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Abstract. Privacy1 violation has attracted more and more attention
from the public, and privacy preservation has become a hot topic in aca-
demic communities, industries and societies. Recent research has been
focused on purpose-based techniques and models with little considera-
tion on balancing privacy enhancement and performance. We propose
an efficient Privacy Aware Partial Index (PAPI) mechanism based on
both the concept of purposes and the theory of partial indices. In the
PAPI mechanism, all purposes are independent from each other and or-
ganized in a flatten purpose tree(FPT ). Thus, security administrators
can update the flatten purpose tree by adding or deleting purposes. In-
tended purposes are maintained in PAPI directly. Furthermore, based
on the PAPI mechanism, we extend the existing query optimizer and
executor to enforce the privacy policies. Finally, the experimental results
demonstrate the feasibility and efficiency of the PAPI mechanism.

1 Introduction

The privacy issue has currently become a critical one. Many privacy-aware ac-
cess control models [1, 11, 13] and specifications [10, 5, 18] have been proposed.
Especially the most recent Purpose-Base Access Control model (PBAC) [4, 2]
and Micro views [3] have been developed as feasible models and experiments
have demonstrated their efficiency. The core techniques, which are used in cur-
rent models, include query modification and privacy labelling relational (PLR)
data models derived from MLR [14]. However, the two approaches lead to lower
performance essentially: PLR increases disk IO and requires extra computing re-
sources for relevant labels; while query modification techniques rewrite a user’s
queries by appending extra predicates or nested queries, which increases opti-
mizing time, and probably leads to an inefficient executing plan.

An ideal solution to the privacy preservation problem would flexibly protect
donor sensitive information without privacy violation, and would incur minimal
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privacy enforcing overhead when processing queries. Motivated by this require-
ment, we propose a new technique, which avoids using both the query modi-
fication and PLR data models, to support privacy access control based on the
concept of purposes and the theory of partial indices. In our mechanism, we
develop a notion of Privacy Aware Partial Index (PAPI), by which privacy poli-
cies (i.e. intended purposes in PBAC) are stored and enforced efficiently. We
also extend Purpose Trees in PBAC into flatten purpose trees with address-
ing restrictions on Purpose Trees in PBAC. Our experimental results verify the
feasibility and efficiency of our model.

The rest of our paper is organized as follows. In Section 2, we summarize the
recent achievements in the privacy enhancing techniques pertain to purposes. In
Section 3, by extending the general partial index, we develop two notions which un-
derlie our research work. In next section, we illustrate how to maintain PAPIs, and
how to organize and manage intended purposes based on PAPI. In Section 5, based
on PAPI, we extend the traditional query processing engine to provide privacy en-
hancement. In Section 6, we introduce how to implement our PAPI mechanism,
and describe some experiments that demonstrate the efficiency and scalability of
our approach. Finally, we conclude the paper and outline future work.

2 Related Work

Privacy protection is related to many different areas in secure data manage-
ment. As described in Common Criteria (CC) [12], to implement a solid privacy
preserving data management system, we have to support at least the follow-
ing three security requirements: Access Control, Unobservability and linkabil-
ity. According to the above privacy preserving requirements, privacy enhancing
techniques can be classified into three categories: Privacy Aware Access Control
(PAAC) [4, 2, 11], Private Information Retrieval (PIR) [8] and Privacy Informa-
tion Inference Control (RIIC) [7]( k-anonymity technique [17] belongs to this
category).

Our work focuses on the PAAC technique for access control. The most recent
popular techniques in this field include privacy policy specification [10, 5, 18] ,
purpose specification and management [1, 4, 18] and privacy polices enforcement
models [4, 3]. In addition, we have used the following three core concepts in our
work: partial indices [16], query optimizer [15] and executing engines [9].

The Platform for Privacy Preferences(P3P) [18] by W3C enables users to
gain more control over the use of their personal information on web sites they
visit. And also, APPEL [5] by W3C and EPAL [10] by IBM provide a formal
way to define the privacy policies or usage preferences, but without detailed
specifications to enforce the policies in an information system or product, such
as DBMS.

