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Abstract. The large number of genes in microarray data makes feature selec-
tion techniques more crucial than ever.  From rank-based filter techniques to 
classifier-based wrapper techniques, many studies have devised their own fea-
ture selection techniques for microarray datasets.  By combining the OVA (one-
vs.-all) approach and differential prioritization in our feature selection tech-
nique, we ensure that class-specific relevant features are selected while guard-
ing against redundancy in predictor set at the same time.  In this paper we pre-
sent the OVA version of our differential prioritization-based feature selection 
technique and demonstrate how it works better than the original SMA (single 
machine approach) version.  
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1   Feature Selection in Tumor Classification 

Classification of tumor samples from patients is vital for diagnosis and effective 
treatment of cancer.  Traditionally, such classification relies on observations regarding 
the location [1] and microscopic appearance of the cancerous cells [2].  These meth-
ods have proven to be slow and ineffective; there is no way of predicting with reliable 
accuracy the progress of the disease, since tumors of similar appearance have been 
known to take different paths in the course of time.  Some tumors may grow aggres-
sively after the point of the abovementioned observations, and hence require equally 
aggressive treatment regimes; other tumors may stay inactive and thus require no 
treatment at all [1].  With the advent of the microarray technology, data regarding the 
gene expression levels in each tumor samples now may prove a useful tool in aiding 
tumor classification.  This is because the microarray technology has made it possible 
to simultaneously measure the expression levels for thousands or tens of thousands of 
genes in a single experiment [3, 4]. 

However, the microarray technology is a two-edged sword.  Although with it we 
stand to gain more information regarding the gene expression states in tumors, the 
amount of information might simply be too much to be of use.  The large number of 
features (genes) in a typical gene expression dataset (1000 to 10000) intensifies the 
need for feature selection techniques prior to tumor classification.  From various fil-
ter-based procedures [5] to classifier-based wrapper techniques [6] to filter-wrapper 
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hybrid techniques [7], many studies have devised their own flavor of feature selection 
techniques for gene expression data.  However, in the context of highly multiclass mi-
croarray data, only a handful of them have delved into the effect of redundancy in the 
predictor set on classification accuracy.   

Moreover, the element of the balance between relative weights given to relevance 
vs. redundancy also assumes an equal, if not greater importance in feature selection.  
This element has not been given the attention it deserves in the field of feature selec-
tion, especially in the case of applications to gene expression data with its large num-
ber of features, continuous values, and multiclass nature.  Therefore, to solve this 
problem, we introduced the element of the DDP (degree of differential prioritization) 
as a third criterion to be used in feature selection along with the two existing criteria 
of relevance and redundancy [8]. 

2   Classifier Aggregation for Tumor Classification 

In the field of classification and machine learning, multiclass problems are often de-
composed into multiple two-class sub-problems, resulting in classifier aggregation.  
The rationale behind this is that two-class problems are easier to solve than multiclass 
problems.  However, classifier aggregation may increase the order of complexity by 
up to a factor of B, B being the number of the decomposed two-class sub-problems.  
This argument for the single machine approach (SMA) is often countered by the theo-
retical foundation and empirical strengths of the classifier aggregation approach.  The 
term single machine refers to the fact that a predictor set is used to train only one clas-
sifier.  Here, we differentiate between internal and external classifier aggregation.  

Internal classifier aggregation transpires when feature selection is conducted once 
based on the original multiclass target class concept.  The single predictor set obtained 
is then fed as input into a single multiclassifier.  The single multiclassifier trains its 
component binary classifiers accordingly, but using the same predictor set for all 
component binary classifiers.  External classifier aggregation occurs when feature se-
lection is conducted separately for each two-class sub-problem resulting from the de-
composition of the original multiclass problem.  The predictor set obtained for each 
two-class sub-problem is different from the predictor sets obtained for the other two-
class sub-problems.  Then, in each two-class sub-problem, the aforementioned predic-
tor set is used to train a binary classifier.     

