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Abstract. Data warehouse (DW) views provide an efficient access to
information integrated from source data. When changes are made to
the source data, the corresponding views may be outdated. Thus, the
maintenance of DW views is crucial for the currency of information. Re-
cently, a method was proposed to use referential integrity differential files
(RIDFs) to self-maintain DW views that contain select-project-joins over
relations modelled in a star schema. However, it is not uncommon for
applications to have relations that are modelled in other schemas such as
a snowflake schema or a galaxy schema. In this paper, we generalise the
concept of RIDFs; we propose a method that uses generalised RIDFs to
self-maintain the DW views that contain joins over relations modelled in
the star schema as well as non-star schemas. Our method computes new
views by using only the old materialised views and files that keep the
truly relevant tuples in the “delta”. Consequently, it avoids accessing the
underlying source data, and hence leads to efficient update of DW views.

Keywords: Data warehousing, view maintenance, referential integrity
constraints, snowflake schema, galaxy schema, self-maintainability.

1 Introduction

A data warehouse (DW) is a subject-oriented, integrated, time-variant, and non-
volatile collection of data organised in such a way that it supports the decision
making process of management [8]. In general, DW views provide a fast access
to integrated source data. As changes can be made to the source data, the
corresponding views may be outdated. Thus, the maintenance of views is crucial
for the currency of information. In other words, views need to be periodically
refreshed so as to reflect those updates that have been made to the source data.
In response to the changes to the source data, many existing DW views are
refreshed by recomputing the contents from scratch (i.e., computing the new
views from the updated source data), while some other views are incrementally
maintained by accessing the source data. However, these approaches can be
costly. Moreover, in many real-life situations, it is not uncommon that only a
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tiny fraction of some huge source data gets changed. The above approaches
require an access to a huge amount of source data. Consequently, both CPU and
I/O costs of these approaches can be extremely high. A better approach is to
incrementally maintain views without accessing the source data. This calls for
efficient view maintenance approaches.

Over the past decade, many approaches (e.g., [1-7, 9-13, 15-19]) have been pro-
posed. However, some of these works focused mainly on conventional database
views than DW views, and some did not fully exploit referential integrity (RI) con-
straints for viewmaintenance. For those thatmaintainDW views based onRI, they
used auxiliary structures (e.g., auxiliary views [17], auxiliary relations [15], auxil-
iary data [9], complements [11]), which can be costly to build in some situations.

Recently, an efficient method, which incurred a lower cost, was proposed to
exploit the RI constraints imposed on relations in the source data [13]. Specifi-
cally, the method used referential integrity differential files (RIDFs) to keep all
and only those tuples that are relevant to the maintenance of views. By so doing,
DW views can be self-maintained in the sense that the new views (reflecting the
changes that were made to the source data) can be formed by using only the
old materialised views, differential files (DFs—i.e., files containing the inserted
or the deleted tuples), and RIDFs. In other words, the update of views avoided
accessing the underlying databases. Such a method was designed for, and worked
well on, self-maintaining views that contain a select-project-join (SPJ) over mul-
tiple relations modelled in a star schema. However, there exist many situations
where relations are not modelled in the star schema (e.g., a snowflake schema in
Example 1, a galaxy schema in Example 2).

Example 1. Consider a DW for shipment consists of the following tables:
– Item (itemID, name, description);
– Location (locCode, city, county, region);
– Shipper (shipperID, locCode, shipperName)

where locCode references Location; and
– Shipment (shipmentID, itemID, shipperID)

where itemID references Item, shipperID references Shipper.

Here, information about shippers and their locations is stored in two different dimension
tables, namely Shipper and Location, due to normalisation. Relations/tables in this
DW are modelled in a snowflake schema, where the fact table Shipment references
dimension tables Shipper (which, in turn, references the dimension table Location)
and Item. In this model, view v1 ≡ πitemID,shipperNameσcity=Belfast(Shipment �� Shipper
�� Location), which finds IDs of items and names of shippers for those shippers located
in Belfast, contains an SPJ over three relations modelled in a snowflake schema. ��

Example 2. Let us add the following table to the above shipment DW:
– Sales (invoiceID, itemID, locCode, price)

where itemID references Item, locCode references Location.