Based on HDB [1], LeFevre etc. [11] presented a database architecture for
enforcing limited disclosure expressed by privacy polices based on their proposed
ten principles. They also suggested an implementation based on query modifi-
cation techniques. By extending the concepts of purposes in [18], Ji-Won Byun
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etc. [4, 2] presented a comprehensive approach to purpose management (called
purpose-based access control, PBAC for short), in which all the purposes are or-
ganized in a hierarchical way. In the PBAC model [4], they developed three
basic concepts: intended purposes, access purposes and purpose compliance.
Based on these concepts, they suggested an implementation for PBAC based
on the query modification technique and PLR derived from MLR [14]. In [2],
extended their previous work in [4] to the XML-oriented information system
and Object-oriented system, and proposed a systematical model to determine
the access purposes based on RBAC. In [3], Ji-Won Byun etc. go even further
on the purpose-based access control (PBAC) with incorporating generalization
techniques to enhance the privacy preservation.

As drawn from the above models, some open issues are listed below, which
have motivated us to seek more feasible and efficient solutions to enforce privacy
policies.

• Query Modification Techniques. Query rewriting always changes the
original queries by introducing some extra predicates or the nested queries, which
increase optimizing time and require extra computing time.

• Privacy Labelling Relational Data Model (PLR). PLR is adopted in
many models, which changes the standard relational data model by adding the
privacy labelling attributes [4] or choice columns [11]. This strategy will actually
increase the I/O cost and involve considerable extra computation against the
labels. Especially if there are many privacy-sensitive attributes in a relation, the
performance will be degraded drastically.

• Hierarchy Relationship Among Purposes. In [4], it is assumed that
all the purposes are predetermined. However, this assumption does not always
hold, especially in small organizations (which are project-oriented). The organi-
zational structures will change frequently in these project-oriented organizations,
leading the purpose tree being reshaped repeatedly because of the hierarchical
relationships among purposes. As a result, all intended purposes in the relation
have to be re-evaluated too. In addition, a non-leaf purpose is combinational
purpose, which consists of multiple nested purposes. If a donator allows her/his
information accessed for a purpose, then the information can also be used for its
nested purposes. So donators should have knowledge of the purpose tree or the
organizational structure. Obviously, it is very inconvenient for users to protecting
their sensitive data.

To address the above challenges, we have developed a privacy-aware query pro-
cessing mechanism based on partial indices to provide an efficient solution to the
above problems. In our model, we first adopt from [4] three concepts, namely
purpose,intended purpose and access purpose. We then avoid using the query
modification technique and discard the PLR data model. Finally, by transform-
ing a purpose tree PT [4] to a flatten purpose tree (FPT ) as shown in Fig.1,
all purposes in FPT are peers without hierarchical relationships. Thus DBA
can easily change purposes and reshape FPT without re-evaluating all intended
purposes.
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Fig. 1. Flatten Purpose Tree

Based on the concept of FPT , relevant concepts in [4], including purpose &
purpose tree, intended purpose, and access purpose, are redefined.

Definition 1. (Purpose and Flatten Purpose Tree) A purpose describes the rea-
sons for what data is collected or used. Purpose are organized in a flatten hi-
erarchical structure, referred to Flatten Purpose Tree (FPT ). Actually, all the
purposes are peer except the root purpose which is a virtual purpose.

Definition 2. (Intended Purpose) Let FPT be a flatten purpose tree and P be
the set of all purposes in FPT . An intended purpose, denoted by IP, is used to
describe usage granted by the donators, and it is {AIP −PIP}, where AIP ⊆ P
is a set of allowed intended purpose, and PIP ⊆ P is a set of prohibited purpose.

Example 1. Suppose AIP = {Admin, Direct}, P IP = {D Email} is defined
over FPT given in Fig.1. Then, intended purposes (IP) is evaluated as:
IP = AIP − PIP = {Admin, Direct}.

Definition 3. (Access Purpose) Let FPT be a flatten purpose tree. An access
purpose(AP), is the purpose for accessing data, and it is included in FPT .

