
An I/O Optimal and Scalable Skyline
Query Algorithm

Yunjun Gao, Gencai Chen, Ling Chen, and Chun Chen

College of Computer Science, Zhejiang University, Hangzhou, 310027, P.R. China
{gaoyj, chengc, lingchen, chenc}@cs.zju.edu.cn

Abstract. Given a set of d-dimensional points, skyline query returns
the points that are not dominated by any other point on all dimensions.
Currently, BBS (branch-and-bound skyline) is the most efficient skyline
processing method over static data in a centralized setting. Although
BBS has some desirable features (e.g., I/O optimal and flexibility), it re-
quires large main-memory consumption. In this paper, we present an im-
proved skyline computation algorithm based on best-first nearest neigh-
bor search, called IBBS, which captures the optimal I/O and less memory
space (i.e., IBBS visits and stores only those entries that contribute to
the final skyline). Its core enables several effective pruning strategies to
discard non-qualifying entries. Extensive experimental evaluations show
that IBBS outperforms BBS in both scalability and efficiency for most
cases, especially in low dimensions.

1 Introduction

Skyline query is one of important operations for several applications involving
multi-criteria decision making, and has received considerable attention in the
database community. Given a set of d-dimensional points P = {p1, p2, . . . , pn},
the operator returns a set of points pi, which is not dominated by any other point
pj in P on all dimensions, forming the skyline of P . A point dominates another
one if it is as good or better in all dimensions and better in at least one dimension
[19]. Consider, for instance, a common example in the literature, “choosing a
set of hotels that is closer to the beach and cheaper than any other hotel in
distance and price attributes respectively from the database system at your travel
agents’ [3]”. Figure 1(a) illustrates this case in 2-dimensional space, where each
point corresponds to a hotel record. The room price of a hotel is represented
as the x-axis, and the y-axis specifies its distance to the beach. Clearly, the
most interesting hotels are the ones {a, g, i, n}, called skyline, for which there
is no any other hotel in {a, b, . . . , m, n} that is better on both dimensions.
For simplicity, in this paper, we use the min condition on all dimensions to
compute the skyline, even though the proposed algorithm can be easily applied
to different conditions (e.g., max metric). Using the min condition, a point p
is said to dominate another one q if (i) p is not larger than q in all dimensions,
and (ii) p is strictly smaller than q in at least one dimension. This implies that
p is preferable to q for the users in real life. Continuing the running example,

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 127–139, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

128 Y. Gao et al.

1 2 3 4 5 6 7 8 9 100
1
2
3
4
5
6
7
8
9

10

x (Price)

y (Distance)

Skyline point

a
b

c

d
e

f

g h

i

j
k

l m

n

Dominating point

1 2 3 4 5 6 7 8 9 100
1
2
3
4
5
6
7
8
9

10

x

y

Skyline point

N1

N2

N3

N4

N5

N7

N6

a
b

c

d

e

f
g h

i
j

k

l
m

n

Dominating point

N1 N2

N3 N4 N5 N6

a b c d e f g h i l mn

N1 N2

N3 N5N4 N7

Root Level 2

Level 1

Level 0

N7

j k
N6

(a) (b) (c)

Fig. 1. Example of skyline and an R-tree in 2-dimensional space

hotel a dominates hotels b, d, and e because the former is nearer to the beach
and cheaper than the latter.

Skyline query processing has been extensively studied, and a large number
of algorithms have been also proposed [1, 3, 5, 7, 9, 12, 13, 15, 16, 19, 21]. These
methods can be mainly divided into two categories. Specifically, (i) non-index-
structure-based schemes, which do not assume any index structure on the un-
derlying dataset, but compute the skyline through scanning the entire dataset at
least once, resulting in expensive CPU overhead; (ii) index-structure-based solu-
tions, which significantly reduce CPU and I/O costs by performing the skyline
retrieval on an appropriate index structure (e.g., R*-tree [2]). We concentrate on
the second category in this paper. In addition, the skyline computation problem
is also closely related to several other well-known problems that have been ex-
tensively investigated in the literature, such as convex hull [4, 17], top-k queries
[6, 8, 11, 14], and nearest neighbor search [10, 18].

