
P. Perner (Ed.): ICDM 2006, LNAI 4065, pp. 191 – 201, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Pruning Based Incremental Construction Algorithm
of Concept Lattice*

Zhang Ji-Fu1,2, Hu Li-Hua1, and Zhang Su-Lan1

1 School of Computer Science and Technology, Tai-Yuan University of Science
and Technology, Tai-Yuan 030024, P.R. China

2 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing 100080, P.R. China

jifuzh@sina.com

Abstract. The concept lattice has played an important role in knowledge
discovery. However due to inevitable occurrence of redundant information in the
construction process of concept lattice, the low construction efficiency has been a
main concern in the literature. In this work, an improved incremental
construction algorithm of concept lattice over the traditional Godin algorithm,
called the pruning based incremental algorithm is proposed, which uses a pruning
process to detect and eliminate possible redundant information during the
construction. Our pruning based construction algorithm is in nature superior to
the Godin algorithm. It can achieve the same structure with the Godin algorithm
but with less computational complexity. In addition, our pruning based algorithm
is also experimentally validated by taking the star spectra from the LAMOST
project as the formal context.

Keywords: concept lattice, pruning, redundant information, incremental
construction algorithm, star spectra.

1 Introduction

From a philosophical point of view, a concept is a unit of thoughts consisting of two
parts, the extension and the intension. Based on the philosophical understanding of
concept, the formal concept analysis [1] was introduced by Wille.R in 1982, and later
used to detect, sort and display of concepts. Based on the formal concept analysis, the
extension covers all objects belonging to this concept and the intension comprises all
attributes valid for all those objects, by which the philosophical understanding of
concept was realized. By nature, concept lattice describes the relationship between
objects and attributes, indicates the relationship of generation and specialization
between concepts. Besides, its Hasse diagram is an effective tool of data visualization.
Thanks to its straightness, simplicity and completeness of knowledge expressing, the
concept lattice has been widely applied in software engineer, knowledge engineer,
knowledge discovery and so on [2], [3], [11], etc.

* This paper is supported by the National Natural Science Foundation of P.R.China (60573075).

192 J.-F. Zhang, L.-H. Hu, and S.-L. Zhang

At present, broadly speaking, there are two kinds of concept lattice construction
algorithms: The incremental algorithm [4], [5], [6] and the patch algorithm [8]. The
basic idea of the patch algorithm is to generate all concepts at first, then according to
the relationship of generation and specialization, to generates edges, then form
concept lattice. Such algorithms include Bordat algorithm, OSHAM algorithm, Chein
algorithm, Ganter algorithm, Nourine algorithm and so on [8]. The basic idea of the
incremental construction algorithm is to initialize a null concept at first, then
gradually form concept lattice by adopting different suitable operations based on the
intersection difference between the attributes of a newly added object with the
intension of the original concept lattice nodes. Such algorithms include Godin,
Gapineto and T.B.Ho algorithm [2], [8]. Many researchers have proposed some
improvements on the above algorithms, such as the fast incremental algorithm for
building concept lattice [9] and so on. Lots of experiments show that the incremental
construction algorithm is a promising one, and the Godin algorithm is a typical
incremental construction algorithm.

In many cases, concept lattice construction uses mass、high-dimensional data as
formal context. For the analysis of mass data, usually too many nodes are generated
due to the completeness requirement of concept lattice, which in turn causes large
storage and low construction efficiency during the incremental construction process,
because the attributes of a newly added object must be compared with the intension of
the original concept lattice nodes one by one. As a result, with more added objects,
the updating efficiency of concept lattice becomes worse. In reality, in the process of
incremental construction, much redundant information is generated, which
unnecessarily increases the comparing times of concept lattice intension but has no
effect on the resulting structure. Hence how to eliminate or reduce the redundant
information in the concept lattice construction process is a key issue to increase its
construction efficiency. To this end, we propose a technique, coined as “pruning”, to
eliminate possible redundant information in this work, and the proposed algorithm is
shown to work satisfactorily. In particular, our experiments show that our proposed
algorithm (PCL) could improve the construction efficiency by above 15 % than the
Godin algorithm, a popular algorithm in the literature.