Definition 4. (Access Purpose Compliance) Let FPT be a flatten purpose tree,
Let IP and AP be intended purpose and access purpose respectively. AP is said
to be compliant with IP, only if the following condition is satisfied: AP ∈ IP .

3 Purpose Aware Partial Indices

The concept and performance of partial indices are surveyed in [16], which illus-
trated that partial indices would lead to a great improvement of performance in
many scenarios, especially in distributed system. In traditional indexing schemes,
some of the columns are not indexed. A partial indexing scheme takes this one
step further, and some of the tuples are not indexing into the indexes.

In this paper, we propose a new approach to take privacy preservation tech-
niques further, called privacy-aware query processing based on the privacy aware
partial index (PAPI) which is an extension to the generalized partial index [16]
and is mainly used to store intended purpose and enforce privacy policies. For
complicated features in SQL (like, conjunctive or disjunctive Selection), we pro-
pose two kinds of PAPI to enforce the privacy policies efficiently: attribute-
oriented PAPI (APAPI) and tuple-oriented PAPI (TPAPI). And TPAPI is mainly
used to process non-conjunctive queries. Based on PAPI, our model can support
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both tuple-level and element-level privacy access control, and partial results for
queries are supported,too.

Definition 5. (Attribute oriented Privacy Aware Partial Index, APAPI) Let
R = {A1, A2, . . . , An} be a relation, P be the set of all purposes in FPT , and
Pk(∈ P) be a purpose. An APAPI(Ai, Pk) is a partial index defined on Ai, and
index the tuple tj(aj1, aj2, ..., aji, ..., ajn) (tj ∈ R) if and only if Pk ∈ IPji is
held (IPji is the intended purpose on aji in tj).
An APAPI(Ai, Pk)is defined as < key, CI, T ID >, where:

– key is the element aji for Ai which APAPI(Ai, Pk) is defined on.
– Compliance Indicator(CI) is a bit string {b1b2 . . . bn},the size of CI is

determined by the number of attributes in R. Given a tuple tj, ajh is an ele-
ment in tj with the intended purpose IPjh, then bh(j = 1, . . . , n) is assigned
according to the following rules:

• bh = 1, if and only if Pk ∈ IPjh is true, or there is no privacy protection
requirement for ajh;

• bh = 0, otherwise.
CI is mainly used to support the partial result of a query, which is different
from PBAC which filters out the whole tuples if any of its elements violate the
privacy policies. In CI, there are some reserved bits used for new appending
attributes in future.

– TID is the physical address locating a tuple uniquely and directly.

Table 1. Personal Information Table : PI Table

TID Name N L Gender G L Age A L
1 Jone Marketing Male Marketing 18 Analysis
2 Smith Profiling Male Analysis 34 Marketing
3 Alice Marketing Female Analysis 18 Marketing
4 Vincent Third Party Male Marketing 29 Third Party

Example 2. Given (PI Table) which records the personal information and will
be as an example throughout this paper. An APAPI, denoted as Name APAPI,
is created on the attribute Name for the purpose Marketing, and the last five
bits in its CI are the reserved bits. The result is shown in the Table 2.

Table 2. APAPI on PI Table Table 3. TPAPI on PI Table

Name N CI TID
Jone 110 00000 1
Alice 001 00000 2

N CI TID
110 00000 1
101 00000 3
010 00000 4

As we know, in traditional DBMS, it is difficult for an optimizer to choose
an index access method to access the relation on which has disjunctive selection
predicates, except few combinational indices. And in our model, the privacy
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policies are enforced in privacy aware query optimizer firstly by choosing optimal
and suitable PAPIs to access the relevant relation. So, when there exists an
disjunctive conditions on the base relation, the model probably fail to enforce
the privacy policies because the optimizer can not choose APAPIs to access this
relation under this scenarios. Fortunately, we introduce TPAPI, whenever we
can choose the TPAPI as the access method to a relation. Because a TPAPI is
independent from any attributes.

