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Abstract. In this paper, we develop an efficient system to detect out-
liers from real-life financial time series comprising of security prices. Our
system consists of a data mining algorithm and a statistical algorithm.
When applying each of these two algorithms individually, we observed its
strengths and weaknesses. To overcome the weaknesses of the two algo-
rithms, we combine the algorithms together. By so doing, we efficiently
detect outliers from the financial time series. Moreover, the resulting
(processed) datasets can then be used as input for some financial models
used in forecasting future security prices or in predicting future mar-
ket behaviour. This shows an alternative role of our outlier detection
system—serving as a pre-processing step for other financial models.
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1 Introduction

Data mining refers to the search for implicit, previously unknown, and poten-
tially useful information or patterns that might be embedded in data. Many
of the existing studies focused on finding patterns that apply to the majority
of items in the dataset [1, 2, 8, 10, 11, 14]. However, patterns that apply to the
minority of items can also be interesting and important. For example, a rare
event could be an indication of some unusual, suspicious, or criminal activities.
Hence, several studies focused on outlier detection [6, 7, 9, 13], which aimed to
analyse and find these exceptional activities from datasets like the performance
statistics of professional athletes, workers’ compensation data, and medical test
data. Moreover, outlier detection could be used in various application areas such
as e-commerce and finance. In this paper, we show how outlier detection can be
applicable to financial data in an emerging cross-disciplinary area of research,
known as computational finance, that addresses problems in finance or busi-
ness (e.g., option pricing, portfolio management) by using advanced scientific
computing or data mining techniques. In this area, several models have been de-
veloped to forecast future security prices and to predict future market behaviour.
These models usually rely on standardised historical data, and are sensitive to
data variations. Any unusual noise (i.e., outliers / data polluters) present in
the data may lead to incorrect forecast or prediction. To ensure good predic-
tion of price behaviour, many models require historical price data over a long
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(a) Missing data (b) Short-lived sudden (c) Long-lived sudden
price changes price changes

Fig. 1. Data polluters

period of time (e.g., ≥ 10 years) for thousands of securities. Similarly, to en-
sure accuracy in applications like option pricing and risk management, several
models require the input price series to be free from noise. Although the price
series are normally obtained from reliable sources (e.g., Bloomberg), the series
might still contain some data polluters (as shown in Fig. 1) such as: (a) missing
data1, (b) short-lived sudden price changes2, and (c) long-lived sudden price
changes3.

Outliers can significantly influence financial model outputs (e.g., the forecast
or prediction). Hence, to achieve better forecast or prediction, we need a system
for detecting and eliminating outliers as well as pre-processing data. Algorithms
in such a system should: (i) run efficiently on large datasets; (ii) detect both
missing data and short-lived sudden price changes as outliers, and eliminate
them; (iii) accommodate and ignore long-lived sudden price changes (as they
should not be considered as outlier); and (iv) allow user input and control.

Over the past few years, some studies [12, 15, 16] in finance have suggested
that noise/outlier detection from time series forms a fundamental problem. They
often require data for their financial models to be free from noise. However, these
studies mainly dealt with portfolio selection but not focused on outlier detec-
tion; they did not mention how to remove noise either. To detect outliers, other
related works have been proposed. Some of them used statistical techniques
like principal component analysis [5, 15] and independence component analy-
sis [3], while some others used data mining techniques like clustering4 [4] and
anomaly detection [6, 7, 9]. However, most of these works did not use both data
mining and statistical techniques. In contrast, we apply both techniques in this
paper.

Our key contribution of this paper is the development of an efficient system
for detecting outliers from financial time series. More specifically, our technical
contributions of this paper are as follows:

1 They could be caused by market closure in observation of a bank holiday, the stock
not being traded on that day, or incomplete information at the sources.

2 They could be caused by a price recording error or by market over-reaction.
3 They are usually caused by a stock split—a situation when the stock price moves far

up (under the normal condition), the issuing company splits the stock into two (or
more) so as to keep up with the market demand while at the same time making it
affordable for common investors by reducing the original price to half (or lesser).

4 An item in the data is an outlier if it does not belong to any clusters.
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– We develop a data mining algorithm, which uses a distance-based outlier
detection technique to detect outliers from time series of security prices.
The algorithm checks the values of security prices within certain distance so
as to verify if the current price is an outlier.

