
integer and centered fractional part x−(x&. For (x& and (x cmod 1), if x is half
an odd integer, we choose any of the two possibilities. In the following, vectors
are written in bold and for a vector x ∈ Rn, ‖x‖ and ‖x‖1 are its L2 and L1
norms, i.e.,

√∑n
i=1 x2

i and
∑n

i=1 |xi|. For the complexity results, we use the
bit complexity model. The notation P(x0, . . . , xk) shall be read as “polynomial
in x0, . . . , xk”. Finally, all logarithms are in base 2.

2 Bits Generated by Mathematical Functions

In the present section, after describing the equation we tackle, we explain how
it relates to the problems mentioned above: the PRNG and the search of bad
cases for the rounding of functions. We describe our results afterwards.

2.1 The Equation to be Solved

Let f : [0, 1] → [α, β] (for some reals α and β) be a function, and N1, N2, M be
three integers. Let c ∈ R. We are interested in solving the following equation:∣∣∣∣[N2 · f

(
x

N1

)
− c

]
cmod 1

∣∣∣∣ ≤ 1
M

, for x ∈ �0, N1� . (1)

We are given an approximation c to the exact value f(x/N1), but the most
significant bits are hidden. If the outputs of f behave sufficiently randomly, then
as soon as M = Ω(N1), the solution x, if there is one, should be unique.

The Pseudo-Random Number Generator. We study the following PRNG,
based on a given function f . Fix two security parameters n1 and n2. Choose a
secret seed x0 ∈ �0, 2n1�. Compute f(x0/2n1), throw away the first bits up to the
one of weight 2−n2 , and then output as many as needed of the following ones.
More precisely, the output corresponds to the bits of (2n2 ·f(x0/2n1) cmod 1), up
to some rank. One must choose a large enough n2 to make out of reach the guess
of the hidden bits and the use of f−1 if it exists. To obtain an efficient PRNG
one may choose an efficiently computable function f . For example sin, log, exp
are computable in time quasi-linear in n1, n2 and the number of output bits [6].
In this context, n1 and n2 are thus polynomially related. Breaking this PRNG
can be reduced to (1). Indeed, suppose that one has seen the first m + 1 output
bits, giving some y0 ∈

�
2m, 2m+1 − 1

�
. The seed x0 satisfies:∣∣[2n2 · f (x0/2n1) − y0/2m+1] cmod 1

∣∣ ≤ 2−m.

It is an instance of (1): take N1 = 2n1 , N2 = 2n2 , M = 2m and c = y0/2m+1.
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The Table Maker’s Dilemma. Let f be an elementary function, and n be
the input-output precision for an implementation of f over [1/2, 1)n. The input
fp-numbers such that -(f(x)) is hard to compute are the x’s in [1/2, 1)n with:

|[2n+1 · f(x) + 1/2] cmod 1| ≤ ε in the case of a rounding to nearest,
|2n · f(x) cmod 1| ≤ ε in the case of a directed rounding,

where directed roundings are the roundings towards ∞,−∞ and 0. Obviously
these equations are instances of (1). The smaller ε, the more difficult the com-
putation of -(f(x)), because a tighter approximation of the exact value needs
to be computed to decide the last bit of -(f(x)). If f behaves randomly enough
and we want to find the worst input, then ε will be set to ≈ 2−n: we expect O(1)
solutions (the bits should be independent and uniformly distributed), containing
the worst input. If this equation cannot be solved efficiently for this ε, it may
be interesting to show that it has no solution for a much smaller ε, in order to
ensure that f has no “exact output”: such outputs (at the middle between two
fp-numbers in the case of the rounding to nearest, and exactly a fp-number in the
case of a directed rounding) are in full generality impossible to handle because
even very accurate approximations do not help deciding the rounding direction.

Other Related Problems. Integer factorization can also be reduced to (1).
Take an n-bit long integer N = pq with p ≤ q. Then p is a solution to:∣∣∣∣2�n/2� ·

(
N

2n

1
x/2
n/2�

)
cmod 1

∣∣∣∣ = 0 for x ∈
�
0, 2
n/2�

�
.

Similarly, solving (1) could help obtaining integer points on curves. For ex-
ample, take two integers a and b and suppose we want to find the pairs of
integers (x, y) satisfying y2 = x3 + ax + b and 0 ≤ x ≤ 2n for an even n. Then
we can consider (1) with f(x) =

√
x3 + (a2−2n)x + (b2−3n) and N2 = 23n/2.

Unfortunately, our heuristic method seems to fail for algebraic functions and
does not help solving the two problems above.

2.2 Description of the Results

From now on, we fix f : [0, 1] → [α, β] and suppose that f is C∞ and that its
successive derivatives satisfy: ∀i ≥ 0, ∀x ∈ [0, 1], |f (i)(x)| ≤ i!K for some K. We
suppose that the derivatives of f are efficiently computable (the first n2 bits
of f (i)(x) where x is n1-bit long shall be computable in time P(i, n1, n2)). We
also suppose that the quantities maxx∈[0,1] |f (i)(x)| are efficiently computable.
For example, we can choose f = exp or f = sin.

In the following sections, we describe and analyze an algorithm that, given as
inputs N1, N2, M and c satisfying MN2 ≥ N1, finds all the solutions to (1) in
essentially (see Theorem 3 for the exact statement):

P(log(N1N2M)) · 2
log

2
(N1N2)

4 log(MN2) bit operations.
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Some comments need to be made on this statement. Firstly, the algorithm al-
ways finishes and gives the correct output but its running time is only heuristic:
in the worst case, it might fall down to an exhaustive search. The heuristic as-
sumption under which the result holds will be made explicit below. Secondly, no-
tice that in the case of the table maker’s dilemma, we get a (heuristic) P(n)2n/2

running time by choosing N1 = N2 = M = 2n. This improves the best com-
plexity bound previously known, i.e., a (heuristic) P(n)24n/7 running time [21].
Finally, by choosing M = 2log2(N1N2), we obtain a polynomial time algorithm
that breaks the PRNG: a run of (n1+n2)2 output bits suffices to recover the seed
efficiently. Amazingly, this quadratic bound matches the result of Nesterenko and
Waldschmidt [17] for exp when specialized to our context: their result implies
that for f = exp, c = 0 and M ≥ 2k(n1+n2)2 for some constant k, there is no
non-trivial solution to (1). Our work can be seen as a constructive variant of [17].

3 Preliminaries

We start this section by stating some algorithmic results on lattices (see [13]
for more details) before describing Coppersmith’s technique and our method for
selecting a good subset of polynomials within a set of polynomials.

3.1 Lattices and the L3 Algorithm

A lattice L is a set of all linear integer combinations of d ≤ n linearly independent
vectors bi over R, that is L = {

∑d
i=1 xibi, xi ∈ Z}. The bi’s are called a basis

of L. A given lattice has infinitely many bases (as soon as d ≥ 2). The lattice
dimension dim L = d does not depend on the choice of the basis, neither does
the embedding dimension n. The determinant of the lattice L is defined by:

detL =
d∏

i=1

‖b∗
i ‖, (2)

where [b∗
1, . . . ,b∗

d] is the Gram-Schmidt orthogonalization of [b1, . . . ,bd], that
is: b∗

1 = b1, and b∗
i = bi −

∑i−1
j=1

〈bi,b∗
j 〉

‖b∗
j‖2 b∗

j . This definition extends the usual

definition of the determinant to non-square matrices (except for the sign). The
determinant is a lattice invariant: it is independent of the chosen basis of L.

Most often, bases of interest are made of rather short vectors. Minkowski [16]
showed that any lattice L contains a vector b �= 0 satisfying the so-called
Minkowski bound:

‖b‖ ≤
√

dim L · (detL)
1

dim L .

Unfortunately, Minkowski’s proof is not constructive and no efficient way to
find such a short vector is known. In 1982, Lenstra, Lenstra and Lovász [12]
gave a polynomial time algorithm computing a so-called L3-reduced basis that,
among others, contains a vector that satisfies a weakened version of Minkowski’s
bound.
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Theorem 1 ([18]). Let B1, . . . ,Bd ∈ Zn be independent vectors with lengths
smaller than B, and d = O(log B). In O(d4n log2 B) bit operations, one can find
a basis b1, . . . ,bd of the lattice spanned by the Bi’s that satisfies:

‖b1‖ ≤ 2d(det L)
1

d and ‖b2‖ ≤ 2d(det L)
1

d−1 .

This theorem covers up all we need to know about the L3 algorithm for our cur-
rent needs: lattice reduction is to be used as a black box. Of course, for practical
issues, one should dismantle the black box and tune it for the application.

3.2 Small Roots of Bivariate Polynomials Modulo an Integer

Coppersmith’s method [7] is a general technique to find all small roots of polyno-
mial equations modulo an integer. It heavily relies upon the L3 algorithm, that
dominates the running time. It is provable in the case of univariate polynomials:
if P is a degree d monic polynomial in (Z/NZ)[x], then one can find all its roots
smaller than N1/d in time polynomial in d and log N . It is only heuristic for mul-
tivariate polynomials. It has proved very powerful in public-key cryptography:
the univariate variant [4,7,15] as well as the multivariate one [3,8,14].

Suppose we search the solutions to the equation:

P (x, y) = 0 mod N, (3)

where P is a bivariate polynomial with integer coefficients, the modulus N is
an integer, and x and y are integer unknowns. Since in general solving such a
polynomial equation is hard, we restrict ourselves to finding the small solutions:
|x| ≤ X and |y| ≤ Y , for some bounds X and Y that are as large as possible.

Coppersmith’s technique depends on an integer parameter α ≥ 1 to be chosen
to maximize the reachable bounds X and Y (most often, α growing to infinity
is asymptotically the optimal choice). The method is made of four main steps.

1. First, a large set P of polynomial equations modulo Nα is derived from (3).
We use powers of P shifted by powers of variables: Nα−iP (x, y)ixjyk for i ∈
[|0, α|] and j, k ≥ 0. This is the polynomials selection step. If (x0, y0) is a
solution to (3), then it must be a root modulo Nα of all the polynomials in P.

2. In the polynomials-to-lattice step, we transform the family of polynomials P
into a lattice LX,Y [P]. We list and sort (arbitrarily) the monomials xjyk ap-
pearing in the polynomials of P. Suppose there are n such monomials. If a
polynomial Q(x, y) has all its monomials belonging to the monomials appear-
ing in the selected family, then we map it to an n-dimensional vector whose co-
efficient corresponding to the monomial xjyk is the coefficient of Q(x·X, y ·Y )
for this monomial. This map is obviously a bijection. The lattice LX,Y [P] we
consider is spanned by the vectors of Rn that are obtained from the selected
polynomials via the map described above. Since any vector of this lattice is an
integral linear combination of the vectors corresponding to the selected poly-
nomials, any solution (x0, y0) to (3) is a root modulo Nα of all the polynomials
corresponding to the vectors of LX,Y [P].
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3. If the polynomials of P were linearly independent, we got a lattice basis in the
previous step, and we now run an L3-type algorithm on it. If the polynomials
are linearly dependent, this is not a problem since L3 can be modified to
manage generating vectors instead of basis vectors (but the analysis of the
method becomes more intricate). After this lattice-reduction step, which is the
computationally dominating step, we have a basis of L made of vectors whose
lengths are related to det(LX,Y [P]), as described in Theorem 1.

4. In the reduced basis of LX,Y [P], we take all the vectors of L1 norm < Nα.
Any solution (x0, y0) to (3) modulo N is a root over Z of all the polynomials
corresponding to these vectors. It therefore remains to solve these equations
over the integers. We call this the root-finding step. There are several ways to
perform this step: with any variable elimination method (for example through
a resultant computation) or with Hensel’s lifting. In all cases, we need at
least two lattice vectors with small L1 norm to solve the system of equations.
Furthermore these polynomials can share factors, in which case it may be
impossible to recover any useful information. It is not known how to work
around this difficulty. This step is the heuristic one in Coppersmith’s method
for bivariate polynomials. This is the reason why the running-time bound
of our method for solving (1) is only heuristic. At the end, all the possible
solutions to (3) need to be checked, since some might be spurious.

The Heuristic Assumption. In the present paper, we do the following heuris-
tic assumption: if two polynomials correspond to the first two vectors of an
L3-reduced basis computed during any lattice reduction step of Coppersmith’s
bivariate method, then they do not share any factor.

Theorem 1 ensures we will obtain two sufficiently short vectors, as long as:

√
n2dim L[P] · (det L[P])

1

dim L[P]−1 < Nα.

When expliciting the above inequality as a relation on X and Y , we obtain
what we call the Coppersmith equation. The goal of the analysis of a particular
use of Coppersmith’s method is to find the family P providing the best Copper-
smith equation, that is to say the one allowing the largest reachable X and Y .
The target is thus to minimize Minkowski’s quantity (det L[P])

1

dim L[P]−1 .

3.3 Finding a Good Family of Polynomials

As we have seen above, the strength of Coppersmith’s method is determined by
the polynomials selection. Often, the family P is chosen so that the corresponding
lattice basis is square and triangular. This makes the determinant computation
simple (the determinant being in this case the product of the absolute values of
the diagonal entries) and this often gives the “good” bound, which means that
after many trials, one could not find a better family of polynomials. Nevertheless,
in some cases, one can improve Minkowski’s bound by choosing polynomials
giving a non-square matrix. This is the case for example in [3] and in our present
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situation. Here we give a mean to bound the determinant of lattices given by
bases that are not necessarily square and triangular.

Suppose we have a d × n matrix B whose rows span a lattice L. Suppose
further that the entries of B satisfy: |Bi,j | ≤ wri ·wcj , for some wri’s and wcj ’s
(with i ≤ d and j ≤ n). This is the case for all Coppersmith-type lattice bases.
We say that such a matrix is bounded by the products of the wri’s and wcj ’s.

Theorem 2. Let B be a d × n matrix bounded by the product of some quanti-
ties wri’s and wcj ’s. Let L[B] be the lattice spanned by the rows of the matrix B,
and P the product of the d largest wcj’s. We have:

detL[B] ≤ 2
d(d−1)

2 ·
√

n ·
(∏d

i=1 wri

)
· P.

The result follows from basic row and column operations and Hadamard’s bound
detL[B] ≤

∏
i≤d ‖bi‖, where the bi’s are the vectors corresponding to the rows

of the matrix B. The proof is given in appendix. Theorem 2 can be used to
find a subset of a given set of vectors that improves the term “(detL)

1

dim L ” in
Minkowski’s bound. Suppose we have a d×n matrix B bounded by the product of
some wri’s and wcj ’s. We consider the d vectors given by the rows of B. We begin
by ordering the wcj ’s decreasingly and the wri’s increasingly. Then the subset of
cardinality k that gives the best bound via Theorem 2 is the one corresponding

to any k smallest wrk’s. We compute the quantities
(∏k

i=1 wri · wcn−i

)1/k

for
all k ≤ d, and keep the vectors giving the smallest value.

Notice that our method does not necessarily gives the best subset of a given
set of vectors: in particular, it makes no use of the possibly special shape (not
even triangular) of the coefficients. E.g., it fails to give the 0..292 bound of [3].

4 The Algorithm and Its Correctness

The algorithm we study is described in Figure 1. It takes as input the quanti-
ties N1, N2, M and c, as well as three parameters T, d and α that will be chosen in
order to improve the efficiency of the algorithm. The output are all the solutions
to (1) for the given N1, N2, M and c. The overall architecture of the algorithm
is as follows. The initial search interval �0, N1� is divided into N1

2T subintervals
of length 2T . Each subinterval is considered independently (possibly on differ-
ent machines): for each of them, we approximate the function f by a degree d
polynomial P ; we solve (1) for P instead of f with a smaller M (to take care of
the distance between f and P ); to perform this last step, we use Coppersmith’s
method with the bivariate polynomial P (x) + y.

At Step 1, we compute the embedding dimension n of the lattices we will
reduce, and the list of the monomials that will appear in the polynomials gener-
ated during Coppersmith’s method. During the execution of the algorithm, the
integer t0 increases: at any moment, all the solutions to (1) below t0 have already
been found and it remains to find those that are between t0 and N1. The set S
contains all the solutions to (1) that are ≤ t0. Finally, the value T ′ is half the
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Input: N1, N2, M ∈ Z, c ∈ R with finitely many bits. Three parameters t, d, α ∈ Z.
Output: All the x’s in �0, N1� that are solution to (1).
1. n := (α+1)(dα+2)

2 , {e1, . . . , en} := {xiyj , i + dj ≤ dα}, T := 2t, T ′ := T, S := ∅.
2. t0 := 0. While t0 ≤ N1, do
3. If t0 + 2T ′ ≥ N1, T ′ :=

⌊
N1−t0

2

⌋
.

4. If T ′ = 0, then
5. Add t0 in S if it is solution to (1).
6. t0 := t0 + 1, T ′ := T .
7. Else
8. tm := t0 + T ′, P (x) := c + f

(
tm
N1

)
+ f ′
(

tm
N1

)
x

N1
+ . . . + 1

d!f
(d)
(

tm
N1

)
xd

Nd
1

.

9. ε :=
(
maxx∈[0,1]

∣∣∣f (d+1)(x)
∣∣∣) · N2

(d+1)!

(
T ′
N1

)d+1
, M ′ := 1

ε+1/M
.

10.
{

g1, . . . , g α(α+1)

2

}
:= {xi (N2P (x) + y)j , i + j ≤ α}.

11. Create the α(α+1)
2 × n matrix B such that Bk,l is the coefficient of the

monomial el in the polynomial gk

(
xT ′, 1

M′ y
)
.

12. L3-reduce the rows of B. Let b1,b2 be the first two output vectors.
13. test := 1. If ‖b1‖1 ≥ 1 or ‖b2‖1 ≥ 1, test := 0.
14. Let Q1(x, y), Q2(x, y) be the polynomials corresponding to b1 and b2.
15. R(x) := Resy(Q1(x, y), Q2(x, y)). If R(x) = 0, then test := 0.
16. If test = 0, then T ′ := �T ′/2�.
17. Else, for any root x0 of R belonging to �−T ′, T ′�, add tm + x0 in S if

it is a solution to (1), t0 := t0 + 2T ′ + 1, T ′ := T .
18.Return S.

Fig. 1. The algorithm solving (1)

size of the current subinterval in which we are searching solutions to (1): usu-
ally, we have T ′ = T , but if Coppersmith’s method fails, then we halve T ′. The
quantity T ′ makes the algorithm valid even if Coppersmith’s method repeatedly
fails. As a drawback the running time bound only heuristic. If there are too many
consecutive failures of Coppersmith’s method, then we might have T ′ = 0: in
this case we test if the current value t0 is a solution to (1) (Step 5). At Step 8,
we approximate the function f by its degree d Taylor expansion P at the center
of the considered interval. At Step 9, we compute the error ε made by approxi-
mating f by P . We update M accordingly. At Step 10, we generate the family of
polynomials that will be used in Coppersmith’s method for the bivariate polyno-
mial N2P (x)+y: we are searching the roots (x0, y0) of N2P (x)+y modulo 1 such
that |x0| ≤ T ′ and |y0| ≤ 1/M ′. Coppersmith’s method can fail for two reasons:
either we do not find two vectors of small enough L1 norm (this is detected at
Step 13), or the two bivariate polynomials corresponding to these vectors share
a factor (this is detected at Step 15). If Coppersmith’s method does not fail, we
go to Step 17: all the solutions of (1) that are in the considered subinterval must
be roots of the y-resultant of the polynomials corresponding to the two small
vectors that we found. If this polynomial has no integer root in the considered
subinterval, then it means there were no solution to (1) in this subinterval; if it
has roots, we test them to avoid those that are not solution to (1).
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In the algorithm of Figure 1, the calculations are described with real num-
bers (at Steps 8 to 15). It is possible to replace these real numbers by others
with finitely many bits, or by integers. At Step 8, we can replace the polyno-
mial P by a polynomial P̃ whose coefficients approximate those of P : it suffices
that maxx∈[−T ′,T ′] |N2 · [P (x)− P̃ (x)]| = O(1/M). This can be ensured by taking
the O(log M + log N2 + d log T ) = O(log M + log N2 + d log N1) most signifi-
cant bits of each coefficient. At Step 9, we can take M ′ :=

⌊
1

2ε+1/M

⌋
instead

of M ′ := 1
ε+1/M . The computations of Step 10 and 11 are then performed ex-

actly. At Step 12, we need integer entries to use Theorem 1. Since all the entries
of the matrix B are reals with finitely many bits, it suffices to multiply them by a
sufficiently large power of 2: since we took reals with O(log M +log N2+d log N1)
bits to construct the polynomial P̃ , multiplying by 2� with 
 = O(α(log M +
log N2 + d log N1)) is sufficient. Once these modifications are performed, the re-
maining steps of the algorithm compute over the integers. In the following, we
will keep the initial description (of Figure 1) to avoid unnecessary technicalities.

The main result of the paper is the following:

Theorem 3. Let N1, N2, M ∈ Z and c ∈ R with finitely many bits. Let t, d, α ≥
0. Given N1, N2, M, c, t, d, α as input, the algorithm of Figure 1 outputs all the
solutions x ∈ �0, N1� to (1). If test is never set to 0 at Step 15, the algorithm
finishes in time P(n1, n2, m, d, α)N1

2t , as long as N1 ≤ MN2, log d = O(α) and:

t ≤ min
(

n1 −
m + n2 + O(1)

d + 1
, n1 −

(n1 + n2)2

4(m + n2)
(1 + ε1) + ε2

)
,

with n1 = log N1, n2 = log N2, m = log M and, for α growing to ∞:

ε1 = O(1/α) + dO(1/α2)

ε2 =
1

m + n2
O(α2) +

n1

m + n2
(O(α) + dO(1/α))

+(n1 + n2)(O(1/α) + d(1/α3)) + mO(1/α2).

Corollary 4 (Table Maker’s Dilemma). Let N1 = 2n and N2 = 2n+e

with e ∈ {0, 1}. Let ε > 0. Suppose that d = 3, M = 2n, and t = n
2 (1−ε). Suppose

also that test is never set to 0 at Step 15. Then one can choose α, d and t such
that the algorithm of Figure 1 finds the solutions to (1) in time P(n) · 2 n

2
(1+ε).

Corollary 5 (Inverting the PRNG). Let N1 = 2n1 and N2 = 2n2 . Suppose
that M = 2(n1+n2)2 . Suppose also that test is never set to 0 at Step 15. Then
one can choose α, d and t such that the algorithm of Figure 1 finds the solutions
to (1) in time polynomial in n1 and n2.

The following table gives the parameters providing the two corollaries above.

M α d t

Corollary 4 2n O(n) 3 n/2
Corollary 5 2(n1+n2)2 O(n1 + n2) O((n1 + n2)2) n1 + O(1)
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We can give a precise complexity estimate in Corollary 5 by using Theorem 1.
The most expensive step of the algorithm is Step 12. The dimension of the lattice
is O(α2) = O((n1 + n2)2), its embedding dimension is O(dα2) = O((n1 + n2)4),
and the entries, when considered as integers (see the discussion above) are of
length O((n1 + n2)4). Therefore, the overall cost is O((n1 + n2)20).

Proof of Correctness of the Algorithm. Since we test any returned solution, it
suffices to check that we do not miss any. Let x0 ∈ �0, N1� be such a solu-
tion. The integer x0 belongs to at least one of the considered subintervals:
let �tm − T ′, tm + T ′� be the smallest of them. For this subinterval, at Step 15 we
have test = 1. Besides, for any x ∈ �tm − T ′, tm + T ′� we have, with x′ = x− tm:

|N2P (x′) cmod 1| ≤ |N2P (x′)−N2f(x/N1) − c| + |(N2f(x/N1) + c) cmod 1|
≤ ε + 1/M ≤ 1/M ′.

As a consequence, we have |N2P (x0−tm) cmod 1| ≤ 1/M ′. Let y0 = −N2P (x0−
tm) cmod 1. The pair (x0−tm, y0) is a root of the bivariate polynomial N2P (x)+y
modulo 1. It is therefore a root of any of the gk’s modulo 1, and of their integer
linear combinations. In particular, it is a root of Q1 et Q2 modulo 1.

Besides, we have the inequalities |x0− tm| ≤ T ′ and |y0| ≤ 1/M ′. Since the L1
norms of the vectors b1 and b2 are smaller than 1, the pair (x0−tm, y0) is a root of
the polynomials Q1 and Q2 over Z. It implies that if R = Resy(Q1(x, y), Q2(x, y))
is non-zero, then we find x0 at Step 17 of the algorithm.

5 Analysis of the Algorithm

This section is devoted to proving the complexity statement of Theorem 3. We
suppose that test is never set to 0 at any Step 15. It implies that with a correct
choice of the input parameters we always have T ′ = T (except possibly when t0 is
close to N1). The definition of M ′ gives M ′ = O(M). Besides, Taylor’s theorem
and the condition t ≤ n1 − m+n2+O(1)

d+1 of Theorem 3 ensure that for any x ∈�tm − T, tm + T � the quantity ε computed at Step 9 satisfies ε = O(1/M). We
thus have M ′ = Θ(M). To simplify, we identify M ′ with M and T ′ with T .

Our goal is to prove that if the conditions of Theorem 3 are fulfilled, then test
if never set to 0 at Step 13, which means that the L1 norms of the first two
vectors output by L3 are smaller than 1. Theorem 1 ensures that if the following
condition is satisfied, then b1 and b2 will be short enough:√

dα(α + 1)
2

· 2O( log M+log N2+d log N1

α−1 ) · 2
α(α+1)

2 · (detL[P])
2

α(α−1) < 1, (4)

where we used the classical relation between the L1 and L2 norms, took care of
the fact that we have to scale the lattice to the integers to use Theorem 1, and P
is the family of polynomials {xi(N2P (x) + y)j , 0 ≤ i + j ≤ α}.

Let B be the α(α+1)
2 × dα(α+1)

2 matrix where the entry B[(i, j); (i′, j′)] is the
coefficient of the polynomial Qi,j(x, y) = (xT )i(N2P (xT )+y/M)j corresponding
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to the monomial xi′
yj′

. We order the rows and columns of B by increasing value
of i + dj, and by increasing value of j in case of equality. We can write:

B =
(

B1 0
B2 B3

)
,

where B1 is square, lower-triangular and corresponds to the rows such that 0 ≤
i + dj ≤ α, and B3 is rectangular and corresponds to the rows such that α <
i + dj ≤ dα and 0 ≤ i + j ≤ α. We easily obtain det L[P] = | detB1| · | detB3|.

Lemma 6. We have | detB1| = T
1

6d (α3+O(α2))M− 1

6d2
(α3+O(α2)).

We are to bound the determinant of the matrix B3 by using Theorem 2.

Lemma 7. The matrix B3 is bounded by the product of the quantities:

wri,j = 2j(d + 1)jKjN i
1N

j
2 and wci′,j′ = T i′

/(M j′
N i′

1 N j′
2 ),

with i + j ∈ �0, α� , i + dj ∈ �α + 1, dα� and i′ + j′ ∈ �α + 1, dα�.
Theorem 2 gives the inequality | detB3| ≤ 2O(α4) ·

√
d · R · P , where R is the

product of the wri,j ’s with i + j ∈ �0, α� and i + dj ∈ �α + 1, dα�, and P is the
product of the (dimB3) largest wci,j ’s with i + dj ∈ �α + 1, dα�.
Lemma 8. We have the following relations, for α growing to infinity:

dim B3 =
( 1

2 −
1
2d

)
(α2 + O(α)),

R = 2O(α3)(d + 1)O(α3)N
d−1

6d (α3+O(α2))
1 N

d2−1

6d2
(α3+O(α2))

2 .

In order to bound P , we write P ≤ 2O(α3)∏kmax

k=τ 2k·ck , with ck = �{(i, j), α < i+
dj ≤ dα and k ≤ (t−n1)i−(m+n2)j < k+1}. We also define the parameter τ =
−
√

(n1 − t)(m + n2)α. It is fixed so that
∑kmax

k=τ ck ≈ dimB3, which means that
we take sufficiently many columns. Finally we define:

kmax =
{

(α(t − n1)) if MN2 ≥ (N1/T )d,
(−(m + n2)α/d) if MN2 ≤ (N1/T )d.

Figure 2 shows the relations between the variables i, j and k when MN2 ∈
[(N1/T )d, (N1/T )d+1]. The dashed area corresponds to the submatrix B1 of B
and is not considered in the study of B3. We split the set of valid pairs (i, j)
(the largest triangle, without the dashed area) into three zones Z1, Z2 and Z3
depending on the value of k. In the lemma below we consider only Z1 and Z2
since τα corresponds to an index k belonging to Z2.

Lemma 9. If MN2 ∈ [N1/T, (N1/T )d+1] and α grows to infinity, then:

kmax∑
k=τ

ck =
(

1
2
− 1

2d

)(
α2 + O(α)

)
= (dim B3)(1 + O(1/α))

kmax∑
k=τ

kck =
(n1 − t)d + (m + n2)− 2d2

√
(n1 − t)(m + n2)

6d2 (α3 + O(α2)).
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j

α

0

α/d

α

i + dj ≤ α

decreasing k

dα i
k = kmax = �(t − n1)α�

k = −(m + n2)α/d

k = d(t − n1)α

Z1

Z2

Z3

k = kmin = −(m + n2)α

Fig. 2. Relations between i, j and k when (N1/T )d ≤ MN2 ≤ (N1/T )d+1

We can now batch the partial results of Lemmata 6, 8 and 9.

Theorem 10. If N1/T ≤ MN2 ≤ (N1/T )d+1 and α grows to infinity, we have:

detL[P] ≤ 2O(α4) · (N1N2)
α3

6
+O(α2) · 2− 1

3

√
(n1−t)(m+n2)(α3+O(α2)) · (MT )O(α2).

By using (4) and Theorem 10, it is easy to end the proof of Theorem 3.

6 Experimental Data

A C implementation of the algorithm is available at the URL http://
www.loria.fr/∼stehle/bacsel.html. The code relies on GNU MP [9] for the
integer arithmetic, on MPFR [19] for the fp-arithmetic and on a fp-L3 available
at the URL http://www.loria.fr/∼stehle/fpLLL-1.3.tar.gz. The code is
not meant to be efficient, but to be a proof of feasibility. The timings given in
Figure 3 are thus overestimations of what may be possible with a more accu-
rate implementation. Tuning the code is not an obvious task since the algorithm
depends on many parameters. A previous implementation for the particular pa-
rameters d = α = 2 was written by Paul Zimmermann and is available at the
URL http://www.loria.fr/∼zimmerma/free/wclr-1.6.1.tar.gz. This for-
mer implementation was used to find the worst cases for the correct rounding of
the function 2x over [1/2, 1) in double extended precision (64-bits mantissæ) for
all rounding modes. For example, the worst case for the rounding to nearest is:

2
15741665614440311501

264 = 1.110 . . .110︸ ︷︷ ︸
64

1 0 . . . 0︸ ︷︷ ︸
63

11 . . .

The corresponding computation lasted a time equivalent to ≈ 7 years on a single
Opteron 2.4 GhZ. With the new code and d = 3 and α = 2, this computation
should be speeded up significantly. Nevertheless, for the application to the table
maker’s dilemma, n = 64 seems to be the bound of feasibility. In particular, the
quadruple precision (113-bit mantissæ) remains far out of reach.
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n d α M T time
53 3 2 253 220.45 7.7 days
64 2 2 264 223.95 3.2 years (estimated time)
64 3 2 264 224.60 2.6 years (estimated time)
113 3 2 2113 244.45 3 · 109 years (estimated time)

Fig. 3. Estimated time to find a worst case of exp over [1/2, 1), on an Opteron 2.4 GhZ

For the inversion of the PRNG, the complexity, though polynomial, remains
too high for extensive computations with a growing value of n. As an example,
we found the seed x0 = 17832265507654526358 · 2−64 ∈ [1/2, 1)64 such that:

expx = b−1b0.b1b2 . . . b64c1c2c3 . . . c400 . . . ,

with the 400 bits ci known. The computation was performed in time equivalent
to less than one week on an Opteron 2.4 GhZ.

For the transcendental functions we tried, we did not encounter a single failure
of Coppersmith’s method. On the contrary, the method failed for all algebraic
functions f that we tried: in this case the running-time is between what is ex-
pected and that of an exhaustive search, and it does not seem to decrease when
we increase the parameter d. We have two heuristic explanations for this phe-
nomenon: firstly, for some algebraic functions, there can be too many solutions
to write them in polynomial time; secondly, as described in Section 2, it would
give a polynomial time algorithm for integer factorization.

7 Generalizations and Open Problems

One can extend the algorithm and its analysis to the case of functions of several
variables [20]. For the PRNG, if the input precision is of n bits for all variables,
and the first n bits of the output are kept hidden, the number of bits needed to
recover the multivariable seed is O(nk+1), where k is the number of variables.

An open problem related to our algorithm is to prove Theorem 3 without
the heuristic assumption on the resultant computation. Since the method fails
in practice for some functions (in particular for algebraic functions), the task
would be to give a sufficient condition on the function f for the method to work.
An intermediate question is to determine under which conditions Coppersmith’s
method can be made provable for multivariate polynomials.

Another interesting problem is to determine if the O(n2) bound is the best
possible: can we invert in polynomial time the PRNG with significantly fewer
than n2 bits? This bound matches the one of [17] and might thus be considered
as somehow natural. The gap between the probabilistic injectivity of the PRNG
(m = O(n)) and its polynomial-time invertibility (m = O(n2)) is puzzling.
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Missing Proofs

Proof of Theorem 2. Recall that the determinant is defined by (2). If one of
the wri’s is zero, the determinant is obviously zero and the result holds. Suppose
now that all wri’s are positive. Let B′ be the matrix B after having divided
the i-th row by wri for all i. Wlog we suppose that wc1 ≥ wc2 ≥ . . . ≥ wcn

(otherwise we perform a permutation of the columns, which does not change the
determinant). It suffices to show that: detB′ ≤ 2

d(d−1)

2

√
n · wc1 · . . . · wcd.

We prove it by induction on d and n. If n < d, this is obvious since the rows
must be linearly dependent, so that detB′ = 0. If d = 1, the determinant is
exactly the length of the unique vector. Suppose now that n ≥ d ≥ 2. We apply
a permutation on the rows of the matrix B′ in order to have |B′

1,1| ≥ |B′
i,1|

for any i. This last operation does not change the determinant. For all i ≥ 2,
we perform the transformation B′

i := B′
i −

B′
i,1

B′
1,1

B′
1, which does not change the

determinant either (B′
i is the i-th row of the matrix B′). Wlog we suppose

that B′
1,1 �= 0: otherwise all the B′

i,1’s are zero, and we obtain the result by
induction on n by removing the first column. The transformations we have per-
formed on the matrix B′ have given a new matrix B′ for which |B′

1,1| ≤ wc1,
B′

i,1 = 0 for any i ≥ 2 and |B′
i,j | ≤ 2wcj , for any pair (i, j). This last statement

follows from the fact that for any i ≤ d, we have
∣∣∣B′

i,1

B′
1,1

∣∣∣ ≤ 1. We apply the result
inductively on the (d − 1)× n matrix B′′ at the bottom of the matrix B′:

detB′′ ≤ 2
(d−1)(d−2)

2

√
n · (2wc2) · . . . · (2wcd) ≤ 2

d(d−1)

2

√
n · wc2 · . . . · wcd.

Proof of Corollary 4. Let m = n1 = n2 = n and d = 3. If α grows to infinity,
we have: ε1 = O(1/α), ε2 = 1/n ·O(α2) + O(α) + nO(1/α). We fix α sufficiently
large to ensure that the terms “O(1/α)” of ε1 and ε2 become smaller than ε (with
absolute values). We get, for n growing to infinity: |ε1| ≤ ε, |ε2| ≤ O(1) + nε.
Finally, the equation to be satisfied becomes, for n growing to infinity:

t ≤ min
(n

2
−O(1), n − n

2
(1 + ε)− nε + O(1)

)
.

For n larger than some constant, this inequality is satisfied if t = n(1 − 4ε)/2.

Proof of Corollary 5. Let d = O((n1 + n2)2) and α = O(n1 + n2). Then
for n1 + n2 growing to infinity, we have ε1 = O(1) and ε2 = O(1). The equation
to be satisfied becomes t ≤ n1 −O(1), for n1 + n2 growing to infinity.

Proof of Lemma 6. The determinant of B1 is:∏
i+dj≤α

(xT )i · (P (xT ) +
y

M
)j [xiyj] =

∏
i+dj≤α

T iM−j = (T
1

6d M
−1

6d2 )α3+O(α2).

Proof of Lemma 7. The row (i, j) of B3 with i + j ∈ �0, α� and i + dj ∈�α + 1, dα� corresponds to the polynomial (xT )i
(
P (xT ) + y

M

)j . Its column (i′+
j′) with i′ + j′ ∈ �α + 1, dα� corresponds to the coefficient of this polynomial for
the monomial xi′

yj′
. We have the following inequalities:
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|B3[(i, j); (i′, j′)]| ≤ (xT )i
(
P (xT ) +

y

M

)j
[xi′

yj′
]

≤ T i

[
j∑

k=0

(
j

k

)
(P (xT ))j−kM−kyk

]
[xi′−iyj′

]

≤ 2jT iM−j′
[

d∑
k=0

akT kxk

]j−j′

[xi′−i].

Besides, we have ak ≤ K N2

Nk
1

, which gives that:

|B3[(i, j); (i′, j′)]| ≤ 2jKj−j′
T iN j−j′

2 M−j′
[

d∑
k=0

(
T

N1

)k

xk

]j−j′

[xi′−i].

≤ 2jKj−j′
T iN j−j′

2 M−j′
(

T

N1

)i′−i
[

d∑
k=0

xk

]j−j′

[xi′−i]

≤
(
2j(d + 1)jKjN i

1N
j
2

)
·
(

T i′

M j′N i′
1 N j′

2

)
.

Proof of Lemma 8. For the first relation, one can write:
dim B3 = dimB − dim B1 = 1

2 (α2 + O(α)) − 1
2d (α2 + O(α)).

The proof of the second relation is similar:

∏
i + j ∈ �0, α�

i + dj ∈ �α + 1, dα�

N i
1N

j
2 =

⎛⎝ ∏
i+j≤α

N i
1N

j
2

⎞⎠ ·

⎛⎝ ∏
i+dj≤α

N i
1N

j
2

⎞⎠−1

= N
d−1

6d (α3+O(α2))
1 N

d2−1

6d2
(α3+O(α2))

2 .

Proof of Lemma 9. We restrict ourselves to the first statement and to the case
where MN2 ∈ [(N1/T )d, (N1/T )d+1]. The other proofs are similar. We have:

kmax∑
k=τ

ck =
α−1∑
i=0

�

�⌊
α − i

d

⌋
,

⌊
(t − n1)i− τ

m + n2

⌋	
+

⌊
τ

t−n1

⌋∑
i=α

�

�
0,

⌊
(t− n1)i − τ

m + n2

⌋	

=

⌊
τ

t−n1

⌋∑
i=0

(t − n1)i− τ

m + n2
−

α−1∑
i=0

α− i

d
+ O(α)

=
t − n1

2(m + n2)

[
τ

t− n1
+ O(1)

]2
− τ

m + n2

[
τ

t− n1
+ O(1)

]
− α2

2d
+ O(α)

=
α2

2
(1 + O(1/α)) − α2

2d
+ O(α) =

(
1
2
− 1

2d

)
(α2 + O(α))
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End of the Proof of Theorem 3. Since d = 2O(α), Theorem 10 gives that:

| detL[P]| ≤ 2O(α4)+(n1+n2)
(

α3

6
+O(α2)

)
− 1

3

√
(n1−t)(m+n2)(α3+O(α2))+(m+t)O(α2)

.

As a consequence, to ensure that 4 is satisfied, it suffices that:

O(α2) + (m + n2 + dn1)O(1/α) + (n1 + n2)(α + O(1)) + (m + t)O(1)
< 2
√

(n1 − t)(m + n2)(α + O(1)),

which is implied by the simpler equation:

O(α)+(n1+n2)
(

1 + O

(
1
α

)
+ dO

(
1
α2

))
+mO

(
1
α

)
< 2
√

(n1 − t)(m + n2).

This last equation is itself implied by the condition of Theorem 3.
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Abstract. Let E be an elliptic curve over the rationals. A crucial step
in determining a Mordell-Weil basis for E is to exhibit some positive
lower bound λ > 0 for the canonical height ĥ on non-torsion points.

We give a new method for determining such a lower bound, which
does not involve any searching for points.

1 Introduction

Let E be an elliptic curve over the rationals Q given by a minimal Weierstrass
model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (1)

The task of explicitly computing a Mordell-Weil basis for E(Q) can be divided
into three steps (see [10]):

(i) A 2-descent (possibly combined with higher descents) is used to determine
a basis P1, . . . , Pr for a subgroup of E(Q) of finite index.

(ii) A positive lower bound λ for the canonical height ĥ(P ) of non-torsion points
is somehow determined. The geometry of numbers now gives an upper
bound B on the index n of the subgroup of E(Q) spanned by P1, . . . , Pr.

(iii) A sieving procedure is finally used to deduce a Mordell-Weil basis.

In step (ii) a rather indirect procedure has been used in the past to determine
a lower bound λ > 0 for the canonical height ĥ(P ) of non-torsion points. The
difference h− ĥ between the logarithmic and canonical heights is known to be
bounded on E(Q); the best current bounds are to be found in [7]. Suppose
that h(P ) − ĥ(P ) ≤ K for all non-zero rational points P . If ĥ(P ) < λ then
h(P ) < K + λ. To show that all non-torsion points P satisfy ĥ(P ) ≥ λ one can
search for all points satisfying h(P ) < K+λ. More explicitly, write x(P ) = X/Z2

where X , Z are coprime integers and Z positive; then we must search for all
points P satisfying

|X | < exp(K + λ), Z < exp ((K + λ)/2) .

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 275–286, 2006.
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If the bound on the height difference K is large, then we are forced to search a
huge region before achieving our goal; this is quite often impractical.

In this paper we propose a more direct method for determining a positive
lower bound λ for the canonical height of non-torsion points.

For reasons to be explained later, it is convenient to work with the subgroup

Egr(Q) = E(Q) ∩ E0(R) ∩
∏
p|Δ

E0(Qp);

the subscript “gr” stands for good reduction, and Δ denotes the minimal dis-
criminant of E, i.e. the discriminant of the minimal model (1). We give a method
of determining a positive lower bound μ for the canonical height of non-torsion
points P in Egr(Q). Then, if c is the least common multiple of the Tamagawa
indices cp = [E(Qp) : E0(Qp)] (including p = ∞), we know that λ = μ/c2 is a
lower bound for the canonical height of non-torsion points in E(Q).

The basic idea of our approach is very simple: on Egr(Q), the canonical height
satisfies

ĥ(P ) ≥ log max {1, |x(P )|} − b

where b is a constant that depends on the model for E and is typically small. Now
if P is ‘far from’ the the point of order 2 on E0(R) then its x-coordinate is large
and so the canonical height is large. If on the other hand P is ‘close to’ the point
of order 2 on E0(R) then x(2P ) is large, and so ĥ(P ) = 1

4 ĥ(2P ) is also large. We
extend this idea as follows. Suppose that we want to prove that a certain μ > 0
is a lower bound for the height for non-torsion points on Egr(Q). We suppose
that there is a non-torsion point P ∈ Egr(Q) satisfying ĥ(P ) ≤ μ and we use
this to deduce a series of bounds |x(nP )| ≤ Bn(μ) where the Bn(μ) are explicit
constants. With the aid of the elliptic logarithm, we solve the simultaneous
inequalities |x(nP )| ≤ Bn(μ) with n = 1, . . . , k for some suitably chosen k. If
there is no solution then we deduce that ĥ(P ) > μ for all non-torsion points on
Egr(Q). Otherwise we simply start again with a smaller value of μ, or a bigger
value of k, or both.

We note that estimates for heights of points of infinite order on elliptic curves
have previously been given by Silverman [11] and Hindry and Silverman [8].
Those estimates are theoretical, and too small for practical use; see the conclud-
ing remarks at the end of the paper.

2 Heights

In this section we gather some basic facts needed about local and canonical
heights, with no claims of originality. A good reference is [13]. The reader is
warned that there are several normalizations of local and canonical heights as
explained in [7, section 4].

We define the usual constants associated to a Weierstrass model (1) as follows
(see [12, page 46]):
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b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

Δ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

Let
f(P ) = 4x(P )3 + b2x(P )2 + 2b4x(P ) + b6,

g(P ) = x(P )4 − b4x(P )2 − 2b6x(P ) − b8;

so that x(2P ) = g(P )/f(P ). We let M be the set of all primes of Q (including
∞). For p ∈M, define the function Φp : E(Qp) → R by

Φp(P ) =

⎧⎪⎨⎪⎩
1 if P = 0,

max {|f(P )|p, |g(P )|p}
max {1, |x(P )|p}4 otherwise.

(2)

It is straightforward to see that Φp is a continuous and hence bounded function
on E(Qp) (the boundedness follows immediately from the fact that E(Qp) is
compact with respect to the p-adic topology).

We define the local height λp : E(Qp)\{0} → R for all p ∈ M (including
p = ∞) by

λp(P ) = log max {1, |x(P )|p} +
∞∑

i=0

1
4i+1 log Φp(2iP ). (3)

One definition of the canonical height ĥ : E(Q) → R is by the formula

ĥ(P ) =
∑
p∈M

λp(P ). (4)

The canonical height extends to a quadratic form on R ⊗Z E(Q); in particular
ĥ(nP ) = n2 ĥ(P ) for any integer n. Moreover, P ∈ E(Q) is torsion if and only if
ĥ(P ) = 0. For non-torsion rational points the canonical height is strictly positive.

The following lemma is standard; see for example [14].

Lemma 1. Let p be a finite prime and P ∈ E0(Qp)\{0} (i.e. P is a point of
good reduction). Then

λp(P ) = log max {1, |x(P )|p} .

In particular, non-archimedean local heights are non-negative for points of good
reduction; this is not true for points of bad reduction. We are interested in
obtaining a positive lower bound for the canonical height, using its expression
(4) as a sum of local heights, and thus it is sensible to restrict ourselves to points
in Egr(Q)\ {0}.
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Our next lemma is immediate from (4) and Lemma 1.

Lemma 2. Suppose P ∈ Egr(Q)\ {0} . Then

ĥ(P ) = λ∞(P ) + log(denom(x(P ))).

2.1 The Archimedean Local Height Difference

Define α ∈ R+ by
α−3 = inf

P∈E0(R)
Φ∞(P ), (5)

where the exponent −3 has been chosen to simplify the formulae appearing later.
This can be computed as in [7] or [10], with a slight adjustment since we are
looking only at points on E0(R). The following lemma can be deduced easily
from the definition of local heights (3).

Lemma 3. If P ∈ E0(R)\{0} then

log max{1, |x(P )|} − λ∞(P ) ≤ log α.

In particular this inequality is true for all P ∈ Egr(Q)\{0}.

3 Multiplication by n

Let n be a positive integer. It is possible that multiplication by n annihilates
some of the groups E0(Qp)/E1(Qp): a non-torsion point P ∈ Egr(Q) will be killed
(mapped into E1(Qp)) if p divides the denominator of x(nP ). In this section we
give a lower estimate for the contribution that multiplication by n makes to the
canonical height of nP .

For finite primes p, let ep be the exponent of the group

Ens(Fp) ∼= E0(Qp)/E1(Qp).

Define
DE(n) =

∑
p<∞, ep|n

2(1 + ordp(n/ep)) log p. (6)

That this sum is finite follows from the following proposition; clearly, it is easily
computable.

Proposition 1. With notation as above, if ep | n then p ≤ (n + 1)2. Hence the
sum defining DE(n) is finite. Moreover, if P is a non-torsion point in Egr(Q)
and n ≥ 1, then

ĥ(nP ) ≥ λ∞(nP ) + DE(n).

Proof. Suppose that ep | n. By definition ep is the exponent of Ens(Fp). If p
is a prime of singular reduction for E then Ens(Fp) is a cyclic group of order
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p − 1, p + 1 or p depending on whether E has split multiplicative, non-split
multiplicative or additive reduction at p. In either case we see that

n ≥ ep = |Ens(Fp)| ≥ p− 1

and so certainly p ≤ (n + 1)2. Suppose now that p is a prime of good reduction.
We know that

Ens(Fp) = E(Fp) ∼= Z/d1 × Z/d2

where d2|d1 and d1 = ep. Hence

(
√

p− 1)2 = p + 1 − 2
√

p ≤ |E(Fp)| = d1d2 ≤ d2
1 = e2

p ≤ n2,

from which we deduce that p ≤ (n + 1)2.
In view of Lemma 2, the proof is complete on showing

log(denom(x(nP ))) ≥ DE(n)

for non-torsion P ∈ Egr(Q). This easily follows from the structure of E(Qp), since
if e = ordp(n/ep) then nP ∈ Ee+1(Qp), so ordp(denom(x(nP ))) ≥ 2(e + 1). ��

4 A Bound for Multiples of Points of Good Reduction

Recall that our aim is to exhibit some positive μ such that ĥ(P ) > μ for all
non-torsion points in Egr(Q). In this section we first suppose that μ > 0 is
given, assume that P is a point in Egr(Q) satisfying ĥ(P ) ≤ μ, and deduce
a sequence of inequalities satisfied by the x-coordinates of the multiples nP
for n = 1, 2, 3, . . .. We then show that for sufficiently small positive μ and a
suitable n (given explicitly in Corollary 1 below), there are no points P such
that x(nP ) satisfies the inequality. In the following two sections we will explain
how to combine the inequalities for several n, enabling us to obtain better values
of μ such that ĥ(P ) > μ for non-torsion points in Egr(Q).

Let α and DE be defined as above in (5) and (6). For μ > 0 and n ∈ Z+

define
Bn(μ) = exp

(
n2μ−DE(n) + log α

)
.

Proposition 2. If Bn(μ) < 1 then ĥ(P ) > μ for all non-torsion points on
Egr(Q). On the other hand, if Bn(μ) ≥ 1 then for all non-torsion points P ∈
Egr(Q) with ĥ(P ) ≤ μ, we have

−Bn(μ) ≤ x(nP ) ≤ Bn(μ).

Proof. Suppose P is a non-torsion point on Egr(Q) with ĥ(P ) ≤ μ. From the
inequalities in Lemma 3 and Proposition 1 we see that

log max{1, |x(P )|} ≤ λ∞(P ) + log α

≤ ĥ(nP )−DE(n) + log α

= n2 ĥ(P )−DE(n) + log α

≤ n2μ−DE(n) + log α.
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Thus
max {1, |x(nP )|} ≤ Bn(μ).

If Bn(μ) < 1 then we have a contradiction, and in this case we deduce that
ĥ(P ) > μ for all non-torsion points on Egr(Q).

If instead Bn(μ) ≥ 1, then |x(nP )| ≤ Bn(μ) and the proposition follows. ��

Corollary 1. Define α as in (5). Let p be a prime greater than
√

α, and set
n = ep and μ0 = n−2(DE(n) − log α). Then μ0 > 0 and for all non-torsion
P ∈ Egr(Q) we have

ĥ(P ) ≥ μ0.

Proof. We have DE(n) ≥ 2 log p > log α, so certainly μ0 > 0. Now for all μ < μ0

we have n2μ − DE(n) + log α < 0, so that Bn(μ) < 1 and hence ĥ(P ) > μ by
the Proposition. Since this holds for all μ < μ0, we have ĥ(P ) ≥ μ0 as required.

As pointed out to us by the anonymous referee, we could use this Corollary by
itself to provide a suitable positive lower bound for the height of non-torsion
points in Egr(Q). However we can obtain a better bound (see Example 1 for an
example) by combining the information from several different n simultaneously.

5 Solving Inequalities Involving the Multiples of Points

Proposition 2 gives a sequence of inequalities involving the multiples of non-
torsion points P in Egr(Q) satisfying ĥ(P ) ≤ μ. We would like to solve these
inequalities. One approach is to use division polynomials. We have found this
impractical as the degree and coefficients of division polynomials grow rapidly
with the multiple considered. Instead we have found it convenient to use the
elliptic logarithm.

For the reader’s convenience, we give here a very brief description of the el-
liptic logarithm ϕ : E0(R) → R/Z. We can rewrite the Weierstrass model (1) as

(2y + a1x + a3)2 = 4x3 + b2x
2 + 2b4x + b6.

Let β be the largest real root of the right-hand side; thus β is the x-coordinate
of the unique point of order 2 on E0(R). Let

Ω = 2
∫ ∞

β

dx√
4x3 + b2x2 + 2b4x + b6

.

If P = (ξ, η) ∈ E0(R) with 2η + a1ξ + a3 ≥ 0 then let

ϕ(P ) =
1
Ω

∫ ∞

ξ

dx√
4x3 + b2x2 + 2b4x + b6

;

otherwise we let
ϕ(P ) = 1 − ϕ(−P ).
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The elliptic logarithm can be very rapidly computed using
arithmetic-geometric means; see Algorithm 7.4.8 in [2]. What matters most to
us is that ϕ : E0(R) → R/Z is an isomorphism (of real Lie groups). We shall
find it convenient to identify R/Z with the interval [0, 1).

Suppose that ξ is a real number satisfying ξ ≥ β. Then there exists η such
that 2η + a1ξ + a3 ≥ 0 and (ξ, η) ∈ E0(R). Define

ψ(ξ) = ϕ ((ξ, η)) ∈ [1/2, 1).

In words, ψ(ξ) is the elliptic logarithm of the “higher” of the two points with
x-coordinate ξ.

For real ξ1, ξ2 with ξ1 ≤ ξ2 we define the subset S(ξ1, ξ2) ⊂ [0, 1) as follows:

S(ξ1, ξ2) =

⎧⎪⎨⎪⎩
∅ if ξ2 < β

[1 − ψ(ξ2), ψ(ξ2)] if ξ1 < β ≤ ξ2

[1 − ψ(ξ2), 1 − ψ(ξ1)] ∪ [ψ(ξ1), ψ(ξ2)] if ξ1 ≥ β.

The following lemma is clear.

Lemma 4. Suppose ξ1 < ξ2 are real numbers. Then P ∈ E0(R) satisfies ξ1 ≤
x(P ) ≤ ξ2 if and only if ϕ(P ) ∈ S(ξ1, ξ2).

If
⋃

[ai, bi] is a disjoint union of intervals and t ∈ R, we define

t +
⋃

[ai, bi] =
⋃

[ai + t, bi + t]

and (for t > 0)
t
⋃

[ai, bi] =
⋃

[tai, tbi].

Proposition 3. Suppose ξ1 < ξ2 are real numbers and n a positive integer.
Define

Sn(ξ1, ξ2) =
n−1⋃
t=0

(
t

n
+

1
n
S(ξ1, ξ2)

)
.

Then P ∈ E0(R) satisfies ξ1 ≤ x(nP ) ≤ ξ2 if and only if ϕ(P ) ∈ Sn(ξ1, ξ2).

Proof. By Lemma 4 we know that P ∈ E0(R) satisfies ξ1 ≤ x(nP ) ≤ ξ2 if and
only if ϕ(nP ) ∈ S(ξ1, ξ2).

Denote the multiplication by n map on R/Z by νn. If δ ∈ [0, 1) then

ν−1
n (δ) =

{
t

n
+

δ

n
: t = 0, 1, 2, . . . , n− 1

}
.

However ϕ(nP ) = nϕ(P ) (mod 1). Therefore,

ϕ(nP ) ∈ S(ξ1, ξ2) ⇐⇒ ϕ(P ) ∈ ν−1
n (S(ξ1, ξ2)) = Sn(ξ1, ξ2).

��
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6 The Algorithm

Putting together Propositions 2 and 3 we deduce our main result.

Theorem 1. Let μ > 0. If Bn(μ) < 1 for some positive integral n, then ĥ(P ) >
μ for all non-torsion P in Egr(Q).

On the other hand, if Bn(μ) ≥ 1 for n = 1, . . . , k, then every non-torsion
point P ∈ Egr(Q) such that ĥ(P ) ≤ μ satisfies

ϕ(P ) ∈
k⋂

n=1

Sn (−Bn(μ), Bn(μ)) .

In particular, if
k⋂

n=1

Sn (−Bn(μ), Bn(μ)) = ∅ (7)

then ĥ(P ) > μ for all non-torsion P in Egr(Q).

In practice we have found the following procedure effective. We start with
μ = 1, k = 5 and compute Bn(μ) for n = 1, . . . k. If any of these values of
Bn(μ) < 1 then we have succeeded in proving that μ = 1 is a lower bound
for the canonical height of non-torsion points of good reduction. Otherwise we

compute
k⋂

n=1

Sn (−Bn(μ), Bn(μ)) (as a union of intervals); if this is empty, then

again we have succeeded in proving that μ = 1 is a lower bound. Finally, if this
intersection is non-empty we have failed to prove that μ = 1 is a suitable lower
bound.

Our course now proceeds differently according to whether we have succeeded
or failed to show that μ = 1 is a lower bound. If we succeed, we now repeatedly
multiply μ by 1.1 and use the same method to try to prove that the new value
of μ is still a lower bound. We return the last succeeding value of μ as the output
to the algorithm.

If, on the other hand, we failed with μ = 1 then we repeatedly multiply μ by
0.9 and increase k by 1 until we achieve success; the bound returned is then the
first successful value of μ.

It is easy to use the proof of Corollary 1 to Proposition 2 to show that our al-
gorithm will succeed in obtaining a positive lower bound μ, after a finite number
of steps.

Alternative strategies are clearly possible here; instead of using scaling fac-
tors of 11/10 and 9/10 we could instead use a larger factor such as 2 or 1/2
respectively, and then successively replace the scaling factor by its square root
and apply a back-tracking method to converge to the optimal value of μ; the
details may be left to the reader.
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7 Reduced Models

The canonical height is independent of the model chosen for the elliptic curve.
Our lower bound is however not model-independent. The constant α defined
in (5) is dependent on b2, b4, b6; all other constants and maps in the above
discussion are model-independent. To improve our lower bound for the canonical
height it is sensible to choose a model that minimises the value of α. We have no
theoretical method for deciding on the best model here. The models for elliptic
curves appearing in Cremona’s tables [3], [5] (as well as those appearing in the
earlier Antwerp IV tables [1]) are known as standardized models: we say that the
model (1) for E is a standardized model if it is minimal with a1, a3 ∈ {0, 1}, and
a2 ∈ {−1, 0, 1}. Each elliptic curve has a unique standardized model. Practical
experience shows that—for the purpose of obtaining a good lower bound for the
canonical height—it is usually preferable to choose a model that reduces, in the
sense of [4] but with respect to translations only, the cubic polynomial

f(X) = 4x3 + b2x
2 + 2b4x + b6.

We call this model the reduced model. For the convenience of the reader we give
here the formulae, adapted from [4], for doing this.

If the discriminant Δ > 0, then we let

P = b2
2 − 24b4, Q = 2b2b4 − 36b6.

Let r be the nearest integer to −Q/(2P ). The reduced model for E is given by
replacing x by x + r in (1).

If Δ < 0 we let β be the unique real root of f . Let

h0 = 144β2 + 24b2β + 48b4 − b2
2, h1 = 24b2β

2 + 6(b2
2 − 8b4)β + 4b2b4.

Let r be the nearest integer to −h1/(2h0). Again, the reduced model for E is
given by replacing x by x + r in (1).

8 Examples

We have implemented our algorithm in pari/gp, and used the program to com-
pute some examples.

Example 1. Consider the elliptic curve E (with code 60490d1 in [5]), given by
the standardized model

y2 + xy + y = x3 + 421152067x + 105484554028056.

Our program shows that for non-torsion points in Egr(Q)

ĥ(P ) > 1.9865.

If we apply the method used to prove Corollary 1 to Proposition 2 above, we
do not obtain as good a bound. Here log(α) = 3.3177 . . . and

√
α = 5.253 . . . ,
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so we should use a prime p ≥ 7. Rather than use p = 7 for which ep = 9
we do better to take p = 19 with n = ep = 6. Then DE(6) = 2 log 114 and
μ0 = (2 log 114− 3.317)/36 = 0.17.

We note that the curve E has only one real component. Moreover, it has good
reduction at all primes except 2, 5, 23 and 263 where the Tamagawa indices are
2, 21, 2 and 3 respectively. Hence if P ∈ E(Q) then 42P ∈ Egr(Q). It follows
that

ĥ(P ) > 1.9865/422 = 0.001126

for non-torsion points in E(Q).
This curve has rank 1, and a point of infinite order is

P = (3583035/169, 24435909174/2197)

with ĥ(P ) = 6.808233192. It follows that the index of the subgroup 〈P 〉 in E(Q)
is at most

√
6.808233192/0.001126 < 78. We may check that P /∈ pE(Q) for all

primes p < 78 (using the method of p-saturation introduced in [10]) and deduce
that E(Q) = 〈P 〉.

For this curve the bound between logarithmic and canonical heights can be
shown by the method of [7] to be at most 22.8, so finding a lower bound for
ĥ through searching would be prohibitive. However, if we apply the method
of [7] to the subgroup Egr(Q) we find that the height difference for points in
the subgroup is only 3.3, so in fact we could have found a lower bound for the
restriction of ĥ to the subgroup by searching for points with small logarithmic
height.

Finally, we can use our bound to prove that E(Q) = 〈P 〉 more simply as
follows. First we apply p-saturation with p = 2, 3 and 7 to show that the index
[E(Q) : 〈P 〉] is not divisible by the primes dividing the Tamagawa numbers;
then we observe that while P /∈ Egr(Q), we have 2P ∈ Egr(Q). It follows that
[E(Q) : Egr(Q)] = 2, when a priori this index could have been as large as 42.
And moreover the index m = [E(Q) : 〈P 〉] = [Egr(Q) : 〈2P 〉] is coprime to 2, 3, 7
and satisfies m2 ≤ ĥ(2P )/1.9865 < 14, so m = 1.

This method of saturating E(Q), by first saturating Egr(Q) and separately
saturating at primes dividing the Tamagawa numbers, can also be used for curves
of higher rank, though the details are more complicated. We will return to this
in a future paper.

Example 2. (Statistics) We ran our program on all the 4081 optimal curves
in our online tables [5] with conductors 7000–8000. The smallest lower bound we
obtained for that range was 0.022 for curve 7042d1, and the largest was 11.879
for 7950r1. It took 941 seconds to compute the lower bounds for these curves,
an average of 0.23 seconds for each curve.

Applications. Using this method we intend to show that the generators listed
for the curves in the database [5] do generate the full Mordell-Weil group, modulo
torsion, in every case. The present situation (January 2006) is that not all have
been checked, the exceptions being those for which we have not yet obtained
a lower bound for the height of non-torsion points, and hence do not have a
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bound in the index of saturation. Similarly, the algorithm described here will
be incorporated into the first author’s program mwrank (see [6]) for computing
Mordell-Weil groups via 2-descent.

9 Concluding Remarks

As pointed out by the referee, it would be possible to extend this method to el-
liptic curves defined over any totally real number field; we leave the details to the
interested reader. It would be rather harder, though, to extend our method to
fields with a non-real complex embedding since we would then have to intersect
subsets of the unit square instead of the unit interval.

Lastly, at the insistence of the referee, we conclude with a few words comparing
our lower bound for the canonical height and earlier theoretical bounds, due to
Silverman [11] and to Hindry and Silverman [8]. The bounds of [11] are not
completely explicit. In [8], Hindry and Silverman give a lower bound for the
canonical height of non-torsion points on elliptic curves over number fields (and
function fields). For example, if E is an elliptic curve over Q, write

σ =
log|Δ|
log N

where Δ is the minimal discriminant and N is the conductor of E. Specializing
Theorem 0.3 of [8] we obtain that

ĥ(P ) ≥ 2 log|Δ|
(20σ)8101.1+4σ

.

for non-torsion points P ∈ E(Q). For example, for the elliptic curve E in our
Example 1, this gives the lower bound for non-torsion points

ĥ(P ) ≥ 3.2 . . .× 10−42,

as compared with our lower bound for non-torsion points ĥ(P ) > 0.001126.
However such a crude numerical comparison is not very useful, for two reasons:

– The bounds in [8] are much more general; undoubtedly the methods there
could produce better bounds if specialised to elliptic curves over the ratio-
nals. It would be interesting to pursue this.

– A conjecture of Lang (mentioned in [8]) states that there is some absolute
constant c > 0 such that ĥ(P ) ≥ c log|Δ| for all elliptic curves E and non-
torsion points P ∈ E(Q). The objective of [8] seems to have been to prove a
statement that is as close as possible to Lang’s conjecture. Our aim is rather
different.
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Abstract. For each of n = 1, 2, 3 we find the minimal height ĥ(P ) of
a nontorsion point P of an elliptic curve E over C(T ) of discriminant
degree d = 12n (equivalently, of arithmetic genus n), and exhibit all
(E, P ) attaining this minimum. The minimal ĥ(P ) was known to equal
1/30 for n = 1 (Oguiso-Shioda) and 11/420 for n = 2 (Nishiyama), but
the formulas for the general (E,P ) were not known, nor was the fact that
these are also the minima for an elliptic curve of discriminant degree 12n
over a function field of any genus. For n = 3 both the minimal height
(23/840) and the explicit curves are new. These (E, P ) also have the
property that that mP is an integral point (a point of näıve height zero)
for each m = 1, 2, . . . , M , where M = 6, 8, 9 for n = 1, 2, 3; this, too, is
maximal in each of the three cases.

1 Introduction

1.1 Statement of Results

Let K be a function field of a curve C of genus g over a field k of characteristic
zero,1 and E a nonconstant elliptic curve over K. Let d be the degree of the
discriminant of E (considered as a divisor on C), a natural measure of the
complexity of E; and let ĥ : E(K) → Q be the canonical height. Necessarily
12|d; in fact it is known that d = 12n where n is the arithmetic genus of the
elliptic surface E associated with E. It is not hard to show that, given d, the set
of numbers H that can occur as the canonical height of a rational point on E
is discrete. In particular, for each d = 12n there is a minimal positive height
ĥmin(d), and also a minimal positive height ĥmin(g, d) for elliptic curves over
function fields of genus g (except for g = d = 0, when E is a constant curve
over P1 and thus has no points of positive height). It is thus a natural problem
to compute or estimate these numbers ĥmin(d) and ĥmin(g, d). This paper is the
first of a series concerned with different aspects of this problem.

In this paper we determine ĥmin(12n) for n = 1, 2 and ĥmin(0, 12n) for n =
1, 2, 3. Since we are working in characteristic zero, we may assume k = C, when
every genus-zero curve is isomorphic to P1 and its function field is isomorphic
to C(T ).
1 One can also usefully define the canonical height etc. in positive characteristic, but

we need to use the ABC conjecture for K and thus must assume that K has char-
acteristic zero.
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Theorem 1. i) (Oguiso-Shioda [7]) ĥmin(0, 12) = 1/30.
ii) ĥmin(12) = 1/30. Moreover, let E be an elliptic curve with d = 12 over a
complex function field K, and P ∈ E(K). Then the following are equivalent:
(a) ĥ(P ) = 1/30; (b) Each of P, 2P, 3P, 4P, 5P, 6P is an integral point on E;
(c) K ∼= C(T ), and (E, P ) is equivalent to the curve

E1(q) : Y 2 + (s′ − (q + 1)s)XY + qss′(s − s′)Y = X3 − qss′X2 (1)

over the (s : s′) line with the rational point P : (X, Y ) = (0, 0), for some q ∈ C
other than 0 or 1.

Theorem 2. i) (Nishiyama [6]) ĥmin(0, 24) = 11/420.
ii) ĥmin(24) = 11/420. Moreover, let E be an elliptic curve with d = 24 over
a complex function field K, and P ∈ E(K). Then the following are equivalent:
(a) ĥ(P ) = 11/420; (b) mP is an integral point on E for each m = 1, 2, . . . , 8;
(c) K ∼= C(T ), and (E, P ) is equivalent to the curve

E2(u) : Y 2 + (r2 − r′2 + (u − 2)rr′)XY

− r2r′(r + r′)(r + ur′)(r + (u − 1)r′)Y (2)
= X3 − rr′(r + r′)(r + ur′)X2

over the (r : r′) line with the rational point P : (X, Y ) = (0, 0), for some u ∈ C
other than 0, 1.

Theorem 3. i) ĥmin(0, 36) = 23/840.
ii) Let E/C(T ) be an elliptic curve with d = 36, and P a rational point on E.
Then the following are equivalent: (a) ĥ(P ) = 23/840; (b) mP is an integral
point on E for each m = 1, 2, . . . , 9; (c) (E, P ) is equivalent to the curve

E3(A) : Y 2 + (At3 + (1 − 2A)t2t′ − (A + 1)tt′2 − t′3)XY

− t3t′(t + t′)(At + t′)(At + (1 − A)t′)(At2 + tt′ + t′2)Y (3)

= X3 − tt′(t + t′)(At + t′)(At2 + tt′ + t′2)Y

over the (t : t′) line with the rational point P : (X, Y ) = (0, 0), for some A ∈ C
other than 0, 1.

The values of ĥmin(12) and ĥmin(24) are new. Note that we do not claim to
determine ĥmin(36). As indicated, the values of ĥmin(0, 12) and ĥmin(0, 24) (the
first parts of Theorems 1 and 2) were already known, but were obtained using
techniques that are specific to the geometry of rational and K3 elliptic surfaces
and do not readily generalize past n = 2. Our approach lets us treat all three
cases uniformly, and in principle lets us determine ĥmin(0, 12n) for any n, though
the computations rapidly become infeasible as n grows beyond 3. The minimizing
(E, P ) had not been previously exhibited, except for a single case of a rational
elliptic surface with a section of height 1/30 obtained by Shioda in a later paper
[11], which we will identify with E1(4/5).
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The connections with integral multiples of P (see statement (b) of part (ii) of
each Theorem) are also new. We do not expect them to persist past n = 3, and in
fact find that for n = 4 the largest number of consecutive integral multiples oc-
curs for (E, P ) with ĥ(P ) = 19/630 or 13/360, whereas ĥmin(0, 48) ≤ 41/1540 <
19/630 < 13/360. We shall say more about integrality later; for now we content
ourselves with the following remarks. A point on an elliptic curve over a func-
tion field k(C) is said to be integral if it is a nonzero point whose näıve height
vanishes. Geometrically, if we regard E as an elliptic surface E over C, and a
rational point P ∈ E(K) as a section sP of E , this means that sP is disjoint from
the zero-section s0 of E . Since g = 0 in our case, we can give an explicit algebraic
characterization of integrality. Write E in extended Weierstrass form as

Y 2 + a1XY + a3Y = X3 + a2X2 + a4X + a6 (4)

where each ai is a homogeneous polynomial of degree i ·n in two variables. Then
a rational point (X, Y ) is integral if X, Y are homogeneous polynomials of de-
grees 2n, 3n respectively. The equation (4) depends on the choice of coordinates
X, Y on E; replacing X, Y by

δ2(X + α2), δ3(Y + α1X + α3) (5)

(some αi and nonzero δ) yields an isomorphic curve. If moreover δ ∈ C∗ and
each αi is a homogeneous polynomial of degree i ·n then the new equation for E
has the same discriminant degree and the same integral points.

1.2 Outline of this Paper

For each n = 1, 2, 3 we prove Theorem n, except for the implications (a),(b)⇒(c)
of part (ii), which require different methods that we defer to a later paper. Our
proofs use the following ingredients:

– ĥ(mP ) = m2ĥ(P ) for all m ∈ Z.
– If mP �= 0 then

ĥ(mP ) = h(mP ) +
∑

v

λv(mP ), (6)

where h(·) is the näıve height and the sum extends over all places v ∈ C(C)
lying under singular fibers Ev of E. (All places of K are of degree 1 thanks
to our use of the algebraically closed field C for k.) The local corrections
λv(mP ) are described further below.

– The näıve height takes values in {0, 2, 4, 6, . . .}, and satisfies h(m′P ) ≤
h(mP ) for any integers m, m′ such that m′|m and mP �= 0.

– Each local correction λv(mP ) depends only on the Kodaira type of the
fiber Ev and on the component of Ev meeting P . We shall call this com-
ponent cv. The values of λv(·) are known explicitly for all Kodaira types and
each possible component, see for instance [13, Thm. 5.2].
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– Finally, the condition that E have discriminant degree d = 12n imposes two
conditions on the Kodaira types of the singular fibers. The first condition is

d =
∑

v

dv, (7)

where dv is the local discriminant degree of Ev. This allows only finitely
many collections of fiber types. The second condition follows from an in-
equality due to Shioda [9, Cor. 2.7 (p.30)], and eliminates some of these
collections that have too few fibers. According to this condition, if a noncon-
stant elliptic curve of discriminant degree d over a function field K = C(C)
has a nontorsion point then the conductor degree of the curve strictly ex-
ceeds (d/6)+χ(C). Here χ(C) = 2−2g is the Euler characteristic of C. The
conductor degree may be defined as the number of multiplicative fibers plus
twice the number of additive fibers; thus it is also a sum of invariants of the
singular fibers. When (g, d) = (0, 12n) we have χ(C) = 2 and d/6 = 2n, so
the conductor degree is at least 2n + 3.

We shall refer to these constraints as the “combinatorial conditions” on ĥ(P ),
h(mP ), and the collection of (Ev, cv) that arise for (E, P ). (For other uses of such
conditions to obtain lower bounds on heights, see for instance [3,14] and work
referenced in these sources.) In general the combinatorial conditions yield only
a lower bound on ĥmin(0, 12n), because they allow some possibilities that do not
actually occur for any (E, P ). But for each of n = 1, 2, and 3 this lower bound
turns out to be attained by some (E, P ) over C(T ), namely those exhibited in
statement (c) of part (ii) of Theorem n. (Note that we do not yet need to derive
the formulas for these (E, P ), nor to prove that they are the only ones possible.)
Moreover, using (6) we can check that ĥ(P ) = ĥmin(0, 12n) if and only if the
näıve height h(mP ) vanishes for all m up to 6, 8, or 9 respectively.

Still, already at n = 1 we see some redundancy. The combinatorial conditions
allow ĥ(P ) = 1/30 to be attained in any of five ways, four of which are realized
by the curves E1(q) of Theorem 1 for suitable choices of q. Shioda’s E1(4/5) has
singular fibers of types I5, I3, I2, and II. (We specify the components cv later
in the paper.) The fibers of E1(−1) have types I5, IV, I2, and I1, while those of
E1(4) have types I5, I3, III, and I1. In all other cases, the fibers of E1(q) have
types I5, I3, I2, I1, I1: the first three at s = 0, s′ = 0, s′ = s, and the last two at
the roots of the quadratic (q + 1)3s2 = (11q2 − 14q + 2)ss′ + (q − 1)s′2. When
q = 4/5, these roots coincide and the two I1 fibers merge to form a II; likewise
at q = −1 or q = 4, one of the I1 fibers merges with the I3 or I2 fiber to form a
IV or III respectively. (The one merger that does not occur is I1 +I1 → I2.) But
none of these degenerations changes ĥ(P ), nor any h(mP ), nor the conductor
degree N . In fact a fiber of type II, III, or IV contributes as much to our formulas
for ĥ(P ), h(mP ), N as a pair of fibers of types I1 and Iν (ν = 1, 2, or 3). Thus it
is enough to minimize ĥ(P ) under the further assumption that no fibers of type
II, III, or IV occur. We find similar replacements for all components of fibers of
the remaining additive types I∗ν , II∗, III∗, IV∗. See Proposition 2. This simplifies
the computation of the combinatorial lower bound on ĥmin(0, 12n): instead of
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an exhaustive search over all combinations of (Ev, cv), we need only try those
for which each Ev is multiplicative (of type Iν for ν = dv).

We programmed the search over all partitions {dv} of 12n in gp [8] and ran it
on a Sun Ultra 60. This took only a fraction of a second for n = 1, five seconds
for n = 2, and five minutes for n = 3. It took about an hour to carry out the
same computation for n = 4, and about 20 hours for n = 5; but the resulting
bounds are probably not attained: as we shall see in a later paper, the required
(Ev, cv) data impose more conditions than the number of parameters needed to
specify (E, P ). We do produce explicit (E, P ) that show ĥmin(0, 48) ≤ 41/1540
and ĥmin(0, 60) ≤ 261/10010, and conjecture that these are the correct values
of ĥmin(0, 12n) for n = 4, 5. We have not attempted to extend the computation
past n = 5.

1.3 Coming Attractions

Happily, the computation of the surfaces (1,2,3) not only completes the proofs
of Theorems 1 through 3 but also points the way to further results and con-
nections. We outline these here, and defer detailed treatment to a later paper
in this series. In each step of the computation we in effect obtain a new bi-
rational model for the moduli space, call it X , of pairs (E, P ) consisting of
an elliptic curve and a point on it. Our new parametrizations of this rational
surface X have several other applications. One is a geometric interpretation of
Tate’s method for exhibiting the generic elliptic curve with an N -torsion point:
we readily locate the modular curves X1(N) (N ≤ 16) on X , together with
nonconstant rational functions of minimal degree that realize each X1(N) as
an algebraic curve of genus ≤ 2. Arithmetically, we can use our parametriza-
tions of X to find (E, P ) over Q (or over some other global field) such that
P is a nontorsion point with small ĥ(P ), and/or with many integral multiples
in the minimal model of E. For instance, we prove that there are infinitely
many (E, P )/Q such that mP is integral for each m = 1, 2, . . . , 11, 12. Our
numerical results for a isolated curves (E, P ) over Q may be found on the
Web at http://www.math.harvard.edu/∼elkies/low height.html . They include new
records for consecutive integral multiples and for the Lang ratio ĥ(P )/ log |ΔE |.
We have mP integral for each m = 1, 2, . . . , 13, 14 for

E : Y 2 + XY = X3 − 139761580X + 1587303040400, (8)

an elliptic curve of conductor 1029210 = 2 ·3 ·5 ·7 ·132 ·29, and P the nontorsion
point (X, Y ) = (11480, 1217300); and we find the curve

Y 2 + XY = X3 − 161020013035359930X + 24869250624742069048641252 (9)

of conductor 3476880330 = 2 · 3 · 5 · 7 · 11 · 23 · 31 · 2111 with the nontorsion
point (−296994156, 6818852697078) of canonical height2 ĥ(P ) = .0190117 . . . <

2 There are two standard normalizations, differing by a factor of 2, for the canonical
height of a point on an elliptic curve over Q. We use the larger one, which is the one
consistent with our formulas for function fields.
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1.691732·10−4 log |ΔE |. The curves (8,9) are the specializations of our formula (3)
with (A, t/t′) = (35/32,−8/15), (33/23, 115/77).

Our simplified formula for ĥ(mP ) (Proposition 2) also bears on the asymptotic
behavior of ĥmin(g, 12n) for fixed g as n →∞. Hindry and Silverman [3] used the
combinatorial conditions (except for the condition: h(m′P ) ≤ h(mP ) if m′|m)
to show that there exists C > 0 such that

ĥ(g, 12n) ≥ Cn − Og(1), (10)

This proved the function-field case of a conjecture of Lang [4, p.92]. The error
terms Og(1) are effectively computed, and can be omitted entirely if g ≤ 1.
Hindry and Silverman also produce an explicit constant C, but it is quite small:
about 7 · 10−10. Their approach requires a point meeting every additive fiber in
its identity component, which they achieved by working with 12P instead of P ,
at the cost of a factor of 1/122 in C. Our results here let one apply the same
methods directly to P , thus saving a factor of 122 and raising C to about 10−7. In
a later paper we show how to gain another factor of approximately 5000, raising
the lower bound on lim infn ĥ(g, 12n)/n to 1/2111. This is within an order of
magnitude of the correct value: for all n ≡ 0 mod 5 we obtain ĥmin(0, 12n) ≤
261n/50050 via base change from our n = 5 example.

2 The Näıve and Canonical Heights

We collect here the facts we shall use about elliptic curves E over function
fields K in characteristic zero, the associated elliptic surface E , and the näıve
and canonical height functions on E(K).

2.1 The Näıve Height

The näıve height h(P ) of a nonzero P ∈ E(K) can be defined using intersection
theory on the elliptic surface E associated to some model of E. Let s0 be the
zero-section of the elliptic fibration E → C, and sP the section corresponding
to P . Then h(P ) := 2sP · s0. Since we assumed that P �= 0, the sections s0, sP

are distinct curves on E . Hence their intersection number sP ·s0 is a nonnegative
integer, and h(P ) is a nonnegative even integer. Moreover h(P ) = 0 if and only
if sP is disjoint from s0, in which case we say that P is an integral point on E.

When C = P1, we can give an equivalent algebraic definition of h(P ) in terms
of a Weierstrass equation of E. This definition emphasizes the analogy with the
canonical height in the more familiar case of an elliptic curve over Q. Recall that
each coefficient ai in the Weierstrass equation (4) is a homogeneous polynomial
of degree i ·n in the projective coordinates on P1. Then the coordinates x, y of a
nonzero P ∈ E(K) are homogeneous rational functions of degrees 2n, 3n. If x, y
are written as fractions “in lowest terms”, as quotients of coprime homogeneous
polynomials, then the denominators are (up to scalar multiple) the square and
cube of some polynomial ζ. The roots of ζ, with multiplicity, are the images
on P1 of the intersection points of s0 and sP . Hence sP · s0 = deg ζ. Therefore
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h(P ) is the degree of the denominator ζ2 of x, which is also the number of poles
of x counted with multiplicity. An integral point is one for which ζ is a nonzero
scalar and thus x, y are homogeneous polynomials of degrees 2n, 3n.

For an arbitrary base curve C, the coefficients ai are global sections of L⊗i

for some line bundle L on C, and x, y are meromorphic sections of L⊗2,L⊗3.
The pole divisors of x, y are 2Z, 3Z for some effective divisor Z on C, whose
degree is sP · s0; thus again h(P ) is the degree of the pole divisor 2Z of x, and
P is integral iff Z = 0 iff x, y are global sections of L⊗2,L⊗3. A linear change of
coordinates according to (5) yields the same notion of integrality if and only if
δ ∈ C∗ and αi ∈ Γ (L⊗i) for each i.

We shall need one more property of the näıve height beyond its relation with
the canonical height and the fact that h(mP ) ∈ {0, 2, 4, 6, . . .} (mP �= 0):

Lemma 1. Let P be a point on an elliptic curve over k(C), and let m, m′ be
any integers such that m′|m and mP �= 0. Then h(m′P ) ≤ h(mP ).

Proof : Each point of sm′P ∩ s0 is also a point of intersection of smP with s0, to
at least the same multiplicity. Hence sm′P · s0 ≤ smP · s0, so

h(m′P ) = 2sm′P · s0 ≤ 2smP · s0 = h(mP )

as claimed. ��

Remarks :
1. We could also state the result as: The näıve height of a point is less than or

equal to the näıve height of any of its multiples that is not the zero point.
This is a more natural formulation (the first point does not have to be written
as m′P ), but less convenient for our purposes.

2. In the proof, “at least the same multiplicity” can be strengthened to “exactly
the same multiplicity” in our characteristic-zero setting. In general h(mP )
may strictly exceed h(m′P ) because smP ∩s0 may also contain points where
m′P reduces to a nontrivial (m/m′)-torsion point.

The näıve height satisfies further inequalities along the lines of Lemma 1, for
instance

h(6P ) + h(P ) ≥ h(2P ) + h(3P ). (11)

Lemma 1 suffices for the proofs of Theorems 1–3 in the genus-zero case, but in-
equalities such as (11) are sometimes needed to exclude possible configurations
with positive g, as we shall see for d = 24. The strongest such inequality we
found is:

Lemma 2. Let P be a point on an elliptic curve over k(C), and let m be any
integer such that mP �= 0. Then∑

m′|m
μ(m/m′) h(m′P ) ≥ 0. (12)
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Proof: The left-hand side can be interpreted as twice the number of points of C,
counted with multiplicity, at which mP = 0 but m′P �= 0 for each proper
factor m′ of m. ��
Inequality (11) is the special case m = 6 of this Lemma. The sum in (12) may be
considered as an analogue of the formula

∏
m′|m(xm′ − 1)μ(m/m′) for the m-th

cyclotomic polynomial. We recover Lemma 1 by summing the inequality (12)
over all factors of m, including m itself but not 1, to obtain h(mP ) ≥ h(P ),
which is equivalent to Lemma 1 by the first Remark above.

2.2 Local Invariants, and Shioda’s Inequality

To go from the näıve to the canonical height we must use the minimal model
of E for the elliptic surface E . We next describe this model, collect some known
facts on the singular fibers of E , and give Shioda’s lower bound on the conductor
degree.

Whereas a näıve height could be defined for any model of E,3 the canonical
height requires the Néron minimal model. It is known that there exists a minimal
line bundle L on C with the following property: let D be a divisor on C such
that O(D) ∼= L; then E is isomorphic to a curve with an extended Weierstrass
equation (4) whose coefficients ai are global sections of iD. In characteristic
zero we can easily obtain D and L by putting E in narrow Weierstrass form
Y 2 = X3 + a4X + a6. Then D is the smallest divisor such that (a4) + 4D ≥ 0
and (a6) + 6D ≥ 0. In other words, we can regard a4, a6 as global sections of
L⊗4,L⊗6 such that there is no point of C where a4 and a6 vanish to order
at least 4 and 6 respectively. Once we have ai ∈ Γ (L⊗i), we can regard the
Weierstrass equation (4) as a surface in the plane bundle L⊗2 ⊕ L⊗3 over C. If
all the roots of the discriminant Δ ∈ Γ (L⊗12) are distinct then this surface is
smooth and is the minimal model of E. Otherwise it has isolated singularities,
which we blow up as many times as needed (we may follow Tate’s algorithm [16])
to obtain the minimal model E . This is a smooth algebraic surface of arithmetic
genus n = degL, equipped with a map to C with generic fiber E and ωE/C

∼= L.
See for instance [1, pp.149ff.].

We shall need much information about the singular fibers that can arise for
the elliptic fibration E → C. We extract from Tate’s table [16, p.46] the following
local data for each possible Kodaira type of a singular fiber Ev: the discriminant
degree dv, the conductor degree Nv, and the structure of the group Ev/(Ev)0
of multiplicity-1 components. We also list in each case the root lattice Lv that
Ev contributes to the Néron-Severi lattice NS(E) of E . In each case, Lv has rank
dv−Nv, and Ev/(Ev)0 ∼= L∗

v/Lv where L∗
v ⊂ Lv⊗Q is the dual lattice. The lattice

“A0” that appears for Kodaira types I1 and II is the trivial lattice of rank zero.
For Kodaira type I∗ν , the group Ev/(Ev)0 always has order 4, and has exponent 2
or 4 according as ν is even or odd. For positive ν of either parity, a fiber of type
3 Two models may yield different heights h, h′, but h′ = h + O(1) holds for any pair

of näıve heights on the same curve. It also follows that the property ĥ = h + O(1)
of the canonical height does not depend on the choice of näıve height h.
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I∗ν has a distinguished multiplicity-1 component of order 2 in Ev/(Ev)0, namely
the one closest to the identity component. In the Lv picture, the distinguished
component corresponds to the nontrivial coset of D4+ν in Z4+ν . When ν =
0 there is no distinguished component: all three non-identity components of
multiplicity 1 are equivalent, as are all three nontrivial cosets due to the triality
of D4.

Kodaira type Iν(ν > 0) II III IV I∗ν IV∗ III∗ II∗

dv ν 2 3 4 6 + ν 8 9 10
Nv 1 2 2 2 2 2 2 2

Ev/(Ev)0 Z/νZ {0} Z/2Z Z/3Z D∗
4+ν/D4+ν Z/3Z Z/2Z {0}

root lattice Aν−1 A0 A1 A2 D4+ν E6 E7 E8

The discriminant and conductor degrees d, N of E are sums of the discriminant
and conductor degrees of the singular fibers:

12n = d =
∑

v

dv, N =
∑

v

Nv. (13)

Hence d − N =
∑

v(dv − Nv) =
∑

v rk Lv is the rank of the subgroup ⊕vLv

of NS(E) due to the singular fibers. Shioda used this to prove [9, Cor. 2.7 (p.30)]:

Proposition 1. Let E be a nonconstant elliptic curve over a function field K =
k(C) of genus g, with discriminant and conductor degrees d = 12n and N . Then

N ≥ 2n + (2 − 2g) + r, (14)

where r is the rank of the Mordell-Weil group E(K).

Proof: Let T ⊆ NS(E) be the subgroup spanned by s0, the generic fiber, and
⊕vLv. Then we have a short exact sequence (see for instance [10, Thm. 1.3]):

0 → T → NS(E) → E(K) → 0, (15)

where the map NS(E) → E(K) is the sum on the generic fiber. Taking ranks,
we find

rkNS(E) = rk T + rk E(K) = 2 + (d − N) + r. (16)

But NS(E) embeds into H1,1(E , Z), a group of rank h1,1(E) = 10n + 2g. Hence
rkNS(E) ≤ 10n + 2g. Therefore

N ≥ (d + 2 + r) − (10n + 2g) = 2n + (2 − 2g) + r,

as claimed. ��

Remarks
1. Since r ≥ 0 it follows that

N ≥ 2n + (2 − 2g) = (d/6) + χ (17)
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for any nonconstant elliptic surface. This weaker inequality is sufficient for
most of our purposes, even though we are interested in curves with a non-
torsion point, for which the strict inequality N > (d/6) + χ holds because
r > 0.

2. The inequality (17) is now usually known as the “Szpiro inequality”, but
Shioda’s paper [9] predates Szpiro’s [15] by almost two decades (see also
[12, p.114]). It is by now well-known that (17) can be proved by elementary
means via Mason’s theorem [5] (the ABC inequality for function fields).
Can one also give an elementary proof of Shioda’s inequality, or even of its
consequence that r = 0 if N = (d/6) + χ?

3. The requirement that E not be a constant curve is essential. There is an anal-
ogous statement for constant curves but many details must change. Suppose
E is such a curve, that is, E = C × E0 for some elliptic curve E0/k. Then
E(K) is not finitely generated, because it contains a copy of E0(k). Still,
E(K)/E0(k) is finitely generated, and identified with the group NS(E)/T .
Again we call the rank of this group r. Since n = d = N = 0 in this setting,
we obtain the inequality r + 2 ≤ h1,1(C ×E0)− 2. But for a constant curve,
h1,1(C × E0) = 2g + 2, instead of the 2g that one would expect from the
10n + 2g formula. Hence r ≤ 2g. This can also be proved using the identi-
fication of E(K)/E0(k) with End(Jac(C), E0), an approach that also yields
the equality condition: clearly r = 2g if g = 0; if g > 0 then r = 2g if and
only if E0 has complex multiplication and Jac(C) is isogenous with Eg

0 . See
for instance [2].

4. The hypothesis of characteristic zero, too, is essential here. In positive char-
acteristic, one cannot decompose the second Betti number b2(E) as h2,0 +
h1,1 + h0,2, so one has only the weaker upper bound b2(E) on rk(NS(E)).
This upper bound exceeds the characteristic-zero bound by 2g for a con-
stant curve and 2(n + g − 1) for a nonconstant one. For instance, a constant
curve C ×E0 has r ≤ 4g, with equality if and only if either g = 0 or E0 and
Jac(C) are both supersingular. In general E is said to be “supersingular” if
NS(E) ∼= Zb2(E); such surfaces were studied and used in [10,2].

2.3 Local Height Corrections

We next list the local height corrections λv(mP ) for each of the Kodaira types.
For convenience we abuse notation by using mP to refer also to the section smP .

– If mP is on the identity component of Ev then

λv(mP ) = dv/6. (18)

In particular this covers fibers of type II or II∗.
– If Ev is of type Iν and P passes through component a ∈ Z/νZ, let x = ā/ν

for any lift ā of a to Z; then

λv(mP ) = νB(mx), (19)
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where B(·) is the second Bernoulli function B(z) :=
∑∞

n=1 cos(2πn)/(πn)2.
Since B is Z-periodic, the choice of ā does not matter. Likewise, since
B(z) = B(−z) it does not matter that a cannot be canonically distinguished
from −a. We have

B(z) = z2 − z +
1
6

(20)

for all z ∈ [0, 1], so in particular B(0) = 1/6. Hence λv(mP ) = ν/6 if mP
passes through the identity component of Ev, as also asserted by (18) in that
case.

– If Ev is of type III, IV, I∗0, III∗, or IV∗, and mP passes through a non-identity
component of Ev, then λv(mP ) = 0.

– Finally, suppose Ev is of type I∗ν (ν > 0) and that mP passes through
a non-identity component. If that component is the distinguished one of
order 2 then λv(mP ) = ν/6. Otherwise λv(mP ) = −ν/12. (We could have
also allowed ν = 0, when there is no distinction among the three non-identity
components, but λv(mP ) = ν/6 = −ν/12 = 0 for all of them.)

We record two applications of these formulas for future use:

Lemma 3. Let E be an elliptic curve of discriminant degree 12n over a function
field K, and P any nonzero point of E(K). Then

− n ≤ ĥ(P ) − h(P ) ≤ 2n. (21)

Proof : For each v we have −dv/12 ≤ λv ≤ dv/6. Summing over v yields (21). ��

Lemma 4. Let E be an elliptic curve of discriminant degree 12n over a function
field K, and P any point of E(K). If for some integer m the multiple mP is a
nonzero integral point then ĥ(mP ) ≤ 2n/m2.

Proof : By our formulas for λv we have λv(mP ) ≤ dv/6 for all v. Hence

m2ĥ(P ) = ĥ(mP ) = h(mP ) +
∑

v

λv(mP ) ≤ h(mP ) +
∑

v

dv/6. (22)

But h(mP ) = 0 since mP is integral, and
∑

v dv/6 = d/6 = 2n. Hence m2ĥ(P ) ≤
2n, and the Lemma follows. ��

2.4 Reduction to the Semistable Case

Recall that an elliptic curve is said to be semistable if all its singular fibers
are of type Iν for some ν. Suppose E/K is semistable and P is a nontorsion
point in E(K). We associate to (E, P ) an element γ of the abelian group G of
formal Z-linear combinations of orbits of Q under the infinite dihedral group
D∞ generated by z �→ z +1 and z ↔ 1− z. We denote by [z] the generator of G
corresponding to the orbit of z. Then γ is defined as a sum of local contributions
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γv ∈ G that record the types ν(v) of the singular fibers Ev and the component
cv = a(v) ∈ Z/(ν(v))Z of each fiber that contains P , as follows:

γv :=
∑

v

gcd(a(v), ν(v)) ·
[

a(v)
ν(v)

]
. (23)

Then each of the height corrections ĥ(mP )−h(mP ), as well as the discriminant
degree, are images of γ under homomorphisms λm, d from G to Q or Z, and
the conductor is bounded above by the image of a homomorphism N : G → Z.
We define these homomorphisms on the generators of G and extend by linearity.
Suppose Q # z = a/b with b > 0 and gcd(a, b) = 1. Note that b is an invariant
of the action of D∞. Then we set

λm([z]) := b B2(mz), d([z]) := b, N([z]) := 1. (24)

Then our formulas (19,13) yield the identities

ĥ(mP ) = h(mP ) + λm(γ) (m = 1, 2, 3, . . .), 12n = d = d(γ) (25)

and the estimate
N ≤ N(γ). (26)

(This last is an upper bound rather than an identity because each v contributes 1
to N and gcd(a(v), ν(v)) ≥ 1 to N(γ).) It follows that

N(γ) ≥ N ≥ (d/6) + (2− 2g) + r ≥ 1
6
d(γ) + 3 − 2g. (27)

The second step is Shioda’s inequality (Prop. 1), and the third step uses the
positivity of r, which follows from our hypothesis that P is nontorsion.

To generalize these formulas to curves that may not be semistable, it might
seem that we would have to extend G with generators that correspond to Ko-
daira types other than Iν . But we can associate to any additive fiber Ev an
element of G whose images under λm and d coincide with λv(mP ) and dv, and
whose image under N is ≥ Nv. (Note that we already did this for multiplicative
fibers with f = gcd(a(v), ν(v)) > 1, replacing them in effect by f fibers with a, ν
coprime and the same value of a/ν.) As in the multiplicative case, this element is
positive, in the sense that it is a nonzero formal linear combination of elements
of Q/D∞ with nonnegative coefficients. Specifically, we have:

Proposition 2. Let E be an elliptic curve over a function field K of genus g,
and P ∈ E(K) a nontorsion point. Define for each singular fiber Ev a positive
γv ∈ G, depending on (Ev, cv) as follows:

– If Ev is multiplicative, γv is defined by (23).
– If cv is the identity component then γv := dv [0].
– If cv is a non-identity component of a fiber Ev of type III, IV, IV∗, or III∗

then γv is respectively

[1/2] + [0], [1/3] + [0], 2 · [1/2] + 2 · [0], 3 · [1/3] + 3 · [0].
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– If cv is a distinguished component of a fiber Ev of type I∗ν then

γv := 2 [1/2] + (ν + 2) [0].