Definition 6. (Tuple oriented Privacy Aware Partial Index, TPAPI) Let R =
{A1, A2, . . . , An} be a relation,P be a set of purposes inFPT , andPk(∈ P) be a pur-
pose. A TPAPI(Pk) is a partial index to index the tuple tj(aj1, aj2, ..., aji, ..., ajn)
(tj ∈ R) if and only if there exists any element aji satisfying Pk ∈ IPji(IPji is the
intended purpose on aji in tj),at least. A TPAPI(Pk)is defined as < CI, T ID >,
where:

– Compliance Indicator(CI) is same to the counterpart defined in APAPI
– TID is the physical address locating a tuple uniquely and directly.

Example 3. The TPAPI, denoted as Name TPAPI, is created on PI Table
for the purpose Marketing, and the result is shown in the Table 3.

4 PAPI Maintenance and Intended Purpose Management

This section focuses on how to collect and store user data and designated privacy
policies (i.e. purposes) by donators. When users request some services, necessary
data is collected by terminals, like Web Browsers, according to P3P [18]. Users
provide the necessary personal information, and specify the usage type (intended
purpose, short for IP), thus the tuple < data, IP > is formed and transported
into the back-end privacy aware DBMS. Then, data is inserted into the relation,
and update the PAPIs according to IP.

4.1 Establishing Basic PAPIs

The objectives of PAPI include: 1) store the privacy policies completely; 2)
improve the processing performance of privacy-oriented query (in which users
designate access purposes) based on the feature of indices. And the former is
a fundamental and indispensable objective. We should ensure the completeness
for the privacy policies in PAPIs. It is equal to the question: how many PAPIs
should be created to store the privacy policies completely, or at least?

• PAPI Completeness. Given P is the set of purposes in FPT , P =
{P1, P2, . . . , Pm}, and a relation R defined as: R = {A1, A2, . . . , An}.

Theorem 1. Given P and R, and considering the APAPI only. For an at-
tributes Ai, at least m APAPIs have to be defined on it for m purposes respec-
tively to ensure the completeness.
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Proof . All the possible purposes are defined in FPT . Give an element elemi

in the tuple T for Ai , if its intended purpose (IPi) satisfies: IPi ∈ P , there
must exist an entry for T in the APAPI(Ai, Pk). If there is only (m-1) APAPIs
are defined, then there must exists a purpose Ph on which an APAPI (Ak, Ph)
is not defined. So if there certainly exists a tuple T ′ in which elem′

i for Ai can
used for Ph, then elem′

i will lose the privacy policy for Ph because of absenting
APAPI(Ak, Ph). So, we need to define m APAPIs on each purpose, at least.

Therefore, according to the Theorem 1, for a relation R with n attributes, we
have to create n ∗ m APAPIs totally to ensure the privacy completeness.

Theorem 2. Given P and R, and considering the TPAPI only. For R, m TPA-
PIs need to be defined for m purposes respectively to ensure the completeness.

Proof . According to the definition for TPAPI, and given a TPAPI(Pi), if a
tuple T including any element used for Pi at least, then there must exist an
entry for T in TPAPI(Pi). Obviously, if TPAPI(Pk) is not created, then tuple
for Pk cannot be located by TPAPIs. So m TPAPIs have to be maintained for
m purposes respectively.

For considering the complexity of SQL syntax and diversity of applications,
we maintain APAPI and TPAPI simultaneously to facilitate different kinds of
queries and applications.

So, given P = {P1, . . . , Pm} in FPT , and a relation R with n attributes,
we have to create n*m APAPIs, and m TPAPIs. These are demonstrated in a
matrix (X-coordinate for attributes, Y-coordinate for purposes) in Fig.2.

A1 A2 A3 ... AN-1 AN

PAPI TPAPI APAPI

P1 TPAPI1 APAPI11 APAPI12 APAPI13 ... APAPI1,N-1 APAPI1,N

P2 TPAPI2 APAPI2,1 APAPI2,2 APAPI2,3 ... APAPI2,N-1 APAPI2,N

P3 TPAPI3 APAPI3,1 APAPI3,2 APAPI3,3 ... APAPI3,N-1 APAPI3,N

... ... ... ... ... ... ... ...