2 Basic Concept of the General Concept Lattice and Its
Incremental Construction

Definition 1. A formal context is defined as a triplet K=(O, D R), where O is a set of
objects, D is a set of attributes and R is a binary relation between O and D, which
describes the inherent lattice structure and defines the natural groupings and
relationships between the objects and their attributes. This structure is known as a
concept lattice or Galois lattice L.

Definition 2. Given a concept lattice L constructed from formal context K, each one
of its nodes is a couple, denoted as C (A, B), where A∈P (O) is called the extension
of concept, B∈P (D) called the intension of concept. P(O) and P(D) are power sets of
O and D respectively.

Definition 3. Concept lattice L must be a complete couple with respect to R. that
means for each node C (A, B), following two conditions are both satisfied:

 A Pruning Based Incremental Construction Algorithm of Concept Lattice 193

(1) A=B′={a∈O| ∀b∈B, a R b}
(2) B=A′={b∈D| ∀a∈A, a R b}

Definition 4. In the concept lattice L, if a node Ci（Ai, Bi）satisfies the following
condition, it is defined as the supremum of this node, denoted as Sup(Ci). J is the
alphabetical order set of concept lattice L.

⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞=∨ ∩∩

∈∈∈ i
Ji

i
Ji

ii
Ji

BBBA ，'),(

Definition 5. If C1=(A1, B1) and C2=(A2, B2) are two different nodes, then

C1<C2 ⇔ A1 ⊂ A2 ⇔ B2 ⊂ B1. If there does not exist other node C3=(A3,B3) in
the lattice such that C1<C3<C2, we say C1 is the sub(child) concept of C2 , denoted
as C1=child(C2)； C2 is the super (parent) concept of C1, denoted as C2=father
(C1).

In general, the formal context of concept lattice is represented by a table as shown in
Table 1, where the rows represent objects, and the column represent attributes. As an
example, the corresponding concept lattice of Table 1 is shown in Fig. 1.

Given a concept lattice L, constructed from the formal context K=(O, D, R), the
incremental construction is such a process that while a new object x is added (S is the
set of attributes of x), the concept lattice L is modified according to the relationship
between the attributes of the object x and the intension of the original concept lattice
nodes at the new formal context K′=(O ∪ {x}, D, R). In the process of incremental
construction, according to the attribute set S of the newly added object and the
intension of the original concept lattice nodes, concept lattice nodes can be classified
into three cases: old node, modified node and newly added node. Their definitions
are:

Definition 6. Let C (A, B) be a node of concept lattice L, if the intersection between
B and S is NULL, denoted as B∩S=Ф, then C is called an old node.

Definition 7. Let C (A, B) be a node of concept lattice L, if B is a subset of S, i.e.,
B⊆S, then C is called a modified node.

Table 1. Formal Context

Fig. 1. Hasse Figure of General Concept
Lattice

O D A B C D E
1
2
3
4
5

√

√

√
√
√ √

√

√

√

√

194 J.-F. Zhang, L.-H. Hu, and S.-L. Zhang

Definition 8. Let C (A, B) be a node of concept lattice L, if the intersection between
B and S, H=B∩S, is not NULL, denoted as H≠Φ, and then C is called a generated
node. Additionally if the following two conditions are both satisfied:

(1) H is not equal to the intension of any nodes of concept lattice L.
(2) The intersection of S with any super node C1 of C is not equal to H, i.e.,

B1∩S≠H,

Then C1=(A∪{x}, H) is called a newly added node of concept lattice L.
Fig2 shows the old nodes, modified nodes, and newly added nodes by the

incremental construction algorithm. Fig. 2. is generated from Fig .1. by adding a new
object x (6, {A, E}). The node ({2,6}, E) is a new node; all the other nodes are old
ones.