– If cv is a non-distinguished, non-identity component of a fiber Ev of type I∗ν
then

γv := (μ + 2) [1/2] + 2 [0]

if ν = 2μ, and
γv := [1/4] + (μ + 1) [1/2] + [0]

if ν = 2μ + 1 for some integer μ.

Then:
i) λv(mP ) = λm(γv) for each m = 1, 2, 3, . . .;
ii) dv = d(γv); and
iii) Nv ≤ N(γv).

Thus (25,26,27) hold for γ :=
∑

v γv. Equality in (iii) holds if and only if Ev is
either a multiplicative fiber with gcd(a, ν) = 1, a fiber of type III or IV with cv

a non-identity component, or a fiber of type II.

[Note that, as was true for the λv formulas, the first two formulas in Prop. 2
overlap in the case of a multiplicative fiber with a(v) = 0, but give the same
answer in this case. Here both prescriptions yield γv = ν(v) · [0] for such v.]

Proof : The multiplicative case was seen already. For each of the other Kodaira
types, it is straightforward to verify that λv(mP ) = λm(γv) for each nonnegative
m less than the exponent of the finite group Ev/(Ev)0 (which is at most 4), and
to check that dv = d(γv), and that Nv ≤ N(γv), with strict inequality except in
the three cases listed. We recover (25,26,27) by summing over v. ��

3 The Values of ĥmin(0, 12n) for n = 1, 2, 3, and
Consecutive Integral Multiples

For each n we can use the formulas and results above to obtain a lower bound
on ĥmin(g, 12n). When g = 0 and n = 1, 2, 3 we also show that this bound is
attained if and only if mP is integral for m ≤ M = 6, 8, 9, and verify that the
(E, P ) exhibited in Theorem n satisfy those conditions.

Suppose E is an elliptic curve over C(T ) with discriminant degree 12n. Let
P be a nontorsion rational point on E, and γ the associated element of G. From
γ and ĥ(P ) we can recover all the näıve heights h(mP ) from the first formula
in (25): h(mP ) = m2ĥ(P ) − λm(γ). Given n and an upper bound H on ĥ(P ),
there are only finitely many candidates for the pair (γ, ĥ(P )): there are finitely
many γ > 0 with d(γ) = 12n, and for each one there are only finitely many
possible choices for h(P ) consistent with h(P )+λ1(γ) = ĥ(P ) ∈ (0, H ]. For each
candidate (γ, ĥ(P )) we can check the condition m′|m ⇒ h(mP ) ≥ h(m′P ) ≥ 0.
Only finitely many m need be checked for each (γ, ĥ(P )): by Lemma 3 we know
that h(mP ) ≥ 0 once m2ĥ(P ) ≥ n, and h(mP ) ≥ h(m′P ) for each m′|m once
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m2ĥ(P ) ≥ 4n. The minimal ĥ(P ) among the (γ, ĥ(P )) that pass these tests is
then our lower bound on ĥmin(g, 12n). [We could also test the more complicated
inequality of Lemma 2, which may further improve the bound; instead we checked
that inequality after the fact when necessary.]

We wrote a gp program to compute this bound by exhaustive search, and ran
it with H = 2n/M2 for n = 1, 2, 3. We chose this upper bound H to ensure that,
by Lemma 4, we would also find all feasible (γ, ĥ(P )) such that h(mP ) = 0 for
each m = 1, 2, 3, . . . , M . For n = 1, we found that the minimum occurs for

γ = [1/5] + [1/3] + [1/2] + 2 [0], ĥ(P ) = 1/30, (28)

and is the unique (γ, ĥ(P )) such that h(mP ) = 0 for each m ≤ 6. For n = 2, we
found that the minimum occurs for

γ = [1/11] + 2 [2/5] + [1/3], ĥ(P ) = 4/165; (29)

but this is not feasible because h(mP ) = 0, 2, 2, 2 for m = 2, 4, 6, 12, so inequal-
ity (11) is violated when m = 2. Our lower bound on ĥmin(g, 24) is thus the
next-smallest value, which occurs for

γ = [1/7] + [2/5] + [1/4] + [1/3] + [1/2] + 3 [0], ĥ(P ) = 11/420, (30)

and is the unique (γ, ĥ(P )) such that h(mP ) = 0 for each m ≤ 8.
On the other hand, the (γ, ĥ(P )) pairs of (28,30) are also those associated

with the curves and points E, P exhibited in (1,2). Hence those E, P attain our
lower bounds 1/30, 11/420 on ĥmin(12), ĥmin(24), as well as the upper bounds 6
and 8 on the number of consecutive integral multiples for n = 1 and n = 2. This
proves all of Theorems 1 and 2 except for the claims that every (E, P ) attaining
those bounds is isomorphic with some E1(q) or E2(u).

For n = 3, we find that there is a unique (γ, ĥ(P )) such that h(mP ) = 0 for
each m ≤ 9, namely

γ = [1/8] + [3/7] + [1/5] + [1/4] + 2 [1/3] + [1/2] + 4 [0], ĥ(P ) = 23/840. (31)

Again these are the γ and ĥ(P ) for the (E, P ) exhibited in the Introduction
(formula (3)). But we do not claim that ĥmin(36) = 23/840: Lemma 2 eliminates
the second-smallest pair

(γ, ĥ(P )) = ([1/13] + [3/8] + [3/7] + [1/5] + [1/3], 229/10920)

(which violates the inequality (11) in the same way that (29) did), but not several
other possibilities with ĥ(P ) < 23/840. We next list all these possibilities, in
order of increasing ĥ(P ):

γ ĥ(P )
[1/13] + [3/11] + [3/8] + 2 [1/2] 23/1144 ≈ .02010

[1/13] + [3/8] + [2/7] + [1/4] + 2 [1/2] 17/728 ≈ .02335
[1/11] + [4/9] + [2/7] + [1/4] + [1/3] + 2 [0] 65/2772 ≈ .02345

[1/12] + [3/11] + [3/8] + 2 [1/2] + [0] 7/264 ≈ .02652
[1/11] + [3/7] + 2 [1/5] + [1/4] + 2 [1/2] 41/1540 ≈ .02662

(32)
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(For comparison, 229/10920 ≈ .02097 and 23/840 ≈ .02738.) We have d(γ) ≤ 7
for each entry in the table (32); therefore by Prop. 1 none of them can occur
for an elliptic curve over P1. (Even the weaker inequality (17) would suffice
here; either of those inequalities also excludes (29) for n = 2, and would thus
be enough to obtain ĥmin(0, 24), but the determination of ĥmin(24) required a
further argument.) Thus ĥmin(0, 36) = 23/840, proving Theorem 3 except for the
claim that every (E, P ) satisfying conditions (a) and (b) is of the form E3(A)
for some A.
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Abstract. The (2, 3, 7) triangle group is known to be associated with
a quaternion algebra A/K ramified at two of the three real places of
K = Q(cos 2π/7) and unramified at all other places of K. This triangle
group and its congruence subgroups thus give rise to various Shimura
curves and maps between them. We study the genus-1 curves X0(3),
X1(3) associated with the congruence subgroups Γ0(3), Γ1(3). Since the
rational prime 3 is inert in K, the covering X0(3)/X (1) has degree 28,
and its Galois closure X (3)/X (1) has geometric Galois group PSL2(F27).
Since X (1) is rational, the covering X0(3)/X (1) amounts to a rational
map of degree 28. We compute this rational map explicitly. We find that
X0(3) is an elliptic curve of conductor 147 = 3 · 72 over Q, as is the
Jacobian J1(3) of X1(3); that these curves are related by an isogeny of
degree 13; and that the kernel of the 13-isogeny from J1(3) to X0(3)
consists of K-rational points. We also use the map X0(3) → X (1) to
locate some complex multiplication (CM) points on X (1). We conclude
by describing analogous behavior of a few Shimura curves associated with
quaternion algebras over other cyclic cubic fields.

1 Introduction

1.1 Review: Quaternion Algebras over K, Shimura Modular
Curves, and the (2, 3, 7) Triangle Group

Let K be the field Q(cos 2π/7), which is the totally real cubic field of minimal
discriminant (namely, discriminant 49); let OK be the ring Z[2 cos 2π/7] of alge-
braic integers in K; and let A be a quaternion algebra over K ramified at two
of the three real places and at no other place of K. This algebra exists because
the set of ramified places has even cardinality, and is determined uniquely up to
K-algebra isomorphism. (See for instance [Vi] for this and other basic results on
quaternion algebras and Shimura curves, and [E2] for our computational con-
text.) All maximal orders in A are conjugate because A is indefinite and OK

has narrow class number 1; we fix one maximal order O ⊂ A. Let Γ (1) be the
group of elements of O of reduced norm 1. Since A has exactly one unramified
real place, Γ (1) embeds into SL2(R) as a discrete co-compact subgroup. Let
H be the upper half-plane, with the usual action of PSL2(R) = SL2(R)/{±1}.

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 302–316, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The quotient of H by Γ (1)/{±1} then has the structure of a compact Riemann
surface, and thus of an algebraic curve over C. In fact this quotient has a nat-
ural structure as a curve over K, namely the Shimura curve associated to Γ (1).
We call this Shimura curve X (1), in analogy with the modular elliptic curve
X(1) of the classical theory of elliptic and modular curves: as X(1) parametrizes
elliptic curves, X (1) parametrizes certain abelian varieties which we shall call
“O-varieties”.1 By work of Shimura [Sh1], based on the classical work of Fricke
[F1, F2], the group Γ (1)/{±1} ⊂ SL2(R) is the (2, 3, 7) triangle group (the group
generated by products of pairs of reflections in the sides of a hyperbolic triangle
of angles π/2, π/3, π/7). Hence X (1) is a curve of genus 0 with elliptic points of
orders 2, 3, 7. We choose the rational coordinate t : X (1) ∼−→ P1 that takes the
values 0, 1,∞ respectively at these three points; this determines t uniquely (as
the classical modular invariant j is determined by its values 1728, 0,∞ at the
elliptic points of orders 2, 3 and the cusp).

Suppose now that Γ ⊂ Γ (1)/{±1} is a subgroup of finite index d. Then
X = H/Γ is a compact Riemann surface with a degree-d map to X (1) that is
unramified away from the elliptic points of X (1). Composing the map π : X →
X (1) with our isomorphism t : X (1) ∼−→ P1 yields a rational function t ◦ π of
degree d on X that is unramified except above t = 0, t = 1, and t = ∞. Such
a rational function is often called a “Belyi function” on X , in tribute to Belyi’s
theorem [Bel] that a Riemann surface admits such a function if and only if it
can be realized as an algebraic curve over Q. It will be convenient, and should
cause no confusion, to use t also as the notation for this rational function on X .

In particular, if Γ is a congruence subgroup of Γ (1)/{±1} — that is, if there
exists a nonzero ideal N of OK such that Γ contains the image in Γ (1)/{±1} of
the normal subgroup

Γ (N) := {g ∈ Γ (1) | g ≡ 1 mod NO}

— then X is also a Shimura modular curve, parametrizing O-varieties with
some level-N structure. For example, Γ (N) itself is a congruence subgroup,
1 Warning: unlike the case of Shimura curves associated with quaternion algebras

over Q, here an O-variety is not simply a principally polarized abelian vari-
ety with endomorphisms by O. Indeed there can be no abelian variety V with
End(V ) ⊗ Q = A, because the set of ramified primes of A neither contains nor is
disjoint from the set of real places of K. (See for instance [Mu], specifically Thm.1 on
p.192 (positivity of the Rosati involution) together with the classification in Thm.2
on p.201.) The moduli description is quite complicated (see [Sh1, Ca]), and requires
an auxiliary quadratic extension K′/K, with the field K′ totally imaginary; for in-
stance, for our case K = Q(cos 2π/7) we may take K′ = K(

√−7) = Q(e2πi/7). The
moduli description yields X (1) as a curve over K′, but fortunately X (1) descends
to a curve over K independent of the choice of K′. The same is true of the curves
X (N), X1(N), X0(N) and the maps X (N) → X1(N) → X0(N) → X (1) (to be in-
troduced soon) that concern us in this paper, at least provided that the extension
K′/K satisfies some local conditions at the primes dividing N . I am grateful to Bene-
dict Gross for explaining these subtleties and suggesting the references to [Ca, Mu].
Fortunately very little of this difficult theory is needed for our computations.
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corresponding to a Shimura curve parametrizing O-varieties with full level-N
structure. We call this curve X (N), again in analogy with the classical case. If
N is a prime ideal with residue field k, the ring O/NO is isomorphic with the
ring M2(k) of 2× 2 matrices over k, because A is unramified at all finite places
of k, including N . We choose one isomorphism ι : O/NO ∼−→ M2(k); the choice
does not matter because all are equivalent under conjugation by O∗. We then
obtain congruence subgroups Γ0(N) � Γ1(N) ⊃ Γ (N), where Γ0(N) consists of
those g ∈ Γ (1) for which ι(g) is upper triangular, and Γ1(N) is the kernel of
the map from Γ0(N) to k∗/{±1} taking g to the top left entry of the matrix
ι(g) mod NO. The corresponding Shimura curves are naturally denoted X0(N),
X1(N) respectively. Once one has formulas for the cover X0(N) → X (1), one can
use them as in [Se] to obtain explicit extensions of K or Q (the latter when the
residual characteristic of N does not split in OK) whose normal closures have
Galois groups PSL2(k), Aut(PGL2(k)), or other groups intermediate between
these two.

Analogous to the Atkin-Lehner involution wN of the classical modular curve
X0(N), we have an involution wN of X0(N), which can be constructed either from
the normalizer of Γ0(N) in A∗ or by invoking the dual isogeny of the “cyclic”
isogeny between O-varieties parametrized by a generic point of Γ0(N). Once ex-
plicit formulas are known for both the map X0(N) → X (1) and the involution
wN , one can easily compute other interesting data. By eliminating p ∈ X0(N)
from the system T1 = t(p), T2 = t(wN (p)), we obtain the “modular polynomial”
ΦN (T1, T2), which is the irreducible polynomial such that ΦN (t1, t2) = 0 if and
only if t1, t2 ∈ C are t-coordinates of “N -isogenous” points on X (1). The solu-
tions of ΦN (t, t) = 0 are then coordinates of points of complex multiplication
(CM) on X (1), that is, points that parametrize O-varieties with CM. Finally,
with some more effort we can obtain equations defining the recursive tower of
curves X0(Nn) (n = 1, 2, 3, . . .), whose reduction modulo any prime & of OK not
dividing N is asymptotically optimal over the quadratic extension of the residue
field of & (see [E1]).

If Γ is a proper normal subgroup, congruence or not, in Γ (1)/{±1}, then
the quotient group G acts on X . By the Riemann-Hurwitz formula, d = |G| =
84(g − 1), where g is the genus of X . That is, (X , G) is a “Hurwitz curve”: a
curve of genus g > 1 that attains the Hurwitz bound ([H], see also [ACGH, Ch.I,
Ex.F-3 ff., pp.45–47]) on the number of automorphisms of a curve of genus g over
a field of characteristic zero. Conversely, all Hurwitz curves arise in this way for
some proper normal subgroup of Γ (1). For example, if N is a prime ideal with
residue field k then X (N) is a curve with G = PSL2(k) that attains the Hurwitz
bound.

The first few possibilities for N yield k of size 7, 8, 13, and 27. The first of
these, with N the prime of K above the totally ramified rational prime 7, yields
the famed Klein quartic of genus 3, which also arises as the classical modular
curve X(7) (see [E3]). The second, with N above the inert rational prime 2,
yields the Fricke-Macbeath curve of genus 7 [F3, Ma]. If N is any of the three
primes above the split rational prime 13 then X (N) is a curve of genus 14 that
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can be defined over K but not over Q [Str]. In each of those cases, X0(N) has
genus zero.

The next case, and the main focus of this paper, is the prime of residue field
F27 above the inert rational prime 3. We call the resulting Shimura curves X0(3),
X1(3), X (3). Since this prime is invariant under Gal(K/Q), these Shimura curves
and their Belyi maps to X (1) (though not the action of PSL2(F27) on X (3)) can
be defined over Q [DN, Wo]. Here for the first time X0(N) has positive genus;
we calculate that X0(3) and X1(3) both have genus 1. The determination of the
curve X0(3), and of its degree-28 Belyi map to X (1) — that is, the degree-28
function t on X0(3) — requires techniques beyond those of [E2].

In section 2 of this paper, we exhibit equations for this cover and show how we
compute them. We locate the coefficients to high p-adic precision via Newton’s
method, using p = 29, a prime at which the cover has good reduction but some
of the coefficients are known in advance modulo p and the rest can be determined
algebraically. We then compute the simplest rational numbers consistent with the
p-adic approximations, and prove that they are in fact the correct coefficients.
The same method, possibly extended by exhaustive searching mod p, can be
used to compute other such covers. (For instance, we used it to compute a
previously unknown Shimura-Belyi function of degree 26 connected with the
(2, 3, 8) triangle group. We shall give the details of this computation, and other
Shimura-Belyi maps for the (2, 3, 8) triangle group, in a later paper.)

Having obtained equations for the map X0(3) → X (1), we use those equations
as explained above to locate several CM points on X (1). In particular, we confirm
our conjecture from [E2] for the rational point of CM discriminant −11: we had
computed its t-coordinate to high enough precision to convincingly guess it as
an element of Q, but could not prove this guess. It also follows immediately from
our formulas that X0(3) has a Q-rational point, and is thus an elliptic curve. In
section 3 of this paper, we note some arithmetic properties of this curve, and use
the modular structure to explain them. In particular, X0(3) admits a rational
13-isogeny to another elliptic curve, which we identify as the Jacobian of X1(3).
We then also explain why the kernel of the dual isogeny from this Jacobian to
X0(3) must consist of K-rational points, a fact first noted via direct computation
by Mark Watkins [Wa].

In the final section we give some other examples suggested by these ideas.
Watkins later found in the tables of elliptic curves two pairs of 7-isogenous curves,
of conductors 162 = 2·92 and 338 = 2·132, with 7-torsion structure over the cyclic
cubic fields of discriminant 92 and 132. He suggested that each of these pairs
might thus be the Jacobians of the Shimura modular curves X0(2),X1(2) for a
quaternion algebra over the cyclic cubic field of discriminant 92, 132 respectively
that is ramified at two of its three real places and at no finite primes. We verify
that this suggestion is correct for the curves of conductor 2 · 92, corresponding
to a subgroup of the (2, 3, 9) triangle group. We cannot at present compute the
analogous curves and maps for the Shimura curves of level 2 associated with a
quaternion algebra over the cubic field of conductor 132, though we verify that
both curves have genus 1. It might be possible to identify the curves using more
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refined arithmetical information as in [GR, K], but this would still leave open
the problems of explicitly computing the maps X0(2) → X (1) and w2.

2 The Curve X0(3)

2.1 Preliminaries

We use the notations of the previous section. Let t be the degree-28 Belyi func-
tion on X0(3). The elements of orders 2, 3, 7 in PSL2(F27) act on P1(F27) by
permutations with cycle structure 214, 391, 74. We denote by P0 the unique sim-
ple zero of (t−1) on X0(3) (corresponding to the unique fixed point of an element
of order 3 in PSL2(F27)). Since X0(3) and t are defined over Q, so is P0. The
preimages other than P0 of 0, 1,∞ under t constitute disjoint effective divisors
D14, D9, D4, which are the sum of 14, 9, 4 distinct points on X0(3) respectively,
such that

t∗(0) = 2D14, t∗(1) = 3D9 + (P0), t∗(∞) = 7D4.

By the Riemann-Hurwitz formula, X0(3) is a curve of genus 1. We give X0(3)
the structure of an elliptic curve by choosing P0 as the origin of the group law.
Since P0 is the unique point of X0(3) parametrizing a cyclic 3-isogeny between
the order-3 elliptic point t = 1 of X (1) and itself, P0 must be fixed under w3 .
Therefore w3 is the unique involution of X0(3) as an elliptic curve, namely,
multiplication by −1.

Proposition 1. i) The differential dt has divisor D14 +2D9−8D4. The divisors
D14, D9, D4 are linearly equivalent to 14(P0), 9(P0), 4(P0), respectively.

ii) There are nonzero rational functions F14, F9, F4 on X0(3) with divisors
D14−14(P0), D9−9(P0), D4−4(P0). For each choice of F14, F9, F4, there exist
nonzero scalars α, β such that F 2

14 = αF 7
4 +βF 3

9 and t = F 2
14/αF 7

4 . If the Fn are
defined over Q then α, β are rational as well.

Proof : i) Since X0(3) has genus one, the divisor of dt is linearly equivalent to
zero. This divisor is regular except for poles of order 8 at the four points of D4.
Moreover, dt has simple zeros at the points of D14 and double zeros at the points
of D9. This accounts for 14 + 2 · 9 = 32 zeros, same as the number 8 · 4 of poles,
so dt has no further zeros (which we could also have deduced from the fact that
the map t is unramified when t /∈ {0, 1,∞}).

It follows that D14 + 2D9 ∼ 8D4. This together with the linear equivalence
of the divisors t∗(0), t∗(1), t∗(∞) yields our claim that Dn ∼ n(P0) for each
n = 14, 9, 4; for instance

D4 = 49D4 − 48D4 ∼ 7(3D9 + (P0)) − 6(D14 + 2D9)
= 3(3D9 − 2D14) + 7(P0) ∼ −3(P0) + 7(P0) = 4(P0).

ii) Functions Fn with divisors Dn−n(P0) exist by part (i). The rational functions
t and F 2

14/F 7
4 have the same divisor, so F 2

14/F 7
4 = αt for some nonzero scalar α.
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Likewise t− 1 and F 3
9 /F 7

4 have the same divisor, so F 3
9 /F 7

4 = α0(t− 1) for some
nonzero scalar α0. Eliminating t yields the desired identity F 2

14 = αF 7
4 + βF 3

9
with β = α/α0. It follows that α, and thus also β, is rational if each Fn is defined
over Q. This completes the proof of Proposition 1. ♦
Now fix a nonzero holomorphic differential ω on X0(3) defined over Q, and define
a derivation f �→f ′ on the field of rational functions on X0(3) by df =f ′ω.

Proposition 2. i) Let F14, F9, F4 be as in Proposition 1(ii). Then F14, F 2
9 , F 6

4
are scalar multiples of

3F4 F ′
9 − 7F ′

4F9 , 2F4 F ′
14 − 7F ′

4F14, 2F9 F ′
14 − 3F ′

9F14

respectively.
ii) The functions

14F9 F ′′
4 − 13F ′

9F ′
4

F4
,

6F4 F ′′
9 − 29F ′

4F ′
9

F9
,

6F4 F ′′
14 − 43F ′

4F ′
14

F14

on X0(3) are regular except at P0.

Proof : i) By Proposition 1 we have t = F 2
14/αF 7

4 . Taking the logarithmic deriva-
tive, we find

dt

t
=
(

2
F ′

14

F14
− 7

F ′
4

F4

)
ω =

2F4 F ′
14 − 7F ′

4F14

F4F14
ω.

Since dt has divisor D14 +2D9−8D4, the divisor of dt/t is 2D9−D14−D4. Thus
F4F14dt/t is a differential with divisor 2D9 − 18(P0), same as the divisor of F 2

9 .
Since the divisor of a differential on a genus-one curve is linearly equivalent to
zero, it follows that 2F4 F ′

14−7F ′
4F14 is a multiple of F 2

9 , as claimed. The formulas
for F14 and F 6

4 are obtained in the same way by computing the logarithmic
derivatives of t − 1 and t/(t − 1) respectively.

ii) Each of these is obtained by substituting one of the identities in (i) into
another. Since the computations are similar and we shall use only the result
concerning (6F4 F ′′

9 − 29F ′
4F ′

9)/F9 , we prove this result, and again leave the
other two as exercises.

We have F14 = γ1(3F4 F ′
9 − 7F ′

4F9 ) and F 2
9 = γ2(2F4 F ′

14 − 7F ′
4F14) for some

nonzero scalars γ1, γ2. Hence

F 2
9 = γ1γ2

(
2F4 (3F4 F ′

9 − 7F ′
4F9 )′ − 7F ′

4(3F4 F ′
9 − 7F ′

4F9 )
)

= γ1γ2
(
(6F4 F ′′

9 − 29F ′
4F ′

9)F4 + (49F ′
4
2 − 14F4 F ′′

4 )F9
)

.

Dividing by F9, we find that

(6F4 F ′′
9 − 29F ′

4F ′
9)

F4

F9
+ (49F ′

4
2 − 14F4 F ′′

4 ) =
1

γ1γ2
F9,

which is regular away from P0. The same is true for 49F ′
4
2 − 14F4 F ′′

4 , and thus
also for (6F4 F ′′

9 − 29F ′
4F ′

9)F4 /F9 . Since F4 and F9 have no common zeros, it
follows that (6F4 F ′′

9 −29F ′
4F ′

9)/F9 has no poles except for a multiple pole at P0,
as claimed. ♦
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2.2 Computation

Theorem 1. The curve X0(3) is isomorphic with the elliptic curve

y2 + y = x3 + x2 − 44704x− 3655907.

The functions Fn on this curve may be given by

F4 = x2 − 1208x− 227671 + 91y,

F9 = (8x3 − 384x2 − 13656232x− 678909344)y
− (1015x4 + 770584x3 + 163098512x2 + 29785004488x + 2319185361392),

F14 = 8x7 + 400071x6 − 343453068x5 − 238003853192x4

− 116011622641292x3− 15704111899877744x2

− 95316727595264672x+ 53553894620234333456
− (8428x5 + 19974360x4 + 18880768004x3 + 4128079708928x2

+ 335969653582304x+ 17681731246686360)y,

satisfying
64F 7

4 − 343F 3
9 = F 2

14,

and then

t =
F 2

14

64F 7
4

= 1 − 343F 3
9

64F 7
4

.

Proof: With a symbolic algebra package one may readily confirm the identity
among the Fn, and might even feasibly (albeit not happily) verify the Galois
group by following the 28 preimages of a point on the t-line as that point loops
around t = 0 and t = 1; this would suffice to prove the theorem (since the cover
X0(3) → X (1) is determined by its Galois group and ramification behavior), but
would not explain the provenance of the formulas. We thus devote most of the
proof to the computation of the Fn.

We begin by observing that our proofs of Propositions 1 and 2 used the
ramification behavior of the cover X0(3) → X (1), but not its Galois group or the
Shimura-curve structure. This will remain true in the rest of our computation.2

We thus show that the ramification behavior uniquely determines the degree-28
cover. In particular this yields the following purely group-theoretical statement
(that we could also have checked directly): any permutations σ2, σ3, σ7 of 28
letters with cycle structure 214, 391, 74 such that σ2σ3σ7 = 1 are equivalent
under conjugation in S28 with our generators of PSL2(F27), and that we do not
have to verify the Galois group as suggested in the previous paragraph.

Our strategy is to first find the cover modulo the prime 29, which occurs in one
of the formulas in Proposition 2(ii), and then use Newton’s method over Q29 to

2 We shall retain the notation X0(3) for the curve and w3 for the involution, rather
than introduce separate notations for an elliptic curve that we have not yet identified
with X0(3) and the multiplication-by-(−1) map on the curve.
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compute a lift of the coefficients to sufficient 29-adic precision to recognize them
as rational numbers. The prime 29 is large enough to guarantee good reduction
of any Belyi cover of degree 28: if a Belyi cover has bad reduction at some prime p
then the normal closure of the cover has a Galois group whose order is a multiple
of p [Bec].

We may assume that each Fn (n = 14, 9, 4) is scaled so that it has 29-adically
integral coefficients and does not reduce to zero mod 29. In characteristic 29, the
second function in Proposition 2(ii) simplifies to 6F4 F ′′

9 /F9 . Again we use the
fact that F4, F9 have no common zeros to conclude that ξ := F ′′

9 /F9 is regular
away from P0. At P0, we know that F9 has a pole of order 9; thus F ′′

9 has a pole
of order 11, and ξ has a double pole. Since ξ is regular elsewhere, it follows that
ξ is invariant under w3 .

We claim that F9 is anti-invariant, that is, that w3(F9) = −F9. Indeed the
differential equation f ′′ = ξf satisfied by F9 must also hold for the invariant
and anti-invariant parts of F9, call them F +

9 , F−
9 . Now F−

9 has a pole of order 9
at P0. If F +

9 is not identically zero then its valuation at P0 is −d for some
d ∈ {0, 2, 4, 6, 8}; comparing leading coefficients in the local expansion about P0
of F +

9
′′ = ξF +

9 and F−
9

′′ = ξF−
9 , we obtain 9 · 10 ≡ d(d + 1) mod 29, which is

impossible. Hence F +
9 = 0 as claimed. (We could also have obtained F +

9 = 0 by
arguing that t = 1 is the only supersingular point on X (1) mod 29, whence the
zeros of F9, which are the preimages of t = 1, must be permuted by w3 . But this
would break our promise not to rely on the modular provenance of the cover.)

Now let y2 = x3 + ax + b be a (narrow) Weierstrass equation for X0(3), and
choose ω = dx/y. Then our derivation f �→ f ′ is characterized by x′ = y and
y′ = (3x2 +a)/2. For the rest of this paragraph we calculate modulo 29. We have
seen that F9 is a scalar multiple of (x3+s1x2+s2x+s3)y for some s1, s2, s3 ∈ F29.
Equating coefficients in F ′′

9 = ξF9 , we find first that ξ = 8x + 6s1, then that
s2 = −12s2

1−8a and s3 = 7b−3s3
1−as1, and finally that s1b+s4

1 +9as2
1 +9a2 =

0. We have also seen that F4 is a scalar multiple of x2 + t1y + t2x + t4 for
some t1, t2, t4 ∈ F29. Using Proposition 2(i) we compute F14 and F 6

4 up to
scaling in terms of s1, a, b and the ti, and compare with (x2 + t1y + t2x + t4)6.
After matching the leading (degree-24) coefficients,3 we find that the degree-23
coefficients agree identically, but in degree 22 we find t2 = 11(t21 − s1), and
the degree 21 comparison yields t1 = 0 or t21 = 5s1. We cannot have t1 = 0,
for then F4 would be even, and then so would F14 (since F14 is proportional
to 3F4 F ′

9 − 7F ′
4F9 ), which is impossible since the nonzero odd function F 3

9 is
a linear combination of F 7

4 and F 2
14. Therefore t21 = 5s1. Comparing the next

few coefficients in our two expressions for F 6
4 , we learn that t4 = s2

1 + 3a and
a = 9s2

1. This completes the determination of our cover mod 29 up to scaling.
For instance, we may use the equation y2 = x3 + 9x + 1 for X0(3) over F29, and
then check that

F4 = x2 + 11y − 14x − 1, F9 = (x3 + x2 + 3x − 5)y,

3 The “degree” of a polynomial in x, y is the order of its pole at P0. The vector
space of rational functions on X0(3) that are regular away from P0 has basis {xi|i =
0, 1, 2, . . .} ∪ {xiy|i = 0, 1, 2, . . .}; the monomials xi, xiy have degrees 2i, 2i + 3.
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F14 = (x7 − 14x6− 5x5− 9x4− 10x3 +2x2 +10x− 7)− (8x5−x3− 3x2 + x+3)y

satisfy the identity F 7
4 − 6F 3

9 = F 2
14.

We now use Hensel’s lemma to show that there is a unique such identity
over Z29. To do this we regard αF 7

4 + βF 3
9 = F 2

14 as an overdetermined system
of equations in a, b, α, β, and the coefficients of F4 and F9. More precisely, we
eliminate the ambiguity in the various choices of scalar multiples by requiring
that F4 and F9 each have leading coefficient 1, setting b = 9a, and defining F14
by the formula 3F4 F ′

9−7F ′
4F9 from Proposition 2(i). (Any elements of Z29 that

reduce to 1 mod 29 would do for the leading coefficients, as would any element
of Z29 that reduces to 9 mod 29 for b/a.) We include in our equations the xi

coefficients of F9 (i = 0, 1, 2, 3, 4), which were known to vanish mod 29 but not
in Z29. By our analysis thus far, this system of equations has a unique solution
mod 29. We compute the Jacobian matrix of our system of equations at that
solution, and verify that this matrix has full rank. Therefore the solution lifts
uniquely to Z29 by Hensel’s lemma. This is also the unique solution over Q29,
because 29 is a prime of good reduction as noted above.

It remains to recover the coefficients as rational numbers. We compute them
mod 29128 by applying a Newton iteration 7 times 29-adically. (At each step, in-
stead of computing the derivative mod 292n−1

symbolically, we approximate each
partial derivative by evaluating the function mod 292n

at two points that differ
by 292n−1

times the corresponding unit vector. We also streamline the compu-
tation by requiring at each step that only the xi coefficients match, ignoring the
xiy terms; this suffices because the resulting submatrix of the Jacobian matrix
still has full rank mod 29.) We then use 2-dimensional lattice reduction to guess
the rational numbers represented by those 29-adic approximations, and verify
the guess by checking that the resulting F 7

4 , F 3
9 , F 2

14 are Q-linearly dependent.
This completes the determination of the cover X0(3) → X (1) and the proof that
it is characterized by its degree and ramification behavior. Finally we bring the
curve y2 = x3 + ax + b to minimal form and replace F4, F9, F14 by the smallest
rational multiples that eliminate the denominators of those rational functions.
This yields the formulas in Theorem 1. ♦
In the same way that we proved F9 is an odd function mod 29, we can use the
other two formulas in Proposition 2(ii) to prove that F4 and F14 are even mod 13
and 43 respectively. This is confirmed by Theorem 1: the terms containing y in
F4 and F14 are divisible by 13 and 43 respectively. The corresponding result for
F9 mod 29 is obscured by the minimal form of X0(3), which makes it harder to
recognize odd functions; but F9 can be seen to be congruent mod 2y + 1 to a
multiple of 29, as expected.

2.3 Application: The CM Point of Discriminant −11

In [E2, 5.3], we noted that X (1) has a unique CM point of discriminant −11,
and therefore that this point has rational t-coordinate. We then described high-
precision numerical computations that strongly suggest this t-coordinate is

88983265401189332631297917
45974167834557869095293

=
73432127213923072659211

33137837 ,
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with t−1 having numerator 2929341316732813. But we could not prove that this
is correct. Our formulas for the cover X0(3) → X (1) now let us do this:

Corollary to Theorem 1. The CM-11 point on X (1) has t-coordinate equal
73432127213923072659211/33137837, and lies under the two points of X0(3) with
(x, y) = (−10099/64,−1/2± 109809

√
−11/512).

Proof: The CM-11 point has two preimages in X0(3) that are switched by w3, cor-
responding to a pair of “3-isogenies” between (the abelian variety parametrized
by) that point and itself, namely the pair (−1 ±

√
−11)/2 of norm-3 elements

of the endomorphism ring. A point of X (1) is 3-isogenous to itself if and only if
its t-coordinate satisfies t = t(P ) = t(w3P ) for some point P on X0(3). Equiv-
alently, P is either a common pole of the functions t(P ), t(w3P ) on X0(3) or a
zero of the rational function t(P ) − t(w3P ) on that curve. The former cannot
happen here because by our formulas F4 and F4 ◦ w3 have no common zeros.
Since t(P ) − t(w3P ) is an odd function on X0(3), we easily locate its zeros by
writing it as 2y + 1 times a rational function of x. We find that the latter func-
tion vanishes at x = ∞, x = −1097/8, x = −10099/64, and the roots of four
irreducible polynomials of degree 3 and two irreducibles of degree 6. At x = ∞
we have P = P0 and t = 1. At x = −1097/8 we have y = −1/2± 6615

√
−2/32,

and calculate that t = 1092830632334/1694209959, which we already identified
as the CM-8 point by a similar computation with the curve X0(2) [E2, p.39]. The
irrational values of x that are roots of the irreducible polynomials of degree 3
and 6 yield irrational t-values of the same degree. Hence the CM-11 point, being
rational, must have x = −10099/64, for which we calculate the values of y and t
given in the statement of the Corollary. ♦
The CM-8 point also has an element of norm 3 in its endomorphism ring, namely
1 +

√
−2. The fact that the CM points with x = −10099/64 have discrimi-

nant −11 also follows from the fact that their y-coordinates are conjugates over
Q(

√
−11). The irrational values of x have degrees 1 and 2 over K; in particu-

lar, the cubic irrationalities yield four Gal(K/Q)-orbits of CM points. Taking
c = 2 cos(2π/7), we find that these CM points have x-coordinates 189c − 19,
−(189c2 + 567c + 397), −2(756c2 + 1701c + 671), −2(3591c2 + 8127c + 2939),
and their Gal(K/Q) conjugates. We determine their CM fields as the fields of
definition of the points’ y-coordinates: they are the fields obtained by adjoin-
ing to K the square roots of the totally negative algebraic integers c2 + 2c − 7,
c− 6, −(3c2 + 2c + 3), and c2 − 2c− 11, of norms −167, −239, −251, and −491
respectively.

3 The Curve X1(3), and Its Jacobian J1(3)

The tables [BK, Cr] of elliptic curves of low conductor indicate that the curve
147-B2(J), which we identified with X0(3), is 13-isogenous with another elliptic
curve over Q, namely 147-B1(I): [0, 1, 1,−114, 473]. Now 13-isogenies between
elliptic curves over Q, though not hard to find (via a rational parametrization
of the classical modular curve X0(13)), are rare: this 13-isogeny, and its twist
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by Q(
√
−7 ) [curves 147-C1(A) and 147-C2(B)], are the only examples up to

conductor 200 [BK];4 even up to conductor 1000, the only other examples are
the twists of these 13-isogenies by Q(

√
−3 ), which appear at conductor 441.

The fact that X0(3) admits a rational 13-isogeny thus seemed a remarkable
coincidence. Mark Watkins [Wa] observes that this curve 147-B1(I) has an even
more unusual property: not only is there a 13-isogeny from this curve to X0(3),
but the kernel of the isogeny consists of points rational over K. Whereas the
classical modular curve X0(13), which parametrizes (generalized) elliptic curves
with a rational 13-isogeny, has genus 0, the curve X1(13), which parametrizes
(generalized) elliptic curves with a rational 13-torsion point, has genus 2. Thus
by Mordell-Faltings X1(13) has only finitely many K-rational points. Hence there
are only finitely many isomorphism classes of elliptic curves defined over K, let
alone over Q, with a K-rational 13-torsion point — and we have found one of
them5

by computing the Jacobian of the Shimura modular curve X1(3)!
These observations are explained by considering X1(3). This curve, like X0(3),

is defined over Q, and the cyclic cover X1(3) → X0(3) has degree (33−1)/2 = 13.
This cover must be unramified, because the only elliptic point on X0(3) is of
order 3, which is coprime to 13. Hence X1(3) has genus 1. It does not quite follow
that X1(3) is isomorphic over Q with the 13-isogenous elliptic curve 147-B1(I),
because X1(3) need not have any Q-rational point. However, the Jacobian J1(3)
of X1(3) is an elliptic curve, and is also 13-isogenous with X0(3) because the
cover X1(3) → X0(3) induces a map of the same degree from J1(3) to X0(3).
Since the elliptic curve 147-B1(I) is the only one 13-isogenous with X0(3) over Q,
we conclude that it is isomorphic with J1(3). Furthermore, the geometric Galois
group of the cover X1(3)/X0(3) is canonically k∗/{±1}, where k is the residue
field of the prime above 3 in K. Working over K, we can choose a generator
for this group, which acts on X1(3) by translation by some element of J1(3),
and this element is a 13-torsion point that generates the kernel of the isogeny
from J1(3) to X0(3).

This is all quite reminiscent of the situation for the classical modular curves
X0(11), X1(11), which are 5-isogenous elliptic curves, with the kernel of the

4 Table 4 in [BK], which gives all curves of conductor 2a3b, gives several other examples
of conductor 20736 = 2834, all related by quadratic twists.

5 Not, however, the unique one. The relevant twist of X1(13) by K is isomorphic with
the curve y2 = 4x6 + 8x5 + 37x4 + 74x3 + 57x2 + 16x + 4, which inherits from
X1(13) a 3-cycle generated by (x, y) �→ (−x−1 − 1, y/x3). Rational points related by
this 3-cycle and/or the hyperelliptic involution parametrize the same curve, with a
different choice of generator of the torsion subgroup. The orbit of Q-rational points
with x ∈ 0, −1, ∞ yields our curve J1(3). A computer search finds that there is at
least one other orbit, represented by (x, y) = (17/16, 31585/2048), which leads to a
second elliptic curve over Q with a K-rational 13-torsion point. We calculate that
this is the curve with coefficients

[0, 1, 1, −69819305996260175838254, 7100867435908988429025874812520367]

and conductor 8480886141 = 3 · 72 · 13 · 251 · 17681.
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isogeny X1(11) → X0(11) canonically isomorphic with F∗
11/{±1} and thus con-

sisting of Q-rational 5-torsion points. Also, X1(11) has considerably smaller
height (visible in its smaller coefficients) and discriminant than X0(11), as does
J1(3) compared with X0(3). The comparison becomes even clearer if we work
with models of these curves minimal over K, where the additive reduction at
the rational prime 7 becomes good reduction at the prime (2− c) of K above 7.

Now for the classical modular curves the fact that X1(11) has a simpler equa-
tion than X0(11) illustrates a general phenomenon noted in [Ste]: the minimal
height in an isogeny class of elliptic curves over Q is conjecturally attained
by the optimal quotient of the Jacobian of X1(N), not X0(N) (unless the X1- and
X0-optimal quotients coincide). Does this always happen also for Shimura curves?
We observed the same behavior in several other cases, one of which appears in
the next section. But there are no extensive tables of optimal quotients of Ja-
cobians of Shimura curves on which one might test such a conjecture. Although
Vatsal [Va, Thm. 1.11] has proven Stevens’ conjecture for curves with a ratio-
nal �-isogeny for prime � ≥ 7, his methods cannot apply in our setting (even
though all our curves have a suitable isogeny) because they rely on congruences
between q-expansions of modular forms, a tool that is not available to us in the
Shimura-curve setting.

4 Some Other Shimura Curves of Genus 1

Watkins notes several other examples of curves in [Cr] that behave similarly
for other choices of cyclic cubic fields K, and asks whether they, too, can be
explained as Shimura modular curves or Jacobians. We checked that this is the
case for at least one of these examples, at conductor 162 = 2 · 92. In this section,
we outline this computation and describe a 7-isogeny in conductor 338 = 2 · 132

that should also involve Shimura modular curves.
For the curves of conductor 162, we start with a quaternion algebra over

K9 = Q(cos 2π/9) ramified at two of the three real places of K9 and at none
of its finite primes. The resulting modular group Γ (1) is again a triangle group,
this time with signature (2, 3, 9) rather than (2, 3, 7) (see [T], class XI). Since the
rational prime 2 is inert in K9, we have modular curves X0(2) and X1(2) with
geometric Galois group PSL2(F8) over the rational curve X (1). We calculate
that here X0(2) already has genus 1. Since the Belyi map X0(2) → X (1) has
degree as low as 8 + 1 = 9, we can find its coefficients with little difficulty even
without resorting to the methods we used to obtain the equations in Theorem 1.
We place the elliptic points of X (1) at t = 1, 0,∞. Then t is a rational function
of degree 9 on X0(2) with a ninth-order pole, which we use as the base point P0
to give X0(2) the structure of an elliptic curve. The zero divisor of t is then
3D3 for some divisor D3 of degree 3. Hence D3 − 3(P0) is a 3-torsion divisor
on X0(2). By computing the divisor of dt as in the proof of Proposition 1(i),
we see that the corresponding 3-torsion point on X0(2) is also the simple zero
of t − 1. In particular, this 3-torsion point cannot be trivial. (This fact could
also be deduced by noting that if the 3-torsion point were trivial then t would
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be the cube of a rational function on X0(2), and so could not have Galois group
PSL2(F8).) The general elliptic curve with a rational 3-torsion point has the form
y2+a1xy+a3y = x3, with the torsion point at (x, y) = (0, 0). Solving for (a3 : a3

1)
and the coefficients of t, we soon find a model of X0(2) with (a1, a3) = (15, 128)
and t = (y − x2 − 17x)3/(214y), and with the double roots of t − 1 occurring at
the zeros of (x + 9)y + 6x2 + 71x other than (0, 0). Reducing X0(2) to standard
minimal form, we find the curve 162-B3(I): [1,−1, 1,−95,−697]. As expected,
this curve attains its 3-adic potential good reduction over K9. The involution w2
is the unique involution of this elliptic curve that fixes the simple zero (0,−128)
of t− 1. For instance, w2 sends the point at infinity to the other 3-torsion point
(0, 0), at which t = −173/27. Hence t = −173/27 is a CM point on X (1), the
unique point 2-isogenous with the elliptic point t = ∞. Solving t(P ) = t(w2(P ))
yields the further CM point t = 17353/26, which must have CM field K9(

√
−7 )

because P and w2(P ) are conjugate over Q(
√
−7 ).

Besides the known 3-torsion point, we find that X0(2) also has a 7-isogeny with
the curve 162-B1(G): [1,−1, 1,−5, 5]. It is known (see for instance the “remarks
on isogenies” in [BK]) that the isogeny class of this curve is the unique one,
up to quadratic twist, with both a 3- and a 7-isogeny over Q. We have already
accounted for the 3-torsion point using the ramification behavior of the map
X0(2) → X (1). The 7-isogeny is again explained using X1. This time the cyclic
cover X1(2) → X0(2) has degree 23 − 1 = 7, and the only elliptic point of X0(2)
is the simple zero of t−1, which has order 2. Since gcd(2, 7) = 1, the cyclic cover
is again unramified, and J1(2) must be an elliptic curve 7-isogenous with X0(2).
Hence J1(2) is isomorphic with the elliptic curve 162-B1(G): [1,−1, 1,−5, 5].
Also as before, the kernel of the isogeny must consist of points rational over K9,
and again Watkins confirms [Wa] that this is the case for this curve. This time
it turns out J1(2) is the unique elliptic curve over Q with the correct torsion
structure: a 3-torsion point over Q, and a 7-torsion point over K9 that is propor-
tional to its Galois conjugates. Again we note that it is J1(2), not X0(2), that
has the smaller discriminant and height.

The next case is the cyclic cubic field K13 of discriminant 169 = 132. Once
more we use a quaternion algebra over this field that is ramified at two of its
three real places and at none of the finite primes. By Shimizu’s formula ([Sh2,
Appendix], quoted in [T, p.207]), the resulting curve X (1) has hyperbolic area

1
16π6 d

3/2
K13

ζK13
(2) = −1

2
ζK13

(−1).

Since K13 is cyclotomic, we can compute ζK13
(2) or ζK13

(−1) by factoring ζK as
a product of the Riemann zeta function and two Dirichlet L-series. We find that
X (1) has normalized hyperbolic area 1/6. Since Γ (1) is not on Takeuchi’s list
of triangle groups [T], the curve X (1) must have at least four elliptic points, or
positive genus and at least one elliptic point. The only such configuration that at-
tains an area as small as 1/6 is genus zero, three elliptic points of order 2, and one
of order 3. Again we use the prime of K above the inert rational prime 2 to con-
struct modular curves X0(2) and X1(2) with geometric Galois group PSL2(F8)
over the rational curve X (1). In the degree-9 cover X0(2) → X (1), the elliptic
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point of order 3 has 3 triple preimages, and each of the order-2 points has one
simple and four double preimages. Hence X0(2) has genus 1 by Riemann-Hurwitz.
Again the cyclic cover X1(2) → X0(2) has degree 7, relatively prime to the orders
of the elliptic points on X0(2), so X1(2) also has genus 1.

In this setting it is not clear that either X0(2) or X1(2) is an elliptic curve
over Q, since neither curve is forced to have a Q-rational divisor of degree 1.
(The elliptic points of order 2 may be Galois conjugates, not individually ratio-
nal over Q.) But we can still consider the Jacobians J0(2) and J1(2), which are
elliptic curves 7-isogenous over Q, with the kernel of the 7-isogeny J1(2) → J0(2)
consisting of points rational over K13. Watkins suggests, by analogy with the
cases of conductor 147 and 162, that this 7-isogeny should connect curves of
conductor 2 · 132 = 338. According to the tables of [Cr], there are three pairs
of 7-isogenous curves of conductor 338. Watkins computes that of the 6 curves
involved in these isogenies, only 338-B1: [1,−1, 1, 137, 2643] has 7-torsion points
rational over K13, and thus proposes this curve as J1(2), and the 7-isogenous
curve 338-B2: [1,−1, 1,−65773,−6478507] as J0(2). This must be correct, since
these Jacobians should again have multiplicative reduction at 2 and good reduc-
tion at all primes of K13 other than 2, whence their conductor must be 2 · 132

(there being no curve of conductor 2 over Q). But here I have not obtained an
explicit rational function or even determined the cross-ratio of the elliptic points
on X (1), which would be quite a demanding computation using the methods
of [E2].
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Abstract. For the families ax3 = by3 +z3 +v3 +w3, a, b = 1, . . . , 100,
and ax4 = by4 + z4 + v4 + w4, a, b = 1, . . . , 100, of projective algebraic
threefolds, we test numerically the conjecture of Manin (in the refined
form due to Peyre) about the asymptotics of points of bounded height
on Fano varieties.

1 Introduction — Manin’s Conjecture

Let V be a projective algebraic variety over . We fix an embedding ι : V → Pn .
In this situation, there is the well-known naive height Hnaive : V ( ) → which
is given by Hnaive(P ) := maxi=0,...,n |xi|. Here, (x0 : . . . : xn) := ι(P ) ∈ Pn( )
where the projective coordinates are integers satisfying gcd(x0, . . . , xn) = 1.

It is of interest to ask for the asymptotics of the number of -rational points
on V of bounded naive height. This applies particularly to the case V is a Fano
variety as those are expected to have many rational points (at least after a finite
extension of the ground-field). Simplest examples of Fano varieties are complete
intersections in Pn of a multidegree (d1, . . . , dr) such that d1 + . . . + dr ≤ n.
In this case, Manin’s conjecture reads as follows.

Conjecture 1. Let V ⊆ Pn be a non-singular complete intersection of multi-
degree (d1, . . . , dr). Assume dim V ≥ 3 and k := n + 1 − d1 − . . . − dr > 0.
Then, there exists a Zariski open subset V ◦ ⊆ V such that

#{x ∈ V ◦( ) | Hnaive(x)k < B} ∼ CB (1)

for a constant C.

Example 2. Let V ⊂ P4 be a smooth hypersurface of degree 4. Conjecture 1
predicts ∼ CB rational points of height < B. However, the hypersurface
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x4 + y4 = z4 + v4 + w4 contains the line given by x = z, y = v, and w = 0
on which there is quadratic growth, already. This explains the necessity of the
restriction to a Zariski open subset V ◦ ⊆ V .

Remark 3. Conjecture 1 is proven for Pn, linear subspaces, and quadrics. Fur-
ther, it is established [Bi] in the case that the dimension of V is very large com-
pared to d1, . . . , dr. Generalizations are known to be true in a number of further
particular cases. A complete list may be found in the survey article [Pe2, sec. 4].

In this note, we report numerical evidence for Conjecture 1 in the case of the
varieties V e

a,b given by axe = bye + ze + ve + we in P4 for e = 3 and 4.

Remark 4. By the Noether-Lefschetz Theorem, the assumptions made on V im-
ply that Pic(V ) ∼= [Ha1, Corollary IV.3.2]. This is no longer true in dimen-
sion two. See Remark 6.6 for more details.

The Constant. Conjecture 1 is compatible with results obtained by the clas-
sical circle method (e.g. [Bi]). Motivated by this, E. Peyre [Pe1] provided a
description of the constant C expected in (1). In the situation considered here,
Peyre’s constant is equal to the Tamagawa-type number

τH(V ) :=
∏

p∈ ∪{∞}
(1 − 1

p ) ωH,p(V ( p)).

In this formula, the Tamagawa measure ωH,p is given in local p-adic analytic co-
ordinates x1, . . . , xd by ‖ ∂

∂x1

∧ . . . ∧ ∂
∂xd

‖p dx1 . . . dxd. Here, each dxi denotes
a Haar measure on p which is normalized in the usual manner. ∂

∂x1
∧ . . . ∧ ∂

∂xd
is

a section of O(−K) ∼= O(−k).
For p finite, one has a canonical model V ⊆ Pn

p
of V . This defines the norm

‖.‖p on O(−k). It is almost immediate from the definition that

ωH,p(V ( p)) = lim
n→∞

#V ( /pn )
pdn

.

The Place at Infinity. Here, ‖.‖sup on O(1) is the hermitian metric, in the
sense of complex geometry, defined by ‖xi‖sup := inf

j=0,...,n
|xi/xj |. This induces the

hermitian metric ‖.‖∞ := ‖.‖−k
sup on O(−k).

Lemma 5. If V ⊂ Pn is a hypersurface defined by the equation f = 0 then

ω∞(V ( )) =
1
2

∫
f(x0, ... ,xn)=0
|x0|, ... ,|xn|≤1

ωLeray.

The Leray measure ωLeray on {(x0, . . . , xn) ∈ n+1 | f(x0, . . . , xn) = 0} is
related to the usual hypersurface measure by the formula ωLeray = 1

grad f ωhyp.
On the other hand, one may also write

ωLeray =
1

| ∂f
∂xi

(x0, . . . , xn)|
dx0 . . . d̂xi . . . dxn.
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Proof. The equivalence of the two descriptions of the Leray measure is a stan-
dard calculation. The main assertion is a particular case of [Pe1, Lemma 5.4.7].
2 is the number of roots of unity in . �

Remark 6. There are several ways to generalize Conjecture 1.

i) One may consider more general heights corresponding to the tautological
line bundle O(1). This includes to
a) replace the maximum norm by an arbitrary continuous hermitian metric

on O(1). This would affect the domain of integration for the factor
at infinity.

b) multiply Hnaive(x) with a function that depends on the reduction
of x modulo some N ∈ . This augments Conjecture 1 by an
equidistribution statement.

ii) Instead of complete intersections, one may consider arbitrary projective Fano
varieties V . Then, Hk

naive needs to be replaced by a height defined by the
anticanonical bundle O(−KV ).

If Pic(V ) �∼= then the description of the constant C gets more complicated in
several ways. First, there is an additional factor β := #H1(Gal( / ), Pic(V )).
Further, instead of the factors (1− 1

p ) one has to write 1/Lp(1, Pic(V )),
Lp being the local L-function corresponding to the Picard group. Finally, the
Tamagawa measure has to be taken not of the full variety V ( ) but of the
subset which is not affected by the Brauer-Manin obstruction.

If Pic(V ) �∼= already over then the right hand side of (1) has to be replaced
by CB logt B. For the exponent of the log-term, there is the expectation that
t = rkPic(V )−1. There are, however, examples [BT] in dimension three in which
the exponent is larger. The constant C gets equipped with yet another additional
factor α which depends on the structure of the effective cone in Pic(V ) and on
the position of −KV in it [Pe1, Définition 2.4].
Finally, there is a generalization to arbitrary number fields [Pe1].

2 Computation of the Tamagawa Number

Counting Points over Finite Fields. We consider the projective varieties
V e

a,b given by axe = bye + ze + ve + we in P4
p
. We assume a, b �= 0 (and p � e)

in order to avoid singularities. Observe that, even for large p, these are at most
e2 varieties up to obvious p-isomorphism as ∗

p consists of no more than e cosets
modulo ( ∗

p )e.
It follows from the Weil conjectures, proven by P. Deligne [De, Théorème

(8.1)], that
#V e

a,b( p) = p3 + p2 + p + 1 + Ee
a,b

where the error-term Ee
a,b may be estimated by |Ee

a,b| ≤ Cep3/2.
Here, C3 = 10 and C4 = 60 as dim H3(V 3, ) = 10 for every smooth cubic

threefold and dim H3(V 4, ) = 60 for every smooth quartic threefold in P4( ).
These dimensions result from the Weak Lefschetz Theorem together with
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F. Hirzebruch’s formula [Hi, Satz 2.4] for the Euler characteristic which actually
works in much more generality.

Remark 7. Suppose e = 3 and p ≡ 2 (mod 3). Then, #V 3
a,b( p) = #V 1

a,b( p)
as gcd(p − 1, 3) = 1. Similarly, for e = 4 and p ≡ 3 (mod 4), one has
gcd(p − 1, 4) = 2 and #V 4

a,b( p) = #V 2
a,b( p). In these cases, the error term

vanishes and #V e
a,b( p) = p3 + p2 + p + 1.

In the remaining cases p ≡ 1 (mod 3) for e = 3 and p ≡ 1 (mod 4) for e = 4, our
goal is to compute the number of p-rational points on V e

a,b. As V e
a,b ⊆ P4, there

would be an obvious O(p4)-algorithm. We can do significantly better than that.

Definition 8. Let K be a field and let x ∈ Kn and y ∈ Km be two vectors.
Then, their convolution z := x ∗ y ∈ Kn+m−1 is defined to be zk :=

∑
i+j=k

xiyj .

Theorem 9 (FFT convolution). Let n = 2l and K be a field which contains the
2n-th roots of unity. Then, the convolution x∗y of two vectors x, y of length ≤ n
can be computed in O(n log n) steps.

Proof. The idea is to apply the Fast Fourier Transform (FFT) [Fo, Satz 20.3].
The connection to the convolution is shown in [Fo, Satz 20.2, or CLR, Theo-
rem 32.8]. �

Theorem 9 is the basis for the following algorithm.

Algorithm 10 (FFT point counting on V e
a,b)

i) Initialize a vector x[0 . . . p] with zeroes.

ii) Let r run from 0 to p − 1 and increase x[re mod p] by 1.

iii) Calculate ỹ := x ∗ x ∗ x by FFT convolution.

iv) Normalize by putting y[i] := ỹ[i] + ỹ[i + p] + ỹ[i + 2p] for i = 0, . . . , p − 1.

v) Initialize N as zero.

vi) (Counting points with first coordinate �= 0)
Let j run from 0 to p − 1 and increase N by y[(a − bj4) mod p].

vii) (Counting points with first coordinate 0 and second coordinate �= 0)
Increase N by y[(−b) mod p].

viii) (Counting points with first and second coordinate 0)
Increase N by (y[0]− 1)/(p − 1).

ix) Return N as the number of all p-valued points on V e
a,b.

Remark 11. For the running-time, step iii) is dominant. Therefore, the running-
time of Algorithm 10 is O(p log p).

To count, for fixed e and p, p-rational points on V e
a,b with varying a and b, one

needs to execute the first four steps only once. Afterwards, one may perform
steps v) through ix) for all pairs (a, b) of elements from a system of representa-
tives for ∗

p /( ∗
p )e. Note that steps v) through ix) alone are of complexity O(p).



Points of Bounded Height on Cubics and Quartics 321

We ran this algorithm for all primes p ≤ 106 and stored the cardinalities in a file.
This took several days of CPU time.

Remark 12. There is a formula for #V e
a,b( p) in terms of Jacobi sums. A skilful

manipulation of these sums should lead to another efficient algorithm which
serves the same purpose as Algorithm 10.

The Local Factors at Finite Places. We are interested in the Euler product

τe
a,b,fin :=

∏
p∈

(
1 − 1

p

)
lim

n→∞
#V e

a,b( /pn )
p3n

.

Lemma 13. a) (Good reduction)
If p � abe then the sequence (#V e

a,b( /pn )/p3n)n∈ is constant.
b) (Bad reduction)
i) If p divides ab but not e then the sequence (#V e

a,b( /pn )/p3n)n∈ becomes
stationary as soon as pn divides neither a nor b.
ii) If p = 2 and e = 4 then the sequence (#V e

a,b( /pn )/p3n)n∈ becomes
stationary as soon as 2n does not divide 8a or 8b.
iii) If p = 3 and e = 3 then the sequence (#V e

a,b( /pn )/p3n)n∈ becomes
stationary as soon as 3n divides neither 3a nor 3b.

Theorem 14. For every pair (a, b) of integers such that a, b �= 0, the Euler prod-
uct τe

a,b,fin is convergent.
Proof. Let p be a prime bigger than |a|, |b|, and e. Then, the factor at p is
τp := (1 − 1

p )(1 + p + p2 + p3 + Dpp3/2)/p3 where |Dp| ≤ Ce for C3 = 10 and
C4 = 60, respectively.

Taking the logarithm, we consider
∑

p log τp. In the case e = 3, the sum is
effectively over the primes p = 1 (mod 3). If e = 4 then summation extends
over all primes p = 1 (mod 4). In either case, we take a sum over one-half of
all primes. This leads to the following estimate,

∑
p≥N

| log τp| ≤
∑
p≥N

[
Ce

p3/2 + O(p−5/2)
]
∼ Ce

2

∫ ∞

N

1
t3/2 log t

dt

≤ Ce

2 log N

∫ ∞

N

t−3/2dt =
Ce√

N log N
. �

Remark 15. We are interested in an explicit upper bound for |
∑

p≥106

log τp|. Using
Taylor’s formula, one gets∣∣∣∣∣ ∑

p≥106

log τp −
∑

p≥106

Dp

p3/2

∣∣∣∣∣ ≤ 10−8.
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Since Dp

p3/2
is zero for p ≡ 3 (mod 4) (or p ≡ 2 (mod 3)), the sum should be com-

pared with log(ζK(3/2)). Here, ζK is the Dedekind Zeta function of K = (i)
or (ζ3), respectively. This yields∑

p≥106

p≡1 (mod 4)

1
p3/2 ≤ log

√
ζ (i)(3/2)

(1 − 2−3/2)−1/2 ·
∏

p≡3 (mod 4)
(1 − p−3)−1/2 ·

∏
p<106

p≡1 (mod 4)

(1 − p−3/2)−1

and, for the other case, a similar estimate containing ζ (ζ3)(3/2). Note that the
infinite product in the denominator converges a lot faster than the left hand
side.

Using Pari, we evaluated the right hand side numerically. We found 0.39%
for the quartic and 0.065% for the cubic as upper bounds for the error of ap-
proximation.

Remark 16. In practice, the error of the approximation is much smaller.
The main reason is that the error-term Dp may have a positive or a nega-
tive sign. Some cancellations happen during summation. The assumption of a
random distribution would result in a higher order of convergence. In fact, we
observed this effect numerically.

Approximation of the Euler Product. Lemma 13 allows us to determine
each factor of the Euler product exactly. As we need to know the numerical value
of τe

a,b,fin, we approximate it by a finite product.
Observe that the factor at a good prime p is simply (1 − 1/p) ·#V e

a,b( p)/p3.
In particular, for this factor there are only e2 values possible. Even more, these
numbers had been precomputed using FFT point counting (Algorithm 10).
The algorithm below is based on the fact that the vast majority of the factors
actually do not need to be computed. They are available from a list.

Algorithm 17 (Compute an approximate value for τ3
a,b,fin (τ4

a,b,fin))
i) Let p run over all prime numbers such that p ≡ 2 (mod 3) (p ≡ 3 (mod 4))
and p ≤ N and calculate the product of all values of (1 − 1/p4).
ii) Compute the factor corresponding to p = 3 (p = 2) by Lemma 13.b).
iii) Let p run over all prime numbers such that p ≡ 1 (mod 3) (p ≡ 1 (mod 4))
and p ≤ N . Calculate the product of the factors described below.
If p|ab then the corresponding factor is given by Lemma 13.b). Otherwise, com-
pute the e-th power residue-symbols of a and b and look up the precomputed factor
for this p-isomorphism class of varieties in the list.
iv) Multiply the two products from steps i) and iii) and the factor from step ii)
with each other. Correct the product by taking the bad primes p ≡ 2 (mod 3)
(p ≡ 3 (mod 4)) into consideration.

Remark 18. When we meet a bad prime p, we have to count /pn -valued points
on V e

a,b. This is done by an algorithm which is very similar to Algorithm 10.

We used Algorithm 17 to compute the Euler products τ3
a,b,fin and τ4

a,b,fin for
a, b = 1, . . . , 100. We did all calculations for N = 106. Note that step i) had to
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be done only once for e = 3 and once for e = 4. The running-time was a quarter
of an hour for either exponent.

The Factor at the Infinite Place. For the quartic V 4
a,b, we have the integral

ωH,∞(V 4
a,b( )) =

1
4 4
√

a

∫∫∫∫
R

1
(by4 + z4 + v4 + w4)3/4 dy dz dv dw

over R := {(y, z, v, w) ∈ 4 | |y|, |z|, |v|, |w| ≤ 1 and |by4 + z4 + v4 + w4| ≤ a} .
The integrand is singular in one point. We used a simple substitution to make
it sufficiently smooth for numerical integration.

On the other hand, for the cubic V 3
a,b, we have to consider

ωH,∞(V 3
a,b( )) =

1
6 3
√

a

∫∫∫∫
R

1
(by3 + z3 + v3 + w3)2/3 dy dz dv dw

for R := {(y, z, v, w) ∈ 4 | |y|, |z|, |v|, |w| ≤ 1 and |by3 + z3 + v3 + w3| ≤ a} .
The difficulty here is the handling of the singularity of the integrand. It is located
in the zero set of by3 + z3 + v3 + w3 in R.

Since (by3 + z3 + v3 + w3)−2/3 is a homogeneous function, it is enough
to integrate over the boundary of R. This reduces the problem to several
three-dimensional integrals of functions having a two-dimensional singular lo-
cus. If a ≥ b + 3 then R is a cube and the boundary of R is easy to describe.
We restricted our attention to this case. We smoothed the singularities by sep-
aration of Puiseux expansions and substitutions. The resulting integrals were
treated by the Gauß-Legendre formula [Kr].

3 On the Geometry of Diagonal Cubic Threefolds

Lemma 19. Let V ⊂ P4 be any smooth hypersurface. Then, every (reduced
but possibly singular) surface S ⊂ V is a complete intersection V ∩ Hd with a
hypersurface Hd ⊂ P4.
Proof. By the Noether-Lefschetz Theorem, we have Pic(V ) ∼= . The surface S
is a Weil divisor on V . Hence, O(S) = O(d) ∈ Pic(V ) for a certain d > 0. The re-
striction Γ (P4, O(d)) → Γ (V, O(d)) is surjective as H1(P4, OV (d − deg V )) = 0
[Ha2, Theorem III.5.1.b)]. �

Elliptic Cones. Let V ⊂ P4( ) be the diagonal cubic threefold given by the
equation x3 + y3 + z3 + v3 + w3 = 0. Fix ζ ∈ such that ζ3 = 1. Then, for
every point (x0 : y0 : z0) on the elliptic curve F : x3 + y3 + z3 = 0, the line given
by (x : y : z) = (x0 : y0 : z0) and v = −ζw is contained in V . All these lines
together form a cone CF over F the cusp of which is (0 : 0 : 0 : −ζ : 1). CF is
a singular model of a ruled surface over an elliptic curve. This shows, there are
no other rational curves contained in CF .

By permuting coordinates, one finds a total of thirty elliptic cones of that type
within V . The cusps of these cones are usually named Eckardt points [Mu, CG].
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We call the lines contained in one of these cones the obvious lines lying on V .
It is clear that there are an infinite number of lines on V running through each
of the thirty Eckardt points.

Proposition 20 (cf. [Mu, Lemma 1.18]). Let V ⊂ P4 be the diagonal cubic
threefold given by the equation x3+y3+z3+v3+w3 = 0. Then, through each point
p ∈ V different from the thirty Eckardt points there are precisely six lines on V .
Proof. Let P = (x0 : y0 : z0 : v0 : w0). A line l through P and another point
Q = (x : y : z : v : w) is parametrized by (s : t) �→ ((sx0 + tx) : . . . : (sw0 + tw)).
Comparing coefficients at s2t, st2, and t3, we see that the condition that l lies
on V may be expressed by the three equations below.

x2
0x + y2

0y +z2
0z + v2

0v + w2
0w = 0 (2)

x0x2 + y0y2 + z0z2 + v0v2 + w0w2 = 0 (3)

x3 + y3 + z3 + v3 + w3 = 0 (4)

The first equation means that Q lies on the tangent hyperplane HP at P while
equation (4) just encodes that Q ∈ V . By [Za, Corollary 1.15.b)], HP ∩ V is an
irreducible cubic surface.

On the other hand, the quadratic form q on the left hand side of equation (3)
is of rank at least 3 as P is not an Eckardt point. Therefore, q is not just the
product of two linear forms. In particular, q|HP �≡ 0.

As HP ∩ V is irreducible, Z(q|HP ) and HP ∩ V do not have a component in
common. By Bezout’s theorem, their intersection in HP is a curve of degree 6. �

Remark 21. It may happen that some of the six lines coincide. Actually, it turns
out that a line appears with multiplicity > 1 if and only if it is obvious [Mu,
Lemma 1.19]. In particular, for a general point P the six lines through it are
different from each other.

Under certain exceptional circumstances it is possible to write down all six
lines explicitly. For example, if P = ( 3

√
−4 : 1 : 1 : 1 : 1) then the line

( 3
√
−4t : (t + s) : (t + is) : (t − s) : (t − is)) through P lies on V . Permut-

ing the three rightmost coordinates yields all six lines.

4 Detection of Accumulating Subvarieties

The Detection of -rational Lines on the Cubics. On a cubic three-
fold V 3

a,b, quadratic growth is predicted for the number of -rational points of
bounded height. Lines are the only curves with such a growth rate.

The moduli space of the lines on a cubic threefold is well-understood. It is a
surface of general type [CG, Lemma 10.13]. Nevertheless, we do not know of a
method to find all -rational lines on a given cubic threefold, explicitly. For that
reason, we use the algorithm below which is an irrationality test for the six lines
through a given point (x0 : y0 : z0 : v0 : w0) ∈ V 3

a,b( ).
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Algorithm 22 (Test the six lines through a given point for irrationality)

i) Let p run through the primes from 3 to N .
For each p, solve the system of equations (2), (3), (4) (adapted to V 3

a,b) in 5
p .

If the multiples of (x0, y0, z0, v0, w0) are the only solutions then output that there
is no -rational line through (x0 : y0 : z0 : v0 : w0) and terminate prematurely.

ii) If the loop comes to its regular end then output that the point is suspicious.
It could possibly lie on a -rational line.

Remark 23. We use a very naive O(p)-algorithm to solve the system of equations
over p. If, say, x0 �= 0 then it is sufficient to consider quintuples such that x = 0.
We parametrize the projective plane given by (2). Then, we compute all points
on the conic given by (2) and (3). For each such point, we compute the cubic
form on the left hand side of (4).

We carried out the irrationality test on every -rational point found on any
of the cubics except for the points lying on an obvious line. We worked
with N = 600. It turned out that suspicious points are rare and that, at least in
our sample, each of them actually lies on a -rational line.

We found only 42 non-obvious -rational lines on all of the cubics V 3
a,b for

100 ≥ a ≥ b ≥ 1 together. Among them, there are only five essentially differ-
ent ones. We present them in the table below. The list might be enlarged by
two, as V 3

21,6 and V 3
22,5 may be transformed into V 3

48,21 and V 3
40,22, respectively,

by an automorphism of P4. Further, each line has six pairwise different images
under the obvious operation of the group S3.

Table 1. Sporadic lines on the cubic threefolds

a b Smallest point Point s.t. x = 0
19 18 (1 : 2 : 3 : -3 : -5) (0 : 7 : 1 : -7 : -18)
21 6 (1 : 2 : 3 : -3 : -3) (0 : 9 : 1 : -10 : -15)
22 5 (1 : -1 : 3 : 3 : -3) (0 : 27 : -4 : -60 : 49)
45 18 (1 : 1 : 3 : 3 : -3) (0 : 3 : -1 : 3 : -8)
73 17 (1 : 5 : -2 : 11 : -15) (0 : 27 : -40 : 85 : -96)

Remark 24. It is a priori unnecessary to search for accumulating surfaces, at
least if we assume some conjectures.

First of all, only rational surfaces are supposed to accumulate that many rational
points that it could be seen through our asymptotics. Indeed, a surface which
is abelian or bielliptic may not have more than O(logt B) points of height < B.
Non-rational ruled surfaces accumulate points in curves, anyway. Further, it is
expected [Pe2, Conjecture 3.6] that K3 surfaces, Enriques surfaces, and surfaces
of Kodaira dimension one may have no more than O(Bε) points of height < B
outside a finite union of rational curves. For surfaces of general type, finally,
expectations are even stronger (Lang’s conjecture).
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A rational surface S is, up to exceptional curves, the image of a rational
map ϕ : P2 ���� V ⊂ P4. There is a birational morphism ε : P → P2 such that
ϕ := ϕ ◦ ε is a morphism of schemes. ε is given by a sequence of blowing-
ups [Bv, Theorem II.11]. ϕ is defined by the linear system |dH − E| where
d := deg ϕ, H is a hyperplane section, and E is the exceptional divisor. On the
other hand, K := KP = −3H + E. Therefore, if d ≥ 3 then

Hnaive(ϕ(p)) = HdH−E(p) = H3H− 3

d E(p)d/3 ≥ c ·H−K(p)d/3

for p �∈ supp(E). Manin’s conjecture implies there are O((B logt B)
3

d ) = o(B2)
points of height < B on the Zariski-dense subset ϕ(P \ supp(E)) ⊆ S.

It remains to show that there are no rational maps ϕ : P2 ���� V of de-
gree d≤2. Indeed, under this assumption, deg ϕ(P2)≤4. This implies, by virtue
of Lemma 19, that ϕ(P2) is necessarily a hyperplane section V ∩ H . Zak’s
theorem [Za, Corollary 1.8] shows that V ∩ H contains only finitely many sin-
gular points. It is, however, well known that cubic surfaces in 3-space which are
the image of P2 under a quadratic map have a singular line [Bv, Corollary IV.8].

The Detection of -rational Conics on the Quartics. On a quartic
threefold, linear growth is predicted for the number of -rational points of
bounded height. The assumption b > 0 ensures that there are no -rational
lines contained in V 4

a,b. The only other curves with at least linear growth one
could think about are conics.

We were not able to create an efficient routine to test whether there is a
-rational conic through a given point. The resulting system of equations seems

to be too complicated to handle.

Conics Through Two Points. A conic Q through (x0 : y0 : z0 : v0 : w0)
and (x1 : y1 : z1 : v1 : w1) may be parametrized in the form

(s : t) �→ ((λx0s2 + μx1t2 + xst) : . . . : (λw0s2 + μw1t2 + wst))

for some x, y, z, v, w, λ, μ ∈ . The condition that Q is contained in V 4
a,b leads to

a system G of seven equations in x, y, z, v, w, and λμ. The phenomenon that
λ and μ do not occur individually is explained by the fact that they are not
invariant under the automorphisms of P1 which fix 0 and ∞.

Algorithm 25 (Test for conic through two points)
i) Let p run through the primes from 3 to N .
In the exceptional case that G could allow a solution such that p|x, y, z, v, w but
p2 � λμ, do nothing. Otherwise, solve G in 6

p . If (0, 0, 0, 0, 0, 0) is the only solu-
tion then output that there is no -rational conic through (x0 : y0 : z0 : v0 : w0)
and (x1 : y1 : z1 : v1 : w1) and terminate prematurely.
ii) If the loop comes to its regular end then output that the pair is suspicious.
It could possibly lie on a -rational conic.

To solve the system G in 6
p , we use an O(p)-algorithm. Actually, comparison of

coefficients at s7t and st7 yields two linear equations in x, y, z, v, and w.
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We parametrize the projective plane I given by them. Comparison of coefficients
at s6t2 and s2t6 leads to a quadric O and an equation λμ = q(x, y, z, v, w)/M
with a quadratic form q over and an integer M �= 0. The case p|M sends us to
the next prime immediately. Otherwise, we compute all points on the conic I∩O.
For each of them, we test the three remaining equations.

Conics Through Three Points. Three points P1, P2, and P3 on V 4
a,b define a

projective plane P. The points together with the two tangent lines P∩TP1
and

P∩TP2
determine a conic Q, uniquely. It is easy to transform this geometric

insight into a formula for a parametrization of Q. We then need a test whether a
conic given in parametrized form is contained in V 4

a,b. This part is algorithmically
simple but requires the use of multiprecision integers.

Detecting Conics. For each quartic V 4
a,b, we tested every pair of -rational

points of height < 10 000 for a conic through them. The existence of a conic
through (P, Q) is equivalent to the existence of a conic through (gP, gQ)
for g ∈ ( /2 )4 � S3 ⊆ Aut(V 4

a,b). This reduces the running time by a fac-
tor of about 96. Further, pairs already known to lie on the same conic were
excluded from the test.

For each pair (P, Q) found suspicious, we tested the triples (P, Q, R) for R run-
ning through the -rational points of height < 10 000, until a conic was found.
Due to the symmetries, one finds several conics at once. For each conic detected,
all points on it were marked as lying on this conic.

Actually, there were a few pairs found suspicious through which no conic could
be found. In any of these cases, it was easy to prove by hand that there is actually
no -rational conic passing through the two points. This means, we detected
every conic which meets at least two of the rational points of height < 10 000.

The Conics Found. Up to symmetry, we found a total of 1 533 -rational conics
on all of the quartics V 4

a,b for 1 ≤ a, b ≤ 100 together.
Among them, 1 410 are contained in a plane of type z = v+w and Y x−Xy = 0

for (X, Y, t) a rational point on the genus one curve aX4 − bY 4 = 2t2. Fur-
ther, there are 90 conics which are slight modifications of the above with y
interchanged with z, v, or w. This is possible if b is a fourth power.

There is a geometric explanation for the occurrence of these conics. The hy-
perplane given by z = v + w intersects V 4

a,b in a surface S with the two singular
points (0 : 0 : −1 : e±2πi/3 : e∓2πi/3). The linear projection π : S ���� P1 to the
first two coordinates is undefined only in these two points. Its fibers are plane
quartics which split into two conics as (v+w)4 +v4 +w4 = 2(v2 +vw+w2)2. Af-
ter resolution of singularities, the two conics become disjoint. S̃ is a ruled surface
over a twofold cover of P1 ramified in the four points such that ax4 − by4 = 0,
i.e. over a curve of genus one.

In the case a is twice a square, a different sort of conics comes from the
equations v = z + Dy and w = Ly when (L, D) is a point on the affine genus
three curve Cb : L4+b = D4. We found 28 conics of this type. Cb has a -rational
point for b = 5, 15, 34, 39, 65, 80, and 84. The conics actually admit a -rational
point for a = 2, 18, 32, and 98.
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The remaining five conics are given as follows. For a = 3, 12, 27, or 48 and
b = 10, intersect with the plane given by v = y + z and w = 2y + z. For a = 17
and b = 30, put v = 2x + y and w = x + 3y + z.

Remark 26. Again, it is not necessary to search for accumulating surfaces.
Here, rational maps ϕ : P2 ���� V ⊂ P4 such that deg ϕ ≤ 3 need to be taken
into consideration. We claim, such a map is impossible.

If deg ϕ = 3 then we had ϕ : (λ : μ : ν) �→ (K0(λ, μ, ν) : . . . : K4(λ, μ, ν))
where K0, . . . , K4 are cubic forms defined over . K0 = 0 defines a plane cu-
bic which has infinitely many real points, automatically. As the image of ϕ
is assumed to be contained in V 4

a,b, we have that K0(λ, μ, ν) = 0 implies
K1(λ, μ, ν) = . . . = K4(λ, μ, ν) = 0 for λ, μ, ν ∈ . By consequence, K1, . . . , K4
are divisible by K0 (or by a linear factor of K0 in the case it is reducible) and
ϕ is not of degree three.

For deg ϕ ≤ 2, we had deg ϕ(P2) ≤ 4 such that ϕ(P2) = V ∩ H is a hyper-
plane section. Zak’s theorem [Za, Corollary 1.8] shows it has at most finitely
many singular points. On the other hand, a quartic in P3 which is the image of
a quadratic map from P2 is a Steiner surface. It is known [Ap, p. 40] to have
one, two, or (in generic case) three singular lines.

5 The Final Results

A Technology to Find Solutions of Diophantine Equations. In [EJ1]
and [EJ2], we described a modification of D. Bernstein’s [Be] method to search
efficiently for all solutions of naive height < B of a Diophantine equation of the
particular form f(x1, . . . , xn) = g(y1, . . . , ym). The expected running-time of
our algorithm is O(Bmax{n,m}). Its basic idea is as follows.

Algorithm 27 (Search for solutions of a Diophantine equation)
i) (Writing)
Evaluate f on all points of the cube {(x1, . . . , xn) ∈ n | |xi| < B} of dimen-
sion n. Store the values within a hash table H.
ii) (Reading)
Evaluate g on all points of the cube {(y1, . . . , ym) ∈ m | |yi| < B}. For each
value, start a search in order to find out whether it occurs in H. When a coinci-
dence is detected, reconstruct the corresponding values of x1, . . . , xn and output
the solution.

Remark 28. In the case of a variety V e
a,b, the running-time is obviously O(B3).

We decided to store the values of ze+ve+we into the hash table. Afterwards, we
have to look up the values of axe − bye.

In this form, the algorithm would lead to a program in which almost the
entire running-time is consumed by the writing part. Observe, however, the
following particularity of our method. When we search on up to O(B) threefolds,
differing only by the values of a and b, simultaneously, then the running-time is
still O(B3).
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We worked with B = 5 000 for the cubics and B = 10 000 for the quartics.
In either case, we dealt with all threefolds arising for a, b = 1, . . . , 100, simulta-
neously. For the quartics, the running-time was around four days of CPU time.
This is approximately only three times longer than searching on a single three-
fold had lasted. For the cubics, a program with integrated line detection took us
approximately ten days.

The Result for the Cubics. We counted all -rational points of height less
than 5 000 on the threefolds V 3

a,b where a, b = 1, . . . , 100 and b ≤ a. Note that
V 3

a,b
∼= V 3

b,a. Points lying on one of the elliptic cones or on a sporadic -rational
line in Va,b were excluded from the count. The smallest number of points found
is 3 930 278 for (a, b) = (98, 95). The largest numbers of points are 332 137 752
for (a, b) = (7, 1) and 355 689 300 in the case that a = 1 and b = 1.

On the other hand, for each threefold V 3
a,b whereas a, b = 1, . . . , 100

and b + 3 ≤ a, we calculated the expected number of points and the quotients

# { points of height < B found } / # { points of height < B expected }.

Let us visualize the quotients by two histograms.
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Fig. 1. Distribution of the quotients for B = 1000 and B = 5000

The statistical parameters are listed in the table below.

Table 2. Parameters of the distribution in the cubic case

B = 1000 B = 2 000 B = 5000
mean value 0.981 79 0.988 54 0.993 83

standard deviation 0.012 74 0.008 23 0.004 55
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The Results for the Quartics. We counted all -rational points of height
less than 10 000 on the threefolds V 4

a,b where a, b = 1, . . . , 100. It turns out that
on 5 015 of these varieties, there are no -rational points occurring at all as
the equation is unsolvable in p for some small p. In this situation, Manin’s
conjecture is true, trivially.

Further, there is the case (a, b) = (58, 87) in which the smallest 96 solutions
are the images of (6 465 : 637 : 4 321 : 6 989 : 17 719) under the obvious operation
of the group ( /2 )4 � S3. Here, τH(V 4

58,87) ≈ 0.002 722.
For the remaining varieties, the points lying on a known -rational conic

in Va,b were excluded from the count. Table 3 shows the quartics sorted by the
numbers of points remaining.

Table 3. Numbers of points of height < 10 000 on the quartics

a b #points # not on conic # expected
29 29 2 2 13.5
58 58 2 2 38.8
51 71 96 96 319.8
87 87 98 98 35.7

...
...

...
...

...
34 1 995 808 569 088 567 300
17 64 581 640 581 640 564 300
1 14 682 830 598 038 648 300
3 1 1 262 048 739 008 752 600

We see that the variation of the quotients is higher than in the cubic case.
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The statistical parameters are listed in the table below.

Table 4. Parameters of the distribution in the quartic case

B = 1000 B = 10 000
mean value 0.9853 0.9957

standard deviation 0.3159 0.1130

Interpretation of the Result. The results suggest that Manin’s conjecture
should be true for the two families of threefolds considered. In the cubic case, the
standard deviation is by far smaller than in the case of the quartics. This, how-
ever, is not very surprising as on a cubic there tend to be much more rational
points than on a quartic. This makes the sample more reliable.

Remark 29. The data we collected might be used to test the sharpening of the
asymptotic formula (1) suggested by Sir P. Swinnerton-Dyer [S-D].

Question 30. Our calculations seem to indicate that the number of rational
points often approaches its expected value from below. Is that more than an
accidental effect?
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[PT] Peyre, E. and Tschinkel, Y.: Tamagawa numbers of diagonal cubic surfaces,
numerical evidence, Math. Comp. 70 (2001), 367–387

[SchSt] Schönhage, A. and Strassen, V.: Schnelle Multiplikation großer Zahlen, Com-
puting 7 (1971), 281–292

[Se] Sedgewick, R.: Algorithms, Addison-Wesley, Reading 1983
[S-D] Swinnerton-Dyer, Sir P.: Counting points on cubic surfaces II, in: Geomet-

ric methods in algebra and number theory, Progr. Math. 235, Birkhäuser,
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Abstract. Let C be a smooth plane cubic curve with Jacobian E. We
give a formula for the action of the 3-torsion of E on C, and explain how
it is useful in studying the 3-Selmer group of an elliptic curve defined
over a number field.

We work over a field K of characteristic zero, with algebraic closure K.

1 The Invariants of a Ternary Cubic

Let X3 = A10 be the space of all ternary cubics

U(X, Y, Z) = aX3 + bY 3 + cZ3 + a2X2Y + a3X2Z
+ b1XY 2 + b3Y

2Z + c1XZ2 + c2Y Z2 + mXY Z .

The co-ordinate ring of X3 is the polynomial ring

K[X3] = K[a, b, c, a2, a3, b1, b3, c1, c2, m] .

There is a natural action of GL3 on X3 given by

(gU)(X, Y, Z) = U(g11X + g21Y + g31Z, . . . , g13X + g23Y + g33Z) .

The ring of invariants is

K[X3]SL3 = {F ∈ K[X3] : F ◦ g = F for all g ∈ SL3(K)} .

A homogeneous invariant F satisfies

F ◦ g = χ(g)F (1)

for all g ∈ GL3(K), for some rational character χ : GL3 → Gm. But the only
rational characters of GL3 are of the form χ(g) = (det g)k for k an integer. We
say that F is an invariant of weight k. Taking g a scalar matrix in (1) shows
that F has weight equal to its degree. The following facts are well known: see
[1], [10], [15].
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Theorem 1.1. There are invariants c4, c6 and Δ of weights 4, 6 and 12, related
by c3

4 − c2
6 = 1728Δ, with the following properties:

(i) The invariants of

UE(X, Y, Z) = Y 2Z + a1XY Z + a3Y Z2 − X3 − a2X2Z − a4XZ2 − a6Z3

are given by the standard formulae: see [14, Chap. III].
(ii) The ring of invariants is a polynomial ring in two variables, generated by c4

and c6.
(iii) A ternary cubic U is non-singular if and only if Δ(U) �= 0.
(iv) If the plane cubic {U = 0} ⊂ P2 is non-singular then it has Jacobian

y2 = x3 − 27c4(U)x − 54c6(U) .

The Hessian of U(X, Y, Z) is

H(X, Y, Z) = (−1/2)×

∣∣∣∣∣∣∣∣
∂2U
∂X2

∂2U
∂X∂Y

∂2U
∂X∂Z

∂2U
∂X∂Y

∂2U
∂Y 2

∂2U
∂Y ∂Z

∂2U
∂X∂Z

∂2U
∂Y ∂Z

∂2U
∂Z2

∣∣∣∣∣∣∣∣ .

The factor −1/2, although not standard, is a choice we find convenient. The
Hessian is a polynomial map H : X3 → X3 satisfying

H ◦ g = (det g)2g ◦ H

for all g ∈ GL3(K). We say it is a covariant of weight 2. Putting c4 = c4(U),
c6 = c6(U) and H = H(U) we find

H(λU + μH) = 3(c4λ2μ + 2c6λμ2 + c2
4μ3)U + (λ3 − 3c4λμ2 − 2c6μ3)H .

This formula is classical: see [7], [11]. It is easily verified by restricting to any
family of plane cubics covering the j-line. It also gives a convenient way of
computing the invariants c4 and c6.

2 The 3-Selmer Group

Definition 2.1. Let U1 and U2 be ternary cubics over K.
(i) U1 and U2 are equivalent if U2 = λ(gU1) for some λ ∈ K× and g ∈ GL3(K).
(ii) U1 and U2 are properly equivalent if U2 = (det g)−1(gU1) for some g ∈
GL3(K).

Lemma 2.2. Let U1 and U2 be non-singular ternary cubics over K. If U1 and
U2 are properly equivalent then they have the same invariants. If K = K then
the converse is also true.
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Proof. The first statement follows from the fact that a homogeneous invariant
has weight equal to its degree. For the second statement we may assume

U1(X, Y, Z) = Y 2Z − (X3 + a1XZ2 + b1Z3)
U2(X, Y, Z) = Y 2Z − (X3 + a2XZ2 + b2Z3)

for some a1, b1, a2, b2 ∈ K. Since U1 and U2 have the same invariants, it follows
by Theorem 1.1(i) that U1 = U2. ��

We consider pairs (C → S, ω) where C → S is a morphism from a smooth curve
of genus one C to a Brauer-Severi variety S, and ω is a regular 1-form on C. An
isomorphism between (C1 → S1, ω1) and (C2 → S2, ω2) is a pair of isomorphisms
φ : C1 ∼= C2 and ψ : S1 ∼= S2 such that φ∗ω2 = ω1 and the diagram

C1 ��

φ

��

S1

ψ

��
C2 �� S2

commutes.
Let n ≥ 2 be an integer. Let E/K be an elliptic curve with invariant differ-

ential ωE . We map E → Pn−1 via the complete linear system |n.0E |. We recall
that objects defined over K are called twists if they are isomorphic over K.

Lemma 2.3. The twists of (E → Pn−1, ωE), up to K-isomorphism, are param-
etrised by H1(K, E[n]).

Proof. The automorphisms α of E with α∗ωE = ωE are the translation maps.
If τP : E → E is translation by P ∈ E(K), we know that τ∗

P (n.0E) ∼ n.0E

if and only if nP = 0E . So Aut(E → Pn−1, ωE) ∼= E[n]. An injective map
from the isomorphism classes of twists to H1(K, E[n]) is given by comparing
an isomorphism defined over K with its Galois conjugates. It remains to prove
surjectivity. This follows from the well known facts that the twists of E are
parametrised by H1(K, Isom(E)) and the twists of Pn−1 are parametrised by
H1(K, PGLn). ��

Remark 2.4. This interpretation of H1(K, E[n]) is a variant of one given in
[4], [9]. If φ : C → E is an isomorphism of curves defined over K with φ∗ωE = ω
then we make C a torsor under E via (P, Q) �→ φ−1(P + φ(Q)). This action
depends on ω but not on φ.

The obstruction map, defined in [9], is

Ob : H1(K, E[n]) → Br(K)
(C → S, ω) �→ [S] .

In general this map is not a group homomorphism. Nevertheless we write ker(Ob)
for the inverse image of the identity. We specialise to the case n = 3.
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Theorem 2.5. Let UE = 0 be a Weierstrass equation for E. Then the ternary
cubics with the same invariants as UE, up to proper K-equivalence, are param-
etrised by ker(Ob) ⊂ H1(K, E[3]).

Proof. A ternary cubic U determines a plane cubic C = {U = 0} ⊂ P2 and a
regular 1-form on C

ω =
Z2d(Y/Z)

∂U
∂X (X, Y, Z)

.

Conversely, every twist (C → S, ω) of (E → P2, ωE) with S ∼= P2 arises in this
way. In view of Lemmas 2.2 and 2.3 it only remains to show that ternary cubics
U1 and U2 are properly equivalent if and only if they determine isomorphic pairs
(C1 → P2, ω1) and (C2 → P2, ω2). This is immediate from the next lemma, or
more precisely the special case of it where g ∈ GL3(K). ��

Lemma 2.6. Let U1 and U2 be non-singular ternary cubics, determining pairs
(C1 → P2, ω1) and (C2 → P2, ω2). If gU1 = U2 for some g ∈ GL3(K) then the
isomorphism induced by g, namely

γ : C2 → C1 ; (X : Y : Z) �→ (g11X + g21Y + g31Z : . . .),

satisfies γ∗ω1 = (det g)ω2.

Proof. If the lemma is true for g1, g2 ∈ GL3(K) then it is true for g1g2. So it
suffices to let g run over a set of generators for GL3(K). The result is already
clear for matrices of the form

g =

⎛⎝λ1 0 0
0 λ2 0
0 μ λ3

⎞⎠ .

Then for

g =

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ and g =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠
we use the identities

Z

Y
d

(
Y

Z

)
+

Y

Z
d

(
Z

Y

)
= 0

and
1

Z2

∂U

∂X
(X, Y, Z)d

(
X

Z

)
+

1
Z2

∂U

∂Y
(X, Y, Z)d

(
Y

Z

)
= 0 .

��

Remark 2.7. The subset ker(Ob) ⊂ H1(K, E[3]) contains the identity and is
closed under taking inverses. A ternary cubic U represents the identity if and
only if it has a K-rational point of inflection. The inverse of U is −U .
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Remark 2.8. We claim that if K is a number field then the everywhere locally
soluble ternary cubics with the same invariants as UE , up to proper
K-equivalence, are parametrised by the 3-Selmer group S(3)(E/K). It is shown
in [9] that S(3)(E/K) ⊂ ker(Ob), so this claim is a special case of Theorem 2.5.

This interpretation of S(3)(E/K) becomes more useful if we can find algorithms
for performing the following tasks. We write [U ] for the proper equivalence class
of U .

1. Given U test whether [U ] = 0.
2. Given U1, U2 test whether [U1] = [U2]. If so find the change of co-ordinates

that relates them.
3. Given U1, U2, U3 test whether [U1] + [U2] = [U3].
4. Given U1, U2 determine whether there exists U3 with [U1] + [U2] = [U3]. If

so compute U3.

The analogues of these problems for the 2-Selmer group have been solved in [3].

3 The Etale Algebra

Let R be the étale algebra of E[3]. It is a product of field extensions of K, one
for each orbit for the action of Gal(K/K) on E[3]. It is shown in [6], [12] that
there is an injective group homomorphism

w1 : H1(K, E[3]) → R×/(R×)3 .

According to [4, Paper I, Corollary 3.12] the restriction to ker(Ob) is given by

(C → P2, ω) �→ α = det M

where M ∈ GL3(R) = MapK(E[3], GL3(K)) describes the action of E[3] on
C → P2. (Recall that C is a torsor under E.)

In joint work [4] we describe a method for converting elements of ker(Ob)
represented by α ∈ R× to elements of ker(Ob) represented by a ternary cubic
U(X, Y, Z). In this article we work in the opposite direction. We start with a
ternary cubic U(X, Y, Z) and convert it to α ∈ R×. We also give a formula for
the matrix M ∈ GL3(R). This enables us to solve the problems listed at the end
of Sect. 2.

4 The Hesse Family

Let C be a smooth plane cubic with Jacobian E. Let ζ ∈ K be a primitive cube
root of unity. Let S, T be a basis for E[3] with e3(S, T ) = ζ, where e3 is the Weil
pairing. Making a suitable choice of co-ordinates over K we may assume

MS =

⎛⎝1 0 0
0 ζ 0
0 0 ζ2

⎞⎠ , MT =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ .
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Then C has equation

U(X, Y, Z) = a(X3 + Y 3 + Z3) − 3bXY Z .

The invariants of this ternary cubic are

c4(a, b) = 34(8a3 + b3)b
c6(a, b) = 36(8a6 + 20a3b3 − b6)
Δ(a, b) = −39a3(a3 − b3)3 .

The Hessian is

H(X, Y, Z) = 27ab2(X3 + Y 3 + Z3) − 27(4a3 − b3)XY Z .

Taking 0C = (0 : 1 : −1) the elliptic curve (C, 0C) has Weierstrass equation

y2z = x3 − 27c4(a, b)xz2 − 54c6(a, b)z3 .

An explicit isomorphism is given by

x = −27(4a3 − b3)X − 81ab2(Y + Z)
y = 972a(a3 − b3)(Y − Z)
z = bX + a(Y + Z) .