PM-1 TPAPIM-1 APAPIM-1,1 APAPIM-1,2 APAPIM-1,3 ... APAPIM-1,N-1 APAPIM-1,N

PM TPAPIM APAPIM,1 APAPIM,2 APAPIM,3 ... APAPIM,N-1 APAPIM,N

Fig. 2. PAPI matrix for all basic PAPIs

4.2 Updating PAPIs

Updating PAPIs occurs in the following three cases: 1) update the relation R,
including insertion, update, and delete; 2)update the privacy policies on data
by donators; 3) update the flatten purpose tree FPT . We discuss how to adjust
the PAPIs to these changes.

Assuming that R contains n attributes, P includes m purposes, and each data
item can only used for one purpose (actually, one intended purpose may contain
several purpose).
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– Updating Relation. When a relation R is updated, associated PAPIs are
updated simultaneously, as general indices do.

– Updating Privacy Policies on Data. As a flexible privacy preserving
model, it has to facilitate donators to modify their privacy policies efficiently
and conveniently. In our model, when donators change privacy policies on
an element, four PAPIs have to be updated,(including two TPAPIs and two
APAPIs respectively).

– Updating FPT . If security administrator has to remove a purpose, they
just need to remove the relevant row in the matrix shown in Fig.2. Taking the
purpose P2 for example, if P2 is deleted, only the second row in the matrix
is deleted without any influence to the rest PAPIs. When a new purpose is
appended, only a new row is appended into the matrix.

4.3 Analysis of PAPI

The analysis focuses on PAPI selectivity which is defined as the number of
entries in each PAPI and its storage cost. The smaller the selectivity is,the
faster it will accelerate query processing. The analysis is based on the following
assumptions:

• Probability of an element used for a purpose is equal.
• Average number of intended purposes for each cell is denoted as l.
• R contains n attributes and c tuples, and P includes m purposes.

Selectivity
According to the above assumptions, given APAPI(Ai, Pi) and a tuple tj(aj1,
aj2, . . . , ajn) , the probability of aji used for Pi is l/m. So the probability of
indexing t in APAPI(Ai, Pi) is also l/m, and there are (l × c)/m entries on
average for APAPI(Ai, Pi).

As we know that the probability of aji used for Pi is l/m, while there are n
elements in a tuple t, and if all the attributes are independent from each other,
thus the probability of indexing t in TPAPI(Pi) is (n × l)/m according to the
definition of TPAPI. So, there are (n×l)×c/m entries for TPAPI(Pi) on average.

Storage Overhead
According to the above analysis, for an APAPI, there are (l × c)/m (c is cardi-
nality of R) entries. So, for n×m APAPIs, there are (n×m)× (l × c)/m entries
in all. And also there are (n × l) × c/m for each TPAPI, thus for m TPAPIs,
there are m× (n× l)× c/m entries in all. So, in a privacy-aware DBMS based on
PAPI mechanism, the number of all the indices entries in PAPIs (both APAPI
and TPAPI) sums to (n × m) × (l × c)/m + m × (n × l) × c/m = 2(n × c) × l.
While, in R, there are n∗c data cells, so the whole extra storage overhead is 2× l
times as the original table. So, the storage overhead is attributed to l, while l is
due to the specific applications.

From the above analysis, the selectivity for TPAPI on average is n times lower
than it for APAPI. So, the retrieval performance of TPAPI may be greatly lower
than that of APAPI theoretically.
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5 Privacy-Aware Query Processing Engine

This section mainly focuses on how to enforce privacy policies in query processing
engine. And we assume that user’s access purposes are authenticated. As we
known, a general query processing engine consists of two modules: optimizer
and executor. So, our efforts focus on extending existing optimizer and executor
to enhance privacy policies with incorporating PAPI mechanism.

5.1 Privacy Aware Query Optimizer (PAQO)

As described in [15, 9], the mechanism for a general query optimizer facility can
formulated briefly as: 1) choose two optimal access methods for each base rela-
tion firstly. One is the cheapest access method returning tuples in an interesting
order, another one is the cheapest access method without considering order; 2)
choose an overall optimal path (mainly considering the join orders), which is
generated by combining these optimal access methods based on dynamic plan-
ning algorithm, greedy algorithm, or genetic algorithm etc. Then, the optimal
path is passed into the executor in which tuples are processed one by one.

