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Preface

The AMDO-e 2006 conference took place at the Hotel Mon Port, Port d’Andratx
(Mallorca), on July 11-14, 2006, sponsored by the International Association for
Pattern Recognition (IAPR), the MEC (Ministerio de Educación y Ciencia,
Spanish Government), the Conselleria d’Economia, Hisenda i Innovació (Balearic
Islands Government), the AERFAI (Spanish Association in Pattern Recognition
and Artificial Intelligence), the EG (Eurographics Association) and the Math-
ematics and Computer Science Department of the UIB. Important commercial
sponsors also collaborated with practical demonstrations; the main contributions
were from: VICOM Tech, ANDROME Iberica, GroupVision, Ndigital (NDI),
CESA and TAGrv.

The subject of the conference was ongoing research in articulated motion
on a sequence of images and sophisticated models for deformable objects. The
goals of these areas are to understand and interpret the motion of complex
objects that can be found in sequences of images in the real world. The main
topics considered as priority were: geometric and physical deformable models,
motion analysis, articulated models and animation, modelling and visualization
of deformable models, deformable models applications, motion analysis applica-
tions, single or multiple human motion analysis and synthesis, face modelling,
tracking, recovering and recognition models, virtual and augmented
reality, haptics devices, biometrics techniques. These topics were grouped into
four tracks: Track 1: Computer Graphics (Human Modelling and Animation),
Track 2: Human Motion (Analysis, Tracking, 3D Reconstruction and Recog-
nition), Track 3: Multimodal User Interaction (VR and AR, Speech, Biomet-
rics) and Track 4: Advanced Multimedia Systems (Standards, Indexed Video
Contents).

This conference was the natural evolution of the AMDO2004 workshop
(Springer LNCS 3179). The goal of this conference was to promote interac-
tion and collaboration among researchers working in the areas covered by the
four tracks. New perceptual user interfaces and linked emerging technologies
strengthen the relation between the conference themes and human–computer
interaction. The perspective of the AMDO-e 2006 conference was to strengthen
the relationship between the many areas that have as key point the study
of the human body using computer technologies as the main tool. The response
to the call of papers for this conference was very good. From 81 full papers sub-
mitted, 53 were accepted. The review process was carried out by the Program
Committee, each paper being assessed by at least two reviewers. The conference
included several parallel sessions of orally presented papers, poster sessions and
three tutorials. Moreover, the conference benefited from the collaboration of the
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invited speakers covering various aspects of the main topics. These invited speak-
ers were: Thomas Vetter from Basel University (Switzerland), José Santos-Victor
from IST (Portugal), and Petia Radeva from Computer Vision Center (UAB,
Spain).

July 2006 F. J. Perales and B. Fisher
General Co-chairs

AMDO-e 2006
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Mascaró-Portells, M. Universitat Illes Balears, Spain
Medioni, G. University of Southern California, USA
Mir, A. Universitat Illes Balears, Spain
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Manuel González Hidalgo, Javier Varona . . . . . . . . . . . . . . . . . . . . . . . . . 514

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525



F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 1 – 9, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Study on Human Gaze Detection Based on 3D Eye 
Model 

Kang Ryoung Park 

Division of Media Technology, Sangmyung University, 
7 Hongji-Dong, Jongro-ku, Seoul, Republic of Korea,  

Biometrics Engineering Research Center 
parkgr@smu.ac.kr 

Abstract. Human gaze can give valuable tips for human computer interaction, 
but it is very difficult to detect human gaze position with one or two camera 
systems. Conventional method has the limitation of inaccurate gaze detection 
performance or not being able to track the fast motion of user’s face and eye. 

To overcome such problem, in this paper, we propose a new gaze detection 
method. Compared to previous works, our method has following three advan-
tages. First, our method uses three camera systems, such as a wide and narrow 
view stereo cameras and allows user’s natural head and eye movement. Second, 
to obtain gaze position on a monitor, we detect the 3D eye position and gaze 
vector of eyeball. Third, to enhance the eye detection performance, we use 
AdaBoost eye detector and PCA algorithm. 

Experimental results showed that our method could be used for real-time 
gaze detection system.  

Keywords: Gaze Detection, a Wide and Stereo Narrow View Cameras, 3D Eye 
Position and Gaze Vector of Eyeball. 

1   Introduction 

Human gaze can provide important tips for many applications such as view control-
ling in 3D simulation programs, virtual reality, video conferencing and special hu-
man-machine interface/controls. Most previous researches were focused on 2D/3D 
head motion estimation [2][11], the facial gaze detection (allowing for only head 
movement)[3-9][12][13][15] and the eye gaze detection (allowing for only eye 
movement)[10][14]. Wang et al.[1]'s method provides the advanced approaches that 
combines head pose and eye gaze estimation by a wide view camera and a pan-
ning/tilting narrow camera. However, in order to compute the gaze position, their 
method supposes that they know the 3D distances between two eyes, eye corners, 
both lip corners and the 3D diameter of eye ball. Also, they suppose that there is no 
individual variation for the 3D distances and diameter. However, our preliminary 
experiments show that there are much individual variations for the 3D distances/3D 
diameter and such cases can increase gaze errors. Moreover, the accuracy of their 
method rapidly drops down according as the distance between the camera and the 
user’s face increases. More advanced method using narrow and wide view stereo 
cameras were shown [15]. However, in that method, user should gaze at 5 known 
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(pre-determined) positions on a monitor to obtain the 3D position information of 
facial and eye features in calibration stage. Also, it uses the method of mapping 2D 
feature information (in narrow view eye image) to the gaze position on a monitor, 
directly, without considering the 3D information of eye feature and it can be main 
factor to increase gaze error.  

To overcome such problems of previous researches and systems, we propose the 
new method for detecting gaze position with three cameras composed of one wide and 
stereo narrow view cameras. To exclude the large specular reflection on glasses  
surface, we use dual (left and right) IR-LED illuminators for wide and narrow view 
camera. 

In section II, we present the method of detecting facial and eye features. In section 
III, the method of computing 3D eye feature position is shown. In section IV, the 
method of calculating final gaze position on a monitor is explained. Experimental 
results and conclusion are included in section V and VI, respectively. 

2   Detecting Eye Region in Wide View Image by AdaBoost 
Algorithm and PCA 

In order to detect gaze position on a monitor, facial features in wide view images 
should be obtained. To detect facial features robustly, we implement a gaze detection 
system.  

To detect the eye features in wide view camera image, we use AdaBoost eye detec-
tor and PCA (Principal Component Analysis). In previous work, AdaBoost algorithm 
is used for face detection and we adopt it for eye detection. Original AdaBoost classi-
fier uses a boosted cascade of simple classifiers using Haar-like features capable of 
detecting faces in real-time with both high detection rate and very low false positive 
rates, which is considered to be one of the fastest systems [3][4]. For that, we trained 
90 eye images and 90 non-eye images. Then, with trained AdaBoost eye detection 
classifier, we detect eye region from input test image.  

However, some case of FAR (False Acceptance error which accept non-eye region 
as eye region) happen and to reduce it, we also use PCA eye detection to verify the 
 

 

Fig. 1. The EER versus the number of the PCA eigenvector 
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detected eye region. For PCA training, we used 90 eye images with the size of 60*30 
pixels. From that, we obtained total 1800 eigenvectors and found the optimal number  
of eigenvectors with which the EER (Equal Error Rate) for find eye region was mini-
mized. Experimental results showed that the EER was smallest in case of 160 eigen-
vectors as shown in Fig. 1. Finally, experimental results showed that correct rate of 
eye detection was 99.8%. 

In the detected eye region, we locate the accurate left and right eye (iris) center by 
the circular edge detection method [12]. Some examples of the detected eye regions 
are shown in Fig.2. Experimental results show that RMS error between the detected 
eye center positions and the actual ones are 1 pixel in 640×480 pixels image. Also, 
because the eye center detection is performed only in the detected eye region, it takes 
little time as 1ms in Pentium-IV 1.8 GHz PC. 

 

Fig. 2. The examples of detected eye region by wide view camera 

3   Locating Eye Features in Narrow View Camera 

Based on the detected 2D eye center positions in wide view camera, we try to pan and 
tilt the stereo narrow view cameras to capture the magnified eye image. However, 
with the detected 2D eye center positions in wide view camera, only the line of sight 
through the user’s eye center point can be obtained by single wide view camera. To 
determine the accurate panning/tilting angles of stereo narrow view cameras, we 
should know the 3D Z distance between the user’s eye and the wide view camera and 
it is infeasible with mono wide view camera. In addition, because we do not know the 
accurate panning/tilting angles, we cannot also determine the accurate viewing angle 
of narrow view cameras, with which they can capture the user’s magnified eye image. 
However, we can preliminarily determine the initial viewing angle of narrow view 
camera based on following conditions without knowing the accurate panning & tilting 
angles by Z distance;  1) Most users tend to sit in the Z distance range of 50 ~ 70 cm 
in front of monitor. 2) The sitting heights (we define it as the Y distance between the 
origin in monitor coordinate (Xm , Ym , Zm ) and the facial center of most user) are 
about -20 ~ +30 cm on average (we measured them from 95 persons test data by Pol-
hemus position tracker sensor [11]). 3) The stereo narrow view cameras capture the 
user’s eye on the slant (on the wide view camera). 
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From the above conditions, we can restrict the initial viewing angle of narrow view 
camera as 4.3 degree (-2.15 ~ +2.15 degree, vertically) and obtain the magnified eye 
image by narrow view cameras (In this case, the diameter of iris is about 135 pixels at 
the Z distance of 50 cm) without knowing the accurate panning & tilting angle of 
narrow view camera. From the captured eye image, we can detect more accurate 2D 
pupil center and boundary points (we detect 6 boundary points with the angular inter-
val of 60 degrees as shown in Fig. 3) by locating corneal specular reflection and cir-
cular pupil edge detection [12]. Experimental results show that RMS error between 
the detected feature positions and the actual ones are 1.2 pixels (of pupil center) and 
1.1 pixels (of pupil boundary points) in 640×480 pixels image. Some examples of the 
detected features are shown in Fig.3. 

     

Fig. 3. The Examples of the detected eye features by narrow view camera 

However, in some case of users with glasses, large specular reflection on the 
glasses surface happens by our illuminator. In such a case, our algorithm may detect 
the erroneous pupil center and boundary points and calculate inaccurate gaze position, 
consequently. To prevent such problems, our algorithm checks the average gray level 
of detected pupil region and if it exceeds in the predetermined threshold (we define it 
as 30), our algorithm commands to turn on the other illuminator in opposite side 
(from left to right, or from right to left) of narrow view camera and capture the clear 
eye image which does not include the occlusion of large specular reflection.  

4   Computing 3D Eye Feature Positions 

In this section, we explain the method of computing 3D eye positions by stereo nar-
row view cameras. Supposing that the point “M” (which is the pupil center of right 
eye) is observed by the left and right narrow view cameras, then we can obtain 3D 
positions of “M” by conventional stereo camera theory [8].  

Considering the coordinate conversion between the left and right narrow view 
camera [8], we can obtain the relationship between two camera coordinates by affine 
transformation. Using them, we can obtain the Z distance (Z1 ) of “M” point in the left 
narrow view camera coordinate. With the obtained Z distance (Z1 ), we can obtain the 
3D positions(X1, Y1, Z1) of the feature point (M) in the left narrow view camera coor-
dinate (XN1 , YN1 , ZN1).  
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For that, we should know the camera (internal and external) parameters, whose  
parameters are not changed after initial camera setup. So, we perform the camera 
calibration procedures using calibration panel and parameter estimation method 
(Davidon-Fletcher-Powell method) [8][9]. In addition, we should know the remaining 
parameters of panning/tilting angles of left and right narrow view cameras in order to 
obtain the Z distance (Z1 ). Those parameters are changed according to the pan-
ning/tilting operation of left and right narrow view cameras and we can obtain that 
information from camera micro-controller.  

From above procedures, we can get the 3D position (X1, Y1, Z1) of the feature point 
(M) in the left narrow view camera coordinate (XN1 , YN1 , ZN1). In addition, the 3D 
position (X2, Y2, Z2) of the feature point (M) in the right narrow view camera coordi-
nate (XN2 , YN2 , ZN2) can be obtained, consequently.  

Then, we perform the additional coordinate conversion between the wide view cam-
era coordinate (XW , YW , ZW) and left narrow view camera coordinate (XN1 , YN1 , 
ZN1). That is, we obtain the 3D positions of the point (M) (X3, Y3, Z3) in the wide view 
camera coordinate [8]. 

For that, we should know the translation vector TO1(TOX1 , TOY1 , TOZ1 ) between 
wide view camera and left narrow view camera coordinate and the tilting angle(α1) 
and the panning angle ( 1) of left narrow view camera coordinate (XN1, YN1 , ZN1) 
about the wide view camera coordinate (XW , YW , ZW). As mentioned before, we  
can obtain the information of (α1, 1) from camera micro-controller. To measure the 
translation vector TO1 (TOX1 , TOY1 , TOZ1 ), we also perform the camera calibration 
procedures using calibration panel and parameter estimation method (Davidon-
Fletcher-Powell method).  

Finally, we perform the coordinate conversion between the wide view camera co-
ordinate (XW , YW , ZW) and the monitor coordinate (Xm, Ym, Zm) and obtain the 3D 
positions of the point (M) (X4, Y4, Z4) in the monitor coordinate. For that, we should 
know the translation vector T1(T1X , T1Y , T1Z ) (between wide view camera and moni-
tor coordinate) and the tilting angle( ) and the panning angle (Φ) of wide view cam-
era coordinate (XW, YW , ZW) about the monitor coordinate (Xm , Ym , Zm). Like 
above procedure, we also perform the camera calibration. Experimental results 
showed that the RMS error between the actual 3D position (X4, Y4, Z4) (measured by 
Polhemus position sensor) in monitor coordinate and the calculated 3D positions was 
about 0.485 mm (0.27mm in X axis, 0.27mm in Y axis, 0.3mm in Z axis).  

5   Computing Gaze Position on a Monitor 

Consequently, we obtain the 3D position(X4, Y4, Z4) of pupil center of right eye in 
monitor coordinate and apply the same methods for obtaining other pupil boundary 
points (P1 ~ P3, Q1 ~ Q3 as shown in Fig. 3). Experimental results showed that the 
average RMS error between the actual 3D position of pupil boundary points (P1 ~ P3, 
Q1 ~ Q3) in monitor coordinate and the calculated 3D positions was about 0.508 mm 
(0.28mm in X axis, 0.29mm in Y axis, 0.31mm in Z axis). 

So, we can obtain the 3D positions of (P0 ~ P3, Q1 ~ Q3 ) in the monitor coordinate 
and final gaze vector of S by calculating the cross product of P0P1 and P0P2. Conse-
quently, we can obtain the final gaze position on a monitor, which is the intersected 
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position between the monitor coordinate (Xm, Ym, Zm) (in detail, the plane with Zm = 
0) and the gaze vector (S) (which has the origin of the 3D positions of P0).  

In case that user rotates his head to gaze at other positions on a monitor, the eye re-
gion may escape the image of narrow view camera. That is because the viewing angle 
of narrow view camera is very small (4.3 degree (-2.15 ~ +2.15 degree, vertically)). 
So, in case of user’s head rotation and translation, we should pan and tilt the stereo 
narrow view cameras to track the eye image. When user’s head is rotated and trans-
lated, the pupil center point (M’) is moved. Then, the 2D projected positions in nar-
row view camera are also moved. From that, we can obtain the 3D position of M’ in 
the left and right narrow view camera coordinate based on the method as mentioned 
in section 4. With the obtained 3D position information, we can calculate the panning 
and tilting angle of left and right narrow view camera and track the user’s eye move-
ment accurately. Experimental results showed that the processing time of tracking 
algorithm (including detecting the projected positions in image, calculating the pan-
ning & tilting angle and performing the panning & tilting of two narrow view cam-
eras) was below 20ms (in Pentium-IV 1.8GHz PC) and our system can track the 
user’s eye at fast speed of 50 Hz although the natural rotation and translation of user’s 
head (, the speed of natural rotation is about 10 degrees/sec and that of natural transla-
tion is about 52mm/sec (which were measured by Polhemus position tracker sensor 
about 95 users)). 

6   Experimental Results 

The gaze detection error of our method is compared to those of previous methods 
[6][7][15]. The research [6] calculates the gaze position by mapping the 2D facial 
feature position into the monitor gaze position by linear interpolation or neural net-
work without 3D computation and considering eye movements. The method [7] com-
putes the gaze positions considering both head and eye movements, but uses only one 
wide view camera. More advanced method using narrow and wide view stereo cam-
eras were shown [15]. However, in that method, user should gaze at 5 known (prede-
termined) positions on a monitor to obtain the 3D position information of facial and 
eye features. Also, it uses the method of mapping 2D feature information (in narrow 
view eye image) into the gaze position on a monitor, directly, without considering the 
3D information of eye feature.  

The test data were acquired when 95 users gaze at 23 gaze positions on a 19" moni-
tor. Here, the gaze error is the RMS error between the reference gaze positions and 
the computed ones. 50% of 95 users do not wear glasses and 30% of them do glasses. 
The other 20% of them wear contact lens (10% wearing soft contact lens and 10% 
doing hard contact lens). At the 1st experiment, the gaze errors are calculated in two 
cases as shown in Table 1. The case I shows the gaze error about test data including 
only head movements and the case II does the gaze error about test data including 
head and eye movements. 

Shown in Table 1, the gaze error and error variance of the proposed method is the 
smallest in any case. Also, we can know that our system performance is not affected 
by wearing glasses or contact lens. In our previous work [17], we obtained the gaze 
accuracy of 1.21 and 2.11 inches in case I and II, respectively. However, in that 
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Table 1. Gaze error and error variance about test data (unit: cm) 

 

research, we used only two cameras such as a wide and a narrow view cameras and 
the estimated 3D position is not so accurate as that by this paper. So, the gaze accu-
racy of the proposed method is better than our previous method.  

At the 2nd experiment, the points of radius 5 pixels are spaced vertically and hori-
zontally at 1.5" intervals on a 19" monitor with monitor resolution of 1280×1024 
pixels as such Rikert's research [9]. The RMS error between the real and calculated 
gaze position is 0.622 cm (0.45cm in X axis, 0.43cm in Y axis and the error variance 
is 0.11 cm) and it is superior to Rikert's method (almost 5.08 cm and the error vari-
ance is 1.24 cm). Our gaze error is correspondent to the maximum angular error of 
0.714 degrees (0.52 degrees on X axis and 0.49 degrees on Y axis) at the Z distance 
of 50 cm. The Shih’s method [10] showed that an average gaze estimation error is 
under 1 degrees and our method is superior to the Shih’s method. In addition, they use 
the one sided IR-LEDs to detect the gaze position. So, in case of user’s with glasses, 
large specular reflections on glasses surface happen frequently and hide the whole 
pupil region in input image. In such a case, their method cannot detect the pupil re-
gion and calculate the user’s gaze position, consequently.  

At the 3rd experiment, we tested the gaze errors according to user's Z distance. The 
RMS errors are 0.61cm at 50cm (the error variance is 0.11 cm), 0.62cm at 60cm (the 
error variance is 0.12 cm), 0.62cm at 70cm (the error variance is 0.14 cm) and the 
performance of our method is not affected by the user's Z position change. At the 4th 
test, we measured the gaze error according to environmental lighting condition as 
shown in Table 2. (Case 1 : using fluorescent lamp, Case 2 : using halogen lamp) 

According to table 2, we can know the gaze error is not affected by environmental 
lighting. That is because our gaze system uses IR-Pass filter in front of (narrow and 
 

Table 2. Gaze error according to environmental lighting condition 

Environmental  
Lighting Power 

250 
Lux. 

500 
Lux. 

750 
Lux. 

1000 
Lux. 

1250 
Lux. 

Case 1 0.64 0.61 0.64 0.63 0.61 RMS Gaze 
Error (cm) Case 2 0.63 0.62 0.63 0.61 0.63 
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wide view) camera and IR illuminator to detect eye position. Especially, in case of 
lighting below 500 Lux. and over 1000 Lux., we can see that pupil region is dilated 
and extracted severely. It is spontaneous phenomenon for pupil to control the pene-
trated light to retina. However, in any case, the gaze error is not increased and we can 
know our method can be used irrespective of pupil’s size.  

Last experiment for processing time shows that our gaze detection process takes 
about 38ms in Pentium-IV 1.8 GHz and it is much smaller than Rikert's method (1 
minute in alphastation of 333MHz). So, we can detect user’s gaze position at real-
time (per every image which is captured at the speed of 30 frames/sec). The research 
[1] also shows the angular error of below 1 degree, but their method supposes that 
they know the 3D distance between two eyes and that between both lip corners and 
there is no individual variation for the 3D distances. In addition, they suppose that 
they know the 3D diameter of eye ball and there is no individual variation for that. 
However, our preliminary experiments show that there are much individual variations 
for the 3D distances/3D diameter (from 95 users' test) and such cases can increase 
much gaze errors (the angular error of more than 5 degree).  

7   Conclusions 

This paper describes a new gaze detecting method. Experimental results show that the 
RMS error of gaze detection is 0.63 cm on 19 inches monitor. In future works, we 
plan to research the method of increasing the panning/tilting speed of narrow view 
camera by estimating the movement of user’s head in order to decrease total process-
ing time of gaze detection.  
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Abstract. Among biometrics such as face, fingerprint, iris and voice recogni-
tion, iris recognition system has been in the limelight for high security applica-
tions. Until now, most researches have been studied for iris identification  
algorithm and iris camera system, etc. But, there has been little researched for 
fake iris (such as printed, photographed or artificial iris, etc) detection and its 
importance has been much emphasized, recently. To overcome the problems of 
previous fake iris detection researches, we propose the new method of checking 
the hippus movement (the dilation/contraction of pupil size) and the change of 
iris code in local iris area by visible light in this paper.  

Keywords: Iris Recognition, Fake Iris Detection. 

1   Introduction 

Among biometrics, iris recognition system has been in the limelight for high security 
biometric applications [1][2][4][7]. Iris is the region which exists between the sclera 
and the pupil [1]. Its main function is to contract or dilate the pupil in order to adjust 
the penetrated light volume into the retina. Iris patterns are highly detailed and unique 
textures that almost remain unchanged from 6 month of age to death. Fake iris detec-
tion is to detect and defeat a fake (forgery) iris image. In previous research, Daugman 
proposes the method of using FFT (Fast Fourier Transform) in order to check the high 
frequency spectral magnitude in the frequency domain, which can be shown distinctly 
and periodically from the print iris pattern because of the characteristics of the peri-
odic dot printing [1][2][16]. However, such high frequency magnitude cannot be 
detected in case that input printed iris image is blurred purposely and the fake iris may 
be accepted as live one in such case. The advanced method of fake iris detection was 
introduced by iris camera manufacturer. They use the method of turning on/off illu-
minator and checking the specular reflection on a cornea. However, such method can 
be easily deceived by using the printed iris image with cutting off the printed pupil 
region and seeing through by attacker’s eye, which can make corneal specular reflec-
tion [15]. Another approach using Purkinje image was shown [28], but it cannot de-
tect the fake iris such as patterned contact lens. Another improvement of security can 
be the use of a multimodal biometric system. Multimodality means combining several 
biometric traits from possibly more than one sensor in an optimal way. Examples are 
the combinations of face and iris recognition [2]. This concept is reported to increase 
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the accuracy of the system in terms of EER as well as the resistance to counterfeiting 
attempts, simply because all traits have to be counterfeited simultaneously. However, 
total cost and system complexity are inevitably much increased due to the combina-
tion of more than two biometric systems.  

Another research [27] proposed the method of using hippus movement, which is 
the dilation/contraction of pupil according to environment light stimulus. However, 
such a method cannot detect the fake iris made by (semi-transparent) patterned con-
tact lens. That is because the iris region of the contact lens is semi-transparent and 
dilation/contraction is also visible in such case though fake iris. 

To overcome such problems, we propose the new method of detecting fake iris, 
which can discriminate the fake patterned contact lens by checking the iris code 
change near the pupil region based on Daubechies wavelet filtering and SVM  
(Support Vector Machine). 

2   The Proposed Fake Iris Detection Method 

2.1  Proposed Iris Camera and Controlling Illuminator 

In this research, we use iris recognition camera with dual IR-LED and visible light 
illuminators. In case of the user with glasses, single IR_LED or visible illuminator 
can make large specular reflection (on glasses surface) which hides the whole iris 
region. In such cases, our system cannot recognize user and detect fake iris. So, we 
use dual illuminators. The IR (Infra-Red) pass filter is attached in front of iris camera 
in order to exclude the external visible light. The dual visible light illuminators are 
only used for making pupil’s hippus movement and in such cases, the IR-LED illumi-
nator of the same side is turned on also, because the iris image only by visible light 
cannot be seen due to the IR pass filter. 

When the user approaches in the operating range of the iris camera, our iris system 
perceives it by Z distance sensing device and notifies it to the micro-controller of 
camera. Then, the micro-controller controls (On/Off control) the IR-LED and visible 
light illuminator selectively. In our system, the IR-LED illuminator is composed of 
two wavelength of 760 and 880 nm. Each wavelength illuminator (760 or 880 nm) 
can be turned on selectively. After the iris recognition system is started, our system 
turns on the left illuminator (760 + 880 nm) and performs the operation of capturing 
focused iris image. From that, focused and clear iris image can be captured and iris 
identification is performed. However, in case of users with glasses, the large specular 
reflection can happen on the glasses surface and in this case, the identification may be 
failed. Then, our system turns off the left IR-LED illuminator and turns on the right 
one and same procedure is iterated. Then, the specular reflection does not happen in 
iris region and iris identification is successful. After that, our system turns on the right 
visible light for about 1 sec and checks the change of pupil’s size for detecting fake 
iris. Detain accounts are shown in following section. 

2.2   Checking the Change of Pupil’s Size (Hippus Movement) by Visible Light 

By checking the simple change of pupil’s size, we can detect the fake iris such as the 
2D/3D printed/photograph iris, artificial eye and opaque contact lens. That is because 
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such fake iris images do not show the change of pupil’s size by the visible light. 
However, a live iris shows the distinctive change of pupil’s size by visible light as 
shown in Fig. 1. Detail experimental results are shown in section 3.  

To check the change of pupil size, we firstly detect the inner & outer boundary of 
iris by circular edge detection [1]. Then, we calculate the ratio of pupil radius to iris 
radius from iris images captured in case that visible light is off and on (Fig. 1 (a), (b)) 
respectively. If the variation of ratio does not exceed in the predetermined threshold, 
we regard the input iris image as fake one and vice versa.  

 
(a)  visible light is off                                    (b) visible light is on 

Fig. 1. Example of hippus movement of live iris 

However, the semi-transparent lens as shown in Fig. 2 cannot be detected as the 
fake one by this method. That is due to the structure of semi-transparent lens. In de-
tail, the lens has the structure of transparent iris region and semi-transparent iris pat-
tern and lens wearer’s pupil is live one. So, the hippus movement can be seen under 
transparent iris region, consequently.  

 

Fig. 2. The structure of semi-transparent patterned lens 
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So, to overcome such problems, we propose the enhanced method of checking the 
change of iris features in the local iris area (adjacent of pupil boundary as shown in 
Fig. 3 and 4). As shown in Fig. 3, the iris pattern of live iris is dilated and contracted 
in case of pupil’s hippus movement and it is like rubber band model [1]. So, the iris 
pattern is not disappeared or appeared. However, the iris pattern of fake iris is not 
dilated and contracted like that of live iris. That is, the some iris pattern is hidden by 
the dilated pupil boundary as shown in Fig. 4 (b). So, we propose the enhanced 
method of checking the iris feature changing in the local iris area (adjacent of pupil 
boundary) and detecting the pattern contact lens. 

In details, after localization of iris and pupil boundary by circular edge detection 
[1], we determine 8 iris tracks in the detected iris region. Then, we extract 4 iris track 
(adjacent to pupil boundary) images from that and convert it as rectangular image. 

After that, we apply Daubechies wavelet filter in the rectangular image in case 
that visible light is on as shown in Fig. 3(a) and 4(a) and extract iris features. After 
that, the extracted iris feature values in the rectangular image are compared those 
extracted in case that visible light is off as shown in Fig. 3(b) and 4(b). If the differ-
ence of the iris feature values in the rectangular image do not exceed in the prede-
termined threshold, we regard the input iris image as live one and vice versa. Detail 
explanations about iris feature values by Daubechies wavelet filter are shown in next 
section.  

 

Fig. 3. The local iris region for applying Daubechies wavelet (Live Iris) 

 

Fig. 4. The local iris region for applying Daubechies wavelet (Fake Iris by Patterned Lens) 
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2.3   Iris Feature Extraction by Daubechies Wavelet Filtering 

As mentioned before, we use Daubechies wavelet filtering in order to extract the iris 
feature information [22]. Daubechies’s wavelet is reported to have good localization 
trait and power of high texture classification compared to Gabor wavelet. In addition, 
Daubechies’s wavelet has the characteristics of the orthogonality and factorization 
and provides compact support, but is not symmetric. Because we check the iris feature 
variations in local iris area, we use Daubechies’s wavelet which shows better localiza-
tion trait than Gabor filter. The iris region in 4 tracks as shown in Fig. 3 and 4 is 
passed through low-pass and high-pass filters to generate the low-low, low-high, 
high-low and high-high subbands, The decomposition process is recursively applied 
on the low frequency channel to obtain the lower resolution subbands. For iris fea-
tures, we use two features i.e. standard deviation and energy from the grey-level his-
togram of the subbands [19]. In addition, we divide the subband images into local 
windows in order to get robust feature sets against shift, translation and noisy  
environment.  

After extracting the mean and standard deviation by Daubechies wavelet packet, 
we performed the feature normalization, because features with large values have 
stronger influence in the classification process than that with small values. That is 
because we use the amplitude of wavelet filtering instead of the phase. In conven-
tional wavelet filtering, we can use either amplitude or phase for feature. In iris rec-
ognition by Daugman [1], he used the phase component of Gabor wavelet filtering 
and the extracted iris feature is not affected by image contrast. However, the classifi-
cation power of phase is reported to be inferior to that of amplitude. So, some re-
search of iris recognition use the amplitude of wavelet filtering [30] and in such a 
case, the normalization of image contrast is required.  

For normalization, we use the mean and variance of each feature value and normal-
ize it by them. After normalization, all features have zero mean and unit variance. For 
the second feature, we calculate the energy (the energy from the grey-level histogram) 
of each subband images. For the better performance, we have to decide which sub-
band has more discriminant power. If the decomposed image is x (m ,n) with 1 ≤ m ≤ 
M and 1 ≤ n ≤ N and in order to evaluate the energy of each subband, following equa-
tion is applied. 

 
                                                                                                                                   (1) 
 

In this step, we compare the energy with the largest value in the same scale.  

2.4   Pattern Matching by SVM 

With the transformed iris region in 4 tracks as shown in Fig. 3, 4 and detected features 
(standard deviation and the energy of each subband) by the Daubechies wavelet, we 
use SVM (Support Vector Machine) to determine live or fake iris.  

SVMs have been recently proposed as a new technique for solving pattern recogni-
tion problems [23][24]. SVMs perform pattern recognition between two point  
classes by finding a decision surface determined by certain points of the training set, 
termed as Support Vectors (SV) and SVs are regarded as data which are difficult to be 
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classified among training. At the same time, the decision surface found tends to have 
the maximum distance between two classes. In general, it is reported that its classifi-
cation performance is superior to that of MLP (Multi-Layered Perceptron). Espe-
cially, when plenty of positive and negative data are not obtained and input data is 
much noisy, the MLP cannot show the reliable classification results. In addition, MLP 
requires many initial parameter settings and it usually is performed by user heuristic 
experience.  

In this paper, we use a polynomial kernel of degree 5 for SVM in order to solve 
non-linearly separable problem. That is why the dimension of input data is big, so we 
use the polynomials of high degree. In this case, the problem is defined as 2 class 
problem. The first class shows live iris and the second one does fake iris. It is reported 
that the other inner products such as RBF, MLP, Splines and B-Splines do not affect 
the generation of support vector [25].  

Our experimental results comparing the polynomial kernel to MLP for SVM kernel 
show the same results. The C factor affects the generalization of SVM and we use 
10,000 as C factor, which is selected by experimental results. We get 300 live iris 
image frames (10 frames * 30 persons) and 180 fake iris images (18 frames * 10 fake 
iris) for SVM training and testing.  

3   Experimental Results 

For experiments, live irises were acquired from 30 persons (15 persons without 
glasses and 15 persons with glasses). We make each person try to recognize 10 times 
and total 1500 iris images were acquired to test our algorithm. Our camera uses B/W 
(Black and White) CCD sensor and the color of fake iris does not affect our system 
performance. According to field test, we could know the normal approaching speed of 
general user to iris camera is about 10 cm/sec. Based on that, we collect the experi-
mental data according to the approaching speed of user; 100 data at normal speed 
(10cm/sec ± 5), 100 data at fast speed (more than 15cm/sec), and 50 data at slow 
speed (below 5cm/sec). In addition, 50 data are collected in case that users approach 
to the camera not from the front but from the side.  

In addition, we acquired total 10 fake iris samples for testing. They were composed 
of 6 samples for 2D printed/photographed iris image on planar or on/with convex 
surface. Also, 2 samples were acquired for 3D artificial eye. And 2 samples were for 
3D patterned contact lens. With each sample, we tried to 18 times to spoof our coun-
terfeit iris detection algorithm.  

Experimental results showed the FAR was 0% (0/180) and the FRR was 0.33 % 
(1/300), but the FRR became 0 % allowing for the second trial. Here, the FAR means 
the error rate of accepting the fake iris as the live one. And the FRR means the error 
rate of rejecting the live iris as the fake one.  

In case of using Gabor filtering for extracting iris features instead of Daubechies 
wavelet packet [1][2][16][29], the error rate was increased compared to that using 
Daubechies wavelet filtering. Because the optimal frequency and bandwidth of Gabor 
filtering are not known, we selected the optimal value by our experiments ( /8 for 
frequency and 12 pixels for bandwidth). The Gabor filtering showed the FAR of 1.1 
% (2/180) and the FRR of 0.33 % (1/300). According to results, we can know that 
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Daubechies wavelet can show the better performance of extracting local iris features 
than Gabor filtering in case of using small region. Especially, we only extract the iris 
features in 4 tracks(as shown in Fig. 3 and 4) and the localization accuracy of iris / 
pupil boundary can affect the performance much more than using whole 8 tracks. 
Considering such condition, Daubechies wavelet shows the better performance than 
that by Gabor wavelet, because the mean value extracted by Daubechies wavelet can 
reduce the effect by inaccurate localization of iris and pupil boundary. 

In case of using MLP for pattern matching instead of SVM, the error rate was in-
creased. The MLP showed the FAR of 1.1 % (2/180) and the FRR of 1 % (3/300). In 
addition, the classification time using SVM was so small as 8 ms in Pentium-III 
866Mhz.  

Comparing to the fake iris detection method by Daugman [1][2][16] checking high 
frequency component in FFT domain, Daugman’s method showed the FRR was 1 % 
(=3/300), but the FAR was over 52 % (94/180). That is because in case that input fake 
iris image is blurred, the high frequency component cannot be seen by Daugman’s 
method. 

Though we tested 300 and 180 data for live and fake iris respectively, it is difficult 
to assert that the data set can represent the general characteristics of whole live and 
fake iris. Also, the error may be increased in case of using more data set. So, it is 
required to evaluate the performance by theoretical and we distribute the extracted 
feature value of live and fake iris into feature space. Then, we take mapping the fea-
ture value distributions of live and fake iris into two 2D Gaussian functions. With the 
generated functions and the experimental decision surface by SVM, the FAR/FRR 
can be calculated by theoretical. Theoretical evaluation showed that the FAR and the 
FRR were 0.21 % and 0.38 %, respectively. 

The total time for fake iris detection is taken 1,521 ms (on average), which in-
cludes 1,051 ms for turning on visible light and 470 ms for the processing. 

In the next experiment, we measure the FAR (the error rate of accepting the fake 
iris as the live one) and FRR (the error rate of rejecting the live iris as the fake one) 
with distance between the input iris and camera. Table 1 shows the experimental 
results.  

Table 1. Distance vs. the FAR and the FRR 

 

As shown in Table 1, the FAR and FRR are almost same according to the distance 
between input iris and the iris camera. In the next experiment, we measure the FAR 
and FRR according to the change of environmental lighting condition with fluorescent 
lamp. 

As shown in Table 2, the FAR and FRR are almost same according to the change 
of environmental lighting. That is because our iris camera has the IR pass filter and 
the functionality of AE (Auto Exposure). 
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Table 2. Environmental lighting condition vs. the FAR and the FRR 

 

4   Conclusions 

For higher security level of iris recognition, the importance for detecting fake iris is 
much highlighted recently. In this paper, we propose the new method of checking the 
hippus movement (the dilation/contraction of pupil size) and the change of iris code in 
local iris area by visible light. Experimental results show that the FRR (Error rate of 
rejecting live iris as forgery one) is 0.33% and the FAR (Error rate of accepting for-
gery iris as live one) is almost 0%.  

To enhance the performance of our algorithm, we should have more field tests and 
consider more countermeasures against various situations and counterfeit samples in 
future. Also, the method for reducing processing time should be researched for user’s 
convenience.  
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Abstract. For accurate iris recognition, it is essential to acquire focused iris im-
ages. If a blurred iris image is acquired, the performance of the iris recognition 
is degraded, because the iris pattern is transformed by blurring such as optical 
defocusing.  

In previous researches, they use auto focusing lens for iris recognition cam-
era, but it is too bulky and costly to be applied to mobile phone. So, we propose 
the new method to increase DOF region with new iris image restoration algo-
rithm based on focus score without any additional hardware. Different from 
conventional image restoration algorithm, it can be operated at fast speed and 
used for real-time iris recognition camera.  

Keywords: Iris Recognition, Iris Image Restoration. 

1   Introduction 

For accurate iris recognition, it is essential to acquire iris images with high quality. If 
a blurred iris image is acquired, the performance of the iris recognition is degraded, 
because the iris pattern is transformed by blurring such as optical defocusing [3][6]. 
The region which can capture good focused image by a camera is called as DOF 
(Depth of Field). To overcome the problems of fixed focusing and auto-focusing 
method, iris image restoration method was introduced by J. van der Gracht et al. [6]. 
They used a cubic phase modulation filter[6] with which MTF(Modulation Transfer 
Function) is changed according to degree of blurring, and then focused iris image can 
be obtained by restoring iris image with Wiener filter. However, because they have to 
compute both the normalized power spectrum of original image and noise, such pro-
cedure takes too much computation time to be used for real-time iris image restoration. 
In addition, they use additional hardware such as cubic phase modulation filter [6], 
but that has the problem that original iris pattern is transformed with it. To overcome 
such problems, we propose the method to increase the DOF region with new iris  
image restoration algorithm based on focus score without additional hardware.  
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2   The Proposed Iris Image Restoration Method 

2.1   The Overview of the Proposed Algorithm  

Proposed iris image restoration algorithm is composed of two processing parts as 
shown in Fig. 1. In the first part of focus assessment, we measure the focus score for 
estimating the degree of blurring. In the next part of iris image restoration, the pa-
rameters of pre-defined PSF (Point Spread Function) are determined according to the 
measured focus score, and then we restore the blurred iris image with the PSF.  

  

Fig. 1. Overview of proposed iris image restoration algorithm 

In the focus assessment part, if the measured focus score is higher than the  
pre-defined threshold (we used 85 as threshold), it is determined that the captured  
iris image is focused. Therefore, the iris image is directly used for iris recognition, 
which can reduce the processing time of iris image restoration. On the other hand, if 
the measured focus score is lower than the pre-defined threshold, the iris image is 
regarded as blurred. Therefore, the iris image restoration is performed.  

To determine the focusing threshold of 85, we use Bayesian rule. That is, the crite-
rion for determining the good and bad focused images is whether the input iris image 
can be identified (authenticated) with his enrolled template or not. In case of bad 
focused image, because FRR (False Rejection Rate : the error rate of rejecting genu-
ine as imposter) is increased, we regarded the false rejected iris image as bad focused 
one. If we try to restore the bad focused image and recognize with it, we can reduce 
the FRR. So, we applied the Bayesian rule to determine the threshold with which the 
equal error rate(the error rate in case that FAR is same to FRR) was minimized and 
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we could obtain 85 as the threshold. For iris authentication engine, we used the Gabor 
based iris recognition algorithm [3] 

In general, the nearer (or farther) the Z position of eye from DOF region become, 
the degree of blurring increases in iris image. So, the parameters of pre-defined PSF 
(Point Spread Function) which represents blurring have to be changed according to 
the degree of blurring for accurate iris image restoration. In our research, the degree 
of blurring is able to be estimated by measuring the focus score. Therefore, the pa-
rameters of pre-defined PSF in the iris image restoration step are determined by focus 
score, and then the blurred iris image is restored. 

2.2   The Focus Assessment Method 

The previous focus checking methods by J. Daugman [3] and Wei [17] do not well 
grasp high frequency bands caused by the fine textures of iris image, and especially 
the method by J. Daugman takes much processing time (15ms in 300 MHz RISC 
processor) due to the large sized kernel. In order to solve such problems, we propose 
new (5 5) pixels sized convolution kernel as shown in Fig. 2. As in J. Daugman 
method, the summated focus value by convolution kernel is passed through a  
compressive non-linearity of the form: f(x) = 100·x2/(x2+c2), which can make a nor-
malized focus score belong to the range of 0 to 100 [3]. Here, x is the total power 
spectrum measured by the (5 5) pixels convolution kernel as shown in Fig. 2. 

 

Fig. 2. The proposed (5×5) convolution kernel to measure focus score  

In order to compare the performance of the Daugman’s [3] and Wei’s [17] convolu-
tion kernel to that of the proposed (5 5) pixels kernel, we inspected the 2-D power 
spectrum of each method. When the range of frequency is from 0 to |3.3| (in low fre-
quency range), the cumulated amount by the Daugman’s or Wei’s convolution kernel is 
greater than that by the proposed (5 5) pixels kernel. However, this range represents 
low frequency components which are contained in an image. On the other hand, when 
the range of frequency is from |3.3| to |6.6| or from |6.6| to |10|, the cumulated amount by 
the proposed (5 5) pixels convolution kernel is greater than that Daugman’s or Wei’s 
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convolution kernel. This range represents mid and high frequency components which 
are contained in an image. Therefore, the ability of passing the mid or high frequency 
component by the proposed (5 5) pixels convolution kernel is much better than that 
by Daugman’s or Wei’s convolution kernel. So, we can know our proposed convolu-
tion kernel can detect high frequency much better than previous convolution kernel. 
For the next performance comparison test, we have produced artificially blurred iris 
image from CASIA iris database [12] by Gaussian mask with various radius. In addi-
tion, we measured the focus score according to the degree of blurring. In general, if 
the curve of this graph has the shape that the slope near a focusing point and that in 
the blurred region are maintained to be steep, it is reported that the focusing algorithm 
shows good performance [7]. That is because in case that the slope is steep, the focus 
lens can reach the focused position fast and accurately. In addition, in case that the 
slope in the blurred region is also steep, the focus lens can determine its movement 
direction easily [7]. The proposed (5 5) pixels convolution kernel is more steep than 
the Daugman’s or Wei’s convolution kernel and we can know the focusing perform-
ance of our method is better than Daugman’s or Wei’s one. 

For the third test, we compare the performance based on the convolved image in 
special domain by Daugman’s, Wei’s and proposed (5 5) pixels kernel. From that, 
we can know that the proposed kernel makes greater difference between the focused 
and defocused iris image than that by Daugman’s and Wei’s methods. That means 
that our focus checking method can discriminate the focused and defocused iris image 
much better than the previous ones. 

For the last performance comparison test, we compared theoretically execution 
time by checking the total multiplication count. With the Daugman’s (8 8) pixels 
convolution kernel, the convolution value is calculated per every fourth row and 
fourth column in the iris image [3]. Therefore the total multiplication count is 
1,210,944(= 8 8 159(the number of kernel movement steps in the X direc-
tion) 119(that in the Y direction)) in the image of size (640 480 pixels). With the 
Wei’s and proposed (5 5) pixels convolution kernels, the convolution value is calcu-
lated per every third row and third column. Therefore the total multiplication count is 
842,700(=5 5 212(the number of kernel movement steps in the X direc-
tion) 159(that in the Y direction)) in the image of size (640 480 pixels). So we can 
know the Wei’s  and proposed (5 5) pixels convolution kernels take less processing 
time than the Daugman’s (8 8) pixels kernel. 

2.3   Enhanced Focus Assessment Method Considering Eyelash 

As mentioned before, because we use (5 5) pixels convolution kernel for focus 
checking of iris image, we can reduce the effect of eyelash or eye wrinkle for calculat-
ing accurate focus score. However, there is still room for the performance of focus 
checking to be affected by eyelashes which are contained in the iris image. Because 
the eyelashes are high frequency components, the iris image containing many eye-
lashes has higher focus score than containing few eyelashes.  Also, because there 
exists Z distance disparity between iris surface and eyelashes, it is possible to be 
wrongly determined that the iris image is focused due to eyelashes even though the 
iris region is defocused. In addition, it is possible to be wrongly determined that the 
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iris image is defocused due to eyelashes even though the iris region is focused. To 
overcome those problems, we propose the enhanced focus assessment method exclud-
ing eyelashes detected by proposed eyelash detection algorithm. 

In previous works, the eyelash detection algorithm was proposed by Kong [13]. 
This algorithm uses 1-D Gabor filter for detecting separable eyelash and the variance 
of intensity in the window of size (5 5) for detecting multiple eyelashes[13]. How-
ever, this algorithm does not use the characteristics of continuous connection of  
eyelash and does not show good performance of detecting eyelash. Therefore, we 
propose new eyelash detection algorithm using the characteristics of continuous con-
nection of eyelash points. In our proposed eyelash detection algorithm, eyelashes are 
also classified into two types. One is a separable eyelash which is defined that an 
eyelash is easy to distinguish from other eyelashes. Another is multiple eyelashes 
which are defined that a lot of eyelashes are overlapped. Our proposed algorithm uses 
local window and adaptive threshold based on the measured focus value for detecting 
multiple eyelashes. And we also use convolution kernel such as eyelash detecting 
mask for detecting a separable eyelash. In order to detect eyelash, we firstly locate the 
iris region by circular edge detection algorithm From that, we can obtain the center 
position and radius of both pupil and iris region [3]. Because eyelid is the starting 
position of eyelashes in general, detecting eyelid is very significant for detecting ac-
curate eyelash region. In previous works on eyelid detection, Deng proposed the 
method by region-based deformable template [14]. In this case, the deformable tem-
plate is used for detecting entire eye, so it takes much processing time. To overcome 
such problem and detect only upper & lower eyelid, we extract the eyelid candidate 
position by local derivative mask and detect the eyelid region by curve fitting using 
two parabolic templates [3]. If iris region is overlapped by eyelid, the detected eyelid 
area becomes the starting position of eyelashes. However, if not, upper and outer 
boundary of the iris becomes the starting position of eyelashes. 

From the detected iris, pupil and eyelid position, we can define the eyelash candi-
date region as shown in Fig. 3 and detect the eyelash by using above mentioned 
method. Then, the focus score is measured again (by proposed (5 5) pixels convolu-
tion kernel) in iris region excluding detected eyelashes. Because the size of the iris is 
different per persons, we use the normalized total power spectrum divided by the 
calculated count of (5 5) convolution kernels for focus score. 

2.4   The Iris Image Restoration  

In the frequency domain, conventional defocused image is represented as Eq. (1). 

 
(1) 

where O(u,v) is the Fourier transform of the blurred iris image by defocusing, H(u,v) 
is that of the 2-D PSF which causes blurring, I(u,v) is that of the original clear  
(focused) image, and N(u,v) is that of noise [15]. From that, we can obtain the original 
clear (focused) image (I(u,v) ) by Eq.(2) based on image restoration algorithm if we 
do not consider the noise term (N(u,v) ). To consider the noise term in Eq.(2), we 
should use an conventional iterated method for iris image restoration, which takes 
much processing time and it cannot be used for real-time iris image restoration.. 
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So, we do not include N(u,v) by reducing it by (3 3) sized Gaussian filter, be-
cause N(u,v) is very smaller than H(u,v) or I(u, v) as shown in Eq. (2). 
 

O(u, v) = I(u, v)•H(u, v) + N(u, v)   (by (3 3) sized Gaussian filtering (G(u, v)) 
 O(u, v) •G(u, v) = I(u, v)•H(u, v) •G(u, v)   ( N(u, v) •G(u, v) 0) 

 

(2) 

where Î(u,v) is the Fourier transform of the restored image, O(u,v) is that of the 
blurred image, and H(u,v) is that of the 2-D PSF which causes blurring. c is constant. 
In our experiment, c is 0.05. Then, we restore defocused iris image with inverse filter 
using measured focus score as shown in Fig. 1. In order to perform the inverse filter-
ing, we have to estimate the PSF. There are three conventional approaches to estimate 
the PSF for image restoration, which are the methods by observation, experiment and 
mathematical modeling [15]. It is reported that the iris pattern has the random shape 
and the mathematical modeling of the PSF for iris blurring is very difficult, conse-
quently. So, we choose the method based on observation and experiment. From that, 
we can roughly estimate the point-spread function of iris pattern based on training of 
iris samples. As mentioned above, the degree of blurring is increased in proportion to 
the Z position farther from DOF region [3]. Because we can obtain the information 
about the degree of blurring by the measured focus score (as mentioned in 2.2 and 
2.3), the variance value and filter size of the point-spread function are determined by 
the focus score which is measured by proposed focus checking method.  

3   Experimental Results 

We firstly tested the performance of proposed eyelash detection algorithm (as men-
tioned in section 2.3) with the CASIA database [12]. The CASIA database has 756 
iris images with size of (340 280) pixels from 108 eyes of 80 subjects. Fig. 3 is 
some examples of our proposed eyelash detection result. 

In order to know the accuracy of proposed eyelash detection algorithm, we calcu-
lated FAR (False Acceptance error Rate for accepting non-eyelash region as eyelash 
region) and FRR (False Rejection error Rate for rejecting eyelash region as non-
eyelash region). We have calculated FAR and FRR with the CASIA database accord-
ing to the percentage of eyelash as shown in Table. 1. False rejection cases frequently 
happen where eyelashes are across, and where a part of eyelashes are blurred. 

Because our proposed eyelash detection algorithm uses adaptive criterion accord-
ing to focus score, it is possible to detect eyelashes in blurred iris image. When we 
tested our proposed eyelash detection algorithm on an Intel Pentium-4 2.4 GHz proc-
essor, the execution time was 6ms on average. 

In order to test the focus assessment method considering eyelash, we firstly classi-
fied CASIA iris images into that including eyelashes more than 10% or less and pro-
duced the blurred iris images by Gaussian mask with various radius. 
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                                                     (a)                        (b) 

Fig. 3. The examples of our proposed eyelash detection result: (a) the searching region for 
eyelash detection (b) the detected eyelashes  

Table 1. The FAR and FRR vs. percentages of eyelash included in eyelash searching box 

Detection error rate Percentages of eyelash included in eyelash 
searching box (%) 

FRR (%) FAR (%) 

0 ~ 5 2.23 2.05 
5 ~ 10 2.79 1.98 

more than 10 2.71 2.34 
 

We detected eyelashes with proposed eyelash detection algorithm and then we 
measured focus score by proposed (5 5) pixels convolution kernel in iris region 
excluding the eyelashes. So, we are able to obtain the result that the focusing slope of 
the iris image which contains much eyelashes (more than 10%) is similar to that 
which contains few eyelashes (less than 10%). From the experiment, we can know 
that the performance of our proposed focus assessment method is not affected by 
eyelashes which are contained in the iris image.  We also tested the performance of 
our focusing algorithm based on FAR and FRR. FAR is the error rate of accepting 
bad focused iris image as good focused one and FRR is vice versa. Experimental 
results showed that FAR and FRR was 0.1%, respectively. 

We have also tested our iris image restoration algorithm with iris images of the 
CASIA Database [12]. In the first experiment, we have produced the blurred iris images 
by Gaussian mask with radius of 2.5 pixels. Then we also restored iris images from 
blurred iris images by using the proposed iris image restoration as shown in Fig. 4. 

In order to evaluate the performance of our restoration method, we measured the 
pixel RMS error. The RMS error between blurred images and focused original ones 
was 3.43 on average, and that between restored images and focused original ones was 
3.12 on average. The performance is enhanced compared to that of previous work [18]. 
That is because the focus checking performance considering eyelash is enhanced com-
pared to previous work and the PSF modeling becomes more accurate, consequently. 
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Fig. 4. The examples of iris image restoration results (a) original image (b) blurred image (c) 
restored image 

The restored iris images showed lower RMS error than the blurred iris image. In 
the second experiment, we have tested the recognition performance of iris images 
with our iris image restoration algorithm. We had 648 authentic tests and 69,338 im-
poster tests from CASIA database. First, we enrolled the focused original iris image in 
the iris recognition system with the Gabor filter having the frequency of /16 and /8. 
After that, we computed the hamming distance between the enrolled iris image which 
is focused and the blurred one or the restored one. The hamming distance between the 
enrolled images which are focused and the blurred ones was 0.308 on average. In 
addition, the hamming distance between the enrolled images which are focused and 
the restored ones was 0.071 on average. The restored iris images show lower ham-
ming distance than the blurred iris images. Also, some blurred iris images show the 
false rejection error (the error rate of rejecting the genuine iris as the imposter), 
whereas the restored iris images do not. From that, we can know that the restored iris 
images contain almost same iris pattern to that of the original iris images. The false 
acceptance error cases do not happen in any case. 

In the third experiment, we have tested the total recognition time with the BM-
ET100 made by Panasonic [5] according to user’s initial Z distance. We measured the 
total recognition time of the total 50 persons (each person tries to recognize 5 times) 
according to initial Z distance. The depth of field is increased with the proposed iris 
image restoration algorithm. Consequently, the original operating range of the BM-
ET100 is 48-53cm, but in case of using our iris image restoration algorithm it be-
comes 46-56cm. The normal approaching speed of users is 5cm/sec ± 2 in order to 
locate the eye in the operating range, which is measured by position sensing device 
[16]. The recognition time with our iris image restoration algorithm is 0.924 sec on 
average and it is reduced as much as 400 ms compared to that without restoration 
algorithm. In the fourth experiment, we have measured the execution time of our 
algorithm on an Intel Pentium-4 2.4 GHz processor. The execution time for checking 
focus score was 28ms, and that for iris image restoration was 90ms. Therefore, total 
execution time was 118ms. We have considered that our proposed algorithm would be 
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used on mobile devices. So, we have measured the execution time of our algorithm on 
the PDA with Intel PXA270 624 MHz processor. Experimental results showed that 
the processing time was less than 2.3 second. 

4   Conclusion 

We have proposed iris image restoration which can overcome the limitation of the 
DOF of the optics. In the experimental result, the DOF could be extended from 48-
53cm to 46-56cm with BM-ET100. Also, we could reduce total recognition time as 
much as about 400ms with proposed iris image restoration. In case that an iris image 
contains much eyelashes, focus assessment method has the problem that wrong focus 
score is measured. To overcome such problem, we measured focus score in iris region 
excluding eyelashes detected by proposed eyelash detection algorithm. As a result, the 
performance of proposed focus assessment method was not affected by eyelashes.  

Our proposed algorithm took much execution time on the PDA with Intel PXA270 
624 MHz processor, because the execution for both the FFT and IFFT took 2 seconds, 
respectively. To overcome such problem, we plan to research de-convolution in the 
spatial domain without the FFT/IFFT method in future works. In this paper, we sup-
pose that the 2-D PSF is spatially invariant in an iris image. However, it is often the 
case that 2-D PSF is spatially variant even in an image. Therefore we need to study 
the method using variant 2-D PSF in future works. 
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Abstract. A new approach to comparison of dynamic meshes based on Haus-
dorff distance is presented along with examples of application of such metric. 
The technique presented is based on representation of a 3D dynamic mesh by a 
4D static tetrahedral mesh. Issues concerning space-time relations, mesh consis-
tency and distance computation are addressed, yielding a fully applicable  
algorithm. Necessary speedup techniques are also discussed in detail and many 
possible applications of the proposed metric are outlined. 

1   Introduction 

Dynamic mesh extraction from multicamera recordings of real scenes has become 
a common task of computer graphics of these days. Algorithms running in real time 
are being developed and used in common practice, producing high quality dynamic 
meshes that can be used for all kinds of purposes, from 3D television to elaborate 
experimental techniques requiring exact measurement. 

However, today’s hardware is still far from being powerful enough to handle the 
produced data in the raw form. Limited bandwidth is usually the main bottleneck, but 
also processing power and memory requirements may become difficult to meet. 

Various techniques of data rate reduction of dynamic meshes are already appear-
ing, usually involving some kind of lossy value compression scheme combined with 
some elaborate prediction technique [3,7,5]. One can also expect that there will ap-
pear techniques of geometry decimation of the dynamic mesh, similar to algorithms 
used for static mesh simplification [8]. 

The purpose of this contribution is to provide an objective methodology of compar-
ing dynamic meshes. Such technique will be needed in order to compare and evaluate 
the compression methods and we will show that it may be used for other purposes as 
well. 

2   Problem definition 

The problem we will solve is defined as follows: Let there be given a set { }N
kkMS 1==  

of dynamic meshes. A dynamic mesh M is a sequence of triangle meshes of constant 
connectivity, which may be produced by some extraction technique [11,12]. We want 
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to define a function d(M1, M2) that will be a metric in the space of dynamic meshes. 
Namely, we expect the following properties: 

 
d(M1, M2) = 0  M1=M2 
d(M1, M2) = d(M2, M1) 
d(M1, M2) < d(M1, M3)  A human observer sees M2 as “more similar” to 
                                           M1 than to M3 

(1) 

Of these conditions is of course the last one the hardest to achieve. 
In the past, research was done in the field of comparing static triangle 

meshes [2,10], the basic idea is quite simple and is based on the definition of Haus-
dorff distance of two objects. The Hausdorff distance is defined as follows: 

Let’s have two static triangle meshes, m1 and m2. Distance of a point to a mesh is 
defined as a minimum of Euclidean distances of the given point p and all points pm of 
the mesh m: 

( )m
mp

mp ppd
m

−=
∈∀

min,  (2) 

From this one can define a one-way (non-symmetric) distance of a mesh m1 to 
a mesh m2: 

( )
2

1
21 ,, max' mp

mp
mm m

m

dd
∈∀

=  (3) 

A symmetric Hausdorff distance is then defined as 

( )
12122121 ,,,, ','max mmmmmmmm dddd ==  (4) 

In the implementations of the Hausdorff distance evaluators both meshes are usu-
ally sampled in order to gain distance of a point to a mesh (usually some elaborate 
point to triangle distance test is used) and various acceleration techniques (space sub-
divisions etc.) are exploited in order to reduce the computational complexity that is 
quadratic in the raw form of the definition. 

Our approach is to adopt the Hausdorff distance and use it for comparison of dy-
namic meshes that will be represented by static objects on 4D. In order to do so, we 
will have to address several problems that arise with the higher dimension of the 
problem. 

3   Human Perception of Time Considerations 

The Hausdorff distance measurement is based on the concept of the Euclidean dis-
tance. In 3D space there is no problem with units as long as the same units are used 
for all axes. However, in 4D we cannot use equal units, as one of the dimensions is 
time. Therefore we must answer the question which units should be used. 

The key to the answer is the definition of the desired metric. It implies, that equal 
distance on each axis should cause equal disturbance in the mesh. It is important to 
realize that human perception of time is quite absolute and it is actually the spatial 
metric that causes problems. In computer graphics modeling it is quite usual to work 
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with vaguely defined spatial units, while time is measured absolutely. Therefore, the 
question actually is “what spatial distance is equal to the given time span in the terms 
of human perception”. 

The problem is that distance of one unit may cause distance of half a screen in one 
model, as well as being barely distinguishable in some other model. One solution 
would be to consider the distance of point projections on human retina, but this dis-
tance also depends on the size of used screen. 

Therefore we use a “relative distance”, defined as distance in the model units di-
vided by the size of the model’s body diagonal. The task now is to find the coefficient 
alpha that will relate the relative distance to time units. In order to do so, we will have 
to perform subjective testing, but for the time of being we can do following considera-
tions: 

1. time span of 1/100s is almost unrecognizable for a human observer, while spatial 
shifts of 10% is on the limit of acceptability, therefore we expect alpha to be larger 
than 0.01/0.1 = 0.1 

2. time spans of units of seconds are on the limit of acceptability, while spatial shift 
of 0.1% is almost unrecognizable, therefore we expect alpha to be smaller than 
1/0.001 = 1000 

Saying that, we can guess the value of the alpha coefficient to be about 10, i.e. time 
span of 100ms is equal to spatial shift of 1%. 

4   Dynamic Mesh as a Static 4D Object  

We have mentioned that in order to use the Hausdorff distance concept we have to 
represent the dynamic mesh as a static object in 4D. As static mesh in 3D consists of 
triangles, which are elements one-dimension lower than the dimension of the 3D 
space, in 4D we will represent the dynamic mesh by a static tetrahedral mesh. Note 
that tetrahedron is not a simplex in 4D.  

We can extract one frame from such mesh by cutting it by a plane t=const, because 
a tetrahedron cut by a plane gives one or two triangles. The procedure that converts 
a dynamic triangle mesh into a 4D tetrahedral mesh is based on the idea, that a trian-
gle in two consequent frames forms a prism in 4D (see figure 1). The process of con-
version is therefore simply a process of breaking such prisms into tetrahedra. Each 
prism can be divided into three tetrahedra. 

However, we must be very careful about the breaking. One can see that the sides of 
the prisms are not planar, and therefore we must explicitly make sure that the mesh 
we are creating will be continuous. Namely, we must make sure that a side diagonal 
in neighboring prisms is always equal. In order to do so, we propose the following 
subdivision procedure: 

1. find a vertex on the base of the prism with lowest index. Create a tetrahedron that 
is formed by the whole top of the prism and this vertex. 

2. find a vertex on the base of the prism with the largest index. Create a tetrahedron 
that is formed by the whole base of the prism and the vertex above the vertex with 
largest index. 
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3. create a tetrahedron formed by remaining two vertices on the base and two vertices 
on the top of the prism. 

Because the relations of largest/lowest index are kept on each face, one can see that 
the created tetrahedral mesh is consistent. 

 

 
a)   b)   c) 

Fig. 1. Moving triangle as a 4D prism (green is the triangle in time t, blue is the triangle in time 
t+1), two possible diagonals on a common side, two tetrahedra used for consistent subdivision 

5   Point to Tetrahedron Distance Test 

Our distance algorithm is based on the point to tetrahedron distance test. A distance to 
a tetrahedron may be in fact distance to one of following entities: 

1. distance to the body of the tetrahedron. Is only possible when the orthogonal pro-
jection of the point lies within the tetrahedron 

2. distance to a face of the tetrahedron. Is only possible when the orthogonal projec-
tion of the point to the plane of the face lies on the face 

3. distance to an edge of the tetrahedron. Is only possible when the orthogonal projec-
tion of the point to the line of the face lies on the edge 

4. distance to a vertex of the tetrahedron 

Of these distances we must choose the lowest that meets its projection conditions. 

5.1   Distance to the Body of a Tetrahedron 

A tetrahedron is defined by three 4D vectors of Euclidean coordinates, defined as 
follows: 

v0 = T1-T0 
v1 = T2-T0 
v2 = T3-T0 

(5) 
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Therefore a tetrahedron in 4D has a normal vector n: 

n = v0 x v1 x v2 (6) 

Note that we are using cross product that is a ternary operator in 4D. 
Any point P can now be expressed as follows: 

ndvcvbvaTP +++=− 3210  (7) 

We can find the combination coefficients by solving a 4x4 set of linear equations, 
for example using Sarus rule. The projection to the tetrahedron space lies within the 
tetrahedron if following conditions hold: 

( ) 1,0,0,0 ≤++≥≥≥ cbacba  (8) 

In such case the distance can be expressed as d*|n|. 

5.2   Distance to a Face of a Tetrahedron 

The key feature one must consider is that a face in 4D (and a plane in general) has not 
a uniquely defined normal. Therefore, we must find a normal that is orthogonal to the 
face, and that passes through the evaluated point P. In order to do so, we can use the 
following procedure: 

Let’s have T0, T1 and T2 vertices that define a face of the tetrahedron, and 
a point P. 

v0 = T1-T0 

v1 = T2-T0 
p = P-T0 

(9) 

we can now find a vector b that is orthogonal to all three vectors by using cross 
product 

B = v0 x v1 x p (10) 

A normal vector n that can be used for the projection can be found as 

N = v0 x v1 x b (11) 

Now we can use a similar procedure to find where the projection lies. We can write 

p = a*v0 + b*v1 + c*b + d*n (12) 

where we expect the c coefficient to be zero. If now 0,0 ≥≥ ba and ( ) 1≤+ ba  then 

the projection lies on the face, and the distance is d*|n|. 

5.3   Distance to an Edge of a Tetrahedron 

For the distance of an edge one can use the properties of dot product that hold in 4D 
space. Let’s define 

v1 = E1-E0 
v2 = P-E0 

(13) 
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It is well known that the line of the edge can be written as E0+t*v1.  
In order to determine the distance, we would like to find the t parameter of 

an orthogonal projection of P to the line. One can derive that t can be determined as 
follows: 

t = (v1.v2)/(v1.v1) (14) 

From the known value of t we can easily determine whether the projection lies on the 
edge (0<=t<=1) and eventually express the distance as 

2.2
2

1.1 vvtvvd −=  (15) 

6   Acceleration Techniques 

The distance tests shown above work for all kinds of tetrahedra (i.e. including obtuse 
tetrahedra), but may be very slow when each tested point is to be evaluated against 
each tetrahedron of the other mesh. 

Our first acceleration technique is based on the following observation: A point can 
be projected to a face only if it is projected on at least two of the edges that define the 
face (for obtuse faces). Based on this idea we evaluate all edges before the faces. 
During the evaluation we increase a counter for each face if a point is projected to 
an edge that incides with the face (two counters representing two incident faces are 
increased whenever a point is found to be projected on an edge). A face is then only 
evaluated if its counter is larger or equal to two. 

From the previous equations one can see, that evaluating an edge consists only of 
two dot products, one division and two comparisons, while evaluating the face in-
cludes solving a 4x4 set of linear equations (12). Moreover, the case when a point is 
projected to a face of a tetrahedron is a rare one. Therefore this simple technique 
provides a significant speedup of more than 50%. A further speedup can be achieved 
by postponing the square root operation that is part of each distance evaluation, 
to the latest possible moment, while keeping the square distances.  

We are also utilizing spatial subdivision techniques in order to reduce the computa-
tional complexity. In a preprocessing stage we create a 4D grid of cells, where each 
cell holds a list of tetrahedra that intersect with the cell. 

The usual approach determining which cells are intersected by some entity is to 
find a bounding box of the entity and mark all cells of the bounding box. Because the 
grid we are using is 4D, this would lead to unnecessary marking of many empty cells. 
Therefore, we have developed an improved technique based on the following obser-
vation: Each tetrahedron has its uniquely defined 3D space with a normal. This space 
is a hyperplane in 4D that divides the time-space into parts “above” and “below”. We 
can evaluate each corner of a cell according to whether it is above or below the tetra-
hedron (each cell has 16 corners, it can be imagined as a hypercube). Only cells that 
are neither completely below nor completely above the tetrahedron can be intersected 
by the tetrahedron. In our experiments, including all the cells of a bounding box of a 
tetrahedron, have lead to an average of approximately 35 cells per tetrahedron (for 
given tetrahedral mesh and grid density), while keeping only the cells that satisfy our 
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condition has reduced this number to cca. 8 cells per tetrahedron and led to a speedup 
of about 30% (including the preprocessing stage).  

In the evaluation stage, a cell that contains the evaluated point is found and 
searched for possible closest tetrahedron. Further cells are subsequently evaluated 
only if they can provide a tetrahedron that is closer than the already found one, 
i.e. only if the closest point of the cell is closer than the current distance. This tech-
nique vastly improves the performance, depending on the density of the grid. 

We have also included precomputation of reused values and some further im-
provements (usage tables that show which faces and edges were already evaluated for 
a given point etc.). Our implementation is capable of evaluating about 180 V-M dis-
tances per second, where the mesh consists of about 120 000 tetrahedra. This allows 
us to compute distances of moderately complex animations within minutes, larger 
animations still must be evaluated offline (hours of processing time are needed). 

7   Applications 

We have already shown the main application of the proposed metric, it is comparison 
of dynamic meshes decimated by various methods, but it is not the only field where 
comparison of animations can be used. 

Another natural area where this technique can be used is artificial intelligence, 
where the metric can be used to recognize various actions and to respond to them. In 
our experiments we have compared two recordings of a human jump [11,12], and we 
have found that the distance of one jump sequence to the other is significantly smaller 
than the distance of a jump to the sequence that represents the human walking. Each 
frame of the human jump sequence consists of about 30 000 triangles, and we have 
compared 50 frame subsets of the sequence. 

Animation comparisons
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36 L. Vasa and V. Skala 

The figure 2 shows the histogram of the measured distances for the above  
mentioned experiments. In order to compare longer time spans we have compared 
tetrahedral meshes that consist of only every other mesh of the animation, effectively 
reducing the frame-rate of the animation to one half of its original value.  

Distance distribution for half/full framerate
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Fig. 3. Full/half frame-rate experiments 

Our other experiment shows that such frame-rate reduction is possible, because it 
does not disturb the characteristics of the distribution of the error. Figure 3 shows the 
relative histogram of distance values for full frame-rate comparison and half frame-
rate comparison of equal time span of an animation. The average difference is less 
than 4%, and the half-frame-rate curve keeps all the characteristics of the full frame 
rate. However, this is only possible when animation recognition is considered. The 
difference of 4% may be unacceptable when exact comparison for decimation evalua-
tion is considered. 

Another application is obvious from the previous one – the animation metric can 
be used to align animations in both time and space at the same time. This would re-
quire some slight changes in the software in order to look for average distance vector 
rather than maximum distance size but this can be done very easily. 

One can also easily imagine applications like self-training, where the user would 
try to fit with her movements to some predefined pattern. Our method can then use 
rendering of the distance of the movements represented by surface colors that would 
tell the trainee where and when exactly she was following the pattern well or not. This 
technique can be used in wide range of areas from dance up to surgery training. 
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8   Future Work 

The proposed algorithm is still computationally expensive; therefore we will put ef-
fort into acceleration techniques that would make its use easier and more comfortable. 

We would also like to further develop the idea of representing a dynamic mesh by 
a static mesh in 4D and propose a decimation method based on this representation and 
some tetrahedral mesh decimation algorithm provided with appropriate criteria. 
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Abstract. A geometric framework for finding intrinsic correspondence
between animated 3D faces is presented. We model facial expressions as
isometries of the facial surface and find the correspondence between two
faces as the minimum-distortion mapping. Generalized multidimensional
scaling is used for this goal. We apply our approach to texture mapping
onto 3D video, expression exaggeration and morphing between faces.

Keywords: isometric embedding, multidimensional scaling, correspon-
dence problem, texture mapping, face animation, expression exaggera-
tion, morphing.

1 Introduction

Finding correspondence between human faces is a key problem in numerous prob-
lems on the border between computer graphics and computer vision, including:
facial animation [1] and modelling [2–4], caricaturization and expression exagger-
ation [5], cross-parametrization [6, 7], texture mapping [6] and morphing [8, 9].
In the motion pictures industry, one of the challenges is the creation of visually-
realistic animated human faces. The rapid development of 3D real-time video
acquisition techniques [10] opens a new way to create a synthetic character, by
scanning an actor and replacing his or her facial texture with a virtual one, au-
tomatically mapping a single image onto a 3D video sequence. We call the effect
achieved in this way the “virtual makeup”.

The common denominator of the above applications is the correspondence
problem, i.e. the need to identify the same points in two different instances of a
single face (e.g. deformed by facial expressions) or on two different faces. Specif-
ically, we consider the problem of correspondence between 3D facial surfaces,
which appears to be significantly harder than its 2D counterpart. Unlike syn-
thetic face animation [1], where the correspondence between meshes and textures
is known, in our case the 3D sequence is acquired by a range sensor and therefore,
the correspondence is not readily available.

In 3D morphing, the correspondence is usually established by finding a com-
mon parametrization domain for the surfaces. Such parametrizations can be
constructed using a set of fiducial points, which, in most cases, must be selected
manually [9]. A parametrization of faces that is common to all expressions has

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 38–47, 2006.
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Fig. 1. Example of a 3D video sequence of an articulated face

been proposed in [11, 4]. A hybrid method based on fitting 2D facial images to
a deformable 3D model of the face was proposed in [2, 3]. In [12], it was empir-
ically shown that natural facial expressions can be considered as isometries of
the facial surface. Multidimensional scaling (MDS) [13] was then used to con-
struct an intrinsic geometric representation of the face for expression-invariant
face recognition. Here, we adopt the isometric model to establish correspondence
by finding the “most isometric” mapping between two facial surfaces. Our ap-
proach is based on a numerical procedure similar to MDS, allowing to embed
one surface into another. We refer to this method as the generalized MDS, or
GMDS for short [14].

This paper consists of five sections. In Section 2, we present the isometric
model of facial expressions. Section 3 describes the GMDS problem for finding
correspondence between facial surfaces and deals with its numerical implementa-
tion. In Section 4, we show some applications of GMDS to a number of problems
related to face animation. Section 5 concludes the paper.

2 Isometric Model

Consider a 3D video sequence of an articulated face, acquired by real-time 3D
scanner. We can think of the video as of a sequence of smooth compact connected
two-dimensional Riemannian surfaces, denoted by {S0, S1, ...}. The geodesic dis-
tances (lengths of the shortest paths) dSt : St × St → R on St are induced
by the corresponding Riemannian metrics. These distances define the intrinsic
geometry of the surface. The extrinsic geometry is captured by the vector field
st : St �→ R

3, representing the Euclidean coordinates of the surface points. We
call S0 the reference frame or the reference surface.

Our goal is to find the correspondence between S0 and St, represented by
a bijective mapping ϕt : S0 → St. When only the geometry is available, this
is a very challenging problem. Theoretically, the mappings {ϕ1, ϕ2, ...} can be
estimated by finding correspondence between some fiducial points or features
[9]. Yet, the main limitation of feature-based approaches is the fact that they
require a precise feature detector. Unfortunately, the number of features that can
be robustly detected and tracked using facial surface geometry is usually small.
The geometry of the facial surface contains mostly low-frequency information,
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while feature detection usually requires high-frequency information. A few points
such as the eyes and the nose tip, can be detected sufficiently accurately based
on the surface curvature. This implies that the correspondence is available only
between a sparse set of points. Alternatively, dense correspondence can be found
using optical flow applied to the texture, as done by Blanz et al. [4]. However,
this approach requires the texture information, which is not always available.

In [12], we showed empirically in the context of 3D face recognition that
the deformations of a face due to natural expressions can be approximated by
isometries (distance preserving transformations). Under this assumption, called
here the isometric model, all instances of the facial surface in our video are
isometric, i.e. there exists a sequence of bijective mappings {ϕ1, ϕ2, ...}; ϕt :
S0 → St such that

dS0(s1, s2) = dSt(ϕt(s1), ϕt(s2)), (1)

for all s1, s2 ∈ S0. In practice, a genuine isometry between two surfaces does not
exist, but can be approximated by finding a mapping that distorts the geodesic
distances the least. Our claim is that such a near-isometric mapping establishes
a correspondence between St and S0. In the following, we will write ϕt, implying
the correspondence found in this manner.

Practice shows that the surfaces need not to be necessarily isometric in order
for the minimum-distortion mapping to be a good correspondence. This is due to
the fact that in a broad sense, all human faces have similar geometry. Thinking
of two faces as of flexible rubber masks, the correspondence problem is that of
putting one mask onto the other, while trying to stretch it as less as possible. It
is obvious that in most cases, the geometric features (like nose, forehead, mouth,
etc.) of the two masks will coincide. A recent breakthrough in surgical face
transplantation reinforces this claim. Consequently, given two faces of different
subjects, we can still use the same principle to find correspondence between
them. We exemplify this idea in Section 4.3.

3 Generalized Multidimensional Scaling

Let us be given the reference frame S0 and another frame St. Our goal is to find
ϕt as the most isometric mapping between S0 and St, i.e., a mapping that min-
imizes the distortion of the geodesic distances. The isometric model guarantees
that there exists ϕt with zero or at least near-zero distortion. Since we deal with
discrete surfaces, we assume St to be sampled at the points {s1, ..., sNt} and rep-
resented as a triangular mesh. For notation convenience, we write St, intending
its polyhedral approximation. We denote by Δt = (dSt(si, sj)) the matrix of all
pairwise geodesic distances between the surface samples, computed numerically
using, for example, the fast marching method (FMM) [15]. We are looking for a
mapping ϕt : {s1, ..., sN0} ⊂ S0 → St, such that dS0(si, sj) is as close as possible
to dSt(ϕ(si), ϕ(sj)) for all (i, j) ∈ P ⊆ {1, ..., N0} × {1, ..., N0} (some distances
must be excluded; see Section 3.1). We refer to such ϕt as partial embedding of
S0 into St. Note that (St, dSt) is assumed continuous here, as ϕt(si) can be any
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point on the polyhedron St, i.e., can fall between the samples. In practice, we
have to approximate the values of dSt from ({s1, ..., sNt} ⊂ St,Δt).

The partial embedding ϕt can be computed by minimizing the generalized
stress [16],

σ(s′1, ..., s
′
N0

) =
N0∑
i=1

N0∑
j=i+1

wij

(
dSt(s

′
i, s

′
j) − dS0(si, sj)

)2
. (2)

Here, wij = 1 if (i, j) ∈ P and 0 otherwise, and P denotes the set of pairs
of points which are included into the stress computation. The optimization is
performed directly on the images s′i = ϕt(si), in an MDS-like spirit. The optimal
solution

{s′1, ..., s
′
N0

} = argmin
s′
1,...,s′

N0

σ(s′1, ..., s
′
N0

), (3)

establishes a correspondence between the given N0 points {s1, ..., sN0} ⊂ S0 and
N0 points {ϕt(s1), ..., ϕt(sN0)} on the polyhedron St. In this way, we obtain
a correspondence between a dense set of points, since N0 can be as large as
necessary. This is opposed to methods based on fiducial points, where the number
of points is usually limited. Also note that the mapping we find is {s1, ..., sN0} →
{s′1, ..., s

′
N0

}, and it will generally be bijective.
We refer to problem (3) as the GMDS (generalized MDS). It can be thought

of as a generalization of MDS, in which the target Euclidean space is replaced
with a general triangular mesh. Since s′i may be arbitrary points between the
samples of the polyhedron St, the distances dSt between the vertices of St must be
computed. We use the three-point geodesic distance approximation, a numerical
procedure producing a computationally efficient C1-approximation for dSt and
its derivatives, interpolating their values from the matrix Δt of pairwise geodesic
distances on St [16].

The numerical solution of the GMDS problem consists of bringing the stress
(2) to a minimum over s′i represented in some parameterization domain as vectors
of coordinates ui. For example, if the surface St admits some global parameteriza-
tion, say [0, 1)2 �→ St, every point on St can be represented by u ∈ [0, 1)2. Global
parameterization is often readily available for objects acquired using many types
of range scanners. Human faces usually fall into this category.1 The minimization
algorithm starts with some initial guess u(0)

i of the points and proceeds by itera-
tively updating their locations, producing a decreasing sequence of stress values.
In our implementation, we used a gradient descent algorithm safeguarded by in-
exact linesearch (Armijo rule) [18]. The complexity of the stress and its gradient
computation is O(N2

0 ). Since N0 typically varies between tens to hundreds of
points, GMDS is computationally efficient.

1 For objects with more complicated topology, global parameterization may not exist;
in this case, we represent a point on St by the triangle index m it and a vector u of
barycentric coordinates [17] in the local coordinate system of that triangle.
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Finally, we must note that GMDS is a non-convex optimization problem, like
traditional MDS. Consequently, the use of convex optimization algorithms in
this problem is liable to local converge [13]. Nevertheless, convex optimization
is widely used in the MDS community if some precautions are taken in order
to prevent convergence to local minima. Here, we use a multiscale optimization
scheme that in practical applications shows good global convergence [16].

3.1 Selection of Weights

Expressions with open mouth do not fit into the isometric model, in which we
tacitly assumed a fixed topology of the surface. Opening the mouth creates
a “hole” in the facial surface. Resolving this problem is possible imposing a
topological constraint on the facial surface, for example, assuming the mouth to
be always open [19]. This is achieved by essentially cutting off the lip contour
in the reference frame S0, either automatically or manually (in practice, the lip
detector does not have to be very accurate).

An important issue arising after such a processing is the inconsistency of
minimal geodesics. Let S′

0 denote the reference frame after lip cropping. We
assume that the geodesic distances on S′

0 are given by the restricted metric,
dS′

0
(s1, s2) = dS0 |S′

0
(s1, s2) (this notation implies that dS′

0
(s1, s2) = dS0(s1, s2)

for all s1, s2 ∈ S′
0). However, dS′

0
is computed numerically on S′

0 and can be
inconsistent with dS0 |S′

0
. Potentially, the problem arises with minimal geodesics

that are close to the boundary ∂S′
0. Such geodesics can be substantially different

on S0 and S′
0, and the corresponding distances are therefore inconsistent. In

order to resolve this problem, define the set P of consistent distances, excluding
every pair of points (si, sj), for which the minimal geodesic passes through the
cropped region S0 \ S′

0. Particularly, we exclude in this way the distances that
would have been measured S0 across the lips on the original surface.

4 Applications

The knowledge of the intrinsic correspondence between two facial surfaces al-
lows us to perform texture mapping onto all the frames of the video sequence.
Moreover, we can also transform the extrinsic geometry of the faces, creating
an interpolation or morphing effect between the 3D frames. Finally, the same
approach can be applied to morphing between faces of different subjects.

4.1 Virtual Makeup

Our first application is the “virtual makeup” – expression-invariant mapping of
a single texture image onto a 3D video of an animated face. We first draw the
texture (represented as the field α0 : S0 �→ R

3, consisting of the R, G and B
channels) on the reference frame S0. Next, using the correspondences, we map
the texture onto the rest of the frames in the 3D video.

A scheme of the procedure is depicted in Figure 2. The reference surface S0
first undergoes cropping that removes the lips and leaves only the facial contour.
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Fig. 2. Processing stages in the virtual makeup problem (left to right): reference sur-
face; cropping and subsampling; texture mapping onto the reference surface; correspon-
dence establishment using GMDS and texture mapping onto the target surface

     

Fig. 3. Virtual makeup: a few frames from the video sequence shown in Figure 1, with
a Shrek texture image mapped using the correspondence established by GMDS

The obtained region S′
0 is subsampled using farthest point sampling, geodesic

distance between the samples are computed using FMM [15]. The distances
crossing the cropped lips region are assigned zero weights. Next, the texture α0
is drawn on the reference surface. The points on S0 are then embedded into
the target surface St using GMDS, which produces the correspondence ϕt. The
mapping ϕt is used to interpolate the texture onto the surface St, yielding a
synthetic texture αt = α0 ◦ ϕ−1

t .
We tested our virtual makeup algorithm on a real 3D video sequence of a face,

acquired by a structured light scanner at 640 × 480 spatial resolution, 3 frames
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per second (Figure 1). The lip contour in the reference frame was segmented
manually. The cropped reference frame was sampled at 100 points; all the rest
of the frames were sampled uniformly at about 3000 points. The surfaces were
triangulated using Delaunay triangulation; then, the geodesic distances were
computed using FMM [15]. The correspondence was found by embedding 100
points on S0 into St using a multiresolution optimization scheme, initialized
with 8 points at the coarsest level. A MATLAB implementation of GMDS2 was
used. Figure 3 depicts a synthetic Shrek-like character, created from the video
sequence by mapping a synthetic face texture image (drawn in Photoshop) using
our algorithm. The faces produced in this way look real and the texture alignment
is preserved even in case of strong facial expressions.

4.2 Expression Interpolation and Exaggeration

The correspondence found by means of GMDS can also be used to transform the
extrinsic geometry of the surfaces. Let St and St+1 be two adjacent frames in
the 3D video, and let ψt = ϕt+1 ◦ϕ−1

t be the correspondence between them. Let
st : St �→ R

3 and st+1 : St+1 �→ R
3 denote the extrinsic Euclidean coordinates

of St and St+1, respectively. The extrinsic geometry of the surfaces is assumed
to be at least roughly aligned by means of a rigid (Euclidean) transformation.
Three points are enough for such an alignment. In our case, this is a simple task
since the correspondence is known.

 = 0  = 0.25  = 0.5  = 0.75  = 1 

Fig. 4. Expression interpolation between two frames in the video sequence (shown
without texture to emphasize the natural look of the synthetic expressions)

We define a new surface St+λ with extrinsic coordinate given by the following
convex combination:

st+λ(s) = λst(s) + (1 − λ)st+1(ψt(s)), (4)

for all s ∈ St+λ and λ ∈ [0, 1]. The corresponding texture αt+λ is defined in
a similar manner. Varying the value of λ continuously from 0 to 1, we create
a natural interpolation between the frames St and St+1. The synthetic surfaces
obtained this way have a realistic look (Figure 4). Such an interpolation is useful,
for example, as a method of temporal super-resolution of a 3D video. Allowing
for λ < 0 or λ > 1, we can create a new, exaggerated facial expression (Figure 5).
2 Codes and demos will be published on http://tosca.cs.technion.ac.il
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Fig. 5. Expression exaggeration. First row: original expressions. Second row: exagger-
ated expressions.

4.3 Texture Substitution and Morphing Between Different Faces

Relaxing the basic assumption of the isometric model, we can use GMDS in order
to find the correspondence between two different faces. Though two different
facial surfaces are not even approximately isometric, the minimum-distortion
mapping appears to be a surprisingly good correspondence even in this case. In
our example, as S0 and S1, we took a female and a male face from the Notre
Dame database [20]. Each face was subsampled to approximately 3000 points
and triangulated. The shapes were roughly aligned. Fifty points were taken on
S0 and embedded into S1 using GMDS. The resulting correspondence ϕ1 was
then used to map the texture α0 from S0 to S1. Figure 6 shows a synthetic face
obtained by taking S1 with the texture α̃1 = α0 ◦ ϕ−1

1 (male geometry with a

Fig. 6. Texture substitution: GMDS is used to find the minumum-distortion mapping
between face S0 and S1 (by embedding S0 into S1). Using this mapping as a corre-
spondence, the texture α0 is mapped onto S1.
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Fig. 7. Morphing: the correspondence is used to transform the texture and the extrinsic
geometry of S0 into the corresponding texture and extrinsic geometry of S1

female texture). Figure 7 shows a morphing effect between S0 and S1, obtained
by interpolating the extrinsic geometry and the texture according to (4).

5 Conclusions

We presented an automatic geometric procedure for establishing dense corre-
spondence between facial surfaces. Exploiting the empirical fact that facial ex-
pressions can be modelled as isometries, our approach is based on finding the
minimum-distortion mapping between two surfaces. This mapping is computed
by a procedure similar to multidimensional scaling (GMDS). The algorithm is
computationally efficient, though currently not real-time. Our preliminary results
show that near real-time performance can be achieved by exploiting multigrid
optimization [21] and implementation on graphics processors (GPU).

Unlike feature-based methods, our approach does not require feature detec-
tion and tracking. We find correspondence between an arbitrarily dense set of
points, as opposed to feature-based methods, which are usually limited to a
small set of fiducial points that can be robustly detected and tracked. Moreover,
our approach is applicable when 2D information (texture) is not available. The
proposed method is generic and has a wide range of uses in computer graphics
and computer vision. We demonstrated some applications, including the “vir-
tual makeup” by expression-invariant texture mapping onto an animated face,
texture substitution and morphing.
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Abstract. We present a theoretical and computational framework for
matching of two-dimensional articulated shapes. Assuming that articula-
tions can be modeled as near-isometries, we show an axiomatic
construction of an articulation-invariant distance between shapes, for-
mulated as a generalized multidimensional scaling (GMDS) problem and
solved efficiently. Some numerical results demonstrating the accuracy of
our method are presented.

1 Introduction

Recognition of two-dimensional shapes (silhouettes) is an important problem
with a wide range of applications, extensively addressed in computer vision lit-
erature (see e.g. [1,2,3]). One of the main difficulties in shape recognition arises
from the fact that natural objects are non-rigid. A simplified model capturing
to some degree this flexibility is the articulated shape model, assuming that the
object is composed of rigid parts, each of which has a certain freedom to move.
Such a model appears to be applicable to many objects in nature, for example,
humans, animals, tools, etc [4].

Recently, Ling and Jacobs [5] proposed to use the inner (geodesic) distances for
recognition of articulated shapes. The main claim is that the geodesic distances
are insensitive to articulations and therefore can be used as robust descriptors
of the shape. This approach is related to previous works of Elad and Kimmel on
bending-invariant representations of 3D objects [6], in which multidimensional
scaling (MDS) was applied to the geodesic distances measured on the shape in
order to obtain its intrinsic-geometric representation.

Our current paper is strongly motivated by the study of Ling and Jacobs. Us-
ing the model presented in [5], we describe articulations as isometric (distance-
preserving) transformations of the shape. The main contribution of this paper is
an axiomatic construction of a distance that allows to discern between geometri-
cally different articulated shapes while being articulation-invariant. Our distance
is free of error introduced by approaches based on Euclidean MDS [6] and also
allows matching of partially occluded shapes. The computation of our distance is
formulated as a generalized MDS problem (GMDS) and can be solved efficiently.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 48–57, 2006.
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Fig. 1. Example of an articulated shape, consisting of four parts (black) and one joint
(gray). The geodesic distance between two points is shown in red. Note that the geodesic
distances change is bounded by the diameter of the joint.

This paper consists of five sections. In Section 2, we present the isometric
model of articulated shapes and our articulation-invariant distance. Section 3
deals with numerical computation of the distance between articulated shapes
using the GMDS. In Section 4, we present an experimental validation of our
approach. Section 5 concludes the paper.

2 Isometric Model for Articulated Shapes

Let S be a shape, represented as a compact, connected, flat two-dimensional
manifold with boundary. The metric on S is assumed to be Euclidean. Following
Ling and Jacobs [5], we represent S as a union of K disjoint parts S1, ...,SK

and L joints J1, ...,JL (Figure 1). We call such S an articulated shape. The
minimal geodesics (shortest paths) on S consist of linear segments and portions
of the boundary [5]. The geodesic distances between two points s1, s2 ∈ S are
denoted by dS(s1, s2). An articulated shape with

∑L
i=1 diamJi ≤ ε is called an

ε-articulated shape. We denote by Mε the space of all ε-articulated shapes; M

denotes M∞.
An articulation is a mapping f : S → S′ ⊂ R

2, which transforms each part
Si in a rigid manner and preserves the topology of the whole shape, such that
different parts remain disjoint. For an ε-articulated shape, articulations are ε-
isometries, i.e., have distortion

dis f ≡ sup
s1,s2∈S

|dS(s1, s2) − dQ(f(s1), f(s2))| ≤ ε. (1)

An ideal articulated shape has point joints (ε = 0) and its articulations are true
isometries. In practice, ε > 0, yet, the joints can be often assumed significantly
smaller compared to the parts [5]. We call this assumption the isometric model
of articulated shapes.

The shape S′ = S ∩ Q produced by cutting S with a planar shape Q, such
that S′ has the same topology of S is said to be a cut of S; if Q is convex, S′ is
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said to be a convex cut. Note that in general, any articulated shape can be cut of
the plane, assuming the cutting shape is sufficiently complicated. The intrinsic
geometries of S and S′ may be different in this case. However, a convex cut
appears to preserve the intrinsic geometry, in the sense that for every s1, s2 ∈ S′,
dS′(s1, s2) = dS(s1, s2).

In practical applications, articulated shapes are usually represented as discrete
binary images sampled at a finite number of points (pixels). A finite set Sr =
{s1, ..., sN} ⊂ S is said to be an r-sampling of S, if ∪N

i=1B(si, r) = S, where
B(si, r) denotes the Euclidean ball of radius r centered at si. Since the shapes
are assumed to be compact, every ε-articulated shape has a finite r-sampling for
every r > 0.

2.1 Measuring Distance Between Articulated Shapes

Comparison of articulated shapes can be performed by defining a distance dM :
M × M �→ [0, ∞). Here, we develop an axiomatic approach, requiring dM(S, Q)
to obey the following set of axioms:

A1. Articulation invariance: dM(S, f(S)) ≤ ε for all S ∈ Mε and all articulations
f of S.

A2. Dissimilarity: if dM(S1, S2) > ε, then there does not exist S ∈ Mε and two
articulations f1, f2 of S, such that S1 = f1(S) and S2 = f2(S).

A3. Partial matching: for every S ∈ Mε and its convex cut S′, dM(S, S′) = 0.
A4. Triangle inequality: for every S1, S2, S3 ∈ Mε, dM(S1, S2) + dM(S2, S3) ≥

dM(S1, S3).
A5. Sampling consistency: for every r-samplings Sr of S and Qr of Q, |dM(S,Q)−

dM(Sr , Qr)| ≤ 2r.

In simple words, axioms A1–A2 guarantee that dM(S, Q) is a good similarity
measure, assigning large distances for dissimilar shapes and small distances for
similar shapes, while being insensitive to articulations. Note that we do not de-
mand the converse of A1 to hold. In fact, two different ε-articulated shapes with
intrinsic geometry differing by less than ε cannot be discerned in the framework
of the isometric model. Axiom A3 allows us to match a portion of a shape to its
whole. In order to make the partial matching well-defined, we restrict the cut
to be convex. Axiom A4 provides basic metric properties. Note that demanding
A3, dM(S, Q) cannot be made symmetric and thus the triangle inequality holds
only in a non-symmetric manner. Finally, Axiom A5 enables a discretization and
a numerical computation of dM(S, Q).

Here, we use the following distance between articulated shapes

dM(S, Q) = inf
ϕ:Q�→S

dis ϕ, , (2)

which essentially measures the least possible distortion of embedding shape Q
into shape S. This distance is intimately related to the Gromov-Hausdorff dis-
tance [7,8,9]. A very similar distance has been proposed in [10] for bending-
invariant matching of three-dimensional objects.
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Theorem 1. dM(S, Q) in (2) obeys axioms A1-5.

Proof. A1: Let S be a planar shape and f : S → Q a surjective mapping with
dis f ≤ ε. Define ϕ : f(S) → S by assigning to every q ∈ Q an arbitrary point
s ∈ f−1(q) in the pre-image of q. Since f(ϕ(q)) = f(s) = q, one has |dQ(q, q′) −
dS(ϕ(q), ϕ(q′))| ≤ dis f ≤ ε for every q, q′ ∈ Q. Consequently, dM(S, Q) ≤ ε.
A2: Let there be two planar shapes S1 and S2 such that dM(S1, S2) > ε. Assume
that there exists a mapping ϕ : S2 → S3 with dis ϕ ≤ ε. Then, |dQ(q, q′) −
dS(ϕ(q), ϕ(q′))| ≤ dis f ≤ ε for every q, q′ ∈ Q and, clearly, dM(S, Q) ≤ ε in
contradiction to the assumption. Hence, S1 and S2 are not ε-isometric.
A3: Let there be a planar shape S and S′ ⊂ S a convex cut of S. Since for
every s, s′ ∈ S′, dS′(s, s′) = dS(s, s′), the identity mapping ϕ : S′ → S yields
|dS′(s, s′) − dS(ϕ(s), ϕ(s′))| = 0. Hence, dM(S, Q) ≤ dis ϕ = 0.
A4: Let there be three planar shapes S1, S2 and S3 such that dM(S1, S2) < ε1 and
dM(S2, S3) < ε2. Then, there exist two mappings ϕ1 : S2 → S1 and ϕ2 : S3 → S2
with dis ϕ1 < ε1 and dis ϕ2 < ε2. Denote by ψ = ϕ1 ◦ϕ2 : S3 → S1. Invoking the
triangle inequality for real numbers, one has

|dS3(s, s
′) − dS1(ψ(s), ψ(s′))| ≤

≤ |dS3(s, s
′) − dS2(ϕ2(s), ϕ2(s′))| + |dS2(ϕ2(s), ϕ2(s′)) − dS1(ψ(s), ψ(s′))|

≤ dis ϕ2 + disϕ1 < ε1 + ε2

for every s, s′ ∈ S3. Hence, dis ψ < ε1 + ε2, implying dM(S1, S3) ≤ dM(S1, S2) +
dM(S2, S3).
A5: Using the (non-symmetric) triangle inequality, one has dM(S, Q) ≤ dM(S,
Qr) + dM(Qr, Q) ≤ dM(Sr , Qr) + dM(S, Sr) + dM(Qr, Q) and, similarly, dM(Sr ,
Qr) ≤ dM(S, Q) + dM(S, Sr) + dM(Qr, Q), yielding |dM(S, Q) − dM(Sr, Qr)| ≤
dM(S, Sr) + dM(Qr, Q). Since Sr ⊂ S and dSr = dS |Sr , according to (A3),
dM(S, Sr) = 0. It is therefore sufficient to show that dM(Qr, Q) ≤ 2r. Let us
define a mapping ϕ : Q → Qr as ϕ(q) = arg minq′∈Qr dQ(q, q′) (the mininmum
exists, since Qr can be replaced by a finite sub-covering). Since Qr is an r-
covering, dQ(q, ϕ(q)) ≤ r for every q ∈ Q. If q, q′ are both in Qr, then |dQ(q, q′)−
dQ(ϕ(q), ϕ(q′))| = 0. If q ∈ Qr and q′ ∈ Q, then |dQ(q, q′) − dQ(ϕ(q), ϕ(q′))| =
|dQ(q, q′) − dQ(q, ϕ(q′))| ≤ dQ(q′, ϕ(q′)) ≤ r. If both q, q′ ∈ Q, then |dQ(q, q′) −
dQ(ϕ(q), ϕ(q′))| ≤ dQ(q, ϕ(q)) + dQ(q′, ϕ(q′)) ≤ 2r. ��
In practice, it is useful to replace dM(S, Q) by an Lp-norm analog,

dp
M

(S, Q) =
(

1
A2

Q
inf

ϕ:Q�→S

∫ ∫
Q×Q

(dQ(q, q′) − dS(ϕ(q), ϕ(q′)))p
dqdq′

)1/p

, (3)

where dq is the standard area measure in R
2 and AQ =

∫
Q

dq. In the limit
p → ∞, dp

M
is just dM.

Apart from giving a quantitative measure of similarity of two shapes, com-
putation of dp

M
(S, Q) also yields a correspondence ϕ between S and Q. Such

correspondence may be useful in many applications including tracking of silhou-
ettes in video sequences and alignment of articulated shapes.
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Fig. 2. A centaur (left) and a horse (right) share the bottom part of the body and
differ in the upper part. This example is inspired by [11].

2.2 Comparison of Partially Overlapping Shapes

By virtue of axiom A3, dM allows to compare between a shape and its portion.
However, in a more general setting of partial matching, one shape does not
necessarily has to be a portion of the other. As a motivating example, consider
two planar shapes S and Q in Figure 2, which share some large similar portions
S′ ⊂ S and Q′ ⊂ Q, yet also have dissimilar portions S′c = S \ S′ and Q′c =
Q \ Q′. We now outline a method to handle this setting as well.

Let us assume that the computation of dp
M

(S, Q) gives us a minimum-distor-
tion mapping ϕ : Q �→ S.1 We define the local distortion at a point q as

dis(q; ϕ) =
(

1
AQ

∫
Q

(dQ(q, q′) − dS(ϕ(q), ϕ(q′)))p
dq

)1/p

. (4)

This allows to attribute each point in q ∈ Q a quantitative measure of metric
distortion introduced by the mapping ϕ to the distances between all pairs of
the form (q, q′), q′ ∈ Q. We can define a portion Q′(ρ) = {q : dis(q; ϕ) ≤ ρ}
consisting of all points with local distortion below some threshold ρ. This allows
to segment Q to regions similar to S and those dissimilar to S.

Omitting technical details, we can measure the relative area of the comple-
ment of Q′(ρ),μ(ρ) = 1 − 1

AQ

∫
Q′(ρ) dq, and construct a generalized distance

function d′
M

(S, Q) assigning to each pair of shapes (S, Q) a monotonically de-
creasing function μ : [0, diam Q] �→ [0, 1]. Such a function, essentially similar to a
receiver operator characteristic (ROC) curve, allows many definitions of a partial
order relation, which is necessary for measuring the similarity of the shapes. For
example, given that the objects subject to comparison are ε-articulated shapes,
we can set ρ = ε and use the relative area μ(ε) of the dissimilar portions as the
similarity measure. A dual approach is to fix some μ0 (say, 80% of the shape
area) and use ρ for which μ(ρ) = μ0 as a measure similarity.
1 We omit here some technical details: in reality, ϕ does not necessarily exist, yet

dis(q; ϕ) can still be defined using a sequence of mappings ϕn with convergent
distortion.
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3 Generalized Multidimensional Scaling

We now address the issue of practical computation of dp
M

. Let Sr = {s1, ..., sM}
and Qr = {q1, ..., qN} be finite r-samplings of articulated shapes S and Q (for
example, r can be the pixel size when the shapes are represented as binary
images) and ΔS = (dS(si, sj)) and ΔQ = (dQ(qi, qj)) be the M ×M and N ×N
matrices of geodesic distances between the samples of Sr and Qr, respectively.
The distances are computed numerically using the fast marching method (FMM)
[12,13].

In this discrete setting, dp
M

can be formulated as

dp
M

(Sr, Qr) =

⎛⎝ min
s′
1,...,s′

N

N∑
i,j=1

aiaj

∣∣dQ(qi, qj) − dS(s′i, s
′
j)
∣∣p⎞⎠1/p

, (5)

for p < ∞, and

d∞
M

(Sr , Qr) = min
τ≥0,s′

1,...,s′
N

τ s.t
∣∣dQ(qi, qj) − dS(s′i, s

′
j)
∣∣ ≤ τ (6)

for p = ∞, where s′i = ϕ(qi) denote the image of qi under the mapping ϕ. The
weights ai are selected as the normalized areas of the Voronoi cells of qi. In
practice, when the sampling is sufficiently regular, the simple choice ai = 1/N
appears to be a more convenient alternative.

Problems (5) and (6) can be considered as a generalization of multidimensional
scaling (MDS) [14] to general metric spaces. We call it the generalized MDS or
GMDS for short. The optimization is performed directly on the images s′i =
ϕ(qi), in the spirit of MDS. Since s′i may fall between the samples of S, one
has to compute the geodesic distances dS between any two arbitrary points in
S. For this purpose, we use the three-point geodesic distance approximation, a
numerical procedure is to produce a computationally efficient C1-approximation
for dS and its derivatives, interpolating their values from the matrix ΔS of
pairwise geodesic distances in S [9].

The numerical solution of the GMDS problem consists of finding an uncon-
strained minimum of the following generalized stress function

σ(u1, ...,uN ) =
N∑

i,j=1

wij |δij − dS(ui,uj)|p , (7)

where δij = dQ(qi, qj) denote the elements of ΔQ, wij = aiaj, and ui ∈ S
are vectors of coordinates in R

2 representing s′i. When p = ∞, constrained
minimization is used. In our implementation, we used a gradient descent algo-
rithm safeguarded by inexact linesearch (Armijo rule) [15]. The complexity of
the stress and its gradient computation is O(N2). Typically, N varies between
tens to hundreds of points, therefore GMDS is computationally efficient.

Like the traditional MDS, GMDS is a non-convex optimization problem,
and therefore convergence to local minima rather than to the global one is
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possible[14]. Nevertheless, convex optimization is widely used in the MDS com-
munity if some precautions are taken in order to prevent convergence to local
minima. Here, we use a multiscale optimization scheme that in practical appli-
cations shows good global convergence [9,16].

4 Results

In order to assess the proposed approach, three experiments were performed.
In the first experiment, the Tools A dataset2 consisting of 35 shapes of 7 dif-
ferent tools, was used (see Figure 3). The tools were classified into 4 groups:
scissors, pliers, pincers, cutters and knife. All the tools excepting the knife have
four parts and one joint. The knife has three parts and two joints. GMDS was
used to compute dp

M
with p = 2 between the shapes. We used a multiresolution

optimization scheme, initialized at 5 points at the coarsest resolution. A total
of N = 25 points were used. Figure 4 visualizes these distances as Euclidean
similarity pattern. One can observe that the shapes are clearly distinguishable
and form groups corresponding to their classification (e.g. two different shapes
of scissors and pliers are close to each other). Note that different articulations
are also distinguishable, such that one (at least theoretically) can infer the ar-
ticulation constant ε of each shape.

SCISSORS    PLIERS  PINCERS  CUTTERS  KNIFE 

Fig. 3. Articulated shapes from the Tools A data set

In the second experiment, three partial probes for each of the seven tools from
the Tools A dataset were used in matching against the set of 35 full shapes.
Figure 5 presents the three first closest matches; due space limitations, only
representive results are shown. In all cases, the first match was found correctly.
2 All the data and codes will be available at http://tosca.cs.technion.ac.il
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Fig. 4. Visualization of distances between the Tools A shapes

           

Fig. 5. Retrieval with partial probes: first three closest matches found for different
partial probes (outlined)
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Fig. 6. Local distortion maps obtained by embedding two probes into model shapes
from the Tools B dataset (top row). Distortion is represented in shades of red (high
distortion) and black (low distortion).

In the third experiment, the Tools B dataset consisting of three instances with
minute modifications of small details of four objects from the Tools A set were
used. GMDS was used to compute the correspondence ϕ between the shapes; the
embedded shapes were discretized at N = 50 points. Figure 6 depicts the local
distortion maps, obtained by embedding various shapes to five references models
from the Tools B dataset. Note that local distortion maps manifest high distor-
tions in dissimilar regions, which allow to capture most of the local differences
between the shapes; we attribute some misses to sampling errors.

5 Conclusions

We presented a generic framework for the recognition of articulated two-dimensi-
onal shapes based on the isometric model. According to this model, articulations
arise from near-isometric transformations and therefore inflict small changes to
the geodesic distances measured inside the shape. We showed a distance able to
distinguish between shapes insensitively to their articulations. This distance is
also capable of performing partial matching of shapes and finding local dissimi-
larities between them. The distance computation is formulated as an MDS-like
problem, which is efficiently solved using smooth optimization techniques.
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Abstract. The paper presents new geometrical methods of feature ex-
traction from ear images in order to perform human identification. Geo-
metrical approach is motivated by the actual procedures used by police
and forensic experts. In the article novel algorithms of ear feature extrac-
tion from contour images are described in detail. Moreover, identification
results obtained for each of the methods, based on the distance of feature
vectors in the feature space, are presented.

1 Introduction and Previous Work

Ear biometrics seems to be a good solution for passive human identification sys-
tems. Ear images can be acquired from the distance even without the knowledge
of the examined person. Ear biometrics is also highly accepted as single or hy-
brid (e.g. with face) biometrics by users in possible access control applications.
According to users, ear biometrics is less stressful than fingerprinting. Moreover,
our test users admitted that they would feel less comfortable while taking part in
face images enrolment (people tend to care how they look on photographs). Fur-
thermore, in ear biometrics there is no need to touch any devices and therefore
there are no problems with hygiene.

Even though ear biometrics have not been implemented commercially so far,
there are some known methods of feature extraction from ear images [1][2][3].
Those methods were discussed in our previous articles, in which we had also
proposed our own new methods of feature extraction: concentric circles based
method (CCM) and contour tracing method (CTM) [4][5]. Recently, various
approaches towards 3D ear biometrics has been developed and published [6][7].

Hereby we introduce our further developments in feature extraction for hu-
man identification based on ear images. In Section 3 contour selection algorithm,
geometrical parameters extraction method (GPM) consisting of the shape ra-
tio (GPM − SRM) and the triangle ratio methods (GPM − TRM), as well
as angle-based method (ABM) are presented in detail. In Section 4 identifica-
tion results are presented and discussed. Conclusion and references are given
next.
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2 Motivation for Geometrical Approach

Our methods based on geometrical feature extraction are motivated by actual
procedures used in police and forensic evidence search applications. Nowadays,
human ears and earprints are standard features of identity taken into account
by forensic specialists and criminal policemen. In reality, well-established proce-
dures of handling ear evidence (so called ear otoscopy) are based on geometrical
features such as size, width, height and earlobe topology [8][9].

Therefore, by analogy to ear otoscopy, we decided to compute geometrical pa-
rameters of ear contours extracted from ear images. Such approach gives infor-
mation about local parts of the image, which is more suitable for ear biometrics
than global approach to image feature extraction. Moreover, geometrical features
of extracted contours are more adequate for ear identification than color or tex-
ture information, which is not distinctive enough within various ear images [10].

3 Methods Based on Geometrical Parameters - GPM

In the proposed method of feature extraction from ear images in order to per-
form human identification, we use the geometrical parameters and properties of
ear contour images. The first step of the method is the extraction of contours
from ear images in such way, that the extracted contours contain distinctive
information about shape and geometrical properties of given ear. Then for each
of the extracted contours we construct the feature vector on the basis of the
proposed geometrical parameters.

3.1 Contour Image Processing

We presented ear contour detection algorithm in our previous work [4][5]. Hereby
it is enhanced by contour processing procedure. The aim of contour image
processing is the selection of contours containing the most distinctive informa-
tion characterizing human ear images. For each extracted contour c, we calculate
its length:

Lc =
Q−1∑
q=1

√
(xq+1 − xq)

2 + (yq+1 − yq)
2
, (1)

where:

– Q - number of contour points,
– c - number of contours, for c = 1, . . . , C ,
– (x, y) - coordinates of contour points,
– q - indexation of the current contour point.

