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Abstract. Composed Web service transactions executed in distributed
networks often require an atomic execution. Guaranteeing atomicity in
mobile networks involves a lot more challenges than in fixed-wired net-
works. These challenges mostly concern network failures, e.g. network
partitioning and node disconnection, each of which involves the risk of
infinite blocking and can lead to a high number of aborts.

In this paper, we introduce an extension to existing atomic commit
protocols, which decreases the time during which a resource manager
that is involved in a web-service is blocked. In addition, our proposal
reduces the number of sub-transaction aborts that arise due to message
loss or due to conflicting concurrent transactions by distinguishing re-
usable and repeatable sub-transactions from aborting sub-transactions.

1 Introduction

The use of Web service transactions within fixed wired network structures is sup-
ported by multiple specification languages, e.g. BPEL4WS [1] or BPML [2]. Es-
pecially when Web service transactions are composed of several sub-transactions,
it is often crucial that either all or none of the sub-transactions are executed.
Atomic commit protocols are a standard technique to meet this requirement,
i.e. for guaranteeing an atomic execution of nested transactions. However, in
the context of Web services, sub-transactions may be dynamically invoked and
therefore are not always known in advance. Approaches like the “WS-Atomic-
Transaction” standard ([3]) suggest using a modified 2-Phase-Commit-protocol
(2PC, [4]), where each dynamically invoked sub-transaction registers at the co-
ordinator by itself.

However, if parts of a Web service transaction should be processed within a
mobile ad-hoc environment where mobile participants are suspect to disconnects
and network partitioning may occur, the use of 2PC may lead to a long blocking
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time of mobile participants. Even if we assume the coordinator to be stable, a
database that disconnects while executing a transaction blocks the data that the
transaction has accessed until it gets the commit decision.1

In addition, a high number of disconnects and reconnects may lead to an un-
necessarily high number of aborts since timeouts for reconnections are hard to
estimate. Imagine a coordinator that waits for the last missing vote for commit.
If the coordinator waits too long, concurrent transactions that access conflicting
data cannot be processed. If the coordinator does not wait and aborts the trans-
action due to the missing vote, the database may reconnect just at this moment
and the transaction was superfluously executed and aborted. Since estimations
about message delivery times and transaction execution times within dynamic
mobile ad-hoc networks are often significantly different to the observed times,
the coordinator will very likely estimate wrong timeouts.

Solutions like timeout-based approaches ([5]) optimistically suggest to commit
a transaction and apply compensation transactions to undo in the case of abort.
However, since committed transactions can trigger other operations, we cannot
assume that compensation for committed transactions in mobile networks, where
network partitioning makes nodes unreachable but still operational, is always
possible. Therefore, we focus on a transaction model, within which atomicity is
guaranteed for distributed, non-compensatable transactions.

In this paper, we show how the suspend state can be used within 2PC to
not only reduce the blocking times of databases, but also to reduce the num-
ber of aborts and reuse existing results as far as possible. Section 2 describes
details of our assumed transaction model and introduces necessary require-
ments for guaranteeing atomic commit in a mobile environment. In Section
3, we propose a solution, which consists of the following key ideas: a non-
blocking state for transactions that are ready to vote for commit; a flexible
reaction to concurrency failures by distinguishing failures that require a trans-
action abort, failures that only require the repetition of a sub-transaction, and
failures that allow the reuse of a sub-transaction; and finally, we show how
a tree data structure that represents the execution status of all active
sub-transactions can be used by the coordinator to efficiently coordinate the
transaction.

2 Problem Description

This section describes our assumed transaction model and identifies the addi-
tional requirements that arise when using mobile devices within a transaction.
Finally, we describe the goal, i.e., to reduce both blocking and the number of
transaction aborts.

2.1 Transaction Model

Our transaction model is based on the Web Services Transactions specifications.
However, since we focus on the atomicity property, we can rely on a much sim-
1 Even validation-based synchronisation shows a blocking behavior, cf. Section 2.4.
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pler transaction model, e.g., we do not need a certain Web service modeling or
composition language like BPEL4WS [1] or BPML [2]. Therefore, we have de-
signed our transaction model to consist only of the following objects, that are
“application”, “transaction procedure”, “Web service”, and “sub-transaction”.
In the following, we explain how we understand these terms as well as their
relationship to each other.

