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Abstract. Recently, the inverse frequent set mining problem has received more 
attention because of its important applications in different privacy preserving 
data sharing contexts. Several studies were reported to probe the NP-complete 
problem of inverse frequent set mining. However, it is still an open problem 
that whether there are reasonably efficient search strategies to find a compatible 
data set in practice. In this paper, we propose a FP-tree-based method for the 
inverse problem. Compared with previous “generation-and-test” methods, our 
method is a zero trace back algorithm, which saves huge computational costs. 
Furthermore, our algorithm provides a good heuristic search strategy to rapidly 
find a FP-tree, leading to rapidly finding the compatible databases. More 
importantly, our method can find a set of compatible databases instead of 
finding only one compatible database in previous methods. 

1   Introduction 

As the frequent itemsets can be considered as a kind of summary of the original data 
set, recently the inverse frequent set mining problem inferring the original data set 
from given frequent itemsets with the supports has received more attention because of 
its potential threat to privacy [1], its use in synthetic benchmark data set generation 
[2], and its potential application in sensitive association rule hiding in database [3]. 

Inverse frequent set (or “itemset”) mining can be described as follows: “Given a 
collection of  frequent itemsets and their supports, find a transactional data set (or 
“database”) such that the new dataset precisely agrees with the supports of the given 
frequent itemset collection while the supports of other itemsets would be less than the 
pre-determined threshold” [4]. This inverse data mining problem is related to the 
questions of how well privacy is preserved in the frequent itemsets and how well the 
frequent itemsets characterize the original data set.  It has very practical applications 
in different privacy preserving data sharing contexts from privacy preserving data 
mining (PPDM) to knowledge hiding in database (KHD), as the problem roots in 
people’s increasing attention to information protection either to individual private 
data preserving or to business confidential knowledge hiding.  

Mielikainen first proposed this inverse mining problem in [1]. He showed finding a 
dataset compatible with a given collection of frequent itemsets or deciding whether 
there is a dataset compatible with a given collection of frequent sets is NP-complete. 
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1.1   Related Work 

Towards the NP-complete problem, several methods were proposed. The authors of 
[2, 3] designed a linear program based algorithm for approximate inverse frequent 
itemset mining, aiming to construct a transaction database that approximately satisfies 
the given frequent itemsets constraints. As for the exact inverse frequent itemset 
mining, Calder in his paper [5] gave a naive “generate-and-test” method to “guess” 
and build a database horizontally(transaction by transaction) from given frequent 
itemsets. On the contrary, the authors of [4] proposed a vertical database generation 
algorithm to “guess” a database vertically---column by column when looking the 
transaction database as a two-dimensional matrix. Unfortunately, under the 
generation-test framework, neither of the algorithms works well in terms of 
effectiveness and efficiency as they belong to simple enumerative search approaches 
essentially, which blindly try all possible value assignments, even those devoid of 
solutions. This means, once the “test” processes fail, the algorithms must rollback 
some costly “generate-and-test” operations, leading to huge computational cost. 

Thus, a feasible and sufficient solution to the exact inverse frequent itemset mining 
is still expected. Obviously, if the given frequent sets collection comes from a real 
database, at least this original database must be one which exactly agrees with the 
given even though it is computationally hard to “render” it. The questions and 
challenges are: Is it unique? Can we find an efficient algorithm without trace back to 
find one? Can we find a good heuristic search strategy to reach one quickly?  

This paper describes our effort towards finding an efficient method to find a set of 
databases that exactly agree with the given frequent itemsets and their supports 
discovered from a real database. Compared with previous “generation-and-test” 
methods, our proposed FP-tree-based method is a zero trace back algorithm, which 
saves huge computational costs. Furthermore, our algorithm provides a good heuristic 
search strategy to rapidly find a FP-tree, leading to rapidly finding the compatible 
databases. More importantly, our method can find a set of compatible databases 
instead of finding only one compatible database in previous methods. 

1.2   Paper Layout 

In section 2 we define the inverse frequent set mining problem that we focus on. In 
section 3 we review the FP-tree structure, and in section 4 we present our proposed 
algorithm. We analyze correctness and efficiency of our algorithm and discuss the 
number of databases generated in section 5. Section 6 summarizes our study. 

