
P. Perner (Ed.): ICDM 2006, LNAI 4065, pp. 191 – 201, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Pruning Based Incremental Construction Algorithm  
of Concept Lattice* 

Zhang Ji-Fu1,2, Hu Li-Hua1, and Zhang Su-Lan1 

1 School of Computer Science and Technology, Tai-Yuan University of Science  
and Technology, Tai-Yuan 030024, P.R. China 

2 National Laboratory of Pattern Recognition, Institute of Automation,  
Chinese Academy of Sciences, Beijing 100080, P.R. China 

jifuzh@sina.com 

Abstract. The concept lattice has played an important role in knowledge 
discovery. However due to inevitable occurrence of redundant information in the 
construction process of concept lattice, the low construction efficiency has been a 
main concern in the literature. In this work, an improved incremental 
construction algorithm of concept lattice over the traditional Godin algorithm, 
called the pruning based incremental algorithm is proposed, which uses a pruning 
process to detect and eliminate possible redundant information during the 
construction. Our pruning based construction algorithm is in nature superior to 
the Godin algorithm. It can achieve the same structure with the Godin algorithm 
but with less computational complexity. In addition, our pruning based algorithm 
is also experimentally validated by taking the star spectra from the LAMOST 
project as the formal context.   

Keywords: concept lattice, pruning, redundant information, incremental 
construction algorithm, star spectra. 

1   Introduction 

From a philosophical point of view, a concept is a unit of thoughts consisting of two 
parts, the extension and the intension. Based on the philosophical understanding of 
concept, the formal concept analysis [1] was introduced by Wille.R in 1982, and later 
used to detect, sort and display of concepts. Based on the formal concept analysis, the 
extension covers all objects belonging to this concept and the intension comprises all 
attributes valid for all those objects, by which the philosophical understanding of 
concept was realized. By nature, concept lattice describes the relationship between 
objects and attributes, indicates the relationship of generation and specialization 
between concepts. Besides, its Hasse diagram is an effective tool of data visualization. 
Thanks to its straightness, simplicity and completeness of knowledge expressing, the 
concept lattice has been widely applied in software engineer, knowledge engineer, 
knowledge discovery and so on [2], [3], [11], etc.  
                                                           
* This paper is supported by the National Natural Science Foundation of P.R.China ( 60573075 ). 
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At present, broadly speaking, there are two kinds of concept lattice construction 
algorithms: The incremental algorithm [4], [5], [6] and the patch algorithm [8]. The 
basic idea of the patch algorithm is to generate all concepts at first, then according to 
the relationship of generation and specialization, to generates edges, then form 
concept lattice. Such algorithms include Bordat algorithm, OSHAM algorithm, Chein 
algorithm, Ganter algorithm, Nourine algorithm and so on [8]. The basic idea of the 
incremental construction algorithm is to initialize a null concept at first, then 
gradually form concept lattice by adopting different suitable operations based on the 
intersection difference between the attributes of a newly added object with the 
intension of the original concept lattice nodes. Such algorithms include Godin, 
Gapineto and T.B.Ho algorithm [2], [8]. Many researchers have proposed some 
improvements on the above algorithms, such as the fast incremental algorithm for 
building concept lattice [9] and so on. Lots of experiments show that the incremental 
construction algorithm is a promising one, and the Godin algorithm is a typical 
incremental construction algorithm. 

In many cases, concept lattice construction uses mass、high-dimensional data as 
formal context.  For the analysis of mass data, usually too many nodes are generated 
due to the completeness requirement of concept lattice, which in turn causes large 
storage and low construction efficiency during the incremental construction process, 
because the attributes of a newly added object must be compared with the intension of 
the original concept lattice nodes one by one. As a result, with more added objects, 
the updating efficiency of concept lattice becomes worse. In reality, in the process of 
incremental construction, much redundant information is generated, which 
unnecessarily increases the comparing times of concept lattice intension but has no 
effect on the resulting structure. Hence how to eliminate or reduce the redundant 
information in the concept lattice construction process is a key issue to increase its 
construction efficiency. To this end, we propose a technique, coined as “pruning”, to 
eliminate possible redundant information in this work, and the proposed algorithm is 
shown to work satisfactorily. In particular, our experiments show that our proposed 
algorithm (PCL) could improve the construction efficiency by above 15 % than the 
Godin algorithm, a popular algorithm in the literature. 

