
D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 47 – 58, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

An Experimental Consideration of the Use of the 
TransrelationalTM Model for Data Warehousing* 

Victor Gonzalez-Castro1, Lachlan M. MacKinnon2, and David H. Marwick1 

1 School of Mathematical and Computer Sciences, Heriot-Watt University, 
Edinburgh, EH14 4AS, Scotland 

{victor, dhm}@macs.hw.ac.uk 
2 School of Computing and Creative Technologies, University of Abertay Dundee,  

Dundee, DD1 1HG, Scotland 
l.mackinnon@abertay.ac.uk 

Abstract. In recent years there has been a growing interest in the research 
community in the utilisation of alternative data models that abandon the 
relational record storage and manipulation structure. The authors have already 
reported experimental considerations of the behavior of Relational, Binary 
Relational and Associative models within the context of Data Warehousing, to 
address issues of storage efficiency and combinatorial explosion through data 
repetition.  In this paper we present an implementation of the TransrelationalTM 
model, based on the public domain definition provided by C.J. Date, which we 
believe to be the first reported instantiation of the model. Following the 
presentation of the implementation, we also present the results of perfor- 
mance tests utilising a set of metrics for Data Warehouse environments, which 
are compared against a traditional N-ary Relational implementation. The 
experiment is based on the standard and widely-accepted TPC-H data set. 

1   Introduction 

The TransrelationalTM model was defined by S. Tarin and patented in the United 
States of America [14], and it has been promoted to the Database community by C.J. 
Date through a series of seminars and in the latest edition of his widely-adopted 
textbook [3]. However, as far as we can determine there is no implementation 
available for either commercial or research use. Therefore, in order to carry out our 
experimental consideration, we have utilised the general description made by Date [3] 
of the TransrelationalTM model and its behavior to implement the essential algorithms 
that make up the model. Since Date [3] has provided the only public domain 
documentation of the model, which we shall henceforward refer to as TR following 
his nomenclature, we shall make reference extensively to his work in describing our 
experiment.  

Our experimental consideration of the TR model follows on from research which 
we have already reported considering the performance of Relational, Binary 
Relational and Associative models in the context of Data Warehousing [4][5][8]. We 
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are interested in the use of alternative data models that can solve the problems of the 
inefficiency of storage caused by models based on rows, which include repetitions at 
field level no matter if they use normalized (snow-flake) or non-normalized (star) 
schemas, as well as the database explosion phenomenon [7] that occurs in Relational 
Data Warehouses.  

According to Date [3:954], the TR model has an implicit data compression 
mechanism by using condensed columns which eliminates the duplicate values at a 
column level. This is very appealing in Data Warehouse environments where it is 
common to have many repetitive values at column level, so we wanted to measure 
and benchmark this characteristic of the model. 

2   The Transrelational ModelTM 

As already indicated the only public domain description of the TransrelationalTM 

model is provided by Date [3]. In this section we introduce some of the basic 
definitions of the model in order to establish a baseline for our experimental 
consideration, all quotes and references to Date are attributable to [3] and where 
necessary page number references are supplied. As a starting point Date states that, 
“The TransrelationalTM (TR) is not intended as a replacement for the Relational 
model”, from which we can infer that it can be seen as an alternative route to 
implement the relational model and thus to build a Relational DBMS. 

From the early days of data processing systems, through the development of 
relational databases and up to the present day, data has predominantly been conceived 
as Records of n number of fields or attributes. This approach has been called an N-ary 
Storage Model (NSM) [2] or in Date’s nomenclature Direct Image Systems (DIS). 
Within this approach data is seen (and stored) following a horizontal approach (rows). 

Alternatively, there is also a vertical approach (columns) to store and process data, 
and this has its origins in Copeland’s seminal paper “A Decomposition Storage 
Model” (DSM) [2]. This has recently been used as the basis for the creation of some 
novel database architectures and instantiations, such as MonetDB [1], [6], SybaseIQ 
[11], [12] and C-store [10]. TR differs from both vertical and horizontal approaches, 
but is closer to a vertical approach since, in the Field Values Table (FVT), each 
column stores distinct values, and most of the processing can be done at column level. 
This is analysed in more detail in section 3. 

