
A Novel Clustering Method Based on Spatial
Operations

Hui Wang

School of Computing and Mathematics, University of Ulster at Jordanstown
Newtownabbey, BT37 0QB, Northern Ireland, UK

H.Wang@ulster.ac.uk

Abstract. In this paper we present a novel clustering method that can
deal with both numerical and categorical data with a novel clustering
objective and without the need of a user specified parameter. Our ap-
proach is based on an extension of database relation – hyperrelations. A
hyperrelation is a set of hypertuples, which are vectors of sets.

In this paper we show that hyperrelations can be exploited to develop
a new method for clustering both numerical and categorical data. This
method merges hypertuples pairwise in the direction of increasing the
density of hypertuples. This process is fully automatic in the sense that
no parameter is needed from users. Initial experiments with artificial and
real-world data showed this novel approach is promising.

1 Introduction

The clustering of data is to organise data by abstracting the underlying struc-
ture of the data, either as a grouping of objects or as a hierarchy of groups. The
representation can then be investigated to see if these data groups accord to pre-
conceived ideas or to suggest new experiments (1). The objective of clustering is
simply to find a convenient and valid organisation of the data. Clustering algo-
rithms are geared toward finding structure in the data, organised around clus-
ters. A cluster is comprised of a number of similar objects collected or grouped
together.

In the context of knowledge discovery from databases, clustering is the process
of discovering a set of categories to which objects should be assigned. Clustering
algorithms are required to discover distinct categories using an unlabeled set
of data. Objects in the dataset are then assigned (often as a by-product of the
clustering process) to these categories.

Most of the existing clustering algorithms are either for numerical data only
or for categorical data only. In the case of mixed data (that is, some attributes
are numerical while others are categorical) the numerical-only clustering algo-
rithms have to treat categorical attributes as numerical in some ways; while the
categorical-only algorithms have to treat numerical attributes as categorical in
some ways (2). Many existing clustering algorithms also needs some parameters
from users. For example, the number of clusters (one of the most common param-
eters demanded from users), the neighbourhood radius and minimum number of
points (3), and the number of sub-cells into which to partition a cell (4).

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 140–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Novel Clustering Method Based on Spatial Operations 141

It would then be desirable to have a clustering algorithm which can treat
numerical and categorical data uniformly and which needs little input from users.
In this paper we present a method for clustering having this trait. Our method
is based on an extension of database relation.

The extension of a relation is underpinned by a mathematical structure called
a domain lattice (5), which underlies any relational data scheme. A domain lattice
is a set of all hypertuples in a problem domain, equipped with a partial ordering.
A hypertuple is a vector of sets; in contrast, a database tuple is a vector of single
values in its basic form. A hypertuple is then a generalisation of a database tuple.
A hyperrelation is a set of hypertuples. The concept of relations in database
theory and applications can be generalised to hyperrelations. Domain lattice
has previously been exploited to address the data reduction problem in data
mining (5).

In this paper we show that the hyperrelations and the domain lattice can
be further exploited to develop a new method for clustering both numerical and
categorical data uniformly. In Section 2 we introduce some notation and concepts
for use in this paper, including hyperrelations and domain lattice. The central
notion of our approach – density of hypertuples – is introduced in Section 3.
Section 4 examines three fundamental issues about clustering from our density
perspective. An efficient algorithm for clustering is presented and analysed in
Section 5. Experimental results are reported in Section 6. Section 7 concludes
the paper.

2 Definitions and Notation

Figure 1 illustrates the concepts of simple relations, hyperrelations, and domain
lattice, which we define formally below.

2.1 Order and Lattices

A partial order on a set L is a binary relation ≤ which is reflexive, antisymmetric
and transitive. A semilattice L is a nonempty partially ordered set such that for
x, y ∈ L the least upper bound x + y exists. Then for A ⊆ L, its least upper
bound exists and is denoted by lub(A). The greatest element of L, if it exists, is
denoted by 1; if L is finite then 1 exists, and it is equal to

∑
a∈L a.

The sub-lattice of L generated from M ⊆ L, written by [M], is [M] = {t ∈
L : ∃X ⊆ M such that t = lub(X)}. The greatest element in [M] is lub(M).

For A, B ⊆ L, we say A is covered by B (or B covers A), written A � B, if
for each a ∈ A there is some b ∈ B such that a ≤ b. We write A ≺ B if A � B
and B �� A.

2.2 Domain Lattice

Let D be a relation with a schema Ω = {x1, · · · , xT } and domains Vx of at-
tributes x ∈ Ω.