(2)

5 The Syzygetic Triangles

Let U(X, Y, Z) be a non-singular ternary cubic with Jacobian E. The pencil of
cubics spanned by U and its Hessian is a twist of the Hesse family. So there are
exactly 4 singular fibres, and each singular fibre is a triangle. The sides of each
triangle are the fixed lines for the action of MT on P2 for some 0 �= T ∈ E[3].
So there is a Galois equivariant bijection between the syzygetic triangles and

P(E[3]) =
E[3] \ {0}
{±1} .

Lemma 5.1. Let U be a non-singular ternary cubic with invariants c4, c6 and
Hessian H. Let T = (xT , yT ) be a non-zero 3-torsion point on the Jacobian

E : y2 = x3 − 27c4x − 54c6 .

Then the syzygetic triangle corresponding to ±T has equation

T = 1
3xT U + H

and this equation satisfies H(T ) = 1
27y2

TT .

Proof. We may assume that U belongs to the Hesse family with T the image of
(0 : ζ : −ζ2) under (2). The lemma follows by direct calculation. ��

Remark 5.2. The Hessian of a triangle is a non-zero multiple of the triangle.
So in Lemma 5.1 we have yT �= 0. This is no surprise, since a non-zero 3-torsion
point on E cannot also be a 2-torsion point.
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6 The Invariants of a Triangle

Let S3 act on Q[α1, α2, α3, β1, β2, β3] by simultaneously permuting the αi and
the βi. The ring of invariants has Hilbert series

h(t) =
1 + t2 + 2t3 + t4 + t6

(1 − t)2(1 − t2)2(1 − t3)2
.

Let s1, s2, s3 (respectively t1, t2, t3) be the elementary symmetric polynomials
in the αi (respectively βi). According to MAGMA the primary invariants are
s1, s2, s3, t1, t2, t3. The remaining coefficients of

T1(X, Y, Z) =
3∏

i=1

(X + αiY + βiZ)

are
u = α1(β2 + β3) + α2(β3 + β1) + α3(β1 + β2)
v = α1α2β3 + α1β2α3 + β1α2α3
w = α1β2β3 + β1α2β3 + β1β2α3 .

The secondary invariants are 1, u, v, w, u2, vw. So as a Q-algebra, the ring of
invariants is generated by the coefficients of T1. There are 5 relations. These are
obtained by writing uv, uw, v2, w2, u3 as linear combinations of the secondary
invariants. In fact MAGMA can rewrite any invariant as a Q[s1, s2, s3, t1, t2, t3]-
linear combination of the secondary invariants. For example

(α1 − α2)(α2 − α3)(α3 − α1)

∣∣∣∣∣∣
1 α1 β1
1 α2 β2
1 α3 β3

∣∣∣∣∣∣
= 2s2

1v − s1s2u − 6s1s3t1 + 2s2
2t1 − 6s2v + 9s3u .

7 Formulae

Let C be a smooth plane cubic defined over K, with Jacobian E. Let L/K
be any field extension. Given T ∈ E[3](L) we aim to compute MT ∈ GL3(L)
describing the action of T on C. We start with an equation U = 0 for C. Then
we construct the syzygetic triangle T = 1

3xT U + H as described in Lemma 5.1.
Making a change of co-ordinates if necessary, we may assume T (1, 0, 0) �= 0.
Then factoring over the algebraic closure gives

T (X, Y, Z) = r

3∏
i=1

(X + αiY + βiZ) . (3)

We put

P =

⎛⎝1 α1 β1
1 α2 β2
1 α3 β3

⎞⎠
and ξ = α1 + ζα2 + ζ2α3.
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Theorem 7.1. If ξ �= 0 then the matrix

MT = rξP−1

⎛⎝1 0 0
0 ζ2 0
0 0 ζ

⎞⎠P

belongs to GL3(L) and describes the action of T (or −T ) on C.

Proof. The required matrix has image in PGL3 of order 3, and acts on P2 with
fixed lines the sides of T = 0. So the second statement is clear. We must check
that MT has coefficients in L.

We write r−1(det P )MT = A + (ζ − ζ2)B where A and B are matrices with
entries in Q[α1, α2, α3, β1, β2, β3]. We find σ(A) = sign(σ)A and σ(B) = B for
all σ ∈ S3. So the entries of (det P )A and B are polynomials in the coefficients
of T1 = r−1T . As discussed in Sect. 6 we can compute these polynomials using
MAGMA.

By (3) we have H(T ) = −r2(det P )2T . Comparing with Lemma 5.1 it follows
that yT = ±3(ζ − ζ2)r det P. Therefore

(det P )2MT = r(det P )A ± 1
3yT B

and MT has entries in L as required. ��
We write

T (X, Y, Z) = rX3 + s1X2Y + s2XY 2 + s3Y
3

+ t1X2Z + t2XZ2 + t3Z3

+ Y Z(uX + vY + wZ) .
(4)

Theorem 7.2. det(MT ) = 1
2 (R ± 27r

yT
S) where

R = 2s3
1 − 9rs1s2 + 27r2s3

S = 2s2
1v − s1s2u − 6s1s3t1 + 2s2

2t1 − 6rs2v + 9rs3u .

Proof. Comparing coefficients in (3) and (4) we find

det(MT ) = r3(α1 + ζα2 + ζ2α3)3

= 1
2 (R − 3(ζ − ζ2)r3δ)

where δ = (α1 − α2)(α2 − α3)(α3 − α1). By the example in Sect. 6 we have
r3δ det P = S. Finally we recall from the proof of Theorem 7.1 that yT =
±3(ζ − ζ2)r det P. ��
Remark 7.3. The formulae of Theorems 7.1 and 7.2 sometimes fail and give
zero. (The situation is analogous to the proof of Hilbert’s theorem 90 using
Lagrange resolvents.) However if they fail for both T and −T then

α1 + ζα2 + ζ2α3 = 0

and
α1 + ζ2α2 + ζα3 = 0 .

From these we deduce det P = 0, contradicting that (3) is the equation of a
syzygetic triangle. So if our formula for MT fails then we can use (M−T )−1

instead.
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8 Galois Actions

The formulae of Sect. 7 are slightly easier to use in the case E does not admit a
rational 3-isogeny.

Lemma 8.1. If E does not admit a rational 3-isogeny and [U ] �= 0, then we are
guaranteed that T (1, 0, 0) �= 0.

Proof. We recall that T = 1
3xT U +H . By hypothesis xT �∈ K. So if T (1, 0, 0) = 0

then U(1, 0, 0) = H(1, 0, 0) = 0. But then (1 : 0 : 0) is a K-rational point of
inflection and [U ] = 0. ��

Let G ⊂ GL2(F3) ∼= Aut(E[3]) be the image of Galois.

Lemma 8.2. If E does not admit a rational 3-isogeny then −I2 ∈ G.

Proof. By hypothesis the image of G in PGL2(F3) ∼= S4 acts on P1(F3) without
fixed points. If this image is A4 or S4 then G contains SL2(F3) by [13, IV, §3.4,
Lemma 2]. Otherwise G is a 2-group, and so conjugate to a subgroup of the
Sylow 2-subgroup generated by

a =
(

1 1
−1 1

)
and b =

(
1 0
0 −1

)
.

The only non-trivial subgroups of 〈a, b〉, not containing −I2, are the conjugates
of 〈b〉. These possibilities for G are again ruled out by the assumption that E
does not admit a rational 3-isogeny. ��

If −I2 ∈ G then our formula for MT works if and only if our formula for M−T

works. According to Remark 7.3 they cannot both fail, so they must both work.

9 Applications

In our examples we take K = Q. Elliptic curves over Q are referenced by their
labellings in [2].

9.1 Testing Proper Equivalence

We are given non-singular ternary cubics U1 and U2, and must decide whether
they are properly equivalent. First we check that they have the same invariants
c4 and c6. Then the plane cubics U1 = 0 and U2 = 0 each have Jacobian

E : y2 = x3 − 27c4x − 54c6 .

We compute α1, α2 ∈ R× by using Theorem 7.2 once for each orbit for the
action of Gal(K/K) on E[3]. Then U1 and U2 are properly equivalent if and only
if α1/α2 ∈ (R×)3.
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For example the ternary cubics

U1(X, Y, Z) = X3 − 180Y 3 + 24Z3 + 8X2Y − 3X2Z
+ 3XY 2 − 148Y 2Z + 76XZ2 − 280Y Z2 + 59XY Z

and

U2(X, Y, Z) = 32X3 + 48Y 3 + 32Z3 − 14X2Y − 17X2Z
+ 14XY 2 + 68Y 2Z − 34XZ2 + 34Y Z2 − 91XY Z

each have invariants c4 = 1073512497 and c6 = 35173095391575. The Jacobian
is

2534e2 : y2 + xy + y = x3 − x2 − 22364844x− 40704009937 .

A non-trivial 3-torsion point is T = (xT , yT ) where

xT = 1
12 (289u6 + 765u4 + 24567u2 + 22035)

yT = − 1
312 (239307u7 + 3757u6 + 638911u5 + 9945u4

+ 20357181u3 + 319371u2 + 45909405u + 286611)

and u is a root of X8 + 78X4 − 36X2 − 507 = 0. We have R = Q × L where
L = Q(u) is a number field of degree 8. The first factor of Q may be ignored.
Using Theorem 7.2 we compute

α1 = 144
13 (548276415600669u7− 912344032067546u6

+1459379319052681u5− 2428439574347826u4

+46650075622210203u3− 77626752951639190u2

+104433275464300347u− 173779291524426198)

α2 = 1152
13 (23737183831720776u7 + 38664498064205221u6

+63182645951465768u5 + 102915548856548337u4

+2019677284143385464u3 + 3289767129786200531u2

+4521354220053126264u+ 7364643132168529779) .

We find α1/α2 = b3 where

b = 1
31499104 (−35980u7 + 9880u6 − 90181u5 + 294515u4

−2820090u3 + 1603888u2 − 6288205u + 17147429) .

It follows that U1 and U2 are properly equivalent.

Remark 9.1. Suppose we are given non-singular ternary cubics U and U ′ with
invariants c4, c6 and c′4, c′6. To test for equivalence we first find all λ ∈ K×

satisfying c′4 = λ4c4 and c′6 = λ6c6. Then for each such λ we test whether λU
and U ′ are properly equivalent.

9.2 Finding Equivalences

We continue with the example of the last subsection and find the change of co-
ordinates relating U1 and U2. Following the proof of Theorem 7.1 we compute
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matrices M1, M2 ∈ GL3(L) describing the action of T on U1 = 0 and U2 = 0.
Since α1/α2 ∈ (L×)3 we may arrange that det M1 = det M2. We are looking for
g ∈ GL3(K) with U2 = (det g)−1(gU1). We must have

M1gT = cgT M2

for some c ∈ L×. Taking determinants gives c3 = 1. Since L contains no non-
trivial cube roots of unity it follows that c = 1. Solving for g by linear algebra
we find

g =

⎛⎝ 19 −1 6
−8 −8 0
22 −2 −4

⎞⎠ .

Remark 9.2. If E[3](K) �= 0 then there will be more than one change of co-
ordinates relating U1 and U2. These will correspond to different choices for the
constant c. Indeed by the Weil pairing there is an inclusion E[3](K) ⊂ μ3(R).

9.3 Addition of Selmer Group Elements

The rank 0 elliptic curve

E = 4343b1 : y2 + y = x3 − 325259x− 71398995

has Tate-Shafarevich group of analytic order 9. The following two elements of
S(3)(E/Q) are visible in the rank 1 elliptic curves 21715a1 and 117261k1. (We
will explain these calculations more fully in subsequent work. The concept of
visibility was introduced in [5].)

U1(X, Y, Z) = X3 + 15Y 3 − 17Z3 − 8X2Y + 4X2Z
+ 15XY 2 − 13Y 2Z + 32XZ2 + 26Y Z2 + 4XY Z

U2(X, Y, Z) = 7X3 − 13Y 3 − 17Z3 + 7X2Y + 3X2Z
− 4XY 2 − 2Y 2Z + 12XZ2 − 15Y Z2 − 30XY Z

We use Theorem 7.2 to compute α1, α2 ∈ R×. We find that α1, α2 are indepen-
dent in R×/(R×)3. Applying the work of [4] to α1α2 and α1/α2 we obtain

U3(X, Y, Z) = −5X3 + 12Y 3 + 31Z3 + 3X2Y − 5X2Z
+ 5XY 2 + 2Y 2Z + 4XZ2 + 26Y Z2 + 40XY Z

U4(X, Y, Z) = −11X3 + 8Y 3 − 13Z3 − 9X2Y + 11X2Z
− 15XY 2 − Y 2Z − 16XZ2 − 3Y Z2 − 38XY Z .

Assuming the Birch Swinnerton-Dyer conjecture, we have

X(E/Q) = {0,±[U1],±[U2],±[U3],±[U4]} .

We have found these equations without the need to compute the class group or
unit group of any number field.
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9.4 Testing Global Solubility

We show that the ternary cubic

U1(X, Y, Z) = 7X3 + 9Y 3 + 16Z3 + 2X2Y
+ 5Y 2Z + 5XZ2 − 7Y Z2 − 31XY Z

is insoluble over Q. The Jacobian

E = 35882a1 : y2 + xy = x3 − x2 − 156926x− 24991340

has Mordell-Weil group E(Q) ∼= Z/2Z × Z. A point of infinite order is P =
(693, 13750). Embedding E ⊂ P2 via |2.0E + P | we obtain

U2(X, Y, Z) = 15Y 3 + 1254Z3 + X2Z − XY 2

+ 674Y 2Z + 10XZ2 − 291Y Z2 + XY Z .

We use Theorem 7.2 to compute α1, α2 ∈ R×. We then check that α1, α2 are
independent in R×/(R×)3. Since U2 is soluble over Q and E(Q)/3E(Q) ∼= Z/3Z,
it follows that U1 is insoluble over Q.

Alternatively this could be checked using the explicit formulae for the covering
map given in [1].

9.5 Reduction of Ternary Cubics

It is desirable to be able to replace an integer coefficient ternary cubic by an
equivalent one with smaller coefficients. One method, explained to me by Michael
Stoll, first computes a certain inner product, and then uses standard lattice
reduction techniques. By an inner product on a complex vector space we mean
a positive definite Hermitian form. We recall the Weyl unitary trick.

Lemma 9.3. Let V be an irreducible complex representation of a finite group G.
Then (up to scalars) there is a unique G-invariant inner product 〈 , 〉 : V ×V → C.

Proof. Let 〈 , 〉0 be any inner product on V . Then

〈u, v〉 =
∑
g∈G

〈gu, gv〉0

is a G-invariant inner product. By Schur’s lemma the complex vector space of
G-invariant sesquilinear forms on V is 1-dimensional. ��

We now take C ⊂ P2 a smooth plane cubic defined over Q with Jacobian E.
The action of E[3] on C extends to P2 to give χ : E[3] → PGL3. Lifting to SL3
we obtain a diagram

0 �� μ3 �� H3

��

�� E[3]

χ

��

�� 0

0 �� μ3 �� SL3 �� PGL3 �� 0 .
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The Heisenberg group H3 is a non-abelian group of order 27. For the reduc-
tion of ternary cubics, we use the unique Heisenberg-invariant inner product.
Theorem 7.1 gives a convenient way of computing this inner product. Indeed
if M1 ∈ SL3(R) and M2 ∈ SL3(C) generate the action of E[3] on C then the
required inner product on C3 has Gram matrix

2∑
r=0

(M2
r
)T

( 2∑
s=0

(M s
1 )T M s

1

)
M r

2 .
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Abstract. We describe the invariants of plane quartic curves — nonhy-
perelliptic genus 3 curves in their canonical model — as determined by
Dixmier and Ohno, with application to the classification of curves with
given structure. In particular, we determine modular equations for the
strata in the moduli space M3 of plane quartics which have at least seven
hyperflexes, and obtain an computational characterization of curves in
these strata.

1 Introduction

The classification of curves of genus 0, 1, and 2 is aided by use of various geomet-
ric and arithmetic invariants. In this work we consider nonhyperelliptic genus
3 curves, for which the canonical model is an embedding as a projective plane
quartic. The work of Hess [5,7] gives generic algorithms for determining the lo-
cus of Weierstrass points and for finding whether two curves are isomorphic.
Such a generic approach to isomorphism testing works well for curves over fi-
nite fields, where a small degree splitting field for the Weierstrass places exists,
and when one wants to test only two curves. In this work, we investigate the
geometric invariants of nonhyperelliptic genus 3 curves, which are much more
suited to classifying curves which are already given in terms of their canonical
embeddings.

In particular, plane quartic curves admit explicit formulas for the Weierstrass
locus, invariants of Dixmier and Ohno by which the curves may be classified up
to isomorphism over an algebraically closed field, and moreover can be classified
into strata following Vermeulen’s characterization in terms of the number and
configuration of Weierstrass points of weight two.

In the generic case, Harris [4] proved that a generic curve of any genus over
a field of characteristic zero, is expected to have generic Galois action on the
Weierstrass points. Thus in order to establish an isomorphism between the sets
of Weierstrass points one needs in general an excessively large degree extension
to apply the algorithm of Hess. Thus it becomes essential to exploit any special
structure of the Weierstrass points to facilitate this algorithm. In this article
we focus on curves whose moduli lie in special strata of the moduli space of
genus three curves. We use a classification by invariants to reduce to a trivial
calculation of invariants on certain strata of Vermeulen of dimensions 0 and 1.

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 346–360, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 The Weierstrass Locus of Quartic Curves

A nonhyperelliptic curve C of genus 3 can be define via the canonical embed-
ding by a quartic equation F (X, Y, Z) = 0 in the projective plane. The Hessian
H(X, Y, Z) of the form F (X, Y, Z) is defined by

H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2F

∂X2

∂2F

∂X∂Y

∂2F

∂X∂Z

∂2F

∂X∂Y

∂2F

∂Y 2

∂2F

∂Y ∂Z

∂2F

∂X∂Z

∂2F

∂Y ∂Z

∂2F

∂Z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

This form is a sextic, which meets the curve C in the 24 inflection points of the
curve (counting multiplicities). These inflection are also the Weierstrass points,
hence they may be determined in an elementary way. The inflection points which
meet the Hessian with multiplicity 2 are those inflection points which meet their
tangent line to multiplicity 4, and are called hyperflexes.

The hyperflexes are intrinsic points of the genus 3 curve, since they are Weier-
strass of weight 2 – those which have a deficit of 2 in their gap sequences. Thus
they are preserved by any isomorphism of curves, and reflect the underlying
geometry of the curves (rather than solely of a choice of projective embedding).

We focus in this article on the classification of those curves which have an
exceptional number of hyperflexes. The partioning of the Weierstrass points into
those of weight 1 and weight 2 can also be efficiently determined since it is the
singular subscheme of the intersection F = H = 0, defined by the vanishing of
the Jacobian minors:

∂F

∂X

∂H

∂Y
− ∂F

∂Y

∂H

∂X
=

∂F

∂X

∂H

∂Z
− ∂F

∂Z

∂H

∂X
=

∂F

∂Y

∂H

∂Z
− ∂F

∂Z

∂H

∂Y
= 0.

The calculation of the hyperflex locus can be reduced to polynomial factor-
ization, without the need for Gröbner basis calculations. Let R be the resultant
Res(H, F, Z) of degree 24 and let set G(X, Y ) = GCD(R, RX , RY ). Then G
determines the (X, Y )-coordinates of the hyperflex locus for which XY Z �= 0.

Since plane quartics are canonical embeddings of a genus 3 curve, any isomor-
phism of such curves is induced by a linear isomorphism of their ambient projec-
tive planes. As a result, the problem of determining isomorphisms is reduced to
the intersection of a linear algebra problem of finding such an isomorphism and
a combinatorial one, of mapping a finite set of Weierstrass points to Weierstrass
points. By combining classification of quartics by their moduli invariants into
strata determined by the numbers and configurations of hyperflexes, we facilitate
the problem of establishing isomorphisms between curves.
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3 Quartic Invariants

The j-invariant of an elliptic curve or the Igusa invariants of a genus 2 curve
provide invariants by which a curve of genus 1 or 2 can be classified up to
isomorphism. Recall that the j-invariant of an elliptic curve is defined in terms
of weighted projective invariants E4, E6, and Δ such that

j =
E3

4

Δ
and E3

4 − E2
6 = 123Δ.

Similarly Igusa [8] defined weighted invarinants J2, J4, J6, J8, and J10 with
one relation J2J6 − J2

4 = 4J8, from which one can determine a set of absolute
invariants (see also Mestre [11]).

For genus g ≥ 2, the moduli space of curves of genus g is a space of dimension
3g − 3, thus the determination of generators for the ring of projective invariants
becomes increasingly difficult. However, for genus 3, Dixmier [2] provided an
explicit set of 7 weighted invariants and proves their algebraic independence
over C. The determination of these invariants builds on on the explicit 19th
century methods of Salmon [15]). By comparison of the Poincaré series of this
ring with that computed by Shioda [16], Dixmier finds that his invariants I3,
I6, I9, I12, I15, I18, and I27, determine a subring over which the ring A of all
invariants is free of rank 50.

Recently, Ohno [12] determined a complete set of generators and relations for
the full ring of invariants of plane quartics.1 In particular he shows that there
exist six additional invariants J9, J12, J15, J18, I21, J21, which generate A as a
finite algebraic extension of C[I3, I6, I9, I12, I15, I18, I27].

Definition of Covariants and Contravariants
In this section we recall the definitions of covariants and contravariants, and basic
constructions appearing in Dixmier [2], Ohno [12], and Salmon [15]. We first
introduce the definitions of covariant and contravariant, following the modern
terminology used in Poonen, Schaefer, and Stoll [14, §7.1]. For other modern
treatments of the subject, see Sturmfels [17] and Olver [13].

Let V = Cn be be equipped with the standard left action of GLn(C), which
induces a right action on the algebra C[x1, . . . , xn] = Sym(V ∗). For γ in GLn(C)
and F ∈ C[x1, . . . , xn] we define this action by F γ(x) = F (γ(x)) for all x in V .
We denote C[x1, . . . , xn]d the d-th graded components of polynomials homoge-
neous of degree d.

Definition 1. A covariant of degree r and order m is a C-linear function

ψ : C[x1, . . . , xn]d −→ C[x1, . . . , xn]m,

which satisfies

1 Brumer [1] has independently identified a similar set of invariants which conjecturally
generate the ring of quartic invariants.



Classification of Genus 3 Curves in Special Strata of the Moduli Space 349

1. SLn(C)-module homomorphism, i.e. ψ(F γ) = ψ(F )γ for all γ ∈ SLn(C),
2. the coefficients of ψ(F ) depend polynomially in the coefficients of xi1

1 · · ·xn
in

,
3. and ψ(λF ) = λrψ(F ) for all λ ∈ C.

We note in particular that the last two conditions imply that ψ is homogeneous
of degree r in the coefficients of the degree d form F . An invariant is a covariant
of order 0.
N.B. One “usually” defines a covariant to satisfy

ψ(F γ(x̄)) = det(γ)kψ(F (x)) where γ(x̄) = x,

or equivalently, ψ(F γ) = det(γ)kψ(F )γ , for all γ in GLn(V ) and x in V . One
defines k to be the weight (or index) of ψ. Clearly we then have the relation
2k = dr−m. Applying a scalar matrix γ to an invariant implies that k ≡ 0 mod n.
The definition of Poonen, Schaefer, and Stoll admits the possibility of covariants
with a multiplicative character. Following the classical definitions we include the
stronger condition above in our definition of covariants.

In order to define a contravariant, we set C[u1, . . . , un] = Sym(V ), where
{u1, . . . , un} is a basis for V dual to the basis {x1, . . . , xn} of V ∗. Then GLn(C)
has the right contragradient action on polynomials in C[u1, . . . , un], which we
denote Gγ∗ , where γ∗ is the inverse transpose of γ.

Definition 2. A contravariant of degree r and order m is a C-linear function

ψ : C[x1, . . . , xn]d −→ C[u1, . . . , un]m,

which satisfies

1. SLn(C)-module homomorphism, i.e. ψ(F γ) = ψ(F )γ∗ for all γ ∈ SLn(C),
2. the coefficients of ψ(F ) depend polynomially in the coefficients of xi1

1 · · ·xn
in

,
3. and ψ(λF ) = λ−rψ(F ) for all λ ∈ C.

N.B. As noted in [14], we may formally identify u1, . . . , un with x1, . . . , xn, via
the isomorphism V → V ∗ implied by the choice of basis for V . We nevertheless
distinguish the GLn(C)-modules structures by denoting the action by G �→ Gγ∗

for γ in GLn(C). In our mathematical exposition we preserve the notational
distinction between xi and ui.

Covariant and Contravariant Operations
We extend the linear pairing V ×V ∗ → C given by (ui, xj) �→ δij to a differential
operation

D : C[u1, . . . , un] × C[x1, . . . , xn] → C[x1, . . . , xn],

by identifying a monomial ui1
1 · · ·uin

n of total degree m with the operator

∂m

∂i1xi · · · ∂inxn
·
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We denote the D(ψ, ϕ) by Dψ(ϕ). By symmetry, we define a differential op-
erator

D : C[x1, . . . , xn]× C[u1, . . . , un] → C[u1, . . . , un],

and denote D(ϕ, ψ) by Dϕ(ψ). (We resolve the notational ambiguity from the
arguments.) We recall as a lemma a classical result.

Lemma 3. Let ϕ be a covariant and ψ be a contravariant on C[x1, . . . , xn]d.
Then Dϕ(ψ) is a contravariant of order ord(ψ) − ord(ϕ) and and Dψ(ϕ) a co-
variant of order ord(ψ) − ord(ϕ), both of degree deg(ϕ) + deg(ψ).

When specializing to ternary forms, we denote (x1, x2, x3) by (x, y, z). For
ternary quadratic forms, Dixmier [2] used the additional operations. Let ϕ be a
ternary quadratic form in x, y, z and

D(ϕ) =
1
2

⎡⎢⎢⎢⎢⎢⎢⎣
∂2ϕ

∂x2

∂2ϕ

∂x∂y

∂2ϕ

∂x∂z
∂2ϕ

∂x∂y

∂2ϕ

∂y2

∂2ϕ

∂y∂z
∂2ϕ

∂x∂z

∂2ϕ

∂y∂z

∂2ϕ

∂z2

⎤⎥⎥⎥⎥⎥⎥⎦
and let D(ϕ)∗ be its classical adjoint. Then for ϕ and ψ covariant and contravari-
ant forms, respectively, we define

J11(ϕ, ψ) = 〈D(ϕ), D(ψ)〉 and J22(ϕ, ψ) = 〈D(ϕ)∗, D(ψ)∗〉,

where 〈A, B〉 is a matrix dot product, and

J30(ϕ, ψ) = J30(ϕ) = det(D(ϕ)) and J03(ϕ, ψ) = J03(ψ) = det(D(ψ)).

The expressions Jij play a role in invariant theory of ternary quadratic forms,
but more generally we have the following classical lemma.

Lemma 4. Let ϕ be a covariant and ψ be a contravariant on C[x, y, z]d, each of
order 2. Then Jij(ϕ, ψ) is an invariant on C[x, y, z]d of degree i deg(ϕ)+j deg(ψ).

In particular we will apply this to describe the construction of the complete
invariants of ternary quartics by Dixmier [2] and Ohno [12].

Finally, for two binary forms F (x, y) and G(x, y) of degrees r and s, we define
the k-th transvectant of is defined to be

(F, G)k =
(r − k)!(s − k)!

r!s!

( ∂2

∂x1∂y2
− ∂2

∂y1∂x2

)k
F (x1, y1)G(x2, y2)

∣∣∣
(xi,yi)=(x,y)

Lemma 5. Let F (x, y) = a40x4 + 4a31x3y + 6a22x2y2 + 4a13xy3 + a04y4 be a
binary quartic form, and set G = (F, F )2. Then F has invariants σ and ψ defined
by

σ =
1
2
(F, F )4 = a40a04 − 4a31a13 + 3a2

22, and

ψ =
1
6
(F, G)4 = a40a22a04 − a40a2

13 − a2
31a04 + 2a31a22a13 − a3

22.

The invariant σ3−27ψ2 is the discriminant of the form F (x, y) (up to a scalar).
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Covariants and Contavariants of Quartics
In this section we use the above construction to define the invariants of Dixmier
and Ohno classifying ternary quartics, i.e. genus 3 curves of general type. As
noted above, we denote (x1, x2, x3) by (x, y, z), and dual (u1, u2, u3) by (u, v, w).
The polynomial rings k[x, y, z] and k[u, v, w] represent coordinate rings of the
ambient projective space P2 and the dual projective space (P2)∗, respectively, of
the quartic F (x, y, z) = 0. Where necessary, k[x1, x2, x3, u1, u2, u3] will be the
bi-graded coordinate ring of P2 × (P2)∗.

N.B. In the spirit of the classical literature, we speak of covariants and con-
travariants of a quartic form F (x, y, z), though formally the covariant or con-
travariant is a function from C[x, y, z]4 to C[x, y, z]m or C[u, v, w]m. Similarly,
we may express a homogeneous form as

F (x1, . . . , xn) =
∑

i1,...,in

d!
i1! . . . in!

a(i1,...,in)x
i1
1 · · ·xin

n ,

where the sum is over all indices with i1 + · · · + in = d. The calculation of
invariants is thus normalized to be primitive with respect to such classically
integral forms (as in Lemma 5). In the case of quartics, the constructions and
expressions often require the primes 2 and 3 to be invertible, even if the final
invariants can be made well-defined in these characteristics. In what follows
we follow Dixmier and Ohno in normalizing the expressions to be primitive with
respect to the coefficients {aijk}, and only at the end provide the scalars by which
the invariants must be normalized to be integral with respect to the coefficients
aijk of a integral form

F (x, y, z) =
∑
i,j,k

ai,j,kxiyjzk. (1)

In the spirit of Igusa’s article on genus 2 curves [8], the determination of a
complete set of integral invariants over any ring, and their algorithmic construc-
tion, remains open.

The first covariants at our disposal for a form F is the form itself (i.e. the
identity covariant) and the Hessian H . We additionally require two contravari-
ants σ and ψ, from which the Dixmier and Ohno invariants are derived by the
operations of the previous section. The contravariant σ appears in Salmon [15]
(§92 and §292), has degree 2 and order 4, and the construction of the degree 3
and order 6 contravariant ψ appears (in Salmon §92, p.78). Formally intersect
ux + vy + wz = 0 with the form F , and setting w = 1, eliminate z a binary
quartic R(x, y) = F (x, y,−ux − vy). Then the invariants σ and ψ of Lemma 5,
rehomogenized with respect to w, provide us with the covariants σ(u, v, w) and
ψ(u, v, w).

We can now define a system of covariants and contravariants for ternary quar-
tics, from the covariants F and H and contravariants σ and ψ.
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Covariants Contravariants
τ = 12−1Dρ(F ) ρ = 144−1DF (ψ)
ξ = 72−1Dσ(H) η = 12−1Dξ(σ)
ν = 8−1DηDρ(H) χ = 8−1D2

τ (ψ)

Subsequently we can define the invariants of Dixmier:

I3 = 144−1Dσ(F ), I9 = J11(τ, ρ), I15 = J30(τ),
I6 = 4608−1(Dψ(H) − 8I2

3 ), I12 = J03(ρ), I18 = J22(τ, ρ).

together with the discriminant I27. Dixmier [2] proved that these invariants
are algebraically independent over C and generate a subring of the ring A of
ternary quartic invariants of index 50. Ohno [12] proved computationally that
the additional six invariants

J9 = J11(ξ, ρ), J15 = J30(ξ), I21 = J03(η),
J12 = J11(τ, η), J18 = J22(ξ, ρ), J21 = J11(ν, η),

generate A; he moreover determined a complete set of algebraic relations for the
ring A = C[Ik, Jl].

In the following table we summarise the covariant and contravariant degrees
and orders, as can be determined from Lemma 3, beginning with the forms F ,
H , σ and ψ.

Covariants
ord

deg 0 1 2 3 4 5 6
1 F
2
3 I3 H
4
5 τ , ξ
6 I6
7
8
9 I9, J9
10
11
12 I12, J12
13
14 ν

Contravariants
ord

deg 1 2 3 4 5 6
1
2 σ
3 ψ
4 ρ
5
6
7 η
8
9
10
11
12
13 χ
14

As noted above, the natural normalization for the invariant to be integral de-
pends whether one considers classically integral forms or integral forms. On
integral forms one normalizes the Dixmier–Ohno invariants as follows:

2432I3, 21236I6, 21238I9, 216312I12, 223315I15, 227317I18, 240I27,
21237J9, 217310J12, 223312J15, 227315J18, 231318I21, 233316J21.
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We refer to these normalizations of the Dixmier–Ohno invariants as the inte-
gral Dixmier–Ohno invariants (as opposed to the classically integral invariants).
Hereafter we will make these normalizations and write I3k or J3l to denote the
above integral invariants.

In what follows we invert I3 in order to define six algebraically independent
functions on the moduli space of quartic plane curves

(i1, i2, i3, i4, i5, i6) =
(

I6

I2
3

,
I9

I3
3

,
I12

I4
3

,
I15

I5
3

,
I18

I6
3

,
I27

I9
3

)
,

and those defining an algebraic extension of C(i1, . . . , i6):

(j1, j2, j3, j4, j5, j6) =
(

J9

I3
3

,
J12

I4
3

,
J15

I5
3

,
J18

I6
3

,
I21

I7
3

,
J21

I7
3

)
·

A complete Magma implementation of the invariants of Dixmier and Ohno
(and classical invariant theory constructions) is available from the second au-
thor’s web page [3].

4 Vermeulen Stratification

In 1983, Vermeulen [18] constructed a stratification of the moduli space M3
of curves of genus 3 in terms of the number of hyperflexes and their geometric
configuration. Similar results were obtained independently around the same time
by Lugert [9]. The classification of curves by the structure of their Weierstrass
points identifies more subtle structure of the curves than that provided by the
automorphism group.

Let M◦
3 be {[C] ∈ M3, C non-hyperelliptic}, Ms = {[C] ∈M◦

3, C has at least
s hyperflexes }, and M◦

s = {[C] ∈ M◦
3, C has exactly s hyperflexes }. All strata

but M◦
3 are closed irreducible subvarieties of M3. Each M◦

s is the union of the
strata with s hyperflexes. For instance, M◦

12 consists of the two moduli points
corresponding to the Fermat curve and the curve X4 + Y 4 + Z4 + 3(X2Z2 +
X2Y 2 + Y 2Z2) = 0 and M◦

11 and M◦
10 are both empty. In Table 1 below, we

summarize the relevant data from Vermeulen’s stratification. We denote by s
the number of hyperflexes.

By convention the Xi have dimension 3, the Yi have dimension 2, the Zi have
dimension 1, and the strata represented by Greek letters have dimension zero.

5 Special Strata of Plane Quartics

For the special strata S of M3 with more than six hyperflexes we determine a
parametrization of the stratum and a model for a generic curve C/S̃ for some
finite cover S̃ → S. In each case the structure of S̃ → S is a Galois cover over
which the hyperflexes locus splits completely. The Dixmier–Ohno invariants are
computed over S̃ by their sequences of covariants and contravariants, rather than
evaluation of symbolic expressions.



354 M. Girard and D.R. Kohel

Table 1. Vermeulen’s stratification of M3

X s dim Substrata
M◦

3 0 6 M◦
1

M◦
1 1 5 M◦

2

M◦
2 2 4 X1, X2, X3

X2 3 3 Y1, Y2, Y3

X3 3 3 Y1, Y3, Y4, Y5

X1 4 3 Y1

Y2 4 2 Z1, Z5

Y3 4 2 Zi, 1 ≤ i ≤ 8
Y4 4 2 Zi, i �= 3, 6, 8
Y5 4 2 Z2, Z3, Z6, Z9

Y1 5 2 Z1, Z2, Z3, Z4

Z6 5 1 Θ, Πi, Ωi, Φ
Z7 5 1 Πi, Σ, Ωi, Ψ

X s dim Substrata
Z8 5 1 Θ, Πi, Σ, Ψ
Z2 6 1 Πi, Ωi, Φ, Ψ
Z3 6 1 Θ, Πi, Ωi, Ψ
Z5 6 1 Σ, Φ, Ψ
Z9 6 1 Ωi, Φ, Ψ
Z4 7 1 Ωi, Ψ
Θ 7 0
Πi 7 0
Z1 8 1 Φ, Ψ
Σ 8 0
Ω 9 0
Φ 12 0
Ψ 12 0

5.1 One Dimensional Strata

For each of the one dimensional families Zj we find an explicit model of the
generic curve C̃ over a Galois cover Z̃j of Zj . The models are derived from
Vermeulen’s geometric characterizations of the hyperflex locus (sending three
hyperflexes to (0 : 0 : 1), (0 : 1 : 0), and (1 : 1 : 1), respectively), with the
condition that the s hyperflexes split over the function field of Z̃j . Thus we may
view the base space Z̃j as a moduli space for tuples (C, P1, . . . , Ps) over the given
stratum Zj. Since the (differences of) hyperflexes generate a 4-torsion subgroup
of the Jacobian of C, the space Z̃j specifies a level 4 structure. For j �= 8, each
Z̃j is isomorphic to P1/Q(i), and the moduli space Zj descends to a rational
curve P1/Q. The space Z̃8 = E2/Q(i) is the base extension to Q(i) of the curve

y2 + xy + y = x3 + x2 + 1,

of conductor 38, and Z8 = E1/Q is the quotient by the Q-rational subgroup of
order 5, corresponding to the Galois action on the 5 hyperflexes. We give an
explicit description of the models C̃ and Z̃j for j = 4 and j = 1, the two strata
with 7 and 8 hyperflexes respectively.

From a particular model C̃ we determine the Dixmier–Ohno invariants follow-
ing the above construction of its invariants and covariants. Given two invariants,
such as x = I6/I2

3 and y = I9/I3
3 , we solve for a relation f(x, y) = 0, and solve

for a rational or elliptic parametrization using explicit Riemann–Roch theory in
Magma [6,10], and exploit symmetries to descend from Q(i) to Q.

Stratum Z4

The moduli space Z4 is a one-dimensional subspace of M3, for which we can
find a generic curve defined over Q(i, t) of the form:

C : t(t+i)(X2−Y Z)2−Y Z(2X−Y −Z)(((i−1)t2+2t+(i+1))X−(it+1)(Y +Z))
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where i2 = −1 and t is a parameter. Let Z̃4 be the rational curve with function
field Q(i, t). This model parametrizes the curve plus the triple of Weierstrass
points

{(0 : 0 : 1), (0 : 1 : 0), (1 : 1 : 1)},

with tangent lines defined by Y = 0, Z = 0, and 2X − Y − Z = 0, respectively,
and moreover, the remaining hyperflexes of C split over Q(i, t). Thus Z̃4 defines
a pointed moduli space parametrizing three hyperflexes, and should determine
a Galois cover of the moduli space Z4 on which the hyperflex locus splits.

A computation of the Dixmier–Ohno invariants reveils an automorphism t �→
i(t − 1)/(t + 1) of order 3 under which the invariants are stable. The degree 3
quotient given by

t �→ z =
(−(i + 1)t3 + 3t2 − i)
(t2 + (−i + 1)t − i)

,

provides the Galois cover Z̃4 → Z4.
The first of the Dixmier–Ohno invariants (i1, i2) can be expressed in terms of

the invariant z as:(
(z − 3)(5z − 3)

4z2 ,
(79z5 − 1059z4 − 2670z3 + 12366z2 − 13203z + 4455)

16(z2 − 12z + 9)z3

)
.

Reciprocally, the expression

z =
−165(880i31 + 1336i21 − 558i1 − 1047)

(53680i31 − 10560i21i2 + 10120i21 − 57750i1 + 7920i2 − 6105)
(2)

gives z as a rational function in (i1, i2) so z generates the function field of Z4.
We note in particular that Z4 is defined over Q.

Solving for the algebraic relations in (i1, i2) and renormalizing, we find a
weighted projective equation for Z4 in terms of the first Dixmier–Ohno invari-
ants:

193600I5
6 − 35776I2

3I4
6 + 86784I3I3

6I9 − 961040I4
3I3

6

− 2304I2
6I2

9 + 100608I3
3I2

6 I9 − 526608I6
3I2

6 − 65376I5
3I6I9

+ 721521I8
3I6 + 1728I4

3I2
9 − 78048I7

3I9 + 515889I10
3 = 0. (3)

Thus from the invariants I3, I6, and I9 we determine a necessary condition for
a given quartic curve to be in the stratum Z4. The remaining invariants have
rational expressions in z, so can be readily computed from the rational expres-
sion (2). A comparison with the remaining Dixmier–Ohno invariants verifies or
contradicts the hypothesis that a curve with invariants satisfying (3) lies in Z4.

Given the invariant z for a point in Z4, we can determine a field of definition
for a representative curve with model C above, by solving for a root t of the
degree six polynomial

2T 6 +2(z−3)T 5 +(z−3)2T 4 +2(z2−4z +1)T 3 +2z2T 2 +2z(z−1)T +(z−1)2,

which is reducible over any field containing a square root of −1.
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Stratum Z1

The moduli space Z1 is a one-dimensional subspace of M3 which consists of
moduli of curves with 8 hyperflexes and automorphism group D4. There exists
a generic curve over some cover Z̃1 on which the of Z1, defined by

C : (t2 + 1)(X2 − Y Z)2 = Y Z(2X − Y − Z)(2tX − Y − t2Z).

By computing the Dixmier–Ohno invariants, we find that there exists a cyclic
degree 4 cover Z̃1 → Z1. In particular the transformation t �→ (1 + it)/(t + i)
of order four maps C to an isomorphic curve. As above, we find an invariant
function z = t + 1/t + u + 1/u − 1/2, where u = (1 + it)/(t + i), such that the
absolute Dixmier–Ohno invariants can be expressed in z. Specifically, the first
two are:

(i1, i2) =
(

(2z − 9)(2z + 9)
4z2 ,

(2z + 9)(8z2 − 24z + 459)
24z3

)
,

Reciprocally, we find an expression for z in terms of the first invariants

z = (−153i1 − 171)/(26i1 − 12i2 + 38),

so that z generates the function field of Z1. The remaining invariants can be
expressed in terms of the invariant z:

(i3, i4, i5, i6) =
(

(2z + 9)(4z − 27)(8z + 9)2

27z4 ,
(z + 9)2(2z − 45)(2z + 9)2

4z5 ,

(z + 9)(2z + 9)2(8z + 9)(8z2 − 129z + 837)
25z6 ,− (2z − 7)3

217z9

)
and

(j1, . . . , j6) =
(

(2z + 9)(2z2 − 11z − 9)
4z3 ,

(2z + 9)(4z3 − 16z2 − 99z − 1215)
23z4 ,

(2z + 9)2(z − 6)2

2z4 ,

(2z + 9)2(z − 6)(8z + 9)(8z2 − 49z − 18)
25z6 ,

(2z + 9)3(2z − 15)2(2z2 − 3z + 27)
24z7 ,

(2z + 9)2(56z5 − 748z4 + 1122z3 + 20907z2 − 38880z − 374706)
16z7

)
·

As in the case of Z4, the moduli space Z1 is defined over Q. Given the invariant
z for a point in Z1, we can find a curve C which is defined in terms of a root t
of the degree four polynomial:

(2T 4 − T 3 + 12T 2 − T + 2) − 2z(T 3 + T ),

defining a cyclic cover of degree 4 over Z1.
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5.2 Zero Dimensional Strata

It remains to classify the strata of dimension zero in terms of moduli, which
we denote Θ, Π1, Π2, Σ, Ω1, Ω2, Φ, and Ψ . In the case of Z1 and Z4, the
known models for curves in these families were not obviously definable over
their field of moduli. With the exception of Θ, Πi, and Σ below, we will see
that these exceptional strata have a curve which may be defined over its field of
moduli.

Stratum Θ
The moduli space Θ is a zero-dimensional subspace of M3 which is represented
by the curve CΘ of the form

637(X2 − Y Z)2 = (2X − Y − Z)(aX + bY + cZ)Y Z

where
a = (−132i− 240)t2 + (702i + 1068)t− 219i + 59
b = (−88i − 160)t2 + (468i + 712)t− 146i − 810
c = (108i + 428)t2 + (−806i − 2032)t + 295i + 415

with i2 = −1 and t3 = ((10 + i)t/2 − 1)(t − 1), represented by the Dixmier
invariants (i1, i2, i3, i4, i5, i6):(

− 33

2272 ,
33173
2472 ,−35149

2772 ,−3510223
2274 ,

35523527
2574 ,

114132

21131875

)
·

and the point in M3 is completely determined by the ik and the additional
invariants (j1, j2, j3, j4, j5, j6) of Ohno:(

−3311
2372 ,−324817

2473 ,
33

2 · 72 ,
34535
2573 ,

3455291
2774 ,−325486023

2575

)
·

Strata Π1, Π2, Π3

The strata Πj are zero-dimensional subspaces of M3 which are represented by
the curves CΠi of the form

49(X2 − Y Z)2 = Y Z(2X − Y − Z)(aX + b(Y + Z))

where
a = (−52i + 46)t2 + (49i + 25)t− 82i − 114
b = (5i − 37)t2 + (−28i + 19)t + 83i − 6,

with i2 = −1 and t satisfying 2t3 = (−i+1)t2+4it+(i+1). The ideal of relations
for the absolute Dixmier invariants (i1, i2, i3, i4, i5, i6) for Π = Π1 ∪Π2 ∪ Π3, is
the degree three ideal
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(614656 i31 + 21952 i21 − 231516 i1 − 62613,

− 25322297 i2 + 15135904 i21 − 681236 i1 + 418761,

− 272297 i3 + 7519344 i21 − 7084828 i1 − 3230271,

222297 i4 + 14936160 i21 + 20448508 i1 + 5686083,

− 27722297 i5 + 12234260416 i21 + 10161115868 i1 + 1386276669,

−221318732297 i6+87127555902240 i21−19953560617372 i1−29171717887351)

We note, in addition, that the curves CΠi admit an automorphism σ(X, Y, Z) =
(X, Z, Y ), which induces a quotient to a non-CM elliptic curve EΠi , whose j-
invariant satisfies

j3 − 3907322953
3474 j2 +

429408710168
3 74 j − 126488474356752

74 = 0.

Stratum Σ
The stratum Σ is represented by the curve

X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 = (7 + 3

√
−7)/8Z4.

with absolute Dixmier invariants

(i1, i2, i3, i4, i5, i6) =
( 33

227
,
1557
247

,−18225
277

,−28403
227

,
2419065

2572 ,
1

21331874

)
,

and absolute Ohno invariants

(j1, j2, j3, j4, j5, j6) =
(
− 159

56
,−3249

112
, 9,

14445
224

,
166617

896
,−2076561

1568

)
·

Strata Ω1, Ω2

These strata consists of two curves

(X2 − Y Z)2 = (3 ±
√

7)(2X − Y − Z)(X − Y − Z)Y Z.

In terms of the absolute Dixmier invariants (i1, i2, i3, i4, i5, i6), the ideal of
relations for Ω1 ∪ Ω2 is the degree two ideal

(64 i21 + 64 i1 + 9, 1864 i1 + 64 i2 − 153, 512 i3 + 66416 i1 + 15435,

32 i4 + 28504 i1 + 16695, 64 i5 + 383138 i1 + 37737,

1624959306694656 i6 + 34973684392 i1 + 5920507885).

Stratum Φ
The stratum Φ is represented by the Fermat quartic

X4 + Y 4 + Z4 = 0,

with absolute Dixmier invariants

(i1, i2, i3, i4, i5, i6) = (0, 0, 0, 0, 0,−24318),

and absolute Ohno invariants

(j1, j2, j3, j4, j5, j6) = (0, 0, 0, 0, 0, 0).
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Stratum Ψ
The stratum Ψ is represented by the quartic

X4 + Y 4 + Z4 + 3(X2Z2 + X2Y 2 + Y 2Z2)

with absolute Dixmier invariants

(i1, i2, i3, i4, i5, i6) =
( 9

16
,
3372

27

3473

211 ,
3573

27 ,
3674

211
,− 56

226318

)
,

and absolute Ohno invariants

(j1, j2, j3, j4, j5, j6) =
(63

25 ,
2457
27 ,

9
2

,
3969
27 ,

177957
212 ,

606879
210

)
·

6 Galois Structure

Let K = Q(X̃ ) and k = Q(X ) be the function fields of a given cover of strata
X̃ → X as schemes over Q. By construction, K is a Galois extension of the field
of moduli k which splits the hyperflex locus on a generic curve C̃ over K. We
have an explicit action on the fibers of C̃/K over k, from which we obtain an
explicit map Gal(K/k) → PGL3(K), coming from the embedding in P2

K . For the
strata Ωj , Φ, and Ψ we have determined a model C over the field of moduli k.
In future work we expect to determine whether there exists an obstruction to
the existence of a generic curve C/k or determine such a model over its field of
moduli.
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Abstract. Building on ideas of Pollack and Stevens, we present an effi-
cient algorithm for integrating rigid analytic functions against measures
obtained from automorphic forms on definite quaternion algebras. We
then apply these methods, in conjunction with the Jacquet-Langlands
correspondence and the Cerednik-Drinfeld theorem, to the computation
of p-adic periods and Heegner points on elliptic curves defined over Q
and Q(

√
5) which are uniformized by Shimura curves.

1 Heegner Points on Elliptic Curves

Let E/Q be an elliptic curve of conductor N . Then by the work of Wiles and
his school, there exists a dominant morphism defined over Q,

ΦN : X0(N) → E,

witnessing the modularity of E. We may assume that ΦN sends the cusp at
infinity to the origin of E. Let A → A′ be a cyclic N -isogeny of elliptic curves
with complex multiplication (henceforth, CM) by the same imaginary quadratic
order o ⊂ K. Assume that the discriminant of o is prime to N . Then by the
classical theory of complex multiplication, the point P = (A → A′) represents
an element of X0(N)(Ho), where Ho is the ring class field attached to the order
o. As ΦN is defined over Q, the point ΦN (P ) belongs to E(Ho). Such a point on
E is called a (classical) Heegner point. These points are of significant interest. In
particular, the proof of the conjecture of Birch and Swinnerton-Dyer for elliptic
curves over Q of analytic rank at most one (Gross-Zagier, Kolyvagin) depends
essentially on their properties.

These classical Heegner points may be efficiently computed in practice: Let
fE ∈ S2(N) be the normalized newform attached to E and let τ ∈ H represent
the point P , where H is the complex upper half plane. Then

ΦN (P ) = W

(∫ τ

∞
fE(z)dz

)
= W

⎛⎝∑
n≥1

an(fE)
n

qn

⎞⎠ (1)

where W : C → C/Λ ∼= E(C) is the Weierstrass uniformization of E(C), the
quantity an(fE) is the n-th Fourier coefficient of fE and q = e2πiτ .

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 361–376, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The existence of a point P = (A → A′) on X0(N) where both A and A′ have
CM by an order in K implies the validity of the classical Heegner hypothesis :
that all primes � dividing N are split in K. Due to the theoretical importance
of the classical Heegner points, it is natural to desire an analogous systematic
construction of algebraic points defined over class fields of imaginary quadratic
fields which do not necessarily satisfy this stringent hypothesis, as well as meth-
ods to effectively compute these points in practice. Such a generalization requires
admitting uniformizations of E by certain Shimura curves.

Assume that N is squarefree and N = N+N− is factorization of N such that
N− has an even number of prime factors. Let C be the indefinite quaternion
Q-algebra ramified precisely at the primes dividing N− and let S be an Eichler
Z-order in C of level N+. (For basic definitions and terminology concerning
quaternion algebras, see [13].) Fix an identification ι∞ of C⊗R with M2(R) and
let ΓN+,N− denote the image under ι∞ of the group of units in S of reduced norm
1. Then ΓN+,N− acts discontinuously on H with compact quotient XN+,N−(C).

By Shimura’s theory, the Riemann surface XN+,N−(C) has a canonical model
XN+,N− over Q. This is proved by interpreting XN+,N− as a moduli space
for abelian surfaces over Q whose endomorphism rings contain S, together with
some auxilliary level N+-structure. (For a precise description of the moduli prob-
lem and the CM theory indicated below, see [14].) An abelian surface A with
S ⊂ End A is said to have complex multiplication by the order o ⊂ K if EndA
contains a subalgebra isomorphic to o which commutes with S inside End A. Con-
sequently, there is a natural notion of a “CM-point” on XN+,N− . Let H(o) ⊂ H
consist of those points whose images in XN+,N− have CM by o. Then H(o) is
ΓN+,N−-stable and the quotient CM(o) := ΓN+,N−\H(o) is a finite subset of
XN+,N−(Ho). Since we assume that the discriminant of o is prime to N , the
set CM(o) is nonempty if and only if all rational primes � dividing N+ (resp.
N−) are split (resp. inert) in the fraction field K of o. We dub this condition
the Shimura-Heegner hypothesis.

Let JN+,N− denote the Jacobian variety of XN+,N− . By the modularity the-
orem for elliptic curves over Q together with the Jacquet-Langlands correspon-
dence, there exists a dominant morphism

ΦN+,N− : JN+,N− → E (2)

defined over Q. (See [3, Ch. 4] for a discussion of this point.) The uniformization,
ΦN+,N− maps the set CM(o) into E(Ho). To emphasize their origin, we shall
refer to such points on E as Shimura-Heegner points.

Shimura formulated a reciprocity law which gives an alternate description
of the Galois action on Shimura-Heegner points. Suppose that K satisfies the
Shimura-Heegner hypothesis. He showed that there is a natural free action of
Pic o on CM(o) with 2ω(N) orbits (ω(N) = number of prime factors of N) such
that for

P ′ − P ∈ Div0 CM(o) ⊂ Div0 XN+,N−(Ho),

we have
ΦN+,N−((P ′ − P )[a]) = ΦN+,N−(P ′ − P )(a,Ho/K), (3)
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where (−, Ho/K) : Pic o → Gal Ho/K is the reciprocity map of class field theory.
The phenomenon of elliptic curves being uniformized by Shimura curves gen-

eralizes to certain elliptic curves defined over totally real fields. For simplicity,
let F/Q be a real quadratic field with infinite places σ1 and σ2 and let p be a
finite prime of F . Let C be the quaternion F -algebra ramified at p and σ1 and
let S be a maximal order of C. Fix an isomorphism ισ2

: C ⊗σ2
R → M2(R)

and let Γ be the image under ισ2
of the group of units in S with reduced norm

1. Then as above, the quotient Γ\H is a compact Riemann surface which ad-
mits a description as the complex points of a Shimura curve X , as well as a
corresponding CM theory.

Let f ∈ S2(p) be a Hilbert modular form. Then the Jacquet-Langlands cor-
respondence together with the appropriate analog of the Eichler-Shimura con-
struction asserts the existence of an elliptic curve E/F of conductor p and a
uniformization J → E, where J is the Jacobian of X , such that the L-functions
of E and f match. The images of CM divisors on X in E, also called Shimura-
Heegner points, satisfy a reciprocity law analogous to (3). Zhang, generalizing
the work of Gross-Zagier, has derived formulas relating heights of these Shimura-
Heegner points to special values of derivatives of L-functions.

Unfortunately, since modular forms on non-split quaternion algebras do not
admit q-expansions, there is no known explicit formula for the map (2) analogous
to (1) which may be exploited to compute these important Shimura-Heegner
points in practice. Our goal in this work is to describe and implement a p-adic
analytic algorithm for performing such computations. The existence of a general
algorithm for performing such Heegner point computations using only classical
(i.e. archimedean) analysis remains an open problem, although some progress
has been made by N. Elkies [7].

This paper is organized as follows: In §2 we introduce the formalism of p-adic
integration. In §§3, 4 we set some basic notation and define our main techni-
cal tools – rigid analytic automorphic forms on definite quaternion algebras.
In §§5, 6, we discuss (following [1]) how the Jacquet-Langlands correspondence
allows one to associate a Z-valued automorphic form to an elliptic curve E/Q
and how one may use the Cerednik-Drinfeld theorem on p-adic uniformization of
Shimura curves to give a p-adic integral formula for the Shimura-Heegner points
on E introduced above. In §7 we indicate how rigid the rigid analytic automor-
phic forms introduced in §4 may be expoloited to evaluate this integral formula
to high precision. The technical core of the paper is §8 where we adapt ideas
of Pollack and Stevens to develop an efficient algorithm for lifting Zp-valued
automorphic forms to rigid analytic automorphic ones, thereby facilitating the
efficient calculation of Shimura-Heegner points.

For simplicity, we will develop the above mentioned theory in the situation
where the base field is Q, although an analogous theory exists for totally real
base fields. We have implemented these methods in Magma to compute Shimura-
Heegner points on

1. elliptic curves defined over Q with conductor 2p, where p is an odd prime,
2. elliptic curves defined over Q(

√
5) with degree one prime conductor.
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Sample computations are given in §9. The author is more than happy to make
this Magma code available to all; those interested should simply contact him.

This work owes much to the ideas of Pollack and Stevens, and the author
wishes to thank them for providing him with a draft of [11]. This paper is part
of the author’s PhD thesis [8], written at McGill University under the supervision
of Prof. Henri Darmon, whom the author would like to gratefully acknowledge
for his expert guidance, advice and encouragement.

2 p-Adic Integration

Let p be a prime, let T be a complete subring of Cp and let X be a compact,
totally disconnected topological space.

Definition 1. A T -valued distribution on X is defined to be finitely additive
T -valued function on the set of compact-open subsets of X. If the values of of a
distribution are p-adically bounded, then we call it a measure.

Let D(X, T ) denote the set of T -valued measures on X and let D0(X, T ) denote
the subspace of measures μ of total measure zero. If μ is in D(X, T ) and f :
X → T is locally constant, the symbol

∫
X

f(x)dμ(x) can be defined in the
obvious way. To ease notation, we will sometimes write μ(f) instead. If μ is a
measure, then we may extend μ to a linear functional on the space C(X, T ) of
continuous T -valued functions on X .

Suppose now that the distribution μ on X actually takes values in Z (implying,
in particular, that μ is a measure). If f =

∑
i ai1Ei is a locally constant function

on X , we may define the multiplicative integral of f against μ by the formula

×
∫

X

f(x)dμ(x) =
∏

i

a
μ(Ei)
i .

By the boundedness of μ, the multiplicative integral extends to a group homo-
morphism from C(X, T ∗) into T ∗.

Let Hp = P1(Cp)−P1(Qp) be the p-adic upper half-plane, let μ be a Cp-valued
measure on P1(Qp) and choose points τ, τ ′ ∈ Hp. We define a p-adic line integral
by the formula ∫ τ ′

τ

ωμ =
∫

P1(Qp)
log

x − τ ′

x − τ
dμ(x), (4)

where “log” denote the standard branch of the p-adic logarithm. If μ takes values
in Z, we may define a multiplicative analog of (4) above by posing

×
∫ τ ′

τ

ωμ = ×
∫

P1(Qp)

x − τ ′

x − τ
dμ(x). (5)

Noting the relation ∫ τ ′

τ

ωμ = log×
∫ τ ′

τ

ωμ,
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we see that (5) is actually a refinement of (4) as we avoid the choice of a
branch of the p-adic logarithm. For motivation behind the formalism of p-adic
line integration, see [3, Ch. 6].

3 Rigid Analytic Distributions

In this section, we consider p-adic integration over Zp. The naive method for
computing integrals of the form ∫

Zp

v(x)dμ(x) (6)

is of exponential complexity in the sense of [4]. Fortunately, many of the functions
v(x) which arise in practice are of a special type. Let

Arig =
{

v(x) =
∑
n≥0

anxn : an ∈ Qp, an → 0 as n →∞
}

. (7)

Elements of Arig are rigid analytic functions on the closed unit disk in Cp which
are defined over Qp.

Definition 2. Let Drig be the continuous dual of Arig. Elements of Drig are
called rigid analytic distributions.

Let μ ∈ Drig. Then by the continuity of μ, the problem of computing (6) is
reduced to the calculation of the moments

μ(xn) =
∫

Zp

xndμ(x), n ≥ 0.

A polynomial time algorithm for calculating such moments was recently discov-
ered by R. Pollack and G. Stevens [11] in the situation where the measure μ is
that attached to a cuspidal eigenform form on Γ0(N) as in [10]. Although the
main goal of their theory was the study of normalized eigenforms g of weight
k+2 with ordp ap(g) = k+1 (a so-called critical slope eigenform) and their p-adic
L-functions, we are interested in the so-called ordinary case: ordp ap(g) = 0. The
main objects of study in the [11] are modular symbols. We will develop analogues
of their results where the role of the modular symbols is played by automorphic
forms on definite quaternion algebras (see §4).

Let D◦
rig be the subset of Drig consisting of those distributions with moments

in Zp. The space D◦
rig admits a useful filtration, first introduced by Pollack and

Stevens in [11]. Define

F 0D◦
rig = D◦

rig,

F ND◦
rig = {μ ∈ D◦

rig : μ(xj) ∈ pN−jZp, j = 0, . . . , N − 1}, N ≥ 1.

Now let
AND◦

rig = D◦
rig/F ND◦

rig, N ≥ 1.

We call AND◦
rig the N -th approximation to the module D◦

rig, following the
terminology of [11].
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4 Automorphic forms on Definite Quaternion Algebras

Let N , N+, and N− be as in § 1 and assume the existence of a prime p dividing
N−. Let B be the definite quaternion algebra ramified precisely at the infinite
place of Q together with the primes dividing N−/p, and let R be an Eichler
Z-order in B of level pN+. Fix an identification ιp of Bp with M2(Qp) under
which Rp corresponds to

M0(pZp) =
{(

a b
c d

)
∈ M2(Zp) : c ≡ 0 (mod p)

}
. (8)

Let Q̂ be the finite adèles of Q and let Ẑ =
∏

� Z� be the profinite completion of
Z. Let B̂ = B⊗Q Q̂ and R̂ = R⊗Z Ẑ be the adelizations of B and R, respectively.

Define the semigroup

Σ0(p) =
{(

a b
c d

)
∈ M2(Zp) : p | c, d ∈ Z∗

p, and ad − bc �= 0
}

.

Let A be a left Σ0(p)-module.

Definition 3. An automorphic form on B of level R taking values in A is a
map f : Q̂∗B∗\B̂∗ → A such that upf(bu) = f(b) for all u ∈ R̂∗.

We denote the set of such automorphic forms by S(B, R; A).
The double coset space B∗\B̂∗/R̂∗ is in bijection with the set of right ideal

classes of the order R, which is finite of cardinality h, say. Writing

B̂∗ =
h∐

k=1

B∗biR̂
∗, (9)

we see that an automorphic form f ∈ S(B, R; A) is completely determined by
the finite sequence (f(b1), . . . , f(bh)).

View Bp as a subring of B̂ via the natural inclusion jp. By the strong approx-
imation theorem, B̂∗ = B∗B∗

pR̂∗, so jp induces a bijection

R[1/p]∗\Bp/R∗
p → B∗\B̂∗/R̂∗.

Letting S(Bp, Rp; A) be the collection of functions ϕ : R[1/p]∗\Bp → A such
that uϕ(zbu) = f(b) for all u ∈ R∗

p and z ∈ Q∗
p, it is easy to see that jp induces

an isomorphism of S(B, R; A) with S(Bp, Rp; A). Since it shall be easier for us to
work locally at p rather that adelically, we will work mostly with S(Bp, Rp; A).

The group S(Bp, Rp; A) is endowed with the action of a Hecke operator Up

given by

(Upϕ)(b) =
p−1∑
a=0

((p a
0 1

)
ϕ
)
(b) =

p−1∑
a=0

(
p a
0 1

)
ϕ
(

b

(
p a
0 1

))
. (10)
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When the action of Σ0(p) is trivial, an Atkin-Lehner involution Wp also acts on
S(Bp, Rp; A) by the rule

Wpϕ(b) = ϕ
(

b

(
0 1
p 0

))
.

Other Hecke operators T� for � � N may also be defined using standard adelic
formluas.

Automorphic forms whose coefficient module has the trivial Σ0(p)-action
“are” measures on P1(Qp): Let B be the set of balls in P1(Qp), on which GL2(Qp)
acts transitively from the left inducing an identification of GL2(Qp)/Γ0(pZp)Q∗

p

with B. Therefore, a form ϕ ∈ S(Bp, Rp; Cp) may be viewed as a R[1/p]∗-
invariant function on the balls in P1(Qp). With this interpretation, the value of
Upϕ on a ball b is the sum of the values ϕ(b(i)) where the balls b(i), i = 1, . . . , p,
form the standard subdivision of the ball b. The value of Wpϕ on b is simply the
value of ϕ on its complement P1(Qp)−b. Suppose that Upϕ = −Wpϕ = ap = ±1.
Define a function μϕ on B by

μϕ(γZp) = signpγ · ϕ(γ), γ ∈ B∗
p

where
signpγ = aordp det γ

p . (11)

Then μϕ is a G-invariant measure on P1(Qp) of total measure zero, where G :=
ker(signp : R[1/p]∗ → {±1}). Note that if ap = 1, then μϕ = ϕ and G = R[1/p]∗.

The left action of Σ0(p) on P1(Qp) induces a right action of Σ0(p) on Arig. The
space Drig inherits a left action of Σ0(p) by duality. The spaces D◦

rig and F ND◦
rig,

N ≥ 1 are all easily seen to be Σ0(p)-stable. Therefore, the approximation
modules ANDrig inherit a Σ0(p)-action. Consequently, these modules are all
valid coefficient groups for p-adic automorphic forms. We shall refer to elements
of S(Bp, Rp;Drig) as rigid analytic automorphic forms.

5 p-Adic Uniformization

Let Γ
(p)
N+,N− denote the image under ιp of the elements of R[1/p] of reduced norm

1. The group Γ
(p)
N+,N− acts discontinuously on Hp and the quotient Γ

(p)
N+,N−\Hp,

has the structure of a rigid analytic curve X
(p)
N+,N− . The following result, due

to Cerednik and Drinfeld, connects this rigid variety with the Shimura curves
introduced in § 1.

Theorem 1 ([2,6]). There is a canonical rigid analytic isomorphism

CD : X
(p)
N+,N−(Cp) → XN+,N−(Cp).

Let Ω denote the global sections of the sheaf of rigid analytic differential 1-forms
on X

(p)
N+,N− .



368 M. Greenberg

Proposition 1. The spaces Ω and S(Bp, Rp; Cp) are naturally isomorphic as
Hecke-modules.

(A p-adic residue map and Teitelbaum’s p-adic Poisson integral give the mu-
tually inverse isomorphisms proving the theorem. For details, see [3, Ch. 5].)
This proposition, together with the Jacquet-Langlands correspondence as in-
voked in §1, give the following corollary:

Corollary 1. Choosing an isomorphism of C with Cp, there is an isomorphism
of Hecke-modules

S2(Γ0(N))new-N− ∼= S(Bp, Rp; Cp).

Let E/Q be an elliptic curve of conductor N and fE the associated newform.
Then by Corollary 1, there is a corresponding form ϕE ∈ S(Bp, Rp; Cp) with the
same Hecke-eigenvalues as fE . In fact, we may (and do) assume that ϕ takes
values in Z. Let μE = μϕE be the associated measure on P1(Qp) as constructed
in §4.

Consider the map Ψ : Div0 Hp → Cp given by

Ψ(τ ′ − τ) = ×
∫ τ ′

τ

ωμE .

Let Tate : C∗
p → E(Cp) be the Tate parametrization of E and recall the map

ΦN+,N− of (2). Assume that E is the strong Weil curve for (2) at the cost of
replacing it by an isogenous curve.

Proposition 2. The following diagram is commutative:

Div0 Hp
Ψ−−−−→ C∗

p

CD

⏐⏐Q ⏐⏐QTate

JN+,N−(Cp) −−−−−−→
ΦN+,N−

E(Cp)

For a discussion of this result, see [1].

6 A p-Adic Integral Formula for Heegner Points

Let K be an imaginary quadratic field satisfying the Shimura-Heegner hypothesis
and o be an order in K of conductor prime to N . Let us call an embedding ψ
of o[1/p] into R[1/p] optimal if it does not extend to an embedding of a larger
Z[1/p]-order of K. Denote by Ep(o) the set of all such embeddings. The Shimura-
Heegner hypothesis guarantees that Ep(o) is nonempty. For each ψ ∈ Ep(o), the
order o[1/p] acts on Hp via the composite ιp◦ψ with a unique fixed point τψ ∈ Hp

satisfying

α

(
τψ

1

)
= ψ(α)

(
τψ

1

)
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for all α ∈ o[1/p]. Let Hp(o) be the set of all such τψ , and let CMp(o) be
its image in X

(p)
N+,N− . The set CMp(o) is endowed with a natural action of

Pic o = Pic o[1/p] (see [9]). The sets CM(o) and CMp(o) are related through
Theorem 1 as follows:

Theorem 2 ([1, Proposition 4.15]). The map CD of Theorem 1 restricts to
a Pic o-equivariant bijection from CMp(o) onto CM(o).

Combining this theorem with Proposition 2, we see that module of Shimura-
Heegner points on E defined over the ring class field attached to o is generated
by points of the form Tate(J(τ, τ ′)), τ, τ ′ ∈ Hp(o), where

J(τ, τ ′) = ×
∫

P1(Qp)

x − τ ′

x − τ
dμE(x) (12)

7 Computing J(τ, τ ′)

Fix a positive integer M and suppose that we wish to compute the quantity
J(τ, τ ′) to a precision of p−M . Let

M ′ = max{n : ordp(pn/n) < M}, M ′′ = M +
⌊ log M ′

log p

⌋
. (13)

Assume that we may lift the automorphic form ϕE attached to E to a Up-
eigenform ΦE ∈ S(Bp, Rp;D◦

rig). That such a lift exists and is unique will be
proved in §8.1. Moreover, we will see that the disribution Φ(1) is just μE |Zp , the
restriction of the measure μE to the set of compact open subsets of Zp. Let ΦM ′′

E

denote the natural image of ΦE in S(Bp, Rp; AND◦
rig). The goal of this section

is to show that knowledge of ΦM ′′
E is sufficient to allow for the calculation of

J(τ, τ ′) to a precision of p−M . In §8.2, we shall give an algorithm for computing
ΦM ′′

E .
It is easy to see that the points of Hp(o) actually lie in the subset P1(Qp2) −

P1(Qp) of Hp, where Qp2 is the quadratic unramified extension of Qp. Let H0
p

be the set of elements τ in Hp whose image under the natural reduction map
P1(Cp) → P1(F̄p) does not belong to P1(Fp). We assume, without loss of gener-
ality, that:

1. τ and τ ′ reduce to elements of H0
p.

2. there exists an element i ∈ R[1/p] such that i2 = −1.

By assumption 2., we may choose the isomorphism ιp such that ιp(i) =
(

0 −1
1 0

)
.

(Instead of assuming the existence of such an i, one could work with the two
measures μE and

(
0 −1
1 0

)
μE , and thus no generality is lost.)

By the first assumption above, J(τ, τ ′) lies in Z∗
p2 and its Teichmüller repre-

sentative is the same as that of
p−1∏
a=0

(a − τ ′

a − τ

)μE(a+pZp)
,
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an easily computed quantity (actually, we need only compute it modulo p).
Therefore, it suffices to compute log J(τ, τ ′).

Write

log J(τ, τ ′) =
∑

a∈P1(Fp)

log Ja(τ, τ ′), where

Ja(τ, τ ′) = ×
∫
ba

x − τ

x − τ ′ dμE(x),

and ba is the standard residue disk around a. Let

J∞(τ) = ×
∫
b0

(1 + τx)dμE(x),

Ja(τ) = ×
∫
ba

(x − τ)dμE(x), 0 ≤ a ≤ p − 1.

Then for each a ∈ P1(Fp), we have

Ja(τ, τ ′) = Ja(τ ′)/J(τ).

(To prove the above for a = ∞, we use assumption 2.)
Straightforward manipulations (see [5, §1.3]) show that the expansions

log J∞(τ) =
∑
n≥1

(−1)n

n
τnω(0, n), (14)

log Ja(τ) =
∑
n≥1

1
n(a − τ)n

ω(a, n), 0 ≤ a ≤ p − 1. (15)

are valid, where (following the notation of [5]),

ω(a, n) =
∫
ba

(x − a)ndμE(x), 0 ≤ a ≤ p − 1.

An examination of formulas (14) and (15) shows that they may be computed to
a precision of p−M given the data

ω(a, n) (mod pM ′′
), 0 ≤ a ≤ p − 1, 0 ≤ n ≤ M ′. (16)

Proposition 3. Let Ψ ∈ S(Bp, Rp;Drig) be a Up-eigenform with eigenvalue
ap = ±1. Then the formula∫

a+pZp

(x − a)ndΨ(b)(x) = appn

∫
Zp

xndΨ
(

b

(
p a
0 1

))
(x).

holds for 1 ≤ a ≤ p−1. Consequently, the data (16) may be extracted from ΦM ′′
E .
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Proof. ∫
a+pZp

(x − a)ndΨ(b)(x)

= (apUpΨ)(b)((x − a)n1a+pZp(x))

= ap

p−1∑
d=0

Ψ
(

b

(
p d
0 1

))
((d + px − a)n1a+pZp(d + px))

= appnΨ
(

b

(
p a
0 1

))
(xn)

= appn

∫
Zp

xndΨ
(

b

(
p a
0 1

))
,

as desired.
To prove the second statement, take Ψ = ΦE , b = 1 and use the fact that
ΦE(1) = μE |Zp . By the definition of ΦM ′′

E ,

ΦE

((p a
0 1

))
(xn) (mod pM ′′−n) = ΦM ′′

E

((p a
0 1

))
(xn)

for 0 ≤ a ≤ p − 1 and 0 ≤ n ≤ M ′′. Now multiply the above by pn and apply
the first statement of the proposition, noting that M ′′ ≥ M ′.

8 Lifting Up-Eigenforms

8.1 Existence and Uniqueness of Lifts

Define the specialization map

ρ : S(Bp, Rp;Drig) → S(Bp, Rp; Qp)

by the rule ρ(Φ)(b) = Φ(b)(1Zp). It is easily verified that ρ is Up-equivariant. Let
ϕ ∈ S(Bp, Rp; Qp) be a Up-eigenform with eigenvalue ap = ±1 and let μϕ be the
associated measure on P1(Qp) as constructed in §4. The following proposition
should be viewed as an analogue of the containment of classical modular forms
in the space of p-adic modular forms.

Proposition 4. The form ϕ lifts canonically with respect to ρ to a Up-eigenform
Φ satisfying Φ(1) = μϕ.

Proof. Define Ψ : Bp → D(P1(Qp), Qp) by Ψ(b) = (signpb)b−1ϕ where signpb
is as defined in (11), and let Φ : B∗

p → Drig be given by Φ(b) = Ψ(b)|Zp . The
conclusions of the proposition are now easily verified.

The next proposition forms the basis of our algorithm.
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Proposition 5. Let Ψ belong to ker ρ ∩ S(Bp, Rp; F ND◦
rig). Then

UpΨ ∈ ker ρ ∩ S(Bp, Rp; F N+1D◦
rig).

Proof. By the Up-equivariance of ρ, its kernel is certainly Up-stable. For 1 ≤ n ≤
N , we have

UpΨ(b)(xn) =
p−1∑
a=0

(
p a
0 1

)
Ψ
(

b

(
p a
0 1

))
(xn)

=
p−1∑
a=0

Ψ
(

b

(
p a
0 1

))
((px + a)n)

=
n∑

k=0

p−1∑
a=0

(
n

k

)
pkan−kΨ

(
b

(
p a
0 1

))
(xk).

Note that the k = 0 term in the above sum vanishes as Ψ ∈ kerρ. If 1 ≤ k ≤ n
and 0 ≤ a ≤ p − 1, then(

n

k

)
pkan−kΨ

(
b

(
p a
0 1

))
(xk) ∈ pkpN−kZp = pNZp ⊂ pN+1−nZp.

The result follows.

Let Φ ∈ S(Bp, Rp;Drig) be the lift of ϕ constructed in Proposition 4. Since
the double-coset space R[1/p]∗\Bp/Rp is finite, we may assume without loss of
generality that all moments involved are actually in Zp (just multiply ϕ, Φ, and
Φ0 by a suitably chosen scalar c ∈ Qp). Let ΦN be the natural image of Φ in
S(Bp, Rp; AND◦

rig).

Corollary 2

1. (a) ΦN is the unique Up-eigenform in S(Bp, Rp; AND◦
rig) lifting ϕ.

(b) If ΦN
0 is any element of S(Bp, Rp; AND◦

rig) lifting ϕ, then

(apUp)NΦN
0 = ΦN .

2. (a) Φ is the unique Up-eigenform in S(Bp, Rp;Drig) satisfying ρ(Φ) = ϕ.
(b) If Φ0 is any element of S(Bp, Rp;Drig) satisfying ρ(Φ0) = ϕ, then the

sequence {(apUp)nΦ0} converges to Φ.

Proof. Statement (2) follows from statement (1) and the relation

S(Bp, Rp;Drig) =
(

lim←−
N

S(Bp, Rp; AND◦
rig)
)
⊗Zp Qp.

By the above Proposition 5, we have

(apUp)N (Φ − Φ0) ∈ S(Bp, Rp; F ND◦
rig).

Statement (1) now follows easily.
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The unicity result 2(a) of the corollary may viewed as an analogue of assertion
that ordinary p-adic modular eigenforms are classical.

By Corollary 2, in order to approximate the moments of Φ(b) for b ∈ B∗
p ,

it suffices to produce an initial approximation Φ0 to Φ and then to apply the
Up-operator repeatedly until the desired accuracy is achieved. Such an initial
approximation may be constructed explicitly as follows: Using the decomposi-
tion (9), let Sk = R∗

p∩b−1
k R[1/p]∗bk, which is finite as it is contained in b−1

k R∗bk.
(The group of units of a Z-order in a definite quaternion algebra over Q is finite.)
For z ∈ Zp, let δz ∈ Drig be the Dirac distribution centred at z, i.e. δz(f) = f(z).

Proposition 6. There is a unique element Φ0 of S(Bp, Rp;Drig) satisfying

Φ0(bk) =
ϕ(bk)
#Sk

∑
v∈Sk

v−1δ0, 1 ≤ k ≤ h. (17)

Its moments are given by

Φ(bk)(xn) =
ϕ(bk)
#Sk

∑
v∈Sk

zn
v , where zv = v · 0.

(By v · 0 we mean the image of v in GL2(Qp) acting as a fractional linear trans-
formation on 0 ∈ P1(Qp).)

Proof. To see that (17) gives a well defined element of S(Bp, Rp;Drig), notice
that if γbku = bk, then v varies over Sk if and only if vu does. The uniqueness
is clear.

8.2 Computing the Lifts in Practice

We now turn to the problem of computing ΦN in practice. Representing an
element of S(Bp, Rp; AND◦

rig) is straight-forward. First observe that the corre-
spondence

μ �→ (μ(x0)
(
mod pN ), μ(x1) (mod pN−1), . . . , μ(xN−1) (mod p)

)
,

for μ in D◦
rig, descends to an isomorphism

ANDrig ∼= Z/pNZ × Z/pN−1Z × · · · × Z/pZ.

Therefore, an element of AND◦
rig may be stored simply as an N -tuple of integers.

The Σ0(p)-action on AND◦
rig may be computed as follows: Let μ be in Drig

and let ν be any lift of μ to D◦
rig. For any u =

(
a b
c d

)
∈ Σ0 and n ≥ 0, the

rational function (ax+b
cx+d )n may be expanded in a Taylor series

∑
αmxm, and the

moments of uν may be computed by “integrating term by term”:

(uν)(xn) = ν(
(ax + b

cx + d

)n
) =
∑
m≥0

αmν(xm).
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Moreover, by the stability of F ND◦
rig under Σ0(p), the image of uν is uμ. There-

fore, the N -tuple representing uμ may be computed from that representing μ.
Recall the double-coset decomposition (9). Then since an automorphic form

Ψ ∈ S(Bp, Rp; AND◦
rig) is completely determined by Ψ(b1), . . . , Ψ(bh), it may be

stored simply as a sequence of h N -tuples of integers. Assuming knowledge of
the values of ϕ, the moments of the initial lift ΦN

0 of ϕ constructed explicitly in
Proposition 6 may be computed and thus ΦN

0 may be stored as a sequence of
N -tuples as described above.

It remains to describe how, for a form Ψ as above, the data

((UpΨ)(bk)(x0)
(
mod pN ), . . . , (UpΨ)(bk)(xN−1) (mod p)

)
, 1 ≤ k ≤ h

may be computed from the corresponding data for Ψ . For 1 ≤ k ≤ h and 0 ≤ a ≤
p − 1, find elements γ(k, a) ∈ R[1/p]∗, u(k, a) ∈ R∗

p, and j(k, a) ∈ {0, . . . , p − 1}
such that

bk

(
p a
0 1

)
= γ(k, a)bj(k,a)u(k, a), (18)

and let ξ(k, a) = ( p a
0 1 ) u(k, a)−1. Then UpΨ is given by the formula

(UpΨ)(bk) =
p−1∑
a=0

ξ(k, a)Ψ(bj(k,a)). (19)

The measures Ψ(bj(k,a)) are assumed to be known and the action of the ξ(k, a) on
them may be computed as described above. Thus, an algorithm for computing
ΦN from ϕ may proceed as follows:

1. Compute the elements γ(k, a), j(k, a), and u(k, a) as in (18).
2. Compute an initial lift ΦN

0 of ϕ to S(Bp, Rp; AND◦
rig) as in Proposition 6.

3. Compute (apUp)N ΦN
0 . By Corollary 2, the result is ΦN .

An operations count similar to that performed in [5, Proposition 2.14] yields the
following:

Proposition 7. The above procedure computes the symbol ΦN in O(N3p3 log N)
arithmetic operations on integers with size on the order of pN .

Remark 1. In [5], the analogous computation with modular symbols requires
O(N3p3 log N log p) operations. The factor of log p is absent in our version be-
cause we do not need to apply Manin’s continued fraction algorithm.

9 Examples

Example 1. Consider the elliptic curve

E : y2 + xy + y = x3 + x2 − 70x − 279 (38B2).

For this curve, N+ = 1, N− = 2 · 19, p = 19, and B is the algebra of rational
Hamilton quaternions. The field K = Q(ξ), where ξ = (1 +

√
−195)/2, satisfies
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the Shimura-Heegner hypothesis. Let o = Z[ξ] be its maximal order. The class
number of K is 4 and Pic o ∼= (Z/2Z)2. Therefore, Pic o has three characters
χ1, χ2, χ3 of exact order 2. Let τ ∈ Hp(o) be a base point and define divisors

di =
∑

α∈Pic o

χi(α)τα ∈ Div0 Hp(o), i = 1, 2, 3.

Define a divisor d0 (corresponding to the trivial character) by

d0 =
∑

α∈Pic o

((3 + 1− T3)τ)α

where T3 is the standard Hecke operator. Let

Pi = Tate
(
×
∫

di

ωμE

)
, , i = 0, 1, 2, 3.

be the corresponding Heegner points. We computed the points Pi as described
above and these points were recognized (using the LLL-based algorithm de-
scribed in [5, §1.6]) as

P0 = (−4610/39, 1/1521(−277799ξ + 228034)),
P1 = (25/12,−94/9u + 265/72),
P2 = (10,−11v),
P3 = (1928695/2548, 1/463736(−2397574904w + 1023044339)),

where u =
1 +

√
−15

2
, v =

1 +
√

5
2

and w =
1 +

√
65

2
.

We remark that K(u, v, w) is in fact the Hilbert class field of K and that K(u),
K(v) and K(w) are the fields corresponding to the characters χ1, χ2 and χ3,
respectively.

Example 2. Let ω = (1 +
√

5)/2 and let F = Q(ω). Consider the elliptic curve

E : y2 + xy + ωy = x3 − (ω + 1)x2 − (30ω + 45)x − (11ω + 117)

defined over F . The conductor of E is p = (3 − 5ω), a degree one prime of F
dividing 31. Here, N = N− = p, N+ = 1, and B is the base change to F of
the Q-algebra of Hamilton’s quaternions. Let K be the CM field F (

√
2ω − 15).

The class group of K is cyclic of order 8 and thus has a unique character χ of
exact order 2 and corresponding field K(

√
−13ω + 2). Let τ ∈ Hp(o) be a base

point, define a divisor dχ attached to χ as in Example 1, and let Pχ be the
corresponding Heegner point. Our computations yielded a point recognizable
(using a higher dimensional variant of the LLL-based algorithm of [5, §1.6]; see
also [12]) as the point (x, y) ∈ E(F (

√
−13ω + 2)), where
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x = 1/501689727224078580× (−20489329712955302181ω+
1590697243182535465)

y = 1/794580338951539798133856600×
(−24307562136394751979713438023ω−

52244062542753980406680036861)
√
−13ω + 2+

1/1003379454448157160× (19987639985731223601ω

− 1590697243182535465).
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Abstract. The conjectures of Deligne, Bĕılinson, and Bloch-Kato as-
sert that there should be relations between the arithmetic of algebro-
geometric objects and the special values of their L-functions. We make a
numerical study for symmetric power L-functions of elliptic curves, ob-
taining data about the validity of their functional equations, frequency
of vanishing of central values, and divisibility of Bloch-Kato quotients.

1 Introduction and Motivation

There are many conjectures that relate special values of L-functions to the
arithmetic of algebro-geometric objects. The celebrated result ζ(2) = π2/6 of
Euler [20, §XV] can be reinterpreted as such, but Dirichlet’s class number for-
mula [15, §5] is better seen to be the primordial example. Modern examples run
the gamut, from conjectures of Stark [43] on Artin L-functions and class field
theory, to that of Birch and Swinnerton-Dyer [2] for elliptic curves, to those of
Bĕılinson [1,35] related to K-theory, with a passel of others we do not mention.
For maximal generality the language of motives is usually used (see [21, §1-4]).

One key consideration is where the special value is taken. The L-function can
only vanish inside the critical strip or at trivial zeros; indeed, central values (at
the center of symmetry of the functional equation) are the most interesting ones
that can vanish, and the order of vanishing is likely related to the rank of a
geometric object (note that orders of trivial zeros can be similarly interpreted).

We have chosen to explore a specific family of examples, namely symmetric
power L-functions for elliptic curves over Q. The impetus for our work was
largely a result [19] of the first author, whose computation of Euler factors
in the difficult case of additive primes greatly reduced the amount of hassle
needed to do large-scale computations. Previous work includes that of Coates
and Schmidt [7] on the symmetric square (with computational data in [47]). and
Buhler, Schoen, and Top on the symmetric cube [6]; this latter paper builds
on the work of Garrett [23], Harris-Kudla [26], and Gross-Kudla [24] concern-
ing triple products, and contains some numerical data. The computations we
describe below are only valid if we assume various conjectures, such as the ex-
istence of a functional equation; even without such an assumption, we can take
the “numerical coincidences” in our data to be evidence for these conjectures.
� Supported during parts of this research by EPSRC grants GR/N09176/01 and

GR/T00658/01, the Isaac Newton Institute, the CNRS and the Institut Henri
Poincaré, and the MAGMA Computer Algebra Group at the University of Sydney.
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2 L-Functions

We define the symmetric power L-functions of an elliptic curve E/Q via com-
puting an Euler factor at every prime p. This Euler factor is computed by a pro-
cess that essentially just takes the symmetric power representation of the stan-
dard 2-dimensional Galois representation associated to E, and thus our method
is a generalisation of that used by Coates and Schmidt [7] for the symmetric
square,1 following the original description of Serre [39]. We briefly review the
theoretical framework, and give explicit formulae for the Euler factors in a later
section.

For every prime p choose an auxiliary prime l �= 2, p and fix an embedding
of Ql into C. Let Et denote the t-torsion of E, and Tl(E) = lim← Eln be the

l-adic Tate module of E (we fix a basis). The module Vl(E) = Tl(E) ⊗Zl
Ql

has dimension 2 over Ql and has a natural action of Gal(Qp/Qp) [indeed one of
of Gal(Q/Q)], and from this we get a representation ρl : Gal(Qp/Qp) → Aut(Vl).
We write H1

l (E) = HomQl
(Vl(E), Ql), and take the mth symmetric power of

the contragredient of ρl, getting

ρm
l : Gal(Qp/Qp) → Aut

(
Symm
(
H1

l (E)
))

⊂ GLm+1(C).

We write Dp = Gal(Qp/Qp), let Ip be the inertia group of this extension, and
let Frobp be the element of Dp/Ip

∼= Gal(Fp/Fp) given by x → xp. With all of
this, we have

L(SymmE, s) =
∏
p

det
[
Idm+1 − ρm

l (Frob−1
p )p−s

∣∣∣ (Symm
(
H1

l (E)
))Ip
]−1

.

For brevity, we write Lm(E, s) = L(SymmE, s), and denote the factors on the
right side by Um(p; s). As mentioned by Coates and Schmidt [7, p. 106], it
can be shown that Um(p; s) is independent of our choices. The analytic theory
and conjectures concerning these symmetric power L-functions are described
in [42]. In particular, the above Euler product converges in a half-plane, and is
conjectured to have a meromorphic continuation to the whole complex plane.

We also need the conductor Nm of this symmetric power representation. We
have Nm =

∏
p pfm(p) where fm(p) = εm(Ip) + δm(p). Here εm(Ip) is the codi-

mension of
(
Symm
(
H1

l (E)
))Ip in Symm

(
H1

l (E)
)
; we shall see that it can be

computed via a character-theoretic argument. The wild conductor δm(p) is 0
unless p = 2, 3, when it can be computed as in [39, §2.1] or the appendix of [7].

2.1 Critical Values

The work of Deligne [14, Prop. 7.7ff] tells us when and where to expect critical
values; these are a subset of the more-general special values, and are the easiest
1 Note that Buhler, Schoen, and Top [6] phrase their definition of Euler factors differ-

ently, as they emphasise that conjecturally the L-function is related to a motive or
higher-dimensional variety; however, their definition is really the same as ours.
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to consider.2 When m = 2v with v odd there is a critical value Lm(E, v + 1)
at the edge of the critical strip, and when m = 2u − 1 is odd there is a critical
central value Lm(E, u). We let Ω+, Ω− be the real/imaginary periods of E for
m ≡ 1, 2 (mod 4), and vice-versa for m ≡ 3 (mod 4). In the respective cases of
m even/odd we expect rationality (likely with small denominator) of either

Lm(E, v + 1)
(2π)v+1

(
2πN

Ω+Ω−

)v(v+1)/2

or
Lm(E, u)(2πN)u(u−1)/2

Ω
u(u+1)/2
+ Ω

u(u−1)/2
−

. (1)

When m is odd, the order of Lm(E, s) at s = u should equal the rank of an
associated geometric object. The Bloch-Kato conjecture [4] relates the quo-
tients in (1) to H0-groups, Tamagawa numbers, and generalised Shafarevich-Tate
groups.3

3 Computation of Euler Factors and Local Conductors

We first consider multiplicative and potentially multiplicative reduction for a
given prime p; these cases can easily be detected since vp(jE), the valuation of
the j-invariant, is negative, with the reduction being potentially multiplicative
when p|c4. When E has multiplicative reduction, the filtration of [6, §8] implies
the local tame conductor εm is m and δm(2) = δm(3) = 0 for all m. The Euler
factor is Um(p; s) = (1− am

p /ps)−1, where ap = ±1 is the trace of Frobenius. In
the case of potentially multiplicative reduction, for m odd we have εm = m + 1,
and so Um(p; s) ≡ 1, while with m even, we have that εm = m and compute that
Um(p; s) = (1 − 1/ps)−1. The wild conductor at p = 2 is δm(2) = m+1

2 δ1(2) for
odd m and is zero for even m, while δm(3) = 0 for all m.

3.1 Good and Additive Reduction — Tame Conductors

Let E have good or potentially good reduction at a prime p, and choose an
auxiliary prime l �= 2, p. The inertia group Ip acts on Vl(E) by a finite quotient
in this case. Let Gp = Gal

(
Qp(El)/Qp) and Φp be the inertia group of this

extension.4 The work of Serre [40] lists the possibilities for Φp. It can be a
cyclic group Cd with d = 1, 2, 3, 4, 6; additionally, when p = 2 it can be Q8
or SL2(F3), and when p = 3 it can be C3 � C4. For each group there is a
unique faithful 2-dimensional representation ΨΦ of determinant 1 over C, which
determines ρl.

Our result now only depends on Φ; for a representation Ψ we have the trace
relation (which is related to Chebyshev polynomials of the second kind)
2 Critical values conjecturally only depend on periods (which are local objects), while

the more-general special values can also depend on (global) regulators from K-theory.
3 See [18, §7] for an explicit example; note his imaginary period is twice that of our

normalisation (and the formula is out by a power-of-2 in any case), and the conductor
enters the formula in a different place (this doesn’t matter for semistable curves).

4 The group Φp is independent of the choice of l (see [40, p. 312]), while only whether
Gp is abelian matters, and this independence follows as in [7, Lemmata 1.4 & 1.5].
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tr(SymmΨ) =
m/2∑
k=0

(
m − k

k

)
tr(Ψ)m−2k(−det Ψ)k, (2)

and from taking the inner product of tr(SymmΨΦ) with the trivial character we
find the dimension of the Φ-fixed subspace of Symm

(
H1

l (E)
)
, which we denote

by βm(Φ). Upon carrying out this calculation, we obtain Table 1, which lists
values for βm(Φ), from which we get the tame conductor εm(Φ) = m+1−βm(Φ).
The wild conductors δm(p) are 0 for p ≥ 5, and for p = 2, 3 are described below.

Table 1. Values of βm(Φ) for various inertia groups; here m̃ is m modulo 12

m̃ C2 C3 C4 C6 Q8 C3 � C4 SL2(F3)
0 m + 1 (m + 3)/3 (m + 2)/2 (m + 3)/3 (m + 4)/4 (m + 6)/6 (m + 12)/12
1 0 (m − 1)/3 0 0 0 0 0
2 m + 1 (m + 1)/3 m/2 (m + 1)/3 (m − 2)/4 (m − 2)/6 (m − 2)/12
3 0 (m + 3)/3 0 0 0 0 0
4 m + 1 (m − 1)/3 (m + 2)/2 (m − 1)/3 (m + 4)/4 (m + 2)/6 (m − 4)/12
5 0 (m + 1)/3 0 0 0 0 0
6 m + 1 (m + 3)/3 m/2 (m + 3)/3 (m − 2)/4 m/6 (m + 6)/12
7 0 (m − 1)/3 0 0 0 0 0
8 m + 1 (m + 1)/3 (m + 2)/2 (m + 1)/3 (m + 4)/4 (m + 4)/6 (m + 4)/12
9 0 (m + 3)/3 0 0 0 0 0
10 m + 1 (m − 1)/3 m/2 (m − 1)/3 (m − 2)/4 (m − 4)/6 (m − 10)/12
11 0 (m + 1)/3 0 0 0 0 0

3.2 Good and Additive Reduction — Euler Factors for p ≥ 5

When p ≥ 5, a result of Serre [40] tells us that the inertia group is Φ = Cd where
d = 12/ gcd

(
12, vp(ΔE)

)
. Note that this gives d = 1 when p is a prime of good

reduction, which we naturally include in the results of this part. We summarise
the results of Martin’s work [19] concerning the Euler factors. Note that the
result of Da̧browski [10, Lemma 1.2.3] appears to be erroneous.

There are two different cases for the behaviour of the Euler factor, depend-
ing on whether the decomposition group Gp = Gal

(
Qp(El)/Qp

)
is abelian.

From [36, Prop. 2.2] or [47, Th. 2.1], we get that this decomposition group is
abelian precisely when p ≡ 1 (mod d). When Gp is nonabelian we have

Um(p; s) = (1 − (−p)m/2/ps)−Am(1 + (−p)m/2/ps)−Bm , (3)

where Am + Bm = βm and Am is the dimension of
(
Symm
(
H1

l (E)
))Gp . Using

Gp/Φp
∼= C2 and det

(
ΨΦ(x)
)

= −1 for x ∈ Gp\Φp, more character calculations
tell us this dimension is (βm+1)/2 when βm is odd and is βm/2 when βm is even.
This also holds for the non-cyclic Φ when p = 2, 3, for which Gp is automatically
nonabelian. When Φ = C3 and m is odd, we have Um(p; s) = (1+pm/p2s)−βm/2.