An application AP can consist of one or more transaction procedures. A trans-
action procedure is a Web service that must be executed in an atomic fashion.
Transaction procedures and Web services are implemented using local code,
database instructions, and (zero or more) calls to other remote Web services.
Since a Web service invocation can depend on conditions and parameters, differ-
ent executions of the same Web service may result in different local executions
and different calls to other Web services.

An execution of a transaction procedure is called a global transaction T . We
assume that an application AP is interested in the result of T , i.e., whether the
execution of a global transaction T has been committed or aborted. In case of
commit, AP may be further interested in the return values of T ’s parameters.

The relationship between transactions, Web services, and sub-transactions is
recursively defined as follows: We allow each transaction or sub-transaction T to
dynamically invoke additional Web services offered by physically different nodes.
We call the execution of such Web services invoked by the transaction T or by
a sub-transaction Ti the sub-transactions Tsi . . . Tsj of T or of Ti, respectively.

Whenever during the execution of the global transaction T , a child or descen-
dant sub-transaction Ts of T , or T itself, invokes the sub-transactions T1 . . . Tn,
the atomicity property of T requires that either all transactions T, T1 . . . Tn com-
mit, or all of these transactions abort.

Since we allow dynamic Web service invocations, we assume that each Web
service only knows which Web services it calls directly, but not which Web
services are invoked by the called Web services. This means that at the end of
its execution, each transaction Ti knows which sub-transactions Tis1 . . . Tisj it
has called directly, but Ti, in general, will not know which sub-transactions have
been called by Tis1 . . . Tisj . Moreover, we assume that usually a transaction Ti

does not know how long its invoked sub-transactions Tis1 . . . Tisj will run.
We assume that during the execution of a sub-transaction, a database enters

the following phases: the read-phase, the coordinated commit decision phase, and,
in case of successful commit, the write-phase. While executing the read-phase,
each sub-transaction carries out write operations only on its private transac-
tion storage. Whenever the coordinator decides to commit a transaction, each
database enters the write phase. During this phase, the private transaction stor-
age is transferred to the durable database storage, such that the changes done
throughout the read-phase become visible to other transactions after completion
of the write-phase.

In the mobile architecture for which our protocol is designed, Web services
must be invoked by messages instead of synchronous calls for the following rea-
son. We want to avoid that a Web service Ti that synchronously calls a sub-
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transaction Tj cannot complete its read phase and cannot vote for commit before
Tj sends its return value. For this reason, we allow invoked sub-transactions only
to return values indirectly by asynchronously invoking corresponding receiving
Web services and not synchronously by return statements.2

T
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T
3

T
4

attend
soiree

rent tuxedo

organize
shipping

T
2

update list of 
participants

Fig. 1. The initiator I of a Web service trans-
action T and its sub-transactions T1 . . . T4

Since (sub-)transactions de-
scribe general services that do not
exclusively concern databases, we
also call the node executing a
sub-transaction resource manager
(RM).

The following example shows
the necessity of an atomic exe-
cution of transactions within our
transactional model:

Example 1. Assume a conference
participant decides to attend the
conference’s soiree and invokes
the corresponding Web Service. As shown in Figure 1, the corresponding global
transaction T , started by the Initiator I, invokes the Web Service for attend-
ing the soiree. The corresponding sub-transaction T1 then updates the partic-
ipant list by invoking sub-transaction T2 and detects that the participant has
not brought a tuxedo. Therefore, a tuxedo must be rented and T1 calls a sub-
transaction T3. To organize the shipping of the tux to the participant’s hotel, T3
calls the Web service T4 of a shipping company. It is obvious that no booking
component is allowed to fail: if the participant list is already full, if there are
no tuxedos available, or if the shipping company cannot deliver the tuxedo to
the participant on time, the participant cannot attend the soiree. Therefore, all
sub-transactions are required to be performed in an atomic fashion.

This example shows one characteristic of our Web service transactional model:
The Initiator and the Web services do not know every sub-transaction that is
generated during transaction processing.

