
A Heterogeneous Computing System for Data
Mining Workflows

Ping Luo1,2, Kevin Lü3, Qing He2, and Zhongzhi Shi1

1 Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences,

P.O. Box 2704-28, Beijing 100080 China
2 Graduate School of the Chinese Academy of Sciences, Beijing, China

3 Brunel University, Uxbridge, U.K. UB8 3PH
luop@ics.ict.ac.cn

Abstract. The computing-intensive Data Mining (DM) process calls
for the support of a Heterogeneous Computing (HC) system, which con-
sists of multiple computers with different configurations, connected by a
high-speed LAN, for increased computational power and resources. DM
process can be described as a multi-phase pipeline process, and in each
phase there could be many optional methods. This makes the workflow
of DM very complex and can be modelled only by a Directed Acyclic
Graph (DAG). An HC system needs an effective and efficient scheduling
framework, which orchestrates all the computing hardware to perform
multiple competitive DM workflows. Motivated by the need of a practi-
cal solution of the scheduling problem for the DM workflow, this paper
proposes a dynamic DAG scheduling algorithm according to the charac-
teristics of execution time estimation model for DM jobs. Based on an
approximate estimation of job execution time, this algorithm first maps
DM jobs to machines in a decentralized and diligent (defined in this
paper) manner. Then the performance of this initial mapping can be im-
proved through job migrations when necessary. The scheduling heuristic
used in it considers the factors of both the minimal completion time cri-
terion and the critical path in a DAG. We implement this system in an
established Multi-Agent System (MAS) environment, in which the reuse
of existing DM algorithms is achieved by encapsulating them into agents.
Practical classification problems are used to test and measure the system
performance. The detailed experiment procedure and result analysis are
also discussed in this paper.

Keywords: Data mining, heterogeneous computing, directed acyclic
graph, multi-agent system environment.

1 Introduction

Current Data Mining (DM) tools contain a plethora of algorithms, but lack
the guidelines to appropriately select and arrange these algorithms according
to the nature of the problem under analysis. Given a practical DM problem,

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 177–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

178 P. Luo et al.

an expedient solution is to evaluate all the possible DM schemes modeled as
a Directed Acyclic Graph (DAG), and rank them according to certain perfor-
mance metrics. This yields a Grid computing problem, which aims to construct
an Heterogeneous Computing (HC) system, supporting the executions of DM
workflows.

An HC system, which consists of multiple computers with different configura-
tions connected by a high-speed LAN, responses multiple computational requests
of DM simultaneously. This system emerges as the provider of Internet-based
data mining services, and offers an attractive option for small to medium range
organizations, which are the most constrained by the high cost of data mining
software, and consequently, stand to benefit by paying for software usage without
having to incur the costs associated with buying, training and maintenance.

This study aims to construct such an HC system and mainly focuses on the
effective and efficient scheduling framework to orchestrate all the computing
hardware in it to perform multiple competitive DM workflows. According to the
characteristics of execution time estimation model for DM jobs, we propose a
dynamic scheduling framework for DM workflows. It has the following features:

– The scheduling operation performs in a totally decentralized and diligent
manner, which avoids the computation bottleneck for centralized scheduling
and increases the system robustness.

– This scheduling framework supports simultaneous computing of multiple
competitive DAGs. The execution sequence of DM jobs considers the factors
of both the precedence constraints in a DAG and the arrival order of these
DAGs.

– This scheduling framework is tolerant to approximate time estimations of
DM jobs. The initial mapping, based on the approximate running time esti-
mations, will be improved by job migrations.

The arrangement of the rest of this paper is as follows. Section 2 describes the DM
workflow for classification as a running example and formalizes the scheduling
problem. In Section 3 we propose the dynamic scheduling algorithm for com-
petitive DM workflows. Section 4 evaluates the performance of the data mining
HC system with the presented scheduling algorithm by real-world datasets. The
related work and conclusions will be given in Section 5. The discussions about
the execution time estimation model for DM jobs, the implementation issues
of this DM HC system in a Multi-Agent System (MAS) environment, and the
details about the approximate execution time estimation method used in the ex-
periment are omitted due to the space limitation. The full version of this paper
can be downloaded from [1].

