

Lecture Notes in Computer Science 4042
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

David Bell Jun Hong (Eds.)

Flexible and Efficient
Information Handling

23rd British National Conference on Databases, BNCOD 23
Belfast, Northern Ireland, UK, July 18-20, 2006
Proceedings

13

Volume Editors

David Bell
Jun Hong
Queen’s University Belfast
School of Electronics, Electrical Engineering and Computer Science
Belfast BT7 1NN, UK
E-mail:{da.bell, j.hong}@qub.ac.uk

Library of Congress Control Number: 2006928025

CR Subject Classification (1998): H.2, H.3, H.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-35969-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35969-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11788911 06/3142 5 4 3 2 1 0

Preface

Since 1980, BNCOD conferences have provided an opportunity for researchers
to present and discuss advances in research on database systems and in the
deployment of database technology.

Contributions have been made to the plotting of new directions in the devel-
opment of the technology and in the exploration of opportunities and challenges.

The Programme Committee of BNCOD 2006 sought to continue this pattern,
and this year we chose to place special emphasis on“flexibility and performance.”
The idea is to look at challenges and developments from these two complemen-
tary and sometimes competitive directions. In practice, there is often a ‘tight-
rope’ to be walked between the two — keeping a balance is clearly important.
However, this is sometimes overlooked, and sometimes a focus on one side or the
other cannot be avoided.

Authors from 16 countries contributed a total of 58 submissions to the mem-
bers of the Programme Committee. Each submission was evaluated by three
members on the basis of originality, technical quality, presentation and relevance
to BNCOD. As a result we have selected 12 full, 6 short and 13 poster papers
which appear in this published proceedings volume along with the invited papers.

Some of the papers considered exclusively performance-related issues, and
others were focussed on the flexibility side. A few sought to address the balance
directly. The papers were organized into six presentation sessions and a poster
session. We summarize the papers by session below.

The first session was on Data Modelling and Architectures and Transaction
Management. These papers address both performance issues and flexibility is-
sues. Harith Al-Jumaily, César de Pablo, Dolores Cuadra and Paloma Mart́ınez
write on using UML sequence diagrams as termination analyzer for trigger-based
executing. They describe a visualization tool for representing and verifying trig-
ger execution by using UML sequence diagrams. Their tool is added to Ratio-
nal Rose and it simulates the execution sequence of a set of triggers when a
DML operation is produced. It uses the SQL standard to express the semantics
and execution. Victor Gonzalez-Castro, Lachlan MacKinnon and David Marwick
authored a paper on an experimental consideration of the use of the Transre-
lational Model for Data Warehousing. They present an implementation of the
TransrelationalTM model, based on the public domain definition provided by
C.J. Date, which they believe to be the first reported instantiation of the model.
They also present the results of tests where the performance is compared against
a traditional N-ary Relational implementation. The topic of the paper by Stefan
Böttcher, Le Gruenwald and Sebastian Obermeier is reducing sub-transaction
aborts and blocking time. They introduce an extension to existing atomic com-
mit protocols. It decreases the blocked-out time for a resource manager involved

VI Preface

in a web service. It also reduces the number of sub-transaction aborts that arise
due to message loss or conflicting concurrent transactions.

The second session, entitled Data Integration and Interoperability and In-
formation Retrieval looked primarily at performance issues. Fahad Al-Wasil,
Nick Fiddian and Alex Gray address the problem of query translation for dis-
tributed heterogeneous structured and semi-structured databases. They target
both distributed heterogeneous structured data in relational databases and semi-
structured data held in remote or local XML documents with no referenced DTD
or XML schema. Mappings between the master view and the participating source
schemas are defined in an XML Metadata Knowledge Base (XMKB). The pa-
per by Shengli Wu and Sally McClean is about information retrieval evaluation
with partial relevance judgment. Their investigation shows that when only par-
tial relevance judgment is available, mean average precision suffers from several
drawbacks. Their experiments suggest that average precision over all documents
would be a good system measure. The paper by Alasdair Gray, Werner Nutt
and Howard Williams studies sources of incompleteness in grid publishing. They
identify different types of incompleteness in the context of RGMA with a view
to finding solutions to some of these.