According to principles of the optimizer, in PAQO, the optimal access meth-
ods on each relation are restricted within these PAPIs which are created for the
access purpose indicated in users’ queries. So, when a plan is determined, privacy
policies are enforced at tuple level, because accessible tuples are pre-determined
by PAPIs. However, we don’t know which attributes can be accessed. This prob-
lem can be solved by the compliance indicator (CI) in PAPIs, CI need to be
checked in executor when accessing cells in tuples. That’s why we extend the
existing query executor.

5.2 Privacy Aware Query Executor (PAQE)

Through PAQO, the coarse privacy policies (PP) have been enforced. The fine-
grained PP enforcement is left for executor to check the compliance indicator
(CI) further and return the suitable partially incomplete result.

Without considering the inference violation, the fine-grained PP is enforced
according to below rules(called Loose Rules):

– Let tj{aj1, aj2, . . . , ajn} be a tuple, and CIj(bj1bj2 . . . bjn) is the CI.
– If bji(CI) = 1(i = 1, . . . , n), output the aji if necessary;
– If bji = 0, replace aji by NULL.

Example 4. Display the personal information used for Marketing.
Q2: SELECT * FROM PI Table WHERE Name=’Jone’ And Age=18;
The result for Q2 is displayed as in the Table 4.

Table 4. Result under Loose Rules Table 5. Result under Strict Rules

Name Gender Age
Jone Male NULL
Jone NULL 18

Name Gender Age
Jone NULL 18
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There is an inference violation from the result of Q2 in Table 4. The Q2’owner
can easily infer that age for Jone in the first row is also 18 and its intended
purposes do not include Marketing.

To avoid this inference disclosure, we find out selective attributes (SA) which
are used to filter out unqualified tuples in the relation R. With considering the
inference control, based on Loose Rules, Strict Rules for the fine-grained PP
enforcement are developed:

– Let tj{aj1, aj2, . . . , ajn} be a tuple, and CIj(bj1bj2 . . . bjn) is the CI.
– If bji(CI) = 1(i = 1, . . . , n), output the aji if necessary;
– If bji = 0

∧
Ai /∈ SA, replace aji by NULL.

– If bji = 0
∧

Ai ∈ SA, tj is discarded directly.

According the strict PP enforcing rules, SA for Q2 is { Name, Age}, and the
result for Q2 is shown in Table 5.

To summarize, privacy policies are enforced through two steps: coarse PP
enforcement which is fixed in privacy aware query optimizer (PAQO) and fine-
grained PP enforcement which is fixed in privacy aware query executor (PAQE).

6 Implementation and Experiments

6.1 Implementation on PostgreSQL

The implementation mainly involves the below aspects: purpose management,
PAPI maintenance, and extending query optimizer and executor.

Purposes are stored in a system catalog (called Pg Purpose) which is created
as a part of data dictionary (DD) when database is installed initially. DBAs can
create new purpose by extended DDL. And each purpose has a unique code.

In reality, purposes, in our implementation, can be considered as special priv-
ileges, and it will be granted or revoked as general privileges do. The access
purposes are granted to users firstly. If a user intends to access data for a pur-
pose, DBMS checks the access purpose against allowed access purposes in ACL.
If the access purpose is allowed, then the request is processed; else, rejected
directly.

Basic PAPIs are created automatically, when a relation is created, and auto-
matically establish dependency with target relations. The command for PAPIs
is extended from the standard command for the index. Maintenance for PAPIs
follows the paradigm for general indices. Besides, all PAPIs have to establish the
dependency on Pg Purpose, too. When any updates on FPT , cascading actions
will take effect on the corresponding PAPIs.

For the privacy aware query optimizer (PAQO), we only need to add a new
branch to support the privacy feature without influencing its original function.
When users submit privacy-oriented queries, the optimizer chooses optimal path
from those PAPIs defined for the access purpose.

