
D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 73 – 85, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Query Translation for Distributed Heterogeneous
Structured and Semi-structured Databases

Fahad M. Al-Wasil, N.J. Fiddian, and W.A. Gray

School of Computer Science
Cardiff University
Queen's Buildings

5 The Parade, Roath
Cardiff CF24 3AA

Wales, UK
{Wasil, N.J.Fiddian, W.A.Gray}@cs.cardiff.ac.uk

Abstract. The main purpose of building data integration systems is to facilitate
access to a multitude of data sources. A data integration system must contain a
module that uses source descriptions in order to reformulate user queries which
are posed in terms of the composite global schema, into sub-queries that refer
directly to the schemas of the component data sources. In this paper we propose
a method for this user query translation task to target distributed heterogeneous
structured data residing in relational databases and semi-structured data held in
well-formed XML documents (XML documents which have no referenced
DTD or XML schema) produced by Internet applications or human-coded.
These XML documents can be XML files on local hard drives or remote
documents on Web servers. Our method is based on mappings between the
master (composite) view and the participating data source schema structures
that are defined in a generated XML Metadata Knowledge Base (XMKB).

1 Introduction

Users and application programs in a wide variety of businesses today are increasingly
requiring the integration of multiple distributed autonomous heterogeneous data
sources [1, 2]. The continuing growth and widespread popularity of the Internet mean
that the collection of useful data sources available for public access is rapidly
increasing both in number and size. Furthermore, the value of these data sources
would in many cases be greatly enhanced if the data they contain could be combined,
"queried" in a uniform manner (i.e. using a single query language and interface), and
subsequently returned in a machine-readable form. For the foreseeable future, much
data will continue to be stored in relational database systems because of the
reliability, scalability, tools and performance associated with these systems [3, 4].
However, due to the impact of the Web, there is an explosion in complementary data
availability: this data can be automatically generated by Web-based applications and
Web services or can be human-coded [5]. Such data is called semi-structured data
(ssd) due to its varying degree of structure. In the domain of semi-structured data, the
eXtensible Markup Language (XML) is a major data representation as well as data
exchange format. XML is a W3C specification [6] that allows creation and

74 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

transformation of a semi-structured document conforming to the XML syntax rules
and having no referenced DTD or XML schema. Such a document has metadata
buried inside the data and is called a well-formed XML document. The metadata
content of XML documents enables automated processing, generation, transformation
and consumption of semi-structured information by applications. Much interesting
and useful data can be published as a well-formed XML document by Web-based
applications and Web services or by human-coding.

Hence, building a data integration system that provides unified access to
semantically and structurally diverse data sources is highly desirable to link structured
data residing in relational databases and semi-structured data held in well-formed
XML documents produced by Internet applications or human-coded [7, 8]. These
XML documents can be XML files on local hard drives or remote documents on Web
servers. The data integration system has to find structural transformations and
semantic mappings that result in correct merging of the data and allow users to query
the so-called mediated schema [9]. This linking is a challenging problem since the
pre-existing databases concerned are typically autonomous and located on
heterogeneous hardware and software platforms. In this context, it is necessary to
resolve several conflicts caused by the heterogeneity of the data sources with respect
to data model, schema or schema concepts. Consequently, mappings between entities
from different sources representing the same real-world objects have to be defined.
The main difficulty is that the related data from different sources may be represented
in different formats and in incompatible ways. For instance, the bibliographical
databases of different publishers may use different formats for authors' or editors'
names (e.g. full name or separated first and last names), or different units for prices
(e.g. dollars, pounds or euros). Moreover, the same expression may have a different
meaning, or the same meaning may be specified by different expressions. This
implies that syntactical data and metadata alone cannot provide sufficient semantics
for all potential integration purposes. As a result, the data integration process is often
very labour-intensive and demands more computing expertise than most application
users have. Therefore, semi-automated approaches seem the most promising way
forward, where mediation engineers are given an easy tool to describe mappings
between the integrated (integrated and master are used interchangeably in this paper)
view and local schemas, to produce a uniform view over all the participating local
data sources [10].

