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Abstract. Motion capture is an important application in different ar-
eas such as biomechanics, computer animation, and human-computer
interaction. Current motion capture methods typically use human body
models in order to guide pose estimation and tracking. We model the
human body as a set of tapered super-quadrics connected in an articu-
lated structure and propose an algorithm to automatically estimate the
parameters of the model using video sequences obtained from multiple
calibrated cameras. Our method is based on the fact that the human
body is constructed of several articulated chains that can be visualised
as essentially 1-D segments embedded in 3-D space and connected at
specific joint locations. The proposed method first computes a voxel rep-
resentation from the images and maps the voxels to a high dimensional
space in order to extract the 1-D structure. A bottom-up approach is
then suggested in order to build a parametric (spline-based) representa-
tion of a general articulated body in the high dimensional space followed
by a top-down probabilistic approach that registers the segments to the
known human body model. We then present an algorithm to estimate
the parameters of our model using the segmented and registered voxels.

1 Introduction

The task of motion capture can be divided into a number of systematically
distinct stages: initialisation, pose estimation and tracking. There exist a number
of algorithms to estimate the pose using images captured from a single or multiple
cameras [1]. Some of the problems encountered, especially in the monocular case,
are the segmentation of the image into different, possibly self-occluding body
parts and the complex articulated structure of the human body which results in
wide range of body part configurations or poses. It is, therefore, often necessary
to use a human body model to deal with the large number of body segments and
to guide the tracking and pose estimation processes especially in bio-mechanical
and clinical motion capture applications.

Krahnstoever and Sharma [2] address the issue of acquiring structure, shape
and appearance of articulated models directly from monocular video using a
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single camera and hence has has limited scope for complete human body model
estimation. Mikic et al. [3] propose a model acquisition algorithm using voxels
that starts with a simple body part localisation procedure based on template
fitting and growing, and uses prior knowledge of average body part shapes and
dimensions. Kakadiaris and Metaxas [4] present a Human Body Part Identifi-
cation Strategy (HBPIS) that recovers all the body parts of a moving human
based on the spatio-temporal analysis of its deforming silhouette using input
from three mutually orthogonal views. The subject, however is required to fol-
low a specified protocol of movements. Anguelov et al. [5] describe an algorithm
that automatically decomposes simple objects into approximately rigid parts and
obtains the underlying articulated structure given a set of meshes describing the
objects in different poses. Cheung et al. [6] also describes a model acquisition
algorithm where the kinematics is estimated using correspondence. Chu et al. [7]
describe a method for estimating pose using isomaps [8] to transform the voxel
body to its pose-invariant intrinsic space representation and obtain a skeleton
representation.

We model the human body as comprising of several rigid body segments that
are connected to each other at specific joints forming 1-D kinematic chains orig-
inating from the trunk as described in Section 2. These chains can be visualised
as 1-D curves embedded in 3-D space. We exploit the 1-D nature of the chains
and transform the voxel coordinates to a domain where we are able to extract
the 1-D structure. We are thus able to register each voxel to its position along
the chain for a set of frames that capture the subject in different poses. The
model estimation algorithm involves locating the joint locations and estimat-
ing the shape parameters of the different body segments as well as the implicit
estimation of the pose. We first estimate the joint locations and limb lengths
from the skeletons and then compute the super-quadric parameters of the body
segments from the voxels using the segmentation and registration results. While
human dimensional variability is enormous across different demographics and
sexes, it is not arbitrary. We can, therefore, use our prior knowledge of the ap-
proximate ratios between the stature and different long bones, as well as the
joint location in our model acquisition algorithm. We describe the model esti-
mation algorithm in Section 3, and the experiments in Section 4. Our algorithm
is different from that of Chu et al. [7], in that we use Laplacian eigenmaps [9]
in order to simultaneously segment and extract the one-dimensional structure
of the human body. Belkin and Niyogi [9] describe the construction of a rep-
resentation for data lying in a low dimensional manifold embedded in a high
dimensional space. We obtain much better segmentation and explicitly compute
the position of each voxel along the articulated chain that it belongs to. This
step enables us to acquire the shape and joint model. Some other techniques
for dimensionality reduction and reducing shape to pose invariant structure can
be found in Elad and Kimmel [10], manifold charting [11] and Locally Linear
Embedding [12]. However, we choose Laplacian eigenmaps as they best serves
the purpose of extracting the 1-D nature of the curves. There is also a similarity
to skeletal representation algorithms [13] that we expound on in Section 4.
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2 Human Body Model