Then, in the resulting model, relations/tables are in a galaxy schema consisting of a
collection of stars and snowflakes. Here, two fact tables Sales and Shipment share the
dimension table Item. In this model, view v2 ≡ πinvoiceID,shipmentIDσdescription=book (Sales
�� Shipment �� Item), which finds invoice IDs and shipment IDs for all books, contains
an SPJ over three relations modelled in a galaxy schema. ��
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Given that there exist situations where relations can be modelled in a non-
star schema, some natural questions are: How to handle these situations? Can
we use RIDFs in these situations? Can RIDFs be helpful? Can we self-maintain
the views using just the old materialised views, DFs and RIDFs? If not, what
else is needed?

In this paper, we study these questions. Our key contribution is the de-
velopment of a novel method, which exploits RI constraints and generalises the
ideas of RIDFs, for self-maintaining DW views. Our method uses generalised
RIDFs (GRIDFs), which keep all and only those tuples that are (directly or
indirectly) relevant to the updates of views. By so doing, the method efficiently
self-maintains the views modelled in the star schema as well as non-star schemas
(e.g., the snowflake schema, the galaxy schema). With our method, new views
can be formed by using only (i) the old materialised views, (ii) DFs, (iii) RIDFs,
and (iv) GRIDFs. In other words, the method avoids accessing any underlying
databases to form the new views.

The outline of this paper is as follows. Section 2 gives background. Section 3
describes how we generalise the concepts of RIDFs for self-maintaining DW views
involving joins over relations modelled in a snowflake or a galaxy schema. Sec-
tion 4 discusses further generalisation and potential improvements of GRIDFs.
Experimental results are given in Section 5. Finally, conclusions are presented
in Section 6.

2 Background

In this section, we present some background materials about RI constraints and
RIDFs, which are relevant to the rest of this paper.

2.1 Referential Integrity Constraints

A referential integrity (RI) constraint can be specified between relations in data-
base and data warehousing environments; it is used to maintain consistency
among tuples in the relations. Informally, the constraint states that a tuple r in
a relation R (called the referencing relation) that refers to another relation S
(called the referenced relation) must refer to an existing tuple s in S. More
formally, the foreign key of R (denoted as R.fk) must “match” a candidate key of
S (denoted as S.ck), that is, they must have the same domain and R.fk = S.ck.1

Without loss of generality, we assume in this paper that all relations in the DW
are “linked” by RI constraints.

Whenever there is a change to a relation in an underlying database, the corre-
sponding views need to be updated to reflect the change. This can be done using
either an immediate mode or a deferred mode. For the former, the views are

1 A candidate key of a relation is a minimal set of attributes whose values uniquely
identify each tuple in the relation. A foreign key is a set of attributes (in a referencing
relation R) that either refers to a candidate key of the referenced relation S or is
NULL.
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refreshed immediately; for the latter, all the changes are first recorded in some
differential files (DFs), and the views are then updated periodically using these
DFs. Whenever a tuple is inserted into, or deleted from, a referencing relation R
or a referenced relation S, appropriate actions need to be taken as described
below. (i) When a tuple r is inserted into a referencing relation R, a look-
up in S is required to ensure the presence of a tuple s ∈ S where s.ck = r.fk.
If s is present, then r is inserted into R as well as the differential file ΔR;2

otherwise, RI is violated. (ii) When a tuple r is deleted from a referencing
relation R, the tuple r is recorded in the differential file ∇R. (iii) When a tuple
s is inserted into a referenced relation S, the tuple s is recorded in the
differential file ΔS. (iv) When a tuple s is deleted from a referenced rela-
tion S, a (reverse) look-up in R is required (for the default mode of “on delete
no action”) to ensure the absence of a tuple r ∈ R satisfying r.fk = s.ck. If r
is absent, then s is safely removed from S; otherwise (i.e., r exists in R), RI is
violated and the deletion is rejected. It is interesting to note that the insertion
into, or deletion from, one relation (R or S) does not affect another one.

