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Abstract. Searching for similarity among biological sequences is an im-
portant research area of bioinformatics because it can provide insight
into the evolutionary and genetic relationships between species that open
doors to new scientific discoveries such as drug design and treament. In
this paper, we introduce a novel measure of similarity between two bio-
logical sequences without the need of alignment. The method is based on
the concept of spectral distortion measures developed for signal process-
ing. The proposed method was tested using a set of six DNA sequences
taken from Escherichia coli K-12 and Shigella flexneri, and one ran-
dom sequence. It was further tested with a complex dataset of 40 DNA
sequences taken from the GenBank sequence database. The results ob-
tained from the proposed method are found superior to some existing
methods for similarity measure of DNA sequences.

1 Introduction

Given the importance of research into methodologies for computing similarity
among biological sequences, there have been a number of computational and
statistical methods for the comparison of biological sequences developed over
the past decade. However, it still remains a challenging problem for the re-
search community of computational biology [1,2]. Two distinct bioinformatic
methodologies for studying the similarity/dissimilarity of sequences are known
as alignment-based and alignment-free methods. The search for optimal solu-
tions using sequence alignment-based methods is encountered with difficulty in
computational aspect with regard to large biological databases. Therefore, the
emergence of research into alignment-free sequence analysis is apparent and nec-
essary to overcome critical limitations of sequence analysis by alignment.

Methods for alignment-free sequence comparison of biological sequences utilize
several concepts of distance measures [3], such as the Euclidean distance [4],
Euclidean and Mahalanobis distances [5], Markov chain models and Kullback-
Leibler discrepancy (KLD) [6], cosine distance [7], Kolmogorov complexity [8],
and chaos theory [9]. Our previous work [10] on sequence comparison has some
strong similarity to the work by Wu et al. [6], in which statistical measures
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of DNA sequence dissimilarity are performed using the Mahalanobis distance
and the standardized Euclidean distance under Markov chain model of base
composition, as well as the extended KLD. The KLD extended by Wu et al.
[6] was computed in terms of two vectors of relative frequencies of n-words
over a sliding window from two given DNA sequences. Whereas, our previous
work derives a probabilistic distance between two sequences using a symmetrized
version of the KLD, which directly compares two Markov models built for the
two corresponding biological sequences.

Among alignment-free methods for computing distances between biological
sequences, there seems rarely any work that directly computes distances between
biological sequences using the concept of a distortion measure (error matching).
If a distortion model can be constructed for two biological sequences, we can
readily measure the similarity between these two sequences. In addition, based
on the principles that spectral distortion measures are derived [11], their use is
robust for handling signals subjected to noise and having significantly different
lengths; and for extracting good features in order to enable the task of a pattern
classifier much more effective.

In this paper we are interested in the novel application of some spectral distor-
tion measures to obtain solutions to difficult problems in computational biology:
i) studying the relationships between different DNA sequences for biologcal in-
ference, and ii) searching for similar library sequences stored in a database to a
given query sequence. These tasks are designed to be carried out in such a way
that the computation is efficient and does not depend on sequence alignment.

In the following sections we will firstly discuss how a DNA sequence can be
represented as a sequence of corresponding numerical values; secondly we will
then address how we can extract the spectral feature of DNA sequences using
the method of linear predictive coding; thirdly we will present the concept of
distortion measures of any pair of DNA sequences, which serve as the basis for
the computation of sequence similarity. We have tested our method with six
DNA sequences taken from Escherichia coli K-12 and Shigella flexneri, and one
simulated sequence to discover their relations; and a complex set of 40 DNA
sequences to search for most similar sequences to a particular query sequence.
We have found that the results obtained from our proposed method are better
than those obtained from other distance measures [6,10].

