
D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 152 – 163, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A FP-Tree-Based Method for Inverse Frequent
Set Mining

Yuhong Guo, Yuhai Tong, Shiwei Tang, and Dongqing Yang

Department of Computer Science
Peking University, Beijing 100871, China

{yhguo, yhtong, tsw, dqyang}@pku.edu.cn

Abstract. Recently, the inverse frequent set mining problem has received more
attention because of its important applications in different privacy preserving
data sharing contexts. Several studies were reported to probe the NP-complete
problem of inverse frequent set mining. However, it is still an open problem
that whether there are reasonably efficient search strategies to find a compatible
data set in practice. In this paper, we propose a FP-tree-based method for the
inverse problem. Compared with previous “generation-and-test” methods, our
method is a zero trace back algorithm, which saves huge computational costs.
Furthermore, our algorithm provides a good heuristic search strategy to rapidly
find a FP-tree, leading to rapidly finding the compatible databases. More
importantly, our method can find a set of compatible databases instead of
finding only one compatible database in previous methods.

1 Introduction

As the frequent itemsets can be considered as a kind of summary of the original data
set, recently the inverse frequent set mining problem inferring the original data set
from given frequent itemsets with the supports has received more attention because of
its potential threat to privacy [1], its use in synthetic benchmark data set generation
[2], and its potential application in sensitive association rule hiding in database [3].

Inverse frequent set (or “itemset”) mining can be described as follows: “Given a
collection of frequent itemsets and their supports, find a transactional data set (or
“database”) such that the new dataset precisely agrees with the supports of the given
frequent itemset collection while the supports of other itemsets would be less than the
pre-determined threshold” [4]. This inverse data mining problem is related to the
questions of how well privacy is preserved in the frequent itemsets and how well the
frequent itemsets characterize the original data set. It has very practical applications
in different privacy preserving data sharing contexts from privacy preserving data
mining (PPDM) to knowledge hiding in database (KHD), as the problem roots in
people’s increasing attention to information protection either to individual private
data preserving or to business confidential knowledge hiding.

Mielikainen first proposed this inverse mining problem in [1]. He showed finding a
dataset compatible with a given collection of frequent itemsets or deciding whether
there is a dataset compatible with a given collection of frequent sets is NP-complete.

 A FP-Tree-Based Method for Inverse Frequent Set Mining 153

1.1 Related Work

Towards the NP-complete problem, several methods were proposed. The authors of
[2, 3] designed a linear program based algorithm for approximate inverse frequent
itemset mining, aiming to construct a transaction database that approximately satisfies
the given frequent itemsets constraints. As for the exact inverse frequent itemset
mining, Calder in his paper [5] gave a naive “generate-and-test” method to “guess”
and build a database horizontally(transaction by transaction) from given frequent
itemsets. On the contrary, the authors of [4] proposed a vertical database generation
algorithm to “guess” a database vertically---column by column when looking the
transaction database as a two-dimensional matrix. Unfortunately, under the
generation-test framework, neither of the algorithms works well in terms of
effectiveness and efficiency as they belong to simple enumerative search approaches
essentially, which blindly try all possible value assignments, even those devoid of
solutions. This means, once the “test” processes fail, the algorithms must rollback
some costly “generate-and-test” operations, leading to huge computational cost.

Thus, a feasible and sufficient solution to the exact inverse frequent itemset mining
is still expected. Obviously, if the given frequent sets collection comes from a real
database, at least this original database must be one which exactly agrees with the
given even though it is computationally hard to “render” it. The questions and
challenges are: Is it unique? Can we find an efficient algorithm without trace back to
find one? Can we find a good heuristic search strategy to reach one quickly?