2 Data Mining Workflow for Heterogeneous Computing

2.1 Data Mining Workflow for Classification: A Running Example

The DM workflow for classification in Figure 1, used as a running example in
this paper, aims to find the optimal classification pattern for the input dataset.

A Heterogeneous Computing System for Data Mining Workflows 179

Data Mining Process
T

ra
in

in
g

S
et

 a
nd

 E
va

lu
at

io
n

Se
t

T
ra

in
in

g
S

et
s

A
nd

 E
va

lu
at

io
n

S
et

s
A

ft
er

Pr

ep
ro

ce
ss

in
g

M
od

el
s

A
nd

 P
re

di
ct

in
g

R
es

ul
ts

E
va

lu
at

io
n

M
ea

su
re

m
en

t

Normalization
Phase

Discretization
Phase

Attribute
Reduct
Phase

Training&Testing
Phase

Evaluation
Phase

Preprocessing Phase

step n1

step 1

step n2

step 1 step 1

step n3

step 1

step n4

Fig. 1. Data mining process for classification

It is a complex, highly dynamic, and resource-intensive process, which consists
of several different phases. In each phase, many different algorithms are available
with different parameters. The workflow in Figure 1 consists of preprocessing,
training&testing and evaluation phase. The preprocessing phase can be sub-
divided into three sequential sub-phases of normalization, discretization, and
attribute reduction. The mining steps within a phase are optional operations,
which would output different results. For convenience and clarity, we give the
following definitions.

Definition 1 (DM Step). A DM step corresponds to a particular algorithm
to be executed, provided a dataset and a certain set of input parameters for it.
Each DM step Λ is described as a quadruple:

Λ = (A, F, D, P)

where A is the data mining algorithm, F is the data mining phase that con-
tains the algorithm A, D is the input dataset and P is the vector of algorithm
parameters.

Definition 2 (DM Path). Let Λ1=(A1, F1, D1, P1), · · · , Λk=(Ak, Fk, Dk, Pk),
DM Path is Λ = (Λ1, · · · , Λk), where Fi(1 ≤ i ≤ k) is the i-th phase of the whole
k-phase data mining process.

In Figure 1, a DM path can be easily obtained after we select a DM step from
each mining phase. If there are n1, n2, n3, n4 different DM steps in each of the four
phases of normalization, discretization, attribute reduction and training&testing
respectively, the number of all possible DM paths would be n1 × n2 × n3 × n4
according to the Multiply Theorem. Along a DM path, a mining step transfers its

180 P. Luo et al.

output to the following step until the path terminates and the final result would
be obtained. Then, using the training and validation datasets as an input of the
DM path, a measurement will be obtained for this path according to certain
evaluation criterion. For classification problems, the evaluation measurements
could be accuracy, weighted accuracy and AUC (Area Under Curve), etc. After
exhaustively evaluating all the DM paths, ranks of all resultant patterns for all
DM paths are generated.

2.2 Workflow Model of Data Mining

We model the DM workflow as a weighted DAG, G = G(V, E), where V =
{v1, · · · , vn} is a set of weighted nodes and E is a set of weighted directed
edges, representing data dependencies and communications between nodes. A
node in the DAG represents a job (referred to as the corresponding DM step),
which must be executed without preemption on a host. Consider the HC system
consisting of l machines m1, · · · , ml, the weight vector of a node v is referred to as
the computation cost vector Δ(v) = {Δ(v, m1), · · · , Δ(v, ml)}, where Δ(v, mi)
represents its execution time on a machine mi. eij = (vi, vj) ∈ E indicates data
transportation from job vi to vj , and |eij | represents communication cost between
these two jobs if they are not executed on the same machine. The precedence
constraints of a DAG require that a node should not start executing before it
gathers all the data from its predecessors. The node without predecessors is
called the entry of G. The node without successors is called the end of G. The
critical path of G is the longest path (there can be more than one longest path)
from an entry to an end of G. The weight of this path is the sum of the weights
of the nodes and edges along this path. In the following, a task refers to a DAG
and a job refers to a node in a DAG.

n n n n

n n

n

n n n n

n n

n

n

Fig. 2. The DAG of classification workflow

Figure 2 is the corresponding un-weighted DAG of the DM process in Figure 1.
The direction of all the edges in Figure 2 is from the node in the upper layer to the
one in the lower layer. If we feed the dataset to the uppermost node in Figure 2,
after the whole computation the lowermost node in this figure will output the rank
of all patterns for all DM paths, indicating the optimal classification pattern.