Let L def=
∏

x∈Ω 2Vx . Then L is a semilattice (in fact, it is a Boolean algebra,
but we will not need this here) under the ordering

142 H. Wang

∀t, s ∈ L, t ≤ s ⇐⇒ t(x) ⊆ s(x) for all x ∈ Ω.(1)

with the least upper bound or the sum of t, s ∈ L given below

t + s
def= 〈t(x) ∪ s(x)〉x∈Ω(2)

If t ≤ s we say t is below s. L is called domain lattice for D. The elements of
L are called hypertuples; in particular, the elements t of L with |t(x)| = 1 for
all x ∈ Ω are special hypertuples called (simple) tuples. A set of hypertuples is
called a hyperrelation, and a set of simple tuples is called a (simple) relation.
Simple relations are database relations in the traditional sense.

Note that t(x) is the projection of tuple t onto attribute x. In practical terms,
t(x) can be treated as a set if x is a categorical attribute, and it can be treated
as an interval if x is numerical.

In domain lattice L, D is the set of simple tuples given in the dataset. There
is a natural embedding of D into L by assigning

Ω(a) �→ 〈{x1(a)}, {x2(a)}, . . . , {xT (a)}〉.

and we shall identify D with result of this embedding. Thus we have D ⊆ L.
In the sections below our discussion focuses mainly on a subset of the domain

lattice (sublattice) [D] generated from the dataset D.

Node Size Colour Shape Label
E Large Red Triangle +
G Large Blue Circle +
J Small Blue Triangle -
L Small Green Rectangle -

(a)

0

A

1

B C

FE G H I LKJ

D

(b)

Node Size Colour Shape Label
B Large {Blue,Red} {Circle,Triangle} +
D Small {Blue,Green} {Rectangle,Triangle} -

(c)

Fig. 1. (a) A relation extension. (b) An abstract domain lattice implied in the relation.
(c) A hyper relation.

A Novel Clustering Method Based on Spatial Operations 143

3 Density of Hypertuples

In the sequel we shall use D as described above as a generic dataset, L as the
domain lattice implied in D, and [D] as the sublattice generated from D ⊆ L.
The sum operation and partial ordering are as defined in the previous section.

Clustering is a partition P of D with classes {D1, · · · ,DK}. Each class Di is
a subset of data objects in D and is called a cluster. In traditional approaches
to clustering a cluster is represented by the set of objects in the cluster, or by
the center of gravity of the cluster (k-means) or by one of the objects of the
cluster located near its center (k-medoid) (6). In our approach we represent a
cluster by a hypertuple. For each class Di we merge all simple tuples in Di by
the lattice sum operation in Eq. 2 resulting in a hypertuple hi = lub(Di). Then
we get a hyperrelation H = {h1, · · · , hK}. Therefore we can take clustering as a
process of transforming a simple relation (D) into a hyperrelation (H). Putting
this formally, a clustering of D is a hyperrelation H ⊆ [D] and therefore h ∈ H
implies there is A ⊆ D such that h = lub(A).

Clearly there are many possible partitions of the dataset. To choose one from
among them we need a measure of hyperrelations. In our approach we use the
measure of density, defined below.

Definition 3.1. Let h ∈ [D] be a hypertuple, and x ∈ Ω be an attribute. The
magnitude of h(x) is defined as

mag(h(x)) =

{
max(h(x)) − min(h(x)), if x is numerical
|h(x)|, if x is categorical

(3)

Note that h(x) is the projection of h onto attribute x, min(h(x)) is the minimal
value in h(x) while max(h(x)) is the maximal value.

Definition 3.2. The volume of h is defined as

vol(h) =
∏

x∈Ω

mag(h(x))(4)

The coverage of h is cov(h) def= {d ∈ D : d ≤ h}.

Definition 3.3. The density of h is defined as

den(h) = |cov(h)|/ vol(h)(5)

The density of hyperrelation H, den(H), is then the average density of the hy-
pertuples in H.

The above definition of density can not be directly applied to compare different
hypertuples since different hypertuples may differ at different attributes, and
different attributes may have different scales. Therefore we need to re-scale the
attributes up to a same uniform scale. The re-scaling can be achieved as follows.

144 H. Wang

Table 1. A relation on the scheme {A1, A2} where attribute A1 is categorical and A2

is numerical

A1 A2

t0 a 2
t1 f 10
t2 c 4
t3 f 9
t4 c 3
t5 e 7
t6 b 1
t7 d 6

Let λ be the expected uniform scale. For an attribute x ∈ Ω, the re-scaling
coefficient is s(x) def= λ/ mag(Vx). Note that Vx is the domain of attribute x. Then
the volume of a hypertuple h after re-scaling is vol(h) =

∏
x∈Ω s(x)×mag(h(x)).