The human body model that we use is illustrated in Fig. 1 (a) with the different
body segments as well as joints labelled. Each of these body segments has a
coordinate frame attached to itself. The body segment can be described by an
arbitrary shape in terms of the coordinates of this frame, and in our case is
modelled using a tapered super-quadric. We choose tapered super-quadrics for
their simplicity and versatility [14]. Some of the other shape models used to
model human body segments are cylinders, CAD models and ellipsoids [3]. The
tapered super-quadric (Fig. 10a) is described in equation (1), and is characterised
by five scalar parameters x0, y0, z0, d, and s. If sliced in a plane parallel to the
xy plane, the cross section is an ellipse with parameters αx0 and αy0, where α is
a scalar (Fig. 1 (c)). The length of the segment is z0 as shown in Fig. 1 (d). The
scale parameter, s, denotes the amount of taper, and the “power” parameter,
d, denotes the curvature of the radial profile, r(z)

√
x0y0, along the z-axis. For

e.g., d = 2, s = 0, is an ellipsoid, d = ∞, s = 0 is a right-elliptical cylinder and
d = ∞, s = −1 is a right-elliptical cone.
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A joint between two body segments is described as a vector in the coordinate
frame of the parent body segment connecting the origin of the parent segment
coordinate frame to the origin of the child segment. The pose of the child segment
is described in terms of the rotational parameters between the child coordinate
frame and the parent coordinate frame. The pose of the model, ϕ, is a vector of
the position and orientation of of the base-body (6 degrees of freedom) and the
joint angles of the various articulated body segments (3 degrees of freedom for
each joint). We observe that the joint locations cannot be easily obtained, even
manually, from a single pose.

3 Model Acquisition Algorithm

We begin with grey-scaled images captured from multiple cameras. Simple back-
ground subtraction is performed on the images to obtain binary silhouettes
(Fig. 2). We perform space carving using the binary silhouettes from the cameras
and the calibration data to obtain a voxel representation where each voxel block
is of size 30mm× 30mm× 30mm, which we find to be an acceptable compromise
between complexity and accuracy. In the first part of the algorithm, we segment
the voxels and obtain a parametric representation for the different articulated
chains as well as register the chain to the body model. We then compute a skele-
tal representation of the subject for a set of key frames where the registration is
successful. In the second part of our model acquisition algorithm, we estimate a
simple stick model for the subject and progressively improve the model to finally
obtain the parameters of the complete super-quadric-based model.
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Fig. 1. Model Fig. 2. Images and Silhouettes Fig. 3. Voxels

3.1 Segmenting and Registering the Articulated Chains

Our key observation is that the human body can be visualised as consisting of
1-D continuous articulated chains embedded in 3-D space. We observe this in
Fig. 3, in which we can identify the five articulated chains: the head and four
limbs, attached to the trunk, the sixth segment. Our objective is to extract the
1-D structure and the position of each voxel along the chain using a parametric
form, and thus segment the different articulated chains that have these 1-D
structure. The articulated structure of these chains, however, make it difficult to
segment them in normal 3-D space. We use Laplacian Eigenmaps to extract the
structure of the underlying 1-D curve. Our objective is not to preserve geodesic
distances between points [7] or reduce the dimensionality of the data [9], but to
extract the one-dimensional manifold structure.