A Heterogeneous Computing System for Data Mining Workflows 181

3 Dynamic Scheduling for Competitive DAGs in an HC
System

We consider the following 4 issues in developing the scheduling algorithm within
an HC system.

– The time estimation model for DM jobs. It is assumed to be provided in
advance as a function with three parameters: 1) DM algorithm, 2) feature
vector of input data and 3) user-specified algorithm attributes. Thus, the
execution time of the node is not known a priori until its input datasets are
all gathered. When a DAG is being processed, only if all the predecessors of a
node are finished, the estimation model then can use the gathered immediate
results to predict the execution time of this node. Therefore, the mapping
process must be performed during the job executions and only dynamic
scheduling can be adopted under this situation.

– Because it is hard to induce an accurate execution time estimation model of
DM jobs, this scheduling algorithm should be tolerant to approximate time
estimations of DM jobs.

– To avoid the the computation bottleneck for centralized scheduling and in-
crease the system robustness, this algorithm should be totally decentralized.

– When multiple competitive DAGs arrive at an HC system, the execution
sequence of DM jobs should consider the factors of both the precedence
constraints in a DAG and the arrival order of these DAGs.

Therefore, the scheduling, in fact, can be described as a problem of dynamic sched-
uling for competitive DAGs. The scheduling objective is to minimize the average
makespan (the time when the last job of a DAG finishes) of competitive DAGs.
This problem has been proved, in general, to be NP-complete [2], thus requiring
the development of heuristic techniques [3, 4] for practical usage. In this paper we
propose a scheduling framework, which satisfies the aforementioned issues.

It should be noted that the communication cost between computers within an
HC system is ignored due to the following reasons: 1) the network bandwidth
within an HC system is high speed and 2) even if the volume of the transferred
data is large, its corresponding processing time on a computer is much longer
than its communication time.

3.1 Decentralized and Diligent Job Mapping

We propose a decentralized and diligent scheduling algorithm, compared with the
algorithm in [3], which performs in a centralized and lazy manner. A scheduler
resides on each machine. When a job Λ is finished, the scheduler on the same
machine will find all the ready jobs (A job is ready when all the input data
from its predecessors are available) in the successive nodes of Λ, and then map
them to suitable machines immediately. The heuristic min-min [5] for mapping
a class of independent jobs can be used to map this group of ready jobs. We
call this scheduling paradigm diligent in the sense that the mapping decision is
made as soon as a job is ready. The pseudo-code for scheduling algorithm on
each machine of an HC system is presented in Algorithm 1.

182 P. Luo et al.

Algorithm 1. Scheduling Algorithm on Each Machine of an HC system
1: if a job Λ finished on the same machine then
2: S = {Λ

′ |Λ′
is the successor of Λ}

3: S
′
= {Λ

′′ |Λ′′
is ready and Λ

′′ ∈ S}
4: while S

′ �= Φ do
5: according to min-min, find the best pair of job Λ

′′ ∈ S
′
and machine m, based

on current job pending queues of each machine
6: map job Λ

′′
to machine m

7: update the job pending queue on machine m
8: S

′
= S

′ − {Λ
′′}

9: end while
10: end if

3.2 Job Execution Control with Priority

Usually, the pending job queue E on each machine, which stores all the waiting
jobs for executing, is processed in a FIFO manner. To consider the critical path
factor of a DAG, the jobs from a DAG will be executed in descending order of
their estimation times. Thus, Algorithm 2 for job execution control is proposed,
which supports the execution of multiple DAGs. In this algorithm when a new
job arrives at a machine and suppose at the same time the machine is executing
another job, it will be inserted into the job queue E at a suitable position, to
keep that the jobs from the same DAG are arranged in descending order of their
estimation times while the positions of the jobs from the other DAGs in the
queue E will not be changed. Then, the jobs in the pending job queue E are
processed in a FIFO manner.