When Gp is abelian, we need to compute a Frobenius eigenvalue αp (whose
existence follows from [41, p. 499]). In the case of good reduction, this comes from
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counting points mod p on the elliptic curve; we have αp = (ap/2)± i
√

p − a2
p/4

where p + 1 − ap is the number of (projective) points on E modulo p. And
when Φ = C2 we count points on the pth quadratic twist of E. In general, we
need to re-scale the coefficients of our curve by some power of p that depends
on the valuations vp of the coefficients. Since p ≥ 5, we can write our curve
as y2 = x3 + Ax + B, and then re-scale by a factor t = pmin(vp(A)/2,vp(B)/3) to
get a new curve Et : y2 = x3 + Ax/t2 + B/t3, possibly defined over some larger
field. Because of our choice of t, at least one of A/t2 and B/t3 will have vp equal
to 0. The reduction Ẽt modulo some (fractional) power of p is then well-defined
and non-singular, and we get αp from counting points on Ẽt; it turns out that
choices of roots of unity will not matter when we take various symmetric powers.
Returning back to Um(p; s), we get that when Qp(El)/Qp is abelian this Euler
factor is

Um(p; s) =
∏

0≤i≤m
d|(2i−m)

(1 − αm−i
p ᾱi

p/ps)−1. (4)

3.3 Considerations When p = 3

Next we consider good and additive reduction for p = 3. We first determine the
inertia group, using the 3-valuation of the conductor as our main guide. In the
case that v3(N) = 0 we have good reduction, while when v3(N) = 2 and v3(Δ) is
even we have Φ = C2. Since G3 is abelian here, the Euler factor is given by (4),
while the wild conductor is 0 and tame conductor is obtained from Table 1.
When v3(N) = 2 and v3(Δ) is odd we have that Φ = C4 and G3 is nonabelian.
The wild conductor δm(3) is 0, and the Euler factor is given by (3).

When v3(N) = 4 we get Φ = C3 or C6, the former case when 4|v3(Δ). For
these inertia groups, the question of whether G3 is abelian can be resolved as
follows (see [47, Th. 2.4]). Let ĉ4 and ĉ6 be the invariants of the minimal twist
of E at 3. In the case that ĉ4 ≡ 9 (mod 27), we have that G3 is abelian when
ĉ6 ≡ ±108 (mod 243) while if 33|ĉ4 then G3 is abelian when ĉ4 ≡ 27 (mod 81).
In the abelian case we have α3 = ζ12

√
3 up to sixth roots, which is sufficient.

The Euler factor is then given by either (3) or (4), the tame conductor can be
obtained from Table 1, and the wild conductor (computed as in the appendix
of [7]) from Table 3. When v3(N) = 3, 5 we have that Φ = C3 � C4. The Euler
factor is given by (3) and the wild conductor can be obtained from Table 3, with
the first C3 � C4 corresponding to v3(N) = 3, and the second to v3(N) = 5.

3.4 Considerations When p = 2

Finally we consider p = 2, where first we determine the inertia group. Let M
be the conductor of the minimal twist F of E at 2, recalling [47, § 2.1] that in
general we need to check four curves to determine this twist. Table 4 then gives
the inertia group. The appendix of [7] omits a few of these cases; see [47]. When
Φ = C1, C2 we can always determine αp via counting points modulo p on E or a
quadratic twist, and G2 is always abelian. The Euler factor is then as in (4). For
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Φ = C3, C6 the group G2 is always nonabelian, and the Euler factor is as in (3).
For the case of Φ = C4 and p = 2, the question of whether G2 is abelian comes
down [47, Th. 2.3] to whether the c4 invariant of F is 32 or 96 modulo 128, it
being abelian in the latter case, where we have α2 = ζ8

√
2 up to fourth roots.

The Euler factors for this and the two cases of noncyclic Φ are obtained from (3)
or (4), while the wild conductors δm(2) are given in Table 2, with the appropriate
line being determinable from the conductor of the first symmetric power.

Table 2. Values for δm(2)

Φ2 m = 1 formula
C2, C6 2 εm(C2)
C2, C6 4 2εm(C2)

C4 6 2εm(C4) + εm(C2)
Q8 3 εm(Q8) + 1

2 εm(C2)
Q8 4 εm(Q8) + εm(C2)
Q8 6 εm(Q8)+εm(C4)+εm(C2)

SL2(F3) 1 1
3 εm(Q8) + 1

6 εm(C2)
SL2(F3) 2 1

3 εm(Q8) + 2
3 εm(C2)

SL2(F3) 4 1
3 εm(Q8) + 5

3 εm(C2)
SL2(F3) 5 5

3 εm(Q8) + 5
6 εm(C2)

Table 3. Values for δm(3)

Φ3 m = 1 formula
C3, C6 2 εm(C3)

C3 � C4 1 1
2 εm(C3)

C3 � C4 3 3
2 εm(C3)

Table 4. Values of Φ2

v2(M) Φ2

0 C1 if v2(N) = 0 else C2

2 C3 if v2(N) = 2 else C6

3,7 SL2(F3)
5 Q8

8 Q8 if 29|c6(F ) else C4

3.5 The Case of Complex Multiplication

When E has complex multiplication by an order of some imaginary quadratic
field K, the situation simplifies since we have L(E, s) = L(ψ, s − 1/2) for some5

Hecke Grössencharacter ψ. For the symmetric powers we have the factorisation

L(SymmE, s) =
m/2∏
i=0

L(ψm−2i, s − m/2), (5)

where ψ0 is the ζ-function when 4|m, and when 2‖m it is L(θK , s) for the
quadratic character θK of the field K. Note that the local conductors and Euler
factors for each L(ψj , s) can be computed iteratively from (5) since this informa-
tion is known for the left side from the previous subsections. This factorisation
reduces the computational complexity significantly, as the individual conductors
will be smaller than their product; however, since there are more theoretical re-
sults in this case, the data obtained will often lack novelty. The factorisation (5)
also implies that L2u−1(E, s) should vanish to high degree at s = u, since each
5 This is defined on ideals coprime to the conductor by ψ(z) = χ(|z|)(z/|z|) where z is

the primary generator of the ideal and χ is generally a quadratic Dirichlet character,
but possibly cubic or sextic if K = Q

√−3 , or quartic if K = Q
√−1 . When

taking powers, we take χj to be the primitive Dirichlet character which induces χj .
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term has about a 50% chance of having odd functional equation. We found some
examples where L(ψ3, s), L(ψ5, s), or L(ψ7, s) has a double zero at the central
point, but we know of no such triple zeros.

4 Global Considerations and Computational Techniques

We now give our method for computing special values of the symmetric power
L-functions defined above. To do this, we complete the L-function with a Γ -factor
corresponding to the prime at infinity, and then use the (conjectural) functional
equation in conjunction with the method of Lavrik [32] to write the special
value as a “rapidly-converging” series whose summands involve inverse Mellin
transforms related to the Γ -factor. First we digress on poles of our L-functions.

4.1 Poles of L-Functions

It is conjectured that Lm(E, s) has an entire continuation, except when 4|m and
E has complex multiplication (CM) there is a pole at s = 1 + m/2, which is the
edge of the critical strip.6 We give an explanation of this expectation from the
standpoint of analytic number theory; it is likely that a different argument could
be given via representation theory. We write each Euler factor as Um(p; s) =(
1 − bm(p)/ps + · · ·

)−1 and as s → 1 + m/2 we have log Lm(s) ∼
∑

p bm(p)/ps.
We will now compute that the conjectural Sato-Tate distribution [44] implies that
the average value of bm(p) is 0, while for CM curves the Hecke distribution [27]
will yield an average value for bm(p) of pm/2 when 4|m.

Similar to (2), for a good prime p we have bm(p) =
∑m/2

i=0

(
m−i

i

)
am−2i

p (−p)i.
The Sato-Tate and Hecke distributions imply that the average values of the kth
power of ap are given by

〈ak
p〉 = (2

√
p)k

∫ π

0 (cos θ)k (sin θ)2 dθ∫ π
0 (sin θ)2 dθ

and 〈ak
p〉CM = (2

√
p)k

∫ π
0 (cos θ)k dθ

2
∫ π
0 dθ

.

We have 〈ak
p〉 = 0 for k odd; for even k the Wallis formula [46] implies∫ π

0
(cos θ)k(sin θ)2 dθ =

π(k − 1)!!
k!!

− π(k + 1)!!
(k + 2)!!

=
π(k − 1)!!
(k + 2)!!

,

so that 〈ak
p〉 is (2

√
p)k 2(k−1)!!

(k+2)!! . An induction exercise shows that this implies

〈bm(p)〉 = 0 when E does not have CM. We also have 〈ak
p〉CM = (2

√
p)k (k−1)!!

2·k!!
for even k, and again an inductive calculation shows that 〈bm(p)〉CM = pm/2

when 4|m and is zero otherwise. This behaviour immediately implies the afore-
mentioned conjecture about the poles of Lm(E, s) at s = 1 + m/2.

6 The case of m = 4 follows as a corollary of work of Kim [29, Corollary 7.3.4].
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4.2 Global Considerations

Let Λm(E, s) = Cs
mγm(s)Lm(E, s), where C2

m = Nm/(2π)m+1 for m odd and is
twice this for m even. For m odd we write m = 2u − 1 and for m even we write
m = 2v; then from [14, §5.3] we have respectively either

γm(s) =
u−1∏
i=0

Γ (s − i) or γm(s) = Γ
(
s/2 − (v/2)

) v−1∏
i=0

Γ (s − i).

When 4|m and E has CM, we multiply γm(s) by (s − v)(s − v − 1). We ex-
pect Λm(E, s) to have an entire continuation and satisfy a functional equa-
tion Λm(E, s) = wmΛm(E, m + 1 − s) for some wm = ±1. The works of Kim
and Shahidi [30] establish parts of this conjecture.7 We can find wm via ex-
periment as described in Section 4.4, but we can also try to determine wm

theoretically.

4.3 Digression on Local Root Numbers

The sign wm can theoretically be determined via local computations as in [12],
but this is non-trivial to implement algorithmically, especially when p = 2, 3. We
expect to have a factorisation wm =

∏
p wm(p) where the product is over bad

primes p including infinity. For m even, the very general work of Saito [38] can
then be used to show9 that wm = +1, so we assume that m is odd. From [14, §5.3]
we have wm(∞) = −

(−2
m

)
; combined with the relation wm(p) = w1(p)m for

primes p of multiplicative reduction, this gives the right sign for semistable
curves. The potentially multiplicative case has wm(p) = w1(p)(m+1)/2.

In the additive cases, the first author [19] has used the work of Rohrlich [36]
to compute the sign for p ≥ 5. We get that10 wm(p) = w1(p)εm(Φp)/2, and w1(p)
is listed in [36]. For p = 2, 3 the value of w1(p) is given11 by Halberstadt [25], and
our experiments for higher (odd) powers indicate that wm(2) = η2w1(2)εm(Φp)/2

where η2 = −1 if v2(N) is odd and m ≡ 3 (mod 8) and else η2 = +1, while the
expected values of wm(3) are given in Table 5.

Table 5. Experimental values for wm(3) (periodic mod 12 in m.)

Φ3 1 3 5 7 9 11 Φ3 1 3 5 7 9 11 Φ3 1 3 5 7 9 11
C3, C4 + + + + + + C6 + − − − + + C3 � C4 + + − + + +

C2 − + − + − + C6 − + − + − + C3 � C4 − − − − − +

7 The full conjecture8follows from Langlands functoriality [31]. In the CM case, the
functional equation follows from the factorisation (5) and the work of Hecke [27].

8 Added in proof: A recent preprint [45] on Taylor’s webpage shows the meromorphic
continuation and functional equation for all symmetric powers for curves with j �∈ Z.

9 The work of Fröhlich and Queyrut [22] and Deligne [13] might give a direct argument.
10 Since we are assuming that m is odd, the exponent is just (m+1)/2 unless Φp = C3.
11 Note the third case in Table 1 of [25] needs a Condition spéciale of c′

4 ≡ 3 (mod 4).
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4.4 Computations

From [32], [8, Appendix B], or [16], the assumption of the functional equation
Λm(E, s) = wmΛm(E, m+1−s) allows us to compute (to a given precision) any
value/derivative Λ

(d)
m (E, s) in time proportional to Cm ≈

√
Nm. Additionally,

numerical tests on the functional equation arise naturally from the method.
We follow [6, § 7, p. 119ff]. Suppose we have Λm(s) = wmΛ(m + 1 − s), and

the dth derivative is the first one that is nonzero at s = κ. Our main interest is
in κ = u for m = 2u − 1 and κ = v + 1 for m = 2v, and we note that d = 0 for
even m. Via Cauchy’s residue theorem, for every real A > 0 we have

Λ
(d)
m (κ)
d!

=
1

2πi

(∫
(δ)

−
∫

(−δ)

)
Λm(z + κ)

zd+1

dz

Az
,

where δ is small and positive and
∫
(σ) is the integral along 1z = σ. In the second

integral we change variables z → −z and apply the functional equation. Then we
write κ + λ = m + 1, move both contours sufficiently far to right (say 1z = 2m)
and expand Λm in terms of the L-function to get

Λ
(d)
m (κ)
d!

=
∫

(2m)
Cz+κ

m γm(z + κ)
∞∑

n=1

bm(n)
nz+κ

1
zd+1

dz

2πi Az

+ (−1)dwm

∫
(2m)

Cz+λ
m γm(z + λ)

∞∑
n=1

bm(n)
nz+λ

1
zd+1

Az dz

2πi
.

Thus we get that

Λ
(d)
m (κ)
d!

= Cκ
m

∞∑
n=1

bm(n)
nκ

F d
m

(
κ; n

ACm

)
+ (−1)dwmCλ

m

∞∑
n=1

bm(n)
nλ

F d
m

(
λ; nA

Cm

)
,

where

F d
m(μ; x) =

∫
(2m)

γm(z + μ)
zd+1xz

dz

2πi
.

The F d
m(μ; x)-functions are “rapidly decreasing” inverse Mellin transforms. Note

that we have L
(d)
m (κ) = Λ

(d)
m (κ)/γm(κ)Cκ

m, and so can recover the L-value as
desired. The parameter A allows us to test the functional equation; if we compute
Λ

(d)
m (κ) to a given precision for A = 1 and A = 9/8, we expect disparate answers

if we have the wrong Euler factors or sign wm.
We compute F d

m(μ; x) as a sum of residues at poles in the left half-plane, the
first pole being at z = 0, following [11]. We need to calculate Laurent series ex-
pansions of the Γ -factors about the poles.12 We let ζ(1) denote Euler’s constant
γ ≈ 0.577, and define H1(n) = 1 for all n, and Hk(1) =

∑k
i=1 1/i for all k, and

12 When Λm(E, s) has a pole the factor γm(s) has two additional linear factors (which
are easily handled). But in this case it is better to use the factorisation (5).
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recursively define Hk(n) = Hk−1(n)+Hk(n−1)/k for n, k ≥ 2. At a pole z = −k
for k a nonnegative integer, we have the Laurent expansion

Γ (z) =
(−1)k

k!(z + k)

(
1 +

∞∑
n=1

Hk(n)(z + k)n

)
exp
( ∞∑

n=1

(−1)nζ(n)
n

(z + k)n

)
,

and for k a negative integer (these only occur for a few cases) we can use the rela-
tion zΓ (z) = Γ (z+1) to shift. To expand Γ (z/2) around an odd integer z = −k,
we use the duplication formula Γ (z) = Γ (z/2)Γ

(
z+1
2

) √
π

2z−1 to replace Γ (z/2) by
a quotient of Γ -factors that can each be expanded as above. The trick works in
reverse to expand Γ

(
z+1
2

)
about an even integer z = −k. We also have the series

expansions for 2z and 1/z about z = −k given by

2z = 2−k
∞∑

n=0

(log 2)n

n!
(z + k)n and

1
z

= −1
k
−

∞∑
n=1

(z + k)n

kn+1 (for k �= 0).

Since these F d
m(μ; x) functions are (except for CM) independent of the curve,

we pre-computed a large mesh of values and derivatives of these functions, and
then in our programme we compute via local power series. Thus, unlike the set-
ting of Dokchitser [16], we are not worried too much about the cost of computing
F d

m(μ; x) for large x via a massively-cancelling series expansion, since we only do
this in our pre-computations. For each implemented function we have its value
and first 35 derivatives for all x = i2k/32 for 32 ≤ i ≤ 63 for k in some range,
such as −3 ≤ k ≤ 19. For sufficiently small x we just use the log-power-series ex-
pansion. The choice of 35 derivatives combined with the maximal radius of x/64
for expansions about x implies that our maximal precision is around 35×6 = 210
bits. When working to a lower precision, we need not sum so many terms in the
local power series. Note that F d

m(μ; x) dies off roughly like exp(−x2/(m+1)), and
thus it is difficult to do high precision calculations for m large.

To compute the meshes of inverse Mellin transforms described above, we used
PARI/GP [34], which can compute to arbitrary precision. However, PARI/GP
was too slow to use when actually computing the L-values; instead we used a
C-based adaption of Bailey’s quad-double package [28], which provides up to
212 bits of precision while remaining fairly fast.13

5 Results

We tested the functional equation (via the above method of comparing the com-
puted values for A = 1 and A = 9/8) for odd symmetric powers m = 2u − 1 at
the central point κ = u, and for even symmetric powers m = 2v at the edge of
the critical strip κ = v + 1. We did this for all non-CM isogeny classes in Cre-
mona’s database [9] with conductor less than 130000; this took about 3 months
on a cluster of 48 computers (each running at about 1 Ghz).

13 The SYMPOW package can be obtained from www.maths.bris.ac.uk/~mamjw.
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Table 6. Test-counts (right) and data for order of vanishing (non-CM isogeny classes)

m Tested Order 0 Order 1 2 3 4
1 567735 216912 288128 61787 908 0
3 567735 262751 287281 16782 905 16
5 46105 22448 23076 569 12 0
7 3573 1931 1616 25 1 0
9 947 542 400 5 0 0
11 134 51 82 1 0 0

m # tests
6 4953
8 1259
10 190
12 142
13 5 even
13 30 odd

m # tests
14 26
15 1 even
15 16 odd
16 8
17 3 odd
18 2

We computed as many as 108 terms of the various L-series for each curve,
which was always sufficient to check the functional equation of the third sym-
metric power to about six decimal digits.14 In all cases, we found the expected
functional equation to hold to the precision of our calculation. The results for
the order of vanishing (at the central point) for odd powers appear in the left
half of Table 6. The right half lists how many tests15 we did for other16 sym-
metric powers (again to six digits of precision). There are less data for higher
symmetric powers due to our imposed limit of 108 terms in the L-series compu-
tations, but since the symmetric power conductors for curves with exotic inertia
groups often do not grow so rapidly, we can still test quite high powers in some
cases.

Buhler, Schoen, and Top [6] already listed 2379b1 and 31605ba1 as 2 examples
of (suspected) 4th order zeros for the symmetric cube. We found 14 more, but
no examples of 5th order zeros. For higher powers, we found examples of 3rd
order zeros for the 5th and 7th powers, and 2nd order zeros for the 9th, 11th,
and 13th powers, though as noted above, we cannot obtain as much data for
higher powers.17 We list the Cremona labels for the isogeny classes in Table 7.

We also looked at extra vanishings of the 3rd symmetric power in a quadratic
twist family. We took E as 11a3:[0,−1, 1, 0, 0] and computed the twisted cen-
tral value L3(Ed, 2) or central derivative L′

3(Ed, 2) for fundamental discrimi-
nants |d| < 5000. We found 58 double zeros (to 9 digits) and one triple zero
(d = 3720). A larger experiment (for |d| < 105) for 10 different CM curves found
(proportionately) fewer double zeros and no triple zeros.

Finally, we used higher-precision calculations to obtain the Bloch-Kato num-
bers of equation (1) for various symmetric powers of some non-CM curves of

14 In about 0.3% of the cases, the computations for both the zeroth and first derivatives
showed no discrepancy with A = 1 and A = 9/8; this coincidence is to be expected
on probabilistic grounds, and for these cases we computed to higher precision to get
an experimental confirmation of the sign of the functional equation.

15 We need not compute even powers when there is a lack of quadratic-twist-minimality.
16 We did not test the fourth symmetric power, as the work of Kim [29] proves the

validity of the functional equation in this case. Since there is no critical value, a
calculation would do little more than verify that our claimed Euler factors are correct.

17 Given that we only computed the L-value of the 13th symmetric power for five curves
of even sign, to find one that has a double-order zero is rather surprising. Higher-
order zeros were checked to 12 digits; the smallest “nonzero” value was ≈ 2.9 · 10−8.



388 P. Martin and M. Watkins

Table 7. Experimentally observed high order vanishings (non-CM isogeny classes)

ord format is power:label(s)
4th 3:2379b 5423a 10336d 29862s 31605ba 37352d 46035a 48807b 55053a

3:59885g 64728a 82215d 91827a 97448a 104160bm 115830a
3rd 5:816b 2340i 2432d 3776h 5248a 6480t 7950w 8640bl 16698s 16848r

5:18816n 57024du 7:176a
2nd 7:128b 160a 192a 198b 200e 320b 360b 425a 576b 726g 756b 1440a

7:1568i 1600b 2304g 3267f 3600h 3600j 3600n 3888e 4225m 6272d
7:11552r 15876f 21168g 9:40a 96a 162b 324d 338b 11:162b 13:324c

Table 8. Selected Bloch-Kato numbers for various powers and curves

5th powers
20a2 29

37a1 29

43a1 275
44a1 217

6th powers
11a3 245
14a4 293
15a8 210

17a4 212

19a3 243352

20a2 217/3
24a4 217/3
26a3 273 · 5 · 23
26b1 273 · 73 · 23
30a1 215337
33a2 2173 · 5 · 7
34a1 2133359
35a3 283 · 7231
37a1 29347
37b3 2734467
38a3 27345 · 11 · 137
38b1 27325213 · 31
39a1 220327
40a3 2207/3
42a1 219327 · 19
43a1 26321697
44a1 2215 · 31/3
46a1 295 · 23 · 30661
50a1 23511/3
51a1 29334517

7th powers
24a4 2237/3
37a1 2133 · 5
43a1 2173 · 5

9th powers
11a3 212

14a4 214345
15a8 216

17a4 216365
19a3 219325
21a4 2205 · 592

24a4 238/9
26a3 211345 · 74

26b1 211325 · 7319332

30a1 2163555372

33a2 2245 · 10721672

34a1 223355 · 72532

35a3 225345
37b3 220325 · 72532

38a3 2113145 · 192

38b1 211581092

39a1 24032574

40a3 0
42a1 2255 · 22322412

44a1 2473
45a1 216319527 · 132

46a1 21431053140712

48a4 2435
50a1 253 · 522

54a3 29324

54b1 273255

10th powers
11a3 2145 · 22453/3
14a4 216335 · 6691
15a8 2265 · 541
17a4 223327 · 11 · 227
19a3 2143247 · 179 · 5023
20a2 24453/3
21a4 228375229
24a4 24913/9
26a3 219357 · 47 · 1787
26b1 219335273127 · 2102831
40a3 2545 · 683
44a1 2565 · 11 · 215447/3
50a1 2115287/3
52a2 244335 · 7 · 19 · 279751
54b1 2143357
56a1 266325 · 11 · 71
75c1 214528 · 31 · 41 · 61/9
96b1 284197/3
99a1 218331537 · 1367

11th powers
11a3 22654/3
14a4 223355272112

15a8 229112232/3
17a4 226311

21a4 2361122112/3
24a4 257132/45
48a4 270112/3
54b1 220341

56a1 274112/5
72a1 258328592/5

small conductor (see Table 8). More on the arithmetic significance of these quo-
tients will appear elsewhere. In some cases, we were able to lessen the preci-
sion because it was known that a large power of a small prime divided the
numerator.
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5.1 Other Directions

In this work, we looked at symmetric powers for weight 2 modular forms. De-
launay has done some computations [11] for modular forms of higher weight;
in that case, the work of Deligne again tells us where to expect critical values,
and the experiments confirm that we do indeed get small-denominator rationals
after proper normalisation. We looked at critical values at the edge and center of
the critical strip, whereas we expect L-functions evaluated at other integers to
take special values related to K-theory; see [3,33,17,48] for examples. The pro-
grammes written for this paper are readily modifiable to compute other special
values. The main advantage that our methods have over those of Dokchitser [16]
is that we fixed the Γ -factors and the L-values of interest, which then allowed
a large pre-computation for the inverse Mellin transforms; if we wanted (say) to
compute zeros of L-functions (as with [37]), our method would not be as useful.

Finally, the thesis of Booker [5] takes another approach to some of the ques-
tions we considered. The scope is much more broad, as it considers not only
numerical tests of modularity, but also tests of GRH (§3.4), recovery of unknown
Euler factors possibly using twists (§5.1), and also high symmetric powers (§7.2).
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Birkhäuser Boston (1990), 333–400.

5. A. R. Booker, Numerical tests for modularity. Ph. D. dissertation, Princeton (2003).
Shortened version appeared in J. Ramunajan Math. Soc., 20 (2005), 283–339.



390 P. Martin and M. Watkins

6. J. Buhler, C. Schoen, J. Top, Cycles, L-functions and triple products of elliptic
curves. J. Reine Angew. Math. 492 (1997), 93–133.

7. J. Coates, C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic
curve. J. Reine Angew. Math. 375/376 (1987), 104–156.

8. H. Cohen, Advanced topics in computational number theory. Graduate Texts in
Mathematics, 193. Springer-Verlag, New York (2000), 578pp.

9. J. E. Cremona, Algorithms for modular elliptic curves. Second edition. Cam-
bridge University Press, Cambridge, (1997), 376pp. See Cremona’s webpage
www.maths.nottingham.ac.uk/personal/jec for latest data and online book.

10. A. Da̧browski, On the symmetric power of an elliptic curve. In Algebraic K-theory.
Proceedings of the Research Conference held at Adam Mickiewicz University,
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Abstract. In this report I sanitise (in the sense of ‘bring some sanity
to’) the arguments of earlier reports detailing the correspondence be-
tween sequences (M +hS)−∞<h<∞ of divisors on elliptic and genus two
hyperelliptic curves, the continued fraction expansion of quadratic irra-
tional functions in the relevant elliptic and hyperelliptic function fields,
and certain integer sequences satisfying relations of Somos type. I note
that one may often readily determine the coefficients in those relations
by elementary linear algebra.

I begin with some musings on here called ‘determined sequences’, and continue
with detail on continued fraction expansion of square roots of polynomials and
associated Somos type sequences particularly in the genus 1 and 2 cases.

1 Remarks on Determined Sequences

1.1 Michael Somos’ Sequences

The canonical details are given in [8], but for story telling purposes1 let me
introduce the matter as follows. Some fifteen years ago, Michael Somos noticed [8]
that the two-sided sequence

Ch−2Ch+2 = Ch−1Ch+1 + C2
h,

1 Referee 1 warns me that grossly simplified (in plain language: falsified) stories will
not do. More precisely, David Gale [8] reports that Michael Somos discovered the
apparent integrality of 1, 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421, 1103, 4057, 41783,
. . . , namely 6-Somos, leading others to investigate 4-Somos and 5-Somos; specifi-
cally, Janice Malouf was the first to prove the integrality of 4-Somos. The trouble
was that the early integrality proofs (of 4, 5, and 6-Somos) seemingly relied on
algebraic accident and could not properly be said to give any explanation. To me, it
seemed sufficient to mention a first-hand source allowing readers to replace legend
by history. However, all this did provoke me to reread [8] alerting me to a number of
interesting facts I had quite forgotten. I use this aside also to report a recent note of
Chris Swart and Andy Hone [19] giving an alternative proof that the Th satisfying
(1) are Laurent polynomials in the initial data, and sharper integrality conditions
than immediately derivable from [7]. Referee 2 adds that “[this alternative] proof
is based on (6) with t = 1 and the analogous formula with asymmetric shifts, and
there is also a (much more verbose) discussion similar in spirit to §1.2.”

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 393–405, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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which I refer to as 4-Somos in his honour, apparently takes only integer values
if we start from C−1 , C0 , C1 , C2 = 1.

Indeed, Somos goes on to investigate also the width 5 sequence, Bh−2Bh+3 =
Bh−1Bh+2 +BhBh+1 , now with five initial 1s, the width 6 sequence Dh−3Dh+3
= Dh−2Dh+2+Dh−1Dh+1+D2

h , and so on, testing whether each, when initiated
by an appropriate number of 1s, yields only integers. Naturally, he asks: “What
is going on here?”

While 4-Somos (A006720), 5-Somos (A006721), 6-Somos (A006722), and
7-Somos (A006723), do yield only integers; 8-Somos does not. The codes in
parentheses refer to Neil Sloane’s On-line encyclopedia of integer sequences.

Fomin and Zelevinsky [7] give an algebraic explanation. For example, their
theory of cluster algebras entails that a sequence (Th) satisfying

αTh−2Th+2 + βTh−1Th+1 + γT 2
h = 0 , for all h ∈ Z , (1)

has the Th Laurent polynomials in the four initial values over Z[β/α, γ/α] .

1.2 Self-determining Relations

Suppose we are given a family T of sequences (Th) all satisfying a relation (1)
with constant coefficients α , β , γ not all zero depending only on the family T .
Further, there is no loss of generality in supposing that our family T contains a
singular sequence, (Wh) say, here specified by W0 = 0.

Then we readily determine the nontrivial coefficients by noting that

Δ0,1,h =

∣∣∣∣∣∣
W−2W2 W−1W1 0
W−1W3 0 W 2

1
Wh−2Wh+2 Wh−1Wh+1 W 2

h

∣∣∣∣∣∣
= W−1W 3

1 Wh−2Wh+2 − W−2W2W 2
1 Wh−1Wh+1 − W 2

−1W1W3W 2
h = 0 . (2)

In the context I have in mind, (Wh) is in fact anti-symmetric: W−h = −Wh ,
and clearly W1 �= 0 must be supposed, so our determination yields

W 2
1 Th−2Th+2 = W 2

2 Th−1Th+1 − W1W3T 2
h . (3)

Whatever, given that there is a relation as described, one readily identifies its
coefficients in terms of several initial elements of a, or the, singular sequence in
the family.

1.3 Elliptic Sequences

In the sequel I discuss curves C : Z2 −AZ −R = 0 with polynomial coefficients
A and R satisfying deg A = g + 1, 0 < deg R ≤ g .

Disclaimer. Here and throughout below I disregard the possibility that the
given curve is of genus lower than g . In particular, if C is of genus zero then the
continued fraction expansions are different from what we assert generic below.
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In the case g = 1, set R = v(X − w). The transformation

U = Z V − v = XU (4)

transforms C into a Weierstrass model E for an elliptic curve, in effect by taking
one of the points, say S, at infinity on C to SE = (0, 0) on E .

It is an interesting but non-trivial exercise to confirm that there are well-
defined integers Uh , Vh , Wh so that the rational points hSE for h ∈ Z have
co-ordinates of the shape (Uh/W 2

h , Vh/W 3
h) satisfying

gcd(Uh, Vh) = Wh−1 and Uh = −Wh−1Wh+1 ; (5)

all this up to at most finitely many primes. For details see Rachel Shipsey’s
thesis [16]. It follows, as long ago observed by Morgan Ward [20], that there is
indeed a sequence Wh as above satisfying

Wh−mWh+mW 2
t = W 2

mWh−tWh+t − Wm−tWm+tW
2
h (6)

for all integers h , m , and t .
It turns out [14], given an arbitrary point ME on E , that just so the ‘denom-

inators’ Th of the ‘translated’ points ME + hSE satisfy

W 2
t Th−mTh+m = W 2

mTh−tTh+t − Wm−tWm+tT
2
h . (7)

It is easy to check that (6) is self-determining as h or t varies but to prove the
identity requires showing, say by induction on m as in [14], that it is implied
by the particular case (3) where m = 2. Such an argument does not require an
understanding of the genesis of the family of sequences exemplified by (Th).

Alternatively, one might recognise (Th) as an ‘elliptic sequence’, identify the
corresponding elliptic curve by analytic means, and prove (7) as coming from
an identity satisfied by the relevant ℘-function. That’s done by Ward [20], and
rather more directly by Andy Hone [9].

Below I explain the identification by algebraic methods of M and the curve C ,
or E . It is intriguing that the recursion (3) depends only on the curve, but that
four nonzero initial values of Th are required both to fix the curve among a class
of admissible curves and to find the translation M .

1.4 Division Polynomials

One might remark that there is gain in generality in having changed the trans-
formation, by U ← (U − x), V ← (V − y), whereby in effect the co-efficients of
E become polynomials in x and y and S is sent to SE = (x, y). The result is
that the integers Wh become polynomials Wh(x, y) with the evident property
that Wm(a, b) = 0 if and only if (a, b) is a point of torsion order dividing m .
In other words, Wh(x, y) is the h-th division polynomial. That inter alia entails
gcd
(
Wr(x, y), Ws(x, y)

)
= Wgcd(r,s)(x, y), explaining the division properties of

the Wh(0, 0) and — conversely — the rapid growth of the coefficients of the
division polynomials.
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1.5 Hyperelliptic Sequences

The formulas (4) so relate the cubic and quartic models that the recursion rela-
tions for division polynomials produced from studying the quartic model coincide
with those produced by the more familiar cubic model. One cannot expect that
to be so if g > 1. It should therefore be no special surprise that sequences ob-
tained by David Cantor [5] by studying Padé approximants to square roots of
polynomials of odd degree 2g + 1 and with constant coefficient say 1, viewed
as power series about zero, are not the same as sequences I obtain below from
the continued fraction expansion of square roots of monic polynomials of even
degree viewed as Laurent series about infinity. Just so, the results obtained in
[3] by studying Kleinian σ -functions in genus 2 are not immediately applicable
to my discussion below.

2 Continued Fraction of the Square Root of a Polynomial

Suppose A(X) denotes a polynomial of degree g + 1 and R(X) a polynomial
of positive degree at most g . Then, the equation

Z2 − AZ − R = 0 (8)

defines a quadratic irrational integer function Z of degree g +1 and with conju-
gate Z of negative degree. Note that this definition makes sense over base fields
of arbitrary characteristic.

2.1 Laurent Series

Explicitly, albeit not in characteristic two, set Y 2 = D(X) where D , not a
square, is a monic polynomial over some field K and is of degree 2g + 2 in X .
Then we may write

D(X) =
(
A(X)
)2 + 4R(X) ,

where A is the polynomial part of the square root Y of D ; here 4R , with deg R
at most g , may be referred to as the remainder. We then take

Y = A
(
1 + 4R/A2)1/2 = A(X) + c1X−1 + c2X−2 + · · · (9)

thereby viewing Y as an element of K((X−1)), Laurent series in the variable
1/X . Note that the degree of such a Laurent series is the degree in X of its
leading term. Of course Z = 1

2 (Y + A) and does make sense in characteristic 2.

2.2 Continued Fraction Expansions

Now, for h ∈ Z set
Zh = (Z + Ph)/Qh ,

where Ph and Qh are polynomials such that deg Zh > 0 and deg Zh < 0 — one
says that Zh is reduced. It follows that both deg Ph ≤ g − 1 and deg Qh ≤ g .
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Further we require that Qh divides the norm (Z +Ph)(Z +Ph); this divisibility
condition is equivalent to the requirement that the K[X ] -module 〈Qh, Z + Ph〉
be an ideal of the domain K[X, Z] .

Finally, denote by ah the polynomial part of Zh . Then the continued fraction
expansion of, say, Z0 is a sequence of lines (or steps)

(Z + Ph)/Qh = ah − (Z + Ph+1)/Qh in brief: Zh = ah − Rh ,

where, −Qh/(Z + Ph+1) = (Z + Ph+1)/Qh+1 . Necessarily

Ph + Ph+1 + A = ahQh and (Z + Ph+1)(Z + Ph+1) = −QhQh+1 ,

and one readily verifies that the conditions on the Ph and Qh are in fact sus-
tained for all h .

This does require a minor miracle, but happily one that is well understood.
Because the complete quotients Zh all are reduced it follows that also all the
Rh are reduced. It follows that the partial quotients ah , which begin life as the
polynomial parts of the Zh , also are the polynomial parts of the Rh .

Hence also the ‘conjugate line’

Rh = (Z + Ph+1)/Qh = ah − (Z + Ph)/Qh = ah − Zh

is a line in an admissible continued fraction expansion. Thus we may view the
continued fraction expansion as being bi-directional infinite.

2.3 Normal Expansion

In the immediate sequel I suppose that the base field K is infinite. Given that,
I assert that a generic choice of P0 and Q0 is so that all the ah are linear
— equivalently, so that all the Qh are of degree g — indeed, a teeny bit less
obviously, so that all the Ph are of their maximal degree g−1. That’s so because
the probability of an element of K being 0 is zero. Equivalently, a generic divisor
of the curve (8) is defined by a g-tuple of elements of an algebraic extension of K .

2.4 The Cases g = 1 and g = 2 are Atypical

All the conditions just mentioned are equivalent to the nonvanishing of the
sequence (dh) of coefficients of the leading term (of degree g−1) of the polyno-
mials Ph . Accordingly, it is an appropriate goal to attempt to obtain relations
involving only the parameter dh .

Denote a typical zero of Qh by ωh and recall the recursion relations

Ph + Ph+1 + A = ahQh and

− QhQh+1 = (Z + Ph+1)(Z + Ph+1) = −R + Ph+1(A + Ph+1) . (10)

Thus Ph(ωh) + Ph+1(ωh) + A(ωh) = 0 and so R(ωh) = −Ph+1(ωh)Ph(ωh).
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Hence Qh(X) divides R(X) + Ph+1(X)Ph(X), and so

Ch(X)/uh =
(
R(X) + Ph+1(X)Ph(X)

)
/Qh(X) (11)

defines a polynomial Ch ; here uh denotes the leading coefficient of Qh .
One notices that deg Ch = max

(
g, 2(g − 1)

)
− g ; so Ch is a constant if and

only if g = 1 or g = 2. In the sequel I deal primarily just with these simpler
cases.

2.5 More General Formulæ

If Ph(εh) = 0, then by (11) we have both

Ch(εh)Qh(εh) = uhR(εh) and Ch+1(εh+1)Qh(εh+1) = uhR(εh+1);

and thus Ch−1(εh)Ch(εh)Qh−1(εh)Qh(εh) = uh−1uhR(εh)2 . (12)

From the recursion formulæ (10),

uh−1uh = −dh , and Qh−1(εh)Qh(εh) = R(εh) . (13)

Hence
Ch−1(εh)Ch(εh) = −dhR(εh) , (14)

a formula that seemed inexplicably miraculous when I first stumbled upon it [13]
in the case g = 2.

If ω is a zero of R we have

Ch(ω)Qh(ω) = uhPh(ω)Ph+1(ω) (15)

and therefore

Ch−1(ω)Ch(ω)Qh−1(ω)Qh(ω) = uh−1uhPh−1(ω)Ph(ω)2Ph+1(ω) .

By (10) and uh−1uh = −dh this is

Ch−1(ω)Ch(ω)Ph(ω)
(
A(ω) + Ph(ω)

)
= dhPh−1(ω)Ph(ω)2Ph+1(ω) (16)

2.6 What the Continued Fraction Does

It also follows from Qh(ωh) = 0 that, for h ∈ Z , the points
(
ωh,−Ph(ωh)

)
specify a sequence (Mh) of divisor classes on the Jacobian of the curve C :
Z2 − AZ − R = 0.

We may set Mh = M + Sh (so M = M0 ). It then turns out that Sh = hS
— with S the class of the divisor at infinity. In other words, each step of the
continued fraction expansion corresponds to addition of the divisor at infinity.
Comments by David Cantor [4] and Kristin Lauter [10] assist one in accepting
this notion. Adams and Razar [1] give a very explicit proof in the elliptic case
and Tom Berry [2] provides analogous arguments for general g .

We note that deg Qh ≤ g and deg Ph ≤ g− 1, generically with equality if the
base field is of characteristic zero. I note that because the complete quotients all
are reduced, always deg Ph < deg Qh .

The pairs (Qh,−Ph) of polynomials are the respective Mumford representations
of divisors M + hS on the hyperelliptic curve C : Z2 − AZ − R = 0 .
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3 Continued Fraction Relations

3.1 The Elliptic Case g = 1

Here R = v(X − w) and the Ph(X) = dh are polynomials of degree g − 1 = 0.
Plainly Ch = v . The relation (16) becomes just

v2(A(w) + dh) = dh−1d2
hdh+1 . (17)

This identity depends only on the given curve, not on the ‘translation’ M .
It follows from (17) that dh+1dh + v2/dh + dhdh−1 is independent of h . A

little work then yields

dh−1d2
hd2

h+1dh+2 = v2A(w)dhdh+1 + v3(v + 2wA(w)
)
. (18)

For more detail see [12] or [14]; for the complex function view note Hone [9].

3.2 The Hyperelliptic Case g = 2; First Steps

In general we have R = u(X − ω)(X − ω) = u(X2 − vX + w), say, and the
Ph(X) = dh(X +eh) are polynomials of degree one; thus the εh above are given
by εh = −eh . Evidently, Ch = dhdh+1 + u . Here the relations (16)

Ch−1Ch

(
A(ω) + Ph(ω)

)
= dhPh−1(ω)Ph(ω)Ph+1(ω)

still require an elimination of the (eh), to be assisted by the ‘miraculous’ identity

Ch−1Ch = (dh−1dh + u)(dhdh+1 + u) = −dhR(−eh) . (19)

However,

−dhR(−eh) = −udh(ω + eh)(ω + eh) = −uPh(ω)(ω + eh) .

Thus we are to deal with

−u(ω + eh)
(
A(ω) + Ph(ω)

)
= dhPh−1(ω)Ph+1(ω) . (20)

It now seems natural to multiply by the conjugate equation and to use

uPh(ω)Ph(ω) = ud2
h(eh + ω)(eh + ω) = −dh(dh−1dh + u)(dhdh+1 + u) .

But that leaves an eh on the left. Specifically, one obtains

− uCh−1Ch

(
A(ω)A(ω) + dh

(
(ω + eh)A(ω) + (ω + eh)A(ω)

)
− dhCh−1Ch/u

)
= dh−1d3

hdh+1Ch−2Ch−1ChCh+1/u2 . (21)

While we do have the identity (19), it is quadratic in eh and seems unhelpful in
eliminating eh . Of course there is no eh in the happenstance A(ω) + A(ω) = 0.
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3.3 The Special Case g = 2, deg R = 1

It’s all much easier if R = v(X − w). Then u = 0, ω = w and is rational, and
(19) becomes

Ch−1Ch = dh−1d2
hdh+1 = dhv(eh + w) = vPh(w) . (22)

Hence (16) is just

v2dh−1d2
hdh+1
(
vA(w) + dh−1d2

hdh+1
)

= dh−2d3
h−1d5

hd3
h+1dh+2.

Recasting this, we obtain Theorem 1 of [13]

dh−2d2
h−1d3

hd2
h+1dh+2 = v2dh−1d2

hdh+1 + v3A(w) . (23)

4 Somos Sequences

4.1 Suitable Identities

The identities (17) and (23) are suitable in the following sense. It turns out
that generically the dh are rationals increasing in complexity with h at frantic
pace: the logarithmic height of dh is O(h2). One tames the dh somewhat by
introducing a sequence (Th) given by the recursive definition

Th−1Th+1 = dhT 2
h . (24)

That this yields elements integral at all but at most a few exceptional primes
is not too difficult to show by elementary means in the elliptic case (see my
introductory remarks) and is experientially the case for g = 2, no doubt inter
alia for algebraic reasons of the kind described by Fomin and Zelevinsky [7].

Happily, (24) easily yields Th−1Th+2 = dhdh+1ThTh+1 and then

dh−1d2
hdh+1T 2

h = Th−2Th+2 , dh−1d2
hd2

h+1dh+2ThTh+1 = Th−2Th+3 ,

and dh−2d2
h−1d3

hd2
h+1dh+2T 2

h = Th−3Th+3 .

So the identities (17) and (18) become

Th−2Th+2 = v2Th−1Th+1 + v2A(w)T 2
h

and Th−2Th+3 = v2A(w)Th−1Th+2 + v3(u + 2wA(w)
)
ThTh+1 ; (25)

and (23) yields
Th−3Th+3 = v2Th−2Th+2 + v3A(w)T 2

h . (26)

4.2 Canonical Examples

4-Somos: Suppose (Ch) = (. . . , 2 , 1, 1, 1, 1, 2, 3, 7, . . . ) with Ch−2Ch+2 =
Ch−1Ch+1 +C2

h . One sees that v = ±1, w = ∓2, A(w) = 1, and thus that (Ch)
arises from

Z2 − (X2 − 3)Z − (X − 2) = 0 with M = (1,−1);
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equivalently from E : V 2 − V = U3 + 3U2 + 2U with ME = (−1, 1).
5-Somos: The case (Bh) = (. . . , 2, 1, 1, 1, 1, 1, 2, 3, 5, 11, . . . ) with Bh−2Bh+3 =
Bh−1Bh+2 +BhBh+1 is trickier. One needs to define chBh−1Bh+1 = dhB2

h with
chch+1 independent of h .

One finds that (Bh) arises from

Z2 − (X2 − 29)Z + ·48(X + 5) = 0 with M = (−3,−8);

equivalently from E : V 2 + UV + 6V = U3 + 7U2 + 12U with ME = (−2,−2).
The fact gcd(a3, a4) = gcd(6, 12) �= 1 may here be thought of as ‘necessitating’
the width 5 recursion.

By symmetry each respective M is a point of order 2 on its curve.

A Width 6 Example à la Somos. The sequence (Th) = (. . . , 2 , 1, 1, 1, 1,
1, 1, 2, 3, 4, 8, 17, 50, . . . ), with

Th−3Th+3 = Th−2Th+2 + T 2
h ,

may be thought of as arising from the points (thus, divisor classes) . . . , M − S ,
M , M + S , M + 2S , . . . on the Jacobian of the genus 2 hyperelliptic curve

C : Z2 − (X3 − 4X + 1)Z − (X − 2) = 0 .

Here S is the class of the divisor at infinity and M is instanced by the divisor
defined by the pair of points (ϕ, ϕ) and (ϕ, ϕ): where ϕ is the golden ratio. The
symmetry dictates that M − S = −M so 2M = S on Jac(C).

4.3 An Identity for g = 2

In just the above spirit, multiplying (21) by T 3
h yields

u3A(ω)A(ω)T 3
h + u2(DTh−1ThTh+1 + FdhehT 3

h)

− u3(Th−2T 2
h+1 + T 2

h−1Th+2) − u4Th−1ThTh+1 + Th−3ThTh+3

+ u(Th−3Th+1Th+2 + Th−2Th−1Th+3) = 0 , (27)

a suitable expression for dhehT 3
h . Mind you, this suitability — in other words:

that here multiplication by T 3
h tames the equation — requires a fortunate coin-

cidence of the first term in the expansion of u2dhCh−1Ch and the last term in
the expansion of dh−1d3

hdh+1Ch−2Ch+1 .
Moreover, in the happenstance F = u

(
A(ω) + A(ω)

)
= 0, (27) is the sought

for relation. Apropós of comments at §1.5 on page 396 above, I note that terms
of the shapes Th−3Th+1Th+2 and Th−2Th−1Th+3 , or Th−2T 2

h+1 and T 2
h−1Th+2 ,

do not occur in Cantor’s recurrence formulas.

4.4 Example

Set A(X) = X3 − 7X2 + 8X + 7 and R(X) = u(X − 2)(X − 5), noting that
A(2) = 3 and A(5) = −3 so F = 0, D = 9u , A(2)A(5) = −9. A computation,
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done for me by David Gruenewald, confirms that the singular sequence . . . ,
2 , 1, 1, W−1 = 0, W0 = 0, W1 = 1, 1, 2, 7, −112, −103, 1803, 132603,
−1042153, −31597909, −1759068155, . . . , indeed satisfies

− 9u3W 3
h + (9u3 − u4)Wh−1WhWh+1

− u3(Wh−2W 2
h+1 + W 2

h−1Wh+2) + Wh−3WhWh+3

+ u(Wh−3Wh+1Wh+2 + Wh−2Wh−1Wh+3) = 0 , (28)

of course with u = 1. As always set Z2 − AZ − R = 0. Here, to avoid singular
steps in the continued fraction, one expands Z/R , deeming that to provide
line 1 of the expansion of Z . The recursion relation allows one to fill gaps in and
generally to extend the two-sided sequence.

5 Not Enough Determination

5.1 A Determined Sequence for Every g

During ANTS V, Sydney, Noam Elkies was provoked by remarks of mine to
notice that Fay’s trisecant formula suggests that hyperelliptic curves

Z2 − AZ − v(X − w) = 0

of arbitrary genus g , thus deg A = g + 1 but deg R = 1, yield a Somos rela-
tion just on the three terms Th−g−1Th+g+1 , Th−gTh+g , and T 2

h — incidentally
explaining the elliptic case and my g = 2 result [13] at (25).

In this case, the singular expansion — that of Z itself — yields a sequence
(Wh) with g central zeros occasioned by the partial quotient A of degree g +1,
followed by a 1, and then g − 1 zeros occasioned by the next partial quotient,(
A(X) − A(w)

)
/v(X − w), of degree g . For g = 2k + 1 odd I set notation so

that W−h = Wh and if g = 2s even then W−h = Wh+1 . By the way, after
bypassing the singular part of the continued fraction expansion, one computes
the singular sequence; then backtracking, using the experimentally discovered
recurrence relation, one locates the zero entries.

The determined form of Elkies’ remark is

W 2
s W5sTh−(2s+1)Th+(2s+1) = −W 2

3sW3s+1Th−2sTh+2s + WsW3s+1W5sT 2
s (29)

and respectively

W 2
k+1W5k+3Th−(2k+2)Th+(2k+2)

= −W 2
3k+2W3k+3Th−(2k+1)Th+(2k+1) + Wk+1W3k+3W5k+3T 2

k . (30)

Incidentally, numbering the lines in singular continued fraction expansions, and
thence indexing the Wh , is rather problematic. That would have been so even
in the elliptic case were it not that Morgan Ward [20] had already set a nota-
tion. Determinations such as the present example assist in leading to a coherent
notation.
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5.2 Determined Sequences for g = 2

My remarks above suggest that the general relation linearly relates the terms
Th−3ThTh+3 , Th−2ThTh+2 , Th−1ThTh+1 , T 3

h , Th−3Th+1Th+2 + Th−2Th−1Th+3 ,
and Th−2T 2

h+1+T 2
h−1Th+2 . That this is so is clear from experiment. Here a deter-

mination of the coefficients is not immediately successful because it yields the six
coefficients as polynomials in W1 = 1, W2 , . . . , W7 . Recall that W−h−1 = Wh

and W−1 = W0 = 0.
However, W7 plainly is supernumerary since it is given — by the as yet

unknown relation — in terms of W1 = 1, W2 , . . . , W6 . Indeed, if the last two
pairs of terms above have a nonzero coefficient, the unknown relation already
gives W6 in terms of W2 , W3 , W4 , W5 .

If not, we have the simpler case of only four terms all divisible by Wh and
then yet more plainly W6 is given in terms of W2 , W3 , W4 and W5 . In that
special case the determined relation must be

W1W2W3W4T 3
h − W 3

2 W4Th−1ThTh+1 + W1W2W 2
3 Th−2ThTh+2

= W 2
1 W2W3Th−3ThTh+3 , (31)

a matter of interest if one hopes to detail the source of the 6-Somos sequence.
In the case g = 1, I had the foresight already to know the relation and, indeed,

to have explicit expressions for W1 = 1, W2 , W3 , W4 , W5 in terms of the para-
meters defining the elliptic curve. Here, explicit computation of W2 , W3 , . . . in
the general case quickly seems to become too messy to be informative. Whatever,
I have not as yet disentangled the determination just now sketched, probably
out of laziness but principally, I claim, because I am looking for methods and
ideas that may generalise to arbitrary genus; hard yakka 2 mucking about with
absurd identities is unlikely to do that. I should here also admit that extensive
computations of quite general examples by David Gruenewald have helped to
‘verify’ various guesses of mine, and of his, but have not as yet proved useful in
readily identifying the coefficients of the general relation as polynomials in W2 ,
W3 , W4 , and W5 .

6 Comments

I find the Somos sequences interesting as an infinite base field phenomenon
which continues to give meaningful information after reduction or specialisation
— after all, the elliptic case will do for this remark, the sequences begin life as
‘denominators’ yet persist under transformation of the base field to a finite field.
That all said, the sequences may well be a distraction, hence my feeling that not
enough determination is quite enough.

Indeed, a principal charm of the continued fraction expansions is their en-
capsulating a sequence of divisors M + hS allowing one ready entrance to open
questions dealing with torsion possibilities in higher genus, note for easy example
2 yakka: work [Australian Aboriginal].
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the modular curves mentioned in [11]. In this context I also note that many of
the phenomena touched on above will reappear in studying multi-sequences of
Padé approximants to higher degree algebraic functions.

I also note, as hinted at in my opening comment just above, that studying
curves over an infinite field, say Q — though computationally hopeless — does
nonetheless give insight into the corresponding curves over finite fields, moreover
all at once for almost all p . I hope to give more emphasis to that thought in
future work.

Thoughtful remarks from the two referees helped me to omit some of the
errors in my remarks.
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Abstract. Let Γ ⊂ PSL2(R) be a cocompact arithmetic triangle group,
i.e. a Fuchsian triangle group that arises from the unit group of a quater-
nion algebra over a totally real number field. The group Γ acts on the
upper half-plane H; the quotient XC = Γ\H is a Shimura curve, and there
is a map j : XC → P1

C. We algorithmically apply the Shimura reciprocity
law to compute CM points j(zD) ∈ P1

C and their Galois conjugates so
as to recognize them as purported algebraic numbers. We conclude by
giving some examples of how this method works in practice.

To motivate what follows, we begin with a description of the classical situation.
The subgroup Γ0(N) ⊂ SL2(Z) of matrices which are upper triangular modulo
N ∈ Z>0 acts on the completed upper half-plane H∗ by linear fractional trans-
formations; the quotient X0(N)C = Γ0(N) \ H∗ can be given the structure of a
compact Riemann surface. The complex curve X0(N)C itself is a moduli space
for (generalized) elliptic curves equipped with a cyclic subgroup of order N ,
and consequently it has a model X0(N)Q defined over Q. There exist “special”
points on X0(N)Q, known as CM points, where the corresponding elliptic curves
have complex multiplication by quadratic imaginary fields K. CM points are de-
fined over abelian extensions H of K, and the Shimura reciprocity law explicitly
describes the action of the Galois group Gal(H/K) on them. The image of a
CM point under the elliptic modular j-function is known as a singular modulus.
Gross and Zagier give a formula for the norm of the difference of two singular
moduli [6]; the traces of singular moduli arise as the coefficients of modular forms
(see e.g. [18]).

In this article, we generalize this situation by replacing the modular curve
X0(N) by a Shimura curve X0(N), associated to a quaternion algebra defined
over a totally real number field F . The curves X0(N) we will consider similarly
come equipped with a map j : X0(N) → P1 as well as CM points defined over
abelian extensions H of totally imaginary extensions K of F . Developing ideas
of Elkies [5], we can compute these points to high precision as complex numbers,
and we generalize his methods by using the Shimura reciprocity law to recognize
them as putative algebraic numbers by also computing their conjugates under
Gal(H/K). We may then compute the norms, traces, and other information

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 406–420, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Computing CM Points on Shimura Curves 407

about these CM points, with a view towards a generalized Gross-Zagier formula
in this setting.

In §§1–2, we introduce the basic facts about quaternion algebras, Fuchsian
groups and Shimura curves that we will use in the sequel. In §3, we outline
numerical methods for computing the value of the map j to high precision—this
can safely be skipped for the reader willing to accept Proposition 3.2. In §4, we
treat the problem of principalization of ideals in maximal orders of quaternion
algebras, and in Algorithm 4.4 we solve this problem under hypotheses that
hold in our situation. In §5, we define CM points and show in Algorithm 5.2
how to compute these points as putative algebraic numbers using the Shimura
reciprocity law. In §6, we briefly discuss relevant Galois descent. Finally, in §7,
we give examples of how these algorithms work in practice, and in §8 we tabulate
some of our results.

1 Quaternion Algebras

In this section, we introduce quaternion algebras and describe some of their basic
properties. A reference for the material in this section is [15]. Throughout, let F
be a field with char F �= 2.

A quaternion algebra A over F is a central simple algebra of dimension 4 over
F , or equivalently, an F -algebra with generators α, β ∈ A such that

α2 = a, β2 = b, αβ = −βα (1)

with a, b ∈ F ∗.

Example 1.1. The matrix ring M2(F ) is a quaternion algebra over any field F ,
as is the division ring H of Hamiltonians over R.

Let A be a quaternion algebra over F . Then A has a unique involution : A → A
called conjugation such that θ+θ, θθ ∈ F for all θ ∈ A, and we define the reduced
trace and reduced norm of θ to be respectively trd(θ) = θ + θ and nrd(θ) = θθ.
For A as in (1) and θ = x + yα + zβ + wαβ ∈ A, we have

θ = x − (yα + zβ + wαβ), trd(θ) = 2x, nrd(θ) = x2 − ay2 − bz2 + abw2.

Let K ⊃ F be a field containing F . Then AK = A ⊗F K is a quaternion
algebra over K, and we say K splits A if AK

∼= M2(K). If [K : F ] = 2, then K
splits A if and only if there exists an F -embedding K ↪→ A.

Now let F denote a number field with ring of integers ZF . Let v be a non-
complex place of F , and let Fv denote the completion of F at v. Then there is a
unique quaternion algebra over Fv which is a division ring, up to isomorphism.
We say A is unramified at v if Fv splits A otherwise say A is ramified at v. The
algebra A is ramified at only finitely many places v, and we define the discrimi-
nant of A to be the ideal of ZF given by the product of all finite ramified places
of A.

A ZF -lattice of A is a finitely generated ZF -submodule I of A such that
F I = A. An order of A is a ZF -lattice which is also a subring of A. A maximal
order of A is an order which is not properly contained in any other order.
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2 Shimura Curves Arising from Triangle Groups

In this section we introduce Shimura curves and triangle groups; basic references
are [7] and [5].

Let H be the complex upper-half plane, equipped with the hyperbolic metric d.
The group P SL2(R) isometrically acts on H by linear fractional transformation.
Let Γ be a Fuchsian group, a discrete subgroup of P SL2(R) such that the orbit
space XC = Γ\H has finite hyperbolic area. The quotient space XC can be given
the structure of a Riemann surface of genus g.

The stabilizer Γz = {γ ∈ Γ : γ(z) = z} of a point z ∈ H is finite and cyclic;
a point z ∈ H is an elliptic point of order k ≥ 2 if #Γz = k. A maximal finite
subgroup of Γ is known as an elliptic cycle. The set of Γ -orbits with nontrivial
stabilizer is finite and in bijective correspondence with the set of elliptic cycles
up to conjugation. Choosing a point z0 ∈ H not fixed by any element of Γ \ {1},
we obtain a fundamental domain for Γ given by

D = {z ∈ H : d(z, z0) ≤ d(z, γ(z0)) for all γ ∈ Γ}. (2)

The domain D is a hyperbolic polygon, a connected, closed hyperbolically convex
region bounded by a union of geodesics.

Now let F be a totally real number field with [F : Q] = n and let A be a
quaternion algebra over F such that A⊗Q R ∼= M2(R)×Hn−1. We fix the unique
real place of F at which A is unramified and identify F as a subfield of R by
this embedding; we also fix an isomorphism ι∞ : A⊗F R ∼−→ M2(R). Let O be a
maximal order in A (unique up to conjugation in A) and define the subgroup

Γ ∗(1) = {ι∞(γ) : γ ∈ A, γO = Oγ, nrd(γ) totally positive}/{±1} ⊂ P SL2(R).

The group Γ ∗(1) is an arithmetic Fuchsian group, and as above it gives rise to
a Riemann surface X∗(1)C = Γ ∗(1)\H.

An example of this situation is the modular group Γ ∗(1) = P SL2(Z) with the
usual fundamental domain, which corresponds to F = Q and A = M2(Q). We
will exclude this well-studied case and assume from now on that A is a division
ring, and thus the fundamental domain D and X∗(1)C are compact.

Suppose that Γ has t elliptic cycles of order m1, . . . , mt. Then the group Γ is
freely generated by elements a1, b1, . . . , ag, bg, s1, . . . , st subject to the relations

sm1

1 = . . . = smt
t = s1 · · · sr[a1, b1] · · · [ag, bg] = 1

where [a, b] = aba−1b−1; the group Γ is said to have signature (g; m1, . . . , mt).
We further make the assumption that Γ ∗(1) is a triangle group, a Fuchsian group
of signature (0; p, q, r) with p, q, r ∈ Z≥2. Therefore we have a presentation

Γ ∗(1) = 〈sp, sq, sr|sp
p = sq

q = sr
r = spsqsr = 1〉. (3)

The fundamental domain D is the union of a fundamental triangle, a hyperbolic
triangle with angles π/p, π/q, π/r and vertices zp, zq, zr at the fixed points of the
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generators sp, sq, sr, respectively, together with its image in the reflection in the
geodesic connecting any two of the vertices.

By assumption we have g = 0 and hence we have a map j : X∗(1)C → P1
C,

which is uniquely defined once we assert that the images of the elliptic points
zp, zq, zr be 0, 1,∞, respectively.

By [13], there are exactly 18 quaternion algebras A (up to isomorphism),
defined over one of 13 totally real fields F , that give rise to such a cocompact
arithmetic triangle group Γ ∗(1). (As pointed out in [5, p. 3], already these contain
a number of highly interesting curves.) We note that each such F is Galois over
Q and has strict class number 1.

3 Computing Hypergeometric Series

We continue notation from §§1–2. In this section, we address the following
problem.

Problem 3.1. Given z ∈ H, compute the value j(z) ∈ P1(C).

In other words, in Problem 3.1 we wish to compute the parametrization j :
Γ ∗(1)\H → X∗(1) to large precision over C. The reader who is uninterested
in these numerical concerns may safely accept the following proposition and
proceed to the next section.

Proposition 3.2. There exists an explicit algorithm to solve Problem 3.1.

For the details, we refer the reader to [5] and [17, §5.2].
We provide an outline of the proof of Proposition 3.2. In the first step, we

reduce the problem to one in a neighborhood of an elliptic point. Let D be the
fundamental domain obtained from the union of the fundamental triangle and
its image in the reflection in the geodesic connecting zp and zr. We then find
z′ ∈ D in the Γ -orbit of z as follows.

Algorithm 3.3. For z ∈ H, this algorithm returns an element z′ ∈ D in the Γ -orbit
of z.

1. Let z′
q be the image of zq in the reflection of the geodesic zpzr.

2. Apply sr to z until z is in the region R bounded by the geodesics zrzq and
zrz′

q.
3. If z ∈ D, stop. Otherwise, apply sp until z is in the region bounded by the

geodesics zpzq and zpz′
q. Return to Step 2.

Proof. For the proof, we map H conformally to the unit disc D by the map
z �→ (z − zr)/(z − zr), which maps zr �→ 0. The element sr now acts by rotation
on D by 2π/r about the origin, and the image of R is a sector S ⊂ D with
central angle 2π/r.

Since the center of rotation of sp lies away from the origin, for z ∈ S as in
Step 3 we have z ∈ D if and only if |si

pz| ≥ |z| for all 0 < i ≤ p. Thus we see that
the algorithm terminates correctly, because we obtain in this way a Γ -orbit with
strictly decreasing absolute value, and yet the group Γ acts discontinuously so
this orbit is finite.
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Since j(z′) = j(z), we replace z by z′. Now the point z is near to at least one
elliptic point τ of Γ . We apply the linear fractional transformation

z �→ w =
z − τ

z − τ

which maps the upper half-plane H to the open unit disc D and maps τ �→ 0.
One easily recovers z from w as

z =
τw − (τ + τ)

w − 1
.

Next, rather than computing the value j(z) directly, we use the fact that
t = j(z) arises as an automorphic function for the group Γ . For the elliptic point
τ of order s, there exists a Puiseux series φτ (t) ∈ t1/sC[[t]] given as an explicit
quotient of two hypergeometric series, such that

w = φτ (j(z)).

To conclude, we use a combination of series reversion and Newton’s method
which, given z (and therefore w), finds the value t = j(z) such that w = φτ (t).

4 Principalization of Ideals

In this section, we exhibit in Algorithm 4.4 a way to compute a generator for
a principal (right) ideal of a maximal order O for a certain class of quaternion
algebras A. Already, computing the class group and unit group of a number
field appears to be a difficult task; consequently, we will be content to provide
an effective algorithm that seems to work well in practice, as we are unable
to prove any rigorous time bounds. We refer the reader to [15, §III.5] for the
background relevant to this section.

Let A be a quaternion algebra defined over a number field F , and let O ⊂ A
be a maximal order. Let I, J be right ideals of O. We say that I and J are
in the same ideal class, and write I ∼ J , if there exists an α ∈ A∗ such that
I = αJ , or equivalently, if I and J are isomorphic as right O-modules. It is clear
that ∼ defines an equivalence relation on the set of right ideals of O. Since A
is non-commutative, the set of ideal classes may not form a group; however, the
number h of ideal classes is finite and is independent of O.

We are led to the following problem.

Problem 4.1. Given a right ideal I ⊂ O, determine if I is a principal ideal and,
if so, compute an an element α such that I = αO.

For applications to the situation of Shimura curves, we may assume that A has at
least one unramified real place; we say then that A satisfies the Eichler condition.
For I ⊂ O a right ideal, we define nrd(I) to be the ideal of ZF generated by the
set {nrd(x) : x ∈ I}.



Computing CM Points on Shimura Curves 411

Proposition 4.2 ([9, Corollary 34.21], [15, Théorème III.5.7]). Suppose
that A satisfies the Eichler condition. Then the map nrd gives a bijection between
the set of ideal classes and the class group Cl ZF .

In view of Proposition 4.2, the task identifying principal ideals in O is computa-
tionally equivalent to the analogous problem for F . From now on, suppose that F
is a totally real field with [F : Q] = n and that A satisfies the Eichler condition.

Lemma 4.3. Let I ⊂ O be a right ideal, and let ξ ∈ I. Then ξ generates I
if and only if nrd(ξ)ZF = nrd(I), which holds if and only if |NF/Q(nrd(ξ))| =
NF/Q(nrd(I)).

Proof. If one first defines the norm N of a right ideal I of O as the product of
the primes of O occuring in a composition series for O/I as a O-module (see [9,
24.1]), then the statement ξO = I if and only if N(ξO) = N(I) is obvious. Since
[A : F ] = 4, then the norm N is the square of the reduced norm by [9, Theorem
24.11]. The second statement follows in the same way, now in the much easier
context of Dedekind domains.

The following algorithm then gives a solution to Problem 4.1 under these
hypotheses.

Algorithm 4.4 (Principal ideal testing). Let I ⊂ O be a right ideal. This algorithm
determines if I is principal and outputs a generator for I if one exists.

1. Compute nrd(I) ⊂ ZF . Test if nrd(I) ⊂ ZF is principal by [3, §6.5.10]. If
not, output a message indicating that I is not principal and terminate the
algorithm. Otherwise, let q = NF/Q(nrd(I)).

2. Find a Z-generating set for I and write these elements in a Z-basis for O.
Using the MLLL algorithm [3, 2.6.8], find a Z-basis B = (γ1, . . . , γ4n) for I.

3. Let σ1, . . . , σn be the n distinct real embeddings F ↪→ R. Embed I ↪→ R4n

as a lattice L via the embedding

μ �→ (σi(μj))i=1,...,n
j=1,...,4

where we write μ = μ1+μ2α+μ3β+μ4αβ for α, β as in (1). Compute an LLL-
reduced basis L′ of this lattice with respect to the ordinary inner product
on R4n, and let T be the unimodular transformation such that T L = L′. Let
B′ = T B be the basis for I obtained by applying T to the basis B.

4. For each μ in the Z-linear span of B′, compute nrd(μ). If |NF/Q(nrd(μ))| = q,
output μ and terminate the algorithm.

The algorithm terminates correctly by Proposition 4.2 if I is not principal and
by Lemma 4.3 (and sheer enumeration) if I is principal.

Remark 4.5. The LLL-step proves experimentally to be crucial. We can see this
more precisely by the following statement: There exists a C ∈ R>0 such that for
every ideal I of O, the first basis element γ in the LLL-reduced basis B′ in step
3 of Algorithm 4.4 satisfies
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|NF/Q(nrd(γ))| ≤ C|NF/Q(nrd(I))|.

Since any generator ξ ∈ I has NF/Q(nrd(I)) = |NF/Q(nrd(ξ))|, we conclude that
the algorithm produces elements which are very close to being generators. We
refer the reader to [17, Proposition 4.4.9] for the proof and a discussion.

5 CM Points and Shimura Reciprocity

In this section, we define CM points and give methods for explicitly computing
them. We continue notation from §§1–2.

We first classify quadratic orders over ZF . The quadratic extensions K of F
are classified by Kummer theory as the fields K = F (

√
D) for D ∈ F ∗/F ∗2.

A quadratic order over ZF is a ZF -algebra which is a domain and a projective
ZF -module of rank 2. In our situation, F has class number 1, hence each such
quadratic order is equal as a ZF -module to ZF ⊕ ZF δ for some δ ∈ ZK ; the
discriminant D ∈ ZF of a minimal polynomial for δ is independent of the choice
of δ up to an element of Z∗2

F . Therefore the set of quadratic orders over ZF is in
bijection with the set of orbits of

{D ∈ ZF : D is not a square, D is a square modulo 4ZF }

under the action of multiplication by Z∗2
F . We denote the order of discriminant

D ∈ ZF by OD. Each such order is contained in a unique maximal order of
discriminant d, known as the fundamental discriminant, with D = df2 and f ∈
ZF (unique up to Z∗

F ). We say that a quadratic order OD is totally imaginary
if D is totally negative.

Let OD be a totally imaginary quadratic order of discriminant D = df2 with
field of fractions K = F (

√
d). Suppose that K is a splitting field for A. Then

there exists an embedding ιK : K ↪→ A; more concretely, the map ιK is given
by an element μ ∈ O whose minimal polynomial over F has discriminant D. We
further assume that the embedding is optimal, so that ιK(K) ∩ O = OD (see
[4]). Let z = zD be the fixed point of ιK(μ) in H; we then say z is a CM point
on H, and j(z) is a CM point on P1(C).

Let HD be the ring class field of K of conductor f . By class field theory, we
have the Artin isomorphism

Cl(OD) ∼−→ Gal(HD/K)
[p] �→ Frobp

for all primes p of K unramified in HD, where Cl(OD) is the group of invertible
fractional ideals of OD modulo principal fractional ideals. For any fractional ideal
c of K with c ↔ σ under the Artin map, by Proposition 4.2 there exists ξ ∈ A
such that

ιK(c)O = ξO,

which describes the action of Gal(HD/K) on j(z) as indicated in the following
theorem known as the Shimura reciprocity law.
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Theorem 5.1 ([11, p. 59]). We have j(z) ∈ P1(HD) and

j(z)σ = j(ι∞(ξ−1)(z)).

We may now compute the conjugates of j(z) under Gal(HD/K).

Algorithm 5.2. This algorithm computes the set

{j(z)σ : σ ∈ Gal(HD/K)} ⊂ C. (4)

1. Compute a set G of ideals in bijection with the ring class group Cl OD.
2. Using Algorithm 4.4, for each ideal c ∈ G, compute an element ξ ∈ O such

that cO = ξO.
3. For each ξ from Step 2, compute j(ι∞(ξ−1)(z)) according to Proposition 3.2,

and output this set.

Remark 5.3. One can compute the set G in step 1 by the natural exact sequence

1 → (ZK/fZK)∗

Z∗
K(ZF /fZF )∗

→ Cl OD → ClZK → 1;

a representative set of elements of Cl OD can be obtained as cosets of Cl ZK .

Given a complete set of conjugates tσ of a purported algebraic number t, we
then compute the polynomial

f(x) =
∏
σ∈G

(x − tσ)

and attempt to recognize the coefficients of this polynomial as elements of F
using LLL (see [3, §2.7.2]).

6 Galois Descent

In this section, we discuss the Galois descent properties of CM points z. The
computationally-minded reader may proceed to the next section, since these
results will not affect the output. We continue notation from §2 and §5.

According to Theorem 5.1, a CM point j(z) of discriminant D is defined over
the ring class field HD of K = F (

√
D). However, the set of conjugates of j(z)

may descend to a smaller field.

Proposition 6.1. Let S be a full set of Gal(HD/K)-conjugates of j(z) as in
(4). Then S is in fact a full set of Gal(HD/F )-conjugates.

Suppose that σ(D)/D ∈ Z∗2
F for all σ ∈ Gal(F/Q). Then HD is Galois over

Q, and S is a full set of Gal(HD/Q)-conjugates.

The first statement is due to Shimura [12, §9.2]. Unfortunately, the proof of the
second statement is too detailed to appear in these pages. For some discussion,
see [17, Propositions 5.1.2, 5.4.1], though the proof there is incomplete. We now
give a sketch of the proof of Proposition 6.1.
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Let N be an ideal of ZF , and define

Γ (N) = {ι∞(γ) : γ ∈ O∗, nrd(γ) = 1, γ ≡ 1 (mod N)}. (5)

We define X(N)C = Γ (N)\H. Denote by H(N) the ray class field of F of con-
ductor N.

The curve X(N) has an interpretation as a moduli space for a certain class of
abelian varieties equipped with level structure, and as a result it has a canonical
model defined over a number field. The following is due to Shimura.

Theorem 6.2 ([11, Main Theorem I (3.2)]). There exists a projective, non-
singular curve X(N)H(N) defined over H(N) and a holomorphic map jN : H →
X(N)C, such that the map jN yields an analytic isomorphism

jN : Γ (N)\H ∼−→ X(N)C.

As with the case of modular curves, with additional restrictions on the moduli
interpretation, one obtains a curve X(N)F defined over F .

Claim. If σ(N) = N for all σ ∈ Gal(F/Q), then X(N)F has a model X(N)Q

defined over Q.

Let S be the set of ramified places of A. For σ ∈ Gal(F/Q), let Aσ be the quater-
nion algebra which is ramified at the set σ(S), let Γ ∗(1)σ be the group associated
to this data as in §2, and let Γ (N)σ be defined as in (5) for the ideal σ(N). By
functoriality, we see that the Galois-conjugate curve X(N)σ corresponds exactly
to the Shimura curve associated to the quaternion algebra Aσ and ideal σ(N).

It is well-known that any two triangle groups of the same type (i.e. having
the same signature) are conjugate under P SL2(R). From the basic theory of
Shimura curves, we see that the groups Γ ∗(1) and Γ ∗(1)σ have the same type.
So let δ ∈ P SL2(R) be such that δΓ ∗(1)δ−1 = Γ ∗(1)σ ⊂ P SL2(R). Now using
that σ(N) = N, we show that δΓ (N)δ−1 = Γ (N)σ. It follows that δ gives an
isomorphism of Riemann surfaces X(N)C

∼−→ X(N)σ
C, which in fact yields an

isomorphism φσ : X(N)F
∼−→ X(N)σ

F defined over F . The map φσ lies over P1
F

since it must pair up the elliptic points which by the classification we note have
distinct orders, and hence must act by the identity. The maps φσ then give the
data necessary for Galois descent to Q (see [16]).

Now suppose that N is prime to the discriminant of A. Then we have an
isomorphism ιN : O ⊗ZF ZF,N

∼−→ M2(ZF,N), unique up to conjugation by an
element of GL2(ZF,N), where ZF,N denotes the completion of ZF at N. We then
define the subgroup

Γ0(N) = {ι∞(γ) : γ ∈ O∗, nrd(γ) = 1, ιN(γ) upper triangular modulo N}.

We let Γ0(N)\H = X0(N)C. The quotient X(N)Q/H
∼−→ X0(N) by the (Borel)

subgroup H is stabilized by the action of the Galois group on the automorphism
group of X(N)Q/X∗(1)Q, and hence the quotient morphism is defined over Q
and we have a model X0(N)Q for X0(N)C.
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For each N, there exists an element wN ∈ Aut(Γ0(N)), known by analogy
as an Atkin-Lehner involution, defined to be a normalizing element wN ∈ O
with trd(wN) = 0 and nrd(wN)ZF,N = N. Putting together the functions
j(z), j(wN(z)), we obtain a birational map of X0(N) to an irreducible closed
subvariety of P1

C ×P1
C of dimension 1, described by a polynomial ΦN(x, y) in the

affine open (P1
C \ {∞})2 = A2

C. By the claim above, the polynomial ΦN(x, y) has
coefficients in Q.

To conclude the proof of the proposition, let D be as in Proposition 6.1, and
let N be an odd rational prime which splits in F and such that a prime above N
is principal in OD; infinitely many such integers exist by the Chebotarev density
theorem. Let OD = ZF [μ]. Then there exists an element ωN ∈ OD of trace
zero and norm 4N ; its image ωN = ιK(μ) ∈ O is an Atkin-Lehner involution on
X0(N). Obviously μ commutes with ωN , so z = ωN(z), and hence j(z) = j(ωNz).
Therefore j(z) is a root of the polynomial ΦN (x, x), and since this is true of each
of the conjugates of j(z) as well, we obtain Proposition 6.1.

7 Examples and Applications

We now give examples of the above algorithms for the class XI of Takeuchi [14].
Let F be the totally real subfield of Q(ζ9), where ζ9 is a primitive ninth root
of unity. Then [F : Q] = 3, and ZF = Z[b], where b = −(ζ9 + 1/ζ9) satisfies
b3 − 3b − 1 = 0. We have disc(F/Q) = 34 and F has strict class number 1.

We choose the unique real place σ for which σ(b) > 0, and we take A to
be the quaternion algebra which is ramified at the other two real places and is
unramified at all other places. By Takeuchi [14, Proposition 2], we easily compute
that A is isomorphic to the algebra as in (1) with α2 = −3, β2 = b.

We fix the isomorphism ι∞ : A ⊗F R ∼−→ M2(R), given explicitly as

α �→
(

0 3
−1 0

)
β �→
(√

b 0
0 −

√
b

)
.

We next compute a maximal orderO of A. Since F has class number 1, we may
represent O as a free ZF -module. We note that K = F (α) = F (

√
−3) = Q(ζ9)

has ring of integers ZK = Z[ζ9], and hence we have an integral element ζ ∈ A
satisfying ζ9 = 1. Extending this to a maximal order (a näıve approach suffices
here, or see [17, §4.3]), we have O = ZF ⊕ ZF ζ ⊕ ZF η ⊕ ZF ω, where

ζ = −1
2

b +
1
6
(2b2 − b − 4)α

η = −1
2

bβ +
1
6
(2b2 − b − 4)αβ

ω = −b +
1
3
(b2 − 1)α − bβ +

1
3
(b2 − 1)αβ.

These elements have minimal polynomials

ζ2 + bζ + 1 = 0, η2 − b = 0, ω2 + 2bω + b2 − 4b − 1 = 0.
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From Takeuchi [14, Table (3)], we know that Γ ∗(1) is a triangle group with
signature (2, 3, 9). Explicitly, we find the elements

sp = b + ω − 2η, sq = −1 + (b2 − 3)ζ + (−2b2 + 6)ω + (b2 + b− 3)η, sr = −ζ

with sp, sq, sr ∈ O∗
1 , satisfying the relations

sp
p = sq

q = sr
r = spsqsr = 1,

hence the elliptic elements sp, sq, sr generate O∗
1 . The fixed points of these ele-

ments are zp = 0.395526 . . . i, zq = −0.153515 . . .+0.364518 . . . i, and zr = i, and
they form the vertices of a fundamental triangle. This is shown in Fig. 1: any
shaded (or unshaded) triangle is a fundamental triangle for Γ ∗(1), and the union
of any shaded and unshaded triangle forms a fundamental domain for Γ ∗(1).

By exhaustively listing elements of O, we enumerate (optimal) embeddings
ιD : OD ↪→ O for orders with discriminant D of small norm. Using Algorithm
5.2, we compute the CM points for these orders, and the results are listed in
Tables 1–4 in §8. This follows in the spirit of the extended history of computing
such tables for values of the elliptic j-function (see e.g. [6, pp. 193–194]).

Example 7.1. The field K = F (
√
−7) has class number 1. The element

μ = (−b2 − b + 2) + (−b2 + 2b + 5)ζ + (2b2 − 2b − 8)ω + (3b + 6)η ∈ O

has minimal polynomial x2−x+2 hence ZF [μ] = ZK = O−7. The fixed point of
ι∞(μ) in H is −0.32 . . . + 0.14 . . . i, which is Γ -equivalent to z = 0.758 . . . i; and
we compute that j(z) = −9594.703125000 . . ., which agrees with

−614061
64

=
−3571192

26

to the precision computed (100 digits).

Example 7.2. Now take K = F (
√
−2), with class number 3. We find μ ∈ O

satisfying μ2 + 2 = 0, so Zf [μ] = ZK = O−8; explicitly,

μ = (−b2 − b + 1) + (−2b2 + 2)ζ + (2b2 − b − 5)ω + (−b2 + b + 1)η.

We obtain the CM point j(z) = 17137.9737 . . . as well as its Galois conjugates
0.5834 . . . ± 0.4516 . . . i. We now identify the minimal polynomial and simplify
the resulting number field. Let c be the real root of x3 − 3x + 10; the number
field Q(c) has discriminant 2334. Then H = K(c), and in fact j(z) agrees with

4015647c2 − 10491165c + 15369346
4096

to the precision computed (200 digits); we recognize the conjugates as

−4015647c2 − 10491165c− 54832574
8192

±−3821175c2 − 7058934c + 7642350
4096

√
−2.

The product of these three conjugates is the rational number

727121992

220 .
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Once one has a CM point as a purported algebraic number, it is not clear how
to prove directly that such an identification is correct! What one really needs in
this situation is a Gross-Zagier formula as in [6], which would identify the set
of primes dividing the norm of j(z) − j(z′) for CM points z, z′. This is already
listed as an open problem in [5, p. 42]. The work in this direction concerning the
Arakelov geometry of Shimura curves has dealt with either quaternion algebras
over Q (such as [10], [19], [8]) or M2(F ) with F real quadratic, the case of Hilbert
modular forms (see [2]). A nice formulation for the case of cocompact arithmetic
triangle groups seems to be in order. It is hoped that the data computed here
will be useful in proving such a formula.

8 Tables and Figures

In the following tables, we list the results from the extended example in §7
concerning the (2, 3, 9) triangle group.

Let D ∈ ZF be a totally imaginary discriminant such that σ(D)/D ∈ Z∗2
F for

all σ ∈ Gal(F/Q). Then K = F (
√

D) is Galois over Q and contains an order
OD of discriminant D. We list in Table 1 for each such small D a polynomial
g which is a minimal polynomial for the ring class field HD of K of conductor
fZF , where D = df2. In Table 2, we list factorizations of the norms of the CM
point j(zD) ∈ P1(HD).

In Tables 3–4, we repeat the above without assuming that D is Galois-stable.

Table 1. Gal(F/Q)-stable CM Points: Ring class fields

−D |N(D)| g

b + 2 3 Q
3 27 Q
4 64 Q

4(b + 2) 192 Q
3(b − 1)2 243 Q

7 343 Q
5(b + 2) 375 x2 + x − 1

8 512 x3 − 3x + 10
4(b − 1)2 576 x2 − 3

11 1331 x3 + 6x + 1
8(b + 2) 1536 x2 − 2

12 1728 x3 − 2
9(b + 2) 2187 x3 + 3
7(b − 1)2 3087 x4 − 2x3 + 6x2 − 5x + 1

15 3375 x6 + x3 − 1
16 4096 x4 − 2x3 + 6x2 − 4x + 2

8(b − 1)2 4608 x6 − 10x3 + 1
12(b + 2) 5184 x6 − 4x3 + 1
13(b + 2) 6591 x4 + x3 − x2 + x + 1

19 6859 x4 + x3 + 9x2 + 2x + 23
20 8000 x6 + 9x4 + 14x3 + 9x2 + 48x + 44

11(b − 1)2 11979 x6 − x3 − 8
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Table 2. Gal(F/Q)-stable CM Points: Norms

−D Numerator Denominator

b + 2 1 0
3 1 1
4 0 1

4(b + 2) 712 27

3(b − 1)2 −1072 215

7 −3571192 26

5(b + 2) −1792 212

8 727121992 220

4(b − 1)2 −194712 221

11 7211119630724312 230179

8(b + 2) −1947145032 221179

12 −11271250329712 214179

9(b + 2) 7121792863215112 215179

7(b − 1)2 19850321259222672 22459179

15 −7411212743592431214392 236717

16 314721981992 221717

8(b − 1)2 −714127450321871235272 22159539

12(b + 2) 19127121634 2211075

13(b + 2) −19817923074467264721511251472 224395391079

19 314194714107439432 2451797

20 −11219127121992379273922179223392451924751257792 2385917181799

11(b − 1)2 −19121274827212232158324787271272 2391791979

Table 3. CM Points: Ring class fields

D |N(D)| g

− 5b2 + 9b 71 F
−5b2 + b 199 F

8b2 − 4b − 27 323 x2 + (b2 − 3)x − b2 + 3
−3b2 + 5b − 3 379 F
7b2 + b − 28 503 x3 + (−b2 + b + 2)x + 1
5b2 + 2b − 23 523 F
3b2 + b − 16 591 x2 − bx − 1

−8b2 + 4b + 1 639 x2 + (−b2 + b + 3)x − b2 + 1
−12b2 + 16b + 5 699 x2 + (−b2 + b + 1)x − 1
9b2 − 3b − 31 739 F
−4b2 + 4b − 3 867 x2 + (b2 − 1)x + 1

b2 − 12 971 x3 + (b2 − 1)x2 + (b2 − 2)x − b2 + 2
8b2 − 31 1007 x4 + (−b2 + b + 1)x3 + bx2 + (2b2 − 4b − 2)x − b2 + 2b + 1

−8b2 + 12b 1088 x4 + (−b − 1)x3 + (b2 + b − 1)x2 + (−b2 − b + 2)x + 1
−4b − 12 1216 x2 − b

−7b2 − 3b − 3 1387 x2 + (b2 − b − 2)x − b + 1
−4b2 + 11b − 10 1791 x4 + (b2 − b − 1)x3 + (b2 − 2b − 2)x2 + (b2 − b − 1)x + 1
−11b2 + 6b + 1 2179 x3 + (b2 − b − 2)x2 + (−b2 + 2)x + b
−3b2 + 4b − 8 2287 x3 − x2 + (b2 − b − 3)x − b2 + 3

4b2 − 23 2719 x3 + (−b2 + b + 2)x2 + x − b
25b2 − 12b − 80 3043 x2 − x − b
−16b2 + 24b + 4 3264 x4 + (b − 1)x2 + 1
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Table 4. CM Points: Norms

D Numerator Denominator

− 5b2 + 9b 194711 218

−5b2 + b 391921991 218

8b2 − 4b − 27 −19610721634 245

−3b2 + 5b − 3 −3919412723791 245

7b2 + b − 28 −19610721276271230725031 254179

5b2 + 2b − 23 −3919412725231 179

3b2 + b − 16 198107225123592 236179

−8b2 + 4b + 1 −1987121072179225124312 236179

−12b2 + 16b + 5 19871217924672 245

9b2 − 3b − 31 315196163230727391 245179

−4b2 + 4b − 3 −71210721792359243124672 2451710

b2 − 12 −19121272179219922512271248749711 290179

8b2 − 31 19127141272179225122712307235926314 2721718

−8b2 + 12b −19871419943794503252327392 2631718

−4b − 12 −326192712199437925232 263179

−7b2 − 3b − 3 326196127227123072 245539

−4b2 + 11b − 10 1987121072163443124672683271921151211872 272179539

−11b2 + 6b + 1 33310722712487299121063221791 245719

−3b2 + 4b − 8 −333196714127248746312811222871 2541718539

4b2 − 23 −33919121632179263121459227191 254179539715

25b2 − 12b − 80 31819871212721632179225122712631281121423217832 290539899

−16b2 + 24b + 4 1916503297121619218712190722339225912 257179539711

Fig. 1. The translates of a fundamental triangle for Γ ∗(1)
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Arithmetic of Generalized Jacobians
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Abstract. This paper aims at introducing generalized Jacobians as a
new candidate for discrete logarithm (DL) based cryptography. The mo-
tivation for this work came from the observation that several practical
DL-based cryptosystems, such as ElGamal, the Elliptic and Hyperelliptic
Curve Cryptosystems, XTR, LUC as well as CEILIDH can all naturally
be reinterpreted in terms of generalized Jacobians. However, usual Ja-
cobians and algebraic tori are thus far the only generalized Jacobians
implicitly utilized in cryptography. In order to go one step further, we
here study the simplest nontrivial generalized Jacobians of an elliptic
curve. In this first of a series of articles, we obtain explicit formulæ al-
lowing to efficiently perform arithmetic operations in these groups. This
work is part of our doctoral dissertation, where security aspects are con-
sidered in depth. As a result, these groups thus provide the first concrete
example of semi-abelian varieties suitable for DL-based cryptography.

Keywords: Public-key cryptography, discrete logarithm problem, gen-
eralized Jacobians, semi-abelian varieties, elliptic curves.

1 Introduction and Motivation

Groups where the discrete logarithm problem (DLP) is believed to be intractable
are inestimable building blocks for cryptographic applications. They are at the
heart of numerous protocols such as key agreements, public-key cryptosystems,
digital signatures, identification schemes, publicly verifiable secret sharings, hash
functions and bit commitments. The search for new groups with intractable DLP
is therefore of great importance.

In 1985, the landmark idea of Koblitz [3] and Miller [5] of using elliptic curves
in public-key cryptography would, to say the least, change the perception of
many on the tools of number theory that can be of practical use to cryptog-
raphers. In 1988, Koblitz [4] generalized this idea by considering Jacobians of
hyperelliptic curves, which then led to the broader study of abelian varieties in
cryptography. Nearly fifteen years later, Rubin and Silverberg [8] used another
family of algebraic groups, namely the algebraic tori, and highlighted their great
cryptographic potential.
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Fig. 1. Relation betweeen DL-based cryptosystems and generalized Jacobians

Now on one hand, Jacobians of curves (of small genus) gained the favor of many
over the years, mostly because of the smaller key size needed. This attractive char-
acteristic is in fact possible since we can easily generate curves for which there are
no known subexponential time algorithms for solving the corresponding discrete
logarithmproblem.On the other hand, rational algebraic tori over a finite field offer
the convenient advantage of possessing a compact representation of their elements,
which then decreases the amount of information needed to be exchanged.

In a nutshell, cryptographers like Jacobians of curves for their security and
care about algebraic tori for their efficiency. Thus as far as we can tell, it appears
that these two sub-families of algebraic groups somehow possess complementary
cryptographic advantages. From a mathematical point of view, however, the
overall picture looks quite different. Indeed, with a minimal background in al-
gebraic geometry, they can both be seen as two realizations of a single concept:
generalized Jacobians.

As a result, several existing DL-based cryptosystems, such as the ElGamal,
the Elliptic and Hyperelliptic Curve Cryptosystems, XTR, the Lucas-based cryp-
tosystem LUC as well as the torus-based cryptosystem CEILIDH all possess an
underlying structure that can be naturally reinterpreted in terms of generalized
Jacobians1. Figure 1 provides a simplified view of the interrelation between the
cryptosystems and their underlying structures.

This observation then raised the following question at the heart of our re-
search:

Is it possible to use a generalized Jacobian that is neither a usual Jacobian
nor an algebraic torus for DL-based cryptography?

An affirmative answer would then widen the class of algebraic groups that
are of interest in public-key cryptography. This existence result was established
in our doctoral thesis [1] by considering the simplest nontrivial generalized Ja-
cobians of elliptic curves. These test groups are in fact semi-abelian varieties
which are extensions (of algebraic groups) of an elliptic curve by the multiplica-
tive group Gm.

1 The interpretation of XTR and LUC in terms of tori can be found in [8, Section 7].
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Now recall that there are four main requirements for a group G to be suitable
for DL-based cryptography. Namely,

– The elements of G can be easily represented in a compact form,
– The group operation can be performed efficiently,
– The DLP in G is believed to be intractable, and
– The group order can be efficiently computed.

We here address the first, second and fourth of these requirements. For complete-
ness, an outline of the security results, based on [1, Section 5.5], is presented in
Section 6.

This paper is organized as follows. In the next section, we give a condensed
introduction to generalized Jacobians. In Section 3, we derive a natural represen-
tation of the group elements. Using this compact representation, the group law
algorithm is obtained in Section 4 and basic properties are presented in Section
5. An outlook is presented in Section 6.

2 Generalized Jacobians: The Essentials

We here present an extremely concise overview2 of generalized Jacobian varieties
[6,7,9]. The underlying idea behind the construction of generalized Jacobians is
essentially the same as with the usual Jacobians. That is, starting with your
favorite smooth algebraic curve C defined over an algebraically closed field K,
one first considers the free abelian group whose elements are (a subgroup of)
its divisors of degree zero. A clever equivalence relation on these divisors is
then defined. The quotient group obtained is then naturally isomorphic to an
algebraic group, which we hope to use for cryptographic applications.

Thus the key ingredient in these constructions is the equivalence relation one
considers. Loosely speaking, the whole idea behind these equivalence relations
is to somehow “measure” how much a divisor D =

∑
P∈C nP (P ) differs from a

divisor D′ =
∑

P∈C n′
P (P ). Linear equivalence give rise to usual Jacobians. In

this case, recall that two divisors D and D′ are said to be linearly equivalent if
D − D′ is a principal divisor, say D − D′ = div(f) for some f in the function
field K(C) of C. In this case, we write D ∼ D′. For generalized Jacobians,
the equivalence relation will now depend on the choice of an effective divisor3

m =
∑

P∈C mP (P ), thereafter called a modulus. For a given f ∈ K (C), it is also
a standard notation to write f ≡ 1 modm as a shorthand for the requirement
ordP (1 − f) ≥ mP for each P in the support of m.

Definition 1. Let m be an effective divisor and let D and D′ be two divisors
of disjoint support with m. We say that D and D′ are m-equivalent, and write
D ∼m D′, if there is a function f ∈ K(C)∗ such that div(f) = D − D′ and
f ≡ 1 modm.

2 For a more detailed exposition in the context of cryptography, see [1, Chapter 4].
3 That is, each mP is a nonnegative integer and only finitely many of them are nonzero.
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It is a small exercise to verify that this indeed defines an equivalence relation
[1, Section 4.2]. Now notice that if two divisors are m-equivalent, then they
must be linearly equivalent as well. Therefore, if we denote by [D] (respectively
[D]m) the class of D under linear equivalence (respectively m-equivalence), then
[D]m ⊆ [D]. This basic (but nevertheless fundamental) observation will play a
key role in Sections 3 and 4, as our prior knowledge about the usual Jacobian
will be our main tool for obtaining explicit formulæ for generalized Jacobians.

Next we wish to define the equivalent of the divisor class group for this new
equivalence relation. Thus let Divm(C) be the subgroup of Div(C) formed by all
divisors of C of disjoint support with m. Let also Div0

m(C) be the subgroup of
Divm(C) composed of divisors of degree zero. Moreover, let Princm(C) be the
subset of principal divisors which are m-equivalent to the zero divisor4. It is a
routine exercise to show that Princm(C) is a subgroup of Div0

m(C). As a result,
the set of m-equivalence classes is indeed a group. We will therefore consider the
quotient group Div0

m(C)/ Princm(C), which will be denoted by Pic 0
m(C). At last,

we can state the existence theorem of Maxwell Rosenlicht whose complete proof
can be found in his original article [7] as well as in [9, Chapter V, in particular
Prop. 2 and Thm 1(b)].

Theorem 1 (Rosenlicht). Let K be an algebraically closed field and C be a
smooth algebraic curve of genus g defined over K. Then for every modulus m,
there exists a commutative algebraic group Jm isomorphic to the group Pic0

m(C).
The dimension π of Jm is given by

π =
{

g if m = 0,
g + deg(m)− 1 otherwise. (1)

Definition 2. The algebraic group Jm is called the generalized Jacobian of the
curve C with respect to the modulus m.

Let’s now take a closer look at the relationship between J and Jm. By construc-
tion, there are isomorphisms of groups ϕ : Pic0(C) → J and ψ : Pic0

m(C) →
Jm. Furthermore, there is a natural surjective homomorphism σ : Pic0

m(C) →
Pic0(C) defined by σ ([D]m) = [D]. As a result, there is a surjective homomor-
phism τ := ϕ ◦ σ ◦ ψ−1 from Jm to J .