After evaluation of ear images from our database we defined so called short
contours, which are eliminated. We eliminate the contours for which:

Lc ≤ t × Lcmax, (2)

where t is a sensitivity parameter (we use the value t = 0.2). In result of such
processing we obtain images with the limited number of contours (Fig. 1).
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Fig. 1. Selected (longest) and numbered contours in test images ’macfir’ (left) and

’szysob’ (right), respectively

3.2 GPM - Triangle Ratio Method

The aim of the triangle ratio method is to extract invariant geometrical fea-
tures which describe contours in ear image. Hereby we consider only the longest
contour, but the method is applied to all the selected contours of the earlobe.

The method is based on finding the maximal chord of the contour and the
intersection points of the contour with the longest line perpendicular to the
maximal chord.

Maximal chord is denoted by Chordmax and is determined according to the
following algorithm:

– we search for the first point of the longest contour lcmax - let it be the point
pc with the coordinates (ic, jc). Let (ib, jb) be the coordinates of the current
contour point pb,

– we calculate the distances between the point pc and the consecutive points
pb,

– the maximal chord is defined by:

Chordmax = max
{√

(ic − ib)
2 + (jc − jb)

2
}

(3)

for: b = 1 . . . N , where N is the number of contour points.

Then we extract ear contour features. In our case we use the properties of the
triangle sidelines created in the following way:

1. extraction of the longest contour Lcmax within the ear image, contour length
is calculated according to (1),

2. calculation of the maximal chord according to (3),
3. having computed the coordinates of the maximal chord and its length, for

the current points of the contour we calculate:

Ab = icjb − ibjc + ibjbmax − ibmaxjb + ibmaxjc − icjbmax (4)
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Fig. 2. Triangle ratio method for sample ear images ’prapod’, ’szysob’ and ’macfir’,

respectively. The images show the extracted longest ear contour with the triangles

based on points ABCD.

and the maximal distance of the current point from the maximal chord:

rb =
Ab

Chordmax
, (5)

4. point for which rb = max when jb ≤ jc determine the point B in the ear
contour, while the current point for which jb ≥ jbmax determine the point C
in the ear contour,

5. two triangles are created: the triangle ABD and BCD (the presented con-
ditions (inequalities) are true for left images, for right ears inequalities are
reverse),

6. we calculate the length of the line connecting the points A and C (those lines
are heights of the triangles ABD and BCD respectively), those lengths are
denoted as hm and hd,

7. we calculate the parameter b as the sum of the lengths of two lines connecting
points A and C with the diameter under the angle of 90◦, that is b = hm+hd,

8. we calculate the lengths of the sides ab and ad of the triangle ABD and the
lengths of the sides bc and cd of the triangle BCD,

9. we calculate the values of parameter w1 such as w1 = ab + ad and, by
analogy, w2 such as w2 = bc + cd,

10. we calculate the ratio w = w1/w2,
11. we calculate the triangles ratio according to (7).
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Table 1. The parameters computed for the longest ear contours extracted from 3 test

ear images ’prapod’, ’szysob’ and ’macfir’ from Fig. 2

Parameter ′prapod′ ′szysob′ ′macfir′

|AB| 112.3 138.2 45.1

|AD| 267.0 329.6 387.1

|BC| 193.7 181.9 188.2

|CD| 218.8 256.0 280.2

w1 379.3 467.8 432.2

w2 418.5 437.9 468.4

w 0.906 1.068 0.923

Chordmax 343.0 362.4 411.3

b 186.4 245.8 151.4

db 1.840 1.474 2.730

hm 72.2 125.7 39.6

hd 114.0 119.9 111.7

tr 0.574 1.120 0.327

The parameter b is the sum of two lines connecting the points A and C with
the maximal chord Chordmax under the angle of 90◦.
The parameter db is the length ratio calculated as:

db =
Chordmax

b
. (6)

On the basis of the previous calculations we can compute the triangles ratio tr,
such as:

tr =
hmw1

hdw2
. (7)

The results of the presented method for 3 test ear images are shown in Figure 2.
The calculated values of the presented lines, parameters and ratios w and db for
3 ear images are shown in the Table 1.

3.3 GPM - Shape Ratio Method

Another proposed ear contours’ feature is the shape ratio. We compute it for the
meaningful contours in ear image selected by the method described in section
3.1. The shape ratio denoted as kk is computed according to (8):

kk =
Lc

dkp
, (8)

where:

– Lc is the contour length given by (1),
– dkp is the length of the line connecting the ending points of each contour

given by (11).
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Table 2. Values of parameters computed for 9 selected contours in test image ’macfir’.

Lc - contour length; dkp - length of the line connecting the endpoints, kk - shape

ratio; Chordmax - the longest chord of the contour; b - length of perpendicular lines

connecting most distant points with Chordmax; db - length ratio; cc - number of dkp

intersections with the contour; in some cases dkp may be equal to Chordmax.

c Lc dkp kk Chordmax b db cc

1 572.6 387.1 1.479 411.3 151.4 2.730 0

2 280.8 103.4 2.019 126.5 109.1 1.159 0

3 282.6 207.0 1.365 207.0 68.9 3.004 0

4 138.2 118.3 1.168 118.3 19.6 6.036 1

5 509.3 285.9 1.781 339.7 121.3 2.801 0

6 132.8 121.6 1.092 121.6 7.8 15.590 0

7 175.8 110.9 1.585 110.9 54.9 2.020 0

8 128.8 10.4 12.385 43.9 36.6 1.120 0

9 97.4 64.2 1.517 68.0 28.7 2.369 0

Table 3. Values of parameters computed for 9 selected contours in test image ’szysob’.

Lc - contour length; dkp - length of the line connecting the endpoints, kk - shape

ratio; Chordmax - the longest chord of the contour; b - length of perpendicular lines

connecting most distant points with Chordmax; db - length ratio; cc - number of dkp

intersections with the contour; in some cases dkp may be equal to Chordmax.

c Lc dkp kk Chordmax b db cc

1 643.8 329.6 1.953 362.4 245.8 1.474 0

2 401.6 238.1 1.687 240.8 127.9 1.883 0

3 284.7 187.7 1.517 187.7 84.8 2.213 0

4 95.4 86.5 1.103 86.5 10.5 8.238 1

5 303.9 161.7 1.879 161.7 84.4 1.916 2

6 94.6 87.2 1.085 87.2 10.7 8.150 0

7 87.4 70.9 1.233 70.9 16.1 4.404 1

8 132.5 116.7 1.135 116.7 12.0 9.725 1

9 429.5 292.0 1.471 308.2 114.5 2.692 0

The shape ratio value is always kk > 1. Shape ratio allows contours classification
into 2 classes:

1. linear contours for which kk ∼= 1,
2. circular contours for which kk >> 1.

The example of the circular contour is the contour number 8 extracted in the
ear image in Fig. 1 (left). Its value in the Table 2 is kk8 = 12.385.
The examples of the linear contours are:

– contour number 6 extracted in the ear image in Fig. 1 (left); its shape ratio
is kk6 = 1.092 (Table 2),
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– contour number 6 extracted in the ear image in Fig. 1 (right), its shape ratio
is kk6 = 1.085 (Table 3).

The ratio cc is also proposed. It is computed as the number of intersections
between the each maximal chord Chordmax and corresponding contours c.
It allows contour classification into 2 classes:

– simple contours, for which cc = 0,
– complex contours, for which cc ≥ 1.

Most of the contours are classified as simple contours. The example of the com-
plex contour is the contour number 5 extracted in the ear image in Fig. 1 (right).
The combined feature vector containing the parameters computed by the pro-
posed methods GPM − TRM and GPM − SRM for c = 1, ..., C extracted
contours is given by:

FV =
{
(Lc, dkp, kk, d, b, db, cc)c

}
. (9)

3.4 Angle-Based Contour Representation Method - ABM

Each extracted contour is treated as an independent open curve. Each curve is
represented by two sets of angles [11]:

Φ = Φw; 1 ≤ w ≤ ε

Ψ = Ψw; 1 ≤ w ≤ ε (10)

corresponding to the angles between the vectors centered in the point p0.
For each contour (curve) we search for the point p0, which becomes the center
of the concentric circles. The point p0 is defined in the following way:

1. two ending points (ip, jp) and (ik, jk) of each curve are localized,
2. the equation of the line passing through those extracted points is j = b1 ×

i + b0, where: b1 = jk−jp

ik−ip
b0 = jp×ik−jk×ip

ik−ip
,

Fig. 3. Visualization of the ABM method for a chosen ear contour and 2 radii (con-

centric circles) with a centre in p0
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3. the distance between the ending points is computed:

dkp =
√

(ik − ip)
2 + (jk − jp)

2
, (11)

4. the center point isr, jsr of the line between (ip, jp) and (ik, jk) is computed in
the following way. Let tan γ = jk−jp

ik−ip
and �j = dkp

2 cosγ. Then jsr = jk +�j,
5. knowing jsr and the line equation we can determine isr,
6. the line j = 1

b1
(isr − i) + jsr perpendicular to the line between the con-

tour ending points and passing through the computed center point (isr, jsr)
intersects the contour in the point p0 with the coordinates (i0, j0).

The length of the maximal radius is determined by:

rm =
√

(ik − i0)
2 + (jk − j0)

2
. (12)

For each contour we consider ε concentric circles with the radii rw = w × rm

ε
(w = 1, . . . , ε). For each contour the point p0 becomes the center of the local
polar coordinate system.
For each radius rw we compute the angles:

Φw = (θmax − θmin)w (13)

Ψw−1 = ((θmax)w) − ((θmax)w−1). (14)

Having assumed that there are c = 1, ..., C contours in the ear contour image,
and that each contour is analyzed by w concentric circles, the feature vector is
given by:

W = {(Φw, Ψw−1)1 , . . . , (Φw, Ψw−1)c , . . . , (Φw, Ψw−1)C} . (15)

4 Experiments and Results

The experimental scenario involves the finite ear images database. One of the
users, who took part in the enrollment process and his ear image is surely stored
in the database, is chosen randomly. The acquisition of the user’s test ear image
is performed. Next, we compute the feature vectors for the test user and we
search for the corresponding image from the database. In result of such scenario
we obtain one ear image for which the computed feature vectors are the closest
to test image feature vectors in terms of distance in the feature space.

Since there are no standard ear image databases, we performed all the tests
on our own ear image database. We used images from 80 people so that we had
an experimental database of 800 images (5 positions and 2 illumination values
for a person). The input (query) images were taken for randomly chosen users in
the conditions similar to those during the first enrollment. The feature vectors
were calculated and the recognition decision was made based upon the proposed
features. For each of the proposed method the classification formula was created
on the basis of the distance in the feature space.



66 M. Choraś

In the process of ear identification by Geometrical Parameters Method - GPM
we calculate the distance between the feature vectors FV (9). The minimal
distance difference between the test feature vector FVtest and the vectors from
the database FVref is given by:

ans4 = min
{√(

FV 2
test − FV 2

refc=1

)
z=1

+ · · · +
(
FV 2

test − FV 2
refC

)
Z

}
. (16)

The image for which (16) is fulfilled is the obtained result for the test user. In
104 tests we obtained the correct identification result in all the tests.

In the process of identification by ABM method, the feature vectors W (15)
are compared. The minimal distance difference between the test feature vector
Wtest and the vectors from the database Wref is given by:

ans3 = min
{
Wtest − (Wref )z

}
= min {dif21, · · · , dif2z, · · · , dif2Z} , (17)

for the value of the feature vectors difference in the feature space calculated as:

dif2z =

√√√√ C∑
c=1

{∑
w

[(Φw)test − (Φw)b] +
∑
w

[(Ψw−1)test − (Ψw−1)Z ]

}
. (18)

for z = 1, ..., Z, where z denotes the consecutive feature vector in the ear image
database and Z is the number of ear images.

The image for which (17) is fulfilled is the obtained result for the test user.
In 104 tests we obtained the correct identification result in 94 cases.

The cumulative results for all the methods (methods CCM and CTM were
introduced in our previous work [4][5]) are presented in the Table 4.

Table 4. The cumulative results of the presented identification methods (CCM and

CTM were introduced in our previous articles [4][5]). The presented parameter is

Rank-one-recognition.

method number of tests correct acceptances false rejections Rank-1

CCM 104 94 10 90.4

CTM 104 98 6 94.2

ABM 104 94 10 90.4

GPM 104 104 0 100.0

5 Conclusion

In the article we presented our further, novel developments in geometrical feature
extraction methods for ear biometrics. The major contributions are the new
methods: GPM − TRM , GPM − SRM and ABM . Moreover, the method of
ear contour image processing in order to select only the most meaningful contours
was presented. The experiments and the achieved results were also discussed.
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After experiments we came into conclusion that the proposed geometrical
methods, which had been motivated by the manual process of feature extraction
used in criminology, allow effective person identification on the basis of features
extracted from ear images. The best results were achieved by the GPM method.

Further research is now being conducted in order to extract more geometri-
cal and global (Gabor-based) features and weigh them properly in the multi-
dimensional process of identification. Further experiments and evaluation of all
the methods are also being performed. Furthermore, we examined user inter-
action in the enrolment step and we concluded that ear images acquisition is
accepted by more users than other biometrics human identification methods,
even face recognition.
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Abstract. An appraisal of human motions and particular motion phases
is essential for a good interaction between a human and a humanoid ro-
bot. We present a new method for the analysis of human motions and the
classification of motion phases. The method allows an automatic compo-
sition of a motion model for a complex motion from several elementary
models. The elementary models can be retrieved from a motion cata-
logue according to the requirements of a current motion processing task.
The method is based on the analysis of the hidden states in a complex
HMM and considers the context of all elementary phases in an entire
motion sequence. The analysis of motion phases with the new model is
computationally more efficient and yields better recognition rates than
conventional motion analysis with HMMs and winner-takes-all strategy.

1 Introduction

A practical interaction between a human and a humanoid robot requires a good
understanding of human motions by the robot. On the one hand, the robot has to
build up a model of its environment. The current motion state of the user is one
substantial part of this model. On the other hand, the robot should accomplish
its own motions in a human like manner. High acceptance of robots by humans
can only be achieved if humans feel familiar with the behavior of the robots.

In the last years there has been a lot of work in generating purposeful mo-
tions for a humanoid robot. Only some examples for the various approaches
are [1], [2], [3], [4], [5]. To fulfill a particular motion task, the motion must be
planned, combined from elementary motion trajectories, and adapted to con-
straints [6]. A comparison of different methods for the determination of motion
constraints and the identification of elementary motion phases can be found
in [7]. The analysis of characteristics in motion phases has proved to be very im-
portant for the recognition of a human motion and the planning of robot motion
trajectory [8].

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 68–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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An expedient approach for the classification of phases in human motion tra-
jectories is to use HMMs (hidden Markov models). HMMs are well-known from
speech recognition [9]. However, they have also become popular for the recog-
nition of gestures [10] and sign language [11], [12]. A conventional HMM-based
classification uses a winner-takes-all strategy for a set of HMMs. The strategy
leads to the most probable model for an observation and thus to the class of
the observation. The set of HMMs contains different HMMs that are special-
ized on a certain observation class. In [13], [14] it is shown how complex actions
can be recognized by HMMs and a probabilistic grammar describing the ad-
jacency of the HMMs on a higher level. In this work we present another clas-
sification method that uses the composition of the elementary HMMs from a
motion catalogue to one complex HMM. The complex HMM can be used to
analyze a long motion sequence. Hereby, we explicitly use the hidden states of
the HMMs to get a mapping from model states to motion phases. In common
HMM applications this state information is only implicitly used during model
evaluation.

2 The Motion Catalogue and Elementary Models

The motion catalogue used for training and testing of the models in this work
contains ordinary motions from everyday life. More information about this mo-
tion catalogue can be found in [7]. The subjects were asked to perform several
tasks: setting the table with cup and saucer, pouring water from a coffeepot
into the cup, and finally stirring the content of the cup. The motion data were
acquired by a magnetic tracking system (by Ascension) with a long range trans-
mitter and 6 sensors to track the entire right arm. A data glove (by Immersion)
captured the angles of the finger joints of the right hand. The entire motion can
be segmented in 13 elementary motion phases whereas the phases 6–8 can be
further distinguished by the fill level of the coffeepot (full and nearly empty).
In [7], additional phases 14–16 were introducted to distinguish the fill level of the
coffeepot. After relabelling all phases the phases 6–8 only refer to the motions
with the nearly empty coffeepot, while the additional phases 14–16 represent the
same motion phases but with the full coffeepot.

Overall, 7 subjects performed the motions 10 times with the 2 constraints
(fill level) resulting a total number of 7 × 10 × 2 = 140 data sets in the motion
catalogue. All data sets were manually segmented and labeled into the 16 mo-
tion phases. The features to describe each motion sequence are joint angles and
angle velocities of the index, the thumb, the wrist, the elbow, and the shoul-
der with a feature vector o ∈ IR2·9 in each frame. The motions were recorded
with a sampling rate of 86.5 fps and have a length of 17.2–23.0 s. To generate
test and training data, every 10th motion was excluded from training data and
tested against the remaining 9 motions. Doing this for all subjects, trials, and
constraints we produced a set of 140 test/training configurations.

In [7], a set of 16 HMMs λ1, . . . , λ16 was created from the training examples
in the described motion catalogue. Each HMM is specialized in a certain motion
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Fig. 1. Classification of phases with 16 HMMs (N = 2 states, window length W = 30).

Left figure: data set with mean recognition rate compared to the results of all test data.

Right figure: data set with one of the best recognition rates. (Solid line: classification

result, dashed line: target classification from manual segmentation.)

Table 1. Recognition rates for the classification of motion phases by elementary HMMs

with different parameters (window length W and number of states N) considering

motion constraints and ignoring them

W N with constraints w/o constraints

100 1 0.7464 –

30 1 0.8478 0.8796

30 2 0.8515 0.8875

30 5 0.8653 0.8673

30 10 0.8215 0.8403

1 1 0.8414 0.8721

phase. Using a winner-takes-all strategy the motion phases could be determined
by shifting a window of length W over the testing sequences O = o1, . . . , oT :

pt = arg max
n=1,...,16

(P (ot−W . . . ot|λn)) . (1)

The output probability P (O|λn) for each HMM λn is calculated by the for-
ward algorithm for HMMs (e.g., see [9]). Fig. 1 shows the classification result
for two exemplary data sets in comparison to the manual phase classification.
Recognition rates with different HMM configurations are given in Tab. 1.

3 The Concept of Model Composition

Considering the recognition rates achieved by the winner-takes-all strategy we
can see that HMMs already allow a reliable classification of motion phases. As-
sociating the states with phases, the models cannot be simplified any further by
reduction of the state number. Thus, these models are elementary. It should be
possible to analyze a very complex motion consisting of certain elementary mo-
tion phases in the motion catalogue by a complex HMM merged from elementary
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HMMs. In the following, we show how the parameters of such a complex HMM
can be automatically constructed from the parameters of selected elementary
HMMs.

According to the conventional notation of HMM parameters we want to con-
struct a complex continuous HMM λ with the parameters π, A, w, μ, U for initial
state probabilities, state transitions, and mixture parameters. To tell the com-
plex HMM from the elementary HMMs their parameters bear the indices for
the motion phases they are trained for: λp=1,...,P = (πp, Ap, wp, μp, Up). The pa-
rameters of these models are once determined by the methods in [7] and stay
constant in the motion catalogue.

4 The Basic Composition Algorithm

To do the HMM composition of one HMM λ from the elementary HMMs λp

we first combine the state transition matrices Ap to a big matrix A. W.l.o.g.,
we assume that all elementary HMMs have the same number of states N , i.e.
Ap=1,...,P ∈ IRN×N . To gather all Ap as submatrices we initialize A ∈ IRPN×PN .

Previous works have shown that Bakis-models [9] produce proper HMMs for
phase detection since the models have to run through a strict sequence of hid-
den states. A typical structure of an initial state transition matrix Ap without
parameter adaptation by a training process, e.g. with expectation maximization,
is given in (2). Following this design principle, the complex model is constructed
to run through desired sequences of elementary motion phases. Thus, the ma-
trix A has the structure of an upper triangular matrix. In contrast to elementary
HMMs, the entries on the diagonal are not scalar values for transition proba-
bilities between single states but the submatrices Ap. Analogously to the state
transitions in the upper subdiogonal of the matrices Ap the Matrix A gets en-
tries with the probabilities ai for the transitions from the final states of Ai, i =
1, . . . , P − 1 to the first state of Ai + 1 (see (3) for the detailed construction).

Ap =

⎛⎜⎜⎜⎝
0.5 0.5

. . . . . .
0.5 0.5

1

⎞⎟⎟⎟⎠ (2)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

Ai

ai

Ai+1

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

A =

⎛⎜⎜⎝
. . .

AP 0
. . .

⎞⎟⎟⎠ (4)

Since A has to be a semi-stochastic matrix (see [9]), the rows aiN−1,1...PN of A
containing the transition probabilities have to be normalized. All other rows of A
are already normalized since the matrices Ap are semi-stochastic themselves. To
determine correct probabilities ai the entries aiN−1,(i−1)N+1...iN−1 are weighted
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Table 2. Mean phase lengths Tp and transition probabilities ap = 1
Tp+1 for the

phases p = 1, . . . , 16. Phase 13 is the final phase. Therefore the transition probability

is set to a13 = 0.

p Tp ap

1 111.03 0.0089

2 127.94 0.0078

3 84.15 0.0117

4 121.98 0.0081

p Tp ap

5 96.64 0.0102

6 24.45 0.0393

7 145.99 0.0068

8 75.49 0.0131

p Tp ap

9 85.86 0.0115

10 78.89 0.0125

11 185.93 0.0053

12 74.91 0.0132

p Tp ap

13 111.88 0 (0.0089)

14 36.09 0.0270

15 88.99 0.0111

16 77.34 0.0128

by the mean length Ti of the motion phase in the training sequences from the
catalogue. Tab. 2 contains the phase lengths of our training examples. Afterwards
the entire row is weighted by the factor 1/(Ti + 1). If the motion phase is final
then the transition probability is set to ai = 0 (see (4)). Hence, the following
condition holds for rows i = N, 2N, . . . , PN of A:

NP∑
j=1

ai,j =
1

Ti + 1

⎛⎝Ti

⎛⎝ N∑
j=1

a
i/N�+1;N,j

⎞⎠+ 1

⎞⎠ = 1 (5)

and for all other rows

NP∑
j=1

ai,j =
N∑

j=1

a
i/N�+1;N,j = 1. (6)

Thus, matrix A fulfills the normalization criterion for a semi-stochastic matrix.
The initial state distribution π ∈ IRPN and the mixture parameters U ∈

IRV ×V ×PN×M , μ ∈ IRV ×PN×M und w ∈ IRPN×M to calculate the output prob-
abilities of λ are determined by simple composition of the parameters from the
elementary models λp for all states i = 1, . . . , PN :

πi = π
(i−1)/N�+1;((i−1) mod N), (7)

wi,1...M = w
(i−1)/N�+1;((i−1) mod N)+1,1...M , (8)

μ1...O,i,1...M = μ
(i−1)/N�+1;1...O,((i−1) mod N)+1,1...M , (9)

U1...O,1...O,i,1...M = U
(i−1)/N�+1;1...O,1...O,((i−1) mod N)+1,1...M . (10)

5 Extension for Alternative State Sequences

The proposed construction can be extended to allow not only strict sequences
of motion phases but branches in motion parts. These alternative motion parts
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are required, e.g., if the motion contains significant intra-individual differences
during the performance of the motion and we want to detect these differences.
A typical example in our motion catalogue are the differences in the motion
phases during the manipulation of the coffeepot. Transitions to the additionally
introduced artificial phases allow the distinction of the fill level of the coffeepot.
Generally the sequence of motion phases can be specified by an adjacency matrix
or a context-free grammar.

The consequence for the composition method is that additional probabilities
for the transition in alternative phases have to be inserted in matrix A. Further
on, it must be assured that the model reenters a consistent state at the end of
the alternative phases. This can be realized by additional probability entries,
too. The scheme in (11) shows the construction of the additional entries.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
Ai ai/C ai/C

. . .
Aj1 aj1

. . .
AjC ajC

. . .
Ak

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Being in phase i, we want to reach the alternative phases j1, ..., jC and return
to a common phase k. The entries and positions of the submatrices A1, . . . , AP

are determined as described in the previous section. The transition probabili-
ties a1,...,P are also calculated in the same way. However, the probabilities are
distributed over C alternative following phases by weighting with factor 1/C.
The probabilities for transitions back to the common phase remain unchanged.
After an additional normalization of altered matrix rows as described in the
previous section, the condition for the semi-stochastic matrix is still valid since
for all rows i with new entries holds

NP∑
j=1

ai,j =
1

Ti + 1

⎛⎝Ti

⎛⎝ N∑
j=1

a
i/N�+1;N,j

⎞⎠+
C∑

c=1

1
C

⎞⎠ = 1. (12)

The special cases of beginning or ending a motion in an alternative phase require
no change in the construction method. However, no transitions from previous
phases have to be generated in the first case and no transitions to a following
phase in the second case. The complete composition algorithm can be summa-
rized as follows:



74 J. Moldenhauer et al.

// parameters:
// λ1,...,P : elementary HMMs with λp = (πp, Ap, wp, μp, Up)
// T1,...,P : mean phase lengths
// Ă ∈ {0, 1}P×P : pure adjacency matrix with entries ăp,q = 1 if there is a
// transition from phase p to Phase q and entries ăp,q = 0 ohterwise
// result: the complex HMM λ
P := number of phases;
D := dimension of the feature vectors;
N := number of states in λ1,...,p;
M := number of mixture components in λ1,...,p;
A := 0NP×NP ; // new transition matrix
for(p := 1, . . . , P ) {

// insert submatrix Ap in A:
h := (p − 1)N ;
for(n1 := 1, . . . , N)

for(n2 := 1, . . . , N)
ah+n1,h+n2 := an1,n2 ;

// adaptation of transition matrix:
ah+N,h+N := Tp/(Tp + 1);
C :=

∑
q=1,...,P ăp,q − 1;

for(q := 1, . . . , P )
if(ăp,q = 1 ∧ p �= q)

ah+N,(q−1)N+1 := 1/(Cf); // = ap/C
// initial state distribution and mixture parameters:
for(n1 := 1, . . .N)

i := h + n1;
πi := πp;n1 ;
for(m := 1, . . . , M)

wi,m := wp;n1,m;
for(d1 := 1, . . . , D)

μd1,i,m := μp;d1,n1,m;
for(d2 = 1, . . . , D)

Ud1,d2,i,m := Up;d1,d2,n1,m;
} // end for
return λ = (π, A, w, μ, U);

6 Results

The recognition of the motion phases in a motion sequence O is based on the state
sequence Q calculated by the Viterbi-algorithm (see [9]) for the complex model λ:

Q = arg max
S=s1s2...sT ,st∈{1,...,16}

(P (S, O|λn)) . (13)

The advantage of the proposed composition method is that the information
about the states in the elementary HMMs does not get lost. The phases can be
directly derived from the state indices:
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pt = �(st − 1)/N� + 1. (14)

This property is important for an automatic implementation since no manual
mapping from HMM states to motion phases is required.

Another advantage of the analysis of motion phases with a complex HMM
is that no windowing of the motion sequences is required. An entire motion
sequence can be applied to the HMM in one step. Considering the computational
effort of the analysis this advantage is substantial. Given a motion sequence of
length T , P phases, and P HMMs with N states, the effort for the classification
with the winner-takes-all strategy is O(PTWN2) where W is the window length.
The effort for the analysis with a complex HMM is O(T (PN)2). In this case the
effort depends on P 2, however P can be restricted to a small number in many
cases, e.g. P = 16 in our example. Further on, the transition matrix is sparse
which allows an efficient model evaluation (see [9]). The size of P has much
less influence on the runtime behavior than the window length W . Estimating
a linear dependency between W and T leads to a much better efficiency of our
new method compared to the conventional classification with HMMs.

Aside the computational efficiency, the analysis with complex HMMs leads to
more reliable classification results than the old method. The middle columns of
Tab. 3 contain the recognition rates for different HMM parameters. Fig. 2 shows
the classification results in comparison to the manually segmented phases.

A significant improvement of the recognition rates can be achieved for the clas-
sification of motion constraints (see Tab. 3, right-most column). In comparison to

Table 3. Different HMM parameters (number of elemtary states N and mixtures M)

and recognition results for the classification of motion phases (considering and ignoring

constraints) and the pure classification of motion constraints.

N M phases phases constraints

with constraints w/o constraints

10 1 0.28956 0.29685 0.67857

10 2 0.28957 0.29686 0.67857

1 1 0.82587 0.84346 0.82857

1 2 0.82587 0.84346 0.82857

20 1 0.82205 0.83420 0.94286

2 1 0.81772 0.82830 0.94286

2 2 0.81772 0.82830 0.94286

3 1 0.81164 0.82446 0.92857

3 2 0.80303 0.80860 0.96429

4 1 0.81487 0.82718 0.94286

4 2 0.80128 0.80575 0.96429

5 1 0.75685 0.76716 0.90000

5 2 0.75685 0.76716 0.90000
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Fig. 2. Results of the phase classification with a complex HMM (16 × 2 states). The

test data are the same as in Fig. 1. (Solid line: classification result, dashed line: target

classification from manual segmentation.)

the conventional approach no isolated motion phases are analyzed by the com-
plex HMM. However the complex HMM takes the entire motion sequence into
account. Thus, the model is more robust towards strong variations during motion
performance and only slight differences between phases in the same time. Erro-
neous transitions to the wrong alternative phase cannot appear (see Fig. 1 and
Fig. 2). The best recognition rate achieved by the conventional HMM classifica-
tion is 89.29 % whereas the complex HMMs yield rates up to 96.4 % (see Tab. 3).

7 Conclusion

The composition of complex HMMs from elementary HMMs of single motion
phases leads to a new methods of motion analysis. The information about the
sequence of hidden states calculated by the Viterbi algorithm is explicitly used to
detect certain motion phases. Normally, this information is only used to calculate
a better model probability in dependence of the Viterbi path. Usage of the full
capacity of the state sequence leads to efficient and robust classification methods
with heigh recognition rates. Even the difficult problem of constraint recognition
can be solved with excellent recognition rates. The reason for this is that the
model regards the entire motion and the motion phases in their context.

Furthermore, the composition of the complex HMMs is automated. The com-
position algorithm is generic and can be used to combine any elementary models
to a complex one. Thus, it is possible to build up a model library with elementary
HMMs and to combine them to the required model for a special classification
task comparable to a construction kit. This is an important step towards an
interactive extension of the robot’s knowledge data-base which is one of the pri-
mary demands for a purposeful cooperation between the human and a learning
humanoid robot.
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Using Multiple Cameras
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Abstract. Motion capture is an important application in different ar-
eas such as biomechanics, computer animation, and human-computer
interaction. Current motion capture methods typically use human body
models in order to guide pose estimation and tracking. We model the
human body as a set of tapered super-quadrics connected in an articu-
lated structure and propose an algorithm to automatically estimate the
parameters of the model using video sequences obtained from multiple
calibrated cameras. Our method is based on the fact that the human
body is constructed of several articulated chains that can be visualised
as essentially 1-D segments embedded in 3-D space and connected at
specific joint locations. The proposed method first computes a voxel rep-
resentation from the images and maps the voxels to a high dimensional
space in order to extract the 1-D structure. A bottom-up approach is
then suggested in order to build a parametric (spline-based) representa-
tion of a general articulated body in the high dimensional space followed
by a top-down probabilistic approach that registers the segments to the
known human body model. We then present an algorithm to estimate
the parameters of our model using the segmented and registered voxels.

1 Introduction

The task of motion capture can be divided into a number of systematically
distinct stages: initialisation, pose estimation and tracking. There exist a number
of algorithms to estimate the pose using images captured from a single or multiple
cameras [1]. Some of the problems encountered, especially in the monocular case,
are the segmentation of the image into different, possibly self-occluding body
parts and the complex articulated structure of the human body which results in
wide range of body part configurations or poses. It is, therefore, often necessary
to use a human body model to deal with the large number of body segments and
to guide the tracking and pose estimation processes especially in bio-mechanical
and clinical motion capture applications.

Krahnstoever and Sharma [2] address the issue of acquiring structure, shape
and appearance of articulated models directly from monocular video using a
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single camera and hence has has limited scope for complete human body model
estimation. Mikic et al. [3] propose a model acquisition algorithm using voxels
that starts with a simple body part localisation procedure based on template
fitting and growing, and uses prior knowledge of average body part shapes and
dimensions. Kakadiaris and Metaxas [4] present a Human Body Part Identifi-
cation Strategy (HBPIS) that recovers all the body parts of a moving human
based on the spatio-temporal analysis of its deforming silhouette using input
from three mutually orthogonal views. The subject, however is required to fol-
low a specified protocol of movements. Anguelov et al. [5] describe an algorithm
that automatically decomposes simple objects into approximately rigid parts and
obtains the underlying articulated structure given a set of meshes describing the
objects in different poses. Cheung et al. [6] also describes a model acquisition
algorithm where the kinematics is estimated using correspondence. Chu et al. [7]
describe a method for estimating pose using isomaps [8] to transform the voxel
body to its pose-invariant intrinsic space representation and obtain a skeleton
representation.

We model the human body as comprising of several rigid body segments that
are connected to each other at specific joints forming 1-D kinematic chains orig-
inating from the trunk as described in Section 2. These chains can be visualised
as 1-D curves embedded in 3-D space. We exploit the 1-D nature of the chains
and transform the voxel coordinates to a domain where we are able to extract
the 1-D structure. We are thus able to register each voxel to its position along
the chain for a set of frames that capture the subject in different poses. The
model estimation algorithm involves locating the joint locations and estimat-
ing the shape parameters of the different body segments as well as the implicit
estimation of the pose. We first estimate the joint locations and limb lengths
from the skeletons and then compute the super-quadric parameters of the body
segments from the voxels using the segmentation and registration results. While
human dimensional variability is enormous across different demographics and
sexes, it is not arbitrary. We can, therefore, use our prior knowledge of the ap-
proximate ratios between the stature and different long bones, as well as the
joint location in our model acquisition algorithm. We describe the model esti-
mation algorithm in Section 3, and the experiments in Section 4. Our algorithm
is different from that of Chu et al. [7], in that we use Laplacian eigenmaps [9]
in order to simultaneously segment and extract the one-dimensional structure
of the human body. Belkin and Niyogi [9] describe the construction of a rep-
resentation for data lying in a low dimensional manifold embedded in a high
dimensional space. We obtain much better segmentation and explicitly compute
the position of each voxel along the articulated chain that it belongs to. This
step enables us to acquire the shape and joint model. Some other techniques
for dimensionality reduction and reducing shape to pose invariant structure can
be found in Elad and Kimmel [10], manifold charting [11] and Locally Linear
Embedding [12]. However, we choose Laplacian eigenmaps as they best serves
the purpose of extracting the 1-D nature of the curves. There is also a similarity
to skeletal representation algorithms [13] that we expound on in Section 4.
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2 Human Body Model

The human body model that we use is illustrated in Fig. 1 (a) with the different
body segments as well as joints labelled. Each of these body segments has a
coordinate frame attached to itself. The body segment can be described by an
arbitrary shape in terms of the coordinates of this frame, and in our case is
modelled using a tapered super-quadric. We choose tapered super-quadrics for
their simplicity and versatility [14]. Some of the other shape models used to
model human body segments are cylinders, CAD models and ellipsoids [3]. The
tapered super-quadric (Fig. 10a) is described in equation (1), and is characterised
by five scalar parameters x0, y0, z0, d, and s. If sliced in a plane parallel to the
xy plane, the cross section is an ellipse with parameters αx0 and αy0, where α is
a scalar (Fig. 1 (c)). The length of the segment is z0 as shown in Fig. 1 (d). The
scale parameter, s, denotes the amount of taper, and the “power” parameter,
d, denotes the curvature of the radial profile, r(z)

√
x0y0, along the z-axis. For

e.g., d = 2, s = 0, is an ellipsoid, d = ∞, s = 0 is a right-elliptical cylinder and
d = ∞, s = −1 is a right-elliptical cone.(

x

x0

)2

+
(

y

y0

)2

=
(

1 + s
z

z0

)(
1 −
(

1 − 2
z

z0

)d
)

= r2(z) for 0 ≤ z ≤ z0 (1)

A joint between two body segments is described as a vector in the coordinate
frame of the parent body segment connecting the origin of the parent segment
coordinate frame to the origin of the child segment. The pose of the child segment
is described in terms of the rotational parameters between the child coordinate
frame and the parent coordinate frame. The pose of the model, ϕ, is a vector of
the position and orientation of of the base-body (6 degrees of freedom) and the
joint angles of the various articulated body segments (3 degrees of freedom for
each joint). We observe that the joint locations cannot be easily obtained, even
manually, from a single pose.

3 Model Acquisition Algorithm

We begin with grey-scaled images captured from multiple cameras. Simple back-
ground subtraction is performed on the images to obtain binary silhouettes
(Fig. 2). We perform space carving using the binary silhouettes from the cameras
and the calibration data to obtain a voxel representation where each voxel block
is of size 30mm× 30mm× 30mm, which we find to be an acceptable compromise
between complexity and accuracy. In the first part of the algorithm, we segment
the voxels and obtain a parametric representation for the different articulated
chains as well as register the chain to the body model. We then compute a skele-
tal representation of the subject for a set of key frames where the registration is
successful. In the second part of our model acquisition algorithm, we estimate a
simple stick model for the subject and progressively improve the model to finally
obtain the parameters of the complete super-quadric-based model.
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Fig. 1. Model Fig. 2. Images and Silhouettes Fig. 3. Voxels

3.1 Segmenting and Registering the Articulated Chains

Our key observation is that the human body can be visualised as consisting of
1-D continuous articulated chains embedded in 3-D space. We observe this in
Fig. 3, in which we can identify the five articulated chains: the head and four
limbs, attached to the trunk, the sixth segment. Our objective is to extract the
1-D structure and the position of each voxel along the chain using a parametric
form, and thus segment the different articulated chains that have these 1-D
structure. The articulated structure of these chains, however, make it difficult to
segment them in normal 3-D space. We use Laplacian Eigenmaps to extract the
structure of the underlying 1-D curve. Our objective is not to preserve geodesic
distances between points [7] or reduce the dimensionality of the data [9], but to
extract the one-dimensional manifold structure.

It is known that the Laplacian Eigenmap preserves local information optimally
in a certain sense as described in Belkin and Niyogi [9]. Given a data set of k
nodes (voxel coordinates), we construct a weighted graph G = (V, E), with edges
connecting two nodes if they are neighbours. We consider the problem of mapping
the weighted graph to a k × m matrix Y = [y(1), . . . ,y(m)] = [y1, . . . ,yk]T,
where the ith row, yT

i , provides the embedding for the ith node. A reasonable
criterion for choosing a “good” map is to minimise, under appropriate conditions,
the objective function given by

∑
i,j‖yi − yj‖2Wij (which imposes a penalty if

vertices connected by an edge are not close to each other) subject to Y TY = I
(which removes an arbitrary scaling factor). Standard methods show that the
solution is provided by the matrix of eigenvectors corresponding to the k lowest
non-zero eigenvalues of the generalised eigenvalue problem Ly = λy, where
Wi =

∑
j Wij =

∑
j Wji, and D = diag(W1, W2, . . . , Wk), and L = D − W .

The concept of neighbours is natural because the voxels are positioned in a
uniform spatial grid and constructing the adjacency graph is intuitive. We place
an edge between two voxels if they are neighbours connected by a face, an edge
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Fig. 4. Extracting the 1-D curves in Eigenspace

or a corner. We thus obtain a sparse graph of size k×k. We only consider voxels
that belong to the biggest connected component in the graph. We compute
d = 6 eigenvectors corresponding to the d smallest non-zero eigenvalues and
thus embed the graph in a 6-D Euclidean space. We choose d = 6, because we
wish to segment six different articulated chains. The graph embedding in the
6-D space is illustrated in Fig. 3.1(a-b). A close examination of the plot reveals
six one-dimensional curves that we expect to correspond to the six articulated
chains described earlier. We observe that the “bending” effect of articulation has
been removed, as we would expect, because joint angles do not in general affect
the computation of the adjacency matrix.

We observe that each articulated chain is an 1-D curve in 6-D space irrespec-
tive of the thickness of the body segment in normal 3-D space. This is a result
of using the Laplacian eigenmap transformation and we observe that the 1-D
nature of the curve is preserved even in higher dimensions (Fig. 3.1 (c)). This is
an advantage over geodesic distance preserving algorithms [7] as we can easily
fit 1-D splines to the data.

We describe a completely unsupervised algorithm to segment the voxels in
eigenspace into 1-D curves. We represent the voxels in terms of an 1-D para-
meter in this eigenspace by fitting a cubic smoothing spline function to the
data according to the following algorithm. All the computations are in the 6-D
eigenspace. We begin each spline with a “pivot” node that is farthest from all
existing spline segments. There are two kinds of curves, those that are connected
at one end and those that are connected at both. The “pivot” node is at the free
end or the middle in the first and second cases respectively. We create a cluster
by adding nodes that are closest to the “pivot” node. We compute the principal
axis for the cluster and the projection of each node on the principal axis (site
value t). Thus, for each node, yi, in the cluster we obtain its site value ti. We can
compute a smoothing spline f(.) to minimise

∑
i ei, where ei = ‖f(ti) − yi‖2.

We grow the curve by adding nodes that are close to each end. The principal
axis used to compute the site value is recomputed locally using nodes at the
growing end. The growth is terminated when the error of new nodes exceeds a
fixed threshold, CL

√
d, where C = 0.005, L is the length of the average spline in

eigenspace (set to 1 as we have normalised the eigenspace such that yi ∈ [0, 1]6)
and d is the dimension of the space. We now have six spline segments as shown
in Fig. 5(b-c). Fig. 5 (d) presents the segmentation results in the normal 3-D



Acquisition of Articulated Human Body Models 83

Fig. 5. The splines are colour coded according to their index. (d) and (e) denote the

voxels colour-coded according to the index of the spline segments they belong to.

(a) Model (b) Seg. (c) Skeleton (d) Graph (e) Conn.

Fig. 6. Matching computed graph with body model
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Fig. 7. Model fit error

space and we note that the segmentation is fairly accurate. Unclassified voxels
are labelled 0. As noted earlier each node (xi in normal 3-D space and yi in
eigenspace) has a site value ti. This value denotes the position of the node along
the 1-D curve and can be used to compute the skeleton in Fig. 5 (e) using a 3-D
smoothing spline with the set of pairs (ti, xi).

Once we have the skeleton segments as in Fig. 5 (e), we would like to regis-
ter them to the different segments presented in Fig. 6 (a). Each spline segment
consists of a curve connecting two nodes. We can estimate the probability of a
connection between nodes of different segments based on the distance between
the nodes in eigenspace. We can also estimate the probabilities of a spline seg-
ment being an arm or a leg, for example, by examination of the properties of
the spline in normal space such as its length and thickness. We choose that per-
mutation of body segments that has the highest probability. In most cases, the
registration is straightforward, but however, in poses like in Fig. 6 (b), there are
ambiguities. We resolve these ambiguities by selecting that set of connections
between segments that has the highest probability (Fig. 6 (e)). We can also
identify cases where the number of segments is less than six due to segmentation
errors.

3.2 Estimating Human Body Model

The human body model parameters cannot be reliably estimated from a single
pose. We, therefore, select a set of N(= 20) key frames from the sequence that
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Fig. 8. Fit of initial skeleton model Fig. 9. Optimised model

have been registered successfully. We estimate an initial skeleton-based model
from the set of frames and progressively refine model parameters and increase
model complexity. For e.g., we begin with a skeleton model and progress to
super-quadric model. We use techniques that leverage our knowledge of the hu-
man body structure and use a top down approach. The stature (or height) of
the subject is a key parameter that is strongly related to a number of human
body model parameters, such as the lengths of long bones in the body [15].
Anthropometric studies have been performed on certain demographic groups to
study the relationship between stature and the long bones in the body. These
studies indicate that we can estimate the lengths of the large body segments
for an “average” human subject (model skeleton) from the stature. For our ini-
tial model we construct the model skeleton (including joint locations and limb
lengths) for an “average” human subject for a range of stature values. We fit line
segments, corresponding to the trunk, neck, head, forearms, arms, thighs and leg
segments to the voxel-skeleton in Fig. 6 (c), using the known lengths of the body
segments. We also obtain an approximate estimate of the pose in the process.
We identify the limbs on the left and the right by examination of their positions
with respect to the trunk and also by examination of the joint angles between
the limbs of the legs. We then compute the distance between the points on the
voxel-skeleton and the line segments of the model skeleton obtained from the
stature. The skeleton model fit error corresponding to the stature is computed
and summed across key frames for each stature value in the range to determine
the stature parameter that best fits the voxel skeletons. We note that there is a
clear minimum in the error versus stature plot in Fig. 7 and we select the model
skeleton corresponding to the minimum error stature value as our initial esti-
mate. The computed skeleton of a few key frames with the model super-imposed
on them are presented in Fig. 8. The two sets of parameters we are interested in
estimating are the pose parameters (joint angles) and the body structure (joint
locations). We can express the fit error as a function of the joint locations (X)
and the joint angles (ϕ). We minimise the fit error by varying X while keeping
ϕ fixed, and vice versa (varying ϕ while keeping X fixed), using optimisation
techniques. X and ϕ are allowed to vary within a small region around X0 and
ϕ0 respectively. The skeletons of a few key frames with the optimised model and
pose super-imposed on them are presented in Fig. 9.

The next step is to obtain the super-quadric parameters given the joint loca-
tions and angles. We estimate the super-quadric parameters for the trunk, head,
arm, forearm, thigh, and leg, as these body segments are large enough to be
estimated using the resolution and quality of the voxels that we possess. On any
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Fig. 10. Radial profiles of different body segments: The solid line is the median radial

profile. The dotted line is the super-quadric radius with scale parameter set to zero.

The dashed line is the super-quadric radius with estimated scale parameter. The x-

axis of the plots is the distance in mm along the z-axis of the body segment coordinate

system. The y-axis of the plots is the radius value also in mm.

articulated chain, we know the position of each voxel along the chain. Using this
knowledge and the estimated joint locations, we can segment each articulated
chain into the different body segments that make up the chain. Using the esti-
mated joint angles, we can also compute the position of the coordinate frame
attached to the body. For a given body segment, we can thus normalise the pose
using the body coordinate frame, so that the body segment is positioned at the
origin and aligned with the z-axis as in Fig. 10 (a). We compute the area of
the cross-section of the voxels, Az, (plane parallel to the xy-plane) at different
points along the z-axis. We assume that the cross-section is elliptical and find
the parameters (x0, y0) (in (1)), from the area using the relation A = πx0y0. A
circle of equal area would have radius r =

√
x0y0. We compute the radius of the

equivalent circle, at different points along the z-axis, as rz =
√

Az/π, which we
refer to as the radial profile (Fig. 10 (a)). We compute the radial profile in all the
key frames for each body segment and use the median radial profile. The median
radial profiles for some of the body segments are presented in Fig. 10 (b-e). We
can compute the length, radius and the scale parameter of the body segment
from the radial profile. If we wish to determine the parameters x0 and y0 of the
super-quadric, we obtain the xy-histogram, I(x, y), a function whose value at
(xi, yi) is given by the number of voxels that have x and y coordinates given
by xi and yi respectively. We find the values of x0 and y0 that maximise the
function, ∑

(x,y)∈Sx0,y0

I(x, y), where Sx0,y0 =
{

(x, y) : (
x

x0
)2 + (

y

y0
)2 < 1

}
,

and satisfy the constraint, x0y0 = r2. The model composed of super-quadric
segments computed above is presented in Fig. 11(b).

We refine the pose using the super-quadric body segments and the voxels
directly instead of the voxel-skeleton. The objective is to obtain the pose that
maximises the overlap between the super-quadric model and the voxels. The pose
is refined by bounded optimisation of the pose parameter to minimise the “dis-
tance” between the voxels and the super-quadric model. This “distance” mea-
sures the distance of each voxel from the centre of the body segment closest to it.
The distance vector, e = [e1, e2, · · · , eN ]T, where ei = min

(
e
(1)
i , e

(2)
i , · · · , e

(J)
i

)
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Fig. 11. The model (b) constructed from initial estimate of the quadratic parameters

compared with the voxels (a), and super-imposed with voxels before pose refinement

(c) and after (d). (e) is the model in voxel representation.
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j , dj) are the super-quadric parameters of the jth body
segment. Although the distance function appears complicated it is just a measure
of how close the voxel is to the central axis of the super-quadric. The refined
pose is the pose that minimises ‖e‖. The pose of the subject before and after
optimisation is presented in Fig. 11 (c) and (d) respectively.

4 Experiments and Conclusion

We use 15 calibrated cameras in our experiments positioned around the subject
and pointing towards the centre of the capture volume. The images are 484×648
grey-level with 8-bit depth. The frequency of the capture is 3 frames per second.
The units in the experiments are millimetres. The background subtraction algo-
rithm does not perform very well on grey-scale images and as a result the voxel
reconstruction is not of good quality at times. The algorithm is fairly robust
to such errors and rejects frames where registration fails due to missing body
segments or when the pose is not suitable.

We conducted experiments on four male subjects with different body mass,
stature and BMI (body mass index). The same algorithm parameters were used
in all the cases. Twenty key frames (where registration was successful) were
used to estimate the model parameters as well as the pose at each time instant.
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Fig. 12. Estimated models and corresponding voxels for different subjects

The results are illustrated in Fig. 12. We constructed a synthetic voxel image for
each of the key frames using the estimated model and pose. We use the synthetic
voxels (illustrated in Fig. 11 (e)) in order to evaluate the algorithm with respect
to the data voxels (Fig. 11 (a)). We also estimate the model parameters using
the synthetic voxels as input, so that we can compare the original pose and
estimated pose. The pose errors were computed at 24 major joint locations as
the absolute difference between the original and estimated joint angle values
for all the key frames used in the model estimation algorithm. The results are
tabulated in Table 1.

Table 1. Model and pose estimation error for real and synthetic data: Let ND and

NM be the number of data voxels and voxels from the estimated models, and NI is

the number of intersecting voxels. Model Fill Ratio (FR) is NI/NM and Data FR is

NI/ND. Note that each voxel is 1 cm3. Volume is in m3. Pose error is in degrees.

Data Model Data/Model Pose ErrorExperiment Subject
Vol. FR Vol. FR Vol. Ratio Mean Median

A 0.083 0.909 0.081 0.935 1.030 5.7 2.2
B 0.065 0.923 0.065 0.934 1.012 8.6 2.0Synthetic
C 0.057 0.858 0.054 0.902 1.052 7.0 2.2
D 0.127 0.871 0.117 0.947 1.088 8.4 4.0
A 0.088 0.766 0.083 0.812 1.059 – –
B 0.073 0.773 0.065 0.865 1.119 – –Real
C 0.063 0.690 0.057 0.765 1.111 – –
D 0.146 0.748 0.127 0.856 1.145 – –

We have addressed the problem of model acquisition in great detail and pro-
vided the results of experiments conducted on different subjects. No prior mea-
surements of the subjects were used. The only prior data used was a simple
graph-based model of an “average” human subject and an approximate relation
between the stature of an average human subject and the length of the long
bones, as well as approximate locations of the shoulder, neck and pelvic joints
with respect to the trunk. We have provided a systematic algorithm that aims
to build a human body model in intuitive stages. We first perform segmentation
and registration of the articulated chains that the human body is composed of.
We have introduced a method to extract the different articulated chains that are
part of the human body and also parameterise each voxel on the chain according
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to its distance from the joint. The latter is a key contribution and an important
step in accurately estimating the skeleton and the body model parameters. In
the next step, a skeleton is computed from the voxels and the parameters of
the human body model are estimated and refined by computing the fit with the
skeleton obtained from the voxels. We then compute the super-quadric parame-
ters for each body segment and refine the pose and body model parameters using
the super-quadric parameters and the voxels directly. We use distance measures
between the model skeleton and the skeleton computed from the voxels to op-
timise the pose and joint locations and presented a method to obtain an initial
estimate of the parameters of super-quadric segments.

Our method has advantages over other algorithms [7,13,3] in that we explicitly
extract the 1-D nature of the structure using the Laplacian eigenmap transfor-
mation in high dimensional space. We also explicitly model the continuous 1-D
structure using d-dimensional splines of a single parameter. We are thus able to
segment the limbs at the joints using the spline-fit error as a natural indicator of
when to stop growing the spline. We then use a probabilistic registration method
in order to handle complex poses where the limbs may touch other body parts
as in Fig. 6 (b-e) which are not considered in other methods such as [7]. The
explicit modelling of the body segments as splines in the eigenspace domain also
helps in creating the skeleton in the normal 3-D space. We then show that our
segmentation and registration algorithm can be exploited to estimate the human
body model parameters. We estimate the probability that the segmented body
parts match our model, so that we can discard frames that have missing limbs
due to possible errors in the voxel reconstruction.
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Abstract. We propose an approach to analyze and recover articulated
motion with non-rigid parts, e.g. the human body motion with non-rigid
facial motion, under affine projection from feature trajectories. We model
the motion using a set of intersecting subspaces. Based on this model, we
can analyze and recover the articulated motion using subspace methods.
Our framework consists of motion segmentation, kinematic chain build-
ing, and shape recovery. We test our approach through experiments and
demonstrate its potential to recover articulated structure with non-rigid
parts via a single-view camera without prior knowledge of its kinematic
structure.

Keywords: structure from motion, articulated, non-rigid, motion
analysis.

1 Introduction

Articulated motion has been attracting research interests for decades. It is highly
relevant to human motion, one of the most interesting motions in nature. Artic-
ulated motion with non-rigid parts is a good approximation to human motion.
A system that can capture and recover that kind of motion has a wide range of
applications in medical study, sport analysis and animation, etc. We propose an
approach to analyze and recover articulated motion with non-rigid parts under
affine projection from feature trajectories.

We model articulated motion with non-rigid parts as a set of intersecting
subspaces. From this model, we derive our approach to segment the motion,
build the kinematic chain and recover the structure. Compared to previous works
on articulated motion, which assume that the parts are rigid [20][22][1] or use a
kinematic model as a prior [2][3][4][5]. Our approach uses a unified framework
to deal with rigid parts and non-rigid ones. Besides, it does not require prior
knowledge of the kinematic structure, instead it can automatically builds the
kinematic chain from analyzing the feature trajectories.

The following sections are organized as followed: Section 2, detailed discussion
of our model of articulated motions; Section 3, our approach for motion segmen-
tation, kinematic chain building and shape recovery; Section 4, experimental
results; Section 5, conclusions and future work.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 90–99, 2006.
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2 Modeling Articulated Motion with Non-rigid Parts
Using Subspaces

We are going to show that under affine projection the trajectories of rigid, non-
rigid and articulated motions lie in some low-dimensional subspaces. Then we
discuss the extension of the articulated case to non-rigid parts. The conclusion
is that articulated motion with non-rigid parts can be modeled as a set of inter-
secting subspaces. The intersection between two motion subspaces may imply
an articulated link of either a joint or an axis.

2.1 Articulated Motion Subspaces

The rigid, non-rigid and articulated motions are described as followed with re-
spect to the subspaces they form.

– For rigid motions, the trajectories of a rigid object forms a linear subspace
of dimensions no more than 4 ([16]).

M2f×p = [R2f×3|T2f×1]
[
S3×p

11×p

]
(1)

f is the number of frames and p, the number of feature trajectories.
– The trajectories of a non-rigid object can be approximated by different

weighings of a number of key shapes ([8][9]) and, as shown below, lie in
a linear subspace of dimensions no more than 3k + 1.

M =

⎡⎣ c1
1R

1
2×3|...|c1

kR1
2×3|T 1

2×1
...

cf
1Rf

2×3|...|cf
kRf

2×3|T f
2×1

⎤⎦
⎡⎢⎢⎣

S1
3×1
...

Sk
3×p

11×p

⎤⎥⎥⎦ (2)

ci
j (1 ≤ i ≤ f, 1 ≤ j ≤ k).

– For articulated motions with rigid parts ([20][22]),
• If the link is a joint, [R1|T1] and [R2|T2] must have T1 = T2 under the

same coordinate system. So M1 and M2 lie in different linear subspaces
but have one-dimensional intersection.

• If the link is an axis, [R1|T1] and [R2|T2] must have T1 = T2 and exactly
one column of R1 and R2 being the same under a proper coordinate
system. So M1 and M2 lie in different linear subspaces but have two-
dimensional intersection.

The articulated motion can be modeled as a set of intersecting subspaces. The
intersections between two subspaces are the motion subspaces of a link, either a
joint or a axis, with dimensions of 1 or 2.
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2.2 Extension to Non-rigid Parts

In this section, we extend our discussion of articulated motion to non-rigid parts.
A case in point is the human motion whose facial motion is non-rigid and whose
head and body motions combined can be considered as articulated. We will focus
on a typical non-rigid case and build some theorems; lastly, we discuss how this
typical case can fit into the articulated motion subspace discussed above.

Let us consider a typical case of non-rigid motion: the non-rigid shape has
rigid components. This includes human facial motion which deforms on top of
rigid head motion. More formally, we are considering such a case that a non-
rigid shape can be represented by linear combinations of a number of key shapes
S1,...,SK that satisfy S1

i = ... = SK
i as long as its ith component is rigid.

We can prove then the following theorems.

Theorem 1. If a non-rigid shape can be represented by linear combinations of
S1,...,SK that satisfy S1

i = ... = SK
i for any rigid component i, the sum of the

linear coefficients of any frame f is 1, i.e.
∑K

i=1 cf
i = 1.

Proof. Let Si be a rigid component of the non-rigid shape. For any frame f , its
2D coordinates are:

Mf
i = [cf

1Rf |...|cf
KRf |T f ]

⎡⎢⎢⎣
Si

...
Si

1

⎤⎥⎥⎦ (3)

Because Si is rigid, Mf
i can also be written as the following.

Mf
i = [Rf |T f ]

[
Si

1

]
(4)

By comparing Equation 3 and 4, we have
∑K

i=1 cf
i = 1.

Theorem 2. If a non-rigid shape can be represented by linear combinations of
S1,...,SK that satisfy S1

i = ... = SK
i for any rigid component i, the rigid motion

subspace formed by the rigid components is embedded in the non-rigid motion
subspace.

Proof. From Theorem 1, we know
∑K

i=1 cf
i = 1 for any frame f . Let SI be the

set of all rigid components. We have the following.⎡⎣ c1
1R

1|...|c1
KR1|T 1

...
cF
1 RF |...|cF

KRF |T F

⎤⎦
⎡⎢⎢⎣

SI

...
SI

1

⎤⎥⎥⎦ =

⎡⎣ R1|T 1

...
RF |T F

⎤⎦[SI

1

]
(5)

Notice the left are trajectories in the non-rigid motion subspace; the right are
trajectories in the rigid motion subspace formed by all rigid components. So the
rigid motion subspace formed by those components must be embedded in the
non-rigid motion subspace.
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Now we can deal with articulated objects with non-rigid parts that satisfy the
above specification. The result is similar to the rigid case because essentially it
is the embedded rigid motion subspace that interacts with its linked part. This
result remains valid if both linked parts are non-rigid1.

– If the link is a joint, two subspaces have in general a one-dimensional inter-
section.

– If the link is an axis, two subspaces have in general a two-dimensional inter-
section.

Notice that for either case, we do not need to extract the embedded rigid mo-
tion subspace out of the non-rigid one in order to find the intersection. We can
intersect the motion subspaces directly to find the joint or axis subspace.

3 The Algorithms

Based on the subspace model of articulated motion with non-rigid parts, we
derive our algorithms for analyzing the motion and recovering it in the following.
The motion segmentation is important to both learning the kinematic chain and
recovering the articulated shape.

3.1 Motion Segmentation

Motion segmentation is the most important analysis of the articulated motion
in our approach. Its result can be directly used by kinematic chain learning and
shape recovery.

Previous works on motion segmentation has been mostly focusing on indepen-
dent motions [7][11][12]. It is the independency between motions that is exploited
in this group of works. In our articulated case, the intersection between motion
subspaces violates this assumption and so they do not apply. As for more recent
works of GPCA [17][18][19], though it can handle segmenting dependent mo-
tions, it requires a number of trajectories that is often too large to be satisfied
in practice. For more details, please refer to [21].

We use the algorithm proposed in [21] which can segment rigid or non-rigid
motion subspaces when they are either independent or dependent. The algorithm
is described in the following.

– Trajectory Data Transformation
Transform each trajectory of dimension 2F (F is the number of frames) onto
a RK unit sphere (rank(W2F×P ) = K, W2F×P is the trajectory matrix).
This can be done by SVD, W2F×P = U2F×KDK×KV T

P×K , and normalizing
each row of V . Each unit vector vi(i = 1...P ) becomes the new representation
of the corresponding trajectory.

1 For cases where the non-rigid deformations between the articulated parts are depen-
dent, it might be possible that higher dimensional intersections are obtained.
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– Local Subspace Estimation
Without knowing the underlying subspace each vi belongs to, we estimate
it from itself and its n − 1 closest neighbors, i.e. computing the subspace of
[vi, vi1, ..., vin]K×(n) using SVD. n is normally chosen to be larger than the
dimension of the underlying subspace.

– Spectral Clustering
An affinity matrix can be built from the distance between every pair of the
locally estimated subspaces for each vi. Then we can perform spectral clus-
tering and segment the trajectories. The distance between two equidimen-
sional subspaces is typically represented by the sine of their largest principle
angle[23].

The principal angles [23] between two subspaces are defined recursively
as a series of angles 0 ≤ θ1 ≤,...,≤ θM ≤ π/2 (M is the minimum dimension
of both subspaces):

cos(θm) = maxu∈S1,v∈S2uT v = uT
mvm

where

‖u‖ = ‖v‖ = 1
uT ui = 0 i = 1, ..., m − 1
vT vi = 0 i = 1, ..., m − 1

In our case, we define the affinity as below.

affinity(α, β) = e− i=1,...,M sin2(θi)

where θ1,...,θM are the principal angles between two locally estimated sub-
spaces α and β.

After segmenting the trajectories, we perform outlier rejection within each
segment. This can be done using a RANSAC approach [6] that robustly fit the
data into a subspace and reject outliers. The motion subspaces are formed by
the remaining trajectories in each group.

3.2 Learning the Kinematic Chain

For two linked parts, either rigid or non-rigid, either for a joint link or an axis
link, their motion subspaces are intersecting on at least one dimensional subspace
(see Section 2.2), thus have at least one zero principle angle. In practice, the value
will not be exact zero so a threshold is required. For parts that are not linked,
the motion subspaces do not have this property and have a larger minimum
principle angle. Depending on how independent the motion subspaces are, the
minimum principle angles may vary.

Based on the above analysis, we will describe our kinematic chain building
algorithm in the following.



Recovering Articulated Non-rigid Shapes, Motions and Kinematic Chains 95

– Build the proximity graph
We use a graph to represent the proximity between every pair of motion
subspaces.

G = (V, E)

where V = {v1, ..., vS} (vi is the ith motion subspace; S is the number of
motion subspaces) and E(vi, vj) = θij (θij is the minimum principle angle
between subspace i and j).

– Find the minimum spanning tree(s)
Based on the proximity graph we find a minimum spanning tree using Al-
gorithm 1. The spanning tree corresponds to the kinematic chain that we
compute.

Algorithm 1. Finding the minimum spanning tree
let T be the graph of the smallest edge of G
while T has fewer than S − 1 edges do

find the smallest edge in G connecting T to G − T
add it to T

end while

3.3 Shape Recovery

After the segmentation, each part can be recovered individually from the seg-
mented motion. For rigid parts, factorization method [16] can be applied directly.
For non-rigid parts, non-rigid shape recovery algorithms [8][9][10] can be used.

The basic idea is to factorize the trajectory matrix into two matrix, one ac-
counting for the rotation and translation of the camera and the other for the
object shape for the rigid case or key shapes for the non-rigid case.

4 Experiments

We test our approach in three real data sets.
The first experiment is from a scene with non-degenerate data of an articulated

object with a rotating axis. The detected rank of the trajectories is 6. The
segmentation result is shown in Fig. 1. The ranks of the segmented trajectories
are both 4. Each articulated part can be recovered as a rigid shape using the
factorization method [16]. By putting all parts into the camera coordinates,
shape and motion of the articulated object gets recovered. Furthermore, with
the axis recovered in the camera coordinates, we can reanimate the articulated
motion by rotating a part around the axis and generate not only novel views but
also novel motions (Figure 2).

The second example is an articulated puppet with 6 rigid parts: the head,
the upper body, the hip, 2 arms and 2 legs. A KLT tracker tracks a total of 114
features over 564 frames. The segmentation result is shown in Figure 3. After
outlier rejection within each segment, the remaining 97 features are shown in
Figure 3.
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Fig. 1. (left and middle) A sequence of a truck moving with the shovel rotating around

an axis. The color of a dot, red or green, shows the segmentation result. (right) The

affinity matrix of local estimated subspaces is shown. The row and columns are re-

arranged based on the segmentation.

Fig. 2. The shape and motion of the truck get recovered and reanimated. The black

dots show the original position of the shovel. Not only novel views but also novel

motions can be generated by rotating the shovel around the axis.

The minimum principle angles (the proximity graph) between 6 motion sub-
spaces are shown in Table 1. The bold font indicates the edges of the minimum
spanning tree of the graph. The kinematic chain are built from that and the
links are recovered by intersecting linked subspaces[20][22] based on the kine-
matic chain (Figure 3). The recovered kinematic chain is correct. However, one
can notice that the hip-body link is only marginally preferred to the lleg-body
link. The reason for this is that the motion of the puppets leg is mostly restricted
to a plane orthogonal to the image so that it is hard to differentiate between the
legs and the hips.

Table 1. Proximity graph and its minimum spanning tree – Puppet

larm lleg hip rarm body
rleg 0.0111 0.0007 0.0002 0.0126 0.0006
larm 0.0110 0.0060 0.0250 0.0008
lleg 0.0002 0.0170 0.0006
hip 0.0175 0.0005
rarm 0.0003
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Table 2. Proximity graph and its minimum spanning tree – Person

luarm ruarm body rlarm llarm
head 0.0015 0.0033 0.0011 0.0035 0.0065
luarm 0.0036 0.0008 0.0058 0.0009
ruarm 0.0008 0.0003 0.0145
body 0.0018 0.0033
rlarm 0.0103

Fig. 3. (top left) The segmentation of trajectories over 6 articulated parts of a puppet.

(top right) Trajectories after rejecting outliers. (bottom) The kinematic chain built from

trajectories and the links (white dots) recovered by intersecting the linked subspaces

based on the kinematic chain. (This figure is in color. We invite the reviews to check

out the video we supply as additional material).

Fig. 4. (top left) The segmentation of trajectories over 6 articulated parts of an upper-

body human motion. (top right) Trajectories after rejecting outliers. (bottom) The

kinematic chain built from trajectories and the links (white dots) recovered by inter-

secting the linked subspaces based on the kinematic chain.

The third example is an upper body motion of a person with 6 parts: the
head, the upper body, 2 upper arms and 2 lower arms. The head has some
non-rigid facial motion. A KLT tracker tracks the total of 268 features over 40



98 J. Yan and M. Pollefeys

frames. The segmentation result is shown in the top left of Figure 4. After outlier
rejection within each segment, the remaining 97 features are shown in the top
right of Figure 4. The minimum principle angles (the proximity graph) between
6 motion subspaces are shown in Table 2. The bold font indicates the edges of
the minimum spanning tree. The kinematic chain are built from the 6 motion
subspaces and the links are recovered by intersecting subspaces[20][22] based on
the kinematic chain, shown in the bottom of Figure 4.

The non-rigid part is the head which has a joint link with the upper body. The
link can be recovered simply by finding the 1-dimensional intersection between
both motion subspaces as discussed in Section 2.2.

5 Conclusions and Future Work

We describe an approach to analyze and recover articulated motion with non-
rigid parts. The approach is based on the subspace model of articulated mo-
tion. The algorithms for motion segmentation and kinematic chain building are
derived from this model. After segmentation, the shape of each part can be
recovered by the factorization-based methods for rigid or non-rigid shapes.

Our approach can be further demonstrated. Due to tracking a complex artic-
ulated object is still an unsolved problem, the second and the third experiment
do not provide shape recovery result. In the future, we plan to adopt or develop
a tracking method that handles occlusion and reappearing features to generate
tracks that cover the full shape of a complex articulated object. In the end, we
plan to recover human motion using our approach.
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3D Shape Reconstruction of Trunk Swaying

Human Body Segments

Takuya Funatomi, Masaaki Iiyama, Koh Kakusho, and Michihiko Minoh

Kyoto University, Yoshida-Honmachi, Kyoto, 606-8501, Japan

Abstract. We propose a method for acquiring a 3D shape of human
body segments accurately. Using a light stripe triangulation range finder,
we can acquire accurate the 3D shape of a motionless object in a dozen
of seconds. If the object were to move during the scanning, the acquired
shape would be distorted. Naturally, humans move slightly for making
balance while standing even if the subject tries to stay still for avoiding
the distortion of the shape. Our method corrects the distortion based on
measured motion during the scanning.

Experimental results show the accuracy of our shape measurements.
Trunk swaying degrades the accuracy of the light stripe triangulation
from 1mm to 10mm. We can keep the accuracy of as good as 2mm by
applying our method.

1 Introduction

For computer-aided design (CAD) of apparel, ergonomic and medical products,
the 3D shape of each particular human body becomes more and more useful. In
fact, several commercial products [1,2,3] based on the light stripe triangulation
rangefinders have been developed to reconstruct the 3D shape of an individual.

Although the light stripe triangulation rangefinder can accurately (< 1mm)
acquire the 3D shape of an object as a dense 3D point-cloud on the surface,
it takes time to scan the whole object with a laser sheet. If the object moves
during the scanning, the acquired shape becomes distorted and the accuracy is
degraded. Naturally, humans move slightly for making balance while standing
even if the subject tries to stay still and stop breathing for avoiding the distortion
of the shape. Such movement is called trunk sway. Our goal is to maintain the
accuracy of the light stripe triangulation for reconstructing the 3D human shape.

In order to cope with the distortion caused by the trunk sway for the measure-
ment of human body by the light stripe triangulation, several methods [4,5,6,7]
which reduce the time for measuring the shape by speeding up the measurement
can reduce the distortion. On the other hand, we propose in this paper to mea-
sure the motion of human body due to the trunk sway so that we correct the
distortion of the acquired shape based on the subject’s motion. To obtain the
motion, we estimate the rigid motion of each segment of the human body at each
moment during the measurement by assuming that the human body consists of
several rigid segments. For rigid motion estimation, we put markers on the skin
and measure their 3D position with cameras.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 100–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This paper is organized as follows. In section 2, we show how the 3D shape
is reconstructed by the light stripe triangulation and discuss how the acquired
shape is distorted by the subject’s motion. We present our method in section 3.
We show experimental evaluation of the accuracy of the measurements for all
segments and the acquired shape of a right upper arm and breast in section 4.
We conclude the paper with some discussion and future works in section 5.

2 Background

2.1 The Principle of Light Stripe Triangulation

The light stripe triangulation method reconstructs the 3D shape of an object as
follows:

1. Project a laser sheet on the object.
2. Observe the projected laser sheet, which is observed as a thin stripe on the

surface of the object, with calibrated camera(s).
3. Calculate the 3D position of the points that are on the observed stripe in

the camera image from the position of the plane of the laser sheet and the
pose of the camera using the triangulation.

From camera image at a moment, we can acquire only the partial shape of the
whole object where is illuminated by the laser sheet. We call each of partial
shapes as stripe shape. In order to acquire the full shape of the object, the laser
scans the whole object and the cameras observe the scanning (see also Fig.1.)
In comparison with other 3D shape capture methods, this method can acquire
high resolutional and accurate shape but takes much time for scanning the whole
object with the laser sheet.

2.2 Problem of Human Body Scanning

With the light stripe triangulation for a stationary object (see Fig.2-a), we can
acquire an accurate shape. As for moving objects (see Fig.2-b), the acquired
shape would be distorted by the object’s motion during the scanning.

This distortion problem will often occur when scanning the human body.
Some commercial products [1,2,3] take about a dozen of seconds to scan the
whole body with accuracy of about 0.5mm. In order to acquire the undistorted
3D shape, the subject needs to stop moving during the scanning. However, the
subject moves slightly for making balance while standing (trunk sway.)

The trunk sway is observed to assess postural stability in medical, physiolog-
ical and biomechanical science. Generally, they observe the movement of body
center-of-mass (COM) as the trunk sway and regard the trunk sway as the oscil-
lation of an inverted pendulum. As has been reported in [8], the average absolute
amplitude and the average frequency of the oscillation are about 5mm and 1Hz,
respectively. Such oscillation will distort the shape acquired with the light stripe
triangulation method.
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Fig. 1. Principle of the light

stripe triangulation
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Fig. 2. Shape distortion due to object motion

Fig. 3. Mismatching problem in parallel scanning

We discuss two approaches for avoiding the distortion from trunk sway. One
approach is speeding up the measurement for reducing the distortion. Speedy
scanning will make the distortion small. The other, which we propose in section 3,
is correcting the distortion based on the motion of the body due to trunk sway.

Speeding up the measurement. Several methods [5,6,7] have been proposed
to speed up the measurement by parallelizing the scanning with multiple lasers.
Although these methods are applicable to a stationary object, a problem will
occur when they are applied to a moving object. Fig.3 illustrates vertical scan-
ning of an object which moves horizontally. With a single laser (see Fig.3-a), the
acquired shape is distorted due to the object’s motion. In comparison with single
scanning, parallel scanning can acquire less distorted shape (see Fig.3-b). How-
ever, the acquired shape is segmented, and each segment (A, B in Fig.3-b) will
not match because the time of capture is different between borders (the bottom
of A and the top of B). As mentioned above, speeding up the measurement can
reduce the distortion, but cannot acquire the correct shape of the moving object.

3 Distortion Correction Process

In this paper, we propose an alternative approach to human body measurement
that corrects the distortion of the acquired shape based on trunk sway.

Generally, the human body will change its shape with various postures due to
muscle contractions. However, the shape will not change much locally when the
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subject tries to maintain the posture. We assume that the human body can be
divided into some rigid segments, and the trunk sway of the subject is described
as the set of rigid motions of each segment. Here, we divide the whole body
into 11 rigid segments (s :=head, breast, waist and right and left upper arms,
forearms, thighs and legs).

The acquired shape of a segment s using the light stripe triangulation consists
of 3D points on the segment’s surface as mentioned in section 2.1. The position
of each point would be changed by the rigid motion of s due to trunk sway.
This distorts the shape acquired with the light stripe triangulation. Acquiring
the rigid motion during the scanning, we calculate the original position of each
point and acquire the undistorted shape. Consequently, we have to measure
shape and motion of the subject simultaneously.

3.1 Rigid Motion Acquisition

To acquire the trunk sway during the scanning (t=0, 1, · · · , T ), we put Ns (at
least three) markers on the surface of each segment s, and observe them with
more than 2 synchronized and calibrated cameras to calculate 3D position using
the triangulation method.

To calculate the 3D position of the markers, we need the 2D position of each
marker on each camera’s image plane and the correspondence of each 2D position
among the cameras. The markers’ positions on camera images are detected with
pixel values. To observe the markers with cameras vividly, the observation should
be performed in a bright place. On the contrary, the light stripe triangulation
should be performed in a dark place to detect the light stripe clearly and measure
the shape accurately. To solve this conflict, we use 4 synchronized and calibrated
cameras as 1 unit: 2 are adjusted in exposure for observing markers and 2 are for
observing the laser stripe. We employ Zhang’s method [9] and the factorization
method [10] for the camera calibration.

Let M s
k (k = 1, · · · , Ns) denote the k-th marker on a segment s. At time t,

we express its 3D position as a 4x1 column vector in homogeneous coordinates,
Ms

k(t). M s
k(t) is calculated using triangulation with 2D positions of M s

k on each
camera image which acquired at time t. In our method, we track the markers on
sequence of images I(t) for each camera to get 2D marker positions ms

k(t). We
give the 2D position ms

k(0) for all M s
k of the initial frame I(0) of each camera

manually. For other frames I(t), ms
k(t) are estimated sequentially from their

pixel value at ms
k(t−1) on I(t−1) and the pixel values around ms

k(t−1) on I(t).
ms

k(t) is estimated as the center of the area that has values similar to the pixel
value of ms

k(t−1) on I(t−1).
We give the correspondences of the markers’ 2D position among cameras

manually. Then, we can calculate makers’ 3D positions Ms
k(t).

Rigid transformation matrix estimation. From the obtained Ms
k(t), we

estimate a rigid motion of segment s from time t= i to j, W s
i,j which is expressed

as a 4x4 rigid transformation matrix. Ms
k(j) is given by Ms

k(i) and the rigid
transformation matrix W s

i,j as:
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M s
k(j) = W s

i,jM
s
k(i). (1)

We define an error function Es(W ) as follows:

Es(W ) =
1

Ns

Ns∑
k=1

||M s
k(j) − WM s

k(i)||. (2)

Here, Ns is the number of markers and W is a rigid transformation matrix
which is defined by 6 parameters. W s

i,j is estimated as the W that minimizes
Es(W ) using the Powell minimization algorithm[11].

3.2 Distortion Correction

With W s
i,0 for all t = i and all segments s, we can correct the distortion of

the acquired shape. The distorted shape consists of T +1 stripe shapes which
were acquired from the rangefinder at t=0, 1, · · · , T . To recover the undistorted
shape, we transform each stripe shape which acquired at t= i into that at t=0
as using:

ps(0) = W s
i,0p

s(i). (3)

Here, ps(i) denotes the point position which compose the stripe shape at t= i,
and is expressed as a 4x1 column vector in homogeneous coordinates. With the
above correction, we can acquire an undistorted shape as a set of ps(0).

To correct the distortion for each time t and each segment s, we segment the
acquired full body shape into s segments manually, and separate the shape of
segment s into the T +1 stripe shapes which acquired at t=0, 1, · · · , T .

4 Results

4.1 Experiments for Accuracy Evaluation

The proposed method require at least only three markers for acquiring the rigid
motion of each segment s. However, we put a lot of markers M s

k(k=1, · · · , Ns)
and measure their 3D position M s

k(t) with the above procedure (mentioned in
3.1) at all times t=0, · · · , T for evaluating the accuracy. We evaluate 4 kinds of
accuracy in this experiment:

– Accuracy of marker position measurement
– Non-rigid deformation of the human body segments while standing still
– Accuracy of the light stripe triangulation (with distortion)
– Accuracy of our method.

Non-rigidity of human body segments. To validate the assumption that
the whole body can be divided into rigid segments s, we evaluate the rigidity
for each human body segment with standing still. Non-rigidity is evaluated as
a residual of the eq. (2) for estimating the rigid transformation W s

i,j from a
set of marker positions Ms

k(i) to a set of Ms
k(j) for all pairs of time (i, j). Let
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Fig. 4. The simulation of the light stripe triangulation

W̃ s
i,j denote the estimation of W s

i,j from minimizing eq. (2). We evaluate the

non-rigidity of segment s as an average residual Es(W̃ s
i,j), Es

W , which is defined
as follows:

Es
W =

1
T (T + 1)

T∑
i=0
i�=j

T∑
j=0

Es(W̃ s
i,j). (4)

Accuracy of the marker position measurement. Besides non-rigid defor-
mation of segment s, error in measuring the marker position Ms

k(t) will also
influence the average residual Es

W . We evaluate error in the measuring using the
average residual of using a rigid object instead of a human body. As the rigid
object, we use a mannequin which is held by a human to make the same motion
as a trunk sway. We evaluate an accuracy of the marker position measurement
as the average residual of Es(W̃ s

i,j) for the rigid object, EW .

Accuracy of the light stripe triangulation. To evaluate the influence of
the trunk sway on the light stripe triangulation, we simulate the measurement
using the markers M s

k and acquire the distorted shape.
The simulation is performed using a pair of sequences of images, IC(t) and

IL(t), from two cameras C and L which observe marker positions. If a laser sheet
which goes through lens center of the camera L scans the object, the stripe on
the subject is observed as a straight line on camera image IL(t). Here, the laser
plane is parallel to the x-axis of the image plane of camera L and the laser is
scanned along the y-axis going from y = 0 on the image plane at t = 0 to y = 1
at t = T . The stripe at t is projected to the camera image IL(t) as the line,
y= t/T (0≤x≤1, 0≤y≤1) (see Fig.4-a). Therefore, the observation of the laser
scanning from the camera L is done by integrating the lines from a sequence of
the images IL(t) into a single image, which we call the integrated scanline image
ÎL (see also Fig.4-b).

With the integrated scanline image ÎL, we can simulate the markers position,
M̂s

k, on the acquired shape using the light stripe triangulation. When the marker
M s

k is observed on ÎL at coordinate m̂s
k =
(
x̂s

k, ŷs
k

)
, M̂s

k is given by Ms
k(ŷs

k/T )
since the marker would be illuminated by the laser sheet at time ŷs

k/T . For all
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t, Ms
k(t) is obtained using the pair of sequences of images IC(t) and IL(t), so

M̂s
k can also be acquired.
Using M̂s

k and Ms
k(t), we evaluate the accuracy of the light stripe triangu-

lation for a trunk swaying subject, Es
L(t), as follows for each segment s:

Es
L(t) =

1
Ns

Ns∑
k=1

||M̂s
k − M s

k(t)|| =
1

Ns

Ns∑
k=1

||Ms
k(ŷs

k/T ) − Ms
k(t)||. (5)

Accuracy of the proposed method. To evaluate the accuracy of the proposed
method, we correct the distorted shape M̂s

k. We use only 3 of Ns markers for
rigid motion estimation and use the other Ns−3 markers for accuracy evaluation.
First, we calculate the estimate of the rigid transformation matrix W̃ s

t,0 from 3

markers positions Ms
k(t). Then, we transform M̂s

k of the remaining markers into
their corrected position M̃ s

k(0) with W̃ s
t,0. Finally, we evaluate the accuracy, Es

S ,

by comparing M̃ s
k(0) and Ms

k(0) as follows:

Es
S =

1
Ns

Ns∑
k=1

||M̃s
k(0)−Ms

k(0)|| =
1

Ns

Ns∑
k=1

|| ˜W s
ŷs

k/T ,0M
s
k(ŷs

k/T )−Ms
k(0)||. (6)

4.2 Accuracy Evaluation Results

First, we show the result of evaluating the accuracy of the marker position
measurement. We put fifty-eight 3-mm-square markers on a mannequin with
about 20mm grid spacing (see Fig.5-a), and measure their 3D position for 10
seconds with 15fps cameras, that is T = 150. Fig.5-b illustrates the markers
position with wire-frame at t=18, 123. We calculated the marker measurement
accuracy from all pairs of time t, EW was 0.73mm. Fig.5-c also illustrates markers
position at t=123 transformed into markers at t=18 using the estimated rigid
transformation matrix. This figure shows that the rigid transformation matrix
is estimated properly.

Next, we show the result of evaluating the non-rigidity of human body Es
W ,

the accuracy of the light stripe triangulation Es
L(t) and the accuracy of the

proposed method Es
S . As mentioned above, we put about 70 markers on the

breast and waist, and about 30 markers on the head, upper arms, forearms,
thighs and legs and measured the marker positions for 30 seconds, T = 450.
Also, the subject makes an effort to keep standing still and stop breathing to
avoid non-rigid deformation.

We show the camera image at t=0, IL(0), and the integrated scanline image
ÎL from an upper arm observation in Fig.6. Fig.6-b shows how the trunk sway
of the subject will distort the acquired shape.

To evaluate the accuracy, we measure the marker positions at t=0, M s
k(0),

the marker positions acquired with simulated the light stripe triangulation, M̂s
k,

and the positions as corrected by the proposed method, M̃s
k(0). Fig.7 illustrates
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(a) Rigid object to be subject.

t=18

t=123

(b) Acquired
markers.

(c) Transformed
markers.

Fig. 5. Experiment to evaluate the accuracy of marker position measurement

(a) Acquired camera image at t=0. (b) Integrated scanline image.

Fig. 6. Experimental result of integrated scanline image

for rigid transform estimation for accuracy evaluation
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Fig. 7. Experiment for markers position measurement and correction

acquired marker positions M s
k(0), M̂ s

k, M̃s
k(0) as measured from Fig.6. We chose

3 markers to estimate rigid motion (the black markers in Fig.7) and evaluate the
accuracy of the correction using the remaining markers (the white markers).

We show the Es
W , Es

L(0) and Es
S calculated for each segment s in Table 1.

From the results, we conclude that:

– In standing still, each segment of the body will deform non-rigidly less than
about 1mm (Es

W ).
– Trunk sway degrades the measurement accuracy Es

L(0) to about 10mm.
– The proposed method maintains the accuracy within about 2mm (Es

S) with
distortion correction.
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Table 1. Measurement accuracy evaluation for different body-parts (unit:mm)

Segment Non-rigidity Distortion Correction
s Es

W Es
L(0) Es

S

head 0.69 10.32 1.09

breast 0.70 7.48 1.47

waist 0.89 6.56 1.56

upper arm 1.54 31.50 1.86

forearm 1.14 7.16 1.99

thigh 1.16 3.94 1.25

leg 1.87 3.35 2.64

Average 1.14 10.04 1.69

(a) Camera image for the marker
position measurement.

(b) Camera image for the light stripe
triangulation.

Fig. 8. Synchronous observations of the markers and the laser scans

(a) A distorted shape. (b) Result of the proposed method.

Fig. 9. Comparison of contemporary and proposed method for shape reconstruction

4.3 Measurement Result

We show the acquired shape of a right upper arm and breast with two meth-
ods, the light stripe triangulation and the proposed method. We reconstruct the
surface from acquired point-cloud by making Delaunay mesh. Fig.8 illustrates
the camera images for the marker position measurement and the light stripe
triangulation. Fig.9 illustrates the shape acquired with the light stripe triangu-
lation and the result of the proposed method. The distortion which we can see
in encircled area of Fig.9-a is corrected by the proposed method, Fig.9-b.
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5 Conclusion and Future works

In this paper, we discussed that the trunk sway distorts the 3D shape of a human
body acquired with the light stripe triangulation and proposed a method which
corrects the distortion using measured body motion. We presented how each
segment of the human body undergoes less than 1mm of non-rigid deformation
in standing still. Nevertheless, experimental results show that the accuracy of
the light stripe triangulation is degraded from less than 1mm of error to about
10mm distortion due to the trunk sway. Our method allows for trunk swaying
during the measurement with about 2mm accuracy.

We will apply our method to shape measurement of the whole body. Fur-
thermore, all manual procedures in our method have to be automated in future.
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Abstract. The ability to detect and track human heads and faces in
video sequences is useful in a great number of applications, such as
human-computer interaction and gesture recognition. Recently, we have
proposed a real-time tracker that simultaneously tracks the 3D head pose
and facial actions associated with the lips and the eyebrows in monocular
video sequences. The developed approach relies on Online Appearance
Models where the facial texture is learned during the tracking. This pa-
per extends our previous work in two directions. First, we show that
by adopting a non-occluded facial texture model more accurate and sta-
ble 3D head pose parameters can be obtained. Second, unlike previous
approaches to eyelid tracking, we show that the Online Appearance Mod-
els can be used for this purpose. Neither color information nor intensity
edges are used by our proposed approach. Moreover, our eyelids tracking
does not rely on any eye feature extraction which may lead to erro-
neous results whenever the eye feature detector fails. Experiments on
real videos show the feasibility and usefulness of the proposed approach.

1 Introduction

The ability to detect and track human heads and facial features in video se-
quences is useful in a great number of applications, such as human-computer
interaction and gesture recognition. Vision-based tracker systems provide an at-
tractive alternative since vision sensors are not invasive. Of particular interest
are vision-based markerless head and/or face trackers. Since these trackers do
not require any artificial markers to be placed on the face, comfortable and nat-
ural motions can be achieved. On the other hand, building robust and real-time
markerless trackers for head and facial features is a difficult task due to the high
variability of the face and the facial features in videos.

To overcome the problem of appearance changes recent works on faces adopted
statistical facial textures. For example, the Active Appearance Models have been
proposed as a powerful tool for analyzing facial images [1]. Deterministic and

� This work was supported by the Government of Spain under the CICYT project
TIN2005-09026 and The Ramón y Cajal Program.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 110–119, 2006.
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statistical appearance-based tracking methods have been proposed and used by
some researchers [2,3,4]. These methods can successfully tackle the image vari-
ability and drift problems by using deterministic or statistical models for the
global appearance of a special object class: the face. A few algorithms exist
which attempt to track both the head and the facial features in real time, e.g. [3]
and [4]. These works have addressed the combined head and facial feature track-
ing using the Active Appearance Models principles. However, [3] and [4] require
tedious learning stages that should be performed beforehand and should be re-
peated whenever the imaging conditions change. Recently, we have developed
a head and facial feature tracking method based on Online Appearance Mod-
els (OAMs) [5]. Unlike the Active Appearance Models, the OAMs offer a lot of
flexibility and efficiency since they do not require any facial texture model that
should be computed beforehand. Instead the texture model is built online from
the tracked sequence.

This paper extends a previous work [5] in two directions. First, we show that
by adopting a non-occluded shape-free facial texture that excludes the eyes re-
gion more accurate and stable 3D head pose parameters can be obtained. Second,
unlike feature-based eyelid trackers, we show that the Online Appearance Mod-
els can be used to track the eyelids. Thus, we can infer the eye state without
detecting the eye features such as the irises and the eye corners.

Tracking the eyelids and the irises can be used in many applications such
as drowsiness detection and interfaces for handicapped individuals. Detecting
and tracking the eye and its features has been addressed by many researchers.
A variety of methodologies have been applied to the problem of eye tracking.
There are many methods for detecting eye features such as eye corners, irises,
and eyelids [6,7,8,9]. However, most of the proposed approaches rely on intensity
edges and are time consuming. In [8], detecting the state of the eye is based on
the iris detection in the sense that the iris detection results will directly decide
the state of the eye. In [6], the eyelid state is inferred from the relative distance
between the eyelid apex and the iris center. For each frame in the video, the eyelid
contour is detected using edge pixels and normal flow. The authors reported that
when the eyes were fully or partially open, the eyelids were successfully located
and tracked 90% of the time. Their proposed approach depends heavily on the
extracted intensity edges. Moreover, it assumes high resolution images depicting
an essentially frontal face. In our study, we do not use any edges and there is no
assumption on the head pose. In our work, the eyelid motion is inferred at the
same time with the 3D head pose and other facial actions, that is, the eyelid state
does not rely on the detection results of other features such as the eye corners and
irises. Tracking the rapid eyelid motion is not a straightforward task. In our case,
we like to track the eyelid motion using the principles of OAMs. The challenges
are as follows. First, the upper eyelid is a highly deformable facial feature since
it has a great freedom of motion. Second, the eyelid can completely occludes the
iris and sclera, that is, a facial texture model will have two different appearances
at the same locations. Third, the eyelid motion is very fast compared to the
motion of other facial features.
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The remainder of this paper proceeds as follows. Section 2 introduces our
deformable 3D facial model. Section 3 states the problem we are focusing on,
and describes the online adaptive appearance model. Section 4 summarizes the
adaptive appearance-based tracker that tracks in real-time the 3D head pose
and some facial actions. It gives some comparisons obtained with different facial
texture models. In Section 5, we present some tracking results associated with
the head, lips, eyebrows and eyelids.

2 Modeling Faces

A deformable 3D model. In our study, we use the 3D face model Can-
dide [10]. This 3D deformable wireframe model was first developed for the pur-
pose of model-based image coding and computer animation. The 3D shape of
this wireframe model is directly recorded in coordinate form. It is given by the
coordinates of the 3D vertices Pi, i = 1, . . . , n where n is the number of vertices.
Thus, the shape up to a global scale can be fully described by the 3n-vector
g; the concatenation of the 3D coordinates of all vertices Pi. The vector g is
written as:

g = gs + A τa (1)

where gs is the static shape of the model, τa the animation control vector,
and the columns of A are the Animation Units. In this study, we use seven
modes for the facial Animation Units (AUs) matrix A. We have chosen the seven
following AUs: lower lip depressor, lip stretcher, lip corner depressor, upper lip
raiser, eyebrow lowerer, outer eyebrow raiser and eyelid lowerer. These AUs are
enough to cover most common facial animations. Moreover, they are essential
for conveying emotions. Thus, the lips are controlled by four parameters, the
eyebrows are controlled by two parameters, and the eyelids by one parameter.

In equation (1), the 3D shape is expressed in a local coordinate system. How-
ever, one should relate the 3D coordinates to the image coordinate system. To
this end, we adopt the weak perspective projection model. We neglect the per-
spective effects since the depth variation of the face can be considered as small
compared to its absolute depth. Thus, the state of the 3D wireframe model
is given by the 3D head pose parameters (three rotations and three transla-
tions) and the internal face animation control vector τa. This is given by the
13-dimensional vector b:

b = [θx, θy, θz, tx, ty, tz, τa
T ]T (2)

Shape-free facial textures. A face texture is represented as a shape-free tex-
ture (geometrically normalized image). The geometry of this image is obtained
by projecting the static shape gs (neutral shape) using a centered frontal 3D
pose onto an image with a given resolution. The texture of this geometrically
normalized image is obtained by texture mapping from the triangular 2D mesh
in the input image (see figure 1) using a piece-wise affine transform, W (see [10]
for more details). The warping process applied to an input image y is denoted by:

x(b) = W(y,b) (3)
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where x denotes the shape-free texture and b denotes the geometrical para-
meters. Several resolution levels can be chosen for the shape-free textures. The
reported results are obtained with a shape-free patch of 5392 pixels. Regarding
photometric transformations, a zero-mean unit-variance normalization is used
to partially compensate for contrast variations. The complete image transfor-
mation is implemented as follows: (i) transfer the texture y using the piece-wise
affine transform associated with the vector b, and (ii) perform the grey-level
normalization of the obtained patch. Figure 1 illustrates two shape-free patches
associated with an input image.

(a) (b) (c)

Fig. 1. (a) an input image with correct adaptation. (b) the corresponding shape-free

facial image. (c) the same patch without the eyes region.

3 Problem Formulation and Adaptive Appearance
Models

Given a video sequence depicting a moving head/face, we would like to recover,
for each frame, the 3D head pose and the facial actions encoded by the control
vector τa. In other words, we would like to estimate the vector bt (2) at time
t given all the observed data until time t, denoted y1:t ≡ {y1, . . . ,yt}. In a
tracking context, the model parameters associated with the current frame will
be handed over to the next frame.

For each input frame yt, the observation is simply the warped texture patch
(the shape-free patch) associated with the geometric parameters bt. We use the
hat symbol for the tracked parameters and textures. For a given frame t, b̂t

represents the computed geometric parameters and x̂t the corresponding shape-
free patch, that is,

x̂t = x(b̂t) = W(yt, b̂t) (4)

The estimation of the current parameters b̂t from the previous ones b̂t−1
and from the sequence of images will be presented in Section 4. In our work, the
initial parameters b̂1 corresponding to the first frame are manually provided. The
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automatic initialization can be obtained using the statistical technique proposed
in [3].

By assuming that the pixels within the shape-free patch are independent, we
can model the appearance of the shape-free facial patch using a multivariate
Gaussian with a diagonal covariance matrix Σ. Let μ be the Gaussian center
and σ the vector containing the square root of the diagonal elements of the
covariance matrix Σ. μ and σ are d-vectors (d is the size of x) representing
the appearance parameters. In summary, the observation likelihood at time t is
written as

p(yt|bt) = p(xt|bt) =
d∏

i=1

N(xi; μi, σi)t (5)

where N(xi; μi, σi) is a normal density:

N(xi; μi, σi) = (2πσ2
i )−1/2 exp

[
−ρ

(
xi − μi

σi

)]
, ρ(x) =

1
2

x2 (6)

We assume that the appearance model summarizes the past observations un-
der an exponential envelope, that is, the past observations are exponentially
forgotten with respect to the current texture. When the appearance is tracked
for the current input image, i.e. the texture x̂t is available, we can update the
appearance and use it to track in the next frame. It can be shown that the ap-
pearance model parameters, i.e., μ and σ can be updated using the following
equations (see [11] for more details on Online Appearance Models):

μi(t+1) = (1 − α)μi(t) + α x̂i(t) (7)

σ2
i(t+1)

= (1 − α)σ2
i(t)

+ α (x̂i(t) − μi(t))
2 (8)

In the above equations, the subscript i denotes a pixel in the patch x̂. This
technique, also called recursive filtering, is simple, time-efficient and therefore,
suitable for real-time applications. The appearance parameters reflect the most
recent observations within a roughly L = 1/α window with exponential decay.

Note that μ is initialized with the first patch x̂1 corresponding to the geo-
metrical parameters b̂1. However, equation (8) is not used until the number of
frames reaches a given value (e.g., the first 40 frames). For these frames, the
classical variance is used, that is, equation (8) is used with α being set to 1

t .

4 Tracking Using Adaptive Appearance Registration

We consider the state vector b = [θx, θy, θz , tx, ty, tz, τa
T ]T encapsulating the 3D

head pose and the facial actions. In this section, we will show how this state can
be recovered for time t using the previous known state b̂t−1, the current input
image yt, and the current appearance parameters. The vector τa may have 6
facial actions (lips and eyebrows) or 7 facial actions (lips, eyebrows, and eyelids).
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The sought geometrical parameters bt at time t are related to the previous
parameters by the following equation (b̂t−1 is known):

bt = b̂t−1 + Δbt (9)

where Δbt is the unknown shift in the geometric parameters. This shift is esti-
mated using a region-based registration technique that does not need any image
feature extraction. In other words, Δbt is estimated such that the warped tex-
ture will be as close as possible to the facial appearance given by the Gaussian
parameters. For this purpose, we minimize the Mahalanobis distance between
the warped texture and the current appearance mean,

min
bt

e(bt) = min
bt

D(x(bt), μt) =
d∑

i=1

(
xi − μi

σi

)2

(10)

The above criterion can be minimized using iterative first-order linear approxi-
mation which is equivalent to a Gauss-Newton method. It is worthwhile
noting that minimizing the above criterion is equivalent to maximizing the like-
lihood measure given by (5). Moreover, the above optimization is made robust
by using robust statistics [5]. In the above optimization, the gradient matrix
∂W(yt,bt)

∂b = ∂xt

∂b is approximated by numerical differences. More details about
this optimization technique can be found in [5].

On a 3.2 GHz PC, a non-optimized C code of the approach computes the 3D
head pose and the seven facial actions in 70 ms.

5 Tracking Comparisons

In this Section, we compare the 3D head pose estimates obtained with differ-
ent shape-free patches using the same robust optimization technique described
above. To this end, we use the two shape-free patches depicted in Figure 1.(b)
and 1.(c). Note that the second patch is obtained from the first one by removing
the eyes region. We assume that the state vector b is given by the six head pose
parameters and the six facial actions associated with the lips and eyebrows.

We have used a 1000-frame long sequence featuring a talking subject1 as a
test video. Note that talking is a spontaneous activity. Figure 2 illustrates the
estimates of the 3D head pose parameters associated with a 150-frame long
segment using the two different shape-free facial patches (this segment starts at
frame 500). This video segment contains three blinks at frames 10, 104, and 145.
As can be seen, the most significant deviations in the 3D head pose parameters
occur at those frames (e.g., see the scale plot). Whenever eye blinking occurs the
patch without the eyes region has provided more accurate and stable parameters
than the patch with the eyes region. This is explained by the fact that despite the
use of robust statistics the estimation of the 3D head pose with a texture model

1 http://www-prima.inrialpes.fr/FGnet/html/benchmarks.html
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containing the eyes region (sclera and iris) is affected by the eyelids motion.
One can notice that the rotational deviations/errors seem to be small. However,
the vertical and in-depth translation errors can be large. For example, at frame
145 the obtained scale deviation/error is about 0.025 which corresponds to an
in-depth error of about 3 centimeters2.

6 Head, Lips, Eyebrows, and Eyelids Tracking

In the previous Section, we have shown that the accuracy of the 3D head pose
can be affected by the eyelids motion/blinking if the sclera and iris region is
included in the texture model. This is not surprising since eye blinking corre-
sponds to a sudden occlusion of a small part of the face. Thus, if the eyelids
motion is tracked one can expect that the 3D head pose parameters can be
more stable. Also, we have shown that the estimated 12 degrees of freedom as-
sociated with the head, lips ad eyebrows together with the used deformable 3D
model are enough to track the eye boundaries in a video sequence. However, one
needs to do more to track the eyelids motion. As we have mentioned earlier,
tracking the eyelids motion is a very challenging task, and most of the proposed
approaches for locating and tracking the eyelids rely on the extracted intensity
edges.

To tackle the difficulties associated with the eyelids motion, we use the follow-
ing. First, we adopt a shape-free facial texture model whose eyes region corre-
sponds to closed eyes configuration (see Figure 3), which implicitly excludes the
iris and sclera regions. Second, we use the same registration technique described
in Section 4 where the facial action vector τa is now given by 7 facial actions
(lips, eyebrows, and eyelids). Note that when the eyes are open in the input im-
age, the shape-free texture corresponding to the eyelids region (associated with
a correct eyelid facial action) will be a distorted version of a very small area in
the input image. However, the global appearance of the eyelid is still preserved
since the eyelids have the skin appearance.

We have tracked the head, lips, eyebrows, and eyelid using the 1000-frame
long sequence. Figure 4 displays the tracking results (13 degrees of freedom)
associated with frames 280, 284, and 975. The middle displays zoomed views
of those frames. Notice how the eyelids are correctly tracked. The upper left
corner of each image shows the current appearance (μt) and the current shape-
free texture (x̂t). The bottom of this figure displays the estimated eyelid facial
action as a function of time where the zero value corresponds to a closed eyelid
and the one value to a wide open eyelid. Eye blinking is a discrete and important
facial action [12,13]. In our case, it can be directly detected and segmented by
thresholding the continuous eyelid facial action. As can be seen, the dual state
of the eye can easily be inferred from the continuous curve. For the tracked
sequence, all blinks are correctly detected and segmented.

Figure 5 displays the tracking results obtained with another two videos.

2 The exact value depends on the camera intrinsic parameters and the absolute depth.
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Fig. 4. Tracking the 3D head pose, the lips, the eyebrows and the eyelids associated

with a 1000-frame long sequence. Only frames 280, 284, 975 are shown. The plot depicts

the estimated eyelid facial action as a function of time.

Fig. 5. Two test sequences
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7 Conclusion

In this paper, we have extended our appearance-based 3D head and facial action
tracker to deal with eyelid motions. The 3D head pose and the facial actions
associated with the lips, eyebrows, and eyelids are simultaneously estimated in
real-time using Online Appearance Models. Compared to other eyelid tracking
techniques our proposed approach has several advantages. First, computing and
segmenting intensity edges has been avoided. Second, the eyelid is tracked with
other facial actions at the same time, and hence it does not depend on the detec-
tion of other eye features. Third, the eyelid motion is tracked using a continuous
facial action. Experiments on real video sequences indicate that the eye state
can be detected using the eyelid tracking results.
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Abstract. The branch of Computer Science known as digital image processing 
includes different topics of Investigation and Development, as well as 
applications encompassing different stages that go from data acquisition, 
enhancement, and segmentation, up to the analysis, classification and 
interpretation of images [1]. Particularly, the reconstruction of 3D movements 
from 2D images (photos, filming) is a complex area, which becomes significant 
when it is a matter of obtaining real time responses. [1, 2, 3].  This project aim 
is developing a three-dimensional analysis system considering the processing of 
a soccer ball trajectory and rotational speed for its later computer-generated 
graphical modeling. The objective of the system is to improve the player’s skills 
and the training methodology, and is framed within the research line of this 
Institute and within the area of signal and image processing. 

Keywords: Image processing, objects tracking, path, spin. 

1   Introduction 

Path tracking and analysis is of particular importance in industrial environments, 
especially robotics. [4] 

Focusing now on the subject matters of this project, we shall mention those robot 
applications called car-like robots. These vehicles have to move in unknown 
environments and avoid obstacles fast and effectively.  

They are used, for instance, in games employing robots, which move in a small 
scenario taking the ball towards the rival goal. They have also been found in some 
tests with games of several sports, in which the ball is tracked in order to analyze 
shots [5, 6]. 

Path tracking requires a previous retrieval of the environment, be it manual or 
automatic, in order to obtain the information on the location and dimension of 
potential obstacles. On the other hand, if the generated path is to be tracked, we need 
to detect the specific object within the environment, so as to place it along the path 
and make the corresponding decisions. [5, 7] 
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The system aims at improving the players’ free-shot technique by means of the 
immediate display of the results obtained after each attempt. It also allows qualifying 
each shot according to the achieved precision and speed, showing comparatives 
among the different attempts. Thanks to this, each player will have its history, which 
will let us make note of their evolution.   

3D reconstruction of the moving object (the ball) is of utmost importance since not 
only can the observation point vary but also other effects of sports importance can be 
studied (for example, ball spin on its axis over a lineal path). This requires identifying 
the points of the mobile object and reconstructing the spin path simultaneously with 
the advance path [4, 8]. 

This aspect presents a particular complexity since the ball’s translational 
movement should be properly isolated from that of rotation. We should also take into 
account the labeling criteria over the surface in order to obtain the proper results.  

In order to carry out the system development, several steps had to be followed, 
including camera calibration, image filtering, point triangulation in space, path 
obtaining, and ball spin. The following section presents a theoretical explanation of 
each technique used and the developed implementation for its solution.  

2   Camera Calibration 

In order to obtain a proper triangulation of the object in space, we have to know first 
the characteristics of the camera to be used [8, 11, 12, 14]. 

There exist two sets of parameters that should be obtained by the camera 
calibration process. These are the intrinsic and extrinsic parameters.  

2.1   Intrinsic Camera Calibration  

Camera intrinsic calibration allows us to obtain its intrinsic parameters. These do not 
depend on the orientation and position of the camera within the 3D world; they are 
typical of this camera as optical device. The intrinsic parameters are the following: 

• Principal point or position of image center with respect to the camera refe-
rence system. It is the intersection point between the camera optical axis and 
the image plane. 

• Focal length: distance separating the image plane optical center. 
• Scale factors for x and y axis, to convert pixels into units. 
• Distortion coefficients. Geometric distortion affects the points in the image 

plane, as a result of a series of imperfections in the manufacture and 
assemblage of the lenses of the optical system. There are three types of 
distortion: radial, decentering, and prismatic.  

2.2   Extrinsic Camera Calibration  

Extrinsic calibration of a camera allows us to obtain its extrinsic parameters. These 
define the orientation and position of the camera in relation to a determined 
coordinate system, which is known as the world coordinate system.  Three parameters 
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define the movement and another three parameters (three angles with respect to axis x 
and y) define orientation.   

2.3   Calibration Methodology in the Developed System 

A camera intrinsic and extrinsic calibration module has been developed. This has the 
following features: left and right camera calibration, and stereo camera. 

2.3.1   Left and Right Camera Calibration 
In order to obtain the intrinsic calibration, we have used a known-size calibration grid, 
as Figure 1 shows. A series of shots are obtained with different positions and the 
grid’s intersections are detected.  

Figure 2 shows how the left and right camera were calibrated. For this, it was 
necessary to inform the system about the size of the frames of the grid (in millimeters) 
and the quantity of internal points of intersections (both horizontal and vertical). 

    

Fig. 1. Different shots of the Calibration Grid  

 

Fig. 2. Information obtained after Camera Calibration 

2.3.2   Stereo Calibration 
Once both cameras are calibrated, the following step entails the stereo or extrinsic 
calibration. For this, it is necessary to inform once again the features of the grid used.  
Once this is finished, a stereo image of the left camera and a stereo image of the right  
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Fig. 3. Images corresponding to Stereo Calibration 

camera are selected. Both images should be correspondent to one another, as Figure 3 
shows. 

3   Filtering of the Object of Interest  

Since a color filtering technique is used, the corresponding module is developed in 
order to detect without mistakes the red ball in each of the squares making up the 
videos to process. Such module allows setting up a configuration of the maximum and 
minimum allowable color thresholds, such as follows:  

 

 

Fig. 4. Ball Color Filtering 
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- Red Channel Minimum: it represents the minimum allowable red intensity of 
the image. Those pixels with a red intensity lower than such value will not be 
taken into account.  

- Green Channel Maximum: it represents the maximum allowable green intensity 
of the image. Those pixels with a green intensity higher than such value will not 
be taken into account. 

- Blue Channel Maximum: it represents the maximum allowable blue intensity of 
the image. Those pixels with a blue intensity higher than such value will not be 
taken into account 

4   Path Computation and Visualization  

Once each stereo pair corresponding to each other and making up the video sequence 
are filtered, the ball triangulation is to be carried out. This technique is referred to as 
stereovision. [9, 16]. 

4.1   Stereovision 

The correspondence problem is the most difficult to solve within stereovision. It 
means deciding which points of two images are the projection of the same real point. 
Once I1 and I2 are established to be the projection of the same point P in the two 
image planes R1 and R2, it is possible to obtain the 3D coordinates of such point by 
triangulation.  

x P

    I2 x   

x I1 
 

x C2
    x  C1 

 

 

Fig. 5. Corresponding Points in Two Stereo Images  

In principle, any point in the image plane R2 could correspond to any point in R1. 
In order to solve this ambiguity, certain geometrical restrictions depending on the 
image system setup (camera positions) could be used. The most important is the 
epipolar restriction, which allows us converting a two-dimensional search into a one-
dimensional.  
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4.2  Object-of-Interest Triangulation Methodology in the Developed System  

The ball triangulation is carried out by the corresponding video processing. The 
processing time will mainly depend on the quantity of squares per second of the 
videos (the higher the quantity of squares per second, the longer will be the process-
ing time) and the resolution of the images making up the video (the higher the 
resolution, the larger the volume of information to be processed, and thus the longer 
the processing time). 

Once the video sequence is processed, enough information is obtained to render 
the following results:  

1. Numerical Information: 
a. Initial ball acceleration. 
b. Point-to-point ball speeds along the path. 
c. Maximum ball height. 
d. Average shot speed. 
e. Ball location in space. 