This paper describes our effort towards finding an efficient method to find a set of
databases that exactly agree with the given frequent itemsets and their supports
discovered from a real database. Compared with previous “generation-and-test”
methods, our proposed FP-tree-based method is a zero trace back algorithm, which
saves huge computational costs. Furthermore, our algorithm provides a good heuristic
search strategy to rapidly find a FP-tree, leading to rapidly finding the compatible
databases. More importantly, our method can find a set of compatible databases
instead of finding only one compatible database in previous methods.

1.2 Paper Layout

In section 2 we define the inverse frequent set mining problem that we focus on. In
section 3 we review the FP-tree structure, and in section 4 we present our proposed
algorithm. We analyze correctness and efficiency of our algorithm and discuss the
number of databases generated in section 5. Section 6 summarizes our study.

2 Problem Description

Let I = {I1, I2, ..., Im} be a set of items, and a transaction database D = {T1, T2, ..., Tn}
where Ti (i∈[1..n]) is a transaction which contains a set of items in I. The support of
an itemset A ⊆ I in a transaction database D over I, denoted support(A), is defined as
the number of transactions containing A in D. A is a frequent itemset if A’s support is
no less than a predefined minimum support threshold“σ”. If A is frequent and
there exists no superset of A such that every transaction containing A also contains the
superset, we say that A is a frequent closed itemset.

154 Y. Guo et al.

The well-known frequent itemset mining problem aims to find all frequent itemsets
from a transaction database. And the objective of frequent closed itemset mining is to
find all frequent closed itemsets. Conversely, inverse frequent itemset mining is to
find the databases that satisfy the given frequent itemsets and their supports. If the
given frequent itemsets are frequent closed itemsets, we call the inverse mining
process inverse frequent closed itemset mining. Furthermore, if the frequent closed
itemsets and their supports are discovered from a real database, we call the inverse
mining process inverse real frequent closed itemset mining. Here, “real” only
represents “existent”, which means the real database can be an artificial data set.

In this paper, we focus on the inverse real frequent closed itemset mining defined
as: Given a set of items I = {I1, I2, ..., Im}, minimum support threshold “σ”, and a set of
all frequent closed itemsets F = {f1, f2, ...fn} with fix supports S = {support(f1),
support(f2), ..., support(fn)} discovered from a real database D, find a set of databases
DBs in which each database D’ satisfies the following constraints:

(1) D’ is over the same set of items I;
(2) From D’, we can discover exactly same set of frequent closed itemsets“F”with

the same support“S”under the same minimum support threshold“σ”.

3 Frequent Pattern Tree

Frequent pattern tree (or FP-tree in short) proposed by Jiawei Han and efficiently used
in frequent set mining, is an extended prefix-tree structure for storing compressed,
crucial information about frequent patterns.

root

E 1

A 4

B 7

item HeaderLink

B 7

A 6

C 6

D 2

E 2 D 1

C 2D 1

E 1

C 2

C 2

A 2

Header Table
TID Items Ordered Frequent

Item Sets

1 A B E B A E

2 B D B D

3 B C B C

4 A B D B A D

5 A C A C

6 B C B C

7 A C A C

8 A B C E B A C E

9 A B C B A C

Fig. 1. A transaction database and its frequent pattern tree (FP-tree)

Fig. 1 gives an example of a transaction database and its FP-tree, which will be
used in the next section. The database includes nine transactions comprising the items
in the set {A, B, C, D, E}, which are shown in the mid column of the table. The FP-
tree is constructed by two scans of the database. First scan of the database derives a
list of frequent items 〈B:7, A:6, C:6, D:2, E:2〉(the number after “:” indicates the
support), in which items ordered in support descending order. The frequent items in
each transaction are listed in this ordering in the rightmost column of the table. The

 A FP-Tree-Based Method for Inverse Frequent Set Mining 155

FP-tree forms in the second scan of the nine transactions in the rightmost column,
with each transaction ‘climbing’ the FP-tree one by one. An item header table is built
to facilitate tree traversal. Details of FP-tree construction process can be found in [6].