Our study is geared towards comparing external classifier aggregation in the form 
of the one-vs.-all (OVA) scheme against the SMA.  From this point onwards, the term 
classifier aggregation will refer to external classifier aggregation.  Methods in which 
feature selection is conducted based on the multiclass target class concept are defined 
as SMA methods, regardless of whether a multiclassifier with internal classifier ag-
gregation or a direct multiclassifier (which employs no aggregation) is used.  Exam-
ples of multiclassifier with internal classifier aggregation are multiclass SVMs based 
on binary SVMs such as DAGSVM [9], “one-vs.-all” and “one-vs.-one” SVMs.  Di-
rect multiclassifiers include nearest neighbors, Naïve Bayes [10], other maximum 
likelihood discriminants and true multiclass SVMs such as BSVM [11]. 

Various classification and feature selection studies have been conducted for multi-
class microarray datasets.  Most involved SMA with either one of or both direct and 
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internally aggregated classifiers [8, 12, 13, 14, 15].  Two studies [16, 17] did imple-
ment external classifier aggregation in the form of the OVA scheme, but only on a 
single split of a single dataset, the GCM dataset.  Although in [17], various multiclass 
decomposition techniques were compared to each other and the direct multiclassifier, 
classifier methods, and not feature selection techniques, were the main theme of that 
study. 

This brief survey of existent studies indicates that both the SMA and OVA scheme 
are employed in feature selection for multiclass microarray datasets.  However, none 
of these studies have conducted a detailed analysis which applies the two paradigms 
in parallel on the same set of feature selection techniques, with the aim of judging the 
effectiveness of the SMA against the OVA scheme (or vice versa) on feature selection 
techniques for multiclass microarray datasets.  To address this deficiency, we devise 
the OVA version of the DDP-based feature selection technique introduced earlier [8].   

The main contribution of this paper is to study the effectiveness of the OVA 
scheme against the SMA, particularly for the DDP-based feature selection technique.  
A secondary contribution is an insightful finding on the role played by aggregation 
schemes such as the OVA in influencing the optimal value of the DDP.   

We begin with a brief description of the SMA version of the DDP-based feature se-
lection technique, followed by the OVA scheme for the same feature selection tech-
nique.  Then, after comparing the results from both SMA and OVA versions of the 
DDP-based feature selection technique, we discuss the advantages of the OVA 
scheme over the SMA, and present our conclusions. 

3   SMA Version of the DDP-Based Feature Selection Technique 

For microarray datasets, the term gene and feature may be used interchangeably.  The 
training set upon which feature selection is to be implemented, T, consists of N genes 
and Mt training samples.  Sample j is represented by a vector, xj, containing the ex-
pression of the N genes [x1,j,…, xN,j]

T and a scalar, yj, representing the class the sample 
belongs to.  The SMA multiclass target class concept y is defined as [y1, …, yMt],  
yj∈[1,K] in a K-class dataset.  From the total of N genes, the objective is to form the 
subset of genes, called the predictor set S, which would give the optimal classification 
accuracy.  For the purpose of defining the DDP-based predictor set score, we define 
the following parameters. 

• VS  is the measure of relevance for the candidate predictor set S.  It is taken as the 
average of the score of relevance, F(i) of all members of the predictor set [14]: 

( )∑=
∈Si

S iF
S

V
1

 (1) 

F(i) indicates the correlation of gene i to the SMA target class concept y, i.e., ability 
of gene i to distinguish among samples from K different classes at once.   A popular 
parameter for computing F(i) is the BSS/WSS ratios (the F-test statistics) used in [14, 
15]. 
• US  is the measure of antiredundancy for the candidate predictor set S.  US quanti-

fies the lack of redundancy in S.   
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|R(i,j)| measures the similarity between genes i and j.  R(i,j) is the Pearson product 
moment correlation coefficient between genes i and j.  Larger US indicates lower av-
erage pairwise similarity in S, and hence, smaller amount of redundancy in S.    

The measure of goodness for predictor set S, WA,S, incorporates both VS and US. 

( ) ( ) αα −⋅= 1
, SSSA UVW  (3) 

where the power factor α ∈ (0, 1] denotes the degree of differential prioritization be-
tween maximizing relevance and maximizing antiredundancy.   