Currently, BBS (branch-and-bound skyline), presented by Papadias et al. in
[15], is the most efficient skyline query algorithm over static datasets in a central-
ized setting. It employs a best-first based nearest neighbor search paradigm [10] on
dataset indexedbyR*-tree.BBSminimizes the I/Ooverhead, and the considerable
experiments of [15] show that it outperforms previous algorithms in terms of CPU
and I/O costs for all problem instances. Although BBS has some desirable advan-
tages, it yet needs large memory space. As reported in [15], the heap size of BBS
is larger than the to-do list size of NN [12] in 2-dimensional space. In fact, we can
greatly reduce space consumption used by the heap and speed up the execution of
the algorithm via several dominance checking based pruning heuristics (discussed
detailedly in Section 3 of this paper) for filtering all the non-qualifying entries that
may not contain (become) any skyline point. As known, the less the memory space
requires, the more scalable the algorithm is. Thus, in this paper, we present an
improved skyline query algorithm, called IBBS, which, like BBS, is depended on
best-first nearest neighbor search on R*-tree, whereas (unlike BBS) it enables sev-
eral effective pruning strategies to discard unnecessary entries. IBBS incorporates
the virtues of BBS (e.g., I/O optimal, low CPU cost, etc.), while gaining less main-
memory consumption (i.e., smaller heap size). Finally, extensive experiments with
synthetic datasets confirm that IBBS outperforms BBS in both efficiency and scal-
ability for most cases, especially in low dimensions.

The rest of the paper is organized as follows. Section 2 reviews existing al-
gorithms for skyline queries, focusing more on BBS as it is more related to our

An I/O Optimal and Scalable Skyline Query Algorithm 129

work. Section 3 describes IBBS, together with some pruning heuristics and a
proof of its memory space optimality. Section 4 experimentally evaluates IBBS,
comparing it against BBS under various setting. Section 5 concludes the paper
with some directions for future work.

2 Related Work

To our knowledge, Borzsonyi et al. [3] first introduce the skyline operator in
the database context and develop two skyline computation methods including
divide-and-conquer (D&C) and block-nested-loop (BNL). Chomicki et al. [7]
present a sort-first-skyline (SFS) algorithm as an improved version of BNL. Tan
et al. [19] propose the first progressive technique that can return skyline points
instantly, and develop two solutions for skyline queries, termed Bitmap and
Index, respectively. Another two progressive skyline query algorithms, nearest
neighbor (NN) and branch-and-bound skyline (BBS), are proposed by Kossmann
et al. [12] and Papadias et al. [15], respectively, based on nearest neighbor search
[10, 18] on datasets indexed by R-trees. The great difference of both algorithms
is that NN requires multiple nearest neighbor queries, but BBS executes only a
single retrieval of the tree. Furthermore, BBS guarantees the minimum I/O cost.
Since our work in this paper is more related to BBS, the following discussion
describes its executive steps, using an illustrative example.

Table 1. Execution of BBS

Action Heap Contents S

Visit root (N2, 4),(N1, 7) Ø
Expand N2 (N5, 5),(N1, 7),(N7, 9),(N6, 11) Ø
Expand N5 (N1, 7),(g, 8),(i, 8),(N7, 9),(h, 10),(N6, 11) Ø
Expand N1 (N3, 7),(g, 8),(i, 8),(N7, 9),(h, 10),(N6, 11),(N4, 13) Ø
Expand N3 (g,8),(i,8),(a,9),(N7 , 9),(c, 10), (h, 10),(b, 11),(N6, 11),(N4, 13) {g, i, a}
Expand N7 (c,10),(h,10),(n,10),(b,11), (N6,11),(N4,13) {g, i, a, n}

As an example, suppose that we use the 2-dimensional dataset of Figure 1(a),
organized in the R-tree of Figure 1(c), together with the minimum bounding
rectangles (MBRs) of the nodes whose capacity is 3. Note that the distances
from an intermediate entry (e.g., N3, N4, etc.) or a data point (e.g., a, b, etc.)
to the beginning of the axes are computed according to L1 norm, that is, the
mindist of a point equals the sum of its coordinates (e.g., mindist(g) = 3 + 5 =
8) and the mindist of a MBR (i.e., intermediate entry) equals the mindist of its
lower-left corner point (e.g., mindist(N5) = 3 + 2 = 5). Initially, all the entries
in the root node are inserted into a heap H sorted in ascending order of their
mindist. Then, BBS circularly computes the skyline until H becomes empty.
Each circulation, it first removes the top entry E with the minimum mindist
from H and accesses it. Here are two cases. (i) If E is an intermediate entry and

130 Y. Gao et al.

not dominated by the existing skyline points, the algorithm en-heaps its child
entries there. (ii) If E is a data point and not dominated by the skyline points
obtained, the algorithm inserts it into the list S of the skyline as a skyline point.
Table 1 illustrates the executive steps of BBS. Also notice that skyline points
discovered are bold and pruned entries are shown with strikethrough fonts.

Recently, Balke et al. [1] extend the skyline computation problem for the
web information systems. Lin et al. [13] study continuous skyline monitoring on
data streams. Chan et al. [5] consider skyline computation for partially-ordered
domains. Godfrey et al. [9] present an algorithm, called linear-elimination-sort for
skyline (LESS), which has attractive worst-case asymptotical performance. Pei
et al. [16] and Yuan et al. [21] independently present the skyline cube consisting
of the skylines in all possible subspace.