2.2 Referential Integrity Differential Files

Let us consider view v3 ≡ πitemID,cityσprice>50(Sales �� Item �� Location),
which finds item IDs and cities of those sales with price > $50. This view con-
tains an SPJ over three relations modelled in a star schema, where the fact
table Sales references dimension tables Item and Location. This view can be
expressed—in abstract terms—as πAσC(v4), where v4 ≡ (F �� D1 �� D2) such
that F.fk1 references D1.ck and F.fk2 references D2.ck. In subsequent expres-
sions, let us focus on how to efficiently update the join component because it
dominates the SPJ operations.

When changes are made to the source data, a näıve method to update
a DW view—whenever its underlying relations (e.g., F, D1, D2) of a view are
updated—is to ignore the old view and to compute the new view from scratch
(e.g., v′4 = (F ′ �� D′

1 �� D′
2)). However, this method can be very costly, especially

when updates are made very frequently or when only a tiny fraction of underlying
relations is updated.

It is well-known that an updated relation R′ can be expressed as R′ = R −
∇R ∪ ΔR, where R is the old relation (e.g., F, D1, or D2), ΔR is its insertion,
and ∇R is its deletion. So, an improved method is to obtain the new view v′4
from the old view v4 ≡ (F �� D1 �� D2), DFs (e.g., ΔF, ∇D1, . . .), and source
relations (e.g., F, D1, D2), as follows:

v′4 = (F − ∇F ∪ ΔF ) �� (D1 − ∇D1 ∪ ΔD1) �� (D2 − ∇D2 ∪ ΔD2)
= (F �� D1 �� D2) − (F �� D1 �� ∇D2) ∪ (F �� D1 �� ΔD2) ∪ . . .

− (ΔF �� ΔD1 �� ∇D2) ∪ (ΔF �� ΔD1 �� ΔD2). (1)
2 Since the views can be updated using the deferred mode, it is more precise to state

the following. An insertion of a tuple r into R requires a look-up in the “current”
referenced relation (S − ∇S ∪ ΔS). If there exists a tuple s ∈ (S − ∇S ∪ ΔS) such
that s.ck = r.fk, then r is inserted into R as well as ΔR.
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Note that, among the 33 = 27 terms in Equation (1), the first term (F ��
D1 �� D2) is the old view v4. However, many of the remaining 26 terms (e.g.,
(F �� D1 �� ΔD2)) involve source relations.

To avoid accessing the source relations and to efficiently self-maintain DW
views, we proposed in BNCOD 2005 a self-maintainable method with ref-
erential integrity differential files (RIDFs) [13]. By exploiting the prop-
erties of RI constraints as well as the nature of the expression for view up-
dates and by using RIDFs, Equation (1) can be simplified to become the
following:

v′4 = v4 ∪ (ΔF �� RIDFF (D1) �� RIDFF (D2))
∪ (ΔF �� RIDFF (D1) �� ΔD2) ∪ (ΔF �� ΔD1 �� RIDFF (D2))
∪ (ΔF �� ΔD1 �� ΔD2) � ∇F � ∇D1 � ∇D2. (2)

Such a simplification is possible because of the following:

– The term (F �� D1 �� D2) in Equation (1) represents the old view v4.
– Any terms with (F �� ΔD1) give empty relations. Because of RI constraints,

for all f ∈ F , there must exist d ∈ D1 such that d.ck = f.fk1. In other
words, there does not exist a tuple d′ ∈ ΔD1 satisfying d′.ck = f.fk1.
Similar comments apply for all terms with (F �� ΔD2).

– All the terms involving ∇F can be grouped together (denoted as �∇F ) as
they basically represent the action that all the tuples containing f ∈ ∇F
can be deleted. Similar comments apply for all terms involving ∇D1 as well
as ∇D2.

– The term (ΔF �� ΔD1 �� ΔD2) involves only three differential files
(ΔF, ΔD1 and ΔD2). In other words, no access to the source data is
required.