Our model differs from other models that use nested transactions (e.g. [6],
[7], [3]) in some aspects including, but not limited, to the following: Since com-
pensation of a sub-transaction may not be possible if a mobile network is par-
titioned, we consider each sub-transaction to be non-compensatable. Therefore,
no sub-transaction is allowed to commit independently of the others or before
the commit coordinator guarantees – by sending the commit message – that all
sub-transactions will be committed.

2 However, if a synchronous call within Ti to Tj is needed, e.g. because Ti needs return
values from Tj , it is possible to achieve this behavior by splitting Ti into Ti1 and Ti2

as follows: Ti1 includes Ti’s code up to and including an asynchronous invocation
of its sub-transaction Tj ; and Ti2 contains the remaining code of Ti. After Tj has
completed its read phase, Tj performs an asynchronous call to Ti2 which can contain
return values computed by Tj that shall be further processed by Ti2.
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Different from CORBA OTS ([7]), we assume that we cannot always identify
a hierarchy of commit decisions, where aborted sub-transactions can be compen-
sated by executing other sub-transactions.

A Web service T may be programmed by using control structures, e.g. if
<Condition> then <T1> else <T2>. This means that resource managers exe-
cuting a Web service T may dynamically invoke other sub-transactions T1 . . . Tj .

We assume a message-orientated communication. This means that a Web ser-
vice does not explicitly return values but may pass parameters to other invoked
Web services which perform further operations based on these results.

2.2 Requirements

Besides the main requirement to design an atomic commit protocol for guar-
anteeing the atomic execution of non-compensatable Web service transactions
including sub-transactions in mobile networks, we identified the following addi-
tional requirements especially for mobile network protocols.

A resource manager failure or disappearance may occur at any time. This,
however, must not have blocking effects on other resource managers.

A general problem when guaranteeing atomicity for transactions that are non-
compensatable is that participating resource managers are blocked during pro-
tocol execution. The time that a distributed sub-transaction remains in a state
within which it waits for a commit decision can be much longer in dynamic mo-
bile environments than it is in fixed-wired networks, since link failures and node
failures occur significantly more frequently. Furthermore, each sub-transaction
Tsi of a transaction T running on a resource manager RM that resides in a block-
ing state also involves the risk of the infinite blocking of other sub-transactions
of T and sub-transactions of other transactions running on RM. Therefore, we
need efficient mechanisms to reduce the time that a resource manager is in a
blocking state and to unblock sub-transactions if other resource managers do
not respond.

Within mobile networks, message delay or message loss is no exception. In
case that the vote message of a resource manager is lost or delayed, traditional
protocols like 2PC either wait until the missing vote arrives and block all partic-
ipating resource managers in the meantime, or they abort the transaction which
thereafter can be repeated as a whole. Nevertheless, a lost vote differs from an
explicit vote for abort. On one hand, a general abort may not be necessary for
many sub-transactions, especially if there is no other concurrent transaction that
tries to get a lock on the same data that the sub-transactions are accessing. On
the other hand, if there are concurrent transactions that try to access data in
a conflicting way, an abort is necessary for processing these concurrent transac-
tions. Therefore, a requirement is to abort as few transactions as necessary.

There are situations, especially when network partitioning occurs, where
blocking is proven to be unavoidable until the network is reconnected again
([8]). Of course, our solution cannot avoid this blocking, but it should reduce
the chance that resource managers are blocked by minimizing the time period
during which a failure could have a blocking effect on the resource managers.



64 S. Böttcher, L. Gruenwald, and S. Obermeier

Our contribution should be an extension to existing atomic commit protocols,
such that a concrete protocol can be chosen depending on the applications’ needs.

Our protocol extension should use previous results to the greatest possible
extent, so that an unnecessary repetition of a sub-transaction can be avoided in
as many cases as possible.

It should be possible that the user can abort a transaction as long as the
transaction has not been globally committed.

2.3 Further Assumptions

Our atomic commit protocol extension is based on the following assumptions:
In case of resource manager failure, the atomicity property requires the fol-

lowing: Whenever a resource manager RMi is unreachable after the commit
decision on a transaction T was reached, i.e. RMi has failed or is separated from
the network for an indefinitely long time, it is not a violation of the atomicity
constraint if RMi has not executed its sub-transaction Ti of T . However, if the
resource manager RMi recovers and returns to the network, RMi must immedi-
ately execute or abort Ti, depending on whether the commit decision on T was
commit or abort, before further participating in the network.