The third session on Query Processing and Optimization was primarily about
performance. The first paper is by Guoqiang Zhan, Zude Li, Xiaojun Ye and Jian-
minWang. It looks at privacy preservationandprotectionby extending generalized
partial indices. They propose an efficient Privacy Aware Partial Index mechanism
based on the concept of purposes and the theory of partial indexing. All purposes
are independent from each other, and they are organized in a flattened purpose tree
(FPT) which can be updated. They extend existing query optimization and execu-
tion to enforce privacy policies, and report experiments demonstrating the feasibil-
ity and efficiency of the mechanism. The paper by Thomas Neumann, Sven Helmer
and Guido Moerkotte is on the optimal ordering of maps, selections and joins un-
der factorization. They show that if factorization is ignored during optimization,
plans can be very far off the best possible. They introduce optimization strategies
that produce optimal left-deep and bushy plans when factorization is taken into
account, and their experiments show that factorization is critical in generating op-
timal plans, and that considering it does not incur serious performance penalties.
Yunjun Gao, Gencai Chen, Ling Chen and Chun Chen write on an I/O optimal and
scalable skyline query algorithm. They present an improved skyline computation
algorithm based on best-first nearest neighbor search. It determines the optimal
I/O and is economical with memory space. Their experimental evaluations show
that their method can outperform conventional branch and bound skyline in both
scalability and efficiency, especially in low dimensions.

The fourth session was on Data Mining. Papers in this session and the follow-
ing two sessions addressed both performance and flexibility. Hui Wang presents
a novel generic clustering method based on spatial operations. He describes an
approach based on an extension of database relation — hyperrelations, which
are sets of hypertuples, which are vectors of sets. He shows that hyperrelations
can be exploited to develop a new method for clustering both numerical and

Preface VII

categorical data. No parameters are needed from users. Initial experiments with
artificial and real-world data show this novel approach is promising. Yuhong
Guo, Yuhai Tong, Shiwei Tang and Dongqing Yang introduce an FP-tree-based
method for inverse frequent set mining. They propose a tree-based method for
the NP-complete problem of such mining. It saves on computational costs and
provides a good heuristic search strategy to rapidly find the tree and the set of
compatible databases.

The fifth session was also Data Mining. Ben Wang and John Gan present
SC-Tree: an efficient structure for high-dimensional data indexing. To avoid in-
herent disadvantages veiled in the M-tree and its variants, which prevent them
from further improvement of indexing and query efficiency, the paper proposes a
sorted clue tree (SC-tree), which essentially modifies the nodes, entries, indexing
algorithm, and query algorithm of the M-tree but retains its advantages. Experi-
mental results and complexity analyses show that the SC-tree is much more effi-
cient than the M-tree with respect to the query time and indexing time without
sacrificing query accuracy. Ping Luo, Kevin Lü, Qing He and Zhongzhi Shi use a
heterogeneous computing approach to solve the computing-intensive problem in
data mining. This approach requires an effective and efficient scheduling frame-
work to orchestrate different computing resorces used for multiple competitive
jobs in the data mining workflow. They introduce a dynamic DAG algorithm
for scheduling data mining jobs based on an approximate estimation of their
execution time. Carson Leung, Ruppa Thulasiram and Dmitri Bondarenko pro-
pose a parallel system for detecting outliers from financial time series. In their
paper, they develop an efficient parallel system to detect noise in time series
security prices. The system consists of a data mining algorithm and a statistical
algorithm, which run in parallel to efficiently detect noise.

The final session was on Data Warehousing and Decision-support Systems
and Data Streaming. Carson Leung and Wookey Lee write about efficient up-
date of data warehouse views with generalized referential integrity differential
files, (GRIDFs). These self-maintain the views modelled in any schema, in a
way that avoids accessing the underlying source data. The authors present ex-
perimental results to show that the method leads to efficient update of data
warehouse views. Ladjel Bellatreche, Kamel Boukhalfa and Hassan Abdalla in-
troduce a combination of genetic and simulated annealing algorithms for physi-
cal data warehouse design. They formalize the horizontal fragmentation selection
problem as an optimization problem with a maintenance constraint representing
the number of fragments that the data warehouse administrator may manage.
They present SAGA, a hybrid method combining a genetic and a simulated an-
nealing algorithm to solve the problem. Several experiments are presented to
validate the algorithms. Sharma Chakravarthy and Vamshi Pajjuri discuss trust
scheduling strategies and their evaluation in a data stream management system.
They introduce a path capacity scheduling strategy to minimize tuple latency
by scheduling operator paths with maximum processing capacity. They also dis-
cuss a segment-scheduling strategy to minimize the total memory needed by
scheduling operator segments with maximum memory release capacity, and an-