2   Problem Description 

Let I = {I1, I2, ..., Im} be a set of items, and a transaction database D = {T1, T2, ..., Tn} 
where  Ti (i∈[1..n]) is a transaction which contains a set of items in I. The support of 
an itemset A ⊆ I in a transaction database D over I, denoted support(A), is defined as 
the number of transactions containing A in D. A is a frequent itemset if A’s support is 
no less than a predefined minimum support threshold“σ”. If A is frequent and 
there exists no superset of A such that every transaction containing A also contains the 
superset, we say that A is a frequent closed itemset. 
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The well-known frequent itemset mining problem aims to find all frequent itemsets 
from a transaction database. And the objective of frequent closed itemset mining is to 
find all frequent closed itemsets. Conversely, inverse frequent itemset mining is to 
find the databases that satisfy the given frequent itemsets and their supports. If the 
given frequent itemsets are frequent closed itemsets, we call the inverse mining 
process inverse frequent closed itemset mining. Furthermore, if the frequent closed 
itemsets and their supports are discovered from a real database, we call the inverse 
mining process inverse real frequent closed itemset mining. Here, “real” only 
represents “existent”, which means the real database can be an artificial data set. 

In this paper, we focus on the inverse real frequent closed itemset mining defined 
as: Given a set of items I = {I1, I2, ..., Im}, minimum support threshold “σ”, and a set of 
all frequent closed itemsets F = {f1, f2, ...fn} with fix supports S = {support(f1), 
support(f2), ..., support(fn)} discovered from a real database D, find a set of databases 
DBs in which each database D’ satisfies the following constraints:  

(1) D’ is over the same set of items I;  
(2) From D’, we can discover exactly same set of frequent closed itemsets“F”with 

the same support“S”under the same minimum support threshold“σ”. 

3   Frequent Pattern Tree 

Frequent pattern tree (or FP-tree in short) proposed by Jiawei Han and efficiently used 
in frequent set mining, is an extended prefix-tree structure for storing compressed, 
crucial information about frequent patterns.  
  

root

E 1

A 4

B 7

item HeaderLink

B 7

A 6

C 6

D 2

E 2 D 1

C 2D 1

E 1

C 2

C 2

A 2

Header Table
TID Items Ordered Frequent

Item Sets

1 A B E B A E

2 B D B D

3 B C B C

4 A B D B A D

5 A C A C

6 B C B C

7 A C A C

8 A B C E B A C E

9 A B C B A C

 

Fig. 1. A transaction database and its frequent pattern tree (FP-tree) 

Fig. 1 gives an example of a transaction database and its FP-tree, which will be 
used in the next section. The database includes nine transactions comprising the items 
in the set {A, B, C, D, E}, which are shown in the mid column of the table. The FP-
tree is constructed by two scans of the database. First scan of the database derives a 
list of frequent items 〈B:7, A:6, C:6, D:2, E:2〉(the number after “:” indicates the 
support), in which items ordered in support descending order. The frequent items in 
each transaction are listed in this ordering in the rightmost column of the table. The 
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FP-tree forms in the second scan of the nine transactions in the rightmost column, 
with each transaction ‘climbing’ the FP-tree one by one. An item header table is built 
to facilitate tree traversal. Details of FP-tree construction process can be found in [6].  

4   Proposed Method 

4.1   Basic Idea 

Our method to generate a database D from given frequent itemsets uses FP-tree as a 
transition “bridge” and can be seen as the reverse process of the FP-tree-based 
frequent itemsets mining method proposed in [6]. The idea comes from the fact that 
FP-tree is a highly compact structure which stores the complete information of a 
transaction database D in relevance to frequent itemsets mining. Thus we can look 
upon FP-tree as a medium production between an original database and its 
corresponding frequent itemsets. Intuitively, FP-tree reduces the gap between a 
database and its frequent itemsets, which makes the transformation from given 
frequent itemsets to database more smoothly, more naturally and more easily. 