It is known that the Laplacian Eigenmap preserves local information optimally
in a certain sense as described in Belkin and Niyogi [9]. Given a data set of k
nodes (voxel coordinates), we construct a weighted graph G = (V, E), with edges
connecting two nodes if they are neighbours. We consider the problem of mapping
the weighted graph to a k × m matrix Y = [y(1), . . . ,y(m)] = [y1, . . . ,yk]T,
where the ith row, yT

i , provides the embedding for the ith node. A reasonable
criterion for choosing a “good” map is to minimise, under appropriate conditions,
the objective function given by

∑
i,j‖yi − yj‖2Wij (which imposes a penalty if

vertices connected by an edge are not close to each other) subject to Y TY = I
(which removes an arbitrary scaling factor). Standard methods show that the
solution is provided by the matrix of eigenvectors corresponding to the k lowest
non-zero eigenvalues of the generalised eigenvalue problem Ly = λy, where
Wi =

∑
j Wij =

∑
j Wji, and D = diag(W1, W2, . . . , Wk), and L = D − W .

The concept of neighbours is natural because the voxels are positioned in a
uniform spatial grid and constructing the adjacency graph is intuitive. We place
an edge between two voxels if they are neighbours connected by a face, an edge
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Fig. 4. Extracting the 1-D curves in Eigenspace

or a corner. We thus obtain a sparse graph of size k×k. We only consider voxels
that belong to the biggest connected component in the graph. We compute
d = 6 eigenvectors corresponding to the d smallest non-zero eigenvalues and
thus embed the graph in a 6-D Euclidean space. We choose d = 6, because we
wish to segment six different articulated chains. The graph embedding in the
6-D space is illustrated in Fig. 3.1(a-b). A close examination of the plot reveals
six one-dimensional curves that we expect to correspond to the six articulated
chains described earlier. We observe that the “bending” effect of articulation has
been removed, as we would expect, because joint angles do not in general affect
the computation of the adjacency matrix.

We observe that each articulated chain is an 1-D curve in 6-D space irrespec-
tive of the thickness of the body segment in normal 3-D space. This is a result
of using the Laplacian eigenmap transformation and we observe that the 1-D
nature of the curve is preserved even in higher dimensions (Fig. 3.1 (c)). This is
an advantage over geodesic distance preserving algorithms [7] as we can easily
fit 1-D splines to the data.

We describe a completely unsupervised algorithm to segment the voxels in
eigenspace into 1-D curves. We represent the voxels in terms of an 1-D para-
meter in this eigenspace by fitting a cubic smoothing spline function to the
data according to the following algorithm. All the computations are in the 6-D
eigenspace. We begin each spline with a “pivot” node that is farthest from all
existing spline segments. There are two kinds of curves, those that are connected
at one end and those that are connected at both. The “pivot” node is at the free
end or the middle in the first and second cases respectively. We create a cluster
by adding nodes that are closest to the “pivot” node. We compute the principal
axis for the cluster and the projection of each node on the principal axis (site
value t). Thus, for each node, yi, in the cluster we obtain its site value ti. We can
compute a smoothing spline f(.) to minimise

∑
i ei, where ei = ‖f(ti) − yi‖2.

We grow the curve by adding nodes that are close to each end. The principal
axis used to compute the site value is recomputed locally using nodes at the
growing end. The growth is terminated when the error of new nodes exceeds a
fixed threshold, CL

√
d, where C = 0.005, L is the length of the average spline in

eigenspace (set to 1 as we have normalised the eigenspace such that yi ∈ [0, 1]6)
and d is the dimension of the space. We now have six spline segments as shown
in Fig. 5(b-c). Fig. 5 (d) presents the segmentation results in the normal 3-D
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Fig. 5. The splines are colour coded according to their index. (d) and (e) denote the
voxels colour-coded according to the index of the spline segments they belong to.