2.1   Model Data Structures  

To illustrate the characteristics of the model, we utilise the examples developed by 
Date [3]. The TR model consists basically of two storage structures: the Field Values 
Table (FVT), where each column contains the values from the corresponding field of 
the input file rearranged in an ascending sort order Fig. 1(b); and the Record 
Reconstruction Table (RRT) Fig. 1(c), which keeps a set of values derived from the 
original input file that can be thought of as pointers to enable the original record to be 
rebuilt when necessary using the ZigZag algorithm [3:948]. 
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Record 
Sequence

1 S4 Clark 20 London 1 S1 Adams 10 Athens 1 5 4 4 5
2 S5 Adams 30 Athens 2 S2 Blake 20 London 2 4 5 2 4
3 S2 Jones 10 Paris 3 S3 Clark 20 London 3 2 2 3 1
4 S1 Smith 20 London 4 S4 Jones 30 Paris 4 3 1 1 2
5 S3 Blake 30 Paris 5 S5 Smith 30 Paris 5 1 3 5 3

S# SNAME STATUS CITYS# SNAME STATUS CITYS# SNAME STATUS CITY

 

    Fig. 1. (a) A Suppliers relation,        (b) Field Values Table,   (c) Record Reconst. Table 

To understand how both tables are used when rebuilding a record, utilising the 
ZigZag algorithm, we provide Date’s description: 

“Step 1: Go to cell [1, 1] of the Field Values Table and fetch the value stored there: 
namely, the supplier number S1. That value is the first field value (that is. the S# field 
value) within a certain supplier record in the suppliers file. 

Step 2: Go to the same cell (that is, cell [1, 1]) of the Record Reconstruction Table 
and fetch the value stored there: namely, the row number 5. That row number is 
interpreted to mean that the next field value (which is to say, the second or SNAME 
value) within the supplier record whose S# field value is S1 is to be found in the 
SNAME position of the fifth row of the Field Values Table -in other words, in cell 
(5,2) of the Field Values Table. Go to that cell and fetch the value stored there (sup-
plier name Smith). 

Step 3: Go to the corresponding Record Reconstruction Table cell [5, 2] and fetch 
the row number stored there (3). The next (third or STATUS) field value within the 
supplier record we are reconstructing is in the STATUS position in the third row of 
the Field Values Table-in other words, in cell [3,3]. Go to that cell and fetch the value 
stored there (status 20). 

Step 4: Go to the corresponding Record Reconstruction Table cell [3, 3] and fetch 
the value stored there (which is 3 again). The next (fourth or CITY) field value within 
the supplier record we are reconstructing is in the CITY position in the third row of 
the Field Values Table-in other words, in cell [3,4]. Go to that cell and fetch the value 
stored there (city name London). 

Step 5: Go to the corresponding Record Reconstruction Table cell [3, 4] and fetch 
the value stored there (1). Now, the "next" field value within the supplier record we 
are reconstructing looks like it ought to be the fifth such value; however, supplier 
records have only four fields, so that "fifth" wraps around to become the first. Thus, 
the "next" (first or S#) field value within the supplier record we are reconstructing is 
in the S# position in the first row of the Field Values Table-in other words, in cell 
[1,1]. But that is where we came in, and the process stops.” 

To this point, the model provides no potential database size reduction because all 
values are kept and additional data is held in the Record Reconstruction Table, we 
refer to this as TR Version 1. The desired reduction is achieved when the Condensed 
columns are introduced. As can be observed in Fig. 1(b) a considerable amount of 
redundant data is stored, this is also true in traditional N-ary systems (see Fig. 1(a)). 
The Column-Condensing process aims to eliminate such redundancy by keeping 
unique values at column level; we refer to this as TR Version 2.1. This process should 
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S# SNAME STATUS CITY
1 S1 Adams 10 [1:1] Athens  [1:1]
2 S2 Blake 20 [2:3] London [2:3]
3 S3 Clark 30 [4:5] Paris     [4:5]
4 S4 Jones
5 S5 Smith  

Fig. 2. Condensed Field Values Table with row ranges 

be applied selectively, since attempting to condense columns already consisting of 
unique values does not make sense. However, as each value can be used in many 
“records” it is necessary to keep Row Ranges (numbers in squared brackets in Fig. 2) 
to avoid losing information on how to reconstruct the record, we refer to this as TR 
Version 2.3. The resulting FVT with condensed columns and row ranges is presented 
in Fig. 2. 