The density definition can be re-scaled similarly.
This re-scaled notion of density is fine for hypertuples. But there is a problem

for simple tuples. Consider Table 1. Suppose the uniform scale is 2. Then s(A1) =
2/3 and s(A2) = 1. Following the above definition, the density for all simple
tuples is 0 since the projection of each simple tuple to (numerical) attribute A2
contains only one value. This is not desirable, the reason for which will be seen in
the next section. Therefore we need a method to allocate density values to simple
tuples in such a way that the values can be compared with the density values of
hypertuples for the purpose of clustering. Our solution is through quantization
of attributes. For an attribute x ∈ Ω the measurement of a unit after re-scaling
is |Vx|/λ = 1/s(x). For a tuple t, if t(x) is less than the unit value (1/s(x)) it
should be treated as one unit. If t is a simple tuple then t(x) is treated as a unit
for all x ∈ Ω and hence vol(t) = 1. Since a simple tuple covers only itself, i.e.,
cov(t) = {t}, we have den(t) = 1. Consequently den(H) = 1 if H is a simple
relation. If t is a hypertuple, then den(t) may be greater or less than 1.

In the rest of this paper whenever we talk of density we refer to the re-scaled
and quantized density.

The notion of density is also used in some well known clustering methods
(7; 3; 4), but their uses of this notion are different from ours: they are defined
for numerical attributes only and they are not re-scaled and quantized. Our
definition of density applies to both numerical and categorical attributes and,
since re-scaled and quantized, can be used to compare among hypertuples and
among hyperrelations.

4 Merging Hypertuples to Increase Density

Having a notion of density as defined above we now present our clustering
method. Our philosophy for clustering is merging tuples to increase the den-
sity of hyperrelations: for any set of tuples, if their sum has higher density then

A Novel Clustering Method Based on Spatial Operations 145

we are inclined to merge them and use their sum to replace this set of tuples.
We discuss our method along three fundamental axes regarding any clustering
methods: the criteria for clustering, the determination of the number of clusters
and the assignment of new tuples to clusters.

4.1 Criteria for Clustering

An important notion in clustering is neighbourhood (or similarity). “Similar”
objects should be clustered together. In the context of domain lattice, “similar”
tuples should end up in same hypertuples. The meaning of neighbourhood varies
in different approaches and contexts. For example, the Euclidean distance (or
Lp metric 1 in general) and density (7; 8) for numerical data; and the Jaccard
coefficient 2 (9; 1), the links 3 (10), the co-occurence in hypergraph (11; 2) 4, the
interestingness (12) and the share (13) for categorical data .

Clustering is then to optimise one or more of these measures one way or
another. In hierarchical clustering there is a basic operation — merge: two data
objects can be merged if they are neighbouring or close enough. A prerequisite for
this approach is the availability of a proximity matrix (1). In the case of numerical
data this matrix is obtained by some distance measure, e.g., Euclidean distance;
in the case of categorical data it is usually not available.

Our approach is hierarchical, and two tuples are deemed neighbours if the
density of their sum (see Eq. 2) is higher than the density of the hyperrela-
tion containing only the two tuples (i.e., the average density of the two tuples).
More formally, let D be the dataset and H = {H : H is a clustering of D}.
Our objective is to find H0 ∈ H such that den(H0) > den(D) and den(H0) =
max{den(H) : H ∈ H}. In other words our expected clustering should have the
highest possible density. We call this H0 the optimal clustering of D. From the
previous section we know that den(D) = 1 and hence den(H0) should be much
greater than or equal to 1.

The optimal clustering of the data in Table 1 is shown in Table 2. Readers
can check for themselves that any other hyperrelations obtained by merging
simple tuples in the dataset using the lattice sum operation has lower density.
For example, merging {t0, · · · , t3} and {t4, · · · , t7} results in a hyperrelation in
Table 3, which has lower density.

With such a criteria we can obtain a proximity matrix for any relational data,
no matter it is numerical, categorical or mixed. Table 4 is a proximity matrix
for the data in Table 1, where entry (i, j) is 1 if den(ti + tj) ≥ den({ti, tj}) and
0 otherwise.
1 Lp = (

∑d
1 |xi − yi|p)1/p, 1 ≤ p ≤ ∞ and d is the dimensionality of the data points.