We assume that at least some (sub-)transactions are non-compensatable. We
claim that this is a realistic assumption for mobile environments. Even in our
simple example given above (Example 1), some sub-transactions (e.g. T3 and
T4) can be considered to be non-compensatable since many of today’s rental or
shipping companies demand expensive cancellation fees. We cannot tolerate a
commit protocol which must repeatedly change or cancel contracts.

An aborted (sub-) transaction cannot be compensated by the invocation of a
different sub-transaction; in contrast to Corba OTS ([7]), in which a hierarchy
of commit decisions allows this kind of compensation.

The stability of the coordinator process itself is not a topic of this proposal.
There are many contributions that handle coordinator failures, e.g., by running
special termination protocols or by increasing coordinator availability with mul-
tiple coordinators (e.g [9], [10], or [11]). We only propose an improvement which
is compatible to each of these commit protocols. The concrete protocol can be
chosen depending on the desired coordinator stability. Therefore, we do not
discuss coordinator failure in this contribution.

2.4 Blocking Behavior of Locking and Validation

For synchronization of concurrent transactions in fixed-wired networks, valida-
tion is usually considered to be a scheduling technique that avoids blocking.
However, we argue that even validation-based synchronization shows a blocking
behavior if used in combination with an atomic commit protocol. More precisely,
in case of link failures or node failures, locking and validation are equivalent re-
garding their blocking behavior in the following sense. Assume a sub-transaction
Ti, reading the tuples t(R, Ti) and writing the tuples t(W, Ti), has voted for com-
mit and is waiting for a global commit decision.
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Two-phase locking would not allow any sub-transaction Tk with t(W, Ti) ∩
(t(W, Tk) ∪ t(R, Tk)) �= ∅ to get the required locks and would therefore block Tk

and prevent the completion of Tk´s read phase.
Validation (e.g. [12]) would allow any later sub-transaction Tk with t(W, Ti)∩

(t(W, Tk) ∪ t(R, Tk)) �= ∅ to enter the read phase. However, since the tuple sets
t(W, Ti) and (t(W, Tk) ∪ t(R, Tk)) are not disjoint, validation aborts Tk during
its validation phase and thereby prevents Tk to enter its write phase.

This means that both techniques show a similar behavior when dealing with
atomic commit decisions for mobile networks: A transaction Ti that has voted
for commit, is waiting for a global commit decision, and has accessed the tuples
t(W, Ti) ∪ t(R, Ti) prevents other sub-transactions Tk to gain access to the same
data. This means that Ti prevents Tk from being committed while Ti only waits
for the commit decision.

To reduce both, the blocking time and the probability of an abort, our solution
distinguishes between two states within which a transaction waits for the global
commit decision: Besides a blocking state “wait for global commit”, we introduce
the non-blocking “suspend state”.

3 Solution

In the following, we describe the solution to the requirements, i.e., how to guar-
antee atomicity for Web service transactions and how to reduce the time of
blocking and the number of transaction aborts compared to standard protocols
like 2PC or 3PC. To reduce the time of blocking to a minimum extent, we distin-
guish between two states where a transaction is waiting for a commit: a blocking
state (defined in Section 3.1) and a new non-blocking suspend state (introduced
in Section 3.2). In Section 3.3, we explain how the suspend state can be used
to reduce the number of transaction aborts and how previous results can be
reused to a maximum extent. Finally, Section 3.5 explains by means of a “com-
mit tree” how the coordinator learns of all sub-transactions that are dynamically
invoked.