The Column-Condensing process destroys the unary relationship between the cells 
of the FVT and the cells in the RRT, but the ZigZag algorithm is easily adaptable as 
stated in [3:956]. 

“Consider cell [i, j] of the Record Reconstruction Table. Instead of going to cell [i,j] 
of the Field Values Table, go to cell [i’,j] of that table where cell [i’,j] is that unique 
cell within column j of that table that contains a row range that includes row i.” 

3   Implementation 

We have implemented algorithms to create the Field Values Table, the Record 
Reconstruction Table and the Zigzag algorithm to rebuild the records. Some 
variations and improvements have been made during implementation and we will 
describe those in the following subsections. 

This implementation was focused on the initial bulk load of the Data Warehouse 
and it retained the limitations identified by Date [3:943] where updates are discarded 
and the Database is Read Only. Inherently, Data Warehouse environments are more 
suited to these assumptions (with batch updates during off line hours and read only 
during operation hours) than transactional systems. Consequently, we would argue 
that the benchmarking of the TR model for Data Warehouse environments is both 
relevant and important. 

An extraction tool was written in order to generate the flat files that will be 
processed by the TR model algorithms. One important point that was introduced 
during the extraction process is that each record is pre-appended with its record 
number, to provide additional support during the Transformation and Loading stages. 

3.1   The Field Values Table  

Data within each column is rearranged into ascending sort order. All operations are 
made in bulk and parallelising as much as possible, extensive use of the sort, 
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parallelisation and synchronisation mechanisms offered by the operating system has 
been made. The sorting process of each column is made in parallel as each column is 
independent. Improvements were introduced in order to prepare the creation of the 
RRT and minimise reprocessing. The first step is to create a structure (we call it 
Working File WKF and it enhances the algorithms described by Date) where each 
column is in ascending order and maintains the original record number as sub-index 
Fig. 3(a). From this structure (WKF) the Field Values Table with condensed columns 
(Fig. 2) is derived by choosing unique values in ascending order and recording the 
corresponding row ranges. The other structure derived from the WKF structure is the 
Permutation Table [3:951] Fig. 3(b), which is required to build the Record 
Reconstruction Table. 

The Column-Condensing process is selective as recommended by Date [3:953]. In 
our implementation we establish that columns with unique values and those where the 
reduction would be lower than the established condensation threshold are not 
condensed. The condensation threshold is not part of Date’s algorithms and we define 
it as the ratio between the original number of values (including repetitions) and the 
number of unique values. The condensation threshold is 30% and this was set after 
testing different threshold values and considering the balance between the disk space 
required to keep row ranges versus the disk space required to keep the complete 
column with relatively few repetitive values. The processing time was also considered 
to set the threshold. This approach was taken in order to maintain a balance between 
the theoretical model and the pragmatic implementation. 

 

(a) WKF Structure (d) RRT Table

1 S1 4 Adams 2 10 3 Athens 2 1 5 4 4 5

2 S2 3 Blake 5 20 1 London 1 2 4 5 2 4

3 S3 5 Clark 1 20 4 London 4 3 2 2 3 1

4 S4 1 Jones 3 30 2 Paris 3 4 3 1 1 2

5 S5 2 Smith 4 30 5 Paris 5 5 1 3 5 3

Copy sub-
indices      sort asc by S#

    and write SNAME

1 4 2 3 2 1 4 3 2 2
2 3 5 1 1 2 5 1 4 1
3 5 1 4 4 3 2 4 1 4
4 1 3 2 3 4 1 5 3 3
5 2 4 5 5 5 3 2 5 5

sort ascending by S# and write its row #
sort ascending by SNAME and write its row #

(b) Permutation Table ( c) Inverse Permutation Table

S# SNAME STATUS CITY

S# SNAME STATUS CITYS# SNAME STATUS CITY

S# SNAME STATUS CITY

 

