
D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 47 – 58, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Experimental Consideration of the Use of the
TransrelationalTM Model for Data Warehousing*

Victor Gonzalez-Castro1, Lachlan M. MacKinnon2, and David H. Marwick1

1 School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh, EH14 4AS, Scotland

{victor, dhm}@macs.hw.ac.uk
2 School of Computing and Creative Technologies, University of Abertay Dundee,

Dundee, DD1 1HG, Scotland
l.mackinnon@abertay.ac.uk

Abstract. In recent years there has been a growing interest in the research
community in the utilisation of alternative data models that abandon the
relational record storage and manipulation structure. The authors have already
reported experimental considerations of the behavior of Relational, Binary
Relational and Associative models within the context of Data Warehousing, to
address issues of storage efficiency and combinatorial explosion through data
repetition. In this paper we present an implementation of the TransrelationalTM
model, based on the public domain definition provided by C.J. Date, which we
believe to be the first reported instantiation of the model. Following the
presentation of the implementation, we also present the results of perfor-
mance tests utilising a set of metrics for Data Warehouse environments, which
are compared against a traditional N-ary Relational implementation. The
experiment is based on the standard and widely-accepted TPC-H data set.

1 Introduction

The TransrelationalTM model was defined by S. Tarin and patented in the United
States of America [14], and it has been promoted to the Database community by C.J.
Date through a series of seminars and in the latest edition of his widely-adopted
textbook [3]. However, as far as we can determine there is no implementation
available for either commercial or research use. Therefore, in order to carry out our
experimental consideration, we have utilised the general description made by Date [3]
of the TransrelationalTM model and its behavior to implement the essential algorithms
that make up the model. Since Date [3] has provided the only public domain
documentation of the model, which we shall henceforward refer to as TR following
his nomenclature, we shall make reference extensively to his work in describing our
experiment.

Our experimental consideration of the TR model follows on from research which
we have already reported considering the performance of Relational, Binary
Relational and Associative models in the context of Data Warehousing [4][5][8]. We

* The Transrelational model is based on the Tarin Transform Method and is the intellectual

property of Required Technologies Inc.

48 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

are interested in the use of alternative data models that can solve the problems of the
inefficiency of storage caused by models based on rows, which include repetitions at
field level no matter if they use normalized (snow-flake) or non-normalized (star)
schemas, as well as the database explosion phenomenon [7] that occurs in Relational
Data Warehouses.

According to Date [3:954], the TR model has an implicit data compression
mechanism by using condensed columns which eliminates the duplicate values at a
column level. This is very appealing in Data Warehouse environments where it is
common to have many repetitive values at column level, so we wanted to measure
and benchmark this characteristic of the model.

2 The Transrelational ModelTM

As already indicated the only public domain description of the TransrelationalTM

model is provided by Date [3]. In this section we introduce some of the basic
definitions of the model in order to establish a baseline for our experimental
consideration, all quotes and references to Date are attributable to [3] and where
necessary page number references are supplied. As a starting point Date states that,
“The TransrelationalTM (TR) is not intended as a replacement for the Relational
model”, from which we can infer that it can be seen as an alternative route to
implement the relational model and thus to build a Relational DBMS.

From the early days of data processing systems, through the development of
relational databases and up to the present day, data has predominantly been conceived
as Records of n number of fields or attributes. This approach has been called an N-ary
Storage Model (NSM) [2] or in Date’s nomenclature Direct Image Systems (DIS).
Within this approach data is seen (and stored) following a horizontal approach (rows).

Alternatively, there is also a vertical approach (columns) to store and process data,
and this has its origins in Copeland’s seminal paper “A Decomposition Storage
Model” (DSM) [2]. This has recently been used as the basis for the creation of some
novel database architectures and instantiations, such as MonetDB [1], [6], SybaseIQ
[11], [12] and C-store [10]. TR differs from both vertical and horizontal approaches,
but is closer to a vertical approach since, in the Field Values Table (FVT), each
column stores distinct values, and most of the processing can be done at column level.
This is analysed in more detail in section 3.