2 Numerical Representation of Biological Sequences

One of the problems that hinder the application of signal processing to bi-
ological sequence analysis is that either DNA or protein sequences are rep-
resented by characters and thus do not make themselves ready for numeri-
cal signal-processing based methods [16,17]. One available and mathematically
sound model for converting a character-based biological sequence into a numeral-
based biological one is the resonant recognition model (RRM) [12,13]. We there-
fore adopted the RRM to implement the novel application of the linear predictive
coding and its cepstral distortion measures for DNA sequence analysis.
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The resonant recognition model (RRM) is a physical and mathematical model
which can extract protein or DNA sequences using signal analysis methods. This
approach can be divided into two parts. The first part involves the transforma-
tion of a biological sequence into a numerical sequence – each amino acid or
nucleotide can be represented by the value of the electron-ion interaction poten-
tial (EIIP) [14] which describes the average energy states of all valence electrons
in a particular amino acid or nucleotide. The EIIP values for each nucleotide or
amino acid were calculated using the following general model pseudopotential
[12,14,15]:

< k + q[w]k >=
0.25Z sin(π × 1.04Z)

2π
(1)

Where q is a change of momentum of the delocalised electron in the intreaction
with potential w, and

Z =
(σZi)

N
(2)

where Zi is the number of valence electrons of the ith component, N is the total
number of atoms in the amino acid or nucleotide. Each amino acid or nucleotide
can be converted as a unique number, regardless of its position in a sequence
(see Table 1).

Numerical series obtained this way are then analyzed by digital signal analysis
methods in order to extract information adequate to the biological function.
Discrete Fourier transform (DFT) is applied to convert the numerical sequence
t o the frequency domain sequence. After that, for the purpose of extracting
mutual spectral characteristics of sequences, having the same or similar biological
function, cross-spectral function is used:

Sn = XnY ∗
n n = 1, 2, . . . ,

N

2
(3)

where Xn is the DFT coefficients of the xm, Y ∗
n is the complex conjugate DFT

coefficients of the y(m). Based on the above cross-spectral function, we can
obtain a spectrum. In the spectrum, peak frequencies, which are assumed that
mutual spectral frequency of two analyzed sequences, can be observed [13].

Additionally, when we want to examine the mutual frequency components for
a group of protein sequences, we usually need to calculate the absolute values of
multiple cross-spectral function coefficients M :

|Mn| = |X1n| · |X1n| . . . |XMn| n = 1, 2, . . . ,
N

2
(4)

Furthermore, a signal-to-noise ratio (SNR) of the consensus spectrum (the
multiple cross-spectral function for a large group of sequences with the same
biological function, which has been named consensus spectrum [13]), is found
as a magnitude of the largest frequency component relative to the mean value
of the spectrum. The peak frequency component in the consensus spectrum is
considered to be significant if the value of the SNR is at least 20 [13]. Signif-
icant frequency component is the characteristic RRM frequency for the entire
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group of biological sequences, having the same biological function, since it is the
strongest frequency component common to all of the biological sequences from
that particular functional group.

Table 1. Electron-Ion Interaction Potential (EIIP) values for nucleotides and amino
acids [13,15]

Nucleotide EIIP
A 0.1260
G 0.0806
T 0.1335
C 0.1340
Amino acid EIIP
Leu 0.0000
Ile 0.0000
Asn 0.0036
Gly 0.0050
Val 0.0057
Glu 0.0058
Pro 0.0198
His 0.0242
Lys 0.0371
Ala 0.0373
Tyr 0.0516
Trp 0.0548
Gln 0.0761
Met 0.0823
Ser 0.0829
Cys 0.0829
Thr 0.0941
Phe 0.0946
Arg 0.0959
Asp 0.1263

Apart from this approach to the analysis of biological sequences, the RRM
also offers some physical explanation of the selective interactions between bio-
logical macromolecules, based on their structure. The RRM considers that these
selective interactions (that is the recognition of a target molecule by another
molecule, for example, recognition of a promoter by RNA polymerase) are caused
by resonant electromagnetic energy exchange, hence the name resonant recogni-
tion model. According to the RRM, the charge that is being transferred along
the backbone of a macromolecule travels through the changing electric field de-
scribed by a sequence of EIIPs, causing the radiation of some small amount of
electromagnetic energy at particular frequencies that can be recognized by other
molecules. So far, the RRM has had some success in terms of designing a new
spectral analysis of biological sequences (DNA/protein sequences) [13].
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3 Spectral Features of DNA Sequences

Having pointed out that the difficulty for the application of signal processing to
the analysis of biological data is that it deals with numerical sequences rather
than character strings. If a character string can be converted into a numerical
sequence, then digital signal processing can provide a set of novel and useful
tools for solving highly relevant problems. By making use of the EIIP values for
DNA sequences, we will apply the principle of linear predictive coding (LPC)
to extract the spectral feature of a DNA sequence known as the LPC cepstral
coefficients, which have been successfully used for speech recognition.