– The remaining three terms—namely, (ΔF �� RIDFF (D1) �� RIDFF (D2)),
(ΔF �� RIDFF (D1) �� ΔD2) and (ΔF �� ΔD1 �� RIDFF (D2))—all use
RIDFs. Recall from Section 2.1 that when a tuple f is inserted into F , we
check if there exists a tuple d ∈ Di such that d.ck = f.fk. If such d exists, the
insertion is successful and f is then recorded in ΔF . Given that the search
and check has been performed, one can record the tuple f in a file called
RIDF. By so doing, the RIDF contains all those tuples (d) that are related
to the tuples in ΔF . In other words, the RIDF contains all and only those
tuples that could be joined with ΔF in the term (ΔF �� Di). Therefore, with
the RIDF, the term (ΔF �� Di) can be rewritten as (ΔF �� RIDFF (Di)),
which no longer requires an access to the source data.

While more details can be found in our BNCOD 2005 paper [13], it is important
to note that the self-maintenance of DW views with RIDFs was designed and
worked well on joins over relations that are modelled in a star schema. In the
current BNCOD 2006 paper, we extend and generalise the RIDFs to handle sit-
uations where relations are modelled in a non-star schema (as well as in a star
schema).
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3 Our New Method: Self-maintenance of DW Views with
Generalised RIDFs (GRIDFs)

In this section, we start describing our new method that uses our generalised
RIDFs to self-maintain DW views. Like the method with RIDFs, this new one
with GRIDFs also exploits referential integrity. However, unlike the method with
RIDFs, the method with GRIDFs can be applicable for updating views involving
relations that are modelled in non-star schemas (as well as in a star schema).

Here, we start with the base case where views involve an SPJ over three
relations; then, in Section 4, we give the general case for k relations. For three
relations R, S and T , there are various ways in which these relations reference
others. For example, R may reference both S and T (e.g., views v3, v4 shown
above). Alternatively, R may also reference S, which in turn references T (e.g.,
view v1 in Example 1). As the third way, it may be the case where both R and
S reference T (e.g., view v2 in Example 2).

3.1 “Forward-Linked” Generalised RIDFs (fGRIDFs)

Let us consider view v1 ≡ πitemID,shipperNameσcity=Belfast(Shipment �� Shipper
�� Location) in Example 1. How to self-maintain v1? Or, a more general question
is: How to compute a new view of the form πAσC(v5), where v5 ≡ (F �� D1
�� D2) such that F.fk references D1.ck and D1.fk references D2.ck?

Learned from Section 2.2, we know the disadvantages of using the näıve
method (i.e., start from scratch) and the improved method (i.e., using the old
view, DFs, and source relations). Specifically, the former can be very costly,
whereas the latter requires accesses to source relations. So, we exploit the RI
constraints and obtain the following expression:

v′5 = v5 ∪ (ΔF �� RIDFF (D1) �� D2) ∪ (ΔF �� ΔD1 �� RIDFD1(D2))
∪ (ΔF �� ΔD1 �� ΔD2) � ∇F � ∇D1 � ∇D2. (3)

Observed from Equation (3), we can easily spot that one of the terms (i.e., the
term (ΔF �� RIDFF (D1) �� D2)) still involves D2 (the underlying database).
Hence, even if we could use RIDFs, the new view v′5 could not be computed
without accessing the source data.

On the surface, it may appear that this is the best we could do. However,
a careful study reveals that we could do better. Specifically, are we required to
access D2? Do we need to join with the entire D2? The answer in each case
is no. We can avoid accessing D2 by using some “files” similar to RIDFs. The
“files” store only truly relevant tuples. To elaborate, we extend and generalise
the concept of RIDFs, and we come up with generalised RIDFs (GRIDFs).
Specifically, our idea can be described as follows. When a tuple f is inserted
into F , we check if there exists a tuple d1 ∈ D1 such that d1.ck = f.fk. If such
d1 exists, the insertion is successful. Then, (i) f is recorded in ΔF and (ii) d1
is recorded in RIDFF (D1). Up to this point, the procedure sounds familiar as
it is the same as the creation of the RIDF. However, next step is different: The
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insertion of d1 into RIDFF (D1) then triggers a look-up of d2 ∈ D2 such that
d2.ck = d1.fk. Due to the RI constraint, we know that there exists such d2 ∈ D2.
So, d2 is then inserted into a “file” called the “forward-linked” generalised RIDF
(fGRIDF). See the definition below.