Altogether Algorithms 1 and 2 form the whole heuristic scheme, which con-
sider both the minimal completion time criterion and the critical path of a DAG.
These two factors are integrated and implemented in job mapping process and
job execution control, respectively.

3.3 Job Migration After Initial Mapping

The system efficiency of an HC system is defined in (1)

η =
tcomputation

ttotal
(1)

where tcomputation is the system CPU time for computation and ttotal is the total
system CPU time. Then the system waste μ is defined in (2)

μ =
tidle

ttotal
(2)

where tidle is the system blocking time and ttotal is the same as the one in (1). It is
clear that η + μ = 1 because tcomputation + tidle = ttotal. Furthermore, the system
waste μ can be divided into two parts: the intrinsic system waste μi and the system
waste μs caused by approximate execution time estimations of DM jobs.

A Heterogeneous Computing System for Data Mining Workflows 183

Algorithm 2. Algorithm for Job Execution Control with Priority on machine
m
1: loop
2: E is the job queue on machine m
3: if a new job Λ arrives at machine m and the machine is executing one another

job then
4: if |E|==1 then
5: append Λ to the end of E
6: else
7: newPosition = |E| + 1
8: for i = |E| to 2 do
9: Λ

′
is the i-th element of E

10: if Λ and Λ
′

are from the same DAG then
11: if Δ(Λ

′
, m) < Δ(Λ, m) then

12: move Λ
′

to the newPosition-th position of E
13: newPosition = i
14: else
15: break
16: end if
17: end if
18: end for
19: move Λ to the newPosition-th position of E
20: end if
21: end if
22: if a job-finished notification received then
23: remove the front job of E
24: if E �= Φ then
25: execute the new front job of E
26: end if
27: end if
28: end loop

Consider the HC system consisting of l machines m1, · · · , ml and the job pend-
ing queue (including the current executing job) on each machine is E1, · · · , El, re-
spectively. |Ei| (0 � i � k) is the number of jobs in Ei. μi counts at the time that
∃Ei such that |Ei| = 0 and �Ej such that |Ej | > 1. This kind of system waste is
intrinsic, because a job is the computation atom, representing the minimal granu-
larity for parallelization, and can be only executed on a single machine. The other
kind of system waste μs increases while ∃Ei, Ej such that |Ei| = 0 and |Ej | > 1.
It is caused by the mapping decision based on inaccurate execution time estima-
tions of DM jobs. μi is intrinsic, so it is unavoidable. And μs is seemingly also un-
avoidable because the task for accurate time estimation of DM jobs is so difficult.
However, the technique of job migration after initial mapping can decrease μs. The
key point of the job migration is that when |Ei| = 0 and |Ej | > 1 a suitable job Λ
in Ej would migrate from mj to mi and begins executing immediately on mi. The
satisfying condition for migration is that tcompletion(Λ, mj) > Δ(Λ, mi), which

184 P. Luo et al.

means that the completion time of Λ on mi is early than that on mj . Conformed
to the job execution priority in 3.2, the job in the front of the job pending queue is
firstly selected to check the migration condition. Thus, a system monitor is created
for the whole HC system, checks the job pending queue on each machine every Tm

time units and is responsible for job migrations. The pseudo-code for this system
monitor is in Algorithm 3.