2.1 Model Data Structures

To illustrate the characteristics of the model, we utilise the examples developed by
Date [3]. The TR model consists basically of two storage structures: the Field Values
Table (FVT), where each column contains the values from the corresponding field of
the input file rearranged in an ascending sort order Fig. 1(b); and the Record
Reconstruction Table (RRT) Fig. 1(c), which keeps a set of values derived from the
original input file that can be thought of as pointers to enable the original record to be
rebuilt when necessary using the ZigZag algorithm [3:948].

 An Experimental Consideration of the Use of the TransrelationalTM Model 49

Record
Sequence

1 S4 Clark 20 London 1 S1 Adams 10 Athens 1 5 4 4 5
2 S5 Adams 30 Athens 2 S2 Blake 20 London 2 4 5 2 4
3 S2 Jones 10 Paris 3 S3 Clark 20 London 3 2 2 3 1
4 S1 Smith 20 London 4 S4 Jones 30 Paris 4 3 1 1 2
5 S3 Blake 30 Paris 5 S5 Smith 30 Paris 5 1 3 5 3

S# SNAME STATUS CITYS# SNAME STATUS CITYS# SNAME STATUS CITY

 Fig. 1. (a) A Suppliers relation, (b) Field Values Table, (c) Record Reconst. Table

To understand how both tables are used when rebuilding a record, utilising the
ZigZag algorithm, we provide Date’s description:

“Step 1: Go to cell [1, 1] of the Field Values Table and fetch the value stored there:
namely, the supplier number S1. That value is the first field value (that is. the S# field
value) within a certain supplier record in the suppliers file.

Step 2: Go to the same cell (that is, cell [1, 1]) of the Record Reconstruction Table
and fetch the value stored there: namely, the row number 5. That row number is
interpreted to mean that the next field value (which is to say, the second or SNAME
value) within the supplier record whose S# field value is S1 is to be found in the
SNAME position of the fifth row of the Field Values Table -in other words, in cell
(5,2) of the Field Values Table. Go to that cell and fetch the value stored there (sup-
plier name Smith).

Step 3: Go to the corresponding Record Reconstruction Table cell [5, 2] and fetch
the row number stored there (3). The next (third or STATUS) field value within the
supplier record we are reconstructing is in the STATUS position in the third row of
the Field Values Table-in other words, in cell [3,3]. Go to that cell and fetch the value
stored there (status 20).

Step 4: Go to the corresponding Record Reconstruction Table cell [3, 3] and fetch
the value stored there (which is 3 again). The next (fourth or CITY) field value within
the supplier record we are reconstructing is in the CITY position in the third row of
the Field Values Table-in other words, in cell [3,4]. Go to that cell and fetch the value
stored there (city name London).

Step 5: Go to the corresponding Record Reconstruction Table cell [3, 4] and fetch
the value stored there (1). Now, the "next" field value within the supplier record we
are reconstructing looks like it ought to be the fifth such value; however, supplier
records have only four fields, so that "fifth" wraps around to become the first. Thus,
the "next" (first or S#) field value within the supplier record we are reconstructing is
in the S# position in the first row of the Field Values Table-in other words, in cell
[1,1]. But that is where we came in, and the process stops.”