We are motivated to explore the use of the LPC model because, in general,
time-series signals analyzed by the LPC have several advantanges as follows.
First, the LPC is an analytically tractable model which is mathematically precise
and simple for computer implementation. Second, the LPC model and its LPC-
based distortion measures have been proved to give excellent solutions to many
problems concerining with pattern recognition [19].

3.1 Linear Prediction Coefficients

The estimated value of a particular nucleotide sm at position or time n, denoted
as ŝ(n), can be calculated as a linear combination of the past p samples. This
linear prediction can be expressed as [18,19]

ŝ(n) =
p∑

k=1

ak s(n − k) (5)

where the terms {ak} are called the linear prediction coefficients (LPC).
The prediction error e(n) between the observed sample s(n) and the predicted

value ŝ(n) can be defined as

e(n) = s(n) − ŝ(n) = s(n) −
p∑

k=1

ak s(n − k) (6)

The prediction coefficients {ak} can be optimally determined by minimizing
the sum of squared errors

E =
N∑

n=1

e2(n) =
N∑

n=1

[
s(n) −

p∑

k=1

ak s(n − k)

]2

(7)

To solve (7) for the prediction coefficients, we differentiate E with respect to
eack ak and equate the result to zero:

∂E

∂ak
= 0, k = 1, . . . , p (8)

The result is a set of p linear equations
p∑

k=1

ak r(|m − k|) = r(m), m = 1, . . . , p (9)
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where r(m − k) is the autocorrelation function of s(n), that is symmetric, i.e.
r(−k) = r(k), and expressed as

r(m) =
N−m∑

n=1

s(n) s(n + m), m = 0, . . . , p (10)

Equation (9) can be expressed in matrix form as

R a = r (11)

where R is a p × p autocorrelation matrix, r is a p × 1 autocorrelation vector,
and a is a p × 1 vector of prediction coefficients:

R =

⎡

⎢⎢⎢⎢⎣

r(0) r(1) r(2) · · · r(p − 1)
r(1) r(0) r(1) · · · r(p − 2)
r(2) r(1) r(0) · · · r(p − 3)

· · · · · · ·
r(p − 1) r(p − 2) r(p − 3) · · · r(0)

⎤

⎥⎥⎥⎥⎦

aT =
[
a1 a2 a3 · · · ap

]

where aT is the tranpose of a, and

rT =
[
r(1) r(2) r(3) · · · r(p)

]

where rT is the tranpose of r.
Thus, the LPC coefficients can be obtained by solving

a = R−1 r (12)

where R−1 is the inverse of R.

3.2 LPC Cepstral Coefficients

If we can determine the linear prediction coefficients for a biological sequence sl,
then we can also extract another feature as the cepstral coefficients, cm, which
are directly derived from the LPC coefficients. The LPC cepstral coefficients can
be determined by the following recursion [19].

c0 = ln(G2) (13)

cm = am +
m−1∑

k=1

(
k

m

)
ckam−k, 1 ≤ m ≤ p (14)

cm =
m−1∑

k=1

(
k

m

)
ckam−k, m > p (15)

where G is the LPC gain, whose squared term is given as [20]

G2 = r(0) −
p∑

k=1

akr(k) (16)
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4 Spectral Distortion Measures

Methods for measuring similarity or dissimilarity between two vectors or se-
quences is one of the most important algorithms in the field of pattern com-
parison and recognition. The calculation of vector similarity is based on vari-
ous developments of distance and distortion measures. Before proceeding to the
mathematical description of a distortion measure, we wish to point out the dif-
ference between distance and distortion functions [19], where the latter is more
restricted in a mathematical sense.

