
The Lixto Project: Exploring New Frontiers
of Web Data Extraction�

Julien Carme1, Michal Ceresna1, Oliver Frölich1, Georg Gottlob2,
Tamir Hassan1, Marcus Herzog1, Wolfgang Holzinger1, and Bernhard Krüpl1

1 Vienna University of Technology, Database and Artificial Intelligence Group,
Favoritenstraße 9-11, A-1040 Wien, Austria

2 Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford, OX1 3QD, United Kingdom

Abstract. The Lixto project is an ongoing research effort in the area
of Web data extraction. Whereas the project originally started out with
the idea to develop a logic-based extraction language and a tool to vi-
sually define extraction programs from sample Web pages, the scope
of the project has been extended over time. Today, new issues such as
employing learning algorithms for the definition of extraction programs,
automatically extracting data from Web pages featuring a table-centric
visual appearance, and extracting from alternative document formats
such as PDF are being investigated.

1 Introduction

Web data extraction is an active research field, dealing with the subject of ex-
tracting structured data from semi-structured Web sites. In order to extract
structured data from a Web page, we need to generate an appropriate extrac-
tion program, called a wrapper. We can distinguish two main methodological
approaches for constructing such extraction programs: the supervised and the
unsupervised approach. In the supervised approach, an operator needs to de-
fine the wrapper program either by coding the program manually or by using a
visual development environment to generate the program code. In the unsuper-
vised approach, the system generates wrappers automatically from a given set
of heuristics and domain knowledge.

Whilst the unsupervised approach is very scalable in terms of the number of
input Web pages that can be processed, this comes at the cost of precision. Due
to the quality control inherent in the supervised approach, this approach is best
suited where highly accurate data with an almost zero failure rate is required.

The Lixto Visual Wrapper introduced in [3] employs a supervised approach
to generate wrapper programs from a given sample Web page. The operator
highlights relevant data items on the Web page and the system generates logic-
based extraction rules to extract these data items from the sample Web page
� This work is funded in part by the Austrian Federal Ministry for Transport, Inno-

vation and Technology under the FIT-IT Semantic Systems program.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 J. Carme et al.

and other web pages with a similar structure. These rules utilize the document
structure and specific attributes of the user-selected data items to locate other
relevant data instances to be retrieved. The logical foundation on Web data
extraction, and on the complexity and expressive power on data extraction using
the Lixto approach were studied in [10, 11, 9].

In the first part of this paper, we will report on a recent addition within
this Web data extraction framework to employ a learning strategy to select an
optimal set of attributes for identifying the data items on a Web page. In the next
part, we will discuss our approach to unsupervised data extraction from Web
pages. Another topic that we are currently investigating is the extraction from
non-HTML formats such as PDF. We will use a use case, i.e., extracting data in
the domain of digital cameras, to illustrate the techniques that we have developed
in these various fields of Web data extraction. Furthermore, we will report on
industrial applications of Web data extraction and highlight the benefits that
these applications can generate in a real-world setting.

2 Supervised Wrapper Generation

We will use the digital camera domain to illustrate typical use cases for Web
data extraction. Let us imagine the application of monitoring camera prices.
Assume that we have several competitors and we want to continuously monitor
their websites for price development of the listed goods. We store the prices
collected from their websites into a local database. We can then use business
intelligence tools to analyse the aggregated prices, and this will allow us to
react to market changes with more effective pricing strategies and advertisement
campaigns. Figure 1 shows a sample of Web pages from the Dell online shop that
serves as an example for similar online shops from which price information could
be extracted.

This use case favors the usage of a supervised approach due to the following
requirements:

– if the wrapping algorithm does not work on the given website, we cannot go
to another site and collect the prices there;

– accuracy (precision/recall) must be high, because business decisions rely on
the gathered data, and the solution therefore must guarantee the quality of
the results obtained with the wrapping service;

– deep Web navigation is required before the actual data can be wrapped, e.g.,
it is required to fill Web forms or handle JavaScript (AJAX) execution.