An interesting object of study certainly is the kernel Lm of the map τ since
it might give us information about the structure of Jm. First notice that since
τ is a homomorphism, then Lm is a subgroup of Jm. We can then consider the
following short exact sequence (of abelian groups5):

0 −→ Lm
inclusion−→ Jm

τ−→ J −→ 0

4 The zero divisor 0 = P∈C 0(P ) is the identity element of Div (C). Thus,
Princm(C) = [0]m = {div(f) |f ∈ K(C)∗ and f ≡ 1mod m }.

5 One can also see generalized Jacobians as extensions of algebraic groups, which are
discussed in [9, Chapter VII]. For the sequel, however, we shall only need to use
properties of group extensions.
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As a result, the generalized Jacobian Jm is an extension of the usual Jacobian
J by Lm. The following theorem of Rosenlicht [7] gives more information about
Lm. Complete details can also be found in [9, Sections V.13-V.17].

Theorem 2 (Rosenlicht). Let C be a smooth algebraic curve defined over an
algebraically closed field, J be the Jacobian of C and Jm be the generalized Jaco-
bian of C with respect to a modulus m =

∑
P∈C mP (P ) of support Sm. Let also

Lm be the kernel of the natural homomorphism τ from Jm onto J . Then, Lm is
an algebraic group isomorphic to the product of a torus T = (Gm)#Sm−1 by a
unipotent group V of the form

V =
∏

P∈Sm

V(m
P

),

where each V(m
P

) is isomorphic to the group of matrices of the form:⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 a3 . . . am
P
−1

0 1 a1 a2 . . . am
P
−2

0 0 1 a1 . . . am
P
−3

0 0 0 1 . . . am
P
−4

...
...

...
...

. . .
...

0 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
This result allows us (among other things) to easily see why usual Jacobians and
algebraic tori are two sub-families of generalized Jacobians.

Usual Jacobians are the generalized Jacobians corresponding to the case where
the linear group Lm is trivial. That is, if the modulus m =

∑
P∈C mP (P ) with

support Sm was chosen to have degree zero or one. Indeed, if m = 0, then the
condition f ≡ 1 modm, i.e. ordPi(1 − f) ≥ mi for each Pi ∈ Sm is vacuously
true and therefore, m-equivalence coincides with linear equivalence. As well, if
m = (M), then the requirement f ≡ 1 mod m reduces to ordM (1− f) ≥ 1, which
is equivalent to f(M) = 1. Hence, m-equivalence in this case reads D ∼m D′ iff
∃f ∈ K(C)∗ such that div(f) = D − D′ and f(M) = 1. But since div(c · f) =
div(f) for any nonzero constant c, the condition f(M) = 1 is superfluous. It
then follows that when m = (M), linear and m-equivalence also define the same
divisor classes.

If we are in the situation where m = (P0) + (P1) + ... + (Pr) with the Pi’s
distinct, then Lm is isomorphic to a torus T of dimension r. Moreover, since
the usual Jacobian of P1 is trivial [10, Example II.3.2], it then follows that the
generalized Jacobian of P1 with respect to m will be isomorphic to T . As a result,
algebraic tori of any dimension can be seen as generalized Jacobians.

With these results at hand, we are now ready to explore the cryptographic
potential of these algebraic groups.

3 Compact Representation of the Elements

The explicit family of generalized Jacobians that we consider can now be simply
described as follows. Let E be a smooth elliptic curve defined over the finite
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field K = Fq with q elements6 and let B ∈ E(Fq) be a point of prime order
l. Let also m = (M) + (N), where M and N are distinct nonzero points of
E(Fqr ), where r ≥ 1 is a chosen integer. Hence, we can let M = (XM : YM : 1)
and N = (XN : YN : 1). These are so far the only conditions we impose on m.
Finally, let Jm be the generalized Jacobian of E with respect to m. In the light of
Theorem 2, this choice of parameters implies that this generalized Jacobian will
be an extension of the elliptic curve E by the multiplicative group Gm, which is a
nice simple case study since elliptic curves and finite fields already are cherished
by cryptographers.

Now, the goal of this section is to obtain a compact representation of the
elements of Jm. By a classical result on group extensions, we already know that
there is a bijection of sets between Jm and Gm×E. Hence, each element of Jm can
be conveniently represented as a pair (k, P ), where k ∈ Gm and P ∈ E. Although
the mere existence of this bijection suffices to compactly represent the elements
of Jm, understanding this correspondence in depth will prove to be useful in the
next section when comes the time to work out explicit formulæ for the group
operation on Gm × E. Indeed, we have by construction that Jm is isomorphic
to Pic0

m(E), and so an explicit bijection of sets ψ : Pic0
m(E) → Gm × E could

be used to “transport” the known group law on Pic0
m(E) to Gm × E. Hence,

exploring ψ can be seen as the first step towards the obtention of the group law
algorithm on Gm × E.

The official starting point of this exploration will of course be to take ad-
vantage of the fact that elliptic curves coincide with their Jacobians. Indeed,
we have at our disposal the following well-known isomorphism between E and
Pic0 (E), whose proof can be found for instance in [10, Proposition III.3.4].

Theorem 3. Let E be a smooth elliptic curve over a perfect field K. Then the
map

E → Pic0(E)
P �→ [(P ) − (O)]

is a group isomorphism with well-defined inverse

Pic0(E) → E[∑
P∈E

nP (P )

]
�→
∑
P∈E

nP P .

Now let D =
∑

P∈E nP (P ) ∈ Div0
m (E) be given. Under the above isomorphism,

the class [D] is mapped to S =
∑

P∈E nP P ∈ E. As a result, [D] = [(S) − (O)],
which implies that D−(S)+(O) is a principal divisor, say D = (S)−(O)+div (f)
for some f ∈ K(E)∗. This suggests that ψ ([D]m) = (k, S), for some k ∈ Gm.
As we will shortly see, the determination of k will involve the computation of
6 For the purpose of constructing the generalized Jacobian, we will view E as being

defined over Fq, so that the results of the previous section directly apply here.
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f (M) and f (N). If S �= M, N , then ordM (f) = ordN (f) = 0 since D has
disjoint support with m. So in this case, f (M) and f (N) are both defined and
nonzero. However, if S ∈ {M, N}, then ordS(f) = −1, which means that f has
a pole at S. In this case, the strategy is to use, in place of (S) − (O), another
simple divisor linearly equivalent to D which will now have disjoint support with
m. Such a divisor is easily found by appealing to the Abel-Jacobi theorem for
elliptic curves, which is easily derived from Theorem 3 [10, Corollary III.3.5].

Theorem 4 (Abel-Jacobi). Let E be a smooth elliptic curve defined over a
perfect field K and D =

∑
P∈EnP (P ) ∈ Div(E) be given. Then,

D is principal if and only if deg (D) = 0 and
∑

P∈E

nP P = O.

We therefore have an easy criterion to decide if two divisors are linearly
equivalent:

Corollary 1. Let E be a smooth elliptic curve defined over a perfect field K
and let D1 =

∑
P∈E nP (P ), D2 =

∑
P∈E mP (P ) ∈ Div(E) be given. Then,

D1 ∼ D2 if and only if deg (D1) = deg (D2) and
∑
P∈E

nP P =
∑
P∈E

mP P .

Now observe that if we translate S by a point T ∈ E, we obtain by the above
corollary that

D ∼ (S)− (O) ∼ (S + T )− (T ),

and thus if T /∈ {O, M, N, M − N, N − M}, then both (M + T ) − (T ) and
(N + T ) − (T ) have disjoint support with m. So from now on, we will assume
that such a ‘translation point’ T is fixed and publicly known. We can now let

R =
{
O if S /∈ {M, N},
T otherwise,

and so there is an f ∈ K(E)∗ satisfying

D = (S + R) − (R) + div(f), (2)

where the property ordM (f) = ordN (f) = 0 is fulfilled since D has disjoint
support with m. Since this way of writing out a divisor already highlights the
point S of E corresponding to D, it thus remains to determine how to ‘read’ the
corresponding element of Gm from (2).

Since any two divisors in an m-equivalence class are mapped to the same
element of Gm×E, our approach will be to unravel the definition of m-equivalence
until we can clearly see how to associate an element of Gm ×E to each class. So
let D1 = (S1 +R1)− (R1)+div(f1), D2 = (S2 +R2)− (R2)+div(f2) ∈ Div0

m(E)
be given such that

Ri =
{
O if Si /∈ {M, N},
T otherwise,
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for i = 1, 2. We then have

D1 ∼m D2 iff ∃f ∈ K(E)∗ such that div(f) = D1 − D2 and f ≡ 1 modm,

iff ∃f ∈ K(E)∗ such that div(f) = (S1 + R1) − (S2 + R2) + (R2)

−(R1) + div
(

f1

f2

)
and ordM (1 − f) ≥ 1, ordN (1 − f) ≥ 1,

iff S1 + R1 − (S2 + R2) + R2 − R1 =O and ∃f ∈ K(E)∗ such that

div(f) = div
(

f1

f2

)
and f(M) = f(N) = 1,

iff S1 =S2, R1 =R2 and ∃c ∈ K
∗

such that
f1(M)
f2(M)

=
f1(N)
f2(N)

=
1
c
,

iff S1 = S2 and
f1(M)
f2(M)

=
f1(N)
f2(N)

,

iff S1 = S2 and
f1(M)
f1(N)

=
f2(M)
f2(N)

.

That means that in order to check whether two given divisors are m-equivalent,
we simply have to test two equalities, one in E and one in Gm. The obvious
candidate for ψ is thus the map

ψ : Pic 0
m(E) −→ Gm × E

[D]m �−→ (k, S),

such that the m-equivalence class of D =
∑

P∈E nP (P ) ∈ Div0
m(E) corresponds

to S =
∑

P∈E nP P and k = f(M)/f(N), where f ∈ K(E)∗ is any function
satisfying

div(f) =

{
D − (S) + (O) if S /∈ {M, N},
D − (S + T ) + (T ) otherwise.

Notice that the existence of f is guaranteed by the Abel-Jacobi theorem and that
ψ is well-defined since we have just shown that for D1 = (S1+R1)−(R1)+div(f1),
D2 = (S2 + R2) − (R2) + div(f2), k1 = f1(M)/f1(N) and k2 = f2(M)/f2(N),
we have:

[D1]m = [D2]m implies that k1 = k2 and S1 = S2.

Moreover, ψ is injective since we also already know that

(k1, S1) = (k2, S2) implies that [D1]m = [D2]m.

It therefore remains to show that ψ is surjective as well. So given (k, S) ∈ Gm×E,
we must find an f ∈ K(E)∗ such that f(M)/f(N) = k. Using the idea behind
the interpolation polynomial of Lagrange, or simply by inspection, we easily see
that

f(X, Y, Z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k (X − XNZ) + (XM Z − X)

(XM − XN ) Z
if XM �= XN ,

k (Y − YNZ) + (YM Z − Y )
(YM − YN ) Z

otherwise,



Arithmetic of Generalized Jacobians 429

fulfills the required conditions (notice that XM = XN implies that YM �= YN

since we assumed that M �= N and ZM = ZN = 1). Hence, the divisor

D =

{
(S)− (O) + div(f) if S /∈ {M, N},
(S + T )− (T ) + div(f) otherwise,

is mapped to (k, S), as wanted. We have therefore shown that ψ is the bijection
we were looking for.

Proposition 1. Let E be a smooth elliptic curve defined over Fq, T ∈ E\{O,
M , N , M −N , N −M} and m = (M) + (N) with M , N ∈ E \{O} , M �= N be
given. Let also

ψ : Pic0
m(E) −→ Gm × E

[D]m �−→ (k, S) ,

be such that the m-equivalence class of D =
∑

P∈E nP (P ) corresponds to S =∑
P∈E nP P ∈ E and k = f(M)/f(N), where f ∈ K(E)∗ is any function satis-

fying

div(f) =

{
D − (S) + (O) if S /∈ {M, N},
D − (S + T ) + (T ) otherwise.

Then, ψ is a well-defined bijection of sets.

Remark 1. Notice that since the zero divisor can be written as

0 = (O) − (O) + div(c),

where c is any nonzero constant, then 0 corresponds to the pair (1,O). That is,
(1,O) is the identity element of Jm.

4 Group Law Algorithm

Using the explicit bijection between Pic0
m(E) and Gm×E that we just obtained,

our next goal is to derive explicit formulæ for the group operation on Gm × E
induced from Pic0

m(E). First notice that by the theory of group extensions, we
already know the basic structure of the addition on Jm. Indeed, we have for any
k1, k2 ∈ Gm and P1, P2 ∈ E,

(k1, P1) + (k2, P2) = (k1k2 · cm(P1, P2), P1 + P2) , (3)

where cm : E × E → Gm is a 2-cocycle depending on the modulus m. It thus
suffices to make cm explicit.

So given (k1, P1) and (k2, P2) in Jm, our task is then to compute their sum
(k3, P3). Notice that there are two distinct cases to study, depending if the
use of a ‘translation point’ T is at all needed. Fortunately, there is an easy
criterion to decide when it occurs. Indeed, suppose that the group we consider
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for cryptographic applications is the subgroup of Jm generated by the element
(k, P ). By the addition rule (3), it immediately follows that

If (j, Q) ∈ 〈(k, P )〉 , then Q ∈ 〈P 〉 .

As a result, if neither M nor N is a multiple of P , then the group operation
on 〈(k, P )〉 will never involve points of the form (∗, M) or (∗, N). Thus, there
is no need to employ a translation point in this case. Of course, when either M
or N lies in 〈P 〉, then the corresponding addition formulæ will use translation
points when appropriate in order to cover all possible cases. This motivates the
following definition.

Definition 3. Let E be an elliptic curve defined over Fq and B ∈ E(Fq) be
a given basepoint. Let also M , N ∈ E(Fq) be given. Then the modulus m =
(M) + (N) is said to be B-unrelated if M , N /∈ 〈B〉. Otherwise, it will be called
B-related.

The aim of this section is to transport the addition on Pic0
m(E) to Gm × E in

order to get explicit equations involving the group laws on Gm and E in the case
of a B-unrelated modulus m. So given (k1, P1), (k2, P2) and (k3, P3) in Jm such
that

(k1, P1) + (k2, P2) = (k3, P3) and P1, P2, ± P3 /∈ {M, N} ,

our task is to express (k3, P3) in terms of (k1, P1) and (k2, P2). By the explicit
bijection between Pic0

m(E) and Gm × E, the elements (k1, P1) and (k2, P2) are
respectively the image of the m-equivalence class of D1 = (P1) − (O) + div(f1)
and D2 = (P2)− (O) + div(f2), for some f1, f2 ∈ K(E)∗ such that ordM (f1) =
ordN (f1) = ordM (f2) = ordN (f2) = 0, f1(M)/f1(N) = k1 and f2(M)/f2(N) =
k2 (see proof of Proposition 1).

That being said, we can now endow Gm×E with the group operation inherited
from Pic0

m(E). So basically, all we need to know is to which element of Gm × E
does D3 = D1 + D2 correspond. First, we have by definition that

D3 = (P1) + (P2) − 2(O) + div(f1 · f2), (4)

so in order to get the element of Gm×E we are looking for, the obvious strategy
is to express the right hand side of (4) as (P3)−(O)+div(f3). By the Abel-Jacobi
theorem, we know that

(P1) + (P2)− 2(O) ∼ (P1 + P2)− (O),

and so there is a function LP1,P2
∈ K(E)∗ satisfying

(P1) + (P2) − 2(O) = (P1 + P2)− (O) + div(LP1,P2
). (5)

Combining (4) and (5) yields

D3 = (P1 + P2) − (O) + div(f1 · f2 · LP1,P2
).
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We can thus set P3 = P1 + P2 and f3 = f1 · f2 · LP1,P2
. Hence, D3 corresponds

to (k3, P3), where

k3 =
f3(M)
f3(N)

=
f1(M) · f2(M) · LP1,P2

(M)
f1(N) · f2(N) · LP1,P2

(N)
= k1 · k2 ·

LP1,P2
(M)

LP1,P2
(N)

.

That is,

(k1, P1) + (k2, P2) =
(

k1 · k2 ·
LP1,P2

(M)
LP1,P2

(N)
, P1 + P2

)
.

Moreover, notice that this addition rule so far agrees with the prediction (3)
obtained from group extensions. Hence the 2-cocycle cm : E ×E → Gm we were
seeking is now unveiled:

cm(P1, P2) =
LP1,P2

(M)
LP1,P2

(N)
. (6)

The very last step is to make LP1,P2
explicit. We are thus looking for a function

LP1,P2
satisfying (5), or equivalently,

div(LP1,P2
) = (P1) + (P2) − (P1 + P2) − (O). (7)

The natural approach is to consider the line �P1,P2
, passing through P1 and P2,

that will inevitably hit −P3 = −(P1 + P2) as well. Then,

div
(

�P1,P2

Z

)
= (P1) + (P2) + (−P3) − 3(O). (8)

Now in order to introduce the term −(P1 + P2) and cancel out (−P3) at once,
we may consider the line �P1+P2,O passing through P1 + P2, O, and a fortiori
through −P3. That is,

div
(

�P1+P2,O
Z

)
= (P1 + P2) + (−P3) − 2(O). (9)

Subtracting (9) from (8), we get

div
(

�P1,P2

�P1+P2,O

)
= (P1) + (P2) − (P1 + P2) − (O). (10)

Finally, (7) and (10) imply that LP1,P2
and �P1,P2

/�P1+P2,O differ by a nonzero
multiplicative constant:

∃c ∈ K
∗

satisfying LP1,P2
= c · �P1,P2

�P1+P2,O
. (11)

Let’s point out that our initial conditions M , N �= O and P1, P2, P3 = P1 +P2 /∈
{M, N} are sufficient to ensure that LP1,P2

(M) and LP1,P2
(N) will both be de-

fined and nonzero, since (7) tells us that the only zeros and poles of LP1,P2
oc-

cur at P1, P2, P1 + P2 and O. Furthermore, we can compute LP1,P2
(M) and
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Fig. 2. Unveiling the 2-cocycle cm

LP1,P2
(N) by evaluating �P1,P2

(M), �P1+P2,O(M), �P1,P2
(N) and �P1+P2,O(N)

separately since we also assumed that −P3 �= M, N .
Therefore, by (6) and (11), it is now legitimate to write

cm(P1, P2) =
LP1,P2

(M)
LP1,P2

(N)
=

�P1,P2
(M)

�P1+P2,O(M)
· �P1+P2,O(N)

�P1,P2
(N)

, (12)

and our goal is achieved since the 2-cocycle cm is now completely determined.
Lastly, since we have some freedom on both the equations of the lines (they are
determined up to a constant factor) and on the representatives for the homoge-
neous coordinates of M and N , we should verify that (12) is well-defined. That
is, for M = (XM : YM : 1), N = (XN : YN : 1) and λ1, λ2, c1, c2 any nonzero
constants, we have M ∼ (λ1XM : λ1YM : λ1), N ∼ (λ2XN : λ2YN : λ2) and
c1 ·�P1,P2

, c2 ·�P1+P2,O respectively defining the same line as �P1,P2
and �P1+P2,O.

Since �P1,P2
and �P1+P2,O are both homogeneous polynomials of degree one, it

follows that

c1 · �P1,P2
(λ1XM , λ1YM , λ1)

c2 · �P1+P2,O(λ1XM , λ1YM , λ1)
· c2 · �P1+P2,O(λ2XN , λ2YN , λ2)

c1 · �P1,P2
(λ2XN , λ2YN , λ2)

=

λ1 · �P1,P2
(XM , YM , 1)

λ1 · �P1+P2,O(XM , YM , 1)
· λ2 · �P1+P2,O(XN , YN , 1)

λ2 · �P1,P2
(XN , YN , 1)

=

�P1,P2
(M)

�P1+P2,O(M)
· �P1+P2,O(N)

�P1,P2
(N)

,

which confirms that (12) was well-defined. Finally, we are ready to properly write
down the group law we just obtained.

Theorem 5. Let E be a smooth elliptic curve defined over Fq and let m =
(M) + (N) be given such that M and N are distinct nonzero points of E. If
(k1, P1) and (k2, P2) are elements of Jm fulfilling P1, P2, ± (P1 + P2) /∈ {M, N},
then

(k1, P1) + (k2, P2) = (k1k2 · cm(P1, P2), P1 + P2) , (13)
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where cm : E × E → Gm is the 2-cocycle given by

cm(P1, P2) =
�P1,P2

(M)
�P1+P2,O(M)

· �P1+P2,O(N)
�P1,P2

(N)
,

and �P,Q denotes the equation of the straight line passing through P and Q
(tangent at the curve if P = Q).

The group law for B-related moduli can also be obtained using a similar proce-
dure. This case is fully treated in Section 5.3.2 of [1], where the following result
is presented.

Theorem 6. Let E be a smooth elliptic curve defined over Fq, m = (M) + (N)
be given such that M and N are distinct nonzero points of E and let T ∈ E
be any point such that T /∈ {O, M , N , M − N , N − M}. Given (k1, P1) and
(k2, P2) in Jm, set P3 = P1 + P2 and let, for i = 1, 2, 3,

Ri =
{

T if Pi ∈ {M, N},
O otherwise.

Then,

(k1, P1) + (k2, P2) =
(

k1k2 ·
L(M)
L(N)

, P3

)
,

where
L =

�P1,P2

�P3,O
· �P1+R1,O

�P1,R1

· �P2+R2,O
�P2,R2

· �P3,R3

�P3+R3,O
.

As usual, �P,Q denotes the equation of the straight line passing through P and
Q (tangent at the curve if P = Q).

5 Basic Properties

We here present a small collection of the basic properties of the group law in
these generalized Jacobians, which are easily derived from Theorem 5.

Corollary 2. Let E be a smooth elliptic curve defined over Fq and let m =
(M)+(N) be given such that M and N are distinct nonzero points of E. Let also
(k, P ), (k1, P1), (k2, P2) ∈ Jm be given such that P1, P2, ± (P1 + P2) /∈ {M, N}.
Then,

1. (1,O) is the identity element of Jm.
2. cm(P1, P2) = cm(P2, P1) (This reflects the fact that Jm is abelian).
3. If M = (XM : YM : 1) and N = (XN : YN : 1), then cm(P,−P ) =

�P,O(M) /�P,O(N) , and so the inverse of (k, P ) is given by

−(k, P ) =
(

1
k
· �P,O(N)

�P,O(M)
,−P

)
.
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4. cm(O, P ) = 1 for all P ∈ E\{M, N}. Hence,

(k1,O) + (k2, P ) = (k1k2, P ) .

5. Furthermore, Jm contains a subgroup isomorphic to Gm, as

(k1,O) + (k2,O) = (k1k2,O) for all k1, k2 ∈ Gm.

6. If B ∈ E (Fq) and M , N ∈ E (Fqr ) are such that m is B-unrelated, then
F∗

qr × 〈B〉 is a subgroup of Jm.

The only statement that might require a further justification is property 6. Notice
that it simply follows from properties 1 and 3, together with the observation
that �P1,P2

(M), �P1,P2
(N) ∈ F∗

qr whenever P1, P2 ∈ 〈B〉. We have thus made
completely explicit the finite group F∗

qr × 〈B〉 of order (qr − 1) · l that we wish
to use for cryptographic applications.

6 Outlook

Given a smooth elliptic curve E defined over Fq, a point B ∈ E(Fq) of prime
order l and a B-unrelated modulus m = (M) + (N) such that M and N are
distinct points of E(Fqr ) and r ≥ 1 is a chosen integer, we now know that
F∗

qr × 〈B〉, together with the group law of Theorem 5, is a finite subgroup of
Jm for which the elements are compactly represented, the group law efficiently
computable and the group order readily determined.

Several other efficiency and security aspects were included in our doctoral
dissertation7 [1]. On one hand, we considered various implementation issues,
such as choosing a suitable modulus, speeding up scalar multiplications and
selecting parameters such that F∗

qr × 〈B〉 is a cyclic group.
As for security, as soon as F∗

qr × 〈B〉 is a cyclic subgroup of Jm, we obtained
the following reductions among discrete logarithm problems:

The DLP in F∗
qr × 〈B〉 is at least as hard as the DLP in 〈B〉 ⊆ E (Fq)
and at least as hard as the DLP in F∗

qr .

Thus from a practical point of view, this result implies that even though
generalized Jacobians are newcomers in cryptography, we already know that
solving their DLP cannot be easier than solving discrete logarithms in two of
the most studied groups used in DL-based cryptography today.

Furthermore, we showed that extracting a discrete logarithm in F∗
qr × 〈B〉

can always be performed by sequentially computing a discrete logarithm in E
followed by one in F∗

qr . Moreover, it is possible to proceed in parallel when
l � (qr − 1) while this is still an open question in the case of curves suitable for
pairing-based cryptography.

Finally, we have also investigated several scenarios involving precomputations
in order to further study the DLP in F∗

qr × 〈B〉. To this end, we empirically

7 For which the corresponding articles are currently in preparation.
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compared generalized Jacobians with the Classical Occupancy Problem. This
preliminary study suggests that none of the proposed scenarios is faster than
the known methods described above.

As a result, the generalized Jacobians we considered fulfill the basic require-
ments for a group to be suitable for DL-based cryptography. It thus provides the
first concrete example of semi-abelian varieties that could be used in public-key
cryptography.

Note 1. During the preparation of the final version of this article, the author
became aware of the doctoral dissertation of Jean-Yves Enjalbert [2]. While this
thesis contains an unsuccessful attempt to compactly represent the elements of
a generalized Jacobian Jm directly in terms of those of J and Lm, it nevertheless
exploits, with cryptographic applications in mind, the link between generalized
Jacobians and ray class groups.

Acknowledgments. I would like to thank my thesis co-supervisors Henri Dar-
mon and Claude Crépeau for their guidance and advices. I would also like to
thank the Centre for Applied Cryptographic Research (CACR) of the University
of Waterloo for providing such a stimulating research environment.

References
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Abstract. This paper suggests a new building block for cryptographic
protocols and gives two instantiations of it. The concept is to generate
two descriptions of the same group: a public description that allows a
user to perform group operations, and a private description that allows
a user to also compute a bilinear pairing on the group. A user who
has the private information can therefore solve decisional Diffie-Hellman
(DDH) problems, and potentially also discrete logarithm problems. Some
cryptographic applications of this idea are given.

Both instantiations are based on elliptic curves. The first relies on
the factoring assumption for hiding the pairing. The second relies on
the difficulty of solving a system of multivariate equations. The second
method also potentially gives rise to a practical trapdoor discrete loga-
rithm system.

1 Introduction

It is well-known that the computational operations which may be efficiently per-
formed on a mathematical object depend closely on how the object is described.
For example, a cyclic group of order p could be given as the additive group of
integers modulo p, as a subgroup of the multiplicative group of some finite field,
or as a subgroup of points on an elliptic curve over a finite field Fq (where q �= p).
The discrete logarithm problem can be solved in polynomial time in the first case
and is not believed to be solvable in polynomial time in the second two cases.

Public key cryptography takes this idea further, making use of the fact that
we can release a public “partial description” of a group that will allow users to
compute some operations, while retaining private information that will allow us
to compute a greater set of operations.

The paper provides some new examples and applications of partial descrip-
tions of groups. In particular, we consider groups with a “hidden pairing” in
the sense that only the holder of some private information can compute a bilin-
ear pairing. We give two instantiations of this idea: one based on elliptic curves
modulo an RSA modulus N and another based on Frey’s idea of “disguising an
elliptic curve”. Our attempt to understand the security of these systems has led
to the formulation of a number of interesting mathematical questions.

The aims of the paper are to raise awareness of the idea of partial group
descriptions, to give some new building blocks for cryptography, and to state a

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 436–451, 2006.
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number of computational questions which deserve further study. We hope that
the ANTS community will find the paper a fruitful source of problems for future
study and that further research follows from this work.

1.1 Pairings in Cryptography

The use of pairings has been something of a minor revolution in public key
cryptography. First, they were used to attack the discrete logarithm problem
in certain elliptic curve groups [8,17]. More recently they have been used as
a device with which to build cryptographic primitives (see [1] for a survey).
Their usefulness in this latter context is derived from their ability to provide
“gap groups”: groups in which the decisional Diffie-Hellman (DDH) problem is
known to be easy, but in which the computational Diffie-Hellman (CDH) problem
is assumed to be difficult to solve (these problems are defined in Section 2).

In this paper, we develop the idea of a “trapdoor DDH group”. This is a
group whose (public) description allows anyone to compute the group operation
and for which there is a private trapdoor which allows a user to solve the DDH
problem. Our solutions are based on “hidden pairings”, which are pairings on
an elliptic curve that can only be computed by an entity in possession of the
trapdoor information. It is assumed that the pairing is difficult to compute for
anybody not in possession of the trapdoor information. We remark that other
researchers have considered the possibility of a hidden pairing (e.g., Rivest [21]
and Boneh [3]) but our paper seems to be the first to propose workable solutions
to the problem.

The idea of a hidden pairing suggests three applications. First, it implies
the existence of trapdoor DDH groups, which could be of direct use in the
construction of cryptographic algorithms and protocols.

Second, it could be used to give trapdoor DL groups: groups in which the
discrete logarithm (DL) problem is easy to solve for anyone in possession of
the trapdoor information, but the DL problem is difficult for anybody not in
possession of the trapdoor information. The development of good trapdoor DL
groups is a major problem in cryptography. A partial solution to this problem
(due to Paillier [20]) provides a trapdoor DL subgroup of (Z/N2Z)∗. One problem
with Paillier’s solution is that the trapdoor DL group is only a subgroup of the
whole group and it is required to “blind” the trapdoor DL group by elements
of (Z/NZ)∗. Some related approaches are Naccache-Stern [18] and Okamoto-
Uchiyama [19]. There are several other trapdoor DL proposals in the literature
[11,22,25,12] but none of these seem to be practical.

A third application is to cryptographic protocols whose security is proved
relative to a “gap assumption”, namely that a certain computational problem
should be hard even when an oracle for the corresponding decisional problem
is provided. This situation arises when one needs the decision oracle as part of
the simulation for the security reduction. We stress that the decision oracle is
needed only for the simulation, and not for the protocol itself. With current
instantiations of gap-DH groups the algorithm to solve the DDH problem is
available to all users. Suppose there exists a trapdoor DDH group for which the
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CDH problem remains hard even when the adversary has access to the DDH
trapdoor. Then a cryptosystem with a security property proven under a gap-DH
assumption can be securely implemented with the trapdoor DDH group. In other
words, it is possible to prove a scheme secure relative to a gap assumption on
a group for which the DDH problem is hard. This may be advantageous if one
wishes to prove that a scheme possesses two properties, where one property can
only be proven given a gap-DH assumption while the other can only be proven
given a DDH assumption. We note that trapdoor discrete log groups would not
be useful in this setting, since the gap assumption does not hold.

1.2 Outline

In Section 2 we give precise definitions of trapdoor DDH and DL groups.
After giving the formal definitions, we then propose two methods of instantiat-

ing a trapdoor DDH group through the use of hidden pairings. The first method,
presented in Section 3, uses elliptic curves over RSA moduli and its security de-
pends on the difficulty of factoring. The advantages of this approach are that it
is relatively practical and efficient, and that the security is well understood.

The second proposal, in Section 4, is motivated by Frey’s idea of “disguising”
an elliptic curve [7]. The advantage of this approach is that it may lead to a
relatively efficient trapdoor discrete logarithm system. The disadvantage is that
the public key is very large and that the security is less easy to assess.

In Section 5 we describe some possible further applications of the disguised
elliptic curve groups proposed in Section 4. In Section 6 we present some cryp-
tographic applications of trapdoor DDH groups.

2 Problem Definitions

In this section we define the relevant computational problems and we formally
define trapdoor groups. We use multiplicative notation for groups in this section.

We informally define the DL, CDH and DDH problems. The discrete logarithm
problem (DL) in a group G is, given two elements g, h ∈ G, to find the integer
a, if it exists, such that h = ga. The computational Diffie-Hellman problem
(CDH) in a group G is, given a triple of elements (g, ga, gb) in G, to compute the
element gab. The decisional Diffie-Hellman problem (DDH) is, given a quadruple
of elements (g, ga, gb, gc), to determine whether gc = gab.

A trapdoor DDH group is defined as follows.

Definition 1 (Trapdoor DDH Group). A trapdoor DDH group is defined by

– a polynomial-time group generator Gen which takes a security parameter
1k as input, and outputs a triple (G, g, τ) where G is a group description
(including a description, or partial description, of the group operation), g is
the generator of a cyclic subgroup of G and τ is some trapdoor information;

– a polynomial-time algorithm DDH which takes as input the group description
G, the generator g, the trapdoor information τ and a triple (ga, gb, gc), and
outputs 1 if gc = gab and 0 otherwise.
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We require that the DDH problem is hard on the group G for any polynomial-time
attacker who does not know the trapdoor information τ . Formally, we define the
group generator Gen ′ as the algorithm that computes (G, g, τ) = Gen(1k) and
outputs (G, g), and insist that the DDH problem is hard for Gen ′.

We shall instantiate a trapdoor DDH group using hidden pairings on an elliptic
curve in Sections 3 and 4. Here the trapdoor information τ allows the computa-
tion of a pairing, but it is difficult to compute the pairing without knowing τ .

Note that the above definition does not precisely state what is meant by the
term “group description”. In our examples the operations provided by the group
description will vary. For example, the ability to compare group elements or test
whether a group element is the identity may or may not be provided. It may
also be difficult to sample from the group (in a non-trivial way) or hash into the
group.

We may go further with one of our constructions and conjecture the existence
of trapdoor DL groups: groups in which the discrete logarithm problem is easy to
solve for anyone who knows the trapdoor information τ , but difficult for anyone
who does not know the trapdoor information.

Definition 2 (Trapdoor DL Group). A trapdoor DL group is defined by

– a polynomial-time group generator Gen which takes a security parameter
1k as input, and outputs a triple (G, g, τ) where G is a group description
(including a description, or partial description, of the group operation), g is
the generator of a cyclic subgroup of G and τ is some trapdoor information;

– a polynomial-time algorithm DL which takes as input the group description
G, the generator g, the trapdoor information τ and a group element ga, and
outputs a.

We require that the DL problem is hard on the group G for any polynomial-time
attacker who does not know the trapdoor information τ . Formally, we define the
group generator Gen ′ as the algorithm that computes (G, g, τ) = Gen(1k) and
outputs (G, g), and insist that the DL problem is hard for Gen ′.

Applications of such groups are given in Section 6.

3 Hidden Pairings Based on Factoring

Let p1 and p2 be randomly generated primes of at least 512 bits in length which
are congruent to 3 modulo 4 and for which there exist large primes rj | (pj + 1)
for j = 1, 2. The primes rj should be at least 160-bit integers.

Let N = p1p2 and let E : y2 = x3 + x be an elliptic curve over Z/NZ. It is
known that E is a supersingular curve (with embedding degree 2) over Fpj , and
so #E(Z/NZ) = (p1 + 1)(p2 + 1). Let P = (xP , yP ) ∈ E(Z/NZ) be a point of
order r1r2. For information about elliptic curves over rings see [15,16,9].

The public description of the group is the triple (N, E, P ). From the public key
one can compute [a]P ∈ E(Z/NZ) efficiently. The trapdoor is τ = (p1, p2, r1, r2).
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Using the trapdoor one can solve the DDH problem by reducing the problem
from E(Z/NZ) to E(Fpj ), and solving the DDH problem using the modified Weil
or Tate pairing in the usual way [1,8,13,17]. Note that, by the Chinese remainder
theorem, a quadruple (P, P1, P2, P3) in E(Z/NZ) is a valid DDH tuple if and
only if the elements reduce modulo p1 and p2 to valid DDH tuples in E(Fp1

)
and E(Fp2

). Some other applications of pairings apart from solving DDH (for
example, testing subgroup membership) may also be possible in this setting.

One can obviously use other supersingular curves (and therefore have different
congruence restrictions on the primes pj) but there seems to be no reason to use
an embedding degree larger than 2 in this situation. One could also use ordinary
curves with a low embedding degree (even embedding degree 1), although not
all DDH problems are necessarily easy in this setting.

We remark that Boneh, Goh and Nissim [4] have recently proposed a system
using pairings which relies on a similar factoring assumption.

3.1 Security Analysis

The claim is that if the trapdoor τ is not known then one cannot solve the DDH
problem. Obviously we must ensure that the discrete logarithm and computa-
tional Diffie-Hellman problems in 〈P 〉 are hard if the trapdoor is not known.
Hence, we insist that the base point P has order of at least 160-bits.

Another obvious attack is to try to factor N using the auxiliary curve data
E. Since the order of E(Z/NZ) is neither smooth nor known to the attacker, it
seems these attacks are resisted.

A more subtle attack might be to try and compute the pairing without know-
ing τ . As mentioned in [9], there is no known way to compute pairings without
knowing the order r1r2 (or a multiple of the order) of the point P . If the primes
rj are large enough (specifically, rj >

√
pj) then knowledge of r1r2 is sufficient

to factor N . For a discussion of security see [9].

3.2 Additional Features

This system has two potentially useful features. First, one can delegate the ability
to compute Weil pairings to a third party, without necessarily revealing the
factorisation of the modulus. This can be done by revealing the order r1r2 of the
point P . It is necessary that r1r2 be smaller than

√
N . We refer to [9] for a full

security analysis of this situation.
Second, there are variants of the system which allow hashing to the group.

To explain this, note that every value 0 ≤ x < pj is the x-coordinate of a point
P ∈ E(Fp2

j
). Furthermore, the group structure of E(Fp2

j
) is (Z/(pj + 1)Z)2 and

so a random point in E(Fp2

j
) is very likely to have order divisible by rj .

The system is then developed using the techniques of Demytko [6] (i.e., work-
ing with x-coordinates only). To be precise, we hash messages m, using a cryp-
tographic hash function Hash, onto the set of integers {x ∈ Z : 0 ≤ x < N}.
Write xH = Hash(m). There is at least one point H = (xH , yH) ∈ E(R), where
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R is a ring containing Z/NZ, with this x-coordinate. It is not necessary to com-
pute the y-coordinate yH or to know in which extension ring it lies. As is well
known, given a ∈ Z one can compute the x-coordinate x([a]H) from xH without
ever needing to compute any y-coordinates (see [6]). Most cryptosystems can be
implemented in a way which uses x-coordinates only.

The natural generalisation of the DDH problem in this setting is the following.
The input is a quadruple (x(P ), x([a]P ), x(H), x([b]H)). This is a generalisation
of a Diffie-Hellman-tuple in two ways: H is not necessarily in the subgroup
generated by P (in other words, it is what some authors would call a co-DDH
problem); H does not necessarily have the same order as P . The DDH problem
is then to determine whether a ≡ b modulo the greatest common divisor of the
orders of P and H ; note that this is the best that can be determined if P and
H do not have the same order.

This generalised DDH problem can be solved with the trapdoor informa-
tion. On receipt of a quadruple of x-coordinates (x1, x2, x3, x4) modulo N , one
performs the following operations for each prime pj (j = 1, 2): First, solve
for the y-coordinates (choosing the square root arbitrarily) to obtain points
Pi = (xi, yi) ∈ E(Fp2

j
). Next, compute the Weil pairings z1 = en(P1, ψ(P4)) and

z2 = en(P2, ψ(P3)), where n = pj + 1,

ψ(x, y) =
{

(−x, σy) if en(P1, P4) = 1
(x, y) otherwise

and σ ∈ Fp2

j
is such that σ2 = −1. If z2 �= z±1

1 then declare the input DDH tuple
to be invalid for pj . Otherwise, declare the tuple to be valid for pj . If the tuple
is valid for both p1 and p2 then declare the DDH tuple to be valid.

To summarise, by using x-coordinates only, we obtain a trapdoor DDH struc-
ture which is not strictly a trapdoor DDH group but which is sufficient for many
cryptographic applications. We remark that to delegate pairing computation to a
third party in this case requires giving #E(Z/NZ), which is equivalent to giving
p1 and p2, so the third party has the same powers as the owner of the key.

Trapdoor Discrete Logarithms: Given the trapdoor one can reduce the dis-
crete logarithm problem from the elliptic curve to discrete logarithm problems
in F∗

p2

j
and then attempt to solve these using an index calculus algorithm (this is

just the MOV attack). Since p2
j is of the same size as N this will be no easier than

factoring N . Hence, it seems that the trapdoor discrete logarithm application is
not possible with this system.

4 Hidden Pairings Using a Disguised Elliptic Curve

The proposal in this section is inspired by Frey’s idea of disguising an elliptic
curve [7]. Essentially, we take the Weil restriction of a supersingular elliptic
curve E with respect to Fqm/Fq and blind the equations by applying an invertible
change of variable. One can then publish a list of multivariate polynomials which



442 A.W. Dent and S.D. Galbraith

perform the group operation on “blinded” points. This gives a “black box group”
representation of the elliptic curve. The hope is that a user who is only given
the blinded group law can perform point multiplication, but cannot compute
pairings on the curve.

In this section we first describe how to obtain systems of multivariate poly-
nomials which represent the group law. We then explain how to “blind” these
polynomials using a change of variable. In the later subsections we explain a par-
tial linearisation technique to lower the degree of these polynomials, and discuss
several strategies to attack this proposal.

For simplicity, we describe the idea using elliptic curves over finite fields of
characteristic 2. Similar techniques can be applied to elliptic curves over finite
fields of arbitrary characteristic. Let E : y2z + yz2 = x3 + z3 over Fqm where
q = 2s and where ms is odd. Then E is supersingular with embedding degree
2. Suppose there is a large prime r | (qm + 1), some examples are given in the
following table (note that the roles of s and m may be interchanged).

s 1 19 23 23 17 31 31 41
m 167 19 17 13 11 11 7 5

log2(r) 166 200 171 204 161 215 157 160

We now explain how the group operations can be performed. We are required
to work with projective representations since we do not want to have divisions
in our formulae. Let (x : y : z) be a projective point on the elliptic curve. Then,
for example, [2](x : y : z) is given by the point (u : v : w) where

u = x4z2

v = x6 + x3z3 + yz5 + z6

w = z6.

Choose a vector space basis for Fqm over Fq (for example, this could arise from
a polynomial representation of Fqm). Every element x ∈ Fqm can be represented
as an m-tuple x = (x0, . . . , xm−1) of elements in Fq which correspond to the
decomposition of x over the basis. Hence a projective point P = (xP : yP : zP )
can be represented non-uniquely as a 3m-tuple of elements of Fq. The group dou-
bling operation may now be re-written as a list of 3m homogeneous polynomial
functions of degree 6 in 3m variables

ui = fi(x0, . . . , xm−1, y0, . . . , ym−1, z0, . . . , zm−1)
vi = fm+i(x0, . . . , xm−1, y0, . . . , ym−1, z0, . . . , zm−1)
wi = f2m+i(x0, . . . , xm−1, y0, . . . , ym−1, z0, . . . , zm−1)

where 0 ≤ i ≤ m − 1. We denote this system as (fi(x, y, z)).
Similarly, the sum (x : y : z) + (x′ : y′ : z′) on the elliptic curve is given by

(u : v : w) where the terms may be computed as 3m polynomial functions gi of
degree 10 in 6m variables. This gives a system (u, v, w) = (gi(x, y, z, x′, y′, z′)).

Next an invertible transformation U on the 3m variables in Fq that define a
projective point is chosen. In general, this could be non-linear, but we suggest
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choosing a linear transformation U ∈ GL3m(Fq) since linear maps do not increase
the degree of the defining polynomials. As will be explained in Section 4.1, to
achieve workable parameter sizes, we must impose that U is defined over F2
and that U maps the 2m-dimensional subspace corresponding to the x and z
variables onto itself (the proposal works in the general case, but the size of the
group description increases). We then “blind” the doubling/addition formulae
for the curve by applying the change of variable U to all variables. More precisely,
we obtain the “blinded” doubling formulae

(f̃i(x, y, z)) = U(fi(U−1(x, y, z)))

and the blinded addition formulae

(g̃i(x, y, z)) = U(gi(U−1(x, y, z), U−1(x′, y′, z′))).

The public representation of the group consists of the doubling and addition
polynomials f̃i, g̃i, a blinded point P and the order r of P (we get P as U(R)
where R is a point of order r on the original curve). The values of m and s are
implicit in the public key. A user can efficiently compute [a]P using the addition
formula and the double and add algorithm in the usual way.

The trapdoor is the original equation of the curve and the inverse transfor-
mation to U . A user with the trapdoor can translate blinded 3m-tuples back to
the standard representation of points in E(Fqm). Pairings can then be computed
easily. Hence the DDH problem can be solved in the group.

If U maps the 2m-dimensional subspace corresponding to the x and z variables
onto itself, then we can easily recognise representations of the identity element
as they will have the form

(0, . . . , 0, y0, . . . , ym−1, 0, . . . , 0).

This means that we can check for equality between two points Q1 and Q2 in
projective coordinates by checking whether Q1 − Q2 is the identity element.
Note that −Q2 can be computed as [r − 1]Q2 where r is the order of the base
point P . However, it does not seem possible to represent elements in a canonical
form, and this may be inconvenient for some cryptographic applications.

We note that it might be interesting to use the above techniques to give
a blinded description of a pairing computation algorithm. However, we suspect
that the memory requirements will be huge, so we do not pursue this idea further.

4.1 Key Sizes and Optimisations

The public representation of a blinded group is very large. The doubling formulae
consist of 3m polynomials of degree 6 in 3m variables and the addition formulae
consist of 3m polynomials of degree 10 in 6m variables. Since the total number
of possible monomials in a homogeneous polynomial of degree d in n variables is(

n + d − 1
d

)
≤ (n + d − 1)d

d!
,
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the storage cost for the addition formulae if represented naively would be ap-
proximately 3m(6m+9)10/10! ≈ 50m11 elements of Fq. This will quickly become
infeasible.

One can slightly improve the storage requirements by applying a partial lin-
earisation (i.e., introducing new variables to represent terms such as x2

0) and
using the fact that squaring is essentially a linear operation, in the sense that
there is some matrix S such that if x is represented as (x0, . . . , xm−1) then x2 is
represented as (x2

0, . . . , x2
m−1)S. Storage can be further reduced if m and s are

coprime and if the basis for Fqm/Fq is chosen to be a basis for F2m/F2, since the
polynomials will have coefficients in F2 rather than Fq = F2s . We do not give all
the details of these optimisations.

Using the above linearisation and the modified projective doubling formulae
u = x4z3, v = x6z+x3z4+yz6+z7, w = z7 one needs 7m variables (corresponding
to x, y, z, x2, z2, x4, z4). The total storage requirement is 3m

(7m+2
3

)
≈ 172m4

bits.
The addition formulae involve many more variables and hence require larger

storage. A significant reduction follows from noting that for many (but not all)
applications a general addition rule is not required. Instead it is sufficient to
publish formulae for addition of the fixed base point P .

The formulae for addition of the fixed base point P to an arbitrary point
(x : y : z) can be written projectively as (x : y : z) + (xP : yP : 1) = (x′ : y′ : z′)
where

x′ = z(x − xP z)(y − yP z)2 − (x − xP z)4

y′ = z(y − yP z)3 + (y − yP z)x(x − xP z)2 + (yP + 1)(x − xP z)3z

z′ = z(x − xP z)3 .

Note that this formula gives a correct result only if (x : y : z) does not represent
P or the identity. We can also apply the methods mentioned earlier about partial
linearisation, although since P is defined over Fqm these polynomials do not have
coefficients in F2.

One can show that the resulting formulae for addition by a fixed point have
degree 3 in 8m variables and so require storage bounded by 3m(8m + 2)3/6 ≈
256m4 elements of Fq (in this case we cannot reduce to polynomials over F2).
Hence, the total storage for the group description is roughly (172+256s)m4 bits.

It should be noted that using this “partial group description” leads to smaller
public keys, but also removes some of the functionality associated with the group.
In particular, it means that we cannot compute [a]Q for an arbitrary point Q �= P
and we cannot test equality of group elements (see Section 5 for details).

While the above optimisations are significant, compared with the system pro-
posed in Section 3, the public key for this scheme is very large. For transfor-
mations defined over F2 with m = 5 the public key is already 814 kilobytes.
For m = 7 and 11 the values are 2.3 and 8 megabytes respectively. The value
m = 167 gives a totally infeasible public group description of 41 gigabytes!
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4.2 Security Analysis

There are a number of ways to attack this system. As before, one can just try to
solve the discrete logarithm problem in the group using the baby-step-giant-step
method. We normally impose the restriction that the group order be at least 160
bits to thwart such an attack. It follows that we should have ms > 160.

Another attack would be to try to compute a pairing using the blinded de-
scription of the group operation. To run Miller’s algorithm one needs to obtain
functions, defined over Fqm , corresponding to the straight lines in the elliptic
curve addition rule. It seems hard to achieve this without being able to invert
the blinding.

A natural attack is to try to find the invertible transformation U . The number
of elements of GLn(Fq) is

(qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) =
n∏

i=1

qn−i(qi − 1) > qn(n−1).

We are essentially choosing U from GL2m(F2)×GLm(F2) (indeed, since the equa-
tions are projective we could replace GL with PGL, but over F2 they are the same).
The number of choices for U is at least 22m(2m−1)+m(m−1) = 25m2−3m. The small-
est case we consider is when m = 5, for which there are already more than 2110

choices for U . Hence the system is resistant against brute-force search for U .
The most plausible way to find U is to reduce the problem to solving a sys-

tem of multivariate polynomial equations. We discuss such an attack here. We
assume that an adversary knows not just the public key but also the original
system of polynomials defining the group operation. This strong attack scenario
is plausible because there are good implementation reasons for certain choices of
polynomial basis etc., so one may as well assume that an adversary can simulate
the key generation process up to the choice of U . Hence, the security relies on the
difficulty of computing the transformation U given the systems of polynomials
defining the doubling and addition rules.

The obvious attack is to represent the coefficients of the transformation U
as unknowns and to obtain a system of equations among these variables. One
natural way to obtain equations is by matching known points in the domain
and image. We are given an explicit point P in the image, but we do not have
the representation of P in the domain. Hence, as long as the original point P
remains private, this attack seems to be hard.

Instead, we may obtain equations in the variables of U by relating the dou-
bling/addition rules on the original curve with the published doubling/addition
rules. More precisely, one writes down the doubling/addition systems on the orig-
inal curve as 3m-tuples of multivariate polynomials, and then transforms using
the “generic” matrix U to get enormous 3m-tuples of multivariate polynomi-
als. By equating coefficients of monomials with the published doubling/addition
rules one obtains a system of multivariate polynomial equations in the unknown
entries of U . The degree of the equations depends on the degree of the original
system of polynomials; when attacking our proposed partially linearised group
description one gets degree 3 equations.
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One could apply Gröbner basis or linearisation techniques to find a solu-
tion of this system and hence deduce the matrix U . Linearisation is the most
natural approach, since the system is already partially linearised. However, the
required number of equations to solve the degree 3 system in (3m)2 variables
will be roughly 96m6/6 ≈ 88000m6, whereas we only start with around 428m4

equations.
We suggest that parameters satisfying ms > 160 with sufficiently large m are

secure against multivariate attacks on this system. We recognise that further
research into the problem of recovering U is needed before we can have confidence
in the the security of this system. In particular, it is important to determine
which values for m are secure: we expect that m = 3 is too small to achieve the
desired level of security and that m ≥ 11 is sufficient. We hope that our work
motivates others to consider this problem.

It is interesting to note that one cannot blind finite fields securely using the
above method. A full description of an attack and its generalisation to the torus
T2 ⊂ F∗

p2 is given in [10], where there is also a discussion of why the methods do
not seem to apply to the elliptic curve case.

One might also hope to achieve greater security levels by using a more general
initial curve equation, for example y2+Ay = x3+Bx+C for some A, B, C ∈ Fqm .
All such non-singular equations are isomorphic over F2 to y2 + y = x3 + 1. An
isomorphism of a Weierstrass equation of this form is a linear map. But since the
coefficients of the isomorphism may lie in an extension field, this linear change
of variable is not necessarily already included in the above analysis. Instead, one
would have to perform the linearisation or Gröbner basis methods over small
degree extensions of Fq. We do not discuss this idea further as we do not expect
it to significantly add to the security.

4.3 Additional Features

The scheme as presented does not seem to have the additional feature of the
scheme of Section 3, that one can delegate pairing computations to a third party
without revealing all the private information.

Hashing to the group cannot be done when using the system presented above.
Instead, one could follow Section 3 and restrict to using x-coordinates only.
In this case we could publish a blinded representation for the x-coordinate only
addition rules on projective points of the form (x : z). The security and efficiency
of this variant deserve further analysis.

Trapdoor Discrete Logarithms: If we apply the Weil pairing to the (un-
blinded) elliptic curve group, then we map the elliptic curve into Fq2m , where
qm ≈ 2160. A 320-bit discrete logarithm computation in a characteristic 2 finite
field is quite feasible. The current world record for the solution of a characteristic
2 discrete logarithm problem is over 600 bits [23,14]. We are told [24] that the
relation finding and linear algebra computations for a 320-bit discrete logarithm
would take less than a week. Once the linear algebra stage of the index calcu-
lus algorithm has been completed we may store the reduced matrix and solve
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individual discrete logarithm problems in a matter of seconds. Hence, this
method does give a completely practical trapdoor discrete logarithm system.

Note that, despite being quite practical, this trapdoor DL system is not poly-
nomial time. Hence it does not satisfy the definition in Section 2.

5 Partial Group Descriptions

In the previous section, as a way of minimising the group description, we sug-
gested publishing just the operations of doubling and addition by a fixed point P .
Note that both these operations are unary, whereas a general group description
requires a binary operation. We now make some comments about this idea.

Let G be a group written additively and suppose the published description
of G comprises just an element P and unary operations f(Q) = Q + Q, g(Q) =
Q + P . In general, there seems to be no way to obtain the sum Q1 + Q2 of two
general points from the operations f and g.

Similarly, using the double-and-add algorithm, one can compute [a]P for any
positive integer a. But it does not seem to be possible to compute [a]Q for a ran-
domly chosen element Q∈G, unless we know a positive integer b such that Q=[b]P .

To summarise, the description of the group G is sufficient for some computa-
tions, but it does not satisfy the usual computational definition of a group law.

A natural question is whether the discrete logarithm problem is harder in
such a group than in a generic group. We first consider the case where a binary
predicate is available which determines whether two given inputs represent the
same group element.

The baby-step-giant-step algorithm can be implemented in such a group. This
algorithm attempts to solve the discrete logarithm of a point Q to the base P .
Let r be the order of P and define M = (

√
r). The standard description of the

algorithm is to compute and store a list of “baby steps” P, [2]P, [3]P, . . . , [M ]P
and find a collision with the list of “giant steps” Q, Q− P ′, Q − [2]P ′, . . . where
P ′ = [M ]P . The obstacles are that, a priori, one cannot compute −P ′ and one
cannot compute Q + (−P ′).

Instead, one can formulate the baby-step-giant-step algorithm as follows. If
Q = [λ]P then we can write λ = jM − i for some 1 ≤ j ≤ M + 2 and some 0 ≤
i ≤ M . Hence, we compute and store the baby steps Q, Q + P, Q + [2]P, . . . , Q +
[M ]P by successively applying the operation g. Then we compute the giant steps
[jM ]P using the double-and-add algorithm for each value of j and check if there
is a match using the predicate. Note that each giant step is now a full point
multiplication, rather than a single addition. Nevertheless, the final complexity
is still Õ(

√
r).

To implement a random walk method, such as Pollard rho, we require canon-
ical representatives of group elements. Hence it seems that such methods cannot
be implemented on disguised projective elliptic curves.

With the partial group description coming from a disguised elliptic curve we
do not have an equality predicate or canonical representatives of group elements.
Hence the best algorithm for solving the discrete logarithm problem seems to be



448 A.W. Dent and S.D. Galbraith

brute-force search! This suggests that there could be applications where we can
safely reduce the group size to 80 bits.

6 Simple Applications of Trapdoor Groups

In this section we present a few simple cryptographic applications for trapdoor
DDH and trapdoor DL groups. We will use multiplicative notation for groups.
We will assume that the order r of g in G is known (or that it is possible to
compute it efficiently). If this is not the case, then we may still use all of the
following applications by taking r to be much larger than the order of g.

6.1 A Simple Identification Scheme Based on Trapdoor DDH
Groups

The simplest application of trapdoor DDH groups is to create an identification
scheme. Here a central authority Charlie wishes to identify a user Alice.

– At the time of registration, Alice generates a trapdoor DDH group (G, g, τ) =
Gen(1k) and gives Charlie (G, g, r), where r is the order of the element g.

– When Charlie wishes to identify Alice, he randomly selects a bit σ ∈ {0, 1}
and integers a and b from {1, 2, . . . , r}, and computes A = ga and B = gb.
If σ = 0 then he computes C = gab, otherwise he randomly chooses a value
c ∈ {1, 2, . . . , r} such that c �= ab mod r and computes C = gc. Charlie then
sends the triple (A, B, C) to Alice.

– Alice receives the challenge triple (A, B, C), and checks whether it is a valid
DDH triple using the trapdoor information τ . If (A, B, C) is a DDH triple,
then Alice sends σ′ = 0 to Charlie; otherwise Alice sends σ′ = 1.

– Charlie receives a bit σ′ from Alice, and accepts Alice’s identity if σ = σ′.

It is obvious that any attacker that fools the identification scheme with proba-
bility 1/2 + ε has advantage at least ε + 1/r in breaking the DDH problem in
the trapdoor group, therefore ε is negligible. Clearly, if this scheme is meant to
be practical, then the identification scheme would have to be run multiple times
before Alice’s identity is actually accepted.

6.2 A Two-User Designated Verifier Signatures

The Boneh-Lynn-Shacham (BLS) signature scheme [2] becomes a designated
verifier signature scheme if implemented in a trapdoor DDH group. Note that,
for this application, we require the ability to hash into the group and compute full
group operations, so this scheme is most easily implemented using the approach
of Section 3.

We briefly present the scheme. Alice wishes to sign a message in such a way
that no party (except maybe Bob) can fake her signature and only Bob can
verify her signatures.

– Bob generates a trapdoor DDH group (G, g, τ) = Gen(1k) and publishes his
public parameters (G, g, r), where r is theorder of the element g. Bob also
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publishes a hash function Hash which maps bit strings of arbitrary length
into the group G.

– Alice randomly chooses a private key x ∈ {1, 2, . . . , r} and publishes her
public key gx.

– Alice may now sign a message m by computing Hash(m)x.
– Bob verifies a signature σ on a message m by checking that (g, gx,

Hash(m), σ) is a valid DDH tuple using the trapdoor information τ .

One can easily prove, in the random oracle model, that no attacker may verify
Alice’s signature without knowing the trapdoor τ . Furthermore, in the random
oracle model, it is easy to show that an attacker that manages to fake a signature
from Alice with probability ε, and using at most qH random oracle queries and
qS signing oracle queries, can solve the CDH problem with probability at least
ε/(qH + qS + 1).

One problem with this scheme, however, is that Alice’s public key is an element
of G. Hence, she can only choose a private key after Bob has published his public
key and she must choose a new public key for each entity with which she wishes
to communicate.

6.3 An Encryption Scheme Based on the Discrete Logarithm
Problem

We present an encryption scheme whose security depends upon the difficulty of
solving the discrete logarithm problem in an arbitrary trapdoor DL group. For
simplicity we present this encryption scheme as a KEM [5].

– Bob, who wishes to be able to receive encrypted messages, generates a trap-
door DL group (G, g, τ) = Gen(1k) and publishes (G, g, r) as his public key,
where r is the order of the element g. Bob also publishes a key derivation
function KDF which maps elements of the set {1, 2, . . . , r} onto bit-strings
of the appropriate key length.

– Alice, who wishes to compute a symmetric key for use in sending an en-
crypted message to Bob, randomly generates an integer x ∈ {1, 2, . . . , r}.
She computes C = gx and K = KDF (x), and sends C to Bob (along with
the encryption of a message computed using the DEM and the key K).

– Bob recovers first x from C using the trapdoor information τ . Bob then
computes key K = KDF (x).

It is not difficult to see that, in the random oracle model, an attacker who has
an advantage ε in breaking the IND-CCA2 security of this scheme, can be used
to construct an algorithm that solves the discrete logarithm problem in G with
probability ε.

7 Conclusions

We have suggested the concept of a hidden pairing, which gives rise to a trap-
door DDH group, and potentially a trapdoor DL group. We have suggested two
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possible ways to implement such an idea. Our work suggests several problems
for further study, which we list below. We hope that the ANTS community will
be motivated to study some of these problems further.

– Can the storage requirement for the public group description of a disguised
elliptic curve be reduced?

– For which values of m is a disguised elliptic curve secure against Gröbner
basis or linearisation attacks?

– Is there a way to perform Miller’s algorithm to compute pairings on a dis-
guised elliptic curve?

– Are there cryptosystems which can be securely implemented using an 80-bit
partial group law?

– Do there exist partial group descriptions for other groups which may allow
interesting cryptographic functionalities?

– Are there further cryptographic applications of hidden pairings?
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Abstract. We present a general framework for constructing families
of elliptic curves of prime order with prescribed embedding degree. We
demonstrate this method by constructing curves with embedding de-
gree k = 10, which solves an open problem posed by Boneh, Lynn, and
Shacham [6]. We show that our framework incorporates existing con-
structions for k = 3, 4, 6, and 12, and we give evidence that the method
is unlikely to produce infinite families of curves with embedding degree
k > 12.

1 Introduction

A cryptographic pairing is a bilinear map between two groups in which the
discrete logarithm problem is hard. In recent years, such pairings have been
applied to a host of previously unsolved problems in cryptography, the most
important of which are one-round three-way key exchange [13], identity-based
encryption [5], and short digital signatures [6].

The cryptographic pairings used to construct these systems in practice are
based on the Weil and Tate pairings on elliptic curves over finite fields. These
pairings are bilinear maps from an elliptic curve group E(Fq) to the multiplica-
tive group of some extension field Fqk . The parameter k is called the embed-
ding degree of the elliptic curve. The pairing is considered to be secure if tak-
ing discrete logarithms in the groups E(Fq) and F∗

qk are both computationally
infeasible.

For optimal performance, the parameters q and k should be chosen so that
the two discrete logarithm problems are of approximately equal difficulty when
using the best known algorithms, and the order of the group #E(Fq) should
have a large prime factor r. For example, a pairing is considered secure against
today’s best attacks when r ∼ 2160 and k ∼ 6-10, depending on the application.
In order to vary the security level or adapt to future improvements in discrete
log technology, we would like to have a supply of elliptic curves at our disposal
for arbitrary q and k.

Many researchers have examined the problem of constructing elliptic curves
with prescribed embedding degree. Menezes, Okamoto, and Vanstone [16] showed
that a supersingular elliptic curve must have embedding degree k ≤ 6, and fur-
thermore k ≤ 3 in characteristic not equal to 2 or 3. Miyaji, Nakabayashi, and

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 452–465, 2006.
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Takano [17] have given a complete characterization of ordinary elliptic curves of
prime order with embedding degree k = 3, 4, or 6, while Barreto and Naehrig
[2] give a construction for curves of prime order with k = 12. There is a gen-
eral construction, originally due to Cocks and Pinch [8], for curves of arbitrary
embedding degree k, but in this construction the sizes of the field Fq and the
subgroup of prime order r are related by q ≈ r2, which leads to inefficient im-
plementation. Recent efforts (cf. [7], [10]) have focused on reducing the ratio
ρ = log q/ log r for arbitrary k, but no additional examples have been found
with ρ small enough to allow for curves of prime order.

The focus of this paper is the construction of ordinary elliptic curves of prime
order with prescribed embedding degree. In Section 2 we present a general frame-
work for constructing such curves and give conditions under which this method
will give us infinite families of elliptic curves. The method is based on the Com-
plex Multiplication method of curve construction [19] and is implicit in the con-
structions of several other researchers. Our contribution is to gather all of the
relevant results in one place and to define terminology that makes it apparent
that these various constructions are all instances of the same general method.

Our main contribution appears in Section 3, where we show how the method
of Section 2 can be used to construct curves with embedding degree k = 10. We
give examples of such curves over fields of cryptographic size, solving an open
problem posed by Boneh, Lynn, and Shacham [6].

In Section 4 we show how the existing constructions of elliptic curves of prime
order with embedding degree k = 3, 4, 6, or 12 can be explained via the frame-
work of Section 2. In Section 5, we show that for k > 6, our method is not likely
to give additional infinite families of elliptic curves with the specified embed-
ding degree. We note, however, that examples of such families exist for k = 10
and k = 12, and we ask in Section 6 if such examples can be constructed in a
systematic fashion.

2 A Framework for Constructing Pairing-Friendly
Elliptic Curves

In this section we describe a general framework for constructing elliptic curves
of a given embedding degree k. This framework is implicit in the constructions
of Miyaji, Nakabayashi, and Takano [17]; Barreto, Lynn, and Scott [1]; Cocks
and Pinch [8] (as explained in [4]); and Brezing and Weng [7]. After stating
the relevant results, we define terminology that will allow us to show that these
constructions are all specific cases of the same general method.

To construct our elliptic curves, we parameterize the number of points on
the curve and the size of the field of definition by polynomials n(x) and q(x),
respectively. For each x0 that gives prime values for n(x0) and q(x0), we can
use the Complex Multiplication method to construct an elliptic curve with the
desired properties. The main result of this section is Theorem 2.7, which gives
a criterion for the existence of infinite families of such good parameters.

We begin by giving a formal definition of embedding degree.
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Definition 2.1. Let E be an elliptic curve defined over a finite field Fq, and let
n be a prime dividing #E(Fq). The embedding degree of E with respect to n is
the smallest integer k such that n divides qk − 1.

Equivalently, k is the smallest integer such that Fqk contains μn, the group of
nth roots of unity in Fq. We often ignore n when stating the embedding degree,
as it is usually clear from the context.

If we fix a target embedding degree k, we wish to solve the following problem:
find a prime (power) q and an elliptic curve E defined over Fq such that n =
#E(Fq) is prime and E has embedding degree k. Furthermore, since we may
wish to construct curves over fields of different sizes, we would like to be able to
specify (approximately) the number of bits of q in advance.

We follow the strategy of Barreto and Naehrig [2] in parameterizing the trace
of the curves to be constructed. Namely, we choose some polynomial t(x), which
will be the trace of Frobenius for our hypothetical curve, and construct polyno-
mials q(x) and n(x) that are possible orders of the prime field and the elliptic
curve group, respectively. More precisely, if q(x0) is prime for some x0, we can
use the Complex Multiplication method [3], [19] to construct an elliptic curve
over Fq(x0) with n(x0) points and embedding degree k.

Theorem 2.2. Fix a positive integer k, and let Φk(x) be the kth cyclotomic
polynomial. Let t(x) be a polynomial with integer coefficients, let n(x) be an
irreducible factor of Φk(t(x) − 1), and let q(x) = n(x) + t(x) − 1. Let f(x) =
4q(x) − t(x)2. Fix a positive square-free integer D, and suppose (x0, y0) is an
integer solution to the equation Dy2 = f(x) for which

1. q(x0) is prime, and
2. n(x0) is prime.

If D is sufficiently small, then there is an efficient algorithm to construct an
elliptic curve E defined over Fq(x0) such that E(Fq(x0)) has prime order n(x0)
and E has embedding degree at most k.

Proof. By hypothesis, we have a solution (x0, y0) to the equation Dy2 = f(x)
for which q(x0) is prime. If D is sufficiently small then the construction of an
elliptic curve E over Fq(x0) with #E(Fq(x0)) = n(x0) is standard via the Complex
Multiplication method; see [3] or [19] for details. Since n(x0) is prime, E(Fq(x0))
has prime order, and it remains only to show that E has embedding degree at
most k. Barreto, Lynn, and Scott [1, Lemma 1] show that E having embedding
degree k is equivalent to n(x0) dividing Φk(t(x0) − 1) and n(x0) not dividing
Φi(t(xi) − 1) for i < k. Since we have chosen the polynomial n(x) to divide
Φk(t(x)−1), n(x0) is guaranteed to divide q(x0)k−1, and the embedding degree
of E is thus at most k. ��
Remark 2.3. The fact that n(x) does not divide Φi(t(x)− 1) as polynomials for
i < k does not guarantee that n(x0) does not divide Φi(t(x0) − 1) as integers
for some i < k. However, this latter case will be rare in practice, and thus the
embedding degree of a curve constructed via the method of Theorem 2.2 will
usually be k.
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Remark 2.4. If we wish to construct curves whose orders are not necessarily
prime but merely have a large prime factor, we may relax condition (2) of the
theorem accordingly, and the same analysis holds.

In practice, to construct an elliptic curve with embedding degree k one chooses
polynomials t(x), n(x), and q(x) satisfying the conditions of Theorem 2.2 and
tests various values of x until n(x) and q(x) are prime. If the distributions of
the values of the polynomials n(x) and q(x) are sufficiently random, the Prime
Number Theorem tells us that we should have to test roughly log n(x1) log q(x1)
values of x near x1 until we find an x0 that gives a prime value for both polynomi-
als. Since the distribution of prime values of polynomials is not well understood
in general, it will be hard to prove theorems that explicitly construct infinite
families of elliptic curves of prime order. Rather, we will be slightly less ambi-
tious and search for polynomials as in Theorem 2.2 that will give us the desired
elliptic curves whenever the polynomials take on prime values. We incorporate
this approach into the following definition.

Definition 2.5. Let t(x), n(x), and q(x) be polynomials with integer coeffi-
cients. For a given positive integer k and positive square-free integer D, the
triple (t, n, q) represents a family of curves with embedding degree k if the fol-
lowing conditions are satisfied:

1. n(x) = q(x) + 1 − t(x).
2. n(x) and q(x) are irreducible.
3. n(x) divides Φk(t(x) − 1), where Φk is the kth cyclotomic polynomial.
4. The equation Dy2 = 4q(x)−t(x)2 has infinitely many integer solutions (x, y).

Defining a family of curves in this way gives us a simple criterion for constructing
elliptic curves with embedding degree k. This criterion is implicit in the Barreto-
Naehrig construction of curves with k = 12 and D = 3 [2].

Corollary 2.6. Suppose (t, n, q) represents a family of curves with embedding
degree k for some D. Then for each x0 such that n(x0) and q(x0) are both prime,
there is an elliptic curve E defined over Fq(x0) such that #E(Fq(x0)) is prime,
and E has embedding degree at most k.

In practice, for any t(x) we can easily find n(x) and q(x) satisfying conditions
(1), (2), and (3) of Definition 2.5; the difficulty arises in choosing the polynomials
so that Dy2 = 4q(x) − t(x)2 has infinitely many integer solutions. In general, if
f(x) is a square-free polynomial of degree at least 3, then there will be only a
finite number of integer solutions to the equation Dy2 = f(x) (cf. Proposition
2.10). Thus we conclude that (t, n, q) can represent a family of curves only if
f(x) has some kind of special form.

We now show that if f(x) is quadratic, then one integral solution to the
equation Dy2 = f(x) will give us infinitely many solutions. This is the technique
that Miyaji, et al. [17] use to produce curves with embedding degree 3, 4, or
6, and we will use the same technique in Section 3 to construct curves with
embedding degree 10. The idea is as follows: we complete the square to write the
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equation Dy2 = f(x) as u2 − D′v2 = T for some constant T , and observe that
(u, v) is a solution to this equation if and only if u+v

√
D′ has norm T in the real

quadratic field Q(
√

D′). By Dirichlet’s unit theorem, there is a one-dimensional
set of norm-one integral elements of this field; multiplying each of these units by
our element of norm T gives an infinite family of elements of norm T . We then
show that a certain fraction of these elements can be converted back to solutions
of the original equation.

Theorem 2.7. Fix an integer k > 0, and choose polynomials t(x), n(x), q(x) ∈
Z[x] satisfying conditions (1), (2), and (3) of Definition 2.5. Let f(x) = 4q(x)−
t(x)2. Suppose f(x) = ax2 + bx + c, with a, b, c ∈ Z, a > 0, and b2 − 4ac �= 0.
Let D be a square-free integer such that aD is not a square. If the equation
Dy2 = f(x) has a solution (x0, y0) in the integers, then (t, n, q) represents a
family of curves with embedding degree k.

Proof. Completing the square in the equation Dy2 = f(x) and multiplying by
4a gives

aD(2y)2 = (2ax + b)2 − (b2 − 4ac). (2.1)

If we write aD = D′r2 with D′ square-free and make the substitutions u =
2ax + b, v = 2ry, T = b2 − 4ac, the equation becomes

u2 − D′v2 = T. (2.2)

Note that since aD is not a square, we have D′ > 1.
Under the above substitution, a solution (x0, y0) to the original equation

Dy2 = f(x) gives an element u0 + v0
√

D′ of the real quadratic field Q(
√

D′)
with norm T . Furthermore, this solution satisfies the congruence conditions

u0 ≡ b (mod 2a)
v0 ≡ 0 (mod 2r).

(2.3)

We wish to find an infinite set of solutions (u, v) satisfying the same congruence
conditions, for we can transform such a solution into an integer solution to the
original equation. To find such solutions we employ Dirichlet’s unit theorem
[20, §1.7], which tells us that the integer solutions to the equation α2−D′β2 = 1
are in one-to-one correspondence with the real numbers α + β

√
D′ = ±(α0 +

β0
√

D′)n for some fixed (α0, β0) and any integer n. The real number α0 +β0
√

D′
is either a fundamental unit of the real quadratic field Q(

√
D′) or (if the norm

of the fundamental unit is −1) the square of a fundamental unit.
Reducing the coefficients of α0 + β0

√
D′ modulo 2a gives an element z =

ᾱ0 + β̄0x̄ of the ring
R = Z[x] /(2a, x2 − D′). (2.4)

Furthermore, since (α0 + β0
√

D′)(α0 − β0
√

D′) = 1, z is invertible in R, i.e.
z ∈ R∗. Since R∗ is a finite group of size less than 4a2, there is an integer
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m < 4a2 such that zm = 1 in R∗.1 Lifting back up to the full ring Z[
√

D′], we
see that (α0 + β0

√
D′)m = α1 + β1

√
D′ for integers α1, β1 satisfying

α1 ≡ 1 (mod 2a),
β1 ≡ 0 (mod 2a).

(2.5)

Now for any integer n we can compute integers (u, v) such that

u + v
√

D′ = (u0 + v0
√

D′)(α1 + β1
√

D′)n. (2.6)

We claim that (u, v) satisfy the congruence conditions (2.3). To see this, let
αn+βn

√
D′ = (α1+β1

√
D′)n. The conditions (2.5) imply that αn ≡ 1 (mod 2a)

and βn ≡ 0 (mod 2a). Combining this observation with the formulas

u = αnu0 + βnv0D′

v = αnv0 + βnu0,
(2.7)

we see that u ≡ u0 ≡ b (mod 2a) and v ≡ v0 (mod 2a). Furthermore, v0 ≡ 0
(mod 2r) and 2r divides 2a (since aD = D′r2 and D is square-free), so we
conclude that v ≡ 0 (mod 2r).

The new solution (u, v) thus satisfies the congruence conditions (2.3). Any
integer n gives such a solution, so by setting x = (u − b)/2a and y = v/2r for
each such (u, v), we have generated an infinite number of integer solutions to
the equation Dy2 = f(x). This is condition (4) of Definition 2.5; by hypothesis
(t, n, q) satisfy conditions (1), (2), and (3), so we conclude that (t, n, q) represents
a family of curves with embedding degree k. ��

Remark 2.8. More generally, we may find an infinite family of curves in the case
where f(x) = g(x)2h(x), with h(x) quadratic. Specifically, if we let y = y′g(x),
then given one integral solution (x, y′) to the equation Dy′2 = h(x) we may use
the method of Theorem 2.7 to find an infinite number of solutions. However, we
currently know of no examples for which f(x) is of this form.

Theorem 2.7 tells us that if f(x) is quadratic and square-free, we may get a
family of curves of the prescribed embedding degree for each D. If f(x) is instead
a linear function times a square, then we may still get a family of curves, but for
only a single D. This is the method that Barreto and Naehrig [2] use to construct
curves with k = 12 (see Section 4.2).

Proposition 2.9. Fix an integer k > 0, and let n(x), t(x), and q(x) be poly-
nomials in Z[x] satisfying conditions (1), (2), and (3) of Definition 2.5. Let
f(x) = 4q(x) − t(x)2, and suppose f(x) = (Ax + D)g(x)2 for some positive in-
teger D and some polynomial g(x). Then (t, n, q) represents a family of curves
with embedding degree k.
1 In fact, since z is an element of the norm-one subgroup of R∗, m is bounded above

by 2sa, where s is the number of distinct primes dividing 2a. A more detailed study
of the group R∗ appears in an earlier draft of this paper [11].
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Proof. For any integer v, we set x = ADv2 + 2Dv and let y = (Av + 1)g(x). An
easy computation shows that (x, y) is a solution to the equation Dy2 = f(x), so
if D is square-free then condition (4) is satisfied for the integer D. If D is not
square-free then we may absorb its square factors into y, and condition (4) is
satisfied for the largest square-free factor D′ of D. ��

We conclude this section with a partial converse to Theorem 2.7; namely, if the
degree of f(x) is at least 3, then we are unlikely to find an infinite family of
curves.

Proposition 2.10. Let (t, n, q) be polynomials with integer coefficients satisfy-
ing conditions (1), (2), and (3) of Definition 2.5, and let f(x) = 4q(x) − t(x)2.
Suppose f(x) is square-free and deg f(x) ≥ 3. Then (t, n, q) does not represent
a family of elliptic curves with embedding degree k.

Proof. Since f(x) is square-free (i.e. has no double roots) and has degree at least
3, the equation Dy2 = f(x) defines a smooth affine plane curve of genus g ≥ 1.
By Siegel’s Theorem (cf. [23, Theorem IX.4.3] and [9, §I.2]) such curves have a
finite number of integral points, so condition (4) is not satisfied. ��

3 Elliptic Curves with Embedding Degree 10

In this section, we use the method of Section 2, and Theorem 2.7 in particular,
to construct elliptic curves of prime order with embedding degree 10. Our key
observation is that since the hypotheses of Theorem 2.7 require f(x) = 4n(x)−
(t(x) − 2)2 to be quadratic, we should choose n(x) and t(x) in such a way that
the high-degree terms of t(x)2 cancel out those of 4n(x); in particular, the degree
of t(x) must be half the degree of n(x). We have discovered that for k = 10 there
is a choice of n(x) and t(x) such that this is possible. The resulting construction
of elliptic curves with embedding degree 10 solves an open problem posed by
Boneh, Lynn, and Shacham [6, §4.5].

We begin by recalling that to construct a curve with embedding degree k, we
must choose the number of points n(x) and the trace t(x) such that n(x) is an
irreducible factor of Φk(t(x)− 1), where Φk is the kth cyclotomic polynomial. If
k = 10 and t(x) is linear then Φk(t(x) − 1) is an irreducible quartic polynomial,
so there is no hope of f(x) = 4n(x) − (t(x) − 2)2 being quadratic. If k = 10
and t(x) is quadratic, Galbraith, McKee, and Valença [12] show that in this
case Φk(t(x) − 1) either is irreducible of degree 8 or factors into two irreducible
quartic polynomials. They then show that there is an infinite set of t(x) such
that the latter occurs, and that these t(x) are parameterized by the rational
points of a certain elliptic curve. By experimenting with some of the examples
given by Galbraith, et al., we discovered that t(x) = 10x2 + 5x + 3 leads to a
quadratic f(x).



Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10 459

Theorem 3.1. Fix a positive square-free integer D relatively prime to 15. De-
fine t(x), n(x), and q(x) by

t(x) = 10x2 + 5x + 3
n(x) = 25x4 + 25x3 + 15x2 + 5x + 1
q(x) = 25x4 + 25x3 + 25x2 + 10x + 3.

If the equation u2 − 15Dv2 = −20 has a solution with u ≡ 5 (mod 15), then
(t, n, q) represents a family of curves with embedding degree 10.

Proof. It is easy to verify that conditions (1)-(3) of Definition 2.5 hold. Condition
(4) requires an infinite number of integer solutions to Dy2 = f(x), where f(x) =
4q(x) − t(x)2. The key observation is that for this choice of t and n,

f(x) = 4q(x) − t(x)2 = 15x2 + 10x + 3. (3.1)

Multiplying by 15 and completing the square transforms the equation we wish
to solve into

D′y2 = (15x + 5)2 + 20, (3.2)

where D′ = 15D. Integer solutions to this equation correspond to integer solu-
tions to u2 − D′v2 = −20 with u ≡ 5 (mod 15). By Theorem 2.7, if one such
solution exists then an infinite number exist, so (t, n, q) represents a family of
curves with embedding degree 10. ��

To use the above result to construct curves with embedding degree 10, we choose
a D and search for solutions to the equation u2 − 15Dv2 = −20 that give prime
values for q and n. The following lemma, proposed by Mike Scott, speeds up this
process by restricting the values of D that we can use.

Lemma 3.2. Let q(x) be as in Theorem 3.1. If (x, y) is an integer solution to
Dy2 = 15x2 + 10x + 3 such that q(x) is prime, then D ≡ 43 or 67 (mod 120).

Proof. If x ≡ 0 or 2 (mod 3) then q(x) is divisible by 3, while if x is odd then
q(x) is even. Thus if q(x) is prime, then x ≡ 4 (mod 6).

To deduce the stated congruence for D, we consider the equation Dy2 =
15x2 + 10x + 3 modulo 3, 5, and 8. To begin, we have Dy2 ≡ x ≡ 1 (mod 3),
so D ≡ 1 (mod 3). Next, we have Dy2 ≡ 3 (mod 5), so y2 ≡ 1 or 4 (mod 5)
and D ≡ 2 or 3 (mod 5). Finally, since x is even we see that Dy2 = 3 (mod 8),
and thus y2 ≡ 1 (mod 8) and D ≡ 3 (mod 8). Combining these results via the
Chinese remainder theorem, we conclude that D ≡ 43 or 67 (mod 120). ��

After reading an earlier draft of this paper [11], Mike Scott used Theorem 3.1
and Lemma 3.2 to find examples of elliptic curves with embedding degree 10 via
the following algorithm.

Algorithm 3.3. Let (t, n, q) be as in Theorem 3.1. The following algorithm
takes inputs MaxD, MinBits, and MaxBits, and outputs pairs (D, x) such that
D < MaxD, the number of bits in q(x) is between MinBits and MaxBits, and
(D, x) satisfy the conditions of Corollary 2.6 with k = 10.
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1. Set D to be a positive integer such that D ≡ 43 or 67 (mod 120) and 15D
is square-free.

2. Use the Continued Fraction algorithm [21] to compute a fundamental unit
γ of the ring of integers in Q(

√
15D). Let δ = γ2 if γ has norm −1, δ = γ

otherwise.
3. Use the algorithm of Lagrange, Matthews [15], and Mollin [18] to find fun-

damental solutions (u, v) to the equation u2−15Dv2 = −20. (See also [21].)
4. For each fundamental solution (u, v) found in (3):

(a) If log2 u > (MaxBits+ 11)/4, go to the next fundamental solution.
(b) If u ≡ ±5 (mod 15) and log2 u > (MinBits+ 11)/4, then:

i. Let x = (−5 ± u)/15.
ii. If q(x) and n(x) are prime, output (D, x).

(c) Multiply u + v
√

15D by δ to get a new u, and return to step (a).

5. Increase D. If D < MaxD, return to step (1); otherwise terminate.

Remark 3.4. The bounds on log2 u in Step 4 can be explained as follows: since
q(x) = 25x4 + O(x3) and x = (−5 ± u)/15, q(x) grows roughly like u4/2025.
We conclude that log2 q(x) ≈ 4 log2 u − 11, so we require u in the algorithm to
satisfy

MinBits+ 11
4

< log2 u <
MaxBits+ 11

4
.

In our construction of Algorithm 3.3, the specific parameters of Theorem 3.1
have allowed us to simplify the procedure described in the proof of Theorem 2.7.
The requirement that 15D be square-free implies that r = 1, and the fact that
b = 10 is even allows us to remove the factors of 2 in the congruence moduli of
equations (2.3). Thus in Step 4 we need only to find (u, v) with u2−15Dv2 = −20
and u ≡ ±5 (mod 15). Given this requirement, we see that the only restriction
on the unit δ = α + β

√
15D in Step 4c is that α �= 0 (mod 3), which must be

true since α2 − 15Dβ2 = 1. Thus our choice of δ = γ or γ2 will always give new
solutions (u, v) with u ≡ ±5 (mod 15); i.e. the parameter m of Theorem 2.7 is
equal to 1.

In practice the fundamental unit γ computed in Step 2 will usually be very
large, in which case we may skip Step 4c altogether. For example, computations
with PARI indicate that when D ≈ 109, γ has at least 100 bits 99.5% of the
time and at least 200 bits 98.9% of the time.

Scott ran Algorithm 3.3 with inputs MaxD = 2 · 109, MinBits = 148, and
MaxBits = 512. For each (D, x) output by the algorithm, one may then use the
Complex Multiplication method (cf. [3], [19]) to construct an elliptic curve over
Fq(x) whose number of points is n(x). By Theorem 2.2 this curve has embedding
degree at most 10, and in practice we find that the embedding degree is exactly
10. Below are two examples of elliptic curves that Scott constructed in this
manner.
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Example 3.5. (A 234-bit curve.) Running Algorithm 3.3 with D = 1227652867
produces the following example. Let q, n, A, B be as follows:

q = 18211650803969472064493264347375950045934254696657090420726230043203803

n = 18211650803969472064493264347375949776033155743952030750450033782306651

A = −3

B = 15748668094913401184777964473522859086900831274922948973320684995903275.

Then q and n are 234-bit prime numbers such that the curve y2 = x3 + Ax + B
defined over Fq has n points. Since n | q10 − 1 and n � qi − 1 for i < 10, this
curve has embedding degree 10.

Example 3.6. (A 252-bit curve.) Running Algorithm 3.3 with D = 1039452307
produces the following example. Let q, n, A, B be as follows:

q = 6462310997348816962203124910505252082673338846966431201635262694402825461643

n = 6462310997348816962203124910505252082512561846156628595562776459306292101261

A = −3

B = 4946538166640251374274628820269694144249181776013154863288086212076808528141.

Then q and n are 252-bit prime numbers such that the curve y2 = x3 + Ax + B
defined over Fq has n points. Since n | q10 − 1 and n � qi − 1 for i < 10, this
curve has embedding degree 10.

Ideally, the bit size of curves with embedding degree 10 should be chosen so
that the discrete logarithm in the finite field Fq10 is approximately of the same
difficulty as the discrete logarithm problem on an elliptic curve of prime order
over Fq. Using the best known discrete logarithm algorithms, this happens when
q has between 220 and 250 bits [3]. The curves in Examples 3.5 and 3.6 have
been selected so that their bit sizes are close to this range and their complex
multiplication discriminants D are not much larger than 109. The equation for a
curve with this size D can be computed in about a week on today’s fastest PCs.

In practice, it appears that curves with small embedding degree, prime or-
der, and small complex multiplication discriminant D are quite rare. Luca and
Shparlinski [14] come to this conclusion for curves with embedding degree 3, 4,
or 6 (the so-called MNT curves) through a heuristic analysis of the MNT con-
struction. Since our construction of curves with embedding degree 10 is similar
to the MNT construction (cf. Section 4.1), a similar analysis should hold for
our k = 10 curves. The experimental evidence supports this reasoning: Scott’s
execution of Algorithm 3.3 with MaxD = 2 · 109 found only 23 curves with prime
orders between 148 and 512 bits [22].

If we relax the condition on n(x) in step 4(b)ii of Algorithm 3.3 and write
n = kr with r a large prime and k a small cofactor, then we may find a larger
number of suitable curves. Scott also ran this version of the algorithm and found
101 curves with r between 148 and 512 bits, k at most 16 bits, and D < 2·109 [22].
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4 Elliptic Curve Families with Small Embedding Degree

In this section we show how the existing constructions of ordinary elliptic curves
of prime order with embedding degree 3, 4, or 6 [17] or embedding degree 12 [2]
can be explained via the framework of Section 2. The former uses Theorem 2.7,
while the latter employs Proposition 2.9.

4.1 MNT Elliptic Curves

Miyaji, Nakabayashi, and Takano [17] have classified all ordinary elliptic curves
of prime order with embedding degree 3, 4, and 6. Their theorem is as
follows:

Theorem 4.1 ([17]). Let E be an ordinary elliptic curve over Fq such that
#E(Fq) = n = q + 1 − t is prime and E has embedding degree k = 3, 4, or 6.
Then there exists an integer x such that t, n, and q are of the form specified in
the following table:

k t n q
3 −1 ± 6x 12x2 ∓ 6x + 1 12x2 − 1
4 −x or x + 1 x2 + 2x + 2 or x2 + 1 x2 + x + 1
6 1± 2x 4x2 ∓ 2x + 1 4x2 + 1

This theorem fits into the framework of Section 2 as follows. To find an infi-
nite family of curves via Theorem 2.7, we require f(x) to be quadratic. Since
deg Φk(x) = 2 for k = 3, 4, or 6, if we let t(x) be any linear polynomial and n(x)
be the (irreducible) quadratic Φk(t(x) − 1) (with any constant factor divided
out), then f(x) = 4n(x) − (t(x) − 2)2 is quadratic. If q(x) = n(x) + t(x) − 1
is also irreducible and the equation Dy2 = f(x) has one solution, then (t, n, q)
satisfy the hypotheses of Theorem 2.7 and thus represent a family of curves with
embedding degree k. Miyaji, et al. arrive at their stronger result by using the
fact that #E(Fq) is prime to show that any values of t, n, and q that give rise
to such a curve must be of the specified form.

4.2 Elliptic Curves with Embedding Degree 12

Finally, we note that the Barreto-Naehrig construction [2] of curves with em-
bedding degree 12 falls under the case of Proposition 2.9. Specifically, if t(x) =
6x2+1, then Φ12(t(x)−1) = n(x)n(−x), where n(x) = 36x4+36x3+18x2+6x+1,
and

f(x) = 4n(x) − (t(x) − 2)2 = 3(6x2 + 4x + 1)2. (4.1)

Since q(x) = 36x4 + 36x3 + 12x2 + 6x + 1 is also irreducible, Proposition 2.9
tells us that if we set D = 3, then (t, n, q) represents a family of curves with
embedding degree 12.
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5 Higher Embedding Degrees

To construct families of elliptic curves with prescribed embedding degree, the
method of Section 2 requires us to find an infinite number of integer solutions
to an equation of the form Dy2 = f(x). In this section, we give evidence that
in general the degree of f(x) is large, and thus by Proposition 2.10 we are
unlikely to find an infinite family of curves. We begin with a lemma that restricts
the possible degrees of the polynomial n(x); the lemma generalizes a result of
Galbraith, et al. [12, Lemma 1].

Lemma 5.1. Fix k, let t(x) be a polynomial, and let n(x) be an irreducible
factor of Φk(t(x)− 1). Then the degree of n is a multiple of ϕ(k), where ϕ is the
Euler phi function.

Proof. Suppose t(x) has degree d, so deg Φk(t(x) − 1) = dϕ(k). Let θ be a
root of n(x), and let ω = t(θ) − 1. Then Φk(ω) = 0, so ω is a primitive kth
root of unity. We thus have the inclusion of fields Q(θ) ⊃ Q(ω) ⊃ Q. Since
[Q(θ) : Q] = deg n(x) and [Q(ω) : Q] = ϕ(k), we conclude that ϕ(k) divides
deg n(x). ��

The key observation that allowed us to construct families of elliptic curves with
embedding degree 10 was that if f(x) is quadratic and n(x) has degree greater
than 2, then the polynomial t(x) must be chosen so that the high degree terms
of t(x)2 cancel out those of 4n(x). The following proposition shows that this is
in fact the only way to construct such families.

Proposition 5.2. Suppose (t, n, q) represents a family of curves with embedding
degree k, and suppose further that f(x) = 4n(x) − (t(x) − 2)2 is square-free. If
ϕ(k) ≥ 4, then

deg t(x) =
1
2

deg n(x) =
1
2

deg q(x). (5.1)

Furthermore, if a is the leading coefficient of t(x), then a2/4 is the leading coef-
ficient of n(x) and q(x).

Proof. Since ϕ(k) ≥ 4, by Lemma 5.1 deg n(x) ≥ 4, and since f(x) is square-
free, by Proposition 2.10 deg f(x) ≤ 2. Since f(x) = 4n(x) − (t(x) − 2)2, we
conclude that deg t(x) = 1

2 deg n(x), and since n(x) = q(x) + 1 − t(x), we see
that deg n(x) = deg q(x). The observation about the leading coefficients follows
immediately. ��

As an immediate corollary, we see that if k > 6 (so ϕ(k) ≥ 4) then choosing
a linear t(x) will not in general give us an infinite family of curves, whereas if
k > 12 (so ϕ(k) ≥ 6) then choosing a quadratic t(x) will not in general give us
an infinite family of curves.

Proposition 5.2 tells us that for embedding degrees k with ϕ(k) ≥ 4, to find
an infinite family of curves we will have to choose t(x0) of degree at least 2 such
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that φk(t(x)− 1) is not irreducible. Galbraith, McKee, and Valença [12] observe
that this is hard even for quadratic t(x), and as the degree increases the problem
will only become more difficult. An alternative would be to choose t and n such
that f(x) has a square factor; this appears to be just as difficult, but has not
been studied in depth.

6 Conclusion

We have seen in Section 2 that the current methods for constructing families
of elliptic curves of prime order with prescribed embedding degree can all be
subsumed under a general framework. In Section 3 we showed how this frame-
work can be used to construct curves with embedding degree 10 and we gave
examples of such curves, which have not previously appeared in the literature. In
Section 4 we showed how this framework incorporates the existing constructions
for embedding degrees 3, 4, 6, and 12.

In Section 5 we showed that our method can only produce an infinite family
of curves if a certain polynomial f(x) either is quadratic or has a square factor.
These two conditions have been achieved for k = 10 and k = 12, respectively, but
these two examples appear to be special cases, and in general we have not found
a way to achieve either of these two conditions. The success of our method in
producing curves with embedding degree greater than 12 depends on our ability
to control the behavior of f(x), which leads to the following important open
problem.

Problem 6.1. Given an integer k such that ϕ(k) ≥ 4, find polynomials t(x) and
n(x) such that

1. n(x) is an irreducible factor of Φk(t(x)− 1), where Φk is the kth cyclotomic
polynomial, and

2. f(x) = 4n(x)− (t(x)− 2)2 is either quadratic or of the form g(x)2h(x), with
deg h(x) ≤ 2.
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Abstract. Pairings on elliptic curves recently obtained a lot of atten-
tion not only as a means to attack curve based cryptography but also
as a building block for cryptosystems with special properties like short
signatures or identity based encryption.

In this paper we consider the Tate pairing on hyperelliptic curves of
genus g. We give mathematically sound arguments why it is possible
to use particular representatives of the involved residue classes in the
second argument that allow to compute the pairing much faster, where
the speed-up grows with the size of g. Since the curve arithmetic takes
about the same time for small g and constant group size, this implies
that g > 1 offers advantages for implementations. We give two examples
of how to apply the modified setting in pairing based protocols such that
all parties profit from the idea.

We stress that our results apply also to non-supersingular curves,
e. g. those constructed by complex multiplication, and do not need
distortion maps. They are also applicable if the co-factor is nontrivial.

Keywords: Public key cryptography; pairings, hyperelliptic curves, fast
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1 Introduction

Until recently, pairings on elliptic and hyperelliptic curves have been studied
for attacks only. Hence, not much effort was put in efficient implementations.
With the proposals of tripartite key exchange [26] and identity based encryption
[8,9,39] which are both based on bilinear maps they gained a lot of attention as
so far the Weil and Tate pairing on elliptic and hyperelliptic curves are the only
efficient instantiations of bilinear maps.

In the sequel special cases and improvements of the general implementation
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[12,14,16], to mention just a few. The eta-T pairing [2] suggests using supersin-
gular binary curves of genus 2 and gives formulas for efficient implementation
for this case. Their proposal makes use of the special choice we are presenting
here but they do not give arguments why it is an allowed restriction in the
general case.