Algorithm 3. Algorithm for Job Migration after Initial Mapping
1: while (t=the current system time) mod Tm=0 do
2: receive the copy of job pending queues on each machine E = {E1, · · · , El}
3: Eidle = {Ei|Ei ∈ E and |Ei| = 0} {In Eidle, Ei is arranged in decrease order of

the computing speed of the corresponding host, which Ei is from}
4: Ebusy = {Ei|Ei ∈ E and |Ei| > 1} {In Ebusy , Ei is arranged randomly}
5: if |Eidle| > 0 and |Ebusy | > 0 then
6: E(i) is the i-th element of E
7: for i = 1 to |Ebusy | do
8: pop the front of Ebusy(i) {the front is running on machine i}
9: end for

10: q =
∑

Ei∈Ebusy
(|Ei| − 1)

11: Ecandidate=null {Ecandidate is the queue of candidate jobs for migration}
12: while |Ecandidate| < q do
13: for i = 1 to |Ebusy | do
14: if Ebusy(i) is not empty then
15: Λ =pop the front of Ebusy(i)
16: add Λ to Ecandidate

17: end if
18: end for
19: end while
20: while |Ecandidate| > 0 and |Eidle| > 0 do
21: Λ =pop the front of Ecandidate

22: m is the machine which owns Λ
23: m

′
is the machine which owns Eidle(0)

24: if tcompletion(Λ, m) > Δ(Λ, m
′
) then

25: Λ migrates from m to m
′

26: pop the front of Eidle

27: end if
28: end while
29: end if
30: end while

3.4 The Overall Scheduling Framework

In summary, the scheduling framework consists of three parts: 1) a scheduler on
each machine, 2) a job execution controller on each machine, and 3) a system
monitor for job migration. The job mapping process starts immediately after a
job on the same machine is finished. All the ready jobs in the successors of the

A Heterogeneous Computing System for Data Mining Workflows 185

finished job are mapped, by the scheduler on the same machine, to the machines
according to Algorithm 1. According to Algorithm 2 the job execution controller
is responsible for inserting a mapped job into a suitable position and executing
them one after another. The system monitor migrates a job according to Al-
gorithm 3. Therefore, this scheduling framework first maps jobs to machines in
a decentralized and diligent manner, based on a approximate estimation of job
execution time. Then the performance of this initial mapping can be improved
through the use of job migration. The scheduling heuristic considers both the
minimal completion time criterion and the critical path in a DAG. These two as-
pects are integrated and implemented in job mapping process and job execution
control process, respectively.

4 Experiment Procedure and Results

Based an established MAS environment named MAGE [6], we have developed a
data mining HC system with the newly proposed scheduling framework. In our
experiment 9 machines with different configurations are used to form this HC
system. The main configurations of these machines are listed in Table 1. The
performance metrics measured in the experiments include task response-time,
system throughput and system efficiency defined in the following. To measure
these metrics, a DM task for classification denoted by G∗, is constructed for the
whole experiment process. The corresponding DAG of this task, which contains
16 jobs, is isomorphic with the DAG in Figure 2. After removing the end node of
the DAG it becomes a tree, which indicates that all the successors of an internal
node in the tree can be mapped once its execution is completed. The input data
for this DAG is from a practical classification problem, well logging analysis to
identify the pay zones of gas or oil in the reservoir formations. It contains 2000
labeled examples with 10 numeric condition attributes.

Table 1. Machine Configuration List

Machine Type Index CPU Main Memory Machine Amount
1 3 GHz 512 M 5
2 2.8 GHz 512 M 1
3 2.4 GHz 1024 M 1
4 2.2 GHz 512 M 1
5 731 MHz 448 M 1

The experiments are performed in two parts. In the first part, the 4 ma-
chines from Machine Type 1 are used to form a homogeneous system, in order
to measure task response time and system throughput versus the number of
joining machines with the same configuration. Let the arrival time of the task
G be a(G), the completion time of G be c(G), then the response-time of G is
r(G) = c(G) − a(G). The system throughput is defined by the number of G∗s,
which are completed by the system in a fixed time.