4 Proposed Method

4.1 Basic Idea

Our method to generate a database D from given frequent itemsets uses FP-tree as a
transition “bridge” and can be seen as the reverse process of the FP-tree-based
frequent itemsets mining method proposed in [6]. The idea comes from the fact that
FP-tree is a highly compact structure which stores the complete information of a
transaction database D in relevance to frequent itemsets mining. Thus we can look
upon FP-tree as a medium production between an original database and its
corresponding frequent itemsets. Intuitively, FP-tree reduces the gap between a
database and its frequent itemsets, which makes the transformation from given
frequent itemsets to database more smoothly, more naturally and more easily.

Our method works as follows. First, we try to “guess” a FP-tree that satisfies all the
frequent itemsets and their supports. We call such a FP-tree a compatible FP-tree.
Second, generate a corresponding database TempD directly from the compatible FP-
tree by outspreading all the paths of the tree. Third, generate expected databases based
on TempD by scattering some infrequent itemsets into the transactions in TempD,
with the “new” itemsets brought below the given minimum support threshold.

DatabaseFP-treeFrequent Itemsets TempD

(1)(2)(3)

Fig. 2. Basic process of FP-tree-based inverse frequent set mining vs. frequent set mining

Fig. 2 shows the basic process of our proposed method for inverse frequent set
mining, which is marked as ①, ② and ③. It corresponds the three steps described
above. The process of the FP-tree-based frequent itemsets mining is also shown in the
Fig. 2, which is composed of the three steps: (1), (2) and (3). Detailed information
about the FP-tree-based frequent itemset mining process can be found in [6].

4.2 Algorithm

The sketch of our proposed inverse frequent closed set mining algorithm, which is
composed of three procedures, is given as follows.

Gen_DB(F, I,σ)
Begin
1. DBs← ∅, FI ← I - { all items in F };
2. FP←Gen_FPtree(F,σ);
3. TempD←Outspread(FP);

156 Y. Guo et al.

4. DBs←DBs∪ {TempD};
5. NewTempD←insert “some” items in FI into “some” transactions in TempD, be

sure that each item in FI can only be inserted less than“σ” transactions;
6. DBs←DBs∪ {NewTempD};
7. Goto 5 until no different NewTempD generated;
8. Return DBs;
End

Gen_FPtree(F, σ)
Begin
1. Create the root of an FP-tree, FP, and label it as “null”;
2. F’ ←Sort(F);
3. While (F’ ！=∅) DO

a) Select the first itemset f1:s1 , where f1 is the itemset and s1 is its support;
b) Let f1 be [p|P], where p is the first element and P is the remaining list of

f1;
c) Insert_tree([p|P]:s1, FP);
d) Update F’:

For all f∈F’ and f⊆f1,
i. support(f)←support(f) - s1;
ii. if (support(f)=0) then F’←F’-{f};

e) F’ ←Sort(F’);
4. Return FP;
End

Outspread(FP)
Begin
1. TempD ← ∅
2. if (FP=null) then return TempD

else
(a) search the tree by in-depth order to find a leaf node ln:s, where ln is its item

and s is its count;
(b) t←all items in the path from the root FP to the leaf node ln;
(c) For i=1 to s, TempD ← TempD ∪{ t};//TempD can include duplicates for t
(d) Update FP:

For each node n in the path from the root FP to the leaf node ln,
i. n.count←n.count - s;
ii. if (n.count=0) then delete n from the tree FP;

(e) Outspread(FP);
End

The input of the algorithm is a set of items I, minimum support threshold “σ”and
frequent closed itemsets collection F with the support S. The output is a set of
databases DBs. Each element of the DBs is a transaction database that agrees with F.

In the main procedure “Gen_DB()”, we use FP to represent the tree obtained from
the frequent closed itemsets collection F by calling the sub-procedure
“Gen_FPtree()”. We use TempD to represent the result of outputting FP by calling

 A FP-Tree-Based Method for Inverse Frequent Set Mining 157

the sub-procedure “Outspread()”. Notice that FP and TempD include only the items
occurring in F. FI represents infrequent items included in I but not occurring in F.
NewTempD is used to record the new generated database based on TempD.