3 Improved Branch-and-Bound Skyline Algorithm

3.1 Dominance Checking Based Pruning Strategy

Consider the execution of BBS demonstrated in Table 1 of Section 2, some non-
qualifying entries for the skyline are existed in the heap. For example, entry N6
inserted into the heap after expanding entry N2 is such one because it completely
falls into the dominating region (DR for short) of entry N5, and may not contain
any skyline point. Similarly, entries h, N4, b, and c are all redundant ones. Thus,
they must be discarded, and not be en-heaped there. In fact, only those entries
that may potentially contain (or become) the skyline points (e.g., N3, g of Figure
1(b)) are needed to be kept in the heap. Based on this observation, it may be
helpful to identify these entries and prevent them from being inserted in the
heap. Fortunately, we can achieve this goal by careful dominance checking for
each entry before it is inserted in the heap. Next, we present several pruning
heuristics that is inspired by the analysis of per entry’s DR.

Let S be a set of the skyline points, there must be at least one entry Ej

(j �= i) that dominates Ei, if an entry Ei does not appear in S. If we can know
Ej when inserting Ei into the heap, Ei can be discarded immediately as it is an
unnecessary entry for the skyline. However, the problem is now how to get such
Ej in order to safely prune Ei. Since such a Ej must come from all the entries
that have been visited by the algorithm, we can pick possible Ej from them. To
address this problem, we need to consider for an entry Ej its ability to dominate
and then prune other entries. For simplicity, we take 2-dimensional data space
into account in the following discussion. However, similar conclusions also hold
for d-dimensional (d > 2) data space.

Toward a point entry P with coordinates (x1, x2), its ability to dominate other
entries, including point and intermediate entries (i.e., MBRs), is determined by
its own values and the boundaries of the data space, that is, the rectangle whose
diagonal is the line segment with P and the maximum corner of the data space
as coordinates. Any other entry that resides in that region is dominated by P
and it excluded from the final skyline. For this reason, we call that rectangle

An I/O Optimal and Scalable Skyline Query Algorithm 131

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

P

Dominating
Region of P

Maximal Corner of Data Space

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

N1

Dominating
Region of N1

Lower-left point of N1

Maximal Corner of Data Space

Upper-right point of N1

ul

lr

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

P

N1

N2

Dominating Region of P

N3

Maximal Corner of Data Space

Non-qualifying Point

Skyline Point

Non-qualifying MBR

Qualifying MBR
a

b

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

N1

N2

N4

N8

N5

N7

Maximal Corner of Data Space

Pruning Seeds of N1

N6

N3

Dominating Region of N1

Non-qualifying Point

Skyline Point

a

b

f

c
d

e

Non-qualifying MBR

Qualifying MBR

(a) DR of P (b) DR of N1 (c) Pruning with P (d) Pruning with N1

Fig. 2. Illustration of DRs of one point, one MBR, and their pruning ability

the DR of P . Intuitively, the larger P ′s DR is, the more other entries are dom-
inated by P because a larger rectangle covers more entries in the data space,
especially for the entries following independent (uniform) distribution. For ease
of comprehension, we use a 2-dimensional illustration as shown in Figure 2 in
this discussion. Specifically, Figure 2(a) shows the DR of P (represented as the
shaded rectangle), assuming that the maximum corner of data space is 10. The
P ′s ability to dominate other entries is plotted in Figure 2(c) under the same
supposition as Figure 2(a). Clearly, in Figure 2(c), entry N1 is dominated by
point P since it fully falls into the DR of P . Hence, N1 can be pruned instantly,
and need not to be inserted into the heap for further consideration. However,
entries N2 and N3 that intersect the P ′s DR must en-heap there, because they
may contain some skyline points (e.g., a and b). Therefore, we call that N1 the
non-qualifying MBR, but N2 and N3 the qualifying MBRs.

Assume that the boundaries of an intermediate entry N are [x1
l, x1

h] × [x2
l,

x2
h], then the coordinates of its lower-left, lower-right, upper-left, and upper-

right corners are the points (x1
l, x2

l), (x1
h, x2

l), (x1
l, x2

h), and (x1
h, x2

h),
respectively. Thus, the DR of N is defined by its own boundaries and the bound-
aries of the data space. As an example, the DR of entry N1 is shown in Figure
2(b) (specified the shaded area). From the diagram, we can also see that the N ′

1s
DR is determined by the upper-left, bottom-right corners of N1 (denoted as two
red points), and the maximal corner of data space, respectively. Specifically, let
ul be the upper-left vertex of N1 and lr the lower-right vertex of N1, then the
DR of N1 is the union of the dominating regions of ul and lr, i.e., formally, DR
(N1) = DR (ul) DR (lr). So, it implies that the N ′

1s ability to dominate other
entries can be done by dominance checking with ul and lr. For this reason, we
term that ul and lr the pruning seeds of N1.