2   Basic Concept of the General Concept Lattice and Its 
Incremental Construction 

Definition 1. A formal context is defined as a triplet K=(O, D R), where O is a set of 
objects, D is a set of attributes and R is a binary relation between O and D, which 
describes the inherent lattice structure and defines the natural groupings and 
relationships between the objects and their attributes. This structure is known as a 
concept lattice or Galois lattice L. 

Definition 2. Given a concept lattice L constructed from formal context K, each one 
of its nodes is a couple, denoted as C (A, B), where A∈P (O) is called the extension 
of concept, B∈P (D) called the intension of concept. P(O) and P(D) are power sets of 
O and D respectively. 

Definition 3. Concept lattice L must be a complete couple with respect to R. that 
means for each node C (A, B), following two conditions are both satisfied: 
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(1) A=B′={a∈O| ∀b∈B, a R b} 
(2) B=A′={b∈D| ∀a∈A, a R b} 

Definition 4. In the concept lattice L, if a node Ci（Ai, Bi）satisfies the following 
condition, it is defined as the supremum of this node, denoted as Sup(Ci).  J is the 
alphabetical order set of concept lattice L. 
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Definition 5. If C1=(A1, B1) and C2=(A2, B2) are two different nodes, then 

C1<C2 ⇔ A1 ⊂ A2 ⇔ B2 ⊂ B1. If there does not exist other node C3=(A3,B3) in 
the lattice such that C1<C3<C2, we say C1 is the sub(child) concept of C2 , denoted 
as  C1=child(C2)； C2 is the super (parent) concept of C1, denoted as C2=father 
(C1). 

In general, the formal context of concept lattice is represented by a table as shown in 
Table 1, where the rows represent objects, and the column represent attributes. As an 
example, the corresponding concept lattice of Table 1 is shown in Fig. 1. 

Given a concept lattice L, constructed from the formal context K=(O, D, R), the 
incremental construction is such a process that while a new object x is added (S is the 
set of attributes of x), the concept lattice L is modified according to the relationship 
between the attributes of the object x and the intension of the original concept lattice 
nodes at the new formal context K′=(O ∪ {x}, D, R). In the process of incremental 
construction, according to the attribute set S of the newly added object and the 
intension of the original concept lattice nodes, concept lattice nodes can be classified 
into three cases: old node, modified node and newly added node. Their definitions 
are:  

Definition 6. Let C (A, B) be a node of concept lattice L, if the intersection between 
B and S is NULL, denoted as B∩S=Ф, then C is called an old node. 

Definition 7. Let C (A, B) be a node of concept lattice L, if B is a subset of S, i.e., 
B⊆S, then C is called a modified node. 

Table 1. Formal Context 

Fig. 1. Hasse Figure of General Concept 
Lattice 
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Definition 8. Let C (A, B) be a node of concept lattice L, if the intersection between 
B and S, H=B∩S, is not NULL, denoted as H≠Φ, and then C is called a generated 
node. Additionally if the following two conditions are both satisfied: 

(1) H is not equal to the intension of any nodes of concept lattice L. 
(2) The intersection of S with any super node C1 of C is not equal to H, i.e., 

B1∩S≠H, 

Then C1=(A∪{x}, H) is called a newly added node of concept lattice L. 
Fig2 shows the old nodes, modified nodes, and newly added nodes by the 

incremental construction algorithm. Fig. 2. is generated from Fig .1. by adding a new 
object x (6, {A, E}). The node ({2,6}, E) is a new node; all the other nodes are old 
ones. 

 

Fig. 2. Hasse Figure of Concept Lattice from a New Object 

3   Pruning Based Incremental Construction of Concept Lattice 

From the previous section, we know that during the incremental construction, the nodes 
and edges corresponding to modified nodes or newly added nodes should be modified. 
As a result, it is possible that unnecessary comparisons between S and B occur. Hence 
by eliminating or avoiding such unnecessary comparisons, the construction efficiency 
could be improved.  