To this point, the model provides no potential database size reduction because all
values are kept and additional data is held in the Record Reconstruction Table, we
refer to this as TR Version 1. The desired reduction is achieved when the Condensed
columns are introduced. As can be observed in Fig. 1(b) a considerable amount of
redundant data is stored, this is also true in traditional N-ary systems (see Fig. 1(a)).
The Column-Condensing process aims to eliminate such redundancy by keeping
unique values at column level; we refer to this as TR Version 2.1. This process should

50 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

S# SNAME STATUS CITY
1 S1 Adams 10 [1:1] Athens [1:1]
2 S2 Blake 20 [2:3] London [2:3]
3 S3 Clark 30 [4:5] Paris [4:5]
4 S4 Jones
5 S5 Smith

Fig. 2. Condensed Field Values Table with row ranges

be applied selectively, since attempting to condense columns already consisting of
unique values does not make sense. However, as each value can be used in many
“records” it is necessary to keep Row Ranges (numbers in squared brackets in Fig. 2)
to avoid losing information on how to reconstruct the record, we refer to this as TR
Version 2.3. The resulting FVT with condensed columns and row ranges is presented
in Fig. 2.

The Column-Condensing process destroys the unary relationship between the cells
of the FVT and the cells in the RRT, but the ZigZag algorithm is easily adaptable as
stated in [3:956].

“Consider cell [i, j] of the Record Reconstruction Table. Instead of going to cell [i,j]
of the Field Values Table, go to cell [i’,j] of that table where cell [i’,j] is that unique
cell within column j of that table that contains a row range that includes row i.”

3 Implementation

We have implemented algorithms to create the Field Values Table, the Record
Reconstruction Table and the Zigzag algorithm to rebuild the records. Some
variations and improvements have been made during implementation and we will
describe those in the following subsections.

This implementation was focused on the initial bulk load of the Data Warehouse
and it retained the limitations identified by Date [3:943] where updates are discarded
and the Database is Read Only. Inherently, Data Warehouse environments are more
suited to these assumptions (with batch updates during off line hours and read only
during operation hours) than transactional systems. Consequently, we would argue
that the benchmarking of the TR model for Data Warehouse environments is both
relevant and important.

An extraction tool was written in order to generate the flat files that will be
processed by the TR model algorithms. One important point that was introduced
during the extraction process is that each record is pre-appended with its record
number, to provide additional support during the Transformation and Loading stages.

3.1 The Field Values Table

Data within each column is rearranged into ascending sort order. All operations are
made in bulk and parallelising as much as possible, extensive use of the sort,

 An Experimental Consideration of the Use of the TransrelationalTM Model 51

parallelisation and synchronisation mechanisms offered by the operating system has
been made. The sorting process of each column is made in parallel as each column is
independent. Improvements were introduced in order to prepare the creation of the
RRT and minimise reprocessing. The first step is to create a structure (we call it
Working File WKF and it enhances the algorithms described by Date) where each
column is in ascending order and maintains the original record number as sub-index
Fig. 3(a). From this structure (WKF) the Field Values Table with condensed columns
(Fig. 2) is derived by choosing unique values in ascending order and recording the
corresponding row ranges. The other structure derived from the WKF structure is the
Permutation Table [3:951] Fig. 3(b), which is required to build the Record
Reconstruction Table.

The Column-Condensing process is selective as recommended by Date [3:953]. In
our implementation we establish that columns with unique values and those where the
reduction would be lower than the established condensation threshold are not
condensed. The condensation threshold is not part of Date’s algorithms and we define
it as the ratio between the original number of values (including repetitions) and the
number of unique values. The condensation threshold is 30% and this was set after
testing different threshold values and considering the balance between the disk space
required to keep row ranges versus the disk space required to keep the complete
column with relatively few repetitive values. The processing time was also considered
to set the threshold. This approach was taken in order to maintain a balance between
the theoretical model and the pragmatic implementation.