Those entries, including points and MBRs, which completely fall into the DR
of N1 are dominated by N1, and they must not appear in the final skyline. As
known, an intermediate entry N is dominated by a point entry P with coordi-
nates (x1, x2) only if its bottom-left corner is dominated by P . Similarly, N is
dominated by another intermediate entry N ′ only if the lower-left vertex of N
resides in the DR of N ′. Figure 2(d) demonstrates the pruning with a MBR N1,
where the pruning seeds of N1 are denoted as two red points (i.e., b and e). Evi-
dently, entries N2, N3, and N4 are non-qualifying ones since they are dominated
by N1. As a result, they can be discarded in security, and have not to be inserted
in the heap. Entries N5, N6, N7, and N8, however, need be stored in the heap

132 Y. Gao et al.

in order to access them later, because their lower-left corners are not dominated
by N1, and they may contain some skyline points, such as points a, c, d, and f
of Figure 2(d) are such ones.

In summary, we can derive the following pruning heuristics to prune the non-
qualifying entries for the skyline based on the above discussion. Suppose that, in
d-dimensional data space, two point entries P and P ′ with coordinates (x1, x2, . . . ,
xd) and (x′

1, x
′
2, . . . , x′

d) respectively, and two intermediate entries N and N ′ with
boundaries [x1

l,x1
h]× [x2

l,x2
h]× . . . × [xd

l,xd
h] and [x′

1
l,x′

1
h]× [x′

2
l,x′

2
h]× . . . ×

[x′
d

l, x′
d

h], respectively. Then several pruning heuristics are developed as follows.

Heuristic 1. If P ′ is dominated by P , i.e., (i) xi ≤ x′
i for i ∈ [1, d], and (ii)

xi < x′
i in at least one dimension, then it can be safely pruned immediately and

not be inserted into the heap, since it must not appear in the skyline.
Heuristic 2. If the bottom-left corner of N is dominated by P , then N can

be also safely discarded and not be en-heaped there, as it must not contain any
skyline point.

Heuristic 3. If P is dominated by N , that is, P fully falls into the N ′s DR,
then P can be safely removed instantly and excluded from the heap, because it
may not become a skyline point.

Heuristic 4. If N dominates N ′, namely, the lower-left corner of N ′ fully
resides in the DR of N , then N ′ can be also safely discarded immediately and
not be kept in the heap, since it may not contain any skyline point.

3.2 Algorithm Description

Like BBS, IBBS is also based on best-first nearest neighbor search. Although
IBBS can be applied to various multi-dimensional access methods, in this paper,
we assume that the dataset is indexed by an R*-tree due to its efficiency and
popularity in the literature. Unlike BBS, IBBS enables several effective prun-
ing heuristics to discard non-qualifying entries in order to greatly decrease the
memory space and speed up its execution. In particular, IBBS incorporates two
pruning strategies. The first one is that when expanding an intermediate entry,
all entries dominating each other in its child nodes are removed according to
heuristics 1 to 4 (proposed in Section 3.1 of this paper). The other one involves
pruning strategy that checks the contents of the heap H before the insertion of
an entry E. If E is dominated by some entry in H , it is pruned immediately and
not en-heaped there. In contrast, E is stored in H , and all entries in H that are
dominated by it are also discarded accordingly.

The pseudo-code of IBBS is shown in Figure 3. Note that an entry is checked
for dominance twice: before it is inserted into the heap and before it is expanded.
Furthermore, the algorithm also implements pruning twice. Specifically, line 13
filters all entries dominated by some entry in the heap. Line 15 excludes all entries
dominating each other from the heap. Thus, only those entries that contribute
to the final skyline are maintained in the heap, such that the maximum heap
size (i.e., memory consumption) is reduced by factors, as well as the CPU cost
is decreased accordingly.

An I/O Optimal and Scalable Skyline Query Algorithm 133

Algorithm IBBS (R-tree R)
/* S is used to keep the final skyline. */
1. S = Ø;
2. Insert all entries in the root of R into the heap H;
3. While H is not empty do;
4. Remove the first entry E from H;
5. If E is dominated by any point in S then
6. Discard E;
7. Else // E is not dominated by any point in S
8. If E is a data point then
9. Insert E into S;
10. Else // E is an intermediate entry
11. For each child entry Ei of E do
12. If Ei is not dominated by any point in S then
13. If Ei is not dominated by any entry in H then
14. Insert Ei into H;
15. Prune all entries dominating each other in H by heuristics 1 to 4;
16. End while
End IBBS

Fig. 3. Pseudo-code of an IBBS algorithm

Table 2. Execution of IBBS

Action Heap Contents S

Visit root (N2, 4),(N1, 7) Ø
Expand N2 (N5, 5),(N1, 7),(N7, 9) Ø
Expand N5 (N1, 7),(g, 8),(i, 8),(N7, 9) Ø
Expand N1 (N3, 7),(g, 8),(i, 8),(N7, 9) Ø
Expand N3 (g,8),(i,8),(a,9),(N7 , 9) {g, i, a}
Expand N7 (n,10) {g, i, a, n}