In the sub-procedure “Gen_FPtree()”, the function Sort(F) sort the itemsets in F
by the number of items and support in descending order. Moreover, the items in each
itemset are sorted in 1-itemset’s support descending order. The function
Insert_tree([p|P]:s1, FP)is performed as follows: If FP has a child N such that
N.item-name=p.item-name, then increment N’s count by s1; else create a new node N,
and let its count be s1, its parent link be linked to FP. If P is nonempty, call
Insert_tree(P,N) recursively.

We use F’ to store the sorted frequent itemsets so far by the number of items and
support in descending order. First, an itemset f1:s1 in the forefront of F’ “climbs”
the FP-tree. Then, the supports of all frequent itemsets in F’ that are subset of f1
subtract s1 and F’ is updated. The two steps repeat until all supports of the frequent
itemsets in F’ are equal to “0”, and F’ is equal to ∅. The sort routine of F’ insures
that each time the longest itemset with highest support is submitted first to “climb”
the FP-tree. That is, the longer itemsets with higher supports are always satisfied
prior to the shorter itemsets with lower supports during the FP-tree generation. This
heuristic idea leads that once the longest itemset with highest support in the
forefront of F’ “climbs” the tree, the remaining tasks decrease sharply because more
supports will probably be subtracted and more itemsets will probably be wiped off
in the updating process of F’.

In the sub-procedure “Outspread()”, the itemsets on each path of the FP-tree
“come down” from the tree and form transactions of TempD one by one until the
tree is equal to null. The result of this sub-procedure TempD can be seen as the
status of an “Ordered Frequent Items” transaction database in [6] deleting
infrequent items in each transaction (like the database in the rightmost column of
the table in Fig. 1).

Lines 4-7 of the procedure “Gen_DB()” generate a set of databases DBs by
scattering some infrequent items (elements of FI) into TempD, just be sure that
each infrequent item can only be scattered less than “σ”(minimum support
threshold) transactions of TempD. Concretely speaking, suppose the number of
infrequent items equals to n (| FI |=n), FI = {item1, ..., itemi, ..., itemn}, |TempD|=m,
then DBs={TempD}∪NewTempDSet1∪...∪NewTempDSeti∪...∪NewTempDSetn,
where NewTempDSet1 is a set of all the new generated databases by scattering item1
into TempD, and NewTempDSeti is a set of all the new generated databases by
scattering itemi into all the previous generated databases in {TempD}∪ ...∪

NewTempDSeti-1.

4.3 Example

Let’s illustrate our algorithm with an example: Given I={A, B, C, D, E}, minimum
support threshold “ σ =1 ” , and frequent closed itemsets collection

}B,AB,A,AC,BCA,BC,C,DB,DBA,EAB,{EABCF 74642462121= (the subscripts represent

supports) discovered from the transaction database in Fig. 1 of section 3.

158 Y. Guo et al.

① Generate FP-tree
We first sort itemsets in F by the number of items and support in descending order.
We get }C,A,B,DB,AC,BC,AB,DBA,EAB,BCA,{EABCF' 66724441221= . Then the items in

each itemset are sorted in 1-itemset’s support descending order. Now
}C,A,B,BD,AC,BC,BA,BAD,BAE,BAC,{BACEF' 66724441221= .