(a) WKF Structure (d) RRT Table

1 S1 4 Adams 2 10 3 Athens 2 1 5 4 4 5

2 S2 3 Blake 5 20 1 London 1 2 4 5 2 4

3 S3 5 Clark 1 20 4 London 4 3 2 2 3 1

4 S4 1 Jones 3 30 2 Paris 3 4 3 1 1 2

5 S5 2 Smith 4 30 5 Paris 5 5 1 3 5 3

Copy sub-
indices sort asc by S#

 and write SNAME

1 4 2 3 2 1 4 3 2 2
2 3 5 1 1 2 5 1 4 1
3 5 1 4 4 3 2 4 1 4
4 1 3 2 3 4 1 5 3 3
5 2 4 5 5 5 3 2 5 5

sort ascending by S# and write its row #
sort ascending by SNAME and write its row #

(b) Permutation Table (c) Inverse Permutation Table

S# SNAME STATUS CITY

S# SNAME STATUS CITYS# SNAME STATUS CITY

S# SNAME STATUS CITY

Fig. 3. Proposed alternative generation algorithm to build the Record Reconstruction Table

52 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

3.2 The Record Reconstruction Table

A permutation is defined by Date [3:951] as the ordering of the records by a particular
column. For example the permutation corresponding to ascending S# ordering is
4,3,5,1,2 (refer to Fig. 1(a)). According to this definition, the Permutation Table is
computed directly from the original input file, but instead of doing it in this way we
derived it from the WKF structure by using the already ascending ordered values but
taking the sub-indices, see Fig. 3(a) and 3(b). Thus the columns of the Permutation
Table can be computed in parallel. The first column of the Permutation Table keeps
an ascending sequence from 1 to the number of records in the table (i.e. the row
number within the Permutation Table).

Date also defined the Inverse Permutation as, “That unique permutation that if
applied to the original sequence 4,3,5,1,2, will produce the sequence 1,2,3,4,5”. It is
computed column by column on the permutation table by applying the previous rule
to obtain the ascending sequence 1,2,3,4,5.

We found that is more efficient to compute the Inverse Permutation Table from the
existing Permutation Table by taking each column together with its corresponding
row number and then sorting ascending by the corresponding column values and
writing the row number in the Inverse Permutation Table rather than the column
values (in this example S#), see Fig 3(b) and 3(c). The resulting Inverse Permutation
Table is exactly the same as that described by Date, and its columns can be computed
in parallel.

Finally the Record Reconstruction Table can be built from the Inverse Permutation
Table. Date’s algorithm [3:952] is as follows:

“Go to the cell [i,1] of the Inverse Permutation Table. Let that cell contain the
value r; also the next cell to the right, cell [i,2], contain the value r’. Go to the rth
row of the Record Reconstruction Table and place the value r’ in cell [r,1].”

Following the algorithm for i=1,2,3,4,5 will produce the entire S# column of the
Record Reconstruction Table. The other columns are computed in a similar way.

This algorithm processes one row at a time which is inefficient. We propose the
following algorithm to compute the Record Reconstruction Table:

From the Inverse Permutation Table use column i and column i+1, sort in
ascending order by i-th column values and write the value held in i+1 column to the
corresponding i-column in the RRT. This applies to all columns except the last one
which must use the n-th column and the 1st column. See Fig. 3(c) and (d).

Our algorithm enables bulk processing and each column is processed in parallel as
there is no dependency between columns.

3.3 Implemented Versions

Four versions of the TR model were implemented in order to gather information
regarding its behavior with different characteristics. Each version, its characteristics,
and the implications for the ZigZag algorithm [3:948] are listed in Table 1.

 An Experimental Consideration of the Use of the TransrelationalTM Model 53

Table 1. TR model versions

Version 1 Field Values Table (FVT) keeps repetitive values. Both the Record
Reconstruction Table (RRT) and the ZigZag Algorithm are as stated
in [3].

Version 2.1 All columns in all tables are condensed in their corresponding FVT
tables and the remaining unique values keep row ranges. The
ZigZag Algorithm is enhanced to be aware of row ranges. The RRT
Table remains unchanged.

Version 2.2 Only the Fact Table is considered to condense its columns. The
ZigZag algorithm needs to be improved to detect the Fact Table and
be aware that row ranges only exist in the Fact Table but not in any
other table. RRT remains unchanged.