Let x, y, and z be the vectors defined on a vector space V . A metric or
distance d on V is defined as a real-valued function on the Cartesian product
V × V if it has the following properties:

1. Positive definiteness: 0 ≤ d(x,y) < ∞, x,y ∈ V and d(x,y) = 0 iff x = y;
2. Symmetry: d(x,y) = d(y,x) for x,y ∈ V ;
3. Triangle inequality: d(x, z) ≤ d(x,y) + d(y, z) for x,y, z ∈ V .

If a measure of dissimilarity satisfies only the property of positive definite-
ness, it is referred to as a distortion measure which is considered very common
for the vectorized representations of signal spectra [19] In this sense, what we
will describe next is the mathematical measure of distortion which relaxes the
properties of symmetry and triangle inequality. We therefore will use the term
D to denote a distortion measure. In general, to calculate a distortion measure
between two vectors x and y, D(x,y), is to calculate a cost of reproducing any
input vector x as a reproduction of vector y. Given such a distortion measure,
the mismatch between two signals can be quantified by an average distortion
between the input and the final reproduction. Intuitively, a match of the two
patterns is good if the average distortion is small. The long-termed sample av-
erage can be expressed as [21]

lim
n→∞

1
n

n∑

i=1

D(xi,yi) (17)

If the vector process is stationary and ergodic, then the limit exists and equals
to the expectation of D(xi,yi). Being analogous to the issue of selecting a partic-
ular distance measure for a particular problem, there is no fixed rule for selecting
a distortion measure for quantifying the performance of a particular system. In
general, an ideal distortion measure should be [21]:

1. Tractable to allow analysis,
2. Computationally efficient to allow real-time evaluation, and
3. Meaningful to allow correlation with good and poor subjective quality.

To introduce the basic concept of the spectral distortion measures, we will
discuss the formulation of a ratio of the prediction errors whose value can be
used to expressed the magnitude of the difference between two feature vectors.
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Consider passing a sequence s(n) through the inverse LPC system with its
LPC coefficient vector a. This will yield the prediction error, e(n), which can be
alternatively defined by

e(n) = −
p∑

i=0

ais(n − i) (18)

where a0 = −1.
The sum of squared errors can be now expressed as

E =
N−1+p∑

n=0

e2(n) +
N−1+p∑

n=0

[
−

p∑

i=0

ais(n − i)

]⎡

⎣−
p∑

j=0

ajs(n − j)

⎤

⎦

=
p∑

i=0

ai

p∑

j=0

aj

N−1+p∑

n=0

s(n − i)s(n − j) (19)

We also have
N−1+p∑

n=0

s(n − i)s(n − j) =
N−1+p∑

n=0

s(n)s(n − j + i) = r(|i − j|) (20)

Therefore,

E =
p∑

i=0

ai

p∑

j=0

ajr(|i − j|) = aT Rsa (21)

Similarly, consider passing another sequence s′(n) through the inverse LPC
system with the same LPC coefficients a. The prediction error, e′(n), is expressed
as

e′(n) = −
p∑

i=0

ais
′(n − i) (22)

where a0 = −1.
Using the same derivation for s(n), the sum of squared errors for s′(n) is

E′ =
p∑

i=0

ai

p∑

j=0

ajr
′(|i − j|) = aT Rs′a (23)

where

Rs′ =

⎡

⎢⎢⎢⎢⎣

r′(0) r′(1) r′(2) · · · r′(p − 1)
r′(1) r′(0) r′(1) · · · r′(p − 2)
r′(2) r′(1) r′(0) · · · r′(p − 3)

· · · · · · ·
r′(p − 1) r′(p − 2) r′(p − 3) · · · r′(0)

⎤

⎥⎥⎥⎥⎦

It can be seen that E′ must be greater than or equal to E because E is the
minimum prediction error for the LPC system with the LPC coefficients a. Thus,
the ratio of the two prediction errors, denoted as D, can be now defined by

D =
E′

E
=

aT Rs′a
aT Rsa

≥ 1 (24)
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By now it can be seen that the derivation of the above distortion is based on
the concept of the error matching measure.

4.1 LPC Likelihood Distortion

Consider the two spectra, magnitude-squared Fourier transforms, S(ω) and S′(ω)
of the two signals s and s′, where ω is the normalized frequency ranging from
−π to π. The log spectral difference between the two spectra is defined by [19]

V (ω) = log S(ω) − log S′(ω) (25)

which is the basis for the distortion measure proposed by Itakura and Saito in their
formulationof linearpredictionasanapproximatemaximumlikelihoodestimation.