XML is becoming the standard format to exchange information over the Internet.
The advantages of XML as an exchange model - such as rich expressiveness, clear
notation and extensibility - make it an excellent candidate to be a data model for the
integrated schema. As the importance of XML has increased, a series of standards has
grown up around it, many of which were defined by the World Wide Web
Consortium (W3C). For example, the XML Schema language provides a notation for
defining new types of XML elements and XML documents. XML with its self-
describing hierarchical structure and the language XML Schema provide the
flexibility and expressive power needed to accommodate distributed and
heterogeneous data. At the conceptual level, they can be visualized as trees or
hierarchical graphs.

In [11] we proposed and described a System to Integrate Structured and Semi-
structured Databases (SISSD) through a mediation layer. Such a layer is intended to

 Query Translation for Distributed Heterogeneous SSD 75

combine and query distributed heterogeneous structured data residing in relational
databases with semi-structured data held in well-formed XML documents (that
conform to the XML syntax rules but have no referenced DTD or XML schema)
produced by Internet applications. We investigated how to establish and evolve an
XML Metadata Knowledge Base (XMKB) incrementally to assist the Query
Processor in mediating between user queries posed over the master view and the
underlying distributed heterogeneous data sources. The XMKB is built in a bottom-up
fashion by extracting and merging incrementally the metadata of the data sources. It
contains and maintains data source information (names, types and locations), meta-
information about relationships of paths among data sources, and function names for
handling semantic and structural discrepancies. The associated SISSD system
automatically creates a GUI tool for meta-users (who do the metadata integration) to
describe mappings between the master view and local data sources by assigning index
numbers and specifying conversion function names. From these mappings the SISSD
produces the corresponding XML Metadata Knowledge Base (XMKB), which is
capable of supporting the generation of queries to local data sources from user queries
posed over the master view. The GUI tool parses the master view to generate an index
number for each element and parses local schema structures to generate a path for
each element. Mappings assign indices to match local elements with corresponding
master elements and to names of conversion functions, which can be built-in or user-
defined functions. The XMKB is derived based on the mappings by combination over
index numbers.

We have proposed a generic mechanism to compute index numbers for the master
view elements. By applying this mechanism, a unique index number is generated for
each element in an XML document whatever the nesting complexity of the document.
We have also described several mapping cases between master view and local schema
structure elements (e.g. One-to-One, One-to-Many and Many-to-One) and how to
resolve structural and semantic conflicts that may occur between elements.

This system is flexible: users can assemble any virtual master view they want from
the same set of data sources depending on their interest. It also preserves local
autonomy of the local data sources, thus these data sources can be handled without
rebuilding or modification. The SISSD uses the local-as-view approach to map
between the master view and the local schema structures. This approach is well-suited
to supporting a dynamic environment, where data sources can be added to or removed
from the system without the need to restructure the master view. The XML Metadata
Knowledge Base (XMKB) is evolved and modified incrementally when data sources
are added to or removed from the system, without the need to regenerate it from
scratch.

This paper concentrates on the problem of querying a multiplicity of distributed
heterogeneous structured data residing in relational databases and semi-structured
data held in well-formed XML documents. The important aspect is to develop a
technique to seamlessly translate user queries over the master view into sub-queries -
called local queries - fitting each participating data source, by exploiting the mapping
information stored in the XMKB.

User queries are formulated in XQuery (a powerful universal query language for
XML) FLWR (short for For-Let-Where-Return) expressions and processed

76 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

according to the XMKB, by generating an executable (sub-) query for each relevant
local data source.

The rest of this paper is organized as follows. The next section presents related
work. The SISSD architecture and the internal architecture of its Query Processor
(QP) are described in section 3. Section 4 presents the structure, content and
organization of knowledge in the XMKB. Section 5 summarises the query translation
process in algorithmic form. Finally, we present conclusions in section 6.