Definition 1 (“Forward-linked” generalised referential integrity differ-
ential file (fGRIDF)). Let (i) an SPJ view πAσC(F �� D1 �� D2) be created in
terms of three relations F, D1 and D2; (ii) a RI constraint be imposed on F and
D1 such that F.fk = D1.ck, where F.fk denotes the foreign key of the referencing
relation F and D1.ck denotes a candidate key of the referenced relation D1; and
(iii) a RI constraint be imposed on D1 and D2 such that D1.fk = D2.ck, where
D1.fk denotes the foreign key of the referencing relation D1 and D2.ck denotes
a candidate key of the referenced relation D2. (Note that D1 plays two different
roles: It is a referenced relation with respect to F , but a referencing relation with
respect to D2.) Then, when a tuple f is successfully inserted into F (i.e., f is put
in ΔF ), the corresponding tuple d1 (where d1.ck = f.fk) is then inserted into
D1. This triggers the insertion of d2 into a “forward-linked” generalised ref-
erential integrity differential file, denoted as fGRIDFD1(D2), which keeps
all and only those tuples (in D2) that are truly relevant to the update of the view.
Precisely, for each tuple d1 ∈ RIDFF (D1), its corresponding d2 ∈ D2 (such that
d2.ck = d1.fk) is kept in fGRIDFD1(D2).

There are some nice properties of fGRIDFD1(D2). First, fGRIDFD1(D2)
keeps all and only those tuples (in D2) that are truly relevant to the join
(ΔF �� RIDFF (D1) �� D2). Thus, the number of tuples in fGRIDFD1(D2) is
bounded above by the number of tuples in D2 (i.e., |fGRIDFD1(D2)| ≤ |D2|).
Second, for each candidate key of D2, the number of tuples in fGRIDFD1(D2)
is bounded above by the number of tuples in RIDFF (D1). This is due to RI
constraints. More specifically, because d1.fk = d2.ck, many d1 ∈ RIDFF (D1)
can reference one d2 (but each d1 can only reference one d2). Hence, if D2
only has one candidate key (which is quite common for dimension tables), then
|fGRIDFD1(D2)| ≤ |RIDFF (D1)|. Third, since |RIDFF (D1)| ≤ |ΔF |, we have
|fGRIDFD1(D2)| ≤ |RIDFF (D1)| ≤ |ΔF |. Therefore, by exploiting properties
of RI constraints and using fGRIDFD1(D2), Equation (3) can be simplified to
become the following (i.e., the new view can be computed as follows):

v′5 = v5 ∪ (ΔF �� RIDFF (D1) �� fGRIDFD1(D2))
∪ (ΔF �� ΔD1 �� RIDFD1(D2))
∪ (ΔF �� ΔD1 �� ΔD2) � ∇F � ∇D1 � ∇D2. (4)

It is important to note that, with this self-maintainable method with GRIDFs, we
no longer require accesses to the source data. The new view v′5 can be computed
using only (i) the old view v5, (ii) DFs, (iii) RIDFs, and (iv) GRIDFs (i.e.,
fGRIDFs). See the following example.