Decreasing the value of α forces the search method to put more priority on maxi-
mizing antiredundancy at the cost of maximizing relevance.  Raising the value of α 
increases the emphasis on maximizing relevance (at the same time decreases the em-
phasis on maximizing antiredundancy) during the search for the optimal predictor set.  
A predictor set found using larger value of α has more features with strong relevance 
to the target class concept, but also more redundancy among these features.  Con-
versely, a predictor set obtained using smaller value of α contains less redundancy 
among its member features, but at the same time also has fewer features with strong 
relevance to the target class concept.  

The SMA version of the DDP-based feature selection technique has been shown 
to be capable of selecting the optimal predictor set for various multiclass microarray 
datasets by virtue of the variable differential prioritization factor [8].  Results from 
the application of this feature selection technique on multiple datasets [8] indicate 
two important correlations to the number of classes, K, of the dataset: As K  
increases, 

1. the estimate of accuracy deteriorates, especially for K greater than 6; and 
2. placing more emphasis on maximizing antiredundancy (using smaller α) produces 

better accuracy than placing more emphasis on relevance (using larger α).   

From these observations, we conclude that as K increases, for majority of the 
classes, features highly relevant with regard to a specific class are more likely to be 
‘missed’ by a multiclass score of relevance (i.e., given a low multiclass relevance 
score) than by a class-specific score of relevance.  In other words, the measure of 
relevance computed based on the SMA multiclass target class concept is not efficient 
enough to capture the relevance of a feature when K is larger than 6. 

Moreover, there is an imbalance among the classes in the following aspect:  For 
class k (k = 1, 2, …, K), let hk be the number of features which have high class-
specific (class k vs. all other classes) relevance and are also deemed highly relevant 
by the SMA multiclass relevance score. For all benchmark datasets, hk varies greatly 
from class to class.  Hence, we need a classifier aggregation scheme which uses class-
specific target class concept catering to a particular class in each sub-problem and is 
thus better able to capture features with high correlation to a specific class.  This is 
where the proposed OVA scheme is expected to play its role. 
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Fig. 1. Feature selection using the OVA scheme 

4   OVA Scheme for the DDP-Based Feature Selection Technique 

In the OVA scheme, a K-class feature selection problem is divided into K separate 2-
class feature selection sub-problems (Figure 1).  Each of the K sub-problems has a 
target class concept different from the target class concept of the other sub-problems 
and that of the SMA.  Without loss of generality, in the k-th sub-problem                   
(k = 1, 2, …, K), we define class 1 as encompassing all samples belonging to class k, 
and class 2 as comprising of all samples not belonging to class k.  In the k-th sub-
problem, the target class concept, yk, is a 2-class target class concept.  

[ ]
tMkkk yyy ,2,1, K=ky  (4) 
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In solving the k-th sub-problem, feature selection finds the predictor set Sk, the size of 
which, P, is generally much smaller than N.  Therefore, for each tested value of                    
P = 2, 3, …, Pmax, K predictor sets are obtained from all K sub-problems.  For each 
value of P, the k-th predictor set is used to train a component binary classifier which 
then attempts to predict whether a sample belongs or does not belong to class k.  The 
predictions from K component binary classifiers are combined to produce the overall 
prediction.  In cases where more than one of the K component binary classifiers pro-
claims a sample as belonging to their respective classes, the sample is assigned to the 
class corresponding to the component binary classifier with the largest decision value.  



 OVA Scheme vs. Single Machine Approach in Feature Selection 15 

Equal predictor set size is used for all K sub-problems, i.e., the value of P is the same 
for all of the K predictor sets. 

In the k-th sub-problem, the predictor set score for Sk , kSAW , , is given as follows. 

( ) ( ) αα −⋅= 1
, kkk SSSA UVW  (6) 

The significance of α in the OVA scheme remains unchanged in the general meaning 
of the SMA context.  However, it must be noted that the power factor α ∈ (0, 1] now 
represents the degree of differential prioritization between maximizing relevance 
based on the 2-class target class concept, yk, (instead of relevance based on the K-
class target class concept y of the SMA) and maximizing antiredundancy. 

