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Abstract. We report the development of a computational model for the growth
of multicellular tissues using a discrete approach based on cellular automata to
study the tissue growth rates and population dynamics of two different popula-
tions of migrating and proliferating mammalian cells. Cell migration is modeled
using a discrete-time Markov chain approach and each population of cells has
its own division and motion characteristics that are based on experimental data.
A large number of parameters allow for a detailed study of the population dy-
namics. This permits the exploration of the relative influence of various system
parameters on the proliferation rate and some other aspects of cell behavior such
as average speed of locomotion.

1 Introduction

A primary goal of tissue engineering is to create three-dimensional tissues with the
proper structure and function. Natural tissues are multicellular and have a specific three-
dimensional architecture. This structure is supported by the extracellular matrix (ECM).
The ECM often has the form of a three-dimensional network of cross-linked protein
strands. In addition to determining the mechanical properties of a tissue, the ECM plays
many important roles in tissue development. Biochemical and biophysical signals from
the ECM modulate fundamental cellular activities, including adhesion, migration, pro-
liferation, differentiation, and programmed cell death [1].

Scaffold properties, cell activities like adhesion or migration, and external stimuli
that modulate cellular functions are among the many factors that affect the growth rate
of tissues. Hence, the development of bio-artificial tissue substitutes involves extensive
and time-consuming experimentation. The availability of computational models with
predictive abilities will greatly speed up progress in this area. This research focuses
on the development of a model to simulate the growth of three-dimensional tissues
consisting of more than one cell type. Specifically, this model can be used to study how
the overall tissue growth rate is affected by:

– cell migration speed;
– the initial density of the seed cells; and
– their spatial distribution.

M. Harders and G. Székely (Eds.): ISBMS 2006, LNCS 4072, pp. 29–39, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



30 L. Tang and B. Ben Youssef

The rest of the paper is organized as follows: Section 2 describes some of the earlier
work. Section 3 introduces the concepts of cellular automata. Section 4 discusses the
modelling of the biological system. In Section 5, we discuss the sequential simulation
results. We conclude the paper in Section 6.

2 Previous Work

Earlier studies by other investigators developed cellular automata models for 2-D
problems involving aggregation and self-organization of the cellular slime mold Dic-
tyostelium Discoideum or interactions between extracellular matrix and fibroblasts ([2],
[3], and [4]). In addition, some of the previous research involved the development of
computational models that are deterministic or stochastic in nature ([5] and [6], respec-
tively).

Ben Youssef developed a computational model for tissue growth in three-
dimensional scaffolds using a single type of mammalian cells [7]. Our work presented
here builds on this 3-D model by extending its functionality to incorporate a variable
number of cell types. The objective is to build theoretical models and computer simula-
tion tools for tissue engineering [8].

3 Cellular Automata

Cellular automata (CA) were originally introduced by John von Neumann and Stan
Ulam as a possible idealization of biological systems with a particular purpose of mod-
eling biological self-reproduction [9]. This approach has been used since then to study
a wide variety of physical, chemical, biological, and other complex natural systems.

The use of cellular automata in modeling various systems including biological ones
has some advantages that include providing a computationally proficient technique for
analyzing the collective properties of a network of interconnected cells as well as an
alternative approach involving discrete coordinates and variables to represent the com-
plex dynamic system where the model behaviour is completely specified by a simple
operating mechanism in terms of local relations. This may be sufficient to support a
whole hierarchy of structures and phenomena.

4 Model Development

The growth of tissue is a complex biological process. The migration and proliferation
of mammalian cells is characterized by the following three subprocesses: cell division,
cell motion, and cell collision. Due to space limitations, we will omit discussing the
steps involved in modeling these subprocesses. The reader is referred to [7] and [10] for
related descriptions.

4.1 States of Cellular Automata

The cellular space is comprised of Nt=Nx×Ny×Nz computational sites. The automata
in this space are governed by the von Neumann’s neighborhood in three dimensions.
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That is, the 6 neighbors of a cell c are to its east, north, west, south, and directly above
and below it. Each occupied computational site in the model must describe the cur-
rent state of a given cell. According to our modeling steps above, the requisite state
information is as follows:

1. The type of cell.
2. The direction of cell motion.
3. The speed of the cell.
4. The remaining time until a change of direction.
5. The remaining time until the next cell division.