Definition 9. Let C (A, B) be a node of concept lattice L, C1 (A1, B1) and C2 (A2, 
B2) are two sub (child) nodes of C, C1=child(C), C2=child(C), C1 and C2 are called 
the sibling nodes. The sub (child) nodes C1 or C2, denoted as offs(C), offs(C) are 
called the offspring nodes of C. 

Definition 10.  Let C (A, B) be a node of concept lattice L, the number of the objects 
contained in A is called the support of extension of concept C, denoted as |A|. The 
number of the attributes contained in B is called the support of intension of concept C, 
denoted as |B|. 

Definition 11.  Let C (A, B) be a node of concept lattice L and C be a modified node 
with respect to a newly added object x during the incremental construction process, if 
C is modified as C1 (A1, B1), where A ⊂ A1 and B1=B, then C1 (A1, B1) is called the 
redundant information. 
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Theorem 1.  Let C=(A, B) be a node of concept lattice L, x is a newly added object 
(its attributes set is S), if C is modified to C1 (A1, B1), and B is not equal to Sup (S), 
then C1 (A1, B1) must be redundant information. 

Proof. Since B is not equal to Sup (S), there must exist a node C2 (A2, B2) such that 
B2⊂B and A⊂A2 in the concept lattice L. Since C is a modified node, we have B⊆S, 
then B2⊆S. Node C1 (A∪ {x}, S) could be generated from the newly added object x 
and C, and node C3 (A2∪ {x}, S) could be generated from x and C2. By definition 11, 
C1 is redundant information.                                                            

Definition 12.  In the incremental construction process of concept lattice, the 
operations of eliminating redundant information is called pruning. 

Theorem 2.  The pruning of concept lattice does not disrupt the completeness of 
concept lattice. 

Proof. Suppose redundant information C1 (A1, B1) is generated during the incremental 
construction process of concept lattice L, from theorem 1, C1 (A∪ {x}, S) and C3 
(A2∪ {x}, S) are generated also. Hence after the pruning of concept lattice, redundant 
information is eliminated, and C3 (A2∪ {x}, S) is generated from the newly added 
object x and C2. So the pruning of concept lattice does not disrupt the completeness of 
concept lattice.                                                                                

From Theorem 2, redundant information only adds comparing times of concept lattice 
intension; it does not affect the structure of concept lattice. 

The comparisons of the attribute set S of the newly added object x with the 
intension B of a node C (A, B) of concept lattice can be listed as the following 4 
cases:  

1) B is a subset of S (B⊂S) 
If B⊂S, it indicates that the generated nodes by adding object x are the parent 

nodes of C. In this case, it is unnecessary to compare with the child or offspring nodes 
of C; 

2) S is the supermum of B 
If B=Sup(S), it indicates the generated nodes by adding object x is the child 

nodes of C. No further operation is needed; 
3) B=S 
In this case, it suffices to modify node C and the extensions of all the parent 

nodes of C. 
4) B∩ S ≠Φ and B⊄S 

In this case, a new node should be added, and at the same time, this newly added 
node should be compared with the existing nodes. 

Based on the above analysis, we can see that the process of pruning can reduce the 
redundant information, decrease the comparing times of concept lattice intension 
without affecting its structure during the construction of concept lattice. And 
additionally, its completeness is also preserved. Hence by combining with the Godin 
algorithm, the basic principle of the pruning based incremental construction of 
concept lattice can be outlined as:   

If the attribute set of a newly added object is a subset of the intension of concept 
lattice nodes, it will generate redundant information from theorem 1 when compared 
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with the sub concepts of the concept lattice nodes. In order to eliminate such 
redundant information, we can use the pruning of concept lattice to find the subset of 
the newly added object such that it does not need to compare with sub nodes and 
offspring nodes. Similarly if the attribute set of a newly added object is equal to the 
intension of concept lattice nodes, no comparison with sub nodes and offspring nodes 
is needed either. 

The above process is an improvement of the Godin algorithm. It is capable of 
eliminating redundant information during the construction process, and consequently 
enhancing the construction efficiency. In addition, the construction process is a 
top-down process.  

Theorem 3.  In the construction process of concept lattice by the pruning based 
incremental construction algorithm, if no redundant information is generated, the 
pruning based algorithm is degenerated to the Godin algorithm.  