(a) Model (b) Seg. (c) Skeleton (d) Graph (e) Conn.

Fig. 6. Matching computed graph with body model
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Fig. 7. Model fit error

space and we note that the segmentation is fairly accurate. Unclassified voxels
are labelled 0. As noted earlier each node (xi in normal 3-D space and yi in
eigenspace) has a site value ti. This value denotes the position of the node along
the 1-D curve and can be used to compute the skeleton in Fig. 5 (e) using a 3-D
smoothing spline with the set of pairs (ti, xi).

Once we have the skeleton segments as in Fig. 5 (e), we would like to regis-
ter them to the different segments presented in Fig. 6 (a). Each spline segment
consists of a curve connecting two nodes. We can estimate the probability of a
connection between nodes of different segments based on the distance between
the nodes in eigenspace. We can also estimate the probabilities of a spline seg-
ment being an arm or a leg, for example, by examination of the properties of
the spline in normal space such as its length and thickness. We choose that per-
mutation of body segments that has the highest probability. In most cases, the
registration is straightforward, but however, in poses like in Fig. 6 (b), there are
ambiguities. We resolve these ambiguities by selecting that set of connections
between segments that has the highest probability (Fig. 6 (e)). We can also
identify cases where the number of segments is less than six due to segmentation
errors.

3.2 Estimating Human Body Model

The human body model parameters cannot be reliably estimated from a single
pose. We, therefore, select a set of N(= 20) key frames from the sequence that
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Fig. 8. Fit of initial skeleton model Fig. 9. Optimised model

have been registered successfully. We estimate an initial skeleton-based model
from the set of frames and progressively refine model parameters and increase
model complexity. For e.g., we begin with a skeleton model and progress to
super-quadric model. We use techniques that leverage our knowledge of the hu-
man body structure and use a top down approach. The stature (or height) of
the subject is a key parameter that is strongly related to a number of human
body model parameters, such as the lengths of long bones in the body [15].
Anthropometric studies have been performed on certain demographic groups to
study the relationship between stature and the long bones in the body. These
studies indicate that we can estimate the lengths of the large body segments
for an “average” human subject (model skeleton) from the stature. For our ini-
tial model we construct the model skeleton (including joint locations and limb
lengths) for an “average” human subject for a range of stature values. We fit line
segments, corresponding to the trunk, neck, head, forearms, arms, thighs and leg
segments to the voxel-skeleton in Fig. 6 (c), using the known lengths of the body
segments. We also obtain an approximate estimate of the pose in the process.
We identify the limbs on the left and the right by examination of their positions
with respect to the trunk and also by examination of the joint angles between
the limbs of the legs. We then compute the distance between the points on the
voxel-skeleton and the line segments of the model skeleton obtained from the
stature. The skeleton model fit error corresponding to the stature is computed
and summed across key frames for each stature value in the range to determine
the stature parameter that best fits the voxel skeletons. We note that there is a
clear minimum in the error versus stature plot in Fig. 7 and we select the model
skeleton corresponding to the minimum error stature value as our initial esti-
mate. The computed skeleton of a few key frames with the model super-imposed
on them are presented in Fig. 8. The two sets of parameters we are interested in
estimating are the pose parameters (joint angles) and the body structure (joint
locations). We can express the fit error as a function of the joint locations (X)
and the joint angles (ϕ). We minimise the fit error by varying X while keeping
ϕ fixed, and vice versa (varying ϕ while keeping X fixed), using optimisation
techniques. X and ϕ are allowed to vary within a small region around X0 and
ϕ0 respectively. The skeletons of a few key frames with the optimised model and
pose super-imposed on them are presented in Fig. 9.