In the following example, we need to collect prices of digital cameras from the
Web site www.dell.com. To obtain prices for some of the cameras we have to
navigate to the detail pages of the shopping cart. Informally, the problem we are
trying to solve is: given a Web site (or a set of Web pages) as input and a user
knowing what should be extracted from the Web site, we need to construct a
wrapper to extract exactly the required information items.

The Lixto Project: Exploring New Frontiers of Web Data Extraction 3

Fig. 1. Example of an information extraction scenario where a combination of wrapping
and focused crawling is required

2.1 Wrapper Structure

The navigation sequence, together with the wrapper, is captured in a navigation
language that we have described in one of our previous publications [4]. The
navigation sequence is created by an algorithm that records interaction of the
user with the Web browser and stores all mouse and key events that occur. An
example of the navigation sequence with an embedded wrapper for the Dell shop
scenario is shown in Algorithm 1.

The wrapping itself is embedded in the extract function. This function op-
erates on DOM trees – the standard tree model of Web pages in modern Web
browsers. It receives as input a list of DOM nodes and a definition of the ex-
traction (called pattern), and outputs another list of DOM nodes. For exam-
ple, in Algorithm 1, one of the extract functions receives a camera node and
pattern price1 as input and returns a price node as output.

2.2 Learning Patterns

Patterns describe one specific extraction task, for example, the extraction of
the pattern camera or pattern price1 from the wrapper in Algorithm 1. To
define each pattern, we use a boolean combination of basic conditions, denoted
as C(p, n).

The basic condition C(p, n) is a function that tests the correct position of
the target DOM node n with respect to the context DOM node p, and local
properties of the DOM node n. Examples of local properties of n are the presence
of a given attribute with some value, or the existence of another sibling node s.
Formally, C(p, n) is a triple (path1, path2, test) such that

C(p, n) ⇔ path1(p, n) ∧ ∃s path2(n, s) ∧ test(s)

4 J. Carme et al.

Algorithm 1. Navigation sequence and wrapper for the Dell online shop
load main page
load(’http://www1.us.dell.com/content/...’)
wrap all camera entries
cameras = extract(#doc, pattern camera)
for c in cameras do

c.name = extract(c, pattern name)
c.image = extract(c, pattern image)
c.price = extract(c, pattern price1)
if c.price == None then

load next page
cartImg = extract(c, pattern cartImg)
sendClick(cartImg)
wrap price from cart
c.price = extract(#doc, pattern price2)
return to main page
goBack()
goBack()

end if
end for

The expression path1 and path2 are called XPath [19, 12] expressions. As we have
shown earlier [7], there are boundaries of query-based learnability for XPath ex-
pressions. Therefore, here we use XPath expressions of simplified for, which con-
tain only the child (/) and ancestor (//) steps, index test ([i]) and no wildcards
(*) in tag names.

For example, for the wrapper in Algorithm 1, pattern camera is defined as
(//table/tr, ., true), pattern price1 as (./td/b, ., @bgcolor! = ‘red‘) and
pattern price2 is defined as (//table/tr/td[3], ., @bgcolor! = ‘red‘)∧(., ./parent ::
∗/parent :: ∗/tr/td[3], text() == ‘Unit Price‘).

When building our wrapper, no annotated data (Web page) exists in advance.
Therefore, we interact with the user to query the required annotations, but
with a goal to minimize the number of requested inputs. The patterns are then
induced from the positive and negative examples received from the user during
the interaction outline in Figure 2.

In each iteration cycle of the interaction, an exhaustive set of basic conditions
is generated from the set of examples that have so far been received. Then,
an optimal combination of some of these conditions is learned using a DNF-
learning algorithm. Unfortunately, the number of variables and therefore basic
conditions in the target formula is not bounded. This implies that the Vapnik-
Chervonenkis dimension of the hypothesis space of all boolean combinations
of the basic conditions is not bounded, and the problem is therefore not PAC
learnable [5].

Also, to the best of our knowledge, PAC- and query-based learnability of the
DNF itself is not known. Therefore, for our implementation to remain tractable,
we limit ourselves to only learning the k-DNF. The learning algorithm works

The Lixto Project: Exploring New Frontiers of Web Data Extraction 5

Fig. 2. Interaction of a user with the learning algorithm

in the following way: first all conjunctions of size smaller than k are generated,
and then the minimum disjunction of these conjunctions, still consistent with
the examples, is searched. Note that although finding the minimal disjunction is
NP-complete, efficient heuristics are known.