Example 3. Let us consider the self-maintenance of view v6 ≡ (Shipment �� Shipper ��
Location), which is modelled in a snowflake schema. (Note that view v1 in Example 1
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can be expressed as πitemID,shipperNameσcity=Belfast(v6).) When the underlying databases
are updated, the new view v′

6 can be computed as follows:

v′
6 = v6 ∪ (ΔShipment �� RIDFShipment(Shipper) �� fGRIDFShipper(Location))

∪ (ΔShipment �� ΔShipper �� RIDFShipper(Location))

∪ (ΔShipment �� ΔShipper �� ΔLocation)

� ∇Shipment � ∇Shipper � ∇Location. ��

3.2 “Backward-Linked” Generalised RIDFs (bGRIDFs)

Next, let us consider view v2 ≡ πinvoiceID,shipmentID σdescription=book(Sales ��
Shipment �� Item) in Example 2. How to self-maintain v2? Or, a more gen-
eral question is: How to compute a new view of the form πAσC(v7), where
v7 ≡ (F1 �� F2 �� D) such that F1.fk references D.ck1 and F2.fk references
D.ck2?

By applying the method with RIDFs [13] (or applying our proposed method
with fGRIDFs described in Section 3.1), we obtain the following expression:

v′7 = v7 ∪ (F1 �� ΔF2 �� RIDFF2(D)) ∪ (ΔF1 �� F2 �� RIDFF1(D))
∪ (ΔF1 �� ΔF2 �� [RIDFF1(D) ∩ RIDFF2(D)])
∪ (ΔF1 �� ΔF2 �� ΔD) � ∇F1 � ∇F2 � ∇D. (5)

Observe that two of the terms (i.e., the second and the third terms) still in-
volve those underlying databases (i.e., F1 and F2). So, what we need is another
type of generalised RIDF, which we call the “backward-linked” generalised RIDF
(bGRIDF). Specifically, the idea can be described as follows. When a tuple fi is
inserted into Fi, we check if there exists a tuple d ∈ D such that d.ck = fi.fk.
If such d exists, the insertion is successful. Then, (i) fi is recorded in ΔFi and
(ii) d is recorded in RIDFFi(D). Again, the extra/new step is as follows: The
insertion of d into RIDFFi(D) triggers a reverse look-up of fj ∈ Fj (where
j 	= i) such that fj .fk = d.ck. Due to the RI constraint, we know that there
could be no such fj ∈ Fj . However, if one exists, it is then inserted into a
“backward-linked” generalised RIDF (i.e., bGRIDFD(Fj)). See the definition
below.

Definition 2 (“Backward-linked” generalised referential integrity dif-
ferential file (bGRIDF)). Let (i) an SPJ view πAσC(F1 �� F2 �� D) be
created in terms of three relations F1, F2 and D; and (ii) a RI constraint be
imposed on Fi and D such that Fi.fk = D.ck where Fi.fk denotes the for-
eign key of the referencing relation Fi (for i = 1, 2) and D.ck denotes a can-
didate key of the referenced relation D. Then, when a tuple fi is successfully
inserted into Fi (i.e., fi is put in ΔFi), the corresponding tuple d (where d.ck =
fi.fk) is then inserted into D. This triggers the insertion of fj (where j 	=
i) into a “backward-linked” generalised referential integrity differen-
tial file, denoted as bGRIDFD(Fj), which keeps all and only those tuples (in
Fj) that are truly relevant to the update of the view. Precisely, for each tuple
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d ∈ RIDFFi(D), its corresponding fj ∈ Fj (such that fj.fk = d.ck) is kept in
bGRIDFD(Fj).

A nice property of the bGRIDFD(Fj) is that it keeps all and only those
tuples (in Fj) that are truly relevant to the join (ΔFi �� Fj �� RIDFFi(D)).
Thus, the number of tuples in bGRIDFD(Fj) is bounded above by the number
of tuples in Fj (i.e., |bGRIDFD(Fj)| ≤ |Fj |). Another property is that, for
a given d ∈ RIDFFi(D), there could be no fj ∈ Fj (where fj .fk = d.ck)
referencing it. This potentially reduces the size of bGRIDFD(Fj). Therefore, by
exploiting properties of RI constraints and using bGRIDFD(Fi), Equation (5)
can be simplified to become the following:

v′7 = v7 ∪ (bGRIDFD(F1) �� ΔF2 �� RIDFF2(D))
∪ (ΔF1 �� bGRIDFD(F2) �� RIDFF1(D))
∪ (ΔF1 �� ΔF2 �� [RIDFF1(D) ∩ RIDFF2(D)])
∪ (ΔF1 �� ΔF2 �� ΔD) � ∇F1 � ∇F2 � ∇D. (6)

It is important to note that, with this self-maintainable method with GRIDFs, we
no longer require accesses to the source data. The new view v′7 can be computed
using (i) the old view v7, (ii) DFs, (iii) RIDFs, and (iv) GRIDFs (e.g., bGRIDFs).
See the following example.