Apart from that paper mainly direct generalizations of the methods for elliptic
curves have been proposed for hyperelliptic curves and the practical interest in
hyperelliptic curves is due to the fact that larger embedding degrees k can be
obtained for supersingular hyperelliptic curves than for supersingular elliptic
curves [20,37]. We like to stress that this is a result for supersingular curves
and that the important size is the security multiplier k/g which has the same
maximal value of 6 for elliptic curves and curves of genus 2. Using complex
multiplication one can construct ordinary curves with embedding degree in the
desired range for elliptic curves [5,4,13,33].

Currently an extension degree of 6 is suitable for the applications but for
long-term security or higher security requirements far larger values are needed
which cannot be provided by supersingular curves.

Our method speeds up the pairing computation by a factor of about g for the
applications of pairings in protocols. Thus, there is no gain for elliptic curves
but for hyperelliptic curves which gives an advantage to the application of hy-
perelliptic curves of genus g > 1. In brief we have the following setting:

Let Fq, q = pd, p prime, be a finite field and let C/Fq be a hyperelliptic curves
over Fq of genus g. For every extension degree k, the group of Fqk -rational points
JC(Fqk) on the Jacobian JC of C is isomorphic to the divisor class group of degree
zero Pic0

C·F
qk

of C over Fqk . We fix a subgroup of JC(Fq) of some prime order �.
As otherwise the Rück attack [38] is successful in solving the Discrete Logarithm
Problem (DLP) in this group, we assume gcd(q, �) = 1.

We first introduce the mathematical background of the Tate-Lichtenbaum
pairing T�. Generically a divisor class can be represented by g points on the
curve but we show that one can restrict the second argument of T� to the set of
divisors P − P∞ with P an Fqk -rational point of the curve C and still obtain a
non-trivial pairing.

As the computation of the pairing involves evaluating a function at the second
argument of the pairing, our modification gives a speed-up by a factor of g in
this step. Finally we consider applications in protocols and deal with parameter
choices.

For a special curve and special extension degrees such that the Jacobian has
almost prime order, Duursma and Lee [14] already suggest to use points as input
to the pairing instead of divisors of full degree. However, this is not possible in
general and they do not show that this leads to a non-trivial pairing. Also later
publications use this approach without validating the assumption. It is obviously
justified if the group order of JC(Fq) is prime and C is supersingular with a
distortion map, because then the divisor class of P − P∞ has prime order and
due to the non-degeneracy of the pairing and the distortion map the distorted
image is not in the kernel of the pairing.
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If the curve is constructed via complex multiplication one usually has to sacri-
fice some bits in the co-factor of the group order, as at the same time one wants
to control the size of the prime p, obtain a fixed optimal embedding degree k and
have a small cofactor. Our results imply that in this case a divisor as applied by
Duursma and Lee does not work generically as the first argument of the pairing
since the order of such a divisor is a multiple of �. Therefore, their fast way of
using pairings is not applicable and a distortion map does not exist on ordinary
curves.

On a supersingular curve with a non-trivial co-factor one cannot find a divisor
class of full order such that the representing divisor has only one affine point in
the support. This means that in general applications [14] would need to use a
divisor of full degree as first input and as they apply distortion maps also the
second argument has full degree which means that for the case considered in our
contribution their scheme is less efficient.

Our method works in general, is proved to work, and has the advantage
that one does not need distortion maps. This last item means that also non-
supersingular curves can be applied efficiently in pairings – and that is a very
interesting case for applications since in software implementations, prime field
arithmetic is faster than binary and larger embedding degrees could be obtained
by generalizing MNT curves. So far no non-supersingular hyperelliptic curves
with larger security parameters were found but there is ongoing research in this
direction. At the same time this is also the case which needs a proof that the
special choices are possible. Our paper is a purely theoretical one due to the
lack of satisfying non-supersingular curves; for supersingular ones the distortion
maps are likely to lead to faster computations.

2 Tate-Lichtenbaum Pairing on Hyperelliptic Curves

Within the scope of this paper we can only give a short introduction to the
topic. More details and general background on hyperelliptic curves can be found
in [1,17,30,41].

In this paper we concentrate on hyperelliptic curves, including elliptic curves.
We consider hyperelliptic curves which have exactly one Fq-rational point P∞
at infinity. Hence, for C a genus g curve, an affine part is given by

Ca : y2 + h(x)y = f(x), h, f ∈ Fq[x],

where f is monic of degree deg(f) = 2g = 1 and deg(h) ≤ g.
For working in the group we use the isomorphism of the Fq-rational points

JC(Fq) with the divisor class group of degree zero divisors Pic0
C over Fq. To fix

notation, the letter P always means a point on the curve and not on the Jacobian.
For explanations we represent points on the Jacobian as reduced divisor classes
D̄ with at most g affine points in the support. The group arithmetic is carried out
using Cantor’s algorithm [11,28] or the explicit formulae which exist for genus
g = 1, 2, 3, 4 [7,23,29,34,36,42,43,44] to double and add in the group.
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For g = 2, [29] gives a complete study of addition and doubling for all different
numbers of affine points in the input divisors and it is easily seen that a lower
number leads to less field operations per group operation. On the other hand,
a generic group element has g points and hence the special cases will not occur
by accident. In [27] the authors observed that one can enforce this situation by
choosing the base of the DL system in this form. However, they leave it open to
show that there are base points of this form. And in fact one cannot expect to
find a point P ∈ C(Fq) such that the divisor class of P − P∞ has order �, but
only a multiple of �. But as we shall show in our applications concerning the
computation of the Tate pairing this special case will appear naturally and thus
we already point out here that each scalar multiplication of such a divisor class
is faster using a double-and-add algorithm from left to right.

In [19] the Tate pairing was introduced in the form due to Lichtenbaum. Let
� | |JC(Fq)| and let k be the smallest integer such that � | (qk − 1) meaning
that the �-th roots of unity are contained in Fqk but in no smaller field over
Fq. As usual we refer to k as the embedding degree. Naturally, the improvement
presented in the following also speeds up attacks using the Tate pairing. Hence,
except for the section about applications in protocols we also allow k = 1, i. e. the
case that the �-th roots of unity are defined over the ground field. The �-torsion
points JC(Fqk)[�] are the points defined over Fqk having order dividing �.

The Tate-Lichtenbaum pairing is induced by a map

T� : JC(Fqk)[�] × JC(Fqk) → F∗
qk /F∗�

qk

defined in the following way: Let D̄1 ∈ JC(Fqk)[�] and D̄2 ∈ JC(Fqk). To compute
T�(D̄1, D̄2) one uses that D̄1 has order �, i. e. there is a function FD1

such that
�D1 ∼ div(FD1

), where D1 represents the class D̄1. Let D̄2 be represented by a
divisor D2 such that no point in the support of D2 occurs in the support of D1.
Then

T�(D̄1, D̄2) = FD1
(D2).

This means that for D2 =
∑m

i=1 Pi −
∑m

j=1 Qj one has

FD1
(D2) =

∏m
i=1 FD1

(Pi)∏m
j=1 FD1

(Qj)
. (1)

One can show that the pairing is well defined, i. e. it does not depend on the
choices of D1 and D2 if the image is taken modulo �-th powers in Fqk . An
important property of the Tate pairing is that it is non-degenerate in the first
argument, i. e. for a fixed D̄1 ∈ JC(Fqk)[�] the pairing is not constant. The
kernel of the second argument are the classes in �JC(Fqk). Therefore, many
definitions use JC(Fqk)/�JC(Fqk) as second domain or state the isomorphic group
JC(Fqk)[�]. Our improvement is due to a clever choice of the representatives.

For applications one often uses the �-torsion points over the field Fq only.
Furthermore, one modifies the pairing to assume a unique value by raising the
result to the power of (qk − 1)/�. The result is a unique �-th root of unity. It has
been observed for elliptic and hyperelliptic curves that for k > 1 one can as well
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use the standard representation of D̄2 as D2 =
∑m

i=1 Pi−mP∞ even though P∞
occurs in both supports. Namely, FD1

(D2) ≡ FD1
(
∑m

i=1 Pi) modulo �-th powers.
This means that the denominator in (1) is not computed. Obviously this saves
half of the work.

Remark 1. We like to point out that the final powering to map from F∗
qk /F∗�

qk

to F∗
qk [�] is only needed if the uniqueness of the result is required. For most

applications one can postpone the powering till a unique value is needed.

To compute the pairing one uses the double-and-add method on D̄1 to recur-
sively obtain FD1

(D2). The basic step is as follows: for two divisor classes Ē1, Ē2
represented by E1, E2 one finds a divisor E3 and a function G on C defined over
Fqk such that E1 + E2 + E3 = div(G). Then Ē1 ⊕ Ē2 = −Ē3 is the usual com-
putation of the addition in the divisor class group. All algorithms to compute
the group operation in the divisor or ideal class group implicitly compute the
function G.

This leads to the following algorithm for computing the pairing which was
proposed by Miller [31,32] for elliptic curves:

Algorithm 1
IN:� =

∑l−1
i=0 �i2i, D̄1 ∈ JC(Fqk)[�], D̄2 ∈ JC(Fqk), represented by D1 and

D2 = D′
2 − rP∞

OUT: T�(D̄1, D̄2)

1. T ← D1 and F ← 1
2. for i = l − 2 downto 0 do
3. T̄ ← [2]T̄ div(G) = 2T − ([2]T )
4. F ← F 2 G(D′

2)
5. if �i = 1 then
6. T̄ ← T̄ ⊕ D̄1 div(G) = T + D1 − (T ⊕ D1)
7. F ← F G(D′

2)

8. return (F )
qk −1

�

Hence, a pairing is computed by computing �D̄1 with the double-and-add method
and additionally updating F . It is possible to use windowing methods and pre-
computations to speed up the computation of �D̄1 by reducing the number of
additions.

The function G is the quotient of a function of degree g and the linear functions
used to mirror on the x-axis. Hence, using Horner’s scheme g multiplications
in Fqk are needed to evaluate the numerator of G at one point followed by the
evaluations of the linear functions and a division. The second part can be avoided
if the extension degree k is even and the divisor D2 = [u, v] is chosen such that
u is defined over Fqk/2 , where [u, v] is the Mumford representation of D̄2.

Note, that one need not factor u but taking care of all r ≤ g points in the
support of D′

2 needs O(rg) multiplications in the larger field and for a randomly
chosen D̄2 one has r = g.
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3 Random Points Are Not Special

In cryptographic applications one usually encounters the scenario

T� : JC(Fq)[�]× JC(Fqk) → F∗
qk [�],

where the parameters are chosen large enough that the DLP in JC(Fq)[�] and
the DLP in F∗

qk are hard and ideally no larger than necessary to obtain optimal
speed of the implementation. Assuming current suggestions of group sizes of
160 bit and field sizes of 1024 bit this means that k ∼ 6g. For higher security
requirements the ratio between k and g grows as the DLP in finite fields is
subexponential while for curves of low genus it is assumed to be exponential. In
the following we assume k = O(g).

The aim of this section is to show that the value of the pairing is non-trivial if
one restricts the second argument to the embedding of C(Fqk) into JC(Fqk); for
k = 2m we can even restrict to the embedding of C1(Fqk), the subset of points
(x, y) ∈ C(Fqk) for which x ∈ Fqm but y /∈ Fqm , into JC(Fqk). The proofs make
use of combinatorial arguments and the Hasse-Weil bounds.

The advantage is that in Algorithm 1 the evaluation of G is faster. As D̄1
is defined over Fq the doublings and additions are comparably fast and G is
defined over Fq. The costs basically equal the scalar multiplication �D̄1. The
task of evaluating G(D′

2) is sped-up by a factor of g as D′
2 consists of only 1

point instead of g points. Note that the improvement over the standard Tate-
pairing computation involving D2 =

∑m
i=1 Pi −

∑m
j=1 Qj is even larger and that

the computation of the pairing is dominated by the evaluations G(D′
2) of the

intermediate functions G.

3.1 Definitions and First Properties

Let α be a fixed real number with 0 < α < 1. Let G be a finite abelian group of
order n.

Definition 1. Let S be a subset of G and 〈S〉 the smallest subgroup of G con-
taining S. Then S is called α-exceptional (in G) if |G|

|〈S〉| > nα.

A trivial but useful observation is

Lemma 1. Let G′ be a subgroup of G of order < n1−α, and assume that S is
not α-exceptional. Then S � G′.

Proof. If S ⊂ G′ then |〈S〉| < n1−α and so |G|
|〈S〉| > nα which is a contradiction.

��

Corollary 1. Assume that � is a prime with �k dividing n and � > nα. Assume
that S is not α-exceptional.

Then S contains an element whose order is a multiple of �k.
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Proof. If k = 0 we have nothing to prove. So assume that k ≥ 1.
Take G′ as the group generated by all elements of G whose order divides n

� .
Then | G′ |≤ n/� < n1−α. ��

Corollary 2. Assume that ϕ is a group homomorphism of G with image group
G′ and | G′ |> nα. If S is not α-exceptional then there is an element x ∈ S
which is not in the kernel of ϕ.

For applications we have in mind we look at the following situation.

Proposition 1. Let G0 be a cyclic group of prime order � > nα and let

b : G0 × G → G1

be a Z-bilinear map which is non-degenerate in the first variable, i.e. if b(P, Q) =
eG1

for all Q ∈ G then P = eG0
.

If S ⊂ G is not α-exceptional then there is an element Q ∈ S such that for
all P ∈ G0 \ {eG0

} we get

b(P, Q) has order �.

Proof. Take P ∈ G0 \ {eG0
} and define the homomorphism ϕP : G → G1 by

ϕP (Q) := b(P, Q).

Since b is non-degenerate in the first variable its image has order � > nα and so
by Corollary 2 there is an element Q ∈ S that is not contained in the kernel of
ϕP and hence b(P, Q) has order �. ��

3.2 Application to JC

Proposition 2. There are effectively computable (and reasonable small) num-
bers c0, c depending only on g such that for qk > c we get:

If α ≥ log(g)
k log(q) + c

g·k·q−k/2 log(q) then the set C(Fqk) is not α-exceptional.
If S ⊂ C(Fqk) generates 〈C(Fqk )〉 then S is not α-exceptional.

Proof. The basic ingredients for the proof are the Hasse-Weil bounds for points
on C and the fact that JC is rational over Fq. Our philosophy is that g is fixed
and qk becomes asymptotically large.

One knows that |C(Fqk)| ≥ qk − 2gqk/2. We use that in every divisor class we
have a uniquely determined divisor of the form D = P1 + · · ·+ Pr − rP∞, with
r ≤ g. Simple combinatorial considerations show that we can produce

(1/g!)(qk − 2gqk/2)g − c′1(g)qk(g−1) ≥ 1/g!qgk − c1(g)qk(g−1/2)

reduced divisor of degree ≤ g with points Pi ∈ C(Fqk) with a constant c1(g) not
depending on q and k.
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On the other side the Weil bounds yield that

n := |JC(Fqk)| ≤ qgk + c2(g)qk(g−1/2).

We are looking for reals α such that C(Fqk) is not α-exceptional. By definition
this means that m > n1−α.

For this it is sufficient that

1/g!qgk − c2(g)qk(g−1/2) > (qgk + c2(g)qk(g−1/2))1−α

or

α log(qgk + c2(g)qk(g−1/2))
> log(qgk + c2(g)qk(g−1/2)) − log(1/g!qgk − c2(g)qk(g−1/2)).

We use that log(qgk ± c · qk(g−1/2)) = gk log(q)± c · q−k/2 + O(q−k) and get that
it is sufficient to have

αgk log(q) > log(g!) + c(g)q−k/2

with a positive number c(g) depending only on g.
Hence, for α > log(g)

k log(q) + c(g)
g·qk/2 log(q) and q sufficiently large we get that C(Fqk)

is not α-exceptional. ��

Together with Proposition 1 this shows that the suggested pairing taking as
second input only one point instead of a divisor of full degree is non-degenerate
in the first argument. We now estimate the size of the set S generating 〈C(Fqk)〉.

Corollary 3. Let � be a prime, s ∈ N and �s dividing the exponent of JC(Fqk).
Assume that log(�) > 2log(g)

klog(q) and qk > c(g)2/g2. Assume that S is a subset of
C(Fqk) which generates 〈{P − P∞; P ∈ C(Fqk )}〉.

Then there are points points P ∈ S such that the order of the class of P −P∞
is divisible by �s.

Proof. Let G1 be the subgroup of JC(Fq) containing all elements whose order
is not divisible by �s. By assumption its index in JC(Fq) is a multiple of �, and
so we can apply Corollary 2 and conclude that there is an element P ∈ S such
that the class of P − P∞ is not contained in G1. ��

We have seen that if qk is not very small compared with g the order of 〈C(Fqk)〉
can be estimated (very roughly) by qgk and hence this group can be generated
by s ≤ gk log2(q) elements.

It is a well known fact from algorithmic group theory that s “randomly cho-
sen” elements in C(Fqk) generate 〈C(Fqk)〉.

Corollary 4. Let the assumptions of Corollary 3 be satisfied.
Assume that S is a randomly chosen finite subset in C(Fqk) with at least

gk log2(q) elements. Then S contains an element whose order is divisible by �s.
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So we obtained a lower bound on the probability of finding a point P ∈ C(Fqk)
such that T�(D̄1, P − P∞) is nontrivial, namely 1

gk log
2
(q) . This bound is likely to

be too large but it is the first proof that the pairing is non-degenerate.
We end this section by an important special case. If k = 2m, one can restrict

the choice of the point even further such that only the y-coordinate is in Fqk

and x ∈ Fqm which speeds up the evaluation of G in Algorithm 1 even further.
Noticing that the points (x, y) ∈ C(Fqk) for which x ∈ Fqm but y /∈ Fqm are on
the quadratic twist of C/Fqm one can use the Weil bounds for C(Fqm) instead
of C(Fqk ) in the previous results and obtain:

Proposition 3. Let the embedding degree k be even k = 2m and let q be suf-
ficiently large. Let C1(Fqk) be the subset of points (x, y) ∈ C(Fqk) for which
x ∈ Fqm but y /∈ Fqm . Then for a random element D̄ ∈ JC(Fq)[�] the value
T�(D̄, P − P∞) is nontrivial.

4 Applications

In this section we show how one can use the proposed choice of P − P∞ as
second argument for the applications. We first provide modifications of the usual
protocols. As examples we consider ID-based encryption and short signatures.
We assume our reader to be familiar with these protocols and only mention the
differences.

Throughout this section we assume k > g as this is always the situation in ap-
plications. This means that a point from C(Fqk) which is not defined over a sub-
field cannot occur in the support of D1 and hence, the pairing of T�(D̄1, P − P∞)
is non-trivial and we can use the point P as evaluation point in Algorithm 1. To
have a shorthand we define T ′

�(D̄1, P ) = T�(D̄1, P − P∞) and use T̃� resp. T̃ ′
� to

include the final powering.
We state the general case for arbitrary k here. If k is even we can further

improve the speed by choosing P ∈ C1(Fqk) instead of in C(Fqk) as shown in
Proposition 3. Note that the following protocols do not require a distortion map.

ID-Based Encryption. We assume that each participant can be uniquely
identified by a bitstring ID. We use a different hash function as one would use
in the direct generalization of the protocol proposed in [8]. Namely we assume
that there is a hash function h1 : {0, 1}∗ → C(Fqk), such that one can uniquely
associate a point to every identity. This can be done by hashing ID to an element
of Fqk and then increasing it until it is the x-coordinate of a point. The result
h1(ID) is used as public key of ID. We point out that the image space is large
enough as one assumes that the DLP is hard in F∗

qk .
Let EK and DK denote en- and decryption under the key K and let K be a

key derivation function which operates on the output of the pairing. The trusted
authority publishes the curve C/Fq, the embedding degree k and a generator
D̄1 ∈ JC(Fq)[�], and the public key D̄TA = [aTA]D̄ keeping secret the private
key aTA.



Fast Bilinear Maps from the Tate-Lichtenbaum Pairing 475

Algorithm 2 (Identity Based Encryption)
IN: message m, (JC(Fq)[�], D̄, D̄TA), identity of recipient ID
OUT: ciphertext (D̄r, c).

1. r ∈R N
2. D̄r ← [r]D̄
3. S ← T̃ ′

�(D̄TA, h1(ID))r

4. ← EK(S)(m)
5. return (D̄r, c)

Hence, the sender profits from the modified pairing as T ′
� is faster to compute.

The private key of ID is obtained from TA as D̄ID = [aTA]h1(ID)− P∞ which
is also computed faster as usual.

To decrypt the recipient computes

S ← T̃�(D̄r, D̄ID) and m ← DK(S)(c).

As
T̃�(D̄r, D̄ID) = T̃�(D̄r, h1(ID)− P∞)aTA = T̃ ′

�(D̄TA, h1(ID))r

the scheme works as specified.

Short Signatures. Pointcheval and Okamoto [35], show how a Gap-DH group
can be used to design a signature scheme. Boneh, Lynn, and Shacham [10] give
a realization using supersingular elliptic curves with the Tate pairing as bilinear
structure.

The system parameters are the group JC(Fq)[�], the embedding degree k, and
a hash function h1 : {0, 1}∗ → JC(Fq)[�], which would also be needed in the
direct generalization of [10] to hyperelliptic curves. As basis of the system a
point P ∈ C(Fqk) is fixed and it is checked that for one (and therefore for all)
divisor classes D̄1 ∈ JC(Fq)[�] the pairing T ′

�(D̄1, P ) is non-trivial. Since this is
done at the set-up of the system even a lower probability of success would be
acceptable.

The signers public key is given by D̄A = [a]P − P∞. This operation is sped-up
but it is used only once. To sign message m one computes S = [a]h1(m) which
is an element of JC(Fq) and compresses the result [24,40]. For fixed size of �
one has a smaller q for larger g by Hasse-Weil, thus the space requirement is
equal to that of a point on an elliptic curve with the same group size. Hence,
the signatures are short.

The verifier accepts if (T�(h1(m), D̄A)/T ′
�(S, P ))(q

k−1)/� equals 1.
This means that the verifier has the advantage that the first pairing is faster

to compute and the signer needs to compute in Fq only which offers huge
advantages.

The fact that T ′
� is non-degenerate when applied to P implies that P − P∞

has order a multiple of �. So the DLP is at least as hard as in JC(Fq)[�] and no
extra weakness is introduced.
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5 Parameter Choices

While for elliptic curves and curves of genus 2 the generic attacks on the DLP
like Pollard rho are the fastest, index calculus attacks become more powerful
with increasing genus and the double large prime variant [22] is currently the
most powerful attack for medium sized genera.

Non-supersingular curves are particularly interesting over prime fields because
of the faster field arithmetic and because the Coppersmith method of solving the
DLP in F∗

qk is very efficient for small characteristic.
Assuming a security level of 280 (corresponding to 160-bit ECC) and assuming

that this corresponds to 1024-bit DL in finite fields we obtain the following
recommendations for the size of q and of k. Both parameters are rounded to
the nearest integer and q is determined based on [22] and then k is computed.
Rounding errors imply that some adjustment for q is necessary, e. g. for elliptic
curves and k = 6 we need to choose a slightly larger base field of log2 q = 171
bits to ensure a large enough resulting field.

genus g = 1 g = 2 g = 3 g = 4
Pollard’s rho q1/2 q q3/2 q2

Double large prime – – q4/3 q3/2

log2 q 160 80 60 54
k 6 13 17 20

Even though the timings for arithmetic on genus 4 curves are slower than on
smaller genus curves the advantage of gaining a factor of 4 in the pairing com-
putation should outweigh that drawback. On the other hand we do not know
how to construct a genus 4 curve with embedding degree 20 and the CM theory
is not developed yet.

6 Conclusion

In this paper we have shown how to speed up pairing-based protocols on hy-
perelliptic curves by applying the Tate-Lichtenbaum pairing to special divisors
in JC(Fqk). We made clear that these choices are possible in the applications
and lead to savings in ID-based encryption and short signatures on hyperelliptic
curves of genus g > 1. The same advantages apply to tripartite key-exchange, hi-
erarchical encryption and encryption with keyword search. We like to stress that
this improvement for computing the Tate-Lichtenbaum pairing on hyperelliptic
curves cannot be used for elliptic curves.
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Abstract. The security and performance of pairing based cryptography
has provoked a large volume of research, in part because of the exciting
new cryptographic schemes that it underpins. We re-examine how one
should implement pairings over ordinary elliptic curves for various prac-
tical levels of security. We conclude, contrary to prior work, that the
Tate pairing is more efficient than the Weil pairing for all such security
levels. This is achieved by using efficient exponentiation techniques in
the cyclotomic subgroup backed by efficient squaring routines within the
same subgroup.1

1 Introduction

In commercial cryptographic software libraries one typically employs Occam’s
Razor in limiting the number of implemented primitives and schemes to a mini-
mum. Occam’s razor being a philosophical approach to science, often rephrased
as “If you have two equally likely solutions to a problem, pick the simplest”. The
advantages of this approach are threefold: it reduces the programming, main-
tainence and security validation workload; it enables one to specialise and hence
highly optimise the core operations; and it reduces the library footprint and us-
age of system resources. Around the time it was first proposed, one of the main
criticisms levelled at standard elliptic curve cryptography was that there were
too many options; it was hard for non-experts to decide on and construct the
types of field and curve needed to satisfy performance and security constraints.
Two decades later, pairing based cryptography is in a similar state in the sense
that there are a huge range of parameterisation options, algorithmic choices and
subtle trade-offs between the two. Hence, there is a real need to focus on a family
of parameters which are flexible but offer efficient arithmetic and allow one to
focus on a limited number of cases.

1 The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
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and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.
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Generally speaking, a pairing is a non-degenerate bilinear map

t : G1 × G2 −→ GT .

Here we assume this pairing takes the concrete form

t̂ : E(Fp) × E(Fpk/2) −→ F×
pk

where E is the quadratic twist of an elliptic curve E defined over Fpk/2 . We
restrict our attention to the case of ordinary elliptic curves and assume that
#E(Fp) is divisible by a large prime n which also divides pk − 1 i.e., n is the
order of the subgroups on which the pairing based protocols will be based. We
let the respective subgroups of order n of the three groups involved be denoted
G1G2 and GT as is common in various papers on the subject.

Koblitz and Menezes [10] introduced the concept of pairing friendly fields.
These are Kummer extensions of Fp defined by the polynomial

f(X) = Xk + f0

for a values of p ≡ 1 (mod 12) and k = 2i3j . Generally one assumes that k is
even, which aids in efficiency due to the well known denominator elimination
trick. Following [10] we particularly focus on the cases k = 6, 12 and 24. We
let f(θ) = 0 and define Fpk = Fp[θ]. Many protocols based on pairings perform
arithmetic in the cyclotomic subgroup of F×

pk , which is the subgroup of order
Φk(p), where Φk(p) is the kth cycloctomic polynomial evaluated at p. We denote
this subgroup by GΦk(p); the group GT in the pairing above is contained in
GΦk(p). Hence if one is to implement pairing based protocols efficiently with
such fields then one needs to be able to implement arithmetic efficiently.

The conclusion of [10] is that for high security levels the Weil pairing is to
be preferred over the Tate pairing. The main result of this paper is that by
optimising the exponentiation method used in the Tate pairing calculation one
can in fact conclude the opposite: that in all cases the Tate pairing is the more
efficient algorithm for all practical security levels.

In addition, we also look at efficient arithmetic in the group GΦk(p) which will
speed up both the Tate pairing and various protocols. This is inspired by work
of Lenstra and Stam [14,15] who introduce such efficient arithmetic in a specific
family of finite fields of degree six, which are different from the pairing friendly
fields. In particular, by restricting to k = 6 Lenstra and Stam present algorithms
for arithmetic in the cyclotomic extension of Fp defined by the polynomial

g(X) = X6 + X3 + 1

when p ≡ 2 or 5 (mod 9). We shall call such constructions cyclotomic fields
of degree 6 in this paper. Lenstra and Stam present efficient squaring routines
both for the finite field Fp6 and for the cyclotomic subgroup GΦ6(p) of order
Φ6(p), again GT is contained in GΦ6(p). We let g(ζ) = 0 and define Fp6 , in this
case, by Fp[ζ]. We shall describe how the use of cyclotomic fields, as opposed
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to the pairing friendly fields, can provide more efficient pairing algorithms when
k = 6. We present an analogue of these results for pairing friendly fields which
provides some efficiency improvement, but not as much as that achieved by
Lenstra and Stam for cyclotomic fields of degree six. We leave it as an open
research problem to generalise the results of Lenstra and Stam to cyclotomic
fields of degree different from six. The only generalisation known is for fields of
degree 6 · 5m [8], for which Lenstra and Stam’s technique trivially applies.

The paper is organised as follows. In Section 2 we recap on the most efficient
field arithmetic known for the two cases of finite fields mentioned above. In
Section 3 we briefly recap on some standard formulae for the cost of elliptic
curve operations. In Section 4 we recap on the model for estimating the cost
pairings which was proposed by Koblitz and Menezes. Then in Section 5 we
detail the implications of this model for our choice of finite fields.

2 Finite Field Operations

We let m, M, M (resp. s, S, S) denote the time for multiplication (resp. squaring)
in the fields Fp, Fpk/2 and Fpk . In our analysis we shall assume that addition
operations are cheap, however in a practical implementation for certain bit sizes
the operation counts and algorithm choices we give may not be optimal due to
this simplifying assumption.

We first note that if one is computing products (resp. squares) of polynomials
of degree 2i3j−1 over Fp then using the Karatsuba and Toom-Cook methods for
multiplication and squaring this requires v(k) multiplications (resp. squarings)
in the field Fp, where v(k) = 3i5j.

2.1 Pairing Friendly Fields

As before we let k = 2i3j ≥ 6, let p denote a prime congruent to 1 modulo 12
and modulo k and define Fpk via the polynomial f(X) = Xk + f0. We assume
throughout that f0 has been chosen so that multiplication by f0 can be performed
quickly by simple additions rather than a full multiplication. Arithmetic in the
subfield Fpk/2 is performed using the polynomial Xk/2+f0, and mapping between
the two representations is relatively straightforward.

The best algorithms for multiplication and squaring in Fpk and Fpk/2 are the
standard ones based on Karatsuba and Toom-Cook. Hence, in this case we obtain

M = M/3 S = S/3

and
M ≈ v(k)m S ≈ v(k)s

where v(k) = 3i5j .
Inversion in the field Fpk is computed by reduction to inversion in the subfield

Fpk/2 . If we let α =
∑k−1

i=0 aiθ
i ∈ Fpk then we can write

α = α0 + α1θ
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where α0, α1 ∈ Fpk/2 and are given by

α0 =
k/2−1∑

i=0

a2iθ
2i and α1 =

k/2−1∑
i=0

a2i+1θ2i.

We can thus compute
Δ = α2

0 − θ2α2
1,

and
α−1 =

α0 − α1θ

Δ
.

Inversion in Fpk is therefore accomplished using two squarings, one inversion,
and two multiplications in Fpk/2 . Similarly, using the same idea one can reduce
inversion in a cubic extension to three squarings, eleven multiplications and one
inversion in the base field [9]. Iterating down through the subfields, for pairing-
friendly fields inversion can thus be performed with just one inversion in Fp, and
a handful of multiplications. We summarize these costs, for the extensions which
will interest us,

I2 = 2s + 2m + ι, I3 = 3s + 11m + ι,
I4 = 8s + 8m + ι, I6 = 13s + 21m + ι,
I8 = 26s + 26m + ι, I12 = 43s + 51m + ι,
I24 = 133s + 141m + ι.

where It denotes the cost of inversion in Fpt and ι denotes the cost of inversion
in Fp.

The Frobenius operation in pairing friendly fields is also efficiently computed
as follows. If we define Fpk = Fp[θ]/(f(θ)) then the Frobenius operation on the
polynomial generator θ can be easily determined via

θp = θk(p−1)/k+1 = (−f0)(p−1)/kθ.

For later use we let g = (−f0)(p−1)/k ∈ Fp hence θp = g · θ. Also now note that
powers of the Frobenius operation are also easy to compute via

θpi

= gi · θ.

We also note that since k is even and −f0 is a quadratic non-residue that we
have

gk/2 = (−f0)(p−1)/2 = −1.

To summarize we give the operation counts for the various cases are described
in Table 1.

We now turn to the case of arithmetic in the subgroup GΦk(p). For this sub-
group we have that inversion comes for free. Let α ∈ GΦk(p), then since Φk(p)
divides pk/2 + 1 we have that

α−1 = αpk/2

.
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Table 1. Cost of operations in Fpk/2 and Fpk

Fpk/2 Fpk

k Mul Sqr Mul Sqr
6 5m 5s 15m 15s
12 15m 15s 45m 45s
24 45m 45s 135m 135s

This leads to an inversion operation which can be performed using only k/2
negations in Fpk .

We can also improve the performance of squaring in this subgroup using a
trick originally proposed by Lenstra and Stam [14,15] in the context of finite
extension fields defined by cyclotomic polynomials of degree 6. We first define

α =
k−1∑
i=0

aiθ
i

where we now think of the coefficients ai as variables. We then compute sym-
bolically αpk/3

and αpk/6

. One can then derive a set of equations defining the
elements of the group GΦk(p) via

αpk/3 · α − αpk/6

=
k−1∑
i=0

viθ
i.

The variety defined by v0 = v1 = · · · = vk−1 = 0 defines the set of elements of
GΦk(p). This follows since

Φk(X) = Xk/3 − Xk/6 + 1

for all values of k arising in pairing friendly fields. As an example for the case
k = 6 we obtain the set of equations

v0 = −a0 + a0
2 + f0a5a1 − f0a3

2 + f0a2a4,

v1 = g · (−a1 + 2f0a5a2 − f0a3a4 + a0a1) ,

v2 = (1 − g) ·
(
a2 − a1

2 + a0a2 − f0a5a3 + f0a4
2) ,

v3 = a3 + 2a0a3 − a2a1 + f0a5a4,

v4 = g ·
(
a0a4 + f0a5

2 + a3a1 − a2
2 + a4
)

,

v5 = (1 − g) · (−a5 + a0a5 − 2a4a1 + a3a2) .

Note that for any k × k matrix Γ that

α2 = α2 + b · (Γ · vt),

where b = (1, θ, θ2, . . . , θk−1) and v = (v0, v1, . . . , vk−1). Hence, to find different
forms of the squaring operation we simply need to select a matrix Γ which
produces equations for squaring which are efficient.
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A choice for Γ which seems to work well for k = 6, 12 and 24 is to set Γ =
diag(d1, d2, d3, d1, d2, d3, . . . , d1, d2, d3) where

d1 = 2, d2 = 2gk/6 − 2, d3 = −2gk/6.

In this case for k = 6 we obtain the following formulae for squaring, if β =∑5
i=0 biθ

i = α2,

b0 = −3 f0a3
2 + 3 a0

2 − 2 a0,

b1 = −6 f0a5a2 + 2 a1,

b2 = −3 f0a4
2 + 3 a1

2 − 2 a2,

b3 = 6 a0a3 + 2 a3,

b4 = 3 a2
2 − 3 f0a5

2 − 2 a4,

b5 = 6 a4a1 + 2 a5.

The formulae for k = 12 and k = 24 can be found in the Appendix.
Ignoring multiplication by f0 and by small constants we then derive the Table

2 detailing the comparative cost of squaring in both Fpk and the subgroup GΦk(p).
Hence, we see that we have a significant improvement in the squaring operation
for the subgroup GΦk(p) although this improvement decreases as k increases.

Table 2. Cost of squaring in Fpk and GΦk(p) for various values of k

k Fpk GΦk(p)

6 15s 6s + 3m
12 45s 12s + 18m
24 135s 24s + 84m

2.2 Cyclotomic Fields of Degree 6

We recap on the techniques of [14,15] for the finite fields Fp[ζ], with p ≡ 2
(mod 9). Elements in Fp6 are represented in the basis {ζ, ζ2, ζ3, ζ4, ζ5, ζ6}. Using
this representation multiplication in Fp6 can be performed using 15 multiplica-
tions in Fp (note that [14] gives the figure as 18 multiplications as the paper
only considers Karatsuba and not Toom-Cook multiplication).

Squaring can be performed more efficiently using the fact that if we write
α = α0ζ + α1ζ4, where αi are polynomials in ζ of degree at most two, then one
has

α2 = (α0 − α1)(α0 + α1)ζ2 + (2α0 − α1)α1ζ5.

Since, the αi are of degree at most two this above formulae requires 10 multipli-
cation in Fp to perform a squaring operation in Fp6 .

Arithmetic in the subfield Fp3 is performed as in [9]. We set ψ = ζ + ζ−1 and
define Fp3 = Fp[ψ]. As a basis for Fp3 we take {1, ψ, ψ2 − 2}. Via Toom-Cook
multiplication (resp. squaring) requires 5 multiplications (resp. squares) in Fp.
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As noted in Section 2.1 inversion in Fp3 can be performed in 11 multiplications
in Fp and one inversion in Fp.

Using this subfield inversion an inversion operation can be defined for Fp6 .This
inversion is carried out, in the language of [9], by mapping our Fp6 element to
the representation F2 and then performing the inversion in that representation
and then mapping back to our representation. The conversion between repre-
sentations requires four Fp multiplications, whilst the inversion in the F2 repre-
sentation requires 4S plus application of the inversion in Fp3 . Hence, requiring
a total of 26 multiplications in Fp and one inversion in Fp.

We now turn to the subgroup GΦ6(p). As before, inversion comes for free via
the operation of the Frobenius map. Multiplication is performed just as for the
full finite field, however squaring can be performed significantly faster using
the equations contained in [14,15]. If we let α =

∑5
i=0 aiζ

i+1 ∈ GΦ6(p) and set
β =
∑5

i=0 biζ
i+1 = α2 then we have

b0 = 2a1 + 3a4(a4 − 2a1),
b1 = 2a0 + 3(a0 + a3)(a0 − a3),
b2 = −2a5 + 3a5(a5 − 2a2),
b3 = 2(a1 − a4) + 3a1(a1 − 2a4),
b4 = 2(a0 − a3) + 3a3(2a0 − a3),
b5 = −2a2 + 3a2(a2 − 2a5).

Hence, squaring requires six Fp multiplications. The operation counts for the
various cases are as summarised by Table 3.

Table 3. Operation counts when k = 6

Fp3 Fp6 GΦ6(p)

Mul Sqr Mul Sqr Mul Sqr
5m 5m 15m 10m 15m 6m

2.3 Exponentiation in GΦk(p)

Finally, we address the issue of exponentiation, by an exponent e, of elements
in the cyclotomic subgroup GΦk(p) of F×

pk which has order divisible by n. Using
Lucas sequences [13] this can be accomplished in time

CLuc(e) = (M + S) log2 e.

However, one could also use exponentiation via standard signed sliding win-
dow methods [4] since inversion is cheap in GΦk(p). If e ≤ p then the best way
to perform the exponentiation, using windows of width at least r, will take time

CSSW(e) = S(1 + log2 e) + M

(
log2 e

r + 2
+ (2r−2 − 1

)
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where S denotes the time needed to perform a squaring operation in GΦk(p). We
also need to store 2r−2 elements during the exponentiation algorithm.

When e ≥ p, as is the case in the final powering of the algorithm to compute
the Tate pairing, one uses the fact that we can perform the Frobenius operation
on GΦk(p) for free. Thus we write e in base p, and perform a simultaneous
exponentiation. Using the techniques of Avanzi [1], we can estimate the time
needed to perform such a multi-exponentiation by

CbigSSW(e) = (d + log2 p)S +
(

d(2r−1 − 1) +
log2 e

r + 2
− 1
)

M

using windows of width r, where d = %log2 e/ log2 p&. The precomputation stor-
age can be reduced using techniques described in [2].

Note that for k = 6 one can also use XTR [11,16] to gain a slight efficiency
advantage over these methods if this is desirable [9], at a cost of altering particu-
lar protocols accordingly since multiplication is not straightforward in this case.
For k = 12 and 24, one can also employ XTR defined over Fp2 and Fp4 respec-
tively [12], however further work is required to determine if arithmetic can be
made as efficient as in the original scheme for cases of interest in pairing-based
cryptography.

3 Elliptic Curve Operations

In pairing based protocols we also need to conduct elliptic curve group opera-
tions. These are either on the main base curve E(Fp), or on the twisted curve
E(Fpk/2). We assume these curves take the form

E(Fp) : Y 2 = X3 − 3X + B

and
E(Fpk/2) : χY 2 = X3 − 3X + B

where χ is a quadratic non-residue in Fpk/2 for which multiplication by χ is for
free. Whether one should use affine or standard Jacobian projective coordinates
are used, depends on the ratio ι/m and on the size of the k/2. It turns out that in
some instances arithmetic in E(Fpk/2) is better performed in affine coordinates.
The various point addition and doubling times are summarized in the Table 4.

Table 4. Elliptic curve operation counts over Fp and Fpk/2

E(Fp) E(Fpk/2)
Projective Affine

Addition (A) 12m + 4s 12M + 4S 2M + 1S + Ik/2

Mixed Addition (AM) 8m + 3s 8M + 3S -
Doubling (D) 4m + 4s 4M + 4S 2M + 2S + Ik/2
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We assume that exponentiation is performed via a signed sliding window
method and mixed/affine addition

ECSSW(e) = D(1 + log2 e) + AM

(
log2 e

r + 2
+ 2r−2 − 1

)
.

where the exact optimal choice for r depends on the size of e.
In some instances we wish to multiply by a random element in Zn, however

in other instances (for example in the MapToPoint operation within the Boneh–
Franklin encryption scheme [5]) we need to multiply by the cofactor. If we let
log2 p = ρ·log2 n then the quantity 2ρ measures how big the elliptic curve cofactor
is for the curve E(Fp); a similar measure for the twisted curve is (kρ/2−1) log2 n.

4 Application to Pairing Based Cryptography

In this section we wish to investigate the application of our techniques to pair-
ing based cryptography in particular we focus on the case of non-supersingular
curves of embedding degree k ≥ 6. We follow the methodology of Koblitz and
Menezes [10] which we recap on here, however we express our formulae in terms
of total number of Fp operations as opposed to operations per bit. This is be-
cause this enables us to compare our sliding windows method in a more accurate
manner and to also compare how other components of the protocols are affected
by the choice of field.

Following Koblitz and Menezes we look at the cost of computing a Full-Miller
operation or a Miller-Lite operation. The cost of these two operations, assuming
projective coordinates are used, is

CFull = (km + 4S + 6M + S + M) log2 n

CLite = (4s + (k + 7)m + S + M) log2 n.

In some instances one can more easily compute the Full-Miller algorithm by
using affine coordinates in the main loop. In this case the cost is given by

CFull = (2S + 2M + Ik/2 + km + S + M) log2 n.

In computing the Tate pairing one executes one Miller-Lite operation and then
an exponentiation for an exponent given by Φt(p)/n in the subgroup GΦk(p). The
bit length of Φt(p)/n is estimated by

φ(k) log2 p − log2 n,

which can be expressed as

(φ(k)ρ − 1) log2 n.

Thus a Tate pairing computation requires time

CTate = CLuc(Φt(p)/n) + CLite



High Security Pairing-Based Cryptography Revisited 489

or
CTate = CbigSSW(Φt(p)/n) + CLite.

In both of the above formulae for the Tate pairing we have ignored the inversion
needed to take the input of Miller-Lite into the subgroup GΦk(p), this is consistent
with the analysis of Koblitz and Menezes but does slightly underestimate the
cost in both cases.

The Weil pairing as pointed out by Koblitz and Menezes, could be more
efficient, as it does not require an exponentiation by a large number. It requires
time

CWeil = CLite + CFull + S.

We shall show in all cases of cryptographic relevance that the Weil pairing is
always slower than the Tate pairing.

5 Results

In what follows we make the simplifying assumption that m ≈ s. We wish to in-
vestigate what happens to pairing based protocols as the security level increases.
The parameter sizes we fix on to illustrate our discussion we give in Table 5.
We do not discuss how such curves are generated, nor do we make use of special
properties of the curves. For example when k = 12 with current technology one
can only achieve n ≈ p by using the method of Barreto and Naehrig [3]. This
results in curves with complex multiplication by D = −3, our analysis takes no
account of the special optimizations which can be applied to such curves.

Table 5. Parameter sizes for various security levels

Case Security k log2 n log2 p

A 80 6 160 160
B 128 6 256 512
C 128 12 256 256
D 192 6 384 1365
E 192 12 384 683
F 256 6 512 2560
G 256 12 512 1280
H 256 24 512 640

For each case we first present, in Table 6, the operation counts, in terms of
multiplications in Fp, for the operations which do not appear to depend on the
exact finite field we choose to use, namely the elliptic curve operations. We denote
by (r) the size of the windows which produces the smallest operation count, the
column n corresponds to exponentiation by a random integer of size n, whilst c
corresponds to multiplication by the relevant cofactor. We limit window sizes to
at most 9 bits, as otherwise the required look up table is likely to be prohibitively
expensive. So as to get some idea about the relative merits of projective vs affine
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Table 6. Operation count for elliptic curve calculations

E(Fp) E(Fpk/2)
Case n c n c

A 1614 (4) - 8071 (4) 15739 (5)
B 2535 (5) 2535 (5) 12676 (5) 60767 (8)
C 2535 (5) - 34813 (5)(A) 169000 (7)(A)
D 3760 (6) 9369 (6) 18802 (5) 172356 (8)
E 3760 (5) 2946 (5) 51801 (5)(A) 483113 (8)(A)
F 4973 (6) 19236 (7) 24865 (6) 329585 (9)
G 4973 (6) 7373 (6) 68671 (6)(A) 926142 (9)(A)
H 4973 (6) 1229 (4) 164573 (6)(A) 2.2 ·106 (9)(A)

coordinates we made the assumption that ι/m ≈ 10 and in the table if the best
performance for a given parameter set was using affine coordinates with give the
multiplication count for this curve and denote this by an (A). We see that when
k ≥ 12 that it may make sense to use affine coordinates for the arithmetic in G2.

We now turn to the operations which depend on the field representation, i.e.
whether we use a pairing friendly or a cyclotomic field extension. There are two
operations which are important, the pairing computation itself and exponenti-
ation in GΦk(p) by an element of Zn. The pairing computation can itself either
be computed by the Weil or Tate pairings. The results, in terms of estimated
multiplications in Fp, are presented in Table 7. The (r) in the Tate column de-
notes the window size in the final exponentiation step, if Lucas sequences are
faster we denote this by (L) and the operation count is for the application of
Lucas sequences. In all cases using the Weil pairing method which used affine
coordinates in the Full-Miller operation loop was the most efficient.

We see that for all fields the Tate pairing is always more efficient than the Weil
pairing, at least for the security sizes that are likely to be used in practice. This is
more due to the use of the efficient exponentiation algorithm as compared to the

Table 7. Operation count for pairing and GΦk(p) calculations

Pairing Friendly Cyclotomic Field
Pairing Exp in Pairing Exp in

Case Weil Tate GΦk(p) Weil Tate GΦk(p)

A 19855 9120 (L) 1411 (4) 18250 8247 (3) 1411 (4)
B 31759 18738 (5) 2195 (5) 29194 15916 (5) 2195 (5)
C 83757 43703 (4) 3502 (5) - - -
D 47631 34664 (6) 3237 (5) 43786 29643 (6) 3237 (5)
E 125613 81751 (5) 5093 (5) - - -
F 63503 56677 (6) 4263 (6) 58378 46431 (6) 4263 (6)
G 167469 127831 (6) 6633 (6) - - -
H 446087 331078 (5) 13743 (6) - - -
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efficient squaring algorithm for GΦk(p). In addition Lucas sequences are only more
efficient than the signed sliding window method for very small security param-
eters. We also did some calculations with fixed k and increasing p to very large
levels and always found that the Weil pairing was slower than the Tate pairing.

To compare the different values of k we need to estimate the relative difference
in time needed to compute a multiplication in Fp, for the different sizes of p.
If we assume that each finite field multiplication is performed using a standard
interleaved Montgomery multiplication then the total number of 32-bit by 32-bit
multiplication instructions which are needed to be performed per Fp multipli-
cation is given by

2 · t · (t + 1),

where t = log2 p/32. This leads us to Table 8, where we present the number of
32-bit by 32-bit multiplication instructions needed for the various operations.

Table 8. 32 × 32 bit multiplications required for various operations

Curve Operations Pairing Friendly Cyclotomic Field
E(Fp) E(Fpk/2) Exp in Exp in

Case n c n c Pairing GΦk(p) Pairing GΦk(p)

A 9.7 · 104 - 4.8 · 105 9.4 · 104 5.4 · 105 8.4 · 104 4.9 · 105 8.4 · 105

B 1.3 · 106 1.3 · 106 6.8 · 106 3.3 · 107 1.0 · 107 1.1 · 106 8.6 · 106 1.1 · 106

C 3.6 · 105 - 5.0 · 106 2.4 · 107 6.2 · 106 1.1 · 106 - -
D 1.4 · 107 3.4 · 107 7.0 · 107 6.4 · 108 1.3 · 108 1.2 · 107 1.1 · 108 1.2 · 107

E 3.6 · 106 2.8 · 106 4.9 · 107 4.6 · 108 7.8 · 107 4.8 · 106 - -
F 6.4 · 107 2.5 · 108 3.2 · 108 4.3 · 109 7.3 · 108 5.5 · 107 6.0 · 108 5.5 · 107

G 1.6 · 107 2.4 · 107 2.2 · 108 3.0 · 109 4.2 · 108 2.2 · 107 - -
H 4.0 · 106 1.0 · 106 1.4 · 108 1.8 · 109 2.8 · 108 1.1 · 107 - -

From Table 8 one can see that the main advantage in using values of k which
are larger than 6 is in the basic elliptic curve operations over Fp, rather than in
the pairing computation. For the pairing computation one gains some advantage
for using large values of k, but this is not as pronounced as for the elliptic curve
operations.

However, elliptic curve operations are relatively cheap in comparison to pair-
ing calculation and so the performance improvement will not be so pronounced.
Except, for protocols in which one party only needs to perform elliptic curve
operations in Fp, such as the encryptor in the Sakai–Kasahara KEM [7]. It does
however imply that for pairing based protocols one should not neglect selecting
parameter values which speed up the elliptic curve operations and not just the
pairing calculation.

However, our estimates are on the conservative side for arithmetic in cyclo-
tomic fields at high security levels. This is for a number of reasons. The overhead
in not having to deal with different values of k and f0 means that the library over-
head in using cyclotomic fields of degree six will be less than for pairing friendly
fields. Recall, we have not given accurate cycle counts, but simply estimated the
number of multiplication instructions needed.
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One should also bear in mind that larger values of k mean that one can shrink
the bandwidth required in communication if one is communicating elements in
E(Fp), since a larger value of k corresponds to a smaller value of p.
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A Squaring Formulae for GΦk(p) for Pairing Friendly
Fields and k = 12 and k = 24

A.1 k = 12

b0 = 3 a0
2 − 6 f0a3a9 − 3 f0a6

2 − 2 a0,

b1 = −6 f0a11a2 − 6 f0a5a8 + 2 a1,

b2 = 3 a1
2 − 6 f0a4a10 − 3 f0a7

2 − 2 a2,

b3 = −6 f0a6a9 + 6 a0a3 + 2 a3,

b4 = −3 f0a8
2 − 6 f0a11a5 + 3 a2

2 − 2 a4,

b5 = −6 f0a7a10 + 6 a4a1 + 2 a5,

b6 = −3 f0a9
2 + 6 a0a6 + 3 a3

2 − 2 a6,

b7 = 6 a5a2 − 6 f0a11a8 + 2 a7,

b8 = −3 f0a10
2 + 3 a4

2 + 6 a7a1 − 2 a8,

b9 = 6 a6a3 + 6 a0a9 + 2 a9,

b10 = −3 f0a11
2 + 3 a5

2 + 6 a8a2 − 2 a10,

b11 = 6 a10a1 + 6 a7a4 + 2 a11.

A.2 k = 24

b0 = −2 a0 + 3 a0
2 − 3 f0a12

2 − 6 f0a3a21 − 6 f0a6a18 − 6 f0a9a15,

b1 = 2 a1 − 6 f0a2a23 − 6 f0a5a20 − 6 f0a8a17 − 6 f0a11a14,

b2 = −2 a2 − 6 f0a4a22 − 6 f0a10a16 − 3 f0a13
2 − 6 f0a7a19 + 3 a1

2,

b3 = 2 a3 − 6 f0a9a18 + 6 a0a3 − 6 f0a6a21 − 6 f0a12a15,

b4 = −2 a4 − 3 f0a14
2 − 6 f0a5a23 − 6 f0a8a20 − 6 f0a11a17 + 3 a2

2,

b5 = 2 a5 − 6 f0a13a16 − 6 f0a10a19 + 6 a4a1 − 6 f0a7a22,

b6 = −2 a6 + 6 a0a6 − 3 f0a15
2 − 6 f0a12a18 − 6 f0a9a21 + 3 a3

2,

b7 = 2 a7 − 6 f0a14a17 − 6 f0a11a20 − 6 f0a8a23 + 6 a2a5,

b8 = −2 a8 − 6 f0a10a22 − 6 f0a13a19 + 3 a4
2 + 6 a7a1 − 3 f0a16

2,

b9 = 2 a9 + 6 a0a9 − 6 f0a12a21 − 6 f0a15a18 + 6 a6a3,

b10 = −2 a10 − 3 f0a17
2 − 6 f0a11a23 − 6 f0a14a20 + 6 a2a8 + 3 a5

2,

b11 = 2 a11 − 6 f0a13a22 − 6 f0a16a19 + 6 a10a1 + 6 a7a4,

b12 = −2 a12 + 6 a0a12 + 6 a9a3 − 3 f0a18
2 − 6 f0a15a21 + 3 a6

2,

b13 = 2 a13 − 6 f0a17a20 − 6 f0a14a23 + 6 a5a8 + 6 a2a11,

b14 = −2 a14 + 6 a13a1 + 6 a10a4 − 3 f0a19
2 − 6 f0a16a22 + 3 a7

2,

b15 = 2 a15 + 6 a0a15 + 6 a12a3 + 6 a9a6 − 6 f0a18a21,

b16 = −2 a16 − 3 f0a20
2 − 6 f0a17a23 + 6 a5a11 + 6 a2a14 + 3 a8

2,
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b17 = 2 a17 − 6 f0a19a22 + 6 a13a4 + 6 a10a7 + 6 a16a1,

b18 = −2 a18 + 6 a0a18 + 6 a15a3 + 6 a12a6 − 3 f0a21
2 + 3 a9

2,

b19 = 2 a19 − 6 f0a20a23 + 6 a5a14 + 6 a8a11 + 6 a2a17,

b20 = −2 a20 − 3 f0a22
2 + 6 a19a1 + 6 a16a4 + 6 a13a7 + 3 a10

2,

b21 = 2 a21 + 6 a0a21 + 6 a18a3 + 6 a15a6 + 6 a12a9,

b22 = −2 a22 − 3 f0a23
2 + 6 a5a17 + 6 a8a14 + 6 a2a20 + 3 a11

2,

b23 = 6 a16a7 + 6 a13a10 + 6 a19a4 + 6 a22a1 + 2 a23.
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Abstract. Elliptic curves have a well-known and explicit theory for the
construction and application of endomorphisms, which can be applied to
improve performance in scalar multiplication. Recent work has extended
these techniques to hyperelliptic Jacobians, but one obstruction is the
lack of explicit models of curves together with an efficiently computable
endomorphism. In the case of hyperelliptic curves there are limited ex-
amples, most methods focusing on special CM curves or curves defined
over a small field. In this article we describe three infinite families of
curves which admit an efficiently computable endomorphism, and give
algorithms for their efficient application.
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1 Introduction

The use of efficiently computable endomorphisms for speeding up point multipli-
cation on elliptic curves is well-established for elliptic curves and more recently
has been used for hyperelliptic curves. Koblitz [10] proposed τ -adic expansions
of the Frobenius endomorphism on curves over a small finite fields. Gallant,
Lambert, and Vanstone [6] later proposed using an expression

[k]P = [k0]P + [k1]φ(P )

on more general curves to evaluate multiplication by k on a point P , using an
efficiently computable endomorphism φ. Various improvements and combina-
tions of these methods have been proposed for both elliptic and hyperelliptic
curves [11,17,2].

One feature of elliptic curves, not available for multiplicative groups of finite
fields, is the freedom to choose a parameter: geometrically they form a one-
dimensional family, parametrized by the j-invariant. Restriction to curves of a
special form destroys this degree of freedom. While no proof exists that special
curves, CM curves or Koblitz curves are less insecure, these nonrandom curves
can be qualitatively distinguished from their nonrandom cousins in terms of their
endomorphism rings. Thus preference is often given to curves randomly selected
over a large finite field when performance is not the determining issue.
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In contrast, hyperelliptic curves of genus g admit a much larger degree of
freedom. In genus 2, they form a three dimensional family: curves with different
classifying triple of invariants (j1, j2, j3) can not be isomorphic over any extension
field. Until the recent work of Takashima [19], the only curves proposed for
cryptographic use with efficiently computable endomorphisms are either the CM
curves with exceptional automorphisms — the analogues of elliptic curves y2 =
x3 + a or y2 = x3 + ax — or Koblitz curves — curves defined over a small
field with point on the Jacobian taken over a large prime degree extension (see
Park et al. [15] for the former and Lange [11] for the latter). Besides the notable
exceptions of CM curves with exceptional automorphisms, curves with CM have
been exploited for point counting but not for their endomorphism ring structure,
for lack of a constructive theory of efficiently computable endomorphisms.

In this work, we address the problem of effective algorithms for endomor-
phisms available on special families of curves. We describe three families, of
dimensions 1, 1, and 2 respectively, of curves whose Jacobians admit certain real
endomorphisms. First, we introduce the general framework for constructing en-
domorphisms via correspondences derived from covering curves. Subsequently,
we provide a one-dimensional family derived from Artin–Schreier covers, then de-
scribe a construction of Tautz, Top, and Verberkmoes [20] for a one-dimensional
family of curves with explicit endomorphisms deriving from cyclotomic covers.
Finally, we describe an elegant construction of Mestre [14] from which we obtain
a two-dimensional family of curves whose Jacobians admit explicit endomor-
phisms, derived from covers of elliptic curves. In each case we develop explicit
algorithms for efficient application of the endomorphism, suitable for use in a
GLV decomposition. Independently, Takashima [19] provided an efficient algo-
rithm for endomorphisms in the latter family (in terms of variants of Brumer
and Hashimoto) with real multiplication by (1 +

√
5)/2. These families provide

a means of generating curves randomly selected within a large family, yet which
admit efficiently computable endomorphisms.

2 Arithmetic on Hyperelliptic Jacobians

In the sequel we denote by X/k a hyperelliptic curve of genus gX in the form

v2 = f(u) = u2gX+1 + c2gX u2gX + · · ·+ c0,

with each ci in k, which we require to be a field of characteristic not 2. The
Jacobian of X , denoted Jac(X), is a gX-dimensional variety whose points form
an abelian group. Let O denote the point at infinity of X . Each point P on
Jac(X) may be represented by a divisor on X , that is, as a formal sum of points

P =
m∑

i=1

[Pi]− m[O] =
m∑

i=1

[(ui, vi)] − m[O],

where m ≤ gX . We say such a divisor is semi-reduced if (ui, vi) �= (uj ,−vj) for all
i �= j. For a point to be defined in Jac(X)(k), its divisor must be Galois-stable;
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the representation as a divisor has the disadvantage that the individual points
(ui, vi) may be defined only over some finite extension K/k. Thus, for compu-
tations, we use instead the Mumford representation for divisors, identifying P
with the ideal class

P = [(a(u), v − b(u))],

where a and b are polynomials in k[u] such that a(u) =
∏

i(u−ui) and vi = b(ui)
for all i. In this guise, addition of points P and Q is an ideal product, followed by
a reduction algorithm to produce a unique “reduced” ideal representing P + Q.
Cantor [1] provides algorithms to carry out these operations.

Algorithm 1. Given a semi-reduced representative (a(u), v − b(u)) for a point
P on the Jacobian of a hyperelliptic curve X : v2 = f(u), returns the reduced
representative of P .

function CantorReduction((a(u), v − b(u)))
while deg(a) > gX do

a := (f − b2)/a;
b := −b mod a;

end while;
a := a/LeadingCoefficient(a);
return (a, v − b(u));

end function;

Each iteration of Algorithm 1 replaces a with a polynomial of degree max(2gX +
1−deg(a), deg(a)−2). It follows that Algorithm 1 will produce a reduced repre-
sentative for the ideal class [(a(u), v − b(u))] after %(deg(a)− gX)/2& iterations.

3 Explicit Endomorphisms

Let C be a curve with an automorphism ζ, and let π : C → X be a covering of
X . We have two coverings, π and π ◦ ζ, from C to X ; together, they induce a
map η of divisors

η := (π ◦ ζ)∗π∗ : Div(X) → Div(X),

where
π∗([P ]) =

∑
Q∈π−1(P )

eπ(Q)[Q] and (π ◦ ζ)∗([Q]) = [π(ζ(Q))].

This map on divisors induces an endomorphism of the Jacobian Jac(X), which
we also denote η.

In our constructions, we take π to be the quotient by an involution σ of C,
so that π is a degree-2 covering, and π = π ◦ σ. Thus

π∗([P ]) = [Q] + [σ(Q)]

for any point Q in π−1(P ). We will take ζ to be an automorphism of C of prime
order p, such that 〈ζ, σ〉 is a dihedral subgroup of the automorphism group
of C: that is, σζ = ζ−1σ. The following proposition describes the resulting
endomorphism η = (π ◦ ζ)∗ ◦ π∗.
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Proposition 2. Let C be a curve with an involution σ and an automorphism ζ
of prime order p such that σζ = ζ−1σ. Let π : C → X := C/〈σ〉 be the quotient
of C by the action of σ, and let η := (π◦ζ)∗ ◦π∗ be the endomorphism of Jac(X)
induced by ζ. The subring ZZ[η] of End(Jac(X)) is isomorphic to ZZ[ζp + ζ−1

p ],
where ζp is a primitive pth root of unity over Q.

Proof. The subring ZZ[ζ∗+ζ−1
∗ ] of Jac(C) is isomorphic to ZZ[ζp+ζ−1

p ], since p is
prime. The statement follows upon noting that the following diagram commutes.

Jac(C)
ζ∗ + ζ−1

∗ ��

π∗

��

Jac(C)

π∗

��

Jac(X)
η = π∗ζ∗π∗

�� Jac(X)

To see this, observe that for any Q in Jac(C) we have

η(π∗(Q)) = π∗ζ∗π∗π∗(Q)
= π∗ζ∗(1 + σ∗)(Q)
= π∗(ζ∗ + σ∗ζ−1

∗ )(Q)
= π∗(ζ∗ + ζ−1

∗ )(Q),

since π∗π∗ = (1 + σ∗) and π∗σ∗ = π∗. See also Ellenberg [4, §2]. ��
Suppose C, X , π, ζ and η are as in Proposition 2. Our aim is to give an explicit
realization of the endomorphism η of Jac(X), in the form of a map on ideal
classes. To do this, we form the algebraic correspondence

Z := (π × (π ◦ ζ))(C) ⊂ X × X.

Let π1 and π2 be the restrictions to Z of the projections from X ×X to its first
and second factors, respectively; then η = (π2)∗◦π∗

1 . We will give an affine model
for Z as the variety cut out by an ideal in k[u1, v1, u2, v2]/(v2

1−f(u1), v2
2−f(u2));

for this model, the maps π1 and π2 are defined by πi(u1, v1, u2, v2) = (ui, vi).
Suppose that Z is defined by an ideal (v2−v1, E(u1, u2)), where E is quadratic

in u1 and u2 (this will be the case in each of our constructions). If (u, v) is a
generic point on X , then π∗

1([(u, v)]) is the effective divisor on Z cut out by
(v2−v, E(u, u2)). Therefore, if e1 and e2 are the solutions in k(u) to the quadratic
equation E(u, x) = 0 in x, then

η([(u, v)]) = (π2)∗π∗
1([(u, v)]) = [(e1, v)] + [(e2, v)].

It remains to translate this description of the action of η in terms of points into
a map on ideal classes.

Suppose [(a(u), v− b(u))] is a point on Jac(X). Extending the above, we have

η([(a(u), v − b(u))]) = [(a(e1), v − b(e1))] + [(a(e2), v − b(e2))]

= [(N(a), v − (f(u) + N(b))
T (b)

mod N(a)],
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where N(a) = a(e1)a(e2), N(b) = b(e1)b(e2), and T (b) = b(e1) + b(e2).1 Since
functions T (a), N(b) and T (b) are symmetric polynomials in e1 and e2, we can
write each as a polynomial in the elementary symmetric functions e1 + e2 and
e1e2. Moreover, e1 + e2 and e1e2 are elements of k(u): if E(u, x) = E2(u)x2 +
E1(u)x + E0(u), then e1 + e2 = −E1/E2 and e1e2 = E0/E2.

Definition 3. For any polynomial a(x) over k, we define T (a) = a(e1) + a(e2)
and N(a) = a(e1)a(e2), and for i, j ≥ 0 we define

ti := ei
1 + ei

2, ni := (e1e2)i and ni,j := ei
1ej

2 + ej
1ei

2.

Note that ti and nij are elements of k(u) and that

T

(
gX∑
i=0

aix
i

)
=

gX∑
i=0

aiti, (1)

and

N

(
gX∑
i=0

aix
i

)
=

gX∑
i=0

gX∑
i=0

aiajni,j . (2)

The following elementary lemma provides simple recurrences for the construc-
tion of the sequences {ti} and {ni,j}.

Lemma 4. The elements ti, ni and ni,j satisfy the following recurrences:

1. ni+1 = (e1e2)ni for i ≥ 0, with n0 := 1;
2. ti+1 = (e1 + e2)ti − (e1e2)ti−1 for i ≥ 1, with t0 = 2 and t1 = (e1 + e2);
3. ni,i = ni and ni,j = nitj−i for i ≥ 0 and j > i.

Equations (1) and (2) above express T and N in terms of the functions ti and
ni,j , which depend only upon t1 and n1 by Lemma 4. Thus, given t1 = e1+e2 and
n1 = n1,1 = e1e2, the recurrences of Lemma 4 give a simple and fast algorithm
for computing the maps T and N . If we further assume that T and N will only
be evaluated at polynomials a and b from reduced ideal class representatives
(a(u), v − b(u)), then we need only compute the ti and ni,j for 0 ≤ i ≤ j ≤ gX .

Algorithm 5. Given functions t1 and n1 in k(u), together with the genus gX

of a curve X , returns the maps T and N of Definition 3.
function RationalMaps(t1,n1,gX)

n0 := 1;
t0 := 2;
for i in [1, . . . , gX ] do

ni+1 := n1ni;
ti+1 := t1ti − n1ti−1;

1 The modular inversion of T (b) should be carried out after clearing denominators and
removing common factors from N(a), T (b), and f(u) + N(b) (generically, N(a) and
T (b) are coprime). Proposition 6 below makes this precise.
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end for;
for i in [1, . . . , gX ] do

ni,i := ni;
for j in [i + 1, . . . , gX ] do

ni,j := nitj−i;
end for;

end for;
T := (
∑gX

i=0 aiX
i �−→
∑gX

i=0 aiti);
N := (
∑gX

i=0 aiX
i �−→
∑gX

i=0
∑gX

j=i aiajni,j);
return T , N ;

end function;

The following proposition shows that the maps T and N may be used to compute
η([(a(u), v − b(u))]) for all points [(a(u), v − b(u))] of Jac(X).

Proposition 6. Let η be the endomorphism of Jac(X) induced by a correspon-
dence V (v2 − v1, E2(u1)u2

2 + E1(u1)u2 + E0(u1)) on X × X; set t1 = −E1/E2
and n1 = E0/E2, and let T and N be the maps of Definition 3. If (a(u), v−b(u))
is the reduced representative of a point P of Jac(X), then η(P ) is represented by(

EgX

2 N(a)
G

, v −
(

(f + N(b))/G

T (b)/G
mod

EgX

2 N(a)
G

))
,

where G = gcd(EgX

2 N(a), EgX

2 T (b)). Algorithm 1 computes the reduced repre-
sentative of η(P ) after at most %gX/2& iterations of its main loop.

Proof. We have

η([(a(u), v − b(u))]) = [(a(e1), v − b(e1))(a(e2), v − b(e2))]
= [(N(a), v2 − T (b)v + N(b))]
= [(EgX

2 )(N(a), T (b)v − (f + N(b)))].
= [(EgX

2 N(a), EgX

2 T (b)v − EgX

2 (f + N(b)))].

It is easily verified that EgX

2 N(a), EgX

2 T (b) and EgX

2 (f +N(b)) are polynomials,
and that if G = gcd(EgX

2 N(a), EgX

2 T (b)), then G also divides EgX

2 (f + N(b)).
Therefore

η([(a(u), v − b(u))]) = [(G)(EgX

2 N(a)/G, EgX

2 T (b)v/G − EgX

2 (f + N(b))/G))]
= [(EgX

2 N(a)/G, EgX

2 T (b)v/G − EgX

2 (f + N(b))/G)]
= [(EgX

2 N(a)/G, v − I · EgX

2 (f + N(b))/G)],

where I denotes the inverse of EgX

2 (f + N(b))/G modulo EgX

2 N(a)/G, proving
the first claim. Now, if (a(u), v − b(u)) is the reduced representative of P , then
deg(a) ≤ gX , so the degree of EgX

2 N(a) is at most 2gX . After each iteration of
Algorithm 1, the degree of a becomes max(2gX +1−deg(a), deg(a)−2), and the
algorithm terminates when deg(a) ≤ gX ; this occurs after %gX/2& iterations. ��

The following algorithm applies Proposition 6 to compute the image of a point of
Jac(X) under η. This gives an explicit realization of η as a map on ideal classes.
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Algorithm 7. Given a point P on the Jacobian of a curve X : v2 = f(u)
and rational maps T and N derived for an endomorphism η of Jac(X) using
Algorithm 5, returns the reduced ideal class representative of η(P ).

function Evaluate(P = (a(u), v − b(u)), T , N)
a′ := N(a);
d := T (b);
E := LCM(Denominator(a′), Denominator(d));
G := GCD(Numerator(a′), Numerator(d));
a′ := E · a′/G;
d := E · d/G;
I := d−1 (mod a′);
b′ := I · E · (f + N(b))/G (mod a′);
return CantorReduction((a′, v − b′));

end function;

Remark 8. In the families of curves described below in Sections 4 and 5 below,
T and N are polynomial maps, and we may take E = 1 in Algorithm 7.

4 Applications I: Curves with Artin–Schreier Covering

In this section we construct a family of curves Xp in one free parameter t for
each prime p ≥ 5, and determine explicit endomorphisms deriving from a cover
by the Artin–Schreier curve defined over IFp by

Cp : yp − y = x +
t

x
·

The eigenvalues of Frobenius in this family are described by classical Klooster-
man sums [21].

An analogous family y2 = xp − x + t was described by Duursmaa and Saku-
rai [3], for which the automorphism x �→ x + 1 was proposed for efficient scalar
multiplication. In constrast to our family, every member of this family is isomor-
phic over a base extension to the supersingular curve y2 = xp − x.

4.1 Construction of the Artin–Schreier Covering

The curve Cp has automorphisms ζ (of order p) and σ (of order 2), defined by

ζ(x, y) = (x, y + 1) and σ(x, y) = (−t/x,−y).

Let Xp be the quotient of Cp by 〈σ〉, with affine model

Xp : v2 = f(u) = u(u(p−1)/2 − 1)2 − 4t.

The quotient map π : Cp → Xp is a covering of degree 2, sending (x, y) to
(u, v) = (y2, x − t/x). Observe that Xp is a family of curves of genus (p − 1)/2.
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The automorphism ζ of Cp induces an endomorphism η := (π ◦ ζ)∗π∗ on
Jac(Xp), whose minimal polynomial equals that of ηp = ζp + ζ−1

p ∈ C. The
endomorphism η is induced by the correspondence Z := (π ◦ ζ × π)(Cp) on
Xp × Xp, for which we may directly compute an affine model

Z = V (v2 − v1, u2
2 + u2

1 − 2u1u2 − 2u2 − 2u1 + 1).

Setting t1 := 2(u + 1) and n1 := (u − 1)2 and applying Algorithm 5, we obtain
polynomial maps T and N such that η is realized by P �→ Evaluate(P, T, N),
using Algorithm 7. The first few ti and ni,j derived in Algorithm 5 are given in
Table 1 below.

Proposition 9. The Jacobian Jac(Cp) is isogenous to Jac(Xp)2, and its endo-
morphism ring contains an order in IM2(Q(ηp)).

Proof. The automorphisms ζ and σ determine a homomorphic image of the
group algebra A = Q[〈ζ, σ〉] in End◦(Jac(Cp)). But A is a semisimple algebra of
dimension 2p over Q, whose simple quotients are of dimensions 1, 1, and 2ϕ(p).
Moreover, ζ + ζ−1 is in the centre of A and generates a subring isomorphic to
Q × Q(ηp). Since ζ and σ do not commute, it follows that the latter algebra is
isomorphic to IM2(Q(ηp)).

Let e1 and e2 be the central idempotents associated to the quotients of di-
mensions 1. On each associated abelian variety eiJac(Cp), the automorphism ζ
acts trivially, thus maps through the Jacobian of the genus 0 quotient Cp/〈ζ〉;
it follows that the image of A in End◦(Jac(Cp)) is isomorphic to IM2(Q(ηp)).

Let ε1 = 1 + σ and ε2 = 1 − σ. Noting that

ε2
i = 2εi, ε1ε2 = 0, and ε1 + ε2 = 2,

we let A1 = ε1∗Jac(Cp) and A2 = ε2∗Jac(Cp) be subabelian varieties of Jac(Cp)
such that Jac(Cp) = A1 + A2, and A1 ∩A2 is finite. Since ζ − ζ−1 determines an
isogeny ψ = ζ∗ − ζ−1∗ of Jac(Cp) to itself, the relation

(ζ − ζ−1)ε1 = ε2(ζ − ζ−1),

implies that ψ(A1) = ε2∗ψ(Jac(Cp)) = A2, so that A1 and A2 are isogenous.
But π∗ is an isogeny of A1 to Jac(Xp), whence Jac(Cp) ∼ Jac(Xp)2. ��
Corollary 10. The Jacobian Jac(Xp) has a rational p-torsion point. In partic-
ular, Jac(Xp) is not a supersingular abelian variety.

Proof. The curve Cp has two rational points fixed by ζ, whose difference deter-
mines a point in ker(1 − ζ∗). But

(1 − ζ)(1 − ζ2) · · · (1 − ζp−1) = p,

so ker(1− ζ∗) is contained in Jac(Xp)[p]. If χ(T ) and ξ(T ) are the characteristic
polynomials of Frobenius on Jac(Cp) and Jac(Xp), respectively, then χ(T ) =
ξ(T )2. Since |Jac(Cp)(k)| = χ(1) is divisible by p, so is |Jac(Xp)(k)| = ξ(1). ��
Remark 11. In fact, it is possible to show that the p-rank of Jac(Xp) is exactly
equal to 1, so the Jacobians are neither ordinary nor supersingular.
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Table 1. Artin–Schreier covers: ti and ni,j for 0 ≤ i ≤ j ≤ 3

t0 2
t1 2(u + 1)
t2 2(u2 + 6u + 1)
t3 2(u3 + 15u2 + 15u + 1)

n0,0 1
n0,1 2(u + 1)
n0,2 2(u2 + 6u + 1)

n0,3 2(u3 + 15u2 + 15u + 1)
n1,1 (u − 1)2

n1,2 2(u − 1)2(u + 1)
n1,3 2(u − 1)2(u2 + 6u + 1)
n2,2 (u − 1)4

n2,3 2(u − 1)4(u + 1)
n3,3 (u − 1)6

4.2 Hyperelliptic Curves of Genus 2 with Real Multiplication by η5

For p = 5, the construction above yields a one-parameter family of genus 2
hyperelliptic curves defined by

X5 : v2 = f5(u) = u(u2 − 1)2 + t,

whose Jacobian has endomorphism ring containing ZZ[η5] ∼= ZZ[x]/(x2 + x− 1).
Each point P of Jac(X5) may be represented by an ideal (a(u), v− b(u)) with

a and b of degrees 2 and 1 respectively: hence, suppose a(u) = a2u2 + a1u + a0
and b(u) = b1u + b0. Applying Algorithm 5, we see that

N(a) = a2
2n2,2 + a2a1n1,2 + a2

1n1,1 + a2a0n0,2 + a1a0n0,1 + a2
0n0,0,

N(b) = b2
1n1,1 + b1b0n0,1 + b2

0n0,0, and
T (b) = 2b1(u + 1) + 2b0,

with the ni,j as in Table 1. The endomorphism η is then explicitly realized by
η : P �→ Evaluate(P, T, N), using Algorithm 7.

Remark 12. The Igusa invariants of the curve X5 determine the weighted pro-
jective point (J2 : J4 : J6 : J8 : J10) = (3 : 2 : 0 : 4 : 4t2). In particular, the
curves determine a one-dimensional subvariety of the moduli space of genus 2
curves.

4.3 Hyperelliptic Curves of Genus 3 with Real Multiplication by η7

For p = 7, we derive a family of genus 3 hyperelliptic curves

X7 : v2 = u(u3 − 1)2 + 3t,

and an endomorphism η of Jac(X7) with ZZ[η] ∼= ZZ[ζ7 + ζ−1
7 ] by Proposition 2.

Applying Algorithm 5, we derive polynomial maps T and N , which we use with
Algorithm 7 to realize η as η : P �→ Evaluate(P, T, N).

5 Applications II: Curves with Cyclotomic Covering

In this section we develop explicit endomorphisms for the one dimensional fami-
lies of hyperelliptic curves with real multiplication based on cyclotomic coverings,
as defined in Tautz, Top, and Verberkmoes [20].
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5.1 Construction of the Cyclotomic Covering

Let n ≥ 2, and let ρn and ρ2n be primitive nth and 2nth roots of unity over k
such that ρ2

2n = ρn; also set τn = ρn + ρ−1
n . Consider the family of hyperelliptic

curves of genus n over k in one free parameter t defined by

Cn : y2 = x(x2n + txn + 1).

The curve Cn has an automorphism ζ of order 2n and an involution σ, defined
by

ζ : (x, y) �−→ (ρnx, ρ2ny) and σ : (x, y) �−→
(

x−1, x−(n+1)y
)

,

respectively; note that ζn is the hyperelliptic involution (x, y) �→ (x,−y). We
define Xn := Cn/〈σ〉 to be the quotient of Cn by the action of σ. The curve Xn

has an an affine model

Xn : v2 = fn(u) = Dn(u, 1) + t,

where Dn(u, 1) is the nth Dickson polynomial of the first kind with parameter2 1,
defined recursively by

Dn(u, 1) = uDn−1(u, 1)− Dn−2(u, 1) (3)

for n ≥ 2, with D0(u, 1) = 2 and D1(u, 1) = u. Dickson polynomials and their
properties are described in [12]; for our purposes, it is enough to know that

Dn(u + u−1, 1) = un + u−n (4)

(this is easily verified by induction), which further implies

Dnm(u, 1) = Dn(Dm(u, 1), 1). (5)

Remark 13. When n is odd, our curves Cn and Xn coincide with the curves Dn

and Cn of [20]; for even n, our families instead coincide with the curves described
in the remark of [20, page 1058].

The quotient projection π : Cn → Xn is a covering of degree 2. Equation (4)
above shows that it is defined by

π : (x, y) �−→ (u, v) = (x + x−1, x−(n+1/2)y).

The automorphism ζ of Cn induces an endomorphism η = (π◦ζ)∗◦π∗ of Jac(Xn).
If n is prime, then Proposition 2 implies that ZZ[η] ∼= ZZ[ζn + ζ−1

n ], where ζn is
an nth root of unity over Q.
2 Dickson polynomials are generally defined with a parameter a in k, by the recurrence

Dn(u, a) = uDn−1(u, a) − aDn−2(u, a).

It is easily shown that the curve defined by v2 = Dn(u, a) + t for any nonzero a
is a twist of Xn. When a = 0, we obtain a one-dimensional family of curves with
complex multiplication by ZZ[ζn]; these curves are described in [16, §6.4].
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The endomorphism η is induced by the correspondence Z := (π ◦ ζ × π)(Cn)
on Xn × Xn, for which we directly compute an affine model

Z = V (v2 − v1, u2
2 + u2

1 − τnu1u2 + τ2
n − 4).

Setting t1 := τnu and n1 := u2 + τ2
n − 4, we apply Algorithm 5 to obtain maps

T : k[u] → k[u] and N : k[u] → k[u] such that the endomorphism η is realized by
P �→ Evaluate(P, T, N), using Algorithm 7. The first few ti and ni,j derived
in Algorithm 5 are given in Table 2 below.

Table 2. Cyclotomic covers: ti and ni,j for 0 ≤ i ≤ j ≤ 3

t0 2
t1 τnu
t2 (τ 2

n − 2)u2 − 2(τ 2
n − 4)

t3 τn(τ 2
n − 3)u3 − 3τn(τ 2

n − 4)u
n0,0 1
n0,1 τnu
n0,2 (τ 2

n − 2)u2 − 2(τ 2
n − 4)

n0,3 τn((τ 2
n − 3)u2 − 3(τ 2

n − 4))u
n1,1 u2 + τ 2

n − 4
n1,2 τn(u2 + τ 2

n − 4)u
n1,3 (τ 2 − 2)u4 + (τ 2 − 4)2(u2 − 2)
n2,2 (u2 + τ 2

n − 4)2

n2,3 τn(u2 + τ 2
n − 4)2)u

n3,3 (u2 + τ 2
n − 4)3

The elliptic curve C1 : y2 = x(x2 + tx + 1) is obviously covered by Cn, and
is therefore a factor of Jac(Cn). The following analogue of Theorem 9 holds for
this cyclotomic family, and is proved similarly.

Proposition 14. The Jacobian Jac(Cn) is isogenous to C1 × Jac(Xn)2 for n
prime, and its endomorphism ring contains an order in Q× IM2(Q(ηn)).

Remark 15. If n is a prime other than 5, then [20, Corollary 6] implies that
Jac(Xn) is absolutely simple for general values of t over a field of characteristic
0. For n = 5, we find that the condition of Stoll [18] (see [5, §14.4]) for Jac(X5)
to be absolutely simple is satisfied by X5 with t = 1 at p = 11. Conversely, if
n = pm, for p > 2 and m > 1, then identity (5) above gives a covering Xn → Xp

of degree m, defined by (u, v) �→ (Dm(u, 1), v). It follows that Jac(Xn) has a
factor isogenous to Jac(Xp), and so is not simple.

5.2 Hyperelliptic Curves of Genus 2 with Real Multiplication by η5

Consider the case n = 5. Equation (3) shows that D5(u, 1) = u5 − 5u3 + 5u, so
the curve X5 = C5/〈σ〉 is the curve of genus 2 defined by the affine model

X5 : v2 = f5(u) = u5 − 5u3 + 5u + t.

Each point on Jac(X5) has a representative in the form (a(u), v − b(u)), with
deg a = 2 and deg b = 1; so suppose a(u) = a2u2 + a1u + a0 and b(u) = b1u + b0.
Applying Algorithm 5, we obtain maps T and N such that

N(a) = a2
2u4 + a2a1τ5u3 + (2a2

2(τ
2
5 − 4) + a2

1 + a2a0(τ2
5 − 2))u2

+ a1(a2(τ2
5 − 4) + a0)τ5u + ((τ2

5 − 4)(a2
2(τ2

5 − 4) + a2
1 − 2a2a0) + a2

0),
N(b) = b2

1u2 + b1b0τ5u + b2
1(τ

2
5 − 4) + b2

0, and
T (b) = τ5b1u + 2b0.
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The endomorphism η is then explicitly realized by η : P �→ Evaluate(P, T, N),
using Algorithm 7.

Remark 16. The weighted projective Igusa invariants of the generic curve are:

(140 : 550 : 640t2 − 60 : 22400t2 − 77725 : 256t4 − 2048t2 + 4096).

In particular, this family corresponds to a one-dimensional subvariety in the
moduli space.

5.3 Hyperelliptic Curves of Genus 3 with Real Multiplication by η7

In the case n = 7, we derive a family of curves

X7 : v2 = u7 − 7u5 + 14u3 − 7u + t,

and an endomorphism η of Jac(X7) with ZZ[η] ∼= ZZ[ζ7 + ζ−1
7 ] by Proposition 2.

Applying Algorithm 5, we derive polynomial maps T and N , which we may then
use with Algorithm 7 to realize η as η : P �→ Evaluate(P, T, N).

6 Applications III: Curves from Elliptic Coverings

In [14], Mestre constructs a series of two dimensional families of hyperelliptic
curves with explicit real endomorphisms, which are similarly realized by explicit
correspondences. For the case η5, Takashima [19] independently developed an ex-
plicit algorithm and complexity analysis for two and three dimensional families3

referred to as Mestre–Hashimoto and Brumer–Hashimoto (see [8]).

6.1 Hyperelliptic Curves of Genus 2 with Real Multiplication by η5

Let s and t be free parameters, and consider the family of curves defined by

X5 : v2 = f5(u) = u4(u − s) − s(u + 1)(u − s)3 + s3u3 − tu2(u − s)2.

Mestre shows that Jac(X5) has an endomorphism η satisfying η2 + η − 1 = 0,
induced by the correspondence Z with affine model

Z = V (v2 − v1, u2
1u2

2 + s(s − 1)u1u2 − s2(u1 − u2) + s3).

We will derive an explicit form for η. Since X5 is a curve of genus 2, each point of
Jac(X5) may be represented by an ideal (a(u), v−b(u)) with a = a2u2+a1u+a0
and b = b1u + b0. Setting t1 = −s((s− 1)u2 − s)/u2

2 and n1 = s2(u2 + s)/u2
2, we

apply Algorithm 5 to derive maps T and N such that

N(a) = a2
2n2,2 + a2a1n1,2 + a2

1n1,1 + a2a0a2n0,2 + a1a0n0,1 + a2
0n0,0,

N(b) = b2
1n1,1 + b1b0n0,1 + b2

0n0,0, and
T (b) = −b1s((s − 1)u − s)/u2 + 2b0,

with the ni,j given in the table below.
3 The moduli of genus 2 curves with real multiplication by η5 form a two dimensional

subvariety of the moduli space of genus 2 curves, so this three dimensional family
contains one dimensional fibres of geometrically isomorphic curves.
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n0,0 1
n0,1 −s((s − 1)u − s)/u2

n0,2 s2(((s − 1)u − s)2 − 2u2(u + s))/u4

n1,1 s2(u + s)/u2

n1,2 −s3(u + s)((s − 1)u − s)/u4

n2,2 s4(u + s)2/u4

The endomorphism η is then explicitly realized by η : P �→ Evaluate(P, T, N),
using Algorithm 7.

6.2 Hyperelliptic Curves of Genus 3 with Real Multiplication by η7

Let s and t be free parameters, and consider the family of hyperelliptic genus 3
curves defined by

X7 : v2 = f7(u) = φ7(u)− t ψ7(u)2

where ψ7(u) := u(u − s3 + s2)(u − s2 + s) and

φ7(u) := uψ7(u)2 + s(s − 1)(s2 − s + 1)(s3 + 2s2 − 5s + 1)u5

− s3(s − 1)2(6s4 − 11s3 + 12s2 − 11s − 1)u4

+ s4(s − 1)3(s2 − s − 1)(s3 + 2s2 + 6s + 1)u3

− s6(s − 1)4(s + 1)(3s2 − 5s − 3)u2

+ s8(s − 1)5(s2 − 3s − 3)u + s10(s − 1)6.

Mestre shows that Jac(X7) has an endomorphism η satisfying η3+η2−2η−1 = 0,
induced by the correspondence Z = V (v2 − v1, E) on X7 × X7, where

E = u2
1u2

2 − s2(s − 1)(s2 − s − 1)u1u2 − s4(s − 1)2(u1 + u2) + s6(s − 1)3.

Since X7 is a curve of genus 3, each point on Jac(X7) may be represented by
an ideal (a(u), v − b(u)), where a and b are polynomials of degree 3 and 2,
respectively. Setting

t1 = s2(s − 1)((s2 − s − 1)u + s2(s − 1))/u2 and
n1 = −s4(s − 1)2(u + s2(s − 1))/u2,

we apply Algorithm 5 to derive maps T and N from k[u] into k(u); the elements
ni,j computed by Algorithm 5 are given in the table below.

n0,0 1
n0,1 s2(s − 1)((s2 − s − 1)u + s2(s − 1))/u2

n0,2 (s − 1)2s4(2u3 + (s4 − 3s2 + 2s + 1)u2

+ 2(s − 1)(s2 − s − 1)s2u + (s − 1)2s4)/u4

n1,1 −s4(s − 1)2(u + s2(s − 1))/u2

n1,2 (s6(s − 1)3(s2 − s − 1)u2 + s9(s − 1)5u + s10(s − 1)5)/u4

n2,2 s8(s − 1)4(u + s2(s − 1))2/u4

The endomorphism η is then explicitly realized by η : P �→ Evaluate(P, T, N),
using Algorithm 7.
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7 Construction of Curves of Cryptographic Proportions

The curves presented here not only admit efficiently computable endomorphisms,
they also permit random selection of curve parameters in a large family. For
example, let IF537 = IF5[ξ] be extension of IF5 such that ξ37 + 4ξ2 + 3ξ + 3 = 0,
and take

t = 3ξ5 + ξ4 + 3ξ3 + ξ2 + 2ξ + 3.

This gives a curve X : v2 = u(u2 − 1)2 + t in the Artin–Schreier family whose
Jacobian has nearly prime group order

|Jac(X)(IF5[ξ])| = 5 · n,

with prime cofactor

n = 1058791184067701689674637025340531565456011790341311.

Such curves are amenable to efficient point counting techniques using Monsky-
Washnitzer cohomology [7,9]. If y is a square root of t, then (0, y) is a point
on X ; let P = [(u, v − y)] be the corresponding point on J . Then Q = [5](P )
generates a cyclic group of order n, on which [η] satisfies

([η5]2 + [η5]− 1)(Q) = [(1)]

and in particular, [η5](5P ) = [m](5P ), where

m = 336894053941004885519266617028956898972619907667301

is one of the two roots of x2 + x − 1 mod n.

Acknowledgement. The authors thank K. Takashima for providing an advance
draft of his article [19], and for references to the work of Hashimoto.
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Abstract. We give a deterministic polynomial-time algorithm that
computes a nontrivial rational point on an elliptic curve over a finite
field, given a Weierstrass equation for the curve. For this, we reduce the
problem to the task of finding a rational point on a curve of genus zero.

1 Introduction

Elliptic curves over finite fields have been in the centre of attention of cryptog-
raphers since the invention of ECC, and in that of number theorists for a much
longer time. It is not very hard to show that, unless the base field is extremely
small, such curves always have rational points other than O, the point at in-
finity. However, it is a different question how to construct such rational points
efficiently.

Until now, this was possible only using an obvious probabilistic method: given
an equation for the curve, substitute random values for all coordinates but one
and see if the remaining univariate equation can be solved for the last coordi-
nate. If so, a probabilistic polynomial factorisation algorithm will give the last
coordinate and a rational point has been found. The challenge for a deterministic
algorithm has been up at least since 1985, when R. Schoof posed it in [8].

In a recent publication [11], however, M. Ska�lba proved that, given a cubic
polynomial f(x) = x3 + Ax + B over a field F with characteristic unequal to 2
or 3, with A �= 0, we have the identity

f(X1(t2))f(X2(t2))f(X3(t2)) = U(t)2 (1)

for some nonconstant univariate rational functions X1, X2, X3, U over F . Such
functions are given explicitly in his paper [11, Theorem 1]. We do not reproduce
them here, as both their degree and their coefficients are large; if X1X2X3 =
N/D for coprime polynomials N and D in F [t], then deg N ≤ 26 and deg D ≤ 25,
depending on the characteristic of F .

Now assume that F is a finite field and that the curve E is defined over F by
the equation y2 = f(x), with f as above. The multiplicative group F∗ is cyclic,

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 510–524, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and therefore, as Ska�lba notes, if we specialise t in (1) to some value t0 in F, we
find that at least one of the f(Xi(t20)) is a square in F∗. However, no efficient
deterministic algorithm is known to date to take the square root.

In this paper, we show how to go on from this point to obtain a complete
efficient deterministic algorithm for constructing rational points on curves given
by cubic Weierstrass equations over finite fields. We will reprove Ska�lba’s result
to obtain, for the case of finite fields of odd characteristic, a parametrisation as
in (1) that is invertible as a rational map (Lemmas 6 and 7 below).

The construction of this parametrisation in the case of odd characteristic rests
on the ability to solve deterministically and efficiently equations of the form

ax2 + by2 = c (2)

over finite fields, for which an algorithm will be given in Section 2 (Theorem 4).
In Section 2, we also give a deterministic algorithm that, given nonzero ele-

ments a0, a1, a2 in a finite field such that their product is the square of a given
element, computes a square root of one of them, in polynomial time. It is clear
that such an algorithm is the missing step to construct a rational point on E,
when an equation of the form (1) is given.

An analogon of (1) for finite fields of characteristic 2 will be used to obtain a
point finding algorithm for elliptic curves in this case as well.

The main result is as follows:

Theorem 1. There exists a deterministic algorithm that, given a finite field F
of q elements and a cubic Weierstrass equation f(x, y) over F:

(i) detects if f(x, y) is singular, and if so, computes the singular points and
gives a rational parametrisation of all rational points on the curve f(x, y) =
0;

(ii) if f(x, y) is nonsingular and |F| > 5, computes an explicit rational map ρ
from the affine line over F to an affine threefold V that is given explicitly
in terms of the coefficients of f ;

(iii) given a rational point on the threefold V , computes a rational point on the
elliptic curve E : f(x, y) = 0, in such a way that at least (q − 4)/8 rational
points on E are obtained from the image of the map ρ, and at least (q−4)/3
if F has characteristic 2;

and performs all these tasks in time polynomial in log q.

From the proofs in this paper, such an algorithm can be explicitly constructed;
the running time of this algorithm is not much worse than that of a probabilistic
point generation algorithm. We plan to give an explicit algorithm, with detailed
running time bounds, in a forthcoming publication.

After Section 2 on how to solve diagonal quadratic equations, we give some
generalities on Weierstrass equations in Section 3 and show how to parametrise
the solutions of a singular Weierstrass equation in Section 4. The nonsingular
case, where the given equation indeed defines an elliptic curve, is split into two
cases: in Section 5, we prove Theorem 1 for base fields of odd characteristic,
whereas base fields of characteristic 2 are considered in Section 6.
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2 Quadratic Equations

Before turning to cubic equations, we first give the necessary algorithms for
solving quadratic equations. Theorem 3 is concerned with taking square roots,
while Theorem 4 is about equations of the form (2). These results, which are
taken from the second author’s Ph.D. thesis [12], are new and deterministic
efficient algorithms have been unknown to date.

We write v2(a) to denote the number of factors 2 in a nonzero integer a; if a
is a nonzero element of a finite field F, we write ord(a) to denote the order of a
in the multiplicative group F∗.

Lemma 2. There exists a deterministic algorithm that, given a finite field F of
q elements, and nonzero elements a and z of F such that either

(i) v2(ord a) < v2(ord z), or
(ii) ord a is odd,

computes a square root of a, in time polynomial in log q.

Proof. We construct a deterministic adaptation of the Tonelli-Shanks algorithm;
for the latter, see Section 1.5.1 in [5], for example.

It is easy to prove that to compute a square root of a nonzero element a ∈ F,
it is sufficient to have a generator z of the 2-Sylow subgroup of F∗. Usually,
such a generator is obtained by guessing a nonsquare element n and computing
z = nu, where we write q − 1 = 2e · u such that u is an odd integer; this is the
only probabilistic part of the Tonelli-Shanks algorithm.

The proof is as follows: au is in the 2-Sylow subgroup, and hence there exists
an integer k such that zk = au. The integer k is even if and only if a is a square
in F; furthermore, it is clear that zk/2 is a square root of au, and from a square
root of au it is easy to compute a square root of a, because u is odd and hence
au+1 is an obvious square. Thus, the real task of the Tonelli-Shanks algorithm
is the computation of the integer k.