2.3 Results

The main advantage of the learning algorithm is that it allows non-experienced
users to build wrappers in an easy to understand way—point and select (or
deselect) the wanted (or unwanted) instances with the mouse.

Our experiments show that the interactivity of the learning algorithm reduces
the number of required examples to define a pattern. Usually, only 3–5 examples
are required to build a pattern. This is due to the fact that redundant examples
are not part of the annotation, e.g. receiving an image as a redundant positive
example, if our hypothesis already extracts images, or receiving a hyperlink as
an unrelated negative example if the pattern should extract only images.

Another advantage of the approach using boolean combination of basic condi-
tions is that it generates wrappers that are understandable by human users. This
allows the user to check or manually alter the learned pattern. The easiness of
understanding is in contrast with other approaches used in information extrac-
tion, such as Hidden Markov Models or Conditional Random Fields, which learn
a vector of real-valued parameters that is not intuitive for humans to understand.

3 Unsupervised Wrapper Generation

In contrast to the supervised approach, the unsupervised approach is feasible if
the goal is to extract from a huge number of Web resources without the need
to be able to successfully process every single Web resource that potentially
holds relevant data items. For example, in order to harvest domain knowledge
about cameras, it is sufficient to process a fraction of all potential descriptions

6 J. Carme et al.

of digital camera models on the Web in order to generate a knowledge base on
camera models describing all available camera models and their features.

3.1 Resource Discovery and Focused Crawling

In the unsupervised, approach the system needs to navigate and extract data from
Web pages fully automatically. The basic idea here is to mimic the behaviour of
an human expert. A person, given the task of collecting addresses of pages con-
taining useable tabular information about digital cameras, will typically apply the
following strategy: First, the person uses an internet search engine to find websites
about cameras. To do this, the user will pose queries to the search engine that con-
tain terms likely to appear on such a website. The user must have knowledge about
the digital camera domain, i.e., the specific language and technical terms used.
From the search engine’s results, the user then sorts out the relevant items and re-
peats the process, this time using a slightly different query. After some iterations,
some websites will stand out as exceptionally valuable sources of information—
appearing in the search engine results in each of the queries—thus indicating that
they are not only relevant to the exact phrase that was submitted during a single
query but are indeed relevant to the whole domain.

At this point, the user will deviate from the initial strategy of using a search
engine and begin to investigate these interesting websites directly. The user
knows that information on the Web comes in a clustered form: a website that
talks about some cameras is likely to talk about all cameras, or will at least
contain links to such sites. The user will start browsing websites, having basic
prior knowledge of how navigation on a website works (using fold-out menus,
hyperlinks, forms, etc). The user will then need to learn the particular idiosyn-
cracies that are used by each website to organize information. The user already
knows some of the relevant pages on the site from the search engine results; now
he has to find the path through the website’s navigational structure that leads
to these pages. Once this path is found, slight variations of it (i.e., go one step
back and try alternatives) will uncover a wealth of relevant pages.

Following this two-step strategy that a human expert would employ, we con-
structed a software implementation that works in two stages: In stage 1 we
select a small sample S from a collection C of phrases pertinent to our domain
at random. Very common words appearing in C are given a smaller probability
of being selected. S is converted to a (conjunctive) query and submitted to a
search engine; the top rated results are grouped by website and stored for further
processing. This query process is repeated until no significant new information
shows up, typically after several dozen iterations.

After this, we use the table extraction algorithm explained later in this sec-
tion to iterate through all the pages found and determine which pages contain
extractable tables, and are therefore relevant for further processing. Eventually,
we obtain a list of relevant websites pi, each associated with a set of relevant
pages that we call templates Ti.