2. Visual Information: 
a. Shot starting point. 
b. Impact point in the barrier or arrival at the goal line. 
c. Real path description. 
d. Estimated path description 
e. Comparison between the real and the estimated path. 

 

Fig. 6. Shot Playback Environment  
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The shot playback environment allows functionalities similar to those of a video 
player with different views (front, upper, lateral) as well as shot numerical data, such 
as figure 6 shows.  

  

Fig. 7a. Zooming in of the upper view in the Shot Playback environment 

 

Fig. 7b. Zooming in of the lateral view in the Shot Playback environment 
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The shot playback environment also presents the possibilities of storing the shots, 
for a later load and playback of them if necessary, without the need of re-processing. 
It also provides the possibility of zooming in one of the views for a greater detail of 
the path traced by the ball, such as figure 7 shows. 

5   Spin Computation 

In order to determine the ball spin speed, it is necessary to analyze the movement 
made by the ball between one frame and the next one. In these cases, movement 
estimation or optical flow techniques are used, which allows us to detect the 
movements generated along the video sequence. [18, 19]. 

5.1   Movement Estimation 

It is a process by means of which the object (or pixels) movement between two 
images is measured. Figure 8 shows that the moving image can be expressed in a 
three-dimensional space resulting from moving two consecutive images through the 
time axis. 

  

Fig. 8. Objects moving in a Three-Dimensional Space  

In the case in which the object is static, its movement is only seen over the time 
axis. However, when an object is moving, it moves over the optical path axis 
(horizontal and vertical axis in time) which is not parallel to the time axis.  
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5.2   Object-of-Interest Spin Computation Methodology in the Developed System  

The main problem to solve in this case entailed determining the correct labeling over 
the ball surface in order to know the movement the ball is making at all times.  

Several alternatives [10] have been analyzed and we found that the best option –
according to the project’s requirements – is to make marks with a distinctive color. In 
this case, yellow marks are used to distinguish them from the ball, the goal, and the 
field. The distribution consists of two marks per axial axis, such as figure 9 shows.  

  

Fig. 9. Display of marks in the ball  

Thus, there exists the problem of identifying each mark individually. This means, 
given an image and a mark, determining the new location of such mark in the 
following image. 

Techniques of both movement estimation (block matching) and optical flow have 
been tested. We eventually decided to develop an ad-hoc method according to the 
posed requirements.  

The procedure has three main stages: yellow marks filtering, their labeling, and 
label tracking. 

Yellow marks filtering was carried out by means of light intensity level 
thresholding in RGB channels.  

The labeling of marks consists in assigning an identifier (label) to each of the 
marks obtained after the filtering. 

The objective of label tracking is to determine the position of each label in the 
previous and subsequent images of the referential one. Knowing the distance the 
marks have traveled between a frame and the following of the video sequence and its 
capture speed (FPS), we are able to determine the ball spin speed. 

In order to obtain a higher precision when estimating the rotation, the procedure 
searches the frame along the video in which the ball shows a defined mark in the 
center. The three previously mentioned stages are carried out over the central mark.  

The case this mark does not have any clear movement over the capture view point, 
or no defined central mark is found along the video may arise. That is why perimeter 
marks are taken into account. 

The algorithm assures the existence of the selected mark along the frames to be 
used for the spin computation. 
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Fig. 10. Filtering and Labeling 

Figure 10 shows the mark filtering and labeling process over the optimum image 
found along the video sequence. 

A camera has been exclusively placed in order to carry out the ball spin 
computation at the time this comes closer to the goal.  

6   Used Resources  

6.1   Software 

In order to ease the initial tests, a virtual model was made with the 3D Studio 
program. Thanks to this model, we were able to determine the technical requirements 
to be fulfilled by the cameras and their optimal position.  

Then a ToolBox for MatLab [15] was used in order to understand the camera 
calibration process, the involved variables (focal length, aberrations, etc), and carry 
out real calibration tests.  

An optimum language was then determined in order to carry out the application. 
The OpenCV library (“Open Computer Vision”) [17] was selected as adequate 
together with the C++Builder development environment.  

It is important to mention that certain changes to the libraries making up OpenCV 
were made in order to adapt it to the project’s requirements. Due the considerably 
long distance between the cameras and the calibration board, the empiric bound for 
minimal allowed perimeter for squares and the minimal distance between image 
etalon points were changed to more suitable values. 

6.2   Hardware 

6.2.1   Cameras 
After a detailed analysis, the optimum setup of the cameras making up the stereo 
system was determined. The cameras should have the following characteristics:  
 

- 640x480 pixel resolution 
- 100 Frame Per Second (FPS) 
- 1/1000 of Shutter Speed  

 
Using images of 640x480 pixels, we can attain a reasonable precision, taking into 

account that the greatest distance between the camera and the ball will be of 
approximately 20 meters.  



130 F. Cristina et al. 

Capturing 100 frames per second, the ball traces a path no bigger than 20 centi-
meters between a frame and the other. 

With a shutter speed of 1/1000, the problem of capturing images in which the ball 
appears in the form of a tail will be avoided.  

We opted to use two stereo systems instead of one in order to avoid occlusion 
problems and obtain a higher precision in the triangulation computations.  

6.2.2   Capturing System  
The digital capture system should allow large quantities of information per second. 
Using four cameras for the path computation and one camera for the spin 
computation, we will need a storage speed of approximately 450 Megabytes per 
second.  

7   Achieved Results 

As regards the path computation, a precision with a 10 cm maximum error at a 
maximum distance was obtained, taking into account the specified hardware - being 
able to minimize such error if we counted with images of higher resolution.  

Each shot processing time is closely related to two main factors: quantity of frames 
per second (FPS) of the video and its resolution. The higher the FPS and/or resolu-
tion, the larger will be the required processing time. The tests carried out rendered the 
following results: it takes 20 seconds approximately to process the 5 videos without 
compression of 300 frames (3 seconds). 

8   Current Research Lines  

There exists an attempt to improve the shot playback environment and take it to a 3D 
playback environment. This aims at providing a visualization of the shots from any 
point in the space, thus allowing placing virtual cameras in endless locations for a 
better interpretation of results. [13] 

9   Conclusions 

An analysis and computer graphic modeling system was developed providing detailed 
information on the path and a ball spin computation, thus being able to obtain results 
allowing the technical improvement of players and their training methodology. 

In order to develop it, several techniques, tools, and computer vision methods have 
been used. A customized spin computation method was also developed. In addition, a 
shots capturing, processing, and visualization environment was developed.  

A future expansion of the system will be the three-dimensional representation of 
the path from any point of view, which will allow the analysis from strategic points of 
view, such as the goalkeeper’s vision, the shooter player’ vision, etc.  
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Abstract. This paper proposes to define a generalized SCODEF deformation 
method on a subdivision surface. It combines an "easy-to-use" free-form de-
formation with a Loop subdivision algorithm. The deformation method proc-
esses only on vertices of an object and permits the satisfaction of geometrical 
constraints given by the user. The method controls the resulting shape, defining 
the range (i.e. the impact) of the deformation on an object before applying it. 
The deformation takes into account the Loop properties to follow the subdivi-
sion scheme, allowing the user to fix some constraints at the subdivision-level 
he works on and to render the final object at the level he wants to. We also pro-
pose an adaptive subdivision of the object driven by the deformation influence. 

1   Introduction 

Subdivision surfaces are now widely used in computer graphics. It allows the genera-
tion of smooth surfaces, as well in geometric modelers, CAD or animation movies. 
On the other hand, handling such surfaces is not so easy, due to the subdivision proc-
ess which can modify the object from one level to another. Large parts of modeling 
actions are made by the user, implying up and down changeover from the modeling 
subdivision level to the smooth rendering one. We present in this paper a tool to de-
fine deformations on a subdivision surface, guaranteeing the respect of the deforma-
tion whatever the refinement level. 

In the existing methods to modify or deform subdivision surfaces, Schweitzer [17] 
proposes a mathematical formulation for the subdivision surfaces and the displace-
ment of the mesh vertices. This method is non intuitive and non interactive. Lee  
defines a deformation of the surface normals, Ehmann and Khodakovsky use respec-
tively methods based on weight linked to the surface vertices or a perturbation curve 
which modifies the successive subdivisions process ([14], [9], [10]). However, these 
methods are based on the mathematical definition of the subdivision surfaces which is 
not trivial for a common user. 
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Agron [1] works on Free Form Deformation (FFD, cf. [18]) of subdivision surface. 
He gives an easy way to interact with the subdivision mesh since the FFD hides the 
description of the surface. Other methods based on FFD can be used to facilitate the 
interaction of the user ([3], [16], [19]). The user working with these methods chooses 
a point to be deformed, eventually a neighborhood influence of the deformation or a 
displacement path, and the deformation model insures the satisfaction of these con-
straints. The a priori perception of the resulting object is very intuitive and its compu-
tation is very fast. 

The first part of this paper deals with a brief recall on the subdivision surfaces and 
the deformation model used, then we define the principle and the process to deform a 
subdivision surface with the free form deformation method (including adaptive subdi-
vision linked to the influence of the deformation). The last section will present some 
significant results. 

2   Loop Subdivision Surfaces and Deformation Methods 

2.1   Subdivision Surfaces 

Subdivision surfaces were introduced in 1978 by Catmull-Clark [5] and Doo-Sabin 
[8] as an extension of the Chaikin algorithm [6]. These surfaces are widely used in 
character animation (such as Geri's Game© or Finding Nemo©1) to smooth models. 
Indeed, successive refinements of a coarse mesh give finer meshes. A sequence of 
subdivided meshes converges towards a smooth surface called the "limit surface". 
Since the beginning of subdivision surfaces, many subdivision schemes were pro-
posed. Some of them are approximating and others are interpolating (i.e. control ver-
tices of successive meshes belong to the limit surface). 

     

Fig. 1. Example of subdivision surface with a Loop scheme 

Subdivision surfaces are among the easiest ways to generate smooth surfaces. They 
preserve both advantages of NURBS and polygonal meshes. We choose Loop 
scheme, defined in [15], to apply our results because most of the meshes are currently 
triangular (triangular meshes provided by geometric modelers, triangulated meshes 
reconstructed from laser range images…). An example of Loop subdivision is shown 
at Figure 1. Loop scheme generalizes quadratic triangular B-splines and the limit 

                                                           
1 Pixar Animation Studios http://www.pixar.com/  
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surface obtained is a quartic Box-spline. This scheme is based on splitting faces: each 
face of the control mesh at the refinement level n is subdivided into four new triangular 
faces at the level n+1. This first step is illustrated in Figure 2. Consider a face: new 
vertices -named odd vertices- are inserted in the middle of each edge, and those of the 
initial face are named even vertices. In the second step, all vertices are displaced by 
computing a weighted average of the vertex and its neighbouring vertices ([15]). 

 
 
 

Fig. 2. Left, an initial face. Right, the 4 new faces 

2.2   Deformation Model 

Once the deformation model is chosen, let us provide a deformation process. If a wide 
range of deformation methods exists, the major parts of them are linked to the repre-
sentation of the object to be modified. The Free Form Deformations model on which 
we base our works wish to be generic. It consists of a space deformation, acting only 
on points without taking into account topology, geometry or neighborhood informa-
tions. The first method developed by Barr [2], is an explicit formulation of simple 
deformations (bend, taper, twist). A frequently used method, Sederberg’s FFD [18], 
embeds the object to be deformed in a parallelepipedical lattice of control points, 
expressing any object point in vertices coordinates of the lattice and allowing the user 
to deform the initial object by modifying this control grid. The deformation can be 
local if the lattice is only surrounding a part of the object. An extension has been 
made to support lattice of arbitrary topology by Coquillart [7]. 

   

Fig. 3. The Scodef method in action: a constraint Ci with an influence radius Ri is applied on a 
plane 

The same general principle gives the DOGME model where punctual deformation 
constraints are defined [3]. The initial object is embedded in a space of higher degree 
to solve the constraints set and then projected in 3D or 4D space to obtain the de-
formed object. This method has been made more practical by the definition of a radius 

Ci 

di(Ci) 

Ri 
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of influence surrounding the constraint point and a deformation function f  [4]. Us-

ing this, the closest an object point is to the deformation constraint and the more it is 
deformed (see Figure 3). If an object point lies at the constraint point location, it is 
deformed by the deformation constraint vector. Conversely if a point lies outside the 
influence, it is not deformed. To follow the decreasing deformation from the con-

straint point to the influence boundary, authors use a non linear function f  (Bspline 

basis). An object point may be influenced by several constraint points Ci, i = 1, …, nc 
where nc is the number of constraints. Then, the mathematical expression of the Sco-
def model is defined by: Ci, Di, the displacement associated to this point (i.e. the de-
formation constraint), Ri, the radius of influence of the ith constraint Ci and nc (see 
Figure 3). The deformation of a point Q is given by:  

∀ ∈ ( ) −

  (2.2.1) 

The deformation function if  is the contribution of the ith constraint to the dis-

placement of a point Q. It is a scalar function of  Ci and Ri. Mi is the matrix obtained 
by the inverse resolution of the constraints, satisfying the set of constraints.  

Raffin et al. extends in [16] this deformation model with the definition of con-
straint curves, various influence sets (star-shaped solids) called influence hulls and 
paths of deformation that replace the initial vector between the constraint point and its 
deformed location. The following works are based on this method and applied on 
subdivision surfaces. 

3   Our Method 

In this section, we apply the deformation method on subdivision surfaces, taking into 
accounts some interesting properties of these surfaces. The chosen deformation is a 
constrained free form deformation. So, the user defines a constraint, an influence zone 
and a path of deformation. From these constraints, two methods of deformation are 
possible. The first method consists in deforming the mesh at a given level of subdivi-
sion and then subdividing the deformed mesh. The second method respects the de-
formation fixed by the user for any subdivision level. It implies to follow the con-
straint points from a level to the next one. 

3.1   First Method 

The first method is straightforward. Free form deformations can be applied to any 
object since the point coordinates, the constraint point, the path of deformation and 
the influence zone are known. Indeed, once the constraint is defined, every point of 
the mesh is treated as shown in Figure 3 Figure 4.a shows an initial object deformed 
to obtain the resulting mesh of the Figure 4.b. 
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Fig. 4. Control mesh deformation by a SCODEF constraint at a given level (the influence zone 
is in pointed line and the path of the deformation is a vector in dotted line)  

 

Fig. 5. Successive subdivisions of the mesh deformed in Figure 4  

Figure 5 illustrates meshes obtained by subdividing three times the deformed mesh 
and the loss of the constraint satisfaction. As the Loop scheme is approximating, the 
deformation is gradually eroded. 

In the simple example shown on Figure 4, only the constraint point belongs to the 
influence zone, it is the only point to be moved when the deformation is applied.  
Figure 6 shows the deformation obtained on a more complex example. According to 
the definition of constrained free form deformation, the constraint point undergoes the 
deformation imposed by the user. The displacement of the points in the influence 
zone grows when the points get closer to the constraint point. The points lying out of 
the influence zone are not moved. 

 

Fig. 6. Deformation of the bunny model  

The obtained deformation does not correspond any more to the one fixed by the 
user; it is much less significant. This deformation can be sufficient if the user does not 
want to insure that the mesh interpolates one point. If the size of the deformation must 

ba
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absolutely correspond to the constraints fixed by the user, it is necessary to proceed 
differently. We have to keep the deformation constraints (constraint point, displace-
ment, influence) along the successive subdivision levels. A solution consists in  
performing the deformation on each subdivision level. This will preserve the dis-
placement amplitude but the constraint point is not lying anymore on the mesh due to 
the Loop subdivision (the constraint point “escapes”). Thus, the influence zone is not 
centered any more on the mesh and consequently, the number of vertices influenced 
by the deformation is much less significant. Even if the deformation can be per-
formed, the resulting mesh does not satisfy the constraint (Figure 7). Figure 7.a. 
shows the initial mesh (a cube) and the deformation constraint. After five subdivi-
sions, as the mesh is eroded by subdivision, Figure 7.b. illustrates that the influence 
zone is not centered any more on the mesh and there are fewer vertices influenced. It 
is easy to see that the deformation is much less significant than the one given by the 
user. 

 

Fig. 7.a. the initial control mesh and the deformation constraint. b. deformation of the mesh 
defined in a. at the 5th level of subdivision, keeping the same deformation settings.  

So, we need to compute the image of the constraint point at any level of the subdi-
vided mesh to avoid the “escape” of the constraint point. We will use this image as 
the new constraint point and the initial displacement constraint will be preserved. The 
main advantage of our method compared to interpolating subdivision schemes lies in 
the fact that the path of deformation can be simple or complex. Indeed, the path of 
deformation can follow a Bspline curve for example [16].  

3.2   Image of the Constraint Point at Successive Subdivision Levels 

The method presented in [11, 12], based on a Loop scheme, permits the follow-up of 
a point lying on the surface from one subdivision level to the next one.  

If we consider a point 0
0I

 
on the mesh surface (i.e. 0

0I  belongs to a face but is not 

necessarily a mesh vertex), we have first to determine to which face of the control 
mesh the point 0

0I
 
belongs (Figure 8.a). For this purpose, we use the classical area 

property of triangles2. Then we subdivide this face ( )0 0 0
0 1 2, ,P P P

 
into sub-faces,  

                                                           
2 ( )P ABC∈  if and only if 

   ( ) ( ) ( ) ( )Area ABP Area BCP Area CAP Area ABC  + + = . 



138 S. Lanquetin, R. Raffin, and M. Neveu 

adding the middle-point of edges: 0
0N , 0

1N ,  0
2N ( Figure 8.b). The triangle surface 

property is again applied to determine the sub-face to which the constraint point 0
0I  

belongs. We can find the barycentric coordinates of 0
0I  in the sub-face iF , [ ]1,4i ∈ . 

For the example of Figure 8.b, the point 0
0I  belongs to the face 1F , and it depends on 

0 0 0
0 0 2, ,P N N . Finally, we compute the new coordinates of 0

0I  with Loop masks, keep-

ing the barycentric coefficients previously found. The result is a new point, 1
0I  (image 

of 0
0I ), which lies on the mesh (Figure 8.c).  

 

Fig 8. a. step 1: determination of the face F containing 0
0I . b. step 2 : splitting the face F , 

inserting the new vertices: 0
0N , 0

1N , 0
2N . c. step 3 : image 1

0I  of 0
0I  in the next subdivision 

level.  

The process can be iterated on successive subdivision levels to follow any point on 
the mesh. From this, the user can define a deformation at a given level, and this de-
formation will stick on the successive meshes obtained by subdivision. The resulting 
shape will thus correspond to the user request. 

3.3   Algorithm 

Let the object be subdivided at level k (k is chosen by the user, k is arbitrary) 
Step 1:  
Definition of the constraints (Ci, Di, Ri, nc) 

Step 2:  
if the user wants the deformation to be performed (and visualized) at this level 
then 

the deformation is computed according to (2.2.1) 
else (the user wants the deformation at the level k + n, n chosen by the user) 

for i = 1 to i = n 
the object is subdivided and the images of constraints are computed (see 3.2) 

endfor 
the deformation is computed according to (2.2.1) 

endif 
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4   Discussion and Results  

Once the method to track the constraint point from a level to the next one is defined, 
we can easily deform a subdivision surface. Let us consider the example introduced in 
Figure 6, a deformation which follows the levels of subdivision can now be per-
formed. Thus, Figure 9 shows deformed meshes obtained at three different levels of 
subdivision. 

 

Fig. 9. Three deformed meshes obtained in following the constraint point on successive subdi-
vision of the bunny model  

If the user wishes to visualize the effect of the deformation for every cones- 
cutive level, we have to compute and visualize the deformation in the loop of  
the algorithm (3.3). In this case, we have to compute n deformations. This could be 
avoided by using an interpolating subdivision scheme after deformation. Indeed, the 
constraint free form deformation can be performed at the initial level and then the 
mesh can be subdivided as many times as needed. The two main disadvantages of this 
interpolating method are the following: the first one comes from the non commutativ-
ity of interpolation and deformation. Performing a deformation at each subdivision 

level is heavy but really uses the shape of the deformation function f  whereas inter-

polation at successive levels after only one deformation does not respect the shape of 

f  (although both methods give the same deformation amplitude). The second comes 

from the interpolating scheme itself: interpolating schemes creates well known arti-
facts as illustrated in Figure 10.  

 

Fig. 10. From the bunny model deformed Figure 6, the butterfly scheme is applied twice 
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Despite of this, this interpolating solution can be appropriate in particular cases ac-
cording to the wish of the user. 

The main advantages of our method are the following. First, the constraint point 
can be any point on the mesh (not necessarily a mesh control vertex). Moreover, the 
displacement can be more complex, as shown in Figure 11 and can follow a dis-
placement path. This result is obtained by using properties of the deformation model 
[16]. In this example, the displaced points of the mesh follow a 3D curve (Bspline). 
Faces in the influence zone, which is non-isotropic, are first geometrically refined 
because of the important number of vertices needed to draw the curved shape. Finally, 
the deformation is performed as previously. 

Instead of refining the faces of the influence zone, the user can choose to subdivide 
only these faces by using a local scheme Figure 12 illustrates a Bspline deformation 
where faces in the influence zone are subdivided with the non uniform Loop scheme 
introduced in [13]. 

 

Fig. 11. A complex deformation on a bunny mesh. The deformation is defined by a constraint 
point and a curvilinear path of displacement. The influence hull (circle on the left image) is a 
superellipsoïd.  

 

Fig. 12. An adaptive subdivision is performed on faces of the influence zone before applying 
the deformation 

5   Conclusion and Future Works 

In this paper, we proposed a new deformation tool to model complex objects with 
subdivision surfaces. This method is easy to perform and leaves a great freedom in the 
choice of the constraint point and of the path of deformation. Indeed, the constraint 
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point can be arbitrarily chosen on the mesh and the path can be complex such as a B-
spline curve. The deformation enables to fix geometric deformation constraints that 
are satisfied after computation and exactly kept in the subdivision levels. Finally, we 
can use a better deformed mesh, which can be first locally subdivided in the influence 
zone of the constraint point. If the user wishes the deformation to reach a fixed point, 
the solution is to perform the deformation at each subdivision level. As the deforma-
tion acts only on points of the mesh, it is not time consuming compared to subdivi-
sion. Thus, even if the user wishes to visualize the deformation at each subdivision 
step, this not a drawback. Extending the model is foreseen because the deformations 
used in this paper are punctual whereas the deformation model [16] defines curves or 
surfaces constraints.  
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Abstract. Human action recognition is a popular research area while it is 
changeling when facing various conditions related to viewpoint, subject, back-
ground, illumination and so on. Among all the variances, viewpoint variant is 
one of the most urgent problems to deal with. To this end, some view invari-
ance approaches have been proposed, but they suffered from some weaknesses, 
such as lack of abundant information for recognition, dependency on robust 
meaningful feature detection or point correspondence. We propose a novel rep-
resentation named "Envelop Shape". We prove it from both theory and experi-
ments that such representation is viewpoint insensitive. "Envelop Shape" is easy 
to acquire. It conveys abundant information enough for supporting action rec-
ognition directly. It also gets ride of the burdens such as feature detection and 
point correspondence, which are often difficult and error prone. In order to 
validate our proposed approach, we also present some experiments. With the 
help of "Envelop Shape", our system achieves an impressive distinguishable  
result under different viewpoints.   

Keywords: View Invariant, Affine Projection Model, Action Recognition,  
Envelop Shape.  

1   Introduction 

Human action recognition is an active area of research in computer vision. There have 
been several surveys which tried to summarize and classify previous existing  
approaches for this problem [1], [2], [3], [4]. According to [3]'s opinion, a general 
system for human motion analysis can be made up of four subparts: Initialization, 
Tracking, Pose Estimation and Recognition. Among them, the first two parts are pre-
processing of images to get low level representation for pose estimation, the Pose 
estimation is the process of identifying how a human body and/or individual limbs are 
configured in a given frame, while the Recognition part uses the results of pose esti-
mation of frames to classify actions. 

In our research work, we divide human action recognition system into three sub-
parts: Preprocessing, Posture Estimation and Action recognition. Preprocessing part 
includes human detection and tracking. Posture Estimation part includes posture  
representation and estimation. Here, posture just means a kind of representation of 
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human body in a single frame, for example, horizontal and vertical histograms of 
silhouette [5], vector of distances from boundary pixels to the centroid [6]. In our 
opinion, posture representation is one of the most basic and key problems in action 
recognition system.  

It is well known that a good representation for classification should have such 
measurement property whose values are similar for objects in the same category while 
very different for objects in the different categories. So this leads to the idea of seeking 
distinguishing features that are invariant to irrelevant transformations of the input [7]. 
In the case of recognition of human action, we argue that a good feature representa-
tion should be able to resist the variations in viewpoint, human subject, background, 
illumination and so on. Among all the invariance, the most important invariance is 
view invariance. We can perform training and recognition according to specialized 
environments and specialized persons. But in order to perform natural human action 
recognition, we can’t limit human body’s movement and rotation at any time which 
means observing viewpoint changes. 

It is a challenge to find a view invariant posture representation for action recogni-
tion. There have been some proposed approaches on view invariant action recogni-
tion. Campbell et al. proposed a complex 3D gesture recognition system based on 
stereo data [8]. Seitz and Dyer described an approach to detect cyclic motion that is 
affine invariant [9]. Cen Rao had done a lot of researches on view invariant analysis 
of human activities in his Ph.D work [10], [11]. He used trajectory of hand centroid to 
describe an action performed by a hand. He discovered affine invariance of trajectory 
and his system can work automatically. Vasu Parameswaran had also focused on 
approaches for view invariant human action recognition in his Ph.D work [12], [13]. 
He chose six joints of the body and calculated their 3D invariants of each posture. So 
each posture can be represented by a parametric surface in 3D invariance space. 

Though there have been so many research works on view invariant action recogni-
tion, there are still many problems to solve. For example, most approaches depend on 
robust meaningful feature detection or point correspondence, which, as we know, are 
often hard to realize. The price paid by view invariant representation for its insensi-
tive to the view angle is the losing of some useful information for discriminating the 
different actions. As the result, how to make the representation insensitive to the 
view-angle while keeping appropriate discriminating information for recognition is 
the key point. In this regard, we propose a novel posture representation named "En-
velop Shape". Under the assumption of affine camera projection model, we prove it 
from both theory and experiments that such representation is viewpoint insensitive for 
action recognition. "Envelop Shape" is easy to acquire from low level features, which 
can be obtained from silhouettes of subjects by using two orthogonal cameras. It con-
veys more abundant information compared to previous view invariant representation 
for action recognition. And it does not rely on any meaningful feature detection and 
point correspondence, which as we know are often difficult and sensitive to errors. 
Also in order to validate our proposed approach, we present some experiments. With 
the help of "Envelop Shape" representation, our system achieved an impressive dis-
tinguishable result facing different actions under different viewpoints. 

The remainder of this paper is organized as follows. In section 2, we present our 
novel view insensitive representation. We first present our thought of this research 
work, then we derivate this representation. In section 3, we propose the experiments 
based on our representation and give our conclusions. 
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2   View Invariant Representation 

In human action recognition, representation is the basic and key issue. Here we call 
all kinds of representation of human body in a single frame as posture representation. 
Viewpoint invariance of representation means the measurements using this represen-
tation are keeping almost the same even under different viewpoints. Our research 
work aims for discovering viewpoint invariant representation for natural human  
action. 

2.1   Preliminaries 

Viewpoint transformation can be separated into two parts, translation and rotation. 
Almost all representations have translation invariance, so we only consider rotation 
invariance. Figure 1 shows the coordinate in our system. In this coordinate, the Y-axis 
is vertical. There are three kinds of rotation terms used to describe the rotation in the 
coordinate: roll, pitch and yaw. Roll, pitch and yaw describe the rotation around the 
Z-axis ( ), X-axis ( ), and Y-axis ( ), respectively. It is quite often that the subject 
makes some kind of actions, while roaming in front of the fixed camera, for example 
the actors on the stage or teachers are conducting the class. In this case the yaw mo-
tion of the body is caused by the variations of the view angle, but due to the meaning-
ful gesture. In this regard, we classify human postures in a same category if only yaw 
rotation exists and we classify human postures in different categories if there exist 
other two kinds of rotation terms, roll or pitch. For example, when a human is stand-
ing compared with lying on the ground, the rotation term is roll or pitch, and we re-
gard them as different postures. While if a human only turns his body facing another 
direction, we think he is acting the same posture. So with the above discussion, we 
can conclude that for most viewpoint invariance in human action recognition, we need 
only to consider the invariance on yaw rotation. 

+Y

+X

+Z
α

β

γ

 

Fig. 1. Coordinate in our system 

In the practical situation of human action recognition, because the depth range of 
human body is usually small compared with the distance between human and the 
camera, the affine camera model can be used. Let us give one form of affine epipolar 
constraint [14]:  

0'''' =++++ δνβμαβναμ , 
(1) 
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Where ( , ) and ( ', ') are image coordinates of a same point P on image pair of two 
cameras, and , , ', ',  are constants depending on the two cameras’ parameters, as 
Figure 2. Then for a point pair ( , ) and ( ', '), we can also give a equivalent trans-
formation as following, 

11 δβναμ ++=Y  ; 2
''''

2 δνβμα ++=Y  (2) 
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Fig. 2. Two cameras’ configuration in affine geometry 

When we assign proper values to 1 and 2, Y1 is equal to Y2 for any point pairs. 
So with this transformation, trajectory of a moving point can be projected to a one 
dimension direction. This projection direction is parallel to intersection line of the two 
image planes. Since such projection of a trajectory is a one dimension value in a di-
rection, it is view invariant in the other two orthogonal directions. So we get a direct 
representation: “two trajectories match if and only if their 1D projection curves 
match, the projection direction is parallel to intersection line of the two image 
planes.” It is the same as “two trajectories match if and only if M is of rank at most 
3”, which is proposed as a theorem in [11]. Here M is an observation matrix config-
ured as: 
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image coordinates of correspondent points from the two different viewpoints. 
Based on above analysis, we can define a direct and convenient view invariant 

representation for human action recognition. If the camera coordination system is 
fixed as the following: the image plane of camera is parallel to the vertical axis Y, 
then the projection of pixels of images on axis Y is view invariant on yaw rotation. 
Then we can recognize some actions effectively disregarding its rotation around Y 
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axis. For example, we can classify action “Raising hand” and “Waving”. The price 
paid for the convenience is that it only records the trajectory on Y axis. Therefore it 
loses other two axis motion information, so it can not distinguish the motion character-
istics on horizontal plane. For example, we can not distinguish hand moving on a line 
or on a circle on the horizontal plane. There is also another shortcoming, that is, we 
should detect the exact meaningful points and track their trajectories as input, for ex-
ample, centroid or joints of human body, which as we know are often hard to realize. 

2.2   Envelop Shape 

To overcome the shortcoming mentioned above, a two camera scheme is proposed as 
the following: the image planes of two cameras are both parallel to the vertical axis Y, 
and the optical axes are orthogonal, as Figure 2. Let us consider a horizontal section 
plane of human body, projections of all points on this section plane into the image 
plane 1 are on the line l and projections of all points on this section into the image 
plane 2 are on the line l . The line l are the epipolar line of point p1’ and the line l’ 
are the epipolar line of point p. To discover the yaw rotation invariance, we need only 
to analysis a 2D shape’s projection on X-axis and Y-axis in different rotations. See 
Figure 3. 

 

Fig. 3. 2D Shape's projection on X-axis and Y-axis in different rotations 

Let us suppose a 2D shape “S” whose projection segments in original coordinate 
XY are AB and BC, so it is in the rectangle ABCD. In another coordinate X’Y’ which 
rotates at an angle of , its projection segments will be in segment EF and FG. Let us 
define the original projection segments length as x and y, the new projection segments 
length as x’ and y’. So we can get the following formulas: 

θθ sincos' yxx +≤  , θθ sincos' xyy +≤  (3) 
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Now let us define a value r as following, 

22 yxr += , (4) 

then  

rxyyxxyyxyxr 222sin2'' 222222' ≤++≤++≤+= θ  (5) 

Let r0 be the minimal value of “r” s among all rotations, then at any rotation, the r 
value will meet the following inequation: 

00 2 rrr ≤≤  (6) 

This is a quite small value range compared to the unlimited ranges of ratios be-
tween x’ and x or y’ and y. What’s more, in order to get the upper boundary, follow-
ing requirements should be met: 

x=y and sin2 =1 (7) 

If x and y differs a lot, the value of r’ and r will remains almost the same. As in the 
case of our human body analysis, for most horizontal section plane, x and y differs a 
lot, so the value of r keeps a small change while human body only performs yaw rota-
tion. That is to say, we get a view insensitive representation of human body. At each 
horizontal section plane, we can calculate an “r” value with formula (4). For a single 
frame of human posture, we get a vector of “r” value. Since this vector can envelop 
the human body silhouette inside, we call this representation of vector of r value as 
“Envelop Shape”. Here we give some “Envelop Shape” images of some synthesized 
human body model data at different viewpoints. Figure 4, Figure 5 and Figure 6 
shows three kinds of postures rotated on Vertical axis Y at eight different angles, the 
first rows are silhouettes of images in the first camera, the second rows are silhouettes 
of images in the other camera, and the third rows are “Envelop Shape” images. We 
can see that the Envelop Shapes does really change only few facing viewpoint 
changes. 

Though we propose our representation in a configuration such as Figure 2, that is, 
two cameras should be placed with image planes both parallel to the vertical axis Y 
 

 

 

 

Fig. 4. Posture 1 at different viewpoints 
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Fig. 5. Posture 2 at different viewpoints 

 

 

 

Fig. 6. Posture 3 at different viewpoints 

and optical axes orthogonal. It does not need accurate calibration. As we know, accu-
rate calibration is often complex. It is enough when the cameras are placed approxi-
mately meeting this kind of placement requirement. That means we do not need to 
spend a lot of time on configuring the accurate placement. As we mentioned above, 
this kind of representation is just view insensitive, so approximate value can also do. 
We have done our experiments with just rough placement of cameras, while we can 
see that the result is alright. 

Here is a brief description of approaches to get Envelop Shapes.  

1. Extract two silhouettes of human body from image pairs. 
2. Perform a scale transformation to make that the silhouettes are of same 

height.  
3. Use formula (4) to calculate “r” value at each height of the silhouettes, the x 

and y are the corresponding width of the two silhouettes at this height. 

This new representation has following advantages: 

1. It keeps information on two dimension degrees of freedom, vertical axis and 
horizontal plane. It has one more dimension of information than the simple view in-
variance representation of trajectory. This means it has stronger distinguish ability, at 
the same time, it is view insensitive. 

2. It is Easy to obtain. Only silhouette is required as input, which is easier to get 
than meaningful feature points detection, tracking and correspondence. 
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3   Experiments and Conclusions 

In order to validate our proposed approach, we have also done some experiments. We 
have recorded video data of one actor’s action data using two cameras placed roughly 
orthogonal. We segmented the videos into 6 actions which are "Raise Hand", "Fetch", 
"Communication", "Walk", "Bow" and "Touch head". Each action is repeated six 
times at arbitrary viewpoints. Figure 7 to 10 show two kinds of actions’ experiment  
 

 

 

 

Fig. 7. Sample frames of "Fetch" segment1 

 

 

 

Fig. 8. Sample frames of "Fetch" segment2 

 

 

 

Fig. 9. Sample frames of "Bow" segment1 

 

 

 

Fig. 10. Sample frames of “Bow” segment2 
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result. Figure 7 shows one segment of “Fetch” action and Figure 8 show another seg-
ment of “Fetch” action at a different viewpoint. Figure 9 shows one segment of 
“Fetch” action and Figure 10 show another segment of “Bow” action at a different 
viewpoint. In each figure, the first row shows the silhouettes and real images from 
one camera and the second row shows the silhouettes and real images from the other 
camera, while the third row shows their "Envelop Shape" images. 

We then used the "Envelop Shape" to perform action classification. First we sam-
pled five frames from each video segment equally. Then we calculated such five 
frames' "Envelop Shape" as input vectors, and we also performed length normaliza-
tion on the "Envelop Shape". We used the sum of five input vector pairs' distances to 
measure two video segments' disagreement. Then we applied the Nearest Neighbor 
method to classify them. Table 1 show the classify result. The number in each cell 
means the counts of action in the first column classified by system to the action cate-
gory in the first row. We can see with the help of "Envelop Shape" representation, our 
system achieves an impressive distinguishable result facing different actions under 
different viewpoints though the classify method is simple. 

Table 1. Action Classify Results 

 RaiseHand Fetch Comm. Walk Bow TouchHead 
RaiseHand 5 1 0 0 0 0 
Fetch 0 6 0 0 0 0 
Comm. 0 0 6 0 0 0 
Walk 0 0 0 6 0 0 
Bow 0 0 0 0 6 0 
TouchHead 1 0 0 0 0 5 

From the above presentation of our proposed approach and experiments, we can 
find that the "Envelop Shape" representation do have many advantages in applications 
facing view variant problems. It is view insensitive, and compared to previous ap-
proaches, it is easy to acquire and has abundant information. It does not need any 
meaningful feature detection and point correspondence, which as we know are often 
difficult to get and sensitive to errors. While, there is still quite a lot of work to ac-
complish further.  The first thing is that although this kind of representation is view 
insensitive and has comparatively abundant information, it still loses some view vari-
ant information sometimes important for action recognition. For example, only with 
this representation we can not distinguish left and right hand. Some view variant in-
formation may help in solving this kind of problem. How to combine both this repre-
sentation and other view variant information is a question. The second thing is that 
now we focus on representation of posture, while in fact representation and recogni-
tion are always in a whole, we should consider further how to make better use of this 
representation in recognition dynamic posture sequences of actions with context while 
not just simply recognize them as static posture sequences. 
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Ballistic Hand Movements
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Abstract. Common movements like reaching, striking, etc. observed during
surveillance have highly variable target locations. This puts appearance-based
techniques at a disadvantage for modelling and recognizing them. Psychological
studies indicate that these actions are ballistic in nature. Their trajectories have
simple structures and are determined to a great degree by the starting and ending
positions. We present an approach for movement recognition that explicitly con-
siders their ballistic nature. This enables the decoupling of recognition from the
movement’s trajectory, allowing generalization over a range of target-positions.
A given movement is first analyzed to determine if it is ballistic. Ballistic move-
ments are further classified into reaching, striking, etc. The proposed approach
was tested with motion capture data obtained from the CMU MoCap database.

1 Introduction

We consider the problem of recognizing human actions commonly observed in surveil-
lance situations. Computer vision research on recognizing movements has focused on
appearance or position based approaches. Commonly observed movements like reach-
ing, striking, waving, etc., have highly variable target locations - the subject can reach
above the head, to the left/right, bend to reach for the floor, etc. Such spatial variabil-
ity makes the projective 2D as well as 3D shape of the subject highly variable. The
resulting intra-class variation puts appearance-based recognition techniques at a disad-
vantage. Either a large variety of training examples, or specialized models for different
target locations are needed.

It seems conceivable that there is a factor common to reach movements that is inde-
pendent of the target’s location. Psychological studies indicate that one of these factors
is the manner in which forces are applied to the hands during these movements [1,2].
We explore this possibility for recognizing common movements like reach, strike, etc.

Psychologists studying human movements have identified two models for limb
propulsion [1]: ballistic movements and mass-spring movements, which form two ends
of a spectrum of human movements. Ballistic movements involve impulsive propulsion
of the limbs. There is an initial impulse accelerating the hand/foot towards the target,
followed by a decelerating impulse to stop the movement. There is no mid-course cor-
rection. Reaching, striking, kicking have characteristically ballistic movements [1,2]. In
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acknowledge Yiannis Aloimonos and Yaser Yacoob for helpful discussions about the work.
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Fig. 1. Two instances of striking: (a) slapping someone’s back, (b) banging on a table with both
hands. In both cases, the subjects first draw back their hands before striking. Skeletons at different
time instants are plotted - older ones have faded colors. Red diamonds correspond to the right
hand and leg; blue asterisks are for the left hand and leg. The blue stubs placed along the axes
mark front/back, left/right, and height reference points for the subjects. The labels generated by
the proposed system are listed alongside in the order generated.

the mass-spring model, the limb is modelled as a mass connected to springs (the mus-
cles). The actuating force is applied over a period of time rather than impulsively [1,3].
Steady pushing, pulling, and many communicative gestures fall under this category.

There are two differences between ballistic and mass-spring movements that are rel-
evant for recognizing human actions:

1. Ballistic movements have a simpler structure. Often, the starting and ending po-
sitions of the limbs are enough to describe the trajectory of a ballistic movement.
In contrast, the mass-spring model allows for complicated trajectories. For exam-
ple, drawing a figure ‘8’ with the hand, moving the hand in a circle to signal “start
engine”, etc.

2. Reaching, striking, waving, kicking, etc., which are predominantly ballistic, are the
most common actions encountered during surveillance. These have highly variable
target locations. Mass-spring movements, especially communicative gestures, have
higher spatial consistency.

Our study focuses on reach and strike movements as they are the ones most com-
monly observed in surveillance. We explicitly consider the ballistic nature of these
movements. Psychological studies indicate that the hand movements for these cases
have distinctive velocity profiles [1,2,4]. The recognition proceeds in two stages: First
a given sequence is segmented into ballistic and mass-spring movement segments.
Next, ballistic movement segments are further classified into reaching, striking, etc.
We present a model for ballistic movement actuation that is independent of the target’s
location - varying its parameters varies the nature of the movement from that of reach-
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ing to striking. Eliminating the direct dependence on positional information enables
generalization over all possible target locations. After recognizing the movement, the
target’s location and other motion features are used to generate additional labels. For
the strike instances shown in Figure 1, the movements are first recognized to be strikes.
Then additional labels like “above head”, “at chest level”, etc., are generated. The for-
mat for the labels is: [<R/L hand>, <action name>, <target location>, <direction>].

We assume that the 3D coordinates of different points on the subject’s body (e.g.
hands, elbows, feet, etc.) are given. The 3D motion capture data we employ was ob-
tained from the CMU MoCap database. We consider reach and strike movements. The
sequences for each class were obtained from at least 3 or 4 subjects, and the targets
of the movements are highly variable. The segments for striking were collected while
subjects pretended to be boxing. Although the original database contains data at 60/120
f.p.s., we down-sample this to 15 f.p.s. in order to simulate typical video capture rates.

Many approaches have been proposed for recognizing human movements [5]. There
are two generic categories based on how appearance is represented:

1. Approaches which use points located at specific parts of the body, e.g. on the hands,
elbows, etc. These points could be 2D projections or in 3D space (obtained using
motion capture techniques). Recognition is accomplished by comparing trajectories
of these points using Hidden Markov Models (HMMs) [6], shape invariants [7],
Support Vector Machines (SVMs) [8], [9] etc.

2. Approaches which use body shape contours and articulated models to recognize the
pose in each frame and then model the dynamics of these poses. The recognition is
accomplished using HMMs [10], Space Time Volumes (STVs) [11], motion-history
images [12], etc.

Interestingly, it has been observed that the locations of the hands and feet w.r.t. the
torso capture most of the information needed to discriminate between basic human
actions like reaching, striking, kicking, jumping, etc. [13,1]. Thus, tracking the whole
body of the subject might not be needed for recognizing simple movements.

Wilson and Bobick proposed a parametric HMM to handle variability in gestures [6].
Parametric HMMs would need a sufficient variety of training examples to be able to
generalize over all possible target locations. However, as they model the trajectory of
movement, their approach can be used for recognizing different mass-spring move-
ments like communicative gestures. In this respect, our work and parametric HMMs
complement each other.

Bregler presented an approach for recognizing complex actions as a sequence of
simpler actions [14]. At the lowest level, actions are considered to be atomic, called
movemes. It is interesting to note that actions having ballistic movement are atomic by
nature. Once started, they run their course and their trajectory is fixed. Our work can be
considered as an approach for representing and recognizing movemes that are ballistic
movements. Closely related to this, there have been studies using Switching Linear
Dynamical Systems (SLDSs) for characterizing human movement e.g. [15], [16], etc.
Our work compliments these approaches by explicitly studying the ballistic nature of
movements like reach, strike, etc. This prevents incorrect application of the proposed
ballistic movement model.
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2 Human Movements

Figure 2(a) shows velocity profiles of some mass-spring and ballistic hand movements.
The plots are shown in different colors for discernibility. The mass-spring movements
were observed when the subjects moved as if directing traffic. The hand was moving in
smooth circles - in case (1) the circles were big, in case(2) they were smaller. The ve-
locity remains low and constant during mass-spring movements, going to 0 only at the
end of the movement. The other two plots show velocity profiles of movements during
reaching and striking. The ballistic movements have a characteristic “bell” shaped pro-
file. The secondary bells occurring in the case of reaching correspond to the retraction
phase of the movement. As there is higher acceleration and deceleration during striking
compared to reaching, the bells in the profiles in the case of striking are more convex
than those for reaching.

Ballistic Movements
Consider the following simple model for force actuation during a ballistic movement.
Let m be the mass of the body part, f+ the accelerating force and f− be the decel-
erating force. Starting at time t = 0, f+ acts on m for time t1. After this, the body
part moves ballistically for time t2. Finally, the deceleration force, f−, acts on m for
time t3. As the body part comes to a near stop at the end of a ballistic movement like
reach, etc., f+ and f− oppose each other. For simplicity, we ignore gravitational force.

0 .33 .67 1 1.33 1.67 2
0

10

20

30

0 .33 .67 1 1.33 1.67 2
0

10

20

30

0 .33 .67 1 1.33 1.67
0

10

20

30

0 .33 .67 1 1.33 1.67
0

10

20

30

Time (sec) 

V
el

oc
ity

 M
ag

ni
tu

de
 

M
as

s−
sp

rin
g

R
ea

ch
in

g 
S

tr
ik

in
g 

(1) 

(2) 

(a) Examples of velocity profiles for mass-spring and
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Fig. 2. Models for ballistic and mass-spring movements
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Let T = t1 + t2 + t3 be the total duration of the movement and D be the total distance.
Figure 2(c) shows a schematic of the velocity profile. The plan for the movement, called
the execution plan, would be specified by t1, t2, t3, f+ and f−.

Depending upon the values of f+ and f−, a ballistic movement could act as a reach,
strike, etc. Figure 2(d) shows a schematic of a two dimensional space formed by the
possible magnitudes of f+ and f−. Reach movements have low acceleration and de-
celeration. Strike movements, by definition, have high deceleration. There is also the
possibility of yanking - the initial acceleration is high and the decelerating force may
vary in magnitude. The present study considers reach and strike movements.

For each type of movement, the motion parameters are further tuned to suit the task
at hand. For example, during reaching, if the target is small or fragile, t3 is considerably
longer and f− is relatively low. This increases the precision in homing onto the target
and provides more time for adjusting the wrist and finger positions during the final
approach [2].

The problem with these movement parameters is that they are not observable from
the hand/foot trajectories. Let v(t) be the velocity magnitude of the hand/foot during
a movement. The execution plan can be described implicitly in terms of the following
observable quantities:

1. The peak velocity reached during the movement - vmax
2. The second derivative of the velocity at the location of the peak - v̈(tp).
3. The total time duration of the movement, T .
4. The total distance travelled during the movement, D.

Note that there are additional morphological constraints imposed on the motion pa-
rameters. For example, the hand cannot travel in one direction beyond an arm length
without torso movement, etc. We neglect these constraints.

Mass-Spring Movements
Since our focus is on ballistic movements - the model for mass-spring movements
is only used for distinguishing them from ballistic cases. Therefore, the mass-spring
model is simply a sequence of forces f1, f2, . . . acting on the limb for times t1, t2, . . ..
Figure 2(b) shows a schematic of the velocity profile. In contrast to the “bell” observed
in ballistic cases, there is no fixed pattern here. The speed remains low and fairly steady
through the movement.

Reference Frame for Describing Movement
We define the movement’s coordinate system as the subject’s reference frame at the
time the movement commences. As this is the time and location when the subject
planned and began execution, the generated description would be consistent not only
with his/her viewpoint, but also with similar movements executed at other times and lo-
cations. A 3D orthogonal coordinate system is used - the x-axis is along the front-back
direction, the y-axis is along the left-right direction, and the z-axis is always vertical.
The origin is kept on the ground plane. The azimuthal orientation and the x and y coor-
dinates of the origin are computed using 4 motion-capture markers fixed to the subject’s
waist. See Figure 3(a) for an illustration. Let T (t0) be the 3D translation and R(t0),
the rotation, needed for shifting the reference frame w.r.t. the movement commenc-
ing at time t0. T (t0) = −[xo(t0), yo(t0), zo(t0)]T , where xo and yo are as shown in
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Figure 3(a), and zo is the height of the toes of the subject in the world-centric frame.
The rotation matrix R(t0) defines a clockwise rotation by θ (see Figure 3(a)).

Let x(t) be the 3D coordinates of a body part as given by motion capture, where
t ∈ [t0, t1]. These would be in world-centric coordinates. The analysis is done on the
transformed coordinates x̃(t) = R(t0)[x(t) + T (t0)].

3 Recognizing Ballistic Hand Movements

The 3D motion capture data consists of unsegmented sequences of 3D coordinates of
the hands, feet and other body parts. Given a sequence of 3D positions of a hand, seg-
ments with possible ballistic movements are detected - described in detail in section 3.2.
For each segment, a 3D transformation shifts the reference frame w.r.t. the movement
being portrayed. The segment is then classified into ballistic and mass-spring move-
ment segments. Ballistic movements are subsequently analyzed to detect reaching and
striking.

To highlight the utility of the proposed features, experiments on classifying move-
ments are presented. In each experiment, the classification was done using Support Vec-
tor Machines (SVMs). Half of the available data was randomly chosen for training and
the remaining was used for testing. This was repeated for 100 trials in each experiment
to verify the stability of the features’ distributions.

3.1 Location of Target and Direction of Movement

Location: A 3D orthogonal coordinate system is employed for representing the target’s
location. This could simply be the target’s 3D Cartesian coordinates in the movement’s
reference frame. However, comparing the similarity/dissimilarity of the target locations
of the movements would be difficult. Instead, we quantize the space around the sub-
ject in terms of his/her morphology. For example, the dimension along the height axis
is quantized into regions such as “at feet level”, “below knee level”, “at knee level”,
etc. The reasoning is that, in the absence of external reference points obtained from
the environment, humans reference their immediate neighborhood in terms of their own
morphology [1]. The regions overlap and are of different sizes. Examples of the vol-
umes obtained are: in front of the chest, in front of the left half of the chest, etc. See
Figure 3(b) for a schematic of the spatial quantization.

Direction: Similar to spatial location, the movement direction is also described using la-
bels. Let d(t) be the unit direction vector of movement at time t, d(t) = x̃(t+1)−x̃(t)

‖x̃(t+1)−x̃(t)‖ .
The x component of d(t) is divided into forward, negligible and backward motion,
the y component into leftward, negligible and rightward motion, and the z component
into upward, negligible and downward motion. Therefore, each component of the unit
direction vector is quantized into three bins having angular width of 120◦ - shown in
Figure 3(c). Let d̂x(t) denote a 3 × 1 vector quantifying the membership values of the
x component of the direction vector in the 3 bins. The membership values vary contin-
uously from 0 to 1. Similarly, d̂y(t) and d̂z(t) are defined for the y and z components
respectively. The complete quantization is denoted by d̂(t) = [d̂x(t) d̂y(t) d̂z(t)].
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(b)
Quantization of of each component
of the unit direction vector into 3
bins. The 3 plots (solid, dashed and
dot−dashed) show the membership
values assigned to each bin.
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Fig. 3. (a) Computing the movement’s reference frame, (b) Spatial Quantization, and (c) Direction
quantization

3.2 Segmenting the Capture Sequences

A given continuous capture sequence is segmented into subsequences such that each
of them is likely to have a ballistic movement. Thus, each ballistic movement actually
occurring during the motion capture would be put into a segment, but not all segments
might be ballistic; some might be segments of a mass-spring movement. Ideally, the
velocity profile of each segment would have a monotonically non-decreasing phase
followed by a monotonically non-increasing phase. However, noise in the observations
may cause false extrema in the velocity profile. Instead of explicitly modelling the noise,
we treat this as a problem of classifying local minima that actually demarcate ballistic
subsequences from those caused by noisy observations. Each local minima was charac-
terized by the decelerating impulse preceding it, the time duration of this impulse, the
speed at the minima, the accelerating impulse following it and its duration.

In addition to segments exhibiting motion, there are segments with little or no
motion. These are characterized by their maximum velocities being below a certain
threshold (≤ 2). Given confidence values for each time instant to be a starting, end-
ing or negligible movement, we compute the most likely segmentation of the capture
sequence using the Maximum Likelihood (ML) principle. As we are interested in bal-
listic movements - which are atomic in nature - we assume the mutual independence of
the individual segment likelihoods. This allows an efficient dynamic programming ap-
proach to computing the most likely segmentation - similar to the Forward-Backwards
algorithm [17].

Let p∗(t) denote the likelihood of segmentation such that the last segment ends at t.
Let αt(ts) be the likelihood for the most likely segmentation whose last segment starts
at ts and ends at t. Let βt(ts) be the likelihood for the most likely segmentation whose
last segment starts at ts and continues beyond t. Let s(t) be the likelihood for t to be a
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start of a ballistic movement, and e(t), for t to be an ending. Let δt(ts) be the likelihood
for the most likely segmentation such that the last segment has negligible movement,
starts at ts and ends at t. A negligible segment must be preceded by a non-negligible
segment. We have the following recursive relations:

βt(ts) =
p∗(t − 1) s(t) ts = t
βt−1(ts)(1 − e(t)) ts < t

;

αt(ts) =
p∗(t − 1) s(t)e(t) ts = t
βt−1(ts)e(t) ts < t

;

v∗
t (ts) =

v(t) ts = t
max (v∗

t−1(ts), v(t)) ts < t
;

u(t) =
t−1
max
t′=0

αt(t
′);

δt(ts) = u(ts)Ψ (v∗
t (ts)) ;

p∗(t) =
t−1
max
t′=0

max(αt(t
′), δt(t

′))

(1)

Here Ψ(v) = [v ≤ 2] - it maps velocity magnitudes to likelihoods for being negligible.
The mentioned recursive functions can be computed with linear time and space com-
plexity1. For the first step in the computation, i.e. for t = 1, we keep p∗(0) = 1 and
v∗(0) = 0. For an optimal segmentation whose last segment starts at ts, let prev t(ts)
point to the segment preceding the last segment.

prev t(ts) =
{

argmaxt−1
t′=0 (max(αt(t′), δt(t′))) ts = t

prev t−1(ts) ts < t
(2)

Let φs(i) and φe(i) denote the start and end of the ith segment in the optimal seg-
mentation. After the set of relations (1) and (2) are computed for t = 1 . . . T , the optimal
segments are recovered recursively as:

φs(n) =
arg maxT−1

t=0 [αT (t), δT (t)] n = N
prevT (φs(n + 1)) n < N

; φe(n) =
T n = N
φs(n + 1) n < N

(3)

Here N is the number of segments in the optimal segmentation. (This need not be
known a priori and is simply used to describe the computation.) The obtained segments
are post-processed to eliminate irrelevant movements. Only movements in which the
hand moves by a distance greater than the length of the subject’s forearm are considered
relevant. In addition, the spatial quantization described previously is used to define a
volume around the waist of the subject in which the hands are usually located when
at rest. Movements with target locations in this volume are considered to be irrelevant.
The quantization bins lying in this volume are marked with ‘*’ in Figure 3(b).

3.3 Distinguishing Between Mass-Spring and Ballistic Movements

Each segment containing an accelerating impulse followed by a decelerating impulse
is classified into ballistic and mass-spring movement. Three features are used for the
classification:

1. The convexity of the peak in the velocity profile of the segment. This characterizes
the acceleration and deceleration during the movement. It has a greater magnitude
for ballistic movements. Let v(t) = at2 + bt + c be the velocity magnitude during
the segment, convexity is measured by a.

1 The time complexity is made linear by assuming that valid segments cannot be greater than a
certain length (2 secs.).
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2. Because ballistic movements are well-practised, they have greater impulsive propul-
sion. We approximate the impulse with m(vmax−vmin). In order to be able to com-
pare its values across different capture sequences, it is normalized by the maximum
momentum attained during movement. The normalized value would be 1 − vmin

vmax
.

For ballistic movements, vmin is almost 0, so the feature’s value is close to 1. In
mass-spring movements, vmin ≈ vmax making the feature close to 0.

3. Mass-spring movements can have more complex trajectories than ballistic move-
ments. The instantaneous change in direction is ρ(t) = ‖(x̃(t)−x̃(ts))×(x̃(te)−x̃(ts))‖

‖x̃(te)−x̃(ts)‖ .
The complexity is measured by maxt ρ(t) - greater for more change in direction.
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imum velocity w.r.t. convexity of velocity
profile, for mass-spring movements, reach-
ing and striking

In order to evaluate the utility of the features,
segments obtained using the peak-detection
were hand-labelled into three categories (the
first being mass-spring, the other two being
ballistic):
1. Mass-spring movements - these con-

sisted of movements along big circles
and those used for indicating someone
to move forward (77 segments).

2. Ballistic movements - reaching (64 seg-
ments) and striking (83 segments).

No constraint was imposed on the tar-
get of the movements. Subjects were moving
around naturally when trying to direct traf-
fic. The reach movements had highly vari-
able target locations - above the head, on the floor, at waist level, left, right, etc. The
segments for striking were for boxing sequences, with the subjects jumping around and
dodging. Figure 4 shows a 2D plot of normalized minimum velocity w.r.t. convexity of
the velocity profile.

Support Vector Machines (SVMs) were employed to classify movements into mass-
spring and ballistic movements. Reaching and striking movements were combined into
the same class, i.e. ballistic. Table 1 shows the classification results. The classification
accuracies are fairly high and the variance due to sampling for constructing the training
sets is low.

3.4 Distinguishing Reach from Strike

Section 2 described four features for characterizing execution plans of ballistic move-
ments. Figure 5 shows scatter-plots of the v̈(tp) vs. T , and v̈(tp) vs. vmax, for the reach
and strike segments. As strike movements have greater acceleration and deceleration,
their velocity peaks are more convex (more -ive). Moreover, they are faster, so their
time durations are small and the maximum velocities are higher than those of reach
movements. There is a significant separation in the distributions of the two types of
movements.

An SVM was used to distinguish between reaching and striking. The 64 samples
collected for reaching and 83 for striking were used. Each sample was represented by a
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Table 1. Means and standard deviations
of the classification accuracies for mass-
spring vs. ballistic over 100 trials of SVM
training and testing

Mean Std. Dev.
Mass-Spring 0.8323 0.0582
Reach 0.8915 0.0456
Strike 0.9763 0.0244

Table 2. Means and standard deviations of
the classification accuracies for reaching vs.
striking over 100 trials of SVM training and
testing

Mean Std. Dev.
Reach 0.9478 0.0449
Strike 0.9690 0.0377
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Fig. 5. Scatter-plot of (a) v̈(tp) vs. T , (b) v̈(tp) vs. vmax

3D vector consisting of v̈(tp), T and vmax. Table 2 shows the classification results. The
high accuracies indicate that the features adequately characterize the ballistic nature of
reaching and striking movements.

4 Experimental Results

The proposed approach was tested with several capture sequences of reach and strike
movements. These included cases in which a subject assembles and uses a vacuum-
cleaner, moves around objects, climbs a ladder, etc. For the strike movements, the sub-
jects pretended as if boxing - they stepped around, dodged and executed combinations
of punches, jabs, hooks, etc. The duration of the sequences varied from 3 sec. to ap-
proximately 40 sec. The data used for training and testing was obtained from different
subjects so as to observe the generalization ability of the approach. The ground truth
for each sequence was manually observed. Out of 55 instances of reach movements,
44 (80%) were detected correctly and there were 2 false detections. Some of the reach
movements were missed due insubstantial movement of the hands. There were also
cases during the vacuum-cleaner assembly in which it was not clear if the movements
were ballistic - these were still considered as reaches in the ground truth. Out of 78
instances of strike movements, 71 (91%) were detected correctly and there were 6 false
detections. The 6 false strike detections were for cases when the subject made rapid
hand movement before executing a “hook”. Figures 1 and 6 show the labels gener-
ated for some instances of striking and reaching. For Figure 6, the movements were:
(a) Subject takes a step forward and reaches out forward with right hand near knee
level, (b) Subject turns around and takes a couple of steps to reach out behind with right
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Fig. 6. Examples of the labels generated - shown in the sequence in which they were output

hand, and (c) Subject reaches for the floor and then above the head. As is illustrated in
the figures, the target labels generated by the proposed approach are coherent.

5 Conclusion

An approach for recognizing human movements commonly encountered during sur-
veillance was presented. Explicitly considering the ballistic nature of movements like
reaching, striking, etc. allows the decoupling of positional/appearance information from
the recognition. This enables generalization over a large range of target locations. Ex-
periments were presented to illustrate the utility of the proposed approach.
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Abstract. Many applications in computer graphics require fast and ro-
bust collision detection algorithms. The problem of simulating motion
in an articulated chain has been well studied using both dynamic and
kinematics techniques. This paper describes an efficient method for ob-
stacle representation in the configuration space (C-space) for articulated
chains. The method is based on the analytical deconstruction of the C-
space, i.e., the separated evaluation of the C-space portion contributed
by the collisions of each link. The Deconstruction method is not limited
to particular kinematic topologies and allows good collision detection
times. The systematic application of a simple convolution of two func-
tions describing each link in the kinematic chain and the workspace,
respectively, is applied. The proposed method can naturally face the
evaluation of high-dimensional C-spaces, since only non-colliding config-
urations are considered for the evaluation of the next link in the chain.

Keywords: collision detection, interference tests, motion planning.

1 Introduction

This paper presents a novel and efficient method for the evaluation of possible
collisions of any articulated body in an environment of obstacles.

Collision detection is a classical problem in computer graphics, robotics, man-
ufacturing, animation and computer simulated environments. The goal of colli-
sion detection (also known as interference detection or contact determination) is
to automatically report a geometric contact when is about to occur or has actu-
ally occurred. In many of these application areas, collision detection is considered
a major computational bottleneck. This problem has been widely studied; [1],[2]
and [3] provide recent surveys.

The motion of articulated bodies has been a subject of considerable literature
using both dynamic and kinematics techniques. While inverse kinematics models
are computationally less expensive, dynamics models achieve a greater degree of
realism due to underlying physical basis. On the other hand, inverse kinematics,
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owing to kinematic constrains, enable more direct animations than in purely
dynamic models. Usually the emphasis is on simulating an articulated figure
as realistic as possible. Although realism is a worthy goal, designing interactive
environments requires efficient performance [4]. With this goal in mind, Bandi
and Thalmann [4] propose a configuration space approach for efficient animation
of human figures, where the configuration space is splitted into various regions,
mapped onto 2D, and a search is carried out to avoid obstacles. [5][6] also perform
a configuration space search in order to achieve collision avoidance.

The concept of configuration space was introduced by Lozano-Pérez [7] and
has been widely used in motion planning. The goal of motion planning is to
generate a collision-free path for a robot. Thus, collision-free planners must be
able to perform some kind of geometric reasoning concerning collision detection
between the robot and the obstacles [8]. In general, the configuration of a robot is
given by a set of parameters, or degrees of freedom, that determine its location
and orientation. The space defined by the ranges of allowed values for these
parameters is usually called configuration space (C-space).

An obstacle in C-space (C-obstacle) is defined as the connected set of config-
urations where a given mobile object intersects with an obstacle in workspace.
C-obstacle generation can be viewed as a further generalization of the static
interference and collision detection problems: here objects are not tested for in-
terference at a particular configuration nor even along a given parameterized
trajectory, but rather at all possible configurations in the workspace. Thus, once
C-obstacles are obtained, all information concerning interferences is captured[1].

Concisely, we propose a fast method for the evaluation of the configuration
space of articulated bodies (kinematic chains) based on the analytical decon-
struction of the C-obstacles [9], that can be further exploited in computer graph-
ics and animation. Some benefits of the proposed method are: it is valid for any
kind of structure (including highly articulated bodies), the evaluation of obsta-
cles is performed locally for every element of the articulated chain, the anticipa-
tion of collisions due to each link permits to diminish the portion of evaluated
space and the method is inherently parallel.

2 Evaluating C-Obstacles as a Convolution

In this section, the method proposed by Curto et al. in [10] is reviewed, as it is
the basis for the method presented in this paper.

The representation of the C-obstacles is proposed based on the integral of
the product of two functions: one that represents the kinematic chain A and
another one that represents the obstacles in the workspace, B. W will designate
the workspace and C the C-space. Thus,

Definition 1. Let A : C × W → R be the function defined by

A(q, x) =
{

1 if x ∈ A(q)
0 if x �∈ A(q) (1)

where A(q) is the subset of W that represents the chain at configuration q.
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Definition 2. Let B : W → R be the function defined by

B(x) =
{

1 if x ∈ B
0 if x �∈ B (2)

where B is the subset of W formed by the obstacles.

Using both A and B, a new definition for calculating C-obstacles is proposed:

Definition 3. Let CB : C → R be the function defined by

CB(q) =
∫

A(q, x)B(x)dx ∀q ∈ C, ∀x ∈ W (3)

The region CBf is defined as the subset of C that verifies

CBf = {q ∈ C/CB(q) > 0} (4)

The previous expressions were defined without considering any specific parame-
terization of W and C.

Now, a representation of W and C is given by selecting two frames FW and FA

for the workspace and for the kinematic chain, respectively, where FW is fixed
and FA is attached to the kinematic chain. In this way, a point x ∈ W is given by
(x1, x2, · · · , xn) where n is the workspace dimension, and a configuration q ∈ C
is represented by (q1, q2, · · · , qm) that specify the position and orientation of FA

respect to FW , where m is the dimension of C. Thus, the expression (3) becomes

CB(q1, · · · , qm) =
∫

A(q1, · · · , qm, x1, · · · , xn)B(x1, · · · , xn)dx1 · · · dxn (5)

3 Superposition Principle of C-Obstacles

In this paper, an articulated body is considered as a kinematic chain. In this
way, a body A is viewed as a set of r rigid objects. The kinematics of this chain,
i.e., the movement restrictions imposed by the joint to each element, Ai —the
degrees of freedom, DOFs—, would determine some regions of the C-space.

This principle is the basis of the evaluation of the C-space for bodies that
consist of several links connected by means of different types of joints.

Considering that a body consists of r rigid objects, the resulting C-obstacles
will follow the Superposition Principle:

Theorem 1. Let A be an articulated body formed by r links A1, . . . ,Ar. If
CB1, . . . ,CBr are, respectively, the C-obstacle regions for the A1, . . . ,Ar objects
in the space where the obstacle B is projected, then, the C-obstacle CB due to
B for the articulated body A can be obtained as

CB =
r⋃

k=1

CBk (6)

The expression (6) reflects the fact that the union of these subsets equals the con-
figuration space for A. The idea of C-obstacles superposition is the key principle
that enables the deconstruction approach.
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4 The Deconstruction Method

The Deconstruction method tries to independently evaluate portions of the C-
space in order to find the C-obstacles due to each link in the kinematic chain.

4.1 Applying the Superposition Principle

Taking into account (6), the calculation of CB for a body A, a kinematic chain
of r links, is done through the union of all the CBk related to each of the links
of the chain. The computation of every C-obstacle region must be done through
the evaluation of the associated CBk functions.

CBk(q1k
, · · · , qsk

), ∀k ∈ {1, . . . , r} (7)

with {q1k
, · · · , qsk

} ⊆ {q1, · · · , qm}, where {q1, · · · , qm} are the DOFs associated
to the articulated body A. That is, for the k-th element only the subset of
configuration variables associated to it are considered, and, analogously to (5),
each of the CBk(q1k

, · · · , qsk
) functions is evaluated as follows∫

Ak(q1k
, · · · , qsk

, x1, · · · , xn)B(x1, · · · , xn)dx1 · · ·dxn (8)

4.2 Choosing the Frames

When solving the integral (8), the function Ak(q1k
, · · · , qsk

, x1, · · · , xn), repre-
senting the articulated body, is difficult to evaluate, due to its dependency on
all of the DOFs related to itself and to the previous links in the chain. Thus, we
will try to reduce this difficulty by choosing the proper frames.

In order to do that, let’s consider the body formed by the kinematic chain
of figure 4.2. As one can see, following the Denavit-Hartenberg method [11], a
frame is associated with each link, placing the origin at the end of the link; the
orientation of axes depends on the position and orientation of the link.

Following the Denavit-Hartenberg procedure, the Deconstruction method pro-
poses to use the frame determined by the previous link for the k-th element.
Thus, for link 1 the frame FA0 —which coincides with the workspace frame,
FW — is used; similarly, for the k-th link, frame FAk−1 will be used (figure 4.2).

Now, if we have a look to Ak(q1k
, · · · , qsk

, x1, · · · , xn), the expression we are
evaluating, it can be written as follows

Ak(q1k
, · · · , quk︸ ︷︷ ︸

DOF(1,...,k−1)

, q(u+1)k
, · · · , qsk︸ ︷︷ ︸

DOFk

, x1, · · · , xn) (9)

where {q1k
, · · · , quk

} are the degrees of freedom associated to the elements pre-
ceding the k-th element, whose DOFs are

{
q(u+1)k

, · · · , qsk

}
.

At this point, the position and orientation of the element Ak is expressed
related to the frame FA0 . The position, just like the frame FAk−1 , is determined
by the associated degrees of freedom of the previous links in the chain, that is
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Fig. 1. Frames in the kinematic chain of an articulated body

to say, some of the parameters related to each Ai —previous elements— in that
subchain, (ai, αi, di and θi, the Denavit-Hartenberg parameters).

Thus, if the position and orientation of the element Ak are expressed taking
as origin the frame FAk−1 , its evaluation will be much simpler. An homogeneous
transformation T is needed to perform this operation.

Definition 4. Let k−1
0 T be the transformation that permits to move the frame

FA0 to such point that it will coincide with FAk−1 .

It is important to point out that this homogeneous transformation depends on
the configuration parameters related to the previous elements in the chain, that
is to say, k−1

0 T = f(q1k
, · · · , quk

). At this point, the position and orientation
of the link Ak, expressed related to the frame FAk−1 , will only depend on its
associated degrees of freedom, that is,

{
q(u+1)k

, · · · , qsk

}
.

However, this homogeneous transformation has a consequence: it will be nec-
essary to express the workspace as a function of the new frame, FAk−1 :

B′(x′
1, · · · , x′

n) =k−1
0 TB(x1, · · · , xn) (10)

In this way, the evaluation of (9) is equivalent to the following one

A′
k(q(u+1)k

, · · · , qsk
, x′

1, · · · , x′
n) (11)

Finally, (8), which is used to calculate the C-obstacle portion pertaining to
the element Ak, becomes∫

A′
k(q(u+1)k

, · · · , qsk
, x′

1, · · · , x′
n)B′(x′

1, · · · , x′
n)dx′

1 · · · dx′
n (12)

Now, after the proper frame is chosen, as it can be seen in (12), it is possible
to study individually each one of the links.
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4.3 Choosing the Coordinate Functions

Kavraki [12] and Curto [10] propose the simplification of the C-space calculation
by using of the Convolution theorem (and the Fast Fourieer Transform). We shall
now expose how this is applicable inside the new proposed formalism by means
of the introduction of a coordinate functions change.

As demonstrated in [10], it is sufficient to choose the proper coordinate func-
tions, (ξ1, · · · , ξn), that will permit to find one or more relationships between
some of the configuration variables and some of the coordinate functions, which
will allow to find the convolution.

Thus, a new function, Ā′
k, is introduced; the idea is to find a simpler functional

dependency in function A′
k, in such a way that element Ak becomes independent

of a subset of
{
q(u+1)k

, · · · , qsk

}
, depending only on

{
q(v+1)k

, · · · , qsk

}
.

Having this new function Ā′
k, (12) will be defined as∫

longA longB dξ1 · · · dξn

longA=Ā′
k(0,···,0,q(v+1)k

,···,qsk
,ξ1−q(u+1)k

,···,ξv−qvk
,ξ(v+1)k

,···,ξn)

longB=B′(ξ1,···,ξn) (13)

which leads to a function Ā′
k that depends only on

{
q(v+1)k

, · · · , qsk

}
. Now, for

variables
{
q(u+1)k

, · · · , qvk

}
the following convolution product appears.

(Ā′
k(0,···,0,q(v+1)k

,···,qsk
)∗B)(ξ1,···,ξvk

)(ξ(v+1)k
,···,ξn) dξ(v+1)k

···dξn

(14)

where subindices (ξ1, · · · , ξvk
) denote that the convolution product is calculated

for all of the values of these variables.

5 Case Study: Deconstruction of an Arm in 3D

For simplicity’s sake a simple example of a 3-DOF arm is considered.
Let’s consider the following articulated arm, A, consisting of 3 rigid objects,

A1, A2 and A3, moving in R3 by means of revolution joints. The three DOF
are (θ1, θ2, θ3) ∈ [−π, π). Being the waist (θ1), shoulder (θ2) and elbow (θ3).

Choosing the Frames. The frames are chosen following the Denavit-Hartenberg
method, with the objective of obtaining certain symmetries that will simplify the
calculation of the C-obstacles. FW and FA0 frames have their origins located at
the intersection point of the two elements A1 and A2.

Choosing the Coordinate Functions and CB Calculation. Together with
the frame choosing step, this will produce great simplification in the evaluation.

Indeed, the degrees of freedom associated to the second element are the two
turning angles in the three-dimensional space, so the election of spherical co-
ordinates (r, ϕ1, ϕ2) within [0, l2 + l3] × [−π, π) × [−π

2 , π
2

)
(with l2 and l3, the
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Fig. 2. A 3-DOF arm in 3D workspace

longitudes of the second and third element, respectively) is the best option, since
θ1 will be related to ϕ1 and θ2 to ϕ2.

Following the deconstruction idea, we want to solve separately the group of
collisions associated to each one of the three links of the chain.

CB = CB1 ∪ CB2 ∪ CB3 (15)

this way, three functions (expression 7) must be evaluated, and, according to
expression 8, this can be done as follows

CB1(θ1) =
∫

A1(θ1, r, ϕ1, ϕ2)B(r, ϕ1, ϕ2)drdϕ1dϕ2 (16)

CB2(θ1, θ2) =
∫

A2(θ1, θ2, r, ϕ1, ϕ2)B(r, ϕ1, ϕ2)drdϕ1dϕ2 (17)

CB3(θ1, θ2, θ3) =
∫

A3(θ1, θ2, θ3, r, ϕ1, ϕ2)B(r, ϕ1, ϕ2)drdϕ1dϕ2 (18)

where functions Ak and B of the formalism proposed in section 4 are parame-
terized for this case as q = (θ1, θ2, θ3) and x = (r, ϕ1, ϕ2).

At this point, we have considered that element A1, the waist, is only respon-
sible of another degree of freedom for the shoulder, but we are only interested in
the collisions of the arm. This way, expression 16 is null; in other case it should
be computed. The evaluation of other CB follows.

Use of Convolution for CB2 Calculation. In the first place, the relation-
ships of ϕ1 with θ1 and ϕ2 with θ2 are important, since we can introduce the
following expression.

A2(θ1, θ2, r, ϕ1, ϕ2) = A2(0, 0, r, ϕ1 − θ1, ϕ2 − θ2) (19)

and changing the notation for element A2 at zero configuration (θ1 = 0, θ2 = 0)
we have

A2(0, 0, r, ϕ1 − θ1, ϕ2 − θ2) = A2(0,0)(r, ϕ1 − θ1, ϕ2 − θ2) (20)
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With this simple change an enormous advantage is gained, since the evaluation
of the function A2 is reduced to considering the element at configuration (θ1 =
0, θ2 = 0), instead of evaluating for each value θ1, θ2 ∈ [−π, π).

So CB2(θ1, θ2) calculation is carried out by the following integral∫
A2(0,0)(r, ϕ1 − θ1, ϕ2 − θ2)B(r, ϕ1, ϕ2)drdϕ1dϕ2 (21)

And, considering the convolution of both functions defined in R3 over the θ1
and θ2 variables, it is obtained

CB2(θ1, θ2) =
∫

(Ā2(0,0) ∗ B)(ϕ1,ϕ2)(r, θ1, θ2)dr (22)

where subindex (ϕ1, ϕ2) means that the convolution product of functions Ā2 and
B is carried out for all the values of variables (ϕ1, ϕ2) ∈ [−π, π), and function
Ā2(0,0) is defined by

Ā2(0,0)(r, ϕ1, ϕ2) = A2(0,0)(r, −ϕ1, −ϕ2) (23)

Finally, the convolution theorem can be applied, so now the expression 22 is
calculated with the inverse Fourier transform (over two dimensions) of∫

F [Ā1(0,0)(r, θ1, θ2)
]
(ϕ1,ϕ2)

F [B(r, θ1, θ2)](ϕ1,ϕ2) dr (24)

Using Homogeneous Transformation (D-H Method) for CB3. Taking
into account that we are working on spherical coordinates, the frames of figure 5,
where a new frame F ′

W is established, which is equal to FA2 , are the best election.
The idea is to perform the transformation of the workspace points related

to FW , to the ones related to FA2 (F ′
W ) (see figure 5); that is, change from

(r, ϕ1, ϕ2) coordinates to (r′, ϕ′
1, ϕ

′
2) coordinates.

Using the Denavit-Hartenberg method, we have p′ = 0
2T

−1 · p, and after the
proper calculations we obtain the following expressions:

r′=
√

l22+r2−2rl2(Cθ1Cθ2Cϕ1Cϕ2+Sθ1Cθ2Sϕ1Cϕ2+Sθ2Sϕ2)

ϕ′
1=artg

(
−r(Cθ1Sθ2Cϕ1Cϕ2+Sθ1Sθ2Sϕ1Cϕ2−Cθ2Sϕ2)

r(Cθ1Cθ2Cϕ1Cϕ2+Sθ1Cθ2Sϕ1Cϕ2+Sθ2Sϕ2)−l2

)
ϕ′

2=artg

(
z′√

x′2+y′2

)
with

x′=r(Cθ1Cθ2Cϕ1Cϕ2+Sθ1Cθ2Sϕ1Cϕ2+Sθ2Sϕ2)−l2

y′=−r(Cθ1Sθ2Cϕ1Cϕ2+Sθ1Sθ2Sϕ1Cϕ2−Cθ2Sϕ2)

z′=r(Sθ1Cϕ1Cϕ2−Cθ1Sϕ1Cϕ2)

Furthermore, since the elbow is a revolution articulation with the turning axis
parallel to that of the shoulder articulation (figure 5), within the sphere covered
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Fig. 3. Any point with ϕ1 = θ1 pertains to the disk of interest

by (r, ϕ1, ϕ2), only the obstacles within the disk of l3 radius, i.e. the longitude
of the third element, and ϕ′

1 angle in [−π, π], can be obstacles for A3. In this
situation, it is more efficient to transform only those points that are in the disk
of interest, that is to say, with ϕ1 = θ1 (related to original frame) and r′ < l3
(related to the transformed one). This concept is illustrated in figure 5.

With the introduced frame change, instead of working in the 3D space, we
work in the plane, and so, now the expression 18 can be evaluated as

CB3(θ1, θ2, θ3) =
∫

A′
3(θ3, r

′, ϕ′
1)B

′(r′, ϕ′
1)dr′dϕ′

1 (25)

Use of Convolution for CB3 Calculation. As it can be seen, since there is
a relationship between θ3 and ϕ′

1, expression 25 can be written as

CB3(θ1, θ2, θ3) =
∫

A′
3(0)

(r′, ϕ′
1 − θ3)B′(r′, ϕ′

1)dr′dϕ′
1 (26)

that can be simplified, applying the convolution theorem, and obtain the final
expression:

F [CB3(θ1, θ2, θ3)] =
∫

F
[
Ā′

3(0)
(r′, θ3)

]
ϕ′

1

F [B′(r′, θ3)]ϕ′
1
dr′ (27)

It must be noted that, on the contrary to the previous expression, where it was
necessary to perform bidimensional Fourier transforms, in this case the Fourier
transforms are one-dimensional, since it is only necessary to sweep disks.

Finally, note that, in order to use the Deconstruction method, a discretization
must be performed.

6 Conclusions

A fast and new general method for the evaluation of the configuration space
of any kinematic chain was presented. The possibility of simplification of the
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C-space evaluating process by means of the application of a simple and repetitive
operation for each link in the kinematic chain was shown. As case study, the
proposed method was applied to a 3-DOFs arm, showing its potential for collision
detection of articulated bodies such as human figures.
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CVLab, Aragon Institute for Engineering Research, University of Zaragoza, Spain
{grogez, corrite, jesmar, jelias}@unizar.es

http://www.cv.i3a.unizar.es

Abstract. This paper addresses the problem of probabilistic modelling
of human motion by combining several 2D views. This method takes
advantage of 3D information avoiding the use of a complex 3D model.
Considering that the main disadvantage of 2D models is their restriction
to the camera angle, a solution to this limitation is proposed in this
paper. A multi-view Gaussian Mixture Model (GMM) is therefore fitted
to a feature space made of Shapes and Stick figures manually labelled.
Temporal and spatial constraints are considered to build a probabilistic
transition matrix. During the fitting, this matrix limits the feature space
only to the most probable models from the GMM. Preliminary results
have demonstrated the ability of this approach to adequately estimate
postures independently of the direction of motion during the sequence.

1 Introduction

In recent years, human motion analysis has grown to become one of the most
active research areas in computer vision [1]. It has a wide spectrum of promising
applications in many fields, especially in video-surveillance where the possibility
of automatic video understanding and activity recognition would enable a single
human operator to monitor wide areas. The most efficient systems are based
on the use of a model [2], which is, most of the time, a representation of the
human body. The election of an appropriate model is a critical issue. The use
of an explicit body model is not simple, given the high number of degrees of
freedom of the human body and the self-occlusions, direct consequences of the
monocular observation. In previous works, the structure of human body has
been represented as 2D or 3D Stick figure [3], 2D (Active) Contour or Shape [4]
or 3D volumetric model [5]. The benefits from using a more sophisticated and
appropriate model can be reduced or annihilated by poor parameter estimates.

In this paper we present a probabilistic 2D model for pedestrian motion analy-
sis in monocular sequences. The disadvantage of 2D models is their restriction
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to the camera’s angle. We therefore propose to construct 2D dynamical models
independent of the orientation of the person with respect to the camera and that
can respond robustly to any change of direction during the sequence.

To carry out this goal, we follow the methodology proposed by Bowden [6].
We construct a human model encapsulating within a Point Distribution Model
(PDM) the information of the full body silhouette (given by the 2D Shape made
of a series of landmarks located along the human contour) and the structural
information (given by the corresponding 2D Stick figure). Both training and
testing sets comprise of hand-labelled data. The CMU Mobo database [7] has
been used for training and real video-surveillance sequences for testing.

The method is based on learning dynamical models. A series of local motion
models is learnt by clustering the Stick figure subspace. Using this structure-
based partitioning, correspondences between several different views of the same
walking sequences are established. This leads to a clustering in the global Shape-
Skeleton feature space where all the views considered are projected together. The
different clusters correspond in terms of dynamic or view-point. We consider in
this work the use of Gaussian Mixture Models (GMM) to cope with the problem
of non-linearity of the model as proposed in various papers [8,9]. GMM are fitted
to the total Shape-Skeleton training data using the Expectation Maximization
(EM) algorithm [8,9]. Temporal and spatial constraints are considered to build
a probabilistic transition matrix. This enables a frame to frame prediction of the
most probable local models from the GMM that have to be considered.

Once the model has been generated (off-line), it can be applied (on-line) to
real sequences. Given an input human blob provided by a motion detection
algorithm, the model is fitted for inferring both body shape and posture.

The structure of the paper is as follows: in Sect. 2, we introduce probabilistic
modelling. Model construction and fitting are respectively explained in Sect. 3
and Sect. 4. Results are presented in Sect. 5 and conclusions drawn in Sect. 6.

2 Probabilistic Modelling

Our Point Distribution Model (PDM) consists of 2D Shape landmarks concate-
nated with 2D Skeleton joints. The total space will be clustered following tempo-
ral approach (clusters Cj) as well as spatial approach (clusters Rj) as described
in Section 3. The first one will partition the dynamic of the motion, and the
second one, the direction of motion. The purpose of this probabilistic dynamic
model is to obtain a transition matrix combining both constraints.

2.1 Markov Chain for Modelling Temporal Constraint

Following the standard formulation of probabilistic motion model [3], the tem-
poral prior p(St|St−1) satisfies a first-order Markov assumption where the choice
of the present state St is made upon the basis of the previous state St−1. In
the same way, if we partition the state space into N clusters C = {C1, ...,CN},
the conditional probability mass function defined as p(Ct

j|Ct−1
k ) corresponds to
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the probability of being in cluster j at time t conditional on being in cluster k at
time t-1 [10]. A NxN State Transition Matrix (STM) that gives the probabilities
density function (pdf) is then constructed, using the procedure described in [11].
Each cluster corresponds to a state in the Markov chain.

2.2 Modelling Spatial Constraint

In this paper, we introduce a novel spatial prior p(Dt|Dt−1,t−2,...t−m) for mod-
elling spatial constraint. It expresses the statement that Dt (the present direction
of motion of the observed pedestrian in the image) can be predicted given his
m previous directions of motion (Dt−1,Dt−2, ...,Dt−m). In this approach, the
continuous values of all possible directions of motion in the image plane are
discretized. This leads to a discrete set of M particular directions of motion
corresponding to M clusters R = {R1, ...,RM} in the feature space.

Let Δt = [Rt
k0

,Rt-1
k1

, ...,Rt-m
km ] be the m+1-dimensional vector representing

the sequence of the m+1 cluster labels (denoted by ki) up to and containing
the one at time t. Note that some of these ki labels might be the same. We call
p(Rt

j|Δt-1) the probability of being in Rj at time t, conditional on being in Rk1
at

time t-1, in Rk2
at time t-2, etc. (i.e. conditional on the m preceding clusters). In

this work, we consider a reasonable approach making this probability a normal
distribution, with expected value equal to the local mean trajectory angle θt
and, variance calculated as a function of the sampling rate.

p(Rt
j|Δt-1) = p(Rt

j|Rt-1
k1

,Rt-2
k2

, ...,Rt-m
km ) ∼ N (θt, σ), (1)

where θt = 1
m+1

∑t-m
i=t θi, being m a function of the sampling frequency.

2.3 Combining Spatial and Temporal Constraints

Let T be the NxM “Toroidal Transition Matrix”(TTM), whose columns represent
the N temporal clusters and rows correspond to the M spatial clusters (See Fig.1).
Thus the probability p(Ct

j ∩ Rt
r) = p(Tt

j,r) denotes the unconditional probability
of being in Cj and in Rr at time t.

The conditional spatio-temporal transition probability is therefore defined as
p(Tt

j,r|Ct−1
k , Δt-1), the probability of being in Cj and in Rr at time t conditional

on being in temporal cluster k at time t-1 and conditional on the m preceding
spatial clusters. In this paper, the assumption is made that the two considered
events, state and direction changes, are independent, even if it is not strictly
true. Some comments about this assumption will be made in Sections 5 and 6.
This leads to the following simplified equation:

pj,r = p(Tt
j,r|Ct−1

k , Δt-1) ∝ p(Ct
j|Ct−1

k ).p(Rt
r|Δt-1). (2)

The resulting NxM toroidal matrix is the Probabilistic Transition Matrix
(PTM) that gives, at each time instant, the discrete probability density function
(pdf). Its content can be visualized by converting it to grey scale image as will
be shown in the Section 5.
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Fig. 1. 3D and 2D representations of the Toroidal Transition Matrix (TTM)

3 Pedestrian Models and Spatio-temporal Transitions

Once we have introduced some theoretical aspects, next we will describe the
construction of the model and the transition matrix.

Training Data Base Construction. Precise training human shapes are ex-
tracted from Mobo database sequences [7] considering two walking speeds (high
and low) and 8 different views (4 manual and 4 interpolated from the previous
ones). These views directly provide the spatial clustering. Simultaneously, we
labelled 13 fundamental points corresponding to a Stick model. By this process
we generated a training database encompassing 21600 Shape-Skeleton vectors,
SS-vector (2700 vectors for each different viewpoint).

Training Data Base Normalization. Reliable correspondences between mem-
bers of the training set have to be established. The case of walking human silhou-
ettes is a very difficult one since pedestrians take a very large number of different
poses that affect the contour appearance. We propose to divide the contour into
4 segments (head, right arm, left arm and legs), delimited by a series of Fixed
Points (FP), and assign them a fixed number of landmarks equally spaced. The
FP are automatically selected with horizontal cutting lines placed at 1/3 and
2/3 of the height. The Shapes are normalized to 100 points. The training set
(SS-vectors) is then aligned using Procrustes Analysis to avoid bad effects of
position, size and rotation. and PCA is applied for dimension reduction.

Skeleton Clustering. The approach consists in clustering the training set using
only the skeleton information that describes more adequately the dynamic of the
motion. Thus 2D Skeletons corresponding to the 8 views are concatenated. In
this way, the resultant vectors contain the 3D structural information. The set is
then pre-processed by PCA and clustered by Kmeans. In this paper, we consider
K=6 (when clustering presents the better visual aspect) and leave as suggestion
for further research the determination of the optimal K. To make the clustering
independent from the initial seeds, we run the K-means algorithm many times
and proceed to cluster the results. This leads to the recognition of basic gait
cycle phases [12], as illustrated by Fig.2, in an unsupervised way. The patches
are ordered according to the logic of the cyclic motion: C1 starts with the Right
Mid-Swing and ends with the double support phase, then C3 starts until the
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(a) (b)

(c) (d)

Fig. 2. (a) Skeleton Clustering in the PCA-plane defined by 1st and 2nd components,

typical short and long cycles can be observed. (b) Markov State Transition Matrix. (c)

Correspondences between Gait cycle and the 6 clusters obtained, (d) State Diagram.

Left Mid-Swing. C4 follows until the second double support of the cycle which
ends with C6. C2 and C5 complete C3 and C6 phases in case of a higher speed
gait with larger steps. A Markov State Transition Matrix (STM) [9,11] is then
constructed (Fig.2b), associating each sample to one of the 6 patches. This gives
the state transition probabilities, valid for the 8 sets (views) of SS-vectors.

Shape-Skeleton Gaussian Mixture Model (GMM). The SS-vectors cor-
responding to the 8 views are grouped following the cluster labels previously
obtained, leading to 8 x 6 = 48 clusters in the global SS-PCA space. Following
the procedure of [9] a GMM is fitted to the Data by applying EM. Local PCAs
are then applied on each cluster [6] leading to the extraction of local modes of
variation, in which both Shape and Skeleton deform (see Fig. 3).

Toroidal Transition Matrix. All the different models are ordered and classi-
fied according to the direction of motion and the states. This process leads to the
creation of the Toroidal Transition Matrix (TTM) which 2D representation is
illustrated in Fig.3: the 6 columns correspond to the 6 temporal clusters Ci while
the 8 rows represent the 8 spatial clusters Ri. Spatial and temporal relations can
be appreciated between local models from adjacent cells.



180 G. Rogez et al.

Fig. 3. Toroidal Transition Matrix: 1st Variation Modes of the 48 local Models

4 Model Fitting for Body Pose Inferring

Given an input human blob provided by a motion detection algorithm and the
previous m states (poses and trajectory angles), the prediction of the most prob-
able models from the GMM can be estimated by means of the PTM defined in
Sect 2.3. It allows a substantial reduction in computational cost since only few
models have to be considered. Assuming we have an initial estimate for the
Shape parameters the matching process follows these steps:

1. A Shape S is extracted from the blob, looking along straight lines through
each model point, following the methodology presented in [8].

2. S and an estimate for the Skeleton (e.g. initially mean Skeleton K) are
concatenated in V = [SK] and projected into the SS-PCA obtaining X .

3. Find the nearest cluster by calculating the distance between X and each one
of the most probable clusters given by the PTM.

4. Update the parameters to best fit the “local model” defined by its mean X ,
eigenvectors Φ and eigenvalues λi ,obtaining X∗ [8].
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5. We project the vector X∗ back to the feature space obtaining V ∗ which
contains a new estimation of both Shape S∗ and Skeleton K∗: V ∗ = [S∗K∗].

6. A new background subtraction with an adaptive threshold inside the Contour
S∗ is applied, leading to an improved human blob detection.

7. Repeat until convergence and store useful data: θt, Tt
j,r, S∗

t and K∗
t .

This leads to an accurate silhouette segmentation and posture estimation
directly obtained from the mapping created between Contours and Stick figures.

5 Results

The model is now evaluated with a series of testing sequences that illustrate
different situations which may occur in the analysis of pedestrian motion: straight
line walking, changes of direction, of speed, etc. Since we want to test both model
fitting and pose estimation, and not the tracking in the image, we provide the
system with the bounding-box manually selected avoiding the possible problems
due to the tracking. The process begins with a manual initialization: indicating
the adequate model in the first frame. In the PTM matrices from Fig.4, 6 and
7, the colored cells represent the probability pj,r from (2). The obscured cell
is the “winning one”: the local model that best fits the silhouette. For each
frame, the row of the “winning” model in the TTM indicates the orientation
of the pedestrian with respect to the camera. Additionally, both trajectory and
previous states are respectively plotted in the image/matrix with a white line.

As illustrated in Fig.4, the resultant vectors from a pedestrian crossing the
scene straight ahead without stopping or turning towards anything all belong to

(a) (b)

(c) (d) (e) (f)

Fig. 4. (a) Outdoor straight line walking sequence at constant speed. (b) Estimated

Stick figures. (c, d, e & f) PTM corresponding to the 4 silhouettes depicted in (a).
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Fig. 5. Feet position error in pixels (bottom) and temporal clusters (top) - given by

the column of the TTM corresponding to the “winning” model - of the Straight line

walking (left), Indoor (centre) and “Walk-circle” (right) sequences

Fig. 6. Indoor sequence with orientation changes and estimated Stick figures

models from the same row of the TTM. Any change of direction is observed as
a progressive change of row (See Fig.6 and Fig.7).

Fig.5 shows the pose estimation results for the 3 tested sequences. The mean
position error (in pixels) is calculated as the feet-distance between the Skeleton
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Fig. 7. “Walk-circle” sequence from www.nada.kth.se/∼hedvig/data.html and esti-

mated Stick figures

estimated by the algorithm and the hand-labelled one. Some peaks can be no-
ticed in this figure. For instance, in the indoor sequence (centre) the model failed
because of the excessive difference of viewpoint-angle between training and in-
put images, when the subject goes in and out of the scene. In the “walk-circle”
sequences (right) the model fails because of the stationary behaviour of the track-
ing that stays stuck in a cluster during too many frames and then can hardly
get out of it. It needs to wait until the next cycle to recuperate the dynamic
behaviour of the input motion. For the rest of the frames, the results are glob-
ally very satisfactory which means that the model is conveniently tuned to the
suitable viewpoints and that the assumption made in Section 2.3 is reasonable.

6 Conclusions and Work-in-Progress

This paper describes new probabilistic spatio-temporal models for human motion
analysis. Temporal and spatial constraints are considered to build a Probabilistic
Transition Matrix (PTM) that gives a frame to frame prediction of the most
probable models from a multi-view GMM.

The proposed fitting algorithm, combined with the new probabilistic models,
allows a faster and more reliable estimation of both pedestrian Silhouette and
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Stick figure in real monocular sequences. Preliminary results have demonstrated
that it works independently of the direction of motion in the image, and that
it also responds quite robustly to any change of direction during the sequence.
However, further work must be done.

For instance, the fitting process has been initialized providing a good model
in the first frame. In order to develop a non-supervised system an automatic
initialization has to be considered. Moreover, we have made the assumption that
temporal and spatial events are independent. In future research this assumption
have to be evaluated in detail since it is not strictly true: a pedestrian can change
direction only during the second part of the Swing phases of the gait cycle.

Future work relies on combining this approach with a particle filtering frame-
work in order to obtain a robust human motion tracker in feature space. On
the other hand, a perspective correction could be applied to avoid the problem
of viewpoint correspondences. Finally, more complicated cases such as various
pedestrians with partial occlusions will be considered, and others kinds of mo-
tion should be taken into account in more complete models that could be built
synthetically from a 3D motion capture system.
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Abstract. We propose a hierarchical process for inferring the 3D pose of a
person from monocular images. First we infer a learned view-based 2D body
model from a single image using non-parametric belief propagation. This ap-
proach integrates information from bottom-up body-part proposal processes and
deals with self-occlusion to compute distributions over limb poses. Then, we ex-
ploit a learned Mixture of Experts model to infer a distribution of 3D poses condi-
tioned on 2D poses. This approach is more general than recent work on inferring
3D pose directly from silhouettes since the 2D body model provides a richer rep-
resentation that includes the 2D joint angles and the poses of limbs that may be
unobserved in the silhouette. We demonstrate the method in a laboratory setting
where we evaluate the accuracy of the 3D poses against ground truth data. We
also estimate 3D body pose in a monocular image sequence. The resulting 3D es-
timates are sufficiently accurate to serve as proposals for the Bayesian inference
of 3D human motion over time.

1 Introduction

The estimation of 3D human pose and motion is relatively well understood in con-
trolled laboratory settings with multiple cameras where any number of Bayesian in-
ference methods can recover 3D human motion (e.g. [4]). All of these methods rely
on accurate background subtraction and edge information; this is a strong limitation
that prevents their use in more realistic and complex environments. When the back-
ground is changing or the camera is moving, reliable background subtraction is difficult
to achieve. The problems become particularly acute in the case of monocular tracking
where the mapping from the 2D image to the 3D body model is highly ambiguous. So-
lutions to the monocular (static camera) case have relied on strong prior models [18],
manual initialization [23] and/or accurate silhouettes [1,2,19,23]. The fully automatic
case involving a monocular camera is the focus of this paper.

Recent work on 2D body pose estimation and tracking treats the body as a “card-
board person” [9] in which the limbs are represented by 2D planar (or affine) patches
connected by joints. Such models are lower-dimensional than the full 3D model and
recent work has shown that they can be estimated from 2D images [5,14,15]. The re-
sults are typically noisy and imprecise but they provide exactly the kind of information
necessary to generate proposals for the probabilistic inference of 3D human pose. Thus
we simplify the 3D problem by introducing an intermediate 2D estimation stage.

To infer 2D body pose we adopt an iterative bottom-up process. Simple body part
detectors provide noisy probabilistic proposals for the location and 2D pose (orienta-
tion and foreshortening) of visible limbs (Fig. 1 (b)). To estimate the pose of the body

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 185–195, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) Image/Features (b) Part Proposals (c) 2D Pose Estimation (e) Tracking(d) Sampled 3D Pose

Distribution

Most Likely Sample

Fig. 1. Example of the hierarchical inference process. (a) monocular input image with bot-
tom up limb proposals overlaid (b); (c) distribution over 2D limb poses computed using non-
parametric belief propagation; (d) sample of a 3D body pose generated from the 2D pose; (e)
illustration of tracking.

we exploit the idea of a 2D “loose-limbed” body model [20] which has been previously
used for 2D articulated pose estimation [21] and 3D pose estimation and body track-
ing [20]. In particular, we adopt the view-based approach of [21]. We use a variant of
non-parametric belief propagation (NBP) [8,25] to infer probability distributions repre-
senting the belief in the 2D pose of each limb (Fig. 1 (c)). The inference algorithm also
introduces hidden binary occlusion variables and marginalizes over them to account for
occlusion relationships between body parts. The conditional distributions linking 2D
body parts are learned from examples.

This process (limb proposals, NBP) provides reasonable guesses for 2D body pose
from which to estimate 3D pose. Agarwal and Triggs [1,2] learned a probabilistic map-
ping from 2D silhouettes to 3D pose using a Mixture of Experts (MoE) model. We
generalize their approach to learn a mapping from 2D poses (including joint angles and
foreshortening information) to 3D poses. Sampling from this model provides predicted
3D poses (Fig. 1 (d)), that are appropriate as proposals for a Bayesian temporal infer-
ence process (Fig. 1 (e)). Our multi-stage approach overcomes many of the problems
inherent in inferring 3D pose directly from image features. We quantitatively evaluate
the 3D proposals using ground truth 2D poses. We also test the method on the monoc-
ular sequence in Fig. 1.

2 Previous Work

There are now numerous methods for detecting the 2D pose of people in static images
(with [5,21] and without [7,12,13,14,15,16] background subtraction). For example dy-
namic programming (DP) or other search methods can be used to compute possible 2D
poses [5,13,14,15]. While efficient DP methods exist [5], they require a discretization
of the state space of 2D limb poses and simple forms for the conditional distributions
relating connected limbs. They also require a tree structure, which does not allow long-
range interactions between parts that are required for occlusion reasoning.

Alternatively, we adopt a graphical model representation of the body [21] that, in
addition to kinematic constraints, also encodes the possible occlusion relationships
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between limbs (this leads to loops in the graph representation of the body). Pose es-
timation is formulated as inference in this loopy graphical model and is solved using a
variant of Non-parametric Belief Propagation (NBP) [8,25]. This leads to a number of
advantages over DP methods. For example, limb positions and orientations need not be
discretized as in [5]. Unlike previous methods [5,21] we infer 2D pose as an intermedi-
ate step to inferring the full 3D articulated body pose.

Lee and Cohen [11] also use a bottom-up proposal process and infer 3D pose pa-
rameters using a data-driven MCMC procedure. Our approach differs in that we break
the problem into simpler pieces: generate 2D proposals, inference of 2D pose, and pre-
diction from 2D to 3D.

This final stage has received a good deal of attention with a variety of geometric
[13,26] and machine learning methods [1,2,17,19,22] being employed. These previous
approaches have focused on directly inferring 3D pose from 2D silhouettes which may
be difficult to obtain in general. Additionally silhouettes contain less information than
our 2D models which represent all the limbs, the joint angles, and foreshortening. This
helps reduce the ambiguities found in matching silhouettes to 3D models [23] but does
not remove ambiguities altogether. Consequently we learn a conditional distribution
using a MoE model similar to that of Agarwal and Triggs [1,2]. Our work is similar in
spirit to [6] in which 3D poses are inferred from 2D tracking results, but our approach
can infer 3D pose from a single image and does not require manual initialization.

3 Modeling a Person

We model a 3D human body using a set of P (here P = 10) tapered cylinders cor-
responding to body parts and connected by revolute joints (see Fig. 3 (a)). Each part
has an associated set of fixed parameters that are assumed to be known (e.g. length
and cross-sectional radius at the two joints). We represent the overall pose of the body
Yt = [Ξ, Γ, θ]T at time t using a set of joint angles θ, a global position Ξ , and global
orientation Γ in 3D. Joint angles are represented with respect to the kinematic chain
along which they are defined using unit quaternions. For our body model, this results in
Yt ∈ R47, or Yt ∈ R55 depending on whether one chooses to model the clavicle joints.

In 2D the limbs in the image plane are modeled by trapezoids, and the overall body
pose is defined using a redundant representation X = {X1, X2, ..., XP } in terms of 2D
position, rotation, scale and foreshortening of parts, Xi ∈ R5. This redundant represen-
tation stems from the inference algorithm that we will employ to infer the pose of the
body in 2D. Notice we drop the temporal sub-script t for convenience.

4 Finding a Person in 2D

4.1 Limb Proposals

At the lowest level of our hierarchical approach are body part proposals. We need plau-
sible poses/states for some or all the parts of the body to localize the search. There
exist a number of approaches for detecting body parts in an image. Among them are ap-
proaches for face detection, skin-color-based limb segmentation [11], and color-based
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Fig. 2. Proposals and NBP. Example of the belief propagation process. Left: bottom-up propos-
als for the limbs. Center: 100 samples from the belief at each node/limb after 5 iterations of NBP
(NBP was run with 100 particles, producing messages represented by 800-component kernel
densities). Right: most likely sample drawn form the belief at each node.

segmentation exploiting the homogeneity and the relative spatial extent of body parts
[11,13,16]. In this paper we took a simpler approach, and constructed our set of propos-
als by simply discretizing the state space and evaluating the likelihood function (below)
at these discrete locations, choosing the 100 most likely states as a particle based pro-
posal distribution for belief propagation (BP). It is important to note that not all parts
need to be detected. An example of the proposals for various parts of the body are
shown in Fig. 1 (b) and 2.

4.2 Likelihoods

The likelihood model for an individual limb is built to account for possible occlusions
between body parts for a given view-based 2D model. To simplify the occlusion rea-
soning as in [21], we assume that for a given view there is a fixed and known depth
ordering of parts. Assuming pixel independence, we can then write the local image
likelihood φ(I|Xi), for part i as a product of individual pixel probabilities defined over
disjoint image regions. For a more detailed description of the occlusion-sensitive like-
lihoods, and how one can approximate the global likelihood φ(I|X) with a product of
local terms φ(I|Xi), we refer the reader to [21,24]. In defining φ(I|Xi) we use silhou-
ette and color features and combine them using an independence assumption.

4.3 2D Loose-Limbed Body Model

Following the framework of [20,21] we implement the search for the 2D body using
a spatial undirected graphical model, where each node i in a graph represents a body
part (limb), and links between nodes represent the kinematic and occlusion constraints
encoded statistically using conditional distributions. Each body part has an associated
state vector Xi ∈ R5 that encodes 2D position, rotation, scale, and foreshortening.
The joint probability for this spatial graphical model with P body parts, can be writ-
ten as p(X1, X2, ..., XP |I, V ) ∝∏ij ψK

ij (Xi, Xj |V )
∏

ij ψO
ij(Xi, Xj |V )

∏
i φ(I|Xi),

where Xi represents the state of the limb i; V ∈ {1..8} the discrete view; ψK
ij (Xi, Xj |V )

and ψO
ij(Xi, Xj |V ) are the kinematic and occlusion constraints between the connected

or potentially occluding nodes i and j for view V and φ(I|Xi) is the local image like-
lihood defined above. This model has a number of advantages [21] and has been shown
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to produce favorable results for the 3D body estimation in a multi-view setting [20].
The graphical model structure corresponding to our model can be seen in Fig. 3 (b).

Inferring the state of the 2D body in our graphical model representation corresponds
to estimating the belief (marginal) at each node in a graph. We use a form of continuous
non-parametric belief propagation [8], Particle Message Passing (PAMPAS), to deal with
this task. The approach is a generalization of particle filtering which allows inference
over arbitrary graphs rather then a simple chain. In this generalization the message used
in standard belief propagation is approximated using a kernel density (formed by propa-
gating particles through a conditional density represented by a mixture model [20,21]).
For the details on how the message updates can be carried out using the stratified sam-
pling from the products of messages and proposal distribution see [20].

5 Proposing 3D Body Model from 2D

In order to produce estimates for the body in 3D from the 2D body poses, we need to
model the conditional distribution p(Y |X) of the 3D body state Y given 2D body state
X . Intuitively this conditional mapping should be related to the inverse of the camera
projection matrix and, as with many inverse problems, is highly ambiguous.

To model this non-linear relationship we use a Mixtures of Experts (MoE) model
to represent the conditionals [1,2,22]. The parameters of the MoE model are learned by
maximizing the log-likelihood of the training data set D = {X1, ..., XN , Y 1, ..., Y N}
consisting of N input-output pairs (X i, Y i). We use an iterative Bayesian EM algo-
rithm, based on type-II maximum likelihood, to learn parameters of the MoE. Our
model for the conditional can be written as:

p(Y |X) ∝
M∑

k=1

pe,k(Y |X, Θe,k)pg,k(k|X, Θg,k) (1)

where pe,k is the probability of choosing pose Y given the input X according to the
k-th expert, and pg,k is the probability of that input being assigned to the k-th expert
using an input sensitive gating network; in both cases Θ represents the parameters of
the mixture and gate distributions.

For simplicity and to reduce complexity of the experts we choose linear regression
with constant offset Y = AX + C as our expert model, which allows us to solve for
the parameters Θe,k = {Ak, Ck, Λk} analytically using the weighted linear regression,

where pe,k(Y |X, Θe,k) = 1√
(2π)n|Λk|

exp− 1
2 ΔT

k Λ−1
k Δk , and Δk = Y − AkX − Ck.

Pose estimation is a high dimensional and ill-conditioned problem, so simple least
squares estimation of the linear regression matrix parameters typically produces severe
over-fitting and poor generalization. To reduce this, we add smoothness constraints on
the learned mapping. We use a damped regularization term R(A) = λ||A||2 that pe-
nalizes large values in the coefficient matrix A, where λ is a regularization parameter.
Larger values of λ will result in overdamping, where the solution will be underesti-
mated, small values of λ will result in overfitting and possibly ill-conditioning. Since
the solution of the ridge regressors is not symmetric under the scaling of the inputs, we
normalize the inputs {X1, X2, ..., XN} by the standard deviation in each dimension
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Fig. 3. Hierarchical Inference. Graphical model representation of the hierarchical inference
process; (a) illustrates the 3D body model; (b) the corresponding 2D body model used for in-
ference of the 2D pose at every frame, with kinematic constraints marked in black, and occlusion
constraints in blue, and (d) the Hidden Markov Model (HMM) used for inferring and tracking
the state of the 3D body, Yt, over time t ∈ {1..T}, using the hierarchical inference proposed, in
which proposals for each node, Y , are constructed from 2D body pose X using the model in (c).

respectively before solving1. We omit the details of weighted ridge regression due to
space limitations, and refer readers to [2,22].

Maximization for the gate parameters can be done analytically as well. Given the
gate model, pg,k(k|X, Θg,k) = 1√

(2π)n|Σk|
exp− 1

2 (X−μk)T Σ−1
k (X−μk) maximization

of the gate parameters Θg,k = (Σk, μk) becomes similar to the mixture of Gaussians
estimation, where μk =

∑N
n=1 zn

k Xn/
∑N

n=1 zn
k , Σk = 1

N
n=1 zn

k

∑N
n=1 zn

k (Xn −
μk)(Xn − μk)T , and zn

k is the the estimated ownership weight of the example n by

the expert k estimated by expectation zn
k = pe,k(Y n|Xn,Θe,k)pg,k(k|Xn,Θg,k)

M
j=1 pe,j(Y n|Xn,Θe,j)pg,j(j|Xn,Θg,j) .