FP

C 1

A 1

B 1

E 1

FP

C 2

A 2

B 2

E 1

FP FP

C 2

A 3

B 3

E 1

E 1

FP

C 2

A 4

B 4

E 1

E 1 D 1

FP

C 2

A 4

B 6

E 1

E 1 D 1

C 2

FP

C 2

A 4

B 6

E 1

E 1 D 1

C 2 C 2

A 2

FP

C 2

A 4

B 7

E 1

E 1 D 1

C 2 C 2

A 2

D 1

(1) Insert "BACE1" (2) Insert "BAC1"

(5) Insert "BC2" (6) Insert "AC2"

(3) Insert "BAE1" (4) Insert "BAD1"

(7) Insert "BD1"

(0) Initial

1-iterationNull

7-iteration6-iteration5-iteration

3-iteration2-iteration 4-iteration

F'(7)={}F'(6)={BD1 ,B1}F'(5)={AC2 ,BD1 ,A2 ,C2 ,B1}

F'(4)={BC2 ,...}F'(3)={BAD1 ,...}F'={BACE1 ,...} F'(1)={BAC1 ,...} F'(2)={BAE1 ,...}

Fig. 3. The change of the FP-tree during the FP-tree generation

During the first iteration, the first itemset “BACE1” is selected and inserted to the
tree rooted as “FP”. We get the tree like Fig.3-(1). Then F’ is updated by subtracting
“1” from the supports of all subsets of “BACE” occurring in F’. Itemsets with support
equal to “0” are wiped off during updating. Now we get F’(1)= F’-{BACE, BAC,
BAE, BA, BC, AC, B, A, C}1={BAC1, BAE1, BAD1, BA3, BC3, AC3, BD2, B6, A5, C5}.
The itemsets in F’(1) has already been sorted by the number of items and support in
descending order, so the result of function Sort(F’) performing on F’(1) is still F’(1).
We can see that after the first iteration, F’ becomes F’(1) whose itemsets and related
supports decrease much, which means the remaining itemsets and their related
supports needed to satisfy in the followed iteration decrease much. This dramatically
reduces the cost effects on the FP-tree generation.

 A FP-Tree-Based Method for Inverse Frequent Set Mining 159

During the second iteration, “BAC1” is inserted to the tree and we get F’(2)=
{BAE1, BAD1, BA2, BC2, AC2, BD2, B5, A4, C4}. Then “BAE1 ”, “BAD1 ”, “BC2 ”, “AC2

” and “BD1 ” are inserted to the tree (or we say “climb” the tree) one after the other
and we get the following update sequence of F’ after each iteration: 『 F’(3)= {BAD1,
BC2, AC2, BD2, BA1, B4, C4, A3}; F’(4)= {BC2, AC2, BD1, C4, B3, A2}; F’(5)= {AC2,
BD1, A2, C2, B1}; F’(6)= {BD1, B1}; F’(7)= ∅』 . The “Gen_FPtree” process terminates
after seven iterations when F’= ∅. Fig. 3 shows the change of the FP-tree during the
whole process of the FP-tree generation.

② Generate temporary transaction database TempD by outspreading FP-tree
Fig. 4 shows the change of the FP-tree during the whole process of the TempD
generation. First, “BACE1” which is the leftmost branch of the original FP-tree
“comes down” from the tree. At the same time, all the items in this branch form into
the first transaction of TempD : TempD(1)=(B, A, C, E) .After deleting the “BACE1”
branch from the tree, the “FP” tree changes into the form shown as Fig.4-(2). By
calling the Outspread(FP) recursively, we perform the similar operations on the
remaining six “FP” trees (Fig.4-(2) to Fig.4-(7)) in turn. “BAC1”, “BAE1”, “BAD1”,