Proof. If no redundant information is generated, it means there is no super-node 
relationship between the newly added object with the other nodes, i.e., comparisons 
with the offspring of node C do not occur, hence the construction process by the 
pruning based algorithm is identical to that by the Godin algorithm, and the two 
algorithms also possess the same time complexity.                                            

Theorem 4.  The construction efficiency of the pruning based algorithm is better than 
that of the Godin algorithm. 

Proof. If redundant information is generated in the incremental construction process, 
according to theorem 1 and theorem 2, the pruning process reduces the number of the 
comparisons between the intensions, hence its computational efficiency is better than 
that of the Godin algorithm. On the other hand, if no redundant information is 
generated in the incremental construction process, according to theorem 3, the two 
construction algorithms have the same computational complexity. Combining these 
two cases, we can see that the construction efficiency of the pruning based algorithm 
is no worse than that of the Godin algorithm in all possible cases.   

4   Pruning Based Incremental Construction Algorithm of Concept 
Lattice Entries 

A pseudo-code of our pruning based incremental construction algorithm of concept 
lattice (PCL in short) could be described as follow:  

PCL (The pruning based concept lattice) algorithm: 
Input:The original concept lattice and a new added object, 
the nodes of the original concept lattice are sorted in the 
deceasing order of their support of intensions. 
output： A new concept lattice  
/* inte: the intension of a concept lattice node; exte: the 
extension of a concept lattice node; father: the super node 
of a concept lattice node; child : the sub node of concept 
lattice node; now:is the current label number of the concept 
lattice node */ 
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（1） Input a new object  
（2） Search the concept lattice nodes from top to down, and 

compare the attribute set of the new object with the 
intension of the current concept lattice. 

（3） Set the new object to a new node new c, its intension 
is new, its extension is code, its super node is 
newfather, its sub node is newchild 

（4） for I=now to 1  
（5）     determine the relationship between new and inte 
（6）     call procedure “judge”（new,inte）； 
（7） next I 
（8） end PCL; 
 judge(new,inte) 

（1） if  new⊆inte then 
（2）      fetch newfahter 
（3）      if I∉newfather then 
（4）        add a new edge I->new 
（5）        code=exte∪code 
（6）        father=father∪code 
（7）        newchild=newchild∪code 
（8）      end if 
（9）      exit for 
（10）  elseif inte⊆new then 
（11）      fetch newchild 
（12）      if I∉newchild then 
（13）        add a new edge new->I 
（14）        newfather=I∪newfather 
（15）        exte=exte∪code 
（16）        child=child∪code 
（17）      end if 
（18）  elseif inte=new then 
（19）      fetch I and the extension exte of all its 

supernodes  
（20）      exte=exte∪code 
（21）      delete node new 
（22）      exit for 
（23）   elseif  inte∩new≠Φ then 
（24）      add a new concept lattice node newjoin, the 

intersection intension is join 
（25）      for j=1 to now 
（26）           if  j≠now then 
（27）             if  join=inte  then 
（28）                update j 
（29）                delete node newjoin 
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（30）             end if 
（31）           end if           
（32）      next for 
（33）     if not exist equal then 
（34）       njexte=code∪exte 
（35）       njinte=join 
（36）       njchild=code∪I 
（37）       determine the superconcept relationship 

between newjoin and other concept lattice nodes 
（38）       if ∃newjoin’s  super node,  then 
（39）         repeat the above modifying operations of the 

super node 
（40）       end if 
（41）     end if 
（42）   end if; 
（43） end judge; 

 
In the process of the traditional incremental construction, when a new object is 

added to the formal context, it must be compared with all the nodes of the original 
concept lattice. As a result, the algorithm computational complexity increases 
exponentially at the worst case. More specifically, time complexity of the general 
concept lattice is O (2K|U|). 

For our PCL, when a newly added object is compared with the current concept lattice 
nodes, if it exists the relationship of the super nodes as before, it becomes unnecessary 
to continue the comparison process. As a result, it can reduce the comparisons, and the 
time complexity of our PCL algorithm PCL is no larger than O (2K|U|). 