3.1 The Wait for Global-Commit State

We define the wait for global-commit state for the sub-transaction Ti reading
the tuples t(R, Ti) and writing the tuples t(W, Ti) in the following way:

Definition 1. The wait for global-commit state of Ti is a state in which a re-
source manager waits for a final decision of a commit coordinator on Ti to
commit and blocks the tuples t(W, Ti) ∪ t(R, Ti). If another transaction Tk is
executed while Ti is in the wait for global-commit state, Tk is not allowed to
write on the tuples t(R, Ti), and it is not allowed to read or to write on the
tuples t(W, Ti). The concurrent transaction Tk must wait until Ti is back in
the suspend state or is committed or aborted and Ti has unlocked t(R, Ti) and
t(W, Ti).
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3.2 The Non-blocking Suspend State

While waiting for the transaction’s commit decision, protocols like 2PC or 3PC
remain in a wait state and block the client that has voted for commit ([13], [4]).
To reduce the duration of this blocking, our protocol extension suggests an ad-
ditional suspend state, such that a transaction waiting for the global transaction
decision can be in either of two states: in the non-blocking suspend state or in
the blocking wait state.

For each sub-transaction Ti, let t(R, Ti) denote the data read by Ti and
t(W, Ti) denote the data written by Ti. Then, we define the suspend state for
the sub-transaction Ti in the following way:

Definition 2. The suspend state of Ti is a state in which the resource manager
RM executing Ti waits for a decision of the commit coordinator on Ti, but does
not block the tuples t(W, Ti) ∪ (R, Ti).

If another transaction Tk is executed while Ti is suspended, RM checks whether

t(W, Ti) ∩ (t(R, Tk) ∪ t(W, Tk)) �= ∅ or t(R, Ti) ∩ t(W, Tk) �= ∅

If this is the case, there is a conflict between Ti and Tk, and therefore, RM locally
aborts Ti and can either abort the global transaction T or try a repeated execution
of the sub-transaction Ti.

3.3 Using the Suspend State to Reduce the Number of Aborts

suspend

commit

wait for global 
commit (block)

abort

pre-vote
sent

coordinator: 
send vote!

coordinator: 
commit!

abort
sent

coordinator: 
suspend!

coordinator: 
abort!

read-phase

abort
sent

re-
peat

invokeSubTransaction

Fig. 2. Automaton showing the states and the re-
ceived messages of a resource manager

Figure 2 shows an automa-
ton that demonstrates all pos-
sible state transitions of a
resource manager. Each re-
source manager enters the
suspend state after having
executed its read-phase and
having sent a pre-vote mes-
sage on the successful com-
pletion of the sub-transaction
to the commit coordinator.
The commit coordinator con-
siders this pre-vote as a vote
that does not bind the re-
source manager to a com-
mit decision; instead, it only
shows the resource manager’s
successful completion of the
read-phase. Note that in comparison to 3PC, a resource manager is not bound
to its pre-vote, but may still decide to abort the transaction as long as it is in
suspend state. Similar to 2PC and 3PC, whenever a resource manager decides
to abort a sub-transaction, it informs the coordinator, which then sends abort
messages to the global transaction and all its other sub-transactions.



Reducing Sub-transaction Aborts and Blocking Time 67

When the coordinator has received the pre-votes of all resource managers,
i.e., all resource managers have pre-voted for commit, the coordinator demands
the resource managers to vote on the commit status of the transaction. This
vote, in contrast to the pre-vote, is binding and the resource managers proceed
to a blocking state where they wait for the global commit decision, i.e., the
resource managers are not allowed to abort the transaction themselves while
in blocking “wait for global-commit” state. The second collection of votes is
needed because a resource manager may come to the decision to abort the sub-
transaction while waiting in the suspend state. The coordinator collects these
binding vote decisions on the sub-transactions and returns “abort” to the sub-
transactions, if at least one RM’s vote on its sub-transaction was “abort”, and it
returns “commit” to the sub-transactions, if it received the binding votes of all
sub-transactions and all sub-transactions voted for commit. If the coordinator
determines that vote messages are missing after a certain time, it can advise
the RMs to put their sub-transactions back to the non-blocking suspend state
instead of committing or aborting the sub-transaction. Note that this reduces
the number of aborts compared to time-out-based 2PC, in which the coordinator
decides to abort a transaction if votes do not arrive before time-out.

After a resource manager has successfully finished its read-phase, it sends
the pre-vote message to the coordinator and proceeds to suspend. The resource
manager waits in this non-blocking state until one of the following events occur:

• the coordinator demands the vote on the sub-transaction or
• the coordinator aborts the sub-transaction or
• a concurrent transaction causes an abort or a repetition of the sub-transac-

tion due to access conflicts on the tuples accessed by the sub-transaction.