The above outlines the full EM procedure for the MoE model. We learn MoE models
for two classes of actions: walking and dancing. Examples of the ground truth 2D query
pose with corresponding expected 3D body pose can be seen in Fig. 4 (a) and (b)
respectively. Similar to [1,2] we initialize the EM learning by clustering the output 3D
poses using the K-means procedure.

Implementation Details. Instead of learning the full conditional model p(Y |X), we
learn two independent models p(Γ |X) and p(θ|X) one for the pose of the 3D body
p(θ|X) given the 2D body pose X , and one for the global orientation of the body
p(Γ |X). The reasoning for this is two fold. First, this partitions the learned mapping
into a fully camera-independent model for the pose p(θ|X), and the more specific
camera-dependent model for the orientation of the body in the world p(Γ |X). Sec-
ond, we found that the optimal damping coefficient is significantly different for the two
models that imposing a single joint conditional model (and hence a single coefficient)

1 To avoid problems with 2D and 3D angles that wrap around at 2π, we actually regress the
(cos(θ), sin(θ)) representation for 2D angles and unit quaternion q = (x, y, z, w) repre-
sentation for 3D angles. After the 3D pose is reconstructed we normalize the not-necessarily
normalized quaternions to valid 3D rotations. Since quaternions also suffer from the double
cover problem, where two unit quaternions correspond to every rotation, care must be taken to
ensure that consistent parameterization is used.
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(a) (b) (c) (d) (e)

Fig. 4. Proposed 3D pose. (a) Query 2D body pose; (b) expected 3D pose produced by the
learned Mixture of Experts (MoE) model. (c) Ground-truth 3D body pose; (d) and (e) illustrate
the projection of the expected 3D pose shown in (b) onto two alternative image views.

would result in somewhat larger reconstruction error. Estimation of the depth p(Ξ|X)
is done analytically by considering the estimated overall scale of the 2D body.

6 Tracking in 3D

Once the distribution for the 3D body pose at every frame is inferred using the condi-
tional MoE model described, we can incorporate temporal constraints to regularize the
individual 3D pose estimates by tracking. We exploit the relatively standard [10] Hid-
den Markov Model (HMM) shown in Fig. 3 (d). To infer the state of Yt at every frame t
given the temporal constraints ψT (Yt|Yt+1) = ψT (Yt+1|Yt) ∼ N(0, ΣT ) with learned
covariance matrix ΣT , we use the same inference framework of Non-parametric BP
introduced in Section 4.3. Unlike many competing approaches, we allow the model to
optimize the pose estimates not only forward but also backward in time in a batch.

The likelihood, φ(It|Yt), of observing the 3D pose Yt at time t given image evidence
It is defined in terms of Chamfer distance of the projected pose Yt to the silhouettes and
edges obtained from It using standard techniques. Further details are omitted, and the
reader is referred to [4] and [23] for similar likelihood model formulations.

7 Experiments

Datasets. For all experiments presented in this paper we used two datasets that exhibit
two different types of actions: walking and dancing. Both datasets contain a number of
motion capture examples used for training, and a single synchronized motion capture
example with multi-view video used for testing. Video was captured using 4 stationary
grayscale cameras at 60 Hz, and 3D pose was captured using a Vicon system at 120
Hz. The motion capture (mocap) was aligned to video and sub-sampled to 60 Hz, to
produce synchronous video/mocap streams. All cameras were calibrated using standard
calibration procedures. Walking dataset [20] contains 4587 training and 1398 testing
poses/frames; dancing: 4151 training and 2074 testing poses/frames.

Quantitative Evaluation of 2D to 3D Pose Mapping. Learning the mapping from 2D
kinematic pose to 3D kinematic pose is one of the key contributions of this paper. We
learned two action-specific MoE models p(Y |X). For each of the action types we first
looked at how sensitive our learned mapping is to the parameters of the model (i.e. the
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Fig. 5. Quantitative evaluation of action-specific dancing conditional model p(Y |X) =

p(Ξ|X)p(Γ |X)p(θ|X), computed by comparing the expectation of the (a) 3D pose E[p(θ|X)],
and of the (b) global orientation E[p(Γ |X)] to ground truth data. Error is averaged over 4 trained
MoE models learned with parameters specified. In both cases, (a) and (b), it is clear that there is
benefit in using large number of mixture components (> 5), and a moderate value for λ.
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Fig. 6. Quantitative evaluation of action-specific conditional model p(Y |X) =

p(Ξ|X)p(Γ |X)p(θ|X), computed by comparing the expectation to ground truth data for
two classes of motion. Per frame error for the reconstructed 3D pose θ, global orientation Γ , and
the full 3D state of the body Y are shown for (a) dancing and (c) walking; the average per joint
error as compared to the ground truth is shown in (b) and (d) respectively.

number of mixture components, and the regularization term λ). The results for dancing
can be seen in Fig. 5. To quantitatively evaluate the performance we use the measure
of [20] computed by choosing 15 virtual markers corresponding to joints and “ends”
of limbs, and computing an expected absolute distance in (mm) over all the markers.
Once the optimal set of parameters was chosen, the resulting MoE models were applied
to the test data, and the error for the reconstructed 3D poses2 analyzed (see Fig. 6).

The key observation is that walking, being considerably simpler of the two action
types, can be recovered significantly better (with 50% less error), than the more complex
dancing. The peaks in the error in both cases often correspond to singular or close to
singular cases where foreshortening in the pose of 2D limbs for example is severe.

Hierarchical Inference from Monocular Image Sequence. We also tested the full
hierarchical inference on the first 50 frames from the walking test sequence. The 3D
proposals obtained using the hierarchical inference process (Fig. 7) are accurate, and
sufficient to allow reliable Bayesian temporal inference (Fig. 8).

2 Supplementary videos are available from http://www.cs.brown.edu/people/ls/.
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Frame 10

Frame 30

Frame 50
(a) (b) (c)

Fig. 7. Hierarchical 3D Pose Estimation. (a) bottom-up proposals for the limbs, (b) most likely
sample from the marginals for each limb after 2D pose estimated by NBP, and (c) most likely 3D
pose obtained by propagating 2D poses through a conditional p(Y |X) model.

Frame 1 Frame 10 Frame 20 Frame 30

Fig. 8. Tracking in 3D. Tracking based on the 3D proposals (Fig. 7) at 10 frame increments. The
3D poses are projected into the image for clarity. The mean tracking error of 66 (mm), computed
over first 50 frames of the test sequence, is 77% lower then the error reported for the same
dataset using single-view Annealed Particle Filter (APF) with manual initialization in [3]. The
best reported result in the literature on this data of 41 (mm) was obtained using 4-view APF [3].

8 Summary and Conclusions

The automatic estimation of human pose and motion in monocular image data remains
a challenging problem. This is particularly so in the unconstrained environment where
good background subtraction is unavailable. Here we have proposed a system to address
this problem that uses a hierarchal Bayesian inference framework to go from crude body
part detections to a distribution over 3D body pose. We make modest assumptions about
the availability of noisy body part detectors and a reasonable image likelihood model.
We use belief propagation to infer 2D limb poses that are consistent with the human
body model. Our approach extends recent work on inferring 3D body models from 2D
silhouettes by using the inferred 2D articulated model instead. This provides a richer
representation which reduces ambiguities in the 2D to 3D mapping. We also show that
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the 3D pose proposals can be used in a tracking framework, that can further regularize
the 3D pose estimates.

Acknowledgments. This work was partially supported by Intel Corporation and NSF
IGERT award #9870676.
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Abstract. In this paper, a fast automatic segmentation algorithm based on 
AdaBoost learning and iterative Graph-Cuts are shown. AdaBoost learning 
method is introduced for automatically finding the approximate location of  
certain object. Then an iterative Graph-Cuts method is used to model the seg-
mentation problem. We call our algorithm as AdaBoost Aggregation Iterative 
Graph-Cuts (AAIGC). Compared to previous methods based on Graph-Cuts, our 
method is automatic. Once certain object is trained, our algorithm can cut it out 
from an image containing the certain object. The segmentation process is reliably 
computed automatically no additional users’ efforts are required. Experiments 
are given and the outputs are encouraging. 

1   Introduction 

Image segmentation is a process of grouping together neighboring pixel whose prop-
erties are coherent. It is an integral part of image processing applications such as acci-
dent disposal, medical images analysis and photo editing. Many algorithms have been 
proposed (such as Intelligent Paint [1], Intelligent Scissors [2], Graph-Cuts [3], Grab-
Cuts [4], Mean Shift [5], Normalized Cuts [6, 7] ). In the analysis of the object in 
images it is essential that we can distinguish between the object of interest and the 
rest. This latter group is also referred to as the background. The techniques that are 
used to find the object of interest are usually referred to as segmentation techniques: 
segmenting the foreground from background. Semi-automatic segmentation tech-
niques that allow solving moderate and hard segmentation tasks by modest effort on 
the part of the user are becoming more and more popular. However in some situation, 
we need automatic segmentation for certain object. Previous automatic segmentation 
methods have two major drawbacks:  

1. The final segmentation results are far from users’ expectations. 
2. The running time is so slow that it can’t meet the real-time demands. 

In order to overcome the disadvantages of automatic and semi-automatic segmen-
tation algorithms, an AdaBoost learning and iterative Graph-Cuts segmentation algo-
rithm is proposed.  

* This work has been supported by NSFC Project 60573182, 69883004 and 50338030. 
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In section 2, we give the details of our algorithm. Experiences and comparisons are 
given in section 3. In section 4, we give the conclusions and future work. 

2   Our Method 

Our segmentation algorithm includes four stages: AdaBoost learning for determining 
object location; expanding location for segmentation; nodes aggregation; iterative 
Graph-Cuts segmentation for final results. Below we will describe them in detail. 

2.1   AdaBoost Learning 

The object detector based on AdaBoost learning has been initially proposed by Paul 
Viola [8] and improved by Rainer Lienhart [9]. First, a classifier (namely a cascade of 
boosted classifiers working with haar-like features) is trained with a few hundreds of 
sample views of a particular object, called positive examples, which are scaled to the 
same size, and negative examples - arbitrary images of the same size. After a classi-
fier is trained, it can be applied to a region of interest (of the same size as used during 
the training) in an input image. The resultant classifier consists of several simpler 
classifiers (stages) that are applied subsequently to a region of interest until at some 
stage the candidate is rejected or all the stages are passed. The classifiers at every 
stage of the cascade are complex themselves and they are built out of basic classifiers 
using AdaBoost learning techniques.  

The learning algorithm boosts the classification performance by combining a col-
lection of weak classifiers to form a stronger classifier. In each step of AdaBoost, the 
classifier with the best performance is selected and a higher weight is put on the miss-
classified training data. In this way, the classifier will gradually focus on the difficult 
examples to be classified correctly. The formal guarantees provided by the AdaBoost 
learning procedure are quite strong. In theory, it is proved that AdaBoost could mini-
mize the margin between positive and negative examples. The conventional AdaBoost 
procedure can be easily interpreted as a greedy feature selection process. Consider the 
general problem of boosting, in which a large set of classification functions are com-
bined using a weighted majority vote. The challenge is to associate a large weight 
with each good classification function and a smaller weight with poor functions. 
AdaBoost is an aggressive mechanism for selecting a small set of good classification 
functions which nevertheless have significant variety. Drawing an analogy between 
weak classifiers and features, AdaBoost is an effective procedure for searching out a 
small number of good “features” which nevertheless have significant variety. Our 
procedure is similar with the face detection method. Using AdaBoost learning we can 
specify the location of certain object in an image. 

2.2   Basic Segmentation Method 

We briefly introduce some of the basic terminology used throughout the paper. An 

image that contains N n n= × pixels, we construct a graph ( ), ,G V E W= in 

which each node iv V∈ represents a pixel and every two nodes iv , jv  representing 
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neighboring pixels are connected by an edge ,i je E∈ . Each edge has a weight 

,i jw W∈ reflecting the contrast in the corresponding location in the image. We can 

connect each node to the four or eight neighbors of the respective pixel, producing a 
graph. Because only background pixels can be determined by AdaBoost, the graph 
can be partitioned into three disjoint node sets, “U”, “B” and “O”, 
whereU B O V= , U B O φ= . U means uncertain pixels and B and O 

mean background and object pixels. At first O φ= . Finding the most likely labeling 

translates to optimizing an energy function. In vision and image processing, these 
labels often tend to vary smoothly within the image, except at boundaries. Because a 
pixel always has the similar value with its neighbors, we can model the optimization 
problem as a MRF. In [3], the authors find the most likely labeling for some given 
data is equivalent to seeking the MAP (maximum a posteriori) estimate. A graph is 
constructed and the Potts Energy Model (1) is used as the minimization target. 

{ },

( ) ( ) ( , )
i i j

data i smooth i j
v V v v N

E G E v E v v
∈ ∈

= +
(1)

The graph G contains two kinds of vertices: p-vertices (pixels which are the sites in 
the associated MRF) and l-vertices (which coincide with the labels and will be termi-
nals in the graph cut problem). All the edges present in the neighborhood system N 
are edges in G. These edges are called n-links. Edges between the p-vertices and the l-
vertices called t-links are added to the graph. t-links are assigned weights based on the 
data term (first term in Equations 1 reflecting individual label-preferences of pixels 
based on observed intensity and pre-specified likelihood function) while n-links are 
assigned weights based on the interaction term (second term in Equation 1 encourag-
ing spatial coherence by penalizing discontinuities between neighboring pixels). 
While n-links are bi-directional, t-links are un-directional, leaving the source and 
entering the sink. 

2.3   Nodes Aggregation and Iterative Segmentation by Graph-Cuts 

For a large image, it will be slow to segment the whole graph straightly. We introduce 
a multi-scale nodes aggregation method to construct a pyramid structure over the 
image. Each procedure produces a coarser graph with about half size, and such that 
Graph-Cuts segmentation in the coarse graph can be used to compute precision seg-
mentation in the fine graph. 

Algorithm proposed in [3] uses a Graph-Cuts based optimization approach to ex-
tract foregrounds from images according to a small amount of user input, such as a 
few strokes. Previous natural image segmentation approaches heavily rely on the user 
specified trimap. In our situation, only background trimap can be initialized. We use 
an iterative Graph-Cuts procedure for image matting inspired by [4]. 

The object of segmentation is to minimize the energy function (1). The first term  
reflects individual label-preferences of pixels based on observed intensity and pre-
specified likelihood function. The second term encourages spatial coherence by penal-
izing discontinuities between neighboring pixels. So our goal is minimize the energy 
function and make it adapt to human vision system. In [3] authors give the construction  
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Fig. 1. The whole process of the algorithm proposed in this paper

of the graph in detail. In order to finish the automatic segmentation, a different way is 
used to construct the graph in this paper. 

We use the pixels inside and outside the rectangle specified by AdaBoost to build 
two Gaussian mixture models (GMM), one for object and the other for background, 
which are similar with the method described in [3], [4] and [10]. Each GMM is taken 
to be a full-covariance Gaussian mixture with K=5 components. The Potts Energy 
Model (1) is equivalent with the Gibbs energy (2) 

{ },

( , , , ) ( , , )
i j

i i i i j
i v v N

E D v k V v vθ β β
∈

= +
(2)

( ) ( ) ( )

( ) ( ) ( )1

1, , , log , log det ,2
1 , , ,2

i i i i i i i

i i i i i i i i

D v k k k

v k k v k

θ β π β β

μ β β μ βΤ −

= − + +

− −
(3)

Where (.)π , (.)μ and (.) are the mixture weighting coefficients, means and 

covariance of the 2K Gaussian components for the object and background pixels dis-
tributions. So the parameter θ  has the form as  
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( ) ( ) ( ){ }, , , , ,    1... 5;  1  0k k k k K orθ π β μ β β β= = = = (4)

The second term of Gibbs energy is 

{ }
( )

,

2 2, 1 exp( ( ) )
i j

i j i j
v v N

V v v v v σ
∈

= − − − (5)

We set σ empirically to be 0.2 in our system. 
We use a similar way with [4] to iterative minimize the Gibbs energy which can 

guarantee the convergence. A more detail can be fond in [4]. The whole procedure of 
the segmentation algorithm is shown in Fig .1. 

3   Experiments 

Fig. 3 is a part of training dataset for detection car and flower. There are some posi-
tive and negative examples for training. Of course in order to detect other objects we 
should use others example images. In Fig. 4, the detection results and the iterative 
segmentation results are shown. In Fig .4 (a) is the car segmentation for gray image. 
Fig .4 (b) is the segmentation experiments for nature color image. The segmentation 
results are good enough for some practical applications and the running time is fast 
enough to meet the real-time demands because we use nodes aggregation to reduce 
the number of nodes. There are some methods for nodes aggregation. We use a sim-
ply but efficient method. For more accurate result we can develop new methods for 
nodes aggregation. Also the running time comparison between non-nodes aggregation 
and nodes aggregation is given in Fig. 2. The average ratio of running time is about 
20 times faster than non-nodes aggregation. 

Fig. 2. Running time for aggregation method and non-aggregation method
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(a)

(b) 

Fig. 3. A part of training image database for car and flower detection 

(a)

(b) 

Fig. 4. (a) and (b) are the segmentation results by AdaBoost and iterative Graph-Cuts corre-
sponding to four stages of the algorithm 
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4   Conclusions 

This paper proposes a machine learning based image segmentation method. Compar-
ing to previous methods, our scheme is automatic and accurate. AdaBoost learning 
concept is used to locate the position of certain object. Then nodes aggregation and 
iterative Graph-Cuts are used to solve the segmentation problems.  

On the other hand, how to choose the training images is an important issue for the 
proposed algorithm. Now we just use experimental parameters which perhaps fail 
under some situations. In the next step, we should give a reliable parameters based on 
experiments. Also, In the future, we plan to develop new method to reduce the num-
ber of training examples.  
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Learning Deformations of Human Arm

Movement to Adapt to Environmental
Constraints

Stephan Al-Zubi and Gerald Sommer
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Abstract. We propose a model for learning the articulated motion of
human arm. The goal is to generate plausible trajectories of joints that
mimic the human movement using deformation information. The trajec-
tories are then mapped to constraint space. These constraints can be the
space of start and end configuration of the human body and task-specific
constraints such as avoiding an obstacle, picking up and putting down
objects. This movement generalization is a step forward from existing
systems that can learn single gestures only. Such a model can be used
to develop humanoid robots that move in a human-like way in reaction
to diverse changes in their environment. The model proposed to accom-
plish this uses a combination of principal component analysis (PCA)
and a special type of a topological map called the dynamic cell struc-
ture (DCS) network. Experiments on a kinematic chain of 2 joints show
that this model is able to successfully generalize movement using a few
training samples for both free movement and obstacle avoidance.

1 Introduction

Human motion is characterized as being smooth, efficient and adaptive to the
state of the environment. In recent years a lot of work has been done in the
fields of robotics and computer animation to capture, analyze and synthesize this
movement with different purposes [1,2,3]. In robotics there has been a large body
of research concerning humanoid robots. These robots are designed to have a one
to one mapping to the joints of the human body but are still less flexible. The
ultimate goal is to develop a humanoid robot that is able to react and move in its
environment like a human being. So far the work that has been done is concerned
with learning single gestures like drumming or pole balancing which involves
restricted movements primitives in a simple environment or a preprogrammed
movement sequence like a dance. An example where more adaptivity is needed
would be a humanoid tennis robot which, given its current position and pose
and the trajectory of the incoming ball, is able to move in a human-like way to
intercept it. This idea enables us to categorize human movement learning from
simple to complex as follows: (A) Imitate a simple gesture, (B) learn a sequence
of gestures to form a more complex movement, (C) generalize movement over the
range allowed by the human body, and (D) learn different categories of movement
specialized for specific tasks (e.g. grasping, pulling, etc.).

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 203–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This paper introduces two small applications for learning movement of type
(C) and (D). The learning components of the proposed model are not by them-
selves new. Our contribution is presenting a supervised learning algorithm which
learns to imitate human movement that is specifically more adaptive to con-
straints and tasks than other models. We will call the state of the environment
and the body which affects the movement as constraint space. This may be as
simple as object positions which we must reach or avoid, a target body pose or
more complex attributes such as the object’s orientation and size when garb-
ing it. The first case we present is generating realistic trajectories of a simple
kinematic chain representing a human arm. These trajectories are adapted to a
constraint space which consists of start and end positions of the arm as shown in
fig. 1. The second case demonstrates how the learning algorithm can be adapted
to the specific task of avoiding an obstacle where the position of the obstacle
varies.

The model accomplishes this by aligning trajectories. A trajectory is the se-
quence of body poses which change in time from the start to the end of a move-
ment. Aligning trajectories is done by scaling and rotation transforms in angular
space which minimizes the distance between similar poses between trajectories.
After alignment we can analyze their deformation modes which describe the
principal variations of the shape of trajectories. The constraint space is mapped
to these deformation modes using a topological map. This map reconstructs a
realistic trajectory given a constraint using the deformation information and the
transforms.

Next, we describe an overview of the work done related to movement learning
and compare them with the proposed model.

2 State of the Art

There are two representations for movements: Pose based and trajectory based.
We will describe next pose based methods.

Generative models of motion have been used in [2,1] in which a nonlinear
dimensionality reducing method called Scaled Gaussian Latent Variable Model
(SGPLVM) is used on training samples in pose space to learn a nonlinear latent
space which represents the probability distribution of each pose. Such a likelihood
function was used as a prior for tracking in [1] and finding more natural poses
for computer animation in [2] that satisfy constraints such as that the hand has
to touch some points in space. Another example of using a generative model for
tracking is [4] in which a Bayesian formulation is used to define a probability
distribution of a pose in a given time frame as a function of the previous poses
and current image measurements. This prior model acts as a constraint which
enables a robust tracking algorithm for monocular images of a walking motion.
Another approach using Bayesian priors and nonlinear dimension reduction is
used in [5] for tracking.

After reviewing pose probabilistic methods, we describe in the following tra-
jectory based methods. Schaal [3] has contributed to the field of learning
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movement for humanoid robots. He describes complex movements as a set of
movement primitives (DMP). From these a nonlinear dynamic system of equa-
tions are defined that generate complex movement trajectories. He described a
reinforcement learning algorithm that can efficiently optimize the parameters
(weights) of DMPs to learn to imitate a human in a high dimensional space. He
demonstrated his learning algorithm for applications like drumming and a tennis
swing.

To go beyond a gesture imitation, In [6] a model for segmenting and morphing
complex movement sequences was proposed. The complex movement sequence
is divided into subsequences at points where one of the joints reaches zero ve-
locity. Dynamic programming is used to match different subsequences in which
some of these key movement features are missing. Matched movement segments
are then combined with each other to build a morphable motion trajectory by
calculating spatial and temporal displacement between them. For example, mor-
phable movements are able to naturally represent movement transitions between
different people performing martial arts with different styles.

Another aspect of motion adaptation and morphing with respect to con-
straints comes from computer graphics on the topic of re-targeting. As an ex-
ample, Gleicher [7] proposed a nonlinear optimization method to re-target a
movement sequence from one character to another with an identical structure
but different segment lengths. The problem is to follow the physical constraints
and the smoothness of movement. Physical constraints are contact with other
objects like holding the box.

The closest work to the model presented in this paper is done by Banarer [8].
He described a method for learning movement adaptive to start and end posi-
tions. His idea is to use a topological map called Dynamic Cell Structure (DCS)
network [9]. The DCS network learns the space of valid arm configurations. The
shortest path of valid configurations between the start and end positions rep-
resents the learned movement. He demonstrated his algorithm to learn a single
gesture and also obstacle avoidance for a single fixed obstacle.

3 Contribution

The main difference between pose based methods and our approach is that
instead of learning the probability distribution in pose space, we model the
variation in trajectory space (each trajectory being a sequence of poses). This
representation enables us to generate trajectories that vary as a function of en-
vironmental constraints and to find a more compact representation of variations
than allowed by pdfs in pose space alone. pose pdfs would model large variations
in trajectories as a widely spread distribution which makes it difficult to trace
the sequence of legal poses that satisfy the constraints the human actually makes
without some external reference like motion sequence data.

Our approach models movement variation as a function of the constraint
space. However, style based inverse kinematics as in [2] selects the most likely
poses that satisfy these constraints. This works well as long as the pose
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Movement1

Movement 2

Movement 3

Fig. 1. Movements of the arm Fig. 2. Movement modes of the arm

constructed in 3D space

constraints don’t deviate much from the training data. This may be suitable
for animation applications but our goal here is to represent realistic trajectories
adapted to constraints without any explicit modeling. Banarer [8] uses also a
pose based method and the model he proposed does not generalize well because
as new paths are learned between new start and end positions the DCS network
grows very quickly and cannot cope with the curse of dimensionality. Our DCS
network generalizes over the space of trajectories and not poses which enables
more generalization.

Gleicher [7] defines an explicit adaptation model is suitable to generate a
visually appealing movement but requires fine tuning by the animator because
it may appear unrealistic. This is because it explicitly morphs movement using
a prior model rather than learning how it varies in reality as done in [2].

In the case of Schaal [3], we see that DMPs although flexible are not designed
to handle large variations in trajectory space. This is because reinforcement
learning adapts to a specific target human trajectory.

Morphable movements [6] define explicitly the transition function between two
or more movements without considering constraint space. Our method can learn
the nonlinear mapping between constraint space and movements by training from
many samples. The transition between movements is learned and not explicitly
pr-defined.

To sum up, we have a trajectory based learning model which learns the map-
ping between constraints and movements. The movement can be more adaptive
and generalizable over constraint space. It learns movements from samples and
avoids explicit modeling which may generate unrealistic trajectories.

4 Learning Model

After describing the problem, the concept for learning movement will be ex-
plained and how this model is implemented.

In order to develop a system which is able to generalize movement, we need
a representation of movement space. The first step is to learn the deformations
of the articulated movement itself and the second is to learn how movement
changes with start and end configuration and environmental constraints. The
mechanics of movement are called intrinsic features. The changes of intrinsic
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features with respect to absolute position and environment are called extrinsic
features. The intrinsic features describe movement primitives that are charac-
teristic for a human being. These features are the relative coordination of joints
in space and time. Extrinsic features can be characterized as the variation of
intrinsic features in the space of all possible absolute start and end positions of
the joints and any environmental constraints such as obstacle positions.

The difference between intrinsic and extrinsic features that characterizes move-
ment enables the formulation of a learning model. This model consists of two
parts: The first part is responsible for learning intrinsic features which uses prin-
cipal component analysis (PCA). It is applied on the aligned trajectories of the
joints to reduce the dimensionality. The second part models the extrinsic features
using a special type of an adaptive topological map called the dynamic cell struc-
ture (DCS) network. The DCS learns the nonlinear mapping from the extrinsic
features to intrinsic features that are used to construct the correct movement
that satisfies these extrinsic features.

4.1 Intrinsic Features Using PCA

We assume throughout this paper a kinematic chain representing a human arm
shown in Fig. 1. It consists of 2 joints: shoulder and elbow. Each joint has 2
degrees of freedom (φ, θ) which represent the direction of the corresponding
limb in spherical coordinates.

To perform statistical analysis, we record several samples of motion sequences.
In each motion sequence the 3D positions of the joints are recorded with their
time. The first step is to interpolate between the 3D points from the stereo cam-
eras of each movement sequence. We end up with a set of parametric curves
{pk(t)} for each motion sequence k where pk(t) returns the position vector of
all the joints at time t. After that, each pk(t) is sampled at n equal time in-
tervals from the start of the sequence k to its end forming a vector of positions
vk = [p1,k,p2,k . . .pn,k]. By Using the time t as an interpolate variable, the
trajectory is sampled such that there are many points at high curvature regions
because the arm slows down and less points at low curvature regions because
the arm speeds up. Then the Euclidean coordinates of each vk are converted to
relative orientation angles of all joints sj,k = (φj,k, θj,k), j = 1 . . . n in spherical
coordinates: Sk = [s1,k, s2,k, . . . sn,k]. After this we align the trajectories taken
by all the joints with respect to each other. Alignment means to find rotation
and scaling transformations on trajectories that minimize the distances between
them. This alignment makes trajectories comparable with each other in the sense
that all extrinsic features are eliminated leaving only deformation information.
The distance measure between two trajectories is the mean radial distance be-
tween corresponding direction vectors formed from the orientation angles of the
joints. Two transformations are applied on trajectories to minimize the distance
between them: 3D rotation R and angular scaling between the trajectory’s di-
rection vectors by a scale factor s centered at any point on the trajectory. Fig. 5
shows an example of aligning one trajectory to another one on a unit sphere. We
can extend this method to align many sample trajectories with respect to their
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mean until the mean converges. An example of aligning a group of trajectories is
in Fig. 3. The left image shows hand and elbow direction trajectories before align-
ment and the right is after. We see how the hand trajectories cluster together.
The p aligned trajectories are represented as X = [ST

1 . . .ST
k . . .ST

p ]T . Principal
component analysis is applied on X yielding latent vectors Ψ = [ψ1ψ2 . . . ψn].
Only the first q components are used where q is chosen such that the components
cover a large percentage of the data Ψq = [ψ1ψ2 . . . ψq]. Any point in eigenspace
can then be converted to the nearest plausible data sample using the following
equation

S = S + Ψqb (1)

where S = 1
p

∑p
k=1 Sk and b is an eigenpoint.

The latent coordinates b represent the linear combination of deformations
from the average paths taken by the joints. An example of that can be seen in
Fig. 2. In this example, the thick lines represent the mean path and the others
represent ±3 standard deviations in the direction of each eigenvector which are
called modes. The first mode (left) represents the twisting of the hand’s path
around the elbow and shoulder. The second mode (middle) shows the coordi-
nation of angles when moving the hand and elbow together. The third mode
(right) represent the curvatures of the path taken by the hand and shoulder.
The reason for using a linear subspace method like PCA in this paper is because
the number of trajectories per movement is (for now) only two and because the
trajectories are highly covariant since they change in direct response to a low
dimensional constraint space. The advantage of this representation is that the
dimension reduction depends only on the dimension of the constraint space and
not on the dimension of the trajectory which is much higher. As a result we do
not require many training samples to extract the deformation modes but only
enough samples to cover the constraint space.

4.2 Extrinsic Features Using DCS

PCA performs a linear transform (i.e. rotation and projection in (1)) which maps
the trajectory space into the eigenspace. The mapping between constraint space
and eigenspace is generally nonlinear. To learn this mapping we use a special type
of self organizing maps called Dynamic Cell Structure which is a hybrid between
radial basis networks and topologically preserving maps [9]. DCS networks have
many advantages: They have a simple structure which makes it easy to interpret
results, they adapt efficiently to training data and they can cope with changing
distributions. They consist of neurons that are connected to each other locally
by a graph distributed over the input space. These neurons also have radial
basis functions which are Gaussian functions used to interpolate between these
neighbors. The DCS network adapts to the nonlinear distribution by growing
dynamically to fit the samples until some error measure is minimized. When a
DCS network is trained, the output b(x) which is a point in eigenspace can be
computed by summing the activations of the best matching neuron (i.e. closest)
to the input vector x representing a point in constraint space and the local
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Fig. 3. Example of aligning a training set of trajectories represented as direction vectors

tracing curves on a unit sphere

neighbors to which it is connected by an edge which is defined by the function
Ap(x). The output is defined as

b(x) = fnrbf
P (x) =

∑
i∈Ap(x) bih(‖ x − ci ‖ /σi)∑
j∈Ap(x) h(‖ x − cj ‖ /σj)

, (2)

where ci is the receptive center of the neuron i, bi is represents a point in
eigenspace which is the output of neuron i, h is the gaussian kernel and σi is the
width of the kernel at neuron i.

The combination of DCS to learn nonlinear mapping and PCA to reduce
dimension enables us to reconstruct trajectories from b(x) using (1) which are
then fitted to the constraint space by using scale and rotation transformations.
For example, a constructed trajectory is fitted to a start and end position.

5 Experiments

In order to record movements, a marker-based stereo tracker was developed
in which two cameras track the 3D position of three markers placed at the
shoulder, elbow and hand at a rate of 8 frames per second. This was used to
record trajectory samples. Two experiments were conducted to show two learning
cases: moving between two positions and avoiding an obstacle.

The first experiment demonstrates that our learning model reconstructs the
nonlinear trajectories in the space of start-end positions. For evaluation, we
have to measure how close the model-generated trajectories are to the human’s.
For this purpose it is useful to compare the distance between the model and
the human to some worst case trajectory. The mean trajectory is chosen for
comparison because it corresponds to the zero vector in eigenspace b = 0 in (1)
and represents a path with no deformations. The zero vector of b is what the
DCS network outputs when it has not learned anything. Next, we describe the
experiment and the validation using the mean.

A set of 100 measurements were made for an arm movement consisting of three
joints. The movements had the same start position but different end positions
as shown in Fig. 1.
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Fig. 4. Distribution of eigenvalues (bright regions represent maxima) in the angular

space of the end position of the hand

Fig. 4 shows a contour plot of each eigencoordinate corresponding to the
modes in Fig. 2 distributed over the input space which in this figure is the orien-
tation angles of the hand. We see that the first three eigenvalues have a smooth
distribution with a single global maximum. The first component explained 72%
of the training samples, the second 11% and the third 3%. All subsequent com-
ponents are noise due to measuring errors. Each distribution is unimodal and
nonlinear. The points represent the samples. If more samples are added to cover
the space, distributions will become more crisp but will not change significantly
because the deformation modes are trained with a representative training set.

The performance of the DCS network was first tested by a k-fold cross valida-
tion on randomized 100 samples. This was repeated for k = 10 runs. In each run
the DCS network was trained and the number of neurons varied between 6 to 11.
In 80% of the cases the DCS-trajectory was closer to the sample trajectory than
to the mean trajectory. Fig. 6 shows an example where the DCS trajectory was
better than the mean. The average distance between the DCS-trajectory and the
data sample was 3.9◦ and the standard deviation was 2.1◦. The average distance
between the mean trajectory and the data samples was 7.9◦ and the standard
deviation was 3.5◦. This shows that the DCS network was able to generalize well
using only a small sample size (about 100).

We can compare with Banarer [8] who fixed the DCS network with an upper
bound of 15 neurons to learn a single gesture and not many as in our experiment.
He used simulated data of 70 samples with a random noise of up to 5◦ and the mean
error was 4.3◦ compared to our result of 3.9◦ on real data. The measurement error
of the tracker is estimated to be 4.6◦ standard deviation which accounts for the
similar mean errors. This shows that our model scales well with variation.

Finally, we demonstrate the algorithm for obstacle avoidance. In this case 100
measurements were taken for the arm movement with different obstacle positions
as shown in fig 7. The black lines show the 3D trajectory of the arm avoiding
the obstacle which has a variable position determined by the distance B. We see
how the hand backs away from the obstacle and the elbow goes down and then
upward to guide the hand to its target. A is the Euclidian distance between the
start and end positions of the hand. The grey lines represent a free path without
obstacles. In this case we need to only take the first eigenvector from PCA to
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Fig. 5. Alignment of two trajectories by

scale and rotation. The curves are traced

by a direction vector on a unit sphere.

Fig. 6. DCS trajectory and mean

compared to a data sample (in 3D

space). The DCS trajectory is closer

to the data than the mean.

Fig. 7. Trajectory for obstacle avoidance

in 3D space

Fig. 8. Variation of arm trajectory

with respect to the obstacle

capture the variation of trajectories due to obstacle position. This deformation
mode is shown in Fig. 8 We define the relative position of the obstacle to the
movement as simply p = B

A . The DCS network learns the mapping between
p and the eigenvalue with only 5 neurons. The learned movement can thus be
used to avoid any obstacle between the start and end positions regardless of
orientation or movement scale. This demonstrates how relatively easy it is to
learn new specialized movements that are adaptive to contraints.

6 Conclusion

We proposed a learning model for generation of realistic articulated motion. The
model characterizes deformation modes that vary according to constraint space.
A combination of DCS network to learn the nonlinear mapping and PCA to
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reduce dimensionality enables us to find a representation that can adapt to con-
straint space with a few samples. This trajectory based method is more suited
for movement generation than pose based methods which are concerned with
defining priors for good fitting with image data such as tracking. The proposed
method models variation of movement with respect to constraints in a more
clear way than the previously proposed methods. In the case of [8] this is true
because Banarer learns single poses in the DCS network but in our case we learn
complete trajectories in the DCS netwrok. The potential uses of our method is
in developing humanoid robots that react more intelligently to there environ-
ment. Two small applications towards that goal were experimentally validated.
In the future we will improve the algorithm to adapt to new cases with more
complicated constraints.
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Abstract. In this paper we present a method for mapping 3D unknown
environments from stereo images. It is based on a dense disparity image
obtained by a process of window correlation. To each image in the se-
quence a geometrical rectification process is applied, which is essential
to remove the conical perspective of the images obtained with a photo-
graphic camera. This process corrects the errors in coordinates x and y to
obtain a better matching for the map information. The mapping method
is an application of the geometrical rectification and the 3D reconstruc-
tion, whose main purpose is to obtain a realistic appearance of the scene.

Keywords: Disparity images, Geometrical rectification, 3D mapping.

1 Introduction

Nowadays, a central aspect in artificial intelligence research is the perception of
the environment by artificial systems. It is a critical element in robot navigation
tasks like map building (mapping) and self-location. Specifically, stereoscopic
vision opens new paths that in the future will allow these systems to capture the
three-dimensional structure of their environment without any physical contact.
Moreover, range sensors can also acquire very detailed models [1], but these types
of sensors are more expensive and they cannot provide information of both range
and appearance, which is useful for navigation algorithms and texture mapping.
For these reasons we will focus on stereo vision.

Several authors use stereo vision and disparity images to solve the 3D mapping
problem. For instance, a first solution to three-dimensional reconstruction with
stereo technology was developed at Carnegie Mellon University. The possibility of
composing several three-dimensional views from the camera transforms is set out,
to build the so-called “3D evidence grid” [2]. There are other approaches which
infer 3D grids from stereo vision, due to the fact that appearance information
is not provided by range finders. Hence, they add an additional camera to their
mobile robots [3,4]. Moreover, a module of 3D recognition could be added to
identify some objects. This technique is not exclusive of robotics, but it could
be used in other applications such as automatic machine guidance or also for
detection and estimation of vehicle movement [5].

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 213–222, 2006.
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Stereo vision can improve the perception of scenes and world modelling, so
there are some methods which work with disparity images due to their advan-
tages. The problem is that these algorithms cannot be applied in a widespread
manner with all types of structures; because the images (or the objects) ob-
tained from a camera have no real size, since they are deformed by the conical
perspective effect.

We present an original mapping method which reconstructs the environment
from a sequence of geometrically rectified images. For each pair of stereo images
in the sequence a dense disparity map is calculated (the map contains depth
information for every pixel in the image) and next it is geometrically rectified
in order to show the same aspect as the real scene. This process is essential to
remove the conical perspective of the images obtained with a binocular camera.
Other simpler geometrical rectifications have already been used in other fields,
like in [6] to rectify roads and to obtain their real appearance.

2 Proposed Model

2.1 Process Scheme

Stereo vision techniques are based on the possibility of extracting 3D informa-
tion from a scene using two or more images taken from different view points.
We will focus on the basic case of two images of a scene, obtained with a stereo
camera with parallel objectives. In order to gather this 3D information, a func-
tion that computes the correspondence between the pixels from the left camera
(reference image) and those from the right camera must be defined. The posi-
tional difference between each of these pairs of pixels is a value called disparity.
This information can be displayed as an image, and is known as depth or dispar-
ity image. Depending on the camera geometry, the distance can be transformed
to coordinates in an Euclidean space, where the centre is placed in the camera
position. [7,8,9]

In this work a 3D reconstruction method and a scene mapping algorithm are
presented. For the 3D reconstruction several steps are followed: First, the dispar-
ity map is calculated starting from the images captured by the stereo camera.
Then, a geometrical rectification process is applied in order to remove the effect
of the conical perspective (see section 2.2). And finally, the 3D reconstruction is
obtained (see section 2.3). The mapping algorithm is an application of this re-
construction method. It is based on a sequence of stereo images. For each image
of this sequence its disparity map and its geometrical rectification are calculated.
Once their space occupation matrix has been obtained, the mapping process is
applied (see section 2.4).

Camera calibration and disparity algorithm are not the purpose of this
paper. The disparity image is computed using multi-resolution and energy func-
tion [10,11]. Moreover, it is important to note that the quality of the three-
dimensional reconstruction depends on the quality of the disparity map. Errors
in the disparity map can cause mistaken shapes and incorrect depth values, so
errors will be transferred to the reconstruction.
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2.2 Geometrical Rectification

In order to correct the perspective in the images a rectification is needed. An
image taken with a camera is in conical perspective, such that all parallel lines
converge at a point. As an example, figure 1(a) shows an image of a corridor, in
which, due to the perspective effect induced by the acquisition conditions, the
size of all the elements changes according to their distance from the camera. In
this example, a pixel in the lower part of the image represents a small volume of
the scene (it represents a part of the scene in the foreground); while a pixel in
the centre of the same image represents a larger volume (because the part of the
scene represented by the pixel is in the background). So, to correctly perform
the 3D reconstruction the perspective must be rectified, thus the obtained result
shows the same aspect as the real scene. [12,13]

Figure 1 shows the scheme for the rectification process: figure 1(b) shows a
non-rectified scene in 3D, in figure 1(c) the scene is seen from above (with only
x and z coordinates shown), and figure 1(d) shows the result which are desired
after rectification.

Fig. 1. Rectification scheme

After the analysis of variables implied in geometrical rectification, it can be
concluded that the process of rectification depends on the depth and difference
between x, y and centre coordinates. As a result, the so called Linear Rectifica-
tion is obtained. The coordinates are linearly corrected, so that the rectification
directly depends on grey level (that is, z coordinate) and position (x and y co-
ordinates). In an ideal situation, the Linear Rectification would rectify the scene
to obtain the result given in figure 1(d), but with real images some problems
arise. The rectification equation is:⎧⎪⎪⎨⎪⎪⎩

x′ := x + f
(

D(x,y)
Dmax

)
× α × w

y′ := y + f
(

D(x,y)
Dmax

)
× α × w

z′ := z

(1)

Where:

– f is a depth modifier. In the original equation it is a linear function but
other functions can also be applied (explained below).
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– D(x, y) contains the grey level or the depth corresponding to the pixel of
coordinates x and y.

– Dmax is the maximum value of depth.
– α is a value in the range [0, 1] which measures the filter proportion.

– w :=
{−x . . . if x < width/2

width − x . . . if x ≥ width/2

– h :=
{−y . . . if y < height/2

height − y . . . if y ≥ height/2

It is important to note that in the previous equation the new coordinates of a
pixel are obtained from the former value of the coordinates, the depth value and
the x, y position of the pixel. Variables w and h contain the highest displacement
that can be performed to place one pixel at the borders of the scene, that is, if
the pixel is placed at the centre, the highest displacement is half the image. The
value of D(x, y)/Dmax is in the range [0, 1], and depends on the depth: it is 0 if
the pixel is in the foreground, and 1 if it is in the background (in this case, if
the pixel is in the centre of the image, the rectification is maximum, so the pixel
is moved to the border of the image).

The most important drawback is the fact that this method does not distin-
guish whether the figure is very close, and therefore, errors occur with some
images, especially if the main object is too far from the camera. In fact, pix-
els corresponding to a distant object are split, leaving a hole whose dimensions
increase as the distance to the object increases. So, important far non-centred
objects can have holes and be dispersed.

In order to minimize these problems, a Logarithmic Rectification is pro-
posed. In this case, a logarithmic function is applied to the depth value, substitut-
ing the function f . The logarithm has the property of reducing the rectification
when the object is close to the camera, and of magnifying the rectification when
the object is far away. So, objects in the background suffer a higher correction
than those in the foreground.

2.3 Discrete Three-Dimensional Reconstruction

The reconstruction is based on a dense disparity image obtained through a
process of window correlation (the correspondence between pixels from both
images is carried out using a window correlation criterion, in order to identify
similar areas in both images). This depth image contains the disparity which is
associated to each pixel in the reference image (left image). Therefore, for every
pixel in the original image, we can find the disparity value in D(x, y). Horizontal
and vertical components for each point are directly obtained from the row and
the column in which the point is located in the image [9,12,13,14]. In this way,
a three-dimensional matrix M3D which represents the space occupation of the
scene can be filled.

To perform a simple three-dimensional reconstruction process four basic steps
are taken: firstly the disparity map (D) is stored in a two-dimensional ma-
trix (M2D) which has the same size as the disparity map (m × n), and then
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some smooth filters can be applied if needed (average and/or median filters).
Next, a geometrical rectification process (see section 2.2) is applied, which takes
the 2D matrix (M2D) and returns a 3D matrix (M3D) containing the result.
In this way, the matrix M3D (which is initialized to zero) is filled, making
M3D(x′, y′, D(x, y)) = 1 where x = 0, 1, ..., m − 1 and y = 0, 1, ..., n − 1, which
will indicate the space occupation of the final result. Starting from each of the
M3D depth values, their equivalence in real units (metres) is calculated and,
finally, the result is shown.

1. M2D := ObtainDisparityData(D)
2. M2D := ApplySmoothF ilters(M2D)
3. M3D := ApplyRectification(M2D)
4. Display(ObtainRealUnits(M3D))

The most important drawback is the fact that when the geometrical rectifica-
tion equation (1) is applied, holes are produced in the 3D representation. This
is due to the discreteness of disparity maps. In fact, pixels corresponding to a
distant object are split, leaving a hole whose dimensions increase as the distance
to the object increases. To minimize these problems the geometrical rectification
filters which use a logarithmic function were introduced.

2.4 Mapping Algorithm

In this section a novel mapping algorithm is presented. It demonstrates the
utility of the geometrical rectification and the advantages of its application to
this kind of problem.

In order to do the 3D mapping of the scene, N stereo images I0, I1, ..., IN−1 of
the environment are taken. Each of these images is captured at a fixed distance.
Once a stereo pair (Ii, i = 0, 1, ..., N − 1) is obtained, its corresponding dispar-
ity map Di is calculated and added to the Σ list which stores all the disparity
maps. Next, the algorithm of geometrical rectification (explained in the previous
section) is used in order to compute the rectified matrix M3Di of each disparity
map. For each matrix M3Di its intersection with the previous matrix is calcu-
lated (M3Di−1 ∩M3Di), and its result is added to the main matrix Mmap which
represents the mapping of the scene. A cubic filter F (explained below) is ap-
plied to the whole matrix Mmap, which discretizes the three-dimensional matrix
and transforms it into a grid of rectangular cubes. Lastly, the result (Mmap) is
represented according to the space occupation of this matrix and calculating its
equivalence in real units (metres). All these steps could be summarized as follows:

1. for each Dk ∈ Σ do
(a) M2D := ObtainDisparityData(Dk)
(b) M2D := ApplySmoothF ilters(M2D)
(c) M3D := ApplyRectification(M2D)
(d) Mmap := Mmap ∩ M3D

2. Mmap := ApplyCubicF ilter(Mmap)
3. Display(ObtainRealUnits(Mmap))
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Cubic filter F applies the equation g(x, y, z) := Σ(i,j,k)∈Sf(i, j, k) to each cube
of the matrix, where S represents the set of point coordinates which are located
in the neighbourhood of g(x, y, z), including the point in question. In this way
the space occupation of each cube is in the centre, and each cell contains the set
of readings of that portion of the space. The number of readings is referred to
as “votes”, and represents the probability of space occupation.

Figure 2 shows the scheme for the mapping process: figure 2(a) represents the
first image of the sequence, in figure 2(b) the scene is seen from above (with only
x and z coordinates shown), and figure 2(c) shows the union of this image with
the following image in the sequence; also, the intersection area of both can be
seen.

Fig. 2. Mapping scheme

3 Experiment Results

In this section the experiment results are shown. Figure 3 shows a reconstruction
comparison using a synthetic disparity map (a) which simulates a corridor. It
clearly shows the effect of the geometrical rectification. In figure 3(b) no recti-
fication is applied and in (c) the result of the rectification is shown. As can be
seen in (c), the walls are perfectly rectified, becoming parallel as expected.

To do the mapping experimentation we took a sequence of 25 images of a
corridor with a resolution of 320x240 pixels. Figure 4 shows three images of the
sequence as well as their disparity maps, and the corridor plan is shown below.
The main objective is that the walls, floor and roof appear without slope in
the reconstruction; it is also important, that columns (represented by circles in
the plan) are detected correctly and that there should not be any obstacle in the
corridor.

In figure 5 the results of the corridor mapping are shown; a comparison be-
tween the different types of rectification can be seen. For all of them a cubic
filter size of 3x3x3, and a number of votes of 5 have been used.

In figure 5(a) there is no geometrical rectification, and a wrong result is ob-
tained: the in-between space of the corridor is not clear. In figure 5(b) the Loga-
rithmic Rectification has been applied, but only with a factor of 50%. This result
is better than the previous one, because the walls are limited and the in-between
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Fig. 3. Effect of the geometrical rectification on a corridor

Fig. 4. Sequence of images for the mapping

area of the corridor can be seen. In (c) the same type of rectification has been
used, but increasing the factor to 100%. The result is similar to the previous
one, although the corridor appears clearer. In figures 5(d) and (e) the Linear
Rectification (without applying the logarithm function to the depth value) has
been made. These results show a better definition of the corridor and a clearer
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Fig. 5. Mapping results of the corridor

Fig. 6. Lateral views of the corridor

in-between space, moreover, the columns can be distinguished on the right hand
side (they are marked with an arrow). Figure 6 shows a pair of lateral views of
the result 5(e).

To conduct the experiments, a Pentium IV 3,20GHz with 2GB of RAM and a
512MB graphic card has been used. The reconstruction of the map has been made
using a 320x240x256 voxels matrix and disparity maps with a size of 320x240
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pixels. Moreover, it is important to note that only the pixels which have some
value in the disparity map are processed. In other words, the black pixels whose
distance is considered infinite will not be processed. To process the sequence of
25 images (each image has a level of 70% of processed data) the algorithm takes
approximately 8 seconds. This time depends on the precision of the final 3D
reconstruction. So, the process time of an individual reconstruction is less than
0.3 seconds.

4 Conclusions and Future Work

This paper has presented a novel mapping algorithm which works with disparity
maps in order to reconstruct unknown environments. It is an application based
on a previous 3D reconstruction work. This method uses geometrical rectification
to eliminate the effect of conical perspective, with the intention of obtaining a
real aspect in the final result. The cubic filter is very useful to solve odometry
problems; if it is not applied the number of coincidences would be too small.
Nevertheless, the final quality of the reconstructed image depends on the quality
of the disparity map. In future experiments, better disparity images will improve
the final result.

These methods have several advantages. Firstly, due to the fact that in the
reconstructed scene each position represents the same size, the matching of the
mapping algorithm is improved, and also it would be possible to process the
information in parallel, allowing a homogeneous distribution of the information
among all the image pixels. For instance, as geometrical rectification is applied
to all the pixels in the image, a SIMD massively parallel system could be used.
Moreover, it can take advantage of the parallel processing to carry out more
elaborate operations.

Current work is focused on applying textures to the reconstruction in order to
give a more realistic aspect to the final result. Furthermore, we will try to improve
the geometrical rectification, calculating the point of view and considering the
used camera characteristics [1]. As future work, the obtained results will be
used in an Augmented Reality system and in an autonomous robot system. It
could solve the occlusion problem using the depth information from the disparity
map, and it could take advantage of the scene reconstruction to recognize their
geometry, objects, and so on.
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Abstract. We present a facial deformation system that adapts a generic
facial rig into different face models. The deformation is based on labels
and allows transferring specific facial features between the generic rig and
face models. High quality physics-based animation is achieved by com-
bining different deformation methods with our labeling system, which
adapts muscles and skeletons from a generic rig to individual face mod-
els. We describe how to find the correspondence of the main attributes of
the generic rig, transfer them to different 3D face models and generate a
sophisticated facial rig based on human anatomy. We show how to apply
the same deformation parameters to different face models and obtain
unique expressions. Our goal is to ease the character setup process and
provide digital artists with a tool that allows manipulating models as if
they were using a puppet. We end with different examples that show the
strength of our proposal.

1 Introduction

Facial animation is related to the interaction of muscles and skeletons beneath
the skin. It is the key element to transmit individuality and personality to a
character in films and video games. Therefore, to obtain physically-based ani-
mations, it is crucial to develop systems that simulate the anatomical structure
of the face. Recent advances in facial synthesis show an increased interest in
physics-based approaches [23] [15] [22]. Today, to animate a character, an expe-
rienced CG artist has to model each facial rig by hand, making it impossible to
re-use the same rig in different facial models. The task is further complicated
when a minor artistic change on the facial topology leads to the restarting of the
rigging process from scratch. This creates a bottleneck in any CG production
and leads to the research of automated methods to accelerate the process [14].

Modeling and animation of deformable objects have been applied to different
fields [1] [3]. Noh et al. [17] proposed several methods for transferring anima-
tions between different face models. The surface correspondence is obtained by
specifying the corresponding point pairs on the models. Pighin et al. [7] pre-
sented a method to interactively mark corresponding facial features in several
photographs of an individual, to deform a generic face model using radial ba-
sis function. Sederberg and Parry [20] first introduced Free-Form Deformation
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(FFD) in 1986; the method does not require setting the corresponding features
on the geometries. Other interesting approaches for high level geometric control
and deformation over 3D model were introduced [5] [12] [21].

We propose a deformation method to transfer the inner structure of a generic
rig to individual face models, based on thin-plate splines [2] and the use of facial
features labels. We tag the generic rig with landmarks on its surface (the skin)
and automatically deform it, together with the muscle and skeleton structure,
to fit different face models. Because all models share the same generic set of
attributes, we don’t need to develop unique scripts for each face. We can transfer
generic rig parameters, enabling re-use of existing animation scripts. We can
build models with underlying anatomical structure, skin, muscle and skeleton,
for human heads or other type of creatures. The models are suitable for real-time
animation based on simulation of facial anatomy.

2 The Generic Rig

Our method builds on a sophisticated 3D face model we call generic rig R (see
figure 4), designed for use within a facial animation production pipeline to accel-
erate the rigging process. The model is formed by different layers of abstraction:
skin surface RS , muscles surfaces RM , skeleton joints RB, facial feature land-
marks λ, skinning system and other components for representing the eyes, teeth
and tongue. We can assign different attributes to each of these layers, like: weight,
texture, muscle stress, etc. [10]

The generic rig R has been modeled manually and is a highly deformable
structure of a face model based on physical anatomy. During the modeling
process, we used facial features and regions to guarantee realistic animation
and reduce artifacts.

The surface RS is the external geometry of the character, determining the
skin of the face using polygonal surfaces composed by a set of vertices r and a
topology that connects them.

The generic rig is tagged with landmarks λ, distributed as a set of sparse
anthropometric points. We use these landmarks to define specific facial features
to guarantee correspondence between models. Our rig has 44 landmarks placed
on the surface (see figure 4c) [9] [6].

The skeleton RB is a group of bones positioned under the skin. It defines
the pose of the head and controls lower level surface deformation.

The muscles RM are a group of volumes, surfaces or curves located under
the skin, which control higher level surface deformation. To build our muscle
structure, we selected eleven key muscles (see figure 4d) responsible for facial
expressions [8], out of the twenty-six that move the face.

3 Transferring the Generic Rig Structure

We introduce a method to automatically transfer the generic rig structure and
components to individual 3D face models, which can be divided in three main
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steps: first, we deform the generic rig surface to match the topology of the face
model we want to control; then, we adapt the muscles, skeleton and attributes of
the generic rig to the 3D model; finally, we bind the transferred elements to the
model, obtaining an anatomic structure prepared for physically-based animation.

The face model that inherits the generic rig setup is referred as F . It is defined
by a face surface FS , which determines the face geometry and shape, and a
set of landmarks φ placed on FS. Like RS from the generic rig, FS is defined
by a set of vertices f and a topology that connects them. The landmarks are
positioned manually by the artist, to guarantee correspondence with the generic
rig landmarks (see section 2). Even though the generic rig has 44 landmarks,
it is not necessary to use them all to transfer the rig (see results in figure 5).
Starting with a landmarked face model F , the rest of the structure transfer is
automated as it will be detailed next.

3.1 Geometric Transformations

To deform the rig R into F we use linear and non-linear global transformations
and local deformation. Linear transformations in combination with non-linear
transformations, give us enough degrees of freedom (DOF) to ensure the correct
match between the geometries.

Equation 1 describes the generic form of the transformations:

x′ =

⎛⎝x′

y′

z′

⎞⎠ =

⎛⎝∑n
i=1 wxiU(x,pi) + ax0 + axx x + axy y + axz z∑n
i=1 wyiU(x,pi) + ay0 + ayx x + ayy y + ayz z∑n
i=1 wziU(x,pi) + az0 + azx x + azy y + azz z

⎞⎠ (1)

Following Bookstein [2] [18], we use the kernel function U(x,pi) = ‖x − pi‖
that minimizes the bending energy of the deformation. This transformation is
called Thin Plate Spline Warping (TPS) and it is a special case of Radial Basis
Function Warping [4].

Solving the linear system of equations 2, we obtain w and a coefficients,
using p and q correspondence, where p are surface origin coordinates and q are
surface target coordinates. The TPS wrapping ensures the exact point matching
and interpolates the deformation of other points smoothly.⎛⎜⎜⎜⎜⎜⎝
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3.2 Surface Deformation

Given p and q , we define the operation:

x′ = TPSq
p(x) (3)
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that minimizes the energy of the surface deformation. We use the following
notation, q = p|S , where qi is the position of the correspondent point to pi in
the geometry S.

Figure 1a shows the deformation of a surface uniformly sampled into another
surface, using a reduced set of sparse landmarks. Only these landmarks will
result on an exact deformation, while the rest of the surface points lay outside
the target surface. Figure 2 shows the deformation of the generic rig into a face
model using 10 anthropometric landmarks.

a)

S1S2q

p

TPSq
p(S1) b)

x

x|S2

S2

Fig. 1. a) TPS wrap of a generic surface based on reduced set of sparse landmarks
(S1: original surface, S2: target surface, p: origin landmarks, q: target landmarks);
b) Sticking of the original surface to the target surface after applying the TPS (see
section 3.3)

Fig. 2. Human Face wraping process using 10 landmarks

3.3 Obtaining a Dense Correspondence Between Surfaces

To obtain an exact deformation of every surface point, where the origin sur-
face matches the target surface, we apply a local deformation to every point of
the origin surface. Then, we project every point of the wrapped surface to the
closest point of the target surface. As a result, we get the correspondent point
in the target surface for every vertex of the origin surface. This is called dense
correspondence [13] between surfaces.

We define in our pipeline an operation called Stick (STK) that computes the
dense correspondence of points r, between the generic rig R and the face model F :
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r|F = STKFS

(
TPSφ

λ (r)
)

(4)

This operation can present undesirable folds in areas with high curvature or if
the distance between origin and target points is large. Lorenz and Hilger worked
on solutions to avoid these folds [16] [11]. Fortunately, we didn’t came across
this problem in the many tests we performed on different face models: human
and cartoon.

3.4 Deforming Layer Structures

Based on the dense correspondence between RS and FS , we can deform the
generic rig muscles RM and skeleton RB. This correspondence avoids placing
additional landmarks on the muscles or on the skeleton structure. Figure 3 shows
that the wrap based on dense correspondence keeps the relationship between the
structure and the surfaces better than the wrap based on sparse landmarks.

RS

FS

RM

λ

φ

r

r|F

Warping structures with sparse correspondences Warping structures with dense correspondences

TPSφ
λ(RM ) TPSr|F

r (RM )

a) b)

Fig. 3. Wrap based on a) landmarks; b) dense correspondence

3.5 Attribute Transfer

The generic rig R has a set of attributes on the surface nodes r defined as scalar
or vectorial fields. We have to transfer each of these attributes to surface FS .
For each surface vertex fi, we find its closest point on RS |F , get the interpolated
value and assign it to fi.

Figure 9a shows the transferred weights that influence the movement of the
jaw bone. Figure 9b shows a region labeling transfer. Both figures show the at-
tributes transfer from the generic rig to the cartoon, with different triangulations.

3.6 Skinning

In animation, skinning is the process of binding deformable objects to a skele-
ton [19]. In some software packages it is also known as envelope or birail. After
skinning, the deformable object that makes up the surface is called the charac-
ter’s skin, and the deformable objects under the skin, which influence and shape
it, are called the muscles.

The output of the skinning process is a character model setup, with the skele-
ton and muscles controlling the deformations. The positioning of the muscles
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has two goals: build an inner structure that correctly reflects the character’s ap-
pearance and enable the projected facial animations with minimum effort. The
deformations of the character’s skin, produced by the movements of the skeleton
and muscles, allows physically-based animation.

Our skinning method uses the generic rig weight to automatically attach the
previously deformed skeleton and muscles to the face model F .

3.7 Method Overview

Next, we describe the method pipeline:

R ← Generic Rig
F ← Face Model
λ ← Generic Rig Landmarks
φ ← Face Model Landmarks

R′
S ← TPSφ

λ(RS)
r|F ← STKF(R′

S)
FM ← TPSr|F

r (RM )
FB ← TPSr|F

r (RB)
f ← attributeT ransfer(r|F)
F ← skinning(FS, FM , FB)

4 Results and Conclusion

The deformation methods have been implemented in C++ as a plug-in for Maya
7.0 software. Our method speeds up the character setup and animation pipeline,
since we drive all face models by deformation of the same generic rig. This
allows using the facial expressions created in the rig on different models. To
obtain unique deformation in each face, both generic rig’s muscles and skeleton
can be adjusted in the different facial regions.

In contrast with other methods [15] that landmark the skin, muscle and skull,
we only landmark the skin surface because we obtain dense correspondence. This
simplifies and eases the setup of the character. Our results indicate that anthro-
pometric modeling is a good approach to generate physically-based animations.

Our generic rig has 1800 points, 44 landmarks, 4 bones and 11 muscles, and
is based on human anatomy (see figure 4). The human model is a 3D scan of
a human face. It has 1260 points and 10 landmarks (see figure 5). Figure 5b
displays the wireframe mesh. We use 10 landmarks to transfer the rig structure
(see figure 5d). Figure 12 shows the wrapping process.

The cartoon model has 1550 points and 44 landmarks (see figure 6). Figure 6
shows the muscle transfer and figure 9 shows the attribute transfer of the weight
and region label. Based on the weights of figure 9a, figure 10 shows the transfer
of a facial expression. The graphics on figure 8 display the distance between
the muscle and the skin surface points, on the generic rig (solid line) and on
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the face model (dots). Results show that the wrapping works better for human
faces. To explore the limits of our method, figure 7 confirms that the wrapping
and landmarks fitting work robustly in non-human faces with extreme facial
appearance. We use 12 landmarks to transfer the rig structure to a goat (see
figure 7d).

For further automation we will create a set of facial expression templates and
an intuitive GUI running in Maya. Our generic rig will include different type of
muscles. We will add support on our plug-in for NURBS surfaces. We will allow
the models to inherit the animation controls from the generic rig. The purpose
of these animation controls is to reduce: the complexity to obtain facial motion,
the effort required by artist and computation time.

Our final goal is to automate the character setup process within an animation
pipeline, without changing the input model, enabling the artists to manipulate
it as if they were using a puppet. The model can be created by an artist or scan
generated. This will further speed up the creation of animations, because it will
require no additional rigging.
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a) b) c) d)

Fig. 4. Generic Rig a)textured; b)wireframe; c)44 landmarks; d)muscles

a) b) c) d)

Fig. 5. Human a)textured; b)wireframe; c)10 landmarks; d)muscles

a) b) c) d)

Fig. 6. Cartoon a)textured; b)wireframe; c)44 landmarks; d)muscles
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a) b) c) d)

Fig. 7. Animal a)textured; b)wireframe; c)44 landmarks; d)muscles
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Fig. 8. Distance between muscle and skin surfaces on the generic rig and on the model
a) Human model; b) Cartoon model

a) b)

Fig. 9. Attribute transfer from generic rig to cartoon model a) weight of the jaw bone
(red is w = 0, blue is w = 1); b) region labels
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a) b)

Fig. 10. Facial Expression a) Generic Rig and close up; b) Cartoon and close up

a) b) c) d)

Fig. 11. Cartoon Deformation a) TPS and Stick Lines; b) Cartoon after STK; c)
Muscles transfer front view; d) Muscles transfer side view

a) b) c) d)

Fig. 12. Human Face Deformation with 10 landmakrs a) TPS front view; b) TPS side
view; c) close up; d) dense correspondence after STK
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Abstract. Virtual assistants, also called Avatars, are virtual characters
making the communication between the user and the machine more nat-
ural and interactive. In this research we have given avatars the capacity
of having and expressing emotions by means of a computational emo-
tional model based on the cognitive perspective. Once the system knows
the emotional expressiveness that the virtual character will show to the
user, we also have worked in how to express it through facial animation
techniques.

Keywords: Affective computing, appraisal theory of emotion, virtual
characters, facial animation.

1 Introduction

Emotions affect in many aspects of our live and many researchers have been
studying trying to understand the fundamental aspects of them. They affect in
the evaluative judgement, in the memory, in the creative thinking and in the deci-
sion making process, where some authors as Picard [1] estimated the computers
would improve their decisions if they had emotions or emotional mechanisms
which work with the computer rule systems.

The emotions also affect in the communication and social interactions. This
was studied by Mehrabian [2], who shows in his research, the 93% of our message
goes through non-verbal language (55%), mainly based on facial and corporal
motions, and the use of the voice (38%). Furthermore, according to the Reeves
and Nass research [3], people present social behaviour even when they are inter-
acting with computers. However, at the moment, the person-device interaction
is not based on the communication between people. People speak, gesticulate
and feel in our interactions. Hence, the interaction should be totally different to
the present desktop paradigm based on keyboard, mouse and screen. Therefore,
it appears a new research field, which centres its work in the area of conversa-
tional user interfaces, including virtual assistants. These assistants, also called
avatars, are virtual characters making the communication between user and ma-
chine more natural and interactive due to anthropomorphic issues. This will be
achieved by mimicking human communication that is, among others, giving the
avatar emotional components.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 234–243, 2006.
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According to Goleman [4] the emotional intelligence consists in the capacity
of recognizing, expressing and having emotions. If we translate this concept to
the affective computing, not every computer need all of these capacities all the
time [1]. Although the recognition field is very important for the creation of
the emotional computers, in the frame of this research we are going to focus in
the possession and expression. First of all, regarding to the possession field, the
system should detect the emotion that is going to show. This is the reason why
there exist several emotional models which are explained in section 2. In section
3 two if these emotional models are compared in order to find which one fits
better with our approach. Section 4 explains how the selected emotional model
is implemented. At the time to express emotions, Picard exposes that the sentic
modulation, such as the voice intonation, the facial expression and the pose,
is the physical mean to express an emotional state and it is the primary way
of communicating human emotions. Regarding to facial expression, in section
5 we study how emotions should be expressed and in section 6 we explain the
animation techniques used in order to execute each emotion. In order to get a
conversational avatar we use the voice intonation through the integration of a
commercial synthesizer explained in 6. At the end of this paper we explain the
conclusion and future work produced by this work.

2 Emotional Models

There are principally four different perspectives on emotion: the Darwinian, the
Jamesian, the social constructivist, and the cognitive. For the implementation
of emotional computers, the most followed perspective is the fourth one. In this
case, emotions are considered as responses to the meaning of events with regard
to the individual’s goals and motivations. There are a lot of emotional models
which follows this perspective. We tried to find which one is the emotional model
that better fits with an interface depending on the application requirements.

In general, the appraisal theories indicate that the result of an emotional reply
comes from a dynamic assessment process of the needs, beliefs, objectives, wor-
ries or environmental demands. Each emotional model use different appraisals.
Therefore, for choosing an emotional model that fits with the application in
which it is going to be integrated, it is very important to know what kind of
information about the user and system we have; which are the application re-
quirements, how the user will interact and communicate with the system and
what will be the avatar role. In the framework of HIZKING21 project [5] we
made a research about the use of virtual characters in the current interfaces. We
concluded that they can play three different roles:

Interaction element: The avatar acts as the main interaction element between
the user and the application. The user has the illusion of being interacting
with a real person. Both, the avatar and the user, are an active element in
the system. Examples of this kind of role are virtual assistants: e.g. teachers
in e-learning environments or shop assistant in e-commerce.
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Person representation: Another kind of role is the user representation in the
virtual environment. In this case the user is an active element in the system
but he/she does not interact with the avatar. The avatar acts according to
the user orders. These kind of avatars are used in virtual communities or
chats.

Virtual presenter: In another applications the avatar can be a virtual presen-
ter. Its main function is to present information. The user is a passive member
of the audience. These kind of avatars are used in applications for Digital
TV or in information web pages.

For this work we have the following requirements about the system: The
avatar is an emotional interaction element in the interface and we do not have
any previous information about the user, just the ones that are generating during
the interaction and are implicit in the application (such as pass an exam, win a
game or buy a product). At this point we tried to find the emotional model that
better fits for a system with this characteristics.

Inside the cognitive emotional models to study, the OCC [6] and Roseman’s
model [7] were explicitly thought for its integration in computers and they give
us a mechanism based on rules for the emotion cognitive generation. Hence, in
this research we were focussed in the study of these two emotional models.

The OCC model groups the emotions depending on the cognitive conditions
in which they are generated. In this model emotions are reactions to events,
agents or objects. These events, agents or objects are appraised according to an
individual’s goals, standards and attitudes.

In another hand, Roseman specifies a cognitive structure associated with emo-
tions based on the assessment that different people have about the events which
cause emotions. He developed a model, in which six cognitive dimensions deter-
mine whether an emotion arises and which one it is. From the combination of
this dimensions and their values a table can be arranged (Fig.1), from which,
according to Roseman, emotions can be predicted.

Several authors have developed computational systems following these both
emotional models in order to give emotions to avatars. For example, the Rose-
man’s model was implemented by Velasquez in Cathexis [8]. The OCC model has
been extensive implemented. The most outstanding ones have been developed by
Elliot [9] and by Bates [10]. Some other authors, who find some lacks in both mod-
els, decided to use a combination of them, such as FLAME [11] or ParleE [12].

As it is shown, we found in the state of the art more computational emotional
models based on OCC than on Roseman. Many developers of such avatars believe
that this model will be all they ever need to equip their character with emotions.
Bartneck [13] points out what the OCC model is able to do and what is not for
an embodied emotional character. He found a lot of limitations such as the
lack of the surprise emotion or the need of having into account the history of
events, actions and objects. In this work we compared both models in order to
find the one which fits better with a system where we do not have any previous
information about the user and the avatar acts as the main emotional interaction
element (section 3).
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3 Comparison Between OCC and Roseman

We found the following main differences comparing OCC model with Roseman’s
one:
1. Surprise Emotion: Roseman’s model has surprise emotion while the OCC

model do not consider it. However, some authors as Elliot[9] or Buy [12],
who use this model, have included it. For example, Buy mixed both model
in order to achieve surprise. The target of this research is to use one of the
models just as the psychologists defined.

2. Appraisals: In Roseman’s model, events are appraised only according to
goals. This way, attitude and standard related emotions such as like/dislike
or anger are not defined in a reasonable way [12]. This fact, which at the
beginning can seem a Roseman’s model limitation, can become in some cases
positive depending on the application requirements. In this case we do not
have any previous information about the user and we do not know the atti-
tudes or standards so the use of Roseman’s model could be more appropiate.

3. Historical: Bartneck studied the viability of the OCC model for being inte-
grated in a Virtual Character. He concludes that the history function is not
described in the original OCC model, but it plays an important role for the
believability of the character. The history function will help to calculate the
likelihood, realization and effort of events. In Roseman’s model one of the di-
mensions involved is the situational and motivational state. Moreover, the
event outcome probability and the potential an individual has to control the
situation are used to further sort out emotions in this category. This forces
having a historic function in order to assess an event.

4. Number of Emotions: Initially the OCC model generates 22 different
emotions. Bartneck considers that, if a character uses the emotional model
only changing its facial expressions then its emotion categories should be
limited to the ones it can express. This is a problem in two models because
both have more emotions that the avatar can facially reproduce. Some au-
thors as Elliot implemented all 22 emotional categories in his agents, but this
was because he developed a character-character interaction. Others modified
the emotional models, but this is not the focus of this work. For solving this
problem we assign each emotion to its facial expression following the concept
explain in section 5.

5. Simplicity: Bartneck concluded that the OCC model contains a sufficient
level of complexity and detail to cover most situations an emotional inter-
face character might have to deal with. However, Roseman’s model received
positive feedback from the AI society because of its simple structure that
can be translated quickly into rules to define which appraisal triggers which
emotion.

Mainly due to the lack of surprise emotion and the history function in the OCC
model, and because of the Roseman’s model generate emotions just based on the
assessment of an event, which is the only information that we have in the system,
we decided to implement the Roseman’s model (Fig.1) for the application with
the requirements explained above and that is going to be presented in section 4.
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4 A Computational Roseman’s Model

We implement Roseman’s model by means of a rule-based system based on the
table shown in Fig.1. In this table are presented the six cognitive dimensions
which determine whether an emotion arises and which one it is; 1)if the event is
self-caused, other-caused or circumstance caused, 2)if the event is unexpected,
3)if the event is a motive consistent or motive inconsistent, 4) if the person can
control of the situation (in case the event is motive inconsistent), 5) if the event
is certain or uncertain and 6) if the event is noticed as negative because it blocks
a goal or because it is negative in its nature.

Fig. 1. Roseman’s model [7]

The implemented model has been integrated in a prototype with the required
requirements in order to prove it in a real application. This application consists
in a quiz-game in which the avatar gives to the user emotional feedback related
with its results. The interface of the game (Fig.2) is composed by an emotional
avatar, which expresses the emotions given the Roseman’s model, by a clock,
which controls the time, and by a questions zone, which are taken from a XML
file. When the quiz-game begins the emotional module starts to assess the event
following the Roseman’s appraisals described above.

The first appraisal is the agency, this means whereas the event is self-
caused, other-caused or circumstance caused. An event is circumstance-caused
whether the user has been started and the system gets the first user reply. Then,
the first thing to do is to ascertain if the answer is correct.

If it is correct, the system checks the second appraisal of Roseman’s model;
whether this is unexpected or not. For achieving this information we use the
relative frequency (fs = ns ÷n) which is a number that describes the proportion
of successes happening in a given play. If the system gets an unexpected reply,
the avatar will show the SURPRISE emotion.

If this is an expected response, the third appraisal to treat is whether it
is motive-consistent or not. An event is motive-consistent whereas it helps to
achieve one of the subject’s goals and it is motive-inconsistent if it threatens
it. Anyway, the main goal here is winning the game. As we are evaluating a
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correct answer, the user will be in a motive-consistent. Inside the set of emotions
generated by motive-consistent event we get JOY if the event is motivated by
the desire to obtain a reward (the player is wining) or RELIEF if the desire to
avoid punishment. If the answer is not correct, the event is motive-inconsistent.
It follows the same sequence rules than above. If it is unexpected, then we get
SURPRISE. If not, the system checks whether it is appetitive or not.

Fig. 2. Quiz-game interface

In the case of a failed reply the emotion is also affected by the forth ap-
praisal, the user potential to control the situation. For guessing it (if he/she
can still win) we use the Eq. 1. For achieving this equation we start with the
binomial distribution function (P (X = k) = (N

k )P k
ok(1 − Pok)N−k) which gives

us the discrete probability distribution of obtaining exactly k successes out of
N trials, taking into account that the probability of getting right one question
is Pok. Knowing that the user goal is to answer k correct questions for winning
the game and he/she answered n questions, we need to calculate the winning
probability at each point of the game, depending on the x previous correct an-
swers. We follow the Eq. 1. If the user can control the situation and the event
is appetitive, then we get the FRUSTRATION emotion. If he/she can not con-
trol the situation, the avatar will show the SADNESS emotion. In the case that
the event is aversive we get the DISTRESS emotion if he/she has not potential
control and again FRUSTRATION if he/she has it.

N−n∑
i=k−x

(N−n
i )P i

ok(1 − Pok)N−n−i (1)

All of this occurs when the event is certain (the player has already answered
the question). Whereas the event is certain or not, is the fifth Roseman’s
appraisal. For assessing this appraisal, the system calculates the time that the
player has to answer by means of a clock the player can visualize in the quiz-
game interface (Fig.2). While the user is not answering, the system gets an
uncertain event. In this case, the computational emotional model looks at the
success probability which is also calculated through the relative frequency. If
the user has a high probability of getting right then the system gives us the
HOPE emotion. If not, then the control potencial is achieving again through
the equation 1. If the user could not control the situation, then the avatar will
show the FEAR emotion, if not, we will get FRUSTRATION.
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The first Roseman’s appraisal that we assessed is the agency of an event. At
this point we got the events caused by the circumstances but Roseman con-
templates two more kinds of event-causes, the other-caused events and the self-
caused. The emotions generated by the assessments of this kind of events will
appear when the system know if the player wins or not. The first ones will show
the avatar feeling about the user game and the other ones will be the avatar pre-
diction about the user feeling. The rules followed for obtaining this emotions are
the ones related with the appetitive and control potential appraisals. Then we
will get the LIKING, DISLIKE and ANGER emotions for other-caused events
and PRIDE, GUILT and REGRET for self-caused events.

The last appraisal, the kind of problem, describes whether an event is
noticed as negative because it blocks a goal or because it is negative in its
nature. In this kind of application we always get the first kind of problem.

5 The Expression of Emotions

Several researches have been centred in defining how the human express the
emotions he/she is experimenting. Darwin was one of the pioneers in studying
it. His studies made an emotional theory which have followed researchers as
Ekman [14]. The Ekman’s theory is maybe the most successful and most followed
for representing facial expressions. In 1978 he developed a system for coding
the facial actions called FACS (The Facial Action Coding System). FACS is a
comprehensive, anatomically based system for measuring all visually discernible
facial movement. FACS describes all visually distinguishable facial activity on
the basis of 44 unique action units (AUs), as well as several categories of head
and eye positions and movements.

In our work we transfer these studies to the emotional dramatization of the
avatars. The animation techniques used for performing the facial expressions are
explained in chapter 6. For the animation models required we use the 14 AUs
(Fig.3) which describe the facial activity in each emotion.

The first problem we found for using the Ekman work is that he defined only
six basic emotions and we get 17 from the Roseman model. The main reason of

Fig. 3. Relation between Ekman’s emotions, AUs and Roseman’s emotions
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using this six basic emotions is that Ekman and his colleagues gathered evidence
of the universality of this six facial expressions of emotion and they can be
combined to obtain other expressions. One of our goals [15] is that the avatar
must be multilingual so it should not express emotions dependents on the culture.
Kshirsagar in [16] grouped OCC and Ekmans emotions within 6 expressions to
represent the emotional states and to reduce the computational complexity. He
also makes this categorization using the basic expressions as a layer between
visible facial expressions and invisible mood. Following this research, we make
the same relations with the Roseman’s emotions shown in Fig.3.

6 Facial Animation

Facial expressions are obtained through the animation of the head, lips, eyes,
pupils, eyebrows and eyelids. These animations are easily mapped for humanoids.
Some animations are generated making individual deformations or translations
over the object in a determined trajectory. This technique is used for the pupils or
the global head pose. Some other animations, like lip motion, are achieved using
the morphing techniques developed by Alexa [17]. Let us briefly summarize the
morphing technique used: first, we establish an appropriate set of basic objects
(Bi in Fig.4 and Eq. 2), in such a way that all face expressions necessary to
produce the animation can be obtained from combinations of these basic objects.
We use a set of basic objects made by the the 14 Ekman’s AUs defined in Fig.3
and another one called default face which shows the neutral face of the avatar.

V (i) =
n−1∑
j=1

aiBi = (
n−1∑
j=1

aiBij) (2)

The animations are represented by one geometric base and a set of key frames
(defined by a vector of weights). Each value of this vector corresponds to the
interpolated value (ai in the facial animation engine module shown in Fig.4 and
Eq. 2). The sequences of animations are set defining the operations in eq. 2 with
the required input values. The facial animation engine module in Fig.4 illustrates
this process.

The architecture works as follows: First, Roseman’s model receives the ap-
plication goal (in this case it recibes the percentage of the successes that the
player should get right in order to win the game). When the interaction starts,
Roseman’s model is receiving each user input (in this case, it recibes the reply
to each question). Following the rules described in section 4, the output of this
module is the emotion that the avatar should express. In this point, the sys-
tem asks if the interaction should be verbal or non-verbal. If the interaction is
non-verbal, then the emotion tag goes directly to the animation engine. For a
verbal interaction we have a short database of predefined markup text for some
emotions. The markup text is transferring to the pre-process module, which in-
terprets the text and extracts the emotions, gestures and the precise moment
when they have to be reproduced. This information is transferred to the graphic
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Fig. 4. System Architecture

platform for controlling facial expressions. The text to vocalize, the emotions
and events related to them are also transferred to the Text to Phoneme module.
The Text to Phoneme module calculates the chain of phonemes necessary to
vocalize the message contained in the text with the indicated emotion, assign-
ing to each phoneme its prosodic characteristics, mainly its duration and pitch.
These prosodic characteristics are transferred to the graphic platform. In the
graphic platform, with these prosodic data, each phoneme will be associated to
its corresponding viseme (visual representation of the phoneme) by means of
morphing techniques. The vocalized facial animation is based on the parameters
coming from the Text to Phoneme module and a set of internal behavior rules
(associated with emotions).

7 Conclusions and Future Work

In this research we worked in giving avatars the capacity of having and express-
ing emotions. Concretely, we implemented a computational emotional model
based on the cognitive perspective for an application that has an avatar as the
main emotional interaction element (such as, a virtual teacher or virtual shop
assistant), and it does not have any information about user’s preferences or stan-
dards. Most authors found and mentioned in this paper use the OCC model for
having a computational emotional model. However, after a comparison of both
models, we conclude that Roseman’s model fits better for an application with
the above mentioned requirements, while maybe the OCC model would fit better
when the avatar is interacting with another avatar and a user model is available.

In this work, the avatar produces an emotional expression through facial an-
imation engine based on morphing techniques. This kind of technique fits well
with the Ekman AUs, which defined how an emotion should be expressed.

Although the system is able to reproduce emotional verbal communication,
text reproduced is always predefined. As future work we plan to extend this
module in order to have a more intelligent verbal communication. Addition-
ally, we will work in the avatar personality and emotion intensities because the
personality of each person influences in the way of assessing the events that occur
in our environment.
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Abstract. This paper presents a new method to simulate wrinkles on individual 
face model, applying convolution surface to face modeling. A generic face 
mesh is deformed and the texture image is computed using image-based 
modeling technique. The deformed mesh is then convolved with a kernel 
function to generate a convolution surface, and wrinkles are generated by 
modulating the surface with a designed profile function. The pre-computed 
texture is mapped onto the convolution surface to enhance the realism. 
Experimental results show that our method can generate wrinkles with different 
patterns by regulating some parameters of the profile function. 

1   Introduction 

One of the most aspiring goals in computer animation is the realistic animation of the 
human face. Human face modeling and animation is a strenuous task because of the 
physical structure of the face and the dynamics involving the psychological and 
behavioral aspects. Two classes of models have been developed, which are geometric 
models and physically based models, according to the way of simulating the behave-
iors of facial components. 

Facial aging is one of the natural phenomena which will happen in a person’s face. 
Modeling of skin aging has wide applications in virtual reality, entertainment, medical 
surgery and criminal objects detection. However, simulating the aging process is quite 
cumbersome and remains a lot to be desired. The geometric methods model wrinkles 
by displacing vertices at certain positions where wrinkles appear, but a simple model 
with a relatively small number of vertices can’t accurately model the subtleties of 
facial deformation of wrinkles unless a carefully designed subdivision is 
implemented. On the other hand, the physically based methods simulate wrinkles by 
approximating the biomechanical properties of real skin. The results are realistic, but 
the process is complicated and computational expensive due to the modeling of the 
mass-spring or finite element system.  

Our method takes an alternative by modeling the human face with convolution 
surface. This method deals with facial deformation from a completely different point 
of view. We only need a rough triangular mesh as the skeleton, and instead of 
painstakingly subdividing the mesh, we get a smooth surface by convolving the 
skeleton with a kernel function. The facial deformation is obtained by adjusting the 
width of the kernel and/or adding some profile function, without explicitly computing 
the displacement of each vertex.   
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The paper is organized as follows. Section 2 briefly reviews some of the previous 
work of skin aging. Section 3 presents a simple geometric model which has been 
widely used in individual face modeling. Section 4 describes the way to generate the 
convolution surface model using the previous model as skeleton. Section 5 shows 
how we flexibly model wrinkles based on the newly generated model. Section 6 
shows the results and section 7 concludes. 

2   Related Work 

There are a few works for simulating wrinkles using geometrical models. Volino and 
Thalrnann [8] animate wrinkles on deformable models by modulating the amplitude 
of a given wrinkle pattern on a per triangular basis. Bando et al. [11] propose a simple 
method to dynamically modulate wrinkle amplitudes on the body part. Yu Zhang and 
Terence Sim [14] present a geometric wrinkle model based on facial muscles.  

Physically based models have been studied more widely [6,12,13]. Although these 
methods differ from each other, they almost animate the plastic and visco-elastic 
properties of the skin based on the three-layered structure: skin, muscle and skull.  

Our work is most inspired by Andrei Sherstyuk [2] and differs from the above ones. 
The concept of convolution surface was first proposed by J. Bloomenthal and K. 
Shoemake [5], in which a convolution surface was obtained by convolving a skeleton 
with a three-dimensional, low-pass Gaussian filter kernel. As a powerful and flexible 
tool to model complex objects, convolution surface still faced the problems of limited 
choices of kernel functions and skeleton primitives that can be convolved together 
analytically. Sherstyuk [2] addressed this weakness by introducing a new kernel 
function called Cauchy function and deduced analytical solutions for several useful 
primitives, namely, points, line segments, arcs, triangles and planes. Jin [10] extends 
the work by using line skeletons with polynomial density distributions. Steffen Oeltze 
[9] uses line skeletons to model vasculature and J. Bloomenthal [4] uses the 
combination of points, line segments and triangles as skeletons to make a hand model. 
Up to now, little has been done to model human faces using convolution surface except 
the work in [2], which presents several modeling techniques to model different objects, 
including human faces. Our work is an extension of Sherstyuk [2]. However, we use a 
simpler skeleton and propose the way to generate realistic wrinkles on the surface.  

3   Initial Face Model  

We adopt modified Candide3 model [3] as a generic face mesh. It is to be deformed to 
an individual face and then used as triangular skeletons to render convolution surface. 
The original Candide3 (Figure 1 (a), (b)) does not include the back part of a head. In 
this paper, we manually add some vertices to let it cover the whole head, as shown in 
Figure 1 (c), (d). The modified model contains 122 vertices and 216 triangles. There 
are also other 3D generic face models available in the literature, which consist of 
more vertices and can display more accurate face shape, but we use Candide3 for less 
computational cost. Moreover, it will be demonstrated later that this simple model is 
sufficient as convolution skeleton. 
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(a) profile            (b) front                 (c) profile              (d) back 

Fig 1. (a),(b) Original Candide 3 model. (c),(d) Modified Candide 3 model 

To deform the Candide3 model to a personalized 3D face mesh, we use an image-
based modeling technique [1,15]. The feature points on the model are displaced to 
match those chosen from a front and a profile image of a person, and the positions of 
other points are interpolated using RBF function. The flatten texture is generated by 
projecting the deformed face mesh onto cylinder surface and then blending the frontal 
and profile images [15]. Mapping the texture onto the personalized face mesh 
produces the final facial model. The images and the model are shown in Figure 2.  

             

(a)                                 (b)                               (c)                             (d) 

Fig. 2. (a),(b) Front and profile images. (c) Deformed face mesh. (d) Textured face model. 

Thanks to the simplicity of the face mesh, the whole process takes little compu-
tational time. While the triangular mesh is going to be convolved to produce a 
smoother surface, the texture can be mapped onto the new surface without any 
change.  

4   Modeling with Convolution Surfaces 

In this section we first briefly introduce the concept of convolution surface, and then 
we use the above face mesh as triangular skeletons to render the convolution surface.  

4.1   Basic Concept  

A convolution surface is an isosurface in a scalar field defined by convolving a 
skeleton, which comprises points, line segments, curves, polygons or other geo-
metrical primitives, with a kernel function. Sherstyuk [2] proposed a new kernel 
function called Cauchy function and derived the field functions for several basic 
primitives. This kernel is: 
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where r is the distance from an arbitrary point on the convolution surface to the 
skeleton, and s controls the width of the kernel. The main advantage of this kernel 
over other kernels is that it has analytical solutions for a number of primitives without 
consideration of integration boundary problems. This remarkably reduces the 
complexity of convolution with triangular primitives, which are used in our model. 
Therefore, we convolve a triangle primitive with this kernel function. First, a triangle 
is split along the longest edge into two right-angled triangles (figure 3). Next, the field 
function [2] for the right half is obtained: 
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and Fleft is derived from Fright by replacing x by –x and a2 by a1. Finally, Fleft and Fright 
are added together to satisfy the equation: 
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                   Fig. 3. Integration parameters                      Fig. 4. Triangle modeling primitive 

For an arbitrarily positioned triangle (Figure 4), r is a point on the surface and the 
following parameters are introduced: a point b, the projection onto the longest edge of 
the opposite vertex; vectors u and v that form the local surface coordinate system, 
with b as its origin and u aligned in the direction of the longest edge; h that is the 
distance from b to the apex of the triangle; d=r-b; scalar u=du and v=dv. The 
analytical form of the field function can be found in [2].           

4.2    Convolution Surface of the Face Model 

We use the face mesh derived in section 3 as triangular skeletons (Figure 2(c)), and 
convolve them with the above Cauchy function. The convolved result is shown in 
Figure 5, which is similar to that in [2], but the number of our skeletons is far less 
than theirs, which greatly reduces the rendering time.       

We can see after convolving process the model remains its original shape except 
for some inflation. However, the great change is not in appearance but in the way of 
controlling the appearance. The convolved model allows a number of modeling 
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Fig. 5. Convolution surface of the model                 Fig. 6. Wrinkle area 

techniques [2] to adjust its shape without changing the initial skeletons. The next 
section will describe in detail some of the techniques. 

5   Wrinkle Simulation and Facial Deformation 

The convolution surface of the face model is discretized into numerous triangles for 
implementation, thus it can also be viewed as a subdivided fine mesh. While mode-
ling the shape change, we look it as an entire surface thus we need not explicitly know 
the displacement of each vertex. On the other hand, we can map the texture image 
generated in section 3 onto the new surface, where the convolution surface is viewed 
as a triangle mesh in order to compute texture coordinate for each vertex. The 
following will describe the two steps in detail. 

5.1   Wrinkle Simulation 

We define the wrinkle area where wrinkles are most likely to appear with aging. The 
area covers certain triangle patches on the forehead of the initial mesh, shown in 
Figure 6. We then manipulate these triangles by multiplying a profile function [2] 
with the field function of each triangle.  

Bloomenthal [13] modulated an arc skeleton by a sine wave to produce wrinkles on 
a seanorse’s tail. As to the triangular primitive, a similar profile function can be used 
to model wrinkles, but the variables are more complex. We derive a profile function 
to modulate triangle primitives, which is: 

                         ))/)((sin( 2
2

2
12121 caavauakk +++                             (4) 

where u and v are scalars defined in section 4. c is a positive constant to offset the 
negative value of the sin function, and we choose c=1.5 in our experiment. k1 and k2 
are scale factors used to control the depth and density of wrinkles. a1 and a2 are 
coefficients of a direction vector on the triangle. We choose the coefficients to make 
the vector v’=a1u+ a2v perpendicular to the wrinkle direction. Similar to the definition 
of u and v, we define a scalar: 
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in (4) is for normalization purpose. Therefore, the expression 
in the parenthesis of sin function is just the coordinate of d on the new axis v’ 
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multiplied by a scale, and the sin function which takes the new coordinate as variable 
will produce waves along this axis. 

We suppose the wrinkle lines lie on the horizontal plan, which is a reasonable 
approximation of the direction of natural wrinkles. Then for each triangle in the 
wrinkle area, it is not difficult to compute the values of a1, a2. Let l be the intersection 
line of the triangle plan and the plan y=0. We rotate l 90 degree inside the triangle 
plan to get v’, and the rotation axis is n=u×v. Clearly, a1=v’u and a2=v’v are the 
desired results. Since v’ is just an indication of direction, it does not matter what exact 
values a1 and a2 take as long as they satisfy a desired ratio. Besides, the sin function is 
periodical in the whole definition area, so it does not make difference if l or v’ takes 
the opposite direction. The remained parameters k1 and k2 can be regulated by users to 
simulate wrinkles with different depth and width.  

Note that we can take an alternative to add line primitives to the original triangle 
skeletons as done in [4], but it needs manually defining the precise location of the line 
segments, which is a difficult and cumbersome task. The main advantage of our 
method is we can control the appearance of the model surface implicitly without 
computing exact position of the skeleton.  

5.2   Texture Mapping 

We map the texture onto the convolution surface to enhance the realism of the model. 
This time we look the model as a refined triangular mesh and compute texture 
coordinate of each vertex using the same method in section 3. The mapped results can 
be seen in Figure 8-10. 

6   Experimental Results 

We have implemented our experiments by using Visual C++ and matlab. The 
calculations and rendering were carried out on a Pentium 4, 512M PC. The 
convolution surface of each face model comprises about 10000 triangles. 

Figure 7 shows different wrinkle patterns on the same person. We achieve this by 
regulating parameters k1 and k2 in (3). There should be some constraints on the 
values of k1 and k2, since the area and depth of each convolved triangle is finite. In 
our experiment, k1 ranges from 0.1 to 10 and k2 from 50 to 90. Figure 8 shows the 
textured model of the case in Figure 7 (a). We can see wrinkles on the forehead under 
proper illumination. Figure 9 and Figure 10 show the experimental results with other 
two persons. Note that the dark area on the top of the head is due to poor lighting.   

                          

                (a)k1 =3, k2=70                 (b) k1 =6, k2=70                (c) k1 =1, k2 =50 

Fig. 7. Different wrinkle patterns 
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Fig. 8. Textured model with wrinkles 

           

                           (a)                          (b)                          (c)                         (d) 

Fig. 9. (a) face mesh (b) textured model (c) convolution surface with wrinkles (d) textured 
model with wrinkles 

          
                       (a)                         (b)                           (c)                             (d) 

Fig. 10. (a) face mesh (b) textured model (c) convolution surface with wrinkles (d) textured 
model with wrinkles 

7   Conclusion and Future Work 

This paper has presented a new method to simulate wrinkles on the face model. A 
rough model is convolved with a function to generate a convolution surface, and mod-
ulating the surface with a profile function produces wrinkles. Textures are mapped 
onto the surface to enhance the realism. The original contribution of this paper is a 
new kind of face model which allows implicit and flexible adjustment of its shape.  

Modeling with convolution surface is a potential tool and we have just explored a 
small portion of various modeling techniques. For future work we intend to design 
more profile functions adapted to other parts of the face. Besides, we would like to 
model other facial deformations by regulating the width of the kernel function. Cur-
rently we just keep the width to a fixed value. Finally, we plan to build a convolution 
surface model of a generic face and deform it to an individual face by some 
optimization approaches. 
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Abstract. This paper proposes a novel adaptive classifier combination scheme 
based on the cascade of classifier selection and fusion, called adaptive classifier 
combination scheme (ACCS). In the proposed scheme, system working 
environment is learned and the environmental context is identified. GA is used 
to search most effective classifier systems for each identified environmental 
context. The group of selected classifiers is combined based on GA model for 
reliable fusion. The knowledge of individual context and its associated chromo-
somes representing the optimal classifier combination is stored in the context 
knowledge base. Once the context knowledge is accumulated the system can 
react to dynamic environment in real time. The proposed scheme has been 
tested in area of face recognition using standard FERET database, taking illumi-
nation as an environmental context. Experimental result showed that using 
context awareness in classifier combination provides robustness to varying 
environmental conditions. 

1   Introduction 

We present a classifier combination method based on adaptive cascading of selection 
and fusion of different classifiers using Genetic Algorithm (GA), hence aiming high 
performance. For a given input pattern, the best classifiers are those that are more 
likely to classify the pattern correctly. Then most effective classifier fusion is 
achieved by combining the best chosen classifiers. In general, a combined classifier 
system is expected to produce superior performance to a single classifier system in 
terms of accuracy and reliability [1].Classifier combination can be divided into 
classifier selection and classifier fusion [1, 2]. During classifier selection, proper 
classifiers that are most likely to produce accurate output for a local area of feature 
space are selected. Whereas during classifier fusion, individual classifiers are 
activated in parallel and group decision is made to combine the output of the 
classifiers. The proposed method primarily aims at robust object recognition under 
uneven environments. The method explores the group of most effective classifier 
system for each identified environmental context using GA and combines the result 
using popular fusion methods. In this paper, the idea of such single classifier 
component optimizations using GA[5, 6] is extended to multiple classifiers 
components. The proposed method has been tested for face recognition using FERET 
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database where face images are exposed to different lighting environments. We 
achieve encouraging experimental results showing that performance of the proposed 
method is superior to those of most popular methods. 

2   Model of Adaptive Classifier Combination Scheme 

Classifier combination can be thought as the generation of candidate classifiers and 
decision aggregation of candidate classifiers. For the simplicity of explanation, we 
assume that a classifier combination consists of four stages: preprocessing, feature 
representation class decision, and aggregation stages. As an example of face 
recognition area, the preprocessing components may be the histogram equalization, 
feature representation component may be Gabor wavelet and class decision can be 
done by ecludian distance measurement of feature vectors. If we have s preprocess-
ing, t different feature representation and u class decision components, then there 
combination produces total k=(s×t×u) classifiers. In general, the total number of 
classifiers k is too huge to be evaluated for finding an optimal output, so context 
awareness is used reduce the classifier space. GA is used to select a group of best 
classifier combinations for each identified context, and then selected best classifiers 
are combined as shown in Figure 1.Figure 1 shows that context aware unit, working 
on GA, finds the optimal classifier sets for a data context y from the total classifiers 
set. In proposed ACCS two types of data inputs are used. The action data, denoted by 
x, is normal data which is finally to be classified. The context data, denoted by y, is 
used to identify environmental context of system and to control classifier combination 
based on the identified context. We assume that the context data can be modeled in 
association with the input action data, and can be identified easily compared to the 
original classification problem. 

 

Fig. 1. Model of Adaptive Classifier Combination Scheme (ACCS) 
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3   Framework of Adaptive Classifier Combination Scheme (ACCS) 

In this section, we will discuss about the architecture of ACCS and describe working 
of ACCS on evolution mode and action mode separately. 

3.1   Architecture of ACCS 

The proposed scheme operates in two modes: the learning and the action mode. In 
learning mode :a)context learning is performed by an unsupervised learning method  
and b)the knowledge of most effective subset of classifier systems for an identified 
context is accumulated and stored in the context knowledge base (CKB) in terms of 
associated artificial chromosomes. In action mode: a) Context identification of 
context data y of action data x is implemented by a normal classification method. b) 
the most effective subset of classifier systems for an identified context (which is 
learned and stored in CKB)  is combined to classify the action data x.  

The proposed scheme architecture consists of the context-aware unit (CAU), the 
context knowledge base (CKB), the evolution control unit (ECU), the action control 
unit (ACU) and the action unit (AU) as shown in Fig.2. The CAU performs the 
functions of modeling and identifying environmental contexts. The ECU accumulates 
the knowledge of the most effective group of classifiers systems for each identified 
context using the GA, and stores the knowledge in the CKB. The accumulated 
knowledge of an effective classifier group and the corresponding identified context is 
stored in the CKB. During operation period, the ACU searches for a most effective 
group of classifier systems, for identified context using the previously accumulated 
knowledge in the CKB.  The AU is a normal classifier fusion scheme configured from 
the encoding of the selected effective classifier systems using ACU.  

 

Fig. 2. Architecture of proposed context aware adaptive classifier combination scheme 
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3.2   Context Modeling and Identification  

Context data is defined as any observable and relevant attributes, and its interaction 
with surrounding environment at an instance of time [8]. Context learning, also 
referred as context modeling, basically implies clustering context data into context 
categories. So the result of context learning is several context categories where each 
category represents the context to which an environment can be associated at given 
timestamp, see Fig.3. Context learning can be performed by an unsupervised learning 
algorithm such as SOM, Fuzzy Art, K-means etc. Context identification is to 
determine the context category of a given context data y. It can be carried 
out employing a normal classification method such as NN, K-NN, SVM, etc. 

3.3   Evolution Mode and Context Knowledge Accumulation Using GA  

In the evolutionary mode, the scheme learns application’s environmental contexts bye 
clustering the training data into data context categories by the CAU see Fig. 3 . 
Evolution process is controlled by ECU and it accumulates the knowledge of context-
action associations, and stores them in the CKB as shown in Fig.3 . The detail of 
context knowledge accumulation steps are given below.  

 

Fig. 3. ACCS working on evolution mode 
 
Step1. The AU configuration is encoded by the chromosome encoding (describes all 

possible combination of classifier). 
Step2. The context data associated with application environment are clustered 

(learned) as context categories by the CAU.  
Step3. The most effective subset of classifier systems for each identified context is 

decided by ECU using GA and the associated training set as follows.  
        3.1 Generate a random population of the chromosome.  
        3.2 Evaluate the fitness of each chromosome vector of the population.  
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        3.3 Select only a portion of the best population as the population of next generation.  
        3.4 Repeat 3.2 and 3.3 until a most effective classifier is reached.  
Step4. The classifier system chromosomes and the fusion structure with their 

associated contexts are stored in the CKB see Fig. 2 .  
Note that fitness of chromosome vector is calculated from recognition rate of the 
fusion of the classifiers chromosomes and is described in section 5.2. 

3.4   Action Mode   

In the action mode, the scheme identifies the application's environmental context, 
searches the knowledge of context-action association i.e. best classifiers for an 
identified context in the CKB, and produces a combined classifiers response. The 
operation scenario of the ACCS is outlined as follows. 

 

Fig. 4. ACSS working on action mode 

Step1. Environmental context is identified using input context data by CAU. The 
output of CAU is an identified context of an input data sees Fig 4 . 

Step2. If the environmental context is changed, the chromosomes of most effective 
group of classifier systems for the newly identified environmental context are 
searched from the CKB by ACU. Otherwise, Go to Step 4. 

Step3.  AU is configured by ACU (see Fig 4 ) using the searched chromosomes.  
Step4. The combines configured classifiers by adopting a fusion method described in 

section 4, using the action data Fig 4  and produce the response Fig 4 . 
Step5. The CKB can be updated whenever the system performance is measured to fall 

down below the predefined criterion by activating the evolution mode 
described above.  

4   Classifiers Fusion 

Once best classifiers are chosen by evolutionary learning described above, individual 
classifiers are activated in parallel and group decision is made to combine the output 
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of the classifiers. Here we use four fusion methods namely Decision Templates (DT) 
[2]. Majority Voting (MV) [9], Product (PRO) and and Average (AVG) [9]. 

5   Design Example and Experiments  

The proposed method was tested in the area of face recognition using standard 
FERET database. Its performance was evaluated through extensive experiments, and 
shown to be reliable and superior to those of most popular methods, especially under 
changing illumination.  

5.1   Face Recognition Scheme Using ACCS  

Face images are used as context data as well as action input data. The changes in 
image data under changing illumination are modeled as environmental contexts. 
Context aware Unit (CAU) clusters face data into several distinguishable   contexts 
according to illumination variations, considering light direction and brightness. The 
CAU is implemented by Kohnen's self-organizing map (SOM) [9] and Radial basis 
function (RBF). SOM has the capability of unsupervised learning. It models 
illumination environment as several context categories. The RBF neural network is 
trained using the clustered face data in order to identify the context category of an 
input image. In the AU, histogram equalization (HE) is used for preprocessing 
components and gabor wavelet is used as feature representation. Gabor wavelet is 
proved to be biologically motivated convolution kernels in the shape of plane waves 
restricted by Gabor kernel [10]. Gabor wavelet also shows desirable characteristics in 
orientation selectivity and special locality. As an example, Gabor13 is generated using 
13 fiducial points as shown Fig. 5. 

          

Fig. 5. An example of 13 feature points for face recognition 

The learning module of the ACCS is implemented by GA which explores the 
structure of the AU adaptive to a given image data subset and stores in CKB. In the 
recognition mode, the system searches for a most effective classifier combination 
based on the identified context category in CKB. The knowledge of effective 
classifiers structure for a data context is described by the pair of data context category 
and corresponding artificial chromosome.  



258 M.Y. Nam, S. Sedai, and P.K. Rhee 

5.2   Chromosome Encoding and Fitness Function  

GA is employed to search among the different combinations of feature representations 
and combining structure of classifiers. The optimality of the chromosome is defined 
by classification accuracy and generalization capability. Fig. 6 shows a possible 
encoding of chromosome description.  

FR1 FR2 FR3 FR4 .., FRn 

Fig. 6. Chromosome encoding for the face recognition using ACCS 

Each feature representation FRi   denotes the set of weights values for the fiducial 
points. GA needs a salient fitness function to evaluate current population and choose 
offspring for the next generation by which evolution will be guided. The learning 
module generates the classifier being balanced between successful recognition rate 
and generalization capability by the fitness function defined as follows:  

                                   
)()()( 21 VVV gs ηληλη +=                             (6) 

where )(Vsη  is the term for the system correctness, i.e., successful recognition rate 

and )(Vgη  is the term for class generalization[10, 11, 12]. 1λ  and 2λ are positive 
parameters that indicate the weight of each term, respectively. The recognition system 
learns the optimal structures of classifier systems and Gabor representation using the 
context knowledge accumulation procedure discussed in section 3.3.  

5.3   Experimental Results  

The feasibility of the proposed method has been tested using FERET [10] database.  
The data set has 2,182 frontal face images from 1091 people. The data set divided in 
two parts, training set called probe set and test set called gallery set. One image is 
used for registration or training for each people in training set containing 1,091 
images. The remaining 1091 images are used as the test images. First of all the 
training data are divided into the data context categories or clusters (six, nine and  
 

 

Fig. 7. Face data vectorization is 1x100 dimensions for context modeling 
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Fig. 8. Face data clustered according to illumination  

twelve clusters are investigated separately). This is done by unsupervised learning. 
Each training face image is scaled as 10 x 10 window and normalized using min-max 
normalization. 1 x100 dimensional vectors are generated using vertical scanning of 
image to provide context data for the CAU as shown in Fig 7. SOM is used for 
context modeling and RBF is used for context identification. An example of different 
context of face data identified using SOM is shown Fig. 8. It can be seen that, each 
cluster consists of group of faces having similar intensity and direction of light. 

GA is used by Evolution control unit to search the best classifiers for each 
identified context. After several iterations of evolution, the ECU results the best sets 
of weight values for each fiducial points minimizing the classification error. These 
best sets are considered here as selected best classifiers. GA generates the weight set 
by assigning more weight value to the to the fiducial points at face where intensity is 
high and small weight to fiducial points where the intensity is low. Hence error due to 
bad illumination is expected to be minimum. After the evolution best three classifiers 
are selected for each identified context. Experiment is conducted on two sets of 
classifiers from same feature weight representation for each context. First set uses 
Euclidian distance as the distance, measure in feature space and second used cosine 
distance as the distance measure as shown in Fig. 9.The result of classifiers are 
combined using fusion method stated in section  4. 

 

Fig. 9. Two sets of classifiers for each context 

Table 1 shows the result of experiments done on 6, 9 and 12 context mode. (6 
context mode means context is modeled as 6 clusters).For each cluster, result of 
fusion of each two sets of classifier is shown (Euclidian and Cosine distance).For 
each classifier its recognition accuracy (A) and rank(R) comparing different fusion 
methods is shown. Result shown suggests that face recognition rate is different 
according context number. It shows that the face recognition accuracy of nine cluster 
mode is 92.1% and hence it is better than other cluster mode. Therefore, the cluster 
number is important   for efficient face recognition. Since we use huge search space to 
select the best diverse classifiers by GA, the result of fusion is superior in all context 
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models. Again recognition rate is appreciably high even though test data set we used 
contains face images with various illumination conditions. This is because best 
classifiers are selected and fused for every illumination condition encountered. 
Decision Template (DT) and Majority voting (MV) fusion methods gives better 
performance than Product(PRO) and Average(AVG)  fusion methods.  

Table 1. Result of 6 and 9 and 12 cluster models conducted on classifiers using different fusion 
methods 

Cont-ext 6-Cluster 9 Clusters 12-Cluster 
Classifier Eucl. Cosine Eucl. Cosine Eucl. Cosine 
Combiner A R A R A R A R A R A R 
DT 90.3 7 91.5 5.5 89.1 7 92.1 6 88.8 3 91.1 8 
MV 91.6 9 91.4 8 88.7 3 92.1 6 89.4 9 90.7 2 
PRO 90.3 7 91.5 5.5 89.0 5 92.1 6 88.8 3 91.1 8 
AVR 90.3 7 91.5 5.5 89.0 5 92.1 6 88.8 3 91.1 8 

Table 2. Recognition rate of proposed method and comparison with other methods 

   Method 6 Clusters 9 Clusters 12 Clusters 
Selection Best 91.56 92.11 90.74 

DT 91.10 91.93 91.01 

MV 91.47 92.20 90.92 

Product 91.10 91.93 91.01 

Kuncheva[1] 
  
  

  Average 91.10 91.93 91.01 
 Proposed 
Method 

GA based 
fusion 

91.47 92.11 91.10 

Experiment is performed on face recognition by using similar methodology 
Kuncheva [1] and result is compared to our systems  as  shown in Table 2.It is found 
that our proposed system is better than [1]. 