Fig. 3. Proposed alternative generation algorithm to build the Record Reconstruction Table 
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3.2   The Record Reconstruction Table  

A permutation is defined by Date [3:951] as the ordering of the records by a particular 
column. For example the permutation corresponding to ascending S# ordering is 
4,3,5,1,2 (refer to Fig. 1(a)). According to this definition, the Permutation Table is 
computed directly from the original input file, but instead of doing it in this way we 
derived it from the WKF structure by using the already ascending ordered values but 
taking the sub-indices, see Fig. 3(a) and 3(b). Thus the columns of the Permutation 
Table can be computed in parallel. The first column of the Permutation Table keeps 
an ascending sequence from 1 to the number of records in the table (i.e. the row 
number within the Permutation Table). 

Date also defined the Inverse Permutation as, “That unique permutation that if 
applied to the original sequence 4,3,5,1,2, will produce the sequence 1,2,3,4,5”.  It is 
computed column by column on the permutation table by applying the previous rule 
to obtain the ascending sequence 1,2,3,4,5. 

We found that is more efficient to compute the Inverse Permutation Table from the 
existing Permutation Table by taking each column together with its corresponding 
row number and then sorting ascending by the corresponding column values and 
writing the row number in the Inverse Permutation Table rather than the column 
values (in this example S#), see Fig 3(b) and 3(c). The resulting Inverse Permutation 
Table is exactly the same as that described by Date, and its columns can be computed 
in parallel. 

Finally the Record Reconstruction Table can be built from the Inverse Permutation 
Table. Date’s algorithm [3:952] is as follows: 

“Go to the cell [i,1] of the Inverse Permutation Table. Let that cell contain the 
value r; also the next cell to the right, cell [i,2], contain the value r’. Go to the rth 
row of the Record Reconstruction Table and place the value r’ in cell [r,1].”  

Following the algorithm for i=1,2,3,4,5 will produce the entire S# column of the 
Record Reconstruction Table. The other columns are computed in a similar way. 

This algorithm processes one row at a time which is inefficient. We propose the 
following algorithm to compute the Record Reconstruction Table:  

From the Inverse Permutation Table use column i and column i+1, sort in 
ascending order by i-th column values and write the value held in i+1 column to the 
corresponding i-column in the RRT. This applies to all columns except the last one 
which must use the n-th column and the 1st column. See Fig. 3(c) and (d). 

Our algorithm enables bulk processing and each column is processed in parallel as 
there is no dependency between columns. 

3.3   Implemented Versions   

Four versions of the TR model were implemented in order to gather information 
regarding its behavior with different characteristics. Each version, its characteristics, 
and the implications for the ZigZag algorithm [3:948] are listed in Table 1.  
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Table 1. TR model versions 

Version 1 Field Values Table (FVT) keeps repetitive values. Both the Record 
Reconstruction Table (RRT) and the ZigZag Algorithm are as stated 
in [3]. 

Version 2.1 All columns in all tables are condensed in their corresponding FVT 
tables and the remaining unique values keep row ranges. The 
ZigZag Algorithm is enhanced to be aware of row ranges. The RRT 
Table remains unchanged. 

Version 2.2 Only the Fact Table is considered to condense its columns. The 
ZigZag algorithm needs to be improved to detect the Fact Table and 
be aware that row ranges only exist in the Fact Table but not in any 
other table. RRT remains unchanged. 

Version 2.3 Selective column condensation in the FVT is applied if the 
established threshold is reached; this is applied to all tables as 
proposed by Date. The ZigZag algorithm needs to be aware of 
condensed and uncondensed columns, and those which are 
condensed have row ranges. RRT Table remains unchanged. 

4   Benchmarking Environment 

In order to benchmark the TR model and its implementation in Data Warehouse 
environments the standard and well accepted TPC-H [13] data set was chosen. TPC-H 
has the characteristics of real life data warehouses where a big Fact table exists with 
complementary tables around this table (no matter if it is a Star or Snow-flake 
schema). The authors are very experienced in the use of this data set for 
benchmarking Data Warehouses considering different data models [4],[5],[8] to 
highlight their specific characteristics. The tests were executed with two database 
sizes, called scale factors (SF=100 MB and SF=1GB). 