The next step is to obtain the super-quadric parameters given the joint loca-
tions and angles. We estimate the super-quadric parameters for the trunk, head,
arm, forearm, thigh, and leg, as these body segments are large enough to be
estimated using the resolution and quality of the voxels that we possess. On any
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Fig. 10. Radial profiles of different body segments: The solid line is the median radial
profile. The dotted line is the super-quadric radius with scale parameter set to zero.
The dashed line is the super-quadric radius with estimated scale parameter. The x-
axis of the plots is the distance in mm along the z-axis of the body segment coordinate
system. The y-axis of the plots is the radius value also in mm.

articulated chain, we know the position of each voxel along the chain. Using this
knowledge and the estimated joint locations, we can segment each articulated
chain into the different body segments that make up the chain. Using the esti-
mated joint angles, we can also compute the position of the coordinate frame
attached to the body. For a given body segment, we can thus normalise the pose
using the body coordinate frame, so that the body segment is positioned at the
origin and aligned with the z-axis as in Fig. 10 (a). We compute the area of
the cross-section of the voxels, Az, (plane parallel to the xy-plane) at different
points along the z-axis. We assume that the cross-section is elliptical and find
the parameters (x0, y0) (in (1)), from the area using the relation A = πx0y0. A
circle of equal area would have radius r =

√
x0y0. We compute the radius of the

equivalent circle, at different points along the z-axis, as rz =
√

Az/π, which we
refer to as the radial profile (Fig. 10 (a)). We compute the radial profile in all the
key frames for each body segment and use the median radial profile. The median
radial profiles for some of the body segments are presented in Fig. 10 (b-e). We
can compute the length, radius and the scale parameter of the body segment
from the radial profile. If we wish to determine the parameters x0 and y0 of the
super-quadric, we obtain the xy-histogram, I(x, y), a function whose value at
(xi, yi) is given by the number of voxels that have x and y coordinates given
by xi and yi respectively. We find the values of x0 and y0 that maximise the
function,

∑
(x,y)∈Sx0,y0

I(x, y), where Sx0,y0 =
{

(x, y) : (
x

x0
)2 + (

y

y0
)2 < 1

}
,

and satisfy the constraint, x0y0 = r2. The model composed of super-quadric
segments computed above is presented in Fig. 11(b).

We refine the pose using the super-quadric body segments and the voxels
directly instead of the voxel-skeleton. The objective is to obtain the pose that
maximises the overlap between the super-quadric model and the voxels. The pose
is refined by bounded optimisation of the pose parameter to minimise the “dis-
tance” between the voxels and the super-quadric model. This “distance” mea-
sures the distance of each voxel from the centre of the body segment closest to it.
The distance vector, e = [e1, e2, · · · , eN ]T, where ei = min

(
e
(1)
i , e

(2)
i , · · · , e

(J)
i

)
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Fig. 11. The model (b) constructed from initial estimate of the quadratic parameters
compared with the voxels (a), and super-imposed with voxels before pose refinement
(c) and after (d). (e) is the model in voxel representation.

and e
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i is the distance of the ith voxel with respect to the jth body segment
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i ) are the voxel coordinates in the coordinate system of the jth body

segment and (xj
0, y

j
0, z

j
0, s

j , dj) are the super-quadric parameters of the jth body
segment. Although the distance function appears complicated it is just a measure
of how close the voxel is to the central axis of the super-quadric. The refined
pose is the pose that minimises ‖e‖. The pose of the subject before and after
optimisation is presented in Fig. 11 (c) and (d) respectively.

4 Experiments and Conclusion

We use 15 calibrated cameras in our experiments positioned around the subject
and pointing towards the centre of the capture volume. The images are 484×648
grey-level with 8-bit depth. The frequency of the capture is 3 frames per second.
The units in the experiments are millimetres. The background subtraction algo-
rithm does not perform very well on grey-scale images and as a result the voxel
reconstruction is not of good quality at times. The algorithm is fairly robust
to such errors and rejects frames where registration fails due to missing body
segments or when the pose is not suitable.