Hence, the state of a cell can be defined as a single eight-digit number in the follow-
ing way:

Υ = {jklmnpqr|j, k, l, m, n, p, q, and r ∈ N},

where j identifies the cell type. The direction of motion is designated by k. When k is 0,
the cell is in a stationary state. When the value ranges from 1 − 6, it denotes one of the
six directions in which the cell is currently moving. The digits lm identify the time until
the next change in direction, called the persistence counter. The cell phase counter is
denoted by npqr. The cell phase counter is the time remaining until the cell is ready to
divide.

4.2 Mixed Cell Cultures and Tissue Architecture

Most tissues consist of several types of cells that organize themselves in very specific
spatial patterns [11]. This three-dimensional architecture is what endows tissues with
the special functions of organs. While previous studies have focused on a single type
of cells, our model allows for simulating multiple cell types, with each cell type having
its own migratory and proliferation characteristics. The model allows for the organiza-
tion of cell populations into specific spatial patterns. Tissue engineers are attempting to
achieve this goal by using microlithographic techniques to create surfaces with hetero-
geneous characteristics and solids with specific pore structure. When micro-patterned
surfaces are used, different cells will migrate at different rates on different parts of the
surface. Thus, we can guide cells of certain type to cluster in specified areas only. These
areas may be surrounded by cells of another type.

5 Simulation Results and Discussion

5.1 Initial Conditions and Model Parameters

The simulations of the proliferation of multiple cell types are obtained using a
100×100×100 cellular array where two cell populations are used. Cells of population
1 are faster moving cells while cells of population 2 are slower moving cells. We define
R as the ratio of the initially seeded number of cells from these two cell populations.
This is given by

R =
initial number of cells from population 1
initial number of cells from population 2

.
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That is, when R = 9, there are 9 cells from population 1 for every cell from popula-
tion 2.

We consider two seeding topologies: a uniform topology and a “wound healing”
topology. In the former, the cells are randomly seeded in the cubic space. In the latter,
an empty cylinder is surrounded by seeded cells in the remainder of the cellular space.
The empty cylinder has a diameter of 50 and a height of 100. In addition, for each
topology, we consider two seeding distributions:

1. Mixed distribution: The different cell types are seeded together according to the
used cell distribution.

2. Segmented distribution: Each cell type is seeded in a separate area of the cellular
space.

The migration speeds of cells in populations 1 and 2 are equal to 10 μm per hour
and 1 μm per hour, respectively. Throughout these simulations, a confluence parameter
of 100% and an average waiting time of 2 hours for the six directions of motion are
utilized. Each cell is modeled as a cubic computational element whose sides are equal
to 10 μm. We also use different division distributions for these two cell populations.
The division times are given in Table 1.

Table 1. Division Time Distribution for the Two Cell Populations

Cell Populations
Division Times Cell Population 1 Cell Population 2

12 - 18 hrs 64% 4%
18 - 24 hrs 32% 32%
24 - 30 hrs 4% 64%

The flexibility of the model permits the exploration of the influence of several sys-
tem parameters on the growth rate and some other aspects of cell behavior such as the
average cell speed. For instance, to compute the overall tissue growth rate, we use the
following formula:

dk(t)
dt

=

n∑

i=1

Nci(t) − Nci(t − Δt)

Δt × Nt
,

where k(t) is the cell volume fraction at time t as given in [12], Δt is the time step
in days, Nt is the size of the cellular space (=Nx×Ny×Nz), Nci(t) is the number of
occupied computational sites by cell type i at time t, and n is the number of cell types
(n ≥ 1).