The machine used to evaluate the defined metrics has 1 CPU Pentium IV @ 
1.60GHz, 512 MB in RAM, Cache size 256 KB, Bus speed 100MHz and Operating 
System Fedora 2 version 2.4.9-12. The relational instantiation used is Oracle Version 
9.0 with its corresponding SQL*Plus and SQL*Loader utilities. 

SHQL version 1.3 [9] is used to provide a SQL interface. It was used to execute the 
necessary DDL statements. The implemented algorithms made use of the initial 
structures generated by SHQL to build and manipulate the required tables (FVTs  
and RRTs).  

5   Experimental Results and Analysis 

The results presented in this section follow the flow of the Extraction Transformation 
and Loading Process. As mentioned before, a tool was made to extract data and 
generate the input flat files to be loaded in both Relational and TR instantiations. The 
differences between input flat file sizes are small but the TR input files are slightly 
bigger because of the extra column required to keep the row number that will be used 
for further processing. Resulting flat file sizes are presented in Table 2.  
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Table 2. Extracted file sizes to be used as input 

Scale Factor 
(SF) 

Relational 
(MB) 

TR 

(MB) 
100 MB 102.81 103.77 

1GB 1,049.60 1067.46 
 

The next step is to Transform and Load the input files into the instantiations for 
both models.  As stated before four different versions of TR were implemented (Table 
1). The results for these versions are presented in Table 3. (SF=100MB) and Table 4.  
(SF=1GB). 

Table 3. DBMS Object size in MB with SF=100MB 

TPC-H 
Table Name 

Relational TR V1 
(with 
repetitive 
values) 

TR V2.1 
(everything 
condensed) 

TR V 2.2 
(only Fact 
Table 
condensed) 

TR V2.3 
(selective 
condensation) 

Region 0.0625 0.0005 0.0005 0.0005 0.0005 
Nation 0.0625 0.0024 0.0027 0.0024 0.0023 
Supplier 0.1875 0.1600 0.1900 0.1600 0.1600 
Customer 3.00 3.04 3.41 3.04 2.79 
Part 3.00 3.41 2.34 3.41 2.12 
PartSupplier 13.00 14.19 13.90 14.19 13.05 
Orders 19.00 25.63 21.91 25.63 18.56 
Lineitem 88.00 137.07 86.09 86.09 86.90 
TOTAL 126.31 183.50 127.84 132.52 123.58 

Table 4. DBMS Object size in MB with SF=1GB 

TPC-H 
Table Name 

Relational TR V1 
(with 

repetitive 
values) 

TR V2.1 
(everything 
condensed) 

TR V 2.2 
(only Fact 
Table 
condensed) 

TR V2.3 
(selective 

condensation) 

Region 0.0625 0.0005 0.0005 0.0005 0.0005 
Nation 0.0625 0.0024 0.0027 0.0024 0.0023 
Supplier 2.0 1.75 2.07 1.75 1.68 
Customer 27.0 32.00 36.23 32.00 29.3 
Part 30.0 36.37 24.74 36.37 21.52 
PartSupplier 128.0 149.00 137.69 149.00 130.93 
Orders 192.0 274.96 235.32 274.96 200.89 
Lineitem 848.0 1489.71 925.73 925.73 962.22 
TOTAL 1,227.1 1,983.78 1,361.81 1,419.80 1,346.54 
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TR Version 1 is of limited value because it keeps all repetitive values and adds 
more information within the RRT table; as a result it increases the N-ary Relational 
Instantiation DB size by a factor of around 50%.  