2 The Jaccard coefficient for similarity between two sets S1 and S2 is |S1∩S2|/|S1∪S2|.
3 The number of links between a pair of data points is the number of common neigh-

bours for the points.
4 In this approach each tuple in the database is viewed as a set of data objects, and

the entire collection of tuples is treated as a hypergraph. The co-occurence between
two tuples is the number of common elements and is noted as the weight of the edge
between the two hyper notes.

146 H. Wang

Table 2. The optimal clustering of the relation in Table 1 obtained by our method. The
uniform scale used is 4, so the re-scaling coefficients are s(A1) = 2/3 and s(A2) = 4/9.
The density of this hyperrelation is then 1.313. Note that the density values are re-
scaled, and that the density for the original dataset is 1.

A1 A2 Coverage cov() Density den()
t′
0 {a, b, c} {1, 2, 3, 4} {t0, t2, t4, t6} 1.500

t′
1 {d, e, f} {6, 7, 9, 10} {t1, t3, t5, t7} 1.125

Table 3. An arbitrary hyperrelation obtained by merging simple tuples in Table 1.
The uniform scale used is the same as in Table 2, so are the re-scaling coefficients. The
density of this hyperrelation is 0.5625.

A1 A2 Coverage cov() Density den()
t′′
0 {a, c, f} {2, 4, 9, 10} {t0, t1, t2, t3} 0.5625

t′′
1 {b, c, d, e} {1, 3, 6, 7} {t4, t5, t6, t7} 0.5625

Table 4. A proximity matrix for the relation in Table 1

t0 t1 t2 t3 t4 t5 t6 t7

t0 1 0 1 0 1 0 1 0
t1 0 1 0 1 0 1 0 0
t2 1 0 1 0 1 1 1 1
t3 0 1 0 1 0 1 0 1
t4 1 0 1 0 1 0 1 1
t5 0 1 1 1 0 1 0 1
t6 1 0 1 0 1 0 1 0
t7 0 0 1 1 1 1 0 1

This approach has a major advantage: numerical and categorical attributes can
be treated uniformly. Simple tuples, either numerical or categorical or a mixture
of the two, can thus be uniformly measured for their neighbourhood.

4.2 Determination of the Number of Clusters

Some clustering algorithms require the number of clusters be given by users.
Our approach can determine the number of clusters automatically; it can also
be tuned to find a required number of clusters as stated by a user.

As discussed in the previous section our criteria for clustering is to maximise
the density of hyperrelations. Naturally the optimal number of clusters should
be the number of hypertuples in the optimal clustering. Whether or not we can
find the optimal clustering depends on the algorithm used.

For the data in Table 1, its optimal clustering is shown in Table 2. Therefore
the optimal number of clusters for this dataset is 3.

In some data mining exercises, however, we have a preconceived (given) num-
ber of clusters and we wish the clustering algorithm to find the given number of

A Novel Clustering Method Based on Spatial Operations 147

clusters for us. Examples are: in business systems, to allocate stock to a given
number of warehouses, or to allocate tuples to a given number of disk volumes in
physical database design (14; 15). Some clustering algorithms require the number
of clusters be given in this way.

Suppose we wish to find N clusters. With the availability of a proximity matrix
we can take an agglomerative hierarchical approach. Assume we have a hierarchy
of clusterings (hyperrelations) of the dataset, Q0, Q1, · · · , Qq, where Q0 = D,
Qq = lub(D) and |Qi| = |Qi−1| − 1. Clearly we can select a hyperrelation Qk in
the hierarchy such that |Qk| = N .

4.3 Assignment of New Data Tuples to Clusters

Suppose we have already clustered a dataset, resulting in a clustering H =
{h1, · · · , hK} where each hi is a hypertuple. When new data arrives we may need
to assign the new data objects to the existing clusters to get a new clustering5;
or we may want to assign new data objects to clusters for data mining pur-
poses like categorisation, classification or association. In traditional approaches
to clustering this is usually done via calculating distances (or proximities) be-
tween a new data object and the clusters using some metric and assigning the
new data object to whichever cluster is closest to the new data object (1). In
our approach we have available proximity matrices so we can do it in a similar
way, but in a more general context (since our method works for both numerical
and categorical data). Specifically, we sum the new data object with each cluster
and see if, and to what extent, the sum increases density. If none of the sums
increases density, then it is likely the new data object belongs to a new cluster;
otherwise the new data object is assigned to one cluster the sum of which with
the new data object has the greatest increase of density.