5.2 Uniform Topology

Effect of Seeding Density. Figure 1 shows the effect of the seeding density on the tis-
sue growth rate. Here, cells from both populations are seeded in a mixed pattern using
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a uniform distribution. The seeding density of population 2 is held constant at 0.1%
while the seeding density of population 1 is varied from 0.1% to 10%. As expected,
the time required to reach confluence decreases with the increase of the initial seeding
density. We see that when the initial seeding density of population 1 is greater than
1%, the impact of cell division can be readily observed by the plateaus formed on the
corresponding growth rate curves. The division time distributions of population 1 and
population 2 specify that respectively 64% and 4% of cells will divide between 12-18
hours. This is depicted by the first plateau on the indicated curves for seeding densities
of 5% and 10%. Additional plateaus are observed at later times reflecting the succeed-
ing waves of cell divisions during the proliferation process. The subsequent waves of
cell divisions include not only seeded cells giving birth to new cells but also daughter
cells going through their own mitotic cycles. For small seeding densities, the growth
rate curves show a more gradual increase that indicates a lower, though steady, overall
impact on the tissue growth rate.
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Fig. 1. Effects of varying the seeding density on the overall tissue growth rate. The seeding density
of population 2 (slow-moving cells) is held constant at 0.1% while the seeding densities of fast-
moving cells are varied.

Effect of Cell Heterogeneity. Figure 2(a) shows the tissue growth rate versus time
for different values of the ratio R. In these simulation runs, R is equal to 1, 3, 5, and 9
while the total initial seeding density is maintained at 0.5%. For instance, with R = 9
the faster moving population of cells covers 90% of the cellular space while the slower
moving population covers the remaining 10%. We observe that as R increases, the time
taken to reach confluence decreases. This is because for larger values of R, the popula-
tion of faster moving cells dominates the proliferation. This is clearly depicted in this
figure where a higher tissue growth rate is observed as R is increased. Faster moving
cells spread out in the cellular space preventing the formation of cell colonies; thus
allowing for confluence to be reached sooner.
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The effects of varying R on the tissue growth rate in a mixed distribution was also
studied and is shown in Fig. 2(b). In these simulations, the total seeding density is 0.5%.
We observe similar results to the ones obtained when using a segmented distribution.
However, when R = 1, the mixed distribution yields a higher tissue growth rate (com-
pare Fig. 2(a) with Fig. 2(b)). This may be attributed to the fact that contact inhibition
has less of an effect in the mixed distribution where faster cells have more nearby empty
spaces to move into, which in turn frees up sites for the slower-moving cells.
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Fig. 2. Overall tissue growth rate versus time for various values of ratio R in the case of two
cell-seeding distributions

Effect of Cell-Seeding Distributions. Figure 3 show a comparison between the tissue
growth rates obtained by using the segmented and mixed distributions of the uniform
cell-seeding topology. Here, R = 1 and a seeding density of 0.1% are used. Cells from
population 2 migrate at a fixed speed of 1 μm/hr. In both these figures, cells from pop-
ulation 1 have a migration speed of 10 μm/hr in part (a) and 50 μm/hr in part (b),
respectively. We observe that the mixed-seeding distribution takes less time to reach
confluence and yields higher tissue growth rates. However, as cell speeds increase, the
difference between both seeding modes diminishes. Higher cell motility allows cells in
the segmented distribution to move far away from their original seeded sites and dis-
perse in the cellular space to minimize the impact of contact inhibition, thus creating a
transient distribution that resembles the one induced by the mixed distribution. More-
over, with mixed seeding, the effects of increasing cell speed are less pronounced. For
instance, the tissue growth rate curves are nearly identical for both population 1 speeds
when a mixed distribution is used as in both cases confluence is reached in about 8 days
and their growth rate curves are very similar. Increasing population 1 speeds is more
beneficial in the case of a segmented distribution where an enhanced tissue growth rate
and a reduction in the time to reach confluence are both observed.