FP

C 2

A 4

B 7

E 1

E 1 D 1

C 2 C 2

A 2

D 1

(1) "BACE1" comes down

FP

C 1

A 3

B 6

E 1 D 1

C 2 C 2

A 2

D 1

FP

A 2

B 5

E 1 D 1

C 2 C 2

A 2

D 1

(2) "BAC1" comes down

FP

A 1

B 4

D 1

C 2 C 2

A 2

D 1

(3) "BAE1" comes down

FP

B 3

C 2 C 2

A 2

D 1

(4) "BAD1" comes down

FP

B 1

C 2

A 2

D 1

(5) "BC2" comes down

FP

C 2

A 2

(6) "BD1" comes down

FP

(7) "AC2" comes down (8) End

(1) B A C E

(2) B A C

(3) B A E

(4) B A D

(5) B C

(6) B C

(7) B D

(8) A C

(9) A C

TempD =

Fig. 4. The change of the FP-tree during the TempD generation

160 Y. Guo et al.

“BC2”, “BD1” and “AC2” comes down from the tree one by one and we get the
remaining eight transactions of TempD: TempD(2)=(B, A, C); TempD(3)=(B, A, E);
TempD(4)=(B, A, D); TempD(5)=(B, C); TempD(6)=(B, C); TempD(7)=(B, D);
TempD(8)=(A, C); TempD(9)=(A, C). Notice that when “BC2” and “AC2” come
down, our algorithm generates two same transactions respectively. The whole
algorithm ends when FP=null (Fig.4-(8)) and we get a temporary transaction database
TempD shown as the table in Fig. 4.

③ Generate a set of databases DBs by scattering infrequent items into TempD
In last process ②, we have generated a transaction database TempD from the FP-tree
generated in ①. In fact, TempD, which involves only frequent items, keeps all
information about frequent itemsets and constitutes skeleton of the compatible
databases we are to find. By scattering infrequent items into TempD, we can get more
than one database, exactly a set of databases satisfying the given constraints.

In our example, the set of infrequent items FI =∅, as all the items in the set of
I={A, B, C, D, E} occur in the set of frequent itemsets

}B,AB,A,AC,BCA,BC,C,DB,DBA,EAB,{EABCF 74642462121= . So according to lines 4-7

of the procedure “Gen_DB()” in our whole algorithm, no NewTempD is generated
and the eventual DBs={TempD}. This means we find only one transaction database
TempD satisfying F in this example. Interestingly, TempD (see Fig.4) happens to be
the transaction database shown in Fig.1 of section 3, without regard to the order of
transactions and the items order in each transaction. Another interesting thing is the
FP-tree generated in this example by our inverse mining algorithm (see Fig.3-(7))
happens to be the tree shown in Fig.1 of section 3 generated from the transaction
database in Fig. 1 by the FP-growth algorithm in [6], without regard to the order of
children of each node. What do the interesting results indicate? At least we can get the
following three valuable hints from the interesting results.

First, it validates the correctness of the result, as the input frequent sets F is
discovered from the database in Fig. 1. So from TempD we must be able to discover
exactly the same F, and TempD really satisfies F. Second, it indicates the feasibility
and effectiveness of our method, as we really find a database satisfying F only based
on the inputs (I, F,σ) and our algorithm, without knowing any other things about the
original database. Third, it induces us to think: It is what factors that lead to the
interesting results? How many compatible databases can be found by the proposed
algorithm in usual cases? These questions will be probed in the next section 5.

5 Analysis

In this section, we analyze the correctness, efficiency of our algorithm. Then we focus
on discussing the number of compatible databases that our algorithm can generate.

(1) Correctness
The correctness of our algorithm can be ensured by the three steps during our
algorithm performing. The first step “Generate FP-tree” insures the generated FP-tree
is compatible with the given frequent sets constraints, because all the given frequent
sets “climb” the FP-tree and FP-tree can store the complete information in relevance

 A FP-Tree-Based Method for Inverse Frequent Set Mining 161

to frequent itemsets mining. The second step “Generate TempD by outspreading FP-
tree” ensures the generated TempD is also compatible with the given frequent sets
constraints, because all frequent sets “come down” from the FP-tree and from TempD
we can construct a same FP-tree. The third step “Generate a set of databases DBs by
scattering infrequent items into TempD” guarantees all the frequent sets and their
supports related information keeps down exactly, no changes happen on any frequent
sets’ supports, and no new frequent sets are brought. So that all the databases in DBs
preserve the complete and exact information of the given frequent sets constraints and
are correct compatible databases we are to find.