2 Related Work

Data integration has received significant attention since the early days of databases. In
recent years, there have been several projects focusing on heterogeneous information
integration. Most of them are based on a common mediator architecture [12] such as
Garlic [13], the Information Manifold [14], Disco [15], Tsimmis [16], Yat [17], Mix
[18], MedMaker [19] and Agora [20]. The goal of such systems is to provide a
uniform user interface to query integrated views over heterogeneous data sources. A
user query is formulated in terms of the integrated view; to execute the query, the
system translates it into sub-queries expressed in terms of the local schemas, sends the
sub-queries to the local data sources, retrieves the results, and combines them into the
final result provided to the user. Data integration systems can be classified according
to the way the schemas of the local data sources are related to the global, unified
schema. A first approach is to define the global schema as a view over the local
schemas: such an approach is called global-as-view (GAV). The opposite approach,
known as local-as-view (LAV), consists of defining the local sources as views over
the global schema [21].

Now consider query processing. In the GAV approach, translating a query over the
global schema into queries against the local schemas is a simple process of view
unfolding. In the case of LAV, the query over the global schema needs to be
reformulated in terms of the local data source schemas; this process is traditionally
known as "rewriting queries using views" and is a known hard problem [22].

Projects like Garlic, Disco, Tsimmis, Mix, MedMaker and Yat all adopt the GAV
approach, and therefore do not compare directly to our system since we use the LAV
approach. Projects like the Information Manifold and Agora are integration systems
with a LAV architecture; however, in the Information Manifold the local and global
schemas are relational, while the Agora system supports querying and integrating data
sources of diverse formats, including XML and relational sources under an XML
global schema, but assumes explicit schemas for XML data sources.

SilkRoute [23] and XPERANTO [4, 24] focus on exporting relational databases
under an XML interface. Since the mapping is done from tuples to XML, these
projects adopt the GAV approach; also, they can only integrate relational data
sources. By contrast, our integration approach can handle diverse data sources (XML
and relational), not just relational. Also SISSD follows the Information Manifold and
Agora systems by adopting the LAV approach.

The LAV approach provides a more flexible environment to meet users’ evolving
and changing information requirements across the disparate data sources available
over the global information infrastructure (Internet). It is better suited and scalable for

 Query Translation for Distributed Heterogeneous SSD 77

Fig. 1. The SISSD Architecture

integrating a large number of autonomous read-only data sources accessible over
communication networks. Furthermore the LAV approach provides a flexible
environment able to accommodate the continual change and update of data source
schemas, especially suitable for XML documents on Web servers since these remote
documents are not static and are often subject to frequent update.

3 The SISSD Architecture and Components

In this section, we present an overview of the SISSD architecture and summarize the
functions of the main components. The architecture we adopt is depicted in Figure 1.
Its main components are the Metadata Extractor (MDE), the Knowledge Server (KS)
and the Query Processor (QP).

3.1 Metadata Extractor (MDE)

The MDE needs to deal with heterogeneity at the hardware, software and data model
levels without violating the local autonomy of the data sources. It interacts with the
data sources via JDBC (Java Database Connectivity) if the data source is a relational
database or via JXC (Java XML Connectivity) if the data source is an XML
document. The MDE extracts the metadata of all data sources and builds a schema
structure in XML form for each data source.

78 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

We developed JXC using a JDOM (Java Document Object Model) interface to
detect and extract the schema structure of a well-formed XML document (that
conforms to the XML syntax rules but has no referenced DTD or XML schema),
where the metadata are buried inside the data.

3.1.1 Schema Structures
Typically, the heterogeneous data sources use different data models to store their data
(e.g. relational model and XML model). This type of heterogeneity is referred to as
syntactic heterogeneity. The solution commonly adopted to overcome syntactic
heterogeneity is to use a common data model and to map all schemas to this common
model. The advantages of XML as an exchange model make it a good candidate to be
the common data model and for supporting the integrated data model. The metadata
extracts generated on top of the data sources by using this data model are referred to
as schema structures. We define a simple XML Data Source Definition Language
(XDSDL) for describing and defining the relevant identifying information and the
data structure of a data source. The XDSDL is represented in XML and is composed
of two parts. The first part provides a description of the data source name, location
and type (relational database or XML document). The second part provides a
definition and description of the data source structure and content. The emphasis is on
making these descriptions readable by automated processors such as parsers and other
XML-based tools. This language can be used for describing the structure and content
of relational databases and well-formed XML documents which have no referenced
DTD or XML schema.