After sending its vote to the coordinator, each resource manager proceeds to
the “wait for global-commit state”. Since it is now bound to its votes, concurrent
transactions are blocked until the coordinator either decides on commit or abort
or, after a timeout caused by missing votes, advises the sub-transaction to go
into the suspend state again.

In case that the user or the application program wants to abort the transac-
tion, the initiator sends an abort message to the coordinator, which is allowed
to abort the transaction anytime before the commit decision is reached.

The benefit of the suspend state lies in the reduction of blocking to only those
cases where all pre-votes are present at the coordinator and all are commit.
Even then, blocking only occurs for one message exchange cycle, i.e., while the
coordinator asks for and retrieves the binding votes. Our protocol definition
implies that all resource managers are able to give their vote on the transaction
immediately. If, however, not all resource managers respond immediately, the
coordinator may again advise the resource managers to go into suspend state
while waiting for the missing votes.

2PC, in contrast, blocks a resource manager from the time when it finishes
its read-phase, i.e., when it is ready to vote for commit, until the time when it
receives the commit decision. The more the duration of the read-phases varies
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for different sub-transactions belonging to the same global transaction, the more
the suspend state reduces the blocking time compared to 2PC.

In addition, in our protocol resource managers may fail or disappear without
having a blocking effect on other sub-transactions, while in 2PC, in case of a
resource manager failure before reaching a commit decision, the participants are
blocked until the transaction is aborted due to timeout. Since timeouts must
be sufficiently long to allow the execution of all sub-transactions in 2PC, the
blocking time can be significantly long. However, if final votes are missing or de-
layed in our protocol extension, the coordinator can advise the sub-transactions
to go into the non-blocking suspend state after a very short timeout, and sub-
transactions do not have to stay in a blocking state until all resource managers
have reconnected and voted.

3.4 Abort and Repetition of Sub-transactions

The second key idea of the suspend state, besides reducing the time of blocking,
is to reduce the number of transaction aborts. For this purpose, we distinguish
three different cases that arise due to an abort of a sub-transaction Ti.

1. Ti cannot be restarted because Ti is not committable or shall not be repeated
anymore.

2. Ti is restarted and invokes the same sub-transactions Tsi . . . Tsj with the
same values for the actual parameters Psi . . . Psj during the repeated execu-
tion of the read-phase. This case includes the situation where both executions
of the sub-transaction do not invoke any other sub-transaction.

3. Ti is restarted, i.e. executed as T ′
i , and T ′

i invokes different sub-transaction
calls during execution of its read phase. In this case, the sub-transactions
called by Ti and T ′

i or their parameter values differ.

Only the first case requires the global transaction to be aborted, whereas the
other types of sub-transaction abort can be solved by a repetition of the aborted
sub-transaction Ti, which may involve calls to other sub-transactions Tsi . . . Tsj

as well. Now, we discuss each of these three cases in more detail.

Ti cannot be Restarted. There are different reasons why a restart of an
aborted transaction does not make sense:

• the transaction abort is caused by the user,
• the commit coordinator requires Ti to abort because another sub-transaction

belonging to the same global transaction T required T to abort,
• the abort is caused by the execution of Ti on a resource manager RM itself,

i.e., the result of running Ti on RM is that Ti cannot be committed.

In each of these cases, Ti and the global transaction T must be aborted. Note
that although we have a hierarchy of invoked sub-transactions, we do not have
a hierarchy of commit decisions: If a leaf node is not able to repeat the aborted
sub-transaction with a chance of commit, it must vote for abort and the complete
transaction T must be aborted and started again.
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Restart with Identical Sub-transaction Calls and Parameters. The
restart of a sub-transaction Ti is useful if Ti is in suspend state and a con-
current transaction Ck accesses at least one tuple accessed by Ti in a conflicting
access mode. The resulting abort of Ti does not necessarily mean that the whole
transaction T , of which Ti is a sub-transaction, must be aborted and restarted.
Instead, we monitor which sub-transactions Tsi are called by Ti with which pa-
rameters Psi