6   Conclusion  

GA is used as classifier selector which chooses best classifiers for the respective 
region or data sample that belongs to particular context. Selected classifiers are 
combined using four fusion methods (DT, MV, PRO and AVG) to classify. Our 
experimental results shows that cascading of such selection and fusion  gives superior 
performance  The proposed method tested on face recognition system shows the 
reliable result across varying environmental context. We trained and examined the 
system for three context models, in each model the number of context clusters were 6, 
9 and 12 respectively. We found almost consistent result across different illumination 
is face image and across various experiments we conducted. In future, we will 
research on clustering method taking facial expression and appearance as an environ-
mental context. 
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Abstract. We present a technique for modeling the deformations that
occur to hand pose under the influence of gravity when the hand is kept in
a relaxed state. A dynamic model of the hand is built using Proportional-
Derivative controllers as a first order approximation to muscles. A process
for tuning the model to match the relaxed hand shape of subjects is dis-
cussed. Once the model is tuned, it can be used to sample the space of
all possible arm orientations and samples of wrist and finger angles are
taken. From these samples, a kinematic model of passive hand deforma-
tion is built. Either the tuned dynamic model or the kinematic model can
be used to generate final animations. These techniques increase the real-
ism of gesture animation, where the character often maintains a relaxed
hand.

1 Introduction

People will often allow their hands and wrists to relax without exerting active
control. When this occurs, the angles of the wrist and fingers will vary due to
the influence of gravity as the arm moves. These subtle variations add impor-
tant realism to an animated character. This is particularly important in gesture
animation, where sometimes the hand is actively adjusted to a particular, mean-
ingful pose while other times it is simply left relaxed as the arm moves.

In this work, we model this relaxed, passive variation in wrist and finger
angles. Our approach is to first build and tune a dynamic model of the hand.
This model is then used to automatically generate a large quantity of sample
data, from which a kinematic model is built. Either the tuned dynamic model or
the generated kinematic model can be used in the generation of final animations,
depending on the requirements of the application.

This work makes the following contributions:

– A simple, low-cost tuning method that offers sufficient accuracy for gener-
ating natural animations,

– an approach for building a kinematic model from dynamic simulation,
– a model of relaxed hand shape that can improve the realism of animations.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 262–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Previous Work

The human hand has been a significant focus of research in the computer graphics
community, but to our knowledge, no one has focused on passive hand shape nor
used a dynamic model to build a kinematic hand model.

Much graphics hand research has focused on the problem of grasping. Ri-
jpkema and Girard present a knowledge-based approach to grasp planning [1].
Sanso and Thalmann present a system that decides on an appropriate grasp
type for a given task and uses forward and inverse kinematics (IK) to solve
for hand shape [2]. Pollard and Zordan use motion capture data in building
a physics-based controller for grasping [3]. In a related problem, ElKoura and
Singh model finger coordination for guitar playing, using motion capture data
to model joint correlations and introducing a multiple kinematic chain IK
routine [4].

Physics-based simulation has been a recent research focus. Sibille et al. model
bone movement and soft tissue deformation. They represent muscles as angular
springs and minimize potential energy in order to solve for the joint equilib-
rium points [5]. Albrecht et al. present a system in which pseudo muscles are
used to move bones and geometric muscles are used to deform skin tissue [6].
Tsang et al. present a physical simulation system in which the activation of indi-
vidual muscles can be calculated and muscle bundles can be visually separated
for anatomical study [7]. Pollard and Zordan employ a Proportional Derivative
controller system, similar to the one employed here [3].

Research has also focused on improving other aspects of hand models. Lin
et al. model constraints on hand motion, including joint limits and inter-joint
constraints, such as the DIP angle being 2/3 the PIP angle (see Figure 1 for
acronyms)[8]. Braido and Zhang conducted an experimental study to measure
joint coordination patterns of fingers during grasping and flexion of individual
fingers [9]. We do not explicitly model joint correlations. McDonald et al. focus
on improving the articulation of hand models and apply their work to animating
American Sign Language [10]. Kry et al. present a method for compactly rep-
resenting skin deformations that can then be animated using graphics hardware
[11]. Kurihara and Miyata use CT scans to generate a high quality model of skin
deformations [12].

The idea of using physical simulation to generate a kinematic model has been
applied previously by Yu and Terzopoulos who created a kinematic model of bio-
mechanically based fish motion from a spring-mass-damper model of the fish [13].

Two previous works are particularly relevant to this paper. Zordan and Pollard
[3] present a similar physical hand model, but whereas they actively compensate
for torques induced by gravity, we make use of these torques to deform our
model. Neff and Fiume [14] model tension and relaxation, including gravity
based deformations, also using a PD-based control strategy, but they do not
explicitly deal with hands, present a tuning methodology or generate a kinematic
model from their simulations.
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3 Dynamic Model of the Hand

We use a rigid-body hand model consisting of 23 Degrees of Freedom (DOFs),
as shown in Figure 1. Each of the PIP and DIP joints of the fingers and thumb
IP and MCP have one DOF for flexion. The MCP joints of the fingers each have
an additional DOF to support abduction/adduction (spreading of the fingers).
The CMC joint of the thumb has three DOFs. The wrist has two DOFs allowing
the hand to be moved up and down and side-to-side. Axial rotation of the whole
hand is accomplished by a rotational DOF associated with the forearm, which
is not part of this model.

Fig. 1. Hand model illustrating the joints and finger numbering used in our system

We use a forward-simulation approach to dynamics, in which at each time
step, torques are applied to each DOF and the resulting accelerations are twice
integrated to update the hand’s position. Our torques are generated by a simple
Proportional-Derivative (PD) controller, common in the literature. PD control
can be thought of as a spring and damper arranged in parallel and the control
law is given as:

τ = ks(θdesired − θ) − kdθ̇, (1)

where τ is the resulting torque, θ is the current angle of the DOF, θdesired is
the desired angle of the DOF, θ̇ is the velocity of the DOF, and ks and kd are
the spring and damper gains respectively. Essentially, the controller generates
torque in order to minimize the error between the desired value and the actual
value of the DOF. Note though, that even at steady-state, there will normally be
some error between the actual and desired value of the DOF in the presence of
external forces such as gravity. Intuition for this can be developed by considering
a mass hanging from a spring. At steady-state, the spring will deviate from its
rest length due to the force of gravity pulling on the mass. Other approaches
compensate for this error [14,3], but exploiting this “error” to generate natural
hand deformations is the central idea of this work. We use SD/Fast [15] to
generate the equations of motion for our simulation.
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Joint limits proved important to prevent unnatural looking backwards bend
of the fingers when the palm was facing up. Limits were maintained by adding
additional limit terms to the PD-controller, a technique similar to that used
in [3]:

τ = ks(θdesired − θ) + c0klim(θlow − θ) + c1klim(θhigh − θ) − kdθ̇, (2)

where klim is the limit gain, many times higher than the normal gain, θlow and
θhigh are the low and high limits respectively and

c0 =

{
1 if θlow − θ > 0
0 otherwise

c1 =

{
1 if θhigh − θ < 0
0 otherwise .

(3)

3.1 Tuning the Model

A proportional-derivative controller has three free parameters: the proportional
gain, or stiffness ks; the damping gain kd; and the set point θdesired. We tune
each of these parameters to match observed passive hand deformations. The set
point is used to define the desired rest posture of the hand. This is the pose
the hand would assume without the influence of gravity. The proportional gains
are adjusted to determine how far the joints move from this rest pose under
the influence of gravity. The damping gain is tuned to control the duration
of relaxation movements under the influence of gravity. Each of these tuning
processes will be explained in detail.

The rest pose of the hand will vary from subject to subject and is likely
a parameter animators will want to control. Mount et al. [16] measured the
neutral postures of astronauts in space, giving an indication of rest pose in the
absence of gravity. They found flexion varied from 21 to 60 degrees across six
subjects, further indicating the potential need for customization. We apply a
simple measurement approach to a test subject in order to determine a sample
rest pose. We ask the subject to relax his hand and hold it so that the plane
of finger flexion is horizontal, thus minimizing deflection due to gravity. We
photograph the hand and estimate joint angles from this. The angles used in our
experiment are included in the appendix and these define the θdesired parameters
for each of the PD controllers. This process can be repeated with different values
to model different hand behaviour, as desired by the animator.

The gain values, ks, are determined so that the hand will have a desired shape
under the influence of gravity when in a particular orientation. At steady state,
the PD control law can be rewritten as:

ks =
T

(θdesired − θ)
(4)

where θdesired is the rest pose defined above and T is the torque acting on the
joint due to the force of gravity pulling on the limb and each limb lower down in
the kinematic chain. For a given pose, T can be calculated, so if we can define
the vector of θ values that define an observed pose, we can solve for ks.
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Table 1. Mean relaxation times

Body Part Time to Relaxed Pose Standard Deviation

Wrist Y 0.48 0.06

Wrist Z 0.41 0.06

Fingers 0.38 0.13

The hand orientation in which we define this vector of θ values must have two
properties: it must allow the theta values to be easily determined and there must
be a significant torque due to gravity acting on the measured joints in order to
obtain meaningful ks values. We use three different orientations. For the fingers,
we hang the hand straight down, allowing gravity to partially straighten the fin-
gers. For the wrist forward rotation, we hold the forearm horizontal with the palm
down and allow the hand to sag downwards. This is also used for the downward
rotation of the thumb CMC joint. Similarly, we simply rotate the palm to vertical
with the arm horizontal for the sideways wrist rotation and the remaining thumb
DOFs. The angles in these poses are once again determined by photographs and
measurements of our test subject and are summarized in the appendix. The MCP
DOFs related to abduction/adduction were not tuned as their deformations were
considered to be too small to be worth modeling.

The third free parameter, kd, is used to control the timing of motion under
the influence of gravity. Like moving in molasses, as kd increases, it will slow
the movement. kd values that are too small will allow the joints to move too
quickly and oscillate too much. We define kd as a factor of the ks value for the
corresponding joint and solve for three different factors: one for each wrist DOF,
and one for the thumb and fingers. These factors are determined by matching
animation timing to video of the subject. For the two wrist orientations, we ask
the subject to hold his wrist straight and then instantly release tension so that
the wrist falls to its relaxed orientation, as per above. For the fingers, we ask him
to curl them into a loose fist, and then instantly release tension so that again,
they relax to the default orientations above. These tests were performed multiple
times and ten samples of each were chosen in which the movement appeared
natural. The mean times for each movement are summarized in Table 1. Since it
is difficult to precisely judge the start and stop frame of a motion, there will be
some error in these values. Precise measurements do not appear to be needed,
however, for the animation application. The damping factors were calculated by
recreating the scenarios under simulation and adjusting the damping factor to
match the original timing. The three damping factors ranged from five to seven
(kd ≈ ks ∗ 5 for our low proportional gains).

4 Building a Kinematic Model

The goal of our kinematic model is to automatically set the values for the wrist
and finger DOFs based on the world orientation of the forearm. The model
is built by using dynamic simulation to sample the space of possible forearm
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orientations. We only attempt to capture the static pose deformation caused by
gravity, not dynamic deformations resulting from inertial effects.

The orientation of the forearm in world-space can be captured by two para-
meters, which we refer to as inclination and rotation. Inclination is the angle
of the arm relative to the horizontal plane; essentially its latitude on a sphere.
Rotation refers to the amount of twist around the axis of the arm. Note that
the rotation of the arm around the vertical axis can be ignored as the effect of
gravity will not change under this transformation.

Y

O

C

A

B

X

Z

Y=0

Fig. 2. Vector OA represents the arm orientation. The angle between OA and OB

defines inclination. The cross product of OA and OC is used in determing arm rotation.

The process for calculating the two arm values is shown in Figure 2. The
vector OA defines the current forearm orientation in world coordinates. This
vector is projected onto the plane Y = 0 to yield the vector OB. The angle
between these vectors is the inclination. A vector OC is calculated which is
perpendicular to OB and lies in the Y = 0 plane. Taking the cross-product
of OA and OC yields a vector OD that is perpendicular to OA and lies in
the plane containing the points O, A, B. We define a vector in local forearm
coordinates that is perpendicular to the forearm and points straight up in the
forearm local frame. This up direction is then converted to world coordinates.
The angle between this vector and OD defines the rotation of the arm.

4.1 Sampling Process

For ease of look up, we would like to store our data points on a grid (2D array)
where the coordinates of the grid correspond to arm inclination and rotation.
This is facilitated by a sampling process that computes one column of this grid
on each iteration. We begin with the arm hanging down, held back behind the
character and bring it forward and up, bending the elbow, until the hand is
about head height and the forearm is again leaning backwards. This gives a
complete sampling of the inclinations of interest. This movement is done over 8s
to minimize inertial effects. Each iteration is completed with a specified world
space arm rotation. The actual forearm axial rotation is varied at each time step
in order to achieve this desired orientation. We have tried spacing the rotation
sampling by two and six degrees, with no noticeable reduction in visual quality
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in the reconstructed motion. Note that since we are using PD controllers with
reasonable stiffness to control the arm orientation, there will be some error be-
tween the actual orientation and the desired orientation. This error is less than
our sampling spacing and we simply store the actual orientation and use this in
our reconstruction. Each sample consists of the actual inclination and rotation
along with values for the 23 DOFs defining the hand and wrist pose. The sample
file used to build our model is available online via the first author’s home page.
It would be difficult, if not impossible, to complete such a controlled sampling
procedure using motion capture and a human actor.

4.2 Reconstruction

Once the data has been collected, there are several ways in which it can be used
for kinematic animation. The data is quite smooth, so 2D functions could be fit
to each DOF to limit storage or the data could be queried for hand poses at
pre-set keyframes. We use a very simple reconstruction process: At each time
step, we calculate the current orientation of the arm. We then use this value as
a pointer into our samples to determine the values for the 23 DOFs associated
with the hand.

As stated above, the samples are stored in a grid indexed by inclination and
orientation values. For a forearm orientation input, we find the four surrounding
grid points. Bilinear interpolation of these vectors is performed to determine the
final DOF values. Note that the interpolation is based on the actual inclination
and rotation values stored with each sample, not their grid indices. This process
is very fast and can be used in interactive applications where the hand pose is
automatically updated as the animator moves the character’s arm.

5 Results and Conclusion

Figure 3 shows frames from a kinematic animation sequence without and with the
relaxed hand model applied. The more natural hand and wrist posture with the
relaxed hand model is clearly evident. The video accompanying the submission
includes this sequence and also a dynamic sequence using the tuned values for
our model developed with the above procedure. The dynamic sequence shows
subtle inertial effects that are missing in the kinematic sequence, however, when
the hand is brought up to head height at a reasonable speed, the fully relaxed
wrist appears slightly too loose to provide a realistic motion in this area given
the inertial effects. This is not surprising, as it is rare for a person to have their
wrist fully relaxed in this position. The relaxed hand model represents a baseline
for hand stiffness values and they should be increased for less loose movements.

There are other effects that would be interesting to model, in particular,
correlations between finger joints and the impact of wrist movement on finger
deflection; for instance, a severe downward movement of the wrist will cause
some straightening of the fingers as the tendons are stretched over the wrist. It
would be possible to model this effect by varying the set point of the controller
if a model for the correct amount of variation was available.
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Fig. 3. The top row shows frames from an animation sequence in which the hand is

held at its rest pose. The bottom row shows frames from the same kinematic animation

sequence, but with our passive hand model applied.

In summary, we have presented a simple method for tuning hand parame-
ters that is inexpensive and appears to offer sufficient accuracy for computer
animation. We have also built a kinematic model of passive hand shape that
provides real-time performance and that significantly improves the naturalness
of character animation.
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Appendix

Table 2. Angles used to calibrate our dynamic hand model. The “Angle” column

defines the rest pose of the hand. “Deviation” refers to the difference between the rest

angle and the angle of the DOF that is used to calculate gain values with the specified

arm orientation.

Finger DOF Angle Deviation DOF Finger Angle Deviation

1 CMC Abduction 42 -2 1 CMC Flexion 28 +6

1 MCP Flexion 36 +2 1 IP Flexion 24 +2

2 MCP Abduction 1 N/A 2 MCP Flexion 40 -21

2 PIP Flexion 50 -30 2 DIP Flexion 35 -34

3 MCP Abduction 0 N/A 3 MCP Flexion 42 -21

3 PIP Flexion 50 -25 3 DIP Flexion 38 -35

4 MCP Abduction -1.5 N/A 4 MCP Flexion 42 -21

4 PIP Flexion 50 -25 4 DIP Flexion 38 -35

5 MCP Abduction -6 N/A 5 MCP Flexion 29 -14

5 PIP Flexion 42 -24 5 DIP Flexion 40 -28

- Wrist Side 0 +29 - Wrist Forward 0 +22
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Abstract. Silhouette recognition can reconstruct the three-dimensional
pose of a human subject in monocular video so long as the camera’s
view remains unoccluded by other objects. This paper develops a shape
representation that can describe and compare partial shapes, extending
the silhouette recognition technique to apply to video with occlusions.
The new method operates without human intervention, and experiments
demonstrate that it can reconstruct accurate three-dimensional articu-
lated pose tracks from single-camera walking video despite occlusion of
one-third to one-half of the subject.

1 Introduction

Intense research interest has focused lately on the recovery of articulated pose in-
formation from monocular video [1,2,3]. Despite great progress, current methods
commonly assume that subjects remain fully visible apart from self-occlusion of
one body part by another. Yet outside of controlled studio conditions, extraneous
objects can often block a camera’s view either momentarily or for an extended
period of time. This paper develops techniques to handle situations where some
portion of a subject’s body passes either behind a stationary object or out of
the video frame.

Silhouette shape matching has already proven itself well suited for recovering
articulated pose in a variety of applications [4,5].1 Previous work with silhouette-
based pose recovery has assumed that full silhouettes are available, and employed
similarity measures that require complete shape information. This paper devel-
ops a novel approach to shape comparison that can operate with either full
or partial shape information. Under occlusion, the visible portion of the shape
boundary can thus be extracted and used for pose recovery. Reconstructions
based upon this technique can recover the articulated pose trace (3D joint po-
sitions over time) of a walking human subject undergoing either episodic or
extended partial occlusion by stationary objects.

1.1 Related Work

Much research has looked at recovery of articulated three-dimensional pose from
monocular video without external occlusion [1]. Recent work in this area includes
1 Although the silhouette-to-pose relationship is many-to-one, enforcing temporal con-

tinuity can disambiguate the true pose.
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several alternatives to silhouette-based reconstruction [2,3], as well as other re-
lated results that stop short of recovering full 3D pose [6,7]. Another body of
research has examined the problem of non-articulated object tracking under in-
termittent occlusion [8,9]. The combination problem of single-camera articulated
pose reconstruction with occlusion has received very little attention. One alter-
native to the method presented here would be to track the silhouettes using an
occlusion-resistant deformable shape tracker [10] followed by ordinary silhouette
recognition, but this would require a good prior model on the possible shapes
of human silhouettes. Prior models on human motion can also guide tracking
under occlusion [11]

A number of works have examined techniques specialized for partial shape
matching; one recent paper gives an excellent survey [12]. The approach used
herein resembles the B-spline technique of Salari and Balaji [13], but the use of
the EMD embedding here improves on that work by allowing arbitrarily dense
sampling of the shape boundary without increasing the complexity of the final
representation. The method also somewhat resembles the curvature scale space
[14,15] and the fast correspondence of Adamek and O’Connor [16], but these
do not address partial matching. The use of EMD embedding herein is adapted
from work using the shape context and various other features.[17,18].

2 Shape Matching: Sets of Boundary Fragments

This paper develops a measurement of shape similarity based upon matching
many small, overlapping fragments of the shape boundary. Because each bound-
ary fragment can be parameterized in only one dimension, the set of fragments
is potentially simpler than other sets of localized descriptors such as the shape
context [19], and also less affected by occlusions.

Simple metrics like Euclidean distance cannot properly compute similarity
between sets. Fortunately, recent work provides a means of embedding sets of
fragment descriptors in a high-dimensional metric space, such that the L1 dis-
tance in the embedding space approximates the earth-movers distance (EMD)
for the local shape or boundary descriptors [17]. Such an embedding will be
referred to as an EMD embedding. The EMD corresponds to the sum error in
the best global matching between the boundary fragments of the two images.
The EMD embedding of a set of boundary fragments thus constitutes a practical
representation for computing a meaningful similarity measure on binary shape
images.

2.1 Extracting Boundary Fragments

To describe a binary image using boundary fragments, begin by representing the
boundary as a sequence of points with roughly equal spacing. Extract multiple
overlapping subsequences spaced uniformly along the boundary and of similar
length, then express these in a uniform representation. The EMD embedding
transforms the set of fragment representations into a form offering better com-
putational efficiency, as described in Section 2.2.
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The specific application will determine the best choice of boundary segment
lengt, based upon one or more heuristics. A fixed scaled length is best when
the scale of the shape can be known; most pose tracking applications fall into
this category once tracking has begun. Alternately, properties of the shape itself
may be used to estimate a scale. For example, the fragment length may be set
at some fraction of the total perimeter length.

Once identified, boundary fragments must be described in a concise numeric
format. Suppose that a fragment is parameterized by s, where s = 0 at one end
of the fragment and s = 1 at the other end, and τ(s) gives the tangent to the
boundary at s. Sample τ(s) at uniform intervals, compute the discrete cosine
transform (DCT), then zero the constant term and truncate high-order terms
beyond k. The inverse DCT then yields a k-dimensional representation of the
fragment shape that is rotation invariant and effectively low-pass filtered.

Rotational information can be restored to the descriptor if desired by including
sin(τ(0.5)) and cos(τ(0.5)) as additional features. Using two features for rotation
information avoids circular anomalies when comparing values such as 0 and 2π.
Including rotation information makes sense when shapes can be oriented a priori,
as for example in video where the the y axis aligns with gravity.

2.2 Embedding the Boundary Fragments

In order to efficiently compute the best matching between shapes, the EMD
embedding takes the set of fragment descriptors and creates a high-dimensional
vector describing the shape as a whole. Each component of the embedded vec-
tor covers a region of the fragment descriptor space, with the magnitude of the
component depending upon the size of the region and on how many fragments
lie within it. The full embedding algorithm is too involved to give here, but fol-
lows Grauman and Darrell [17], with several modifications. To ensure that new
shapes can be embedded within the same framework as existing ones, the em-
bedding covers a fixed region of the fragment descriptor space: [−2π, 2π] for the
sampled features, and [−1, 1] for the rotation-dependent features. Furthermore,
the hierarchical subdivision of the feature space into component regions stops
after five levels.

2.3 Partial Shape Matching with the Boundary Fragments

Under occlusion, some portion of a shape is unobservable. Define a partial shape
as the result of hiding some part of a binary shape image with a mask. Note
that a partial shape is not equivalent to the smaller shape made by deleting the
masked portion; instead, the masked portion is simply undefined. Instead of a
closed contour, the boundary of a partial shape becomes one or more open curves.

Many traditional shape descriptors simply cannot be computed for shape
fragments due to the undefined region. Those comprising sets of localized de-
scriptors, such as boundary fragments and the shape context, can still compute
descriptors for regions that do not overlap with the undefined area. However,
the shape context runs into problems: because it is defined on a circular area,
its descriptors easily overlap unknown areas even when centered on a visible
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point. Consider frames 55-60 in Figure 3.3, where the entire shape lies close to
the occlusion, but there are nonetheless long boundaries visible. Without suffi-
cient local descriptors, the shape context cannot match accurately and becomes
inviable for occluded pose recovery.

Given a partial shape as described above, straightforward computation yields
an EMD-embedded descriptor that incorporates all fully-defined boundary frag-
ments. For matching purposes, the components of this descriptor should be nor-
malized to sum up to the fraction α of contour segments fully visible, while
descriptors of complete shapes are all normalized to sum to one. For pose recov-
ery, Section 3 describes how to estimate α when it is unknown. Experiments on
retrieval tasks show low sensitivity to errors in α: retrieval sets overlap by up to
80% for α values varying by as much as 30%.

2.4 Benchmark Experiments with Boundary Fragment Matching

Boundary fragments shows reasonable performance as a general shape match-
ing tool on standard test sets. For example, on the MPEG7 CE-Shape-1 test
set, boundary fragments score 68.01% on the standard “bullseye” criterion [20].
Experiments in the same framework show a similar result for the shape context
(68.11%). Other work has reported better results for shape context when com-
bined iteratively with geometric warping [19]. Presumably boundary fragment
matching would also benefit from such a treatment, although the procedure is
too slow for application to pose recovery.

3 Pose Recovery Under Occlusion

Monocular video provides only limited cues for reconstructing the full 3D pose
of a subject. Silhouette recognition offers a simple yet effective way to apply
background knowledge to the problem. Silhouettes observed in the video serve as
keys to look up known 3D poses with similar silhouettes for further consideration
[4]. The approach does have drawbacks; most commonly noted is the difficulty
of identifying accurate silhouettes. Although this remains an area of research,
current performance is adequate in some applications [21].

This paper addresses a different problem, occurring when part of a subject’s
body is occluded by stationary objects situated along the camera’s line of sight,
or by the frame boundary. In either case, it becomes impossible to determine
the shape of the entire silhouette, and thus to retrieve the 3D pose directly.

3.1 Boundary Fragments for Silhouette Lookup

EMD-embedded boundary fragment matching provides the framework for sil-
houette lookup. Because other sources describe silhouette-based pose recovery
in detail [4], only an outline appears here. After background stabilization (if nec-
essary) and modeling, change detection yields a silhouette in each video frame
[21]. Each silhouette becomes a query into a database of silhouettes with known
3D poses, acquired via motion capture. The most likely pose-silhouette pairs
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are retained and registered to the video frame. A temporal synchronization step
then searches for the sequence of poses that simultaneously maximizes the sim-
ilarity to the observed silhouettes while minimizing the energy of pose changes
from frame to frame. Further postprocessing smooths the results and optimizes
their fidelity to the observations. Boundary fragment matching provides a conve-
nient mechanism for the silhouette lookup stage of the algorithm; other portions
remain unchanged.

Because fragment matching handles both complete and partial shapes, the
method applies easily to the partial shapes that arise during external occlusion.
However, the algorithm must know what portions of the shape are occluded so
that it can distinguish the real silhouette boundaries from the occlusion edges.
The discussion below begins by assuming that an operator provides a manually
created “occlusion map” identifying areas containing potential occluding objects
(Figure 1). Section 3.3 addresses how to generate such maps automatically.

Background Hand mask Automask Confirmed

Fig. 1. Static background with manually provided and automatically generated occlu-

sion maps for two sample videos. The automatic masks are more conservative in the

visible areas they identify. Rightmost column shows confirmed occluded areas after

algorithm has run.

Given an occlusion map, the lookup process first determines whether the ob-
served silhouette touches any occluded areas. If it does not, then normal lookup
proceeds. If occluded areas overlap the silhouette, then the visible portions of the
silhouette generate a partial shape consisting of one or more boundary contours.
The scale of the figure (for boundary section length) and the visibility α may be
estimated in most cases from neighboring frames with silhouettes already reg-
istered. In this case, the partial shape query returns candidate poses from the
database just as a full image query would. Section 3.3 discusses how to bootstrap
scale and visibility estimates for clips consisting entirely of occluded frames.

Registering a retrieved silhouette with its video frame becomes slightly more
complicated when working with occlusion. One or more boundary contours will
be visible in the frame. These must be matched to equivalent portions on the
border of the retrieved silhouette. Phase matching between sequences of equally-
space points extracted along both boundaries yields the desired correspondence.
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The registration scale and translation then minimize the Euclidean distance
between the corresponding sequence points. Once the retrieved silhouettes are
registered, the remainder of the computation proceeds as before.

3.2 Experiments with Occluded Video

The evaluation test set comprises two short videos involving significant occlusion.
The first, Pole, shows a walking subject passing completely behind a lightpost.
The second, Ramp, shows the subject walking up a handicapped access ramp. A
low wall at the edge of the ramp obscures the view of the subject’s legs in the
latter half of this video, making pose recovery much more challenging.

The reconstruction of the Pole video entirely avoids any major errors. Occlu-
sions by the post and the frame edges are handled gracefully. There is some small
error in the arm positions and in the hip orientation, similar to those occurring
in silhouette-based reconstruction without occlusion. Space constraints preclude
reproducing the results here, as they are similar to those presented later. This
clip shows boundary fragment matching easily handling transient external occlu-
sions of this sort. Note that the figure can be tracked outside the frame boundary
only so long as a sufficient amount of the boundary is visible; the outer limit for
getting reasonable results seems to be about α = 0.3.

The extended occlusion of the legs in the Ramp video makes pose reconstruc-
tion much more difficult in the second half of the clip. The system must infer
what the legs are doing from the motions of the upper body. When the arms
are visible this is somewhat easier, but there are points in the stride where the
upper body shape appears more or less as an undifferentiated pillar. Despite
this, the shape-fragment matching reconstructs the Ramp motion with only one
significant error, a stutter-step near the very end of the clip. Errors near the
beginning and end of a clip sometimes occur due to the lack of corroborating
observations from neighboring frames on one side.

3.3 Fully Automatic Reconstruction

Manual occlusion maps are a crutch that preclude fully automatic operation.
This section describes an algorithm to automatically determine the non-occluded
areas, using no more information than the silhouette observations already em-
ployed for pose retrieval (as derived from background modeling and change de-
tection). The composition of all the areas where the subject silhouette is observed
over time forms a map of known unoccluded areas. The complement of this set
is the union of two pieces: true occlusion zones and areas of background that are
indistinguishable from occlusion zones because the subject was never observed
there.

Figure 1 shows for each test video the regions containing no observation of
the subject. Although these masks cover much more area than the manually cre-
ated occlusion masks, these masks may nevertheless function in the same role.
Treating zero-silhouette regions as occlusion zones will disregard some valid sil-
houette boundaries that cannot be verified as real. A typical silhouette will now
have undefined regions above the head and below the feet, because the subject
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was never observed in these areas. This increases the challenge of database re-
trieval: since occlusions cannot be distinguished from unidentified background,
in practice all frames must use partial shapes for retrieval.

Atomatic occlusion maps may not be error-free, and the penalties for error
are not symmetric. Marking a visible area as occluded merely makes retrieval
slightly more difficult by reducing the length of boundary available as a query.
This is generally much less serious than counting an occluded area as visible,
which will usually introduce spurious boundaries that are more likely to inter-
fere with both retrieval and registration. For example, the railing at the top of
the wall in the Ramp clip is not always segmented properly in the silhouette
of every frame. To prevent such problems, a special high-threshold foreground
segmentation generates the occlusion map, biasing the result against mistakenly
labeling occlusion zones as visible areas.

Estimating the parameter relating library scales to observed silhouette dimen-
sions becomes more difficult without frames known to be unoccluded. This work
adopts a heuristic approach, assuming that the silhouettes with maximal vertical
extent are unoccluded or nearly so, and estimating scale based upon their height.
Allowing slow (0.5%) changes in scale between neighboring frames causes each
silhouette to impose a minimum scale on all other frames. Silhouettes whose
vertical extent indicates a scale greater than the minimum imposed by all other
frames are considered reliable indicators of the true scale. Interpolation gives
the estimated scale of the remaining frames. While effective for the clips tested
here, this heuristic is not universally reliable and might be less successful in some
cases than a technique based upon boundary curvature or limb thickness.

Estimating the visibility α is also more difficult without known occlusion-free
frames. The silhouette dimensions for the indicator frames described above can
give a very rough estimate of α. Unoccluded silhouette perimiters average around
four times the figure height, although this ratio can vary by up to 30% in either
direction. In most cases this suffices for adequate retrieval. Nevertheless, once
an initial frame has been solved, using the visibility of registered silhouettes in
a neighboring frame is generally more accurate and therefore preferable.

Figures 3.3 and 3 show the reconstruction results under fully automatic oper-
ation. Despite the increased difficulty of retrieving and registering correct can-
didate silhouettes from partial shapes at every frame, the boundary fragment
matching reconstructs both clips without major errors. The automatic recon-
structions capture the qualitative features of the walk nearly as well as the
result using the manual occlusion map, but exhibit somewhat larger transient
deviations in scale and body orientation. Interestingly, this reconstruction avoids
stutter-steps in the Ramp clip.

Although 3D pose ground truth is unavailable for these clips, the results can be
evaluated in comparison to 2D tracking points hand-entered by two individuals.
For the Pole clip, the difference between the two humans in placement of control
points averaged 1.9 pixels; the automatic result differed from the human mean
by 6.1 pixels (roughly four inches). No increase in error was observed during
the occlusion by the lamp pole. The Ramp clip is more difficult for humans to
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Fig. 2. Automatic reconstruction of Pole clip shown at selected frames

Fig. 3. Automatic reconstruction of Ramp clip shown at periodic frames

annotate due to the extended occlusion, and disagreement between human point
placements averaged 4.4 pixels. The disagreement between the automatic and
human results averaged 7.4 pixels. On this clip, occlusion causes a noticable
decrease in accuracy for both the humans and the computer algorithm: the error
averaged for the frames before and after frame 40 are 2.1 vs. 6.6 pixels for
humans, and 5.8 vs. 8.7 pixels for the computer.

While walking motions arguably make for a simple evaluation choice, they
are nevertheless of interest in many applications. Furthermore, these experi-
ments indisputably provedemonstrate the utility of shape fragment matching
for handling occlusion. Perhaps this will spur the development of additional
occlusion-handling techniques for other pose reconstruction modalities.

3.4 Refined Occlusion Maps

The automatic reconstruction can proceed one step further to refine the origi-
nal automatic occlusion map, distinguishing between true occlusion zones and
areas with no data. With pose reconstruction in hand, animation and rendering
reveals the region swept out by the moving subject in the image frame. The re-
construction registration may not be entirely accurate, so the outer edge of this
region should be thrown out using morphological erosion. The intersection of the
remaining area and the original occlusion map yields a set of pixels held to be
occupied by occluding objects. Storing these locations may help in subsequent
pose reconstructions, or in other scene interpretation tasks. Figure 1 shows the
refined automatic occlusion maps for the two clips.
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4 Conclusion

This paper has described an extension of silhouette-based monocular 3D pose
reconstruction to handle partial occlusions by stationary objects. One enabling
development is EMD-embedded boundary fragments, a novel contour-based de-
scription of shape that allows comparison of partial shapes. The other key is
the explicit use of an occlusion/visibility map, allowing the algorithm to dis-
criminate between valid silhouette boundaries and spurious ones arising from
occlusion. The occlusion map may be created by hand, but it can also be gener-
ated through an automatic process with surprisingly little decrease in the quality
of the final result.
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Abstract. We propose a method for tracking a nonparameterized sub-
ject contour in a single video stream with a moving camera. Then we
eliminate the tracked contour object by replacing the background scene
we get from other frame that is not occluded by the tracked object. Our
method consists of two parts: first we track the object using LOD (Level-
of-Detail) canny edge maps, then we generate background of each image
frame and replace the tracked object in a scene by a background image
from other frame. In order to track a contour object, LOD Canny edge
maps are generated by changing scale parameters for a given image. A
simple (strong) Canny edge map has the smallest number of edge pix-
els while the most detailed Canny edge map, WcannyN , has the largest
number of edge pixels. To reduce side-effects because of irrelevant edges,
we start our basic tracking by using simple (strong) Canny edges gen-
erated from large image intensity gradients of an input image, called
Scanny edges. Starting from Scanny edges, we get more edge pixels rang-
ing from simple Canny edge maps until the most detailed (weaker) Canny
edge maps, called Wcanny maps along LOD hierarchy. LOD Canny edge
pixels become nodes in routing, and LOD values of adjacent edge pixels
determine routing costs between the nodes. We find the best route to
follow Canny edge pixels favoring stronger Canny edge pixels. In order
to remove the tracked object, we generate approximated background for
the first frame. Background images for subsequent frames are based on
the first frame background or previous frame images. This approach is
based on computing camera motion, camera movement between two im-
age frames. Our method works nice for moderate camera movement with
small object shape changes.

1 Introduction and Related Works

The tracking of moving subjects is a hot issue because of a wide variety of
applications in motion capturing for computer animation, video coding, video
surveillance, monitoring, and augmented reality. We track a highly textured
subject moving in a complex scene compared to a relatively simple subject
tracking done by others. We mean complex because both tracked subject and
background scene leave many edges after the edge detection. We assume our
subject is never occluded by any background objects, but it occludes other ob-
jects in the background while the camera is moving. Our background generation
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assumes all background objects are static. This paper is an extension of our
previous work[1]. We can classify the methods of representing a subject con-
tour into two categories depending on the method used; parameterized contour
or nonparameterized contour. In tracking a parameterized contour, a subject
contour estimating the motion is represented by using parameters. In general,
these methods use the Snake model[2]; Kalman Snake[3] and Adaptive Motion
Snake[4] are popular Snake models.

In the method of tracking a nonparameterized contour, a subject contour as a
subject border is represented. The contour created by these algorithms is repre-
sented as a set of pixels. Paragios’s algorithm[5] and Nguyen’s algorithm[6] are
popular in these approaches. Recently, Nguyen proposed a method[6] for tracking
a nonparameterized subject contour in a single video stream with a moving cam-
era and a changing background. Nguyen’s approach combined the outputs of two
steps: creating a predicted contour and removing background edges. Nguyen’s
approach removed background edges by computing object motion. But Nguyen’s
approach left many irrelevant edges that prohibit accurate contour tracking be-
cause removing the background edges is difficult. In Nguyen’s algorithm[6], a
watershed line that was determined by using the watershed segmentation[7] and
the watershed line smoothing energy[6,8] becomes the new contour of a tracked
subject. In other words, the watershed line is generated by combining the previ-
ous frame contour and the current frame Canny edges that do not always make
a closed edge contour. Nguyen’s method[6] of combining the predicted contour
computed from the previous frame accumulates tracking error, because tracking
errors are accumulated by always including the previous contour regardless of
the intensity of the current Canny edges. Predicted contour that is computed
from the previous frame is usually different from the exact contour for the cur-
rent frame. A big change between the previous and current contour shapes makes
this kind of contour tracking difficult. We remove redundant edges by modifying
Canny edge generation, one of major contribution of this paper.

There is another interesting method for color based segmentation, called Mean
shift[9]. This method use parameters to adjust segmented regions of an im-
age. This method works excellent if the adjacent color area in the image are
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distinct each other. But ordinary video images have blurred colors and is usu-
ally indistinguishable at segment boundaries. Another drawback is that the seg-
mented boundary severely changes according to the parameters, while we get
LOD Canny edges at the same spot consistently.

2 Overview of Our System

Figure 1 shows an overview of our system for tracking and eliminating an object
(to make a background image) in a single image frame. First, we generate the first
frame background scene that will be explained in Section 3. Then we compute
a tracked object contour for the next frame. As inputs to compute an object
contour, we get a previous image frame, denoted as frame (t − 1) and the
corresponding tracked subject contour of input frame (t − 1), and a current
image frame, denoted as frame (t). From frame (t−1), contour of frame (t−1),
and frame (t), we compute a predicted contour, ∂Ω(p,t), for frame (t) using
object motion[6]. Then, we generate various detailed levels of modified Canny
edge image maps for the input frame (t). We select Scanny edges from the
LOD Canny edge maps. From a Scanny edge map, we derive a corresponding
distance map. Using the predicted contour, the best matching is then found
between the predicted contour and the Scanny distance map. Scanny edge pixels
matching with the predicted contour become the frame of the contour build
up. We call these pixels selected Scanny contour pixels. Selected Scanny contour
pixels, generated using Scanny and predicted contour, are the most reliable
(but not closed) contour pixels to start building a closed tracked contour, and are
stored in the selected Scanny found list. We then route a path to connect adjacent
selected Scanny contour pixels in the found list using LOD Canny edge pixels.
If we finish connecting every adjacent selected Scanny contour pixel pair, we get
a set of partial contours although not guaranteed to be the best closed contour.
We mean best because the contour is four-neighbor connected and follows every
possible Scanny edge.

To build a best closed contour for the frame (t), we use LOD Canny edge
maps around the predicted contour. We run a final routing using the computed
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segments of partial contours and Scanny edges around it to find the best contour.
In this process, we fix the wrong computed basic contour. The resulting contour
becomes the contour of frame (t), and it is used to generate background of
frame (t). Our method to generate the background (tracked object eliminated)
image is using the previous frame background image, as presented in Figure 3,
while the approach for computing the first frame presented in Figure 2 produces
higher quality background images.

3 Object Elimination and Background Generation

This approach is based on the assumptions that the background objects are static
and camera movement is neither violent nor stationary. Because the actual input
video has moving camera, there are minor errors which cause accumulated errors
if the approach is used in tracking using background elimination. Figure 2 shows
a process to determine the first frame background given a sequence of video
stream. As inputs, we get the kth frame denoted as frame (k), the first image
frame denoted as frame (1) and the corresponding tracked subject contour
of input frame (1). The first frame consists of the tracked object as well as
background. The kth frame is the earliest frame, in video sequence, that has the
background information for the part occluded by the tracked object in frame (1).
But sometimes it is possible that we cannot get the part of scene information
occluded by the tracked object. From frame (1) and contour of frame (1), we
compute a size of the bounding box of the tracked contour, and remove inside
of the tracked object contour, the part of the image frame occluded by the
tracked object. The resulting image frame is denoted as woframe(1). By filling
the occluded/removed part using background image from frame (k), we build
a background image of frame (1), denoted as bg (1). The process to determine
the exact frame to fill occluded part is as follows. First we try with an arbitrary
frame, say frame (k). In order to verify that the frame actually contains the
missing background part of the first image frame, we compute object motion
between frame (1) and frame (k)[6]. If the object motion magnitudes in both
x and y direction are bigger than the width and height of the bounding box of
the first frame respectively, we are done in finding the exact frame to fill the
missing part of frame (1). Otherwise we try with the next image frame until
the exact frame is found. Then we compute camera motion between the first
frame and the kth frame, and the computation result is used in generating a
background image of the first frame denoted as bg(1). woframe (1) denotes the
first frame with the contour inside removed. In order to compute camera motion,
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we find the best matching displacement between woframe(1) and frame (k).
We mean camera motion, a computation for camera movement, to be the image
displacement between two image frames. In order to fill the occluded part of
woframe(1), we use computed camera motion and take corresponding image
part from frame (k). As a result, we get the background image of the first
frame, denoted as bg(1).

(a) 1st frame (b) kth frame (c) background of 1st frame

Fig. 4. The result of generating background of the first frame

Figure 3 shows a process to determine the tth frame background especially for
early image frames. After early image frames, we can get occluded background
information from previous image frames, and the algorithm is similar to Figure 2.
This approach should be used for early frames, but if the tracked object is fairly
away from the occluded backgrounds, then the background image generation can
be done using a modified version of algorithm presented in Figure 2.

As inputs, we get a tth image frame, denoted as frame (t), the corresponding
tracked subject contour of input frame (t), and the computed background image
of frame (t − 1), denoted as bg(t − 1). Given frame (t) and the contour of
frame (t), we eliminate inside the contour, the tracked object. The resulting
image frame is denoted as woframe (t). Using woframe (t) and bg(t − 1), we
compute the camera motion between the frame (t−1) and the frame (t). Using
the computed camera motion, we fill the occluded part of woframe (t) using
bg(t − 1). As a result, we get the background image for frame (t), denoted as
bg(t).

Figure 4 shows an example of generating the background image for the first
frame. The inputs were a sequence of video, the first frame, and the contour for
the full tracked body of the first frame. Figure 4(a) shows the first frame, Figure
4(b) is the selected kth frame which has the background image for the occluded
part of the first frame, and Figure 4(c) is the computed background image for the
first frame. The tracked object size is significantly different between two image
frames, Figure 4(a,b), but this does not disturb correct camera motion compu-
tation because we compute matching with the known tracked object removed,
say woframe(1). As you may find, there are some dark image areas that do not
have any corresponding background image available. It is impossible to fill this
missing background information.
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4 LOD Canny Edge Maps, Matching for Selecting
Reference Contour Pixels, Reference Contour Pixel
Connection by Routing

A strong Canny edge map is generated by a pixel-wise union of the simplest
Canny edge maps out of various scaled Canny edge maps. Contrary to Nguyen’s
approach, we do not remove background edges that are difficult to remove. Our
new method selects only the Canny edges with large image intensity gradient
values, Scanny edges. A Scanny edge map does not have noisy background edges
and looks simple, meaning there are less edges in the Canny edge map of the
scene. Working on Scanny has an effect of background removal. Our accurate
tracking is based on reducing the effects from irrelevant edges by only selecting
strongest edge pixels, and relying on the current frame edge pixels as much
as possible contrary to Nguyen’s approach of always combining the previous
contour.

For Canny edge maps generated with smaller image intensity gradient values,
we call Wcannyi, i = M + 1, · · · , N where N is the number of LOD Canny
edge maps, M is the number of Canny edge maps used in computing Scanny
edge map. WcannyM+1 has the simplest Canny edges generated from a set of
large (strongest) intensity gradient value edges. WcannyN has the most detailed
Canny edges generated by an accumulation from largest (strongest) till to the
smallest (weakest) intensity gradient valued edges. Figure 5(a,b) shows an ex-
ample of Scanny and WcannyN Canny edge maps respectively.

By varying control parameters, we can get various Canny edge maps of dif-
ferent scales given a single image. The resulting Canny edge maps are mainly
affected by the image intensity changes between pixels. We take advantage of
the fact that we can get various Canny edge maps by varying these control pa-
rameters. Usually, very detailed Canny edge maps confuses us in finding the
exact outline, but simple Canny edge maps generated from large image intensity
changes do not have enough detail to make a closed contour for the tracked sub-
ject. But simple Canny edge maps are very reliable because they are generated
only if there are big intensity changes in the image. We need both simple and
detailed Canny edge maps for the best subject tracking. Various detailed Canny
edge maps are generated by varying the values of control parameters. We totally
order the resulting Canny edge maps by counting the number of edge pixels in
each edge map.

Let Φ
(I,t)
i , where i = 1, · · · , N , be a totally ordered set of Canny edge maps of

an input image frame (t). The ordering is done by counting the number of edge
pixels. Φ

(I,t)
1 has the smallest number of edge pixels while Φ

(I,t)
N has the largest

number of edge pixels. N is the total number of Canny edge maps generated for
the input image. Then, we take the top 10 percent to 30 percent of the simple
Canny edge maps and union into pixel-level to make a Scanny edge map, SΦ(I,t).
M is the total number of Canny edge maps used to make a SΦ(I,t). The rest of
the Canny edge maps are used to generate Wcannyi, WΦ

(I,t)
i .
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SΦ(I,t) =
⋃M

i=1 Φ
(I,t)
i

WΦ
(I,t)
i = SΦ(I,t)⋃(⋃i

j=M+1 Φ
(I,t)
j

)
, i = (M + 1), · · · , N (1)

where
⋃

is pixel-wise union of bitmaps. WcannyM+1 is a pixel-wise union of
Scanny and the next detailed sets of Canny edge maps. Wcannyi is generated
by unioning Wcanny(i−1) and the next detailed sets of Canny edge maps, etc.
WcannyN has the union of all levels of detail Canny edges generated by an
accumulation from highest-to-lowest intensity gradient value edges.

LOD Canny edge map, LΦ(I,t), is generated using SΦ(I,t) and WΦ
(I,t)
i s edge

pixels around ∂Ω(p,t). Γ (LΦ(I,t)(x, y)) is a function returning an LOD value
given an edge pixel (x, y) of an LOD edge map, LΦ(I,t). To build a LΦ(I,t), we
search SΦ(I,t) and WΦ

(I,t)
i s from the simplest edge map to the most detailed

edge map.
Basically, we rely only on a Scanny edge map and a predicted contour from

the previous frame to find reference pixels, called selected Scanny pixels, for
building a basic (but not closed) tracked contour frame. Then, we seek additional
edge pixels from Wcannyis according to the descending sequence of multi-level
detailed edge pixels, following LOD in edge maps. These selected Scanny pixels
become start nodes and end nodes in routing. LOD Canny edge pixels become
nodes in routing, and LOD values of adjacent edge pixels determine routing costs
between the nodes.

Rather than removing background edges, we start with a Scanny edge map, as
presented in Figure 5(a), that has simple edges in a scene. Figure 5(c-f) shows a
process of computing selected Scanny pixels, and the selection result is presented
in Figure 5(g). Selected Scanny pixels are denoted as green pixels in Figure 5(g),

Fig. 5. Scanny edge map (a), LOD WcannyN edge map (b), predicted contour from

frame (t−1) (c), distance map generated from Scanny (d), matching between predicted

contour and Scanny distance map (e), circular distance map used in matching (f)
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along the predicted contour, while red pixels mean a failure in finding a matching
Scanny pixel. By using an image matching as used by others[6], we can get a
predicted contour, ∂Ω(p,t), as presented in Figure 5(a). Then, we generate a
distance map of Scanny, DSΦ(I,t), as in Figure 5(d).

From a set of adjacent selected Scanny edge pixels, we find segments of con-
tours, called partial contour. In finding a partial contour, we find the best route
to follow Canny edge pixels favoring stronger Canny edge pixels. We do a routing
between two disconnected Scanny edge pixels using LOD Wcanny edge maps
favoring stronger edge maps. The disconnected contour is connected using Dijk-
stra’s minimum cost routing. We consider Scanny edges around a predicted con-
tour, computed from the previous frame contour, to likely be a part of the new
contour. To make a closed contour, we do a final routing using the above seg-
ments of partial contours and Scanny edges around the predicted contour.

We route a path to connect adjacent selected Scanny contour pixels in the
found list using LOD Canny edge pixels, LSΦ(I,t). We mean adjacent to be ad-
jacent in the found list. If we finish connecting every adjacent selected Scanny
contour pixel pairs, we get a set of partial contours although they are not guar-
anteed to be complete. We mean complete because the contour is four-neighbor
connected and follows every possible Scanny edge. These selected Scanny contour
pixels become start and end nodes in routing.

LOD Canny edge pixels become nodes in routing, and LOD values of adjacent
edge pixels determine routing costs between the nodes. In finding a partial con-
tour, we find the best route to follow Canny edge pixels favoring stronger Canny
edge pixels. We mean best because building an optimal partial contour route by
taking possible strongest Canny edges (minimizing routing cost) according to
the descending sequence of multi-level detailed edge pixels, following LOD in
edge maps.

5 Experimental Results

We have experimented with easily available video sequences either available on
the Internet or generated with a home camcorder, SONY DCR-PC3. Recall our
background generation and tracked object removal assume all background ob-
jects are static, but major sequences of our experimental input video has moving
background objects. In tracking an object, neither Nguyen’s nor our approach
can handle big change in contour shape, but our approach performs better in
tracking a highly textured object. In deleting the tracked object and replacing
it by the background scene, we deleted bigger than the actually computed con-
tour in order to remove accumulation errors in generating the background scene.
We have generated 64 different LOD Canny edge maps, ordered them according
to the number of Canny edge pixels, and union simplest 18 (top 30 percent)
Canny edge maps to make Scanny Canny edge map. Figure 6[a-j] show a man
walking in a subway hall, and Figure 6[k-t] are corresponding background gen-
erated images. We tracked the upper body of the man because his pants color
is similar to that of the subway station floor (Figure 6[a]). Extremely difficult
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(a) input frame (b) frame #60 (c) frame #120 (d) frame #140 (e) frame #150

(f) frame #185 (g) frame #194 (h) frame #211 (i) frame #240 (j) frame #300

(k) bg(1) (l) bg(60) (m) bg(120) (n) bg(140) (o) bg(150)

(p) bg(185) (q) bg(194) (r) bg(211) (s) bg(240) (t) bg(300)

Fig. 6. Tracking and background generated (upper body removed) result

job is tracking walking legs because the contour shape changes heavily. The hall
tiles as well as a cross stripe shirt generate many complicated Canny edges. The
tracked contour shape and color changes as the man with a cross stripe shirt
rotates from facing the front to the back as he comes closer to a camera and
then moves away from it. There are many edge pixels in the background and
the subject has many edges inside the tracked contour. There are other people
moving in different directions (Figure 6[f-h]), in the background, causing errors
in background image generation(Figure 6[o-s]). To make tracking more difficult,
the face color of the tacked subject is similar to the hall wall color (Figure 6[a-
c]) while his shirt color is similar to that of stairs (Figure 6[f,g]), and tracked
body black hair is interfered with by a walking woman in Figure 6(f,g) and a
man with a black suit in Figure 6(h). Our tracked contour is bothered by these
interferences, but recovers as soon as we get Scanny edges for the interfered part.
Even under this complex circumstance, our boundary edge-based tracking and
background generation was successful. Full tracking movies can be downloaded
from http://www.cs.hongik.ac.kr/∼jhpark .

6 Conclusion

In this paper, we proposed a method of improving accuracy in tracking a highly
textured object and eliminating it to generate corresponding background scene.
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We start by selecting a boundary edge pixel from the simple (strong) Canny
edge map, referring to the most detailed edge map to get edge information along
the LOD Canny edge maps. Our basic tracking frame is determined from the
strong Canny edge map, and the missing edges are filled by the detailed Canny
edges along the LOD hierarchy. We minimize the possibility of accumulated
tracking errors by relying on the current Canny edge map only. If there is no edge
present, we may have a tracking error for the part. Whenever we get Scanny edge
information, the tracking error disappears, and we can restart accurate tracking
for the erroneous part. Our tracking condition is tougher to track compared to
Nguyen’s. Our experimental results show that our tracking approach is more
reliable in handling a bigger change of the tracked subject shape in a complex
scene, compared to Nguyen’s approach. Our background generation approach is
based on an attempt to use the result in detecting a moving object at the current
frame. Our current approach to handle big contour shape change is to use model
body based matching combined with the contour based approach presented in
this paper.1
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Abstract. This paper presents a new approach method to recognize facial ex-
pressions in various internal states using independent component analysis 
(ICA). We developed a representation of facial expression images based on in-
dependent component analysis for feature extraction of facial expressions. This 
representation consists of two steps. In the first step, we present a representation 
based on principal component analysis (PCA)  excluded the first 2 principal 
components to reflect well the changes in facial expressions. Second, ICA rep-
resentation from this PCA representation was developed. Finally, classification 
of facial expressions in various internal states was created on two dimensional 
structure of emotion with pleasure/displeasure dimension and arousal/sleep di-
mension. The proposed algorithm demonstrates the ability to discriminate the 
changes of facial expressions in various internal states. This system is possible 
to use in cognitive processes, social interaction and behavioral investigations of 
emotion.  

1   Introduction 

Most research on facial expression recognition includes studies using  six  basic emo-
tions of Ekman[1, 2, 3, 4, 5]. The six  basic emotions are fear, anger, sadness, happi-
ness, disgust and surprise. Such studies provide a convenient framework. But these 
studies have limitations for recognition of natural facial expressions which consist of 
several other emotions and many combinations of emotions. 

The dimensions of emotion can be overcome this limitation. The two most com-
mon dimensions are “arousal” (calm/excited), and “valence” (negative/positive). The 
study of Peter Lang has assembled an international archives of imagery rated by 
arousal and valence with image content [6]. Russell who argued that the dimension 
model can be applied to emotion recognition [7]. To recognize facial expressions in 
various internal states, we worked with dimensions of emotion instead of with basic 
emotions or discrete emotion categories. The dimensions of emotion proposed are 
pleasure/displeasure dimension and arousal/sleep dimension. 

Methods [8, 9, 10] for representing facial expression images have been proposed 
such as Optic flow and Geometric tracking method, Gabor representation, PCA (Prin-
cipal Component Analysis) and ICA (Independent Component Analysis). At recently 
study, PCA representation excluded the first 1 principal component in full face was 
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applied to input features of neural network classifier in work for facial expression 
recognition[10], and ICA filters was demonstrated the successful classifying twelve 
facial actions of the upper and lower face [11]. PCA representation excluded the first 
1 principal component can remove neutral expressions. ICA is a generalization of 
PCA which learns the high-order moments of the data in addition to the second-order 
moments [12]. We thought that ICA representation using PCA images excluded neu-
tral expression components in full face could be used effectively in the facial expres-
sion recognition as well.  

We present an approach to recognize facial expressions in various internal states 
using independent component analysis. We developed a representation of facial ex-
pression images based on independent component analysis for feature extraction of 
facial expressions. This representation consists of two steps. Firstly, we present a 
representation based on principal component analysis excluded the first 2 principal 
components to reflect well the changes in facial expressions. Secondly, ICA represen-
tation from this PCA images was developed. Finally, classification of facial expres-
sions in various internal states was created on two dimensional structure of emotion  
having pleasure/displeasure dimension and arousal/sleep dimension. 

2   Image Database 

The face images used for this research were a subset of the Korean facial expression 
database based on dimension model of emotion [13]. The dimension model explains 
that the emotion states are not independent one another and related to each other in a 
systematic way. This model was proposed by Russell [7]. The dimension model also 
has cultural universals and it was proved by Osgood, May & Morrison and Russell, 
Lewicka & Niit [14, 15]. 

 The data set with two dimension structure of emotion contained 498 images, 3 fe-
males and  3 males, each image using 640 by 480 pixels. Expressions were divided 
into two dimensions(Pleasure/Displeasure and Arousal/Sleep dimension) according to 
the study of internal states through the semantic analysis of words related with emo-
tion by Younga et al.  using 83 expressive words [16]. Each expressor of females and 
males posed 83 internal emotional state expressions when 83 words of emotion are 
presented. 51 experimental subjects rated pictures on the  degrees of expression in 
each of the two dimensions on a nine-point scale. The images were labeled with a 
rating averaged over all subjects. Examples of the images are shown in figure 1.  
Figure 2 shows a result  of  the dimension  analysis  of 44  emotion  words   related  to 
internal emotion states.  

 
 
 
 

Fig. 1. Examples from the facial expression database in various internal emotional state  
expressions 
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Fig. 2. The dimension analysis of 44 emotion  words  related to internal emotion states 

3   Independent Component Representation of Facial Expressions 

This section develops a representation of facial expression images based on independ-
ent component analysis for feature extraction. This representation consists of two 
steps. In the first step, we present a representation based on PCA  excluded the first 2 
principal components. Second, ICA representation from this PCA representation was 
developed. 

3.1   PCA Representation Excluded Neutral Expressions 

The face images used for this research were centered the face images with coordinates 
for eye and mouth locations, and then cropped and scaled to 20x20 pixels. The lumi-
nance was normalized in two steps. The rows of the images were concatenated to 
produce 1 ×  400 dimensional vectors. The row means are subtracted from the dataset, 
X. Then X is passed through the zero-phase whitening filter, V, which is the inverse 
square root of the covariance matrix:  

                     XVZXXEV T == − ,}{ 2

1

                             (1) 

From this process, Z  removes much of the variability due to lightening. Atick and 
Redlich [17] have argued for such compact, decorrelated representations as a general 
coding strategy for the visual system. Redundancy reduction has been discussed in 
relation to the visual system at several levels. A first-order redundancy is mean lumi-
nance. The variance, a second order statistic, is the luminance contrast. PCA is a way 
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of encoding second order dependencies in the input by rotating the axes to corre-
sponding to directions of maximum covariance. 

The first 1 or 2 principal components of PCA do not address the changes of facial 
expressions. It just  displays the neutral face. That is to say, the neutral face means 
redundant codes in facial expressions. Figure 3(a) shows PCA representation that 
included the first 2 principal components. But selecting intermediate ranges of com-
ponents that excluded the first 2 principal components of PCA do address well the 
changes in facial expression (Figure 3(b)).  

                                                                      
 

                                                        

 
 
 
 
        
                        

 
  (a)                                                                (b) 

Fig. 3.  (a) PCA representation only included the first 2 principal components (b) PCA repre-
sentation excluded  the first 2 principal components 

To extract information of facial expression excluded redundant codes such as neu-

tral expressions in facial expressions, we  employed the 200 PCA coefficients, nP , 

excluded the first 2 principal components of PCA of the face images. The principal 

component representation of the set of images in Z in Equation(1) based on  nP  is 

defined as nn PZY ∗= . The approximation of Z is obtained as: 

T
nn PYZ ∗= .                                             (2) 

The columns of nY  consist of input data  
∧
X  for ICA representation. 

3.2   Independent  Component Analysis Representation  

Independent component analysis (ICA) is a generalization of principal component 
analysis, which decorrelates the high-order moments of the input [12]. Much of the 
important information is contained in the high-order statistics of the images. In a task 
such as facial expression recognition, a representational basis in which the high-order 
statistics are decorrelated should consider changes in facial expressions. Therefore, 
we applied images after excluding the high-order statistics such as neutral expressions 
for feature extraction of facial expressions to ICA representation. 
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The images were converted to vectors and comprised the rows of a 252x200 data 

matrix, 
∧
X .  We assume the facial images in 

∧
X  to be a linear mixture of an known 

set of statistically independent source images U, where 1−= WA  is an unknown 
mixing matrix. The sources, U are gained by a matrix of learned filters, W. ICA repre-
sentation is generated according to the following linear model 

                                      
∧

= XWU                                                (3) 

This model was based on the image synthesis model of Olshausen and Field [18], 
and was also employed by Bell and  Sejnowski [19]. The weight matrix, W, was ob-
tained by using the FastICA algorithm [20].  The FastICA  algorithm computes the 
independent components that become uncorrelated by a whitening process and then 
maximizes non-Gaussianity of data distribution by using kurtosis maximization. The 

columns of the ICA output matrix, UXW =
∧

provided a factorial code for the training 

images in
∧
X . Each column of U contained the coefficients of the basis images in A 

for reconstructing each images in
∧
X . Figure 4 shows the factorial code representation 

in facial expression image. The columns of 1−= WA  consist of  basis images for the 
ICA factorial representation(Fig. 5). 

The representational code for the test images was found by testtest UXW =
∧

. 

testX
∧

 was the matrix excluded the first 2 principal components of test images and W 
was the weight matrix gained by performed ICA on the training images. 

 

*1u=             *2u+              *... nu++                   

 

Fig. 4.  ICA factorial representation=( nuuu ......,,2,1 ) 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5.  Basis images for the ICA factorial representation )( 1−=WA  
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4   Recognition Performance 

Facial expression recognition in various internal states was evaluated by the similarity 
measure on two dimensional structure of emotion having pleasure/displeasure dimen-
sion and arousal/sleep dimension. The coefficient vectors U in  each of the two di-
mensions  are given as  vectors of   

trainU  and  
testU .  Coefficient vectors in each test 

set were assigned to the class label of the coefficient vector in the training set that was 
most similar as evaluated by S: 

                                            

),min(
train

test

test

train

testtrain

testtrain

U

U

U

U

UU

UU
S

⋅= .                                     (4) 

 
252 images for training and 66 images excluded from the training set for testing are 

used. The first test verified with 252 facial images trained already. The recognition 
result by 252 images trained previously showed 100% recognition rates. The 66 im-
ages for test include 11 expression images of each six people. The class label consists 
of four sections on two dimensional structure of emotion. Figure 6 shows the sections 
of each class label.  

 

Fig. 6. The class region on two dimensional structure of emotion 

Table 1 gives a result of facial expression recognition recognized by proposed al-
gorithm on two dimensions of emotion and indicates a part of all. The recognition 
result in the Pleasure/Displeasure dimension of test set showed  90.9% and 66.6% in 
the Arousal/Sleep dimension. In Table 1, the first column indicates the emotion words 
of 11 expression images used for testing, the second and third columns include each  
dimension value on bipolar dimensions of test data. The fourth column in Table 1 
indicates the class label(C1,C2,C3,C4) of test data and the classification results rec-
ognized by proposed algorithm are shown in the fifth column. 
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Table 1. A result data of facial expression recognition recognized by proposed algorithm (Ab-
breviation: P-D,pleasure/displeasure;A-S,arousal/sleep;) 

Test  data Emotion word 
(person) 

  
P – D A – S

Class label 
of test data 

Recognized class 
label on proposed 
algorithm 

depression(a) 6.23 4.43      1 4 
crying(a) 6.47 4.10 1 1 
gloomy(a) 7.37 5.53 2 1 
strange(a) 6.17 5.17 1 1 
proud(a) 3.07 4.47 4 4 
confident(a) 3.47 4.57 4 1 
despair(a) 6.23 5.97 2 2 
sleepiness(a) 5.00 1.80 1 1 
likable(a) 1.97 4.23 3 3 
delight(a) 1.17 4.20 3 3 
boredom(a) 6.77 5.50 2 2 
pleasantness (b) 1.40 5.47 3 3 
depression (b) 6.00 4.23 1 1 
crying(b) 7.13 6.17 2 2 
gloomy(b) 5.90 3.67 1 1 
strangeness(b) 6.13 6.47 2 1 
proud(b) 2.97 5.17 3 3 
confident(b) 2.90 4.07 4 2 
despair(b) 7.80 5.67 1 2 
sleepiness(b) 6.00 1.93 4 3 
likable(b) 2.07 4.27 4 2 
delight(b) 1.70 5.70 3 2 
gloomy( c ) 6.60 3.83 1 1 
strangeness( c ) 6.03 5.67 2 2 
proud( c ) 2.00 4.53 4 4 
confident( c ) 2.47 5.27 4 4 
despair (c ) 6.47 5.03 2 2 
sleepiness( c ) 6.50 3.80 1 1 
likable(c) 1.83 4.97 4 4 
delight(c) 2.10 5.63 3 3 
boredom( c ) 6.47 5.73 2 1 
tedious( c) 6.73 4.77 1 1 
Jealousy( c ) 6.87 6.80 2 2 

5   Discussion 

This paper presents a new approach method to recognize facial expressions in various 
internal states using independent component analysis. The recognition results of each 
dimension through similarity measure were significant 90.9% in Pleasure/Displeasure 
dimension and 66.6% in the Arousal/Sleep dimension. The two dimensional structure 
of emotion in the facial expression recognition appears as a stabled structure for the 
facial expression recognition. 

Pleasure/Displeasure dimension was significant 90.9%, while Arousal-Sleep di-
mension was significant 66.6%. Pleasure-Displeasure dimension is analyzed as a 
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more stable dimension than Arousal-Sleep dimension. When the full face was pre-
sented, facial expressions based ICA were successfully recognized. This findings 
means that holistic analysis is important for facial expression recognition. It may be 
reflected by PCA-based representation excluded the first 2 PCs components. Our 
result may be analyzed that the inference  of emotional states within a subject from 
facial expressions may depends more on  the Pleasure/Displeasure dimension than 
Arousal/Sleep dimension.  

Our current results tested different expressions of same person. In the future work, 
we will consider real-time recognition on sequences of images and work in the per-
son-independent mode recognizing new person’s expressions. 

Acknowledgements. This work was supported by the Korea Research Foundation 
Grant funded by the Korean Government  (KRF-2005-042-D00285). 
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Abstract. We present a new approach method for gender identification on the 
teeth  based on  PCA (principal component analysis) representation using geo-
metric features of teeth such as the size  and shape of the jaws, size of the teeth 
and teeth structure. In this paper  we try to set forth the foundations of a biomet-
ric system for automatic evaluation of gender identification using dental geomet-
ric features. To create a gender identification system, a template based on PCA is 
created from dental data collected the plaster figures of teeth which were done at 
dental hospital, department of oral medicine. Templates of dental images based 
on PCA representation include the 18 principal components as the features for 
gender identification. The PCA basis vectors reflects well the features for gender 
identification in the whole of teeth. The classification for gender identification is  
generated based on the nearest neighbor (NN) algorithm. The gender identifica-
tion performance in dental images of 50 person  was  76%. The identified values 
in females and males were 79.3% and 71.4%, respectively. 

1   Introduction 

Gender differences in terms of structure and size of the teeth are frequently empha-
sized [1,2,3,4].   

McCord et al. attempted to determine whether patients, dental students and prost-
hodontists could distinguish age and sex from photographs of trial arrangements. It 
was reported that they were difficult to distinguish sex or age [5]. Sellen et al. studied 
the fact that the outline forms through superimposition had an correlation among face, 
arch and tooth forms [6]. Semih et al. stated the experts were difficult to distinguish 
the gender by the visual assessment [4]. All of these approaches seem to provide a 
much improved method by anterior tooth selection, tooth face and arch form [4,6]. 
But these methods were unsuccessful in distinguishing the actual sex. Our algorithm 
utilizes information about differences in the size  and shape of the jaws, size of the 
teeth and teeth structure.  

In this paper, we present a new approach method for gender identification based on 
PCA (principal component analysis) using geometric features of teeth like the size  
and shape of the jaws, size of the teeth and teeth structure. First, we collected the 
plaster figures of teeth from the department of oral medicine in dental hospital. Sec-
ond, we developed a representation of dental images based on PCA included the 18 
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principal components as the features for gender identification. Finally, the nearest 
neighbor (NN) algorithm for gender identification was applied.  

2   PCA Representation for Gender Identification  

2.1   Preprocessing 

Dental data was a database of the plaster figures of teeth which  were done at Chosun 
University dental hospital, department of oral medicine. The data set contained im-
ages  of 350 individuals of males and females. Each person has  two images in a up-
per jaw and lower jaw. The data set used for research contained 347 gray level images 
in a upper jaw, each image using 800 by 600 pixels. Examples of the original images 
are shown in figure 1.  

The dental images were centered with fixed coordinates locations, and then 
cropped and dug the palatine by semi-automatic method with a teeth template. Fi-
nally, The images were scaled to 30x30 pixels. Figure 2(b) shows the image dug the 
palatine with a teeth template(Figure 2(a)). 

Fig. 1. Examples in a upper jaw  from the dental database 

                                                                                      
                     (a)                                                         (b) 

Fig. 2. (a) A teeth template (b) A dental image dug by a teeth template (a)

The luminance was normalized in two steps. First, a “sphering” step prior to prin-
cipal component analysis is performed. The rows of the images were concatenated to 
produce 1 ×  900 dimensional vectors. The row means are subtracted from the dataset, 
X. Then X is passed through the zero-phase whitening filter, V, which is the inverse 
square root of the covariance matrix: 

                                              

XVW

XXEV T

=
= − 2

1

}{                                               (1) 
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This indicates that the mean is set to zero and the variances are equalized as unit 
variances. Secondly, we subtract the local mean gray-scale value from the sphered  
each patch. From this process, W removes much of the variability due to lightening.  

2.2   PCA  Representation 

PCA provides a dimensionality-reduced  code that  separates the  correlations  in  the  
input. Atick and Redlich[7] have argued for such compact, decorrelated representa-
tions as a general coding strategy for the visual system. Redundancy reduction has 
been discussed in relation to the visual system at several levels. A first-order redun-
dancy is mean luminance. The variance, a second order statistic, is the luminance 
contrast. PCA is a way of encoding second order dependencies in the input by rotating 
the axes to corresponding to directions of maximum covariance. 

For gender identification based on dental feature, we  employed the first 18 PCA 

coefficients, nP . The principal component representation of the set of images in W in 

Equation(1) based on  nP  is defined as nn PWY ∗= . The approximation of W is 

obtained as: 
T

nn PYW ∗= .                                            (2) 

The columns of nY  contains the representational codes for the training images. The 

representational code for the test images was found by T
ntesttest PWY ∗= (see figure 3). 

Best performance for gender identification based on dental feature was obtained using 
the first 18 principal components. 

Fig. 3. PCA representation included the first 18 principal components 

3   Results 

Recognition performance for gender identification was evaluated by the  coefficient  
vectors  Y by the nearest neighbor (NN) algorithm. The principle of the NN algorithm 
is that of comparing input image patterns against a number of paradigms and then 
classifying the input pattern according to the class of the paradigm that gives the clos-
est match.  
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The coefficient vectors Y are given as  vectors of   
trainY  and  

testY .  Coefficient 

vectors in each test set were assigned the class label of the coefficient vector in the 
training set that was most similar as evaluated by S:

                                         ),min(
train

test

test

train

testtrain

testtrain

Y

Y

Y

Y

YY

YY
S

⋅
= .                             (3) 

The first test verifies with 297 person images of  upper jaw trained already. The 
recognition result was produced by 297 images trained previously showed 100% 
recognition rates. For testing, 50 person images excluded in the training set were 
used. The gender identification performance in 50 person dental images was 76%. 
The identified values in females and males were 79.3% and 71.4%, respectively.  

4   Discussion  and Conclusions 

This paper propose a new approach method for gender identification  based on princi-
pal component analysis using geometric features of teeth such as the size  and shape 
of the jaws, size of the teeth and teeth structure. This simulation demonstrates that 
PCA representation included the first 18 principal components can solve a challeng-
ing problem for distinguishing the actual sex by the visual assessment from person. 
This result means PCA representation could detect some characteristic features for 
distinguishing teeth between female and male. 

Our system extracts PCA representation included only the first 18 principal com-
ponents from image scaled to 30x30 image and gender identification was produced 
over 76% recognition rates. It can reflect the fact that the global feature is important 
for gender identification based on geometric features of teeth such as the size  and 
shape of the jaws, size of the teeth and teeth structure. The proportions of females and 
males identified 79.3% and 71.4%, respectively.  

We suggest that PCA-based gender identification could identify the actual sex of 
the subjects correctly and the same in both evaluations. This can be explained by the 
fact that the experts, instead of basing on some objective parameters, usually make 
their decisions depending on their simultaneous perception and according to the ac-
cepted assumptions regarding the sex related differences of tooth forms.  
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Abstract. This paper presents a new scheme for synthesizing hand mo-
tion to grasp various objects. Hand motion has a variety of expression
with its high degrees of freedom and the functional motions are espe-
cially complex and difficult to synthesize. This paper focuses on a fact
that actual grasp motion varies depending on the features of the object
including its size and shape, which give important clues for reproducing
a proper hand motion to manipulate them. Based on this idea, we pro-
pose a scheme to sample grasp motions and synthesize the whole hand
motion including approach to the object, preparation of the hand shape
and grab motion. Synthesized animation demonstrated a potential for
easily designing functional motions for hand animation.

Keywords: Hand motion, grasp, motion capture, animation.

1 Introduction

Hand motion is one of the key aspects to provide reality for computer generated
human figures, which may act in movies, video games and so forth. They may
even show how to fasten your seatbelt on monitor displays when you are board
on an aircraft. Computer graphics (CG) effectively shows instructions includ-
ing some motions, while even just a simple and easy motion is hard to design
sometimes.

We consider that the active hand motion can be roughly divided into gesture
type and functional one. The gesture motion is used for showing some signs by
specific hand’s shapes or motion patterns. Whereas the most typical examples
are finger alphabets and sign languages which have established systems, we use
a lot of common gestures in daily life as well. While the gesture motions are
performed with nothing in the hand, functional motions involve physical contacts
and interactions with other objects when drinking a glass of water, opening the
door, and every single behavior in the life. Grasp is one of the most fundamental
and mostly initial motions among those quite a number of functional ones.

As for synthesizing the motion, linguistic systems and typical patterns in ges-
ture type motion have advantages for systematically preparing the motion data
and reusing them for generating a new motion [1,2,3]. On the other hand, a
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functional motion varies so heavily depends on each object to be manipulated
that systematic motion synthesis is difficult. This paper proposes a new system-
atic scheme for data preparation and synthesis of grasp motion, focusing on the
target objects’ features such as rough geometries and sizes.

2 Proposed Framework

Keyframing is one of the traditional and still powerful methods to create human
motion. To prepare natural keyframes, constrain-based approaches are proposed
for generating human-like postures [4,5]. In terms of dynamics of the hand motion
and the task which involves physical interactions between the hand and the
object, physical simulation is also effective method [6]. In either approaches,
initial motion path is necessary for simulation in many cases. Minimization of a
energy cost function can be also applied for planning a natural motion path.

This paper focuses especially on observations of actual human motion to grasp
objects. It can be assumed that we intentionally/unintentionally comprehend the
objects’ information including shapes, sizes, functions, surface textures etc [7].
in the daily life and such comprehension leads us to select a proper way to grab
the objects naturally. In fact, many objects’ shapes are designed by expecting
how to handle them; e.g. doorknobs, mug cups, switches in electronic products,
and many other commodities.

Observation-based approach has been introduced in robotics researches for
task learning by articulated robots [8,9]. Yahya captured whole body motions
and stored them in a database, which is used for synthesizing motions of a
virtual human who takes objects in a computer generated world [10]. Kitamura
gathered hand motion data and categorized them by kinematics similarity for
reusing to synthesize hand motions [11]. Ying focused hand shapes and object
surface shapes and proposed a fast algorithm for shape feature matching between
possible hand shape and the object surface [12]. Storing variety hand shape data
allows producing suitable hand postures for arbitrary object to be grasped.

Our targeting framework is similar to that of the knowledge-based motion
planning approach[13] and our approach to acquire the life-like motion rules is
based on observing whole motions of the actual grasp. To record the various
grasp behaviors for different geometry types of objects we employ optical mo-
tion capturing techniques, too. The target motion scenarios are categorized and
prepared based on fundamental geometrical features of the objects and relative
hand direction to approach them. As far as the shape of every single object can
be approximated as combination of limited types of primitive geometry, it is
possible to apply the sampled motion data to new motion synthesis. To adjust
the synthesized data so as to grasp a new object properly, categorized motion
pattern sets are available to refer for interpolating with respect to the feature
parameter. Grasp motion is completed when the finger tips contact the surface
of the object. This procedure can be achieved by collision detection techniques
effectively.
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3 Storing Grab Motion

3.1 Motion Capture

One of the popular devices for capturing hand postures and motions is glove
type sensor, in which the finger motions are mainly considered as flexion and
extension. However, especially for grasp motion, destinations of the finger tips are
concentrated according to the object size. This motion requires a combination of
adduction and flexion for each finger. We employed an optical motion capturing
system (MAC3D System by Motion Analysis inc. [14]) to capture the precise
differences of the finger motion arisen from variations of object’s features. We
settled the vision sensors as shown in Fig.1. As the optical markers are directly
attached on the hand surface, whole hand motion is captured as time sequences
of each markers position in an identical 3D space with less physical constraints.
Additionally, we also put 3 markers on the wrist to record the approach path
toward the object.

Fig. 1. Optical markers (left) and hand motion capture setup (right)

flexion angle

abduction angle

abduction angle

Fig. 2. Skeletal posture model Fig. 3. Grasp motion with the proposed

Model
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Fig. 4. Grasp motion phases
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Fig. 5. Motion data for grasping cubic objects from the side

3.2 Hand Posture Model

Many traditional hand skeletal models have about 23 degrees of freedom (DOFs)
[15]. They miss information about deformation of the back of the hand (equiva-
lent to palm deformation) and twisting motion for the fingers. The directions of
the rotation axes are varying during the flexion of the fingers[16]. To cover these
DOFs and to allow flexible reusability of the captured motion data, we designed
a skeletal model shown in Fig.2.

Fig.3 shows an example of sampled data for grasping a cylindrical object. As
bending the fingers, palm shape is rounded and each rotational axis of the flexion
slightly changed so that tips are gathered toward the middle finger and natural
motion can be expressed by the skeletal model we prepared.

3.3 Captured Motion

Phases in Grasp Motion. Fig.4 shows flexion angles of an index finger and
normalized distance from the object in a case of grasping top part of a cylin-
der shaped object. We recorded the motion from the same starting point in the
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measurement setup and the distance from the wrist to the object can be nor-
malized so that the start to the end is mapped as 1 to 0.

We divided the whole sequence of the grasp motion into three phases; prepare,
approach and hold. In the prepare phase, according to the targeted object’s shape
and size, the whole shape of the hand and wrist direction are roughly determined.
Then approach phase gets close to the object, adjusting the hand shape. Finally,
each finger contacts the object with further flexion in the hold phase.

Grasp Patterns. We observed that the different object features lead different
grasp patterns for whole motion. Previously, a grasp motion profile in the case
of targeting the top of a cylinder (Fig.4) showed earlier preparation of the hand
shape to hold the target. In the case for targeting the side of the same cylinder
(Fig.5), hand is gradually opening during the approach. Fig. 6 shows profiles of
joint angles of index finger in grasping cubic objects. In the case of targeting a
larger cube (130mm width), 1st joint moves quickly to open the hand, adjusting
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Fig. 6. Grasp data for different sizes of cubic objects (right: 45mm width, left: 130mm

width)
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Fig. 7. Similar grasp patterns for the same object with different sizes
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Approach direction

Primitive
Geometries

Nearest direction 
is selected.

Fig. 8. Conceptural scheme for grasp generation
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Fig. 9. Joint trajectory generation by interpolation among similar patterns

to the size of the target. For smaller cube (45mm width), 2nd joint is dominantly
moved to adjust to the target size in grasp phase. We assured that motion pattern
differences due to the type of object shape.

Fig.7 shows the cases for grasping top part of the cylinders of 95mm φ and
120 mm φ. X axis shows normalized distance. This profile represents similarity
of the grasp pattern for the same shape object. Final finger shapes are different
due to the sizes but analogy can be seen in each of the phase sequences.

4 Grab Motion Synthesis

4.1 Process

For synthesizing the grasp motion, the geometry of every virtual (CG) object
are approximated as a single primitive or a combination of multiple primitives.
Each grasp motion pattern is recorded in real motion capture. As shown in
Fig. 8, the approach direction of the virtual hand indicates the primitive to be
targeted. Thus the natural motion can be synthesized by referring similar pat-
terns for grasping the same primitive type stored in the system beforehand. The
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Fig. 10. A bottle object(left) and synthesized grasp for thin part of a bottle (right)

primitives are simple polyhedrons circumscribing the CG objects. Interpolating
among the similar motion patterns for the different sizes of the same type of the
primitive targets allows adjusting to any newly targeted primitive (Fig. 9). To
complete the grasp motion, hold phase motion is extrapolated till every finger
contacts the surface of the actual object, using collision detection technique. Fig.
9 shows synthesizing grasp for a 75mm φ cylinder primitive by interpolating the
motion patterns of grasping a 65mm φ and a 85mm φ cylinder. For implementing
collision detection process[17,18], we used a open library called ColDet[19].

4.2 Animation Synthesis

Fig.10(left) shows a target model of a bottle we used for demonstrating the pro-
posed method. This target has 3 different primitives. Fig. ?? shows an animation
sequence when grasping upper part of the bottle. Fig. 12 shows grasping lower
part. On each figures, left row shows the wrist trajectory we gave to the system
as an input. In this implementation, we manually assigned the primitives to the
bottle objects. One of our future works is addressed to automatic process for
estimating the rough topology, splitting into primitive parts and assigning the
circumscribing polyhedron to the CG object. Many foregoing works for mesh
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Fig. 11. Synthesized grasping for thick part of a bottle (side view)

simplification and polygon reduction techniques[20,21] can be applied for taking
care of variety of CG objects to be grasped.

5 Discussion and Conclusion

This paper presented a new approach for reusing motion data for synthesizing
grasp motion including approaching trajectory and grab motion. This approach
gives an effective scheme for sampling and storing actual grasp motion as well.
The proposed method is applicable for any polygonal CG object by assigning
primitive geometry. Collision detection process also functions effectively to adjust
the detailed shape of the object. We observed that some unnatural motions were
generated when the contact timing of finger tips were too different. This is caused
by extrapolation of the sampled motion data in grasp phase. Motion generation
of each finger is basically terminated when contacting the surface of the object.
However, earlier terminated finger motion is also to be extrapolated till all the
other fingers reach the object surface in our current implementation. This force
to extrapolate the measured position of a finger staying still and thus the finger
may be bent in impossible direction by extrapolated (magnified) measurement
noise. This situation can be avoided by independent control for terminating the
motion synthesis for each finger.
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Fig. 12. Synthesized grasping for thick part of a bottle (top view)

Actually the measured data patterns are not always the same as we defined 3
phases even for the same person with the same object, however the motion itself
is so natural in a way that this is one of the real grasp motions. However, our
current implementation is not so flexible to synthesize various motion pattern
for one condition. Our future work is to extend the proposed frame work to
generate variation of possible motion patterns for the same object so that the
user can adjust to the desired motion.
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Abstract. In this paper, we introduce a framework for carrying object detection
in different people from different views using pose preserving dynamic shape
models. We model dynamic shape deformations in different people using kine-
matics manifold embedding and decomposable generative models by kernel map
and multilinear analysis. The generative model supports pose-preserving shape
reconstruction in different people, views and body poses. Iterative estimation of
shape style and view with pose preserving generative model allows estimation of
outlier in addition to accurate body pose. The model is also used for hole filling in
the background-subtracted silhouettes using mask generated from the best fitting
shape model. Experimental results show accurate estimation of carrying objects
with hole filling in discrete and continuous view variations.

1 Introduction

This paper presents a new approach for carrying object detection using a dynamic shape
model of human motion with decomposition of body pose, shape style and view. To
model nonlinear shape deformations by multiple factors, we propose kinematics man-
ifold embedding and kernel mapping in addition to multilinear analysis of collected
nonlinear mappings. The kinematics manifold embedding, which represents body con-
figuration invariant to different people and views in low dimensional space based on
motion captured data, is used to model dynamics of shape deformation according to in-
trinsic body configuration. The intrinsic body configuration has one-to-one correspon-
dence with kinematics manifold (Sec. 2.1). Using this kinematics manifold embedding,
individual differences of shape deformations can be solely contained in nonlinear map-
pings between manifold embedding points and observed shapes. By utilizing multilin-
ear analysis for collection of these nonlinear mappings in different people and views,
we can achieve decompositions of shape styles and views in addition to the body poses
(Sec. 2.2). Iterative estimation of body pose, shape style and view parameters for the
given decomposable generative model provides pose preserving, style preserving re-
construction of shape in different view human motion (Sec. 2.3).

The proposed pose preserving, dynamic shape models are used to detect carrying
objects from sequences of silhouette images. The detection of carrying objects is one
of the key element in visual surveillance systems [7]. The performance of gait recog-
nition is degraded dramatically when people carry objects like briefcases [13]. Our
pose-preserving dynamic shape model detects carrying objects as outliers. By removing
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outliers from extracted shape, we can estimate body pose and other factors accurately
in spite of variations of shapes due to carrying objects (Sec. 3.3). Hole filling based
on signed distance representation of shape (Sec. 3.1) also helps correcting shapes from
inaccurate background subtraction (Sec. 3.2). Iterative procedure of hole filling and out-
lier detection using pose preserving shape reconstruction achieves gradual hole filling
and advance in precision of carrying objects detection in iterations (Sec. 3.4). Experi-
mental results using CMU Mobo gait database [6] and our own dataset from multiple
views show accurate estimation of carrying object with correction of silhouettes from
multiple people and multiple view silhouettes with holes (Sec. 4).

1.1 Related Work

There have been a lot of work on contour tracking from cluttered environment such as
active shape models (ASM) [2], active contours [8], and exemplar-based tracking [15].
However, there are few works to model shape variations in different people and views
as a generative model with capturing nonlinear shape deformations. The framework to
separate the motion from the style in a generative fashion was introduced in [5] where
the motion is represented in a low dimensional nonlinear manifold. Nonlinear manifold
learning technique can be used to find intrinsic body configuration space [18,5]. How-
ever, discovered manifolds are twisted differently according to person styles, views,
and other factors like clothes in image sequences [4]. We propose kinematics mani-
fold embedding as an alternative uniform representation of intrinsic body configuration
(Sec. 2.1).

In spite of the importance of carrying objects detection in visual surveillance system,
there has been few works focused on carrying objects detection due to difficulties in
modeling variations of shape due to carrying objects. By analyzing symmetry in silhou-
ette model, carrying objects can be detected by aperiodic outlier regions [7]. Amplitude
of the shape feature and the location of detected objects are constrained in [1] to im-
prove accuracy of carrying object detection. Detecting outlier accurately and removing
noise and filling hole in extracted silhouette still remains unresolved.

Shape models are used for segmentation and tracking using level sets [16,11]. Shape
priors can be used for pose-preserving shape estimation. However, previous shape prior
models like [11] cannot represent dynamic characteristics of shape deformations in hu-
man motion. This paper proposes gradual detection of outlier, and correction of noise
silhouette by hole filling and outlier removal using pose-preserving dynamic shape
model.

2 Pose Preserving Dynamic Shape Models

We can think of the shape of a dynamic object as instances driven from a generative
model. Let yt ∈ R

d be the shape of the object at time instance t represented as a point
in a d-dimensional space. This instance of the shape is driven from a model in the form

yt = γ(bt ;s,v), (1)

where the γ(·) is a nonlinear mapping function that maps from a representation of the
body pose bt into the observation space given a mapping parameter s,v that character-
izes shape style and view variations in a way independent of the configuration. Given
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this generative model, we can fully describe observation instance yt by state parameters
bt , s, and v. In the generative model, we model body pose bt invariant to the view and
shape style. We need a unified representation for body configuration invariant to the
variation of observation in different person and in different view. Kinematics manifold
embedding is used for intrinsic manifold representation of body configuration bt .

2.1 Kinematics Manifold Embedding

We find low dimensional representation of kinematics manifold by applying nonlinear
dimensionality reduction techniques for motion captured data. We first convert joint
angles of motion capture data into joint locations in three dimensional spaces. We
align global transformation in advance in order to model motions only due to body
configuration change. Locally linear embedding (LLE) [12] is applied to find low di-
mensional intrinsic representation from the high dimensional data (collections of joint
locations). The discovered manifold is one-dimensional twisted circular manifold in
three-dimensional spaces.
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Fig. 1. Kinematics manifold embedding and its mean manifold: two different views in 3D space

The discovered manifold is represented using a one-dimensional parameter by spline
fitting. We use multiple cycles to find kinematics intrinsic manifold representation by
LLE. For the parametrization of kinematics manifold, we use mean-manifold represen-
tation from the multiple cycle manifold. The mean manifold can be found by averaging
multiple cycles after detecting cycles by measuring geodesic distance along the mani-
fold. The mean-manifold is parameterized by spline fitting by a one-dimensional para-
meter βt ∈ R and a spline fitting function g : R → R

3 that satisfies bt = g(βt), which
is used to map from the parameter space into the three dimensional embedding space.
Fig. 1 shows a low dimensional manifold from multiple cycles motion captured data
and their kinematics mean manifold representation.

2.2 Modeling Shape Variations Using Decomposable Generative Models

Individual variations of shape deformations can be discovered in the nonlinear mapping
space between the kinematics manifold embedding and the observation in different peo-
ple. If we have pose-aligned shapes for all the people, then it becomes relatively easy
to model shape variations in different people. Similarly, as we have common represen-
tation of the body pose, all the differences of the shape deformation can be contained
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in the mapping between the embedding points and observation sequences. We employ
nonlinear mapping based on empirical kernel map [14] to capture nonlinear deforma-
tion in difference body pose. There are three steps to model shape deformations in
decomposable nonlinear generative models. Here we focus on walking sequence but
the framework can be applicable to other motion analysis in different variation factors.

First, for a given shape deformation sequence, we detect gait cycles and embed col-
lected shape deformation data to the intrinsic manifold. In our case, kinematics man-
ifold is used for embedding in each detected gait cycle. As the kinematics manifold
comes from constant speed walking motion captured data, we embed the shape se-
quence in equally spaced points along the manifold. Second, we learn nonlinear map-
pings between the kinematics embedding space and shape sequences. According to the
representer theorem [9], we can find a nonlinear mapping that minimizes the regularized
risk in the following form:

f (x) =
m

∑
i=1

αik(xi,x), (2)

for given patterns xi and target values yi = f (xi). The solutions lie on the linear span
of kernels centered on data points. The theorem shows that any nonlinear mapping is
equivalent to a linear projection from a kernel map space. In our case, this kernel map
allows modeling of motion sequence with different number of frames as a common
linear projection from the kernel map space. The mapping coefficients of the linear
projection can be obtained by solving the linear system

[ysv
1 · · ·ysv

Nsv
] = Csv[ψ(xsv

1 ) · · ·ψ(xsv
Nsv

)]. (3)

Given motion sequences with Ns shape styles and Nv views, we obtain Ns × Nv num-
ber of mapping coefficients. Third, multi-linear tensor analysis is applied to decompose
the gait motion mappings into orthogonal factors. Tensor decomposition is achieved by
higher-order singular value decomposition (HOSVD) [17], which is a generalization of
SVD. All the coefficient vectors can be arranged in an order-three gait motion coeffi-
cient tensor C with a dimension of Ns ×Nv ×Nc, where Nc is the dimension of the map-
ping coefficients. The coefficient tensor can be decomposed as C = A ×1 S ×2 V ×3 F
where S is the collection of the orthogonal basis for the shape style subspace. V repre-
sents the orthogonal basis of the view space and F represents the basis of the mapping
coefficient space. A is a core tensor which governs the interactions among different
mode bases.

The overall generative model can be expressed as

yt = A × s× v× ψ(bt). (4)

The pose preserving reconstruction problem using this generative model is the estima-
tion of parameter bt , s, and v at each new frame given shape yt .

2.3 Pose Preserving Reconstruction

When we know the state of the decomposable generative model, we can synthesize
the corresponding dynamic shape. For given body pose parameter, we can reconstruct
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best fitting shape by estimating style parameter and view parameter with preserving the
body pose. Similarly, when we know body pose parameter and view parameter, we can
reconstruct best fitting shape by estimating style parameter with preserving view and
body pose. If we want to synthesize new shape at time t for a given shape normalized
input yt , we need to estimate the body pose xt , the view v, and the shape style s which
minimize the reconstruction error

E(xt ,v,s) =|| yt −A × v× s× ψ(xt) || . (5)

We assume that the estimated optimal style can be written as a linear combination of
style class vectors in the training model. Therefore, we need to solve for linear regres-
sion weights α such that sest = ∑Ks

k=1 αksk where each sk is one of the Ks shape style
vectors in the training data. Similarly for the view, we need to solve for weights β such
that vest = ∑Kv

k=1 βkvk where each vk is one of the Kv view class vectors.
If the shape style and view factors are known, then equation 5 reduces to a nonlin-

ear 1-dimensional search problem for a body pose bt on the kinematics manifold that
minimizes the error. On the other hand, if the body pose and the shape style factor
are known, we can obtain view conditional class probabilities p(vk|yt ,bt ,s) which is
proportional to the observation likelihood p(yt | bt ,s,vk). Such the likelihood can be
estimated assuming a Gaussian density centered around A × vk × s × ψ(bt), i.e.,p(y |
bt ,s,vk) ≈ N (C × vk × s× ψ(bt),Σ vk

).
Given view class probabilities we can set the weights to βk = p(vk | y,bt ,s). Similarly,

if the body pose and the view factor are known, we can obtain the shape style weights by
evaluating the shape factor given each shape style class vector sk assuming a Gaussian
density centered at C × v× sk ×ψ(bt). An iterative procedure similar to a deterministic
annealing where in the beginning the each view and shape style weights are forced to
be close to uniform weights to avoid hard decisions about view and shape style classes,
is used to estimate xt ,v,s from given input yt . To achieve this, we use variables, view
and style class variances, that are uniform to all classes and are defined as Σ e = Tvσ2

v I
and Σ s = Tsσ2

s I respectively. The parameters Tv and Ts start with large values and are
gradually reduced and in each step and a new configuration estimate is computed.

3 Carrying Object Detection

We can detect carrying objects by iterative estimation of outlier using the generative
model that can synthesize pose-preserving shapes. In order to achieve better alignment
in normalized shape representation, we performed hole filling and outlier removal for
the extracted shape iteratively.

3.1 Shape Representation

For consistent representation of shape deformations in variant factors, we normalize
silhouette shapes by resizing and re-centering. To be invariant to the distance from
camera and different height in each subject, we normalized the extracted silhouette
height from background-subtracted silhouettes. In addition, the horizontal center of the
shape is re-centered by the center of gravity of silhouette blocks. We use silhouette
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blocks whose sizes are larger than a specific threshold value for consistent centering
of shape in spite of small incorrect background block due to noise and shadow. we
perform normalization after morphological operation and filtering to remove noise spot
and small holes.

We parameterize the motion shape contour using signed distance function with lim-
itation of maximum distance for robust shape representation in learning and matching
shape contour. Implicit function z(x) at each pixel x such that z(x) = 0 on the contour,
z(x) > 0 inside the contour, and z(x) < 0 outside the contour are used, which is typically

used in level-set methods [10]. We add threshold values d
T Hp
c − dTHn

c as follows,

z(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d

T Hp
c dc(x) ≥ d

T Hp
c

dc(x) x inside c
0 x on c
−dc(x) x outside c
−dTHn

c −dc(x) ≤ −dT Hn
c

, (6)

where the dc(x) is the distance to the closest point on the contour c with a positive
sign inside the contour and a negative sign outside the contour. We threshold distance
value dc(x) by d

T Hp
c and −dTHn

c as the distance value beyond certain distance does not
contain meaningful shape information in similarity measurements. Such representation
imposes smoothness on the distance between shapes and robustness to noise and outlier.
In addition, by changing threshold value gradually, we can generate mask to represent
inside of the shape, which is useful in gradual hole filling. Given such representation,
an input shape sequence is points in a d dimensional space, yi ∈ R

d , i = 1, · · · ,N where
all the input shapes are normalized and registered and d is the dimensionality of the
input shape vector , and N is the number of frame in the sequence.

3.2 Hole Filling

We fill holes in the background-subtracted shape to attain more accurate normalized
shape representation. When the foreground color and the background color are the
same, most of the background subtracted shape silhouettes have holes inside the ex-
tracted shape. This can cause inaccurate description of shape in normalization and in
signed distance representation. A Hole can induce misalignment in normalized shape
as the hole can cause shifting the center of gravity for the horizontal axis alignment.
In addition, holes inside shape result in inaccurate shape description in signed distance
representation. So, holes can cause incorrect estimations of the best fitting shape to the
given observation.

We utilize inside shape mask generated from shape models to fill holes in the original
shape. We can generate the mask to represent inside of the shape for estimated style,
view, and body pose parameters by threshold in the signed distance representation.

h(x)hole mask =
{

1 dc(x) ≥ dT Hhole
c

0 otherwise
, (7)

where dT Hhole
c ≥ 0 is the threshold value for the inner shape mask for hole filling. If the

threshold value is zero, the mask will be the same as the silhouette image generated
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by the nonlinear shape model for the given style, view and configuration. As we don’t
know the exact shape style, view and configuration at the beginning, and as holes can
causes misalignments, we start from a large threshold value, which generates a small
mask of the inner shape area in order to be robust to any misalignment and inaccurate
state estimation. We reduce the threshold value as estimated model parameters get more
accurate.

The hole filling operation can be described by yhole f illing = z(bin(y)⊕ h(yest)),
where ⊕ is logical OR operator to combine extracted foreground silhouette and mask
area, bin(·) converts signed distance shape representation into binary representation,
and z(·) convert binary representation into signed distance representation with thresh-
old. Fig. 2 shows an initial shape normalized silhouette with holes (a), the best estimated
shape model (b) which is generated from the generative model with estimated style and
view parameters and body configuration, and the hole mask (c) when dT Hhole

c = 3, and
a new shape after hole filling (d). We improve the best matching shape by excluding
mask area in the computation of the similarity measurement for generated samples in
searching the best fitting body pose. Re-alignment of the shape and re-computation
of the shape representation after hole filling provide better shape description for next
iteration.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Hole filling using mask from the best fitting model : (a) Initial normalized shape with
holes. (b) The best matching shape. (c) Overlapping with initial silhouette and mask from the best
matching shape. (d) New shape with hole filling. (e) A normalized shape for outlier detection. (f)
Euclidian distance error. (g) Detected outliers. (h) A new shape after outlier removal.

3.3 Carrying Object Detection

Carrying objects are detected by estimating outliers from the best matching normal dy-
namic shape from the given input shape. Outliers of a shape silhouette with carrying
objects are mismatching parts in input shape compared with the best matching normal
walking shape. Carrying objects are the major source of mismatching when we com-
pare with normal walking shape even though other factors such as inaccurate shape
extraction, shape misalignment can also cause mismatches. For accurate detection of
carrying objects from outliers, we need to remove other source of outlier such as holes
and misalignment in shapes. Hole filling and outlier removal are performed iteratively
to improve shape representation for better estimation of the matching shape.

We gradually reduce the threshold value for outlier detection to get more precise es-
timation of outlier progressively. The mismatching error e(x) is measured by Euclidian
distance between signed distance input shape and best matching shape generated from
the dynamic shape model,
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ec(x) = ||zc(x)− zest
c (x)|| . (8)

The error e(x) increases linearly as the outlier goes away from the matching shape
contour due to signed distance representation. By threshold the error distance, we can
detect outliers.

O(x)outlier mask =
{

1 ec(x) ≥ eT Houtlier
c

0 otherwise
, (9)

At the beginning, we start from large eT Houtlier
c value. We reduce the threshold value

gradually. Whenever we detect outliers, we remove the detected outlier areas and per-
form realignment to reduce misalignment due to the outliers. In Fig. 2, for given signed
distance input shape (e), we measure mismatching error (f) by comparing with best
matching shape (b). Outlier is detected (g) with given threshold value eT Houtlier

c = 5, and
new shape for next iteration is generated by removing outlier (h). This outlier detec-
tion and removal procedure is combined with hole filling as both of them help accurate
alignment of shape and estimation of the best matching shape.

3.4 Iterative Estimation of Outliers with Hole Filling

An iterative gradual estimation of outliers, hole filling and outlier removal is performed
by threshold value control. The threshold value for hole filling and the threshold value
for outlier detection need to be decreased to get more precise in the outlier detection
and hole filling in each iteration. In addition, we control the number of samples to
search body pose for estimated view and shape style. At the initial stage, as we don’t
know accurate shape style and view, we use small number of samples along the equally
distant manifold points. As the estimation progress, we increase accuracy of body pose
estmation with increased number of samples. We summarize the iterative estimation as
follows:

Input: image shape yb, estimated view v, estimated style s, core tensor A

Initialization: – initialize sample num Nsp, dT Hhole
c , eT Houtlier

c

Iterate: – Generate Nsp samples ysp
i bi, i = 1, · · · ,Nsp

• Coefficient C = A × s×v
• embedding bi = g(βi), βi = i

Msp

– Generate hole filling mask hi = h(ysp
i )

– Update input with hole filling yhole f illing = z(bin(y)⊕hi(yest))
– Estimate best fitting shape with hole filling mask: 1-D search for yest that minimizes

E(bi) = ||yhole f illing −hi (Cψ(bi)) ||
– Compute outlier error ec(x) = ||yhole f illing −yest(x)||
– Estimate outlier ooutlier(x) = ec(x) ≥ eT Houtlier

c

Update: – reduce dT Hhole
c , eT Houtlier

c

– increase Nsp

Based on the best matching shape, we compute outliers from the initial source after
re-centering initial source.
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4 Experimental Results

We evaluated our method using two gait-database. One is from CMU Mobo data set and
the other is our own dataset with multiple view gait sequences. Robust outlier detection in
spite of holes in the silhouette images was shown clearly in CMU database. We collected
our own data set to show carrying object detection in continuous view variations.

4.1 Carrying Ball Detection from Multiple Views

The CMU Mobo database contains 25 subjects with 6 different views walking on the
treadmill to study human locomotion as a biometric [6]. The database provides silhou-
ette sequences extracted using one background image. Most of the sequences have holes
in the background subtracted silhouette sequences. We collected 12(= 4 × 3) cycles to
learn dynamic shape models with view and style variations from normal slow walking
sequences of 4 subjects with 3 different views. For the training sequences, we corrected
holes manually. Fig. 3 shows detected carrying objects in two different views from dif-
ferent people. The initial normalized shape has holes with a carrying ball (a)(e). Still the
best fitting shape models recover correct body pose after iterative estimations of view
and shape style with hole filling and outlier removal (b)(f). Fig. 3 (c)(g) show examples
of generated masks during iteration for hole filling. Fig. 3 (d) (h) show detected outlier
after iteration. In Fig. 3 (h), the outlier in bottom right corner comes from the inaccurate
background subtraction outside the subject, which cannot be managed by hole filling.
The verification routine based on temporal characteristics of the outlier similar to [1]
can be used to exclude such a outlier from detected carrying objects.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Outlier detection in different view: (a) Initial normalized shape for outlier detection. (b)
The best fitting model from the generative model. (c) Overlapping initial input and hole filling
mask at the last iteration. (d) Detected outlier. (e) (f) (g) (h) : Another view in different person.

4.2 Carrying Object Detection with Continuous View Variations

We collected 4 people with 7 different views to learn the nonlinear decomposable dy-
namic shape model of normal walking for detection of carrying objects in continuous
view variations. In order to achieve reasonable multiple view interpolation, we captured
normal gait sequence on the treadmill with the same height camera position in our lab.
The test sequence is captured separately in outdoor using commercial camcorder. Fig. 4
shows an example sequence of carrying object detection in continuous change of walk-
ing direction. The first row shows original input images from the camcorder. The second
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Frame 1 Frame 15 Frame 30 Frame 45 Frame 60 Frame 75 Frame 90 Frame 105

Fig. 4. Outlier detection in continuous view variations: First row: Input image. Second row: Ex-
tracted silhouette shape. Third row: Best matching shape. Fourth row: Detected carrying objects.

row shows normalized shape after background subtraction. We used the nonparametric
kernel density estimation method for per-pixel background models, which is proposed
in [3]. The third row shows best matching shape estimated after hole filling and out-
lier removal using dynamic shape models with multiple views. The fourth row shows
detected outliers. Most of the dominant outliers come from the carrying objects.

5 Conclusions

We presented a new framework for carrying object detection from given silhouette im-
ages based on pose preserving dynamic shape model. The signed distance representa-
tion of shape helps robust matching in spite of small misalignment and hole. To enhance
the accuracy of alignment and matching, we preformed hole filling and outlier detection
iteratively with threshold control. Experimental results from CMU Mobo data set show
accurate detection of outliers in multiple fixed views. We also showed the estimation
of outliers in continuous view variations from our collected data set. The removal of
outlier or carrying object will be useful for gait recognition as it helps recovering high
quality original silhouette, which is important in gait recognition. We plan to apply the
proposed method to test gait recognition with carrying objects.

Acknowledgement. This research is partially funded by NSF award IIS-0328991.
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Abstract. This paper describes a new approach for identity recognition
using video sequences. While most image and video recognition systems
discriminate identities using physical information only, our approach ex-
ploits the behavioural information of head dynamics; in particular the
displacement signals of few head features directly extracted at the image
plane level. Due to the lack of standard video database, identification and
verification scores have been obtained using a small collection of video
sequences; the results for this new approach are nevertheless promising.

1 Introduction

In the past few decades, there has been intensive research and great strides in
designing and developing algorithms for face recognition from still images; only
recently the problem of recognizing people using video sequences has started to
attract the attention of the research community. Compared with conventional
still image face recognition, video person recognition offers several new challenges
and opportunities; in fact, image sequences not only provide aboundant data for
pixel-based techniques, but also record the temporal information and evolution
of the individual.

The area of automatic face recognition has been dominated by systems using
physical information, such as greylevel values; while these systems have indeed
produced very low error rates, they ignore the behavioural information that can
be used for discriminating identities. Then, most of these strategies have been
developed using perfectly normalized image databases, but for actual applica-
tions it would be better to work on common data; for example, low quality
compressed sequences or video surveillance shots.

In this paper, we propose a new person recognition system based on displace-
ment signals of a few head features, automatically extracted from a short video
sequence. Instead of tracking the head as a whole, its movement is analysed by
retrieving the displacements of the eyes, nose and mouth in each video frame.
Statistical features are then computed from these signals, in order to extract the
motion information from the video, and used for discriminating identities; the
classification task is done using a Gaussian Mixture Model (GMM) approxima-
tion and Bayesian classifier.
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The rest of the paper is organized as follows: we briefly cite the most relevant
works in section 2, then we detail our recognition system in section 3, after that
we report and comment our experiments in section 4 and finally we conclude
this paper with remarks and future works in section 5.

2 Related Works

While numerous tracking and recognition algorithms have been proposed in the
computer vision community, these two topics were usually studied separately.
For human face tracking, many different techniques have been developed, such as
subspace-based methods [1], pixel-based tracking algorithms [2], contour-based
tracking algorithms [3,4,5], and global statistics of color histograms [3,6]. Like-
wise, there is a rich literature on face recognition published in the last 15 years
[7,8]; however, most of these works deal mainly with still images. Moreover, a
great part of the video face recognition techniques are straightforward general-
izations of image face recognition algorithms: in these systems, the still image
recognition strategy is applied independently for each frame, without taking into
account the temporal information enclosed in the sequence. Among the few at-
tempts aiming to address the problem of video person recognition in a more
systematic and unified manner, the methods by Li & Chellappa [9], Zhou et al.
[10] and Lee et al. [11] are the most relevant: all of them develop a tracking and
recognition method using a unified probabilistic framework.

Our work is also closely related to the visual analysis of human motion, in
particular with the automatic gait recognition (field of research). It is possible to
classify the most important techniques in two distinct areas: holisitic approaches
[12,13], which aim to extract statistical features from a subject’s silhouette in
order to differentiate between individuals, and model-based approaches [14,15],
which aim to model human gait explicitly.

3 Recognition Using Head Displacements

Our person recognition system is mainly composed by three parts: a video
analyser for obtaining displacement signals, a feature extractor for computing
feature vectors, and a person classifier for retrieving identities.

3.1 Video Analyser Module

The video analyser module takes as an input a video shot, representing few sec-
onds of a speaker. The head detection part is done semi-automatically: the user
must manually click on the (face) features of interest in the first frame, then a
tracking algorithm continues until the end of the sequence. In fact, the displace-
ment signals are automatically retrieved using a template matching technique
in the RGB color space. The similarity measure is obtained by computing an
Euclidean or city-block distance for each color component, then adding them
(equal component weighting). If Tk is the actual template, Tk−1 the previous
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one, Mk−1 the latest match and α a weighting constant, then the template is
updated with the following rule: Tk = αMk−1 + (1 − α)Tk−1. One can easily
verify that the actual template is a weighted sum of all the previous ones and
it can be set to include the limit cases of no update (α = 0) and full update
(α = 1).

3.2 Feature Extractor Module

The feature extractor module deals with rough displacement signals of different
head features, extracted from the video sequence.