Fig. 2. Hasse Figure of Concept Lattice from a New Object

3 Pruning Based Incremental Construction of Concept Lattice

From the previous section, we know that during the incremental construction, the nodes
and edges corresponding to modified nodes or newly added nodes should be modified.
As a result, it is possible that unnecessary comparisons between S and B occur. Hence
by eliminating or avoiding such unnecessary comparisons, the construction efficiency
could be improved.

Definition 9. Let C (A, B) be a node of concept lattice L, C1 (A1, B1) and C2 (A2,
B2) are two sub (child) nodes of C, C1=child(C), C2=child(C), C1 and C2 are called
the sibling nodes. The sub (child) nodes C1 or C2, denoted as offs(C), offs(C) are
called the offspring nodes of C.

Definition 10. Let C (A, B) be a node of concept lattice L, the number of the objects
contained in A is called the support of extension of concept C, denoted as |A|. The
number of the attributes contained in B is called the support of intension of concept C,
denoted as |B|.

Definition 11. Let C (A, B) be a node of concept lattice L and C be a modified node
with respect to a newly added object x during the incremental construction process, if
C is modified as C1 (A1, B1), where A ⊂ A1 and B1=B, then C1 (A1, B1) is called the
redundant information.

 A Pruning Based Incremental Construction Algorithm of Concept Lattice 195

Theorem 1. Let C=(A, B) be a node of concept lattice L, x is a newly added object
(its attributes set is S), if C is modified to C1 (A1, B1), and B is not equal to Sup (S),
then C1 (A1, B1) must be redundant information.

Proof. Since B is not equal to Sup (S), there must exist a node C2 (A2, B2) such that
B2⊂B and A⊂A2 in the concept lattice L. Since C is a modified node, we have B⊆S,
then B2⊆S. Node C1 (A∪ {x}, S) could be generated from the newly added object x
and C, and node C3 (A2∪ {x}, S) could be generated from x and C2. By definition 11,
C1 is redundant information.

Definition 12. In the incremental construction process of concept lattice, the
operations of eliminating redundant information is called pruning.

Theorem 2. The pruning of concept lattice does not disrupt the completeness of
concept lattice.

Proof. Suppose redundant information C1 (A1, B1) is generated during the incremental
construction process of concept lattice L, from theorem 1, C1 (A∪ {x}, S) and C3
(A2∪ {x}, S) are generated also. Hence after the pruning of concept lattice, redundant
information is eliminated, and C3 (A2∪ {x}, S) is generated from the newly added
object x and C2. So the pruning of concept lattice does not disrupt the completeness of
concept lattice.

From Theorem 2, redundant information only adds comparing times of concept lattice
intension; it does not affect the structure of concept lattice.

The comparisons of the attribute set S of the newly added object x with the
intension B of a node C (A, B) of concept lattice can be listed as the following 4
cases:

1) B is a subset of S (B⊂S)
If B⊂S, it indicates that the generated nodes by adding object x are the parent

nodes of C. In this case, it is unnecessary to compare with the child or offspring nodes
of C;

2) S is the supermum of B
If B=Sup(S), it indicates the generated nodes by adding object x is the child

nodes of C. No further operation is needed;
3) B=S
In this case, it suffices to modify node C and the extensions of all the parent

nodes of C.
4) B∩ S ≠Φ and B⊄S

In this case, a new node should be added, and at the same time, this newly added
node should be compared with the existing nodes.