Continuing the example of Figure 1, for instance, let us give an illustrative ex-
ample of IBBS to simulate its executive steps for skyline query. Initially, all the
entries in the root node are inserted into a heap H sorted in ascending order of
their mindist, resulting in H = {(N2, 4), (N1, 7)}. Then, the algorithm removes
the top entry (i.e.,N2) fromH , visits it, and en-heaps its children there, after which
H = {(N5, 5), (N1, 7), (N7, 9)}. Here N6 is discarded since it is dominated by N5.
Similarly, the next expanded entry is N5 with the minimum mindist, in which the
data points are added into H = {(N1, 7), (g, 8), (i, 5), (N7, 9)}. Also notice that h
is pruned as it is dominated by g. The algorithm proceeds in the same manner until
H becomes empty. The final list S of skyline points becomes S = {g, i, a, n}. As
with the settings of Table 1, Table 2 illustrates the execution of IBBS. From Table
2, we can see that the heap size of IBBS is smaller significantly than that of BBS,
which is also verified by the experiments in the next section of this paper.

3.3 Discussion

In this section, we focus on proving the memory space optimality of IBBS, and
omit the proofs of its correctness and I/O optimality because they are similar
to those of BBS in [15].

134 Y. Gao et al.

Lemma 1. If an entry E, either an intermediate entry or a data point entry,
does not inserted into the heap H, then there must exist another entry E’ in H
or some skyline point discovered that dominates E.

Proof. The proof is straightforward since our proposed pruning heuristics discard
all entries that are dominated by any other entry in the given dataset before they
are en-heaped there. ��

Lemma 2. All entries that may contain (or become) skyline points must be kept
in the heap H.

Proof. Clear, by Lemma 1, all entries in H must not be dominated by any other
entry in the given dataset. Also, they act on the skyline, that is, they either
contain some skyline points or are skyline points. Thus, Lemma 2 holds. ��

Theorem 1. The main-memory consumption for IBBS is optimal.

Proof. The Theorem 1 trivially holds, since Lemmas 1 and 2 ensure that the
heap H used by IBBS only stores those entries that may contain (or be) skyline
points, as well as they are inserted into H at most once by their mindist. ��

4 Experimental Evaluation

This section experimentally verifies the efficiency of IBBS by comparing it with
BBS under a variety of settings. We implemented two versions of IBBS, called
IBBS-OS and IBBS-WOS, respectively. Specifically, IBBS-OS incorporates two
pruning strategies (described in Section 3.2), but IBBS-WOS employs only the
first one, i.e., when expanding an entry, all its child entries dominating each other
are removed by heuristics 1 to 4. All algorithms (involving IBBS-OS, IBBS-WOS,
and BBS) were coded in C++ language. All experiments were performed on a
Pentium IV 3.0 GHz PC with 1024 MB RAM running Microsoft Windows XP
Professional. We considered L1 norm to compute mindist from the origin of the
data space in all experiments.

4.1 Experimental Settings

Following the common methodology in the literature, we generated three syn-
thetic datasets conforming the independent (uniform), correlated, and anti-
correlated, respectively. Figure 4 illustrates such datasets with cardinality N
= 10000 and dimensionality d = 2. We utilized these datasets with d varied
between 2 and 5, and N in the range [100k, 10M]. All datasets are indexed by
R*-tree [2], whose node size was fixed to 4096 bytes resulting in node capacities
altered 204 (d = 2), 146 (d = 3), 113 (d = 4), and 92 (d = 5), respectively. All
experiments examined several factors, including d, N , and progressive behavior,
which affect the performance of the algorithms.

An I/O Optimal and Scalable Skyline Query Algorithm 135

(a) Independent (b) Correlated (c) Anti-correlated

Fig. 4. Illustration of three synthetic datasets

4.2 Experimental Results

The first set of experiments studies the effect of dimensionality d using the
datasets with N = 1M and d varied from 2 to 5. Figure 5 shows the maximum
size of the heap (in Kbytes) as a function of d. Clearly, the maximal heap size
(MHS for short) of both IBBS-OS and IBBS-WOS almost equals under various
dimensionalities, which implies that most of non-qualifying entries are pruned
after doing the first pruning strategy, and few entries can be further discarded
via the second one. As validated again in the following experiments. For all
datasets, however, the MHS of IBBS-WOS is greatly smaller than that of BBS,
especially in low dimensions. Notice that the difference of both algorithms de-
creases gradually with the dimensionality, since the larger overlap among the
MBRs at the same level of R-trees occurs in the high-dimensionality [20]. De-
spite the gain of IBBS-WOS reduces in this case (e.g., d = 5), it is yet less than
BBS, which is also pointed out by the number at the side of each polyline in the
diagrams.