For relational databases the MDE employs JDBC to access the DB without making
any changes to it. The MDE accepts the information necessary to establish a
connection to a DB to retrieve the metadata of its schema and uses the XDSDL to
build the target schema structure for that DB, together with necessary information
such as the DB location (URL), where to save the schema structure, the User ID and
Password.

It opens a connection to that DB through a JDBC driver. Opening this connection

enables SQL queries to be issued to and results to be retrieved from the DB. Once the
connection is established, the MDE retrieves the names of all the tables defined in the
accessed DB schema and then uses the XDSDL to define these tables as elements in
the target schema structure. Furthermore, for each table the MDE extracts and
analyses the attribute names, then defines these attributes as child elements for that
table element in the target schema structure using the XDSDL.

For XML documents the MDE employs JXC to access the document without
making any changes to it. The MDE accepts the information necessary to establish a
connection to a well-formed XML document to retrieve the metadata of its schema

 Query Translation for Distributed Heterogeneous SSD 79

where the metadata are buried inside the data. It then uses the XDSDL to build the
target schema structure for that XML document, together with necessary information
such as the document location (URL), where to save the schema structure, and the
document name.

It opens a connection to that XML document through a JDOM interface. Once the

connection is established, the JXC automatically tracks the structure of the XML
document, viz. each element found in the document, which elements are child
elements and the order of child elements. The JXC reads the XML document and
detects the start tag for the elements. For each start tag, the JXC checks if this element
has child elements or not: if it has then this element is defined as a complex element
in the target schema structure using the XDSDL, otherwise it is defined as a simple
element by the MDE. The defined elements in the target schema structure take the
same name as the start tags.

3.2 Knowledge Server (KS)

The Knowledge Server (KS) is the central component of the SISSD. Its function is to
establish, evolve and maintain the XML Metadata Knowledge Base (XMKB), which
holds information about the data sources and provides the necessary functionality for
its role in assisting the Query Processor (QP). The KS creates a GUI tool for meta-
users to do metadata integration by building the XML Metadata Knowledge Base
(XMKB) that comprises information about data structures and semantics. This
information can then be used by the Query Processor (QP) to automatically rewrite a
user query over the master view into sub-queries called local queries, fitting each
local data source, and to integrate the results.

3.3 Query Processor (QP)

The Query Processor (QP) is responsible for receiving a user query (master query)
over a master view to process it and return the query result to the user. The master
view provides the user with the elements on which the query can be based. The QP
gives flexibility to the user to choose the master view that he/she wants to pose his/her
query over and then automatically selects the appropriate XMKB that will be used to
process any query posed over this master view. The query language that our QP
supports is XQuery FLWR expressions. XQuery is the standard XML query language
being developed by the W3C [25]. It is derived from Quilt, an earlier XML query
language designed by Jonathan Robie together with IBM's Don Chamberlin, co-
inventor of SQL, and Daniela Florescu, a well-known database researcher. XQuery is

80 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

Fig. 2. Internal Architecture of the Query Processor

designed to be a language in which queries are concise and easily understood. It is
also flexible enough to query a broad spectrum of XML information sources,
including both databases and documents. It can be used to query XML data that has
no schema at all, or that is governed by a W3C standard XML Schema or by a
Document Type Definition (DTD).

XQuery is centered on the notion of expression; starting from constants and
variables, expressions can be nested and combined using arithmetic, logical and list
operators, navigation primitives, function calls, higher order operators like sort,
conditional expressions, element constructors, etc. For navigating in a document,
XQuery uses path expressions, whose syntax is borrowed from the abbreviated syntax
of XPath. The evaluation of a path expression on an XML document returns a list of
information items, whose order is dictated by the order of elements within the
document (also called document order).

A powerful feature of XQuery is the use of FLWR expressions (For-Let-Where-
Return). The for-let clause makes variables iterate over the result of an expression or
binds variables to arbitrary expressions, the where clause allows specification of
restrictions on the variables, and the return clause can construct new XML elements
as output of the query. In general, an XQuery query consists of an optional list of
namespace definitions, followed by a list of function definitions, followed by a single
query expression.

Supporting FLWR expressions for querying a master view makes it easy to
translate the sub-queries directed at relational databases into SQL queries since
syntactically, FLWR expressions look similar to SQL select statements and have
similar capabilities, only they use path expressions instead of table and column
names.