In stage 2 we apply a Web crawler to all relevant websites, starting with
the website that contains the most templates and therefore looks the most

The Lixto Project: Exploring New Frontiers of Web Data Extraction 7

promising. This crawler is focused on finding pages that match the templates
Ti closely. For the matching algorithm we use a measure of structural similarity
of pages as follows: A HTML page is reduced to its skeleton code by first re-
moving all text nodes, tag attributes and closing tags. The remaining sequence
of tags is then converted to a string by replacing each tag by a unique char-
acter. Once we have determined the skeleton codes s1, s2 of two pages we can
measure their structural similarity d(s1, s2) with an appropriate string distance
function d; at the moment we use the Levenshtein distance [15]. The thresh-
old distance dT , above which we reject a page as being not sufficiently simi-
lar to our template pages, is determined by computing the pairwise distances
dij among the Ti. We observed a normal distribution of these dij and use the
99% quantile of the observed distribution as the threshold dT . Pages that fall
below the threshold are called extraction candidate pages, or candidate pages
for short.

Learning how to navigate a site in the same way as a human user turned out to
be the most difficult part of the problem: to rely on structure and image pattern
recognition—both of which are computationally expensive tasks—would not be
feasible in a crawler that is expected to process thousands of pages in a short
time. Instead, we turned to analysing the graph G spanned by the hyperlinks
among the pages of a website. Our assumption is that the navigational pages
have a special, central position in G that we can identify. After all, functional
navigation should be available to the user at any time and can be used to reach
even the remotest places on the website—the “trunk” of the website, so to speak.
Therefore, a random surfer on the website would invariably visit those central
pages more often—and we can use the PageRank algorithm [17] to identify these
navigational pages.

The crawler keeps following outgoing links on pages with the highest page
ranks until it hits upon one of the Ti or a page sufficiently similar to it. Once this
happens, a new heuristic comes into play: hubs, pages that contain links to a large
number of candidates, can be recognized. A page gets a hub score proportional to
the number of extraction candidate pages it links to. The heuristic that decides
which page to expand next is based on a weighted sum of both the page rank
and the hub score of the page. This way, the crawler turns its attention from
navigating the website to exploiting the nest of candidate pages it has stumbled
upon.

3.2 Results

Figure 3 gives an indication of the crawler’s performance when set to explore
a typical digital camera review website. It shows the harvest rate; the ratio of
candidate pages to visited pages, against the number of iterations. The crawler
first begins by visiting pages leading out from the main navigation, then hits
upon the first candidate at around iteration 50. It quickly focuses on the area of
this result and stabilizes, turning out new candidate pages every four iterations.
Due to irrelevant links present on the hub pages, the performance here never
gets closer to 1.

8 J. Carme et al.

200

0,1

0,05

300 4001000

0,25

0,15

0

0,2

Fig. 3. Harvest rate over iteration

3.3 Automatic Table Extraction from Web Documents

There are situations where it is desirable to make the extraction process com-
pletely unsupervised. For example, many technical product descriptions on the
Web are in the form of tables. A system that could locate, segment and anal-
yse these tables automatically would therefore be of great value: it could assist
the designer in the wrapper construction process by providing easier naviga-
tion within the document under consideration, or it could be used on its own
to build a fully unsupervised extraction system to automatically extract data
tables from a large amount of Web pages. We are currently implementing such
a table location and analysis component.

What makes tables different from free text is that they are inherently concise.
By extracting information from tables, we can avoid dealing with most of the
complexity of natural language, since tables usually contain information in a
condensed style. Thus, analysing the content with extraction ontologies [8] is
more promising than in the case of free text.

Several articles deal with the problem of classifying HTML tables as genuine
or non-genuine. This comes from the fact that the HTML <table> element
is often used just for the purpose of implementing a specific page layout. It is
therefore crucial for methods that analyse the source code of a Web page to
identify only those genuine table elements that are not for layout purposes. By
operating directly on the visual rendition, such a classification becomes obsolete.

Traditional wrappers operate on HTML input either in the form of a sequential
character string or a pre-parsed document tree. With the Lixto Visual Wrapper,
the wrapper is specified visually by interactively clicking on the rendition of
a page to annotate relevant content. The Lixto software then determines the
node in the pre-parsed document tree that best matches the selected region and
generates appropriate extraction statements. For automatic table extraction, we
decided not to use the HTML source code at all: if it is possible to visually define

The Lixto Project: Exploring New Frontiers of Web Data Extraction 9

the relevant data area, all the data required to locate the extraction instance
is clearly contained in the visual rendition. Going back to the document source
code, whether pre-parsed or not, is therefore an unnecessary step. If the wrapper
can be grounded on the same visual properties of a document that enable the user
to mark the relevant parts of the page, it should also be more robust regarding
future changes of the page.