(2) Effectiveness
The effectiveness of our algorithm lies in the two facts. One fact is our algorithm is a
zero trace back algorithm with no rollback operations, since during constructing a
compatible FP-tree process each itemset “climbs” the FP-tree following the
prescribed order. And the remaining two transformations “from FP-tree to TempD”
and “from TempD to the set of compatible databases” are natural and direct, with no
rollback too. The other fact is, with the longest itemset with highest support
“climbing” the FP-tree first during each iteration, our algorithm provides a good
heuristic search strategy to rapidly find a compatible FP-tree.

Suppose the number of the given frequent closed sets in collection F is k and the
number of transactions generated in TempD is m, i.e. |F|=k, |TempD|=m. Then the
FP-tree construction can be accomplished in O(klogk+(k-1)log(k-1)+...+1) time, in
which klogk represents the time to sort the k frequent closed sets in F in the frequent
sets length and support descending order. The number of elements in F decrease one
each time the first frequent set climbs the FP-tree. The time consumed in TempD
generation is determined by the number of branches in the FP-tree and approximates
to O(m). Hence the first two processes in our algorithm can both be accomplished in
polynomial time. The most time-consuming process in our algorithm may be the third
process to generate a set of compatible databases DBs. This is because our algorithm
may generate an exponential number of compatible databases (see the number of
compatible databases analysis in part (3) of this section). But it does not show our
algorithm is inefficient. On the contrary, it shows the effectiveness of our algorithm
because we can generate so many compatible databases. In fact, in our algorithm the
generation of new databases is very easy and quick just scattering a new infrequent
item into all the previous databases in prescribed principle. It may be time-consuming
only because there are so many answers to be output.

All in all, with no trace back and with the good search strategy, our algorithm can
work very effectively generating lots of compatible databases.

(3) The number of compatible databases
Fig. 5 illustrates mapping relation among compatible database space, compatible FP-
tree space and given frequent closed sets collection, which helps to probe the number
of compatible databases that our algorithm can output. In Fig. 5, FCS is a frequent
closed sets collection discovered from one of the databases in DBsi undergoing
TempDi and FP-treei by FP-growth method in [6]. DBsj is the output set of compatible
databases generated from FCS undergoing FP-treej and TempDj by our algorithm. All

162 Y. Guo et al.

TempDi<—>FP-treei FCS

TempDj<—>FP-treejDBsj

DBsi...

...

...

All the compatible databases space boundary

database

All the compatible FP-trees space boundary

Frequent Closed
Sets Collection

>=2

=1 =1

>=2

Fig. 5. Mapping relation among database space, FP-tree space and FCS

the databases in DBsi map into the same FP-treei and have the same number of
transactions as TempDi, so do the DBsj, FP-treej and TempDj. The figure shows that
what our algorithm outputs is only a small part (a class having the same number of
transactions and corresponding to the same FP-tree) of the whole compatible database
space. Then how many databases our algorithm can output?

The number of compatible databases that our algorithm can output (indicated as
DBs) is related to the three parameters: (1) the number of transactions in TempD,

i.e.|TempD|; (2) the number of infrequent items in FI , i.e. FI ; (3) the minimum

support threshold“σ”. Suppose |TempD|= m, nFI = and f(n) represents the number

of generated databases after the n-th infrequent item in FI has been scattered into all
of the previous generated databases fully, we have the recurrence equation:

)CCCf(n)(f(n)1)f(n 1
m

2
m

1
m

−++++=+ σL (n≥0, 2≤σ≤m, m≥1,σ∈N) (1
mC means the

number of selecting one transaction from m transactions of a generated database that
has not included the (n+1)-th infrequent item); and f(0)=1 which means when there is
no infrequent items in FI , there is only one compatible database (TempD) our
algorithm finds. By solving the recurrence equation, we get

nσ
mmm)CCC1()n(fDBs 121 −++++== L (n≥0, 2≤σ≤m, m≥1,σ∈ N). Whenσ=1,

1DBs = ; and whenσ<<m, |DBs| is in direct proportion to n
m)Cσ(σ . In practice we

can limit the number of compatible databases to be generated when |DBs| is
astronomical or when we are trying to find fixed number of compatible databases.