The Itakura-Saito distortion measure, DIS , is defined as [22]

DIS =
∫ π

−π

[eV (ω) − V (ω) − 1]
dω

2π
=

∫ π

−π

S(ω)
S′(ω)

dω

2π
− log

σ2
∞

σ′2∞
− 1 (26)

where σ2
∞ and σ′2

∞ are the one-step prediction errors of S(ω) and S′(ω), respec-
tively, and defined as

σ2
∞ ≈ exp

{∫ π

−π

log S(ω)
dω

2π

}
. (27)

It was pointed out that the Itakura-Saito distortion measure is connected with
many statistical and information theories [19] including the likelihood ratio test,
discrimination information, and Kullback-Leibler divergence. Based on the no-
tion of the Itakura-Saito distortion measure, the LPC likelihood ratio distortion
between two signals s and s′ is derived and expressed as [19]

DLR =
a′T Rs a′

aT Rs a
− 1 (28)

where Rs is the autocorrelation matrix of sequence s associated with its LPC
coefficient vector a, and a′ is the LPC coefficient vector of signal s′.

4.2 LPC Cepstral Distortion

Let S(ω) be the power spectrum of a signal. The complex cepstrum of the signal
is defined as the Fourier transform of the log of the signal spectrum:

log S(ω) =
∞∑

n=−∞
cn e−jnω (29)

where cn = −cn are real and referred to as the cepstral coefficients.
Consider S(ω) and S′(ω) to be the power spectra of the two signals and apply

the Parseval’s theorem [23], the L2-norm cepstral distance between S(ω) and
S′(ω) can be related to the root-mean-square log spectral distance as [19]
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D2
c =

∫ π

−π

| log S(ω) − log S′(ω)|2 dω

2π

=
∞∑

n=−∞
(cn − c′n)2 (30)

where cn and c′n are the cepstral coefficients of S(ω) and S′(ω) respectively.
Since the cepstrum is a decaying sequence, the infinite number of terms in

(30) can be truncated to some finite number L ≥ p, that is

D2
c(L) =

L∑

m=1

(cm − c′m) (31)

5 Experiments

We have carried two experiments to test and compare the proposed method
with other existing approaches. The first test was carried out to find out the
phylogenetics between the thrA, thrB and thrC genes of the threonine operons
from Escherichia coli K-12 and from Shigella flexneri; and one random sequence.
The second test involves a complex set of 40 DNA sequences, which was used
for searching similar sequences to a query sequence.

5.1 Phylogenetic Study of DNA Sequences

The algorithm was tested with 6 DNA sequences, taken from the threonine
operons of Escherichia coli K-12 (gi:1786181) and Shigella flexneri (gi:30039813).
The three sequences taken from each threonine operon are thrA (aspartokinase
I-homoserine dehydrogenase I), thrB (homoserine kinase) and thrC (threonine
synthase), using the open reading frames (ORFs) 3372799 (ec-thrA), 28013733
(ec-thrB) and 37345020 (ec-thrC) in the case of E.coli K-12, and 3362798 (sf -
thrA), 28003732 (sf -thrB) and 37335019 (sf -thrC) in the case of S.flexneri.
All the sequences were obtained from GenBank (www.ncbi.nlm.nih.gov/Entrez).
In addition, we compared all six sequences with a randomly generated sequence
(rand-thrA), using the same length and base composition as ec-thrA.