Version 2.3 Selective column condensation in the FVT is applied if the
established threshold is reached; this is applied to all tables as
proposed by Date. The ZigZag algorithm needs to be aware of
condensed and uncondensed columns, and those which are
condensed have row ranges. RRT Table remains unchanged.

4 Benchmarking Environment

In order to benchmark the TR model and its implementation in Data Warehouse
environments the standard and well accepted TPC-H [13] data set was chosen. TPC-H
has the characteristics of real life data warehouses where a big Fact table exists with
complementary tables around this table (no matter if it is a Star or Snow-flake
schema). The authors are very experienced in the use of this data set for
benchmarking Data Warehouses considering different data models [4],[5],[8] to
highlight their specific characteristics. The tests were executed with two database
sizes, called scale factors (SF=100 MB and SF=1GB).

The machine used to evaluate the defined metrics has 1 CPU Pentium IV @
1.60GHz, 512 MB in RAM, Cache size 256 KB, Bus speed 100MHz and Operating
System Fedora 2 version 2.4.9-12. The relational instantiation used is Oracle Version
9.0 with its corresponding SQL*Plus and SQL*Loader utilities.

SHQL version 1.3 [9] is used to provide a SQL interface. It was used to execute the
necessary DDL statements. The implemented algorithms made use of the initial
structures generated by SHQL to build and manipulate the required tables (FVTs
and RRTs).

5 Experimental Results and Analysis

The results presented in this section follow the flow of the Extraction Transformation
and Loading Process. As mentioned before, a tool was made to extract data and
generate the input flat files to be loaded in both Relational and TR instantiations. The
differences between input flat file sizes are small but the TR input files are slightly
bigger because of the extra column required to keep the row number that will be used
for further processing. Resulting flat file sizes are presented in Table 2.

54 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

Table 2. Extracted file sizes to be used as input

Scale Factor
(SF)

Relational
(MB)

TR

(MB)
100 MB 102.81 103.77

1GB 1,049.60 1067.46

The next step is to Transform and Load the input files into the instantiations for
both models. As stated before four different versions of TR were implemented (Table
1). The results for these versions are presented in Table 3. (SF=100MB) and Table 4.
(SF=1GB).

Table 3. DBMS Object size in MB with SF=100MB

TPC-H
Table Name

Relational TR V1
(with
repetitive
values)

TR V2.1
(everything
condensed)

TR V 2.2
(only Fact
Table
condensed)

TR V2.3
(selective
condensation)

Region 0.0625 0.0005 0.0005 0.0005 0.0005
Nation 0.0625 0.0024 0.0027 0.0024 0.0023
Supplier 0.1875 0.1600 0.1900 0.1600 0.1600
Customer 3.00 3.04 3.41 3.04 2.79
Part 3.00 3.41 2.34 3.41 2.12
PartSupplier 13.00 14.19 13.90 14.19 13.05
Orders 19.00 25.63 21.91 25.63 18.56
Lineitem 88.00 137.07 86.09 86.09 86.90
TOTAL 126.31 183.50 127.84 132.52 123.58

Table 4. DBMS Object size in MB with SF=1GB

TPC-H
Table Name

Relational TR V1
(with

repetitive
values)

TR V2.1
(everything
condensed)

TR V 2.2
(only Fact
Table
condensed)

TR V2.3
(selective

condensation)

Region 0.0625 0.0005 0.0005 0.0005 0.0005
Nation 0.0625 0.0024 0.0027 0.0024 0.0023
Supplier 2.0 1.75 2.07 1.75 1.68
Customer 27.0 32.00 36.23 32.00 29.3
Part 30.0 36.37 24.74 36.37 21.52
PartSupplier 128.0 149.00 137.69 149.00 130.93
Orders 192.0 274.96 235.32 274.96 200.89
Lineitem 848.0 1489.71 925.73 925.73 962.22
TOTAL 1,227.1 1,983.78 1,361.81 1,419.80 1,346.54

 An Experimental Consideration of the Use of the TransrelationalTM Model 55

TR Version 1 is of limited value because it keeps all repetitive values and adds
more information within the RRT table; as a result it increases the N-ary Relational
Instantiation DB size by a factor of around 50%.