3.4 Table Extraction Algorithm

We are currently implementing an automatic table location and analysis algo-
rithm. This algorithm operates on the rendition of a Web page provided by a Web
browser and thus avoids all the peculiarities and complications involved with the
interpretation of HTML and associated CSS code. The goal of the algorithm is
the identification of data-centric tables and the subsequent transformation of
the data contained in the table into a structural form preserving the relation-
ships between table cells. According to the literature [14], the steps involved are:
table location, segmentation, functional analysis and structural analysis. So far,
we have concentrated our work on a limited number of physical table models;
essentially simple, unnested tables with the possibility for intermediate headings
appearing as additional lines in the table.

Unlike most of the other implementations in the literature, our table algorithm
works in a bottom-up fashion by starting from pixel positions of single words that
have been determined with the help of the Web browser. These word bounding
boxes are grouped into larger clusters of possible cells based on their adjacency,
which is illustrated as step 1 in Figure 4. Since the pixel coordinates are derived
from the Web browser layout engine, we can assume that there is no noise in
the data and that there is a true adjacency of neighbouring cells with a pixel
distance of zero.

As in the table definition given in [18], we do not consider line-art or other
graphical properties of tables; we identify and segment a table just from the
positions of its inherent word bounding boxes. Rather than looking for tables as a
whole, we start by trying to identify possible table columns. A column candidate
in our context is a collection of cells that, within a small tolerance, share a
common coordinate on the horizontal axis. This can be either the left border,
centre, or right border pixel coordinate of the cell to account for left aligned,
centered, or right aligned columns. Figure 4 shows the column identification as
step 2.

On the vertical axis, we allow up to one non-column cell between every two col-
umn candidate cells to account for the possible intermediate headings mentioned
above; if this limit is exceeded, the column candidate is split into two column
candidates. Then we investigate whether all the separating cells (in other words,
the intermediate heading candidates) share a common coordinate. If they do, we
have found a column candidate. Otherwise, we split our column candidates into
column candidates that will be treated separately.

In the next stage, we try to find the best column candidate combination
that could possibly form a data table. Here we follow a strategy that we call

10 J. Carme et al.

1

L C R L C R

L C R

L C R

L C RL C R

222

3
3

3

Fig. 4. Operation of the table extraction algorithm on part of a sample page

comb alignment of columns: we look for adjacent columns where we observe
only 1:n or m:1 relationships between adjacent table cells. This means that
we can handle cases where a cell in one column corresponds to several cells
in the second column, usually representing a hierarchical relationship between
these cells. Step 3 in Figure 4 illustrates the comb alignment between two
columns. If we can establish such an alignment, we can derive a proper table
segmentation.

In the final stage, an analysis of the segmented table is performed. Here we
try to recover the relation of cells in the table or, put differently, the reading
order of the table. With the information about intermediate headings and the
direction of the comb alignment, we can already make a judgement about the
functional role of the respective cells. The analysis is finally finished by assigning
subject, predicate or object roles to the table cells based on cell neighbourhoods
and on our knowledge of table models.

Because our unsupervised table extraction algorithm generates a large number
of triples, its results are well suited for a statistical analysis aimed at leveraging
the great redundancy of information on the Web. This is in stark contrast to
other approaches that rely just on a few sources. The aggregation and integration
of all these information fragments is the objective of another research effort in
the Lixto context.

4 Wrapping from PDF Files

In today’s Web, the vast amount of HTML data is complemented by a signif-
icant number of documents published in Adobe’s Portable Document Format
(PDF). In general, these documents are primarily intended for printing, and
many business-critical documents fall into this category. Examples of such docu-
ments include financial reports, newsletters and price lists, such as our example
in figure 5 (left) from the digital camera domain. Clearly, the ability to semi-
automatically extract information from these documents proves to be extremely
useful for a number of business applications.