In order to compute the feature vector, the system applies some global trans-
formations to the displacement signals, that are likely to normalize them and
provide a better representation for the classification task. By default, this mod-
ule centers the signals and scales them, in order to remove any dependence on
absolute head position and video resolution; it is also possible to impose an uni-
form variance, exploit polar coordinates or compute derivatives (like velocities
or accelerations). It is important to notice that each signal has two components,
usually the horizontal and vertical displacements, so the total number of differ-
ent features F is the double of the number of face elements analyzed. In the
following part, we are going to express all the feature vectors of a person q,
extracted from his r-th video, with the following notation:

X(q,r) =

⎡⎢⎢⎣
x(q,r)

1
...

x(q,r)
K

⎤⎥⎥⎦
where K is the total number of frames and xk is a row vector representing the
feature values computed from frame k.

3.3 Person Recogniser Module

The last module exploits the feature vectors computed from video sequences for
classification purposes.

The processed head displacements are used for training a Gaussian Mixture
Model (GMM) for each person in the database, in order to model the characteris-
tic displacements (or its derivatives) for that user; more precisely, the algorithm
estimates the class-conditional probability density functions in a Bayesian clas-
sifier. Formally, the posterior probability for class ωq is:

P (ωq | xk) =
P (xk | ωq) P (ωq)

P (xk)

In our case, where each user has the same amount of videos, the priors and scaling
factors are uniform and does not affect the posterior probability computation.
The global video score is computed by making the assumption that displacements
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are independent (which is actually not true for our case) and by taking the
product of individual probabilities,

P (ωq | X) �
K∏

k=1

P (ωq | xk)

The class-conditional probability functions of each frame, P (ωq | xk), are ap-
proximated using a Gaussian Mixture Model (GMM); in formulas:

P (ωq | xk) =
C∑

c=1

αcℵ (xk; μc,Σc)

where αc is the weight of the c-th Gaussian component, ℵ (xk; μc,Σc).
It is important to underline that a part of the videos in the database is used

for training those models, while the remaining sequences are used as tests for
assessing the recognition performances (identification and verification scores).

4 Experiments and Results

4.1 Data Collection

Due to the lack of any standard video database for evaluating video person
recognition algorithms, we collected a set of 144 video sequences of 9 different
persons, for the task of training and testing our system. The video chunks are
showing TV speakers, announcing the news of the day: they have been extracted
from different clips during a period of 6 months. A typical sequence has a spatial
resolution of 352×288pixels and a temporal resolution of 23.97frames/second,
and lasts almost 14 seconds (refer to Figure 1 for an example). Even though the
videos are low quality, compressed at 300 Kbits/second (including audio), the
behavioural approach of our system is less affected by the visual errors, intro-
duced during the compression process, than the pixel-based methods. Moreover,
the videos are taken from a real case: the behaviour of the speakers is natural,
without any constraint imposed to their movement, pose or action.

4.2 Experimental Set-Up

For our experiments, we selected 72 video sequences for training (8 for each of
the 9 individuals), and the remaining 72 (out of 144) were left for testing. It is
important to point out that there are no theoretical constraints concerning the
number of videos per user and the total video chunks; on the other hand, it is
necessary to have a few minutes for each individual for being able to learn the
characteristical head motion and to train the individual GMMs.

We chose to extract the displacements of 4 head features - the eyes, nose and
mouth - providing then 8 signals in total. During our experiments, we tested
multiple configurations concerning the number of features to extract. The ex-
perimental results obtained using only two signals, like the eye displacements,
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Fig. 1. The first 9 frames of a video sequence

were not as good as the actual choice of 4. We believe that even if our algorithm
tracks the head in the image plane, the originating 3D movement - which can
be represented with six parameters in the 3D space - needs more than just two
points for proper estimation; moreover, more feature points may provide a higher
precision for the global motion and can be sensible to small local deformations
of the face (due to relative movement of the features).

As stated in section 3.1, the head detection part is done semi-automatically:
the user must manually click on the (face) features of interest in the first frame,
then then a tracking algorithm continues until the end of the sequence. After
the localization of the head features - the eyes, nose and mouth - four templates
of fixed size (19 × 25 pixels) are computed using the update formula. For the
automatic tracking process, keeping the initial template (α = 0) has showed
the best discriminating properties, even if the algorithms is not always returning
the correct match (absence of update); knowing the computational burden of a
full template matching, we optimized the search window by taking into account
the position of each feature and consequently analysing only small regions of the
video frame (74 × 74 pixels).

Concerning the signal normalization, the most relevant results have been ob-
tained using zero-mean; in fact, stronger constraints, like an uniform range or
fixed variance, reduced the discriminating power and were abandoned. It is im-
portant to notice that in our case all the videos have almost equal head sizes
and zooms, so there is no need for spatial scaling. We also tried to compute our
feature vectors using first and second derivatives of the displacement signals - as
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velocities and accelerations - but the resulting recognition scores were not better
than using only the original displacements.

For training the individual GMMs, we obtained the best results using a classi-
cal Expectation-Maximization (EM) algorithm and considering 4 Gaussian com-
ponents for each model. In our experiments, we were not able to add more than
9 components, because our small video database was insufficient for a reliable
training of the GMMs; moreover, more complicated algorithms, which are auto-
matically selecting the optimal number of components like the Figueiredo-Jain
or the Greedy-EM [16], did not provide any advantage over the standard EM.

4.3 Identification and Verification Scores

Figure 2 shows the identification scores of our system: it is possible to notice that
the identification rate is 95.8%, when considering the best match (NBest = 1),
and 98.6%, when considering the three best matches (NBest = 3). Figure 3
shows the Receiver Operating Characteristic (ROC) curve of our system, with
False Rejection Rates (FRR) plotted as a function of False Acceptance Rates
(FAR): the Equal Error Rate (EER) value is 1.13%.

For providing a general reference to our experiments, we tested our video data-
base using a pixel-based recognition system that implements a classic eigenface
algorithm. The face database for the enrollment was built from the respective
video database, by extracting 14 keyframes from each video chunk; on the other
hand, only one keyframe was used in the testing phase. It’s important to un-
derline that the original keyframes have been manually normalized, by cropping

Fig. 2. Identification rates as a function of NBest values; for computing the scores, an

individual is correctly identified if it is within the NBest matches
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Fig. 3. Verification scores: False Rejection Rates (FRR) plotted as a function of False

Acceptance Rates (FAR)

the face region, then aligning and (in-plane) rotating the heads. The results
have been obtained considering an eigenspace of dimension 25 and some light
preprocessing. The identification rate for the best match is 91.7%, rising up
to 98.6% when considering the best three matches; the equal error rate of the
system is 7.03%.

The previous experiments for recognising people from their head displace-
ments are interesting; in fact, even if these signals could be considered as weak
modalities and can not be as performing as the latest pixel-based techniques,
they show that the behaviour of people can be a possible biometric. Moreover,
our system is applied in real cases, with compressed video sequences and no
constraints on movements or actions; our behavioural approach also showed a
great tolerance to face changes, due to presence of glasses and beard, or differ-
ence in haircuts, illumination and skin color. On the other hand, our technique
is sensible to within-subject variations: individuals may change their character-
istic head motion when placed in different contexts or affected by particular
emotional states.

4.4 Robustness to Noise

In order to evaluate the robustness of our method from input noise, we artifi-
cially add a Gaussian noise with zero mean and variable standard deviation to
all displacement signals (both training and testing sets), retrieved by the track-
ing module. In Figure 4, we report the identification scores as a function of the
noise power; in order to relate the energy of the signal with the one of the noise,



Person Recognition Using Human Head Motion Information 333

Fig. 4. Identification rates as a function of the noise power; in order to relate the

energy of the signal with the one of the noise, the noise power is defined as the ratio

between the standard deviation of the noise and the mean standard deviation of the

signals (expressed in percentages)

the noise power is defined as the ratio (expressed in percentages) between the
standard deviation of the noise and the mean standard deviation of the signals.
It is possible to notice that initially the identification rate is decreasing rapidly
(−10% for noise power between 0 and 20%), then the loss is less important.
One possible explaination may be the following: the characteristic small move-
ments, which are really important for discriminating identities, are easily lost for
low noise strenghts; after that the noise starts corrupting the global individual
movements, less useful in recognition.

5 Conclusion and Future Works

This pioneering work on person recognition using head dynamics, retrieved in
the image plane without the need of a complex 3D pose estimation, showed that
the human behaviour and motion may be useful for discriminating people. Our
study on head feature displacements represents a first step in the exploration of
the face dynamics and their potential use in real recognition applications, either
as an alternative to physical aspects of the face, like its appearance, or jointly
with them.

Our system can be improved by researching and implementing different solu-
tions. One way is to use our biometric system, based on head displacements, and
integrate it in a multimodal one; for this purpouse it could be possible to couple
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it with a physical modality, like the appearance of the face, or with another
behavioural modality, like eye blinking or lip movements. Considering the low
quality of our video database, in which fine details are affected by compression
noise, the former case seems more feasible. Another possibility is to refine the
signal extraction process, implementing a more robust tracking algorithm than
the RGB template matching. Although it is reasonable that more precise signals
could provide better classification power, the quality of those already extracted
is actually good enough for our algorithm; in fact, by manual inspection we no-
ticed that the tracking points are almost always correct (considering a pixel of
tolerance) and that the occasional errors have reduced influence on our statis-
tical approach. It may be also interesting to focus the analysis on individual
gestures and exploit that knowledge for classifying identities; as an example, the
head dynamics might be analysed in a local way, computing feature vectors in
each temporal window. This approach may show more important discriminating
power, capturing the details of personal movement, but the lack of prior informa-
tion on the evolution of the motion and the relatively small size of the training
database could be overwhelming. Finally, all our identification and verification
results should be validated on a bigger database.
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Abstract. This paper presents a technique to enable deformable objects
to be matched throughout video sequences based on the information pro-
vided by multi-scale Gaussian derivative filter banks. We show that this
technique is robust enough for viewpoint changes, lighting changes, large
motions of the matched object and small changes in rotation and scale.
Unlike other well-known color-based techniques, this technique only uses
the gray level values of the image. The proposed algorithm is mainly
based on the definition of a particular multi-scale template model and a
similarity measure for template matching. The matching approach has
been tested on video sequences acquired with a conventional webcam
showing a promising behavior with this kind of low-quality images.

1 Introduction

In this paper, we approach the problem of matching deformable objects through
video sequences, based on the information provided by responses of oriented
multi-scale filter banks. Our approach is traditional in the sense that we define a
template of the object of interest, and we attempt to find the image region that
best matches the template. What is new about our approach is the template
definition and the similarity measure. Deformable object matching/tracking re-
mains a very challenging problem mainly due to the absence of good templates
and similarity measures which are robust enough to handle all the geometri-
cal and lighting deformations that can be present in a matching process. Very
recently, object recognition by parts has been suggested as a very efficient ap-
proach to recognize deformable object [1][3][2][6]. Different approaches are used
in the recognition process from the basic parts, but the matching of salient parts
is a common task to all approaches. Region and contour information are the
main sources of information from which the location of a part of an object in
an image can be estimated (e.g. [7][8]). It has been shown that histograms are
robust features for translation, rotation and view point changes [12][10]. How-
ever, the main drawback of using the histogram directly as the main feature is
the loss of the gray level spatial information [12]. Recent approaches based on
the space-scale theory have incorporated the image’s spatial information. In [10]
multidimensional histograms, which are obtained by applying Gaussian deriva-
tive filters to the image, are used. This approach incorporates the image’s spatial
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information with global histograms. None of the above approaches explicitly ad-
dresses the local spatial information present in the image. The ideas presented in
[4] suggest the interest in removing the local spatial information in deformable
regions matching process. On the other hand, it is well known that local features
based on Gaussian derivatives responses are robust in the task of object recog-
nition [15][5][14], and texture description [13]. In this paper, in contrast to the
above approaches based on histograms, we impose a better compromise between
spatial information and robustness to deformations. In our case, the matching
template for each image region is built as a array of combined responses of ori-
ented multi-scale filter banks. On each image, the template is iterated on all the
possible locations within it. The matching on each image location is the vector
of the similarity matched on each spatial scale. The optimum (minimum or max-
imum, according to the similarity criterion definition) of this vector defines the
saliency value in each image location. The set of these values defines a saliency
map associated to the image, which is the input to the final decision criteria
defining the optimum location. This paper is organized in the following way:
Section 2 introduces the template definition and the similarity measure; Section
3 presents the algorithm; Section 4 shows the experimental results; and finally,
Section 5 concludes the paper.

2 Template and Similarity Measure

2.1 Template Definition

Unlike classical templates based on patches of raw gray levels or templates based
on histograms, our approach is based on filter responses. In concrete, the tem-
plate building is addressed by the HMAX model [9][11]. The main idea is to
convolve the image with a filter bank compound by oriented filters at diverse
scales. We will use four orientations per scale (0, 45, 90 and 135 degrees).

Let Fs,o be a filter bank compound by (s · o) filters grouped into s scales (an
even number) with o orientations per scale. Let Fi,· be the i-th scale of filter
bank Fs,o compound by o oriented filters.

The steps for processing an image(or building the template) are the following:

1. Convolve the target image with a filter bank Fs,o, obtaining a set Ss,o of s ·o
convolved images. The filters must be normalized to zero mean and sum of
squares equals one, and also each convolution window of the target image.
Hence, values of filtered images will be in [-1,1].

2. For i = {1, 3, 5, 7, ..., s − 1}, in pairs (i, i + 1), subsample Si,· and Si+1,· by
using a grid of size gi and selecting the local max value of each grid. Grids
are overlapped by v pixels. This is independently done for each orientation.
At the end of this step, the resultant images Ŝi and Ŝi+1 contain the local
max values (of each grid) for the o orientations.

3. Then, combine each pair Ŝi and Ŝi+1 in a single band Ci by selecting the
max value for each position between both scales (i, i + 1). As a result, s/2
bands Ci are obtained, where each one is compound by o elements.
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Fig. 1. Anisotropic oriented filters: second order Gaussian derivatives

The definition of the template can be done in two different ways:

1. From the gray-scale image, we can extract (by hand or with an automatic
method) a region of interest R, and process R with the previous algorithm.
Therefore, each Ci is an independent template.

2. On the other hand, we can process an image containing the full model and
extract a patch from a Ci band which will be the template. In this case,
the template can be extract around a region containing salient points (e.g.
global maximums).

We prefer the second option for selecting the template because, as we will see,
template matching is carry out in a natural way in the domain of the transformed
images Cs,o.

Note that, by construction, the template is flexible in the sense that it is com-
pound by local maximums, what provides certain invariance to translation, and
combination of pairs of scales, what provides some invariance to scale. Moreover,
unlike histograms, the template keeps information about local structure. Also,
since the template is based on filter responses, invariance to illumination changes
is achieved.

The filter bank used in this work is based on second order Gaussian derivatives
(as in [13]):

G2(x, y) =
y2 − σ2

y

2πσxσ5
y

exp
(

− x2

2σ2
x

− y2

2σ2
y

)
(1)

Where σx and σy are the standard deviations in the directions x and y respec-
tively.

Figure 1 shows a sample of Fi,· with its four oriented filters.

2.2 Template Matching

Once we have defined our template T , we are interested in locating it in a new
image. We will select the position of the new image where the similarity function
raises a maximum. The proposed similarity measure M is based on the following
expression:

M(T,X) = exp(−γ · ‖F (T) − F (X)‖2) (2)

Where T is the template, X is the comparison region of the same size of T, γ
controls the steepness of the exponential function, F is an indicator function and
‖ · ‖ is the Euclidean norm. Values of M are in the interval [0, 1].

In our first approach F was defined as the identity function (as [11]), but it
showed an undesirable behavior due to the influence of the mean. So, F (X) is
defined as F (X) = X− X̄, where X̄ is the mean of X. Note than F can become
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more sophisticated normalizing the energy of the patches or regularizing the
standard deviation, however we have empirically checked that it does not worth
in the practice.

The problem of find the best matching window Xi
p with a template T over

an image Cs,o can be defined as the optimization function:

Xi
p = arg maxi∈s,p∈Ni

{M(T,Xi
p)}

Where Ni is the set of all possible positions in Ci.
Therefore, the procedure for locating the best matching window is:

1. For all bands Ci and for all possible windows Xi
p in Ci, compute the similarity

measure Mi,p.
2. Choose the position p at scale i where Mi,p is maximum.
3. Transform p to image coordinates.

Since each Ci has been built by subsampling, coordinates p must be trans-
formed to image coordinates to find the actual region in the image where tem-
plate is found.

3 The Algorithm

The previous steps can be summarized as follows:

1. Fix the scales for the filter bank Fs,o.
2. Build the template T, following the previously explained method, using Fs,o.
3. Transform the target image I with Fs,o obtaining CI

s,o.
4. Compute the similarity maps M .
5. Locate the coordinates p of the global maximum over all positions and bands.
6. Transform p to image coordinates.

When more than a maximum is found, we have decided to choose the position
closer to the origin of coordinates. However, other criterions can be defined. For
example, if we are working on a video sequence we could choose the position
closer to the one in the previous frame.

4 Experimental Results

Several experiments have been performed in order to assess the effectiveness of
the proposed approach. Firstly, we focus our experiments to show how robust
our approach is to diverse perturbations introduced to an object. Secondly, we
study the capability of generalization of the templates between different poses
and different instances of the objects.
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4.1 Parameters for the Experiments

For our experiments, the anisotropic second order Gaussian derivatives (with
aspect-ratio equals 0.25) are oriented at 0, 45, 90 and 135. All the filter banks
contain 8 scales. The standard deviation used for the filter banks is equal to a
quarter of the filter-mask size. Table 1 shows the value of the parameters for the
filter banks, where FS is the size (in pixels) of the 8 mask-filters and σ is the
related standard deviation of the functions. For the subsampling step (see sec.
2.1), grid size gi is in {8, 10, 12, 14} and overlap v is equal to 3.

Table 1. Parameters of the four bands (B): filter mask size (FS) and filter width (σ)
for second order Gaussian derivative filter bank, and grid size (GS) used in subsampling
step

B C1 C2 C3 C4

FS 7 9 11 13 15 17 19 21
σ 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25

GS 8 10 12 14

Note that, the value of the grid size will depend on the size of the object we
are considering (e.g. faces). So, the value of overlap depends on the minimum
value of grid size.

4.2 Measuring Robustness

In this section a target image is altered in different ways in order to test the
capability of our approach to perform a correct matching in adverse conditions.
The experiments has been carried out with functions included in c©Matlab 7.0.
The six kinds of alterations are:

1. Lighting change: pixel values are raised to an exponent each time.
2. Addition of multiplicative noise (speckle): mean zero and increasing variance

in [0.02:0.07:0.702].
3. Blurring: iteratively, a gaussian filter of size 5x5, with mean 0 and variance

1, is applied to the image obtained in the previous iteration.
4. Unsharping: iteratively, an unsharp filter (for local contrast enhancement)

of size 3x3 and α (controls shape of the Laplacian) equals 0.1, is applied to
the image obtained in the previous iteration.

5. Motion noise: iteratively, a motion filter (pixels displacement in a fixed di-
rection) with a displacement of 5 pixels in the 45 degrees direction, is applied
to the image obtained in the previous iteration.

6. In-plane rotation: several rotations θ are applied to the original image. With
values θ = [5 : 5 : 50].

A template of size 8x8 (with the four orientations) is extracted around the left
eye, and the aim is to find its position in the diverse test images. The battery of
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Fig. 2. The six test. From top to bottom: lighting, speckle, blurred, unsharp, motion,
rotation.

Fig. 3. Responses of similarity measure. Lighter pixels correspond to higher responses.
Top row: lighting test. Bottom row: rotation test.

altered images is shown in figure 2. Each row is compound by ten images. Note
that, even for us, some images are really hard.

In figure 3, we see the similarity maps obtained for the lighting and rotation
test. The lightest pixel is the position chosen by our method as the best matching
position.

For evaluating the test, the matching is considered correct if the proposed
template position is not far from the real one more than 1 unit (in Ci coordi-
nates). The percentages of correct matching for the different cases are shown in
table 2.

In blurring, unsharping and motion test the results are really satisfactory,
template has been always precisely matched. Matching in lighting test fails only
for the first image (left in fig. 2). On the other hand, in speckle test, matching
begins failing when variance of noise is greater than 0.5 (the seventh image in
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Table 2. Percentage of correct matching for each test

Test Lighting Speckle Blurring Unsharp Motion Rotation

% Hit 90 60 100 100 100 50

the second row, fig. 2); and matching in rotation test fails when angle is near 30
degrees. However, these results suggest the interesting properties of robustness
of this kind of templates for matching in adverse noisy conditions.

4.3 Tracking Facial Features in Webcam Video Sequences

Since nowadays webcams are widely extended and used in diverse environments,
and they can be used as input in user-interfaces, in this section we deal with
sequences of images taken from a conventional webcam. These sequences contain
human heads in motion. Very different poses are present in the images as well
as different facial gestures. The size of each frame is 240x320 pixels and they
are encoded with c©Indeo video 5 codec1. We have converted each frame to
gray-scale images and resized to 120x160 pixels for the experiments.
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Fig. 4. Webcam images (first column), with C1 maps (from filter oriented at 90) at
two scales. Top row: subject A. Bottom row: subject B.

Two templates have been taken from a single frame, and we are interested
in locate them in all the remaining frames by using the proposed matching
approach. In figure 4 we can see two frames of different subjects and two maps
processed at level C1 and C2 with a filter oriented at 90 degrees.

The templates shown in figure 5 have been extracted from the first band of
subject A (fig. 4), and represents zones around the eye and the mouth. The size
of the templates is 6x6 (per 4 orientations). Note that these templates cover a
region about 25x25 image pixels (remember the subsampling step in sec. 2.1).
They are matched in sequences of more than 150 frames (each one), obtaining
results as shown in figure 6. Green square and yellow circle refers to region
1 24 bits color frames, 15 fps, 114 kbps.
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Fig. 5. Two templates from subject A (fig. 4). Left: mouth. Right: eye. Size: 6x6. The
four orientations are joint for representational purposes.

     

     

Fig. 6. Result images with the located position of the two templates (fig. 5). Green
square is eye, and yellow circle is mouth. Top row: subject A. Bottom row: subject B.

     

Fig. 7. Incorrect detection. Result images with the proposed position of the two tem-
plates (fig. 5). Green square is eye, and yellow circle is mouth. Top row: subject A.
Bottom row: subject B.

where eye and mouth are matched respectively. The templates not only have
been searched for the subject A sequences, but they have been matched in the
sequences of subject B. For both subjects the majority of the time matching
is correct. It is remarkable the capacity of the templates to generalize between
different poses and subjects. However, and what was predictable, figure 7 shows
incorrect detections due to large pose changes or big shadows in the regions of
interest. In concrete, if face rotates around the Y-axis, it works well2 until face
is near profile. When face rotates around the Z-axis (in-plane rotation), it works
well up to approximately 30 degrees, what supports the results shown in Sec.4.2.
And finally, if face rotates around the X-axis (facing up and down), matching
performs correctly up to 45 degrees, approximately. Also, there are moments

2 When we say that it works well, we mean that maybe one spurious local maximum
appears in some of the intermediate frames.
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in which the subject approaches to the camera or moves backward, in these
situations, where scale changes, matching continues performing well.

Although the quality of the images taken with the webcam is poor, great
noise is present and the sequence is compressed the results are promising. Note
that none temporal information is used between frames, what can improve the
results. Moreover, template is never updated.

5 Summary and Conclusions

A scheme for matching deformable regions is proposed and evaluated over human
faces. The first experiment shows how our approach is stable and robust enough
for different kinds of alterations over the images: changes in illumination, blur-
ring, motion noise, rotation, etc. Then, in the second experiment, templates have
been matched along sequences of images taken with a conventional webcam. In
these sequences, human faces in motion are present with different points of view
and facial gestures. The results show the capability of the approach to match the
selected templates in the different frames for the same subject, and for different
subjects, showing this way the capability of generalization of the templates. Even
though, images acquired with conventional webcams are low-quality, as multi-
ple sources of noise are present, the algorithm as shown quite robust. On the
other hand, matching is wrong when too large pose variation is present or huge
lighting variation occurs. Nevertheless, this approach is intended to be utilized
as tracker initialization or tracker recovery, where temporal information can be
used to reduce this problem improving the results. As future work, we intend to
compare our proposed scheme with the one based on SIFT features [7].
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Abstract. We present a method to extract principal deformation modes
from a set of articulated models describing the human spine. The spine
was expressed as a set of rigid transforms that superpose local coordi-
nates systems of neighbouring vertebrae. To take into account the fact
that rigid transforms belong to a Riemannian manifold, the Fréchet mean
and a generalized covariance computed in the exponential chart of the
Fréchet mean were used to construct a statistical shape model. The prin-
cipal deformation modes were then extracted by performing a principal
component analysis (PCA) on the generalized covariance matrix. Princi-
pal deformations modes were computed for a large database of untreated
scoliotic patients and the obtained results indicate that combining rota-
tion and translation into a unified framework leads to an effective and
meaningful method of dimensionality reduction for articulated anatomi-
cal structures. The computed deformation modes also revealed clinically
relevant information. For instance, the first mode of deformation ap-
peared to be associated with patients’ growth, the second is a double
thoraco-lumbar curve and the third is a thoracic curve.

1 Introduction

Most of the statistical shapes models currently used to describe anatomical struc-
tures are based on point to point correspondences extracted from images ( [1,2]
for example). However, points are not always the best choice of primitives. To
deal with articulated anatomical structures a more natural choice would be to
use frames (points associated with three orthogonal axes). The main reason for
this choice is that frames enable a more natural analysis of the relative orienta-
tions and positions of the models.

The spine is one of the anatomical structures that is better described using
frames instead of points. In this context, a frame is associated to each vertebra
and the deformations of the spine are then described in terms of rigid transforms
applied to those frames.

However, conventional statistical methods usually apply only in vector spaces,
while rigid transforms naturally belong to a Lie group. Therefore, concepts as

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 346–355, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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simple as the mean and the covariance had to be generalized because addition
and scalar multiplication are not defined in Lie groups. Probability and statistics
applied to Riemannian manifolds [3] offer an elegant way to deal with those
difficulties and variability models based on Lie groups can now be built. The
Riemannian framework was also used in the context of statistical shape modelling
to perform PGA (principal geodesic analysis) on medial axis representations (m-
reps) [4].

Thus, it is now possible to compute a variability model of the spine based on
the tools from the Riemannian geometry [5]. But a rigid transform has 6 DOF
(degrees of freedom) and there are 5 lumbar and 12 thoracic vertebrae for a total
of 102 DOF (excluding cervical vertebrae). The analysis of such large variability
model can hardly be performed by a clinician. It is therefore necessary to find
a way to reduce the dimensionality of the variability model and to extract only
the most meaningful modes of variability.

Dimensionality reduction applied to the spine or to articulated models is not a
new idea and methods were proposed in the past. As a part of a method that aim
to predict the geometry of the spine based on the geometry of the trunk, Bergeron
et al. [6] performed a principal component analysis on the 3D coordinates of
vertebrae’s center in the frequency domain. Principal components analysis was
also used to process articulated body models (see, for instance, Gonzalez et al.
[7] and Jiang and Motiai [8]). In that context, classical PCA was used on a
representation that was either only based on 3D coordinates or only based on an
angular description of the articulated body. However, using both positions and
orientations would allow a better separation of different physiological phenomena
such as pathological deformations and normal growth.

The main contributions of this paper will therefore be to propose a method
based on Riemannian geometry to perform principal components analysis on an
articulated model of the spine and to apply that method to a large database of
scoliotic patients in order to construct the first statistical atlas of 3D deformation
patterns for idiopathic scoliosis (a pathology that causes spine deformations).

2 Material and Methods

This section will be divided into four subsections. Firstly, elements of proba-
bility and statistics on Riemannian manifolds will be introduced. Secondly, a
generalization of principal component analysis on Riemannian manifolds will be
described. Then, the specialization of this method for articulated models will be
tackled in the third subsection. Finally, the fourth subsection will explain how
the extraction of articulated models is performed from spine radiographs.

2.1 Elements of Probability and Statistics on Riemannian Manifolds

Because there is no addition or scalar multiplication operations readily defined on
rigid transforms, we need a way to generalize the notions of mean and directional
dispersion. The distance is a general concept that can be used to perform those
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generalisations and Riemannian geometry offers a mathematical framework to
work with primitives when only a distance function is available.

In a complete Riemannian manifold M the smallest smooth curve γ(t) such
that γ(0) = x and γ(1) = y is called a geodesic and the length of that curve
is the distance between x and y. Two important maps can be defined from the
geodesics: the exponential map Expx which maps a vector ∂x of the tangent
plane TxM to the element reached in a unit time by the geodesic that starts at
x with an initial tangent vector ∂x and the logarithmic map Logx which is the
inverse function of Expx. In other words, these two maps enable us to “unfold”
the manifold on the tangent plane (which is a vector space) and to project an
element of the tangent plane to the manifold.

With the knowledge of Expx and Logx, it is possible to compute the generali-
sations of the conventional mean and covariance. The following subsections will
introduce those generalisations in the univariate and multivariate cases.

Fréchet Mean. For a given distance, the generalization of the usual mean
can be obtained by defining the mean as the element μ of a manifold M that
minimizes the sum of the distances with a set of elements x0...N of the same
manifold M:

μ = argmin
x∈M

N∑
i=0

d(x, xi)2

This generalization of the mean is called the Fréchet mean. Since it is defined
using a minimization, it is difficult to compute it directly from the definition.
However, it can be computed using a gradient descent performed on the sum-
mation. The following recurrent equation summarizes this operation:

μn+1 = Expμn
(

1
N

N∑
i=0

Logμn
(xi)) (1)

Generalized Covariance. The variance (as it is usually defined on real vector
spaces) is the expectation of the L2 norm of the difference between the mean
and the measures. An intuitive generalization of the variance on Riemannian
manifolds is thus given by the expectation of a squared distance:

σ2 =
1
N

N∑
i=0

d(μ, xi)2 (2)

To create statistical shape models it is necessary to have a directional dis-
persion measure since the anatomical variability of the spine is anisotropic [5].
The covariance is usually defined as the expectation of the matricial product of
the vectors from the mean to the elements on which the covariance is computed.
Thus, a similar definition for Riemannian manifolds would be to compute the
expectation in the tangent plane of the mean using the log map:

Σ =
1
N

N∑
i=0

Logμ(x)Logμ(x)T (3)
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Multivariate Case. The Fréchet mean and the generalized covariance make
it possible to study the centrality and dispersion of one primitive belonging to
a Riemannian manifold. However, to build complete statistical shape models, it
would be most desirable to study multiple primitives altogether. Therefore, a
generalized cross-covariance Σfg is needed.

Σfg =
1
N

N∑
i=0

Logμf
(fi)Logμg

(gi)T

A natural extension is to create a multivariate vector f = [f1, f2, f3, . . . , fk]T

where each element corresponds to a part of a model made of several primitives.
The mean and the covariance of this multivariate vector will thus be:

μ =

⎡⎢⎢⎢⎣
μ1
μ2
...

μk

⎤⎥⎥⎥⎦ and Σ =

⎡⎢⎢⎢⎣
Σf1f1 Σf1f2 . . . Σf1fk

Σf2f1 Σf2f2 . . . Σf2fk

...
...

...
Σfkf1 Σfkf2 . . . Σfkfk

⎤⎥⎥⎥⎦ (4)

This is very similar to the conventional multivariate mean and covariance
except that the Fréchet mean and the generalized cross-covariance are used in
the computations.

2.2 Extraction of the Principal Deformations

The equation 4 allows us to compute a statistical shape model for a group of
models made of several primitives. However, the different primitives will most
likely be correlated which makes the variability analysis very difficult. Further-
more, the dimensionality of the model is also a concern and we would like to
select only a few important uncorrelated components.

Unlike the manifold itself, the tangent plane is a vector space and its ba-
sis could be changed using a simple linear transformation. Thus, we seek an
orthonormal matrix A (AAT = I) to linearly transform the tangent plane
( Logμ(g) = ALogμ(f) ) such as the generalized covariance in the transformed
tangent space is a diagonal matrix (Σgg = diag (λ1, λ2, . . . , λk)). The covariances
of the transformed tangent space and of the original tangent space are connected
by the following equation:

Σgg = diag (λ1, λ2, . . . , λk) = AΣffAT

If A is rewritten as A = [a1, a2, . . . , ak]T , then it is easy to show that:

[λ1a1, λ2a2, . . . , λkak] = [Σffa1, Σffa2, . . . , Σffak] (5)

The line vectors of the matrix A are therefore the eigenvectors of the original
covariance matrix and the elements of the covariance matrix in the transformed
space are the eigenvalues of the original covariance. This is the exact same pro-
cedure that is used to perform PCA in real vector spaces. Like for real vector
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spaces, the variance is left unchanged since σ2 = Tr(Σff ) = Tr(Σgg) and the
cumulative fraction of the variance explained by the first n components is:

p =
1
σ2

∑
i=1...n

λi

A shape model can be re-created from coordinates of the transformed tangent
space simply by going back to the original tangent space and projecting the
model on the manifold using the exponential map. So if αi is the coordinate
associated with the ith principal component, the following equation can be used
to re-create a shape model:

S = Expμ(
k∑

i=1

αiai)

2.3 Application to Articulated Models of the Spine

x

z
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y’

z’

y

t

θ

n

Fig. 1. Rigid transform
expressed by an axis of
rotation n, an angle of
rotation θ and a transla-
tion vector t

In this paper, the spine is modelled as a set of frames as-
sociated to local coordinates systems of vertebrae. The
modifications of the spine geometry are thus modelled
as rigid transforms that are applied to those frames.
In order to compute the principal deformations modes
(from equation 5), the exponential and logarithmic
maps associated with a distance function on rigid trans-
forms are needed.

A rigid transform is the combination of a rotation
and a translation. Defining a suitable distance on the
translational part is not difficult since 3D translations
belong to a real vector space. However, the choice of a
distance function between rotations is more complex.

To define a suitable distance function between rigid
transforms, another representation of the rotations
called the rotation vector is needed. This representa-
tion is based on the fact that a 3D rotation can be
fully described by an axis of rotation supported by a unit vector n and an angle
of rotation θ (see figure 1). The rotation vector r is then defined as the product
of n and θ.

The conversion from the rotation vector to the rotation matrix is performed
using the Rodrigues equation:

R = I + sin(θ).S(n) + (1 − cos(θ)).S(n)2 with S(n) =

⎡⎣ 0 −nz ny

nz 0 nx

−ny nx 0

⎤⎦
And the inverse map (from a rotation matrix to a rotation vector) is given by

the following equations:

θ = arccos(
Tr(R) − 1

2
) and S(n) =

R − RT

2 sin(θ)
(6)
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Using the rotation vector representation, a left-invariant distance (d(T3 ◦
T1, T3 ◦ T2) = d(T1, T2)) between two rigid transformations can easily be de-
fined:

d(T1, T2) = Nω(T−1
2 ◦ T1) with Nω(T )2 = Nω({r, t})2 = ‖r‖2 + ‖ωt‖2 (7)

Where ω is used to weight the relative effect of rotation and translation, r is
the rotation vector and t the translation vector. Because the selected distance
function is left-invariant, we have Expμ(T ) = ExpId(μ

−1 ◦ T ) and Logμ(T ) =
LogId(μ−1 ◦ T ). Furthermore, it can be demonstrated that the exponential and
log map associated with the distance of equation 7 are the mappings (up to a
scale) between the combination of the translation vector and rotation vector and
the combination of the rotation matrix and the translation vector [9].

ExpId(T ) =
R(r)
ω−1t

and LogId(T ) =
r(R)
ωt

2.4 Extraction of Articulated Model of the Spine from Radiographs

Fig. 2. Frames and transforms
used to express the spine as a
articulated model

The 3D geometry of the spine is digitized us-
ing a posterior-anterior and a lateral radiograph.
Radiographs are used because it allows the pa-
tients to stand up during the acquisition (which
is important since a large proportion of the
spine deformation is hidden when patients lie
down). Six anatomical landmarks are identified
on the two radiographs. The 3D coordinates of
the landmarks are computed using a triangula-
tion algorithm and the deformation of a high-
resolution template using dual kriging yields 16
additional reconstructed landmarks. The accu-
racy of this method was previously established
to 2.6mm [10].

Once the landmarks are reconstructed in 3D,
each vertebra is rigidly registered to its first
upper neighbour and the resulting rigid trans-
forms are recorded. By doing so, the spine is
represented by a set of rigid transforms (see the
figure 2). This set of inter-vertebral transforms
will be used to compute the mean and covariance
of the spine shape.

3 Results and Discussion

The method described in the previous sections was applied to a group of 307
scoliotic patients. The patients selected for this study had not been treated with
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(a) (b)

(c) (d)

Fig. 3. First principal deformation mode (reconstructions for −3
√

λ1, −
√

λ1,
√

λ1,

3
√

λ1), posterior-anterior view (a) and lateral view (c). Second principal deformation
mode (reconstructions for −3

√
λ2, −

√
λ2,

√
λ2, 3

√
λ2), posterior-anterior view (b) and

lateral view (d).

any kind of orthopaedic treatment when radiographs were taken. Therefore, the
inter-patients variability observed was mainly caused by anatomical differences
and not by any treatments. The ω constant was set to 0.05 because this value
leads to approximatively equal contributions of the rotation and the translation
to the variance.

To illustrate the different deformation modes retrieved using the proposed
method, four models were reconstructed for each of the first four principal de-
formation modes. Those models were reconstructed by setting αk to −3

√
λk,

−√
λk,

√
λk and 3

√
λk for k = 1 . . . 4 while all others components (αi with

i �= k) were set to zero (see figures 3 and 4).
A visual inspection reveals that the first four principal deformation modes

have clinical meanings. The first appears to be associated with the patient growth
because it is mainly characterized by an elongation of the spine and also includes
a mild thoracic curve. The second principal deformation mode could be described
as a double thoraco-lumbar curve, because there are two curves: one in the
thoracic segment (upper spine) and another in the lumbar segment (lower spine).
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(a) (b)

(c) (d)

Fig. 4. Third principal deformation mode (reconstructions for −3
√

λ3, −
√

λ3,
√

λ3,

3
√

λ3), posterior-anterior view (a) and lateral view (c). Fourth principal deformation
mode (reconstructions for −3

√
λ4, −

√
λ4,

√
λ4, 3

√
λ4), posterior-anterior view (b) and

lateral view (d).

The third principal mode of deformation is a simple thoracic curve (the apex
of the curve is in the thoracic spine), but it is longer than the thoracic curve
observed in the first principal component. It is also interesting to note that,
in addition to the curves visible on the posterior-anterior view, the second and
third principal deformation modes are also associated with the development of
a kyphosis (back hump) on the lateral view. Finally, the fourth component is a
lumbar lordosis (lateral curve of the lumbar spine).

Those curve patterns are routinely used in different clinical classifications of
scoliosis (used to plan surgeries). For instance, the reconstructions built from the
first principal deformation mode would be classified using King’s classification
[11] as a type II or III (depending on which reconstruction is evaluated), the
second deformation mode would be associated to King’s type I or III and the
third principal deformation could be associated to King’s type IV.

Previouly those patterns were derived from surgeons’ intuition using 2D im-
ages and clinical indices, whereas it is now possible to automatically compute
those patterns from statistics based only on 3D geometries. This also makes
it possible, for example, to compare principal deformation modes of different
subgroups of scoliotic patients.
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Fig. 5. Fraction of the variance explained by the nth most important principal defor-
mation modes

Furthermore, the cumulative variance explained by an increasing number of
principal deformations modes (illustrated at figure 5) shows the capacity of the
proposed method to reduce the dimensionality of the model while keeping a large
part of the original variance.

Finally, the algorithm is not very sensitive to the exact value of ω (values
between 0.01 and 0.25 were tried and yielded similar results with our database),
but setting a value considerably too high or too low would discard either the
rotation or translation part of the rigid transforms from the analysis.

4 Conclusion

A method to extract the principal modes of deformation from articulated mod-
els was described. The method consists in performing a principal component
analysis in the tangent space of a Riemannian manifold (the Lie group of rigid
transforms equipped with a metric). We applied this method to a database of sco-
liotic patients reconstructed in 3D using stereo radiographs. Clinically relevant
patterns of deformations were extracted from that database and dimensionality
reduction was successfully achieved. Results also suggest that PCA applied to a
suitable representation of the spine, namely a set of rigid transforms, leads to an
algorithm that can expose natural modes of deformation of the spine. However,
it might be interesting to validate the method using an high accuracy imaging
apparus and a deformable spine phantom.

One of the reasons to perform dimensionality reduction on statistical shape
models is to reduce the number of DOF that needs to be optimized during
model registration. The proposed method will therefore be integrated to a spine
registration algorithm in the future. It might also be useful for the integration
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of a large number of rigid structures in non-rigid registration procedures [12] of
the whole human torso.

Also, the current method takes only into account the shape of the spine and
not the shape of the individual vertebrae. But the deformations of individual
vertebrae are connected to the deformations of the whole spine (see, for example,
the vicious cycle described by Stokes et al. [13]). Thus, future developments
might include the construction of hybrid models where the global shape of the
spine would be modelled using inter-vertebral rigid transforms and the shape of
individual vertebrae would be taken into account using spherical harmonics or
medial axis representations (for instance).
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Abstract. In this paper, we present an automatic face authentication
system. Accurate segmentation of prominent facial features is accom-
plished by means of an extension of the Active Shape Model (ASM)
approach, the so-called Active Shape Model with Invariant Optimal Fea-
tures (IOF-ASM). Once the face has been segmented, a pose correction
step is applied, so that frontal face images are synthesized. For the gen-
eration of these virtual images, we make use of a subset of the shape
parameters extracted from a training dataset and Thin Plate Splines
texture mapping. Afterwards, sets of local features are computed from
these virtual images. The performance of the system is demonstrated on
configurations I and II of the XM2VTS database.

Keywords: Face Authentication, Automatic Segmentation, Pose Cor-
rection.

1 Introduction

Although many algorithms have been proposed during the last decade, the gen-
eral face recognition problem still remains unsolved because of several causes that
affect the performance of face-based biometric approaches, such as illumination
and pose variations, expression changes, etc [19]. Moreover, face recognition al-
gorithms must be supplied with cropped images that ideally contain only face
pixels, i.e. there must exist a previous step that locates the face (and perhaps a
set of facial features) within the input image. Face authentication contests like
[17] have shown that there is a general degradation in performance when chang-
ing between manual registration of faces and using automatic detection before
authentication. In this paper, we address two aspects of the face authentication
problem: automatic face modelling from still images and pose correction.

One of the most popular approaches for statistical modelling are the active
models of shape and appearance, introduced by Cootes et al. in [11,12]. These
techniques allow for detailed modelling of a wide range of objects, as long as
an appropriate training set is available. Their application to facial images has
been previously exploited [16,15] to locate the main facial features (e.g. eyes,
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nose, lips) and recover shape and texture parameters. In this work we use the
Active Shape Models with Invariant Optimal Features (IOF-ASM), an extension
of Active Shape Models (ASM) that improves segmentation accuracy by means
of a non-linear texture model based on local image structure [21].

As stated above, the presence of pose differences within the input images
is one of the main factors that degrades the performance of face recognition
systems. Up to now, the most practical and successful algorithms dealing with
pose-invariant face recognition are those which make use of prior knowledge of
the class of faces such as [1], where an individual eigenspace is constructed for
each pose. Another approach is presented in [2], where from a single image of a
subject and making use of face class information, virtual views facing different
poses are synthesized, which are then used in a view-based recognizer. In [3],
a morphable 3D face model was fitted to the input images. Among others, the
parameters that account for pose are subject to modification, so that virtual
images facing the adequate pose can be synthesized. The main drawbacks of this
method are the need of a 3D face training database and the high computational
complexity. Using a training dataset of face images, we built a Point Distribution
Model and, from the main modes of variation, the parameters responsible for
the pose of the face (namely the pose parameters) were identified. Using the seg-
mentation results provided by the IOF-ASM approach, our system compensates
for pose variations by normalizing these pose parameters and synthesizing vir-
tual frontal images through texture mapping. Sets of local features are extracted
from these virtual images by means of a two-stage approach. Experiments on the
XM2VTS database showed how this simple strategy softens (moderated) pose
effects, achieving error rates comparable to the state of the art.

The paper is organized as follows: Section 2 presents the statistical modelling
of the face and the approach used for segmenting facial features. In Section 3, the
synthesis of pose corrected face images is addressed, while section 4 explains the
two stages of feature extraction. In Section 5, we show our experimental results
over the XM2VTS database [18]. Finally, conclusions are drawn in Section 6.

2 Statistical Face Modelling

2.1 A Point Distribution Model for Faces

A Point Distribution Model (PDM) of a face is generated from a set of training
examples. For each training image Ii, N landmarks are located and their coor-
dinates are stored, conforming a vector Xi = (x1i, x2i, . . . , xNi, y1i, y2i, . . . , yNi).
The pair (xji, yji) represents the coordinates of the j-th landmark in the i-th
training image. After aligning all training examples, a Principal Components
Analysis is performed in order to find the most important modes of shape vari-
ation. As a consequence, any training shape Xi can be approximately recon-
structed as:

Xi = X̄ + Pb, (1)

where X̄ stands for the mean shape, P is a matrix whose columns are unit eigen-
vectors of the first t modes of variation found in the training set, and b is the
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Fig. 1. Effect of varying pose parameters. rotations in depth parameter (first row) and

elevation parameter (second row). The middle column shows the average face shape,

while the left and right columns are generated displacing the corresponding parameters

by ±5 times the standard deviation of the training set.

vector of parameters that define the actual shape of Xi. Notice that the k-th
component from b (bk, k = 1, 2, . . . , t) weighs the k-th mode of variation. Ex-
amining the shapes generated by varying bk within suitable limits, we find those
parameters responsible for pose, as indicated in figure 1. Note that, although a
given eigenvector should not be assigned to an unique mode of facial variation,
it is clear that the eigenvectors shown in this figure are mainly related to pose
changes. Let bpose be the set of parameters which accounts for pose variation.
Since PTP = I, then

b = PT
(
Xi − X̄

)
, (2)

i.e. given any shape, it is possible to obtain its vector of parameters b and, in
particular, we are able to find its pose (i.e. bpose).

We built a 62-point PDM using the set of manual annotated landmarks1 from
the training images shared by both configurations I and II [9] of the XM2VTS
database[18].

2.2 IOF-ASM

When a new image containing a face is presented to the system, the vector
of shape parameters that fits the data, b, should be computed automatically.
Active Shape Models with Invariant Optimal Features (IOF-ASM) is a statistical
modelling method specifically designed and tested to handle the complexities of
facial images. The algorithm learns the shape statistics as in the original ASMs
[11] but improves the local texture description by using a set of differential

1 http://www-prima.inrialpes.fr/FGnet/data/07-XM2VTS/xm2vts-markup.html
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Algorithm 1. IOF-ASM matching to a new image
1: Compute invariants for the whole image
2: T = Initial transformation guess for face position and size
3: X = X (modelShape = meanShape)
4: for i = 1 to number of iterations do
5: Project shape to image coordinates: Y = TX
6: for l = 1 to number of landmarks do
7: Sample invariants around l-th landmark
8: Determine best candidate point to place the landmark
9: if the best candidate is good enough then

10: Move the landmark to the best candidate point
11: else
12: Keep previous landmark position (do not move)
13: end if
14: end for
15: Let the shape with new positions be Y
16: Update T and PDM parameters: b = PT (T−1Y − X)

17: Apply PDM constraints: b = PdmConstrain(b, β)
18: Get new model shape: X = X̄ + Pb
19: end for

invariants combined with non-linear classifiers. As a result, IOF-ASM produces
a more accurate segmentation of the facial features [21].

The matching procedure is summarized in Algorithm 1. In line 1 the image
is preprocessed to obtain a set of differential invariants. These invariants are
the core of the method and they consist on combinations of partial derivatives
that result invariant to rigid transformations [22,20]. Moreover, IOF-ASM uses
a minimal set of order K so that any other algebraic invariant up to order K
can be reduced to a linear combination of elements of this minimal set [13].

The other key point of the algorithm is between lines 1 and 1. For each land-
mark, an image-driven search is performed to determine the best position for it
to be placed. The process starts by sampling the invariants in a neighborhood
of the landmark (line 1). In IOF-ASM this neighborhood is represented by a
rectangular grid, whose dimensions are parameters of the model. A non-linear
texture classifier analyzes the sampled data to determine if the local structure
of the image is compatible with the one learnt during training for this land-
mark. A predefined number of displacements are allowed for the position of the
landmark (perpendicularly to the boundary, as in [11]), so that the texture clas-
sifier analyzes several candidate positions. Once the best candidate is found, say
(xB , yB), the matching between its local image structure and the one learnt dur-
ing training is verified (line 1) by means of a robust metric [14]. The applied
metric consists on the evaluation of the sampled data grouped according to its
distance perpendicularly to the shape boundary. Grouping this way, the samples
can be organized in a one-dimensional profile of length lP . Based on the output
from the texture classifier, each position on this profile will result as a support-
ing point or an outlier (the supporting points are those profile points suggesting
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that (xB , yB) is the best position for the landmark to be placed, while outliers
indicate a different position and, therefore, suggest that (xB , yB) is incorrect). If
the supporting points are (at least) two thirds of lP , then the matching is con-
sidered accurate and the landmark is moved to the new position. Otherwise the
matching is not trustworthy (i.e. the image structure does not clearly suggests
a landmark) and the landmark position is kept unchanged (see [21] for details).

The PDM constraints of line 1 ensure that the obtained shape is plausible
according to the learnt statistics (i.e. it looks like a face). For this purpose, each
component of b is limited so that |bk| ≤ β

√
λk, (1 ≤ k ≤ t); where t is the

number of modes of variation of the PDM, λk is the eigenvalue associated to
the k-th mode and β is a constant, usually set between 1 and 3, that controls
the degree of flexibility of the PDM (see [11]).

3 Correcting Pose Variations in Face Images

Once the flexible shape model (with coordinates X) has been fitted to the face
image I, the shape parameters b are extracted using equation (2). In particular,
we are interested in the subset of parameters describing the pose (bpose). In
order to generate a frontal mesh, these parameters are set to zero2. Hence, we
obtain a new vector of parameters b̂ and, through equation 1, the frontal face
mesh X̂ .

Given the original face I, the coordinates of its respective fitted flexible shape
model, X , and the new set of coordinates, X̂, a virtual face image Î must be
synthesized by warping the original face onto the new shape. For this purpose,
we used a method developed in [4], based on thin plate splines. Provided the
set of correspondences between X and X̂, the original face I is allowed to be
deformed so that the original landmarks are moved to fit the new shape. The
full procedure of pose normalization is shown in figure 2.

Normalization

Pose

Test image

Warping

TPS

I

X X

IIOF−ASM Fitting

Fig. 2. Block diagram for pose normalization. TPS stands for Thin Plate Splines.

2 We will use the term frontal when referring to the pose of the mean shape of the
PDM. However, the only requirement of the method is that all shapes can be mapped
to a common view, then there is not a need for a strictly frontal mean-shape.
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3.1 Advantages over Warping onto a Mean Shape

When warping an image onto the average shape (X̄) of a training set, all shape
parameters are set to zero. In other words, the fitted flexible shape model is
forced to be moved to the coordinates of X̄ . Holistic approaches such as PCA
need all images to be embedded into a given reference frame (an average shape
for instance), in order to represent these images as vectors of ordered pixels. The
problem arises when the subject’s shape differs enough from the average shape,
as the warped image may appear geometrically distorted, and subject-specific
information may be removed. Given that our method is not holistic but uses local
features instead, the reference-frame constraint is avoided and the distortion is
minimized by modifying only pose parameters rather than the whole shape.

4 Feature Extraction

Once the normalization process has finished, we must proceed to extract features
from the virtual frontal images Î. Up to now, most algorithms encoding local
information have been based on localizing a pre-defined set of landmarks and
extracting features from the regions surrounding those points. The key idea be-
hind our approach relies on selecting an own and discriminative set of points per
client, where features should be extracted. The choice of this set is accomplished
through a two-layer strategy, whose stages are explained below.

Layer I: Shape-driven selection and matching. In the first step, a prelimi-
nary selection of facial points is accomplished through the use of shape informa-
tion [5]. Lines depicting face structure are extracted by thresholding the response

Ridges
  &
Valleys

Thresholding

Sampling

A) Layer I B) Layers I+II

Fig. 3. A) Layer I: A ridge and valley detector is applied to the original image (top

left), and its response is shown on the right. Thresholding this representation leads to

a set of lines depicting face structure (bottom left). The set of points P is obtained by

sampling from these lines (bottom right). B) Layers I+II: Final set of points after

layer II is applied.
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of a ridge and valley detector, and a set of points P = {p1, p2, . . . ,pn} is chosen
automatically by sampling from these lines. Figure 3-A illustrates this procedure.
Then, a set of multi-scale and multi-orientation Gabor features (so-called jet) is
computed at each shape driven point. Let Jpi

be the jet obtained from point pi.
Given the two faces to be compared, say Îtrain and Îtest, their respective sets
of points are computed: Ptrain = {p1, p2, . . . ,pn} and Ptest = {q1, q2, . . . , qn},
and a shape matching algorithm based on shape contexts [6] is used to calculate
the correspondences between the two sets of points, ξ (i) : pi =⇒ qξ(i). Hence,
jet Jpi will be compared to Jqξ(i) . The comparison between Jpi and Jqξ(i) is
given by the normalized dot product (< Jpi

, Jqξ(i) >), but taking into account
that only the moduli of jet coefficients are used.

Layer II: Accuracy-based selection. Some previous approaches have been
focused on identifying which features were the most important for authentication
purposes. Among others, [8], [7] have selected and weighted the nodes from a
rectangular grid based on a Linear Discriminant Analysis (LDA). This kind of
analysis is possible due to the fact that a given node represents the same facial
region in every image. In our case, we can not assume this, so a different method
is needed in order to select the most discriminative points. The problem can be
formulated as follows. Given:

– a training image for client C, say Îtrain,
– a set of images of the same client

{
Îc
j

}
, j = 1, . . . , Nc, and

– a set of imposter images
{

Îim
j

}
, j = 1, . . . , Nim,

we want to find which subset, P∗ ⊂ Ptrain, is the most discriminative. As long as
each pi from Ptrain has a correspondent point in any other image, we evaluate
the individual classification accuracy of its associated jet Jpi , so that only the
locations whose jets are good at discriminating between clients and imposters
are preserved. With the set of images given above, we have Nc client accesses and
Nim imposter trials for jet Jpi to classify. We measure the False Acceptance Rate
(FARi) and the False Rejection Rate (FRRi) for this jet and, if the Total Error
Rate (TERi = FARi + FRRi) exceeds a threshold τ , jet Jpi

will be discarded.
Finally, only a subset of points, P∗, is chosen per image, and the score between
Îtrain and Îtest is given by:

S = fn∗
{
< Jpi , Jqξ(i) >

}
pi∈P∗ (3)

where fn∗ stands for a generic combination rule of the n∗ dot products. Figure 3-B
presents the set of points that was chosen after both layer selection.

5 Experimental Results on the XM2VTS Database

The proposed method was tested using the XM2VTS database on configurations
I and II of the Lausanne protocol [9]. The XM2VTS database contains image
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Table 1. False Acceptance Rate (FAR), False Rejection Rate (FRR) and Total Error

Rate (TER) over the test set for our method and automatic approaches from [17]

Conf. I Conf. II
FAR(%) FRR(%) TER(%) FAR(%) FRR(%) TER(%)

UPV 1.23 2.75 3.98 ± 1.35 1.55 0.75 2.30 ± 0.71

UNIS-NC 1.36 2.5 3.86 ± 1.29 1.36 2 3.36 ± 1.15

IDIAP 1.95 2.75 4.70 ± 1.35 1.35 0.75 2.10 ± 0.71

Pose Corr.(Auto) 0.83 2.75 3.58 ± 1.35 0.85 2 2.85 ± 1.15

Pose Corr.(Manual) 0.46 2.75 3.21 ± 1.35 0.72 1.50 2.22 ± 1.00

No Pose Corr.(Auto) 0.65 3.75 4.40 ± 1.56 0.74 2.5 3.24 ± 1.28

No Pose Corr.(Manual) 0.89 4 4.89 ± 1.61 0.75 2.5 3.25 ± 1.28

data recorded on 295 subjects (200 clients, 25 evaluation imposters, and 70
test imposters).The database is divided into three sets: training, evaluation and
test. The training set was used to build client models, the PDM, and the IOF-
ASM3, while the evaluation set was used to select the best features and estimate
thresholds. Finally, the test set was employed to assess system performance.

In all the experiments, n = 130 shape-driven points are computed for every
image. However, only n∗ ≤ 130 local scores are computed, because of the feature
selection explained in Section 4. The median rule [10] was used to fuse these
scores, i.e. fn∗ ≡ median. Configurations I and II of the Lausanne protocol dif-
fer in the distribution of client training and client evaluation data, representing
configuration II the most realistic case. In configuration I, there are 3 train-
ing images per client, while in configuration II, 4 training images are available.
Hence, for a given test image, we get 3 and 4 scores respectively, which can
be fused in order to obtain better results. Again, the median rule was used to
combine these values, obtaining a final score ready for verification.

Table 1 shows a comparison between the proposed method (Pose Corr.(Auto))
and a set of algorithms that entered the competition held in conjunction with the
Audio- and Video-based Biometric Person Authentication (AVBPA) conference
in 2003 [17]. All these algorithms are automatic. In this table, and derived from
the work in [24], 90% confidence intervals for the TER measures are also given.
As we can see, our approach offers competitive error rates in both configurations
(with no statistically significant differences between methods). Furthermore, the
last three rows from this table show baseline results:

– Pose Corr.(Manual): The automatic segmentation provided by IOF-ASM is
replaced by manual annotation of landmarks.

– No Pose Corr.(Auto): Automatic segmentation without pose correction (only
in-plane rotations are corrected).

– No Pose Corr.(Manual): Manual segmentation without pose correction (only
in-plane rotations are corrected).

3 The IOF-ASM was built with the same parameters detailed in [21].
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It is clear that the use of IOF-ASM offers accurate results for our task, as the
degradation between the error rates with manual and automatic segmentation is
small. Moreover, the comparison between lines 4 and 6-7, shows that the use of
pose-corrected images improves the performance of the system (even if manual
landmarks are used to segment the original faces).

6 Conclusions

We have presented an automatic face authentication system that reduces the
effect of pose variations by synthesizing frontal face images. The segmentation
of the face in the original image is accomplished by means of the IOF-ASM
approach. A set of discriminative points and features is then selected in two
steps: the shape-driven location stage and the accuracy-based selection step.

The quality of the synthesized face (and thus, system performance) mainly
depends on the segmentation accuracy, which is intimately related to the degree
of pose variation in the input image and the dataset used for training. The
achieved results on the XM2VTS database demonstrate the usefulness of the
method in a limited range of pose variations, offering state-of-the-art error rates.
As a main future research line, we plan to work on video-sequences in which facial
features will be tracked in a frame-by-frame basis through the combination of
IOF-ASM segmentation and a robust face tracker [25].
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9. Luttin, J. and Mâıtre, G. Evaluation protocol for the extended M2VTS database
(XM2VTSDB). Technical report RR-21, IDIAP, 1998.

10. Kittler, J., Hatef, M., Duin, R., and Matas, J. On Combining Classifiers. In IEEE
Transactions on Pattern Analysis and Machine Intelligence 20, 3 (1998), 226–239.

11. Cootes, T., Taylor, C., Cooper, D., and Graham, J. Active shape models - their
training and application. Computer Vision and Image Understanding 61, 1 (1995),
38–59.

12. Cootes, T., Edwards, G., and Taylor, C. Active appearance models. In Proc.
European Conference on Computer Vision (Springer, 1998), vol. 2, pp. 484–498.

13. Florack, L. The Syntactical Structure of Scalar Images. PhD thesis, Utrecht Uni-
versity, Utrecht, The Nedherlands, 2001.

14. Huber, P. Robust Statistics. Wiley, New York, 1981.
15. Kang, H., Cootes, T., and Taylor, C. A comparison of face verification algorithms

using appearance models. In Proc. British Machine Vision Conference (Cardiff,
UK, 2002), vol. 2, pp. 477–486.

16. Lanitis, A., Taylor, C., and Cootes, T. Automatic interpretation and coding of
face images using flexible models. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19, 7 (1997), 743–756.

17. Messer, K., Kittler, J., Sadeghi, M., Marcel, S., Marcel, C., Bengio, S., Cardinaux,
F., Sanderson, C., Czyz, J., Vandendorpe, L., and al. Face verification competition
on the XM2VTS database. In Proc. 4th International Conference on Audio- and
Video-based Biometric Person Authentication (AVBPA) Guildford, UK (2003), pp.
964–974.

18. Messer, K., Matas, J., Kittler, J., Luettin, J., and Maitre, G. XM2VTSDB: The
extended M2VTS database. In Proc. International Conference on Audio- and
Video-Based Person Authentication (1999), pp. 72–77.

19. Philips, P., Moon, H., Rizvi, S., and Rauss, P. The FERET evaluation methodol-
ogy for face recognition algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(10) (2000), 1090–1104.

20. Schmid, C., and Mohr, R. Local greyvalue invariants for image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence 19(5) (1997), 530–535.

21. Sukno, F., Ordas, S., Butakoff, C., Cruz, S., and Frangi, A. Active shape mod-
els with invariant optimal features IOF-ASMs. In Proc. Audio- and Video-Based
Biometric Person Authentication (New York, USA, 2005), Springer, pp. 365–375.

22. Walker, K., Cootes, T., and Taylor, C. J. Correspondence using distinct points
based on image invariants. In British Machine Vision Conference (1997), vol. 1,
pp. 540–549.

23. Wiskott, L., Fellows, J.-M., Kruger, N., and von der Malsburg, C. Face recognition
by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19, 7 (1997), 775–779.
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Abstract. The cutting operation of 3D surface meshes plays an im-
portant role in surgery simulators. One of the important requirements
for surgical simulators is the visual reality. We propose a new strategy
for cutting on surface meshes: refinement and separate strategy consist-
ing of the refinement followed by the separation of the refined mesh
element.The proposed strategy gives the faithful representation of inter-
action paths of a surgical tool.

1 Introduction

Surgical simulators have been developed to create environments to help train
physicians in learning skills of surgical operations at many research centers. The
virtual cutting operation plays an important role in surgery simulators. The
virtual cutting methods can be divided into two categories: (i) volume cutting
method that consists of cutting methods on a tetrahedral mesh and (ii) sur-
face cutting method that consists of cutting methods on a 3D surface mesh.
One of the important requirements for cutting methods is the issue of accuracy
representation of the interaction path of a surgical tool.

In addition the cutting techniques may also be classified into two major cat-
egories based on the implementation of a cutting operation; those that remove
intersected meshes [1] and those that re-mesh intersected meshes [2,3,4,5,6,7,8].
The methods of the first category simply dismiss mesh elements that intersect the
cutting tool; the methods of the second category recreate the path passed over
by the tool through the intersected mesh elements by way of re-meshing them.
The methods of the second category have the disadvantage of the supplemental
cost for computing the intersection path but provide a good visual representa-
tion of the path passed over by the cutting tool. In order to have the accuracy
representation of the intersection path without considerably scarifying the cost
of computation of deformation, there is a strategy proposed and implemented on
tetrahedral meshes: refinement and remove strategy [9]. This strategy composes
of the refinement followed by the elimination of the mesh elements (tetrahedral)
on the surface cut. Despite the fact that the sizes of removed mesh elements are
small due to the previous mesh refinement process, the approach still has the
drawback of creating non-smooth cuts, and hence are still not appropriate for a
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realistic simulator. Moreover, there are not the implementations of this strategy
on surface meshes.

We propose a new strategy for cutting on surface mesh: refinement and sepa-
rate strategy consisting of the refinement followed by the separation of the refined
mesh element. Since the advantage of the low computational cost (linear time
complexity comparing to O(NlogN) time complexity of Delaunay refinement
methods), the longest-edge refinement method [10] is utilized for the refinement
process. The proposed strategy gives the faithful representation of the interaction
path in comparing with the conventional methods.

This paper is organized as follows. Section 2 introduces the longest-edge re-
finement method which is the base for constructing the proposed method for
virtual cutting. Section 3 details the proposed method. Section 4 describes the
results. Section 5 is devoted for conclusions and future works.

2 Backward Longest-Size Refinement Algorithm

As a preliminary for presenting the proposed method, in this section we introduce
the backward longest-edge refinement algorithm of Rivara [10] for triangular
mesh refinement. The requirement of a refinement of a mesh is to satisfy the
main properties: conforming, well shaped and smooth. A conforming mesh is a
mesh without any ”T-junctions”. T junction is a non-conforming point which
is defined as an interior point of an edge of one triangle and common vertex of
two other adjoin triangles. The well shaped mesh is a mesh whose angle of the
elements is bounded from 0 and π. Rivara proposed the backward longest-edge
bisection refinement algorithm. The method only bisects along the longest-edge
of a triangle; this guarantees the construction of non-degenerate and smooth
irregular triangulations whose geometrical properties only depend on the initial
mesh. In order to maintain a conforming mesh, the local refinement of a given
triangle involves refinement of the triangle itself and refinement of its longest
edge neighbors.

Longest-side propagation path is a concept utilized in the backward longest-
size refinement algorithm. It is defined as follows: For any triangle t0 of any
conforming triangulation T , the longest-side propagation path of t0 will be the
ordered list of all the triangles t0, t1, t2, ...tn−1, tn, such that ti is the neighbor
triangle of ti−1, by the longest-size of ti−1, for i = 1, 2, ..n. The longest-side
propagation path pf triangle t0 is denoted as LSPP (t0).

The following is the backward longest-size refinement algorithm:

Backward Longest-Size Bisection (T, t)
While t remains without being bisected do

Find the LSPP (t)
If t∗, the last triangle of the LSPP (t), is a terminal boundary triangle, bisect

t∗

Else bisect the (last) pair of terminal triangles of the LSPP (t)
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Fig. 1. Backward longest-side bisection of triangle t0

Figure 1 explains the backward longest-size refinement algorithm: Fig. 1a gives
the initial triangulation; Fig. 1b gives the first step of the process; Fig. 1c gives
the second step in the process and Fig. 1d gives the final triangulation.

3 Data Structure and Cutting Algorithm

The objects of the surgical simulation are represented by 3D surface meshes.
The surface mesh of the object can be taken from laser scanner. The VRML
output file of a laser scanner is used in a data structure based on winged-edge
data structure, which includes the physical parameters of a damped mass-spring
model. The data which is stored at each vertices are their 3D coordinates, the
value of mass and the information of an edge adjacent to vertex, the data which
is stored at each edge are the start of node, the end of node of vertex, the
parameters of a damper and a spring, the previous edge for left face, the next
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Fig. 2. Initial interacting point

Fig. 3. Remeshing and making new point in a cutting process

edge for left face. This data structure allows quick computation of finding the
adjacent triangles for cutting algorithm, and performing of deformation.

There are different approaches for changing the topology of an object such as
destroying the mesh elements or dividing them. In our proposed method, to yield
accuracy representation of cutting paths, instead of simple dividing the triangles
(the mesh elements), we refine them by subdividing into smaller triangles using
the longest-edge refinement algorithm mentioned in the previous section. The
virtual cut is performed by way of separating the subdivided smaller triangles.

At first the triangle that is collided by the surgical tool is refined by using the
backward longest-edge refinement algorithm mentioned in previous section, as
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Fig. 4. Swapping an edge in a cutting process

Fig. 5. Groove Generation

showed in the Fig. 2b. The vertex that is nearest the colliding point is considered
as the initial vertex for performing cutting.

Suppose that a virtual cut is being carried out at a vertex, we call this vertex
as the reference vertex, the cut is performed by repetition of the following steps:

1. Finding the next vertex in cutting path: The next vertex is the neighboring
vertex which has the closest distance toward the direction of the motion of
a surgical tool. The neighboring vertex is a vertex adjacent to the reference
vertex, or is the vertex of a triangle sharing the common edge with the triangle
of the reference vertex; and do not lie on the common edge. The edge linking
the reference vertex to the next vertex is called reference edge. Figure 3a shows
how to choose the next vertex.
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2. Changing the topology: The triangles sharing the next vertex from the
reference vertex in cutting path are refined by the longest-edge refinement al-
gorithm until the longest-edge l of the subdivided smaller triangles is satisfied
the requirement of d/2 < l < d, where d is a predefined distance. Notice that
the requirement of l > d/2 is to assure the termination for a refinement process.
Figure 3b. gives an illustration a process of refinement of the triangles sharing
the next vertex.

3. Changing the adjacent information of two triangles along the cutting path:
The reference vertex is duplicated and the adjacent information of two triangles
sharing the reference vertex is updated as not adjacent. Figure 3c and d clarifies
this step when considering the vertex C as a reference vertex.

In the case that the next vertex is not belong the same triangle of the reference
vertex and the edge which is shared by the two triangles is the longest edge as
shown Fig. 4a, this edge is swapped so as the next vertex is connected with the
reference vertex by an edge, and the cutting process is continued as described in
Step 2 and Step 3 (see Fig. 4b).

It is necessary to have an algorithm for generating the groove of a cutting
path. As shown in Fig. 5, when the triangles ABC and BCD are divided and
the vertices B1, B2, C1, C2 are created, the bottom of the groove is generated at
the tip positions of the cutting tool G1 and G2.

4 Experimental Results

Regarding with the issue of accuracy representation of the interaction path of a
surgical tool, it is difficult to compare the proposed method which is based on
the refinement and separate strategy with that of the refinement and removal
strategy. However, in any situations, the fact that separating process of the re-
finement and separate strategy do not dismiss mesh elements definitely increases
the accuracy much more than that of refinement and removal strategy. Here we
show the results of the proposed method. We build the system as showed in
Fig. 6 to implement the proposed method. The handling of the virtual object

Fig. 6. System diagram
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in 3D virtual space is performed by using the haptic interface device Phantom.
The visual result is represented realistically in the X3D display screen.

Figure 7 shows the wire frame representation of a virtual cutting of a hand
which is model by the 3D surface triangle mesh: Fig.7a gives the original repre-
sentation of the hand and Fig.7b gives the result of the virtual cutting.

Fig.8a shows the enlargement of the result, the cutting path appears deli-
cately; the very small shakes of the hand handling the Phantom arm are captured
and expressed faithfully in zigzags. This show the effectiveness of the proposed
method in accurate representation of the motion of the surgical tool. In fact if
the friction force in hand surface is considered, the real motion of hand, which
handles the Phantom arm, will become smooth. However, this does not affect
the effectiveness of the proposed algorithm.

Fig.8b illustrates the case without using mesh refinement algorithm for the
same motion of cutting tool of the previous experiment, the cutting path is far

(a) Original 3D hand (b) A virtual cutting

Fig. 7. Wire frame representation

(a) with mesh refinement (b) without mesh refinement

Fig. 8. Comparison of the algorithm with and without mesh refinement
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Fig. 9. Cut a groove on a surface

different from the motion of cutting tool (white line). In Fig.9, we show a result
of cutting with groove generation.

5 Conclusions

The paper introduces a new method for carrying out a virtual cutting process
with high visual effect. The main contribution of the work is a real-time 3D
surface cutting algorithm that cooperates with the longest-edge based local re-
finement algorithm for unstructured meshes of triangle. The experiment results
show the performance of the approach. Our closest goal of future work is to ren-
der deformation and haptic of highly deformable virtual objects under a virtual
cutting.

References

1. S. Cotin, H. Delingette and N. Ayache: “A hybrid elastic model for real-time cut-
ting, deformations, and force feedback for surgery training and simulation.”, The
Visual Computer, 16, 7, pp. 437–452 (2000).

2. C. D. Bruyns and S. Senger: “Interactive cutting of 3d surface meshes”, Computers
& Graphics, 25, pp. 635–642 (2001).

3. H.-W. Nienhuys and A. F. van der Stappen: “A surgery simulation supporting
cuts and finite element deformation”, Medical Image Computing and Computer-
Assisted Intervention, Utrecht, The Netherlands, pp. 153–160 (2001).

4. C. Basdogan: “Simulation of instrument-tissue interactions and system integra-
tion”, Medicine Meets Virtual Reality 2001 (2001).

5. D. Bielser, P. Glardon, M. Teschner and M. Gross: “A state machine for real-time
cutting of tetrahedral meshes”, Journal of Graphical Models, 66, 6, pp. 398–417
(2004).

6. M. Harders, D. Steinemann, M. Gross and G. Szekely: “A hybrid cutting ap-
proach for hysteroscopy simulation”, Conference on Medical Image Computing
and Computer-Assisted Intervention, Palm Springs, USA (2005).



374 V.Q.H. Huynh, T. Kamada, and H.T. Tanaka

7. F. Ganovelli, P. Cignoni, C. Montani and R. Scopigno: “Enabling cuts on multires-
olution representation”, The Visual Computer, 17, 5, pp. 274–286 (2001).

8. C. Mendoza and C. Laugier: “Simulating soft tissue cutting using finite element
models”, Proc. of the IEEE Int. Conf. on Robotics and Automation, Taipei, Tai-
wan, pp. 1109–1114 (2003).

9. C. Forest., H. Delingette and N. Ayache: “Removing tetrahedra from manifold
tetrahedralisation : application to real-time surgical simulation”, Medical Image
Analysis, 9, 2, pp. 113–122 (2005).

10. M.-C. Rivara: “New mathematical tools and techniques for the refinementand/or
improvement of unstructured triangulations”, 5th International Meshing Round-
table, pp. 77–86 (1996).

11. C. Bruyns, S. Senger, A. Menon, K. Montgomery, S. Wildermuth and R. Boyle: “A
survey of interactive mesh-cutting techniques and a new method for implementing
generalized interactive mesh cutting using virtual tools.”, Journal of Visualization
and Computer Animation, 13, 1, pp. 21–42 (2002).

12. S. Payandeh, J. Dill and J. Zhang: “A study of level-ofdetail in haptic rendering”,
ACM Transactions on Applied Perceptions, 2, 1, pp. 15–34 (2005).

13. H. T.Tanaka and F. Kishino: “Adaptive mesh generation for surface reconstruction:
Parallel hierarchical triangulation without discontinuities”, Proc. IEEE Conf. Com-
puter Vision Pattern Recognition (CVPR93), New York City, pp. 88–94 (1993).

14. H.-W. Nienhuys and A. F. van der Stappen: “Supporting cuts and finite element
deformation in interactive surgery simulation”, Tech Report.

15. A. Liu, F. Tendick, K. Cleary and C. Kaufmann: “A survey of surgical simulation:
applications, technology, and education”, Presence: Teleoperators and Virtual En-
vironments, 12, 6, pp. 599–614 (2003).



Action Recognition Using Motion Primitives and
Probabilistic Edit Distance

P. Fihl, M.B. Holte, T.B. Moeslund, and L. Reng

Laboratory of Computer Vision and Media Technology
Aalborg University, Denmark

tbm@cvmt.dk

Abstract. In this paper we describe a recognition approach based on the notion
of primitives. As opposed to recognizing actions based on temporal trajectories
or temporal volumes, primitive-based recognition is based on representing a tem-
poral sequence containing an action by only a few characteristic time instances.
The human whereabouts at these instances are extracted by double difference im-
ages and represented by four features. In each frame the primitive, if any, that best
explains the observed data is identified. This leads to a discrete recognition prob-
lem since a video sequence will be converted into a string containing a sequence
of symbols, each representing a primitives. After pruning the string a probabilis-
tic Edit Distance classifier is applied to identify which action best describes the
pruned string. The approach is evaluated on five one-arm gestures and the recog-
nition rate is 91.3%. This is concluded to be a promising result but also leaves
room for further improvements.

1 Introduction

In the last decade the focus on automatical analysis of human motion has increased
rapidly. This is evident by the number of workshops and special sessions at conferences
and special journal issues devoted to this research field. Furthermore, the recent public
interest in security issues has increased the interest from the funding agencies leading
to even more research in this field. Whereas more and more robust solutions are seen
within both tracking and pose estimation, the subfield of automatical recognition of
actions and activities is still lacking. One reason being that this field is not only based
on advances in signal processing but also in AI. A number of advanced approaches
have, however, been reported. The current trend is not as much on first reconstructing
the human and the pose of his/her limbs and then do the recognition on the joint angle
data, but rather to do the recognition directly on the image data, e.g., silhouette data.

Yu et al. [19] extract silhouettes and unwrapped their contours. PCA is used to obtain
a compact representation. A three-layer feed forward network is used to distinguish
actions such as walking and running based on the trajectories in eigenspace. Yilmaz
and Shah [17] use spatio-temporal volumes (STV) for action recognition. A person’s
3D contour is projected into 2D over time and yields the STV. Differential geometric is
used to extract features from the STV and action recognition is carried out as an object
matching task by interpreting the STV as rigid 3D objects. Bobick and Davis [4] apply
temporal templates based on motion energy images (MEI) and motion history images
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(MHI). The MEI is a binary cumulative motion image. The MHI is an enhancement of
the MEI where the pixel intensities are a function of the motion history at that pixel.
Matching temporal templates is based on Hu moments. Related approaches are to use a
4D motion history volume based on the visual hull [16] or motion flow history [1].

Common for these approaches is that they represent an action by image data from all
frames constituting the action, e.g., by a trajectory through some state-space or a spatio-
temporal volume. This means that the methods in general require that the applied image
information can be extracted reliably in every single frame. In some situations this will
not be possible and therefore a different type of approach has been suggested. Here an
action is divided into a number of smaller temporal sequences, for example movemes
[6], atomic movements [7], states [5], dynamic instants [13], examplars [11], behaviour
units [9], key-frames [8], and primitives [14]. The general idea is that approaches based
on finding smaller units will be less sensitive compared to approaches based on an entire
sequence of information.

For some approaches the union of the units represents the entire temporal sequence,
whereas for other approaches the units represent only a subset of the original sequence.
In Rao et al. [13] dynamic hand gestures are recognized by searching a trajectory in 3D
space (x and y-position of the hand, and time) for certain dynamic instants. Gonzalez
et al. [8] also look for key-frames for recognizing actions, like walking and running.
Approaches where the entire trajectory (one action) is represented by a number of sub-
sequences, are Barbic et al. [2] for full body motion, where probabilistic PCA is used
for finding transitions between different behaviors, and Bettinger et al. [3] where like-
lihoods are used to separate a trajectory into sub-trajectories. These sub-trajectories are
modeled by Gaussian distributions each corresponding to a temporal primitive.

In this paper we address action recognition using temporal instances (denoted prim-
itives) that only represent a subset of the original sequence. That is, our aim is to recog-
nize an action by recognizing only a few primitives as opposed to recognition based on
the entire sequence (possibly divided into sub-trajectories). The actions that we focus
on in this work are one-arm gestures, but the approach can with some modifications
be generalized to body actions. Concretely we represent our primitives by four features
extracted from a motion-image, yielding simple and yet powerful descriptors for our
primitives. In each frame the primitive, if any, that best explains the observed data is
identified. This leads to a discrete recognition problem since a video sequence will be
converted into a string containing a sequence of symbols, each representing a primitive.
After pruning the string a probabilistic Edit Distance classifier is applied to identify
which action best describes the pruned string.

The paper is structured as follows. In section 2 we describe our features used to
represent the primitives. In section 3 we recognize the actions by first recognizing the
primitives and then the actions. In section 4 the approach is evaluated on a number of
actions and in section 5 the approach is discussed.

2 Representation of Primitives

Our long term goal is for any given set of actions to be able to automatically find prim-
itives that can be used to represent the actions independent of the viewing angle [14].
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In this work, however, we work with arm gestures and assume the torso to be fronto-
parallel.

For a given set of training sequences a set of primitives is defined. This set of prim-
itives allows for a representative description of the different actions. Concretely the
primitives are each a 3D body configuration and the nature of these primitives will de-
pend on the actions to be recognized. The actual selection of the primitives is presented
in section 4 after the test data has been introduced. This and the following section will
therefore describe the general principles, whereas implementation details are left for
section 4.

Instead of attempting to reconstruct the 2D/3D pose of the human and compare with
a 2D/3D action database, we use local motion to describe the whereabouts of the person.
This approach is motivated by the notion that image motion is often less sensitive com-
pared to other cues, but yet a powerful cue for inferring information from a sequence
of images [4]. The simplest type of local motion is a difference image. Even though
this only provides crude information it has the benefit of being rather independent to
illumination changes and clothing types and styles. Furthermore, no background model
or person model is required. However, difference images suffer from ”shadow effects”
and we therefore apply double difference images, which are known to be more robust
[18]. The idea is to use three successive images in order to create two difference im-
ages. These are thresholded and ANDed together. This ensures that only pixels that have
changed in both difference images are included in the final output. In figure 1 the prin-
ciple is illustrated. The effects of outliers and ”holes” are addressed using morphology.

When doing arm gestures the respond from the double difference image will roughly
speaking be a ”motion-cloud”, which we model compactly by an ellipse. The length
and orientation of the axes of the ellipse are calculated from the Eigen-vectors and
Eigen-values of the covariance matrix defined by the motion pixels.

We use four features to represent this cloud. In order to make the features indepen-
dent of image size and the person’s position in the image they are represented as ratios.

Fig. 1. Principle behind the double difference image. Left: Input images. Middle: Two (inverted)
difference images. Right: Double difference image. The silhouette of the input (light gray) has
been overlayed for clarification, hence the black pixels are the output.
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Reference point

φ

θ

d

Fig. 2. An illustration of the four features used to describe the primitives

Furthermore, they are defined with respect to a reference point currently defined as the
center of gravity of the person (discussed further in section 5). The four features are
illustrated in figure 2 and defined as:

1. The eccentricity of the motion cloud defined as the ration between the minor and
major axes of the ellipse.

Eccentricity =
Minor axis length
Major axis length

(1)

2. The orientation φ of the ellipse.
3. The minimum ratio r between the length of the major axis and the distance d from

the reference point to the center of the ellipse.

r = min
(

Major axis length
d

,
d

Major axis length

)
(2)

4. The angle θ between the reference point and the center of the ellipse.

3 Recognition of Actions

3.1 Recognition of Primitives

For a given set of actions a set of primitives is defined using the four features. To be able
to recognize the primitives a Mahalanobis classifier is build by forming the covariance
matrix for each primitive based on a set of representative examples. The four features
are not equally important and therefore weighted in accordance with their importance.
This yields the following classifier for recognizing a primitive at time, t:

Primitive(t) = arg min
i

[
(W · (f t − pi))

T Π−1
i (W · (f t − pi))

]
(3)

where f t is the feature vector estimated at time t, pi is the mean vector of the ith
primitive, Πi is the covariance matrix of the ith primitive, and W contains the weights
and are included as an element-wise multiplication.

The classification of a sequence can be viewed as a trajectory through the 4D feature
space where, at each time-step, the closest primitive (in terms of Mahalanobis distance)
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is found. To reduce noise in this process we introduce a minimum Mahalanobis distance
in order for a primitive to be considered in the first place. Furthermore, to reduce the
flickering observed when the trajectory passes through a border region between two
primitives we introduce a hysteresis threshold. It favors the primitive recognized in the
preceding frame over all other primitives by modifying the individual distances. The
classifier hereby obtains a ”sticky” effect, which handles a large part of the flickering.

After processing a sequence the output will be a string with the same length as the
sequence. An example is illustrated in equation 4. Each letter corresponds to a recog-
nized primitive and Ø corresponds to time instances where no primitives are below the
minimum required Mahalanobis distance. The string is pruned by first removing ’Ø’s,
isolated instances, and then all repeated letters, see equation 5. A weight is generated to
reflect the number of repeated letters (this is used below).

String = {Ø, Ø, B, B, B, B, B, E, A, A, F, F, F, F,Ø, D, D, G, G, G, G, Ø} (4)

String = {B, A, F, D, G} (5)

Weights = {5, 2, 4, 2, 4} (6)

3.2 Recognition Using Probabilistic Edit Distance

The result of recognizing the primitives is a string of letters referring to the known
primitives. During a training phase a string representation of each action to be recog-
nized is learned. The task is now to compare each of the learned actions (strings) with
the detected string. Since the learned strings and the detected strings (possibly includ-
ing errors!) will in general not have the same length, the standard pattern recognition
methods will not suffice. We therefore apply the Edit Distance method [12], which can
handle matching of strings of different lengths.

The edit distance is a well known method for comparing words or text strings, e.g.,
for spell-checking and plagiarism detection. It operates by measuring the distance be-
tween two strings in terms of the number of operations needed in order to transform
one to the other. There are three possible operations: insert a letter from the other string,
delete a letter, and exchange a letter by one from the other string. Whenever one of these
operations is required in order to make the strings more similar, the score or distance is
increased by one. The algorithm is illustrated in figure 3 where the strings motions and
octane are compared.

The first step is initialization. The two strings are placed along the sides of the matrix,
and increasing numbers are place along the borders beside the strings. Hereafter the
matrix is filled cell by cell by traversing one column at a time. Each cell is given the
smallest value of the following four operations:

Insert: The value of the cell above + 1
Delete: The value of the cell to the left + 1
Exchange: The value of the cell up-left + 1
No change: The value of the cell up-left + 0. This is the case when the letters in ques-

tion in the two stings are the same.

Using these rules the matrix is filled and the value found at the bottom right corner
is the edit distance required in order to map one string into the other, i.e., the distance
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Fig. 3. Measuring the distance between two strings using edit distance

between the two strings. The actual sequence of operations can be found by back-tracing
the matrix. Note that often more paths are possible.

When the strings representing the actions are of different lengths, the method tends to
favor the shorter strings. Say we have detected the string {B, C, D} and want to classify
it as being one of the two actions: #1 = {J, C, G} and #2 = {A, B, C, D, H}. The
edit distance from the detected string to the action-strings will be two in both cases.
However, it seems more likely that the correct interpretation is that the detected string
comes from action #2 in a situation where the start and end has been corrupted by noise.
In fact, 2 out of 3 of the primitives have to be changed for action #1 whereas only 2 out
of 5 have to be changed for action #2. We therefore normalize the edit distance by
dividing the output by the length of the action-string, yielding 0.67 for action #1 and
0.2 for action #2, i.e., action #2 is recognized.

The edit distance is a deterministic method but by changing the cost of each of the
three operations with respect to likelihoods it becomes a probabilistic method1. Con-
cretely we apply the weights described above, see equation 6. These to some extent
represent the likelihood of a certain primitive being correct. The higher the weight the
more likely a primitive will be. We incorporate the weights into the edit distance method
by increasing the score by the weight multiplied by β (a scaling factor) whenever a
primitive is deleted or exchanged. The cost of inserting remains 1.

The above principle works for situations where the input sequence only contains
one action (possibly corrupted by noise). In a real scenario, however, we will have
sequences which are potentially much longer than an action and which might include
more actions after each other. The action recognition problem is therefore formulated as
for each action to find the substring in the detected string, which has the minimum edit
distance. The recognized action will then be the one of the substrings with the minimum
distance. Denoting the start point and length of the substring, s and l, respectively, we
recognize the action present in the detected string as:

Action = arg min
k,s,l

PED(Λ, k, s, l) (7)

where k index the different actions, Λ is the detected string, and PED(·) is the proba-
bilistic edit distance.

1 This is related to the Weighted Edit Distance method, which however has fixed weights.
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4 Results

4.1 Test Setup

To evaluate our approach we use five arm gestures inspired by [10,14], see figure 4. In
order to get better insides to our novel recognition approach we apply semi-synthetic
data in this work. Another reason for semi-synthetic data is that we need access to the
3D configurations of the test subjects when defining the primitives. Concretely we use
a magnetic tracking system with four sensors to capture movements of the test subjects.
The sensor placements are: one at the wrist, one at the elbow, one at the shoulder, and
one at the upper torso (for reference). The hardware used is the Polhemus FastTrac [15]
which gives a maximum sampling rate of 25Hz when using all four sensors. The data
is converted into four Euler angles: three at the shoulder and one at the elbow in order

Fig. 4. Examples of images generated by Poser using real motion captured data. Each column
shows samples from the five gestures. A - Move closer: A stretched arm is raised to a horizontal
position pointing forward while the palm is pointing upwards. The hand is then drawn to the
chest, and lowered down. B - Move right: Right hand is moved up in front of the left shoulder.
The arm is then stretched while moved all the way to the right, and then lowered down. C - Point
forward: A stretched arm is raised to a horizontal position pointing forward, and then lowered
down. D - Move left: A stretched arm is raised to a horizontal position pointing right. The arm is
then moved in front of the body ending at the right shoulder, and then lowered down. E - Point
right: A stretched arm is raised to a horizontal position pointing right, and then lowered down.
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to make the data invariant to body size. An action corresponds to a trajectory through a
4D space spanned by the Euler angles.

We use seven test subjects, who each perform each gesture 20 times. This leads
to 840 synthetic sequences. We manual evaluate the sequences from three of the test
subjects and find 10 primitives to describe the five different actions. The criteria for
finding the primitives are 1) that they represent characteristic and representative 3D
configurations, 2) that their projected 2D configurations contain a certain amount of
fronto-parallel motion, and 3) that the primitives are used in the description of as many
actions as possible, i.e., fewer primitives are required.

Based on the manually selected primitives we randomly choose 20 sequences for
each primitive. The sequences are aligned temporally and the double difference images
are calculated and represented by the four features, yielding a 4x4 covariance matrix for
each primitive. The maximum Mahalanobis distance for primitive recognition is set to
40, the weighting of the features are {1, 2, 1, 2}, and β = 1/8 . A string representation
of each action is found and since the shortest string contains five primitives and the
longest eight primitives, we only perform the probabilistic edit distance calculation for
substrings having the lengths ∈ [4, 16].

4.2 Tests

The tests are performed on the four test subjects not included in the training data. We
randomly choose 23 sequences of each gesture, yielding 115 test sequences. For each
sequence we add ”noise” in both the beginning and end of the sequence. The noise is
in the form of approximately half a sequence of a different gesture. This introduces the
realistically problem of having no clear idea when an action commence and terminates.

In figure 5 a typical situation is shown for using the probabilistic edit distance to
match a detected string with an action. The X-axis represents the frame number. The
Y-axis represents the string length. The Z-axis represents the probabilistic edit distance
- the smaller the better the match. One point on the surface, e.g., (4, 5, 1.2), corresponds
to the distance 1.2 between a substring of the detected string, and an action-string. The
substring has length 5 and starts at time instance #4. For this particular figure the best
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Fig. 6. The confusion matrix for the recognition of the different actions

match is found for the substring of length 7 and starting at time instance #7. Its value is
compared to the best matches for the other actions and the one with the smallest value
defines the recognized action for this sequence. The overall recognition rate is 91.3%.
In figure 6 the confusion matrix for the results is shown.

5 Conclusion

In this paper we have presented an action recognition approach based on primitives
as opposed to trajectories. Furthermore, we extract features from temporally local mo-
tion as opposed to background subtraction or another segmentation method relying on
learned models and a relatively controlled environment. We hope this makes our ap-
proach less sensitive, but have still to prove so in a more comprehensive test.

The primitives used in this work are found manually. This turned out to be quite
an effort due to the massive amount of data. Currently we are therefore working to
automate this process [14].

The presented results showed that action #2 and #5 are sometimes confused. This
problem might be solved by using better primitives - learned automatically. But this is
not certain as the confusions are mainly due to the fact that 1) the two actions are very
similar, and that 2) some test subjects did the same action rather differently. Seen from
this point of view the recognition rate is quite good.
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Abstract. An automatic human shape-motion analysis method based
on a fusion architecture is proposed for human action recognition in
videos. Robust shape-motion features are extracted from human points
detection and tracking. The features are combined within the Transfer-
able Belief Model (TBM) framework for action recognition. The
TBM-based modelling and fusion process allows to take into account im-
precision, uncertainty and conflict inherent to the features. Action recog-
nition is performed by a multilevel analysis. The sequencing is exploited
for feedback information extraction in order to improve tracking results.
The system is tested on real videos of athletics meetings to recognize
four types of jumps: high jump, pole vault, triple jump and long jump.

1 Introduction

Human motion analysis has many applications in many areas, such as analysis of
athletic events, surveillance, content-based image storage and retrieval. The main
scientific challenges in human motion analysis are to detect, track and identify
people and to recognize the human activity [1] from observations coming from
video. Wang, Hu and Tan [2] emphasize on three major issues of human motion
analysis systems, namely human detection, tracking and activity understanding.
There are model based approaches and systems using Shape-From-Silhouette
methods to detect and track the human in 2D [3]. The silhouettes are generally
of good quality providing valuable information about the position and shape of
the person. Camera motion estimation methods [4] can locate the independently
moving objects.

Many methods have been proposed for action recognition [2] notably based
on classification, template matching and neural networks. Generally, the meth-
ods are based on the Bayesian framework with Hidden Markov Models (HMM)
and Dynamic Bayesian Network (DBN) [5]. Other methods are developed in
Artificial Intelligence community notably Petri Nets [6]. In [7], it is proposed an
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Fig. 1. Schema of the proposed system architecture

architecture for human action recognition using the Transferable Belief Model
(TBM) which is based on belief theory.

A challenging problem appears when the camera is moving and the estimated
human silhouettes are of low quality or extremely wrong (see Fig. 4(a)). In this
work we focus on automatic human detection, tracking and action recognition
under real and dynamic environments of athletic meetings. We suppose that the
camera tracks the athlete and we test the algorithm in sports such as pole vault,
high jump, triple jump and long jump.

The proposed architecture consists of several main modules (Fig. 1):

1. Silhouettes are computed using a camera motion estimation method [4],
where an affine model is used to describe the camera motion. Such a model
is generally sufficient for most of real video sequences. The above method
that we use, was implemented by the Vista Team of IRISA.

2. The pole detection procedure, is applied to the human silhouette detecting
the pole and extracting features related to it such as its eccentricity and its
position.

3. Four major human points are recognized and tracked using the human sil-
houettes. Shape-motion based features are extracted using the results of the
tracking procedure.

4. A fusion architecture, based on TBM, is used for action recognition. The
input parameters for the fusion process include camera motion, pole detec-
tion and human shape-motion parameters estimated by the corresponding
modules.

5. The results of the fusion process can be used as feedback information im-
proving the results of human tracking.

The rest of the paper is organized as follows: Section 2 presents the human
shape-motion analysis method. Section 3 describes the action recognition and
feedback method. Finally, Sections 4 and 5 provide experimental results and the
discussion, respectively.

2 Human Shape-Motion Analysis

The human shape-motion analysis is based on binary silhouettes. They are com-
puted from camera motion estimation as described in [7].
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2.1 Pole Detection

The pole is recognized first since it can be easily detected by its shape which has
high eccentricity. The eccentricity (ε) is defined by the ratio between the two
principal axes of the best fit ellipse, measuring how thin and long a region is. If
the detected region has high ε (more than 20) then it is probably a pole. This
feature is relevant in the fusion process to recognize the pole vault videos.

First, the highest area object (O1) is detected. Then, the end of pole point
(Pe) is estimated. Pe is defined as the farthest O1 point from the mass center
(C) of O1 object under the constraint that it is found above the C as the athlete
is running. The pole pixels will be detected by a region growing method (RG)
starting from Pe point. This method terminates when the area of region exceeds
the 50% of the O1 area or when the number of pixels of the boundary between
the region and O1 exceeds a threshold. The threshold is a percentage (e.g. 40%)
of the square root of the O1 area approximating the double of O1 mean width.
However, the region will have been expanded in the athlete area. Therefore, we
have to ignore the last pixels that RG adds, until the region where ε will be
maximum (see Fig. 2). Let O2 be the estimated pole region. We compute the
distance d between the farthest point (Pf ) of O2 from Pe and Pe itself. Then, ε

can be estimated by the ratio ε = πd2

O2 area . Pf can be approximated directly by
the last point that the RG method adds.

The proposed pole detection method detects the pole with high accuracy and
robustness to silhouette noise (see Fig. 2(e)). The strong point of this method
is that it is simple and low cost. The results on our database show a great
performance of this detector.

(a) (b) (c) (d) (e)

Fig. 2. Results of pole detection procedure. The light gray pixels denote those that

ignored (last added) by the RG method and the gray pixels denote the detected pole

region. (a) ε = 6.08, (b) ε = 12.24, (c) ε = 31.27 (d) ε = 50.01, (e) ε = 31.32.
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2.2 Points Detection and Tracking

In this step, four major human points, namely: the head center, the mass center,
the left end of leg and the right end of leg (see Fig. 4(b)) are detected and tracked
using as input human silhouettes. The above points are selected because they
are visible in the whole sequence providing sufficient information for the action
recognition. The method is divided into two procedures: the detection procedure
and the tracking procedure. Results of this method are illustrated in Fig. 3.

Fig. 3. Results of Major Human Points Tracking method on triple jump sequence

Detection. In this step, the four major human points are automatically de-
tected (see Fig. 4(b)). This procedure is executed just once, in the first silhou-
ette frame of the sequence or when the tracking history is erased by feedback
information of the fusion process. The “Human Points Detection” algorithm is
described hereafter.

First, the mass center point (C) is computed. This point is defined as the
mass center of the foreground pixels. Next, the human body major axis (see
Fig. 4(b)) is computed using second order moments. The head point (H) is
defined as the farthest major axis point from C, that is found above the C. The
first end of leg point (L1) can be computed by getting the farthest foreground
pixel from the C, that is found below the C. Finally, the next end of leg point
(L2) should have the following properties: high distances from C, H and L1.
Moreover, the triangle PCL1 should be close to an isosceles triangle, where P
denotes a candidate L2 point. The last two constraints are equal to the triangle
area (E(PCL1)) maximization. Thus, the maximization of product (|PH |·|PC|·
E(PCL1)) provides the L2 point.

Tracking. In this step, the four major human points are tracked. This procedure
is executed in every frame of the sequence, apart from the first one, taking as
input the position of the four major human points in the previous frame (history)
and the current silhouette image.

First, we reclassify the binary silhouette image pixels reducing the number of
wrong classified pixels. We compute the minimum distance of each foreground
object from the previous position of the four human points multiplied by the
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percentage of the foreground pixels that belong to a line segment started on the
mass center of the foreground object and ended on the specific major human
point. If this distance is higher than a threshold then the foreground pixels will
be classified to background class (gray pixels of Fig. 4(b)).

The four major human points can be detected by “Human Points Detection”.
This method produces two pairs of solutions for the head point and the leg
points, as it is unknown if the head point is found above or under the mass
center. We choose the pair which is closer to the estimated pair of the previous
frame.

2.3 Human Shape-Motion Parameters

Using the results of pole detection and points tracking, we can compute shape-
motion features useful for action recognition. The estimated pole eccentricity (ε)
is relevant shape feature since we can recognize if the detected region is a pole.
It can also be used to detect dropping bar during jumping or falling stages in
high jump and pole vault.

The motion based features are computed from the major points trajecto-
ries. One important feature concerns the vertical translation of the mass center
(Pmsvt). Then, the angle between the human major axis and the horizontal axis
(Θ1) (see Fig. 4(c)) is of key of importance for action discrimination. If this an-
gle is about 90o, the human is standing or running, whereas important variation
occur during the jumping and falling in high jump and pole vault. Moreover, the
angle between the legs (Θ34) (see Fig. 4(c)) is another relevant feature. Indeed,
the gait period can be measured from its trajectory providing an estimation
of the human speed. The camera motion parameters are also exploited for ac-
tion recognition: the camera horizontal translation (Pcht), the camera vertical
translation (Pcvt), and the camera zoom (Pcz).

3 Human Action Sequence Recognition

The parameters described previously are now combined within TBM [8] frame-
work for action recognition. Some parts of the work described in the sequel relies
on [7,9].

3.1 From Numerical Parameters to Belief on Actions

An action A is described by two states gathered in the frame of discernment
(FoD) ΩA = {RA, FA} with RA (resp. FA) stands for “action A is right” (resp.
“A is false”). A basic belief assignment (BBA) on an A according to a para-
meter P is defined on the set of propositions 2ΩA = {∅, RA, FA, RA ∪ FA} by
mΩA

P : 2ΩA → [0, 1], X → mΩA

P (X) and by construction mΩA

P (∅) = 0, and∑
X⊆ΩA

mΩA

P (X) = 1. The set RA ∪FA explicitly represents the doubt concern-
ing the real state of an action: it does not imply any additional claims regarding
the subsets, i.e. neither RA nor FA. This is a fundamental difference with a
probability measure which is additive. A fuzzy-set inspired method [7] is used
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(a) (b) (c) (d)

Fig. 4. (a) Low quality silhouette. (b) Estimated four major human points. The human

body major axis is shown as a red dashed line. (c) The human major axis angle (Θ1)

and the angle between legs (Θ34). (d) Numeric-to-symbolic conversion of Θ1.

to convert each numerical parameter described section 2.3 into sources of belief
(see Fig. 4(d)).

3.2 Transferable Belief Model Fusion

Belief of several parameters are combined in the axiomatically well-founded
Transferable Belief Model (TBM) framework proposed by Smets and Kennes [8]
to obtain a belief which takes all parameters into account. The fusion process is
performed frame by frame for each action independently by rules of combination
defined for two distinct BBAs mΩA

P1
and mΩA

P2
by:

mΩA

P1
�©mΩA

P2
(E) =

∑
C�D=E

mΩA

P1
(C).mΩA

P2
(D) (1)

with � = ∩ (resp. ∪) for the conjunctive (resp. disjunctive) rule of combina-
tion. The rules of combination can be used in logical rules such as “if . . .and
. . .or . . . then . . . ” for describing actions by means of parameters states. These
logical rules are then translated into belief combinations where the logical and
is replaced by the ∩©-rule and the logical or by the ∪©-rule assuming the same
FoD [8]. Some reliability factors can also be integrated in equation (1).

3.3 From Action to Sequence of Actions

The Temporal Belief Filter (TBF) proposed in [9] is exploited for action sequence
recognition. The TBF worked on each action independently taking as input the
BBA obtained from parameters fusion and providing a temporally clean and
consistent BBA.

The TBF dissociates in an online manner the intervals of frames where an
action is right to the intervals of frames where the action is false. For that, the
current state is predicted and conjunctively combined with the measurements
resulting in a smooth belief. The state change detection is based on the conflict
between prediction and measurements and computed by the conjunctive rule of
combination. The state change detector embeds a cusum process of the conflict
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to be more robust. While the cusum process does not indicate that the state has
to be changed, the state is compelled even if there is conflict between prediction
and measurements accounting for a smooth belief.

We assume a sequence Sn = {An
1 → An

2 → . . . → An
k → . . . → An

K} made
of K actions. The sequences evolutes from an action {An

k} to {An
k+1} if the

TBF indicates that {An
k} becomes false or if {An

k+1} becomes right. The action
sequencing method ensures that, at each frame of the video, one and only one
action is in the right state while the others are in the false state. The final goal of
action sequencing is to find out which sequence better matches the data at each
frame of the video. For that, a Quality Performance Criteria (QRP) is proposed.

When the sequence Sn evolutes from {An
k} to {An

k+1}, a Local QRP (LQRPn
k )

is computed for {An
k}. This criterion is computed without reference for a given

action thus it is ”local” w.r.t the sequence. The LQRPn
k is defined by the mean

of pignistic probability [8] of action {An
k} weighted by the contradiction1 between

the data and the state compelled by the TBF. When the entire sequence is cov-
ered, K values of LQRPn

k are available. A Global QRP (GQRPn) is computed
by the mean of the LQRPn

k : GQRPn =
∑K

k=1 LQRPn
k/K. The sequence Sn

better corresponds to the data than Sp if GQRPn > GQRPp and if GQRPn

is greater than a given required value (e.g. 50%).

3.4 Coarse to Fine Approach and Feedback

The action sequence method consists in two steps: a coarse detection and a fine
detection of the actions. The coarse step involves the camera motion parameters
and the center of mass. In the fine step, sequencing based on Θ1 is used to
discriminate all actions.

Coarse step. The sequences to recognize concern four types of jump: high
jump (Shj), pole vault (Spv), triple jump (Stj) and long jump (Slj). Sequences
Sn, ∀n ∈ {hj, pv, lj} are firstly described by a coarse action sequence: Sn =
{Rn → Jn → Fn → Un}, where {Rn} is the running action, {Jn} is jumping,
{Fn} is falling and {Un} is standing up in sequence Sn. For triple jump, the
coarse sequence is: Stj = {Rtj → Jtj → Ftj → Jtj → Ftj → Jtj → Ftj → Utj}.
There is no subsequence for triple jump because the coarse one is characteristic
and can not be confused with the other types of jump.

All actions {Rn, Jn, Fn, Un}, ∀n ∈ {hj, pv, lj, tj} are detected by a fusion
process performed at each frame of the video following these rules (see Sec-
tion 2.3 for symbols):

IF (Pcht is high OR Pz is high OR Pmsvt is almost null)
THEN ({Rn} is true)

IF (Pcvt is highly positive OR Pmsvt is highly positive)
THEN ({Jn} and {Un} are true)

IF (Pcvt is highly negative OR Pmsvt is highly negative)
THEN ({Fn} is true)

1 This information is provided by the TBF, see equation (9) of [9].
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Rules are well-managed in the TBM using eq. (1). The coarse definition of a
sequence provides the intervals of frame where an action is potentially true but
does not allows to distinguish the type of sequence. In order to differentiate the
sequences, a fine analysis is required.

Fine step. The fine analysis is performed in the intervals of frame detected by
the coarse process by exploiting the parameter Θ1. The numerical-to-symbolic
conversion [7] of Θ1 is performed by dividing the interval of possible values
[−180o, 180o] into 4 main positions {N, S, W, E} (North, South, West, East)
and 4 intermediate positions {NW, SW, SE, NE}. The conversion is depicted
Fig. 4(d) and shows the explicit modelling of the doubt between two positions,
for instance SW ∪W . The fuzzy description of the angle value allows to take im-
precision and uncertainty of this parameter into account. Notably, each position
is modelled by a trapezoidal fuzzy set with a size support of 40o.

The sequencing of the angle value is performed according to each action se-
quence. One set of sequences is necessary for both right-to-left and left-to-right
translations of the camera. In Table 1, only the first case is described. In Fig. 5(b),
the high jump action sequence is pictorially described.

Table 1. Sequences of the angle for each type of jump

sequence name symbol and action sequence expression

pole vault Spv = {Rpv → Jpv → Fpv → Upv}
running Rpv = {N ∪ (ε is high)}
jumping Jpv = {N → NE → E → SE → S → SE → E}
falling Fpv = {E → NE → N → NW → W}
standing up Upv = {W → NW → N}
high jump Shj = {Rhj → Jhj → Fhj → Uhj}
running Rhj = {N}
jumping Jhj = {N → NW → W}
falling Fhj = {W → SW → S}
standing up Uhj = {S → SE → E → NE → N}
long jump Slj = {Rlj → Jlj → Flj → Ulj}
running Rlj = {N}
jumping Jlj = {N}
falling Flj = {N → NE → E}
standing up Ulj = {E → NE → N}

Error detection for feedback. A feedback is a powerful means to adapt a
processing chain to varying conditions. In order to illustrate the approach, the
example of high jump is presented. In Fig. 5(a), the angle shows an inversion of
the human points provided by the tracking due to very bad segmentation when
the athlete falls on the air mattress (top foot, down head). This error can be
detected by means of action sequencing (Fig. 5(b)). We denote Ihj the symbol
of the action associated to the inversion in a high jump. Coarsely, the inversion
is searched after a falling. Finely, the sequence used to detect this error is close
to the sequence used for a standing up: IΘ1

hj = {S, SE, E, SE, E}. This sequence
is depicted in Figs.5(a) and 5(b). When the error sequence is of high quality,
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(a) (b)

Fig. 5. (a) Theoretical angle rough evolution (full line) and observed one (dotted-line).

(b) Action sequence by a coarse to fine approach for high jump based on angle Θ1.

i.e. GQRP is high, then an error is assumed to be detected and a feedback
process is performed onto the tracking algorithm to correct the inversion. The
same reasoning can be applied for others jumps, notably for pole vault.

4 Experiments

The database contains 68 videos with four types of jumps: high jump (hj), pole
vault (pv), triple jump (tj) and long jump (lj). Each video is analyzed by the
four sequences Sn, ∀n ∈ {hj, pv, lj, tj} providing four criteria GQRPn. A jump
n∗ is associated to the current video if n∗ = maxn GQRPn (Section 3.3) and
if GQRPn∗

is greater than 50%. One setting per type of jump is provided for
the TBF. Then, the obtained results are compared with the manually annotated
video to compute a precision index. Using the coarse sequencing, all actions are
well detected. However, to discriminate actions, we use the refinement described
Section 3.4 and based on the angle.

The error rates are: Ehj = 2/15, Epv = 4/26, Etj = 3/12 and Elj = 4/15.
Concerning inversion of the tracked points in high jump, the detection rate is
of Cinv−hj = 6/8. The reasons have been identified to account for error rates:
videos with pure divergence (zoom) with athlete in front of the camera prevent
from using the angle, bad pole deletion, video shot changes and bad camera
motion estimation in too low quality videos disturb the tracking.

5 Conclusion

An unsupervised-automatic human motion analysis and action sequence recogni-
tion (running, jumping and falling, standing up) based on the TBM is proposed
and tested on athletics videos. The first main contribution concerns the origi-
nal robust human shape-motion parameters extractors from camera motion and



394 C. Panagiotakis et al.

human silhouette. The color independent silhouette analysis algorithm detects
and tracks four major human points. Sometimes, the tracking procedure fails be-
cause of wrong previous silhouettes (wrong history) or because of pole appearing
in pole vault sequences (wrong shape). We have developed a shape based pole
detector, detecting automatically the pole vault videos and removing the pole
with great pole detection ratio. The second main contribution concerns the ac-
tion sequence recognition based on a fusion process using the TBM. A multilevel
approach is exploited to refine action detection and recognition. Some action se-
quences are also used to detect errors in tracking providing feedback information
for further corrections.
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Finding Articulated Body in Time-Series

Volume Data
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Abstract. This paper presents a new scheme for acquiring 3D kine-
matic structure and motion from time-series volume data, in particular,
focusing on human body. Our basic strategy is to first represent the shape
structure of the target in each frame by using aMRG, augmented Mul-
tiresolution Reeb Graph [6], and then deform each of the shape structures
so that all of them can be identified as a common kinematic structure
throughout the input frames. Although the shape structures can be very
different from frame to frame, we propose to derive a unique kinematic
structure by way of clustering some nodes of graph, based on the fact
that they are partly coherent. The only assumption we make is that
human body can be approximated by an articulated body with certain
number of end-points and branches. We demonstrate the efficacy of the
proposed scheme through some experiments.