Figure 6 illustrates the number of node access versus d. From these graphs,
we can see that three algorithms display the same efficiency for all datasets.
This explains the I/O overhead of IBBS is the same as that of BBS. Similar
to Figure 6, Figure 7 compares the algorithms in terms of CPU time (in secs).
By and large, the CPU costs of both IBBS-WOS and BBS are similar. How-
ever, as shown in Figure 7, IBBS-WOS slightly outperforms BBS in the lower
dimensionality. The CPU time of IBBS-OS increases fast as d increases, and it
is clearly higher than other algorithms. The reason is that IBBS-OS introduces
some CPU overhead for implementing the second pruning strategy. Additionally,
it is expected that the performance of all algorithms degrades because the over-
lapping among the MBRs of R-tree increases and the number of skyline points
grows.

HS VS. d (N = 1M) on Independent Dataset

1E-2

1E-1

1E+0

1E+1

2D 3D 4D 5D
Dimensionality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s)

BBS

IBBS-OS

IBBS-WOS

1.583

1.531
0.4

0.341

HS VS. d (N = 1M) on Correlated Dataset

1E-3

1E-2

1E-1

1E+0

2D 3D 4D 5D
Dimensionality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s)

BBS

IBBS-WOS

HS VS. d (N = 1M) on Anti-correlated Dataset
988.161 999.216

594.055 946.567

1E-1

1E+0

1E+1

1E+2

1E+3

2D 3D 4D 5D
Dimensionality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s)

BBS

IBBS-WOS

Fig. 5. Maximal Heap Size (Kbytes) VS. d (N = 1M)

136 Y. Gao et al.

NA VS. d (N = 1M) on Independent Dataset

1E+0

1E+1

1E+2

1E+3

1E+4

2D 3D 4D 5D
Dimensionality

N
od

e
A

cc
es

se
s

BBS

IBBS-OS

IBBS-WOS

NA VS. d (N = 1M) on Correlated Dataset

1E+0

1E+1

1E+2

1E+3

1E+4

2D 3D 4D 5D
Dimensionality

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

NA VS. d (N = 1M) on Anti-correlated Dataset

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

2D 3D 4D 5D
Dimensionality

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

Fig. 6. Node Accesses VS. d (N = 1M)

CPU time VS. d (N = 1M) on Independent Dataset

0

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

2D 3D 4D 5D
Dimensionality

C
PU

 ti
m

e
(S

ec
s)

BBS

IBBS-OS

IBBS-WOS

CPU time VS. d (N = 1M) on Correlated Dataset

0

1E-2

1E-1

1E+0

2D 3D 4D 5D
Dimensionality

C
PU

 ti
m

e
(S

ec
s)

BBS

IBBS-WOS

CPU time VS. d (N = 1M) on Anti-correlated Dataset

0.234

31.172

1955.6881
10121.9845

0.141

19.672

1706.5151
9953.5785

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

2D 3D 4D 5D
Dimensionality

C
P

U
 ti

m
e

(S
ec

s)

BBS

IBBS-WOS

Fig. 7. CPU time VS. d (N = 1M)

HS VS. N (d = 3) on Independent Dataset

0.068

0.064

0.086 0.092

0.044

0.104

0.041 0.053

0.098

0.071 0.072 0.086

1E-2

1E-1

1E+0

100k 500k 1M 2M 5M 10M
Cardinality

M
ax

im
al

 H
ea

p
Si

ze
 (

K
by

te
s) BBS IBBS-WOS IBBS-OS

HS VS. N (d = 3) on Correlated Dataset

1E-2

1E-1

1E+0

100k 500k 1M 2M 5M 10M
Cardinality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s) BBS IBBS-WOS

HS VS. N (d = 3) on Anti-correlated Dataset

1E+0

1E+1

1E+2

1E+3

100k 500k 1M 2M 5M 10M
Cardinality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s) BBS IBBS-WOS

Fig. 8. Maximal Heap Size (Kbytes) VS. N (d = 3)

Next, we investigate the influence of cardinality N . Toward this, we deployed
the 3-dimensional (the parameter d = 3 is the median value used in Figures 5
to 7) datasets whose cardinality range varies between 100k and 10M. Figures
8-9 show the MHS and CPU cost, respectively, versus N . Obviously, IBBS-WOS
exceeds BBS in all cases. Specifically, the heap of IBBS-WOS is several orders of
magnitude smaller than that of BBS. For CPU time, IBBS-WOS is also faster
than BBS, especially in low dimensions. In addition, as the above experiments,
the heap of IBBS-OS is similar to that of IBBS-WOS, but its CPU cost is
greatly larger than other algorithms. Also note that, as shown in Figure 9(c),
the difference increases with the cardinality, which is due to the positions of the
skyline points and the order in which they are discovered.