3 for each transaction Ti. Whenever Ti has called Tsi with parame-
ters Psi, and T ′

i , i.e. the restarted version of Ti, needs to call a sub-transaction
T ′

si with exactly the same parameters P ′
si, i.e. P ′

si = Psi, we have the following
optimization opportunity: We can omit a new invocation of Tsi for the following
reason. If Tsi is still in suspend state, the result of a new execution of Tsi will
be the same. If, however, the tuples accessed by Tsi change and Tsi leaves the
suspend state, the resource manager that executes Tsi detects this conflict and
starts T ′

si as the repeated execution of Tsi. The same argument applies to all
sub-transactions that Tsi has called. Since a sub-transaction does not directly
return values, but calls receiving Web services instead, T ′

i is not affected by the
time when T ′

si is executed.
Therefore, the repeated invocation of a previously called sub-transaction Tsi

can be omitted in the execution of T ′
i if the invocation parameters Psi have not

changed. In this case, we call Tsi a re-used sub-transaction.
After T ′

i has executed its read-phase, the resource manager again proceeds
to the suspend state. However, if the coordinator message to give a vote on the
transaction arrives while RM still executes T ′

i , RM can inform the coordinator
to unblock other waiting resource managers until the repetition is completed.

To summarize, if all sub-transaction calls are re-used or if no sub-transaction
was invoked, a renewed sending of the pre-vote is not necessary and the resource
manager can continue as in the first execution.

Restart with Different Sub-transaction Calls and Parameters. If we
allow repetition, a problem may arise if the invoked sub-transactions Tsi . . . Tsj

differ in a repeated execution of a sub-transaction Ti. Therefore, a resource
manager not only remembers invoked sub-transactions, but also the invocation
parameters Psi . . . Psk.

If Ti is restarted as T ′
i and needs to invoke the sub-transactions T ′

si . . . T ′
sj , it

checks whether it can re-use the sub-transaction calls Tsi . . . Tsj of Ti. If this is not
the case or if some calls are different, those sub-transactions T ′

si . . . T ′
sj that do

not find re-usable sub-transactions must be executed again. Furthermore, a sub-
transaction Tsi which is no longer needed for the execution of T ′

i can be locally
aborted. A local abort of Tsi means that Tsi and all of its sub-transactions are
aborted, but the global transaction T and all other sub-transactions not being a
descendant of Tsi are not aborted. The advantage is that the global transaction
T and all other sub-transactions of T do not have to be repeated.

Furthermore, the sub-transaction T ′
si now belongs to T and the coordinator

must be informed to wait for the pre-vote of this newly invoked sub-transaction
3 The parameters include the name of the transaction procedure or web-service and

all its actual parameters.
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T ′
si instead of waiting for Tsi. This information is passed from Ti to the coor-

dinator by a renewed sending of the pre-vote with updated parameters to the
coordinator at the end of the sub-transaction execution of T ′

i .
In addition, a resource manager that is going to restart a sub-transaction

Ti can inform the coordinator about this restart, so that a possible abort vote
of a descendant sub-transaction Tsi will not cause an immediate global abort.
Instead, the coordinator can wait for the pre-vote of T ′

i , i.e. the restarted version
of Ti, to check whether Tsi is still needed at all.

3.5 The Coordinator’s Commit Tree

The coordinator’s commit tree is a data structure that allows the coordinator to
determine which votes are missing for a commit decision. The tree structure is
used to represent dependencies between sub-transactions.

To ensure that the commit tree gets knowledge of all invoked sub-transactions
belonging to T , we require that each pre-vote message, sent by a sub-transaction
Ti to the coordinator, not only contains the commit vote, but also informs
the coordinator about all sub-transactions Ts1 . . . Tsk that are called by Ti.
The coordinator then creates the nodes Ts1 . . . Tsk and adds these nodes as
child nodes of the commit tree node containing Ti. Since the coordinator needs
the pre-votes of all commit tree nodes, it must also wait for the pre-votes of
Ts1 . . . Tsk.