From Tables 3 and 4 with version 2.1 (where all columns are condensed); in
medium sized tables (Supplier and Customer) the effect of condensing resulted in
bigger table sizes than the corresponding sizes without being condensed, this is as a
result of keeping the row ranges; for the bigger tables (Lineitem and Orders) the
Column-Condensing process is beneficial. Considering that the Lineitem Table (Fact
Table) is the biggest table, Version 2.2 was introduced. The benefit of this version is
that only the Fact Table is passed through the Column-Condensing process in order to
reduce the CPU processing time, but the downside is that the final DB size is bigger
than Version 2.1. Finally in version 2.3 all tables are processed by the Column-
Condensing process but in a selective fashion where if the estimated condensing level
reaches the established threshold then the column is condensed, otherwise there is no
benefit in investing CPU processing time which will not achieve significant column
size reductions. According to the results obtained, version 2.3 is the one that offers a
better balance between processing time and disk space consumption but requires a
complex ZigZag algorithm to rebuild records when necessary. The ZigZag algorithm
needs to be intelligent enough to identify condensed columns and uncondensed
columns and make use of row ranges when rebuilding the original record.

These analyses have been focused on the FVT since, as identified by Date [3:954]
the FVT will offer compression benefits. However, our experimental results show
that, even when condensing repetitive values, the final database size is bigger or, at
best, only slightly smaller than the traditional N-ary Relational instantiation.

Further analyses based on Version 2.3, show that the FVT behaves in keeping with
Date’s description, but the problem is with the RRT. While the RRT at first sight only
holds integers, after millions of rows (i.e. Lineitem=6 million rows for SF=1GB),
these integers are of more considerable size and occupy most of the final database
space. These results are presented in Table 5. (SF=100MB) and Table 6. (SF=1GB).

As in any Data Warehouse environment the Fact table (in this case LineItem)
occupies most of the space, with SF=1GB this table occupies 962MB of 1,346MB of
the total DB size. Importantly, however, the corresponding RRT for Lineitem
required 760MB of those 962MB. In general RRT structures are 65% of the total DB
space while FVT structures are the remaining 35%. From these results it is clear that
further work is necessary to tackle the RRT structures, and particularly the RRT for
Fact Tables, to enable the TR model to achieve the benefits predicted.

Another key finding of the experiment is that with the bigger scale factor, the
Version 2.3 (selective condensation) has better results than any other version (see
Table 4), including Version 2.1 where every column is condensed, but remains very
close (additional 10%) to the traditional N-ary Relational implementation.

Finally, another aspect to be considered is the time to Transform and Load the
input files into the DBMS. In this aspect the TR instantiation required more time than
the N-ary Relational instantiation. The Transformation and Loading time was not
linear with respect to DB size, as presented in Table 7. with around 4 times more
with SF=100MB and 10 times more with SF=1GB.

56 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

Table 5. TransrelationalTM RRTs and FVTs with SF=100MB

Table 6. TransrelationalTM RRTs and FVTs with SF=1GB

Table 7. Transformation and Loading Times

 Scale Factor
(SF)

Transformation
& Loading time

Relational 100MB 2.4 minutes
TransrelationalTM 100MB 10.2 minutes

Relational 1GB 19.9 minutes
TransrelationalTM 1GB 191.6 minutes

6 Conclusions and Future Work

The TR model as described by Date is very appealing for Data Warehouse
environments, but after analysis of our results it really does not offer the tangible