Example 4. Let us consider the self-maintenance of view v8 ≡ (Sales �� Shipment
�� Item), which is modelled in a galaxy schema. (Note that view v2 in Example 2 can
be expressed as πinvoiceID,shipmentIDσdescription=book (v8).) When the underlying databases
are updated, the new view v′

8 can be computed as follows:

v′
8 = v8 ∪ (bGRIDFItem(Sales) �� ΔShipment �� RIDFShipment(Item))

∪ (ΔSales �� bGRIDFItem(Shipment) �� RIDFSales(Item))

∪ (ΔSales �� ΔShipment �� [RIDFSales(Item) ∩ RIDFShipment(Item)])

∪ (ΔSales �� ΔShipment �� ΔItem) � ∇Sales � ∇Shipment � ∇Item. ��

4 Discussion: Generalisation to Multiple Relations

So far, we have described and explained our proposed efficient method with
GRIDFs for self-maintaining DW views involve an SPJ over three relations:
(i) the use of fGRIDFs for an SPJ over a chain of one fact table and two dimension
tables (Section 3.1), and (ii) the use of bGRIDFs for an SPJ over two fact tables
that share a dimension table (Section 3.2). As expected, our method is not
confined to just three relations. It can be further generalised to handle multiple
relations by exploiting RI constraints. For example, a new view containing an
SPJ over a chain of a fact table F and k levels of dimension tables D1, . . . , Dk

can be computed using 2k + 3 terms as follows:

v′ = F ′ �� D′
1 �� · · · �� D′

k

= v ∪ (ΔF �� RIDFF (R1) �� fGRIDFR1(R2) �� · · · �� fGRIDFR1(Rk))
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∪ [
k−1⋃

j=2

(ΔF �� ΔR1 �� · · · �� ΔRj−1 �� RIDFRj−1(Rj)

�� fGRIDFRj (Rj+1) �� · · · �� fGRIDFRj (Rk))]
∪ (ΔF �� ΔR1 �� · · · �� ΔRk−1 �� RIDFRk−1(Rk))
∪ (ΔF �� ΔR1 �� · · · �� ΔRk) � ∇F � ∇R1 · · · � ∇Rk. (7)

Similarly, a new view containing an SPJ over k fact tables F1, . . . , Fk that share
a dimension table D can be computed using 2k + k + 2 terms as follows:

v′ = F ′
1 �� · · ·F ′

k �� D′

= v ∪
(⋃

ΔFi �� bGRIDFD(Fj) �� [∩iRIDFFi(D)]
)

∪ (ΔF1 �� · · · �� ΔFk �� ΔD) � ∇F1 · · · � ∇Fk � ∇D, (8)

where 1 ≤ i, j ≤ k. With this generalisation, one would be able to efficiently
compute the new DW views that contain an SPJ over different numbers of
relations modelled in various schemas (e.g., star, snowflake, or galaxy schemas).
One does not need to access the underlying databases during the update. All it
needs is the old view, DFs, RIDFs, and our proposed GRIDFs (i.e., fGRIDFs
and/or bGRIDFs).

Our proposed GRIDFs can further be improved by keeping only relevant at-
tributes of the relevant tuples. Any attributes that do not contribute to the up-
date of DW views can be discarded. Moreover, any tuples that do not contribute
to the selection operator (of the SPJ) can also be discarded.