Our method works as follows. First, we try to “guess” a FP-tree that satisfies all the 
frequent itemsets and their supports. We call such a FP-tree a compatible FP-tree. 
Second, generate a corresponding database TempD directly from the compatible FP-
tree by outspreading all the paths of the tree. Third, generate expected databases based 
on TempD by scattering some infrequent itemsets into the transactions in TempD, 
with the “new” itemsets brought below the given minimum support threshold. 
  

DatabaseFP-treeFrequent Itemsets TempD

(1)(2)(3)  

Fig. 2. Basic process of FP-tree-based inverse frequent set mining vs. frequent set mining 

Fig. 2 shows the basic process of our proposed method for inverse frequent set 
mining, which is marked as ①, ② and ③. It corresponds the three steps described 
above. The process of the FP-tree-based frequent itemsets mining is also shown in the 
Fig. 2, which is composed of the three steps: (1), (2) and (3). Detailed information 
about the FP-tree-based frequent itemset mining process can be found in [6]. 

4.2   Algorithm 

The sketch of our proposed inverse frequent closed set mining algorithm, which is 
composed of three procedures, is given as follows.  

Gen_DB(F, I,σ) 
Begin 
1. DBs← ∅, FI ← I - { all items in F }; 
2. FP←Gen_FPtree(F,σ); 
3. TempD←Outspread(FP); 
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4. DBs←DBs∪ {TempD}; 
5. NewTempD←insert “some” items in FI  into “some”  transactions in TempD, be 

sure that each item in FI  can only be inserted less than“σ” transactions; 
6. DBs←DBs∪ {NewTempD}; 
7. Goto 5 until  no different NewTempD generated; 
8. Return DBs; 
End 
 
Gen_FPtree(F, σ) 
Begin 
1. Create the root of an FP-tree, FP, and label it as “null”;  
2. F’ ←Sort(F); 
3. While (F’ ！=∅)  DO 

a) Select the first itemset f1:s1 , where f1 is the itemset and s1 is its support; 
b) Let f1 be [p|P], where p is the first element and P is the remaining list of 

f1; 
c) Insert_tree([p|P]:s1, FP); 
d) Update F’: 

For all f∈F’ and f⊆f1, 
i.   support(f)←support(f) - s1; 
ii.   if (support(f)=0) then F’←F’-{f}; 

e)  F’ ←Sort(F’); 
4. Return FP; 
End 
 

Outspread(FP) 
Begin 
1. TempD ← ∅ 
2. if (FP=null) then return TempD 

else 
(a) search the tree by in-depth order to find a leaf node ln:s, where ln is its item 

and s is its count; 
(b) t←all items in the  path from the root FP to the leaf node ln; 
(c) For i=1 to s, TempD ← TempD ∪{ t};//TempD can include duplicates for t 
(d) Update FP: 

For each node n in the path from the root FP to the leaf node ln, 
i.   n.count←n.count - s; 
ii.   if (n.count=0) then delete n from the tree FP; 

(e) Outspread(FP); 
End 

The input of the algorithm is a set of items I, minimum support threshold “σ”and 
frequent closed itemsets collection F with the support S. The output is a set of 
databases DBs. Each element of the DBs is a transaction database that agrees with F. 

In the main procedure “Gen_DB()”, we use FP to represent the tree obtained from 
the frequent closed itemsets collection F by calling the sub-procedure 
“Gen_FPtree()”. We use TempD  to represent the result of  outputting FP by calling 
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the sub-procedure “Outspread()”. Notice that FP and TempD include only the items 
occurring in F. FI  represents infrequent items included in I but not occurring in F. 
NewTempD is used to record the new generated database based on TempD.  

In the sub-procedure “Gen_FPtree()”, the function Sort(F) sort the itemsets in F 
by the number of items and support in descending order. Moreover, the items in each 
itemset are sorted in 1-itemset’s support descending order. The function 
Insert_tree([p|P]:s1, FP)is performed as follows: If FP has a child N such that 
N.item-name=p.item-name, then increment N’s count by s1; else create a new node N, 
and let its  count be s1, its parent link be linked to FP. If P is nonempty, call 
Insert_tree(P,N) recursively.  