More formally, let t be a new data object – a simple tuple. We have two main
steps for the assignment procedure:

– If den(hi + t) < den({hi, t}) for all i = 1, · · · , K, then t is taken as a new
cluster on its own.

– Otherwise assign t to cluster hi0 such that (den(hi0 + t) − den({hi0 , t}))/
den({hi0 , t}) is highest.

For an example, consider Table 2. If we are given a new tuple t = 〈b, 8〉, then
we have den(t′0 + t) = 0.804 and den(t′1 + t) = 1.055. However den({t′0, t}) = 1.25
and den({t′1, t}) = 1.063. This indicates that the new tuple should stand as
a new cluster. If the new tuple is t = 〈b, 5〉, then den(t′0 + t) = 1.406 and
den(t′1 + t) = 0.844, and den({t′0, t}) and den({t′1, t}) remain the same. This
indicates that we should assign this new tuple to t′0.

5 An Efficient Algorithm for Clustering

Based on the above discussions we designed an efficient clustering algorithm,
LM/Clus. The following is an outline of the algorithm.
5 This is in fact incremental clustering (8).

148 H. Wang

– Input: D as defined above.
– Initialisation: Q0 = D; flag = 1; i = 0;
– WHILE (flag = 1)

1. flag = 0; H = Qi;
2. WHILE (there are x, y ∈ Qi that haven’t been examined)

Let w = x + y;
IF (den(w) > den({x, y})

THEN Qi+1 = Qi ∪ {w} \ {x, y}; i = i + 1; flag = 1;
//Replace x and y by their sum.

– Output: H .

Execution starts with Q0 = D. Then a pair of elements x, y ∈ Q0 such
that x + y increases density is merged, resulting in Q1. The next loop starts
from Q1 and results in Q2. This process continues until Qm where no pair of
elements can be merged in this way. Thus we get a sequence Q0, Q1, · · · , Qm,
where Q0 is the original dataset and Qm is the quasi-optimal clustering. Clearly
Q0 � Q1 � · · · � Qm, and |Qi| = |Qi−1| − 1. Therefore this is an agglomerative
hierarchical clustering algorithm (1).

This algorithm has a worst case complexity of O(n log n) where n = |D|. In
our implementation of the algorithm we take advantage of the operations in our
Lattice Machine (5) so the average computational complexity is close to linear
(see below). The algorithm is implemented as part of our Lattice Machine based
KDD suite, called Dr .

6 Experimental Results

In this section we present experimental results showing the effectiveness and
efficiency of our clustering algorithm LM/Clus. We used two types of data:
artificial data and real world data. These datasets are a good mix of numerical
and categorical data. Artificial datasets were generated from known clusters
with added noise, and they are mainly used to show the effectiveness of the
algorithm (i.e., can the known clusters be discovered?) as well as efficiency. The
data generator we used is also available in our Dr system. Real world datasets
are public and are frequently used in KDD literature. They are used in our
experiment mainly to show the efficiency of the algorithm since the underlying
clusters are not known.

6.1 Artificial Datasets

We used two seeds to generate our artificial datasets. The seeds are described
in Table 5. For each seed we generated four datasets of varying sizes with 2%
random noise added, and with 100, 1000, 5000, 10000 tuples respectively. The
time used to cluster these data is shown in Table 6. From this table we can
see that the algorithm is close to linear in the number of tuples. The under-
lying cluster structures were fully recovered. Readers are invited to evaluate
our system which is available online (for the Web address see the footnote on
page 148).

A Novel Clustering Method Based on Spatial Operations 149

Table 5. Two seeds used to generate artificial data

Attribute1 Attribute2 Attribute3
Cluster 1 [0, 4] [100, 130] {a, b, c}
Cluster 2 [6, 10] [160, 199] {c, d, e}

(a) Seed one: gd1. The first two attributes are numerical and the third
is categorical.

Attribute1 Attribute2 Attribute3 Attribute4
Cluster 1 [0, 4] [100, 130] [1000, 1300] {a, b, c}
Cluster 2 [6, 10] [160, 199] [1400, 1650] {d, e, f}
Cluster 3 [3, 7] [140, 150] [1750, 1999] {c, d}

(b) Seed two: gd2. The first three attributes are numerical and the
fourth is categorical.