186 P. Luo et al.

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

re
sp

on
se

 ti
m

e
(s

ec
)

number of machines

without job migration
with job migration

(a) response time versus homoge-
neous machines

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5

th
ro

ug
hp

ut
 (

ta
sk

s/
10

0s
ec

)

number of machines

without job migration
with job migration

(b) throughput versus homogeneous
machines

Fig. 3. The experimental results for homogeneous computing

The second part of the experiments is to evaluate the scheduling performance
in a heterogeneous system, which contains all the 9 machines listed in Table 1. In
these experiments exponential distribution is used to generate the task sequence,
including 100 G∗s. These tasks are assigned under two average task arrival in-
tervals, tl and th, where tl = 25 seconds, th = 50 seconds. The task arrival
time is generated, which satisfies |ta−t|

t < 0.06, where ta is the actual average
inter-arrival time of the task sequence and t is the expected inter-arrival time.
We record the average response time of the tasks in the sequence and compute
the weighted system efficiency in (3), which considers the machine heterogeneity
in an HC system.

ηweighted =
tcomputation

ttotal
=

∑l
i=1

tcomputation(i)
ρi

∑l
i=1

ttotal(i)
ρi

(3)

where tcomputation(i) is the system CPU time for the computation on machine
i, ttotal(i) is the total system CPU time on machine i, l is the number of ma-
chines in our system, and ρi is the performance coefficient for machine i. All the
above experiments are performed under two situations, with and without job
migrations after initial mapping, and repeated five times.

Figure 3(a) and Figure 3(b) show the results from the first part of experiments.
Figure 3(a) illustrates that the response time of a single task G∗ decreases along
with the increase of the number of machines. However, the response time de-
creases in a non-linear manner and eventually reaches at a minimal level, because
in our application the minimal computing granularity is a job, which could not
be broken down any further for parallelization. In theory, the minimum response
time of a DAG is the weight sum of the critical path in the DAG. Figure 3(b)
shows that the throughput of the HC system increases close to linear along with
the increase of the number of joining machines. These two figures also show that
the use of job migration could improve the system performance in terms of task
response time and system throughput.

The results from the second part of the experiments can be seen in Figure 4(a)
and Figure 4(b). In Figure 4(a) it can be found that through the use of job

A Heterogeneous Computing System for Data Mining Workflows 187

 0

 200

 400

 600

 800

 1000

 1200

5025

re
sp

on
se

 ti
m

e
(s

ec
)

inter-arrival time (sec)

with job migration
without job migration

(a) average response time of the tasks
in task sequence

 0

 20

 40

 60

 80

 100

5025

w
ei

gh
te

d
ef

fic
ie

nc
y

(%
)

inter-arrival time (sec)

with job migration
without job migration

(b) weighted efficiency when execut-
ing the tasks in task sequence

Fig. 4. The experimental results for heterogeneous computing

migration technique the average response times of the 100 tasks decrease 5.58%
and 13.21% for the cases of 25-second inter-arrival and 50-second inter-arrival,
respectively. The weighted efficiency of the HC system is also improved through
job migration, as shown in Figure 4(b).

5 Related Work and Conclusions

The issues of building a computational Grid for Data Mining have been recently
addressed by a number of researchers. WEKA4WS [7] adapts the Weka toolkit
to a Grid environment and exposes all the 78 algorithms as WSRF-compliant
Web Services. FAEHIM (Federated Analysis Environment for Heterogeneous
Intelligent Mining) [8] is Web Services based on a toolkit of DM and mainly
focuses on the composition of existing DM Web Services by Triana problem
solving environment [9]. The Knowledge Grid [10, 11] is a reference software
architecture for geographically distributed knowledge discovery systems. It is
built on top of a computational Grid of Globus and uses basic Grid services
to implement the DM services on connected computers. A visual environment
for Grid application (VEGA) is developed in this system, supporting visual DM
plan generation and automatic DM plan execution.

To make good use of the computing hardware in heterogeneous systems for
DM workflow a scheduling framework is urgently needed. Although this comput-
ing paradigm can be achieved by exposing all the DM algorithms as Web Ser-
vices on every host in this system or by dynamic Web Service deployment, how-
ever, the scheduling framework for DM DAG applications, in general, has drawn
a very little attention except for the scheduling heuristics mentioned in [11].
Paper [11] also emphasizes the importance of scheduling algorithm in Knowl-
edge Grid and uses the concept of abstract hosts to represent any computing
host.