To compare our proposed technique with other methods, we calculated the
sequence similarity or sequence distance using alignment-based methods. All
seven sequences have been aligned using CLUSTALW [24]. The multiple se-
quence alignment has then been used to calculate an identity matrix and the
distance matrix using DNADist from the PHYLIP package [25] and the modi-
fication of the Kimura distance model [26]. The DNADist program uses nu-
cleotide sequences to compute a distance matrix, under the modified Kimura
model of nucleotide substitution. Being similiar to the Jukes and Cantor model
[27], which constructs the transition probability matrix based on the assump-
tion that a base change is independent of its identity, the Kimura 2-paramter
model allows for a difference between transition and transversion rates in the
construction of the DNA distance matrix.
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The results obtained using all the presented spectral distortion measures agree
with the SimMM [10] and the chaos game representation [9] even though we used
seven sequences as test sets; where ec-thrA is closer to ec-thrC than to ec-thrB,
and ec-thrB is closer to ec-thrA than to ec-thrC. This relationship was found
within both species, E.coli K-12 and S.flexneri. We need to point out that
this agreement between these models does not confirm any hypothesis about the
relationships of these threonine operons since we have found no current phylo-
genetic study of these threonine operons in the literature. The alignment-based
methods, on the other hand, show a slightly different relationship between the
three different sequences. The calculations from both the identity and distance
matrices place the thrA sequences closer to thrB than to thrC, and thrB closer to
thrC than to thrA. However, the identity-matrix based model places rand-thrA
closer to the two thrA sequences, whose relationship is not supposed to be so.

5.2 Database Searching of Similar Sequences

The proposed spectral distortion measures were further tested to search for DNA
sequences being similar to a query sequence from a database of 39 library se-
quences, of which 20 sequences are known to be similar in biological function
to the query sequence, and the remaining 19 sequences are known as being not
similar in biological function to the query sequence. These 39 sequences were
selected from mammals, viruses, plants, etc., of which lengths vary between 322
and 14 121 bases. All of these sequences can be obtained from the GenBank se-
quence database (http://www.ncbi.nlm.nih.gov/Entrez/). The query sequence
is HSLIPAS (Human mRNA for lipoprotein lipase), which has 1612 bases.

The 20 sequences, which are known as being similar in biological function
to HSLIPAS are as follows: OOLPLIP (Oestrus ovis mRNA for lipoprotein li-
pase, 1656 bp), SSLPLRNA (pig back fat Sus scrofa cDNAsimilar to S.scrofa
LPL mRNA for lipoprotein lipase, 2963 bp), RATLLIPA (Rattus norvegicus
lipoprotein lipase mRNA, complete cds, 3617 bp), MUSLIPLIP (Mus musculus
lipoprotein lipase gene, partial cds, 3806 bp), GPILPPL (guinea pig lipopro-
tein lipase mRNA, complete cds, 1744 bp), GGLPL (chicken mRNA for adipose
lipoprotein lipase, 2328 bp), HSHTGL (human mRNA for hepatic triglyceride
lipase, 1603 bp), HUMLIPH (human hepatic lipase mRNA, complete cds, 1550
bp), HUMLIPH06 (human hepatic lipase gene, exon 6, 322 bp), RATHLP (rat
hepatic lipase mRNA, 1639 bp), RABTRIL [Oryctolagus cuniculus (clone TGL-
5K) triglyceride lipase mRNA, complete cds, 1444 bp], ECPL (Equus caballus
mRNA for pancreatic lipase, 1443 bp), DOGPLIP (canine lipase mRNA, com-
plete cds, 1493 bp), DMYOLK [Drosophila gene for yolk protein I (vitellogenin),
1723 bp], BOVLDLR [bovine low-density lipoprotein (LDL) receptor mRNA, 879
bp], HSBMHSP (Homo sapiens mRNA for basement membrane heparan sulfate
proteoglycan, 13 790 bp), HUMAPOAICI (human apolipoprotein A-I and C-III
genes, complete cds, 8966 bp), RABVLDLR (O.cuniculus mRNA for very LDL
receptor, complete cds, 3209 bp), HSLDL100 (human mRNA for apolipopro-
tein B-100, 14 121 bp) and HUMAPOBF (human apolipoprotein B-100 mRNA,
complete cds, 10 089 bp).
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The other 19 sequences known as being not similar in biological function
to HSLIPAS are as follows: A1MVRNA2 [alfalfa mosaic virus (A1M4) RNA 2,
2593 bp], AAHAV33A [Acanthocheilonema viteae pepsin-inhibitorlike- protein
(Av33) mRNA sequence, 1048 bp], AA2CG (adeno-associated virus 2, complete
genome, 4675 bp), ACVPBD64 (artificial cloning vector plasmid BD64, 4780
bp), AL3HP (bacteriophage alpha-3 H protein gene, complete cds, 1786 bp),
AAABDA[Aedes aegypti abd-A gene for abdominal-A protein homolog (par-
tial), 1759 bp], BACBDGALA [Bacillus circulans beta-d-galactosidase (bgaA)
gene, complete cds, 2555 bp], BBCA (Bos taurus mRNA for cyclin A, 1512
bp), BCP1 (bacteriophage Chp1 genome DNA, complete sequence, 4877 bp)
and CHIBATPB (sweet potato chloroplast F1-ATPase beta and epsilon-subunit
genes, 2007 bp), A7NIFH (Anabaena 7120 nifH gene, complete CDS, 1271 bp),
AA16S (Amycolatopsis azurea 16S rRNA, 1300 bp), ABGACT2 (Absidia glauca
actin mRNA, complete cds, 1309 bp), ACTIBETLC (Actinomadura R39 DNA
for beta-lactamase gene, 1902 bp), AMTUGSNRNA (Ambystoma mexicanum
AmU1 snRNA gene, complete sequence, 1027 bp), ARAST18B (cloning vector
pAST 18b for Caenorhabditis elegans, 3052 bp), GCALIP2 (Geotrichum can-
didum mRNA for lipase II precursor, partial cds, 1767 bp), AGGGLINE (Ateles
geoffroyi gamma-globin gene and L1 LINE element, 7360 bp) and HUMCAN
(H.sapiens CaN19 mRNA sequence, 427 bp).