The internal architecture of the Query Processor (QP) is shown in Figure 2. It
consists of five components: XQuery Parser, XQuery Rewriter, Query Execution,
XQuery-SQL Translator, and Tagger. The core of the QP and the primary focus of

 Query Translation for Distributed Heterogeneous SSD 81

this paper is the XQuery Rewriter. This component rewrites the user query posed over
the master view into sub-queries which fit each local data source, by using the
mapping information stored in the XMKB. The main role played by each of the
components in Figure 2 is described below.

• XQuery Parser: parses a given XQuery FLWR expression in order to check it for

syntactic correctness and ensure that the query is valid and conforms to the
relevant master view. Also the parser analyses the query to generate an XQuery
Internal Structure (XQIS) which contains the XML paths, variables, conditions and
tags present in the query, then passes it to the XQuery Rewriter.

• XQuery Rewriter: Takes the XQIS representation of a query, consults the XMKB
to obtain the local paths corresponding to the master paths and function names for
handling semantic and structural discrepancies, then produces semantically
equivalent XQuery queries to fit each local data source. That is, wherever there is a
correspondence between the paths in the master view and local schema structures
concerned (otherwise the local data source is ignored).

• Query Execution: Receives the rewritten XQuery queries, consults the XMKB to
determine each data source’s location and type (relational database or XML
document), then sends each local query to its corresponding query engine, to
execute the query and return the results.

• XQuery-SQL Translator: Translates an XQuery query addressed to a relational
database into the SQL query needed to locate the result, then hands the query over
to the relational database engine to execute it and return the result in tabular format
through the Tagger.

• Tagger: Adds the appropriate XML tags to the tabular SQL query result to
produce structured XML documents for return to the user.

4 The Structure of the XMKB

The XML Metadata Knowledge Base (XMKB) is an XML document composed of
two parts. The first part contains information about data source names, types and
locations. The second part contains meta-information about relationships of paths
among data sources, and function names for handling semantic and structural
discrepancies. The XMKB structure is shown in Figure 3. The <DS_information>
element here contains data source names, types and locations. The <DS_information>
element has one attribute called number which holds the number of data sources
participating in the integration system (3 in the example shown). Also the
<DS_information> element has child elements called <DS_Location>. Each
<DS_Location> element contains the data source name, its type (relational database
or XML document) as an attribute value and the location of the data source as an
element value. This information is used by the Query Processor to specify the type of
generated sub-query (SQL if the data source type is relational database, or XQuery if
it is XML document) and the data source location that the system should submit the
generated sub-query to.

82 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

Fig. 3. A sample XMKB document

The <Med_component> element in Figure 3 contains the path mappings between
the master view elements and the local data source elements, and the function names
for handling semantic and structural discrepancies. The master view element paths are
called <source> elements, while corresponding element paths in local data sources
are called <target> elements. The <source> elements in the XMKB document have
one attribute called path which contains the path of the master view elements. These
<source> elements have child elements called <target> which contain the
corresponding paths for the master view element paths in each local data source, or
null if there is no corresponding path. The <target> elements in the XMKB document
have two attributes. The first one is called name and contains the name of the local
data source, while the second is called fun and contains the function name that is
needed to resolve semantic and structural discrepancies between the master view
element and the local data source element concerned, or null if there is no
discrepancy.

5 The Query Translation Process

From the foregoing descriptions of the SISSD Query Processor (QP) component
architecture (section 3.3) and the XML Metadata Knowledge Base (XMKB)
organization and contents (section 4), we are now in a position to summarise the
query translation (rewriting) process carried out at the heart of our system by the QP
module. We do so in algorithmic form as follows, c.f. Figure 2 earlier. The algorithm
is both conceptually simple and generally applicable. We have successfully
implemented and tested it on a variety of relational and XML data source integration
examples in our prototype SISSD system.