We use F’ to store the sorted frequent itemsets so far by the number of items and 
support in descending order. First, an itemset f1:s1 in the forefront of F’ “climbs” 
the FP-tree. Then, the supports of all frequent itemsets in F’ that are subset of f1 
subtract s1 and F’ is updated. The two steps repeat until all supports of the frequent 
itemsets in F’ are equal to “0”, and F’ is equal to ∅. The sort routine of F’ insures 
that each time the longest itemset with highest support is submitted first to “climb” 
the FP-tree. That is, the longer itemsets with higher supports are always satisfied 
prior to the shorter itemsets with lower supports during the FP-tree generation. This 
heuristic idea leads that once the longest itemset with highest support in the 
forefront of F’ “climbs” the tree, the remaining tasks decrease sharply because more 
supports will probably be subtracted and more itemsets will probably be wiped off 
in the updating process of F’.  

In the sub-procedure “Outspread()”, the itemsets on each path of the FP-tree 
“come down” from the tree and form transactions of TempD one by one until the 
tree is equal to null. The result of this sub-procedure TempD can be seen as the 
status of an “Ordered Frequent Items” transaction database in [6] deleting 
infrequent items in each transaction (like the database in the rightmost column of 
the table in Fig. 1). 

Lines 4-7 of the procedure “Gen_DB()” generate a set of databases DBs by 
scattering some infrequent items (elements of FI ) into TempD, just be sure that 
each infrequent item can only be scattered less than “σ”(minimum support 
threshold) transactions of TempD. Concretely speaking, suppose the number of 
infrequent items equals to n (| FI |=n), FI = {item1, ..., itemi, ..., itemn}, |TempD|=m, 
then DBs={TempD}∪NewTempDSet1∪...∪NewTempDSeti∪...∪NewTempDSetn, 
where NewTempDSet1 is a set of all the new generated databases by scattering item1 
into TempD, and NewTempDSeti is a set of all the new generated databases by 
scattering itemi into all the previous generated databases in {TempD}∪ ...∪

NewTempDSeti-1. 

4.3   Example 

Let’s illustrate our algorithm with an example: Given I={A, B, C, D, E}, minimum 
support threshold “ σ =1 ” , and frequent closed itemsets collection 

}B,AB,A,AC,BCA,BC,C,DB,DBA,EAB,{EABCF 74642462121= (the subscripts represent 

supports) discovered from the transaction database in Fig. 1 of section 3. 
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① Generate FP-tree 
We first sort itemsets in F by the number of items and support in descending order. 
We get }C,A,B,DB,AC,BC,AB,DBA,EAB,BCA,{EABCF' 66724441221= . Then the items in 

each itemset are sorted in 1-itemset’s support descending order. Now 
}C,A,B,BD,AC,BC,BA,BAD,BAE,BAC,{BACEF' 66724441221= . 

  

FP

C 1

A 1

B 1

E 1

FP

C 2

A 2

B 2

E 1

FP FP

C 2

A 3

B 3

E 1

E 1

FP

C 2

A 4

B 4

E 1

E 1 D 1

FP

C 2

A 4

B 6

E 1

E 1 D 1

C 2

FP

C 2

A 4

B 6

E 1

E 1 D 1

C 2 C 2

A 2

FP

C 2

A 4

B 7

E 1

E 1 D 1

C 2 C 2

A 2

D 1

(1) Insert "BACE1" (2) Insert "BAC1"

(5) Insert "BC2" (6) Insert "AC2"

(3) Insert "BAE1" (4) Insert "BAD1"

(7) Insert "BD1"

(0) Initial

1-iterationNull

7-iteration6-iteration5-iteration

3-iteration2-iteration 4-iteration

F'(7)={}F'(6)={BD1 ,B1}F'(5)={AC2 ,BD1 ,A2 ,C2 ,B1}

F'(4)={BC2 ,...}F'(3)={BAD1 ,...}F'={BACE1 ,...} F'(1)={BAC1 ,...} F'(2)={BAE1 ,...}

 