Based on the above analysis, we can see that the process of pruning can reduce the
redundant information, decrease the comparing times of concept lattice intension
without affecting its structure during the construction of concept lattice. And
additionally, its completeness is also preserved. Hence by combining with the Godin
algorithm, the basic principle of the pruning based incremental construction of
concept lattice can be outlined as:

If the attribute set of a newly added object is a subset of the intension of concept
lattice nodes, it will generate redundant information from theorem 1 when compared

196 J.-F. Zhang, L.-H. Hu, and S.-L. Zhang

with the sub concepts of the concept lattice nodes. In order to eliminate such
redundant information, we can use the pruning of concept lattice to find the subset of
the newly added object such that it does not need to compare with sub nodes and
offspring nodes. Similarly if the attribute set of a newly added object is equal to the
intension of concept lattice nodes, no comparison with sub nodes and offspring nodes
is needed either.

The above process is an improvement of the Godin algorithm. It is capable of
eliminating redundant information during the construction process, and consequently
enhancing the construction efficiency. In addition, the construction process is a
top-down process.

Theorem 3. In the construction process of concept lattice by the pruning based
incremental construction algorithm, if no redundant information is generated, the
pruning based algorithm is degenerated to the Godin algorithm.

Proof. If no redundant information is generated, it means there is no super-node
relationship between the newly added object with the other nodes, i.e., comparisons
with the offspring of node C do not occur, hence the construction process by the
pruning based algorithm is identical to that by the Godin algorithm, and the two
algorithms also possess the same time complexity.

Theorem 4. The construction efficiency of the pruning based algorithm is better than
that of the Godin algorithm.

Proof. If redundant information is generated in the incremental construction process,
according to theorem 1 and theorem 2, the pruning process reduces the number of the
comparisons between the intensions, hence its computational efficiency is better than
that of the Godin algorithm. On the other hand, if no redundant information is
generated in the incremental construction process, according to theorem 3, the two
construction algorithms have the same computational complexity. Combining these
two cases, we can see that the construction efficiency of the pruning based algorithm
is no worse than that of the Godin algorithm in all possible cases.

4 Pruning Based Incremental Construction Algorithm of Concept
Lattice Entries

A pseudo-code of our pruning based incremental construction algorithm of concept
lattice (PCL in short) could be described as follow:

PCL (The pruning based concept lattice) algorithm:
Input:The original concept lattice and a new added object,
the nodes of the original concept lattice are sorted in the
deceasing order of their support of intensions.
output： A new concept lattice
/* inte: the intension of a concept lattice node; exte: the
extension of a concept lattice node; father: the super node
of a concept lattice node; child : the sub node of concept
lattice node; now:is the current label number of the concept
lattice node */

 A Pruning Based Incremental Construction Algorithm of Concept Lattice 197

（1） Input a new object
（2） Search the concept lattice nodes from top to down, and

compare the attribute set of the new object with the
intension of the current concept lattice.

（3） Set the new object to a new node new c, its intension
is new, its extension is code, its super node is
newfather, its sub node is newchild

（4） for I=now to 1
（5） determine the relationship between new and inte
（6） call procedure “judge”（new,inte）；
（7） next I
（8） end PCL;
 judge(new,inte)

（1） if new⊆inte then
（2） fetch newfahter
（3） if I∉newfather then
（4） add a new edge I->new
（5） code=exte∪code
（6） father=father∪code
（7） newchild=newchild∪code
（8） end if
（9） exit for
（10） elseif inte⊆new then
（11） fetch newchild
（12） if I∉newchild then
（13） add a new edge new->I
（14） newfather=I∪newfather
（15） exte=exte∪code
（16） child=child∪code
（17） end if
（18） elseif inte=new then
（19） fetch I and the extension exte of all its

supernodes
（20） exte=exte∪code
（21） delete node new
（22） exit for
（23） elseif inte∩new≠Φ then
（24） add a new concept lattice node newjoin, the

intersection intension is join
（25） for j=1 to now
（26） if j≠now then
（27） if join=inte then
（28） update j
（29） delete node newjoin