The success of PDF can be attributed to its roots as a page-description lan-
guage. Any document can be converted to PDF as easily as sending it to the

The Lixto Project: Exploring New Frontiers of Web Data Extraction 11

printer, with the confidence that the formatting and layout will be preserved
when it is viewed or printed across different computing platforms. This ease of
publication has led to a lot of data on the Web being available only in PDF
format, with no corresponding HTML alternative.

Unfortunately, this approach presents one major drawback: most PDFs have
little or no explicit structural information, making automated machine process-
ing and data extraction a difficult task. Although later versions of the PDF
specification support the use of XML tags to denote logical elements, these are
seldom found in business documents.

Our PDF extraction functionality within Lixto utilizes a variety of techniques
from document understanding literature to attempt to rediscover the logical
structure from the layout of the document. This structure can then be used in
a similar way to the HTML parse tree to locate data instances for wrapping.

In this section we describe our recent advances in PDF wrapping within Lixto,
and present an insight into our current work in this area, and what our future
releases may offer.

4.1 The Wrapping Process

The PDF import filter within Lixto is automatically activated when the input
document is detected as a PDF. Our algorithms detect structures on the page,
such as columns, lists and tables, and represent them in XHTML, much like a
web page. The wrapper designer is then able to interact with this representation
in the same way as with a web page, as shown in the example in figure 5 (right).

The latest version of our PDF filter benefits from a several improvements to
our document understanding algorithms, and can now produce good results even
with relatively complex layouts. The remainder of this section details some of
the techniques that we have used.

Document pre-processing: In general, the first step in understanding a doc-
ument is to segment it into blocks that can be said to be atomic, i.e. to represent

Fig. 5. Example of wrapping from a PDF price list

12 J. Carme et al.

one distinct logical entity in the document’s structure. Many of the segmentation
techniques in document understanding, such as those utilized in [2] and [1], have
been developed by the OCR community, and take a scanned, binarized image of
the page as input. Whilst we could make use of these techniques by rasterizing
each page of the PDF, this process would throw away useful information, intro-
duce noise, waste processing time and essentially take us backwards. Therefore,
we choose to segment the page directly on the object data that is contained
within the PDF.

A PDF file is little more than a collection of characters and graphic objects
placed on a page. Referring again to our example in figure 5, we consider the
title, the address of the store and the other single lines of text all to be distinct
logical entities. Inside the table, each individual cell is a distinct logical entity.
This definition gives us sufficient granularity for locating these data items later.

– Line finding: In a PDF file, text is stored in discrete blocks, usually with
no more than 2–3 characters per block (although this can depend on the
program used to generate the document). The first step is therefore to merge
these text fragments into complete lines. Space characters are not always
included in the original source, and therefore must be added to separate
words if the distance between two neighbouring blocks is too large. Our
algorithm examines the spacing between each character and, therefore, copes
with a variety of different character spacings.

– Clustering: The next stage is to merge these lines into discrete blocks that
are logically distinct. As text in a PDF can use a variety of different fonts,
sizes and leadings, we make use of a variable-threshold clustering algorithm.
This algorithm examines a variety of different possible groupings of para-
graphs, and a consistency heuristic is used to determine the correct grouping
from this set. Further heuristics are used to detect tabular structures and
ensure that each cell is distinct.

Logical structure understanding: After page segmentation, the task is to
identify higher-level logical relationships and detect substructures, such as lists
and tables, within the page. Currently, we have a set of heuristics that detect
multiple layers of headings, and cope with multiple column layouts. Our table
understanding algorithm converts tabular structures to <table> elements in
our XHTML representation, and can detect spanning columns or rows.

We are now investigating the use of an ontological framework to abstract these
rules and heuristics from our code. This will enable the rules in future releases to be
more easily adapted, and for domain-specific rules to be modularly “plugged in”.

4.2 Future Developments

Currently, wrapping from PDF is a two-step process. First, the PDF document
is imported, and the user then interacts with its representation in XHTML. To
improve interaction with the user, we are also developing a method that will
allow the user to select the desired wrapping instances directly on a rendition of
the PDF.