– We also develop a statistical algorithm, which uses normal distribution prop-
erties of data to detect outliers. Moving averages are used in this algorithm
to render the algorithm efficient.

– Due to their varying nature and properties, the above two algorithms may
detect different outliers from the same time series. However, they are com-
plementary. So, by putting them together into our outlier detection system,
most (if not all) outliers can be effectively detected and removed. The re-
sulting time series (i.e., the processed financial data) can then be used as
input to existing financial models (e.g., neural network architecture) for a
more accurate forecast of future security prices, a more accurate predic-
tion of future market behaviour, and more accurate computation of option
prices. This demonstrates an alternative role of outlier detection technique
(as a pre-processor than as a stand-alone tool for obtaining insight into data
distribution).

This paper is organised as follows. The next section describes our outlier de-
tection system for financial applications. Section 3 shows experimental results.
Finally, conclusions are presented in Section 4.

2 Our Proposed Outlier Detection System

In this section, we start describing our proposed outlier detection system, which
consists of two phases. In Phase I, we identify the missing prices in a given
dataset (i.e., financial time series), and substitute them with a new price. The
new price is calculated in such a way that it ensures consistency with its neigh-
bouring prices. This is done to avoid the introduction/generation of “artificial”
outliers (noise). In Phase II, we run both a data mining algorithm and a sta-
tistical algorithm to detect those short-lived sudden price changes (i.e., outliers)
based on data mining (or more specifically, distance-based data mining) and sta-
tistical approaches, respectively. We note that the execution of the data mining
algorithm does not depend on the result of the statistical algorithm, and vice
versa. Hence, by combining these two underlying algorithms, we nullify their
individual weaknesses and speed up the outlier detection process.

2.1 Phase I: Identifying Missing Data

The goal of Phase I of our system is to identify gaps (i.e., missing data/prices,
such as those depicted in Fig. 1(a), in the financial time series) and to fill them
with new prices. With this respect, we develop a gap-identification algorithm
based on the following realistic assumptions: There are five business days every
week, and data for each business day are available (regardless whether it is a
holiday or not). The algorithm, which has a linear complexity with a single scan
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Fig. 2. The search space for the DetectOutliersDM algorithm

of the dataset, runs as follows. It scans the whole dataset once, and divides price
items on a weekly basis. If any item for a certain weekday is missing, it is sub-
stituted with an item generated by a function, called NewPrice, which is used
to obtain (i) an approximate value for the missing item or (ii) a new value of an
item that is considered an outlier. The complexity of function NewPrice is linear
with respect to the size of interval used for calculating the average. Here, we
assume that items are normally distributed. Prices that are close (based on the
date) are expected to influence each other to a greater extent than those prices
that are far apart. So, in abstract terms, the new price can be computed based
on the following equation:

NewPrice = [max (
∑n

i=1 It−iwui, 0) /2n] + [max (
∑m

i=1 It+iwdi, 0) /2m],
where It is an item in the time series, wui are the weights of the preceding (up-
stream) items, and wdi are the weights of the following (downstream) items; m
and n are numbers of neighbouring data items in the downstream and upstream
directions, respectively.

2.2 Phase II: Detecting Short-Lived Sudden Price Changes

Once the missing prices are identified, we can apply Phase II of our system
to detect outlying prices from the financial time series. For this phase, we de-
velop a data mining algorithm (DetectOutliersDM) and a statistical algorithm
(DetectOutliersStat), and then effectively combine them into our system.

The Data Mining Algorithm. An algorithm in Phase II is a distance-based
data mining algorithm called DetectOutliersDM. This algorithm is based on
the FindAllOutsM algorithm [7], which uses a distance-based notion of outliers
to detect outlying items. According to this notion, an item It in a dataset is an
outlier if most items in the dataset lie at a distance greater than a user-defined
threshold D from It.