1 Introduction

The description of moving articulated objects, e.g. human figure, is important in
many applications including technical analysis of sports and dance, or production
of video contents. Motion-capture system is well-known and available for such
purposes. However, the scope of description is limited to the case that the precise
structure is given as articulated rigid body. Meanwhile, for the production of
video contents, it is desirable to be able to describe non-rigid objects such as
human skin or clothes, in motion. Aiming for the realization of comprehensive
scheme for describing rigid and non-rigid objects in motion, we thus employ time-
series volume data for the input of motion description acquisition scheme. In this
paper, we propose a scheme for acquiring kinematic structure of articulated rigid
body as an opening outset of above purpose.

Conventional approaches for acquisition of kinematic structure from volume
data are either top-down or bottom-up. Top-down approach uses a specific
model, cylinder-model for example, to match with volume data. It is impos-
sible to acquire a description of non-rigid motion by this approach. Moreover, in
this approach, we need employ a somewhat elaborate model for each observa-
tion target. On the other hand, there are some bottom-up methods which acquire
kinematic structure from observed motion without specific model [4,3]. In these
methods, unit of motion description is voxel or vertex on surface. Therefore, it
is impossible to detect correspondence of their motion units before and after an
osculation of arthromeres(primitive segments of body). To avoid this problem,
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some partial sets should be prepared, to which some units related by closeness
belong. However, in each method [4,3], the partial sets are constructed based
only on the motion units, and thus there are not always that kind of sets when
the osculation occurs.

In the proposed method, we prepare the global description of shape which
represents the partial sets described above, and acquire a kinematic structure
accordingly. That is, we first represent the shape structure of the target in each
frame, and then deform each of the shape structures so that all of them can be
identified as a common kinematic structure throughout the input frames.

2 Acquisition of Kinematic Structure

2.1 Overview

We acquire kinematic structure through an off-line process as shown below.

(1) Acquire time-series visual hull [1] from multi-viewpoints videos.
(2) Obtain surface mesh by applying marching cubes method [7] to each visual

hull.
(3) Construct Reeb Graphs [5,6] based on geodesic distance on the surface.
(4) As initial models, pick up some graphs that appear to be relatively close to

the targeted kinematic structure.
(5) Deform each initial model so that it fits to reeb graphs in a certain number

of neighboring frames in what we call ”fitting interval”. We define the size of
the fitting intervals so that the sum of them can cover all the input frames.

(6) For each interval, cluster some nodes of deformed reeb graph based on their
motion, and acquire kinematic structure.

(7) Integrate kinematic structures that are acquired for different fitting inter-
vals.

(1),(2),(3) are processes for acquiring global shape structure. (4),(5) are pro-
cesses for making correlations between shape structure and kinematic structures
which enable us to acquire the kinematic structure in process (6). Last of all,
by process (7), we can acquire kinematic structure that reflects the diversity of
motion in the input visual hull.

2.2 Reeb Graph

We employ the reeb graph for the global shape description. To construct a reeb
graph, we first segmentalize surface S of an object on the basis of a continuous
function, μ(v) (v is an arbitrary vertex on the surface S), defined on the surface,
and represent each segmented surface by a node, and finally link the nodes based
on the connectivity between the segmented surfaces. We use geodesic function
as μ(v). Now, the surface of the object is represented by a mesh model. The
geodesic distance g(v,p) is defined by shortest path between v and another
vertex p on the mesh. Then, function μ(v) can be represented as

μ(v) =
∑
p∈S

g(v,p). (1)
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This indicates the sum of distance from vertex v to all vertices on S.
The reeb graph based on the geodesic distance is stable when there are no

osculation between any arthromeres. However, even when observing an identi-
cal object, the graph structure may easily vary due to an osculation, and the
coherence between the graph structure and the kinematic structure will break.
Considering this problem, we represent the shape structure by a unique graph
structure in a certain definite time range. To acquire such unique graph struc-
ture, we regard partial invariability of reeb graph.

S

S

S

partial

complement

marginal

pi

pj
m

pk
c

Fig. 1. Partial region on the surface and its mesh structure

We denote the vertices on a partial region surface Spartial by pi, (i = 0, 1, ...,
Np−1), the vertices on a partial region Scomplement, which is complement region
of Spartial, by pc

j , (j = 0, 1, ..., Npc −1). We also denote the vertices connected to
an arbitrary vertex pc

i and also belonging to Spartial by pm
k , (k = 0, 1, ...Npm −1),

and represent the partial region to which pm
k belonging as Smarginal(⊂ Spartial)

(see Figure 1) The function μ(p) defined at arbitrary pi can be represented as

μ(pi) = μpartial(pi) + μcomplement(pi), (2)

where μpartial(pi) is caused by pi, μcomplement(pi) is caused by pc
j , and

μpartial(pi) =
Np−1∑
i′=0

g(pi,pi′), (3)

μcomplement(pi) =
Npm−1∑

j=0

μcomplement(pm
j ) =

Npm−1∑
j=0

Npc−1∑
k=0

g(pm
j ,pc

k). (4)

The condition for that arbitrary vertices pi1 and pi2 on Spartial correspond to
a same node in the reeb graph is represented as

|μ(pi1) − μ(pi2)| < μspan, (5)

where μspan is a constant. Regarding Equation (4), this equation can be trans-
formed to

|μpartial(pi1) − μpartial(pi2)| < μspan. (6)
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Equation (6) means that the structure of the partial reeb graph corresponding
to Spartial depends only on the vertices in Spartial. Therefore, the partial reeb
graph is stable while all pi are identical.

We can find almost invariable structures at the neighborhood of the end-
points of the reeb graphs in a certain number of neighboring frames, because
there are no osculation between corresponding arthromeres, and all pi are thus
almost identical. For these reeb graphs, it is reasonable to pick up a reeb graph
as an initial model and deform it so that it fits to the other graphs. After this
deformation, the shape structure is represented by a unique graph structure.

We thus can estimate the motion of the nodes in the graph, and then acquire
the kinematic structure based on the motion.

2.3 Selection of Initial Model

The reeb graph which we select as an initial model should have just an appro-
priate number of branches and no loop. These properties are equivalent to the
following conditions for the graph structure.

(i) “The graph has five end-points”.
(ii) “The graph has two branch-points, one has four branches, and the other

has three branches”, or “The graph has three branch-points each of which
has three branchs”.

The later is due to the fact that the reeb graph is not necessarily symmetric.

2.4 Deformation of Initial Model

We deform initial models so as to deal with the changes in shape structure over
time. In order to deform an initial model and fit it to other reeb graphs, we shift
the nodes of initial model to the position where the nodes of other reeb graph
are, while maintaining connective relations of the nodes in initial model.

We take the following constraints into account for the movement of nodes.

(a) Maintain the distance between nodes as much as possible
(b) Move a node in initial model to its nearest neighbor node in the target reeb

graph

We enforce these constraints to work on each node. (a) can be realized by
elastic force between nodes (we call the force as “internal force”), and (b) by the
external force to move these nodes. Given these forces working at each nodes, we
can compute how initial model deforms its shape by solving Newtonian equation
with backward Euler integration method.

External Force. The nodes of the initial model should be moved to the neigh-
borhood of the nearest nodes of the target reeb graph without any crossing in
pathways of nodes’ movement. We define the external force which urges such
nodes’ movement based on the point-set deformation algorithm [2].
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We denote the reeb graph at time a and b by N and M respectively. First, we
find nearest neighbor nodes in M for each node in N , and make a pair (ma, mb).
We also make another pair (na, nb) for each node in M in a similar way. Note
that (ma, mb) and (na, nb) are not always identical generally. Now, we denote
the distances from an arbitrary point p(x, y) to node na and ma as da(n) and
db(m), respectively. We also denote the drift force of node na to nb, node ma

to mb by fa(n) and fb(m), respectively. Then, we can define the external force
fexternal(x, y) working on p(x, y) as

fexternal(x, y) ≡
∑

n αnfa(n)∑
n αn

+
∑

m βmfb(m)∑
m βm

, (7)

αn = exp(
−da(n)

σ
), βm = exp(

−db(m)
σ

). (8)

Internal Force. We introduce the internal force, Finternal(v), as

Finternal(v) ≡
n∑
1

kj(‖qvj
− qv‖)

qvj
− q

‖qvj
− q‖ − k′

jqv, (9)

where kj denotes a constant, vj a node connected to v within 2 hops, qvj
its 3D

position, and n the number of vj , respectively. The internal force works so as to
maintain the smoothness of reeb graph’s shape.

Updating Initial Model Based on Correlation of Reeb Graph. The tem-
poral sampling rate of the input volume date can often be too low to follow the
rapid motion of the target object. That is, it is not always true that temporally
neighboring graphs are strongly-correlated.

On every deformation, we select a frame in which the reeb graph has the
highest correlation to the target reeb graph among the frames in which the
reeb graph has already deformed, and use its deformed reeb graph as a new
initial model. We utilize a correlation computing method of reeb graphs that is
proposed in [6].

2.5 Acquisition of Kinematic Structure Based on the Motions of
Nodes

We first acquire kinematic structures in the corresponding fitting intervals, start-
ing with initial models. We call the kinematic structures “piecewise kinematic
structure”. We then choose the most detailed partial kinematic structures for
each branch corresponding to arm, leg, or head. Finally, we deform the partial
kinematic structures so as to fit them all over the time-series reeb graphs, and
integrate them. This integrated kinematic structure is the result of our method,
which reflects various kinematic motion pattern in the input volume data.

Acquisition of Piecewise Kinematic Structure. We acquire kinematic
structure by clustering nodes of reeb graph based on cross-correlation of mo-
tion between neighboring nodes(see Figure 2). We denote the number of nodes
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Fig. 2. Clustering of nodes based on their motion
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Fig. 3. Integration of piecewise kinematic structures

in the initial model by n, the velocity of node pi, (i = 1, 2, ..., n) at time t by vi
t,

and the cross-correlation function of nodes pi, pj at time interval [tb, te] as r(i, j)
can then be represented as

r(i, j) =

∑te

k=tb
(vi

k − vi
mean)(̇vj

k − vj
mean)√∑te

k=tb
(vi

k − vi
mean)2

√∑te

k=tb
(vj

k − vj
mean)2

, (10)

where

vi
mean =

∑te

t=tb
vi

t

te − tb
, vj

mean =

∑te

t=tb
vj

t

te − tb
. (11)
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Regarding a set of neighboring two nodes, the higher the cross-correlation is,
the more probable that both of the nodes belong to the same rigid body.

Integration of Piecewise Kinematic Structure. We choose the most de-
tailed partial kinematic structure for each branch, corresponding to arm, leg, or
head. Then, we deform the partial kinematic structures so as to fit them all over
the time-series reeb graphs, and integrate them(see Figure 3).

To coordinate partial kinematic structures in different fitting intervals, We
use proximity of partial kinematic structures at overlapping fitting intervals.

3 Experiments

3.1 Real Data

We used nine cameras circumnavigating the target object (a dancing lady), and
acquired time-series visual hull from multi-viewpoints videos. Applying proposed

surface
model
(frame 147)

skeleton
model
(frame 147)

modified
skeleton
model
(frame 147)

initial
model
(frame 143)

deformation

Fig. 4. Modification of reeb graph at frame 147

deformation
result

of initial model

piecewise
kinematic 
structure

integrated
kinematic 
structure

Fig. 5. Acquisition process of kinematic structure at frame 147
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method, we acquired the kinematic structure. This acquisition process is exem-
plified at frame 147 as in Figure 4 and Figure 5. as an example.

In Figure 5, we can observe that human like kinematic structure is acquired
from real data by the proposed method.

3.2 CG Data

We generate CG scene of a walking human by applying a motion capture data1

to a CG model. We then shot the scene by 15 virtual cameras circumnavigating
the CG object, and acquired its time-series voxel data using a technique based on
visual hull. Finally, we acquired kinematic structure from the time-series visual
hull by the proposed method.

We evaluated the acquired kinematic structure by comparing it with the orig-
inal motion capture data. In this evaluation, as a criterion, we computed the
mean value of distance between joint positions in the motion capture data to
their nearest neighbor nodes in the acquired kinematic structure. We denote the
motion capture data by M , acquired kinematic structure by N , joint points in
structures M and N by mi, (i = 0, 1, ..., imax) and nj , (j = 0, 1, ..., jmax), re-
spectively. We also denote the distance between the joint points in M and N by
dist(mi, nj). Then, we can define above described criterion by

Edist ≡
∑

i dist(mi, ni′)
imax + 1

(12)

while
dist(mi, ni′) = min{dist(mi, nj)}. (13)

Moreover, we also use another criterion Vdist, which is the variance of the dis-
tances between the joint points in M and N .

Vdist =
∑

i{dist(mi, ni′) − Edist}2

imax + 1
. (14)

For the purpose of comparative evaluation, we also implemented a simple model-
based human posture estimation method. This method employs cylindrical ar-
ticulated human-figure model. First, the hip position of the cylinder-model is
matched with the centroid of voxel data. Then, each joint angle of the model is
adjusted so as to maximize the overlapping volume of the voxel data and the
group of cylinders corresponding to arthromeres from the hip to each end-points.

In Figure 6, we show examples of kinematic structures acquired by the
cylinder-model based method and proposed method, respectively.

Figure 7 and 8 show the evaluated value, Edist and Vdist, respectively through-
out the input frames. Solid line represents the values of the proposed method, and
dot by the cylinder-model based method. In both of Figure 7 and 8, the values
by the cylinder-model based method is affected by changes of object’s posture
1 The source of data anonymous. Detailed information will be provided in the final

draft of this paper.
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whereas those by the proposed method undergo in small range of shifting, show-
ing that the kinematic structure can be acquired by the proposed method more
stably.

However, the mean value of estimation error, Edist, hover around 150mm
whereas object’s height defined by motion capture data is 1800mm. There is a
room for improvement in terms of estimation accuracy.

4 Conclusion

In this paper, we proposed a scheme for acquiring kinematic structure from time-
series voxel data using the reeb graph for the global shape description. For the
case of human figure in motion, we have presented our early results that show
the stable characteristic of the proposed scheme compared to a model-based
method.

However, it is not guaranteed that the kinematic structure which reflects
proper structure of the observed object can be always acquired. Accuracy of the
acquired kinematic structure may not be sufficient for practical use. One of the
solution to this problem will be to introduce a countermeasure in the presented
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bottom-up approach, for example, by restricting the edges connecting the nodes
to lie inside the volume of the corresponding arthromeres.

Finally, since the proposed method works on time-series voxel data, we plan
to expand the scope of the scheme to deal with non-rigid body in motion.
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Abstract. We present a simple and computationally feasible method to perform 
automatic emotional classification of facial expressions. We propose the use of 
10 characteristic points (that are part of the MPEG4 feature points) to extract 
relevant emotional information (basically five distances, presence of wrinkles 
and mouth shape). The method defines and detects the six basic emotions (plus 
the neutral one) in terms of this information and has been fine-tuned with a 
data-base of 399 images. For the moment, the method is applied to static im-
ages. Application to sequences is being now developed. The extraction of such 
information about the user is of great interest for the development of new mul-
timodal user interfaces. 

Keywords: Facial Expression, Multimodal Interface. 

1   Introduction 

Facial expression is the most powerful, natural and direct way between humans to 
communicate emotions, valuations and intentions. As pointed out by Bruce [1], hu-
man face-to-face communication is an ideal model for designing a multimodal hu-
man-computer interface (HCI).  

A system capable of extracting emotional information from user’s facial expres-
sions would be of great interest for developing new interfaces which follow the hu-
man face-to-face communication model in the most realistic way. In particular, the 
creation of virtual environments populated by 3D virtual characters capable of under-
standing users’ expressions and reacting accordingly represents, nowadays, a chal-
lenging but affordable task. 

Nevertheless, to develop a system that interprets facial expressions is difficult. 
Three kinds of problems have to be solved: face detection in a facial image or image 
sequence, facial expression data extraction and facial expression classification (e.g. 
into emotional categories). In this paper we are going to deal with the third problem: 
classification. This implies the definition of the set of categories we want to deal with, 
and the implementation of the categorization mechanisms. 

Facial expression analyzers make use of three different methods of classification: 
patterns, neuronal networks or rules. If a pattern-based method is used [2,3,4], the 
face expression found is compared with the patterns defined for each expression cate-
gory. The best matching decides the classification of the expression. Most of these 
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methods first apply PCA and LDA algorithms to reduce dimensionality. In the sys-
tems based on neuronal networks [5,6], the face expression is classified according to a 
categorization process “learned” by the neuronal network during the training phase. In 
general, the input to this type of systems is a set of characteristics extracted from the 
face (points or distances between points). The rule-based methods [7] classify the face 
expression into basic categories of emotions, according to a set of face actions previ-
ously codified. In [8] an excellent state-of-the-art on the subject can be found.  

In any case, the development of automatic facial classification systems presents 
several problems. Most of the studies on automated expression analysis perform an 
emotional classification. The emotional classification of Ekman [9] is the most  
followed one. It describes six universal basic emotions: joy, sadness, surprise, fear, 
disgust and anger. Nevertheless, the use of Ekman’s categories for developing auto-
mating facial expression emotional classification is difficult. First, his description of 
the six prototypic facial expressions of emotions is linguistic and, thus, ambiguous. 
There is no uniquely defined description either in terms of facial actions or in terms of 
some other universally defined facial codes. Second, classification of facial expres-
sions into multiple emotion categories should be possible (e.g. raised eyebrows and 
smiling mouth is a blend of surprise and happiness). Another important issue to be 
considered is individualization. The system should be capable of analyzing any sub-
ject, male or female of any age and ethnicity and of any expressivity.  

The structure of the paper is as follows: in Section 2 our method is explained 
whereas in Section 3 results are presented. Conclusions and comments about future 
work are discussed in Section 4. 

2   A Simple Method for the Automatic Analysis of Face 
Expressions 

Our method is based on the work of Hammal et al [10]. They have implemented a 
facial classification method for static images. The originality of their work consists, 
on the one hand, in the supposition that all the necessary information for the recogni-
tion of expressions is contained in the deformation of certain characteristics of the 
eyes, mouth and eyebrows and, on the other hand, in the use of the Belief Theory to 
make the classification. Nevertheless, their method has important restrictions. The 
most important restriction comes from the fact that it is only able to discern 3 of the 6 
basic emotions (without including the neutral one). This is basically due to the little 
information they handle (only 5 distances). It would not be viable, from a probabilis-
tic point of view, to work with many more data, because the explosion of possible 
combinations would remarkably increase the computational cost of the algorithm. 

2.1   General Description of the Method 

Our method studies the variation of a certain number of face parameters (distances 
and angles between some feature points of the face) with respect to the neutral ex-
pression. The objective of our method is to assign a score to each emotion, according 
to the state acquired by each one of the parameters in the image. The emotion (or 
emotions in case of draw) chosen will be the one that obtains a greater score.  



 Emotional Facial Expression Classification for Multimodal User Interfaces 407 

For example, let’s imagine that we study two face parameters (P1 and P2) and that 
each one of them can take three different states (C+, C- and S, following the nomen-
clature of Hammal). State C+ means that the value of the parameters has increased 
with respect to the neutral one; state C- that its value has diminished with respect to 
the neutral one; and the state S that its value has not varied with respect to the neutral 
one. First, we build a descriptive table of emotions, according to the state of the pa-
rameters, like the one of the Table 1. From this table, a set of logical tables can be 
built for each parameter (Table 2). That way, two vectors of emotions are defined, 
according to the state taken by each one of the parameters (C+, C- or S) in a specific 
frame. Once the tables are defined, the implementation of the identification algorithm 
is simple. When a parameter takes a specific state, it is enough to select the vector of 
emotions (formed by 1's and 0's) corresponding to this state. If we repeat the proce-
dure for each parameter, we will obtain a matrix of as many rows as parameters we 
study and 7 columns, corresponding to the 7 emotions. The sum of 1's present in each 
column of the matrix gives the score obtained by each emotion. 

Table 1. Theoretical table of parameters’ states for each emotion 

 P1 P2 
Joy C- S/C- 

Surprise C+ C+ 
Disgust C- C- 
Anger C+ C- 

Sadness C- C+ 

Fear S/C+ S/C+ 

Neutral S S 

Compared to the method of Hammal, ours is computationally simple. The combi-
natory explosion and the number of calculations to make are reduced considerably, 
allowing us to work with more information (more parameters) of the face and to 
evaluate the seven universal emotions, and not only four of them, as Hammal does. 

Table 2. Logical rules table for each parameter 

  E1      
joy 

E2       
surprise

E3       
disgust 

E4      
anger    

E5       
sadness 

E6      
fear 

E7       
neutral 

C+ 0 1 0 1 0 1 0 
C- 1 0 1 0 1 0 0 P1 
S 0 0 0 0 0 1 1 

         

  E1      
joy 

E2       
surprise

E3       
disgust 

E4      
anger    

E5       
sadness 

E6      
fear 

E7       
neutral 

C+ 0 1 0 0 1 1 0 
C- 1 0 1 1 0 0 0 P2 
S 1 0 0 0 0 1 1 
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2.2   Feature Selection 

The first step of our method consists of extracting the 10 feature points of the face 
that will later allow us to analyze the evolution of the face parameters (distances and 
angles) that we wish to study. Figure 1 shows the correspondence of these points with 
the ones defined by the MPEG-4 standard. For the moment, the extraction of the 
points is made manually, by means of a landmarking program made in Matlab. The 
manual selection of landmarks is an important drawback in order to perform an auto-
matic system. We are now developing an automatic features extraction, which will 
allow us to analyze a greater number of images and to study the evolution of the pa-
rameters in video sequences, and not only in static images. 

The characteristic points are used to calculate the five distances shown in Figure 2. 
These five distances can be translated in terms of MPEG-4 standard, putting them in 
relation to the feature points shown in Figure 1 and with some FAPs defined by the 
norm. All the distances are normalized with respect to the distance between the eyes 
(MPEG FAPU "ESo"), which is a distance independent of the expression. This way, 
the values will be consistent, independently of the scale of the image, the distance to 
the camera, etc.  

 

Fig. 1. Facial feature points used for the later definition of the parameters to analyze, according 
to MPEG-4 standard 

2.3   Database 

In order to define the emotions in terms of the parameters states, as well as to find the 
thresholds that determine if parameter is in a state or another, it is necessary to work 
with a wide database. In this work we have used the facial expressions and emotions 
database FG-NET of the University of Munich [11] that provides video sequences of 
19 different people showing the 7 universal emotions from Ekman (Fig.3). 
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Fig. 2. Characteristic distances used in our method (left). On the right, relationship between the 
five characteristic distances and the MPEG-4 FAPs and feature points. 

 

 
            Neutral                      Anger                         Fear                            Joy 

 
                               Disgust        Surprise                     Sadness 

Fig. 3. Example of selected frames of the FG-NET database [11] 

3   Results 

3.1   Initial Results 

First we considered to work with the same parameters as the Hammal method, ie, 
with the 5 characteristic distances shown in Figure 2. In order to build a descriptive 
table of each emotion in terms of states of distances, we must determine the value of 
the states of distances that define each emotion (C+, C- or S), as well as evaluate the 
thresholds that separate a state from another, for each distance. To do this, we studied 
the variation of each distance with respect to the neutral one, for each person of the 
database and for each emotion. An example of the results obtained for distance D4 is 
shown in Figure 4. From these data, we can make a descriptive table of the emotions 
according to the value of the states (Table 3).  

The last step to complete our algorithm is to define the values of the thresholds that 
separate a state of another one, for each studied distance. Two types of thresholds 

MPEG-4 FAPs 
NAME 

FEATURE POINTS 
USED FOR 

DISTANCES 

close_upper_l_eyelid 
close_lower_l_eyelid 

D1=d(3.5, 3.1) 

raise_r_i_eyebrow D2=d(4.2, 3.8) 

stretch_l_cornerlip 
stretch_r_cornerlip 

D3=d(8.4, 8.3) 

open_jaw D4=d(8.1 , 8.2) 

raise_r_cornerlip D5=d(8.3, 3.7) 
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exist: the upper threshold (marks the limit between neutral state S and state C+) and 
the lower threshold (the one that marks the limit between neutral state S and state C-). 
The thresholds’ values are determined by means of several tests and statistics on all 
the subjects and all the expressions of the database. Figure 4 shows an example of 
thresholds estimation for the distance D4. 

 

Fig. 4. Statistics results obtained for distance D4. Thresholds estimations are also shown. 

Table 3.  Theoretical table of the states taken by the different studied characteristics for each 
emotion, according to the results of the statistics obtained from the FG-NET database. The 
distances (D1,..D5) are those shown in Figure 2. Some features do not provide any information 
of interest for certain emotions (squares in gray) and in these cases they are not considered. The 
four last columns are explained in sections 3.2 and 3.3 and in Figure 6. 

 D1 D2 D3 D4 D5 Wrinkles Ang 1 Ang 2 W/H 

Joy C- S/C- C+ C+ C- No C+ S/C+/C- S/C- 

Surprise S/C+ S/C+ S/C- C+ S/C+ No C- C+ C- 

Disgust C- C- S/C+/C- S/C+ S/C- Yes S/C+/C- S/C+ S/C- 

Anger C- C- S/C- S/C- S/C+/C- Yes C+ C- C+ 

Sadness C- S S/C- S S/C+ No S/C+/C- S/C- S/C+ 

Fear S/C+ S/C+/C- C- C+ S/C+ No C- C+ C- 

Neutral S S S S S No S S S 

Once the states that characterize each emotion and the value of the thresholds are 
established, the algorithm has been proved on the 399 images of the database. In  
the evaluation of results, the recognition is marked as “good” if the decision is coher-
ent with the one taken by a human being. To do this, we have made surveys to 30 
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different people to classify the expressions shown in the most ambiguous images. For 
example, in the image shown in Figure 5, the surveyed people recognized it as much 
"disgust" as "anger", although the FG-NET database classifies it like "disgust" exclu-
sively. Our method obtains a draw. 

 

Fig. 5. Frame classified like “disgust” by the FG-NET database [11] 

The obtained results are shown in the third column Table 4. As it can be observed, 
the percentage of success obtained for the emotions “disgust”, “anger”, “sadness”, 
“fear” and “neutral” are acceptable and similar to the obtained by Hammal (second 
column). Nevertheless, for “joy” and “surprise” the results are not very favorable. In 
fact, the algorithm tends to confuse “joy” with “disgust” and “surprise” with “fear”, 
which comes justified looking at Table 3, where it can be seen that a same combina-
tion of states of distances can be given for the mentioned pairs of emotions. The 
method has also been tested with other databases different from the one used for the 
threshold establishment, in order to confirm the good performance of the system. 
Related to classification success, it is interesting to realize that human mechanisms for 
face detection are very robust, but this is not the case of those for face expressions 
interpretation. According to Bassili [12], a trained observer can correctly classify 
faces showing emotions with an average of 87%.  

3.2   Addition of Characteristics: Information About the Wrinkles in the Nasal 
Root 

In order to improve the results obtained in “joy”, we introduce a new face parameter: 
the presence or absence of wrinkles in the nasal root, typical of the emotions “disgust” 
and “anger”. This way, we will mark a difference between “joy” and “disgust”. The 
obtained success rates are shown in the forth column in Table 4. We observe, as it 
was expected, a considerable increase in the rate of successes, especially for “joy” and 
“disgust”. However, the rates still continue being low for “sadness” and “surprise”, 
which makes us think about the necessity to add more characteristics to the method. 

3.3   Addition of Characteristics: Information About the Mouth Shape 

A key factor to analyze in the recognition of emotions is the mouth shape. For each 
one of the 7 basic emotions, its contour changes in many different ways. In our 
method, we have extracted 4 feature points of the mouth that are shown in Figure 6. 
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Results are shown in the fifth column in Table 4. As it can be seen, the new informa- 
tion has introduced a great improvement in our results. The importance of the mouth 
shape in the expression of emotions is thus confirmed. 

Table 4. Classification rates of Hammal [10] (second column), of our method with the 5 dis-
tances (third column), plus wrinkles in the nasal root (fourth column) plus mouth shape infor-
mation (fifth column) 

EMOTION
% SUCCESS 
HAMMAL 
METHOD 

% SUCCESS  
OUR 

METHOD 

% SUCCES  
WRINKLES 

NASAL ROOT

% SUCCES 
MOUTH SHAPE 

Joy 87,26 36,84 100 100 
Surprise 84,44 57,89 63,16 63,16 
Disgust 51,20 84,21 94,74 100 
Anger not recognized 73,68 94,74 89,47 

Sadness not recognized 68,42 57,89 94,74 
Fear not recognized 78,95 84,21 89,47 

Neutral 88% 100 100 100 

 

Fig. 6. Extra information added about the mouth shape 

4   Conclusions and Future Work 

We have presented a simple and effective method for the automatic classification of 
facial expressions. The introduction of several additional parameters barely increases 
the computational cost of the algorithm, given its simplicity, and produces very sig-
nificant rates of improvement. In the future it is hoped to introduce new characteris-
tics, in the form of face distances or angles (for example the angle formed by the 
eyebrows). Another noticeable objective in the short term is to make the tracking of 
the landmarks in an automatic way. Thanks to it, we will be able to introduce dynamic 
information in our method, that is to say, to study the evolution in the time of the 
evaluated parameters. Every time with more force, the psychological investigation 
argues that the timing of the facial expressions is a critical factor in the interpretation 
of expressions. In the midterm, the objective is to add the system to the ambient intel-
ligent applications that the group is developing, to enrich user interaction. 
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Abstract. One of the most used techniques for full-body human track-
ing consists of estimating the probability of the parameters of a human
body model over time by means of a particle filter. However, given the
high-dimensionality of the models to be tracked, the number of required
particles to properly populate the space of solutions makes the problem
computationally very expensive. To overcome this, we present an efficient
scheme which makes use of an action-specific model of human postures
to guide the prediction step of the particle filter, so only feasible human
postures are considered. As a result, the prediction step of this model-
based tracking approach samples from a first order motion model only
those postures which are accepted by our action-specific model. In this
manner, particles are propagated to locations in the search space with
most a posteriori information avoiding particle wastage. We show that
this scheme improves the efficiency and accuracy of the overall tracking
approach.

1 Introduction

Full-body 3D human tracking from a monocular image sequence is one of the
most challenging problems from visual human motion analysis. However, the
number of difficulties related to the problem are very large. Among others,
the shape and appearance of a human body in 2D images may change dras-
tically over time due to changing lighting conditions, loose fitting clothes and
background clutter. Additionally, one must deal with 2D-3D projection ambi-
guities, and self and non-self occlusions of body parts. Hence, only a reduced
number of DOF present in the model are directly observable from 2D images.
Finally, the implied models are very high dimensional, non-linear, and may suf-
fer from kinematic ambiguities and singularities [12]. To overcome these issues,
many approaches make use of Bayesian filtering techniques combined with care-
fully designed search strategies of the solution space [2,8,11,14,13]. When the
involved distributions are non-Gaussian, the computation of model parameters
over time can be approximated by means of a particle filter [3]. This probabilistic
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framework can deal with multiple hypotheses, and brings a principled way to
incorporate a priori knowledge about human motion into the tracking, so the
solution space can be explored in a more efficient manner.

Particle filters supply a powerful tool for representing and propagating com-
plex posterior distributions. However, the number of needed particles grows ex-
ponentially as the number of dimensions to be tracked does [7]. This fact is
obvious in the human motion tracking case, due to the high DOF needed to
represent human postures. For this reason, it is necessary to make particle filters
more efficient. For example, the annealed particle filter aims to reduce the num-
ber of required samples by successively pruning less likely hypotheses [2]. They
used it in combination to a smooth motion model in a multi-camera tracking
system in order to track generic human motion.

Alternatively, it is possible to use efficient motion models which concentrate
particles in areas of interest. Sidenbladh et al. applied the particle filtering frame-
work for full human body tracking in [10] in combination with a cyclic dynamic
model designed to improve the performance of the tracker for the walking action.
Likewise, Ning. et al [8] tracked a walking sequence of a 12 DOF body model
using a particle filter and a dynamic model of walking. The dynamic model
included constraints on human motion, and learnt the parameters of motion
formulated as independent Gaussian distributions per each joint. In [11], Siden-
bladh et al. generalized their approach to include different actions than walking.
They learnt the dynamic model from a pre-recorded set of human motions, and
predictions were made assuming a Gaussian distribution over subsequences of
the learned motions. As a result, particle wastage was avoided by concentrating
particles in areas where motion was observed before. However, the model can
only predict postures which were present in the motion database.

Recently, Urtasun et al. introduces the use of Scaled Gaussian Process La-
tent Variable Models (SGPLVM) to learn models of 3D human poses from small
training sets [13]. They use this model as a motion prior to constrain the human
postures to the learned actions. However, instead of particle filters, they use a
deterministic optimization approach to implement the Bayesian filter. Alterna-
tively, for large motion sets it is possible to use the learning scheme of Chai et
al. to build a more efficient space of human postures [1].

Likewise, we propose a posture-based human action space for modeling feasi-
ble postures within an action. This model is used to constrain human postures
within the framework of a particle filter responsible for tracking the human body
motion. In such a recursive model-based tracking approach, human postures are
projected forward by means of a dynamic model, and they are subsequently
updated according to the measurements obtained from images. As a result, we
must define both the dynamic model and the fitness function of human postures
to images. In this work, predictions are made according to a dynamic model
which focuses and constrains human postures only to a set of feasible postures
within the performance of a particular action.

The remainder of this paper is organised as follows. In Section 2 we present
the training of our action-specific model of human postures using real data ac-
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quired with a commercial Motion Capture system. This action model is used
to determine whether a human posture belongs to a particular action or not.
Section 3 introduces the tracking framework. We define a dynamic model based
on a first order motion model constrained to the postures which are accepted by
the action model. Moreover, we present a fitness function based on the overlap-
ping area between the projection of the body state and the body region obtained
from image segmentation. In Section 4 results of the tracking approach are pre-
sented for a performance not considered in the training set. Finally, Section 5
discusses the conclusions and future research.

2 Learning Posture Constraints

The 3D human body model used in this work is composed of 12 limbs with 3 DOF
per joint expressed as relative angles in a 3D polar coordinate system. Using a
commercial Motion Capture System, we acquired 45 performances, in average,
of 9 different actions performed by 9 different actors. We refer the reader to [9]
for details on the body model and motion database used. From the observed
motion, we aim to automatically learn per each action, which human postures
are feasible during the performance of that particular action. Towards this end,
we first express all the training postures for action A in a lower dimensional
representation called aSpace [4] which is computed as follows:

Let φ be a 36-dimensional vector representing a particular human posture,
and Φ be a sequence of human postures, hereafter performance. Then, for a
particular action A, we compute PCA over all the training performances Φj for
that action. The resulting PCA-like space - called aSpace - will be denoted as
ΩA. The projections Φ̃j on the aSpace of Φj constitute the lower dimensional
version from the original data.

Subsequently, we aim to characterize the shape of the training performances
for action A within the aSpace. Since each performance Φ̃j may be composed of a
different number of postures and may exhibit different speeds, we need a method
for synchronising all the performances from the training set. Hence, we normalise
the length of each performance by means of a cubic spline, and compute the mean
performance ḡA. Afterwards, a key-frame set KA is found from ḡA by selecting
the maximum and minimum distant postures from the mean posture in the same
fashion than [5]. We look for the most similar postures to the key-frames found
in each performance, so we can resample all the performances to have the same
number of postures. As a result, we obtain a synchronised version of the training
set. Fig. 1 shows the first 4 dimensions of the aSpace from the non-synchronised
(Fig. 1.(a)) and the synchronised (Fig. 1.(b)) versions of the training set for a
bending action.

As a result, we can put in correspondence postures between different training
performances. Therefore, we compute the synchronised mean performance ĝA,
and the standard deviation σA

k for each k-th posture, using all the synchronised
performances Φ̃j . In Fig.1.(b), we show the synchronised training performances
(thin lines) and its mean performance (thick line) for a bending action. The
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(a) (b)

Fig. 1. Before (a) and after (b) synchronization of the training set using key-frames

dashed black line corresponds to three times the standard deviation computed
from the mean. Finally, our action model is defined as:

Γ A = (ΩA, ĝA, σA
k ), (1)

where ΩA defines the aSpace, ĝA stands for the synchronised version of the mean
performance, and σA

k is the observed standard deviation.
The learnt action model will be used in the prediction step of the particle

filter to probabilistically determine whether a posture belongs to action A or
not. The probabilistic framework used to face the tracking problem is described
in the next section.

3 Using the Posture Constraints

The Bayesian filter recursively estimates the state of the tracked object at each
time step given the evidences (image data) up to that moment. It decomposes
the problem in two differentiated steps, i.e. the prediction and update steps. The
prediction step projects forward the model parameters to the next time step
by means of a dynamic model. Then the update step makes use of a likelihood
probability function in order to evaluate the fitness of the predictions to the
evidences available at each moment.

Formally, within the Bayesian filtering framework, we formulate the compu-
tation of the posterior distribution p(φt|It) of our model parameters over time
as follows:

p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1) p(φt−1|It−1) dφt−1 , (2)

where φt is a 36-dimensional vector from our body model representing a partic-
ular pose of the human body at time t, It is the image sequence up to time t,
p(It|φt) is the likelihood of observing the image It given the parametrization φt

of our model at time t, and finally p(φt|φt−1) is the dynamic model.
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We use particle filtering techniques in order to approximate the true posterior
pdf by means of a discrete weighted set of samples. Hence, whilst the likelihood
function decides which particles are worth to propagate, the dynamic model is
responsible for guiding the exploration of the space of solutions. The posterior
p(φt|It) represents all the current knowledge about the model state we have
extracted from image measurements. We can estimate the state φt at a particular
time step by computing the mean of the posterior pdf.

The number of samples -or particles- determines the accuracy and the speed
of the tracker. However, the computational cost of particle filters mainly comes
from the computation of the likelihood function from image measurements [15].
Additionally, the number of needed particles grows exponentially as the number
of dimensions of the model to be tracked does [7]. Therefore, given the high-
dimensionality present in human motion tracking, we need to design efficient
search strategies to lower the number of particles needed. In other words, the
dynamic model from the prediction step of the particle filter should be generic
enough to track any motion, but specific enough to focus particles only to areas
with high a posteriori information.

3.1 Constrained Motion Model

The action-specific posture model constitutes a priori knowledge on human mo-
tion which can be incorporated into the Bayesian tracking framework by means
of the dynamic model p(φt|φt−1) from Eq. (2). We aim to define a dynamic
model which samples only those postures which are feasible during the perfor-
mance of a particular action A, based on a 1st order motion model. Thus, the
prediction step of the particle filter is designed as a two-step process. First, we
project forward the particle set {φs

t−1} following a 1st order motion model plus
some Gaussian noise, i.e.,

φ̂s
t = φs

t−1 + Vt−1 + η(σφ), (3)

where φs
t−1 denotes the particle s at time t − 1, and φ̂s

t is the prediction for this
particle. Vt−1 is the velocity term computed at time at time t − 1, and η(σφ) is
a Gaussian diffusion term. To determine σφ, we used a constant velocity model
to predict each performance of the training set. Then, σφ was computed as the
standard deviation of the average error committed. Subsequently, we update the
term Vt according to Vt = αVt−1 + (1 − α)(φt−1 − φt−2), where α is a learning
coefficient, and φt−1, φt−2 correspond to the estimated state of the human body
at the two previous time steps.

Secondly, we filter those predictions φ̂s
t which are not accepted as feasible

postures during the performance of the action Ai by our action-specific model.
If a prediction φ̂s

t is rejected, we resample from Eq. (3) until a feasible posture
is generated for this particle. Finally, the new set of predicted particles {φs

t} at
time t is constituted by those predictions φ̂s

t which were accepted by the action
model.
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As a result, we reformulate Eq. (2) including the action model into the pre-
diction step as

p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1, Γ
A) · p(φt−1|It−1) dφt−1. (4)

Now, by applying the Bayes’ rule and assuming independence between φt−1
and Γ A, i.e. only current postures are constrained by the action model, we can
further decompose Eq. (4) as

p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1) p(φt|Γ A) · p(φt−1|It−1) dφt−1, (5)

where p(φt|Γ A) is a function which determines whether a particular posture φt

belongs to action A or not defined as follows:

p(φt|Γ A) =
{

1 if (|φ̃t,d, ĝA
j,d| < 2 · σA

j,d), ∀d = 1..D

0 otherwise
, (6)

where φ̃t = (φ̃t,1, ..., φ̃t,D)T is the projection of φt in the D-dimensional aSpace.
ĝA

j is the j-th posture from the mean performance computed for the action A

which probabilistically matched φ̃t, i.e., we draw ĝA
j from a Gaussian conditional

distribution assuming that φ̃t = ĝA
j + η(Δ), where Δ is empirically determined

from the training set. σA
j = (σA

j,1, ..., σ
A
j,D) stands for the learnt standard devia-

tion of the j-th posture for the action A. Notice that the level of filtering depends
on the number of dimensions D considered in the aSpace representation.

By defining this filtering method, we prune those predictions which are more
distant than two times the learnt standard deviation from the matched posture
of a particular action. As a result, our dynamic model predicts feasible human
postures avoiding particle wastage on postures which are not likely to appear
during the performance of a particular action.

3.2 Image Measurements

The likelihood function p(It|φt) computes how likely is to observe the image It

given a human body posture φt. In this paper, we implemented a likelihood
function based on the image region filled by the human body. Hence, the human
body model has been fleshed out with 3D volumetric primitives consisting in
3D cylinders. As a result, we synthesise an image Ĭφs

t
of the region defined by

a particular parametrization φs
t of the human body model. For simplicity and

efficiency, we have simplified the 2D projections onto the image plane from the
limbs’ cylinders as rectangles.

On the other hand, we extract the true region filled by the body in the current
image It by applying a background subtraction algorithm from Horprasert et
al. [6]. This pixel-wise algorithm needs to be trained with several background-
only frames beforehand. Then, for each frame to be segmented, the algorithm
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Fig. 2. It (a), Ĭφt (b), Ît (c), IOV
t,φt

(d) and IU
t,φt

(e) images from the likelihood compu-
tation. See text for details.

computes for each pixel the normalised distortion on chromacity and brightness
with respect to the learnt background model. Based on this values, each pixel
is classified as background, foreground, shadow, or highlight. We denote the
segmented body region image as Ît. Finally, the likelihood is computed based on
the overlapping area between the synthesised and the segmented images, i.e.,

p(It|φt) ∝
∑

x

∑
y(IOV

t,φt
(x, y))∑

x

∑
y(IU

t,φt
(x, y))

, (7)

where IOV
t,φt

refers to the overlapping region between Ĭφt and Ît, IU
t,φt

is the union
of both regions. The notation I(x, y) is used to make reference to the pixel of I
at column x, row y. As a result, we assign maximum weight to those postures
whose synthesised image coincide totally with the segmented one, and lower
values otherwise. Fig. 2 shows the images It (a), Ĭφt (b), Ît (c), IOV

t,φt
(d) and

IU
t,φt

(e) computed at a particular time t of the algorithm.

4 Experimental Results

To test this work we used a training set of 40 performances of a bending action
carried out by 9 different actors. However, the approach is easily extensible
to other sets of actions. Hence, we have tested the tracking approach using a
bending sequence not present in the training set, consisting in 86 frames from
which we have 3D ground truth data available.

The number of D dimensions considered when building the aSpace represen-
tation determines the degree of adaptation of the action model to the training
data. Hence, too low values for D result in a poor filtering effect, since too
many particles with low a posteriori information will be accepted by the action
model. On the other hand, too high values lead to overfitting to the training set,
since the action model only accepts particles that are almost equal to postures
used to learn the action model. To test this work, we used D = 13 dimensions
which proved to achieve a good compromise between generality of the model and
non-feasible postures rejection.

To test the effectiveness of the approach, we compared the results obtained
using our action model against a first order motion model without any filtering
method. We repeated the same experiment varying N from 100 to 10000 parti-
cles, with D = 13 and the learning coefficient of the velocity set to α = 0.5. In
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Fig. 3. MSE obtained with both approaches

(a) (b)

Fig. 4. Predictions of the aSpace and 1st order motion approaches

Fig.3 we show the obtained error for the aSpace filtering method (solid line) and
the simple first order motion model (dashed line). The error was computed as
the average Mean Square Error (MSE) of the relative angles between the final
estimated postures -computed as the expectation of the posterior pdf- and the
ground truth data from the sequence. We may observe that the action model
overperforms the 1st order motion model in all the experiments. Furthermore, the
error for the aSpace filtering method quickly stabilises around 7 at N = 3000
particles. One may observe that we obtain similar error measures using 2000
particles with the aSpace approach than 10000 particles without any filtering.
Additionally, with very few particles -below 1000-, our approach quickly lowers
the error and tends to stabilise, while the 1st order motion model approach gives
very high error rates. Hence, our approach never totally looses the tracked ob-
ject since it never produces non meaningful postures. This is depicted in Fig.4
where a frame of the tracked sequence is plotted with a randomly selected set
of predicted postures projected over it for (a) the aSpace approach, and (b) the
1st order motion model approach. One may observe that the latter leads to un-
likely and non feasible human postures for this action, while the aSpace filtering
approach predicts natural and coherent human postures.



422 I. Rius et al.

Fig. 5. Estimated frames 1, 11, 21, 31, 41, 51, 61, 71 and 81

Finally, selected frames of the final estimated sequence are shown in Fig.5
for N = 5000 particles. We may observe, that the left arm is confused with the
right arm in the first frames. This is an expected behaviour, since the right arm
is totally occluding the left one, so the likelihood function gives us no clue for
evaluating the proper arm position. However, in the second half of the sequence,
the left arm tends to its correct position since it becomes slightly visible in those
frames, so the likelihood function is higher for postures covering the left arm.
The ability to handle multiple hypothesis of the particle filtering framework is
proved to be very suitable, since it can recover from a self-occluding situation
where the likelihood function doesn’t provide the right maxima.

5 Conclusion

We have presented an efficient tracking approach based on particle filtering for
full-body human tracking, which makes use of an action model to guide the pre-
diction step of the particle filter. Despite the use of a simple likelihood function,
the space of possible solutions is explored in an efficient manner since only fea-
sible human postures are generated by our dynamic model. We compared the
overall error of our tracking approach against a first order motion model without
filtering in the aSpace. Results point out that the action model approach dras-
tically reduces the number of particles needed to track a 36 DOF human body
model, thus reducing the high computational cost inherent to typical particle
filter approaches. Moreover, given the PCA-like definition of the action space,
the degree of dependence of the predictions to the training data set can be tuned
by considering more or less dimensions when building the space.

Future work relies on extending this approach to a more general set of actions,
so we can track any action and transitions between actions. Furthermore, the
likelihood function needs to be improved in order to include other image-based
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cues like color or edges, so it provides more reliable information for evaluat-
ing the predicted poses. Moreover, we need to define a method for handling
self-occlusions based on predicting which body parts are visible at each time
step. Finally, it is possible to improve the action model by considering other for-
mulations which may improve the pruning effect providing more accuracy and
efficiency to the overall tracking process.
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Abstract. In this paper, we want to exploit the knowledge obtained
from those detected objects which are incorporated into the background
model since they cease their movement. These motionless foreground
objects should be handled in security domains such as video surveillance.
This paper uses an adaptive background modelling algorithm for moving-
object detection. Those detected objects which present no motion are
identified and added into the background model, so that they will be
part of the new background. Such motionless agents are included for
further appearance analysis and agent categorization.

1 Introduction

The analysis of human-motion image sequences involves different tasks, such as
movement segmentation and tracking, action recognition and behaviour reason-
ing [7]. Therefore, the basis for high-level interpretation of observed patterns of
human motion relies on when and where motion is being detected. Consequently,
this low-level task still constitutes the most critical step towards Image Sequence
Evaluation (ISE) [10].

In this work, the aim is to exploit at the Image Signal Level of the ISE ar-
chitecture the knowledge obtained from those detected objects which could be
incorporate into the background since they cease their movement. These ”newly
motionless” objects should be handled in security domains such as video surveil-
lance. For example, if a suspicious bag is detected in an airport, some knowledge
can be inferred: who left it there, where this bag within in the scene, when the
person has left it. In traffic monitoring, if a car is stopped a predefined period
of time, the position of this car is inferred within the scene, but also when and
(the appearance of) who has left this car. Thus, incorporated objects constitute
additional knowledge, which can be represented using feature-based models.

Different techniques have been used for motion segmentation [12], such as
temporal differencing, optical flow and background subtraction. The latter con-
sists of a background model used to compare the current image with such a
model. Thus, foreground objects in motion are identified. To achieve this objec-
tive, many researchers have proposed methods which have been used to solve the
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problems found in segmentation, such as gradual or sudden illumination changes,
shadows, camouflage, background in motion, or deposited and removed objects
from scene, among other problems [8].

Thus, W4 [4] uses a bimodal distribution, Pfinder [13] uses a single Gaussian
to model the background, Stauffer et al. [2,3] use a mixture of Gaussians, and
Elgammal et al. [1] present a non-parametric background model. On the other
hand, the features used for segmentation vary in the literature: Horprasert et al.
[5] use colour information to classify a pixel as foreground, background, shadow
or highlighted background, while Wallflower [9] uses a three-level categorization:
pixel, region and frame level. Jabri et al. [6] use colour and edge information,
and Shen [11] uses a RGB colour space plus fuzzy classification.

These approaches incorporate gradually new motionless foreground objects
into the background model, that is, the updating rule of the background model
incorporates increasingly all the pixel values which constitute the object. There-
fore, a suitable representation of motionless objects cannot be built for post-
processing tasks, such as object recognition or classification. Moreover, adaptive
rules do not usually distinguish between background changes due to illumination
than those changes due to left or removed objects.

In particular, W4 [4] first presented a differentiation between pixel-based and
object-based detection: the pixel-based update method updates the background
model periodically to adapt it to illumination changes, and the object-based up-
date method updates the background to adapt it to physical changes, such as
those objects deposited or removed into the background scene. Consequently, our
work will be based on W4 in order to obtain a fast background scene modelling
and maintenance while considering new incorporated objects. Therefore, such
an adaptive background model is updated according to observed developments
within the scen e in order to achieve fast and robust segmentation results.

This paper is organized as follows. Section 2 shows how the background model
is created. Section 3 describes the foreground region detection, and section 4 how
the background model parameters are updated. Section 5 presents our contribu-
tion to object incorporation, and section 6 shows the results obtained. Finally,
chapter 7 concludes this paper and discusses different alternatives for future
research.

2 Initial Background Model

W4 uses a model of background variation constructed from order statistics of
background values during a training period. The background scene is modelled
by representing each pixel by three values: its minimum m(x) and maximum n(x)
intensity values, and the maximum intensity difference d(x) between consecutive
frames observed during this training period. Furthermore, W4 uses a two-stage
method for exclude foreground objects during training period, such as moving
people. First, the median filter |V z(x) − λ(x)| < 2 ∗ σ(x) distinguishes moving
pixels from stationary pixels. V z(x) is the intensity of a pixel location x in the
z − th image of sequence V , λ(x) is the median value, and σ(x) is the standard
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(a) (b)

(c) (d)

Fig. 1. Detection results in a road sequence with a high number of foreground objects

during the training period: (a) foreground detection results using W4, showing that no

detection is achieved; (b) the background is updated using W4, showing that cars are

erroneously incorporated into the background model; (c) foreground detection results;

and (d) background model update using our approach

deviation. After that, in the second stage, only stationary pixels are considered
for building the initial background model.

However, a training period is not always available, because this period can
contain multiple foreground objects in the scene, such as for the road sequence,
see Fig. 1 The initial background model can be erroneous if foreground objects
are incorporated into the background model. The two-stage method used for
W4 explained above is not sufficient for excluding all foreground objects. Fig.
1.(a) shows a frame with a high number of foregrounds objects during the train-
ing period, where foreground regions are shown and no detection is achieved.
Consequently, the new background model will be wrong too. Fig. 1.(b) shows a
wrong updated background model because of incorporated foreground objects
in motion.

To solve the aforementioned problem, the first stage is applied in a recursive
way. The median filter is applied until the standard deviation from the new back-
ground model is the same as the last background model. Now, the foreground
objects are eliminated, as it can be seen in Fig. 1.(c), where foreground objects
are detected in contrast to Fig. 1.(a). The background model is well updated as
it can be seen in the Fig. 1.(d), and compared to Fig. 1.(b).
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3 Foreground Region Detection

W4 uses a four-stage process to obtain a foreground object: thresholding, noise
cleaning, morphological filtering, and object detection. The threshold stage clas-
sifies each pixel as either a background or a foreground pixel using the back-
ground model. A pixel is a foreground pixel if:

B(x) =

⎧⎨⎩0 background
{

(It(x) + m(x)) > kf ∗ max(d(x), dmin)
∧ It(x) − n(x)) < kf ∗ max(d(x), dmin)

1 foreground otherwise .
(1)

Parameter kf serves for extend or reduce the detection range1, and parameter
dmin is added to create a minimum background detection range. In this work,
all the sequences are processed using only the first stage, i.e. thresholding, in
order to evaluate in a better way the overall approach presented here.

4 Updating Background Model Parameters

The background model is updated using the pixel-based update and object-based
update conditions as in W4. The first condition ”(gS(x) > k ∗ N)” updates
the background model periodically to adapt it to illumination changes in the
background scene. And the second one ”(gS(x) < k ∗ N ∧ mS(x) < r ∗ N)”
updates the background model to adapt it to physical changes in the background
scene, when new objects are deposited or removed in the background scene.

W4 uses a detection support map (gS ), to represent the number of times a
pixel is classified as a background pixel:

gS(x, t) =
{

gS(x, t − 1) + 1 if x is background pixel
gS(x, t − 1) if x is foreground pixel . (2)

A motion support map (mS) represents the number of times a pixel is classified
as moving pixel:

mS(x, t) =
{

mS(x, t − 1) + 1 if M(x, t) = 1
mS(x, t − 1) if M(x, t) = 0 ,

(3)

where M(x,t) represents moving pixels, computed as:

M(x, t) =

⎧⎨⎩1 if (|I(x, t) − I(x, t + 1)| > 2 ∗ σ)∧
(|I(x, t − 1) − I(x, t)| > 2 ∗ σ)

0 otherwise .
(4)

The new background parameters [m(x),n(x),d(x)] are updated after a prede-
termined number N of frames, and they are determined using the aforementioned
maps as follows:
1 The parameter kf is set to 2, according to our experiments and the results presented

in W4 [4].
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[m(x), n(x), d(x)] =⎧⎪⎪⎨⎪⎪⎩
[
mb(x), nb(x), db(x)

]
if (gS(x) > k ∗ N) pixel-based update[

mf (x), nf (x), df (x)
]

if (gS(x) < k ∗ N ∧ mS(x) < r ∗ N)
object-based update

[mc(x), nc(x), dc(x)] otherwise ,

(5)

where k and r are typically 0.8 and 0.1, respectively [4]. The parameters [mb(x),
nb(x), db(x)] represent those pixels classified as background in this period of time,
[mf (x), nf(x), df (x)] those pixels classified as foreground pixels, and [mc(x),
nc(x), dc(x)] are the value of the background parameters in the last background
model. When the background model is updated, the maps are set to zero.

5 Improving Object-Based Update

Achieving a robust object-based updated constitutes a challenging task thereby
managing the incorporation of the new objects to the background, and removing
the old background objects. The goal is to work with newly motionless fore-
ground objects: detected objects in motion which have exhibited motion up to
that moment. They should be identified, and the object-based update should
take them into the background model. The first problem is that pixels which
are no longer considered as motionless foreground pixels are updated as object-
based, since the minimum number of times a particular pixel has been classified
as foreground is usually not restrictive enough (according to object-based con-
dition).

In addition, the foreground pixels considered to construct the background
model [mf (x), nf (x), df (x)] do not have to include foreground moving pixels,
because these have different intensity values than foreground pixels considered
object-based along the updating window.

Furthermore, other problems can be found with those pixels considered as
object-based. If these pixels belong to a foreground motionless object which
left the scene before the background is updated, such pixels can be included
erroneously into the background model. This happens because these pixels also
satisfy the object-based condition. Fig. 2.(a) shows a representative example of
an background updating intensity value for a given pixel along the updating
window with one foreground object which left the scene before the background
is updated. Consequently, the pixel is added erroneously in the new background
model.

Additionally, different foreground objects can appear at the same place in dif-
ferent times of the same background updating window, and they can be included
together. Thus, the object-based parameters may be updated with a minimum
intensity value m(x) from one object and a maximum intensity value n(x) from
the other. Therefore, as both objects are different, the updating parameters
[m(x),n(x),d(x)] will be erroneous. Fig. 2.(b) illustrates the background updat-
ing when a new object appears at the same position where another object was
before: these two objects will be incorporated into the background model, and
the maximum and minimum intensity value from these two objects will wrongly
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a) b)

Fig. 2. Problems with object-based update. The pictures represent the background

updating model for a given pixel along updating window, where: (a) a foreground object

enters (background updating window 1) and leaves the scene before the background

is updated (background updating window 2). Consequently, the pixel is incorporated

erroneously in the new background model. (b) Background updating when a new object

appears at the same position where another object was before: these two objects will

be erroneously incorporated into the background model. See text for details.

constitute the new background model. The ghost which appears when an ob-
ject belongs to the background awakes can present the similar problems above
explained.

In order to solve the drawbacks explained above, object-based update is not
performed when the pixels belongs to different foreground objects, or belongs to
foreground objects that left the scene before the background is updated.

Our algorithm is based on the last detected object. In other words, the number
of foreground pixels is computed from the latest foreground pixel in motion
or background pixel. A new map is created, called Foreground History Map,
fS(x,t), which represents the number of times a pixel is detected as foreground
continuously without pixels in motion, M(x,t), neither background pixels during
its history:

fS(x, t) =
{

fS(x, t − 1) + 1 if x is a foreground pixel and M(x, t) = 0
0 otherwise. (6)

The Eq. (5) must be changed to include fS(x,t) map instead of gS(x,t). The
minimum number of foreground pixels which are necessary for considering a pixel
as object-based should be within the limits commented above. The foreground
history map is more restrictive than gS map, and include this restriction. Fur-
thermore, the use of M(x,t) is avoided in the background updating parameters,
because this restriction is already included inside fS(x,t).
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(a) (b) (c) (d)

Fig. 3. Image sequence after background model updating. (a) Original sequence. (b)

New background model with motionless foreground object (i.e. a rubbish bin). (c)

Foreground detection without motionless foreground object. (d) Newly motionless fore-

ground objects are added to the background model. Results are obtained without any

kind of filtering.

The background updating parameters results as follows:

[m(x), n(x), d(x)] =

⎧⎨⎩ mb(x), nb(x), db(x) if (gS(x) > k ∗ N) pixel-based update

mf (x), nf (x), df (x) if (fS(x) > k ∗ N) object-based update
[mc(x), nc(x), dc(x)] otherwise .

(7)
With this approach, the problems mentioned above are solved. However, this

means that foreground objects which cease their movements are no longer in-
cluded into the background model. This happens since the pixels from those
objects are often considered pixels in motion erroneously. The problem is that
M(x,t) map does not distinguish real motion from fluctuations.

A pixel in motion must show an evolution of its intensity value. Presently,
M(x,t) compare current intensity value for each pixel with its previous and its
posterior intensity value. This can be enhance by comparing its previous value
with its posterior one. The new M(x,t) will be computed as follows:

M(x, t) =

⎧⎪⎪⎨⎪⎪⎩
1 if (|I(x, t) − I(x, t + 1)| > 2 ∗ σ)∧

(|I(x, t − 1) − I(x, t)| > 2 ∗ σ)∧
(|I(x, t + 1) − I(x, t − 1)| > 2 ∗ σ)

0 otherwise .

(8)

Thus, the knowledge of motionless foreground objects is incorporated into the
background model. Fig. 3.(b) shows a rubbish bin correctly updated as object-
based. Furthermore, the problems with ghosts are also solved, see the rubbish
bin ghost in Fig. 4.

6 Experimental Results

Our algorithm has been tested with multiple and different sequences which con-
tain different motionless foreground objects and persons who interact with them.
Fig.3 shows the scene where a rubbish bin is added to the background model.
Fig.3.(a) shows the original image, Fig.3.(b) shows the background model where
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Fig. 4. First column shows the original image sequence, second column shows the

results of foreground detection using W4, third column displays the background model

using W4, fourth column shows foreground detection results using our approach and

fifth column displays the background model using our approach. Image results are

obtained without any kind of filtering. See text for details.
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the motionless foreground object (i.e. a rubbish bin) is correctly added. Fig.3.(c)
shows the foreground region detection without the motionless foreground object,
and Fig.3.(d) shows the newly motionless foreground object which has been prop-
erly added to the background model following the object-based criterion. This
newly motionless foreground object can then be used for further processing such
as object classification or recognition.

Fig. 4 represents the same sequence using the same parameter values. This
particular sequence contains 900 frames, and the first 200 frames are used to
construct the initial background model, which do not contain any foreground
object. The background model is updated every N=100 frames. The sequence
corresponds to an agent who leaves a rubbish bin in the middle of the scene.
Later on, a new agent enters into the scene. Subsequently, another agent takes
the rubbish bin.

In Fig. 4, the first column shows the original image sequence at frame numbers
264, 372, 473, 612, 631, 682, 806. The second column shows the foreground
region detection, and the third column shows the background model, and how
it is updated using W4. Fourth and five columns show the foreground region
detection and update background model using our approach. In those last two
columns can be observed that the foreground person and the object are well
segmented, and that the motionless foreground object is incorporated properly
into the background model. The agent who passes in front of the incorporated
object is also well segmented. After that, when this agent carries the object and
leaves the scene, the ghost of this background object is solved and the background
model is correctly updated.

7 Conclusions and Future Work

The proposed approach copes with (i) the non-incorporation of erroneous fore-
ground objects to the background model, and (ii) the incorporation of motionless
foreground objects. Pixels belonging to false foreground objects, foreground ob-
jects in motion, foreground objects that leaves the scene before the background is
updated, and multiple foreground objects at the same time have been removed.
Finally, a correct detection procedure of motionless foreground objects which
have ceased their motion have been presented, and an efficient incorporation of
such objects into the background model for a posterior processing have been
proposed. Furthermore, the bootstrapping is solved even when many foreground
objects are presented.

Future work needs to split the pixel-based and object-based update condition
into two separate windows: problems corresponding to the first condition are
detected earlier than those physical changes in the scene corresponding to the
second one. That is to say, pixel-based update needs to be carried out more
periodically than the object-based one. The approach copes with the physical
changes in the scene, but the experimental results shows that it is necessary
to improve the illumination-change modelling (i.e. the pixel-based update), and
background in motion. Likewise, shadows are currently not handled, but these
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can be eliminated by means of colour information [1,5]. The use of colour will
also improve the detection of camouflage. Lastly, objects detected by object-
based update should be part of a multilayer background model. In addition,
an object appearance model is needed to cover situations involving crowds or
multiple objects.
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Abstract. We present a new method to simulate deformable volumet-
ric objects interactively using finite elements. With quadratic basis func-
tions and a non-linear strain tensor, we are able to model realistic local
compression as well as large global deformation. The construction of the
differential equations is described in detail including the Jacobian ma-
trix required to solve the non-linear system. The results show that the
bending of solids is reflected more realistically than with the linear re-
finement previously used in computer graphics. At the same time higher
frame rates are achieved as the number of elements can be drastically
reduced. Finally, an application to virtual tissue simulation is presented
with the objective to improve surgical training.

(a) (b) (c)

Fig. 1. Interactive liver deformation, (a) 856 linear tetrahedra, (b) 96 quadratic tetra-
hedra, (c) a high resolution surface mesh attached

1 Introduction and Related Work

Simulating deformable bodies is an important issue in computer animation, be-
cause many solid objects in our environment are not rigid but deformable. The
animation of such solids by hand is not feasible since they obey complex dynamic
behavior with subtle characteristics. The human brain is permanently trained
to estimate the motion of soft bodies and to determine their physical properties
by touching them. Animations of these objects sometimes look strange, but it
is difficult to say why. Therefore, it is preferred to animate them with a physics
based simulation that reproduces the reality at the best possible rate. Ideally,
the animator should only have to specify some material properties which can
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be acquired in real world measurements [1,2], and afterwards the geometric de-
formation of the object and its interaction with the environment is computed
automatically.

With growing demand, applications of such simulations are not only classi-
cal computer animations, but also surgery simulations. In the latter case, the
requirements on physical realism are especially high, e.g. surgeons often touch
tissue to locate diseased parts. A repeated wrong simulation during training
could have an impact on his senses and he could accustom wrong actions.

In this paper we present a finite element method which is suited for interactive
simulations with high realism. Previously, multi-resolution meshes [3,4] or hierar-
chical basis [5,6] were used to model local features. However, problems like shear
locking can not always be avoided as only linear shape functions are employed.
Methods to linearize the differential equations with corotational formulations
of the strain were introduced to computer graphics recently [7,8] which cannot
be applied to a quadratic basis. A problem we do not address in this paper,
nevertheless being very relevant, is collision detection for deformable models [9].
Finally, a complete surgery simulator needs to tackle further important issues
[10]. Although the development of mesh-free methods is very promising [11],
real-time simulations of real materials are not achieved yet.

2 Continuum Mechanics

Modeling a solid as a continuum, physical laws and real world measurements
are directly linked to the problem posed, making continuum mechanics [12] the
favorable approach for analysis tasks in engineering and for realistic simulations
in medical applications. Subject of solid modeling is the minimization of the
total energy Π of the system,

Π = Πel + Πkin + Πext,

composed of the elastic, kinetic and external energy. This problem can be trans-
formed into a variational problem by the principle of virtual work,

δΠ = 0. (1)

The elastic force of a viscoelastic material with linear damping then can be
stated as

δΠel =
∫

Ω

(δε : σ + δε̇ : σ̇) dΩ, (2)

where σ is the stress tensor and δε denotes a small virtual variation of the
symmetric strain tensor ε. Representing the tensors as 3×3 matrices, the double
contraction denoted by the operator ”:” yields δε : σ = tr(δεT σ).

In a general viscoelastic material, σ is function of the strain history ε(t). At
this point we restrict to the description of linear elastic materials with σ = C(ε),
while viscoelastic effects can be added by developing the stress function σ into
a Prony series [6].
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The strain ε itself in general depends non-linearly on the current deformation
ϕ(x, t) at time t, with x ∈ Ω and Green’s strain tensor ε = 1

2 (∇ϕT ∇ϕ − id).
The mapping ϕ transforms the parameter domain Ω to R

3 with the rest state
ϕ0 = id and the displacement field u = ϕ − id.

Instead of the non-linear tensor ε, many authors employ its linearization,
Cauchy’s strain tensor, which leads to a linear ODE in the end, but is exact for
small deformations only. As in most applications larger deformations have to be
handled correctly, we do not adopt this simplification.

The variation of the inertia results in the force

δΠkin =
∫

Ω

δuT ρü dΩ (3)

with density ρ and acceleration ü of the body.
Finally, the external forces are defined as

δΠext = −
∫

Ω

δuT f dΩ −
∫

∂Ω

δuT s dΓ, (4)

where volumetric forces like gravity affect the whole domain Ω and surface forces
only act on its boundary δΩ.

3 Finite Elements

In order to solve (1), the equation is discretized with finite elements to form an
ordinary differential equation. We employ isoparametric tetrahedral elements,
where isoparametric means that the interpolation functions of an element are
also used to interpolate the geometry of the element. Thus, the finite elements
are retrieved by tetrahedralization of the mesh which is to be simulated.

3.1 Element Shape Functions

The shape τ of an element is given in terms of the nodal positions T together
with basis functions Φ̄, τ(ξ) = T T Φ̄(ξ).

Fig. 2 shows the numbering of a N -node tetrahedron, N = 4..10, that we
choose for the ease and efficiency of implementing quadratic tetrahedra. For
N < 10, intermediate nodes are just skipped, resulting in straight edges. With
N = 4 the linear tetrahedron is obtained, with N = 10 the fully quadratic one.
The curvilinear coordinates ξi, 0 ≤ ∑3

i=1 ξi ≤ 1, define the unit tetrahedron
T̄ according to the numbering1 in Fig. 2 with

T̄ =

⎡⎣0 1 0 0 1/2 0 0 1/2 1/2 0
0 0 1 0 0 1/2 0 1/2 0 1/2
0 0 0 1 0 0 1/2 0 1/2 1/2

⎤⎦T

.

1 With regard of efficient implementation, we write coordinates row-major, thus N
vectors vi give the matrix [vij ]N×3.
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Fig. 2. Numbering of the ten-node tetrahedron

To interpolate the nodes pi, i = 1..N, and to guarantee C0 continuity, the
N shape functions have to meet the requirement Φ̄j(T̄i) = δij . Additionally,∑

Φ̄ = 1 is required to achieve affine invariance. Altogether, using N × N shape
coefficients ᾱij , the quadratic shape functions can be written as

Φ̄j(ξ) =
N∑

k=1

ᾱjk ξak
1 ξbk

2 ξck
3 .

For N = 10, the exponents are [a b c] = 2T̄ . Note that the first column of ᾱ has
to be (1, 0, . . . , 0)T in order that the Φ̄ sum up to 1 for any ξ. It is equivalent to
state

T̄i = T̄ T Φ̄(T̄i) (5)

because of T̄0 = (0, 0, 0). Therefore, ᾱ can be computed as

ᾱ = [Xik]−1
i,k=1..N , X̄ki := T̄ ak

i1 T̄ bk
i2 T̄ ck

i3 .

Likewise, the mapping ϕ = T T Φ for an arbitrary tetrahedron T is determined by
Ti = T T Φ(Ti), if in (5) T̄ is replaced by T . Finally, in order to obtain symmetric
system matrices we formulate the variation δu according to the Galerkin method
with the same basis Φ,

δu = δUT Φ,

and the nodal displacements U = T − T 0. The volume integrals of the forces
from Sect. 2 then can be approximated by the assembled force matrices of the
individual elements. In the following sections we therefore address the integrals
of single elements T only.

3.2 Elastic Forces

Now being able to compute the deformation ϕ and the gradient ∇ϕ = T T ∇Φ,
the symmetric strain tensor ε is available. Furthermore, due to the symmetry of
σ we get

δε : σ = (∇ϕT ∇δu) : σ.
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Factoring out the variation, the elastic force matrix F is retrieved,

δε : σ = (∇ϕT δUT ∇Φ) : σ = δU : F ,

with F computed optimally as

F =

[
3∑

k=1

∇ϕjk

3∑
l=1

∇Φilσlk

]
i=1..N, j=1..3

.

If the shape functions Φ are linear, ∇ϕ and ε are constant for the whole
element, and therefore the volume integration of the strain energy is trivial. On
the one hand, this is a major computational advantage of 4-node tetrahedra, but
on the other hand, this causes locking effects and bad convergence.

For quadratic shape functions, ε also is quadratic, and the closed form of the
volume integral is not appropriate for an efficient implementation. Therefore, it
has to be evaluated using numerical integration. For the exact approximation of
the quadratic integrals on the tetrahedron, a four point Gauss cubature is needed.
We precompute ∇Φ at the integration points in the reference tetrahedron T 0

and get F as the sum of the four force matrices.
The relation of strain and stress is described by the material law C(ε) of the

body. An isotropic Hooke material depends on the two engineering constants E
(the Young or elasticity modulus) and ν (the Poisson or transverse contraction
ratio). It is more efficient to calculate the stress tensor σ = C(ε) using Lamé’s
constants λ and μ [13]:

σ = λ tr(ε) I + 2με with λ =
Eν

(1 + ν)(1 − 2ν)
and μ =

E

2(1 + ν)
.

Likewise, the linear damping σ̇ = C(ε̇) is calculated using ∇ϕ̇ = Ṫ T Φ and the
viscous counterparts of λ and μ.

Finally, the Jacobian ∇T F is needed to solve the discrete non-linear system
later. An efficient implementation is crucial to achieve high frame rates even
when Jacobian updates are required, e.g. in case of large deformations or if
dynamic algebraic constraints are applied. Exploiting

∂

∂Tmn
(∇ϕ)ki = δnk(∇Φ)mi,

the Jacobians of the strain and stress tensors get

2
∂εij

∂Tmn
= (∇Φ)mi(∇ϕ)nj + (∇ϕ)ni(∇Φ)mj

and
∂σij

∂Tmn
= 2δijλ

3∑
k=1

(∇Φ)mi(∇ϕ)ni + 2μ
∂εij

∂Tmn
,
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which both are symmetric. Hence, the Jacobian of the elastic forces is symmetric
and is computed together with (3.2),

∂Fij

∂Tmn
= δnj

3∑
k=1

(∇Φ)mk

3∑
l=1

∇Φilσlk +
3∑

k=1

∇ϕjk

3∑
l=1

∇Φil
∂σlk

∂Tmn
,

where the first term depends on i and m only. Again, the same calculation is
performed to obtain the Jacobian of the viscous forces Fv.

3.3 Inertia and External Forces

The discretization of (3) yields δΠkin � δUM Ü with the mass matrix M =∫
Ω ΦT ρ Φ dΩ. The integrand is quartic for quadratic Φ and thus a 15 node

cubature is needed to perform the integration numerically. However, we follow
[14] and integrate ΦT Φ at the nodes to obtain a positive definite matrix M̃ . Since
Φi(Tj) = δij , it is diagonal (”lumped”) and can be calculated efficiently on the
unit tetrahedron,

M̃ii = ρ(T̄i) det(∇ϕ̄(Ti)).

If Poisson’s ratio ν < 0.5, the material is compressible and ρ depends on the
deformation. We recompute M̃ if the Jacobian ∇T F is about to be recomputed
as this indicates that the deformation changed noticeably.

The discrete body and surface forces are obtained as

δUFb = δU
∫

Ω

ΦT f dΩ and δUFs = δU
∫

∂Ω

ΦT t dΓ,

where in our application the former is just the constant gravity and the latter
connects to the environment.

4 Time-Integration

Altogether, since δΠ = 0 has to be met for arbitrary variations δU , the dis-
cretization proposed in the previous sections results in the ODE

F(U) + Fv(U̇) + M Ü − Fb − Fs = 0, (6)

which is solved at every time-step ti. We employ the BDF methods (backward
differentiation formulas) up to third order for time-integration, discussed in [7],
to achieve a simulation which is unconditionally stable. Allowing time-step sizes
up to the display refresh period of about 40ms, the integrators are dedicated for
interactive and real-time simulation.

As the BDF methods are implicit, the non-linear equation (6) has to be solved
in each step by a Newton method. Observing the convergence of the Newton
method, the Jacobians ∇T F and ∇T Fv are updated dynamically. Due to the
comparably small number of elements used in interactive simulations, a direct
sparse solver is called for the linear part, which turns out to be much more
efficient than the commonly used cg method. Boundary conditions of place are
embedded directly in the linear system.



440 J. Mezger and W. Straßer

5 Results and Conclusions

We show two applications of quadratic elements: a bar bending under gravity
and the interactive deformation of a liver model. All tests were performed on a
standard PC with an Athlon 64 3500+ processor in 32-bit mode using double
precision floating point arithmetics.

Bar under gravity. We simulated the movement of a soft bar with various dis-
cretizations under gravity. This experiment shows that our new quadratic ele-
ments provide more realism than the linear ones and achieve higher frame rates
at the same time. The bar has 25cm × 10cm × 10cm edge length, weighs 0.5kg
and is fixed at one side. The elastic material parameters are E = 20kPa and
ν = 0.35, and for damping λv = 0.001λ and μv = 0.01μ were used. Released
from its horizontal starting position, the bar comes to rest after a few seconds.
Fig. 3 shows the simulation results of some discretization examples. It is obvious
that the bars with quadratic elements take very similar end states even with
very few tetrahedrons, while more than 17000 linear ones are needed to achieve
roughly the same result – this effect is known as ”shear-locking”. However, not
only does the linear simulation converge slowly with the number of elements, it
also shows wrong dynamic behavior depicted in Fig. 4. The curves denote the
vertical displacement of the lower right edge of the bar. As the shear forces can
not be reflected sufficiently by the linear elements, oscillations are caused.

In contrast, Fig. 5 demonstrates the fast convergence of the quadratic dis-
cretization. An almost optimal solution is already obtained with 156 elements.
A benchmark of the simulations is presented in Fig. 6. It shows for each step of
the simulation the ratio of computation time versus time-step size. The first two
time-steps are needed to setup the solver, afterwards both 156 quadratic and
779 linear tetrahedra give clear real-time performance. However, the 3087 linear

156 linear 779 linear 17893 linear

36 quadratic 156 quadratic 779 quadratic

Fig. 3. Pictures from the simulations captured after the objects came to rest. The
number of tetrahedrons and the element type are quoted.
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Fig. 4. Vertical oscillation of the bars with linear basis functions bending under grav-
ity. 2.5 seconds are simulated with 20ms time-step size. The quadratic bar with 779
elements is added for comparison.

Fig. 5. Vertical oscillation of the bars with quadratic basis functions bending under
gravity. The better convergence to the optimum is clearly visible.

tetrahedra, still being far away from achieving realistic bending, are two times
slower than real-time.

Verification using a gold standard. To check the correctness of our method, we
repeated the simulations with the commercial finite element package ABAQUS
using the same discretizations. Fig. 7 shows the deflections at the end state
calculated with ABAQUS compared to our simulations. Clearly, the results are
almost identical, and again the excellent convergence of quadratic versus linear
tetrahedra is revealed.
Simulation of virtual tissue. We simulated a human liver model (E = 2.5kPa
and ν = 0.46), depicted in Figures 1 and 8, that is touched interactively with a
small ball. To obtain a smooth real-time performance, the number of elements is
opted to produce an average CPU to simulation time ratio of about 0.2. This is
achieved with 856 linear or 96 quadratic tetrahedra. Thus, the quadratic shape
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Fig. 6. Ratio of CPU time vs. simulation time during the 2.5s bending simulation.
Values below one denote real-time.

Fig. 7. Comparison of our results with static solutions in ABAQUS using 36, 156, 779
and 1192 tetrahedra. Once more, the slow convergence of linear tetrahedra is evident.

Fig. 8. Large deformation of the liver model. The undeformed state is rendered as
wire-frame.
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functions are feasible for practical applications like surgery training where an
optimum realism has to be achieved. A drawback of using fewer elements is that
small geometric features, which cannot be reflected sufficiently by the quadratic
element surface, have to be modeled using a dedicated surface mesh.

Conclusions and future work. We introduced a first quadratic finite element
model with non-linear strain that is adequate for real-time applications and
which shows awesome physical benefits compared to existing methods. In the
future, more applications of non-linear shape functions will be exploited. More-
over, the quality of quadratic elements in coarse meshes will be improved.
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Abstract. Rebuilding three-dimensional objects represented by a set of points is 
a classical problem in computer graphics. Multiple applications like medical 
imaging or industrial techniques require finding shape from scattered data. 
Therefore, the reconstruction of a set of points that represents a shape has been 
widely studied, depending on data source and reconstruction’s objectives. This 
purpose of this paper is to provide an automatic reconstruction from an 
unorganized cloud describing an unknown shape in order to provide a solution 
that will allow to compute the object’s volume and to deform it with constant 
volume. The main idea in this paper consists in filling the object’s interior with 
an equipotential surface resulting of the fusion of potential field primitives also 
called metaballs or blobs. Nevertheless, contrary to most of usual rebuilding 
methods based on implicit primitives blending, we do not compute any medial 
axis to set the primary objects.  Indeed, a fast voxelization is used to find  a 
summary contour from the discrete shape and to determine interior areas. Then, 
the positioning of implicit primitives rely on a multilayer system. Finally, a 
controlled fusion of the isosurfaces guarantees the lack of any holes and a 
respectful contour of the original object, such that we obtain a complete shape 
filling. 

Keywords: Reconstruction, Cloud of dots, Implicit surfaces, Blobs, Voxeli-
zation. 

1   Introduction 

To extend the interest of volume computation of metaballs blending [1] and defor-
mation of them maintaining a constant volume, we focus on rebuilding a scene 
containing one or more objects which the description is given to us by a set of points, 
P = {P1, ..., Pn}, in order to provide a simple solution for computing the original 
object’s volume. The cloud of dots thus samples the surface of the object (if we 
consider that there is only one, although it may include several connected 
components). The points constitute a raw data source for the reconstruction, only 
coordinates are known; we do not have further information about the vertices, they 
are neither sorted nor provided with a triangulation. The only assumption, obviously, 
is that the object (or its related components) is closed, for we will fill it with implicit 
potential field objects. The underlying principle behind our method is to work as an 
analogy with the filling of a container by a fluid which finally adopts its shape. 
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Unfortunately, the problem remains that we do not have a continuous contour. 
Therefore, we should initially find a summary contour and so, an interior from the 
sampled shape and then place implicit primitives inside the object until reaching its 
surface. The fusion property of the these implicit objects, that we will call blobs 
thereafter by abuse language, is used then to lead to a total filling of the object’s 
volume. Obviously, this fusion must be controlled so that, on the one hand the filling 
does not include any holes, and on the other hand, the blobs do fit the object’s surface. 

2   Previous Works 

Literature related with computer graphics offers many solutions about reverse 
engineering problem because of the significant number of practical applications 
requiring to rebuild a shape whose data source comes from a set of points. Earliest 
common approaches for reconstruction consist in deforming a surface or a volume in 
order to fit the set of data points such as “snakes” introduced by Kasset al. [2]. 
Classical solutions based on Voronoï diagram in three dimensions were widely used 
to rebuild various topological models [3, 4, 5, 6]. The method of alpha-shapes by 
Edelsbrunner [7] also makes it possible to find the shape of an object described by 
whole of points but requires one preliminary Delaunay triangulation. Hoppe et al. 8] 
provide a solution having the advantage of applying to a raw cloud without any 
additional information by considering a tangential plan at each point and an implicit 
function of distance. Recently, Radial Basis Functions have been studied to 
reconstruct smooth, manifold surfaces from point-cloud data and to repair incomplete 
Meshes [9, 10, 11]. Nevertheless, all these methods provide solutions to retrieve only 
the shape of the object and don’t consider its volume. Shape reconstruction from a 
point cloud using implicit surfaces generated by a point-based skeleton was for the 
first time suggested by Muraki [12] then improved by Tsingos et al. [13]. 
Nevertheless, this method presents the disadvantage of a manual initialization of the 
algorithm, which Bittar [14] cures while plunging the point cloud into a binary 
numerical volume to extract the median axis from it allowing, thereafter, the object 
reconstruction using implicit surfaces. The computation of the medial axis of two-
dimensional or three-dimensional solids is known to be problematic due to its 
instability: small variations in the boundary of an object result in large variations of 
its Medial Axis. In our case, the search for the median axis is not interesting because 
we wish to deform the object, so we should completely recomputed the axis. 
Although being connected with this form of rebuilding, our approach differs in the 
sense that the passage from the cloud to binary numerical volume, is not obtained 
from the median axis, but from the research of the form’s interior in order to place our 
implicit primitives for the rebuilding. For that, it is necessary for us, as a preliminary, 
to define the discrete contour of the object. 

3   Voxelization as a Preliminary Step for Rebuilding 

Setting implicit primitives to fill the object’s volume is not particularly easy if we 
consider that its nature isn’t known and that our goal is to provide an automatic 
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method. Indeed, talking about interior of an object defined by a set of dots in a 
continuous three-dimensional space obviously does not have any direction. A solution 
to alleviate impossibility of distinguishing the interior of the cloud in continuous 
space is to choose to discretize three-dimensional space by carrying out a voxelization 
of the cloud’s bounding box. The set of points is therefore converted into binary 
numerical volume in order to obtain an rough continuous shape. 

3.1   Finding Contour with an Adequate Voxelization 

To obtain an effective voxelization of a unstructured point cloud, in other words to 
lead to a binary volume correctly describing the topology of the object without 
creating nor removing overall locally related components, it is advisable to determine 
an adequate length of voxels.  

Indeed, the choice of a significant voxel size will induce a connection of areas 
which should remain disjoined. Conversely, a too fine voxelization will cause holes 
and will prevent from obtaining a closed contour. In fact, using mathematical 
formalism, there must a homotopy between the shape and its voxelization. 

For attempting to find a correct voxelization, we use in [14] a qualitative cloud 
study due to Mary [15] in his thesis to adapt the voxels grid resolution to the 
characteristics of the set of points. Let drelated defines the minimal distance between 
two points of two different local related components, dcloud+ the longest distance 
between two closest points and dcloud- the smallest distance between two points. 

The cloud we wish to rebuild must present characteristics of sufficient uniformity 
and density to obtain a respectful contour of the original form. In particular, dcloud+

distance must obviously be lower than drelated to preserve related components, while 
remaining higher than dcloud- in to obtain a closed surface. In other words, a “good 
cloud” satisfies two following inequalities for  > 0: 

cloud cloudd d ε+ −− ≤

cloud relatedd d ε+ < −
(1)

Empirical tests seem proving that a sampling can be considered “good” when : 

clouddε −= (2)

Consequently, the choice for lv length must be as follows : 

 2 cloud v cloudd l d+ −< < (3)

3.2   Using Voxelization to Identify Interior and Layers 

Once a correct voxelization is defined, a contour is easily found as shown in Fig.1 
(green voxels). From there, outer voxels are obtained by propagation ; edge of voxels’ 
box being initialized like outsides with the object (by grid construction), the technique 
consists in carrying out a sweeping of the voxels on the basis of a corner of the grid 
by marking the voxels external according to one 2-neighbourhood of voxels already 
treated. Voxels remaining are inner voxels. 
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Fig. 1. Contour and layers found from the voxelization of a sphere defined by 424 points

Now, voxels on the inside can be separated into two layers. The intermediate
voxels are those which remain close to the surface, the deep voxels are those located 
at the heart of the object to be rebuilt. To determine the intermediate voxels, we 
consider the interior voxels having a surface voxel in their 26-neighbourhood. 

Keeping in mind that the voxelization is only one preliminary stage aiming at 
positioning implicit surfaces inside the object, one will seek to gather the deep voxels 
per packages in order to obtain voxels of higher size with the goal to minimize the 
number of blobs intended to replace them for the rebuilding. Our method’s objective 
is to end at an adaptive implicit reconstruction. To obtain packages of voxels, one will 
carry out coding in octree of inner voxels. 

4   Blobs Positioning 

Since we seek to fully rebuild the object defined by the point cloud, namely the 
volume and the surface, the principle of our reconstruction by implicit surfaces breaks 
up into two parts. The first consists in replacing inner voxels by implicit primitives of 
significant size, the second to positioning smaller implicit objects close to the surface. 
At the end, we blend these various elements in order to cover total volume.  

Therefore, we consider blobs Bi, based on Muraki’s potential field function: 

22

1     [0, ]

 0 

i
i

i

r
for r R

F R

otherwise

− ∈= (4)
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They are implicit primitives with a point-based skeleton whose potential field is a 
function of the distance from the center. They have moreover a limited influence, Ri,
representing the ray of blob’s maximum influence. 

By considering that the fusion of the blobs is created by the sum of their potential 
field functions, implicit surface intended to rebuild the object is defined by : 

1

( ) ( )
n

i i
i

F P F Pα
=

= (5)

This surface must compulsorily pass by all the points of the cloud. Consequently, 
for a given threshold T, implicit surface must satisfy : 

1
1

 { ,..., },  ( ) ( )
n

j N j i i j
i

P P P F P F P Tα
=

∀ ∈ = = (6)

At first sight, it seems difficult to obtain a whole of blobs checking this condition. 
Nevertheless, the fact that each blob have a limited influence implies that for a given 
point Pj, the majority of the Fi will be null in this point. This makes it possible to 
place blobs close to a zone without calling into question the whole of the rebuilding. 
One can thus consider a local rebuilding of the cloud independently of the remainder 
of the blobs that we must place. 

The first step of the blobs positioning relates to those inside the cloud but not near 
to the surface. We choose to replace each deep voxel by a blob sharing the same 
center and provided with an influence ray equal to half of the size of the considered 
voxel (computed starting from packaging voxel) added with the size of a basic voxel. 

With regard to the intermediate layer of the blobs, one is satisfied to position them 
in the center of the corresponding voxels and to affect a ray Ri equals to lv / 2. They 
have a plug role between the deep layer and the blobs placed at surface. 

Fig. 2. Sphere reconstruction with 496 blobs shown with their effective radius (not blended)

To finalize the rebuilding we must blobs close to the surface of the object by 
ensuring that each point is touched by at least an implicit ball. For that, it is necessary 
to traverse the whole of the cloud and to create for each point a blob remaining inside 
the object whose surface touches the point. An intuitive approach of the problem 
consists, for a given point P, to determine the nearest interior voxel, with center B, 
then to place the ball in the center of the segment [PB] and to affect a ray with |PB|/2 
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length. Nevertheless, one realizes that for certain cases ("fold" in the surface 
corresponding to a local extremum) that the blob created will contain in its interior 
another point close to that which it is associated, it is thus necessary to re-examine its 
site. Let us suppose that the P' point is contained in the blob, the new center for the 
blob must check |C'P'|=|C'P| and be the segment [PB] to remain inside the object.The 
process of checking the inclusion of points in the blob must be continued until 
ensuring to obtain a blob not containing any point of the cloud.  

Thus created, these three different layers enable us to fill the object which we wish 
to rebuild. The following step is the fusion of these implicit primitives in order to 
guarantee a full volume as well as a regular surface. 

5   Guaranteed and Controlled Fusion 

At this point, the course of our method of rebuilding is incomplete. Indeed, we are 
satisfied to place the blobs in each considered layer then we blend them without real 
theoretical justification. However, this fusion deserves a thorough study. 

The fusion of the implicit primitives to obtain final volume is subjected to two 
constraints. First is to secure that the filling is carried out in an exhaustive way, i.e. 
fusion must be total and not leave voids between the blobs. The second condition is 
that the primitives have to remains on the surface of the cloud. 

5.1   Finding Critical Points to Locate Holes in the Reconstruction 

To determine empty spaces resulting of the fusion of implicit primitives consists in 
fact to study the critical points of the density functions associated with the primitives. 
That returns to a research of the zeros of the final implicit function F. It is obviously 
impossible to determine formal solutions, also several analytical methods were 
developed to determine them. Thus Hart [16] proposes a technique based on the 
theory of Morse to locally find the critical points which he continues with Stander 
[17] by using interval Newton's Method. 

A critical point of a real function F of one or more variables is a point X whose 
gradient vanishes. The function's value F(X) at a critical point X is called a critical 
value. Given li i=1, ...,3 the eigenvalues of the function’s Hessian, which is the matrix 
of second partial derivatives, each critical point X can be classified according to the 
signs of the three eigenvalues. 

If any of the eigenvalues is zero, then the critical point is called degenerate, 
otherwise it is non-degenerate and may be a maximum, a minimum or some kind of 
saddle point. In three dimensions, saddle points come in two varieties. 

We name index of the critical point the number of negative eigenvalues of H(F). It 
is possible to classify the critical points according to the sign of the three eigenvalues, 
therefore according to the index. 

A maximum point corresponds to a possible center of component, the three eigen-
values are negative. A "2-saddle" point corresponds to a point of possible connection 
between two components. A "1-saddle" point corresponds to a center of possible 
torus. A minimum point corresponds to a possible center of an air pocket, the three 
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eigenvalues are positive. It results from this that one can punctually determine the 
topology of F.

So, in our case, we seek the "1-saddle" points and minima points witnesses to voids 
in our rebuilding. Thereafter, empty spaces must be filled with blobs.  

The search for critical points and filling of voids has been implemented and the 
algorithm works efficiently with a few blobs (less than 50). However, the cost in 
memory and computing time grows dramatically using the interval Newton’s method. 
Our program has been able to find a hole in the reconstruction of the sphere (we 
intentionally do not include deep blobs) and correctly filled it, but fails to find 
solution with more than 500 blobs (it crashes). 

5.2   Controlled Fusion 

Given a threshold T for the global implicit surface, we consider each point of the 
cloud. One considers that only its related blob includes it in its influence radius. So, at 
a point Pi, we have: 

T
R

r
PFPF

i
iii =−==

22

1)()( (7)

Knowing the center of the blob and the point coordinates (therefore r), the influence 
radius can be evaluated: 

T

r
Ri

−
=

1
(8)

This choice for Ri guarantees that blob Bi is on the surface at point Pi.
However, the assumption that only one blob includes the point in its influence 

radius is true for a very small (near to 0) value T. Unfortunately, this condition create 
an “orange skin” effect on the rebuilt surface. 

Fig. 3. Sphere reconstruction with 496 blended blobs 
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6   Some Results 

Fig. 4. Ball joint from Cyberware rebuilt with 36211 blobs. Third image is a Pov-Ray 
rendering.

Fig. 5. Pelvis reconstruction encounters usual holes problem due to a large preliminary voxeli-
zation

7   Conclusion 

We have presented an original method for the reconstruction of an object defined by 
an unstructured point cloud using the implicit primitives with potential function and 
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their possibility of blending. It constitutes an alternative to the methods based on 
preliminary research of a skeleton or a median axis which present the disadvantage of 
their instability. The approach of rebuilding presented in this article has the originality 
to differ from those existing by its "inside" approach of the object.  Moreover, it 
provides a solution to foresee the possibility of computing the volume of the rebuilt 
object and its deformation with constant volume, which the other techniques of 
rebuilding do not allow. Nevertheless, improvements have to be considered 
concerning holes’ detection using Morse theory with largest models. 
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Abstract. Modeling and describing temporal structure in multimedia
signals, which are captured simultaneously by multiple sensors, is im-
portant for realizing human machine interaction and motion generation.
This paper proposes a method for modeling temporal structure in mul-
timedia signals based on temporal intervals of primitive signal patterns.
Using temporal difference between beginning points and the difference
between ending points of the intervals, we can explicitly express timing
structure; that is, synchronization and mutual dependency among media
signals. We applied the model to video signal generation from an audio
signal to verify the effectiveness.

1 Introduction

Measuring dynamic behavior such as speech, musical performances, and sport
actions with multiple sensors, we obtain media signals across different modali-
ties. We often exploit the temporal structure of co-occurrence, synchronization,
and temporal difference among temporal patterns in these signals. For example,
it is well-known fact that the simultaneity between auditory and visual pat-
terns influences human perception (e.g., the McGurk effect [9]). On the other
hand, modeling the cross-modal structure is important to realize the multimedia
systems of human computer interaction; for example, audio-visual speech recog-
nition [11] and media signal generation from another related signal (e.g., motion
from audio signal)[2]. Motion modeling also exploits this kind of temporal struc-
ture, because motion timing among different parts plays an important role in
natural motion generation.

State based co-occurrence models, such as coupled hidden Markov models
(HMMs) [3], are strong methods for media integration [11]. These models de-
scribe a relation between adjacent or co-occurred states that exist in the different
media signals (Fig. 1(a)). Although this frame-wise representation enables us to
model short term relations or interaction among multiple processes, it is ill-suited
to systems in which the features of synchronization and temporal difference be-
tween media signal patterns become significant. For example, an opening lip
motion is strongly synchronized with an explosive sound /p/; on the other hand,
the lip motion is loosely synchronized with a vowel sound /e/, and the motion
always precedes the sound. We can see such an organized temporal difference

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 453–463, 2006.
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(a) Frame-wise temporal structure representation (b) Timing based temporal structure representation
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Fig. 1. Temporal structure representation in multimedia signals

in music performances also; performers often make preceding motion before the
actual sound.

In this paper, we propose a novel model that directly represents this impor-
tant aspect of temporal relations, what we refer to as timing structure, such
as synchronization and mutual dependency with organized temporal difference
among multiple media signals (Fig. 1(b)).

First, we assume that each media signal is described by a finite set of modes :
primitive temporal patterns. Segment models [13], which are the generalization
of segmental HMMs [7], become popular models in the speech recognition com-
munity to describe audio signals based on this assumption. A number of similar
models are widely proposed in different communities, for example, hybrid sys-
tems [4,6] in the computer vision, and the motion texture [8] in the graphics.
These models describe complex temporal variations not only by a physical-time
based state transition but also by an event-based state transition that is free
from temporal metric space (i.e., it models just the order of events). We refer
to these models as interval models, because every model provides an interval
representation of media signals, where each interval is a temporal region labeled
by one of the modes.

Then, we introduce a timing structure model, which is a stochastic model
for describing temporal structure among intervals in different media signals.
Because the model explicitly represents temporal difference between beginning
and ending points of intervals, it provides a framework of integrating multiple
interval models across modalities. Consequently, we can exploit the model to
human machine interaction systems in which media synchronization plays an
important role. In the experiments, we verify the effectiveness of the method by
applying it to media signal conversion that generate a media signal from another
media signal.

2 Modeling Timing Structure in Multimedia Signals

2.1 Temporal Interval Representation of Media Signals

To define timing structure, we assume that each media signal is represented by
a single interval model, and the parameters of the interval model are estimated
in advance (see [13,8], for example). Then, each media signal is described by
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an interval sequence. In the following paragraphs, we introduce some terms and
notations for the structure and the model definition.

Media signals: Multimedia signals are obtained by measuring dynamic event
with Ns sensors simultaneously. Let Sc be a single media signal. Then, mul-
timedia signals become S = {S1, · · · , SNs}. We assume that Sc is a discrete
signal that is sampled by rate ΔTc.

Modes and Mode sets: Mode M
(c)
i is the property of temporal variation oc-

curred in signal Sc (e.g., “opening mouth” and “closing mouth” in a fa-
cial video signal). We define a mode set of Sc as a finite set: M(c) =
{M

(c)
1 , · · · , M

(c)
Nc

}. Each mode is modeled by a sub model of the interval
models. For example, hybrid systems, which we use in our experiments, use
linear dynamical systems for the mode models.

Intervals: Interval I
(c)
k is a temporal region that a single mode represents. Index

k denotes a temporal order that the interval appeared in signal Sc. Interval
I
(c)
k has properties of beginning and ending time b

(c)
k , e

(c)
k ∈ N (the natural

number set), and mode label m
(c)
k ∈ M(c). Note that, we simply refer to

the indices of sampled order as “time”. We assume signal Sc is partitioned
into interval sequence I(c) = {I

(c)
1 , ..., I

(c)
Kc

} by the interval model, where the

intervals have no overlaps or gaps (i.e., b
(c)
k+1 = e

(c)
k + 1 and m

(c)
k �= m

(c)
k+1).

Interval representation of media signals: Interval representation of multi-
media signals is a set of interval sequences: {I(1), ..., I(Ns)}.

2.2 Definition of Timing Structure

In this paper, we concentrate on modeling timing structure between two media
signals S and S′. (We use the mark “ ’ ” to discriminate between the two signals.)

Let us use notation I(i) for an interval Ik that has mode Mi ∈ M in signal S
(i.e.,mk = Mi), and let b(i), e(i) be its beginning and ending points, respectively.
(We omit index k, which denotes the order of the interval.) Similarly, let I ′(p)
be an interval that has mode M ′

p ∈ M′ in the range [b′(p), e
′
(p)] of signal S′.

Then, the temporal relation of two modes becomes the quaternary relation of
the four temporal points R(b(i), e(i), b

′
(p), e

′
(p)). If signal S and S′ has different

sampling rate, we have to consider the relation of continuous time such as b(i)ΔT
on behalf of b(i). In this subsection, we just use b(i) ∈ R(the real number set) for
both continuous time and the indices of discrete time to simplify the notation.

Let us define timing structure as the relation R that can be determined by
four binary relations Rbb(b(i), b

′
(p)), Rbe(b(i), e

′
(p)), Reb(e(i), b

′
(p)), Ree(e(i), e

′
(p)).

In the following, we specify the four binary relations that we focus on this paper.
Considering temporal ordering relations R<, R=, R>, which are often used in

temporal logic [1], for these binary relations, we get 34 relations for R. Because
of b(i) ≤ e(i) and b′(p) ≤ e′(p), it can be reduced to 13 relations as shown in
Fig. 2(a). However, temporal metric information is omitted in these 13 relations,
which often becomes significant for modeling human behavior with temporal
structure (e.g., temporal difference between sound and motion).
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Fig. 2. Temporal relations of two intervals. (a) The temporal order of beginning and

ending time provides 13 relations of the two intervals. (b) The horizontal and verti-

cal axes denote the difference between beginning points b(i) − b′
(p) and the difference

between ending points e(i) − e′
(p), respectively.

We therefore introduce metric relations for Rbb and Ree by assuming that
Rbe and Reb is R≤ and R≥, respectively (i.e., the two modes have overlaps).
This assumption is natural when the influence of one mode to the other modes
with long temporal distance can be ignored. For the metric of Rbb and Ree, we
use temporal difference b(i) − b′(p) and e(i) − e′(p), respectively; the relation is
represented by a point (Db, De) ∈ R

2 (see also Fig. 2(b)). In the next subsec-
tion, we model this type of temporal metric relation by using two-dimensional
distributions.

2.3 Modeling Timing Structure

Temporal difference distribution of overlapped mode pairs: To model
the metric relations that described in the previous subsection, we introduce the
following distribution for every mode pair (Mi, M

′
p) ∈ M × M′:

P (bk −b′k′ = Db, ek −e′k′ = De|mk = Mi, m
′
k′ = M ′

p, [bk, ek]∩ [b′k′ , e′k′ ] �= φ). (1)

We refer to this distribution as a temporal difference distribution. Because the
distribution explicitly represent the frequency of the metric relation between
two modes (i.e., temporal difference between beginning points and the difference
between ending points), it provides significant temporal structure for two media
signals. For example, if the peak of distribution comes to the origin, the two
modes tend to be synchronized in their beginning and ending points; on the
other hand, if bk − bk′ has large variance, the two modes loosely synchronized in
their beginning.

As we described in Subsection 2.2, the domain of the distribution is R
2. To

estimate the distribution from a finite number of samples (i.e., overlapped mode
pairs), we fit a density function such as Gaussian or its mixture models to the
samples when we use the model in the real applications.

Co-occurrence distribution of mode pairs: As we see in Eq. (1), the tem-
poral difference distribution is a probability distribution under the condition of
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the given mode pair. To represent frequency that each mode pair appears in the
overlapped interval pairs, we introduce the following distribution:

P (mk = Mi, mk′ = M ′
p | [bk, ek] ∩ [b′k′ , e′k′ ] �= φ). (2)

We refer to this distribution as co-occurrence distribution of mode pairs. The
distribution can be easily estimated by calculating a mode pair histogram from
every overlapped interval pairs.

Mode transition probability: Using Eq. (1) and (2), we can represent timing
structure that is defined in Subsection 2.2. Although timing structure models
temporal metric relations between media signals, temporal relation in each media
signal is also important. Therefore, similar to previously introduced interval
models, we use the following transition probability of adjacent modes in each
signal:

P (mk = Mj|mk−1 = Mi) (Mi, Mj ∈ M). (3)

3 Media Signal Conversion Based on Timing Structure

Once we estimate the timing structure model that introduced in Section 2 from
simultaneously captured multimedia signals, we can exploit the model for gen-
erating a media signal from another related signal. We refer to the application
as media signal conversion, and introduce the algorithm in this section.

The overall flow of media signal conversion from signal S′ to S is as follows:
(1) a reference (input) media signal S′ is partitioned into an interval sequence
I ′ = {I ′1, ..., I ′K′}, (2) a media interval sequence I = {I1, ..., IK} is generated
from a reference interval sequence I′, (3) a media signal S is generated from I.
(K and K ′ is the number of intervals in I and I ′, and K �= K ′ in general.)

Since the methods of (1) and (3) have been already introduced in some liter-
atures of interval models (see [8,6], for example), we focus on (2), and propose
a novel method that generates a media interval sequence from another related
media interval sequence based on the timing structure model. In the following
subsections, we assume that the two media signals S, S′ have the same sampling
rate to simplify the algorithm.

3.1 Formulation of Media Signal Conversion Problem

Let Φ be the timing structure model that is estimated in advance. Then, the
problem of generating an interval sequence I from a reference interval sequence
I ′ can be formulated by the following optimization:

Î = arg max
I

P (I|I′, Φ) (4)

In the equation above, we have to determine the number of intervals K and
triples (bk, ek, mk) for all the intervals Ik (k = 1, ..., K), where bk, ek ∈ [1, T ] and
mk ∈ M. T is the length of signal S′, and the mode set M is estimated simul-
taneously with the signal segmentation. If we search for all the possible interval
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sequences {I}, the calculation order increases exponentially in the increase of
T . We therefore use a dynamic programming method, which is similar to the
Viterbi algorithm in HMMs, to solve Eq. (4) (see Subsection 3.2).

We currently do not consider online media signal conversion, because it re-
quires trace back mechanism. If online processing is necessary, one of the simplest
method is dividing input stream comparatively longer range than the sampling
rate and apply the following method repeatedly.

3.2 Interval Sequence Conversion Via Dynamic Programming

To simplify the notation, we omit the model parameter variable Φ in the following
equations. Let us use notation ft = 1 that denotes an interval “finishes” at time t,
which follows Murphy’s notation that is used in a research note about segment
models [10]. Then, P (mt = Mj , ft = 1|I′), which is the probability when an
interval finishes at time t and the mode of time t becomes Mj in the condition of
the given interval sequence I ′, can be calculated the following recursive equation:

P (mt = Mj , ft = 1|I′)

=
∑

τ

∑
p ( �=q)

{
P (mt = Mj , ft = 1, lt = τ |mt−τ = Mi, ft−τ = 1, I ′)

×P (mt−τ = Mi, ft−τ = 1|I′)

}
,

(5)

lt is a duration length of an interval (i.e., it continues lt at time t) and mt is a
mode label at time t. The lattice in Fig. 3 depicts the path of the above recursive
calculation. Each pair of arrows from each circle denotes whether the interval
“continues” or “finishes”, and every bottom circle sums up all the finishing
interval probabilities.

The following dynamic programming algorithm is deduced directly from the
recursive equation (5):

Et(j) = max
τ

max
i ( �=j)

P (mt = Mj , ft = 1, lt = τ |mt−τ = Mi, ft−τ = 1, I ′)Et−τ (i),

where Et(j) � max
mt−1

1

P (mt−1
1 , mt = Mj , ft = 1|I′). (6)

Et(j) denotes the maximum probability when the interval of mode Mj finishes
at time t, and is optimized for the mode sequence from time 1 to t−1 under the
condition of given I′. The probability with underline denotes that interval Ik

with a triple (bk = t− τ +1, ek = t, mk = Mj) occurs just after the interval Ik−1
that has mode mk−1 = Mi and ends at ek−1 = t−τ . We refer to this probability
as interval transition probability.

We recursively calculate the maximum probability for every mode that finishes
at time t(t = 1, ..., T ) using Eq. (6). After the recursive calculation, we find the
mode index j∗ = arg maxj ET (j). Then, we can get the duration length of the
interval that finishes at time T with mode label Mj∗, if we preserve τ that gives
the maximum value at each recursion of Eq. (6). Repeating this trace back, we
finally obtain the optimized interval sequence and the number of intervals.
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from the trained timing structure model

The remaining problem for the algorithm is the method of calculating the
interval transition probability. As we see in the next subsection, this probability
can be estimated from the trained timing structure model.

3.3 Calculation of Interval Transition Probability

As we described in previous subsection, the interval transition probability ap-
peared Eq. (6) is the transition from interval Ik−1 to Ik. To simplify the notation,
let us replace t− τ +1 with Bk. Let emin = Bk and emax = min(T, Bk + lmax −1)
be the minimum and maximum values of ek, where lmax is the maximum length
of the intervals. Let I ′k′ , ..., I ′k′+R ∈ I′ be reference intervals that are possi-
ble to overlap with Ik. Assuming that the reference intervals are independent
of each other (this assumption empirically works well), the interval transition
probability can be calculated by the following equation:

P (mt = Mj , ft = 1, lt = τ |mt−τ = Mi, ft−τ = 1, I ′)
= P (mk = Mj, ek, ek ∈ [emin, emax]|mk−1 = Mi, bk = Bk, I ′k′ , ..., I ′k′+R)
=
∏R

r=0 {Rect(ek, ek ∈ [emin, b
′
k′+r − 1])

+κrP (mk = Mj, ek, ek ∈ [b′k′+r, emax]|mk−1 = Mi, bk = Bk, I ′k′+r)} ,
(7)

where Rect(e, e ∈ [a, b]) = 1 in the range [a, b]; else 0. Since the domain of ek is
[emin, emax], Rect is out of range when r = 0, and b′k′ = emin. κ is a normalizing
factor: κr = 1 (r = 0) and

κr = P (mk = Mj , ek, ek ∈ [b′k′+r, emax]|bk = Bk, mk−1 = Mi)−1 (r = 1, ..., R).

In the experiments, we assume κr is uniform for (mk, ek); thus, κr = N(emax −
emin + 1) (N is the number of modes).

Using some assumption that we will describe later, the probability in Eq. (7)
is decomposed as follows:
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P (mk = Mj , ek, ek ∈ [b′k′+r, emax] | mk−1 = Mi, bk = Bk, I ′k′+r)
=P (ek | ek ∈ [b′k′+r, emax], mk = Mj , bk = Bk, I ′k′+r)

× P (mk = Mj|ek ∈ [b′k′+r, emax], mk−1 = Mi, bk = Bk, I ′k′+r)
× P (ek ∈ [b′k′+r, emax] | mk−1 = Mi, bk = Bk)

The first term is the probability of ek under the condition that Ik overlaps with
I ′k′+r. We assume that it conditionally independent of mk−1. This probability can
be calculated from Eq. (1). Here, we omit the details of the deduction, and just
make an intuitive explanation using Fig. 4. First, an overlapped mode pair in Ik

and I ′k′+r provides a relative distribution of (bk −b′k′+r, ek −e′k′+r). Since I ′k′+r is
given, the relative distribution is mapped to the absolute time domain (the upper
triangle region). Normalizing this distribution of (bk, ek) for ek ∈ [b′k′+r, emax], we
obtain the probability of the first term. The second term can be calculated using
Eq. (2) and (3). For the third term, we assume that the probability of ek ≥ b′k′+r

is independent of I ′k′+r. Then, this term can be calculated by modeling temporal
duration length lt. In the experiments, we assumed uniform distribution of ek

and used (emax − b′k′+r)/(emax − emin + 1).
The calculation cost strongly depends on the maximum interval length lmax.