The Lixto Project: Exploring New Frontiers of Web Data Extraction 13

Behind this graphical rendition, the document is represented as an attributed
relational graph. Each block is represented as a vertex, and the vertices are
interconnected with various logical and geometric relationships. Wrapping is
then performed by the application of error-tolerant graph matching algorithms,
such as those described in [16]. This approach is described in more detail in
our forthcoming paper [13]. As well as the obvious benefits in user-friendliness,
this method will also allow more powerful wrappers to be generated, for a wider
variety of applications.

5 Application in Competitive Intelligence

In this chapter, we will give an example of a business case in the domain of
competitive intelligence. This business case describes the process using Lixto for
Web data extraction, transformation, and delivery to the data warehouse of the
SAP Business Information Warehouse (SAP BW).

A company sells consumer electronics, such as digital cameras, computers and
cellular phones, with a product catalogue of more than 1000 items (short: P1000).
Before using the Lixto software, many employees of the company spent many
hours a day searching the Web to collect information about their competitors’
pricing for items from the P1000 catalogue. The price information retrieved
was used for monthly price definitions. Product availability and regional price
differences should also be included in the data analysis.

By using the Lixto suite, Web pages of online shops of several competitors
are automatically searched on a daily basis. For a complete Web site, just one
Lixto wrapper is necessary. For every product on an overview page in the online
shop, the wrapper extracts all information (even from sub-pages with detailed
information). By automatically clicking on the “next overview page” button
at the bottom of the page and applying the same wrapping procedure to the
succeeding overview Web page, all necessary information can be retrieved for
all items sold in the online shop, from all overview pages and all sub-pages.
Complete product information is retrieved, i.e. price, manufacturer, model name,
model description, availability, discount rates, combined offers, etc. The wrapper
generates a hierarchically organized XML data file in a defined standard data
model. Highly nested structures representing the connections and interrelations
between the information items, such as price and combined offers, are possible
and allow for a detailed data analysis later.

Within the Lixto Transformation Server, the XML data from different wrap-
pers is then aggregated, reformatted and normalized. For example, all price
information (e.g. in £ Sterling or Swiss Francs) are normalized to the company
group standard currency (Euros), and differences in taxation are accordingly
considered to allow for a standardized price comparison. Finally, the data is
reformatted within the Lixto Transformation Server into SOAP, so that the re-
trieved information can be integrated into the SAP BW using Web services.

The data is then automatically transferred to the SAP BW in an automatic
ETL process. Within SAP BW, sophisticated pre-defined data analysis and work-

14 J. Carme et al.

flow capabilities exist. Together with the Web data supplied by the Lixto Suite,
it is now possible to automatically define prices on a weekly or even on a daily ba-
sis, taking into account short-term and regional market price fluctuations. This
“intelligent pricing” can increase the company’s revenue margins for their prod-
ucts and altogether increase the revenue per product. In practice, an increase
between 1% and 4% can be achieved.

With Lixto, the whole process of defining wrappers and data flows is per-
formed semi-automatically in a graphical user interface. Within the Lixto Trans-
formation Server, graphical objects symbolize components, such as an integrator
for the aggregation of data, or a deliverer for the transmission of information
to other software systems. By drawing connecting arrows between these objects,
the flow of data and the workflow are graphically defined. In our example, the
time-consuming and mostly manual process of mapping items from the competi-
tors’ Web sites to equivalent items from the P1000 product list is accomplished
in the GUI, allowing for fast and effective data mapping.

6 Conclusion

In this paper we have reported on the latest developments in the Lixto project.
In the field of supervised data extraction from Web documents, we have high-
lighted the benefits of employing learning strategies to guide the user in selecting
relevant information items to define patterns in wrappers. For unsupervised data
extraction, we have revealed strategies for resource discovery and focused crawl-
ing, as well as automatic table extraction from Web documents. We have also
discussed the related issue of extracting from non-HTML document formats such
as PDF. Finally, we have given a brief description of a real-world business case
that illustrates the applicability of Web data extraction technology in competi-
tive intelligence solutions.