5   Experiment Analysis 

Now a large telescope called LAMOST (Large Sky Area Multi-Object Fiber 
Spectroscopic Telescope) is under construction in the National Observatory in 
Beijing, China. After its scheduled completion in 2006, it is expected to collect more 
than 40,000 spectrums in a single observation night Such voluminous data demand 
automatic spectrum processing and data mining [12]. In this section, we will give some 
results of our experiments on the concept lattice construction from the observed 
celestial spectrums. 

The experiment setup is: PentiumIII-1.0G CPU, 256M memory, Windows 2000 
operating system and ORACLE 9i DBMS.  Both the PCL algorithm and the Godin 
algorithm are coded in Visual Basic 6.0. The star spectra are treated by the following 
steps, then used as the formal context: 

1) For each star spectrum, choose 200 wave-length from 3510 A to 8330 A at 
a step of 20 A as its attributes set. 

2) At the above each chosen wave length, the corresponding flux, peak width 
and shape information of the spectrum are quantified respectively into one of the 13 
different intervals in total.   
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Table2 are the results of the concept lattice construction, where 150 wave-lengths 
are used as the attribute set, 500，1000，1500，2000，2404 B-type star spectra are 
used as the data objects. Table 3 are the construction results of concept lattice, where 
the size of the attributes set is 100，125，150，175，200, and 1500 B-type star 
spectra are used as the objects.    

Table 2. Experimental Comparison of Various Object SetsBetween the Godin and PCL 
Algorithms 

The number 
of objects 

Godin algorithm 
（seconds） 

PCL algorithm 
（seconds） 

The number 
of nodes 

500 108 75 1035 
1000 409 348 1462 
1500 830 724 1652 
2000 1511 1368 2051 
2404 2639 2452 2997 

 

Table 3. Experimental Comparison of Various Attribute Sets Between the Godin and PCL 
Algorithms 

The number 
of attributes 

Godin algorithm 
（seconds） 

PCL algorithm 
（seconds） 

The number 
of nodes 

100 123 96 227 
125 195 147 373 
150 830 724 1652 
175 1577 1450 2393 
200 2533 2278 3259 

 

From Table2 and Table3, it can be concluded that:  

(1) The Godin algorithm and the PCL algorithm can construct the same 
concept lattice. In other words, the number of the constructed nodes, the 
corresponding intension, extension, and father-son relationships are the same for both 
the two algorithms. This verifies the theoretical correctness of the PCL algorithm;  

(2) The PCL algorithm is more efficient than the Godin algorithm. This 
indicates that in the incremental construction process, redundant information is indeed 
generated for newly added objects, and by pruning, such redundant information is 
indeed removed. 

(3) Dependent on formal context, the efficiency improvement of the PCL 
algorithm over the Godin algorithm varies. But on average, a 15% improvement is 
obtained. In addition, since redundant information could occur only for modified 
nodes, the improvement of the PCL algorithm is only related to the modified nodes, 
not the total nodes. For example, in Table2, when the number of objects is 2404, the 
efficiency improvement is not as significant as the other cases. In Table3, the 
improvement for the case of 175 attributes is not as significant as that for the case of 



200 J.-F. Zhang, L.-H. Hu, and S.-L. Zhang 

125 attributes. Their underlying main reason is that although the newly added nodes 
are large in these cases, the modified nodes are relatively small, as a result, the chance 
of generating redundant information is relatively small, hence small improvements of 
their computational efficiency.  

6   Conclusions 

An improved algorithm to the Godin algorithm, a benchmark of the incremental 
construction of concept lattice in the literature, is proposed in this work. The key 
novelty of our proposed algorithm is that during the construction process of concept 
lattice, a pruning process is activated to detect and eliminate possible generated 
redundant information, by which the number of the comparisons of concept lattice 
intensions is largely reduced when a new node is added, and the construction 
efficiency is consequently increased. In addition, our pruning based incremental 
construction algorithm is tested using the star spectra from the LAMOST project as 
the formal context. The preliminary experimental results show that our pruning based 
algorithm could have a 15% improvement on average on the construction efficiency 
over the Godin Algorithm. Finally, as the performance of our pruning based algorithm 
depends crucially on the formal context, and our currently used attributes of spectra 
are rather simple, our future work will focus on how to select more appropriate 
attributes to further boost the construction efficiency in the star spectra mining for the 
LAMOST project.  
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