Finally, we also inspect the progressive behavior of the algorithms for skyline
query on 3-dimensional datasets. Figure 10 compares the size of the heap as
a function of the number of skyline points (NSP for short) for datasets with
N = 1M (for dependent and correlated datasets) or 100k (for anti-correlated
dataset) and d = 3. Note that the NSP in the final skyline is 94, 26, and 13264,
for independent, correlated, and anti-correlated datasets, respectively. From the
diagrams, we see that IBBS-WOS clearly exhibits smaller heap size than BBS
(over orders of magnitude) in all cases, since most of non-qualifying entries are
pruned by IBBS-WOS. As expected, the heap size of both IBBS-OS and IBBS-
WOS is highly adjacent. On the other hand, notice that the heaps reach their

An I/O Optimal and Scalable Skyline Query Algorithm 137

CPU time VS. N (d = 3) on Independent Dataset

0.0310.0150.0160.016

0.031
0.0160.0150.015

0

1E-2

1E-1

1E+0

100k 500k 1M 2M 5M 10M
Cardinality

C
PU

 ti
m

e
(S

ec
s)

BBS IBBS-WOS IBBS-OS

CPU time VS. N (d = 3) on Correlated Dataset

0.0160.0150.016 0.016 0.016

0.0150.015 0.016

0

1E-2

1E-1

100k 500k 1M 2M 5M 10M
Cardinality

C
PU

 ti
m

e
(S

ec
s)

BBS IBBS-WOS

CPU time VS. N (d = 3) on Anti-correlated Dataset

1E+0

1E+1

1E+2

1E+3

100k 500k 1M 2M 5M 10M
Cardinality

C
PU

 ti
m

e
(S

ec
s)

BBS IBBS-WOS

5.14

3.734

169.031

64.766

Fig. 9. CPU time VS. N (d = 3)

HS VS. NSP (N = 1M, d = 3) on Independent Dataset

1E-3

1E-2

1E-1

1E+0

1 10 20 30 40 50 60 70 80 90 94
Number of Skyline Points

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s)

BBS

IBBS-WOS

IBBS-OS

0.027

0.004

0.001

0.343

0.061

0.052

HS VS. NSP (N = 1M, d = 3) on Correlated Dataset

0

1E-2

1E-1

1E+0

1 4 8 12 16 20 24 26
Number of Skyline Points

M
ax

im
al

 H
ea

p
S

iz
e

(K
by

te
s)

BBS

IBBS-WOS

0.033

0

0.343

0.042

HS VS. NSP (N = 100k, d = 3) on Anti-correlated Dataset

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1 1000 4000 7000 10000 13000 13130 13150 13200 13220 13240 13264
Number of Skyline Points

M
a
x

im
al

 H
ea

p
 S

iz
e

(K
b

y
te

s)

BBS

IBBS-WOS

1.004

0.026

85.207

22.979

Fig. 10. Maximal Heap Size (Kbytes) VS. NSP (N = 1M or 100k, d = 3)

NA VS. NSP (N = 1M, d = 3) on Independent Dataset

0

20

40

60

80

100

120

1 10 20 30 40 50 60 70 80 90 94
Number of Skyline Points

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

IBBS-OS

NA VS. NSP (N = 1M, d = 3) on Correlated Dataset

0

5

10

15

20

25

30

1 4 8 12 16 20 24 26
Number of Skyline Points

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

NA VS. NSP (N = 100k, d = 3) on Anti-correlated Dataset

0

100

200

300

400

500

600

700

800

1 1000 4000 7000 10000 13000 13130 13150 13200 13220 13240 13264
Number of Skyline Points

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

Fig. 11. Node Accesses VS. NSP (N = 1M or 100k, d = 3)

CPU time VS. NSP (N = 1M, d = 3) on Independent Dataset

0

1E-2

1E-1

1E+0

1 10 20 30 40 50 60 70 80 90 94
Number of Skyline Points

C
P

U
 t

im
e

(S
ec

s)

BBS

IBBS-WOS

IBBS-OS

CPU time VS. NSP (N = 1M, d = 3) on Correlated Dataset

0

1E-2

1 4 8 12 16 20 24 26
Number of Skyline Points

C
P

U
 ti

m
e

(S
ec

s)

BBS

IBBS-WOS

CPU time VS. NSP (N = 100k, d = 3) on Anti-correlated Dataset

5.0784.5154.203

3.187 3.438 3.547

3.812

3.7353.8133.703

3.469 3.531 3.547

3.625

1E-1

1E+0

1E+1

1 1000 4000 7000 10000 13000 13130 13150 13200 13220 13240 13264
Number of Skyline Points

C
P

U
 t

im
e

(S
ec

s)

BBS

IBBS-WOS

Fig. 12. CPU time VS. NSP (N = 1M or 100k, d = 3)

maximum size at the beginning of all algorithms, and stepwise decrease with the
growth of NSP , which is also shown in Figure 10. The reason of this phenomenon
is these algorithms insert respective all necessary entries visited in the heap (due
to no any skyline point found) before they discover the first skyline point.