References

[1] Aiello, M., Monz, C., Todoran, L. and Worring, M: Document understanding for
a broad class of documents. Int. J. of Document Anal. and Recog. 5(1) (2002)
1–16

[2] Altamura, O., Esposito, F. and Malerba, D.: Transforming Paper Documents into
XML Format with WISDOM++. Intl. J. of Doc. Anal. and Recog. 4(1) (2001)
2–17

[3] Baumgartner, R., Flesca, S. and Gottlob, G.: Visual Web Information Extraction
with Lixto. Proceedings of the 27th International Conference on Very Large Data
Bases (VLDB 2001), Rome, Italy, (2001) 119–128

[4] Baumgartner, R., Ceresna, M. and Ledermüller G.: Automating Web Navigation
in Web Data Extraction. Proceedings of International Conference on Intelligent
Agents, Web Technology and Internet Commerce, Vienna, Austria (2005) (to
appear)

[5] Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth M. K.: Learnability and
the Vapnik-Chervonenkis dimension. J. ACM 36(4) (1989) 929–965

The Lixto Project: Exploring New Frontiers of Web Data Extraction 15

[6] Chakrabarti, S., van den Berg, M., Dom, B.: Focused Crawling: A New Ap-
proach to Topic-Specific Web Resource Discovery. Computer Networks. 31(11–
16) (1999) 1623–1640

[7] Ceresna, M. and Gottlob G.: Query Based Learning of XPath Fragments. Pro-
ceedings of Dagstuhl Seminar on Machine Learning for the Semantic Web (05071),
Dagstuhl, Germany (2005)

[8] Embley, D. W.: Toward Semantic Understanding – An Approach Based on Infor-
mation Extraction Ontologies. Proceedings of the Fifteenth Australasian Database
Conference, Dunedin, New Zealand (2004) 3

[9] Gottlob, G., Koch, C.: A Formal Comparison of Visual Web Wrapper Genera-
tors. SOFSEM 2006: Theory and Practice of Computer Science, 32nd Conference
on Current Trends in Theory and Practice of Computer Science, Meŕın, Czech
Republic, (2006) 30–48

[10] Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages
for Web information extraction. J. ACM 51(1) (2004) 74–113

[11] Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto Data
Extraction Project - Back and Forth between Theory and Practice. Proceedings
of the Twenty-third ACM SIGACT-SIGMOD-SIGAR Symposium on Principles
of Database Systems, Paris, France (2004) 1–12

[12] Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst. 30(2) (2005) 444–491

[13] Hassan, T., Baumgartner, R.: Using Graph Matching Techniques to Wrap Data
from PDF Documents. To appear in Proceedings of the 15th International World
Wide Web Conference (Poster Track), Edinburgh, UK (2006)

[14] Hurst, M.: The Interpretation of Tables in Texts. PhD thesis, University of Edin-
burgh (2000)

[15] Levenshtein, V. I.: Binary Codes Capable of Correcting Spurious Insertions and
Deletions of Ones. Russian Problemy Peredachi Informatsii. 1 (1965) 12–25

[16] Llados, J., Marti, E. and Villanueva, J. J.: Symbol Recognition by Error-Tolerant
Subgraph Matching between Region Adjacency Graphs. IEEE Tran. on Pattern
Anal. and Mach. Intel. 23(10) (2001) 1137–1143

[17] Page, L., Brin, S.: The Anatomy of a Large-Scale Hypertextual Web Search En-
gine. Computer Networks. 30(1–7) (1998) 107–117

[18] Silva, A. C., Alipio, J., Torgo, L.: Automatic Selection of Table Areas in Docu-
ments for Information Extraction. 11th Protuguese Conference on Artificial In-
telligence, EPIA (2003) 460–465

[19] XML Path Language (XPath), Version 1.0. http://www.w3.org/TR/xpath

	Introduction
	Supervised Wrapper Generation
	Wrapper Structure
	Learning Patterns
	Results

	Unsupervised Wrapper Generation
	Resource Discovery and Focused Crawling
	Results
	Automatic Table Extraction from Web Documents
	Table Extraction Algorithm

	Wrapping from PDF Files
	The Wrapping Process
	Future Developments

	Application in Competitive Intelligence
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