 Query Translation for Distributed Heterogeneous SSD 83

Algorithm. Master query translation process

Input: Master View, Master XQuery query q, and XMKB

Output: local sub-queries q1, q2…, qn

Step1: parse q;

Step2: get global paths g1, g2…., gn from Master View;

Step3: read XMKB;

Step4: identify the number of local data sources participating in the integration
 system, their locations and types;

Step5: for each data source Si do
 for each global path ge in q do
 if the corresponding local path le not null then
 get le;
 if the function name fe not null then
 get fe;
 end if
 else
 no query generated for this local data source Si ;
 end if
 end for
 replace g1 by l1 with f1, g2 by l2 with f2 ..., gn by ln with fn, in qi;
 if data source type is relational database then
 convert qi XQuery into SQL;
 end for

Step6: execute the generated local query qi by sending it to the corresponding local
 data source engine, and return the result, with XML tags added to SQL tables.

6 Conclusions

In this paper, we have described an approach for querying a multiplicity of distributed
heterogeneous structured data residing in relational databases and semi-structured
data held in well-formed XML documents (XML documents which have no
referenced DTD or XML schema) produced by Internet applications or human-coded.
These XML documents can be XML files on local hard drives or remote documents
on Web servers. Our method is based on mappings between the master view and the
participating data source schema structures that are defined in a generated XML
Metadata Knowledge Base (XMKB). The basic idea is that a query posed to the
integrated system, called a master query, is automatically rewritten into sub-queries
called local queries which fit each local data source, using the information stored in
the XMKB. This task is accomplished by the Query Processor module. Such an
approach produces a system capable of querying across a set of heterogeneous
distributed structured and semi-structured data sources. We have developed a

84 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

prototype system to demonstrate that the ideas explored in the paper are sound and
practical, also clearly convenient from a user standpoint.

As a result, our system can easily incorporate a large number of relational
databases and XML data sources from the same domain. However, most of the
existing data integration systems concerned with XML documents are interested in
documents that use DTD (Document Type Definition) or XML Schema language for
describing the schemas of the participating heterogeneous XML data sources. We
have investigated and used XML documents which have no referenced DTD or XML
schema, rather the schema metadata are buried inside the document data. This paper
has shown that querying a set of distributed heterogeneous structured and semi-
structured data sources of this form and in this way is possible; its relevance in the
Internet/Web context is readily apparent.

In addition to this, our Query Processor (QP) has been implemented using Java,
JDOM API, and the JavaCC compiler. It accepts FLWR expressions as an XML
query language, this is a subset of XQuery which supports the basic requirements of
our approach, particularly the uniform querying of heterogeneous distributed
structured (relational database) and semi-structured (well-formed XML document)
data sources.

References

1. Hu, G. and H. Fernandes, Integration and querying of distributed databases, in Proceedings
of the IEEE International Conference on Information Reuse and Integration (IRI 2003),
October 27-29, 2003: Las Vegas, NV, USA. p. 167-174.

2. Segev, A. and A. Chatterjee, Data manipulation in heterogeneous databases. Sigmod
Record, December 1991. 20(4): p. 64-68.

3. Funderburk, J.E., et al., XTABLES: Bridging Relational Technology and XML. IBM
Systems Journal, 2002. 41(4): p. 616-641.

4. Shanmugasundaram, J., et al., Efficiently Publishing Relational Data as XML Documents,
in Proceedings of the 26th International Conference on Very Large Databases
(VLDB2000), September 2000: Cairo, Egypt. p. 65-76.

5. Lehti, P. and P. Fankhauser, XML data integration with OWL: Experiences & challenges,
in Proceedings of the International Symposium on Applications and the Internet (SAINT
2004), 2004: Tokyo, Japan. p. 160-170.

6. World Wide Web Consortium, http://www.w3.org/TR/2004/REC-xml-20040204/.
Extensible Markup Language (XML) 1.0 W3C Recommendation, third edition, February
2004.

7. Gardarin, G., F. Sha, and T. Dang-Ngoc, XML-based Components for Federating Multiple
Heterogeneous Data Sources, in ER '99: Proceedings of the 18th International Conference
on Conceptual Modeling, 1999, Springer-Verlag. p. 506-519.

8. Lee, K., J. Min, and K. Park, A Design and Implementation of XML-Based Mediation
Framework (XMF) for Integration of Internet Information Resources, in HICSS '02:
Proceedings of the 35th Annual Hawaii International Conference on System Sciences
(HICSS'02) - Volume 7. 2002, IEEE Computer Society. p. 202-210.