Fig. 3. The change of the FP-tree during the FP-tree generation 

During the first iteration, the first itemset “BACE1” is selected and inserted to the 
tree rooted as “FP”. We get the tree like Fig.3-(1). Then F’ is updated by subtracting 
“1” from the supports of all subsets of “BACE” occurring in F’. Itemsets with support 
equal to “0” are wiped off during updating. Now we get F’(1)= F’-{BACE, BAC, 
BAE, BA, BC, AC, B, A, C}1={BAC1, BAE1, BAD1, BA3, BC3, AC3, BD2, B6, A5, C5}. 
The itemsets in F’(1) has already been sorted by the number of items and support in 
descending order, so the result of function Sort(F’) performing on F’(1) is still F’(1). 
We can see that after the first iteration, F’ becomes F’(1) whose itemsets and related 
supports decrease much, which means the remaining itemsets and their related 
supports needed to satisfy in the followed iteration decrease much. This dramatically 
reduces the cost effects on the FP-tree generation. 
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During the second iteration, “BAC1” is inserted to the tree and we get F’(2)= 
{BAE1, BAD1, BA2, BC2, AC2, BD2, B5, A4, C4}. Then “BAE1 ”, “BAD1 ”, “BC2 ”, “AC2 

” and “BD1 ” are inserted to the tree (or we say “climb” the tree) one after the other 
and we get the following update sequence of F’  after each iteration: 『 F’(3)= {BAD1, 
BC2, AC2, BD2, BA1, B4, C4, A3}; F’(4)= {BC2, AC2, BD1, C4, B3, A2}; F’(5)= {AC2, 
BD1, A2, C2, B1}; F’(6)= {BD1, B1}; F’(7)= ∅』 . The “Gen_FPtree” process terminates 
after seven iterations when F’= ∅. Fig. 3 shows the change of the FP-tree during the 
whole process of the FP-tree generation. 

② Generate temporary transaction database TempD by outspreading FP-tree 
Fig. 4 shows the change of the FP-tree during the whole process of the TempD 
generation. First, “BACE1” which is the leftmost branch of the original FP-tree 
“comes down” from the tree. At the same time, all the items in this branch form into 
the first transaction of TempD : TempD(1)=(B, A, C, E) .After deleting the “BACE1” 
branch from the tree, the “FP” tree changes into the form shown as Fig.4-(2). By 
calling the Outspread(FP) recursively, we perform the similar operations on the 
remaining six “FP” trees (Fig.4-(2) to Fig.4-(7)) in turn. “BAC1”, “BAE1”, “BAD1”, 
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Fig. 4. The change of the FP-tree during the TempD generation 
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“BC2”, “BD1” and “AC2” comes down from the tree one by one and we get the 
remaining eight transactions of TempD: TempD(2)=(B, A, C); TempD(3)=(B, A, E); 
TempD(4)=(B, A, D); TempD(5)=(B, C); TempD(6)=(B, C); TempD(7)=(B, D); 
TempD(8)=(A, C); TempD(9)=(A, C). Notice that when “BC2” and “AC2” come 
down, our algorithm generates two same transactions respectively. The whole 
algorithm ends when FP=null (Fig.4-(8)) and we get a temporary transaction database 
TempD shown as the table in Fig. 4. 

③   Generate a set of databases DBs by scattering infrequent items into TempD 
In last process ②, we have generated a transaction database TempD from the FP-tree 
generated in ①. In fact, TempD, which involves only frequent items, keeps all 
information about frequent itemsets and constitutes skeleton of the compatible 
databases we are to find. By scattering infrequent items into TempD, we can get more 
than one database, exactly a set of databases satisfying the given constraints. 

In our example, the set of infrequent items FI =∅, as all the items in the set of 
I={A, B, C, D, E} occur in the set of frequent itemsets 

}B,AB,A,AC,BCA,BC,C,DB,DBA,EAB,{EABCF 74642462121= . So according to lines 4-7 

of the procedure “Gen_DB()” in our whole algorithm,  no NewTempD is generated 
and the eventual DBs={TempD}. This means we find only one transaction database 
TempD satisfying F in this example. Interestingly, TempD (see Fig.4) happens to be 
the transaction database shown in Fig.1 of section 3, without regard to the order of 
transactions and the items order in each transaction. Another interesting thing is the 
FP-tree generated in this example by our inverse mining algorithm (see Fig.3-(7)) 
happens to be the tree shown in Fig.1 of section 3 generated from the transaction 
database in Fig. 1 by the FP-growth algorithm in [6], without regard to the order of 
children of each node. What do the interesting results indicate? At least we can get the 
following three valuable hints from the interesting results. 