 An Experimental Consideration of the Use of the TransrelationalTM Model 57

benefits that we were looking for. It may reduce the inefficiency of storing repetitive
values at column level that exists in traditional N-ary Relational implementations, but
the expected reduction in Data Warehouse size was not achieved. This has to be set
against the results achieved for other alternative models [4][5][8], especially Binary
Relational. However we have been able to produce a novel public domain
instantiation of the TR model described by Date, and we have identified and
implemented improvements to the algorithms of that model. Further research needs to
be done on the RRT structure to minimise its size and thus reduce the final DB size,
but at the same time we envisage that this will increase the processing time. Date
[3:956] identifies another feature that could be used in TR (which we might call
Version 3) which uses Merged Columns. However, we have identified that the
existing drawbacks of the RRT should be the next problem to be tackled, and we
would argue that this needs to be undertaken before introducing more complexity to
the algorithms for the marginal benefits in terms of the final DB size that might be
achieved in Version 3.

Based on our research results [4][5][8] and the current state of the TR model, we
would argue that it does not represent the model of choice for future Data Warehouse
environments.

Acknowledgments. The present work has been possible due the financial support
of Consejo Nacional de Ciencia y Tecnología México (CONACYT) and Secretaría
de Educación Pública (SEP) México. The authors gratefully acknowledge that
support.

References

1. Boncz, Peter. Monet: A next generation DBMS Kernel for query intensive applications.
PhD Thesis. Amsterdam, 2002.

2. Copeland, George P. Khoshafian, Setrag N. A Decomposition Storage Model. In
Proceedings of the ACM SIGMOD Int’l. Conf. On Management of Data, pp 268-279, May
1985.

3. Date, C.J. An introduction to Database Systems. Appendix A. The Transrelational Model,
Eighth Edition. Addison Wesley. 2004. USA. ISBN: 0-321-18956-6. pp.941-966

4. Gonzalez-Castro, Victor. MacKinnon, Lachlan. A Survey “Off the Record” - Using
Alternative Data Models to increase Data Density in Data Warehouse Environments.
Proceedings BNCOD Volume 2. Edinburgh, Scotland 2004.

5. Gonzalez-Castro, Victor. MacKinnon, Lachlan. Data Density of Alternative Data Models
and its Benefits in Data Warehousing Environments. British National Conference on Data
Bases, BNCOD 22 Proceedings Volume 2. pp 21-24. Sunderland, England U.K. 2005.

6. MonetDB. ©1994-2004 by CWI. http://monetdb.cwi.nl
7. Pendse, Nigel. Database explosion. http://www.olapreport.com Updated Aug, 2003.
8. Petratos, P and Michalopoulos D. (editors) Gonzalez-Castro V. and Mackinnon

L.(authors). Using Alternative Data Models in the Context of Data Warehousing. 2005
International Conference in Computer Science and Information Systems. Athens Institute
of Education and Research, ATINER. Greece. ISBN: 960-88672-3-1. pp 83-100. 2005.

9. SHQL. http://backpan.cpan.org/modules/dbperl/scripts/shql/

58 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

10. Stonebraker, Mike, et.al. C-Store: A column Oriented DBMS. Proceedings of the 31st
VLDB conference, Trondheim, Norway, 2005. pp. 553-564.

11. SybaseIQ web site. www.sybase.com/products/informationmanagement/sybaseiq
12. Sybase Inc. Migrating from Sybase Adaptive Server Enterprise to SybaseIQ white paper.

USA 2005.
13. TPC Benchmark H (Decision Support) Standard Specification Revision 2.1.0. 2002.
14. U.S. Patent and Trademark Office: Value-Instance-connectivity Computer-Implemented

Database. U.S. Patent No. 6,009,432 (December 28, 1999).

	Introduction
	The Transrelational Model$^{\rm TM}$
	Model Data Structures

	Implementation
	The Field Values Table
	The Record Reconstruction Table
	Implemented Versions

	Benchmarking Environment
	Experimental Results and Analysis
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