9. Kurgan, L., W. Swiercz, and K. Cios, Semantic Mapping of XML Tags using Inductive
Machine Learning, in Proceedings of the International Conference on Machine Learning
and Applications - ICMLA '02. 2002: Las Vegas, Nevada, USA.

 Query Translation for Distributed Heterogeneous SSD 85

10. Young-Kwang, N., G. Joseph, and W. Guilian, A Metadata Integration Assistant
Generator for Heterogeneous Distributed Databases, in Proceedings of the Confederated
International Conferences DOA, CoopIS and ODBASE. October 2002, LNCS 2519,
Springer, p. 1332-1344.: Irvine CA.

11. Al-Wasil, F.M., W.A. Gray, and N.J. Fiddian, Establishing an XML Metadata Knowledge
Base to Assist Integration of Structured and Semi-structured Databases, in ADC '2006:
Proceedings of The Seventeenth Australasian Database Conference. January 16th - 19th
2006: Tasmania, Australia.

12. Wiederhold, G., Mediators in the Architecture of Future Information System. IEEE
Computer, March 1992. 25(3): p. 38-49.

13. Carey, M.J., et al., Towards heterogeneous multimedia information systems: the Garlic
approach, in RIDE '95: Proceedings of the 5th International Workshop on Research Issues
in Data Engineering-Distributed Object Management (RIDE-DOM'95). 1995, IEEE
Computer Society. p. 124-131.

14. Kirk, T., et al., The Information Manifold, in Proceedings of the AAAI Spring Symposium
on Information Gathering from Heterogeneous, Distributed Environments, p. 85-91.
March, 1995.: Stanford University, Stanford, CA.

15. Tomasic, A., L. Raschid, and P. Valduriez, Scaling access to heterogeneous data sources
with DISCO. IEEE Transactions on Knowledge and Data Engineering, 1998. 10(5): p.
808-823.

16. Ullman, J.D., Information Integration Using Logical Views, in ICDT '97: Proceedings of
the 6th International Conference on Database Theory. 1997, Springer-Verlag. p. 19-40.

17. Christophides, V., S. Cluet, and J. Simèon, On wrapping query languages and efficient
XML integration, in Proceedings of ACM SIGMOD Conference on Management of Data.
May 2000.: Dallas, Texas, USA.

18. Baru, C., et al., XML-based information mediation with MIX, in SIGMOD '99:
Proceedings of ACM SIGMOD International Conference on Management of Data. 1999,
ACM Press. p. 597-599.

19. Papakonstantinou, Y., H. Garcia-Molina, and J.D. Ullman, MedMaker: A Mediation
System Based on Declarative Specifications, in ICDE '96: Proceedings of the 12th
International Conference on Data Engineering. 1996, IEEE Computer Society. p. 132-141.

20. Manolescu, I., D. Florescu, and D. Kossmann, Answering XML Queries over
Heterogeneous Data Sources, in Proceedings of the 27th International Conference on Very
Large Data Bases (VLDB). September 2001: Rome, Italy.

21. Lenzerini, M., Data integration: a theoretical perspective, in Proceedings of the 21st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2002:
Madison, Wisconsin.

22. Levy, A., et al., Answering queries using views, in Proceedings of the 14th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 1995: San
Jose, CA, USA.

23. Fernndez, M., W.-C. Tan, and D. Suciu, SilkRoute: Trading between Relations and XML,
in Proceedings of the Ninth International World Wide Web Conference. May 15 - 19
2000: Amsterdam.

24. Shanmugasundaram, J., et al., Querying XML Views of Relational Data, in proceedings of
the 27th International Conference on Very Large Data Bases (VLDB). September 2001:
Rome, Italy.

25. World Wide Web Consortium, http://www.w3.org/TR/xquery/. XQuery 1.0: An XML
Query Language, W3C Working Draft, November 2003.

	Introduction
	Related Work
	The SISSD Architecture and Components
	Metadata Extractor (MDE)
	Knowledge Server (KS)
	Query Processor (QP)

	The Structure of the XMKB
	The Query Translation Process
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