First, it validates the correctness of the result, as the input frequent sets F is 
discovered from the database in Fig. 1. So from TempD we must be able to discover 
exactly the same F, and TempD really satisfies F. Second, it indicates the feasibility 
and effectiveness of our method, as we really find a database satisfying F only based 
on the inputs ( I, F,σ) and our algorithm, without knowing any other things about the 
original database. Third, it induces us to think: It is what factors that lead to the 
interesting results? How many compatible databases can be found by the proposed 
algorithm in usual cases? These questions will be probed in the next section 5. 

5   Analysis 

In this section, we analyze the correctness, efficiency of our algorithm. Then we focus 
on discussing the number of compatible databases that our algorithm can generate.  

(1)  Correctness 
The correctness of our algorithm can be ensured by the three steps during our 
algorithm performing. The first step “Generate FP-tree” insures the generated FP-tree 
is compatible with the given frequent sets constraints, because all the given frequent 
sets “climb” the FP-tree and FP-tree can store the complete information in relevance 
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to frequent itemsets mining. The second step “Generate TempD by outspreading FP-
tree” ensures the generated TempD is also compatible with the given frequent sets 
constraints, because all frequent sets “come down” from the FP-tree and from TempD 
we can construct a same FP-tree. The third step “Generate a set of databases DBs by 
scattering infrequent items into TempD” guarantees all the frequent sets and their 
supports related information keeps down exactly, no changes happen on any frequent 
sets’ supports, and no new frequent sets are brought. So that all the databases in DBs 
preserve the complete and exact information of the given frequent sets constraints and 
are correct compatible databases we are to find. 

(2)  Effectiveness 
The effectiveness of our algorithm lies in the two facts. One fact is our algorithm is a 
zero trace back algorithm with no rollback operations, since during constructing a 
compatible FP-tree process each itemset “climbs” the FP-tree following the 
prescribed order. And the remaining two transformations “from FP-tree to TempD” 
and “from TempD to the set of compatible databases” are natural and direct, with no 
rollback too. The other fact is, with the longest itemset with highest support 
“climbing” the FP-tree first during each iteration, our algorithm provides a good 
heuristic search strategy to rapidly find a compatible FP-tree.  

Suppose the number of the given frequent closed sets in collection F is k and the 
number of transactions generated in TempD is m, i.e. |F|=k, |TempD|=m. Then the 
FP-tree construction can be accomplished in O(klogk+(k-1)log(k-1)+...+1) time, in 
which klogk represents the time to sort the k frequent closed sets in F in the frequent 
sets length and support descending order. The number of elements in F decrease one 
each time the first frequent set climbs the FP-tree. The time consumed in TempD 
generation is determined by the number of branches in the FP-tree and approximates 
to O(m). Hence the first two processes in our algorithm can both be accomplished in 
polynomial time. The most time-consuming process in our algorithm may be the third 
process to generate a set of compatible databases DBs. This is because our algorithm 
may generate an exponential number of compatible databases (see the number of 
compatible databases analysis in part (3) of this section). But it does not show our 
algorithm is inefficient. On the contrary, it shows the effectiveness of our algorithm 
because we can generate so many compatible databases. In fact, in our algorithm the 
generation of new databases is very easy and quick just scattering a new infrequent 
item into all the previous databases in prescribed principle. It may be time-consuming 
only because there are so many answers to be output.  

All in all, with no trace back and with the good search strategy, our algorithm can 
work very effectively generating lots of compatible databases.  