Aside from these differences, the role of α is the same in the OVA scheme as in the 
SMA.  For instance, at 5.0=α , we still get an equal-priorities scoring method, and at  

1=α , the feature selection technique becomes rank-based.      
The measure of relevance for Sk , kSV , is computed by averaging the score of rele-

vance, F(i,k) of all members of the predictor set.  
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The score of relevance of gene i in the k-th sub-problem, F(i,k), is given as follows.   
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I(.) is an indicator function returning 1 if the condition inside the parentheses is true, 
otherwise it returns 0.  •ix  is the average of the expression of gene i across all training 

samples. iqx  is the average of the expression of gene i across training samples belong-

ing to class k when  q is 1.  When q is 2, iqx  is the average of the expression of gene i 

across training samples not belonging to class k. 
The measure of antiredundancy for Sk , kSU , is computed the same way as in the 

SMA.  
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For search method, in the k-th sub-problem, we use the linear incremental search 
[14] given below.  The order of computation is O(NKPmax). 

1. For k = 1, 2, …, K, do 
1.1.   Choose the gene with the largest F(i,k) as the first member of Sk. 
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1.2.   For P = 2, 3, …, Pmax 

1.2.1.   Screen the remaining (N − P + 1) genes one by one to find the gene 
that would enable Sk to achieve the maximum 

kSAW ,  for the size P.   

1.2.2.   Insert such gene as found in 1.2.1 into Sk. 

5   Results 

Feature selection experiments were conducted on seven benchmark datasets using 
both the SMA and the OVA scheme.  In both approaches, different values of α from 
0.1 to 1 were tested with equal intervals of 0.1.  The characteristics of microarray 
datasets used as benchmark datasets: the GCM [16], NCI60 [18], lung [19], MLL 
[20], AML/ALL [21], PDL [22] and SRBC [23] datasets, are listed in Table 1.  For 
NCI60, only 8 tumor classes are analyzed; the 2 samples of the prostate class are 
excluded due to the small class size.  Datasets are preprocessed and normalized 
based on the recommended procedures in [15] for Affymetrix and cDNA microar-
ray data. 

Table 1. Descriptions of benchmark datasets. N  is the number of features after preprocessing. 

Dataset Type N K Training:Test set size 
GCM Affymetrix 10820 14 144:54 
NCI60 cDNA 7386 8 40:20 
PDL Affymetrix 12011 6 166:82 
Lung Affymetrix 1741 5 135:68 
SRBC cDNA 2308 4 55:28 
MLL Affymetrix 8681 3 48:24 
AML/ALL Affymetrix 3571 3 48:24 

 

With the exception of the GCM dataset, where the original ratio of training to test 
set size used in [16] is maintained to enable comparison with previous studies, for all 
other datasets we employ the standard 2:1 split ratio.  The DAGSVM classifier is used 
throughout the performance evaluation.  The DAGSVM is an all-pairs SVM-based 
multiclassifier which uses less training time compared to either the standard algorithm 
or Max Wins while producing accuracy comparable to both [9]. 

5.1   Evaluation Techniques 

For the OVA scheme, the exact evaluation procedure for a predictor set of size P 
found using a certain value of the DDP, α, is shown in Figure 1.  In case of the 
SMA, the sub-problem loop in Figure 1 is conducted only once, and that single sub-
problem represents the (overall) K-class problem.  Three measures are used to 
evaluate the overall classification performance of our feature selection techniques.  
The first is the best averaged accuracy.  This is simply taken as the largest among 
the accuracy obtained from Figure 1 for all values of P and α.  The number of 
splits, F, is set to 10. 
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The second measure is obtained by averaging the estimates of accuracy from dif-
ferent sizes of predictor sets (P = 2, 3, …, Pmax) obtained using a certain value of α 
to get the size-averaged accuracy for that value of α.  This parameter is useful in 
predicting the value of α likely to produce the optimal estimate of accuracy since 
our feature selection technique does not explicitly predict the best P from the tested 
range of [2, Pmax].  The size-averaged accuracy is computed as follows.  First, for 
all predictor sets found using a particular value of α, we plot the estimate of accu-
racy obtained from the procedure outlined in Figure 1 against the value of P of the 
corresponding predictor set (Figure 2).  The size-averaged accuracy for that value of 
α is the area under the curve in Figure 2 divided by the number of predictor sets, 
(Pmax–1). 