Notice that our other examples show usually(whenσ≥2) FP-treej is different from
FP-treei, DBsi and DBsj are disjoint, and the database set that our algorithm outputs
does not include the original database. However, whenσ=1, FP-treej happens to be the
same with FP-treei, leading TempDj is just the same with TempDi, and the only
compatible database we are to find is just the original database because there exists no
infrequent items can be scattered under “σ=1”. This explains the two interesting facts
in the example in section 4: The TempD in Fig.4 happens to be the original database

 A FP-Tree-Based Method for Inverse Frequent Set Mining 163

in Fig.1; and the FP-tree in Fig.3-(7) happens to be the same FP-tree in Fig.1. The two
dashed lines with arrowheads in Fig.5 illustrate the different execution paths of our
algorithm in usual case (σ>=2) and special case (σ=1).

6 Conclusions

We have presented a feasible and efficient algorithm for the NP-complete problem of
inverse frequent set mining. The algorithm can effectively generate a set of databases
that exactly agree with the given frequent closed itemsets and their supports
discovered from a real database. Compared with previous “generation-and-test”
methods, our method is a zero trace back algorithm, without rollback operations
during the databases’ generation, which saves huge computational costs. Furthermore,
our algorithm provides a good heuristic search strategy to rapidly find a FP-tree
satisfying the given frequent sets constraints, leading to rapidly finding the
compatible databases. More importantly, our algorithm can find a set of compatible
databases (usually a lot of databases) instead of finding only one compatible database
in previous methods. We also probe the number of databases found by our algorithm.

This study is just our first step towards solving this inverse mining problem. More
work will be done in the near future, such as refinement of the algorithm, and
empirical experiments on real databases. However, for this NP-complete inverse
mining problem, our study has shown that there do exist reasonably efficient search
strategies and solutions to find some (at least one, not all, but usually a lot of) data
sets compatible with a given data set. This study can be used to deal with privacy
preserving data sharing, in which data owners will have a choice in releasing different
versions of the original data for different sharing (benchmark, mining, etc.).

References

1. Mielikainen, T.: On Inverse Frequent Set Mining. In: IEEE ICDM Workshop on Privacy
Preserving Data Mining, IEEE Computer Society (2003) 18–23

2. Wu, X., Wu, Y., Wang, Y., Li, Y.: Privacy-Aware Market Basket Data Set Generation: A
Feasible Approach for Inverse Frequent Set Mining. In: Proc. 5th SIAM International
Conference on Data Mining (2005)

3. Wang, Y., Wu, X.: Approximate Inverse Frequent Itemset Mining: Privacy, Complexity,
and Approximation. In: Proc. 5th International Conference on Data Mining (2005) 482–489

4. Chen, X., Orlowska, M.: A Further Study on Inverse Frequent Set Mining. In: Proc. 1st
International Conference on Advanced Data Mining and Applications (ADMA), Lecture
Notes in Computer Science, Vol. 3584. Springer-Verlag (2005) 753–760

5. Calders, T.: Computational Complexity of Itemset Frequency Satisfiability. In: Proc. 23rd
ACM PODS 04, ACM Press (2004) 143–154

6. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Proc.
of the ACM SIGMOD International Conference on Management of Database (2000) 1–12

	Introduction
	Related Work
	Paper Layout

	Problem Description
	Frequent Pattern Tree
	Proposed Method
	Basic Idea
	Algorithm
	Example

	Analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