(3)  The number of compatible databases  
Fig. 5 illustrates mapping relation among compatible database space, compatible FP-
tree space and given frequent closed sets collection, which helps to probe the number 
of compatible databases that our algorithm can output. In Fig. 5, FCS is a frequent 
closed sets collection discovered from one of the databases in DBsi undergoing 
TempDi and FP-treei by FP-growth method in [6]. DBsj is the output set of compatible 
databases generated from FCS undergoing FP-treej and TempDj by our algorithm. All 
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Fig. 5. Mapping relation among database space, FP-tree space and FCS 

the databases in DBsi map into the same FP-treei and have the same number of 
transactions as TempDi, so do the DBsj, FP-treej and TempDj. The figure shows that 
what our algorithm outputs is only a small part (a class having the same number of 
transactions and corresponding to the same FP-tree) of the whole compatible database 
space. Then how many databases our algorithm can output? 

The number of compatible databases that our algorithm can output (indicated as 
DBs ) is related to the three parameters: (1) the number of transactions in TempD, 

i.e.|TempD|; (2) the number of infrequent items in FI , i.e. FI  ; (3) the minimum 

support threshold“σ”. Suppose |TempD|= m, nFI =  and f(n) represents the number 

of generated databases after the n-th infrequent item in FI  has been scattered into all 
of the previous generated databases fully, we have the recurrence equation: 

)CCCf(n)(f(n)1)f(n 1
m

2
m

1
m

−++++=+ σL (n≥0, 2≤σ≤m, m≥1,σ∈N) ( 1
mC  means the 

number of selecting one transaction from m transactions of a generated database that 
has not included the (n+1)-th infrequent item); and f(0)=1 which means when there is 
no infrequent items in FI , there is only one compatible database (TempD) our 
algorithm finds. By solving the recurrence equation, we get 

nσ
mmm )CCC1()n(fDBs 121 −++++== L (n≥0, 2≤σ≤m, m≥1,σ∈ N). Whenσ=1, 

1DBs = ; and whenσ<<m, |DBs| is in direct proportion to n
m )Cσ( σ . In practice we 

can limit the number of compatible databases to be generated when |DBs| is 
astronomical or when we are trying to find fixed number of compatible databases.  

Notice that our other examples show usually(whenσ≥2) FP-treej is different from 
FP-treei, DBsi and DBsj are disjoint, and the database set that our algorithm outputs 
does not include the original database. However, whenσ=1, FP-treej happens to be the 
same with FP-treei, leading  TempDj is just the same with TempDi, and the only 
compatible database we are to find is just the original database because there exists no 
infrequent items can be scattered under “σ=1”. This explains the two interesting facts 
in the example in section 4: The TempD in Fig.4 happens to be the original database 
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in Fig.1; and the FP-tree in Fig.3-(7) happens to be the same FP-tree in Fig.1. The two 
dashed lines with arrowheads in Fig.5 illustrate the different execution paths of our 
algorithm in usual case (σ>=2) and special case (σ=1). 

6   Conclusions 

We have presented a feasible and efficient algorithm for the NP-complete problem of 
inverse frequent set mining. The algorithm can effectively generate a set of databases 
that exactly agree with the given frequent closed itemsets and their supports 
discovered from a real database. Compared with previous “generation-and-test” 
methods, our method is a zero trace back algorithm, without rollback operations 
during the databases’ generation, which saves huge computational costs. Furthermore, 
our algorithm provides a good heuristic search strategy to rapidly find a FP-tree 
satisfying the given frequent sets constraints, leading to rapidly finding the 
compatible databases. More importantly, our algorithm can find a set of compatible 
databases (usually a lot of databases) instead of finding only one compatible database 
in previous methods. We also probe the number of databases found by our algorithm.  

This study is just our first step towards solving this inverse mining problem. More 
work will be done in the near future, such as refinement of the algorithm, and 
empirical experiments on real databases. However, for this NP-complete inverse 
mining problem, our study has shown that there do exist reasonably efficient search 
strategies and solutions to find some (at least one, not all, but usually a lot of) data 
sets compatible with a given data set.  This study can be used to deal with privacy 
preserving data sharing, in which data owners will have a choice in releasing different 
versions of the original data for different sharing (benchmark, mining, etc.). 
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