 

 

Fig. 2. Area under the accuracy-predictor set size curve 

The value of α associated with the highest size-averaged accuracy is deemed the 
empirical optimal value of the DDP or the empirical estimate of α*.  Where there is a 
tie in terms of the highest size-averaged accuracy between different values of α, the 
empirical estimate of α* is taken as the average of those values of α. 

The third measure is class accuracy.  This is computed in the same way as the size-
averaged accuracy, the only difference being that instead of overall accuracy, we 
compute the class-specific accuracy for each class of the dataset.  Therefore there are 
a total of K class accuracies for a K-class dataset.   

In this study, Pmax is deliberately set to 100 for the SMA and 30 for the OVA 
scheme.  The rationale for this difference is that more features will be needed to dif-
ferentiate among K classes at once in the SMA, whereas in the OVA scheme, each 
predictor set from the k-th sub-problem is used to differentiate between only two 
classes, hence the smaller upper limit to the number of features in the predictor set. 

5.2   Best Averaged Accuracy 

Based on the best averaged accuracy, the most remarkable improvement brought by 
the OVA scheme over the SMA is seen in the dataset with the largest number of 
classes ( 14=K ), GCM (Table 2).  The accuracy of 80.6% obtained from the SMA is 
increased by nearly 2% to 82.4% using the OVA scheme.  For the NCI60, lung and 
SRBC datasets there is a slight improvement of 1% at most in the best averaged accu-
racy when the OVA scheme is compared to the SMA.   The performance of the SMA 
version of the DDP-based feature selection technique for the two most challenging 
benchmark datasets (GCM and NCI60) has been compared favorably to results from 
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previous studies in [8].  Therefore it follows that the accuracies from the OVA 
scheme compare even more favorably to accuracies obtained in previous studies on 
these datasets [12, 14, 15, 16, 17]. 

Naturally, the combined predictor set size obtained from the OVA scheme is 
greater than that obtained from the SMA.  However, we must note that the predictor 
set size per component binary classifier (i.e., the number of genes per component bi-
nary classifier) associated with the best averaged accuracy is smaller in case of the 
OVA scheme than the SMA (Table 2).  Furthermore, we consider two facts:  1) There 
are K component binary classifiers involved in the OVA scheme where the compo-
nent DAGSVM reverts to a plain binary SVM in each of the K sub-problems.  2)  On 
the other hand, there are KC2 component binary classifiers involved in the multiclassi-
fier used in the SMA, the all-pairs DAGSVM.  Therefore, 1) the  smaller number of 
component binary classifiers and 2) the smaller number of genes used per component 
binary classifier in the OVA scheme serve to emphasize the superiority of the OVA 
scheme over the SMA in producing better accuracies for datasets with larger K such 
as the GCM and NCI60 datasets. 

For the PDL dataset, the best averaged accuracy deteriorates by 2.8% when the 
OVA scheme replaces the SMA.  For the datasets with the least number of classes 
( 3=K ), the best averaged accuracy is the same whether obtained from predictor set 
produced from feature selection using the SMA or the OVA scheme. 

Table 2. Best averaged accuracy (± standard deviation across F splits) estimated from feature 
selection using the SMA and OVA scheme, followed by the corresponding differential prioriti-
zation factor and predictor set size (‘gpc’ stands for ‘genes per component binary classifier’)  

Dataset SMA OVA 
GCM 80.6 ± 4.3%, α=0.2, 85 gpc 82.4 ± 3.3%, α=0.3, 24 gpc 
NCI60 74.0 ± 3.9%, α=0.3, 61 gpc 75.0 ± 6.2%, α=0.3, 19 gpc 
PDL 99.0 ± 1.0%, α=0.5, 60 gpc 96.2 ± 1.1%, α=0.6, 16 gpc 
Lung 95.6 ± 1.6%, α=0.5, 31 gpc 96.0 ± 1.7%, α=0.5, 14 gpc 
SRBC 99.6 ± 1.1%, α=0.7, 13 gpc 100 ± 0%, α=0.8, 2 gpc 
MLL 99.2 ± 1.8%, α=0.6, 12 gpc 99.2 ± 1.8%, α=0.7, 4 gpc 
AML/ALL 97.9 ± 2.2%, α=0.8, 11 gpc 97.9 ± 2.2%, α=0.6, 6 gpc 