5 Experimental Results

We ran several experiments on various DWs. The results cited below are based on
a DW that consists of a fact table (with 6,000,000 tuples) and multiple dimension
tables (each with 800,000 tuples) that are modelled in a snowflake schema. In
the experiments, we compared the results of the following four implemented
methods:

– The näıve method, which recomputes new views from scratch.
– The improved method, which uses old views, DFs, and source relations to

update the views.
– The self-maintainable method with RIDFs [13], which uses only old views,

DFs, and RIDFs.
– Our efficient self-maintainable method with GRIDFs, which uses only

old views, DFs, RIDFs, and GRIDFs. This method avoids accessing source
relations even for those that are modelled in a non-star schema (e.g., the
snowflake or galaxy schema).

In the first experiment, we fixed the number of dimension tables to 2 (i.e., the
view (F �� D1 �� D2) that contains an SPJ over a fact table F and two dimen-
sion tables D1 & D2. We varied the percentage of tuples being updated/changed
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Fig. 1. Relative speedup of view maintenance methods

from 1% to 50%. The x-axis of Fig. 1 shows the percentage of updated tuples;
the y-axis shows the speedup of the improved method, the method with RIDFs,
and our self-maintainable method with GRIDFs against the näıve method. As
observed from Fig. 1, the lower the percentage of updated tuples, the higher
is the benefit of using our method. For example, the speedup of our method
is above 40 times when 1% of tuples are updated. A much higher speedup is
expected when the percentage of updated tuples is lower (e.g., 0.1%). Note that
a low percentage of updated tuples is not uncommon. In many real-life appli-
cations, DW views need to be refreshed frequently (which usually leads to a
low percentage of tuples being updated between each refresh) so as to facilitate
accurate decision making.

While Fig. 1 shows the relative speedup, the table below gives some samples
of the total runtime (i.e., both CPU and I/O time) for updating view.

% updated tuples Näıve Improved RIDFs GRIDFs
1% 714 mins 520 mins 135 mins 17.6 mins
10% 714 mins 621 mins 222 mins 88.1 mins

Note that our proposed method with GRIDFs requires a much shorter runtime
than the other three methods. The reason is that our method uses GRIDFs; it
does not need to access source relations. In contrast, the method with RIDFs,
which uses DFs and RIDFs, needs to access the source relation D2. The improved
method, which uses DFs but not RIDFs, needs to access more source relations
(both D1 and D2).

Next, we varied the number of dimension tables. The results show that in-
creasing the number of dimension tables increases the speedup of our method
and increases the runtime gaps. Note that when there are k dimension tables, the
improved method and the method with RIDFs need to access k and (k−1) source
relations respectively. In contrast, our proposed method with GRIDFs does not
need to access any source relations.
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Then, let us count the numbers of tuples in the source relations, the “delta”,
RIDFs, and GRIDFs. It was observed that the number of tuples needed to be
stored in a GRIDF is bounded above by the numbers of tuples in its correspond-
ing source relations, RIDFs, and “delta” (e.g., |fGRIDFF (D2)| ≤ min{|D2|,
|RIDFF (D1)|, |ΔF |}).

To summarise, the experimental results show the effectiveness of our proposed
self-maintainable method with GRIDFs. Since the results on various DWs were
consistent (and for lack of space), we do not show all the results here. For more
details, please refer to our technical report [14].

6 Conclusions

Data warehouse (DW) views provide an efficient access to integrated data. As
changes are made to the source data, the corresponding views may be outdated.
Hence, the maintenance of views is crucial for the currency of information. In this
paper, we proposed a novel method to efficiently self-maintain the DW views that
contain a select-project-join (SPJ) over multiple relations. Specifically, we exploit
the RI constraints imposed on the relations in the source data, and generalise the
referential integrity differential files (RIDFs). The generalised RIDFs (GRIDFs),
proposed in this paper, keep the truly relevant tuples in the “delta”; they avoid
accessing the underlying databases. Consequently, our method can update DW
views by using only the old views, differential files (e.g., the insertion file ΔR
and the deletion file ∇R), RIDFs, and GRIDFs. The method is applicable to the
efficient self-maintenance of views that contain an SPJ over relations modelled
in various schemas in data warehousing environments.
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