Table 6. Time in seconds used to cluster the artificial data

gd1.100x2 gd1.1000x20 gd1.5000x100 gd1.10000x200
Time 0.44 3.84 22.24 93.65

gd2.100x2 gd2.1000x20 gd2.5000x100 gd2.10000x200
Time 1.15 10.27 61.24 229.98

Table 7. Some general information about the real world data and the time in seconds
used to cluster the data

Dataset #Attributes #Size #Numeric Attribute #Categorical Attribute Clustering Time
German 20 1000 6 14 820.14
Heart 13 270 9 4 56.68
Iris 4 150 4 0 2.53

6.2 Real World Datasets

We chose three public datasets to show the efficiency of the algorithm for cluster-
ing: German Credit, Heart Disease and Iris, all available from UCI Machine
Learning Data Repository. Some general information about the datasets and
clustering time are shown in Table 7.

7 Conclusion

In this paper we present a novel method of automatically clustering both nu-
merical and categorical data or mixed data in a uniform way. The first major
contribution of this paper is the provision of a uniform measure of density for
both numerical and categorical data. After re-scaling and quantization this mea-
sure can be used to compare among any (simple or hyper) tuples and among

150 H. Wang

any (simple or hyper) relations to see which is denser. Since the density measure
is local, its calculation is very efficient. Based on this measure our clustering
method is simply to transform simple relations (original data) to hyperrelation
guided by the density measure. Data tuples are merged with the aim of increasing
the density of hyperrelations. The optimal clustering is the hyperrelation with
highest possible density, and the number of hypertuples in this hyperrelation is
the optimal number of clusters.

Another major contribution of this paper is the provision of an efficient algo-
rithm for clustering, LM/Clus. This algorithm is (agglomerative) hierarchical
and it takes advantage of our (local) measure of density. It examines pairs of
tuples and merges those which increase the density of the relation. This pro-
cess continues until the density of the relation cannot be increased. Experiments
with both artificial data and real world data showed that this algorithm is very
efficient and is, in average, close to linear in the number of data tuples. Exper-
iments with the artificial datasets showed that this algorithm is also effective
as it recovers completely the underlying cluster structures used to generate the
datasets.

Bibliography

[1] Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, New Jersey (1988)

[2] Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical data: An
approach based on dynamical systems. In: Proc. 24th International Con-
ference on Very Large Databases, New York (1998)

[3] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise. In: Proc. 2nd
Int. Conf. on Knowledge Discovery and Data Mining, AAAI Press (1996)
226–231

[4] Wang, W., Yang, J., Muntz, R.: STING: A statistical information grid
approach to spatial data mining. In: Proc. 23rd Int. Conf. on Very Large
Databases, Morgan Kaufmann (1997) 186–195

[5] Wang, H., Düntsch, I., Bell, D.: Data reduction based on hyper relations.
In: Proceedings of KDD98, New York. (1998) 349–353

[6] Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley & Sons (1990)

[7] Schikuta, E.: Grid clustering: an efficient hierarchical clustering method
for very large data sets. In: Proc. 13th Int. Conf. on Pattern Recognition.
Volume 2., IEEE Computer Society Press (1996) 101–105

[8] Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental
clustering for mining in a data warehousing environment. In: Proc. 24th
International Conference on Very Large Databases. (1998)

[9] Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. John
Wiley & Sons (1973)

[10] Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for
categorical attributes. Technical Report 208, Bell Laboratories (1998)

A Novel Clustering Method Based on Spatial Operations 151

[11] Han, E.H., Karypis, G., Kumar, V., Mobasher, B.: Clustering based on
association rule hypergraphs. In: 1997 SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery. (1997)

[12] Gray, B., Orlowska, M.E.: Clustering categorical attributes into interesting
association rules. In: Proc. PAKDD98. (1998)

[13] Hilderman, R.J., Carter, C.L., Hamilton, H.J., Cercone, N.: Mining market
basket data using share measures and characterized itemsets. In: Proc.
PAKDD98. (1998)

[14] Bell, D.A., McErlean, F., Stewart, P., Arbuckle, W.: Clustering related
tuples in databases. Computer Journal 31(3) (1988) 253–257

[15] Stewart, P., Bell, D.A., McErlean, F.: Some aspects of a physical database
design and reorganisation tool. Journal of Data and Knowledge Engineering
(1989) 303–322

	Introduction
	Definitions and Notation
	Order and Lattices
	Domain Lattice

	Density of Hypertuples
	Merging Hypertuples to Increase Density
	Criteria for Clustering
	Determination of the Number of Clusters
	Assignment of New Data Tuples to Clusters

	An Efficient Algorithm for Clustering
	Experimental Results
	Artificial Datasets
	Real World Datasets

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