Figures 11 and 12 show all experimental results on the number of node accesses
and CPU time, respectively, versus NSP under the same settings as Figure 10.
Similar to Figure 6, all algorithms are I/O optimal, and their I/O costs grow as
the skyline points returned increase. For CPU cost, both IBBS-WOS and BBS
are similar in most cases, as well as they are faster than IBBS-OS. Addition-
ally, in Figure 12(c), notice that BBS outperforms IBBS-WOS initially, which is
caused mainly that IBBS-WOS need expend some time to remove non-qualifying
entries at the beginning of it. However, the difference gradually decreases with

138 Y. Gao et al.

the NSP , and then IBBS-WOS faster than BBS. This happens because the heap
of BBS keeps some redundant entries (that can be removed in IBBS-WOS using
our proposed pruning heuristics of this paper).

5 Conclusion and Future Work

Although BBS has some desirable features such as I/O optimal and flexibil-
ity, it requires large main-memory consumption. Motivated by this problem, an
improved skyline query algorithm based on best-first nearest neighbor search,
termed IBBS, is proposed in this paper. It enables several dominance check-
ing based pruning strategies to eliminate non-qualifying entries, thus reducing
significantly the memory space and speed up slightly the skyline computation.
Extensive experiments with synthetic datasets confirm that the proposed algo-
rithm is efficient and outperforms its alternative in both space overhead (i.e.,
heap size) and CPU cost for most cases, especially in low dimensions. In the
future, we plan to study new algorithms for skyline queries relied on breadth-
first (or depth-first) nearest neighbor retrieval paradigm. Another interesting
topic is to explore parallel skyline query processing methods for various parallel
environments (e.g., multi-disk or multi-processor setting).

Acknowledgement. This research was supported by the National High Tech-
nology Development 863 Program of China under Grant No. 2003AA4Z3010-03.

References

1. Balke, W.-T., Gntzer, U., Zheng, J.X.: Efficient Distributed Skylining for Web
Information Systems. In: EDBT. (2004) 256-273

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. In: SIGMOD. (1990) 322-
331

3. Borzsony, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE. (2001)
421-430

4. Böhm, C., Kriegel, H.-P.: Determining the Convex Hull in Large Multidimensional
Databases. In: DaWaK. (2001) 294-306 265–318

5. Chan, C.-Y., Eng, P.-K., Tan. K.-L.: Stratified Computation of Skylines with
Partially-Ordered Domains. In: SIGMOD. (2005) 203-214

6. Chang, Y.-C., Chang, Y.-C., Bergman, L.D., Castelli, V., Li, C.-S., Lo, M.-L.,
Smith, J.: The Onion Technique: Indexing for Linear Optimization Queries. In:
SIGMOD. (2000) 391-402

7. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: ICDE.
(2003) 717-719

8. Fagin, R.: Fuzzy Queries in Multimedia Database Systems. In: PODS. (1998) 1-10
9. Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data

Sets. In: VLDB. (2005) 229-240
10. Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Databases. ACM TODS

24 (1999) 265-318

An I/O Optimal and Scalable Skyline Query Algorithm 139

11. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A System for the Effi-
cient Execution of Multi-parametric Ranked Queries. In: SIGMOD. (2001) 259-270

12. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algo-
rithm for Skyline Queries. In: VLDB. (2002) 275-286

13. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the Sky: Efficient Skyline Compu-
tation over Sliding Windows. In: ICDE. (2005) 502-513

14. Natsev, A., Chang, Y.-C., Smith, J.R., Li., C.-S., Vitter. J.S.: Supporting Incre-
mental Join Queries on Ranked Inputs. In: VLDB. (2001) 281-290

15. Papadias, D., Tao, Y., Greg, F., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM TODS 30 (2005)41-82

16. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the Best Views of Skyline: A Semantic
Approach Based on Decisive Subspaces. In: VLDB. (2005) 253-264

17. Preparata, F., Shamos, M. Computational Geometry: An Introduction. Springer-
Verlag (1985)

18. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD.
(1995) 71-79

19. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In:
VLDB. (2001) 301-310

20. Theodoridis, Y., Sellis, T.K: A Model for the Prediction of R-tree Performance.
In: PODS. (1996) 161-171

21. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient Computation
of the Skyline Cube. In: VLDB. (2005) 241-252

	Introduction
	Related Work
	Improved Branch-and-Bound Skyline Algorithm
	Dominance Checking Based Pruning Strategy
	Algorithm Description
	Discussion

	Experimental Evaluation
	Experimental Settings
	Experimental Results

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