198 J.-F. Zhang, L.-H. Hu, and S.-L. Zhang

（30） end if
（31） end if
（32） next for
（33） if not exist equal then
（34） njexte=code∪exte
（35） njinte=join
（36） njchild=code∪I
（37） determine the superconcept relationship

between newjoin and other concept lattice nodes
（38） if ∃newjoin’s super node, then
（39） repeat the above modifying operations of the

super node
（40） end if
（41） end if
（42） end if;
（43） end judge;

In the process of the traditional incremental construction, when a new object is

added to the formal context, it must be compared with all the nodes of the original
concept lattice. As a result, the algorithm computational complexity increases
exponentially at the worst case. More specifically, time complexity of the general
concept lattice is O (2K|U|).

For our PCL, when a newly added object is compared with the current concept lattice
nodes, if it exists the relationship of the super nodes as before, it becomes unnecessary
to continue the comparison process. As a result, it can reduce the comparisons, and the
time complexity of our PCL algorithm PCL is no larger than O (2K|U|).

5 Experiment Analysis

Now a large telescope called LAMOST (Large Sky Area Multi-Object Fiber
Spectroscopic Telescope) is under construction in the National Observatory in
Beijing, China. After its scheduled completion in 2006, it is expected to collect more
than 40,000 spectrums in a single observation night Such voluminous data demand
automatic spectrum processing and data mining [12]. In this section, we will give some
results of our experiments on the concept lattice construction from the observed
celestial spectrums.

The experiment setup is: PentiumIII-1.0G CPU, 256M memory, Windows 2000
operating system and ORACLE 9i DBMS. Both the PCL algorithm and the Godin
algorithm are coded in Visual Basic 6.0. The star spectra are treated by the following
steps, then used as the formal context:

1) For each star spectrum, choose 200 wave-length from 3510 A to 8330 A at
a step of 20 A as its attributes set.

2) At the above each chosen wave length, the corresponding flux, peak width
and shape information of the spectrum are quantified respectively into one of the 13
different intervals in total.

 A Pruning Based Incremental Construction Algorithm of Concept Lattice 199

Table2 are the results of the concept lattice construction, where 150 wave-lengths
are used as the attribute set, 500，1000，1500，2000，2404 B-type star spectra are
used as the data objects. Table 3 are the construction results of concept lattice, where
the size of the attributes set is 100，125，150，175，200, and 1500 B-type star
spectra are used as the objects.

Table 2. Experimental Comparison of Various Object SetsBetween the Godin and PCL
Algorithms

The number
of objects

Godin algorithm
（seconds）

PCL algorithm
（seconds）

The number
of nodes

500 108 75 1035
1000 409 348 1462
1500 830 724 1652
2000 1511 1368 2051
2404 2639 2452 2997

Table 3. Experimental Comparison of Various Attribute Sets Between the Godin and PCL
Algorithms

The number
of attributes

Godin algorithm
（seconds）

PCL algorithm
（seconds）

The number
of nodes

100 123 96 227
125 195 147 373
150 830 724 1652
175 1577 1450 2393
200 2533 2278 3259

From Table2 and Table3, it can be concluded that:

(1) The Godin algorithm and the PCL algorithm can construct the same
concept lattice. In other words, the number of the constructed nodes, the
corresponding intension, extension, and father-son relationships are the same for both
the two algorithms. This verifies the theoretical correctness of the PCL algorithm;

(2) The PCL algorithm is more efficient than the Godin algorithm. This
indicates that in the incremental construction process, redundant information is indeed
generated for newly added objects, and by pruning, such redundant information is
indeed removed.

(3) Dependent on formal context, the efficiency improvement of the PCL
algorithm over the Godin algorithm varies. But on average, a 15% improvement is
obtained. In addition, since redundant information could occur only for modified
nodes, the improvement of the PCL algorithm is only related to the modified nodes,
not the total nodes. For example, in Table2, when the number of objects is 2404, the
efficiency improvement is not as significant as the other cases. In Table3, the
improvement for the case of 175 attributes is not as significant as that for the case of

200 J.-F. Zhang, L.-H. Hu, and S.-L. Zhang

125 attributes. Their underlying main reason is that although the newly added nodes
are large in these cases, the modified nodes are relatively small, as a result, the chance
of generating redundant information is relatively small, hence small improvements of
their computational efficiency.