However, the only thing that is used about z is the fact that

au = zk

for some even integer k; and for such a k to exist, it is only necessary that either
au = 1, or the group generated by au inside 2-Syl F∗ is strictly contained in
the group generated by z. But these conditions correspond to our assumptions
v2(ord a) = 0 and v2(ord a) < v2(ord z), respectively. Therefore, if instead of a
2-Sylow subgroup generator we use any element whose order contains enough
factors 2, the Tonelli-Shanks algorithm as given in [5] works just as well, while
the nondeterministic part of guessing a nonsquare element is eliminated. �

Theorem 3. There exists a deterministic algorithm that, given a finite field F
of q elements, and nonzero elements a0, a1, a2, b of F such that a0a1a2 = b2,
returns an i in {0, 1, 2} and a square root of ai, in time polynomial in log q.
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Proof. After changing the order of the ai, we may assume that v2(ord a0) ≥
v2(ord a1) ≥ v2(ord a2). If v2(ord a0) > v2(ord a1), then by Lemma 2 we may use
a0 as a substitute for a 2-Sylow subgroup generator, and compute a square root
of a1; and if v2(ord a1) > v2(ord a2), the same holds for a1 and a2.

Thus, consider the case where v2(ord a0) = v2(ord a1) = v2(ord a2). Then
it follows that, say, a0a1 has fewer factors 2 in its order than a2, and we can
compute

√
a0a1; but by the given relation among the ai, we have a0a1 = a2/b2,

and we compute a square root of a2. �

Theorem 4. There exists a deterministic algorithm that, given a finite field F
of q elements, and nonzero elements a, b, c of F, computes x, y ∈ F such that

ax2 + by2 = c.

Proof. We may of course assume that c = 1. Now if v2(ord(a)) > v2(ord(b)), we
can use the algorithm in Lemma 2 to take a square root of b, and the problem is
solved by taking x = 0 and y = 1/

√
b; and analogously if b has the larger order.

If v2(ord(a)) = v2(ord(b)) =def w, we distinguish three cases: w = 0, w = 1, and
w > 1.

If w = 0, then we can still compute square roots of both a and b by means
of Lemma 2, and we are done. If w > 1, then v2(ord(−ab)) < w, so that, after
computing

√
−ab, we may assume b = −a. The equation ax2 − ay2 = 1 is easily

solved by putting x + y = 1 and x − y = 1/a and solving the linear system.
The case w = 1 is the hardest. Both −a and −b have odd order, so we may

take their square roots by Lemma 2 and obtain the equation −x2 − y2 = 1. One
sees that this is equivalent to

x2 + y2 + z2 = 0.

For this, we developed a fast algorithm in Section 5.5 of [12]. A slower, but
also deterministic, algorithm for this problem can be found in [4], and also the
algorithm given in the second proof of Corollary 1 in [11] can be adapted to this
case, by using Lemma 2. �

Remarks. It is well known that (2) is always solvable; this follows already from
the fact that the cardinalities of the sets {ax2 | x ∈ F} and {c− by2 | y ∈ F} add
up to more than q, and therefore these sets must meet.

The algorithm for solving (2) given above is a special case of the main algo-
rithm from [12]; this algorithm can solve diagonal equations of the form

a1xn
1 + . . . + anxn

n = b

over finite fields.
In finite fields of characteristic 2, the above results are trivial, since all el-

ements have odd order. However, over such fields many quadratic equations
cannot be reduced to the diagonal form (2), and this yields new difficulties. We
refer to Section 6 for a discussion of this case.
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3 Weierstrass Equations

Let F be a finite field, let q be its number of elements, and let E be the affine
curve given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, (3)

where the ai are in F. The curve E also has one point at infinity, with homoge-
neous coordinates (0 : 1 : 0), which is called O.

If E is nonsingular, then the projective closure Ẽ of E is a smooth projective
curve of genus 1 over F with a specified rational point, so it is an elliptic curve
over F, and every elliptic curve over F may be given in this way [10, Proposition
III.3.1]. The set of rational points on Ẽ has a natural abelian group structure,
with the point O as identity element.

We will be interested in methods to construct rational points on Ẽ other than
O, or to show that no other points exist. By Hasse’s bound [10, V.1.4], we know
that the number N of rational points on Ẽ satisfies

|q + 1 − N | ≤ 2
√

q.

From this, it is easily verified that Ẽ has at least 2 rational points whenever
q ≥ 5. On the other hand, if q ≤ 4, curves over F exist with only the trivial
rational point O, such as the curve y2 = x3 − x − 1 over F3, and the curve
y2 + y = x3 + α over F4 = F2(α).

Normal Forms. The equation (3) may be simplified depending on the character-
istic of the base field. We give these forms in detail as we will use their properties
later on; these formulas are given in Section III.1 and Appendix A of [10].

If the characteristic of F is not 2 or 3, then a linear change of coordinates
transforms (3) into

y2 = x3 + Bx + C =def f(x). (4)

For this form of the equation, the important associated quantities Δ (the dis-
criminant) and j (the j-invariant) are easily computed: we have

Δ = −16(4B3 + 27C2), j = −1728(4B)3/Δ.

Now E is singular if and only if Δ = 0, and thus if and only if the right hand
side f(x) of (4) has a repeated zero; it has j-invariant 0 if and only if Δ �= 0 and
B = 0.

In characteristic 3, we must admit a third coefficient; we can transform (3)
into

y2 = x3 + Ax2 + Bx + C =def f(x), (5)

with associated quantities

Δ = A2B2 − A3C − B3, j = A2/Δ.

Again, E is singular if and only if f has a double zero. Also, we find that for a
nonsingular equation we have j = 0 if and only if A = 0.
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In characteristic 2, no coefficient of (3) can be omitted in all cases. However,
we can obtain one of the following two normal forms, depending on whether a1
is zero:

Y 2 + a3Y = X3 + a4X + a6 if a1 = 0 initially, (6)

Y 2 + XY = X3 + a2X2 + a6 if a1 �= 0 initially. (7)

In these normal forms, we have Δ = (a3)4 and Δ = a6, respectively, which gives
an easy criterion for singularity of E. Furthermore, for nonsingular equations,
the two cases correspond to j being respectively zero or nonzero.

4 Singular Weierstrass Equations

For completeness, we show how to detect deterministically whether E is singular
and, if it is, how to find points on it. We continue to assume that F is a finite
field, although the only thing we really use in this section is the assumption that
the base field is perfect.

If the singularity test is positive, the projective closure Ẽ has genus 0 and
a unique singular point, which is rational over F provided F is perfect. We can
use this point to find a rational parametrisation of all nonsingular points on
E. It follows that the construction of rational points on a singular E is easy.
Furthermore, the constructions given below give rise to efficient deterministic
algorithms, whenever the operations of the field F are deterministically and
efficiently computable, including the operation of taking a pth root if char F = p.

We distinguish the cases of characteristic equal to 2 and unequal to 2.

Odd Characteristic. Let char F be unequal to 2, and let E be given by y2 = f(x)
for some cubic polynomial f over F. If f has a double zero x2, then (x2, 0) is the
unique singular point on E. Such a double zero must be in F, as f has degree 3,
and also the third zero of f must be rational.

Let d = gcd(f, f ′), where f ′ is the derivative of f . If d is constant, then f does
not have a double zero and E is nonsingular. If d is linear, then its unique zero
gives the double zero x2. If d is quadratic, then char F �= 3 and f has a triple
zero, which is equal to the unique zero of the linear polynomial d′, the derivative
of d. If d is cubic, then char F = 3 and f has a triple zero x2 = 3

√
C = C3m−1

,
where m is the order of 3 modulo |F| − 1.

Assume E is singular; by an F-linear change of variables, we may assume that
the singularity is at (0, 0), and hence E is given by y2 = x3 + Ax2 for some
A ∈ F. Now we parametrise E by projecting lines from the singular point: any
such line has the form y = �x with � ∈ F, and it intersects E twice in (0, 0) and
once more in (�2 − A, �3 − A�). This provides a rational parametrisation of E,
which is clearly computable efficiently and deterministically.

Characteristic 2. Now let char F be 2, and let E be given by the generic cubic
Weierstrass equation (3). We have ∂

∂y = a1x + a3, and hence E can be singular
in two ways.
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The first is to have a1 = a3 = 0; we get ∂
∂x = x2 + a4, and the singular point

will be (
√

a4,
√

a6), which we move to (0, 0) by a translation. We have already
seen that the equation becomes y2 = x3 + Ax2 for some A ∈ F. We parametrise
E just as in the case of characteristic not 2, and find that � �→ (�2 + A, �3 + A�)
is a rational parametrisation, computable efficiently and deterministically.

The second has a1 �= 0, and there we may assume a3 = a4 = 0 and a1 = 1
by linear substitutions; by the equation 0 = ∂

∂x = y + x2, we find that E has a
singularity at (0, 0) if and only if in addition a6 = 0, and that E is nonsingular
otherwise. Assume E is singular; we now get the equation y2+xy = x3+Ax2, for
some A ∈ F. The same way of parametrising shows that � �→ (�2 +�+A, �3+�2+
A�) is a rational parametrisation, computable efficiently and deterministically.

Remark. For a singular Weierstrass equation, there even exists a parametrisation
that is also a group homomorphism, but this map uses another affine patch of the
equation and need not always be defined over the base field F (see Proposition
2.5 in [10]).

5 Elliptic Curves in Odd Characteristic

In this section, we prove Theorem 1 under the assumption that the base field F
is a finite field of odd characteristic and that E is the curve given by a nonsin-
gular Weierstrass equation (4) or (5). In particular, we let f be a cubic monic
polynomial over F without double zeros. The considerations up to Lemma 7 in
fact work over any field of characteristic not 2.

Let V denote the threefold

f(x1)f(x2)f(x3) = y2, (8)

which, geometrically speaking, is the quotient of E × E × E by the action of a
Klein 4-group of automorphisms, namely those automorphisms that act as −1
on two components and as the identity on the third. We will obtain an explicit
birational map from the affine line to a curve on V ; see Lemmas 6 and 7 below.

Let R = F[x]/(f) be the residue class ring of polynomials over F modulo f ;
as f has no multiple zeros, the ring R is a finite étale algebra over F (cf. [3],
Section V.6, especially Theorem 4 in V.6.7, and Section V.8). We denote by θ
the class of x modulo f ; thus θ generates R as an F-algebra. If g is a polynomial
in F[x] of degree d, then the homogenisation ghom ∈ F[x, y] of g is defined to be
ydg(x/y).

Lemma 5. For any u, v, w ∈ F satisfying u + v + w + A = 0, we have

f(u)f(v)f(w) = (uv + uw + vw − B)3f

(
uvw + C

uv + uw + vw − B

)
. (9)

Proof. Let φ : F3 → R be the map sending (u, v, w) to (u− θ)(v− θ)(w− θ). For
any u, v, w ∈ F, we have
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φ(u, v, w) = uvw − (uv + uw + vw)θ + (u + v + w)θ2 − θ3

= (uvw + C) − (uv + uw + vw − B)θ + (u + v + w + A)θ2, (10)

because f(θ) = 0.
Let HA be the subspace of F3 of triples (u, v, w) satisfying u + v + w + A = 0.

Then φ maps HA into the subspace Rlin of R of elements that are linear in θ.
Now if α − βθ ∈ Rlin, with α, β ∈ F, then we have

NormR/F(α − βθ) = fhom(α, β) = β3f

(
α

β

)
. (11)

In particular, Norm(α − θ) = f(α). Thus by taking norms, equation (10) is
mapped to (9). �

Remark. The formula in the Lemma is a bit misleading in the sense that u, v, w
will not perform the same functions as x1, x2, x3 in (8).

Lemma 6. Put h(u, v) = u2 + uv + v2 + A(u + v) + B, and define

S : y2h(u, v) = −f(u), (12)

ψ : (u, v, y) �→
(
v, −A − u − v, u + y2, f(u + y2)h(u, v) y−1) . (13)

Then ψ is a rational map from the surface S to V that is invertible on its image.

Proof. We break the symmetry in (9) by putting w = −A − u − v. We find
uv + uw + vw −B = −u2 − uv − v2 −A(u + v)−B = −h(u, v), and uvw + C =
u(uv + uw + vw − B) + u2(−v − w) + uB + C = −uh(u, v) + f(u).

Now let (u, v, y) be a rational point on S such that f(u) �= 0; it follows that
y �= 0 and h(u, v) �= 0, as well. Then applying Lemma 5 with u, v, and −A−u−v
and using the equation of S twice gives us

f(v)f(−A−u−v)y2 = h(u, v)2f

(
−uh(u, v) + f(u)

−h(u, v)

)
= h(u, v)2f(u+y2). (14)

We multiply by f(u + y2) and divide by y2 to see that we have a rational point
on the threefold V .

From the definition of the map, it is clear that u, v, y can be computed from
the image of (u, v, y) on V , so that ψ is invertible on its image. �
Lemma 7. There exists a deterministic algorithm that, given a finite field F of
q elements, where q is odd, a nonsingular cubic Weierstrass equation y2 = f(x)
over F, and an element u ∈ F such that

f(u) �= 0 and 3
4u2 + 1

2Au + B − 1
4A2 �= 0,

computes a rational map
φ : A1 → S

defined over F that is invertible on its image, in time polynomial in log q. Here
the surface S is as defined in (12).

Proof. Note that we may assume A = 0 whenever char F �= 3; this could facilitate
reading the proof.



518 A. Shallue and C.E. van de Woestijne

We fix a u ∈ F that satisfies the requirements given above; then the equation
(12) of the surface S specialises to a nondegenerate quadratic equation[

y(v + 1
2u + 1

2A)
]2 +
[3
4u2 + 1

2Au + B − 1
4A2] y2 = −f(u), (15)

which is of the form (2) for the variables z = y(v + 1
2u + 1

2A) and y.
Now use Theorem 4 to compute a rational point (z0, y0) on (15), and let

t �→ (α(t), β(t)) be the corresponding rational parametrisation of the conic (15),
still for the variables (z, y) (see [9, Sect. 1.2] or [6, Sect. 1.1]). We have v =
z/y − u/2− A/2; therefore the map

φ : t �→
(

u,
α(t)
β(t)

− u

2
− A

2
, β(t)
)

(16)

parametrises all rational points on S with the given u-coordinate, except (u, z0/
y0 − u/2− A/2, y0), because this point corresponds to t = ∞. �
After having given the ingredients of the construction of rational points on the
threefold V , we ask ourselves how many rational points will be found in this
way. The bound of (q − 4)/16 given by Lemma 9 can probably be improved.

Definition 8. We define two points P = (x1, x2, x3, y) and P ′ = (x′
1, x′

2, x′
3, y′)

on V to be disjoint if the sets {x1, x2, x3} and {x′
1, x′

2, x′
3} are disjoint.

Lemma 9. Let F be a finite field of q elements, let u0 ∈ F satisfy the require-
ments of Lemma 7, and let φ : A1 → S be the corresponding map. Let ψ be the
map from Lemma 6.

Then there is a subset T ⊆ F of cardinality at least (q − 4)/16, such that for
all distinct t, t′ ∈ T , the points ψ ◦ φ(t) and ψ ◦ φ(t′) are disjoint.

Proof. Let u0 be as in the Lemma; we fix it for the whole proof. The corre-
sponding map φ is well-defined except perhaps in two values of t where β(t) = 0,
and two others where (α(t), β(t)) lies at infinity. It follows that the image of φ
contains at least q − 4 points.

Let ψ : S → V be the map from Lemma 6; for two points P = (u0, v, y) and
P ′ = (u0, v′, y′) on S, we want to find sufficient conditions for ψ(P ) and ψ(P ′),
or, equivalently, the sets {v,−A−u0−v, u0+y2} and {v′,−A−u0−v′, u0+y′2},
to be disjoint.

Note that v �→ −A − u − v and y �→ −y are automorphisms of S; these
automorphisms generate a Klein 4-group G. If P and P ′ share an orbit under G,
then ψ(P ) and ψ(P ′) cannot be disjoint. Note there is at most one orbit under
G for any given value of y2, as u = u0 is assumed to be fixed.

Assume now ψ(P ) and ψ(P ′) are not disjoint. A case-by-case analysis shows
that y′2 is equal to one of y2, v − u0, −A − 2u0 − v, or −f(u0)/h(u, u + y2),
where (12) is used to derive the last option.

Let us define a graph on the set of G-orbits on S with u = u0 by putting
an edge between two distinct orbits X and X ′ if there are non-disjoint points
P ∈ ψ(X) and P ′ ∈ ψ(X ′). The above reasoning shows that in this graph,
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every vertex has at most three neighbours. We want to find a maximal set Σ
of pairwise nonadjacent vertices, meaning that if X �= X ′ ∈ Σ, then all points
in ψ(X) are disjoint from all points in ψ(X ′). Such a set Σ can be constructed
greedily by selecting any vertex, adding it to Σ, deleting it and its neighbours
with all the incident edges from the graph, and repeating this process until no
vertices remain. As we include at least every fourth G-orbit, and as the orbits
contain at most 4 points, we see that at least a fraction of 1/16 of the points in
the image of φ have pairwise disjoint images under ψ. �

Proof of Theorem 1 (odd characteristic). Let F be a finite field of cardinality
greater than 5, so that there exists some u ∈ F satisfying the conditions of
Lemma 7; we fix such a u for the rest of the proof.

We first show how to compute rational points on the elliptic curve E, which
we assume to be given by an equation y2 = f(x), for some cubic polynomial
f with no double roots. By composing the maps ψ from Lemma 6 and φ from
Lemma 7, we can compute rational points on the threefold V . Then, given a
rational point P = (x1, x2, x3, y) on V , we apply the algorithm from Theorem
3 to f(xi) for i = 1, 2, 3 to compute a square root c of f(xi) for, say, i = i0.
Having done this, we see that (xi0 , c) is a rational point on the elliptic curve E.

The next question is whether two different points on V can lead to the same
point on E. This is rather subtle; it is even the case that one point on V can
lead to several points on E, for example when f(xi) has odd order for i = 1, 2, 3.
However, it is clear that if two points on V are disjoint in the sense defined above,
then they can only give rise to different points on E. Indeed, the x-coordinate
of the point on E computed from P = (x1, x2, x3, y) is either x1, x2, or x3. We
can therefore use Lemma 9 to show that, if we let the argument t of ψ ◦ φ run
through all of F, then at least (q−4)/16 valid x-coordinates of points on E follow
from the obtained rational points on V . This gives (q − 4)/8 rational points on
E, as claimed. �

Remark. It is an interesting question whether the surface S given in Lemma
6 is rational over the ground field F. This question is addressed in [7], for any
base field of characteristic different from 2. If we homogenise the equation for
S given in (15), we obtain a diagonal ternary quadratic form over the function
field F(u), whose coefficients have degrees 0, 2, and 3. Using the notation and
definitions given in [7], we see that the equation has minimal index 6 if we use
the weights (3, 2, 1) for the variables, whereas a rational surface of this form must
have index at most 3 for some weight vector. Therefore, unless some factors of
the discriminant of the equation are removable, S is not rational over F.

6 Elliptic Curves in Characteristic 2

In this section we complete the proof of Theorem 1 under the assumption that
the characteristic of the base field F is 2 and that E is given by a nonsingular
Weierstrass equation.
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Recall that by [10, Appendix A] we know that E has a Weierstrass equation
of one of two following forms:

Y 2 + a3Y = X3 + a4X + a6 if j(E) = 0,
Y 2 + XY = X3 + a2X2 + a6 if j(E) �= 0.

In the case when F is finite of order 2r, let Tr stand for the trace map from F
to F2, which is defined by

TrF/F2
(x) := x + x2 + x22

+ · · ·+ x2r−1

.

For motivation, consider the problem of finding rational points on

Y 2 + Y = f(X).

Lemma 10. If f is linear in X, then there exists a deterministic polynomial-
time algorithm that returns a point of Y 2 + Y = f(X) over a finite field F.

Proof. It is well known that the valid X-coordinates are exactly x ∈ F satisfying
Tr(f(x)) = 0 [2, Sect. 6.6]. First precompute a ∈ F such that Tr(f(a)) = 1.
Since x �→ Tr(f(x)) is a linear map over F2, we can deterministically compute
the required a using linear algebra. Now, one of x or x + a must be a valid
X-coordinate.

Given such an x, it remains to solve for Y . Here we have an advantage over
the case of odd characteristic in that there exist deterministic polynomial-time
algorithms for solving quadratics ([2, Chap. 6], [1, Sect. 7.4]). �
For more general f , the new idea is to look for points on the threefold

f(x1) + f(x2) + f(x3) = y2 + y .

Elements of the form y2 +y are exactly those in Ker(Tr), and form an index two
subgroup of F+. Thus one of the three terms must itself be of the form y2 + y.

With this in mind, we define

g(x) = x−2 · (x3 + a2x2 + a6), and

h(x) = x3 + a4x + a6 .

Now let V1 and V2 be threefolds given by the equations

V1 : g(x) + g(y) + g(z) = w2 + w

V2 : h(x) + h(y) + h(z) = w2 + a3w .

These have the same geometric definition as the threefold V given in the previous
section.

As in the odd characteristic case, we will construct a computable rational
map from a parametrisable surface to the appropriate threefold. Once we have
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a point on the threefold it will be easy to get rational points on E. The surfaces
we need are given by the equations

S1 : x + y + xy(x + y)−1 + a2 = w2 + w

S2 : x2y + y2x + a6 = w2 + a3w .

Lemma 11. Let F be a field of characteristic 2. There exist rational maps φ1 :
S1 → V1 and φ2 : S2 → V2 over F which are invertible on their images, given by

φ1 : (x, y, w) �→ (x, y, xy(x + y)−1, w)
φ2 : (x, y, w) �→ (x, y, x + y, w) .

Proof. First consider φ1, the map that will be used in the case when j(E) �= 0.
Recall that g(x) = x + a2 + a6x−2. We have

g(x) + g(y) + g

(
xy

x + y

)
= x + y +

xy

x + y
+ 3a2 + a6

(
1
x

+
1
y

+
x + y

xy

)2

= x + y +
xy

x + y
+ a2

= w2 + w

since (x, y, w) is a point on S1. Hence (x, y, xy(x + y)−1, w) is a point on V1.

Next consider φ2, the map that will be used when j(E) = 0. We have

h(x) + h(y) + h(x + y) = x3 + a4x + y3 + a4y + (x + y)3 + a4(x + y) + 3a6

= x2y + y2x + a6

= w2 + a3w

since (x, y, w) is a point on S2.
Note that given a point in the image of one of these maps we can trivially find

its preimage on the surface, so that both maps are invertible on their images. �

Remark. A useful geometric interpretation of these maps is that the image of φ1
is contained in the intersection of V1 with x−1 + y−1 + z−1 = 0, while the image
of φ2 is contained in the intersection of V2 with x + y + z = 0.

These maps now play a critical role in the following main theorem.

Theorem 12. There exists a deterministic polynomial-time algorithm that,
given a finite field F of characteristic 2 with more than 4 elements and an elliptic
curve E over F, computes a nontrivial rational point on E.

Proof. There are two cases to consider, since E can either have j-invariant zero
or nonzero. In both cases our strategy is to deterministically find points on the
appropriate surface, map them to the threefold, and from there get a point on E.
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First assume that j(E) �= 0. For arbitrary c the equation

x + y +
xy

x + y
= c

is equivalent to the genus 0 curve C : x2 + y2 + xy + c(x + y) = 0 except when
x = y. However, if (x, y) is a point on C with x = y then it must be the point
(0, 0), so not much is lost. We have the generic solution (0, c) and from this get
all points of C through the rational parametrisation

y = tx + c

x =
tc

1 + t + t2
.

Thus we have a family of rational points on S1 parametrised by t and w which can
be mapped to points on V1 via φ1. It now remains to compute rational points of E.

For a ∈ F∗ consider the set

{u2 + au | u ∈ F}.

This set is an additive subgroup of F+ of index 2, so if g(x) + g(y) + g(z) =
w2 + w then at least one of g(x), g(y), g(z) is itself of the form u2 + u. Discover
which it is, call it x, and deterministically solve the quadratic to find u. From
u2 + u = x−2(x3 + a2x2 + a6) we now have

(ux)2 + x(ux) = x3 + a2x2 + a6

and hence a point on E.

Suppose instead that j(E) = 0. We wish to compute points on S2. Taking
y = u2, we transform the equation for S2 as following:

xy(x + y) + a6 = w2 + a3w

x2u2 + au4 + a6 = w2 + a3w

a3xu + xu4 + a6 = (w + xu)2 + a3(w + xu) .

Now, choose y and compute its square root u (possible deterministically since
squaring is an automorphism). There are at most four bad choices of y to avoid,
corresponding to the roots of u4 + a3u. If u4 + a3u �= 0, the equation x(a3u +
u4) + a6 = z2 + a3z is linear in x and hence for any given z, we easily compute
the unique value for x. Now the point (x, y, z + xu) is a point on S2, which we
map to V2 via φ2.

It remains to find a point on E. Mirroring the argument in the previous case,
one of h(x), h(y), and h(z) has the form u2 + a3u. Discover which it is, call it x,
and solve the quadratic u2 + a3u = h(x) for u. Output (x, u) as a rational point
on E. �
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Remark. This argument can be generalised to work over any perfect characteris-
tic 2 field, but only gives an algorithm when the maps u �→ u2 and u �→ u2 + au
are algorithmically invertible.

An important question to analyze is how many of the F-rational points of E are
obtained by this algorithm. The next theorem will demonstrate that the number
is quite large, in particular at least a constant proportion. We define disjointness
for points on V1 as in Definition 8.

Theorem 13. Let F be a finite field of order q = 2r with q > 4. The number of
disjoint points of V1 that arise from Theorem 12 is at least (q − 4)/6.

Proof. Throughout, assume that the parameter w from Theorem 12 is fixed.
Allowing different values could improve the bound, but that analysis has not yet
been done.

It was noted before that S1 can be transformed into a genus 0 curve C :
x2 + y2 + xy + c(x + y) = 0, with C having only gained the point (0, 0). Let
C′(F) be the points of C except for (0, 0), (c, 0), and (0, c).

It can easily be confirmed that if (x, y) is a point on C′, then σ1(x, y) =
(x, xy(x + y)−1) and σ2(x, y) = (y, x) are points on C′. We conclude that the
group G = 〈σ1, σ2〉 acts on C′(F), is isomorphic to Sym(3), and splits the points
of C′ into orbits of size 6. For the last statement, note that x = y implies
(x, y) = (0, 0) and y = xy(x + y)−1 implies y = 0. Thus the stabiliser in Sym(3)
of any point has index 6, giving an orbit of size 6.

Any coordinate only appears in its orbit, and each orbit yields the same set
(x, y, xy(x+y)−1). Thus each orbit when mapped via φ1 yields a disjoint point
on V1.

It remains to count the number of orbits. If r is odd, t2 + t + 1 is irreducible
over F and hence all t ∈ F are valid. Thus C has q+1 points, but after discarding
(0, 0), (c, 0), and (0, c) we are left with (q − 2)/6 orbits. If r is even, t2 + t + 1
splits and hence there are q − 2 valid t, leaving us with (q − 4)/6 orbits. �

Remark. We note that the case with j(E) = 0 yields a similar bound, since
fixing w in S2 yields a curve of genus 0 that also breaks up into orbits of size 6,
each element of the orbit resulting in the same triples (x, y, x + y).

Proof of Theorem 1 (even characteristic). Let F be a finite field of order q = 2r

with q > 4, and let E be a nonsingular elliptic curve over F. From Theorem
12 we obtain a deterministic polynomial-time algorithm that computes points
on E. From Theorem 13 we see that this algorithm results in at least (q − 4)/6
disjoint points on the threefold. This yields at least (q − 4)/6 x-coordinates of
E, and hence at least (q − 4)/3 points of E.

This completes the proof of Theorem 1. �

Remark. If F is too small we simply check all pairs (x, y) ∈ F2 and obtain the
set E(F). This also holds for F of odd characteristic.
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Abstract. The Elliptic Curve Method for integer factorization (ECM)
was invented by H. W. Lenstra, Jr., in 1985 [14]. In the past 20 years,
many improvements of ECM were proposed on the mathematical, algo-
rithmic, and implementation sides. This paper summarizes the current
state-of-the-art, as implemented in the GMP-ECM software.

Introduction

Before ECM was invented by H. W. Lenstra, Jr. in 1985 [14], Pollard’s ρ al-
gorithm and some variants were used, for example to factor the eighth Fermat
number F8 [8]. As soon as ECM was discovered, many researchers worked hard
to improve the original algorithm or efficiently implement it. Most current im-
provements to ECM were already invented by Brent and Montgomery in the end
of 1985 [5,18]1.

In [5], Brent describes the “second phase” in two flavours, the “P−1 two-
phase” and the “birthday paradox two-phase”. He already mentions Brent-
Suyama’s extension, and the possible use of fast polynomial evaluation in stage
2, but does not yet see how to use the Fast Fourier Transform (FFT). At that
time (1985), ECM could find factors of about 20-30 digits only; however Brent
predicted: “we can forsee that p around 1050 may be accessible in a few years
time”. This happened in September 1998, when Conrad Curry found a 53-digit
factor of 2677 − 1 with Woltman’s mprime program. According to Fig. 1, which
displays the evolution of the ECM record since 1991, and extrapolates it using
Brent’s formula

√
D = (Y −1932.3)/9.3, a 100-digit factor — which corresponds

to the current GNFS record (RSA-200) — could be found by ECM around 2025,
i.e., in another 20 years.

In [18], Montgomery gives a unified description of P−1, P+1 and ECM. He
already mentions the “FFT continuation” suggested by Pollard for P−1. A ma-
jor improvement was proposed by Montgomery with the “FFT extension” [19],
which enables one to significantly speed up stage 2.

1 The first version of Brent’s paper is from September 24, 1985 — revised December
10, 1985 — and Montgomery’s paper was received on December 16, 1985.

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 525–542, 2006.
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Fig. 1. Graph of ecm records since 1991 (digits vs year), and extrapolation until 2025

Several efficient implementations have been made, in particular by Brent [6],
Montgomery (ecmfft), and Woltman (Prime95/mprime). Already in 1986,
Montgomery found a 36-digit factor of the Lucas number L464.

Many large factors have been found by ECM. Among others we can cite the
40-digit prime in the factorization of the tenth Fermat number [7] (the two
smaller factors were found by other methods):

F10 = 45592577·6487031809·4659775785220018543264560743076778192897·p252.

The smallest unfactored Fermat number, F12, is out of reach for NFS-based
methods (Number Field Sieve), so the main hope to factor it rests on ECM.

The aim of this paper is to describe the state-of-the-art in the ECM domain,
and in particular the algorithms implemented in the GMP-ECM software. §1
recalls the ECM algorithm and defines the notation used in the rest of the
paper, while §2 describes the algorithms used in Stage 1 of ECM, and §3 those
in Stage 2. Finally, §4 exhibits nice factors found by ECM, and discusses further
possible improvements.

1 The ECM Method

Notations. In the whole paper, n denotes the number to be factored, p a
(possibly unknown) prime factor of n, and π a prime; the function π(x) denotes
the number of primes less than or equal to x. All arithmetic operations are
implicitly performed modulo n. We assume n has l words in the machine word
base β — usually β = 232 or 264 —, i.e., βl−1 ≤ n < βl. Depending on the
context, we write M(d) for the cost of multiplying two d-bit integers, or two
degree-d polynomials — where operations on the coefficients count O(1). The
notation (x& stands for (x + 1/2).
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This section is largely inspired by [7] and [18]. Consider a field K of charac-
teristic other than 2 or 3. An elliptic curve E is the set of points (X, Y ) ∈ K
such that

Y 2 = X3 + AX + B,

where A, B ∈ K, and 4A3 + 27B2 �= 0, plus a “point at infinity” denoted OE .
The curve E admits a group structure, where the addition of two points can be
effectively computed, and OE is the neutral element.

For a computer implementation, it is more efficient to use Montgomery’s form
Ea,b with a2 �= 4 and b �= 0:

by2 = x3 + ax2 + x,

which can obtained from Weierstrass form above by the change of variables
X → (3x + a)/(3b), Y → y/b, A → (3 − a2)/(3b2), B → (2a3/9 − a)/(3b3).
Moreover, one usually prefers a homogeneous form:

by2z = x3 + ax2z + xz2, (1)

where the triple (x : y : z) represents the point (x/z : y/z) in affine coordinates.
The ECM method starts by choosing a random curve Ea,b and a random point

(x : y : z) on it. All computations are done modulo the number n to factor, as
if Z/nZ were a field. The only operation which may fail is when computing the
inverse of a nonzero residue x modulo n, if gcd(x, n) �= 1. But then a factor of n
is found, the program outputs it and exits.

Here is a high-level description of the ECM algorithm (recall π denotes a
prime):

Algorithm ECM.
Input: an integer n not divisible by 2 nor 3, and integer bounds B1 ≤ B2.
Output: a factor of n, or FAIL.
Choose a random elliptic curve Ea,b mod n and a point P0 = (x0 : y0 : z0)
on it.
[Stage 1] Compute Q :=

∏
π≤B1

π�(log B1)/(log π)�P0 on Ea,b

[Stage 2] For each π, B1 < π ≤ B2,
compute (xπ : yπ : zπ) = πQ on Ea,b

g ← gcd(n, zπ)
if g �= 1, output g and exit

output FAIL.

Suyama’s Parametrization. Suyama’s parametrization works as follows.
Choose a random integer σ > 5 (we might also consider a rational value); usually
a random 32-bit value is enough, but when running many curves on the same
number, one might want to use a larger range. Then compute u = σ2−5, v = 4σ,
x0 = u3 mod n, z0 = v3 mod n, a = (v − u)3(3u + v)/(4u3v) − 2 mod n. One
can check that Eq. (1) holds with for example b = u/z0 and y0 = (σ2 − 1)(σ2 −
25)(σ4 − 25). This parametrization is widely used, and therefore enables one to
reproduce factorizations found by different programs.
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In fact, the values of b and y are not needed; all the arithmetic operations
involve x and z only. Indeed, for a given pair (x, z), at most two values of y
give a valid point (x : y : z) on Ea,b according to Eq. (1). When there are two
solutions, they are y and −y, and ignoring the y-coordinate identifies P and −P .
As will be seen later, this is precisely what we want. We then write P = (x : : z).

1.1 Why Does ECM Work?

Let p be a prime factor of n, and consider the elliptic curve Ea,b mod p. Hasse’s
theorem says that the order g of Ea,b mod p satisfies

|g − (p + 1)| < 2
√

p.

When a and b vary, g essentially behaves as a random integer in [p+1−2
√

p, p+
1 + 2

√
p], with some additional conditions imposed by the type of curve chosen.

For example Suyama’s parametrization ensures 12 divides g: Montgomery’s form
(1) ensures 4 divides g, Suyama gives the additional factor 3.

ECM will find the factor p — which is not necessarily the smallest factor of n
— when g is (B1, B2)-smooth, i.e., when the largest prime factor of g is less or
equal to B2, and its second largest prime factor less or equal to2 B1. The factor
p will be found in stage 1 when g is B1-smooth — i.e., all its prime factors are
less or equal to B1 —, and in stage 2 otherwise.

Remark. If two or more factors of n have a (B1, B2)-smooth group order for
the chosen curve, they will be found simultaneously, which means that ECM
will output their product, which can even be n if all its prime factors have a
(B1, B2)-smooth group order. This should not be considered a failure: instead
check whether the factor is a prime power, and if not restart the same curve
with smaller B1, B2 to split the different prime factors.

1.2 Complexity of ECM

The expected time used by ECM to find a factor p of a number n is

O(L(p)
√

2+o(1)M(log n)),

where L(p) = e
√

log p log log p, and M(log n) representes the complexity of multi-
plication modulo n. The second stage enables one to save a factor of log p —
which is absorbed by the o(1) term above. Mathematical and algorithmic im-
provements act on the L(p)

√
2+o(1) factor, while arithmetic improvements act on

the M(log n) factor.

2 The definition of (B1, B2)-smoothness used in Algorithm ECM above and by most
software is slightly different: all primes π ≤ B1 should appear to a power πk ≤ B1,
and similarly for B2; in practice this makes little difference.
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2 Stage One

Stage 1 computes Q :=
∏

π≤B1
π�(log B1)/(log π)�P0 on Ea,b. That big product is

not computed as such. Instead, we use the following loop:

Q ← P0
for each prime π ≤ B1

compute k such that πk ≤ B1 < πk+1

for i := 1 to k do
Q ← π · Q.

The multiplication π · Q on the elliptic curve is done using additions (P, Q →
P + Q) and duplications (P → 2P ).

To add two distinct points (xP : : zP ) and (xQ : : zQ), one uses the following
formula, where (xP−Q : : zP−Q) corresponds to the difference P − Q:

xP+Q = 4zP−Q · (xP xQ − zP zQ)2, zP+Q = 4xP−Q · (xP zQ − zP xQ)2.

This can be computed using 6 multiplications (among which 2 are squares) as
follows:

u ← (xP + zP )(xQ − zQ) v ← (xP − zP )(xQ + zQ)
w ← (u + v)2 t ← (u − v)2

xP+Q ← zP−Q · w zP+Q ← xP−Q · t.

To duplicate a point (xP : : zP ), one uses the following formula:

x2P = (x2
P − z2

P )2, z2P = (4xP zP )[(xP − zP )2 + d(4xP zP )], (2)

where d = (a + 2)/4, with a from Eq. (1). This formula can be implemented
using 5 multiplications (including 2 squares) as follows:

u ← (xP + zP )2 v ← (xP − zP )2 t ← d(u − v) + v
x2P ← uv z2P ← (u − v)t.

Since the difference P − Q is needed to compute P + Q, this is a special
case of addition chains, called “Lucas chains” by Montgomery, who designed an
heuristic algorithm “PRAC” to compute them [16] (see §2.2).

2.1 Residue Arithmetic

To obtain an efficient implementation of ECM, an efficient underlying arithmetic
is important. The main operations to be performed are additions, subtractions
and multiplications modulo the number n to be factored. Other operations (di-
visions, gcds) are rare, or can be replaced by modular multiplications. Since
additions and subtractions have cost O(log n), the main operation to be opti-
mized is the modular multiplication: given 0 ≤ a, b < n, compute c = ab mod n.

We distinguish two cases: classical O(log2 n) arithmetic, and subquadratic
arithmetic. On a Pentium 4, GMP-4.2 switches to Karatsuba’s algorithm up
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from 23 words, i.e., about 220 decimal digits. Since ECM is often used to factor
numbers smaller than this, it is worth optimizing classical arithmetic.

For special numbers, like factors of βk ± 1, one may use ad-hoc routines. As-
sume for example dn = βk−1. The product c = ab of two residues can be reduced
as follows: write c = c0 + c1βk, where 0 ≤ c0, c1 < βk; then c = c0 + c1 mod n.
Instead of reducing a 2l-word integer c (recall n has l words), we reduce c0 + c1,
which has k words only (plus possibly one carry bit). Alternatively, if the cofac-
tor d is small, one can reduce c modulo βk − 1 only, and perform multiplications
on k words instead of l words. GMP-ECM implements such a special reduction
for large divisors of 2k ± 1, using the latter method. It also uses special code for
Fermat numbers 22k

+ 1: indeed, GMP fast multiplication code precisely uses
Schönhage-Strassen algorithm, i.e., multiplication modulo 2m + 1 [21].

Efficient Assembly Code. While using clever high-level algorithms may give a
speedup of 10% or 20%, at the expense of several months to invent and implement
those algorithms, a twofold speedup may be obtained in a few days, just rewriting
one of the assembly routines for integer arithmetic3.

GMP-ECM is based on the GNU MP library (GMP for short) [11], thus
benefits from the portability of GMP, and from the efficiency of its assembly
routines (found in the mpn layer). A library dedicated to modular arithmetic —
or even better to computations on elliptic curves — might yet be faster. Since
all operations are done on numbers of the same size, we might use a library with
special assembly code for each word size, up to some reasonable small size.

Quadratic Arithmetic. In the quadratic domain, up to 200-300 digits depend-
ing on the processor, the best current solution is to use Montgomery representa-
tion [17]: The number n to be factored having l words in base β, each residue a
is replaced by a′ = βla mod n. Additions and subtractions are unchanged, mul-
tiplications are replaced by the REDC operation: REDC(a, b) := abβ−l mod n.
This operation can be efficiently implemented on modern computers, and unlike
classical division does not require any correction.

There are two ways to implement REDC: (i) either interleave the multiplica-
tion and the reduction as in algorithm MODMULN from [18], (ii) or perform
them separately. The latter way enables one to use the efficient GMP assembly
code for base-case multiplication. One first computes c = ab, having at most 2l
words in base β. The reduction r := c mod n is performed with the following
GMP code, which is exactly that of version 6.0.1 of GMP-ECM, with variable
names changed to match the above notations (the mpn functions are described
in the GMP documentation [11]):

static void
ecm_redc_basecase (mpz_ptr r, mpz_ptr c, mpmod_t modulus)
{
mp_ptr rp = PTR(r), cp = PTR(c);

3 The first author indeed noticed a speedup of more than 2 with GMP-ECM, when
Torbjörn Granlund rewrote the UltraSparc assembly code for GMP.
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mp_srcptr np = PTR(modulus->orig_modulus);
mp_limb_t cy;
mp_size_t j, L = modulus->bits / __GMP_BITS_PER_MP_LIMB;

for (j = ABSIZ(c); j < 2 * L; j++)
cp[j] = 0;

for (j = 0; j < L; j++, cp++)
cp[0] = mpn_addmul_1 (cp, np, L, cp[0] * modulus->Nprim);

cy = mpn_add_n (rp, cp, cp - L, L);
if (cy != 0)

mpn_sub_n (rp, rp, np, L);
MPN_NORMALIZE (rp, L);
SIZ(r) = SIZ(c) < 0 ? -L : L;

}

The main idea — independently discovered by Kevin Ryde and the first author
— is to store the carry words from mpn addmul 1 in the low l words of c, just
after they are set to zero by REDC. In such a way, one replaces l expensive carry
propagations by one call to mpn add n.

Subquadratic Arithmetic. For large numbers, subquadratic arithmetic is
needed. Again, one can use either the classical representation, or Montgomery
representation. In both cases, the best known algorithms require 2.5M(l) for a
l-word modular multiplication: M(l) for the multiplication c := ab, and 1.5M(n)
for the reduction c mod n using Barrett’s algorithm [1], or its least-significant-
bit (LSB) variant for cβ−l mod n. LSB-Barrett is exactly REDC, where β is
replaced by βl [20]: after the precomputation of m = −n−1 mod βl, compute
d = cm mod βl, and (c + dn)β−l. Since all reductions are done modulo the same
n, the precomputation of m is amortized and does not impact the average cost.
The 1.5M(n) reduction cost is obtained using the “wrap-around” trick for the
last multiply dn (see §3.2), since the low part is known to be equal to −c mod βl.

2.2 Evaluation of Lucas Chains

A Lucas chain is an addition chain in which the sum i+j of two terms can appear
only if |i − j| also appears. (This condition is needed for the point addition in
homogeneous coordinates, see §2.) For example 1 → 2 → 3 → 5 → 7 → 9 →
16 → 23 is a Lucas chain for 23.

The basic idea of Montgomery’s PRAC algorithm [16] is to find a Lucas chain
using some heuristics. Assume for example we want to generate 1009 · P . To
generate a sequence close to optimal, a natural idea is to use as previous term
1009/φ ≈ 624, where φ = (1 +

√
5)/2 is the golden ratio, but this requires

1009 − 624 = 385 to be a term in the sequence. We get 1009 → 624 → 385 →
239 → 146 → 93 → 53 → 40 → 13. At this point we cannot continue using the
same transform (d, e) → (e, d − e).

To generate π·P , Montgomery starts with (d, e) = (π, (π/α&), with α = φ, and
iteratively uses 9 different transforms to reduce the pair (d, e), each transform
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using from 1 to 4 point additions or duplicates, to finally reach d = 1. (PRAC
actually generates a dual of the chain.)

Montgomery improvedPRAC as follows: instead of using α = φ only, try several
values of α, and keep the one giving the smallest cost in terms of modular multi-
plications. The α’s are chosen so that after a few steps, the remaining values (d, e)
have a ratio near φ, i.e., α = (aφ + b)/(cφ + f) with small a, b, c, f . If r = (π/α&,
the idea is to share the partial quotients different from 1 among the first and last
terms from the continued fraction of π/r, hoping to have small trailing quotients.

Fig. 2 gives 10 such values of α, the first partial quotients of their continued
fraction, and the total cost — in terms of curve additions or duplicates — of
PRAC for all primes up to B1, for B1 = 106 and 108. For a given row, all values of
α above and including this row are assumed to be used. The gain using those 10
values instead of only α = φ is 3.72% for B1 = 106, 3.74% for B1 = 108, and the
excess with respect to the lower bounds given by Theorem 8 of [16] — 2114698
for B1 = 106 and 210717774 for B1 = 108 — is 3.7% and 5.1% respectively.

α first partial quotients B1 = 106 B1 = 108

φ ≈ 1.61803398875 1, 1, 1, . . . 2278430 230143294
(φ + 7)/5 ≈ 1.72360679775 1, 1, 2, 1, . . . 2240333 226235929

(φ + 2311)/1429 ≈ 1.618347119656 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, . . . 2226042 224761495
(6051 − φ)/3739 ≈ 1.617914406529 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, . . . 2217267 223859686

(129 − φ)/79 ≈ 1.612429949509 1, 1, 1, 1, 1, 2, 1, . . . 2210706 223226409
(φ + 49)/31 ≈ 1.632839806089 1, 1, 1, 1, 2, 1, . . . 2205612 222731604

(φ + 337)/209 ≈ 1.620181980807 1, 1, 1, 1, 1, 1, 2, 1, . . . 2201615 222335307
(19 − φ)/11 ≈ 1.580178728295 1, 1, 1, 2, 1, . . . 2198400 222013974

(883 − φ)/545 ≈ 1.617214616534 1, 1, 1, 1, 1, 1, 1, 2, 1, . . . 2195552 221729046
3 − φ ≈ 1.38196601125 1, 2, 1, . . . 2193683 221533297

Fig. 2. Total cost of PRAC with several α’s, for all π < B1 (using the best double-
precision approximation of α)

3 Stage Two

All of P−1, P+1 and ECM work in an Abelian group G. For P−1, G is the
multiplicative group of nonzero elements of GF(p) where p is the factor to be
found; for P+1, G is a multiplicative subgroup of GF(p2); for ECM, G is an
elliptic curve Ea,b mod p. In all cases, the calculations in G reduce to arithmetic
operations — additions, subtractions, multiplications, divisions — in Z/nZ. The
only computation that may fail is the inversion 1/a mod n, but then a non-trivial
factor of n is found, unless a = 0 mod n. A unified description of stage 2 is
possible [18]; for sake of clarity, we here prefer to focus on ECM.

3.1 Overall Description

Stage 1 of ECM computes a point Q on an elliptic curve E. In case it fails, i.e.,
gcd(n, zQ) = 1, we hope there exists a prime π in the stage 2 range [B1, B2]
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such that πQ = OE mod p. In such a case, while computing πQ = (x : y) in
Weierstrass coordinates4, a non-trivial gcd will yield the prime factor p of n. A
continuation of ECM — also called stage two, phase two, or step two — tries to
find those matches. The first main idea is to avoid computing every πQ, using
a “meet-in-the-middle” — or baby-step, giant step — strategy: one computes
σQ and τQ such that π = σ ± τ . If σQ = (xσ : yσ) and τQ = (xτ : yτ ),
then σQ + τQ = OE mod p implies xσ = xτ mod p. It thus suffices to compute
gcd(xσ − xτ , n) to obtain5 the factor p.

Two classes of continuations differ in the way they choose σ and τ . The
birthday paradox continuation takes σ ∈ S and τ ∈ T , with S and T two large
sets, which are either random or geometric progressions, hoping that S+T covers
most primes in [B1, B2], and usually other larger primes. Brent suggests taking
T = S.

We focus here on the standard continuation, which takes S and T in arithmetic
progressions, and guarantees that all primes π in [B1, B2] are hit. Assume for
simplicity that B1 = 1. Choose a composite integer d < B2, then all primes up
to B2 can be written

π = σ + τ,

with σ ∈ S = {i · d, 0 ≤ i · d < B2}, and τ ∈ T = {j, 0 < j < d, gcd(j, d) = 1}.
Computing values of σQ and τQ costs O(B2/d + d) elliptic curve operations,
which is O(

√
B2) for d ≈

√
B2. Choosing d with many small factors also reduces

the cost. The main problem is how to evaluate all xσ − xτ for σ ∈ S, τ ∈ T , and
take their gcd with n.

A crucial observation is that for ECM, if jQ = (x : y), then −jQ = (x : −y).
Thus jQ and −jQ share the same x-coordinate. In other words, if one computes
xi − xj corresponding to the prime π = i · d + j, one will also hit i · d − j
— which may be prime or not — for free. This can be exploited in two ways:
Either restrict to j ≤ d/2, as proposed by Montgomery [18]; or restrict j to the
“positive” residues prime to d, for example if d is divisible by 6, one can restrict
to j = 1 mod 6. This is what is used in GMP-ECM.

3.2 Fast Polynomial Arithmetic

Classical implementations of the standard continuation cover primes in [B1, B2],
and therefore require Θ(π(B2)) operations, assuming B1 � B2. The main idea
of the “FFT continuation” is to use fast polynomial arithmetic to compute all
xσ − xτ — or their product mod n — in less than π(B2) operations. It would
be better to call it “fast polynomial arithmetic continuation”, since any sub-
quadratic algorithm works, not only the FFT.

Here again, two variants exist. They share the idea that what one really wants
is:

h =
∏
σ∈S

∏
τ∈T

(xσ − xτ ) mod n, (3)

4 It is simpler to describe stage 2 in Weierstrass coordinates.
5 Unless xσ = xτ mod n too, but if we assume xσ and xτ to be uniformly distributed,

this has probability p/n only.
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since if any gcd(xσ − xτ , n) is non-trivial, so will be gcd(h, n). Eq. (3) computes
many xσ − xτ that do not correspond to prime values of σ ± τ , but the gain of
using fast polynomial arithmetic largely compensates for this fact.

Let F (X) (respectively G(X)) be the polynomial whose roots are the xτ

(respectively xσ). Both F and G can be computed in O(M(d) log d) operations
over Z/nZ with the “product tree” algorithm and fast polynomial multiplication
[3,22], where d is the cardinal of the sets S and T (see §3.1). The “POLYGCD”
variant interprets h as the resultant Res(F, G), which reduces to a polynomial
gcd. It is known that the gcd of two degree-d polynomials can be computed in
O(M(d) log d), too. The “POLYEVAL” variant interprets h as

h = ±
∏
τ∈T

G(xτ ) mod n,

thus it suffices to evaluate G at all roots xτ of F . This problem is known as
“multipoint polynomial evaluation”, and can be solved in O(M(d) log d) with a
“remainder tree” algorithm [3,22].

Algorithm POLYEVAL is faster, since it admits a smaller multiplicative con-
stant in front of the M(d) log d asymptotic complexity. However, it needs — with
the current state of art — to store Θ(d log d) coefficients in Z/nZ, instead of only
O(d) for POLYGCD.

Fast Polynomial Multiplication. Several algorithms are available to multiply
polynomials over (Z/nZ)[x]. Previous versions of GMP-ECM used Karatsuba,
Toom 3-way and 4-way for polynomial multiplication, and division was per-
formed using the Borodin-Moenck-Jebelean-Burnikel-Ziegler algorithm [9]. To
multiply degree-d polynomials with the FFT, we need to find ω ∈ Z/nZ such
that ωd/2 = −1 mod n, which is not easy, if possible at all.

Montgomery [19] suggests performing several FFTs modulo small primes —
chosen so that finding a primitive d-root of unity is easy — and then recovering
the coefficients by the Chinese Remainder Theorem. This approach was recently
implemented by Dave Newman in GMP-ECM. On some processors, it is faster
than the second approach described below; however, it requires implementing
a polynomial arithmetic over Z/pZ, for p a small prime (typically fitting in a
machine word).

The second approach uses the “Kronecker-Schönhage trick”6. Assume we want
to multiply two polynomials p(x) and q(x) of degree less than d, with coefficients
0 ≤ pi, qi < n. Choose βl > dn2, and create the integers P = p(βl) and Q =
q(βl). Now multiply P and Q using fast integer arithmetic (integer FFT for
example). Let R = P Q. The coefficients of r(x) = p(x)q(x) are simply obtained
by reading R as r(βl). Indeed, the condition βl > dn2 ensures that consecutive
coefficients of r(x) do not “overlap” in R. It just remains to reduce the coefficients
modulo n.

The advantage of the Kronecker-Schönhage trick is that no algorithm has
to be implemented for polynomial multiplication, since one directly relies on
6 The idea of using this trick is due to Dave Newman; a similar algorithm is attributed

to Robbins in [19, §3.4].
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fast integer multiplication. Division is performed in a similar way, with Barrett’s
algorithm: first multiply by the pseudo-inverse of the divisor — which is invariant
here, namely F (X) when using k ≥ 2 blocks, see below —, then multiply the
resulting quotient by the divisor. A factor of two can be saved in the latter
multiplication, by using the “wrap-around” or “xd + 1” trick7, assuming the
integer FFT code works modulo 2m + 1 [2].

3.3 Stage 2 Blocks

For a given stage 2 bound B2, computing the product and remainder trees may
be relatively expensive. A workaround is to split stage 2 into k > 1 blocks [19].
Let B2 = kb2, and choose d ≈

√
b2 as in §3.1. The set S = {i · d, 0 ≤ i · d < b2}

of §3.1 is replaced by S1, . . . , Sk that cover all multiples of d up to B2, and
correspond to polynomials G1, . . . , Gk. The set T remains unchanged, and still
corresponds to the polynomial F . Instead of evaluating G at all roots of F , one
evaluates H = G1G2 · · ·Gk at all roots of F . Indeed, if one of the Gl vanishes at
a root of F , the same holds for H . Moreover, it suffices to compute H mod F ,
which can be done by k− 1 polynomial multiplications and divisions modulo F .

Assume a product tree costs qM(d) log d, and a remainder tree rM(d) log d.
With a single block (k = 1), we compute two product trees — for F and G —,
and one remainder tree, all of size d, with a total cost of (2q+r)M(d) log d. With
k blocks, we compute k + 1 product trees for F, G1, . . . , Gk, and one remainder
tree, all of degree about d/

√
k. Assuming M(d) is quasi-linear, and neglecting all

other costs in O(M(d)), the total cost is (k+1)q+r√
k

M(d) log d. The optimal value
of k then depends on the ratio r/q. Without caching Fourier transforms, the
best known ratio is r/q = 2 using Bernstein’s “scaled remainder trees” [3]. Each
node of the product tree corresponds to one product of degree l polynomials,
while the corresponding node of the remainder tree corresponds to two “middle
products” [4,12]. For r/q = 2, the theoretical optimal value is k = 3, with a cost
of 3.46qM(d) log d, instead of 4qM(d) log d for k = 1. In some cases, one may
want to use a larger number k of blocks for a given stage 2 range, in order to
decrease the memory usage.

3.4 Brent-Suyama’s Extension

Brent-Suyama’s extension increases the probability of success of stage 2, with a
small additional cost. Recall stage 2 succeeds when the largest factor π of the
group order can be written as π = σ ± τ , where points σQ and τQ have been
computed for σ, τ in sets S and T respectively. The idea of Brent and Suyama
[5] is to compute σeQ and τeQ instead, or more generally f(σ)Q and f(τ)Q
for some odd or even integer polynomial f(x), as suggested by Montgomery
[18]. If π = σ ± τ , then π divides one of f(σ) ± f(τ). Thus all primes π up
to B2 will still be hit, but other larger primes may be hit too, especially if
7 If the upper or lower half of a 2m-bit product is known, computing it modulo 2m +1

easily yields the other half.
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f(x) ± f(y) has many algebraic factors. This is the case for f(x) = xe, but also
for Dickson polynomials as suggested by Montgomery in [19]. GMP-ECM uses
Dickson polynomials of parameter α = −1 with the notation from [19]: D1 = x,
D2 = x2 + 2, and De+2 = xDe+1 + De for e ≥ 1, which gives D3(x) = x3 + 3x,
D4(x) = x4 + 4x2 + 2.

To efficiently compute the values of f(σ)Q, we use the “table of differences”
algorithm [18, §5.9]. For example, to evaluate x3 we form the following table:

1 8 27 64 125 216
7 19 37 61 91

12 18 24 30
6 6 6

Once the entries in boldface have been computed8, one deduces the correspond-
ing points over the elliptic curve, for example here 1Q, 7Q, 12Q and 6Q. Then
each new value of xeQ is obtained with e point additions: 1Q + 7Q = 8Q,
7Q + 12Q = 19Q, . . . One has to switch to Weierstrass coordinates, since if
iQ and jQ are in the difference table, |i − j|Q is not necessarily, for example
5Q = 12Q − 7Q is not here. As mentioned in [19], the e point additions in
the downward diagonals are performed in parallel, using Montgomery’s trick to
perform one modular inverse only, at the cost of O(e) extra multiplications. Ef-
ficient ways to implement Brent-Suyama’s trick for P−1 and P+1 are described
in [18].

Note that since Brent-Suyama’s extension depends on the choice of the stage
2 parameters (k, d, . . . ), extra-factors found may not be reproducible with other
software, or even different versions of the same software.

3.5 Montgomery’s d1d2 Improvement

A further improvement is proposed by Montgomery in [18]. Instead of sieving
primes of the form π = id+j as in §3.1, use a double sieve with d1 coprime to d2:

π = id1 + jd2.

(The description in §3.1 corresponds to d1 = d and d2 = 1.) Each 0 < π ≤ B2 can
be written uniquely as π = id1 + jd2 with 0 ≤ j < d1: take j = −π/d2 mod d1,
then i = (π − jd2)/d1.

To sieve all primes up to B2, take S = {id1,−d1d2 < id1 ≤ B2, gcd(i, d2) = 1}
and T = {jd2, 0 ≤ j < d1, gcd(j, d1) = 1}. In comparison to §3.1: (i) the lower
bound for id1 is now −d1d2 instead of 0, but this has little effect if d1d2 � B2;
(ii) the additional condition gcd(i, d2) = 1 reduces the size of S by a factor 1/d2.

When using several blocks, the extra values of i mentioned in (i) occur for the
first block only, whereas the speedup in (ii) holds for all blocks. In fact, since
the size of T yields the degree of the polynomial arithmetic — i.e., φ(d1)/2 with

8 Over the integers, and not over the elliptic curve as the first author did in a first
implementation!
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the remark at end of §3.1 — and we want S to have the same size, this means
we can enlarge the block size b2 by a factor 1/d2 for free.

This improvement was implemented in GMP-ECM by Alexander Kruppa, up
from version 6.0, with d2 being a small prime. The following table gives for several
factor sizes, the recommended stage 1 bound B1, the corresponding effective
stage 2 bound B′

2, the ratio B′
2/B1, the number k of blocks, the parameters d1

and d2, the degree φ(d1)/2 of polynomial arithmetic, the polynomial used for
Brent-Suyama’s extension, and finally the expected number of curves. All values
are the default ones used by GMP-ECM 6.0.1 for the given B1.

digits B1 B′
2 B′

2/B1 k d1 d2 φ(d1)/2 poly. curves
40 3 · 106 4592487916 1531 2 150150 17 14400 D6(x) 2440
45 11 · 106 30114149530 2738 2 371280 11 36864 D12(x) 4590
50 43 · 106 198654756318 4620 2 1021020 19 92160 D12(x) 7771
55 110 · 106 729484405666 6632 2 1891890 17 181440 D30(x) 17899
60 260 · 106 2433583302168 9360 2 3573570 19 322560 D30(x) 43670
65 850 · 106 15716618487586 18490 2 8978970 17 823680 D30(x) 69351

As an example, with B1 = 3 · 106, the default B2 value used for ECM is9

B2 = 4592487916 (i.e., about 1531 ·B1) with k = 2 blocks, d1 = 150150, d2 = 17.
This corresponds to polynomial arithmetic of degree φ(150150)/2 = 14400. With
those parameters and the degree-6 Dickson polynomial, 2440 curves are expected
to find a 40-digit prime factor.

4 Results and Open Questions

Largest ECM Factor. Records given in this section are as of January 2006.
The largest prime factor found by ECM is a 66-digit factor of 3466 + 1 found by
the second author on April 6, 2005:

p66 = 709601635082267320966424084955776789770864725643996885415676682297.

This factor was found using GMP-ECM, with B1 = 110·106 and σ = 1875377824;
the corresponding group order, computed with the Magma system [15], is:

g = 22 ·3·11243·336181·844957·1866679·6062029·7600843·8046121·8154571·13153633·249436823.

The largest group order factor is only about 2.3B1, and much smaller than the
default B′

2 = 729484405666 (see above table).
We can reproduce this lucky curve with GMP-ECM 6.0.1, here on an Opteron

250 at 2.4Ghz, with improved GMP assembly code from Torbjörn Granlund10:

9 The printed value is 4016636513, but the effective value is slightly larger, since
“good” values of B2 are sparse.

10 Almost the same speed is obtained with Gaudry’s assembly code at http://www.
loria.fr/~gaudry/mpn AMD64/.
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GMP-ECM 6.0.1 [powered by GMP 4.1] [ECM]
Input number is 1802413971039407720781597792978015040177086533038137501450821699069902044203667289289127\
48144027605313041315900678619513985483829311951906153713242484788070992898795855091601038513 (180 digits)
Using MODMULN
Using B1=110000000, B2=680270182898, polynomial Dickson(30), sigma=1875377824
Step 1 took 748990ms
B2’=729484405666 k=2 b2=364718554200 d=1891890 d2=17 dF=181440, i0=42
Expected number of curves to find a factor of n digits:
20 25 30 35 40 45 50 55 60 65
2 4 10 34 135 617 3155 17899 111395 753110
Initializing tables of differences for F took 501ms
Computing roots of F took 29646ms
Building F from its roots took 27847ms
Computing 1/F took 13902ms
Initializing table of differences for G took 656ms
Computing roots of G took 25054ms
Building G from its roots took 27276ms
Computing roots of G took 24723ms
Building G from its roots took 27184ms
Computing G * H took 8041ms
Reducing G * H mod F took 12035ms
Computing polyeval(F,G) took 64452ms
Step 2 took 262345ms
Expected time to find a factor of n digits:
20 25 30 35 40 45 50 55 60 65
29.45m 1.06h 2.88h 9.63h 1.58d 7.23d 36.93d 209.51d 3.57y 24.15y
********** Factor found in step 2: 709601635082267320966424084955776789770864725643996885415676682297
Found probable prime factor of 66 digits: 709601635082267320966424084955776789770864725643996885415676682297
Probable prime cofactor 25400363836963900630494626058015503341642741484107646018942363356485896097052304\
4852717009521400767374773786652729 has 114 digits
Report your potential champion to Richard Brent <rpb@comlab.ox.ac.uk>
(see ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/champs.txt)

Several comments can be made about this verbose output. First we see that
the effective stage 2 bound B′

2 = 729484405666 is indeed larger than the “re-
quested” one B2 = 680270182898. The stage 2 parameters k, d(= d1), d2 and
the Dickson polynomial D30(x) are those of the 55-digit row in the above table
(dF is the polynomial degree, and i0 the starting index in id1 + jd2). Initializ-
ing the table of differences — i.e., computing the first downward diagonal for
Brent-Suyama’s extension — is clearly cheap with respect to “Computing roots
of F/G”, which corresponds to the computation of the values xσ and xτ , together
with the whole table of differences. “Building F/G from its roots” corresponds
to the product tree algorithm; “Computing 1/F” is the precomputation of the
inverse of F for Barrett’s algorithm. “Computing G * H” corresponds to the
multiplication G1G2, and “Reducing G * H mod F” to the reduction of G1G2
modulo F : we clearly see the 1.5 factor announced in §3.2. “Computing polye-
val(F,G)” stands for the remainder tree algorithm: the ratio with respect to the
product tree is slightly larger than the theoretical value of 2. Finally the total
stage 2 time is only 35% of the stage 1 time, for a stage 2 bound 6632 times
larger!

Largest P−1 and P+1 Factors. The largest prime factor found by P−1 is
a 58-digit factor of 22098 + 1, found by the first author on September 28, 2005
with B1 = 1010 and B2 = 13789712387045:

p58 = 1372098406910139347411473978297737029649599583843164650153,
p58 − 1 = 23 · 32 · 1049 · 1627 · 139999 · 1284223 · 7475317 · 341342347 · 2456044907 · 9909876848747.
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The largest prime factor found by P+1 is a 48-digit factor of the Lucas number
L(1849), found by Alexander Kruppa on March 29, 2003 with B1 = 108 and
B2 = 52337612087:

p48 = 884764954216571039925598516362554326397028807829,
p48 + 1 = 2 · 5 · 19 · 2141 · 30983 · 32443 · 35963 · 117833 · 3063121 · 80105797 · 2080952771.

Other P−1 or P+1 Factors. The authors performed complete runs on the
about 1000 composite numbers from the regular Cunningham table with P−1
and P+1 [23]. The largest run used B1 = 1010, B2 ≈ 1.3 · 1013, polynomial x120

for P−1, and B1 = 4 · 109, B2 ≈ 1.0 · 1013, polynomial D30(x) for P+1.
A total of 9 factors were found by P−1 during these runs, but strangely no

factor was found by P+1. Nevertheless, the authors believe that the P−1 and
(especially) P+1 methods are not used enough. Indeed, if one compares the
current records for ECM, P−1 and P+1, of respectively 66, 58 and 48 digits
(http://www.loria.fr/∼zimmerma/records/Pminus1.html), there is no theo-
retical reason why the P±1 records would be smaller, especially if one takes into
account that the P±1 arithmetic is faster.

Largest ECM Group Order Factor. The largest group order factor of a
lucky elliptic curve is 81325590104999, for a 47-digit factor of 5430 + 1 found by
the second author on December 27, 2005:

p47 = 29523508733582324644807542345334789774261776361,

with B1 = 260 · 106 and σ = 610553462; the corresponding group order is:

g = 22 · 3 · 13 · 347 · 659 · 163481 · 260753 · 9520793 · 25074457 · 81325590104999.

This factor is a success for Brent-Suyama’s extension, since the largest factor
of g is much larger than B2 (about 33.4B2). The degree-30 Dickson polynomial
was used here, with σ = 92002 · 1891890 and τ = 1518259 · 17, i.e., d1 = 1891890
and d2 = 17.

From January 1st, 2000 to January 19th, 2006, a total of 619 prime factors
of regular Cunningham numbers were found by ECM, P+1 or P−1 [10]. Among
those 619 factors, 594 were found by ECM with known B1 and σ values. If we
denote by g1 the largest group order factor of each lucky curve, Fig. 3 shows an
histogram of the ratio log(g1/B1). Most ECM programs use B2 = 100B1. Since
log 100 ≈ 4.6, we see that they miss about half the factors that could be found
using the FFT continuation.

Save and Resume Interface. George Woltman’s Prime95 implementation of
ECM uses the same parametrization as GMP-ECM (see §1). Prime95 runs on
x86 architectures, and factors only base-2 Cunningham numbers so far, but Stage
1 of Prime95 is much faster than GMP-ECM, thanks to some highly-tuned
assembly code. Since Prime95 does not implement the “FFT continuation” yet,
a public interface was designed to perform stage 1 with Prime95, and stage 2
with GMP-ECM. The first factor found by this collaboration between Prime95
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Fig. 3. Histogram of log(g1/B1) for 594 Cunningham factors found by ECM

and GMP-ECM was obtained by Patrik Johansson, who found a 48-digit factor
of 2731−1 on March 30th, 2003, with B1 = 11000000 and σ = 7706350556508580:

p48 = 223192283824457474300157944531480362369858813007.

This save/resume interface may have other applications:

– after a stage 1 run, we may split a huge stage 2 on several computers. Indeed,
GMP-ECM can be given a range [l, h] as stage 2 range, meaning that all
primes l ≤ π ≤ h are covered. The total cpu time will be slightly larger than
with a single run, due to the fact that several product/remainder trees will
be computed, but the real time may be drastically decreased;

– when using P±1, previous stage 1 runs with smaller B1 values can be reused.
If one increases B1 by a factor of 2 after each run, a factor of 2 will be saved
on each stage 1 run.

Library Interface. Since version 6, GMP-ECM also includes a library, dis-
tributed under the GNU Lesser General Public License (LGPL). This library
enables other applications to call ECM, P+1 or P−1 directly at the C-language
level. For example, the Magma system uses the library since version V2.12, re-
leased in July 2005 [15].

Open Questions. The implementation of the “FFT continuation” described
here is fine for moderate-size numbers (say up to 1000 digits) but may be too
expensive for large inputs, for example Fermat numbers. In that case, one might
want to go back to the classical standard continuation. Montgomery proposes in
[18] the PAIR algorithm to hit all primes in the stage 2 range with small sets S
and T . This algorithm was recently improved by Alexander Kruppa in [13], by
choosing nodes in a partial cover of a bipartite graph.
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Although many improvements have been made to stage 2 in the last years,
the real bottleneck remains stage 1. The main question is whether it is possible
to break the sequentiality of stage 1, i.e., to get a o(B1) cost. Any speedup
to stage 1 is welcome: Alexander Kruppa suggested (personal communication)
designing a sliding window variant in affine coordinates. Another idea is to save
one multiply per duplicate by forcing d to be small in Eq. (2), as pointed out by
Montgomery; Bernstein suggests to use (16d + 18)y2 = x3 + (4d + 2)x2 + x with
starting point (2 : 1). Computer experiments indicate that these curves have, on
average, 3.49 powers of 2 and 0.78 powers of 3, while Suyama’s family has 3.46
powers of 2 and 1.45 powers of 3.

Finally, is it possible to design a “stage 3”, i.e., hit two large primes in stage
2? How much would it increase the probability of finding a factor?
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Abstract. We present an index calculus algorithm which is particularly
well suited to solve the discrete logarithm problem (DLP) in degree 0
class groups of curves over finite fields which are represented by plane
models of small degree. A heuristic analysis of our algorithm indicates
that asymptotically for varying q, “almost all” instances of the DLP in
degree 0 class groups of curves represented by plane models of a fixed
degree d ≥ 4 over Fq can be solved in an expected time of Õ(q2−2/(d−2)).

Additionally we provide a method to represent “sufficiently general”
(non-hyperelliptic) curves of genus g ≥ 3 by plane models of degree
g + 1. We conclude that on heuristic grounds, “almost all” instances of
the DLP in degree 0 class groups of (non-hyperelliptic) curves of a fixed
genus g ≥ 3 (represented initially by plane models of bounded degree)
can be solved in an expected time of Õ(q2−2/(g−1)).

1 Introduction

In recent works by Gaudry, Thomé, Thériault and the author ([13]) as well as
Nagao ([22]), a double large prime variation for index calculus in degree 0 class
groups of curves of small genus over finite fields has been introduced.

In this work, we present a different double large prime variation algorithm
which is particularly well suited for the computation of the discrete logarithm
problem (DLP) in degree 0 class groups of curves which are represented by plane
models of small degree.

A heuristic analysis of our algorithm indicates (see Section 4):

Heuristic Result 1. Let d ≥ 4 be fixed. Let us consider the DLP in degree 0
class groups of curves of a fixed genus g ≤ (d− 1)(d− 2)/2 represented by plane
models of degree d over finite fields Fq. Then “almost all” instances of the DLP
in such groups can be solved in an expected time of Õ(q2− 2

d−2 ).

Here, the Õ-notation means that we suppress logarithmic factors.
Additionally to the index calculus algorithm, we present a method to find

plane models of degree g + 1 of “sufficiently general” (non-hyperelliptic) curves
of genus g ≥ 3 (see Section 6).
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By applying our algorithm to such a plane model, we obtain that on heuristic
grounds “almost all” instances of the DLP in degree 0 class groups of (non-hyper-
elliptic) curves of a fixed genus g ≥ 3 (initially represented by plane models of
bounded degree) can be solved in an expected time of

Õ(q2− 2

g−1 ).

This result should be compared with the following provable result which can be
obtained with a variant of one of the algorithms in [13] (see [7]).

Let g ≥ 2 be fixed. Then the DLP in cyclic degree 0 class groups of curves of
genus g represented by plane models of bounded degree can with a randomized
algorithm be solved in an expected time of Õ(q2−2/g).

An important special case for our algorithm is constituted by the DLP in
degree 0 class groups of non-hyperelliptic curves of genus 3 over finite fields
Fq: Every such curve can (via the canonical embedding) be represented as a
plane quartic. By applying our algorithm to such a model, we obtain a heuristic
running time of Õ(q).

This result is of particular importance because the DLP in degree 0 class
groups of non-hyperelliptic genus 3 curves has recently received considerable
attention as a potential cryptographic primitive; it is studied in detail in the
related article [10] in which also some experimental data is presented.

Even though the DLP in degree 0 class groups of non-hyperelliptic curves of
genus larger than 3 has not received much attention as a potential cryptographic
primitive, our algorithm has yet another important application in cryptanalysis:

The method of “covering attacks” (a.k.a. Weil descent attacks) (cf. [8, Ap-
pendix], [9], [17], [12, Section 4.4]) allows to transfer the DLP in groups of ratio-
nal points of certain elliptic curves (or in degree 0 class groups of certain curves
of small genus) over extension fields into the DLP in degree 0 class groups of
curves of rather small genus over smaller fields. The results in the present work
suggest that it is advantageous for the attack if the resulting curves are not
hyperelliptic.

2 Setting and First Remarks

Preliminaries
In this work, if not stated otherwise, a curve is always non-singular, projective
and geometrically irreducible.

In the presentation above we implicitly used the following conventions con-
cerning the representation of curves, divisors and divisor classes:

Let q be a prime power. We let P2
Fq

:= Proj(Fq[X, Y, Z]); we thus have the
canonical “homogeneous coordinate system” X, Y, Z ∈ Γ (P2

Fq
,O(1)).

We think of every curve in question as being the normalization of a possibly
singular curve in P2

Fq
. We distinguish the two by calling the latter one a plane

model of the curve, denoted by Cpm. We use a defining homogeneous polynomial
to represent the plane model (and thus the curve itself).
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By a divisor on a curve C over Fq we mean a divisor over Fq. We think of
divisors as being represented as a formal sum of closed points in C. (This is called
the free representation in [16].)

For some divisor D on C, we denote the corresponding divisor class by [D].
We denote the degree 0 class group of C over Fq by Cl0(C).

For fixed genus g and q � 0, C(Fq) is non-empty; we assume that this
is the case and fix some P0 ∈ C(Fq). An effective divisor D on C is called
maximally reduced along P0 if the linear system |D − P0| is empty. By the
Riemann-Roch theorem, maximally reduced divisors have degree ≤ g, and D �→
[D] − deg(D) · [P0] defines a bijection between the effective maximally reduced
divisors and the elements of the degree 0 class group Cl0(C) (see [16, Prop. 8.2.]).

It is by now a classical result that with this representation of the elements of
the degree 0 class group, the arithmetic in Cl0(C) can – for curves represented
by plane models of bounded degree – be carried out in randomized polynomial
time (cf. e.g. [26], [18], [16], [20], [19]).

Further Notation and Conventions
We use the same notation for functions on P2

Fq
, their restriction to Cpm, their pull-

back to C as well as the induced element in the function field Fq(C). Moreover,
if ϕ : C −→ P2

Fq
is the (fixed) morphism from C to P2

Fq
, we use the same notation

for elements of Γ (P2
Fq

,O(1)) and their pull-backs to Γ (C, ϕ∗(O(1))).
We identify zero-dimensional closed subschemes on C with effective divisors.

To distinguish the divisor of zeros of an element of W ∈ Γ (P2
Fq

,O(1)) from the
divisor of zeros of the induced element in Γ (C, ϕ∗(O(1))), we write divC(W ) for
the latter. (See [15, II, §7] for information about the divisor of zeros.)

Calculating the Group Order
We assume that the order of the degree 0 class group is known. From a theoretical
point of view this is however not an obstacle because it can be shown that
the L-polynomials of curves over Fq represented by plane models of bounded
degree can be calculated in (deterministic) polynomial time in log(q). (This
result follows from [24, Theorem H] which in turn relies on Pila’s extension of the
point counting algorithm by Schoof ([25]) to abelian varieties ([23]).) Moreover,
in cryptographic situations, the order of the cyclic subgroup in question is always
known, and this suffices for practical applications of our algorithm.

Overview over the New Algorithm
Our algorithm can be viewed as a variant of the recent double large prime
variation algorithms by Gaudry, Thomé, Thériault and the author ([13]) as well
as Nagao ([22]) (see also [3]).

The main difference is that we use principal divisors to construct the graph
of large prime relations, whereas in [13] and [22] random linear combinations of
the two input elements in the degree 0 class group have been used.

More concretely, we find relations by intersecting the plane model with lines
running through two elements of the factor base. We advice the reader to have
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the following intuitive idea about the algorithm and its heuristic analysis in
mind: Every line which runs through the non-singular part of the plane model
defines a divisor of degree d on the curve. If we now intersected the plane model
with arbitrary lines, heuristically we would obtain a running time which is anal-
ogous to the running time of the previous double-large prime-variation algo-
rithms with g substituted by d. As we however only consider lines which already
run through two points of the factor base, we obtain a running time which is
analogous to the running time of the previous algorithms with g substituted
by d − 2.

We recall that there are two algorithms in [13]: the “full algorithm” and the
“simplified algorithm”. Our algorithm is closer to the “full algorithm” but there
is an essential difference: In the full algorithm in [13], recombined relations over
the factor base are already obtained during the construction of the graph. In
contrast, we first try to construct a sufficiently dense graph, and after that we
construct what is known as a shortest path tree. Then we use random linear
combinations of the two input elements to generate recombined relations over
the factor base with the help of the tree.

The Heuristic Nature of Our Results
The analysis of the algorithm presented in this work is heuristic. It is conceivable
that there is a sequence of instances which violates the stated running times.
This is why we talk about “almost all” instances.

A rigorous interpretation of our claims can be given as follows:
Let us fix the degree d and the genus g ≤ (d − 1)(d − 2)/2. Now for a prime

power q, let S(q) be the set of all instances of the DLP in curves of genus
g ≤ (d− 1)(d− 2)/2 over Fq represented by plane models of degree d. (With the
representations described above.)

The (conjectural) claim is now that there exist subsets S1(q) of S(q) with
#S1(q)/#S(q) −→ 1 (q −→ ∞) such that the instances in S1(q) can be solved
in the stated time.

Above, we also used the term “sufficiently general”. This term will be defined
in Section 6.

Historical Remarks and Comparison
The idea to use principal divisors to generate relations in class groups is not new.
For example, the same approach was taken in the work by Adleman, DeMarrais,
Huang ([1]), in which the first algorithm with a heuristic subexponential running
time for the computation of the DLP in degree 0 class groups of hyperelliptic
curves of large genus was given.

We note that to our knowledge, all known index calculus algorithms which
rely on the consideration of principal divisors are analyzed only heuristically.
With our two-step procedure to generate relations we have however eliminated a
crucial hypothesis which previously occurred in the analyses of such algorithms:
the hypothesis that “sufficiently many” of the relations generated are linearly
independent.
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3 The Algorithm

We consider curves over Fq represented by plane models of a fixed degree d ≥ 4.
Let C be such a curve with a fixed plane model Cpm in P2

Fq
, given by

F (X, Y, Z) = 0 .

Let a, b ∈ Cl0(C) such that b ∈ 〈a〉. The goal is to compute an x ∈ N with
x · a = b.

Let D∞ := divC(Z). Note that this is a divisor of degree d on C. (This divisor
will appear in the description of the algorithm, it is however not necessary to
compute it.)

Let Cns be the non-singular part of Cpm.
We now describe how the partial relations used to construct the graph of large

prime relations are obtained.
The following classical statement from the theory of linear systems is crucial:

Lemma 1. Let W ∈ Γ (P2
Fq

,O(1)) (W �= 0), and let D := divC(W ). Then D is
linearly equivalent to D∞.

Sketch of the proof. D −D∞ is the principal divisor of W
Z ∈ Fq(C). �

As a reformulation of this we obtain: Let cX , cY , cZ ∈ Fq, not all 0, and let
L be the line defined by cXX + cY Y + cZZ = 0. Let D := L ∩ Cpm be the
(scheme-theoretic) intersection. If then D is contained in Cns, we can regard D
as a divisor on C, and we have

[D]− [D∞] = 0 . (1)

Lemma 2. Given cX , cY , cZ ∈ Fq, not all 0, one can decide in randomized
polynomial time in log(q) if the support of the intersection of Cpm with L consists
of Fq-rational points of Cns and – if this is the case – compute the (completely
split) intersection divisor D.

Proof. Let us (w.l.o.g.) assume that cY = 1. Then the point (0 : 1 : 0) does not lie
on L. The homogeneous polynomial F (X,−cXX − cZZ) ∈ Fq[X, Z] now defines
the image of the intersection under the projection to the (X, Z)-coordinates
(with multiplicities). The support of the intersection of Cpm with L consists of
Fq-rational points of Cpm if and only if this polynomial factors completely. This
factorization can be computed in randomized polynomial time in log(q). The
Y -coordinates of the intersection points can then easily be obtained by using
the equation for the line L. Finally, one can check whether the intersection
points lie in Cns by evaluating the partial derivatives of F . �

Let us now fix a factor base F = {F1, F2, . . .} ⊂ Cns(Fq). Let L := Cns(Fq) − F
be the set of the so-called large primes. Analogously to [13] we define:
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Definition 1. A relation (1) (with D ≥ 0) is called a Full relation if D is a
sum of elements of the factor base. It is called an FP relation if D is a sum of
elements of the factor base and the non-trivial multiple of one large prime. It is
called a PP relation if D is the sum of elements of the factor base and non-trivial
multiples of two large primes.

In the first phase of the algorithm, we construct a graph of large prime relations
on L ·∪ {∗} using FP and PP relations.

We find such relations by intersecting the curve with lines L : cXX + cY Y +
cZZ = 0 (cX , cY , cZ ∈ Fq) running through two points of the factor base.

For the construction of the graph of large prime relations, we proceed as
follows:

If we have a Full relation, we do nothing. If we have an FP relation with a large
prime P , we consider the edge between ∗ and P , if we have a PP relation with two
large primes P and Q, we consider the edge between P and Q. If the edge does
not yet occur in the graph, we insert it, labeled with the data for the relation.

Remark 1. The graph we construct here can have many cycles. In contrast, the
graph constructed in the “full algorithm” in [13] is acyclic.

After having constructed a graph with a sufficiently large connected component
containing ∗, we construct what is known as a shortest path tree with root ∗.
Definition 2. Let G be an undirected (unweighted) graph, and let ∗ be a vertex
in G. Then a shortest path tree with root ∗ is a tree on a subset of the set of
vertices of G with the following properties:

– The vertices in T are the vertices in the connected component of ∗ in G.
– For any vertex V in T , the distance between ∗ and V in G is equal to the

distance between ∗ and V in T .

Notation 1. The set of vertices of a tree T is also denoted by T .

It is easy to construct a shortest-path tree algorithmically with the so-called
breadth-first search (see [6, Section 22.2]).

As written in Section 2, for every element c ∈ Cl0(C) there is a unique along
F1 maximally reduced effective divisor D such that [D]−deg(D) · [F1] = c (here
as above, F1 is the first element of the factor base).

We use this representation of the elements of the degree 0 class group and
proceed as in Phase 2 of the “simplified algorithm” in [13]. Provided that the
degree 0 class group is cyclic and generated by a this means that we consider
random linear combinations of the inputs a and b which we try to express as
sums of elements of F ∪ T . We then use the tree to substitute the vertices of T
involved by sums of (possibly negative) multiples of elements in the factor base
and D∞. Finally, we solve the DLP with an algorithm from sparse linear algebra.

We are now ready to give the complete algorithm. For simplicity we thereby
assume that the group order � is prime. (If the group is cyclic but not of prime
order or the group is arbitrary but its structure is known, Steps 5 and 6 should
be modified according to the descriptions in [13] and [11].)
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The Algorithm

Input: A curve C/Fq, given by a plane model of degree d,
the group order � := #Cl0(C) and two elements a, b ∈ Cl0(C) with 〈a〉 = Cl0(C).

1. Enumerate Cns(Fq) and choose a factor base F = {F1, F2, . . .} uniformly at ran-
dom from the set of all subsets of Cns(Fq) with �(4 ·(d−2)!)1/(d−2) ·q1−1/(d−2)�
elements.
(If Cns(Fq) has fewer elements, terminate.)

2. Construct a graph G on L ·∪ {∗} (where L := Cns(Fq) −F) as follows:
For all i < j do

Compute the line L through Fi and Fj .
If D := L ∩ Cpm is contained in Cns
and splits completely into points of Cns(Fq), then

if it defines an FP or a PP relation, then
if the corresponding edge does not yet occur in the graph, then

insert the edge in the graph.
3. Construct a shortest path tree T with root ∗ in G.
4. If T has less than 1

log(q) · q vertices or the depth of T is > log2(q), go back to 1.
5. Construct a sparse matrix R over Z/�Z as follows:

For i = 1, . . . , #F + 1 do
Repeat

Choose uniformly and independently randomly αi and βi and compute
the unique along F1 maximally reduced effective divisor D with
[D] − deg(D) · [F1] = αia + βib.

Until D splits into elements of F ∪ T .
Use the tree T to substitute these elements
by sums of multiples of elements of F ∪ {D∞}.
If this substitution leads to the relation

∑
j ri,j [Fj ] + ri[D∞] = αia + βib,

store (ri,j)j as the i-th row of R.
6. Compute a non-zero vector γ over Z/�Z with γR = 0 with an algorithm

from sparse linear algebra.
7. If
∑

i γiβi ∈ (Z/�Z)∗, let

x ←− −
∑

i γiαi∑
i γiβi

,

otherwise go back to 5.
Output x.

Proposition 1. If the algorithm outputs x, we have x · a = b.

Proof. With the notation in Steps 5 and 6, we have∑
i

γiαia +
∑

i

γiβib =
∑
i,j

γiri,j [Fj ] +
∑

i

γiri[D∞] =
∑

i

γiri[D∞].

As
∑

i γiαia +
∑

i γiβib has degree 0, we have
∑

i γiri = 0, i.e.
∑

i γiαia +∑
i γiβib = 0. This implies x · a = b. �
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4 Heuristic Analysis

The following heuristic analysis is for fixed degree d and fixed genus g ≤
(d − 1)(d − 2)/2 and q −→ ∞. We note that even though the genus is bounded
if we fix the degree (which suffices for our heuristic analysis), we fix the genus
additionally to the degree because we want to derive statements on almost all
instances for every fixed degree and genus.

A “randomized” factor base as in Step 1 can be found in an expected time of
Õ(q) as follows:

First all points of Cns(Fq) are enumerated. By iterating over the (X, Z)-coor-
dinates and considering the possible Y -coordinates, this can be done in a time of
Õ(q). After this, a factor base as in Step 1 of the algorithm can be constructed
by uniformly randomly choosing points of C(Fq). The expected running time is
then again in Õ(q).

We now come to the task to analyze the size of the tree T as well as its depth.
This task seems to be very difficult, and our analysis relies on several heuristic
assumptions. A key technique of our approach is to use the randomization of
the factor base and to rely on a heuristic comparison of the graph which is
constructed in Step 2 with an appropriate “random graph”.

We will use these notations:

Definition 3. Let (an)n∈N and (bn)n∈N be two sequences of real numbers. Then
we write

an � bn

if lim inf an

bn
≥ 1.

Definition 4. For P, Q ∈ Cns(Fq) with P �= Q, let pPQ be the probability that
P, Q ∈ L and the unordered pair {P, Q} occurs as an edge in the graph (if we
choose the factor base uniformly at random from the set of all factor bases with
�(4 · (d− 2)!)1/(d−2) · q1−1/(d−2)� elements). Let

pav :=
1

#Cns(Fq) · (#Cns(Fq)− 1)
·

∑
P,Q∈Cns(Fq) with P �=Q

pPQ .

Note that pav can be seen as the average probability that an (unordered) pair of
distinct points in Cns(Fq) occurs as an edge in the graph.

Lemma 3. For P, Q ∈ Cns(Fq) with P �= Q such that the line through P and Q
intersects Cpm only in Cns and the intersection divisor splits completely into a
sum of distinct points of Cns(Fq), we have

pPQ ∼ 4 · (d − 2)! · 1
q

.

Proof. Let D = P +Q+R be the intersection divisor. Then the probability pPQ

is equal to the probability that the factor base contains all d − 2 points from R
and does not contain P and Q.
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The probability pPQ is thus( #Cns(Fq)−d


(4·(d−2)!)1/(d−2)·q1−1/(d−2)�−(d−2)

)
( #Cns(Fq)

(4·(d−2)!)1/(d−2)·q1−1/(d−2)�

) .

For q −→∞ this is asymptotically equivalent to(
(4 · (d − 2)!)1/(d−2) · q1−1/(d−2)

q

)d−2

= 4 · (d − 2)! · 1
q

. �

By the Hasse-Weil bounds, there are ∼ qd divisors of degree d on C of whose ∼
1
d!q

d split completely. The probability that a uniformly randomly chosen divisor
on C of degree d is completely split is thus asymptotically equal to 1

d! . This
motivates:

Heuristic Assumption 1. For almost all instances, the probability that a uni-
formly randomly chosen divisor in the linear system |D∞| is completely split is
≥ 1

2 · 1
d! .

Remark 2. In the case non-hyperelliptic curves of genus 3 (given as plane quar-
tics), it is possible to prove via an effective Chebotarev theorem that the prob-
ability that a uniformly randomly chosen divisor in |D∞| is completely split is
asymptotically equal to 1

4! . Thus Heuristic Assumption 1 is satisfied in this case
(see [10]).

Proposition 2. Under Heuristic Assumption 1, for almost all instances,
pav · q � 2, and the expected number of edges in the graph of large prime
relations is � q.

Proof. We restrict ourselves to instances for which Heuristic Assumption 1 is
satisfied.

We first note that the number of divisors in |D∞| which split completely into
sums of distinct points of Cns(Fq) is � 1

2
1
d! · q2.

Indeed, the number of completely split divisors is by assumption ≥ 1
2

1
d! · q3−1

q−1 .
By the formulae for the arithmetic and the geometric genus, the number of
singular points in (Cpm)Fq

is ≤ (d− 1)(d− 2)/2, thus the number of lines in P2
Fq

through singular points is in O(q). Moreover, every divisor in |D∞| which has
the form

∑
P nP P with nP ≥ 2 for some P ∈ Cns(Fq) is defined by a line in P2

Fq

which is tangential to Cpm. This means that the total number of such divisors is
also in O(q).

For any divisor D in |D∞| which splits completely into a sum of distinct
points of Cns(Fq), there are d · (d− 1) ordered pairs of distinct points in Cns(Fq)
in the support of the divisor. Each of these pairs of points fulfills the assump-
tions of Lemma 3 (and conversely, any pair of points fulfilling the assumptions of
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Lemma 3 determines uniquely such a divisor D). Thus there are � 1
2·d! · d(d −

1) · q2 = 1
2·(d−2)! · q2 ordered pairs of distinct points of Cns(Fq) which fulfill the

assumption of Lemma 3.
The average probability pav is thus

� 1
q2 · ( 1

2 · (d − 2)!
· q2) · (4 · (d − 2)! · 1

q
) =

2
q

.

If one multiplies the average probability pav by the number of unordered pairs
of points of Cns(Fq), one obtains the claimed asymptotic lower bound on the
expected number of edges. �

It does not seem to be easy to study the number of vertices in the connected
component of ∗ of G (which is equal to the number of vertices in the tree T ) as
well as the depth of the tree.

We note however the following result from the theory of random graphs: Let
G(n, p) denote a random graph on n vertices in which each unordered pair of
vertices appears (independently of the other pairs of vertices) as an edge with
probability p (this is called a Bernoulli random graph in [27]). Then we have
(see [4, Theorem 6.11] together with [4, Theorem 2.2 a)] as well as [5]):

Proposition 3. Let c > 1 be a constant. Then for p · n ≥ c, with probability
converging to 1 for n −→∞, G(n, p) has a “giant connected component” of size
Θ(n), and the diameter of the graph is in O(log(n)).

We now have the following situation: As in the conclusion of Proposition 2,
let pav · q � 2. Then with probability converging to 1, a random graph G(#L ·∪
{∗}, pav) has a “giant connected component” of size Θ(q) and diameter O(log(q)).

Clearly, there are three essential differences between Bernoulli random graphs
and the situation we have here:

1. In contrast to Bernoulli random graphs, many of the pairs of vertices are
never drawn.

2. In contrast to Bernoulli random graphs, the probabilities of two pairs of
vertices appearing as edges in the graph are not independent.

3. In contrast to Bernoulli random graphs, we have the “special vertex” ∗ which
heuristically occurs in much more edges than the vertices in L.

The analysis now relies on the heuristic assumption that analogous to a random
graph G(#L ·∪ {∗}, pav), for almost all instances, “sufficiently often” our graph
has a “giant connected component” of “sufficient size” and “sufficiently small”
diameter containing ∗. As an approach to cope with possible distortions, we
require only that with a probability of Ω̃(1), we have ≥ 1

log(q) · q vertices and the

maximal distance to ∗ is ≤ log2(q) (cf. the conditions in Step 4). (The Ω̃-notation
should be understood analogously to the Õ-notation.)
The above considerations motivate:

Heuristic Result 2. For almost all instances, Step 5 of the algorithm is
reached after at most Õ(1) iterations of 1 – 4.
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As there are Θ(q2−2/(d−2)) iterations within Step 2, this step has a running time
of Õ(q2−2/(d−2)).

With the breadth-first algorithm, given a graph on n vertices with m edges
represented by numbers whose bit-length is polynomial in log(n), a shortest-path
tree can be computed in a time of Õ(n+m). As the graph clearly contains O(q)
vertices and O(q2−2/(d−2)) edges, the running time of Step 3 is in Õ(q2−2/(d−2)).

This means that on the basis of Heuristic Result 2, for almost all instances,
Step 5 of the algorithm can be reached in a time of Õ(q2−2/(d−2)).

Under the assumption that the degree 0 class group is cyclic or the group
structure is known, the rest of the algorithm can be analyzed rigorously. For
simplicity, as in the description of the algorithm, we stick to the case that the
degree 0 class group has prime order �. For modifications for the general case,
we refer to [11] and [13].

We have the following general lemma.

Lemma 4. Let us consider curves C over Fq of a fixed genus g together with a
point P0 ∈ C(Fq) and a set of rational points S ⊂ C(Fq) such that #S = Ω̃(q).
Then there are Ω̃(qg) effective divisors D which split completely into sums of
elements of S and are maximally reduced along P0.

Proof. If D is a non-special effective divisor of degree g, then the unique effective
divisor D′ which does not have P0 in its support and satisfies D′+(g−deg(D′)) ·
P0 = D is maximally reduced along P0. Clearly there are Ω̃(qg) effective divi-
sors of degree g which split completely into sums of elements of S, and by the
Hasse-Weil bounds, there are only O(qg−1/2) special divisors of degree g. This
is asymptotically negligible against Ω̃(qg). �

This lemma implies that with a probability of Ω̃(1) one choice of αi and βi in
Step 5 leads to a divisor D which splits over F ∪T . Step 5 then has an expected
running time of Õ(q1−1/(d−2)).

Because of the condition that the depth of T is ≤ log2(q), the expected average
number of elements in each row of the relation matrix is in O(log(q)2). This
implies that Step 6 has a running time of Õ(q2−2/(d−2)). Finally, as argued in
[13],
∑

i γiβi is uniformly randomly distributed over the group Z/�Z.
All in all, we have the following heuristic result:

Heuristic Result 3. For almost all instances, the DLP in Cl0(C) can be com-
puted in a time of Õ(q2−2/(d−2)).

This is essentially the heuristic result stated in the introduction.
We note however that in the introduction we did not assume that the group is

cyclic or the group structure is known. We have to make an additional heuristic
assumption if the relation generation takes place in a proper subgroup of the
degree 0 class group.
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5 Practical Aspects

In this section, we briefly discuss some practical aspects of our algorithm and
possible variants for concrete computations.

1. For practical purposes it might be advisable not to first construct the graph,
then the shortest path tree and then to use this tree to derive relations via
random linear combinations of the input values. Instead, one can proceed as
follows:
– First, one computes representatives of multiples αa and βb of the input

values a and b which split completely into sums of points of Cns(Fq).
– One chooses the factor base, thereby inserting the points in Cns(Fq) for

the representatives for αa and βb.
– One generates relations by considering lines through points of the factor

base as described in Section 3 but otherwise one proceeds as in the “full
algorithm” of [13]. This means that every time one would obtain a cycle,
one does not insert the corresponding edge in the graph but instead tries
to use this cycle to obtain a relation over the factor base.