5.3   Size-Averaged Accuracy 

The best size-averaged accuracy for the OVA scheme is better for all benchmark data-
sets except the PDL and AML/ALL datasets (Table 3).  The peak of the size-averaged 
accuracy plot against α for the OVA scheme appears to the right of the peak of the 
SMA plot for all datasets except the PDL and lung datasets, where they stay the same 
for both approaches (Figure 3).  This means that the value of the optimal DDP (α *) 
when the OVA scheme is used in feature selection is greater than the optimal DDP 
(α*) obtained from feature selection using the SMA, except for the PDL and lung 
datasets.  In Section 6, we will look into the reasons for the difference in the empirical 
estimates of α* between the two approaches of the SMA and the OVA scheme. 
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Table 3. Best size-averaged accuracy estimated from feature selection using the SMA and 
OVA scheme, followed by the corresponding DDP, α*.  A is the number of times OVA outper-
forms SMA, and B is the number of times SMA outperforms OVA, out of the total of tested 
values of P = 2, 3, …, 30. 

Dataset SMA B OVA A 
GCM 68.2%, α*=0.2 0 76.0%, α*=0.5 29 
NCI60 60.1%, α*=0.3 0 64.4%, α*=0.6 29 
PDL 94.0%, α*=0.5 0 92.3%, α*=0.5 19 
Lung 91.8%, α*=0.6 1 92.3%, α*=0.6 12 
SRBC 97.3%, α*=0.6 0 99.9%, α*=0.9 26 
MLL 96.8%, α*=0.7 0 97.4%, α*=0.8 12 
AML/ALL 95.9%, α*=0.8 0 95.6%, α*=0.9 9 

 

Fig. 3. Size-averaged accuracy plotted against α 

We have also conducted statistical tests on the significance of the performance of 
each of the approaches (SMA or OVA) over the other for each value of P (number of 
genes per component binary classifier) from P = 2 up to P = 30.  Using Cochran’s Q 
statistic, the number of times the OVA approach outperforms the SMA, A, and the 
number of times the SMA outperforms the OVA approach, B, at 5% significance 
level, are shown in Table 3.  It is observed that A > B for all seven datasets, and that A 
is especially large (in fact, maximum) for the two datasets with largest number of 
classes, the GCM and NCI60 datasets.  Moreover, A tends to increase as K increases, 
showing that the OVA approach increasingly outperforms the SMA (at 5% signifi-
cance level) as the number of classes in the dataset increases. 

5.4   Class Accuracy 

To explain the improvement of the OVA scheme over the SMA, we look towards the 
components that contribute to the overall estimate of accuracy: the estimates of the 
class accuracy.  Does the improvement in size-averaged accuracy in the OVA scheme 
translate to similar increase in the class accuracy of each of the classes in the dataset? 
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To answer the question, for each class in a dataset, we compute the difference be-
tween class accuracy obtained from the OVA scheme and that from the SMA using 
corresponding values of α* from Table 3.  Then, we obtain the average of this differ-
ence from all classes in the same dataset.  Positive difference indicates improvement 
brought by the OVA scheme against the SMA.  For each dataset, we also count the 
number of classes whose class accuracy is better under the OVA scheme than in the 
SMA and divide this number by K to obtain a percentage.  These two parameters are 
then plotted for all datasets (Figure 4). 

Fig. 4. Improvement in class accuracy averaged across classes (left axis) and percentage of 
classes with improved class accuracy (right axis) for the benchmark datasets 

Figure 4 provides two observations.  Firstly, for all datasets, the minimum percent-
age of classes whose class accuracy has been improved by the OVA scheme is 60%.  
This indicates that the OVA scheme feature selection is capable of increasing the 
class accuracy of the majority of the classes in a multiclass dataset.  Secondly, the av-
erage improvement in class accuracy is highest in datasets with largest K, the GCM 
and the NCI60 (above 4%).  Furthermore, only one class out of 14 and 8 classes for 
the GCM and NCI60 datasets respectively does not show improved class accuracy 
under the OVA scheme (compared to the SMA).  Therefore, the OVA scheme brings 
the largest amount of improvement over the SMA for datasets with large K. 