To the best of our knowledge, the study in this paper is the first attempt in
developing a data mining HC system with an efficient and effective scheduling
framework. It is formalized as a problem of dynamic scheduling for competi-
tive DM DAGs in a heterogeneous computing system. According to the char-

188 P. Luo et al.

acteristics of execution time estimation model of DM jobs, a new scheduling
framework is presented with three features: totally decentralized, the hybrid
heuristic scheme, and the use of job migration after initial mapping. The DM
computing platform with this scheduling framework has been implemented in a
multi-agent system environment. Its performance has also been tested by real-
world datasets, which is demonstrated by our experiments. It should also be
noted that the scheduling framework in this paper is a generic dynamic schedul-
ing algorithm for DAGs, and thus has wide applicability in other fields besides
data mining.

Acknowledgements

Our work is supported by the National Science Foundation of China
(No.60435010), the national 863 Project (No.2003AA115220), the national 973
Project (No.2003CB317004) and the Nature Science Foundation of Beijing
(No.4052025). Kevin Lü gratefully acknowledges the support of K.C.Wong Edu-
cation Foundation, Hong Kong.

References

1. Ping Luo, Kevin Lü, Qing He, and Zhongzhi Shi. A heterogeneous computing
system for data mining workflows. Technical report, Institute of Computing Tech-
nology, Chinese Academy of Sciences, 2006. http://www.intsci.ac.cn/users/luop/.

2. D. Fernandez-Baca. Allocating modules to processors in a distributed system.
IEEE Transaction on Software Engineering, 15(11):1427–1436, 1989.

3. Michael Iverson and Fusun Ozguner. Dynamic, competitive scheduling of multiple
dags in a distributed heterogeneous environment. In Proceedings of the Eighth
Heterogeneous Computing Workshop, 1999.

4. Rizos Sakellariou and Henan Zhao. A hybrid heuristic for dag scheduling on hetero-
geneous systems. In Poceedings of the 13th Heterogeneous Computing Workshop,
2004.

5. Tracy D. Braun, Debra Hensgen, Richard F. Freund, Howard Jay Siegel, Noah
Beck, Lasislau L. Boloni, Muthucumara Maheswaran, Albert I. Reuther, James P.
Robertson, Mitchell D. Theys, and Bin Yao. A comparison of eleven static heuris-
tics for mapping a class of independent tasks onto heterogeneous distributed com-
puting systems. Journal of Parallel and Distributed Computing, 61(6):810–837,
2001.

6. Zhongzhi Shi, Haijun Zhang, Yong Cheng, Yuncheng Jiang, Qiujian Sheng, and
Zhikung Zhao. Mage: An agent-oriented programming environment. In Proceedings
of IEEE International Conference on Cognitive Informatics, pages 250–257, 2004.

7. D. Talia, P. Trunfio, and O. Verta. Weka4ws: a wsrf-enabled weka toolkit for
distributed data mining on grids. In Proceedings of the 9th European Conference
on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal,
2005.

8. Ali Shaikh Ali, Omer F. Rana, and Ian J. Taylor. Web services composition for
distributed data mining. In Proceedings of International Conference on Parallel
Processing Workshops, pages 11–18, 2005.

A Heterogeneous Computing System for Data Mining Workflows 189

9. The Triana Problem Solving Environment. http://www.trianacode.org.
10. M. Cannataro and D. Talia. Knowledge grid an architecture for distributed knowl-

edge discovery. Communication of the ACM, 46(1), 2003.
11. M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, and P. Trunfio. Distributed

data mining on grids: Services, tools, and applications. IEEE Transactions on
Systems, Man and Cybernetics, 34(6):2451– 2465, 2004.

	Introduction
	Data Mining Workflow for Heterogeneous Computing
	Data Mining Workflow for Classification: A Running Example
	Workflow Model of Data Mining

	Dynamic Scheduling for Competitive DAGs in an HC System
	Decentralized and Diligent Job Mapping
	Job Execution Control with Priority
	Job Migration After Initial Mapping
	The Overall Scheduling Framework

	Experiment Procedure and Results
	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