According to PAQO, all tuples, which are indexed in PAPIs, can be accessed
for privacy-oriented queries. And PAQE enforces strict rules on cell level by
filtering out the unqualified tuples or suppressing tuple cells.
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6.2 Experimental Evaluation

The goal of our experiments is to investigate the feasibility and performance of
our mechanism. We mainly focus on comparing the performance against the two
traditional techniques, namely query modification techniques, labelling schema
(such as element-based labelling PBAC model), varying the number of attributes
accessed and privacy policies selectivity. Sequentially, we demonstrate the rela-
tionship between the performance of our model and different cardinalities. Fi-
nally, we analyze the storage overhead of our model.

Experimental Setup. The main experimental environment is configured as
below: CPU is Intel P4C with 1G DDR-400, Redhat Linux AS 4.0 is installed on
the machine, and PostgreSQL-7.43 is used as the RDBMS. Our PAPI mechanism
is implemented by extending the PostgreSQL-7.43, while the element-base PBAC
model is simulated: each attribute is entailed with two extra labels with the type
smallint, and the privacy policies enforcement function (i.e. Comp check(AP,
AIP, PIP)) is substituted by a simple predicate involving the two corresponding
labels. The tested data set is a version of large size tuples schema used in [6] .

Fig. 3. Mechanisms VS Performance Fig. 4. Selectivity and Performance

Fig. 5. PAPI and Element-based PBAC Fig. 6. Cardinality and Performance
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Response time is used as the metric to measure the performance. In our exper-
iments, the response time is referred to the retrieval time and a trivial counting
time by evaluating the standard aggregate function COUNT(). A sample of
queries used in the experiments is:

SELECT COUNT(unique1),COUNT(two),COUNT(unique2),
COUNT(four) FROM mtuples5;
Before we execute the target testing cases, we load the data set into memory as
possible as we can, and each testing case is run for ten times.

Experimental Results. In order to compare the performance of different tech-
niques, firstly we assume the selectivity of all data elements (for both actual
attributes and purpose labels) to be 100 percent, but vary the number of at-
tributes accessed in each query. The result shown in Fig. 3 demonstrates that
PAPI gains the best performance, and has a significant improvement against the
query modification technique and element-based PBAC model. Actually PAPI
mechanism introduces some extra overhead against the standard relational data
model (without any labels and PAPI’s indices), because the in PAPI mechanism,
it has to access the PAPI’s indices to locate every tuples whatever method the
tuples are accessed. Fig. 4 shows the performance of different techniques in case
of different privacy policy selectivity (i.e. the selectivity of data elements for
actual attributes is still 100 percent, but the selectivity of data elements for pur-
pose labels is variable), varying from 10 percent to 100 percent, and all testing
queries access the same six attributes. We learn that PAPI mechanism gains the
best performance in any selectivity, too.

As we know that element-base PBAC model will achieve a drastic improve-
ment on performance based on the functional index by pre-computing the given
function which is used to enforce the privacy policies. Fig.5 shows the compar-
ison between PAPI mechanism and element-base PBAC model(with indices).
And from the experimental results, PAPI mechanism also has a little better
performance, because in element-base PBAC model, each attribute are entailed
with two labels for AIP and PIP respectively, and thus the size of each tuple is
enlarged, directly leading to the longer accessing time in both memory and disks.
If using the functional index to accelerate PBAC model, it will achieve a signif-
icant improvement; unfortunately, it will not support the partially incomplete
result which is acceptable in some application environment.

Also, we investigate the scalability of our PAPI mechanism by considering dif-
ferent cardinalities. Fig.6 shows that the query processing cost merely increases
in a linear way against the cardinality.

7 Conclusions

In this paper, we summarize the recent achievements on purpose-based pri-
vacy enhancing techniques. Motivated by some problems in these techniques,
we propose a PAPI mechanism to facilitate the privacy policies enforcement by
extending the traditional query processing engine based on two concepts: at-
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tribute oriented privacy-aware partial index and tuple oriented privacy-aware
partial index. And intended purposes are efficiently maintained by PAPIs. Fi-
nally, through experiments, the feasibility and performance of PAPI mechanism
are demonstrated. We plan to design a privacy-aware DBMS based on PAPI
mechanism with incorporating other techniques, such as suppression, general-
ization and so on.
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