– One stops if one has found enough “sufficiently light” cycles. Then one
solves the DLP via linear algebra.

With this approach only for the initial computation of multiples of a and b
one needs an algorithm for arithmetic in the degree 0 class group. If this ini-
tial computation is not time-critical, this might simplify the implementation.

The approach presented above is particularly advantageous if g is much
larger than d (for example if the plane model itself is non-singular and there-
fore g = (d− 1)(d− 2)/2). Note that the initial computation of multiples of
a and b might even dominate the running time.

2. The number of points in the factor base (�(4 · (d − 2)!)1/(d−2) · q1−1/(d−2)�)
was chosen such that we expect the graph of large prime relations to be large
enough for fixed degree d and q � 0. It might be necessary to choose the fac-
tor base slightly larger for concrete computations. This applies in particular
if one follows the variant presented above.

3. If every pair of points in the factor base is considered to generate the graph,
a line through the factor base defining a PP relation is usually considered(
d−2
2

)
times. To decrease the occurrence of such “repeated selections”, it

might be advisable to choose the factor base larger than necessary.
4. For the graph of large prime relations to be large enough, one needs at least

about q divisors in |D∞| which split completely. This implies that one should
have q > d! if one applies the algorithm. The case d! ≈ q can be considered
as a boundary case. In this case, one could try to apply the variant presented
in Point 1 by choosing the factor base equal to Cns(Fq) and ignoring the large
prime variation.

5. To reduce the storage requirements, it might be advisable to combine our
relation generation with the “simplified algorithm” of [13], i.e. when con-
structing the graph of large prime relations, one discards all edges which are
not connected to ∗. The factor base then has to be enlarged by a logarithmic
factor.
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6 Finding Plane Models of Degree g+1

In this section we start off with some curve C of genus ≥ 3 over an “effective
field” k. The goal is to find a plane model of degree g + 1 (provided such a
model exists). In order to bound the time for computation of this plane model
we assume that the curve C is initially given by a plane model of bounded degree.

The idea is to define a morphism C −→ P2
k via a special linear system of

degree g + 1. The case of non-hyperelliptic genus 3 curves is particularly easy:
the canonical system |K| itself defines an embedding into P2

k. For the general
case we have the following proposition (see Point (b) in the introduction of [14]):

Proposition 4. A general linear system of degree d and (projective) dimension
≥ 2 on a general curve of genus g has dimension 2, no base-points and defines
a morphism to P2 which is birational onto its image.

Here as usual, by a general curve we mean a curve which is obtained by base-
change from the curve corresponding to the generic point of the (coarse) moduli
space Mg. (This space exists by [21, Corollary 7.14.].) A general effective divisor
of degree d is the divisor on Ck(Cd) corresponding to the generic point of Cd. Here,
following [2] and [14], Cd denotes the d-fold symmetric power of C.

Let us say that a property holds for sufficiently general curves (of a prescribed
genus) and / or for sufficiently general linear systems of divisors (of a prescribed
degree and dimension) if it holds for curves and divisors in an open part of the
corresponding moduli space.

We can then conclude that the linear system of any sufficiently general linear
system of degree d and dimension ≥ 2 on any sufficiently general curve defines
a morphism to P2 which is birational onto its image. (As usual, the morphism
is unique up to an automorphism of P2.)

Following [2] and [14], let us denote the locus of complete linear systems of
degree d and (projective) dimension ≥ n (in a twist of the Jacobian) by Wn

d (C).
We have the following proposition.

Proposition 5. Let C be any curve of genus g ≥ 3. Then we have birational
morphisms

Cg−3 −→ W 0
g−3(C) −→ W 2

g+1(C)
D �→ |D| �→ |K −D|.

In particular, for any (sufficiently) general effective divisor D of degree g−3 on a
(sufficiently) general curve C, |K−D| has no base points, (projective) dimension
2 and defines a morphism to P2 which is birational onto its image.

Proof. The morphism Cg−3 −→ W 0
g−3(C), D �→ |D| is birational because for

any curve, the linear system of any general effective divisor of degree < g has
dimension 0.

By the Riemann-Roch theorem ([15, IV, Theorem 1.3]) and the fact that
deg(K) = 2g − 2, we have an isomorphism W 0

g−3(C) −→ W 2
g+1(C), |D| �→

|K −D|. �
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Remark 3. Not every curve of genus g has a plane model of degree g + 1. For
example, no hyperelliptic curve has such a model.

We have the following method to compute plane models of degree g + 1:

Computation of a Plane Model of Degree g + 1

Input: Any curve C/k.

1. Compute a canonical divisor K on C.
2. Select any effective divisor D on C of degree g − 3.
3. Compute a basis b1, . . . , bn of the Riemann-Roch space L(K −D).
4. If the basis has more than 3 elements, terminate.
5. Compute a homogeneous polynomial F (X, Y, Z) ∈ k[X, Y, Z] of

minimal degree with F (b1, b2, b3) = 0.
6. If deg(F ) < g + 1, terminate.
7. Output (F ; b1, b2, b3).

The necessary computations of divisors and Riemann-Roch spaces can be
carried out with the algorithms in [16]. Step 5 can be performed by computing
(successively for i = 1, . . . , g + 1) the functions bi1

1 · bi2
2 · bi3

3 with i = i1 + i2 + i3
and trying to find a linear relation between them. The latter task is a linear
algebra problem. Over finite fields we have:

Proposition 6. There exists a specification of the above method such that for
curves over finite fields Fq initially represented by plane models of bounded degree
the expected running time is polynomial in log(q).

Example 1. At the end of [8], an elliptic curve E over Fp7 with p = 10000019 is
given such that the DLP in E(Fp7) can be transferred into a DLP in the degree
0 class group of a certain curve C of genus 7 over Fp. An explicit equation for C
is also given. Using the method outlined above, we computed various degree 8
models of this curve.
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Abstract. Index calculus has been successful in many cases for treating
the discrete logarithm problem for the multiplicative group of a finite
field, but less so for elliptic curves over a finite field. In this paper we seek
to explain why this might be the case from the perspective of arithmetic
duality and propose a unified method for treating both problems which
we call signature calculus.

1 Introduction

Let A be a finite abelian group and x an element of A. Let y be in the subgroup
generated by x, so that y = nx for some positive integer n. Recall that the
discrete logarithm problem (DLP) is to determine n in a computationally efficient
way. The computational complexity of solving this problem when the bit size of
the inputs is large is the basis of many public-key encryption schemes used today.
Two of the most important examples of finite abelian groups that are used in
public-key cryptography are the multiplicative group of a finite field and the
group of points on an elliptic curve over a finite field (see [K] and [Mill] for the
original papers and [KMV] for a survey of work as of 2000).

In what follows below, we will assume that � is a large prime number dividing
the order of A and that x is an element of order �. For p a prime number and
q a power of p, we denote by Fq the finite field with q elements and by F∗

q its
multiplicative group of nonzero elements.

Index calculus has been successful in many cases for treating the discrete
logarithm problem for the multiplicative group of a finite field (see e.g. [Mc], §5
or [SWD]), but less so for elliptic curves over a finite field (see e.g. [HKT] or
[JKSST]). In this paper we seek to “explain” why this might be the case from
the perspective of arithmetic duality and propose a unified method for treating
both problems which we call signature calculus.

We will give more details below, but in this introduction we will simply say
that to address the DLP in an abelian algebraic group, we use a lifting of the
group over a number field and use the reciprocity law of global class field theory.
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We explain in detail how this works when the group is either the multiplicative
group of a finite field or the group of points of an elliptic curve over a finite
field. The idea is to construct a suitable “test” element, which is a Dirichlet
character in the multiplicative group case and a principal homogeneous space in
the elliptic curve case. This element pairs with a point of the group to give an
equation between the local terms of this pairing. We thus “shift” the computation
to other places where it is expected to be easier. In §2, we define the signature
of these test elements, and in §3, we prove the equivalence of computing the
signature with the respective DLP.

The unifying approach based on global duality provides an ideal setting to
investigate the feasibility of the index calculus method for both types of dis-
crete logarithm problems. Following the equivalence results we show that in
this setting, the index calculus method arises quite naturally for the discrete-log
problem in the multiplicative case and the corresponding signature computation
problem. In contrast, a similar method cannot be fashioned for the elliptic curve
case. The success in one case and the lack thereof in the other is due to the
difference in the nature of the pairings involved. In the multiplicative case, a
Dirichlet character which is unramified at a place can nevertheless pair nontriv-
ially with local non-units of the place. This makes it possible for small primes
to play a role in forming relations among values of local pairings. In the elliptic
curve case, a locally unramified principal homogeneous space at a good reduction
place is simply trivial. For bad reduction places not dividing �, only the group
of components of the special fibre of the Néron model of the elliptic curve over
the ring of integers plays a role, and the order of this group is unlikely to be
divisible by �. As a result only primes of large norm can play a role in forming
relations among values of local pairings.

The computational complexity of signature calculus is an intriguing ques-
tion, since the objects involved (Dirichlet characters and principal homogeneous
spaces) and their associated field extensions are huge, but the signature that
is sought is small. Although we show that the testing Dirichlet characters and
principal homogeneous spaces exist, it remains an interesting question how they
can be explicitly constructed. The question in the multiplicative case is easier
to handle. In that case we also derive a concrete number theoretical character-
ization of the character signature by working out the local pairings using norm
residue symbols. For the elliptic curve case we have a partial solution for the
construction.

The idea of using global methods in this way was originally proposed by
Frey [F], whom we thank for inspiration, helpful discussions and for inviting us
to present our work at the Elliptic Curve Cryptography (ECC) conference in
Bochum in September 2004. Methods of this type have also been used by Frey
and Rück [FR], and by Nguyen [N].

Due to space limitations some of the proofs will be omitted or sketched in this
extended abstract. Detailed proofs appear in [HR1-3].
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2 Global Framework

2.1 Notation and Review of Algebraic Number Theory

This subsection is meant primarily to fix notation and to recall some basic con-
cepts from algebraic number theory. Let K be an algebraic number field. We fix
an algebraic closure K of K and let G = Gal(K/K). An equivalence class of ab-
solute values on K will be denoted by v and called a place. For each v, we denote
by Kv the completion of K with respect to the corresponding absolute value. As
most of our discussion will pertain to abelian groups that are �-torsion, where �
is an odd prime number, we shall ignore the real places for the most part.

Recall that the Brauer group Br(K) is an abelian group that classifies the
equivalence classes of central simple algebras over K, where two such algebras
A and B are equivalent if there are matrix algebras Mn(K), Mm(K) such that

A ⊗K Mn(K) ∼= B ⊗K Mm(K).

We have that Br(Kv) ∼= Q/Z if v is nonarchimedean, Br(R) ∼= Z/2Z and
Br(C) = 0. We can describe Br(K) in terms of Galois cohomology by

Br(K) ∼= H2(G, K
∗
).

One of the most important results in algebraic number theory is the exact
sequence:

0 → Br(K) →
⊕

v

Br(Kv) → Q/Z → 0.

This is the beginning of the theory of global duality, which shows how to relate
the arithmetic of K with that of all of the Kv. The following subsections review
this theory briefly in the context in which we shall use it (see [HR1] for more
details).

2.2 Reciprocity Law for the Multiplicative Group

Let K∗ denote the set of nonzero elements of K, which is an abelian group un-
der multiplication. A Dirichlet character χ of K is a homomorphism of G =
Gal(K/K) into Q/Z, which we view as an element of the Galois cohomol-
ogy group H1(G, Q/Z). For a ∈ K∗ we denote by < χ, a > the cup product
∂(χ) ∪ a ∈ H2(G, K

∗
) (see [S], Ch. XIV, §1 for notation). For each nonar-

chimedean place v of K we can consider χ as a character of Gv = Gal(Kv/Kv)
and denote it by χv. Given a ∈ K∗

v , we can do the same cup-product construction
as we did above for K to get an element

< χv, a >v∈ H2(Gv, K
∗
v) ∼= Q/Z.

If v is a place where χ is unramified and a is a unit at v, then < χv, av >v= 0.
Thus < χv, av >v=0 for all but finitely many v. We then have the reciprocity
law: for any Dirichlet character χ of K and any a ∈ K∗,∑

v

< χv, av >v= 0 ∈ Q/Z.
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2.3 Reciprocity Law for Elliptic Curves

Let E be an elliptic curve over K. Recall that a principal homogeneous space of
E over K is a curve F of genus 1 over K together with a simply transitive group
action of E on F . The isomorphism classes of principal homogeneous spaces
are classified by the group H1(G, E(K)), where G = Gal(K/K). A principal
homogeneous space is trivial if and only if it has a rational point over K, in
which case it is isomorphic to E over K. Thus any principal homogeneous space
becomes isomorphic to E over a finite extension of K. Let Q be a point of E.
Then for α ∈ H1(G, E) and Q ∈ E(K), we consider the pairing

< α, Q >∈ Br(K).

This are not as easy to describe explicitly as in the case of the multiplicative
group and we refer to [HR1] for a general description. We can make a similar
definition for

< αv, Qv >v∈ Br(Kv) ∼= Q/Z

over the nonarchimedean fields Kv. We then have that < αv, Qv >v= 0 for
almost all v and the reciprocity law:∑

v

< αv, Qv >v= 0 ∈ Q/Z.

2.4 Duality

Let S be a finite set of places of K including the places dividing �, and GS be
the Galois group of a maximal extension of K that is unramified outside S. Let
μ� be the Galois module of �-th roots of unity. Then we have the Poitou-Tate
exact sequence (see [HR1]):

0 → H0(GS, μ�) →
v∈S

H0(Kv, μ�) → H2(GS, Z/Z)∗ → H1(GS , μ�)

→
v∈S

H1(Kv, μ�) → H1(GS , Z/Z)∗ → H2(GS , μ�) →
v∈S

H2(Kv, μ�)

→ H0(GS, Z/Z)∗ → 0.

Here, for an abelian group A, A∗ denotes Hom(A, Q/Z). We are mainly interested
in the part

(∗) H1(GS , μ�) →
⊕
v∈S

H1(Kv, μ�) → H1(GS , Z/�Z)∗

which will be used in proving the existence of our testing Dirichlet characters. If
the order of the class group of K is not divisible by �, then the last map in this
sequence is surjective (see [HR2]).
Recall the Shafarevich-Tate group

X(E) = ker[H1(K, E) →
⊕
all v

H1(Kv, E)],
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where the sum runs over all places of K. It is conjectured that X(E) is finite
for any elliptic curve over a number field, but this is not known, in general. It
has been proved in many cases for E of small rank. In what follows we will need
to assume this.

Let E be a smooth proper model of E over an open subset U of the ring of
integers of K on which � is invertible and put S = X − U . We have the exact
sequence (see [HR1]):

(∗∗) E(K)(�) →
⊕
v∈S

E(Kv)(�) → H1(U, E){�}∗ → X(E){�} → 0.

Here (�) denotes completion with respect to subgroups of �-power index and
{�} denotes the �-primary part. This sequence is usually called the Cassels-Tate
exact sequence.

3 Existence of Testing Dirichlet Characters and Principal
Homogeneous Spaces

3.1 The Multiplicative Case - Dirichlet Characters

Throughout this subsection, let p, � be rational primes with p ≡ 1 (mod �) and
� > 2. Let K/Q be a real quadratic extension where p and � split. Let α be a
fundamental unit of K. Let Σ be the set of all places over � and p, together with
all the archimedean places. For any place u of K let Pu denote the prime ideal
corresponding to u.

Proposition 1. Let S be a subset of Σ that contains both places over � and both
archimedean places. Suppose

1. � �| hK where hK is the class number of K;
2. either αl−1 �≡ 1 (mod P 2

w) for some w ∈ S over �, or α
p−1

� �≡ 1 (mod Pw)
for some w ∈ S over p (that is, locally α is not an �-th power at either a
place over � or a place over p).

Then the F�-dimension of H1(GS , Z/�Z) equals n(S)−1 where n(S) is the num-
ber of finite places in S.

Corollary 1. Let S be the set consisting of one place u over �, one place v over
p, and both archimedean places. Suppose

1. � �| hK where hK is the class number of K;
2. αl−1 �≡ 1 (mod P 2

u );
3. α

p−1

� �≡ 1 (mod Pv).

Then the F�-dimension of H1(GS , Z/�Z) is one.

See [HR2] for a proof of Proposition 1 and Corollary 1 which involves the Poitou-
Tate sequence.
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Assuming the conditions in Corollary 1, then H1(GS , Z/�Z) is isomorphic to
Z/�Z. Every nontrivial character in it is ramified at u and v and unramified
at all other finite places; moreover, < χ, α >u �= 0 and < χ, α >v �= 0, and <
χ, α >u + < χ, α >v= 0. This group of characters corresponds to a unique cyclic
extension KS of degree � over K which is ramified at u and v and unramified at
all other finite places.

For a ring R, we denote by R∗ the group of units of R.
At u, we take the class of 1 + � as the generator of the group O∗

u/O∗�
u

∼=
Z∗

�/Z∗�
�

∼= Z/�Z. For χ ∈ H1(GS , Z/�Z), we call σu(χ) =< χ, 1 + � >u the
u-signature of χ.

Let g ∈ Z so that g mod p generates the multiplicative group of Fp. Then the
class of g generates O∗

v/O∗�
v

∼= Z∗
p/Z∗�

p
∼= Z/�Z. For χ ∈ H1(GS , Z/�Z), we call

σv(χ) =< χ, g >v �= 0 the v-signature of χ.
We call the pair (σu(χ), σv(χ)) the signature of χ. Since σu(χ)σv(χ)−1 ∈ Z/�Z

is the same for χ ∈ H1(GS , Z/�Z), it depends on KS alone and we call it the
ramification signature of KS with respect to 1 + � and g.

3.2 The Elliptic Curve Case - Principal Homogeneous Spaces

Lemma 1. Let Kv be a local field with finite residue field k. Let E be an elliptic
curve defined over Kv with good reduction.

1. Suppose the characteristic of k is �. Then H1(Kv, E)[�] ∼= Z/�Z if Kv
∼= Q�

and � �| #Ẽ(k).
2. Suppose the characteristic of k is not �. Then

(a) H1(Kv, E)[�] = 0 if � �| #Ẽ(k);
(b) H1(Kv, E)[�] ∼= Z/�Z if � | #Ẽ(k) but �2 �| #Ẽ(k).

For the rest of this section, let p, � be odd, rational primes. Let K/Q be a real
quadratic extension. Let X = Spec(OK). Let E be an elliptic curve defined over
K. Let Σ be the set of all places at which E has bad reduction, together with
all the archimedean places. Let E be a smooth proper model of E over the open
subset X −Σ.

Proposition 2. Let S be a finite set of places of K containing all bad reduction
places of E and the places above �. Then if X(E){�} = 0, we have the exact
sequence:

E(K)/� →
∏
v∈S

E(Kv)/� → (H1(OS , E)[�])∗ → 0.

Proof: Consider the Cassels-Tate exact sequence

E(K)(�) →
∏
v∈S

E(Kv)(�) → H1(OS , E){�}∗ → X(E){�} → 0.

Lemma 2. Let B be a torsion abelian group. Then we have

B[�]∗ ∼= B∗/�B∗

and
B{�}∗ ∼= B∗(�)
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The proposition follows from the lemma, the assumption that X(E){�} = 0 and
the Cassels-Tate sequence above.

For the remainder of this section we assume that p and � split in K, and E
has good reduction at p and �, with #Ẽ(Fp) = � and � �= #Ẽ(F�). Moreover
we assume that � is sufficiently large so that E(L)[�] is trivial for all quadratic
extensions L of Q. Finally, we assume that the discriminant of E is small com-
pared to �, which implies that for a bad reduction place v not dividing �, we
have E(Kv)/� = 0 (see [HR3] for more details about this last assumption).

Proposition 3. Let S be a finite set of places of K containing all bad reduction
places of E and the places above �, but no other places away from � and p.
Suppose

1. X(E){�} = 0;
2. the map E(K)/� → E(Ku)/� ⊕ E(Ku′)/� is an isomorphism, where u and

u′ are the two places of K over �.

Then the F�-dimension of H1(OS , E)[�] equals n(S)−2 where n(S) is the number
of finite places in S −Σ.

Proof: Since X(E){�} = 0, we have the exact sequence

E(K)/� →
∏
v∈S

E(Kv)/� → (H1(OS , E)[�])∗ → 0

by Proposition 2. The middle group in the sequence
∏

v∈S E(Kv)/� is isomorphic
to the direct sum of n(S) copies of Z/�Z by Lemma 1. Since the map

E(K)/� → E(Ku)/�⊕ E(Ku′)/� ∼= Z/�Z ⊕ Z/�Z

is an isomorphism, it follows that the image of the map

E(K)/� →
∏
v∈S

E(Kv)/�

is isomorphic to Z/�Z ⊕ Z/�Z. Hence the F�-dimension of H1(OS , E)[�] equals
n(S)− 2.

Corollary 2. With assumptions as in Proposition 3, let S be the set consisting
of all bad reduction places of E, together with the two places u and u′ over �,
and one place v over p. Suppose

1. X(E){�} = 0;
2. the map E(K)/� → E(Ku)/�⊕ E(Ku′)/� is an isomorphism.

Then the F�-dimension of H1(OS , E)[�] is one. Moreover every nontrivial ele-
ment of H1(OS , E)[�] is ramified at v.
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For w ∈ {u, u′, v}, let ρw ∈ E(Kw) − �E(Kw), so that the class of ρw generates
E(Kw)/�. Then Corollary 2 implies that < χ, ρv >v �= 0 for any nontrivial χ ∈
H1(OS , E)[�]. Moreover, (<χ,ρu>u

<χ,ρv>v
, <χ,ρu′ >u′

<χ,ρv>v
) is the same for all such χ. We call

this pair the signature of H1(OS , E)[�] with respect to ρu, ρu′ and ρv.
Suppose, in addition to the map E(K)/� → E(Ku)/� ⊕ E(Ku′)/� being an

isomorphism, that the map E(K)/� → E(Kv)/� is nontrivial. In this case we
may form the ρw’s as follows. Let Q, R ∈ E(K) so that their classes generate
E(K)/�. Suppose without loss of generality that the class of Q is nontrivial in
E(Ku)/� and the class of R is nontrivial in E(Ku′)/�. As E(K)/� → E(Kv)/� is
nontrivial, the class of either Q or R is nontrivial in E(Kv)/�. Suppose without
loss of generality the class of Q is nontrivial in E(Kv)/�. Then we may take
ρv = Q, ρu = Q and ρu′ = R.

4 Discrete Logarithms and Signature Computations

4.1 DLP and Signature Computation

DL Problem: Given p, �, g and a, where p and � are prime with p ≡ 1 (mod �)
and p �≡ 1 (mod �2), g is a generator for the multiplicative group F∗

p , and a ∈ F∗
p,

to compute m mod � where a = gm in Fp.

Signature Computation Problem: Suppose we are given K, p, �, u, v, α and
g, where K = Q(

√
D) is a real quadratic field, �, p are primes that split in K

and the class number of K is not divisible by �, u is a place of K over �, v is a
place of K over p, α is a unit of K such that αl−1 �≡ 1 (mod P 2

u ) and α
p−1

� �≡ 1
(mod Pv), and g is a generator for F∗

p. Then compute the ramification signature,
with respect to 1 + � and g, of the cyclic extension of degree � over K which is
ramified at u, v and unramified elsewhere.

Theorem 1. The problems DL and Signature Computation are random polyno-
mial time equivalent.

For the proof of the theorem, we first give a random polynomial time reduction
from DL to Signature Computation. This part of the proof depends on some
heuristic assumption which will be made clear below.

Let a = gm in Fp where m is to be computed. If a
p−1

� = 1, then m ≡ 0
(mod �). So suppose a

p−1

� �= 1. We lift a to some unit α of a real quadratic field
K such that α ≡ a (mod v) for some place v of K over p. This can be done as
follows.

1. Compute b ∈ Fp such that ab = 1 in Fp.
2. c ← 2−1(a + b); d ← 2−1(a − b). Note that c2 − d2 = 1, and a = c + d. We

may assume d �= 0 otherwise a2 = 1 and m = (p− 1)/2 or p − 1.
3. Treat d as an integer. Let γ ∈ Q̄ be such that γ2 = 1 + d2.
4. Check if 1 + d2 is a quadratic residue modulo �. Otherwise substitute d + rp

for d for random r until the condition is met. This is to make sure that �
splits in K.
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5. γ2 = 1 + d2 ≡ c2 (mod p) implies γ ≡ c (mod v), and γ ≡ −c (mod v′)
where v and v′ are the two places of K over p.

6. Let α = γ + d. Then α ≡ c + d ≡ a (mod v). Note that the norm of α is
d2 − γ2 = −1, so α is a unit of K.

We make the heuristic assumption that it is likely for K to satisfy the conditions
in Corollary 1 for v and a place u of K over �. (Note that the second condition
is satisfied since α ≡ a (mod v) and a

p−1

� �= 1.) We argue below that computing
the discrete logarithm m where a = gm is reduced to solving the Signature
Computation problem on input K, p, �, u, v, α and g, where K = Q(γ) with
γ2 = 1+d2, α = γ+d, u and v are as constructed above. A simple analysis shows
that the expected time complexity in constructing these objects is O(log3 p).

For χ ∈ H1(K, Z/�Z) that is ramified at u and v, and unramified elsewhere,
we have

0 =< χ, α >u + < χ, α >v .

Moreover since α
p−1

� �≡ 1 (mod v), α generates O∗
v/O∗�

v , so < χ, α >v �= 0, and
it follows that < χ, α >u �= 0.

In general for a field k and a, b ∈ k∗, we write a ∼l b if a/b ∈ k∗�.
We have α ∼l gm in Kv since α ≡ a ≡ gm (mod v). Hence

< χ, α >v=< χ, gm >v= m < χ, g >v .

Write α = ξ(1 + y�) (mod �2) with ξ�−1 = 1 after identifying α with its isomor-
phic image in Q�. Then α ∼� (1 + �)y, and

0 =< χ, α >u=< χ, (1 + �)y >u= y < χ, 1 + � >u .

Hence we have

< χ, α >u + < χ, α >v= y < χ, 1 + � >u +m < χ, g >v .

So yσu(χ) + mσv(χ) = 0. From this we see that if the ramification signature
σu(χ)(σv(χ))−1 is determined then m is determined. The expected time in this
reduction is O(log3 p).

Next we give a random polynomial time reduction from Signature Computa-
tion on input K, p, �, u, v, α and g, to DL on input p, �, g and a where α ≡ a
(mod v).

Call the oracle to DL on input p, �, g and a to compute m such that gm = a
(mod p). Then α ≡ gm (mod v).

Write α = ξ(1 + y�) (mod �2) with ξ�−1 = 1 after identifying α with its
isomorphic image in Q�. Then α ∼� (1 + �)y. Again, ξ mod �2 and hence y can
be computed efficiently in time O(||α|| log � + log3 �) = O(||α|| log p + log3 p).

For χ ∈ H1(K, Z/�Z) that is ramified at u and v, and unramified elsewhere,
we have as before < χ, α >v=< χ, gm >v= m < χ, g >v, and < χ, α >u=<
χ, (1 + �)y >u= y < χ, 1 + � >u . Hence

0 =< χ, α >u + < χ, α >v= y < χ, 1 + � >u +m < χ, g >v

from this we can determine the signature σu(χ)(σv(χ))−1. The expected running
time in this reduction is O(||α|| log p + log3 p).
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4.2 ECDL and Signature Computation

ECDL: Given p, �, Ẽ, Q̃ and R̃, where p and � are prime, Ẽ is an elliptic
curve defined over Fp with #Ẽ(Fp) = �, and non-zero points Q̃, R̃ ∈ Ẽ(Fp), to
determine m so that R̃ = mQ̃.

Homogeneous Space Signature Computation: Suppose we are given p, �,
K, E, v, Q, R, where p and � are prime, K is a quadratic field where p and
� both split, E is an elliptic curve defined over K with X(E){�} = 0 and the
discriminant of E being prime to �, v is a place of K over p, Q and R ∈ E(K) such
that Q �≡ 0 (mod �E(Kv)) and the images of R and Q in E(Ku)/�⊕ E(Ku′)/�
are independent, where u and u′ are the two places of K over �. Then compute
the signature of H1(OS , E)[�] with respect to ρv = Q, ρu = Q and ρu′ = R,
where S is the set consisting of u, u′, v and all places of bad reduction of E.
(Note that ρw generates E(Kw)/�E(Kw) for w = u, u′, v.)

Theorem 2. The problems ECDL and Homogeneous Space Signature Compu-
tation are random polynomial time equivalent.

For the proof of the theorem, we first give a random polynomial time reduction
from ECDL to Homogeneous Space Signature Computation. This part of the
proof depends on some heuristic assumption which will be made clear below.

Given Ẽ/Fp where Ẽ(Fp)[�] =< Q̃ >, and R̃, we are to compute m so that
R̃ = mQ̃. Steps 1-3 of the reduction construct an instance p, �, K, E, v, Q, R
for the Homogeneous Space Signature Computation problem.

1. Construct E/Q with Q ∈ E(Q) such that Q̃ = Q mod p. This can be done
as follows. Suppose Ẽ is specified by an affine equation y2 = x3 + āx + b̄ where
ā = a mod p, b̄ = b mod p with 0 ≤ a, b < p and Q̃ = (u mod p, v mod p) with
0 < u, v < p. Choose a random integer r, 0 ≤ r < p, and let Q = (u, v + rp).
Let br = (v + rp)2 − (u3 + au). Then Q ∈ Er(Q) where Er is the elliptic curve
with the affine equation y2 = x3 + ax + br. Set E = Er. The point Q cannot
be torsion for otherwise it would have to be in E(Q)[�], which has no non-zero
point since � is big. The height of Q is far smaller than that of a point in �E(Q),
so Q is not in �E(Q). Since Ẽ(Fp)[�] ∼= Z/�Z, E(Qp)/� ∼= Ẽ(Fp)/� ∼= Z/�Z and
the class of Q generates E(Qp)/�.
2. Check that E has good reduction at � and that |Ẽ(F�)| is not divisible by �.
Otherwise, go back to 1. to find a different E.
3. Lift R̃ to R ∈ E(K) where K/Q is a quadratic extension in which p and
� both split. This can be done as follows. Suppose E is defined by the affine
equation y2 = x3 + ax + c. Suppose R̃ = (μ mod p, ν mod p) with 0 < μ, ν < p.
Choose a random positive integer r < p. Set μr = μ + rp. Let β be a root of
y2 = μ3

r + aμr + c. Then (μr, β) is a lift of R̃ in E(K) where K = Q(β). By
construction p splits in K,

E(Kv)/� ∼= E(Qp)/� ∼= Ẽ(Fp)/� ∼= Z/�Z

and R −mQ ∈ �E(Kv). Check that � splits in K and that the images of R and
Q in E(Ku)/� ⊕ E(Ku′)/� are independent; otherwise repeat the above steps
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with a different r until a suitable K is found. Say the class of Q is nontrivial in
E(Ku)/� and the class of R is nontrivial in E(Ku′)/�.
4. Call the oracle for the Homogeneous Space Signature Computation on input
p, �, E, K, Q, R, v to compute the signature (α, β) of H1(OS , E)[�] with respect
to ρv = Q, ρu = Q and ρu′ = R (where S is the set consisting of u, u′, v and
all places of bad reduction of E). Then for all nontrivial χ ∈ H1(OS , E)[�],
α = <χ,Q>u

<χ,Q>v
and β = <χ,R>u′

<χ,Q>v
.

5. Identify Ku with Q� and compute n so that R ≡ nQ (mod �E(Ku)) as follows.
Compute d = |Ẽ(F�)|. Observe that dQ and dR are both in E1(Q�). Compute
n such that n(dQ) ≡ (dR) (mod �) in E1(Q�). Then d(nQ − R) = �Z for some
Z ∈ E1(Q�). Since d is not divisible by �, d−1 ∈ Z�, so nQ − R = d−1�Z =
�(d−1Z) ∈ �E(Q�).
6. Now

0 =
∑

w∈{v,u,u′}
< χ, R >w

= m < χ, Q >v +n < χ, Q >u + < χ, R >u′ .

From this we get m + nα + β ≡ 0 (mod �). Hence m can be determined.

We make the heuristic assumption that it is likely for E and K to satisfy the
conditions in Proposition 3. Note that by construction E(Q) is of rank at least
one. The points Q and R are likely to be integrally independent in E(K) as they
both have small height by construction. So E(K) is likely to be of rank at least
two and we make the heuristic assumption that with nontrivial probability its
rank is exactly two. Moreover, since Q ∈ E(Q) and R ∈ E(K)−E(Q), the images
of Q and R are likely to be independent in E(Ku)/� ⊕ E(Ku′)/�, heuristically
speaking. The expected running time of this reduction is dominated by Step 2
where the number of rational points on the reduction of E mod � is counted.
The running time of that step is O(log8 �) [Sc], hence it is O(log8 p).

Next we give a random polynomial time reduction from Homogeneous Space
Signature Computation with input p, �, E, K, Q, R, v to ECDL with input p,
�, Ẽ, Q̃, R̃, where Ẽ is the reduction of E mod v, Q̃ (resp. R̃) is the reduction
of Q (resp. R) mod v.

For any nontrivial χ ∈ H1(K, E)[�] that is unramified away from u, u′ and v,
we have

< χ, Q >v + < χ, Q >u + < χ, Q >u′ = 0,

< χ, R >v + < χ, R >u + < χ, R >u′ = 0.

Suppose Q = awρw (mod �E(Kw)) and R = bwρw (mod �E(Kw)) for w =
u, u′, v. Note that from Lemma 1, av and bv can be computed by solving ECDL
on the reduction of E modulo v. On the other hand aw, bw for w = u, u′, can be
computed in a manner as described in Step 5 above.

Then we get

av < χ, ρv >v +au < χ, ρu >u +au′ < χ, ρu′ >u′ = 0,

bv < χ, ρv >v +bu < χ, ρu >u +bu′ < χ, ρu′ >u′ = 0
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Condition (2) of Proposition 3 implies that the two relations above are lin-
early independent. From these we can compute the the signature of χ; that is
(<χ,ρu>u

<χ,ρv>v
, <χ,ρu′ >u′

<χ,ρv>v
). The expected running time of this reduction can be shown

to be O(log4 p) + O(M log p) where M is the maximum of the length of R, Q
and D.

5 Feasibility of Index Calculus

In reducing the discrete-log problems to the signature computations, the basic
idea is to lift elements from a finite field Fp to a global field K where discrete
logarithms are preserved at a place over p, then pair the elements with testing
Dirichlet characters in the multiplicative case, or principal homogeneous spaces
in the elliptic curve case. The reciprocity laws then allow us to distribute in-
formation of the discrete logarithms among a set of places. This set of places
depends on the choice of a Dirichlet character (resp. homogeneous space) and the
manner of lifting. We will demonstrate how the classical index calculus method
emerges in this context as the result of one particular choice of Dirichlet char-
acter and method of lifting. We will derive a similar index calculus method for
the signature computation problem of Dirichlet characters. We will discuss why
a similar method cannot work for principal homogeneous spaces.

5.1 Classical Index Calculus from the Perspective of Arithmetic
Duality

Let p and � be odd primes such that p ≡ 1 (mod �) but p �≡ 1 (mod �2). Suppose
t = sn in F∗

p[�] and n is to be computed, given s and t. Let K be a number
field with a place v over p such that the residue field Fv is isomorphic to Fp.
Let α, β ∈ OK be lifting of s and r = sat (with a random) so that α ≡ s
(mod v) and β ≡ r (mod v). Then the relation r = sn+a is preserved at v in
the sense that β = αn+aγ� for some γ ∈ Ov. Therefore for all χ ∈ H1(K, Z/lZ),
< χ, β >v= (a + n) < χ, α >v. It follows that

(a + n) < χ, α >v=< χ, β >v= −
∑
u�=v

< χ, β >u .

Note that if χ is ramified at v, then < χ, α >v �= 0 since the class of α generates
O∗

v/O∗�
v
∼= F∗

p/F∗�
p
∼= F∗

p[�].
In particular by choosing K = Q, lifting s to s (considered as an integer),

targeting the lifting r to some β =
∏

q qeq s which is smooth over a factor base,
and choosing χ to be ramified only at p,

(a + n) < χ, s >p=< χ, β >p= −
∑

q

eq < χ, q >q .

If β is B-smooth then we get a linear relation modulo � of n and < χ, q >q (<
χ, s >p)−1, q < B, and O(B) relations will allow us to solve for the unknown
quantities, including n. What we have derived is in essence the classical index
calculus method.
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5.2 Index Calculus for Signature Computation of Dirichlet
Characters

Suppose we are given a real quadratic field K, primes �, p, places u, v satisfying
the conditions in Proposition 1. Let K = Q(α) with α2 ∈ Z>0. To compute the
signature of χ ∈ H1(K, Z/�Z) that is ramified precisely at u and v, we generate
random algebraic integers β = rα + s with r, s ∈ Z so that rα + s ≡ g (mod v)
and β ∼ (1 + �)a at u for some a. Now suppose the norm of β is B-smooth for
some integer B. Then

0 =
∑
w

< χ, β >w=< χ, g >v +a < χ, 1 + � >u +
∑
w

ew < χ, πw >w,

where w in the last sum ranges over all places of K of norm less than B, πw

is a local parameter at w, and ew is the valuation of β under w. Hence we
have obtained a Z/�Z-linear relation on (< χ, g >v)−1 < χ, 1 + � >u, and
(< χ, g >v)−1 < χ, πw >w. With O(B) relations we can solve for all these
unknowns, in particular the signature (< χ, g >v)−1 < χ, 1 + � >u.

5.3 The Elliptic Curve Case

We see that one important reason why index calculus is viable in the multiplica-
tive case is due to the fact that locally unramified Dirichlet characters can be
paired nontrivially with non-units. For the elliptic curve case, pairing a principal
homogeneous space χ and a global point α yields similarly a relation:

0 =
∑

v

< χ, α >v .

However from Lemma 1 we see that in the sum above we have nontrivial con-
tribution from a place v �| � (and where E has good reduction) only if � divides
#Ẽ(Fv). Since #Ẽ(Fv) is of the order #Fv, which is the norm of v, we see
that the finite places of good reduction that are involved in the sum are all of
large norm. As for the bad reduction places, the heuristic assumption that we
discussed just before Proposition 3 implies that these will not play any role in
this sum, since it will be likely that E(Kv)/� = 0 for such places v, because v
is of small norm. This explains why the index calculus method is lacking in the
case of elliptic curve discrete logarithm problem.

6 Further Results

In the case of multiplicative groups of finite fields, we derive a concrete number
theoretical characterization of the character signature. Let K, �, p, u, v, S be as in
Proposition 1. Let g ∈ Z so that g mod p generates the multiplicative group of Fp.
Let w be the place of K(μ�) over v such that g

p−1

� ≡ 1 (mod w). Let M = KS be
the cyclic extension corresponding to H1(GS , Z/�Z). Then M(μ�) = K(μ�)(A

1

� )
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for some A ∈ K(μ�)∗. A nontrivial χ ∈ H1(GS , Z/�Z) corresponds to some
A ∈ K(μ�) through H1(K(μ�), Z/�Z) ∼= H1(K(μ�), μ�) ∼= K(μ�)∗/�, so that for
all σ in the absolute Galois group of K, χ(σ) = i iff σ(A

1

� )/A
1

� = ζi.

Proposition 4. If we identify K(μ�)w with Qp and Ku with Q�, then A ∼� pm

in Qur
p where m = σv(χ) =< χ, g >v, and A ∼� ζn in Q�(μ�)ur where n =

σu(χ) =< χ, 1 + � >u.

See [HR1] for a proof of the proposition that involves computation using norm
residue symbols (see [S]).

For the elliptic curve case we have a partial solution for explicit construction
of the testing principal homogeneous spaces (see [HR3]).
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Abstract. We show that the classical Pollard ρ algorithm for discrete
logarithms produces a collision in expected time O(

√
n(log n)3). This is

the first nontrivial rigorous estimate for the collision probability for the
unaltered Pollard ρ graph, and is close to the conjectured optimal bound
of O(

√
n). The result is derived by showing that the mixing time for the

random walk on this graph is O((log n)3); without the squaring step in
the Pollard ρ algorithm, the mixing time would be exponential in log n.
The technique involves a spectral analysis of directed graphs, which cap-
tures the effect of the squaring step.

Keywords: Pollard Rho algorithm, discrete logarithm, random walk,
expander graph, collision time, mixing time, spectral analysis.

1 Introduction

Given a finite cyclic group G of order n and a generator g, the Discrete Logarithm
Problem (dlog) asks to invert the map y �→ gy from Z/nZ to G. Its presumed
difficulty serves as the basis for several cryptosystems, most notably the Diffie-
Hellman key exchange and some elliptic curve cryptosystems. Up to constant
factors, the Pollard ρ algorithm is the most efficient and the only version with
small memory known for solving dlog on a general cyclic group – in particular
for the group of points of an elliptic curve over a finite field.

We quickly recall the algorithm now. First one randomly partitions G into
three sets S1, S2, and S3. Set x0 = h, or more generally to a random power
gr1hr2 . Given xk, let xk+1 = f(xk), where f : G → G is defined by
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f(x) =

⎧⎨⎩
gx , x ∈ S1 ;
hx , x ∈ S2 ;
x2 , x ∈ S3 .

(1.1)

Repeat until a collision of values of the {xk} is detected (this is done using
Floyd’s method of comparing xk to x2k, which has the advantage of requiring
minimal storage). We call the underlying directed graph in the above algorithm
(whose vertices are the elements of G, and whose edges connect each vertex x
to gx, hx, and x2) as the Pollard ρ Graph. At each stage xk may be written as
gaky+bk , where h = gy. The equality of xk and x� means ak y + bk = a� y + b�,
and solving for y (if possible) recovers the dlog of h = gy.

The above algorithm heuristically mimics a random walk. Were that indeed
the case, a collision would be found in time O(

√
n), where n is the order of

the group G. (The actual constant is more subtle; indeed, Teske [13] has given
evidence that the walk is somewhat worse than random.)

The main result of this paper is the first rigorous nontrivial upper bound on
the collision time. It is slightly worse than the conjectured O(

√
n), in that its

runtime is Õ(
√

n), i.e. off from O(
√

n) by at most a polynomial factor in log n.
As is standard and without any loss of generality, we tacitly make the following

assumption: the order |G| = n is prime. (1.2)

Theorem 1. Fix ε > 0. Then the Pollard ρ algorithm for discrete logarithms on
G finds a collision in time Oε(

√
n (log n)3) with probability at least 1− ε, where

the probability is taken over all partitions of G into three sets S1, S2, and S3.

In the black-box group model (i.e. one which does not exploit any special
properties of the encoding of group elements), a theorem of Shoup [11] states
that any dlog algorithm needs Ω(

√
n) steps. Hence, aside from the probabilistic

nature of the above algorithm and the extra factor of (log n)3, the estimate of
Theorem 1 is sharp.

It should be noted that finding a collision does not necessarily imply finding
a solution to dlog; one must also show the resulting linear equation is non-
degenerate. Since n = |G| is prime this is believed to happen with overwhelm-
ing probability, much more so than for the above task of finding a collision in
O(

√
n) time. This was shown for a variant of the Pollard ρ algorithm in [6], but

the method there does not apply to the original algorithm itself. Using more
refined techniques we are able to analyze this question further; the results of
these investigations will be reported upon elsewhere.

This paper is the first analysis of the unmodified Pollard ρ Graph, including
the fact that it is directed. One can obtain the required rapid mixing result
for directed graphs by (a) assuming that rapid mixing holds for the undirected
version, and (b) adding self-loops to each vertex. However, one still needs to
prove (a), which in our situation is no simpler. In addition, the loops and loss of
direction cause short cycles, which lead to awkward complications in the context
of studying collisions.

Technically, analyzing directed graphs from a spectral point of view has the
well known difficulty that a spectral gap is not equivalent to rapid mixing. A
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natural generalization of the spectral gap is the operator norm gap of the adja-
cency matrix, which suffices for our purposes (see Section 2). For a recent survey
of mixing times on directed graphs, see [9].

The Pollard ρ graph is very similar to the graphs introduced by the authors
in [8]. These graphs, which are related to expander graphs, also connect group
elements x to f(x) via the operations given in (1.1) – in particular they combine
the operations of multiplication and squaring. The key estimate, a spectral bound
on the adjacency operator on this graph, is used to show its random walks are
rapidly mixing. Though the Pollard ρ walk is only pseudorandom (i.e., xk+1 is
determined completely from xk by its membership in S1, S2, or S3), we are solely
interested here in proving that it has a collision. The notions of random walk
and pseudorandom walk (with random assignments of vertices in the sets Si)
coincide until a collision occurs.

1.1 Earlier Works

Previous experimental and theoretical studies of the Pollard ρ algorithm and
its generalizations all came to the (unproven) conclusion that it runs in O(

√
n)

time; this is in fact the basis for estimating the relative bit-for-bit security of
elliptic curve cryptosystems compared to others, e.g. RSA. For an analysis of
dlog algorithms we refer the reader to the survey by Teske [14], and for an
analysis of random walks on abelian groups, to the one by Hildebrand [4]. For
the related Pollard ρ algorithm for factoring integers, Bach [1] improved the
trivial bound of O(n) by logarithmic factors.

An important statistic of the involved graphs is the mixing time τ , which
loosely speaking is the amount of time needed for the random walk to converge
to the uniform distribution, when started at an arbitrary node.1 The existing
approaches to modeling Pollard ρ can be grouped into two categories:

1. Birthday attack in a totally random model: each step is viewed as a move
to a random group element, i.e. a completely random walk. In particular
one assumes that the underlying graph has mixing time τ = 1 and that its
degree equals the group size; in reality the actual Pollard ρ graph has degree
only 3. The O(

√
n) collision time is immediate for random walks of this sort.

2. Random walk in an augmented graph: The Pollard ρ graph is modified by
increasing the number of generators k, but removing the squaring step. One
then models the above transitions as random walks on directed abelian Cay-
ley graphs. To ensure the mixing time is τ = O(log |G|), however, the graph
degree must grow at least logarithmically in |G|. The importance of τ stems
from the fact that, typically, one incurs a overhead of multiplicative factor
of τconst in the overall algorithm.

1 There are many inequivalent notions of mixing time (see [7]). Mixing time is only
mentioned for purposes of rough comparison between different graphs; whatever we
need about it is proved directly. Similarly, the reader need not recall any facts about
expander graphs, which are mentioned only for motivation.
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Teske [13], based on Hildebrand’s results [4] on random walks on the cyclic
group Z/mZ with respect to steps of the form x �→ x + ai, i ≤ k, shows that
the mixing time of an algorithm of the second type is on the order of n

2

k−1 ; she
gives supporting numerics of random behavior for k large. In particular, without
the squaring step the Pollard ρ walk would have mixing time on the order of n2,
well beyond the expected O(

√
n) collision time. This operation is an intriguing

and cryptographically2 important aspect of the Pollard ρ algorithm, and makes
it inherently non-abelian: the Pollard ρ graphs are not isomorphic to any abelian
Cayley graphs. Its effect cannot be accounted for by any analysis which studies
only the additive structure of Z/mZ.

The present paper indeed analyzes the exact underlying Pollard ρ graph, with-
out any modifications. We are able to show that the inclusion of the squaring
step reduces the mixing time τ from exponential in logn, to O((log n)3) — see
the remark following Proposition 2.

Our result and technique below easily generalize from the unmodified Pollard
ρ algorithm, which has only 2 non-squaring operations, to the generalized algo-
rithms proposed by Teske [13] which involve adding further such operations. Fur-
thermore, it also applies more generally to additional powers other than squares.
We omit the details, since the case of interest is in fact the most difficult, but
have included a sketch of the argument at the end of the paper.

2 Rapid Mixing on Directed Graphs

In the next two sections we will describe some results in graph theory which
are needed for the proof of Theorem 1. Some of this material is analogous to
known results for undirected graphs (see, for example, [2]); however, since the
literature on spectral analytic aspects of directed graphs is relatively scarce, we
have decided to give full proofs for completeness.

The three properties of subset expansion, spectral gap, and rapid mixing are
all equivalent for families of undirected graphs with fixed degree. This equiva-
lence, however, fails for directed graphs. Although a result of Fill [3] allows one
to deduce rapid mixing on directed graphs from undirected analogs, it involves
adding self-loops (which the Pollard ρ graph does not have) and some additional
overhead. In any event, it requires proving an estimate about the spectrum of
the undirected graph. We are able to use the inequality [8, (A.10)], which came
up in studying related undirected graphs, in order to give a bound on the oper-
ator norm of the directed graphs. This bound, combined with Lemma 1, gives
an estimate of τ = O((log n)3) for the mixing time of the Pollard ρ graph.

Let Γ denote a graph with a finite set of vertices V and edges E. Our graphs
will be directed graphs, meaning that each edge has an orientation; an edge from
v1 to v2 will be denoted by v1 → v2. Assume that Γ has degree k, in other words
that each vertex has exactly k edges coming in and k edges coming out of it.
2 In this version one can derive a secure hash function [5] whose security is based on

the difficulty of the discrete logarithm problem; here the input describes the path
taken in the graph from a fixed node, and the hash value is the end point.
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The adjacency operator A acts on L2(V ) = {f : V → C} by summing over these
k neighbors:

(Af)(v) =
∑
v→w

f(w) . (2.1)

Clearly constant functions, such as (v) ≡ 1, are eigenfunctions of A with eigen-
value k. Accordingly, is termed the trivial eigenfunction and k the trivial
eigenvalue of A. Representing A as a |V | × |V | matrix, we see it has exactly k
ones in each row and column, with all other entries equal to zero. It follows that

is also an eigenfunction with eigenvalue k of the adjoint operator A∗

(A∗f)(v) =
∑
w→v

f(w) , (2.2)

and that all eigenvalues λ of A or A∗ satisfy the bound |λ| ≤ k.
The subject of expander graphs is concerned with bounding the (undirected)

adjacency operator’s restriction to the subspace L0 = {f ∈ L2(V ) | f ⊥ },
i.e. the orthogonal complement of the constant functions under the L2-inner
product. This is customarily done by bounding the nontrivial eigenvalues away
from k. However, since the adjacency operator A of a directed graph might not
be self-adjoint, the operator norm can sometimes be a more useful quantity to
study. We next state a lemma relating it to the rapid mixing of the random
walk. To put the statement into perspective, consider the kr random walks on Γ
of length r starting from any fixed vertex. One expects a uniformly distributed
walk to land in any fixed subset S with probability roughly |S|

|V | . The lemma gives

a condition on the operator norm for this probability to in fact lie between 1
2
|S|
|V |

and 3
2
|S|
|V | for moderately large values of r. This can alternatively be thought of

as giving an upper bound on the mixing time.

Lemma 1. Let Γ denote a directed graph of degree k on n vertices. Suppose
that there exists a constant μ < k such that ‖Af‖ ≤ μ‖f‖ for all f ∈ L2(V )
such that f ⊥ . Let S be an arbitrary subset of V . Then the number of paths
of length r ≥ log(2n)

log(k/μ) which start from any given vertex and end in S is between
1
2kr |S|

|V | and 3
2kr |S|

|V | .

Proof. Let y denote an arbitrary vertex in V , and χS and χ{y} the characteristic
functions of S and {y}, respectively. The number of paths of length r starting
at y and ending in S is exactly the L2(V )-inner product 〈χS , Arχ{y}〉. Write

χS =
|S|
n

+ w and χ{y} =
1
n

+ u , (2.3)

where w, u ⊥ . Because is an eigenfunction of A∗, A preserves the orthogonal
complement of , and thus

‖Aru‖ ≤ μ ‖Ar−1u‖ ≤ · · · ≤ μr ‖u‖ . (2.4)
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Also, by orthogonality

‖w‖ ≤ ‖χS‖ =
√
|S| and ‖u‖ ≤ ‖χ{y}‖ = 1 . (2.5)

We have that Arχ{y} = 1
nkr + Aru, so the inner product may be calculated as

〈χS , Arχ{y}〉 =
|S|
n

kr + 〈w, Aru〉 . (2.6)

It now suffices to show that the absolute value of the second term on the right-
hand side is bounded by half of the first term. Indeed,

|〈w, Aru〉| ≤ ‖w‖ ‖Aru‖ ≤ μr
√
|S| , (2.7)

and

μr
√
|S| ≤ 1

2n
kr
√
|S| ≤ 1

2
kr |S|

n
(2.8)

when r ≥ log(2n)
log(k/μ) . �

3 Collisions on the Pollard ρ Graph

In this section, we prove an operator norm bound on the Pollard ρ graph that
is later used in conjunction with Lemma 1. These graphs are closely related to
an undirected graph studied in [8, Theorem 4.1]. We will start by quoting a
special case of the key estimate of that paper, which concerns quadratic forms.
At first glance, the analysis is reminiscent of the of the Hilbert inequality from
analytic number theory (see [10, 12]), but where the quadratic form coefficients
are expressed as 1/ sin(μj − μk).

Let n be an odd integer and λk = | cos(πk/n)| for k ∈ Z/nZ. Consider the
quadratic form Q : Rn−1 → R given by

Q(x1, . . . , xn−1) :=
n−1∑
k = 1

xk x2k λk , (3.1)

in which the subscripts are interpreted modulo n.

Proposition 1. There exists an absolute constant c > 0 such that

|Q(x1, . . . , xn−1)| ≤
(

1 − c

(log n)2

) n−1∑
k =1

x2
k . (3.2)

Proof. Let γk be arbitrary positive quantities (which will be specified later in
the proof). Since

γk x2
k + γ−1

k x2
2k ± 2 xk x2k =

(
γ

1/2
k xk ± γ

−1/2
k x2k

)2
≥ 0 , (3.3)
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one has that

|Q(x)| ≤ 1
2

n−1∑
k =1

(
γk x2

k + γ−1
k x2

2k

)
λk =

1
2

n−1∑
k = 1

x2
k

(
γk λk + γ−1

2̄k
λ2̄k

)
,

(3.4)
where 2̄ denotes the multiplicative inverse to 2 modulo n. The proposition follows
if we can choose γk and an absolute constant c > 0 such that

γk λk + γ−1
2̄k

λ2̄k < 2 − c

(log n)2
for all 1 ≤ k < n . (3.5)

Now we come to the definition of the γk. We set γk = 1 for n/4 ≤ k ≤ 3n/4;
the definition for the set of other nonzero indices S is more involved. For s ≥ 0,
define

ts = 1 − s
d

(log n)2
,

where d > 0 is a small constant that is chosen at the end of the proof. Given
an integer � in the range −n/4 < � < n/4, we define u(�) to be order to which
2 divides �. For the residues k ∈ S, which are all equivalent modulo n to some
integer � in the interval −n/4 < � < n/4, we define γk = tu(�). Note also that
λk ≤ 1/

√
2 for k /∈ S, and is always ≤ 1. With these choices the lefthand side of

(3.5) is bounded by

γk λk + γ−1
2̄k

λ2̄k ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
2

+ 1√
2

, k, 2̄k /∈ S
1√
2

+ γ−1
2̄k

, k /∈ S, 2̄k ∈ S
γk + 1√

2
, k ∈ S, 2̄k /∈ S

γk + γ−1
2̄k

, k, 2̄k ∈ S.

(3.6)

In the last case, the residues k and 2̄k both lie in S. The integer � ≡ 2̄k (mod n),
−n/4 < � < n/4, of course satisfies the congruence 2� ≡ k (mod n). Since k ∈ S,
2� is the unique integer in (−n/4, n/4) congruent to k. That means γk = ts+1
and γ2̄k = ts for some positive integer s = O(log n). A bound for the last case
in (3.6) is therefore ts+1 + t−1

s = 2− d/(log n)2 + O(s2d2/(log n)4). We conclude
in each of the four cases that, for d sufficiently small, there exists a positive
constant c > 0 such that (3.5) holds. �

The Pollard ρ graph, introduced earlier, is the graph on Z/nZ whose edges
represent the possibilities involved in applying the iterating function (1.1):

Γ has vertices V = Z/nZ and directed edges x → x + 1, x → x + y,
and x → 2x for each x ∈ V (where y �= 1) .

(3.7)

Proposition 2. Let A denote the adjacency operator of the graph (3.7) and
assume that n is prime. Then there exists an absolute constant c > 0 such that

‖Af‖ ≤
(

3 − c

(log n)2

)
‖f‖ (3.8)

for all f ∈ L2(V ) such that f ⊥ .
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Proof. Let χk : Z/nZ → C denote the additive character given by χk(x) =
e2πikx/n. These characters, for 1 ≤ k < n, form a basis of functions L0 = {f ∈
L2 | f ⊥ }. The action of A on this basis is given by

Aχk = dk χk + χ2k , where dk = e2πik/n + e2πiky/n . (3.9)

One has that |dk| = 2| cos(πk(y−1)
n )| = 2λk(y−1). Using the inner product rela-

tion

〈χk, χ�〉 =
{

n , k = �
0 , otherwise , (3.10)

we compute that ‖f‖2 = n
∑ |ck|2, where f =

∑
k �=0 ckχk. Likewise,

‖Af‖2 = 〈Af, Af〉 =∑
k,� �=0

ck c� [〈dkχk, d�χ�〉 + 〈χ2k, χ2�〉 + 〈dkχk, χ2�〉+ 〈χ2k, d�χ�〉]

≤ n
(
5
∑

|ck|2 + 2
∑

|ck||c2k||d2k|
)

. (3.11)

Note that |dk| = 2λk(y−1), and that y−1 and 2 are invertible in Z/nZ, by assump-
tion in (3.7). The result now follows from (3.2) with the choice of x2(y−1)k = |ck|.

�

Remark: the above Proposition, in combination with Lemma 1, is the source
of the τ = O((log n)3) mixing time estimate for the Pollard ρ graph that we
mentioned in the introduction.

Proof (of Theorem 1). Consider the set S of the first t = �√n� iterates
x1, x2, . . . , xt. We may assume that |S| = t, for otherwise a collision has al-
ready occurred in the first

√
n steps. Lemma 1 and Proposition 2 show that the

probability of a walk of length r � (log n)3 reaching S from any fixed vertex is
at least 1/(2

√
n). Thus the probabilities that xt+r, xt+2r , xt+3r, . . . , xt+kr lie in

S are all, independently, at least 1/(3t). One concludes that for k on the order
of 3bt, b fixed, the probability that none of these points lies in S is at most
(1 − 1

3t )
3bt ≈ e−b, which is less than ε for large values of b.

Generalizations: the analysis presented here extends to generalized Pollard ρ
graphs in which each vertex x is connected to others of the form xgi, for various
group elements gi, along with powers xrj . This can be done as follows. First of
all, if r-th powers are to be used instead of squares, then the subscript 2k in (3.1)
must be changed to rk. The key bound on (3.2), stated here for r = 2, in fact
holds for any fixed integer r > 1 which is relatively prime to n [8, Appendix].
Thus changing the squaring step to x → xr does not change the end results.
Secondly, the proof of the bound (3.8) requires only some cancellation in (3.11).
If additional operations are added, the cross terms from which the cancellation
was derived here are still present. Thus Proposition 2 is remains valid, only with
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the 3 replaced by the degree of the graph. Provided this degree (= the total
number of operations) is fixed, the graph still has rapid mixing.

It is unclear if including extra power operations speeds up the discrete log-
arithm algorithm. However, the rapid mixing of such random walks may have
additional applications, such as to the stream ciphers in [8].
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Abstract. The discrete logarithm problem (DLP) generalizes to the
constrained DLP, where the secret exponent x belongs to a set known
to the attacker. The complexity of generic algorithms for solving the
constrained DLP depends on the choice of the set. Motivated by cryp-
tographic applications, we study explicit construction of sets for which
the constrained DLP is hard. We draw on earlier results due to Erdös
et al. and Schnorr, develop geometric tools such as generalized Menelaus’
theorem for proving lower bounds on the complexity of the constrained
DLP, and construct explicit sets with provable non-trivial lower
bounds.

1 Introduction

One of the most important assumptions in modern cryptography is the hardness
of the discrete logarithm problem (DLP). The scope of this paper is restricted
to groups of prime order p, where the DLP is the problem of computing x
given (g, gx) for x chosen uniformly at random from Zp (see the next section
for notation). In some groups the DLP is believed to have average complexity
of Θ(

√
p) group operations. The constrained DLP is defined as the problem of

computing x given (g, gx) where x is chosen uniformly at random from a publicly
known set S ⊆ Zp.

For the standard DLP there is a well-understood dichotomy between generic
algorithms, which are oblivious to the underlying group, and group-specific al-
gorithms. By analogy, we distinguish between generic and group-specific algo-
rithms for the constrained DLP. In this paper we concentrate on the former kind,
i.e., generic algorithms. Our main tool for analysis of generic algorithms is the
Shoup-Nechaev generic group model [Sho97, Nec94].

The main motivation of our work is the fundamental nature of the problem
and the tantalizing gap that exists between lower and upper bounds on the

� The work was done in Microsoft Research (Silicon Valley Campus).

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 582–598, 2006.
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constrained DLP. A trivial generalization of Shoup’s proof shows that the DLP
constrained to any set S ⊆ Zp has generic complexity Ω(

√|S|) group operations.
On the other hand, Schnorr demonstrates that the DLP constrained to a random
S of size

√
p has complexity Θ̃(

√
p) = Θ̃(|S|) with high probability [Sch01].

Explicit constructions of small sets with high complexity, or any complexity
better than the square root lower bound were conspicuously absent.

The importance of improving the square root lower bound for concrete sub-
sets of Zp is implicit in [Yac98, HS03, SJ04], which suggest exponentiation algo-
rithms that are faster than average for exponents sampled from certain subsets.
These algorithms either rely on heuristic assumptions of security of the DLP
constrained to their respective sets or use the square root lower bound to the
detriment of their efficiency. For example, Yacobi proposes to use “compress-
ible” exponents whose binary representation contains repetitive patterns [Yac98],
which can be exploited by some algorithms for fast exponentiation. However,
without optimistic assumptions about the complexity of the DLP constrained
to this set the method offers no advantage over the sliding window exponentia-
tion. Another method of speeding up exponentiation is to generate an exponent
together with a short addition chain for it [Knu97, Ch. 4.6.3]. Absent reliable
methods of sampling addition chains with uniformly distributed last elements,
this approach depends on the hardness of the DLP on a non-uniform distribution.

The main technical contribution of our work is the proof that the DLP con-
strained to a set S, which is chosen from an easily sampleable family of sets of
cardinality p1/12−ε, has complexity Ω(|S|3/5) with probability 1 − 6p−12ε. At a
higher level of abstraction we develop combinatorial techniques to bound the
complexity of the constrained DLP, which is a global property, using the set’s
local properties. We view our work as a step towards better understanding the
constrained DLP and possibly designing fast exponentiation algorithms tuned
to work on exponents from “secure” subsets.

The structure of the paper is as follows. In Section 2 we present a number of
results which are known but otherwise scattered in the literature. In Sections 3
and 4 we give new constructions of sets with provable lower bounds on various
families of algorithms for solving the constrained DLP.

1.1 Notation

We use the standard notation for asymptotic growth of functions, where

O(g) = {f : N → R+ | ∃c, n0 > 0 s. t. 0 ≤ f(n) ≤ cg(n) for all n > n0};
Ω(g) = {f : N → R+ | ∃c, n0 > 0 s. t. cg(n) ≤ f(n) for all n > n0};
Θ(g) = {f : f = O(g) and g = O(f)};

Õ, Ω̃, Θ̃ — same as O, Ω, Θ with logarithmic factors ignored;
Zp — the field of residues modulo prime p;

x ∈R S — x chosen uniformly at random from S.
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1.2 Previous Work

Algorithms for solving number-theoretic problems can be grouped into two main
classes: generic attacks, applicable in any group, and specific attacks designed for
particular groups. The generic attacks on discrete logarithm include the baby-
step giant-step attack [Sha71], Pollard’s rho and lambda algorithms [Pol78] as
well as their parallelized versions [vOW99, Pol00], surveyed in [Tes01]. The spe-
cific attacks have sprouted into a field in their own right, surveyed in
[SWD96, Odl00].

A combinatorial view on generic attacks on the DLP was first introduced by
Schnorr [Sch01]. He suggested the concept of the generic DL-complexity of a
subset S ⊆ Zp defined as the minimal number of generic operations required
to solve the DLP for any element of {gx | x ∈ S}. He showed that the generic
DL-complexity of random sets of size m <

√
p is m/2 + o(1). In part our work

is an extension of Schnorr’s paper. The combinatorial approach to the DLP was
further advanced by [CLS03] which gave a characterization of generic attacks on
the entire group of prime order.

Systematically the constrained DLP has been studied for two special cases:
Exponents restricted to an interval and exponents with low Hamming weight.
Pollard’s kangaroo method has complexity proportional to the square root of
the size of the interval [Pol00]. The running time of a simple Las Vegas baby-
step giant-step attack on low-weight exponents is O(

√
t
(
n/2
t/2

)
), where n is the

length and t is the weight of the exponent [Hei93] (for a deterministic version
see [Sti02], which credits it to Coppersmith). See [CLP05] for cryptanalysis of a
similar scheme in a group of unknown order.

Erdös and D. Newman studied the BSGS-1 complexity (in our notation) and
asked for constructions of sets with a high (better than a random subset’s)
BSGS-1 complexity [EN77].

1.3 Generic Algorithms

The generic group model introduced by Shoup and Nechaev [Sho97, Nec94] pro-
vides access to a group G via a random injective mapping σ : G → Σ, which
encodes group elements. The group operation is implemented as an oracle that
on input 〈σ(g), σ(h), α, β〉 outputs σ(gαhβ) (for the sake of notation brevity we
roll three group operations, group multiplication, group inversion, and group ex-
ponentiation, in one). Wlog, we restrict the arguments of the queries issued by
algorithms operating in this model to encodings previously output by the oracle.

The discrete logarithm problem for groups of prime order has a trivial for-
malization in the generic group model:

Given p, σ(g), σ(gx) where g has order p and x ∈R Zp, find x.

The proof sketch of the theorem below, which is essentially the original one
due to Shoup, is reproduced here because it lays the ground for a systematic
study of complexity of algorithms in the generic group model.
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Theorem 1 ([Sho97]). Let A be a probabilistic algorithm and m be the number
of queries made by A. A solves the discrete logarithm problem in a group of prime
order p with probability

Pr[A(p, σ(g), σ(gx)) = x] <
(m + 2)2

2p
+

1
p
.

The probability space is x, A’s coin tosses, and the random function σ.

Proof (sketch). Instead of letting A interact with a real oracle, consider the
following game played by a simulator. The simulator keeps track of two lists
of equal length L1 and L2: the list of encodings σ1,. . . ,σm+2 ∈ Σ and the list
of linear polynomials a1x+ b1,. . . ,am+2x+ bm+2 ∈ Zp[x]. Initially L1 consists of
two elements σ1 and σ2, which are the two inputs of A, and L2 consists of 1 and
x. When A issues a query 〈σi, σj , α, β〉, the simulator fetches the polynomials
aix + bi and ajx + bj from L2, computes a = αai + βaj and b = αbi + βbj and
looks up ax + b in L2. If ax + b = akx + bk for some k, the simulator returns σk

as the answer to the query. Otherwise, the simulator generates a new element
σ ∈R Σ \ L1, appends σ to L1 and ax + b to L2, and returns σ.

A terminates by outputting some y ∈ Zp. The game completes as follows:

1. The simulator randomly selects x∗ ∈R Zp.
2. Compute aix

∗ + bi for all i ≤ m + 2. If aix
∗ + bi = ajx

∗ + bj for some i �= j,
the simulator fails.

3. A succeeds if and only if x∗ = y.

Observe that the game played by the simulator is indistinguishable from the
transcript of A’s interaction with the actual oracle unless the simulator fails in
step 2. Since for any two distinct polynomials aix+bi and ajx+bj the probability
that aix

∗ + bi = ajx
∗ + bj is at most 1/p, the probability that step 2 fails is

at most (m + 2)2/2p. Finally, we observe that the probability that A wins the
game in step 3 is exactly 1/p, which completes the proof. �

It follows from the proof that the probability of success of any probabilistic
adaptive algorithm for solving the discrete logarithm in Zp in the generic group
model can be computed given the list of the linear polynomials induced by its
queries. This observation leads us to the concept of generic complexity defined
in the next section.

2 Generic Complexity

Definition 1 (Intersection set). For a set of pairs L ⊆ Z2
p, we define its

intersection set

I(L) = {x ∈ Zp | ∃(a, b), (a′, b′) ∈ L s.t. ax + b = a′x + b′ and (a, b) �= (a′, b′)}.
The set of pairs from the above definition corresponds to the set of queries asked
by the generic algorithm. Its intersection set is the set of inputs on which the
simulator from the proof of Theorem 1 fails.
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Definition 2 (L recognizes an α-fraction of S). For L ⊆ Z2
p, S ⊆ Zp, and

0 < α ≤ 1 we say that L recognizes an α-fraction of the set S if

|S ∩ I(L)| ≥ α|S|.
Definition 3 (Generic complexity). The set S ⊆ Zp is said to have generic
α-complexity m denoted as Cα(S) if m is the smallest cardinality of a set L
recognizing an α-fraction of S.

Our definition of generic complexity is slightly different from a similar concept of
the generic DL-complexity put forth by Schnorr. We only require that the inter-
section set I(L) covers a constant fraction of S rather than the entire set [Sch01].
Our definition better matches the standard practice of cryptanalysis, when an
attack is considered successful if it succeeds on a nontrivial fraction of the inputs.
Moreover, our bounds exhibit different scaling behavior as a function of α, and
by parametrizing the definition with α we make the dependency explicit.

Proposition 1 ([Sch01]). For any S ⊆ Zp the generic α-complexity of the set
S is bounded as √

2α|S| < Cα(S) ≤ α|S|/2 + 3.

Proof. The lower bound follows from the fact that for any L ⊆ Z2
p the cardinality

of the intersection set is bounded as |I(L)| < |L|2/2. Therefore, in order to cover
at least an α-fraction of the set, |L|2/2 must be more than α|S|.

The upper bound is attained by the following construction. If 2m ≥ α|S| and
{x1, . . . , x2m} ⊆ S, then an α-fraction of S is recognized by L of size m + 2
defined as

L =
{

(0, 0), (0, 1), (
1

x2 − x1
,

x1

x1 − x2
), . . . , (

1
x2m − x2m−1

,
x2m−1

x2m−1 − x2m
)
}

,

since xi and xi−1 are the x-coordinates of the points of intersection of the line
( 1

xi−xi−1

, xi−1

xi−1−xi
) with lines y = 0 and y = 1 respectively. �

Proposition 2.
√

2αp < Cα(Zp) ≤ 2�√αp�.
Proof. The lower bound on Cα(Zp) is by Proposition 1. The upper bound is given
by the set L = {(0, i), (1,−λi) | 0 ≤ i < λ}, where λ = �√αp�. Indeed,

I(L) =
⋃

0≤i,j<λ

I({(0, i), (1,−λj)} =
⋃

0≤i,j<λ

{λj + i},

which covers [0, αp). �
A tighter (up to a constant factor) bound in the general case and exact values
for C1(Zp) for small primes p < 100 appear in [CLS03].

Since the generic complexity is a monotone property, it follows that for any
set S ⊆ Zp

Cα(S) ≤ min(α|S|/2 + 3, 2�√αp�).
Now we are ready to establish the connection between the generic complexity

of a set and the discrete logarithm problem.
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Theorem 2. Let S ⊆ Zp, AS be a generic algorithm that makes at most m <√
p queries and outputs a number from Zp. Suppose

Pr[AS(σ(g), σ(gx)) = x] > α +
1

|S| − (m + 2)2
,

where the probability is taken over A’s random tape, the oracle answers, and
x ∈R S. Then necessarily

m ≥ Cα(S).

The above bound is nearly tight, i.e., for any set S there is a generic algo-
rithm whose query complexity is Cα(S) and probability of success is at least
α + 1/(|S| − α|S|).
Proof (sketch). The proof essentially follows that of Theorem 1. Let L be a set
of pairs (ai, bi) constructed by the simulator. Unless x belongs to its intersection
set, the output of AS is independent of x. In this case its probability of success
is at most 1/(|S \ I(L)|) ≤ 1/(|S| − (m + 2)2). The probability that x belongs
to the intersection set of a set of size m is less than α as long as m < Cα(S).

The tightness property follows from the definition of generic complexity. Let
L be the set of pairs of size Cα(S) so that |S ∩ I(L)| ≥ α|S|. Query the oracle
〈σ(gx), σ(g), a, b〉 for all pairs (a, b) ∈ L. With probability |I(L)∩S|/|S| there is a
collision that gives away x, otherwise make a guess that succeeds with probability
1/|S \ I(L)|. �

Notice that the theorem above is unconditional and the adversary is computa-
tionally unbounded. In particular, the adversary is given full access to S and can
design an S-specific algorithm. As long as the algorithm has only oracle access
to the group, Cα(S) is a lower bound on the number m of oracle queries needed
by the algorithm to succeed with probability at least α + 1/(|S| − (m + 2)2).

We know that Cα(S) can be negligible compared to |S| (for instance, according
to Proposition 2, when S = Zp, |S| = p but its generic complexity is O(

√
p)).

Since the generic complexity is intimately related to the query complexity of
any discrete logarithm-solving algorithm, we would like to build sets with higher
generic complexity. The next theorem demonstrates that for a fixed p a random
set of size less than

√
p has a near-linear generic complexity.

Theorem 3. For a random subset S ⊆R Zp of size pε for some constant ε ≤ 1/2
its generic α-complexity is at least

Cα(S) >
α|S|
2 ln p

with probability 1 − 1/p for large enough p.

Proof. The proof is by a counting argument. We shall bound the number of the
sets S of size k = pε whose α-fraction can be recognized by a set L of size δk,
when ε ≤ 1/2 and δ = α/(2 ln p). Suppose |L| = δk and |I(L)∩S| ≥ αk, where S
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is to be constructed. There are
(

p2

δk

)
subsets L ⊆ Z2

p of size δk. The intersection
set I(L) has size at most (δk)2 and contains at least αk elements which belong to
S. There are thus at most

(
p2

δk

)((δk)2

αk

)
distinct possibilities for these αk elements.

The (1 − α)-fraction of S can be chosen arbitrarily from Zp, in
(

p
(1−α)k

)
many

ways. In total the number of subsets S of generic complexity δk and cardinality
k is bounded by

(
p2

δk

)((δk)2

αk

)(
p

(1−α)k

)
. Using Stirling’s approximation formula one

can verify that this number is less than a 1/p-fraction of the number of subsets
of Zp of size k = pε for constant ε and large enough p. �

The bottom line of the theorem we just proved is that hard sets (where the
discrete logarithm is hard to compute using a generic algorithm) are easy to
come by. In fact, almost any set has high generic complexity (also previously
observed in [Sch01]).

In what follows we sharply lower the amount of randomness that is required
to provide any non-trivial guarantee of generic complexity.

3 More Complexities and Lower Bounds

Many sets of group elements with special properties may be attacked using a
baby-step giant-step method. In this method the attacker first computes
gc1 ,. . . ,gcm (giant steps) and then compares them against ga1x+b1 ,. . . ,gamx+bm

(baby steps). Any collision between a baby step and a giant step gives away x.
We define the complexity of this method along the lines of the generic complexity
from the previous section.

Definition 4 (Intersection set-2). For a set of pairs L ⊆ Z2
p and a set of

points C ⊆ Zp, we define their intersection set as

I(L, C) = {x ∈ Zp | ∃(a, b) ∈ L, c ∈ C s.t. a �= 0 and ax + b = c}.
Definition 5 (Baby-step giant-step complexity.). The set S ⊆ Zp is said
to have the baby-step giant-step α-complexity (BSGS complexity for short) m
denoted as Cbsgs

α (S) if m is the smallest integer such that there exist L ⊆ Z2
p and

C ⊆ Zp, with |L| = |C| = m and |I(L, C) ∩ S| ≥ α|S|.
An important particular case of the baby-step giant-step method is when all
lines defined by L are parallel (i.e., all ai = 1).

Definition 6 (BSGS-1 complexity). The set S ⊆ Zp has BSGS-1 α-
complexity m denoted as Cbsgs1

α (S) if m is the smallest integer such that there
exist L ⊆ {1} × Zp and C ⊆ Zp, with |L| = |C| = m and |I(L, C) ∩ S| ≥ α|S|.
Equivalently, Cbsgs1

α (S) is the smallest integer n such that there exist X, Y ⊆ Zp

with n = |X | = |Y | and |S∩ (X −Y )| ≥ α|S|, where X−Y is the set of pairwise
differences between X and Y .

The problem of computing Cbsgs1
α (S) is superficially similar to a number of

problems in additive number theory concerned with studying properties of X−Y .
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However, our goal is fundamentally different since we require that X−Y cover a
large fraction of S rather than be its exact equal. To the best of our knowledge,
the only paper in the literature directly applicable to bounding Cbsgs1

1 (S) is
a 1977 paper by Erdös and Newman [EN77]. They proved analogues of our
Theorems 3 and 6 and bounded the BSGS-1 complexity (in our notation) of
the set of small squares {x2 | x <

√
p}, which has the order of p1/3−c/ log log p.

They leave open the problem of constructing sets with a strictly linear BSGS-1
complexity (without the 1/ log p factor).

The BSGS and BSGS-1 complexities provide useful upper bounds for the
generic complexity.

Proposition 3. 1
2Cα(S) ≤ Cbsgs

α (S) ≤ Cbsgs1
α (S).

Proof. Let C′ = {0} × C = {(0, c) | c ∈ C}. Then I(L, C) ⊆ I(L ∪ C′), which
implies the first inequality. The second inequality follows from the fact that any
BSGS-1 attack is also a BSGS attack. �

Consider, for example, the baby-step giant-step attacks on exponents with low
Hamming weight [Hei93, Sti02]. Define Sλ = {x ∈ Zp | ν(x) = λ|x|}, where ν(x)
is the number of ones in the binary representation of x. If λ = 1/4, an elementary
analysis of the attacks shows that

Cbsgs1
1 (S0.25) = O(p0.406).

Following Propositions 2, 3, and Theorem 3 the BSGS-1 α-complexity of a
set of cardinality less than

√
p lies between

√
α|S|/2 and 2

√
αp, where the lower

bound is trivial and the upper bound is approximated up to a logarithmic fac-
tor by almost any subset of size

√
p. In this section we give an explicit con-

struction of a set with a non-trivial BSGS-1 complexity. We start by stating
without proof an important combinatorial lemma known as the Zarankiewicz
problem [Zar51]:

Theorem 4. [Bol98, Ch. IV.2] Let Z(n, s, t) be the maximum number of ones
that can be arranged in an n×n matrix such that there is no all-one t×s (possibly
disjoint) submatrix. Then

Z(n, s, t) < s1/tn2−1/t.

Notice that the asymptotic of the bound on Z(n, s, t) depends on the smallest
of the two dimensions of the prohibited all-one submatrix. It is known that the
bound is tight (up to a constant factor) for t = 2, 3.

Our second combinatorial tool is the upper bound due to A. Naor and Ver-
straëte on the number of edges in a bipartite graph without cycles of length 2k
(C2k-free graph):

Theorem 5 ([NV05]). The maximum number of edges in a C2k-free (n, n)-
bipartite graph is less than 2kn1+1/k.



590 I. Mironov, A. Mityagin, and K. Nissim

When k = 2 the two theorems overlap. Indeed, a 0-1 matrix is also a bipartite
graph, where the rows and columns form the vertex set and the non-zero ele-
ments indicate adjacency of corresponding vertices. In this case an all-one 2× 2
submatrix represents a cycle of length 4 in the graph. Our theorems fully reflect
this relationship: Theorem 6 can be proved using either the Zarankiewicz or
the Naor-Verstraëte bound; its generalization Theorem 7 makes use of C2k-free
graphs, while Theorems 8 and 9 apply the Zarankiewicz bound.

Theorem 6. Suppose S ⊆ Zp has the property that all pairwise sums of different
elements of S are distinct. Then

Cbsgs1
α (S) > (α|S|/√2)2/3.

Proof. Take X, Y ⊆ Zq, such that n = |X | = |Y | and |S ∩ (X − Y )| > α|S|.
Consider an n×n matrix M , whose rows and columns are labeled with elements
of X and Y respectively. For each element s ∈ S ∩ (X − Y ) find one pair x ∈ X
and y ∈ Y such that s = x − y and set the (x, y) entry of the matrix to one.
Since X −Y covers at least an α-fraction of S, the number of ones in the matrix
is at least α|S|.

We claim that M does not contain an all-one 2 × 2 submatrix. Assume the
opposite: The submatrix given by elements x1, x2 and y1, y2 has four ones. It
follows that all four s11 = x1−y1, s12 = x1−y2, s21 = x2−y1, s22 = x2−y2 ∈ S.
Then s11 + s22 = s12 + s21, which contradicts the assumption that all pairwise
sums of elements of S are distinct. Applying the Zarankiewicz bound for the
case s = t = 2, we prove that

α|S| < Z(n, 2, 2) <
√

2n2−1/2 =
√

2n3/2,

which implies that n = Cbsgs1
α (S) > (α|S|/√2)2/3. �

The sets where sums of pairs of different elements are distinct are known in
combinatorics as weak Sidon sets. They are closely related to (strong) Sidon sets,
also called B2 sequences, where all pairwise sums (of not necessarily different
elements) are distinct (for a comprehensive survey see [O’B04] that includes
more than 120 bibliographic entries). Explicit constructions of Sidon subsets of
{1, . . . , n} due to Singer and Ruzsa have cardinality at least

√
n − n.263 [Sin38,

BC63, Ruz93, BHP01].
We additionally require that the sums be different modulo p. The size of

such sets is bounded from above by p1/2 + 1 [HHÖ04, Theorem 3]. The easiest
shortcut to constructing weak modular Sidon sets is to take a strong Sidon
subset of {0 . . . �p/2�} (see also [O’B02, Ch. 3] and [GS80]). Denser Sidon sets
may be constructed for primes of the form p = q2 + q + 1, where q is also
prime [Sin38]. Existence of infinitely many such primes is implied by Schnitzel’s
Hypothesis H and their density follows from the even stronger Bateman-Horn
conjecture [Guy04, A]. Interestingly, modular Sidon sets are useful not only in
constructing sets with high complexity, via Theorem 6, but also for solving the
discrete logarithm problem in Zp [CLS03].
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4 Beyond the Basics

Theorem 6 can be generalized to make use of Sidon sets of higher order. First, we
prove that if all k-wise sums of elements of S are distinct (counting permutations
of the same k-tuple only once), then there is a bound on the BSGS-1 complexity.
Second, we provide a result that there exist such sets of size Θ(p1/k).

Theorem 7. Suppose S ⊆ Zp is such that all k-wise sums of different elements
of S are distinct (excluding permutation of the summands). Then

Cbsgs1
α (S) > (α|S|/(2k))k/(k+1).

Proof. Take X, Y ⊆ Zp, such that Cbsgs1
α (S) = |X | = |Y | = n and |S∩(X−Y )| >

α|S|. Instead of the matrix as in Theorem 6, consider a bipartite graph G(X, Y ),
where there is an edge (x, y) if and only if x − y ∈ S (keep only one edge per
element of S).

We claim that there are no 2k-cycles (without repetitive edges) in the bipartite
graph G. Assume the opposite: There is a cycle (x1,y1,. . . , xk,yk,x1,y1). Consider
two sums: (x1− y1)+ (x2− y2)+ · · ·+(xk − yk) and (x2− y1)+ (x3− y2)+ · · ·+
(xk − yk−1) + (x1 − yk). Not only are the two sums equal, they also consist of
k elements of S each, and these elements are all distinct (as every element of S
appears as an edge of G at most once). A contradiction is found.

The number of edges in an (n, n)-bipartite graph without 2k-cycles is less
than 2kn1+1/k (Theorem 5). Therefore α|S| < 2kn1+1/k, and n = Cbsgs1

α (S) >
(α|S|/(2k))k/(k+1). �

Bose and Chowla give a construction for subsets of {1, . . . , qk} of prime size q
whose k-wise sums are distinct (in integers, not modulo p) [BC63]. By choos-
ing the largest prime q less than p1/k (which, for large p is more than p1/k −
p0.525/k [BHP01]) an interval of length qk/k with a 1/k proportion of the set’s
elements, we guarantee that all k-sums are distinct in Zp as well. Unfortunately,
[BC63] does not provide an efficient sampling algorithm.

Along the lines of Theorem 6 we prove that other verifiable criteria imply
non-trivial bounds on the BSGS and generic complexity.

Theorem 8. Suppose S⊆Zp is such that for any distinct x1,x2,y1, y2,z1,z2∈S:

det
(

x1 − y1 x2 − y2
y1 − z1 y2 − z2

)
�= 0. (1)

Then
Cbsgs

α (S) > (α|S|/√3)2/3.

Proof. Take L ⊆ Z2
p and C ⊆ Zp, such that |L| = |C| = n and |I(L, C) ∩ S| >

α|S|. As in Theorem 6 consider the n×n matrix M whose rows and columns are
labeled with elements of L and C respectively. For each element s ∈ S ∩ I(L, C)
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set one entry in row (a, b) and column c to one, where s = (c − b)/a. Thus,
the total number of ones in the matrix is exactly m = |I(L, C) ∩ S|. If there is
a 2 × 3 all-one submatrix in M , then property (1) does not hold (three paral-
lel lines divide two other lines proportionally). The Zarankiewicz bound implies
that

α|S| < Z(n, 3, 2) <
√

3n2−1/2 =
√

3n3/2.

Hence Cbsgs
α (S) = n ≥ (α|S|/√3)2/3. �

Constructing a large explicit subset of Zp satisfying the condition of the previous
theorem is a difficult problem. Fortunately, the probability that a random 6-tuple
of Zp elements fails to satisfy (1) is 2/p [Sch80]. This observation motivates the
following definition:

Definition 7 (S(N, k) family). Let S(N, k) = {x1, . . . , xN} be a family of sub-
sets of Zp, where x1, . . . , xN : K �→ Zp are k-wise independent random variables
(K is the probability space).

Properties of S(N, k) are established in the following proposition:

Proposition 4. 1. S(N, k) can be defined over K = Zk
p.

2. For k > 1, PrS∈RS(N,k)[|S| �= N ] < N2/p.
3. If h ∈ Z[y1, . . . , yk] and d = deg(h) > 0, then

Pr
S∈S(N,k)

[∃ distinct z1, . . . , zk ∈ S with h(z1, . . . , zk) = 0] < Nkd/p.

Proof. 1. To construct S(N, k) we use a well-known k-universal family of func-
tions (following [CW77]). Let the probability space be K = Zk

p and fa(x) =
ak−1x

k−1 + · · · + a0 for a = (a0, . . . , ak−1) ∈ K. Define the random variables
xi = fa(i) : K → Zp for 1 ≤ i ≤ N . We claim that the variables x1, . . . , xN are
k-wise independent. This follows from the system fa(i1) = y1, . . . , fa(ik) = yk

having a unique solution a ∈ K for any distinct i1, . . . , ik ∈ {1, . . . , N} and
y1, . . . , yk ∈ Zp. Notice that the elements of any S ∈ S(N, k) can be easily
sampled and enumerated.
2. Let Iij be the indicator variable, which is equal to 1 when xi = xj and 0
otherwise. The cardinality of S = {x1, . . . , xN} is at least N −∑i<j Iij . Since xi

and xj are independent for all i �= j, E[Iij ] = 1/p. By linearity of expectation,
the expected value E[

∑
i<j Iij ] < N2/p. By Markov’s inequality Pr[|S| �= N ] =

Pr[
∑

i<j Iij ≥ 1] < N2/p.
3. Let Ii1,...,ik

for all distinct 1 ≤ i1, . . . , ik ≤ N be the indicator variable
that is 1 if and only if h(xi1 ,. . . ,xik

) = 0. By independence of the variables
and [Sch80] E[Ii1,...,ik

] ≤ 2/p, which by linearity of expectation and Markov’s
inequality implies that PrS [∃ distinct x1, . . . , xk ∈ S with h(x1, . . . , xk) = 0] ≤
PrS [
∑

i1,...,ik
Ii1,...,ik

≥ 1] < Nkd/p. �
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It follows that a randomly chosen set from the family S(p1/6−ε, 6) has size p1/6−ε

with probability at least 1− p−2/3 and satisfies the condition of Theorem 8 with
probability at least 1− 2p−6ε.

To apply a similar argument to the all-powerful generic complexity, we may
show that for small constants m1 and m2, the projections on the x axis of the
intersection points of an irregular m1 by m2 grid (in which lines need not be
parallel) satisfy a certain relationship. Next, a set S, where any m1m2-tuple
avoids this relationship, is to be constructed.

Let us see first why this argument works for some values of m1 and m2,
and then improve the parameters. Let m1 = 4 and m2 = 5. There are 9 lines
that can be described using 18 parameters. On the other hand, there are 20
points that form the intersection set of these lines. Each of the 20 intersection
points imposes a linear equation on the parameters, and hence the system is
overdetermined (even if we exclude linearly dependent equations). In particular,
this implies that the probability that a random 20-tuple of elements of Zp is
coverable by a 4 × 5 grid is negligible. We refine this argument in the following
proposition.

Proposition 5 (Bipartite Menelaus’ theorem). Consider seven lines lx,y,z,
l1,2,3,4 forming an irregular grid, and their twelve intersection points. Let xi,yi,zi

be projections on the x axis of the intersection points of li with lines lx, ly, lz.
Then the following holds:

det

⎛⎜⎜⎝
x1 − y1 x1 − z1 z1(x1 − y1) y1(x1 − z1)
x2 − y2 x2 − z2 z2(x2 − y2) y2(x2 − z2)
x3 − y3 x3 − z3 z3(x3 − y3) y3(x3 − z3)
x4 − y4 x4 − z4 z4(x4 − y4) y4(x4 − z4)

⎞⎟⎟⎠ = 0. (2)

Proof. Denote the 4 × 4 matrix in (2) by M . Observe that if any of the seven
lines is vertical, (2) follows immediately. Indeed, if ly = {x = const}, then
y1 = y2 = y3 = y4 and the second and the fourth columns of M are linearly
dependent. Moreover, detM is invariant under permutations of lx,ly, and lz,
which takes care of vertical ly or lz. If li is vertical for some 1 ≤ i ≤ 4, then the
ith row of M is all-zero, and detM = 0.

If none of the lines is vertical, we can write down equations for all of them in
the Cartesian coordinates. Let lx,y,z = {ax,y,zx + bx,y,z} and li = {cix + di} for
1 ≤ i ≤ 4. Each intersection point imposes an equation on the parameters of the
two lines incident with it, a total of 12 equations in 14 unknowns. However, the
system always has a trivial solution, when all lines are equal. Rewrite the system
using new variables: ãy = ay − ax, b̃y = by − bx, ãz = az − ax, b̃z = bz − bx,
c̃1 = c1 − ax, d̃1 = d1 − bx, etc. The result is a homogenous system of 12 linear
equations in 12 new variables. It has a non-zero solution if and only if its matrix
is singular (only non-zero elements are shown):
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M ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · −x1 −1 · · · ·
· · · · · · · · −y1 −1 · ·
· · · · · · · · · · −z1 −1

x2 1 · · · · −x2 −1 · · · ·
y2 1 · · · · · · −y2 −1 · ·
z2 1 · · · · · · · · −z2 −1
· · x3 1 · · −x3 −1 · · · ·
· · y3 1 · · · · −y3 −1 · ·
· · z3 1 · · · · · · −z3 −1
· · · · x4 1 −x4 −1 · · · ·
· · · · y4 1 · · −y4 −1 · ·
· · · · z4 1 · · · · −z4 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can verify that det(M) = det(M ′). �

In the full version of the paper we give a geometric proof of the proposition,
deriving (2) directly, and explain the connection with classic Menelaus’ theorem.
We also give an alternative statement of the theorem, which puts it in the realm
of projective geometry.

Proposition 5 is the “minimal” condition that holds for the x-coordinates
of the intersection points of two sets of lines in general position. Indeed, it
follows from the proof that for any assignment of distinct values to the eleven
variables x1,2,3,4, y1,2,3,4, z1,2,3 there is a configuration of lines whose intersection
points project to those variables. Other configurations with as many or fewer
intersection points do not produce any conditions either. For example, six lines
intersecting two lines can project to any collection of twelve points.

All geometric arguments (Theorems 6, 7, and 8, Proposition 5) are illustrated
in Fig. 1.

Theorem 9. If S is chosen from S(p1/12−ε, 12), then with probability at least
1 − 6p−12ε

Cα(S) > (α|S|/ 3
√

4)3/5.

Proof. Consider the set of lines L ⊆ Z2
p such that Cα(S) = |I(L)∩S| and n = |L|.

As in Theorem 8, we apply the Zarankiewicz bound to the n×n matrix, only now
both the rows and the columns are labeled with elements of the set L. Similarly,
only one occurrence of an element of S as the x-coordinate of the intersection of
two distinct lines is recorded in the matrix.

According to Proposition 4, S avoids solutions to the equation (2), whose
left-hand side is a multivariate polynomial of total degree 6, with probability
greater than 1 − 6p−12ε. Therefore the probability that there exist 12 points
in S that can be the intersection set of two groups of lines consisting of 3 and
4 lines respectively is less than 6p−12ε. Finally, as before, α|S| < Z(n, 4, 3) <
41/3n2−1/3 = 3

√
4n5/3 = 3

√
4Cα(S)5/3. �

Unlike the proofs of Theorems 6, 7, and 8, where the classes in which the lines are
grouped arise naturally, the use of bipartite Menelaus’ theorem in the analysis of
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x1 + y2 = x2 + y1

x1 − y1 x2 − y2

y1 − z1 y2 − z2
= 0

x1 − y1 x1 − z1 z1(x1 − y1) y1(x1 − z1)
x2 − y2 x2 − z2 z2(x2 − y2) y2(x2 − z2)
x3 − y3 x3 − z3 z3(x3 − y3) y3(x3 − z3)
x4 − y4 x4 − z4 z4(x4 − y4) y4(x4 − z4)

= 0

x1 + y2 + z3 = x3 + y1 + z2

x

xx

x

x1

x1

y1

y1 z1 x2

y2

y2

z2

z2

x3 z3

x1

x1 x2

x2x3 x4 y1

y1

y2

y2

y3y4 z1z2z3
z4

l1

l2

l3

l4
lxly lz

Fig. 1. “Prohibited” configurations (Theorems 6, 7 and 8, Proposition 5)

generic complexity above might appear less motivated. In fact, classic Menelaus’
theorem imposes a simple condition (a cubic equation) on the intersection set
of four lines. It is the second step of the argument, where we translate absence
of a certain submatrix (subgraph) into sparseness of the entire matrix, which
becomes problematic: Unless H is bipartite, H-free graphs on n vertices may
have as many as Θ(n2) edges according to the celebrated Turán theorem [Bol98,
Ch. IV.2].

5 Conclusion

In this paper we develop a theory of lower bounds in the generic group model
on the discrete logarithm problem constrained to a subset S ⊆ Zp known to
the attacker (constrained DLP). We give a first concrete construction of a set
whose generic complexity is more than the square root of its size (Theorem 9).
There exists an apparent gap between our explicit construction (|S| = p1/12 and
C1(S) = |S|3/5) and a random set of size p1/2 whose complexity is almost lin-
ear in its size. Bridging this gap constitutes an interesting open problem whose
solution would shed some light on the intrinsic difficulty of the discrete logarithm
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C1, Cbsgs
1 , Cbsgs1

1 (S)

√
p

√
p p

3
√

p

3
√

p

4
√

p

4
√

p

5
√

p

6
√

p

9
√

p

12
√

p

20
√

p

|S|log

Theorem 6 (Cbsgs1
1 )

Theorem 8 (Cbsgs
1 )

Theorem 9 (C1)

Prop. 2

Prop. 1

Theorem 3

Fig. 2. Generic complexities and bounds (in logscale). Propositions 2 and 1 bound the
triangle that contains all possible values for generic complexity. The theorems point to
lower bounds provable for complexities of their respective constructions.

problem. We also define restricted versions of the generic complexity that cap-
ture the complexity of baby-step-giant-step algorithms. We give an explicit, de-
terministic construction of a collection of sets, whose complexity in respect to the
weakest family of baby-step-giant-step algorithms becomes near-optimal as their
size decreases (Theorem 7). Various bounds and constructions are put together
in Fig. 2.
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