When a resource manager has repeated the execution of a sub-transaction
Ti as T ′

i according to Section 3.4, the resource manager sends a renewed pre-
vote to the coordinator, which includes the invoked sub-transactions T ′

si and
the IDs of the re-used sub-transactions T reused

si . The coordinator then replaces
the subtree with root node Ti with T ′

i . Each sub-transaction Tj ∈ Tsi that is
not needed anymore, i.e. Tj /∈ T reused

si , is locally aborted and deleted from the
commit tree. The re-used sub-transactions T reused

si and the new sub-transactions
T ′

si are appended as child nodes to T ′
si.

4 Related Work

To distinguish contributions in the field of atomicity and distributed transac-
tions, we can use two main criteria: first, whether flat or nested transactions
are supported and secondly, whether transactions and sub-transactions are re-
garded as compensatable or non-compensatable. Our contribution is based on
a transactional model that assumes sub-transactions to be non-compensatable
and allows nested transaction calls.

Our contribution differs from the Web service transaction model of [3] in
several aspects. For example, [3] uses a “completion protocol” for registering
resource managers at the coordinator, but does not propose a non-blocking state
– like our suspend state – to unblock transaction participants while waiting for
other participants’ votes. In comparison, our suspend-state may even be entered
repeatedly during the protocol’s execution. However, since the suspend state can
be used as a protocol extension, it can also be combined with [3].
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Besides the Web service orchestration model, there are other contributions
that set up transactional models to allow the invocation of sub-transactions, e.g.
[6] or [14]. Common with these transaction models, we have a global transaction
and sub-transactions that are created during transaction execution and cannot
be foreseen. The main differences to these nested transactional models is that
we consider all sub-transactions to be non-compensatable.

The use of a suspend state is also proposed by [15]. However, these approaches
are intended for use within an environment with a fixed-wired network and sev-
eral mobile cells, where disconnections are detectable and therefore transactions
are considered to be compensatable.

Our work is based on [16], but goes beyond this in several aspects, e.g., we dis-
tinguish three different types of transaction aborts and provide technologies for
reusing and locally restarting sub-transactions. In addition, we use the suspend
state not only to treat network failures, but also in the failure-free case in order
to further reduce the blocking time during failure-free transaction execution.

Corba OTS ([7]) uses the term “suspend” for a concept which differs from
our model because our suspend state is a non-blocking state for a mobile en-
vironment. Regarding the transactional model, Corba OTS uses a hierarchy
of commit decisions, where an abort of a sub-transaction can be compensated
by other sub-transactions. However, in the presence of non-compensability, this
implies waiting for the commit decision of all descendant nodes. In a mobile
environment where node failures are likely, we neither propose to wait nor to
block the participants until the commit decision has reached all participants.

5 Summary and Conclusion

We have presented two key ideas for guaranteeing atomicity for web-service
transactions in a mobile context that also reduce the time of blocking and the
number of aborts. The first idea is to use the suspend state for a transaction
that has finished its read phase while the coordinator waits for the votes of other
sub-transactions of the same global transaction. Being in suspend state, a sub-
transaction can still be aborted by the resource manager if the resource manager
decides to grant the resources used by this sub-transaction to other concurrent
transactions to prevent them from blocking.

Secondly, for reducing the number of aborts in case of conflicts or missing
votes, we identify those aborted sub-transactions that are repeatable or reusable,
instead of only aborting and restarting all sub-transactions of the global trans-
action. Additionally, we have introduced the commit tree as a data structure
that can be used to implement the coordinator’s management of transaction
atomicity for a dynamically changing set of sub-transactions.

We have embedded our atomic commit protocol in a web-service transactional
model, the characteristics of which is that sub-transactions must not be known
in advance. We have furthermore presented all key solutions as an extension to
2PC. Note however, that our contributions are applicable to a much broader
set of protocols. For example, the extension of an atomic commit protocol by a
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non-blocking suspend state is not limited to 2PC, but appears to be compatible
with a variety of other atomic commit protocols, e.g. [9], [10], or [11].

Finally, our protocol extension can nicely be combined with various concur-
rency control strategies including validation and locking. Although a proof of
serializability for any schedule of concurrent transactions is beyond the scope of
this paper, we have evidence that serializability can be guaranteed, and we plan
to report about this on a forthcoming paper.
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