The key idea of our DetectOutliersDM algorithm can be described as follows.
The financial time series can be represented in the two-dimensional space with
prices along the y-direction and time along the x-direction. Similarly, we divide
the space between the maximum and minimum item values (i.e., price values) of
the dataset into K equal intervals along the y-axis, where K is a user-specified
constant and the size of each interval is (MaxPrice − MinPrice)/K. The space
between the first and the last dates is divided into L intervals along the x-axis.
We then map these L time intervals into the K price intervals so that each cell
is a square and uses the same units of measurement. This scenario is depicted
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DetectOutliersStat
(1) Calculate the sum and the sum of squares of the first i items that follow the first item in the

set (where i is a constant or a user-defined value).
(2) For each item in the dataset:

(a) Calculate the mean and the standard deviation for the current item based on the sum and
the sum of squares. There are two means and two standard deviations for each item (based
on items in the upstream and downstream directions).

(b) Calculate item rankings, and compare them to some predefined threshold (which is either
a constant or a user-defined value). An item is an outlier if both rankings are greater
than the threshold. If the current item is marked as an outlier, replace it with a new item
generated by NewPrice (as described in Section 2.1).

(c) Update the sum and the sum of squares for the next item in the set.

Fig. 3. A Skeleton for the DetectOutliersStat algorithm

in Fig. 2. The distance that defines the neighbourhood for each item is then
equal to:

D = (MaxPrice − MinPrice)/K × 2
√

2.

We use the Euclidean distance for calculation. With this setting, a price item is
considered an outlier if it has insufficient number of neighbours within distance D
(i.e., within a cell with low item density). For the financial time series (with each
price quantised into a two-dimensional space), the complexity of this cell-based
algorithm depends on the number of price items N in the dataset and the number
of cells in the space. More precisely, the algorithm has a linear complexity with
respect to N .

As a preview, we will show in Section 3 that our distance-based data min-
ing algorithm is effective in detecting outliers (especially in detecting those
short-lived sudden price changes that are lying away from the normal price
range).

The Statistical Algorithm. The second algorithm in Phase II is a statisti-
cal based algorithm called DetectOutliersStat. Here, we make an assumption
that items are normally distributed. Although it might not be true for the whole
dataset, this assumption usually holds for many short continuous sub-groups in
the dataset. The DetectOutliersStat algorithm is based on a statistical obser-
vation that most items are located within three standard deviations from the
mean (or average). Thus, if an item is 10 standard deviations away from the
mean, it is very likely to be an outlier. The distance that measured in standard
deviations from the mean is defined as item ranking. Each item It has two such
rankings: One ranking is based on the items that precede It (i.e., upstream)
and another ranking is based on the items that follow It (i.e., downstream). In
order to be considered an outlier, an item It needs to have both rankings greater
than some specified thresholds. To improve efficiency, we avoid calculating the
mean for each item from scratch; instead, we use the moving averages. Since the
algorithm works in a sequential manner, the averages (means) for the current
price item can be calculated by adjusting the averages for the upstream items.
The complexity of this algorithm is linear, and it requires only a single scan of
the entire dataset. The items that are marked as outliers are replaced with new
items generated by the NewPrice function described in Section 2.1. Fig. 3 shows
a skeleton of this statistical algorithm.
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(a) IBM datasets with outliers (b) Results from DetectOutliersDM

(c) Results from DetectOutliersStat (d) Results from combined algorithm

Fig. 4. Experimental results on the IBM Corporation dataset

3 Experimental Results

We ran our proposed system over sets of real (historical) security price time
series, which were originated from www.yahoo.com. To test the performance and
effectiveness of our system, we added some “artificial” outliers to the time series.
Regarding our system, the interface was built using Microsoft Excel with Visual
Basic for Applications, and the underlying mining engine was implemented using
Visual C++. As security datasets are processed one at a time, we assume that
a dataset for a particular security will fit entirely into memory. This realistic
assumption holds because in an extreme case, there are only about 26,000 prices
for each security if day-to-day historical data are available for the past 100 years.

In the experiments, we tested our proposed system using various datasets (e.g.,
financial time series comprising of security prices for IBM Corporation, Boeing,
Microsoft Corporation, etc.). The results were consistent. So, for lack of space,
we only show the experimental results on the time series for IBM Corporation for
the period 1962–2004. For this dataset (Fig. 4(a)), there are several important
items that are worth special mentioning: A is a single outlier that is outside of
the normal range of that interval in the time series. B is not an outlier; it is
just a point where the stock price suddenly drops (due to some natural factors
such as a change in economic situation or a stock split). C is a double-itemed
outlier (where the two price items are very close to each other), which does not
fall outside of the normal range of the dataset. D (which occurs not too far after
the long-lived sudden price change) and E are single outliers that are within the
normal range of the time series.