In several cases, improvement in class accuracy occurs only for classes with small 
class sizes, which is not sufficient to compensate for the deterioration in class accu-
racy for classes with larger class sizes.  Therefore, even if majority of the classes 
show improved class accuracy under the OVA scheme, this does not get translated 
into improved overall accuracy (PDL and AML/ALL datasets) or improved averaged 
class accuracy (PDL and lung datasets) when a few of the larger classes have worse 
class accuracy.  

6   Discussion 

For both approaches, maximizing antiredundancy is less important for datasets with 
smaller K (less than 6) – therefore supporting the assertion in [24] that redundancy 
does not hinder the performance of the predictor set when K is 2.  In the SMA feature 
selection, the value of α* is more strongly influenced by K compared to the case in the 
OVA scheme feature selection.  The correlation between α* and K in the SMA is 
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found to be −0.93, whereas in the OVA scheme the correlation is −0.72.  In both 
cases, the general picture is that of α* decreasing as K increases.   

However, on a closer examination, there is a marked difference in the way α* 
changes with regard to K between the SMA and the OVA versions of the DDP-based 
feature selection technique (Figure 5).  In the SMA, α* decreases in accordance with 
every step of increase in K.  In the OVA scheme, α* stays near the range of equal-
priorities predictor set scoring method (0.5 and 0.6) for the four datasets with larger K 
(the GCM, NCI60, PDL and lung datasets).  Then, in the region of datasets with 
smaller K, α* in the OVA scheme increases so that it is nearer the range of rank-based 
feature selection technique (0.8 and 0.9 for the SRBC, MLL and AML/ALL datasets).   
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Fig. 5. Optimal value of DDP, α*, plotted against K for all benchmark datasets 

The steeper decrease of α* as K increases in the SMA implies that the measure of 
relevance used in the SMA fails to capture the relevance of a feature when K is large.  
In the OVA scheme, the decrease of α* as K increases is more gradual, implying bet-
ter effectiveness than the SMA in capturing relevance for datasets with larger K. 

Furthermore, for all datasets, the value of α* in the OVA scheme is greater than or 
equal to the value of α* in the SMA.  Unlike in the SMA, the values of α* in the OVA 
scheme never fall below 0.5 for all benchmark datasets (Figure 5).  This means that 
the measure of relevance implemented in the OVA scheme is more effective at identi-
fying relevant features, regardless of the value of K.  In other words, K different 
groups of features, each considered highly relevant based on a different binary target 
class concept, yk ( Kk ,...,2,1= ), are more capable of distinguishing among samples 
of K different classes than a single group of features deemed highly relevant based on 
the K-class target class concept, y. 

Since in none of the datasets has α* reached exactly 1, antiredundancy is still a fac-
tor that should be considered in the predictor set scoring method.  This is true for both 
the OVA scheme and the SMA.  Redundancy leads to unnecessary increase in classi-
fier complexity and noise.  However, for a given dataset, when the optimal DDP leans 
closer towards maximizing relevance in one case (Case 1) than in another case (Case 
2), it is usually an indication that the approach used in measuring relevance in Case 1 
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is more effective than the approach used in Case 2 at identifying truly relevant fea-
tures.  In this particular study, Case 1 represents the OVA version of the DDP-based 
feature selection technique, and Case 2, the SMA version.   

7   Conclusions 

Based on one or more of the following criteria: class accuracy, best averaged accuracy 
and size-averaged accuracy, the OVA version of the DDP-based feature selection tech-
nique outperforms the SMA version.  Despite the increase in computational cost and 
predictor set size by a factor of K, the improvement brought by the OVA scheme in 
terms of overall accuracy and class accuracy is especially significant for the datasets 
with the largest number of classes and highest level of complexity and difficulty, such 
as the GCM and NCI60 datasets.  Furthermore, the OVA scheme brings the degree of 
differential prioritization closer to relevance for most of the benchmark datasets, imply-
ing better efficiency in the OVA approach at measuring relevance than the SMA.   
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