From Tables 3 and 4 with version 2.1 (where all columns are condensed); in 
medium sized tables (Supplier and Customer) the effect of condensing resulted in 
bigger table sizes than the corresponding sizes without being condensed, this is as a 
result of keeping the row ranges; for the bigger tables (Lineitem and Orders) the 
Column-Condensing process is beneficial. Considering that the Lineitem Table (Fact 
Table) is the biggest table, Version 2.2 was introduced. The benefit of this version is 
that only the Fact Table is passed through the Column-Condensing process in order to 
reduce the CPU processing time, but the downside is that the final DB size is bigger 
than Version 2.1. Finally in version 2.3 all tables are processed by the Column-
Condensing process but in a selective fashion where if the estimated condensing level 
reaches the established threshold then the column is condensed, otherwise there is no 
benefit in investing CPU processing time which will not achieve significant column 
size reductions. According to the results obtained, version 2.3 is the one that offers a 
better balance between processing time and disk space consumption but requires a 
complex ZigZag algorithm to rebuild records when necessary. The ZigZag algorithm 
needs to be intelligent enough to identify condensed columns and uncondensed 
columns and make use of row ranges when rebuilding the original record. 

These analyses have been focused on the FVT since, as identified by Date [3:954] 
the FVT will offer compression benefits. However, our experimental results show 
that, even when condensing repetitive values, the final database size is bigger or, at 
best, only slightly smaller than the traditional N-ary Relational instantiation. 

Further analyses based on Version 2.3, show that the FVT behaves in keeping with 
Date’s description, but the problem is with the RRT. While the RRT at first sight only 
holds integers, after millions of rows (i.e. Lineitem=6 million rows for SF=1GB), 
these integers are of more considerable size and occupy most of the final database 
space. These results are presented in Table 5. (SF=100MB) and Table 6. (SF=1GB). 

As in any Data Warehouse environment the Fact table (in this case LineItem) 
occupies most of the space, with SF=1GB this table occupies 962MB of 1,346MB of 
the total DB size. Importantly, however, the corresponding RRT for Lineitem 
required 760MB of those 962MB. In general RRT structures are 65% of the total DB 
space while FVT structures are the remaining 35%. From these results it is clear that 
further work is necessary to tackle the RRT structures, and particularly the RRT for 
Fact Tables, to enable the TR model to achieve the benefits predicted.  

Another key finding of the experiment is that with the bigger scale factor, the 
Version 2.3 (selective condensation) has better results than any other version (see 
Table 4), including Version 2.1 where every column is condensed, but remains very 
close (additional 10%) to the traditional N-ary Relational implementation. 

Finally, another aspect to be considered is the time to Transform and Load the 
input files into the DBMS. In this aspect the TR instantiation required more time than 
the N-ary Relational instantiation. The Transformation and Loading time was not 
linear with respect to DB size, as presented in Table 7.  with around 4 times more 
with SF=100MB and 10 times more with SF=1GB. 
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Table 5. TransrelationalTM RRTs and FVTs with SF=100MB 

Table 6. TransrelationalTM RRTs and FVTs with SF=1GB 

Table 7. Transformation and Loading Times 

 Scale Factor 
(SF) 

Transformation 
& Loading time 

Relational 100MB 2.4 minutes 
TransrelationalTM 100MB 10.2 minutes 

Relational 1GB 19.9 minutes 
TransrelationalTM 1GB 191.6 minutes 

6   Conclusions and Future Work   

The TR model as described by Date is very appealing for Data Warehouse 
environments, but after analysis of our results it really does not offer the tangible 
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benefits that we were looking for. It may reduce the inefficiency of storing repetitive 
values at column level that exists in traditional N-ary Relational implementations, but 
the expected reduction in Data Warehouse size was not achieved. This has to be set 
against the results achieved for other alternative models [4][5][8], especially Binary 
Relational. However we have been able to produce a novel public domain 
instantiation of the TR model described by Date, and we have identified and 
implemented improvements to the algorithms of that model. Further research needs to 
be done on the RRT structure to minimise its size and thus reduce the final DB size, 
but at the same time we envisage that this will increase the processing time. Date 
[3:956] identifies another feature that could be used in TR (which we might call 
Version 3) which uses Merged Columns. However, we have identified that the 
existing drawbacks of the RRT should be the next problem to be tackled, and we 
would argue that this needs to be undertaken before introducing more complexity to 
the algorithms for the marginal benefits in terms of the final DB size that might be 
achieved in Version 3. 

Based on our research results [4][5][8] and the current state of the TR model, we 
would argue that it does not represent the model of choice for future Data Warehouse 
environments. 
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