We first applied DetectOutliersDM to the IBM time series. Results in
Fig. 4(b) show that our algorithm was able to successfully detect and remove
outliers A and C, while leaving non-outlier B intact. An advantage of this algo-
rithm is its effective removal of double-itemed (or multi-itemed) outliers. This
stems from the fact that the algorithm relies on the number of neighbours of a
given data item to determine an outlier. Having only a small number of neigh-
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bours would be a good indication of an outlier. However, the algorithm failed
to identify outliers D and E, because these two outliers were within the normal
range of the dataset and they had a large number of items in their surrounding
neighbourhood; hence, the algorithm did not see them as outliers.

We then applied DetectOutliersStat, which calculates moving averages for
each item. As shown in Fig. 4(c), our algorithm successfully detected and re-
moved outliers A, D and E, while leaving non-outlier B intact. However, the
algorithm failed to identify double-itemed outlier C. It is because this algorithm
used statistical methods based on averages and standard deviations. When there
were several outliers that are close to each other, they would influence each
other’s averages and standard deviation. This would lead to a lower ranking of
the individual items in the time series, and hence failed to correctly identify
outliers.

To summarise, the above experimental results show the strengths and weak-
nesses of DetectOutliersDM and DetectOutliersStat. Due to their varying nature
and properties, the algorithms may not necessarily detect and remove the same
outliers from the financial time series. Instead, they may detect different outliers
caused by short-lived sudden price changes. For example, both algorithms were
able to detect outlier A (a single outlier that is outside of the normal range)
and leave non-outlier B intact. However, outlier C (a multi-itemed outlier) was
only detected by DetectOutliersDM; outliers D and E (outliers that are within
normal range) were only detected by DetectOutliersStat.

Observing the strengths and weaknesses of these two algorithms, we finally
put the two together into our proposed system. Results in Fig. 4(d) indicate
that our system comprising of both algorithms successfully detected outliers
A, C, D and E while left non-outlier B intact. This shows the effectiveness of
our system.

Next, let us then turn our attention to the efficiency issue. Experiments were
conducted using the above IBM dataset on a single processor machine with
512 MB of operating memory. Results show that the execution times for both
algorithms were short (≈ 1 second) and approximately the same.

As the output from our system (the resulting/processed datasets) can be
used as input for financial models used in forecasting future security prices or
in predicting future market behaviour, we plan to conduct some experiments
to study the improvement in the forecasting of future security prices and the
computation of option prices.

4 Conclusions

We developed an efficient system to successfully detect outliers from financial
time series. Our system consists of two phases: Phase I identifies the missing
data, and replaces them with new prices that are consistent with their neigh-
bouring prices; Phase II detects short-lived sudden price changes. We developed
two algorithms for this second phase. Our data mining algorithm, called De-
tectOutliersDM, uses a distance-based approach to detect outliers (especially
those items having insufficient neighbours and those multi-itemed outliers). Our
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statistical algorithm, called DetectOutliersStat, uses moving averages of each
item to detect outliers (especially those outlying items that are within the
normal range and those single-itemed outliers). While both of these two al-
gorithms are effective in detecting most outliers, there exist some outliers that
are detected by only one of the algorithms. We observed and understood the
strengths and weaknesses of the two algorithms, and we put them together.
Then, an item in the time series is considered as an outlier if it is detected
by one of the algorithms. Consequently, more outliers can be effectively de-
tected and removed. This, in turns, leads to cleaner time series (i.e., with less
noise).

This paper shows a confluence of various disciplines—namely, data mining,
statistics, and finance. It also shows an additional applicability of outlier de-
tection techniques. To elaborate, many existing outlier detection algorithms are
generally served as stand-alone tools for obtaining insight into data distribu-
tion. In contrast, our proposed outlier detection system can be served as a pre-
processing step for other algorithms (e.g., financial models for forecasting future
security prices, predicting future market behaviour, and/or pricing complex fi-
nancial instruments such as derivatives).
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