Sensitivity and selectivity were computed to evaluate and compare the per-
formance of the proposed models with other distance measures [6]. Sensitivity is
expressed by the number of HSLIPAS related sequences found among the first
closest 20 library sequences; whereas selectivity is expressed in terms of the num-
ber of HSLIPAS-related sequences of which distances are closer to HSLIPAS than
others and are not truncated by the first HSLIPAS-unrelated sequence. Among
several distance measures introduced by Wu et al. [6], they concluded that the
standardized Euclidean distance under the Markov chain models of base com-
position was generally recommended, of which sensitivity and selectivity are 18
and 17 sequences respectively, of order one for base composition, and 18 and 16
sequences, respectively, of order two for base composition; when all the distances
of nine different word sizes were combined. Both sensitivity and selectivity ob-
tained from SimMM are 18 sequences. The sensitivity and selectivity obtained
from the LPC likelihood distortion are 19 and 18 sequences respectively; whereas
the LPC cepstral distortion achieved 20 sequences for both sensitivity and selec-
tivity. The results obtained from the distortion measures show their superiority
over the other methods for database searching of similar DNA sequences.

6 Conclusions

Comparison between sequences is a key step in bioinformatics when analyzing
similarities of functions and properties of different sequences. Similarly, evolu-
tionary homology is analyzed by comparing DNA and protein sequences. So
far, most such analyses are conducted by aligning first the sequences and then
comparing at each position the variation or similarity of the sequences. Multiple
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sequence alignments of several hundred sequences is thereby always a bottleneck,
first due to long computational time, and second due to possible bias of mul-
tiple sequence alignments for multiple occurrences of highly similar sequences.
An alignment-free comparison method is therefore of great value as it reduces
the technical constraints as only pairwise comparisons are necessary, and is free
of bias. Non-alignment methods are designed to compare each pair unrelated to
other pairwise comparisons, and the distortion measures can compute pair-wise
sequence similarity in such fashion. Given an appropriate numerical representa-
tion of DNA sequences, the performance of the new approach for DNA sequence
comparison has been found to be better than that of other existing non-alignment
methods. Spectral distortion measures are computationally efficient, mathemat-
ically tractable, and physically meaningful.

Some issues for future investigations will include further exploration of models
for numeral representation of biological sequences – the current experimental
results analyzed by the LPC-based distortion measures are affected by the RRM
which is not a unique way for expressing character-based biological sequence in
terms of numerical values. The application of vector quantization (VQ) [21] of
LPC coefficients, where the distance measure is the distance between two LPC
vectors, can be a potential approach for improving the calculation of similarity.
This can also be readily extended to the use of VQ-based hidden Markov models
[19] for similarity searching.
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