We conducted experiments on four male subjects with different body mass,
stature and BMI (body mass index). The same algorithm parameters were used
in all the cases. Twenty key frames (where registration was successful) were
used to estimate the model parameters as well as the pose at each time instant.
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Fig. 12. Estimated models and corresponding voxels for different subjects

The results are illustrated in Fig. 12. We constructed a synthetic voxel image for
each of the key frames using the estimated model and pose. We use the synthetic
voxels (illustrated in Fig. 11 (e)) in order to evaluate the algorithm with respect
to the data voxels (Fig. 11 (a)). We also estimate the model parameters using
the synthetic voxels as input, so that we can compare the original pose and
estimated pose. The pose errors were computed at 24 major joint locations as
the absolute difference between the original and estimated joint angle values
for all the key frames used in the model estimation algorithm. The results are
tabulated in Table 1.

Table 1. Model and pose estimation error for real and synthetic data: Let ND and
NM be the number of data voxels and voxels from the estimated models, and NI is
the number of intersecting voxels. Model Fill Ratio (FR) is NI/NM and Data FR is
NI/ND. Note that each voxel is 1 cm3. Volume is in m3. Pose error is in degrees.

Data Model Data/Model Pose ErrorExperiment Subject
Vol. FR Vol. FR Vol. Ratio Mean Median

A 0.083 0.909 0.081 0.935 1.030 5.7 2.2
B 0.065 0.923 0.065 0.934 1.012 8.6 2.0Synthetic
C 0.057 0.858 0.054 0.902 1.052 7.0 2.2
D 0.127 0.871 0.117 0.947 1.088 8.4 4.0
A 0.088 0.766 0.083 0.812 1.059 – –
B 0.073 0.773 0.065 0.865 1.119 – –Real
C 0.063 0.690 0.057 0.765 1.111 – –
D 0.146 0.748 0.127 0.856 1.145 – –

We have addressed the problem of model acquisition in great detail and pro-
vided the results of experiments conducted on different subjects. No prior mea-
surements of the subjects were used. The only prior data used was a simple
graph-based model of an “average” human subject and an approximate relation
between the stature of an average human subject and the length of the long
bones, as well as approximate locations of the shoulder, neck and pelvic joints
with respect to the trunk. We have provided a systematic algorithm that aims
to build a human body model in intuitive stages. We first perform segmentation
and registration of the articulated chains that the human body is composed of.
We have introduced a method to extract the different articulated chains that are
part of the human body and also parameterise each voxel on the chain according
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to its distance from the joint. The latter is a key contribution and an important
step in accurately estimating the skeleton and the body model parameters. In
the next step, a skeleton is computed from the voxels and the parameters of
the human body model are estimated and refined by computing the fit with the
skeleton obtained from the voxels. We then compute the super-quadric parame-
ters for each body segment and refine the pose and body model parameters using
the super-quadric parameters and the voxels directly. We use distance measures
between the model skeleton and the skeleton computed from the voxels to op-
timise the pose and joint locations and presented a method to obtain an initial
estimate of the parameters of super-quadric segments.

Our method has advantages over other algorithms [7,13,3] in that we explicitly
extract the 1-D nature of the structure using the Laplacian eigenmap transfor-
mation in high dimensional space. We also explicitly model the continuous 1-D
structure using d-dimensional splines of a single parameter. We are thus able to
segment the limbs at the joints using the spline-fit error as a natural indicator of
when to stop growing the spline. We then use a probabilistic registration method
in order to handle complex poses where the limbs may touch other body parts
as in Fig. 6 (b-e) which are not considered in other methods such as [7]. The
explicit modelling of the body segments as splines in the eigenspace domain also
helps in creating the skeleton in the normal 3-D space. We then show that our
segmentation and registration algorithm can be exploited to estimate the human
body model parameters. We estimate the probability that the segmented body
parts match our model, so that we can discard frames that have missing limbs
due to possible errors in the voxel reconstruction.
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