5.3 Wound-Seeding Topology

Effect of Cell Speed. The growth rate curves in Fig. 4(a) and (b) demonstrate the
effect of motility on volume coverage in the case of a wound-seeding mode using both
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Fig. 3. Comparison of tissue growth rate for two cell-seeding distributions. Here, the migration
speed of cells from population 2 is maintained at 1 μm/hr while cells from population 1 move at
speeds of 10 μm/hr (part (a)) and 50 μm/hr (part (b)), respectively.
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Fig. 4. Effect of varying the cell speed of population 1 on the overall tissue growth rate. Cells in
population 2 move at a fixed speed of 1 μm/hr.
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Fig. 5. The effect of cell motility (population 1) on the population-average speed of locomotion
for cell speeds ranging from (a) 1 to 5 μm/hr and (b) 10 to 50 μm/hr

a segmented and mixed distribution with R = 1, respectively. We observe that as the
motility of the cell increases, the tissue growth rate increases and confluence is attained
faster; thus, healing the wound. Higher motility of cells decreases the impact of contact
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Fig. 6. Cell population profiles shown as 2-D cross sections of two simulation runs at t = 0 and
at 33%, 66% and 99% of wound coverage for R = 1 and R = 1

9 , respectively. For illustration
purposes, we included a horizontal line to distinguish between the two cell-seeding populations.

inhibition on the proliferation rate as it reduces the formation of cell colonies. Moreover,
the tissue growth rate is the highest when cells in population 1 move at the fastest speed
of 50 μm/hr. Highly motile cells cover the wound area faster, thus allowing them to
reach far away, empty sites quickly and affording them additional opportunities for
division. Figure 5 depicts the population-average speed in the denuded area (that is, the
initially empty cylinder) for different speeds of population 1. At the beginning of the
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simulations, cells move into the ”wound” at their peak speeds. The overall cell speeds
drop rapidly as the ”wound” becomes congested with new daughter cells and collisions
become more frequent. The average speed decreases with time and shows a drastic
decrease as confluence is attained due to the formation of local clusters.
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Fig. 7. Comparison of tissue growth rate for two cell-seeding distributions. In both seeding distri-
butions, the migration speed of cells from population 2 is maintained at 1 μm/hr while cells from
population 1 move at speeds of 10 μm/hr (part (a)) and 50 μm/hr (part (b)), respectively.

Cell Population Profiles. Figure 6 shows the cell population profiles of two simulation
runs using a segmented wound-seeding distribution and two different values of the ratio
R (R = 1 and 1

9 , respectively). These profiles are exhibited as 2-D cross sections of the
wound area and at different levels of wound coverage. We observe the following:

– At 33% of wound coverage, faster cells cover larger portions of the wound than
slow cells as most of the growth appears in the lower partition of both seeding
examples. There is also sporadic diffusion of fast cells into the upper partitions.

– At 66% of wound coverage, nearly most of the two lower partitions are covered
while the upper partions remain mostly empty. In particular, when R = 1

9 , the
lower partition is completely covered whereas the top segment is sparsely occupied
by cells when R = 1.

– At 99% of wound coverage, the fast cells have penetrated to the top of the cellular
space and have completely covered the denuded area at the bottom. Slow cells
appear to mostly proliferate toward the center of the wound in a radial direction
causing a cone-shaped funneling of the growth of fast cells.

Effect of Cell-Seeding Distributions. Figure 7 shows comparisons between the tissue
growth rates obtained by using segmented and mixed distributions in case of wound-
seeding mode and with R = 1. Cells from population 2 migrate at a fixed speed of
1 μm/hr. In this figure, cells from population 1 have a migration speed of 10 μm/hr
in part (a) and 50 μm/hr in part (b), respectively. We observe that the mixed-seeding
distribution takes less time to reach confluence and yields higher tissue growth rates. As
cell speeds increase, the mixed seeding distribution continues to maintain its advantage
resulting in 40 − 50% reduction in the time to reach complete volume coverage, thus
healing the wound faster.
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6 Conclusion and Future Work

The reported research involved extending a three-dimensional model initially devel-
oped by the second author [7]. Our work incorporated the use of a variable number of
mammalian cell populations. The simulation results included two populations of cells
with different division and migration characteristics. Their effects on the tissue growth
rate and population dynamics of cells were elucidated. The research will help speed
up progress in the area of tissue engineering where the development of bio-artificial
tissues involves extensive and time-consuming experimentation. It also extends the ex-
isting features of the model to incorporate others that more realistically simulate the
process of tissue growth. Future work involves the parallelization of the model and its
implementation on a Beowulf cluster using different decomposition techniques to sim-
ulate the growth of realizable tissue objects.
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