If we successfully estimate the modes, lmax becomes comparatively small (i.e.,
balanced among modes); thus, the cost will be reasonable.

4 Experiments

We applied the media conversion method described in Section 3 to the applica-
tion that generates image sequences from an audio signal.

Feature extraction: First, we captured continuous utterance of five vowels
/a/,/i/,/u/,/e/,/o/ (in this order) using a pair of camera and microphone. This
utterance was repeated nine times (18 sec.). The resolution of the video data was
720×480 and the frame rate was 60fps. The sampling rate of the audio signal
was 48kHz (downsampled to 16kHz in the analysis). Then, we applied short-term
Fourier transform to the audio data with the window step of 1/60msec; thus, the
frame rate corresponds to the video data. Using filter bank analysis, we obtained
1134 frames of audio feature vectors (dimensionality was 25). For the video fea-
ture, we extracted lip region exploiting the Active Appearance Model [5]. Then,
we downsampled the lip region to 32×32 pixels and applied principal component
analysis (PCA) to the extracted lip image sequence. Finally, we obtained 1134
frames of video feature vectors (dimensionality was 27).

Segmentation and mode estimation of each media signal: Considering
the extracted audio and visual feature vector sequences as signal S′ and S, we
estimated the number of modes, parameters of each mode, and the temporal
partitioning of each signal. We used linear dynamical systems for the models of
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Fig. 5. Scattering plots of temporal difference between overlapped audio and visual

modes. Visual mode #1, #5, and #7 corresponds to lip motion /o/ → /a/, /e/ → /o/,

and /a/ → /i/, respectively.

modes. To estimate the parameters, we exploited hierarchical clustering of the
dynamical systems based on eigenvalue constraints [6]. The estimated number of
modes was 13 and 8 for audio and visual modes, respectively. The segmentation
results are shown in Fig. 6 (the first and second rows). Because of the noise,
some vowel sounds were divided into several audio modes.

Training of the timing structure model between audio and video: Using
the two interval sequences obtained by the segmentation, we estimated distri-
butions of Eq. (1), (2), and (3). Figure 5 is the scattered plots of the samples
that are temporal difference between beginning points and ending points of over-
lapped modes. Each chart shows samples of one visual mode to typical (two or
three) audio modes. We see that the beginning motion from /a/ to /i/ synchro-
nized with the actual sound (right chart) compared to the motion from /o/ to
/a/ (left) and from /e/ to /o/ (middle). Applying Gaussian mixture models to
these distributions, we estimated the temporal difference distributions.

Lip image sequence generation from an audio signal: Using the trained
timing structure model, we applied the method in Section 3 to the audio signal.
To verify the ability of the timing structure model, we input the audio interval
sequence that we used in the parameter estimation. First, we generated a visual
interval sequence from the input audio interval sequence. Figure 6 (the third
row) shows the generated visual interval sequence. We see that the sequence is
almost the same as the training data shown in the second row.

Then, we generated visual feature vector sequences using the parameters of
modes (linear dynamical systems) estimated in the segmentation process. Fi-
nally, we obtained an image sequence by calculating linear combination of prin-
cipal axes (eigenvectors of PCA). The result of frame 140 to 250 was shown in
the fifth row in Fig. 6. The lip motion in the sequence almost corresponds to the
original motion (in the sixth row), and we also see the visual motion precedes
the actual sound by comparing to the wave data (in the bottom row).
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Fig. 6. Generated visual interval sequence and an image sequence from the audio signal

5 Conclusion

We present a timing structure model that explicitly represents the temporal met-
ric relations between multimedia signals. The experiments show that the model
can be applied to generate lip motion from speech signal across the modalities.
We also applied the method to generate the silhouette motion of piano perfor-
mance from audio signal. Although the current results is in the stage of the
verification of the model, its basic ability for representing temporal synchro-
nization is expected to be useful for wide variety of human machine interaction
systems including speaker tracking and audio-visual speech recognition. More-
over, the model provide general framework to integrate variety of signals such
as motion in each part of facial deformation [12]. Our future work is to extend
the current framework to realize interaction systems that share a sense of time
with human.
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Abstract. We propose motion manifold learning and motion primitive segmen-
tation framework for human motion synthesis from motion-captured data. High
dimensional motion capture date are represented using a low dimensional repre-
sentation by topology preserving network, which maps similar motion instances
to the neighborhood points on the low dimensional motion manifold. Nonlin-
ear manifold learning between a low dimensional manifold representation and
high dimensional motion data provides a generative model to synthesize new
motion sequence by controlling trajectory on the low dimensional motion mani-
fold. We segment motion primitives by analyzing low dimensional representation
of body poses through motion from motion captured data. Clustering techniques
like k-means algorithms are used to find motion primitives after dimensionality
reduction. Motion dynamics in training sequences can be described by transition
characteristics of motion primitives. The transition matrix represents the tempo-
ral dynamics of the motion with Markovian assumption. We can generate new
motion sequences by perturbing the temporal dynamics.

1 Introductions

In this paper, we present a framework to synthesize human motion by combining mo-
tion primitives. Biological study shows that complicated human motions are controlled
by linear combination of computational motion primitives called force fields [10]. We
learn a generative model with a low dimensional motion manifold representation simi-
lar to force fields of motion primitives. To model smooth variations in human motions
according to force fields, we learn nonlinear mapping between motion manifold repre-
sentation and high dimensional motion data. We also model continuous human motion
dynamics by sequences of primitive motions.

A low dimensional manifold representation of high dimensional human motion data
provides a compact representation for analysis of human motion sequences. It also pro-
vides means to control human motion in the low dimensional space after learning a
mapping between the low dimensional manifold points and high dimensional motion
capture data. We use self organizing maps (SOMs) as a topology preserving network.
Using SOMs, we can represent high dimensional human motion data into low dimen-
sional Euclidean space preserving neighborhood relationship. By learning nonlinear
mappings between low dimensional manifold points and high dimensional motion cap-
ture data, we can generate new motion sequences according to trajectories on the low
dimensional motion manifold.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 464–473, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We segment a given sequence of motion into sub-motion primitive by utilizing low
dimensional representation of human motion sequence and clustering in the low di-
mensional space. There are several works related to macro-level motion segmentation,
where the motion is segmented into higher level meaningful categories like walk, run,
jump and so on. However, we need to find micro-level motion patterns in order to de-
scribe simple motion by the combination of the sub-motions. It is not obvious how
to define the sub-motion. Recently, huge motion capture data are available in public.
Therefore, we find sub-motion primitives by analyzing large motion capture data set.
Dimensionality reduction techniques are applied followed by applying clustering to find
sub-motion primitive in order to represent intrinsic characteristics of motion efficiently.

To model temporal dynamics of a given motion sequence and to be able to generate
new motion sequences that fit to the original motion dynamics, we model motion dy-
namics by the transition characteristics of sub-motion primitive. Motion dynamics can
be captured using transition probabilities from one primitive motion to another primitive
transition after segmenting whole sequence of motion into sub-motion primitives. With
Markovian assumption, we model the motion dynamics characteristics in a transition
matrix of motion primitives.

2 Related Work

Machine-learning techniques are used in increasing number of papers in computer
graphics, especially in data-driven motion synthesis. A stylistic hidden Markov model
(SHMM), which is an HMM whose parameters are functionally controlled by a style
parameter, was used for stylistic motion synthesis [4]. Scaled Gaussian Process Latent
Variable Model (SGPLVM) was used to solve inverse kinematics system based on a
learned model [8].

There are several different approaches to segment continuous motion sequences.
One of the well-known approaches in computer vision is using hidden Markov model
(HMM) [5]. Statistical approaches like Principal Component Analysis (PCA), Proba-
bilistic PCA and Gaussian mixture model (GMM), are used to segment motion capture
data into distinct behavior segment [1]. Recently there are approaches to use sub-motion
sequences for segmentation. Bettinger and Cootes [2] modeled facial motion by seg-
menting sub-trajectories, grouping similar sub-trajectories and learning temporal rela-
tions between groups in order to model facial behavior. Temporal relationship between
groups was modeled by variable length Markov model [7]. New sequence can be gener-
ated by transition of group from the learned model and sampling principal component
in subgroup to find new shape of motion. For the interpolation of two sub-motion, linear
model is used to avoid perceptible jumps in the generated video. Clustering techniques
are also used to find key-frame in motion analysis [3].

In this paper, we employed also clustering technique similar to [3] to discover motion
primitive. However, we use low dimensional motion manifold for the representation
of dynamic human motion in low dimensional space, which allows low dimensional
representation of high dimensional data. In addition, we learn a nonlinear generative
model to synthesize details of the original motions in spite of the low dimensional
representation.
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3 Learning Low Dimensional Motion Manifold

We represent high dimensional human motion using a low dimensional embedded man-
ifold representation. Then, We learn nonlinear mapping between the low dimensional
manifold representation and the original high dimensional motion. The low dimensional
manifold representation is motivated by force fields in the biological study of human
motion [10]. The motion primitives that we are interested in are relevant to the intrinsic
body configuration and irrelevant to the position and orientation of the body. In the pre-
processing, we normalize body location and orientation. Now, we can represent body
configuration by 3D locations of body joint instead of joint angles. This allows coor-
dinate invariant similarity measure for body pose [9], which may be close to human
perception. If we use joint angle, we need to count hierarchy of joint angle in compar-
ison as the small difference of joint angle in higher level can cause large difference of
joint location than the same amount of difference in lower level joint angle. Two mo-
tion capture datasets are used in the experiments. One is ballet motion and the other is
normal walking motion.

3.1 Low-Dimensional Manifold Representation of Human Motion

We applied two manifold learning techniques for motion captured data to find low di-
mensional manifold representation of motion sequences. First, we find low dimensional
representation of each body pose by applying Principal Component Analysis (PCA) us-
ing singular value decomposition (SVD). With the first few PCs, we can distinguish
each frames with similarity relations.

Second, we applied Kohonen’s self organizing map. Kohonen’s neural network
model was motivated by neurophysiology. The neuron layer acts as a topographic fea-
ture map, if the location of the most strongly excited neurons is correlated in a regular
and continuous fashion with a restricted number of signal features of interest. Neighbor-
ing excited locations in the layer then correspond to stimuli with similar features [13].
Figure 1 shows two dimensional representation for walking sequence and ballet motion
sequence. We can notice that the representation points spread in all the space ( Figure 1
(b)). In Figure 1 (a), We can notice three cycling patterns through the path. However,
in SOM, even the similar motion cycles are represented in different locations and are
spread in the space. You can see similar patterns in Figure 1 (c) (d), which is the case
of complicated ballet motion.

Slow walking motion
(a) (b)
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Fig. 1. SOM analysis for simple walking (a) (b) and complicated ballet motion (c) (d)
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3.2 Learning Generative Models Using Motion Manifold

We learn nonlinear mapping between the manifold embedding and original motion in
order to generate new motions based on embedded manifold points. Suppose that we
can learn a nonlinearly embedded representation of the high dimensional motion man-
ifold M in a low dimensional Euclidean embedding space, Re, then we can learn a set
of mapping functions from the embedding space into the input space, i.e., functions
γ(xt) : Re → Rd that maps from embedding space with dimensionality e into the
input space (observation) with dimensionality d. Since the embedding and the original
data are related by nonlinear manifold learning, we need to learn nonlinear mapping in
order to capture motion characteristics accurately. In particular we consider nonlinear
mapping functions of the form

yt = γ(xt) = B · ψ(xt) (1)

where B is a d×N linear mapping and ψ(·) : Re → RN is a nonlinear mapping where
N radial basis functions can be used to model the manifold in the embedding space, i.e.,

ψ(·) = [ψ1(·), · · · , ψN (·)]T

For i-th frame yi, which is sampled data of yt at time t = i · N
T , we can find

low dimensional embedding point Xi. Given an embedded manifold representation
xi, i = 1 · · ·N in e dimensional embedding space for yi, i = 1 · · ·N , we can learn
nonlinear mappings f : Re → Rd using generalized radial basis function (GRBF) in-
terpolation [12] to the original sequence yt by solving for multiple interpolants, i.e., f l :
Re → R for each tracking feature l. We can use thin-plate spline (φ(u) = u2log(u))
or Gaussian (φ(u) = exp(u)) as the basis function. The whole mapping for sequence
k can be written in a matrix form as

fk(x) = Bk · ψ(x) (2)

where Bk is a coefficient for the generative model of motion data.

4 Motion Primitive Segmentation and Motion Dynamics Modeling

We segment primitive motions from the low dimensional manifold representation. Based
on segmented motion primitive, we can model dynamics of human motion by transition
probability of motion primitives.

4.1 Finding Primitive Motion Using Clustering

The representative motion primitive is estimated by clustering of the low dimensional
representation of motion sequence. At first, we applied standard k-means algorithm and
measured error in a given k clusters. We estimate the natural number of primitive by
estimating error in different number of clusters and finding elbow in the error graph for
different number of clusters. Based on the reconstruction error according to the number
of cluster, we can decide the number of clusters. In our data set, we find that the ballet
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Fig. 2. Clustering motion sequences

motion shows 15 clusters and the walking sequence shows 10 clusters in the estimation
of natural number of clusters. After finding natural number of cluster, we applied fuzzy
k-means algorithm and Gaussian mixture model clustering using estimated natural clus-
ter number. Fuzzy k-means clustering result shows better clustering result with respect
to the inner distance within cluster and separation between clusters. Figure 2 shows
clustering result by fuzzy k-means algorithms for ballet motion with 10 clusters (a).
Figure 2 (b) shows body poses corresponding to the centers of the first seven clusters
in ballet motion dataset. In order to find proper sequence of each cluster for continuous
motion generation, we need to model dynamics of the motions.

4.2 Modeling Temporal Dynamics Using Markov Chains

Temporal dynamics of the motions are modeled using Markov chains. A Markov as-
sumption assumes that the next state of a system (St+1) is only dependent on the previ-
ous n states (St, St−1, St−2, · · · , St−n+1). By assuming that transition to new motion
primitive (new state) depends only on current motion primitive class (current state),
we modeled motion dynamics as a first order Markov model. Now, the likelihood of
one primitive cluster following another can be expressed as a conditional probability
P (St+1|St). Transition probability from state j at time t to state k at time t + 1

pk,j = P (Ct+1
k |Ct

j), (3)

where P (Ct
j) denotes the unconditional probability of being in cluster j at time t, can

be estimated easily by counting two adjacent frames cluster transition in the original
data set.

A transition matrix can model the whole dynamics⎛⎜⎝ p1,1 · · · p1,n

...
. . .

...,
pn,1 · · · pn,n

⎞⎟⎠ (4)

where
∑

j pk,j = 1 for all j, and n is the number of clusters in the model. Figure 3
shows transition matrices for ballet (a) and walking (b) datasets. The bright color means
high probability of transition. The figure show highest probability in the diagonal, which
means most likely next frame is within the same cluster. We can estimate most likely
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Fig. 3. Transition matrices and transition of motion states

next primitive motion cluster k∗ by choosing the next highest probabilistic transition
from cluster j.

k∗ = arg max
i

pi,j , i �= j (5)

in the transition matrix. Figure 3 (c) shows motion transition sequence estimated by the
most second likely transition state from one selected primitive motion until it return
back to the state. We can get new motion transition sequence by perturbing transition
matrix with small noise as shown figure 3 (d).

5 Synthesis of Human Motion Using Motion Manifold and Motion
Primitive

We can synthesize a new motion sequence in two ways. First, we can directly synthe-
size new motion sequence from any low dimensional trajectory since we can generate
motion sequences for any given manifold points given the learned nonlinear generative
model. Second, we can generate dynamic sequences of motion based on the transition
model which is learned from training sequence.

5.1 Direct Motion Synthesis Using Low Dimensional Motion Manifold

We implemented low dimensional representation of ballet motion using SOM. First we
learn SOM by 65 × 65 lattice structure (Actually, we tried smaller number of lattice
such as 25×25, 40×40 or 50×50. In these case, some motion fired in the same lattice
location, which is not good for learning as the same low dimensional representation
point requires learning to reconstruct two different high dimensional data). After finding
different lattice representation, we used small number of regular lattice center as the
basis center for radial basis function. We used 15×15 number of radial bases for GRBF
learning. After that we implemented two kinds of interaction methods: manifold point
based synthesis and given key motion based synthesis.
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(a) (b) (c) (d)

Fig. 4. Motion synthesis: (a) (b) Point interaction in low dimensional space (c) (d) Path interpo-
lation in low dimensional space

In the manifold point-based approach, user selects points on the manifold using
mouse. After finding the location of the mouse click point within the given manifold,
we can generate motion based on trajectory of selected points. Figure 4 (a) (b) shows
last selected point (blue) and newly selected point (red) and their corresponding re-
constructed motion. It shows continuous variation of the motion when we interpolate
points on the manifold and generate intermediate motion corresponding to intermediate
manifold points. When multiple points are selected, we do spline fitting for the selected
manifold points for smooth interpolation of intermediate motion. Figure 4 (c) (d) shows
examples of the interpolating intermediate motion. Blue color motion is the motion
corresponding to the last mouse click. Red color represent new mouse click location.
Intermediate motions are generated as shown in the figure (cyan color).

The other method is based on given key motions. Using inverse mapping, we can
find a low dimensional representation for a given new key motion. In the case of SOM,

Fig. 5. Path interpolation in low dimensional space
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we can find low dimensional manifold representation for given motion frame by finding
Best Matching Unit (BMU) in the original lattice and scale it to the mapping coordinate
space. In other case, we can achieve approximate solution using polynomial terms of
GRBF [12].

Figure 5 shows an example of motion synthesis based on given key motions. In the
left column, three selected key motions are given. The seletect key motions are the mo-
tion we want to generate; we want to generate motion begins from the first motion and
then generate second motion in the intermediate frame. Finally the animation needs to
be finished in the third key motion. In the right column, we shows low dimensional
manifold points and corresponding motion generated. Red markers on the motion man-
ifold represent low dimensional location of the three sample key motions. After spline
fitting, we re-sampled the spline curve for a given sample number. As we follow map-
ping trajectory in the low dimensional space, it shows not just interpolation of three
sample points but smooth synthesis of intermediate motions based on training data. The
figure shows that there are additional intermediate sub-motions in the synthesis of new
motions based on given key motions.

Fig. 6. An example of motion primitive interpolation
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5.2 Generation of Continuous Motion Sequence

We can generate new motion sequence for any given initial motion frame with dynam-
ics of original motion. After finding transition sequence for given motion frame, we can
define trajectory on the motion manifold by connecting sequence of motion manifold
points corresponding to the given motion primitives. The deviation from the original
motion sequence can be controlled by the scale factor in the perturbation of transition
matrix by superimpose random noise all the transition matrix elements. We find smooth
trajectory from the motion primitive sequence by spline fitting of cluster center of each
corresponding motion primitives. By sampling points on the manifold points along the
spline, we can generate new sequence of motions. Figure 6 shows a generated motion
sequence with spline interpolation trajectory and clustering membership in each sam-
pling point along the interpolation trajectory. Possible transition sequence was found
from transition matrix and 80 points are resampled after spline fitting to the primitive
centers. It shows smooth motion transitions in frame 1, 5, 9, 13, · · · , 77. For any given
initial pose, we can generate most feasible primitive pose sequence from transition ma-
trix with no perturbation. Figure 7 shows most likely key pose sequence when we start
from two different motion frame.

Fig. 7. Generations of following motion for given initial motion frames

6 Conclusions and Future Works

We presented an approach to generate new motion sequences using statistical analysis
and learning techniques. This approach is more flexible and close to human motion gen-
eration mechanism as it generates sequence of motion based on motion primitive and
transition probabilities among motion primitives. Motion primitives found by clustering
of given data set is somewhat dependant on the given data set and the number of clus-
ters, even though we find natural number of cluster for the given data set, which may
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compensate for the dependence of motion primitive to the given data set. However, this
motion primitives can summarize whole motion sequence with small motion primitives
and it simplifies representation and transition model and makes the problem solvable
with simple model. The framework presented in this paper can be applicable in motion
analysis in computer vision problem. It will be elegant to combine video data with mo-
tion capture data: tracking and recognizing human motion from video sequences with
possible motion sequence representation from motion capture data.

For more complicated and general motion primitives, we may need to count hierar-
chical representation of motion primitive as in [11]. Modeling transition of sub-motion
is simplified assuming the first-order Markovian dynamics, which may not enough to
capture complicated motion transitions. We may use more rich representation like vari-
able length Markov model [7] or higher order Markov models. We can extend the gen-
erative models to cover variations in different person as style factors similar to [6].
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Abstract. This paper presents an ongoing work  which aims to make a step 
forward in advanced domotic systems and specific intelligent interfaces for 
shared virtual spaces that represent real world situations. The main contribution 
is  to explain the exploitation and integration of tools and ideas to accomplish 
this objective, focusing mostly on high level languages - for an integral space 
design, open source projects like VRML/X3D, JAVA3D or OPENGL - imple-
mentation tools, Virtual Reality and Domotics (as domains for application). 
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1   Introduction and Background 

If we are talking about a shared virtual world, we are talking about a shared space, used 
simultaneously by different users, accessible through the Internet, where each user can 
see all the others and his current context and where some interaction among users is 
available. In such scenarios we address the following issues considered important: 

- need for high level languages to modelling flexible scenarios 
- need for representation models for those scenarios (2D or 3D) 
- Implementation design capitalizing on available as well as efficient technolo-

gies 
- need to offer transparent and intuitive systems to the users, that may have low 

cost equipment 
- need to take advantage of current network facilities, such as P2P approaches or 

database connection for example 
- integration with Smart Information Systems within the Internet, such as, In-

formation objects within the semantic web 
- definition of rules towards collaboration, coordination, and interaction, within 

the defined worlds 
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All the previous aspects should be taken into account when creating such worlds, 
and what we describe in this paper is how to use several tools and ideas to accomplish 
this, focusing mostly on high level languages (for an integral space design), open 
source projects like VRML/X3D, JAVA3D or OPENGL (tools for implementation) 
and Virtual Reality and Domotics (as domains for application). 

Several works in these areas exist already in the literature. Maybe the most recent 
and significant one is the Croquet project [1] (http://www.opencroquet.org/). This 
project is a combination of open source computer software and network architecture 
that supports deep collaboration and resource sharing among large numbers of users. 
The integrated 2D and 3D Croquet interface allows for co-creativity, knowledge shar-
ing, synchronous deep social telepresence and presence among large numbers of  
people.  

The Web was originally proposed and developed for information sharing within in-
ternationally dispersed teams and the dissemination of information by support groups. 
Emerging technologies like intelligent agents, XML, Web services and Semantic Web 
(http://www.w3.org/XML/) provide new opportunities for developing Internet-based 
collaborative design environments, particularly for product information sharing and 
visualization. Zhang [2] reviews the state of the art in Internet based product informa-
tion sharing and visualization with a case study to illustrate the emerging technologies 
used in this area. 

Dachselt et al. [3] have demonstrated an abstracted, declarative XML and Schema 
to model Web3D scene components. 

1.1   Our Proposal 

We need a 3D information exchange format within the cyberspace. This language 
should offer at least the following features: 

- Sufficient primitives to define and create a scene graph 
- tools for both geometric and visual modelling  
- tools to for a wide range of  animations  
- primitives to allow real time interaction between objects and users of the en-

vironment  
- database access mechanisms, in order to store/retrieve the spatio/temporal 

state of the shared space  
- Tools for defining structured documents with semantics, for example using 

XML TAG’s.   

These features can be found in X3D (http://www.web3d.org/x3d/) [4] which adds 
these other interesting ones:  

- It is an international Standard 
- Accessibility, versatility and compactness of representation  
- Language modularity (with objects easy to re-use)  
- Compatibility with widely used browser to visualize scenes 
- XML support, thus enabling integration with other web services. XML al-

lows as well interaction between databases and the graphical sub-system  
- a real time intuitive user interface to the 3D world similar to the way he will 

act in real life 
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Anyway the models have to be easy to access for design or maintenance purposes, 
and this not only by technicians but also by architects, artists, etc… i.e. final users. 
Current languages (like X3D) do not allow a high level modelling and they demand 
specific knowledge to use it. It is possible to make any transform, but using lineal laws. 
The modelling of objects can be complex, i.e. to specify the position of an object re-
lated to another. For example to put an object A “onto” another object B, the 
user/programmer has to compute coordinates of the centre of A, related to the centre of 
B. We should have mechanisms that allow us to define virtual worlds in a more natural 
way (simply A is onto B). So we need a higher-level language to gain abstraction. 

We have designed and implemented STEDEL, a system that allows the interactive 
design of a room, the definition of pieces of furniture and the placement of electrical 
and electronic appliances. The system works over the WWW offering web-users a tool 
for designing and visualizing their rooms. The users may define each object in the 
room, its size, position, and spatial relationships with the room or other objects. Certain 
integrity constraints are checked during this definition. The system can create on the 
fly a VRML representation of the specifications and render it to the client. The user 
may choose to alter and visualise the virtual-world or store it for further reference. 

As it will be explained in section 3, we are working on a shared virtual world which 
is a representation of a domotic house. As it is shown in Figure 1, a world can be mod-
elled with STEDEL (described in the next section) [5] [6].; it is possible to connect to 
suppliers, in order to include real control objects from the industry in the model. Once 
the model is validated, it is possible to transform it into an X3D set of files (leveraged 
in the framework of an XML-based Web, encoding information about the objects in a 
hierarchical fashion to provide semantics) and a control module (some of the X3D 
profiles permit programmatic access to objects within our X3D system using SAI, 
Scene Access Interface), which enables duplex communication with the real house. 
The scripting environment can receive, process and send events from or to X3D nodes. 

 

Fig. 1. Overview of the system 
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The rest of the paper describes this work in progress. Section 2 introduces the as 
Spatio-Temporal languages and describes the key aspects of STEDEL. Section 3 
shows how the kind of system the authors have presented fits well for domotic appli-
cations. Section 4 gives some future work ideas. 

2   Spatio-temporal Languages & STEDEL 

2.1   Introduction to Spatio-temporal Languages 

The need for 3D interactive multimedia content in many application areas such as 
culture, tourism and transportation is profound. The current languages for such con-
tent specification i. do not provide database support and ii. are not enough high-level 
and easy to use.  

The mostly used language for 3D specifications is VRML that enables definition of 
3D objects of specific geometry. All three geometric transformations are supported 
(translation, rotations, scaling), but only using linear laws and can be applied to ob-
jects. Events can be passed from an object to another object (or list of objects). 
Though there are some issues which are not covered adequately:  

• complex object specification: i.e. it is very tedious to specify in VRML an object 
A standing “on” object B, since the user/programmer has to calculate the position 
of A’s centre in relation to the centre of B, in order to appear “on” B  

• time management: The standard VRML does not support adequately the man-
agement of temporal aspects of objects such as: object temporal life (i.e. an object 
may appear at some point and disappear after some time), temporal relationships 
among objects presentations (i.e. two objects A, B appear together and disappear 
when the A’s life ends).  

• interaction: there is a great diversity in the various interactions that may occur in 
a virtual world. The interaction can be external (i.e. emanating from the user) or 
internal (i.e. collisions between objects of the world).  

• high level functionality: it is the case in many applications that the authors may 
want to define a set of interrelated actions  

More specifically at the definition lever there are requirements for:  

• relationship based specifications, i.e. it more natural to be able to define that an 
object A is “on” an object B rather that specifying the exact position of A in a 
world coordinate system.  

• handling of temporal aspects, such as  
• complex interaction, so that both internal and external events, simple and com-

plex can be handled 
• scenario management,  
• data base support, the ability to store and retrieve the spatiotemporal structure of 

a world 
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2.2   STEDEL 

The ideas we have described above are some of the features incorporated in the 
STEDEL [6] language prototype, a Spatio-Temporal Descriptive Language, and a 
fully declarative event based language that is suitable for rapid development of VR 
scenes with dynamic interactive content and for quick prototyping of VR scenes.  It is 
compiled into equivalent VRML97 code, combined with a series of PROTO nodes 
which we have written which implement the various constructs of the language, cor-
responding to the primitives of our model outlined in the previous section. The lan-
guage is not specifically linked to VRML in any way and it can be compiled to other 
3D modelling languages. However, due to the prevalence of VRML we have designed 
STEDEL so as to facilitate the inclusion of VRML code within a STEDEL descrip-
tion. Additionally the VRML content exported by our compiler can be used in a larger 
project that is done in pure VRML with minimal effort.  

STEDEL was designed with two goals in mind.  The first and most significant goal 
is to make life easier for the content developer who is not necessarily either knowl-
edgeable or interested in computer programming. We have thus abstracted away the 
hows of creating virtual scenes and went fully declarative in the language definition. 
Users of STEDEL only need to be familiar with basic geometric principles and simple 
concepts like speed, acceleration, rate of rotation, etc.  

Programming effort is thus significantly reduced and trivial syntactic or semantic 
errors which are frequent in VRML leading to faulty or inconsistent virtual scenes are 
avoided. Furthermore, in the limited scope of the few virtual scenes that we have 
implemented ourselves in STEDEL, we have noted that the size of descriptions in our 
language (in terms of size of code in bytes) is at least a factor of 3 less than the 
equivalent VRML code. 

3   Application to Domotics 

The context of this paper is within a wider project which aims to define a global and 
unified framework with intelligent tri-dimensional agents for the current systems and 
the future virtual environments. Nowadays electronic communication among persons 
includes from basic chats and GSM services to virtual immersive sceneries with great 
realism. The differences are obvious, and virtual immersive sceneries provide mecha-
nisms for interacting virtual elements (avatars, information, passive objects,…) with 
the sceneries that participate virtually in a universe.  

The main goal of the project is to obtain results for applying them in domotic envi-
ronments with virtual reality domestic systems and 3D agents. The person-home in-
teraction will allow important synergies in both fields. Simultaneously we want to 
study new communication systems between men-machine, specially directed to dis-
abled persons where their functional limitation can be supported through advanced 
domotic systems and specific intelligent interfaces. 

The term Domotics is associated to the set of elements that, when installed, inter-
connected and automatically controlled at home, release the user from the routine of 
intervening in everyday actions and, at the same time, they provide optimized control 
over comfort, energetic consumption, security and communications [7].  
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There are three types of domotic elements: sensors, actuators and systems or con-
trollers. The sensors, also called receivers, are elements that receive the information 
from the atmosphere, for example, atmospheric or luminosity variables. They can also 
obtain information on the actions humans carry out in their daily interaction at home, 
such as pressing a switch or going into a room. These include sensors of temperature, 
luminosity, gas, smoke, intrusion, etc. Actuators are elements that receive the order to 
be activated or deactivated. They consist of actions such as switching a light on/off or 
opening/closing a blind. As in the case of sensors, there are a great variety of actua-
tors. Among these actuators we can include, for example, the heating system, air  
conditioning, light fittings, the opening/closing of blinds, the alarm, etc. Finally, the 
systems or controllers are in charge of processing the information coming from the 
sensors and, by means of the appropriate programming, they activate or deactivate the 
actuators.  

The domotic elements are grouped by means of links into different management 
areas. Four such areas could be Thermal Comfort, Control over Luminosity, Security 
and Energy Control. Basically these four areas include most of the domotic elements 
although their number and functionality is constantly increasing. 

A simulation of a domotic home is divided into three sections: Model (for describ-
ing the phenomenon), View or Graphic Interface (that permits the visualization of the 
phenomenon) and Control. 

In order to specify and organize the general approaches to the solution to the de-
sign and control problem of the home, we use Virtual Reality. VR permits a better 
understanding of spatial and visual aspects of a project of domotic building. This 
technique will allow users greater interaction possibilities. One of the most interesting 
aspect in VR is its integration in the Internet. The Virtual Reality Modelling Language 
(VRML), X3D or Java 3D allow building virtual worlds that are accessible via the 
Internet.  

This kind of interfaces adds several advantages to the domotic simulator devel-
oped:  

- New interaction possibilities.  
- A most realistic perception is provided. The purpose of this kind of interfaces is 

to obtain immersion systems that emulate a real environment and produce a most 
effective learning.  

- Pleasant learning/teaching environments. Users, immersed in 3D simulations, 
improve their skills thanks to practising real tasks. Operating in this kind of environ-
ments is more simple and natural for the users.  

- Also, new kind of information is accessible (visual attention and physical move-
ments, position and orientation, …). It will allow us to characterize users.  

- Risks are eliminated and costs are reduced.  

There are several factors that add a degree of interest to the user that uses a VR ap-
plication; these are events, realism, animation and power to answering. 

We have designed and implemented a system for WWW enabled interactive design 
of a room, definition of pieces of furniture as well as placement of domestic appli-
ances: STEDEL. The user may define for each object, its size, position, and also the 
inter-object spatial relationships. Certain integrity constraints are checked during  
this definition. The system generates on the fly a VRML/X3D representation of the 
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specifications and renders it at the client. The user alters and visualizes the world and 
may save it for further reference. 

The STEDEL data model [8] aims at representation of: i. entities present in a room, 
ii. inter-entity spatial relationships, and iii. spatial constraints so as to produce a co-
herent, presentable world. Essentially, we used our experience in generalized spatio-
temporal modelling to address the simpler issue of developing an authoring tool for 
rooms. The data model includes objects, spatial relationships between objects and 
constraints stemming from the real world limitations that the model must address. 
There are five different object classes. A vector of dimensions fully defines an in-
stance of a class (i.e. actual object). Each object is also placed in the room by an addi-
tional vector of placement data. 

In Table 1 the reader may see the classes of objects along with their size-related at-
tributes and their domotic attributes: 

Another issue is the placement of the objects in the context of the room. We aim at 
the definition of a set of primitives that define in a declarative way the relative place-
ment of objects. In Table 2 we give the placement attributes describing the inter-
object spatial relationship within the room spatial composition. 

Table 1. Size and domotic related attributes of object classes 

Object-Type Attributes 
Room Length, Width, Height, Temperature controller, Light con-

troller 
Door Width, Height, opening/closing motor 
Window Width, Height, opening/closing motor, blind opening/closing 

motor 
Furniture Item Length, Width, Height 
Appliance Length, Width, Height 

Table 2. Placement-related attributes of object classes 

Object-Type Attributes 
Room <none> 
Door OnWallName, Distance, FromWallName 
Window OnWallName, Distance, FromWallName, HeightFromFloor 
Furniture Distance1, FromWall1, Distance2, FromWall2, OrientationAn-

gle,HeightChoice,  
[FromItem | Height] 

Appliance Distance1, FromWall1, Distance2, FromWall2, OrientationAn-
gle,HeightChoice,  
[FromItem | Height] 

The aim is the retrieval of objects and their placement in a virtual room. The au-
thoring tool is used to specify the room (dimensions, colours etc), and the objects in 
the room (size and placement). The specification of the room is a three-step process: i. 
definition of the room shape, dimensions and colour, ii. placement of doors and  



Towards an Integrated Technological Framework for Modelling Shared Virtual Spaces 481 

 

windows and iii. placement of any other object inside the room. In the current version 
of the room editor, the room is rectangular; thus three parameters (length, width and 
height) are required. The four walls are identified as front, left, back and right. Doors 
and windows have size (width and height). Their placement is defined by the wall 
they are on and the distance from another wall (plus distance from floor for windows). 
For example: “window W1 is on the left wall and 5m from the front wall, 1m from 
floor and has the B1 blind controller motor”. The list of the available objects (sen-
sors/actuators) is read from the database 

By employing a wall identifier and a value that represents distance from the wall in 
consideration we define the position of Doors and Windows. For window objects, the 
height with reference to the floor is also required. Furniture Items and Domestic Ap-
pliances require the following attributes for their full specification: 

 
· Position of their geometric centre’s projection on the ground plan (two distances 
from perpendicular walls). 
· Orientation Angle, a rotation of the object around a vertical axis passing through the 
object’s geometric centre 
· Height information: the object is at a specific height, or “on the floor” or “from the 
ceiling” or “on” another item. 

 

Fig. 2. VRML/X3D obtained scene from an STEDEL file and using controls retrieved from a 
domotics supplier DB 

The use of high-level declarative predicates defined in the STEDEL data model 
provides expressive power but allows for inconsistencies. Thus we have to consider 
the related integrity constraints. The constraints arise both from the geometric  
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configuration of the objects and/or from the attached semantics (i.e. some objects are 
pieces of furniture while others are appliances). 

Explicit referential constraints we check in our design are: 

1. All object dimensions must be less or equal than the dimensions of the room. 
2. The physical dimensions and placement of objects must not allow part of 

them to be outside the room 
3. The intersection of any pair of objects must be either empty or at most of a 
surface. Objects cannot intrude into one another, since they are solids. 
4. Each object must have at least one common surface with another object or 
with the room (no objects suspended in mid-air). 
5. Furniture items may be placed on other furniture items, but not on domestic 

appliances. 
6. Upon removal of an object, all objects that are “on” that object must revert to 
a consistent position. Our solution was to place all such objects “on the floor”. 
7. Cyclic placements of objects “on” each other are not allowed. 

 
Figure 2 shows the VRML/X3D obtained scene. 

4   Conclusions and Future Work 

We have presented ongoing work which aims to make a step forward in advanced 
domotic systems and specific intelligent interfaces for shared virtual spaces that rep-
resent real world situations. 

We have designed and implemented STEDEL, a system that allows the interactive 
design of a room, defining each object in the room, its size, position, and spatial rela-
tionships with the room or other objects. Once the model is validated, it is possible to 
transform it into an X3D set of files (leveraged in the framework of an XML-based 
Web, encoding information about the objects in a hierarchical fashion to provide 
semantics) and a control module. 

We will work towards integrating sematics in the proposed environment and spe-
cifically aspects such as: information organization, and comparability. Encoding in-
formation about resources in a manner that can be read and understood by human and 
software inteligent agents is the basis of the Semantic Web. We consider challenging 
the transition from a high level language descriptor to a VR modelling language like 
VRML or X3D, it is also interesting to be able to make the inverse path, that is to 
obtain from a VRML/X3D file(s), a high level description. This would allow to loose 
too much detailed information from these files, transform them into related object 
information files, and to be able to do different operations (comparison, recognition, 
integration, etc…) with them.  
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Abstract. This paper describes the design and implementation of a module of 
emotions and personality for synthetic actors. Here are presented the results of 
previous researches, which were the basis of this project. With this information, 
a model for emotion generation using personality traits was designed in three 
stages, and implemented using fuzzy logic, FSMs, and probability theory. 
Finally, the functionalities of the module were shown using a demo version 
implemented with the videogame engine Unreal® 2 Runtime.

Keywords: artificial intelligence, agents, personality, emotion, motivational 
state, mood, action, attitude, actor, behavior, fuzzy set, standard, event, inter-
active narrative, map, Unreal, memory, goal, fuzzy rules.  

1   Introduction 

During the last years, Arts and Computer Science are two fields that have became 
more related, giving as a result what has been called, virtual art. 

VIDGAM is an ambitious project whose objective is to allow the player/user to 
create stories from the interactions between the characters and their environment, and 
among the characters. Each story will be different depending on the approach of the 
player and the course of actions that each character may take. To achieve it, 
VIDGAM was seen as a videogame with narrative elements. In order to create these 
stories, it is necessary to provide of psychological features to the videogame chara-
cters, so they can act and react in a believable manner.  

This paper explains the design and construction of a module of emotions and 
personality, its components, and finally a short overview of a demonstrative version is 
given, as well as the conclusions and recommendations for future works. 

2   Previous Work 

The more important computational models for emotion, personality, and conver-
sational agents simulation used as reference during the development of module of  
personality and emotions were, among others: OCC Model [8],  OCEAN Model [4], 
[6], Oz Project [9], “A Model for Personality and Emotion Simulation”, from the 
University of Geneva [6], FLAME [10], and ParleE [5]. 
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3   Development Stages 

The module of emotions and personality (MEP) was developed in three stages or 
phases: initial phase, design phase, and construction phase. 

For the initial phase the requirements for the project were specified: perception of 
events occurred in the world, appraisal of these events, generation of emotions, trigger 
behaviors, interaction among characters, and action taking by the characters. 

The techniques that were decided to use were Fuzzy Logic, because it allows 
decision making and a smooth transition between states; and Finite State Machines 
(FSM), which allows the simulation of basic animations (running, walking) and the 
representation of some behaviors. The programming of the AI component was made 
using Unreal Script Language, the programming language of the Unreal engine. 

The second phase, the design phase, started with the representation of the problem 
by doing a conceptual model and a class diagram. Then we defined which emotions, 
personality traits, and motivational states were going to be implemented in the 
module. Section 4 gives a detailed explanation of the implementation of the module. 
Finally, during the construction phase the elements of the MEP were implemented. 
These are explained in the following subsections. 

3.1   Desirability of an Event 

The value of how desire an event is may be inferred from impact of events on goals, 
and the importance of these goals. The impact and importance are discrete values 
stored in tables which are defined in the classes that implement the memory of each 
character. Desirability belongs to a fuzzy set for the aims that are wanted. In order to 
achieve this, impact and importance values must be fuzzified. 

Impact of an event is represented by the fuzzy sets: VERY_POSITIVE, 
SLIGHTLY_POSITIVE, NO_ IMPACT, SLIGHTLY_NEGATIVE, VERY_NEGATIVE. 
Importance of goals is represented by the fuzzy sets: NO_IMPORTANT, 
SLIGHTLY_IMPORTANT, VERY_IMPORTANT. 
Desirability values belong to some of these fuzzy sets: VERY_DESIRABLE, 
SLIGHTLY_DESIRABLE, NEUTRAL, SLIGHTLY_UNDESIRABLE, VERY_UN-
DESIRABLE. 

As each set is represented by a triangular function, this could be defined with 
straight lines. Given the straight line equation y = mx + b, where m is the gradient, b
is the interception point with Y axis, and x is the discrete value of impact of an event; 
x is evaluated in the straight line equations that form the triangle in the interval of x.
The triangular function of the interval is the fuzzy set of x. The value of y is the 
membership value of x in that set. 

Fig. 1. Fuzzy sets for IMPACT of Events on Goals 
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The straight line equations used for the Impact of Events sets were: 

A:  y = -4x + 1 B:  y = 4x  - 0.65 C:  y = -4x + 2.6 D:  y = 4x – 2.2 E:  y = 1.0 (1)

The following figure shows the triangular functions obtained from equations (1): 
The straight line equations used for the Importance of goals sets were: 

A:  y = 1.0 B:  y = -5x + 2 C:  y = 5x  - 1.55 

D:  y = -5x + 3.55 E:  y = 5x – 3.1 F:  y = 1.0 
(2)

The following figure shows the triangular functions obtained from equations (2): 

Fig. 2. Fuzzy sets for IMPORTANCE of a Goal

If x is mapped to an interval where two fuzzy sets are overlapped, then x belongs to 
both sets because it will be evaluated in both straight lines of both sets. The same 
procedure described before was used for the calculation of Importance of goals. 

3.2   Fuzzy Rules 

To implement the evaluation of the degree to which each one of these fuzzy rules is 
“true”, we followed a method that assigned a number to each antecedent so that when 
they are summed in all possible combinations, the result was different in each case. 
The resulting number corresponds to the number of the fuzzy rule that is going to be 
evaluated [11]. Fifteen fuzzy rules were defined, which are of the form: If Impact = 
VERY_NEGATIVE AND Importance = NO_IMPORTANT Then Desirability = 
NEUTRAL. They are shown in the following table with the assigned numbers: 

Table 1. Fuzzy rules for Desirability of an Event 

IMPACTS 

Desirability VERY_NEG
(0) 

SLIGHTLY_NEG
(1) 

NO_IMPACT 
(2) 

SLIGHTLY_POS 
(3) 

VERY_POS 
(4) 

NO_IMPORTANT
(0) 

NEUTRAL 
(0) 

NEUTRAL 
(1) 

NEUTRAL 
(2) 

NEUTRAL 
(3) 

NEUTRAL 
(4) 

SLIGHTLY_IMPORT
(5) 

SLIGHTLY_UNDES 
(5) 

SLIGHTLY_UNDE
S
(6) 

NEUTRAL 
(7) 

SLIGHTLY_DES 
(8) 

POCO_DES 
(9) 

I
M
P
O
R
T
A
N
C
E
S

VERY _IMPORT   
 (10) 

VERY _UNDES 
(10) 

SLIGHTLY_UNDE
S
(11) 

NEUTRAL 
(12) 

SLIGHTLY_DES 
(13) 

VERY_DES 
(14) 
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3.3   Defuzzification 

For defuzzification the “centroid” method was used, in which the "center of mass" of 
the result provides the crisp value [19]. The formula to find the center of mass is: 

CM = 

=

=

1

1

)(

)(*)(

i

i

imu

ioutputimu

(3)

Where mu(i) is the truth value of the result membership function for rule i, and 
output(i) is the value, for rule i. The result membership function is maximum over the 
output variable fuzzy set range [19]. 

For this last term the maximum output values were calculated. These were: 
VERY_UNDESIRABLE = -0.8, SLIGHTLY_UNDESIRABLE = -0.4, VERY_DESI-
RABLE = 0.8, SLIGHTLY_DESIRABLE = 0.4, NEUTRAL = 0.0. They represent 
the highest point of the triangular function that defines each set. 

3.4   Expectations of an Event to Occur 

To implement the calculation of expectations using probabilities, we created a table in 
the class that simulates the memory of the character.  

When a pattern is observed for the first time, an entry is created in the table, and a 
counter initialized in 1 (C = 1) is assigned to it. Then, every time an event is 
appraised, the sequences are stored with their respective counter. If a sequence that 
was already stored is detected, then its counter is incremented in one (+1). This 
counter is used for the calculation of the probability of a new event Z to occur, given 
that events X and Y already occurred: P(Z|X,Y) [10]. 

Table 2. Formulas used in the calculation of emotion

SINGLE
EMOTIONS

FORMULA SIMPLE
EMOTIONS

FORMULA

Happiness di * sqrt(1- ei) Sadness (di * (-1))* (1- ei) * (1- ei)

Satisfaction di * sqrt(1- ei) Disillusion (di * -1)* (1- ei) * (1- ei)

Pride Pride i = d Shame Shamei = di * (-1)

Admiration di * a(Agent) * (1- ei) Reprobation di * (1 - a(Agent)) * (1- ei)

Liking Likingi-1 + 0.1 * di Disliking Dislikingi-1 + 0.1 * (di * (-1))

COMPLEX
EMOTIONS

FORMULA

Gratitude If abs(Admirationi – Happinessi) > 0.2, then Gratitudei = 0 
If not, Gratitudei = max(Admirationi, Happinessi)

Anger If abs(Sadnessi – Reprobationi) > 0.2, then Angeri = 0 
If not, Angeri = max(Sadnessi, Reprobationi)

Gratification If abs(Pridei – Happinessi) > 0.2, then Gratificationi = 0 
If not, Gratificationi = max(Pridei, Happinessi)

Remorse If abs(Sadnessi – Shamei) > 0.2, then Remorsei = 0 
If not, Remorsei = max(Sadnessi, Shamei)
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3.5   Intensity of Emotions 

For the calculation of this value some formulas were used, based on the values of 
desirability (di) and expectation of an event to occur (ei), giving as a result a number 
between 0.0 and 1.0. Some of these formulas were obtained from [5], [10], and [7]. 

3.6   Behaviors and Actions of the Videogame Actors 

The behavior of a character is a fuzzy set: GOOD, REGULAR, or BAD. At the end of 
the cycle, a vector with four (4) emotions is obtained. To decide the behavior of the 
agent, the two emotions with stronger intensities are considered. If both are positive 
emotions, then the behavior is GOOD. If one is positive and the other is negative, 
then the behavior is REGULAR. If both are negatives, then the behavior is BAD. 
We also implemented short dialogues of the form (f, e, r, i), to demonstrate verbally 
how the actor is behaving. f is the phrase that is going to be said, e is the speaker, r is 
the audience, and if what is said is a question or an answer is i. The content of the 
dialogues is maintained in the memory of the characters. 

3.7   3D Scenarios and Characters 

Here are shown the actors and the 3D scenarios, modeled using 3D software Maya®, 
inside the Unreal engine. The model of the soccer player was taken from Unreal’s 
website, which was a mesh modeled using 3D Studio Max®. 

Fig. 3. Chef Melanie (left), Soccer Player Estelle (right) 

Fig. 4. Views of kitchen (left), living room (middle), bedroom(right) 

4   Module of Emotions and Personality 

One of the first decisions to make was to choose which emotions and personality 
traits the agents were going to have. Single emotions are: happiness, sadness, 
satisfaction, disillusion, pride, shame, admiration, reprobation, liking, and disliking. 
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Complex emotions, which are the combination of two single emotions are: gratitude 
(happiness + admiration), anger  (sadness + reprobation), gratification (happiness + 
pride), and remorse (sadness + shame).

The motivational states used were: Hunger, Fatigue, Thirst, and Surprise.  
Concerning to personality, it was decided to use OCEAN model [4] because of its 

simplicity, completeness, and because it is very used by psychologists, which 
guarantees its efficiency. The values set for each personality characteristic of the 
actors of the game are shown in table 3. 

Table 3. Personality Dimensions of both actors 

PERSONALITY CHARACTERISTICS 

Dimension Melanie (Chef) Estelle (Soccer Player) 

Openness    0.8 ,   highly open    0.8,   highly open 

Conscientiousness    0.95,  highly conscientious     0.95, highly conscientious 

Extraversion    0.7,    almost extraverted    0.37, slightly extroverted  

Agreeableness    0.13,  slightly agreeable    0.83, highly agreeable 

Neuroticism    0.69,  almost neurotic    0.19, slightly neurotic 

The module of emotions and personality presented in this paper consists of four 
components which allowed the representation of the psychological component of the 
agents. 

4.1   Perceptual Component 

Its main function is the reception of events that occur in the world. In terms of the 
implementation, an event is a string describing the occurrence. 

Each agent has a function, RecibeMensaje(evento), that is called by all event-
emitter objects in the environment (radio, tv, other agents, etc.). This function uses 
message passing to transmit the event from the object to the agent.  

A message is a tuple that consists of: the event as text (tex), the id of the actor that 
initiate the event (id), and the type of the event (eT).

Based on the classification given in the OCC Model, events were classified in: 
events that affect a goal, events that affect an attitude, and events that affect a 
standard. These are the types (eT) of the event.  

Then, the event is passed as message to the Emotion Generation Component and to 
the Historical Component. 

4.2   Emotion Generation Component 

This component is responsible for updating the emotional state of the agent according 
to occurred events. It takes three stages: event appraisal, intensity of emotions, and 
filtering of emotions. 
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4.2.1   Event Appraisal 
For event appraisal the parameter in the message that is used is the type of event (eT).
If type is META (GOAL), affected emotions are happiness or sadness; and
satisfaction or desilusion. If type is ACTITUD (ATTITUDE), affected emotions are 
liking and happiness; or disliking. If type is STANDARD, affected emotions of the 
agent who did the action are pride or shame, and admiration or reprobation. 
Furthermore, there is an extra value that is called appreciation, which is the 
recognition on the part of an agent, of the quality or value of another agent. 

4.2.2   Calculation of Intensities of Emotions 
Each emotion has its own array that stores its intensities during the last t instants of 
time. In our case, t = 5. 

Intensities in t – 1 (previous instant) can be interpreted as the emotional state of 
the character. How he/she feels. Intensities in t (current instant) can be interpreted as 
what he/she is feeling. So, if position i of the array e contains a number zero (0), then 
the event did not generate emotion e during instant of time i. 

4.2.3   Filtering of Emotions 
This stage allows to choose the final emotions that the character will exhibit.

At the beginning of the game a matrix Po was defined. It has the relations between 
emotions and personality traits [6]. As was said, events according to their type, can 
modified different emotions. Then, it might be said that personality traits affect, or are 
characterized by those emotions related to goals, attitudes, and standards, to which 
those traits are related. 

Using this information the matrix Po was built in the following way: if the 
personality trait is characterized by that emotion, then the value of the cell is 0.2. If 
the personality trait does not intensify the emotion, the value in the table is -0.2. And 
if the trait and the emotion are not related at all, then the value is 0.    

Once that Po is filled, it is multiplied by the vector containing all the values for 
each personality trait of the agent. The result of this product is another vector whose 
values will modify each emotion, according to the personality of the agent. This 
vector is called “modulation vector”. Update of emotions is made by increasing the 
intensity of the emotion felt in the last instant of time, ei,t, in a percentage equal to the 
corresponding modulator, mi. This is shown in equation (4). 

ei,t = (ei,t * mi) + ei,t                 (4)

This module keeps a history of the emotions felt in the last t =5 instants. How the 
character has felt lately, which is called mood, hi, is calculated by adding all positive 
emotions intensities registered in the last t-1 instants, and adding all negative 
emotions intensities in the last t-1 instants. If the sum of positive emotions is greater 
than the sum of negative emotions, then the mood at time t is positive. Otherwise, the 
mood is negative.  

Once mood is calculated, it is seen how it affects emotions. If the agent is in a good 
mood, positive emotions in the current instant are incremented in a equal percentage 
to the value of mood. If the agent is in a bad mood, negative emotions of the current 
instant are increased. This is expressed by equation (5).
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ei,t = ei,t + (ei,t * hi) (5)

Then, it has to take into consideration that there cannot be two opposite emotions 
at the same time. For example, the agent cannot feel happiness and sadness at  
the same time.  The one with the greater value will always be chosen. Also, if in the 
current instant (t) the agent felt an opposite emotion with a lower intensity than the 
emotion triggered at instant t-1, then the prevailing emotion is the one felt in t-1.

Finally, the four (4) emotions with higher intensities are chosen and fuzzified. The 
sets that are considered in this step are: HIGH_INTENSITY, MEDIUM_INTENSITY 
and LOW_INTENSITY, and the membership degree is calculated using the discrete 
value of intensity.  

4.3   Historical and Actions Components 

The historical component calculates the expectation of an event to occur using 
probability theory. It was explained in section 3.4. 

The actions component evaluates these behaviors and generates animations or short 
dialogues that show the emotional state of the character.

4.4   Decay 

In this module, the decay, or decreasing of intensities of emotions, takes place before 
the evaluation of a new event, and also every 60 seconds, just in case the agent does 
not appraise any event during that interval of time.  

Each character has two fixed constants for decay, one is used with positive 
emotions (delta) and the other is used with negative emotions (alpha). The interval 
where delta is defined is greater than the interval for alpha, because positive emotions 
decay faster over time than negative emotions. 

First, older emotions (t=0, if the current instant is t=5) are eliminated, leaving the 
last position of every array free, and ready to store the new intensities. After this, each 
emotion is subtracted with the corresponding decay constant. As far as motivational 
states, hunger, thirst, and fatigue are increased in a 1/8 part of alpha. On the other 
hand, surprise is decreased using delta.

5   Demo 

The module of emotions and personality was implemented using the videogame 
engine Unreal 2Runtime. It was used to test the functionality of the module of 
emotions and personality. It included two characters (Melanie and Estelle) who feel 
and react to events triggered by the user, as well as by objects of the world that 
surrounds them. 

The interface of the demonstrative version has a number of menus that activates 
using the keyboard. This was achieved using an Unreal component named Interaction.  

Some screenshots of the menus are shown in figure 5. 
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Fig. 5. Events menu (left), Actions menu (middle), HUD showing the emotions of Estelle: 
happiness, surprise, fatigue, disliking; and Melanie: surprise, fatigue, disliking, remorse (right) 

6   Results 

In order to test the module, we “played” the videogame 20 times, with different 
sequences of events. Each game had duration of four to six minutes. During this time 
it was evaluated how consistent and believable were the emotional responses of the 
characters. 

We tried making some changes in the personality values of Melanie and Estelle, 
but as most of events produced positive emotions, the differences in the results were 
seen more clearly when the changes were produced in the variables for event 
appraisal and filtering.  

In each game, important differences were observed. But this is not only a 
consequence of the differences in the personality dimensions. Occurred events and 
previous instants of the game lead the character to different emotional states, which 
affect the final result. In the same way, expectations values have a great influence in 
these differences.  

In this demo there are several events that trigger emotions with the same 
intensities, because their desirability is obtained from tables where these values are 
fixed. Although personality traits (or dimensions) are different, it can be seen that the 
modulator vector affect the emotions very little. The same thing happens with short 
dialogues to which we already know which emotions will trigger them.  

Nevertheless, we tried to add non deterministic factors to increase uncertainty. 
These are: calculation of expectation using probabilities, increasing and decreasing of 
agent’s appreciation based on the standards, and including motivational states that 
reaching some threshold (0.8) begin to decrease felt emotions. Motivational states are 
increased very slowly, so the user has to play for quite a long time to see changes.  

Perhaps personality traits are the less considered factor with generation of 
behaviors, but their use during emotion modulation was indispensable to provide the 
corresponding modulator and thus, increased the believability of each agent.  

The module of emotions and personality works with fuzzy values for emotions 
intensities, which could be used to generate facial expressions and body movements. 

7   Conclusions and Future Work 

Providing of psychological characteristics to synthetic characters was a very complex 
task, which required a lot of researching, and results obtained by trial and error. 
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Especially for the fact that the module had to be very general but at the same time, we 
had to keep the individuality of each character. 

This module settles the basis for the AI, taking advantage of fuzzy logic and FSMs 
to create characters with emotions and personality. 

In general, actors react to events in a very coherent manner, they interact with basis 
on their predefined standards, they learn how to expect non registered events, and 
they can move around a virtual world, designed according to each one’s likings and 
preferences (that is the case with the chef and her kitchen). But, in order to see the 
module working with a 100% of its functionalities, there are needed many more game 
rules, more characters, and more events that allow exploring each one of the human 
aspects that have been simulated. 
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Abstract. This paper considers the problem of monocular human body tracking
using learned models. We propose to learn the joint probability distribution of
appearance and body pose using a mixture of view-dependent models. In such a
way the multimodal and nonlinear relationships can be captured reliably. We for-
mulate inference algorithms that are based on generative models while exploiting
the advantages of a learned model when compared to the traditionally used geo-
metric body models. Given static images or sequences, body poses and bounding
box locations are inferred using silhouette based image descriptors. Prior infor-
mation about likely body poses and a motion model are taken into account. We
consider analytical computations and Monte-Carlo techniques, as well as a com-
bination of both. In a Rao-Blackwellised particle filter, the tracking problem is
partitioned into a part that is solved analytically, and a part that is solved with
particle filtering. Tracking results are reported for human locomotion.

1 Introduction

Bayesian approaches have been successfully applied to human body tracking. Typically,
these approaches are generative and need a mechanism to predict a subject’s appearance
given hypotheses for the parameters that are to be estimated.

Previous tracking algorithms often work with hand-crafted geometric body models
that are rendered and compared to input images in order to verify body pose hypotheses
(e.g. [1,2,3,4,5]). These body models have many parameters such as limb lengths and
widths that all have to be known or estimated, typically in an initialisation procedure or
even on-the-fly.

As opposed to geometrical models, probabilistic Machine Learning methods natu-
rally offer the possibility to learn the dependencies of body pose and its appearance
while generalising over irrelevant variation of appearance and inter-person variance.

Core of the proposed approach is a model of the statistical dependencies between
body poses and their appearance, which is learned from training data. We show how
the learning problem itself can be alleviated by uncoupling global orientation and local
body pose, and learn the joint distribution over pose and appearance as a mixture of
view-dependent models. Within a view-dependent model, the distribution is captured
by the means of Gaussian Mixture Models (GMMs).

The Recursive Bayesian Filter serves as an overall framework for inference. Ap-
pearance is encoded using image descriptors that are computed from the silhouette of

F.J. Perales and R.B. Fisher (Eds.): AMDO 2006, LNCS 4069, pp. 494–503, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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background segmented images. Silhouettes provide rich information about body pose,
but leave certain aspects unobservable, i.e. are subject to ambiguities. This enforces the
use of prior information on one hand, and will lead to multimodal posteriors on the
other hand.

1.1 Related Work

There is a wide variety of literature about probabilistic body tracking. Most methods use
geometric body models (e.g. [1,2,3,4]), sometimes in conjunction with learning tech-
niques for dimensionality reduction or to estimate parameters of the prior or observation
model. Example based approaches (e.g. [6]) are often based on nearest neighbour search
and provide mechanisms for efficient lookup in large databases. Several authors have
applied parametric machine learning methods to body pose estimation [7,8,9,10,11] and
aim at learning the relationship between image observations and body pose, which is
challenging because the mapping is nonlinear and multivalued. The further discussion
will concentrate on these works.

In [7] the authors assume a functional relationship between silhouette descriptors
and pose and propose relevance vector regression for learning. Grauman et al. [10]
learn a density over multiple silhouettes and corresponding structure using a mixture
of PPCA. Given a (static) set of silhouettes, the MAP estimate is obtained. Recently,
inference algorithms that explicitly deal with multimodal posterior distributions have
been applied to the body tracking problem. In the specialized mappings architecture
[12], multiple functional mappings from visual features to articulated pose are learned.
Inference yields a set of hypotheses, a problem specific method is then used to compute
the likelihood of the different hypotheses. Most related to our work are [8] and [11]
that both learn the conditional pdf of pose and appearance with a mixture of regressors
(experts).

In [11] the temporal dependencies and image-pose dependencies are learned in a
single discriminative model. The distributions are propagated analytically. In [8], a pdf
over possible poses is inferred given an input silhouette. The analytical inference pro-
cedure does not include any temporal aspects. For tracking, a particle filter in high
dimensions is used, where the inferred pdf is treated as the observation likelihood. The
algorithms proposed in this paper follow well known generative formulations, however
we propose solutions that are based both on sampling techniques and analytical infer-
ence where applicable, thereby avoiding the need to sample in high dimensions.

To summarise, this paper mainly contributes by explicitly addressing the issue of
learning appearance from all view directions while allowing for multimodalities of the
distribution. Analytic solutions to the generative formulation of the tracking problem
are proposed, and a Rao-Blackwellised particle filter that combines the advantages of
sample-based and analytic inference. Furthermore, since we learn the joint pdf of pose
and appearance, rather than the conditional, we can use this model to estimate the 2d
image position of the bounding box along with the body pose, an issue not addressed
in [8,11].

The paper is organised as follows. Section 2 introduces the mixture of view-depen-
dent models, and 3 formulates tracking algorithms based on the learned models. In 4
we describe our implementation and show experimental results and conclude in sect. 5.
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2 Mixture of View-Dependent Models

We want to learn the dependencies of body pose and its appearance in images. The
state space for the body pose is given by the variables α and x, the global orientation
of the body relative to the camera and its local pose, i.e. the configuration of its limbs.
Under the assumption that the camera is in an approximatively horizontal position, at
face or shoulder level, the global orientation can be described with a single parameter
that determines the position on a circle around the object from which the latter is ob-
served. We therefore face the problem of learning the joint pdf p(α,x,y), where y is
an observation, i.e. a descriptor that is computed the input image. In order to simplify
the learning problem, we rewrite this pdf as a mixture of C view-dependent models pc

that each cover a section of possible view directions/global orientations.

p(α,x,y) =
1
C

C∑
c=1

pc(α,x,y) (1)

Within the view-dependent models, there is little variation of view direction, so the view
angle can be assumed independent from local pose and observation, which enables us
to rewrite equation (1) as

p(α,x,y) =
1
C

C∑
c=1

pc(α)pc(x,y), (2)

where pc(α) is a one-dimensional Gaussian N (α; αc, σ)1 and pc(x,y) is the joint pdf
of pose and appearance for a certain view direction; this pdf will be learned from
training data. Within a view-dependent model the view angles are normally distributed
around the mean αc, with αc’s uniformly spaced over the interval [0, 2π[, and variances
chosen such that adjacent models overlap, and the whole domain of α is uniformly
covered.

The view-dependent models pc(x,y) themselves are approximated by a mixture of
Gaussians (GMM), estimated using e.g. an EM algorithm. The joint distribution over
orientation, pose and appearance is thus a mixture of mixtures of Gaussians.

p(α,x,y) =
1
C

C∑
c=1

[
pc(α)

S∑
s=1

wc,sN (μc,s, Σc,s)

]
(3)

Here, S is the number of Gaussian components in each pc, and wc,s are the weights
estimated by the EM algorithm in the learning phase (

∑S
s=1 wc,s = 1). μc,s and Σc,s

are the parameters of the Gaussian components.
Note that even though the omnidirectional model p(α,x,y) consists of a discrete

number of almost unidirectional models, we have defined a smooth and continuous
overall model that covers the entire state space.

1 We use the notation N (x;μ, σ) for Gaussian distributions, where the first argument is omitted
if clear from the context.
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3 Tracking with Learned Models

According to Bayes’ rule, the tracking problem can be formulated as

p(Xt|y1:t) ∝ p(yt|Xt)p(Xt|y1:t−1), (4)

where Xt is the state variable we want to infer from aggregated observations y1:t (Xt =
[xt, αt]T for the notation of Sect. 2 ). The image likelihood is obtained from our learned
model of p(X,y) by

p(yt|Xt) = p(Xt,yt)/p(Xt). (5)

As we have not learned the temporal prior p(Xt|Xt−1) explicitly, we would like to in-
clude information about likely body poses as well as a motion model in its definition.
We model the temporal behaviour as a Brownian motion around the expected new po-
sition multiplied by the time independent prior p(Xt). See Fig. 1a) for an illustration.

p(Xt|Xt−1) := k(Xt−1)p(Xt)N (AXt−1, ΣT ) (6)

Here, A specifies the linear dependencies between subsequent states, and k(Xt−1) =∫
Xt

p(Xt)N (AXt−1, ΣT ) is a normalisation factor. Using this definition, we obtain

p(Xt|y1:t−1) =
∫

xt−1

p(Xt|Xt−1)p(Xt−1|y1:t−1)

=
∫

xt−1

k(Xt−1)p(Xt)N (AXt−1, ΣT )p(Xt−1|y1:t−1). (7)

The factor k(Xt−1) depends on Xt−1 which makes analytic integration intractable;
it can however be computed explicitly in a sampling based approach. We propose a
slightly different definition that is suitable for both analytic and Monte-Carlo integra-
tion.

p(Xt|y1:t−1) := Kp(Xt)
∫

xt−1

N (AXt−1, ΣT )p(Xt−1|y1:t−1) (8)

This formulation corresponds to first propagating the old posterior according to the
motion model, and then eliminating unlikely body poses. Both (7) and (8) define a pdf
over Xt that takes into account temporal as well as static prior information.

By combining (4), (5) and prior (8), Xt can now be inferred analytically for any
given sequence.

p(Xt|y1:t) ∝ p(yt|Xt)p(Xt)
∫

Xt−1

N (Xt; AXt−1, ΣT )p(Xt−1|y1:t−1)

= p(Xt,yt)
∫

Xt−1

N (Xt; AXt−1, ΣT )p(Xt−1|y1:t−1).
(9)

In order to account for noisy observations, the term p(Xt,yt) is computed by multiply-
ing the learned model with a Gaussian pdf around the actual observation for yt, denoted
yobs, and then marginalising over yt. This is illustrated in Fig. 1b). Marginalisation of a
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a) b)

Fig. 1. a) The overall prior (red, hatched) is defined as the product of the motion model (blue,
dashed, for this illustration a Gaussian pdf around the state of t − 1) and the static learned prior
p(X). b) Multiplication of the Gaussian distribution around the observation yobs and the prior
p(X,y) yields p(X,y|yobs). By marginalisation, the pdf p(X|yobs) over unobserved variables
is then obtained. Note the multimodality of p(X|yobs).

GMM is straightforward; the marginal mixture has the same number of Gaussian com-
ponents as the original joint mixture with the same weights. The means and covariances
of the marginal mixture are simply the means and covariances of the original mixture
with all elements corresponding to the variable y removed.

The integral in Eq. (9) can be calculated in closed form and will result in a Gaussian
mixture, so the result of (9) is the product of two mixtures and thus a mixture itself.
However, the number of mixture components will grow exponentially over time. Hence,
at each timestep a mixture simplification step reduces the number of Gaussian compo-
nents, by pruning components with very low weights and replacing clusters of compo-
nents by their ’average’ Gaussian.

3.1 Rao-Blackwellised Particle Filter

So far we assumed that an observation is available in the form of an image descrip-
tor computed at a certain position in the image. This requires that the bounding box
containing the person is either known on beforehand or estimated in some way. For
the silhouette based image descriptor, one could imagine an ad-hoc algorithm for this
2d tracking problem. In general, however, we want to support multiple hypotheses for
the 2d location variables l, so they have to be included in our state space and inferred
by the overall tracking algorithm. A particle based approach can easily be extended
accordingly by adding these location-variables to the state space. In the case of an an-
alytic approach however, there is no straightforward extension since the posterior over
this extended state space is unlikely to have parametric form. We therefore propose to
partition our state space into a part that is solved using a particle filter and a part that
is solved analytically using our learned models. By the chain rule of probability, the
posterior over x, α, and the location variable l can be written as

p(x, α, l|y) = p(x|α, l,y)p(α, l|y), (10)
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where the temporal aspects of the problem are omitted for notational simplicity. Given
our learned model, p(x|α, l,y) can be inferred analytically and described parametri-
cally, whereas for p(α, l|y) no analytic solution is obvious. However, due to its low
dimensionality, it can be handled by a particle filter. The Rao-Blackwellised Particle
Filter (RBPF, [13]) offers a framework for inference, when a part of the state space can
be marginalised analytically. Figure 2 a) shows the graphical structure of this setting as
a Bayesian network.

In RBPF, each particle will consist of a sample for lt and αt, a parametric pdf
p(xt|y1:t, li1:t, α

i
1:t) and a weight wi

t. The computation of p(xt|y1:t, li1:t, α
i
1:t) follows

the general derivation for analytic density propagation (9), except that we only infer the
variable xt, and that the expression is additionally conditioned on αi

1:t and li1:t. We will
denote as yi

t the image descriptor computed at sampled location lit.

p(xt|yi
1:t, α

i
1:t) =

1
Li

p(yi
t|xt, α

i
t)p(xt|yi

1:t−1, α
i
1:t−1)

∝ Ki

Li
p(xt, α

i
t,y

i
t)
∫

xt−1

N (xt; Axt−1, ΣT )p(xt−1|yi
1:t−1, α

i
1:t−1)

(11)

Here we used the independence of xt and αi
t and the uniformity of p(αi

t). Ki is the scal-
ing factor from the prior (8), and the normalisation factor Li is equal to the likelihood of
the observation given the ith sample. Hence, if we choose the prior p(lt, αt|lt−1, αt−1)
as a proposal function, the weights wi

t are given by the normalisation factor Li [13].
The RBPF harmonizes well with the mixture of view-dependent models; for the

computation of p(xt, α
i
t,y

i
t) in (11) we can exclude those mixture components that

are not compatible with the hypothesis αi
t, i.e that will have a very low weight in the

posterior mixture. This decreases computation time per sample significantly.

4 Implementation and Experimentation

The previous sections are kept general with respect to the used image descriptors, the
body pose parametrisation and the classes of motion for which the system is trained.
In this section we present an implementation and experimental validation that serve
as a proof of concept and aim at illustrating the potential of the overall approach. We
chose human locomotion as a case in point, but expect that an extension to more general
motions is feasible provided that such training data are available.

4.1 Image and Pose Descriptors

The chosen image descriptors are based on the silhouette of the tracked person. Using a
stationary camera, the segmentation is obtained via background subtraction. To encode
these segmented images using a descriptor of moderate size, we use signed distance
functions, that assign to each pixel a signed value indicating the distance to the closest
point on the silhouette [9]. These values are computed on a grid of equidistantly spaced
sample points inside the bounding box of the segmented object. Several examples of
such distance-transformed silhouettes are shown in Fig. 2 b).
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a) b) c)

Fig. 2. a) Graphical structure obtained by partitioning the search space into two parts. This is the
setting in which the Rao-Blackwellised particle filter operates. b) Signed distance functions as
image descriptors. Positive values inside the silhouette, negative values outside, and 0 on the sil-
houette, rescaled here to the interval 0:255 for visualisation. c) Animated 3D body model (training
data).

To compute this distance transform efficiently we use an algorithm similar to the
chamfer image transform based on a hybrid distance measure that is an approximation
to the real Euclidean distance. See [14] for an overview of algorithms.

Both image descriptors y and pose descriptors x are potentially high dimensional;
this is a difficulty for the learning task. Furthermore we believe that the intrinsic di-
mensionality of the training data is much lower. A dimensionality reduction step is
necessary. Here, we use PCA to bring down the dimensionality of both image and pose
descriptor.

4.2 Experiments

To generate training data for this experiment, we rendered 11 MoCap2 sequences from
several subjects with different walking styles from 36 viewpoints using MotionBuilder
PLE3, a package that is designed for realistic human animation. On the silhouettes of
these renderings, the image descriptors were computed, followed by a PCA dimen-
sionality reduction that retained the first 15 principal components. The body pose was
represented using 3d joint locations for a number of joints that constitute the overall
body pose (foot, knee, hip, shoulder, elbow, hand and head). Only the first 15 princi-
pal components, capturing about 99 percent of the variation, were retained for the final
pose representation. For each view dependent model, the joint distribution of appear-
ance and pose descriptors was approximated by a GMM with 11 components using an
EM algorithm.

Using a plain particle filter in combination with this pose representation would re-
quire a large number of particles. Here we report results that were obtained using the
algorithm from sect. 3.1, where a part of the inference problem is solved analytically.

2 Data obtained from http://mocap.cs.cmu.edu/
3 www.alias.com
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a) b)

Fig. 3. a) Deviation from ground truth for a synthetic sequence. Euclidean distance (centimeters)
between reconstructed joints and the ground truth, averaged over the sequence. The error is largest
at the extremities (ankle, wrist). b) Estimated view directions α (radians) for a synthetic sequence
with ground truth (dashed curve). The figure shows the angle encoded by the sample with the
highest weight.

Samples for l and α are generated from a temporal prior that assumes constant velocity
resp. Brownian motion. The temporal model for pose x assumed Brownian motion in
PCA-reduced pose space, with a covariance matrix learned from the training data. For
the initialisation of the 2d location variables l, an ad hoc proposal function at the center
of gravity of the segmented image was used to sample from, x and α were initialised
using the analytical inference equation (9), by assuming a uniform temporal prior.

Some quantitative results are shown in Fig. 3 a), for a sequence that was syntheti-
cally generated the same way as the training data, but using MoCap from a subject not
contained in the training set.

Figure 4 shows tracking through a real office sequence. The images were recorded
with a DV camera at a frame rate of 25 fps and segmentation was obtained using back-
ground subtraction. The reconstructed poses and motion look natural. Occasionally (e.g.
frame c ), the reconstruction of the arms is imprecise, especially when they are occluded
by the torso, i.e. not visible in the silhouette images. In such cases the pose prior alone is
responsible for the estimation of the arm pose. Figure 3 b) shows the estimated view di-
rection for a synthetic sequence with varying viewpoint. The reconstruction follows the
overall rotation of the person. Largest deviation from ground truth is about 15 degrees
(frame 73), the average error is 5 degrees. However there seems to be no systematic mis-
estimation since the mean difference from ground truth is only 1 degree, the negative
and positive deviations basically sum to zero. These results are very convincing, when
considering that it is very difficult, even for humans, to perceive the relative orientation
of a body from the silhouette alone.

5 Summary and Conclusion

We presented a system for monocular tracking of people. From a MoCap training
database distributions over body pose and corresponding image appearance descriptors
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a) g)

b) h)

c) i)

d) j)

e) k)

f) l)

Fig. 4. Tracking through a real sequence. For each of the selected frames, the left column shows
the tracked bounding box. The other columns show the estimated pose from side view resp. 45
degrees. To visualise a single pose per frame, we chose the mean of the component with the
highest weight from the GMM that corresponds to the sample with the highest weight of the
sample set. Note that between frame i) and j) the posterior mode that corresponds to stepping
forward with the left leg suddenly becomes more likely, which can only be seen from the 45
degree view.
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(silhouettes) are learned. Based on the learned model we were able to formulate gener-
ative tracking algorithms that either work with analytical inference or particle sets or a
combination (Rao-Blackwellised particle filter). Compared to approaches with geomet-
rical models, we do not have to sample in high dimensions, and in contrast to purely
discriminative learning based approaches, we can solve to 2d bounding box tracking
along with the pose estimation. The algorithms were evaluated on synthetic and real
sequences of walking people.

Future research directions will include the investigation of different image descrip-
tors that do not require a foreground segmentation. Further experimental evaluation will
focus on the multimodality of the posteriors that reflects the inherent ambiguities of the
body tracking problem. We will also try to include a wider range of motions and actions
into our models. Finally we aim at designing more elaborate temporal priors, possibly
learned from the training data.
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Abstract. Perceptual user interfaces are becoming important nowadays, be-
cause they offer a more natural interaction with the computer via speech recog-
nition, haptics, computer vision techniques and so on. In this paper we present a 
visual-based interface (VBI) that analyzes users’ facial gestures and motion. 
This interface works in real-time and gets the images from a conventional web-
cam. Due to this, it has to be robust recognizing gestures in webcam standard 
quality images. The system automatically finds the user’s face and tracks it 
through time for recognizing the gestures within the face region. Then, a new 
information fusion procedure has been proposed to acquire data from computer 
vision algorithms and its results are used to carry out a robust recognition proc-
ess. Finally, we show how the system is used to replace a conventional mouse 
for human computer interaction. We use the head’s motion for controlling the 
mouse’s motion and eyes winks detection to execute the mouse’s events.  

1   Introduction 

The research of new human-computer interfaces has become a growing field in com-
puter science, which aims to attain the development of more natural, intuitive, unob-
trusive and efficient interfaces. This objective has come up with the concept of  
Perceptual User Interfaces (PUIs) that are turning out to be very popular as they seek to 
make the user interface more natural and compelling by taking advantage of the ways in 
which people naturally interact with each other and with the world. PUIs can use speech 
and sound recognition (ARS) and generation (TTS), computer vision, graphical anima-
tion and visualization, language understanding, touch-based sensing and feedback (hap-
tics), learning, user modeling and dialog management [18]. Of all the communication 
channels through where interface information can travel, computer vision provides a lot 
of information that can be used for detection and recognition of human’s actions and 
gestures, which can be analyzed and applied to interaction purposes.  

When sitting in front of a computer and with the use of webcams, very common 
devices nowadays, heads and faces can be assumed to be visible. Therefore, system’s 
based in head or face feature detection and tracking, and face gesture or expression 
recognition can become very effective human-computer interfaces. Of course, diffi-
culties can arise from in-plane (tilted head, upside down) and out-of-plane (frontal 
view, side view) rotations of the head, facial hair, glasses, lighting variations and 
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cluttered background [14]. Besides, when using standard USB webcams, the provided 
CMOS image resolution has to be taken in account. 

Different approaches have been used for non invasive face/head-based interfaces. 
For the control of the position some systems analyze facial cues such as color distri-
butions, head geometry or motion [5, 17]. Other works track facial features [10, 3] or 
gaze including infrared lighting [13, 15].  To recognize the user’s events it is possible 
to use facial gesture recognition. In this paper we consider as facial gestures the 
atomic facial feature motions such as eye blinking [9, 11, 12], winks or mouth open-
ing. Other systems contemplate the head gesture recognition that implies overall head 
motions or facial expression recognition that combines changes of the mentioned 
facial features to express an emotion [8].  

In this work, we present a visual-based interface (VBI) that uses face feature track-
ing and facial gesture recognition. In order to achieve this function, the system’s feed-
back must be in real-time and it must be precise and robust. A standard USB webcam 
will provide the images to process; therefore it will allow the achievement of a low 
cost system. Finally, the last system‘s requirements is that the user’s work environ-
ment conditions should be normal (office, house or indoor environments), that is, with 
no special lighting or static background.   

The paper is organized as follows. In the next section we describe in general terms 
the system. Section 3 explains the learning process of the user’s facial features. Then, 
in section 4, we explain how to estimate through time the facial features positions. 
The facial gesture recognition process for detecting eye winks is detailed in section 5. 
And finally in the last section, a system application is presented: a mouse replace-
ment, and the overall work conclusions  

2   System Overview 

To achieve an easy and friendly-use perceptual user interface, the system is composed 
of two main modules: Initialization and Processing (see Fig. 1). The Initialization 
module is responsible of extracting the user’s distinctive facial features. This process 
locates the user’s face, learns his skin color and detects the initial facial feature loca-
tions and their properties such as appearance and color. Moreover, this process is 
completely automatic, and it can be considered as a learning process of the user’s 
facial features.  The chosen facial features are the nose for head tracking and the eyes 
for gesture recognition. We decided to use the nose as feature to track, because it is 
almost always visible in all positions of the head facing the screen and it is not oc-
cluded by beards, moustaches or glasses [10]. For the gesture recognition module, the 
main gestures to control were the eyes winks from the right or left eye. 

The selected facial features’ positions are robustly estimated through time by two 
tasks: nose tracking based on Lucas and Kanade’s algorithm and eye tracking by 
means of color distributions. It is important to point out that the system is able to react 
when the features get lost, detecting when it occurs and restarting the system calling 
to the Initialization module. 

Finally, there is the possibility of adding more gestures to the system if the head 
motions are taken in account [20] for building a higher level human-computer com-
munication. 
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Fig. 1. The system is divided in two main modules: Initialization and processing 

3   Learning the User’s Facial Features 

As it was remarked in the PUI’s definition, it is very important for the interface to be 
natural; consequently, the system shouldn’t require any calibration process where the 
user interferes. To accomplish this necessity, the system detects automatically the 
user’s face by means of a real-time face detection algorithm [19].  

When the system is first executed, the user must stay steady for a few frames for 
the process to be initialized. Face detection will be considered robust when during a 
few frames the face region is detected without changes (see Fig 2. (a)). Then, it is 
possible to define the initial user’s face region to start the search of the user’s facial 
features. Based on anthropometrical measurements, the face region can be divided in 
three sections: eyes and eyebrows, nose, and mouth region.  

Over the nose region, we look for those points that can be easily tracked, that is, 
those whose derivative energy perpendicular to the prominent direction is above a 
threshold [16]. This algorithm theoretically selects the nose corners or the nostrils. 
However, the ambient lighting can cause the selection of points that are not placed 
over the desired positions; this fact is clearly visible in Fig. 2 (b).  Ideally the desired 
selected points should be at both sides of the nose and with certain symmetrical con-
ditions. Therefore, an enhancement and a re-selection of the found features must be 
carried out having in account symmetrical constraints. Fig. 2 (c) shows the selected 
features that we consider due to their symmetry respect to the vertical axis. This rese-
lection process will achieve the best features to track and it will contribute to the 
tracking robustness. Fig. 2 (d) illustrates the final point considered, that is, the mean  
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(a)                              (b) 

  

(c)                              (d) 

Fig. 2. (a) Automatic face detection. (b) Initial set of features. (c) Best feature selection using 
symmetrical constraints. (d) Mean of al features: nose point. 

point of all the final selected features that due to the reselection of points will be cen-
tered on the nose. 

The user’s skin color is the next feature to be learnt. This feature will help the 
tracking and gesture recognition by constraining the processing to the pixels classified 
inside the skin mask. In order to learn the skin color, the pixels inside the face region 
are used as color samples for building the learning set. A Gaussian model in 3D RGB 
is chosen to represent the skin color probability density function due to its good re-
sults in practical applications [1]. The values of the Gaussian model parameters (mean 
and covariance matrix) are computed from the sample set using standard maximum 
likelihood methods [4]. Once calculated the model, the probability of a new pixel 
being skin can be computed for creating a “skin mask” of the user’s face, see Fig. 3 

   

Fig. 3. Skin masks for different users 

The last step of the Initialization phase is to build the user’s eyes models. Using the 
eyes and eyebrows region found in the face detection phase both eyes can be located. 
First, the region is binarized to find the dark zones, and then we keep the bounding 
boxes of the pair of blobs that are symmetrical and are located nearer to the nose 
region. This way, the eyebrows or the face borders should not be selected. In Fig. 4, 



508 C. Manresa-Yee, J. Varona, and F.J. Perales 

 

an example of eyes’ detection is shown. In the next section the eyes tracking based on 
their color distribution is explained. This fact is justified on the idea that eye color is 
different to the other facial features color (taking in account that the eye color distri-
bution is composed by sclera and iris colors). Like this, our system could be used by 
users with clear (blue or green) or dark (black or brown) eyes. Eye models are ob-
tained through histogramming techniques in the RGB color space of the pixels be-
longing to the detected eye regions.  

     

Fig. 4. Example of eyes’ detection: the blobs that are selected (in red color) are symmetrical 
and are nearer to the nose region. 

The model histograms are produced with the function b(xi), which assigns the color 
at location xi  to the corresponding bin. In our experiments, the histograms are calcu-
lated in the RGB space using 16 x 16 x 16 bins. We increase the reliability of the 
color distribution applying a weight function to each bin value depending of the dis-
tance between the pixel location and the eye center. 

4   Facial Features Tracking 

The facial feature tracking process consists in two tasks: eye and nose tracking. As we 
said before, eye tracking is based on its color distribution. By weighting the eye 
model by an isotropic kernel makes it possible to use a gradient optimization function, 
such as the mean-shift algorithm, to search each eye model in the new frame. Practi-
cal details and a discussion about the complete algorithm are in [6]. In our 
implementation this algorithm performs well and in real time. It is important to 
comment that small positional errors could occur. However, it is not important 
because the eye tracking results are only used to define the image regions where the 
gesture recognition process is performed. Besides, to add robustness to this process 
we only consider as search region those pixels belonging to the skin mask. 

The important positional results for our system are reported by the nose tracking 
algorithm, where the selected features in the Initialization process are used. In this 
case, the spatial intensity gradient information of the images is used for finding the 
best image registration [2]. As it was before mentioned, for each frame the mean of all 
features is computed and it is defined as the nose position for that frame. The tracking 
algorithm is robust for handling rotation, scaling and shearing, so the user can move 
in a more unrestricted way. But again lighting or fast movements can cause the lost or 
displacement of the features to track. As only the features beneath the nose region are 
in the region of interest, a feature will be discarded when the length between this 
feature and the mean position, the nose position, is greater than a predefined value.  
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In theory, it would be possible to use Kalman filters for smoothing the positions. 
However, Kalman filters are not suited in our case because they don’t achieve good 
results with erratic movements such as the face motion [7]. Therefore, our smoothing 
algorithm is based in the motion’s tendency of the nose positions (head motion). A 
linear regression method is applied to a number of tracked nose positions through 
consecutive frames. The computed nose points of n consecutive frames are adjusted to 
a line, and therefore the nose motion can be carried out over that line direction. For 
avoiding discontinuities the regression line is adjusted with every new point that ar-
rives.  Several frames of the tracking sequences are shown in Fig 5. 

5   Gesture Recognition   

The gestures considered in this work are eye winks. The major part of the works use 
high quality images and good image resolution in the eyes zones. However, wink 
recognition with webcam quality images is difficult. Besides, this process depends on 
the user’s head position. Therefore, our wink detection process is based on a search of 
the iris contours. That is, if the iris contours are detected in the image the eye will be 
considered as open, if not, the eye will be considered closed. It is important to point 
out that this process is robust because it is only carried out in the tracked eye regions 
by the mean-shift procedure described before. 

   

   

   

Fig. 5. Facial feature tracking results 
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The process starts detecting the vertical contours in the image. For avoiding false 
positives in this process, the vertical contours are logically operated with a mask 
which was generated by thresholding the original image. Finally we keep the two 
longest vertical edges of each eye region if they appear to get the eye candidates. If 
these two vertical edges which correspond to the eye iris edges don’t appear after the 
process for a number of consecutive frames, for gesture consistency, we will assume 
that the eye is closed. In Fig. 6 the process for gesture recognition is described. 

       
 

       
 

(a)           (b)                (c) 

Fig. 6. Process for recognizing winks. The first row shows the process applied to open eyes.  
The second row represents the process over closed eyes. (a) Original image. (b) Vertical edges, 
(c) Iris contours.  

5   HeadDev 

Using the described techniques in previous sections, a functional perceptual interface 
has been implemented. This application consists in achieving a system that fulfills 
completely the functions of a standard mouse and replaces it by means of face feature 
tracking and face gesture recognition.  

A highlight of this system is its potential users. Since the use of PUIs can help in e-
Inclusion and e-Accessibility issues, the system can offer assistive technology for 
people with physical disabilities, which can help them to lead more independent lives 
and to any kind of audience, they contribute to new and more powerful interaction 
experiences. So, its use is focused on users with physical limitations in hands or arms 
or motion difficulties in upper limbs that can not use a traditional mouse. Other uses 
serve to entertainment and leisure purposes, such as computer games or exploring 
immersive 3D graphic worlds [5].  

By means of the nose tracking process, HeadDev can simulate the mouse’s motion. 
The precision required should be sufficient for controlling the mouse’s cursor to the 
desired position. To reproduce the mouse motion it can be done through two different 
forms: absolute and relative. In the absolute type, the position would be mapped di-
rectly onto the screen, but this type would require a very accurate tracking, since a 
small tracking error in the image would be magnified on the screen. Therefore, we use 
relative motion for controlling the mouse’s motion, which is not so sensitive to the 
tracking accuracy, since the cursor is controlled by the relative motion of the nose in 
the image. The relative type yields smoother movements of the cursor, due to the non-
magnification of the tracking error. Then, if nt=(xt,yt) is the new nose tracked position 
for the frame t, to compute the new mouse screen coordinates, st, we apply  
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where  is a predefined constant that depends on the screen size and translates the 
image coordinates to screen coordinates. The computed mouse screen coordinates are 
sent to the system as real mouse inputs for placing the cursor in the desired position. 

Finally, to represent the mouse’s right or left click events, we control winks from 
the right or left eye respectively by means of the previously described gesture recog-
nition process. 

To evaluate the application’s performance, HeadDev was tested by a set 22 users 
where half of them had never experienced with the application and the other half had 
previously trained for a short period with the interface. A 5 x 5 point grid was pre-
sented in the computer screen where the user had to try clicking on every point; each 
point had a radius of 15 pixels. While the user performed the test task, distance data 
between the mouse’s position click and the nearest point in the grid was stored to 
study the accuracy. The error distance is the distance in pixels of the faulty clicked 
positions (clicks that weren’t performed on the targets). In Table 1 the performance 
evaluation results are summarized.  

Table 1. Summary of the performance evaluation 

Users Group Recognized clicks Mean distance of errors 
Trained 97,3 % 2 pixels 
Novel 85,9 % 5 pixels 

The experiments have confirmed that continuous training of the users results in 
higher skills and, thus, better performances and accuracy for controlling the mouse 
position. Besides, a fact to take in account is that this test can produce some neck 
fatigue over some users; therefore, some errors clicking the point grid could be caused 
due to this reason. 

6   Conclusions and Future Work 

In this paper we have proposed a new mixture of several computer vision techniques, 
where some of them have been improved and enhanced to reach more stability and 
robustness in tracking and gesture recognition. Numerical and visual results are given. 
In order to build reliable and robust perceptual user interfaces based on computer 
vision, certain practical constraints must be taken in account: the application must be 
robust to work in any environment and to use images from low cost devices. In this 
paper we present a VBI system that accomplishes these constraints. As a system ap-
plication, we present an interface that is able to replace the standard mouse motions 
and events. Currently, the system has been tested by several disabled people (cerebral 
paralysis and physical disabilities) with encouraging results. Of course, more im-
provements have to be done, including more gestures (equivalents with BLISS com-
mands or other kind of language for disabled persons), sound (TTS and ARS) and 
adaptive learning capabilities for specific disabilities. Enhancements have been 
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planned as future work, such as including a bigger set of head and face gestures in 
order to support current computer interactions such as web surfing.  

HeadDev for Microsoft Windows is available under a freeware license in the Web 
page http://www.tagrv.com. This will allow us to test the application by users around 
the world and we will able to improve the results by analyzing their reports. In near 
future, a linux version will be also available. 
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Abstract. In this paper we describe a complete method for building a 
perceptual user interface in indoor uncontrolled environments. The overall 
system uses two calibrated cameras and does initialization: it detects user, takes 
his/her measurements, builds a 3D-Model. It performs matching/tracking for: 
trunk, head, left arm, right arm and hands. The system is waiting for a user in a 
predefined posture, once the user has been detected he/she is analysed to take 
measurements are taken and a 3D-Model is built. Tracking is carried out by a 
Particle Filter algorithm splited in three steps: tracking of head-trunk, tracking 
of left arm and tracking of right arm. This proposed divide and conquer solution 
improves computation time without getting better or similar results than 
sequential solution. The matching process uses two sub-matching functions, one 
to compute color and another to compute shape one. Finally the system 
provides numerical values for joints and end effectors to be used for interactive 
applications.  

1   Introduction 

In current computer systems the interaction is headed towards non-contact devices. 
This means that the user is allowed to interact without physical contact with the 
machine; this communication can be carried out by voice or user gesticulation capture, 
known as perceptual user interface. We are specially interested in visual information, 
that recognizes the human presence in color video images. Also we would like to 
define a general, robust and efficient system that can be used with non-expensive 
cameras and digitalizing cards. 

The global process should detect a new user entering the system and analyse 
him/her to determine parameters such as hair color and clothes. Once the user who is 
going to interact with the machine has been detected, the system starts to track 
interesting regions such as the head, hands, trunk and joints, using information 
obtained in the user detection task. The input data for the gesture interpretation process 
are the position and orientation of these regions. This process will determine which 
gesture the user has carried out. Next, these gesture data are sent to the execution 
process, which ends the process by performing the action that has been specified, and 
so completing the feedback process. 
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Fig. 1. Overall System. Also diagram shows synchronization signals between processes. 

The initialization topic is a grouping field in research; some research obtains 
kinematical structures from monocular sequence [1]. In others, a generic humanoid 
model is used and adapted using 3D-scans, stereo or vision approaches [2, 3]. Finally, 
others carry out appearance initialization [4]. 

Many preceding projects have been developed in pose estimation; its main contri-
bution using Particle Filter was [5] that developed a full body tracking. A hierarchical 
stochastic sampling scheme was introduced by [6], it initially estimates trunk pose, 
propagates samples to estimate the rest of body parts. Other projects refine the search 
process by introducing gradient descent for local pose refinement [3], getting more 
accurate results. 

Our work involves user detection, taking measurements of the user, building a 3D 
model and finally tracking. The system detects the user, measures and builds a 3D 
model from one camera. The tracking process is performed by all cameras and 
splitting the problem in three Particle Filters, afterwards biomechanical restrictions 
dispose of bad configurations of Left Hand-Arm and Right Hand-Arm samples. 

In the following section, we explain the main method that detects the user in front 
of the camera and carefully explains the analysis process. Section 3 explains how 
measurements are taken and the 3D reconstruction module from two calibrated color 
cameras. In section 4 the tracking system is presented, it uses Particle Filter search in 
three steps to reduce computation time. Finally, we conclude with some results 
including a set of color images, conclusions and references. Figure 1 shows the 
overall system. 
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2   User Detection 

The inputs of the system are the images from two synchronized color cameras {γ1,γ 2}
for tracking process, but for user detection and measurements only one camera is used 
{γ1}. First, each image is segmented with the algorithm explained in [7] based on the 
Mumford-Shah segmentation functional, and is then analyzed to determine whether it 
is a user or not, as we can see below in a work related with this topic [8]. Once a user 
has been detected, the system studies him and obtains several parameters that will be 
useful in the tracking. By applying this process directly to the segmented images 
without using information from previous frames, the system is robust to background 
changes and variable illumination. The system obtains the upper torso configuration: 
shirt, hair, hands and face. The User detection process is waiting for a user located 
opposite the camera, with hands separated and at the same height that head, then it 
recognizes and later analyzes the user configuration. 

This module receives a segmentation of the captured image, it analyzes each region 
O, and it is marked as skin region if its RGB mean value is in a characteristic color 
range of skin. To achieve more homogenous regions, neighbouring skin regions are 
merged. This merging is carried out to avoid detecting a hand or the face in two 
neighbouring regions, following the merging criteria: 

i j i j i j i jO ,O /Neighbour(O ,O ) Skin(O ) Skin(O ) O O∀ ∧ ∧ ∪ (1)

where Neighbour(Oi, Oj) means that two regions are neighbours and Skin(Oi) means 
that it is a skin region. 

After of this merging process, we obtain a skin region set, called , where any pair 
of skin regions is separated.  

For all ordered set of three regions included in , we identify each one as face Z, 
left hand Y1 and right hand Y2, then we evaluate a criteria to determine whether this 
configuration is correct. 

{ }
, ,

( , , ) : , ,i j k i j k
i j k

Max O O O O O Oϕ β∀ ∈ (2)

The user detection function is called . In this function we take into account the 
following: 

− Central region, face, must be the biggest; 
− Lateral regions, hands, have a similar area; 
− Face region area A(Z) must be between a minimum Z- and a maximum Z+;
− Hands area A(Y1) and A(Y2) must be between a minimum Y- and a maximum Y+;
− Vertical position Y1 and Y2 should be similar and nearest possible to Z. 

The user detection function returns a value between zero and one that measures the 
likelihood that a user has been detected. From all possible combinations of Z, Y1 and 
Y2 the one with the greatest value is chosen as the best configuration. The Best 
configuration is discarded if it does not reach a minimum value. 

In order to apply the above algorithm, we need to fix the following values: a color 
range of skin to detect hand and face regions. To avoid high differences of hands we 
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include an area similarity criterion, a maximum size of hand area is also necessary. 
All these parameters are used in order to discriminate bad detections. 

All values are established in relation with camera to user distance and image 
resolution. This distance is predefined by the initial application setup. 

After a user has been detected, the same image is analyzed to determine hair and 
shirt color. The region proposed as hair, X is the upper neighbouring region of Z, if 
A(X) / A(Z) relation is greater than a ratio then the hair region is discarded and is 
considered that he/she is a bald user. 

To analyze the shirt, the following algorithm is applied. Initially, the shirt region W 
is the greatest region whose upper boundary is included in the boundary of Z (see 
figure 2). Afterwards, neighbouring regions of W are joined until Z is connected with 
Y1 and Y2 through W. At every step a region Ti is chosen for joining it to W tanking 
into account: color space distance between mean color of T and W, and distance in 
pixels from T to Y1 and Y2. With this process, the system detects a user and obtains 
useful data for the tracking system. 

Results of this step is a segmented image and a valid/invalid user detection. 

         

Fig. 2. Body Region Merging. Lower face region is considered as initial body region. Neigh-
bors regions are merged until hands are connected by body region. 

3   Measurement 

Once the user has been detected, the systems continue building a 3D-Model that will 
be used later for the tracking process. The 3D-Model is a 3D representation of hands, 
arms, forearms, trunk, head and neck. 

Hands are modeled as super-ellipsoids computed from its region, for user detection 
it is not necessary for user to wear long sleeves, but to build the 3D-Model it is 
necessary to split hands from arms. First, the elbow and shoulder 3D positions will be 
found to model the trunk, the upper arms and the forearms. 

3.1   Elbow and Shoulder Finder 

The localization of the elbow and shoulder joints is symmetrical for both sides, 
therefore we will only explain it for the right side. 

The first point located is the elbow. Each point in the boundary of the trunk (c) is 
scored as elbow candidate, the conditions are the following: 

− The straight line that joins point (c) with the upper point of the right hand in the 
image (m) must be inside the merged region of the right hand and trunk. In other 
words, this line can’t be outside the person; 

− The smoothed curvature of boundary in point (c) must be greater than 120º; 
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− If all conditions are true, point (c) is considered as a candidate and is scored with 
the distance from (c) to (m) multiplied by the cosine of its curvature. 

The candidate with highest score is taken as the right elbow point. See figure 3 
where (c) and (m) are drawn. 

Now, we compute the shoulder joint. The shoulder position is not as accurate as 
elbow due to the fact that it is not a boundary point. The shoulder is taking into 
account the arms finishing points, the line where the trunk starts and the lowest face 
point. 

We draw a straight line from the right elbow to the left elbow, to locate right 
shoulder; the algorithm covers this line’s distance from right to left, searching for a 
high change in distance from this line to boundary in the normal direction (down-
direction) to the line. 

Once the point in this line where the change is higher is found, we take this point 
as the perpendicular point to the right shoulder point. The shoulder point is located in 
normal direction to the line (up-direction) to the face height (lowest face point). 

3.2   Model of Segments 

Once the elbow and the shoulder joints have been detected, we can build a 3D-Model 
of the arms and forearms. These segments are modeled with super-ellipsoids except 
for the trunk, to differentiate the hand from the arm it is necessary that the user wears 
long sleeves, in this way, the arm is in the body’s region and not in hand’s region. 
With this restriction the right arm is taken as the body’s region part that is at the left 
side of the bisector of the lines that join elbow-hand and elbow-shoulder (left arm is 
symmetric); the bisector splits the arm and forearm. 

Fig. 3. 2D-Modelling from a single image (two good cases and a bad measurement detected 
case). 3D Reconstruction is carried out from one camera taking into account that user is located 
at same distance that calibrator object was. 

To model the forearm two more restrictions are imposed. Two new lines are 
obtained: two perpendicular lines that form a 45 degree angle with the elbow-shoulder 
line. The forearm is the body region part that is inside these three lines: the bisector 
and these two lines. 

The trunk is modelled as a 3D box, from the two elbows points to the distance of 
the two lower body boundaries. Two corners are elbow points, and the height is taken 

(m) 

(c)
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from the height obtained in the process that computes the elbow position as figure 3 
shows. Finally, the neck joint is modelled as a distance, the minimum distance from 
the shoulder to shoulder line and the face ellipse. Figure 3 shows all geometrical 
operations used to find interesting points and split regions. 

To solve scale factor problems we impose that the user must be at same distance as 
the calibrator object was. 

4   Tracking Process 

The tracking process starts in the first frame after user detection, and it is performed 
via Particle Filter using a matching function such as likelihood function, and using all 
cameras. The matching function takes into account the following visual cues: color 
and shape, also spatial constraints are applied to the human model. Pursuing real-time, 
the tracking process has been splited to reduce computation time. First, the search 
strategy is exposed, afterwards the matching function subsection explains how 
samples are measured, and finally the best solution is computed. See figure 1. 

4.1   Search Strategy 

The tracking problem is divided into minor problems to reduce computation time. 
Instead of an attempt to track all the body in one tracking process, three independent 
processes are carried out to track body-head, left hand-arm and right hand-arm. Also 
important concepts are used to guide this searching: biomechanical restrictions, time 
elapsed and collision detection. 

Computation time is reduced due to the number of samples needed to achieve good 
results, with only one tracking process the system would try to track 14 degrees of 
freedom, dof from now on (6 for the trunk, 3 for the left forearm, 1 for the left arm, 3 
for the right forearm and 1 for the right arm). With this division each process tracks a 
part of the body: 

− Trunk and Head: 6 dof 
− Left Arm: 6 dof 
− Right Arm: 6 dof 

Now, the overall system has 18 degrees of freedom, because we have introduced 
the possibility that the forearm separates from the body. Despite increasing the dof, 
dividing the problem in three tracking process reduces computation time because the 
number of samples needed is exponentially proportional to the dof (i.e. 214 in 
contraposition to 26+26+26 < 28). So, three particles filters are executed in parallel, one 
process for each object (Trunk-Head, Left Hand-Arm and Right Hand-Arm). 

We define a pose Ψ as a vector with the root joint configurations (T, L, R), where 
T, L and R are the matrix transformations for Trunk-Head, Left Hand-Arm and Right 
Hand-Arm respectively. 

Another benefit of increasing the dof is that shoulder is not fixed to the trunk; the 
shoulder is able to translate from trunk, this translation simulates the collar bone, so 
hands are able to reach more 3D space, and consequently is more realistic. 
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Fig. 4. Left structure is 14 dof, upper body is considered as only one hierarchical object. Right 
structure is the proposed solution, three independents objects (6 dof for object) with bio-
mechanical restrictions computed afterwards. 

The tracking process for arms is configured in a special way, since for applications 
hands have more information than arms. The root joint is the hand, and not the elbow 
as would be expected, with this approach we obtain better results when the hand is 
near the body. Due to this inverse configuration, the tracking process is more robust 
when arms and body colors are similar. Figure 4 shows upper body structure solution. 

4.2   Matching Function  

The matching function is composed of two parts: color comparison and shape 
comparison.  

For each segment, the color model is computed from initialization process. The 
segment s (3D box or super-ellipsoid graphical primitive) is projected in the image to 
evaluate a color matching function; each pixel is compared with the color model and 
scored as good (1) or bad pixel (0). Segments are projected as a sample of pixels, 
getting so good results as projecting the entire segment. Thus, for each segment s we 

obtain a value of a color matching m ( )i
colour sγ  where γi is the considered camera. For 

each segment color matching function returns the ratio of good pixels detected. 
The shape matching function uses the contours. To detect contour in the captured 

image uses Sobel operand, as a result we get an image, called Sobel-image. In a first 
approximation, segment contours are projected in Sobel-image and pixels are scored 
as good (1) or bad (0) if it’s coincident with a contour pixel in the Sobel-image. This 
function returns the percentage of pixels scored as good. This function has good 
results if the segment is just in the contour of the image, and it is very difficult 
because the real person shape is very deformable. Thus, if one pixel is scored as bad 
(0) we search in its normal direction (from near to far) the existence of a contour pixel 
in Sobel-image. (See figure 4). A pixel is evaluated with a value between 0 and 1, in 
relation to the distance to a contour in Sobel-image, more near to contour, greater 
value is assigned. So we obtain, for each segment s a shape matching function value 

m ( )i

shape sγ  that define the shape matching function. 
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Matching function is the contribution of the color matching function and the shape 
matching function from all the cameras. For each segment sj the matching value is 
defined as follows: 

{ }m( ) min m ( ) m ( )i i

i
j colour j shape js s sγ γ

γ ∈Η
= +  (3) 

where Η is a set of cameras, {γ1,γ 2} used in this work. 
Finally, for the set of segments of a pose Ψ we define the matching value 

1

m( ) m( )
N

j j
j

sδ
=

Ψ =  (4) 

where δj is a value representing the importance of the segment in the body. To 
improve accuracy in end-effectors, head and hands are considered more important 
than others. 

distance

normal 
direction 

Segment 
Contour 

Sobel-Image 
Contour  

Fig. 5. Left: 3D Box and Super-Ellipsoid Segments projected by Color Matching Function. 
Center: Projection of segments for Shape Matching Function. Right: Distance computed to 
score a pixel by Shape Matching Function. 

4.3   Compute Best Solution 

For each frame, { }i 1

N

i=
 it’s its poses set (that is the set of samples in the particle filter 

algorithm) and is ordered so that ( ) ( ) ( )j j j
1

N

i

p m m
=

=  satisfies 

( ) ( )j j+1p p j≥ ∀ , so ( ) ( )0 jp p≥  and ( )j
1

1
N

i

m
=

= . 

At each frame, the most probable sample Ψ1 is a good result but very unstable. To 
avoid instability, we substitute the most probable sample by we called “best solution” 

 that is computed obtaining the first k so that ( )j
1

k

i

p θ
=

≥  where θ ∈ [0,1] (and 
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has been set 0.1 empirically, 0 would be most probable sample, and 1 would be mean 

value of all samples), then: ( ) ( )j j j
1 1

1
,

k k

j j

p q p
q = =

= = .

To avoid non possible configurations, samples of left and right particles filters are 
checked with trunk-head tracking solution. The checking of samples must be done 
after the best solution for trunk-head is computed. For each sample the distance from 
the elbow 3D point to shoulder 3D point in trunk is computed, and this distance must 
be in a valid range near the length of the forearm, else the sample is considered as 
impossible, p(Ψj)=0. Also samples where collision between hand and head has been 
detected are impossible. Figure 1 explains the processes, the communication among 
them and their dependencies. 

5   Results 

In this section we show the results obtained in a test sequence.  

Fig. 6. The first and second columns are computed without biomechanical restrictions from 
camera γ1, γ2 respectively. The third and fourth columns correspond to camera γ1, γ2 and are 
computed with restrictions. From top to bottom are frames 51, 90, 150 and 250. Last row shows 
the improvement of biomechanical restrictions, right elbow joint position is right. Our best 
solution is displayed in green, red are mean solution, and blue are best particle solution. 
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Test sequence is ten seconds length and 30 frames/sec. User detection is carried out 
in frame 40, and user performs different movements, moving body, occluding one 
hand to other. The first and second columns are computed without biomechanical 
restrictions. The third and fourth columns are computed with restrictions. From top to 
bottom are different frames. Last row shows the improvement of biomechanical 
restrictions, right elbow joint position is right. 

Green background has had to be used due to the original background is wood color 
and is very similar to skin color, and never is used as chroma key color. 

6   Conclusions and Future Work 

We have presented a good method for perceptual user interface applications. Process 
involves user detection, take measurement of the user, building a 3D model and the 
3D tracking of interesting limbs: trunk, head, hands and arms. The matching function 
gives good results due to it using two matching criteria: shape and color matching 
functions. The divide and conquer technique improves performance, by splitting in 
three independent processes and later integrating information to dispose of bad 
configurations. However, it is necessary to improve yield to achieve real-time. Also 
we are planning to model segments with more accurate primitives and real texture 
obtained from initialization. More sophisticated searching criteria will be defined 
including more restrictions: time constraints, joint angles conditions. Over this work it 
is possible to build a gesture recognition system using provided data as 3D location 
and orientation of hands and head. 

This work has been subsidized by the national project TIN2004-07926 from the 
MCYT Spanish Government. Javier Varona acknowledges the support of a Ramon y 
Cajal grant from the Spanish MEC. 
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Gonzàlez, Jordi 110, 414, 424
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