6 Conclusions

An improved algorithm to the Godin algorithm, a benchmark of the incremental
construction of concept lattice in the literature, is proposed in this work. The key
novelty of our proposed algorithm is that during the construction process of concept
lattice, a pruning process is activated to detect and eliminate possible generated
redundant information, by which the number of the comparisons of concept lattice
intensions is largely reduced when a new node is added, and the construction
efficiency is consequently increased. In addition, our pruning based incremental
construction algorithm is tested using the star spectra from the LAMOST project as
the formal context. The preliminary experimental results show that our pruning based
algorithm could have a 15% improvement on average on the construction efficiency
over the Godin Algorithm. Finally, as the performance of our pruning based algorithm
depends crucially on the formal context, and our currently used attributes of spectra
are rather simple, our future work will focus on how to select more appropriate
attributes to further boost the construction efficiency in the star spectra mining for the
LAMOST project.

References

1. Wille R, Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In:
Rival I ed. Ordered sets, M. Dordrecht:Reidel, (1982) 415–470

2. Wille R, Knowledge Acquisition by Methods of Formal Concept Analysis. In: Diday E ed.
Data Analysis, Learning Symbolic and Numeric Knowledge, C. New York: Nova science
publisher, (1989) 365–380

3. Belen Diaz-Agudo, Pddro A. Gonzalez-Calero. Formal Concept Analysis As a Support
Technique for CBR, In: Knowledge-based systems, Vol 14. (2001) 163–171

4. Godin R, Missaoue R. An Incremental Concept Formation Approach for Learning From
Database. Theoretical Computer Science, Vol. 133. (1994) 387–419

5. Godin R, Missaoue R, Alaui H. Incremental Concept Formation Algorithms Based on
Galois (Concept) lattice. Computational Intelligence, Vol 1(2). (1995) 246-267

6. Nourine L. Raynaud O. A Fast Algorithm for Building Lattices. In: Workshop on
Computational Graph Theory and Combinatories, C. Victoria, Canada, May(1999)1-12

7. J. Han, M. Kambr. Data Mining Concepts and Techniques. In: Morgan Kaufmann
Publishers, M. (2000)

8. Hu Ke -Yun, Lu Yu-Chang, Shi Chun-Yi. Advances in Concept Lattice and Its Application.
Tsinghua Univ (Sci & Tech), Vol 40(9). (2000) 77-81

9. Xie Zhi-Peng, Liu Zong-Tian. A Fast Incremental Algorithm for Building Concept Lattice.
Chinese Journal of Computers, Vol 25(5). (2002) 490-496

 A Pruning Based Incremental Construction Algorithm of Concept Lattice 201

10. Wang Zhi-Hai, Hu Ke-Yun, Hu Xue-Gang et al. General And Incremental Algorithms of
Rule Extraction Based On Concept Lattice. Chinese Journal of Computers, Vol 22(1).
(1999) 66-70

11. Hu Ke-Yun, Lu Yu-Chang, Shi Chun-Yi. An Integrated Mining Approach for Classification
and Association Rule Based on Concept Lattice. Chinese Journal of Software, Vol 11(11).
(2000)1478-1484

12. QIN Dong-Mei. Studies on Automated Spectral Recognition of Celestial Objects.
Ph.D.Thesis. Institute of Automation, Chinese Academy of Sciences,(2003)

	Introduction
	Basic Concept of the General Concept Lattice and Its Incremental Construction
	Pruning Based Incremental Construction of Concept Lattice
	Pruning Based Incremental Construction Algorithm of Concept Lattice Entries
	Experiment Analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