VIII Preface

other simplified strategy. They simulate real-time streams in their experiments
to validate the analytical conclusions. Altaf Gilani, Satyajeet Sonune, Balakumar
Kendai and Sharma Chakravarthy present a paper on the anatomy of a stream
processing system. Their paper describes the architecture of MavStream. In it
the user can present or query GUI, which is instantiated, scheduled, and executed
by the MavStream server. Experimental results are presented to demonstrate the
utility of the system and the effect of different scheduling strategies and buffer
sizes on the performance and output.

The poster session contained 13 papers on various topics such as Query
Processing and Optimization, Data Integration and Interoperability, Data Se-
curity and Privacy, XML, Data Warehousing, Semantic Web and Ontologies,
Data Modelling and Architectures, and Spatial, Temporal and Scientific Data.

We want to thank the invited speakers, Georg Gottlob and Witold Litwin,
for their insight into the state of the art and their visions for the future. Their
contributions are in keeping with the conference theme. If you look at their
short CVs and projects below you will see that they reflect the two aspects of
our conference theme well.

Georg Gottlob is a Professor of Computing Science at Oxford University.
His research interests are database theory (in particular, query languages), Web
information processing, graph algorithms, constraint satisfaction problems, non-
monotonic reasoning, finite model theory, and computational complexity. On
the more applied side, he supervises a number of industry projects dealing with
Web information extraction and related topics. From 1989 to 1996 he directed
the industry-funded Christian Doppler Laboratory for Expert Systems. He is a
co-founder of the Lixto Corporation (www.lixto.com).

Prof.Gottlobwas awardedhisEngineer andPh.D. degrees inComputer Science
from TU Vienna, Austria in 1979 and 1981, respectively. Before moving to Oxford,
he was a Professor of Computer Science at the Vienna Technical University (TU
Vienna) since 1988. He continues to be affiliated with TU Vienna as a part-time
Adjunct Professor. From 1981 to 1987, he was affiliated with the Italian National
ResearchCouncil inGenoa, Italy, andwith thePolitecnicodiMilano, Italy.Hewasa
research scholar atStanfordUniversity, an invitedMcKayProfessor atUCBerkeley
in 1999, and a Visiting Professor of the University Paris of VII in 2002.

He received the Wittgenstein Award from the Austrian National Science
Fund, a Royal Society Wolfson Research Merit Award, and was elected a mem-
ber of the Austrian Academy of Sciences and a member of the German Academy
of Sciences Leopoldina.

He chaired the Programme Committees of ACM PODS 2000 and of IJCAI
2003, and he has been an invited speaker at many international conferences.

His talk at BNCOD was on the Lixto Project, and with a number of his
colleagues he prepared a paper on the Lixto Project - Exploring New Frontiers
of Web Data Extraction.

The Lixto project is an ongoing research effort in the area of Web data extrac-
tion. The project originally started out with the idea to develop a logic-based ex-
traction language and a tool to visually define extraction programs from sample

Conference Committees

Programme Committee

David Bell (Chair) Queen’s University Belfast
Jun Hong (Co-chair) Queen’s University Belfast
Abbes Amira Queen’s University Belfast
Richard Connor University of Strathclyde
Richard Cooper University of Glasgow
Pat Corr Queen’s University Belfast
Barry Eaglestone University of Sheffield
Suzanne Embury University of Manchester
Alvaro Fernandes University of Manchester
Jane Grimson Trinity College, Dublin
Alex Gray Cardiff University
Jiwen Guan Queen’s University Belfast
Mike Jackson University of Central England
Anne James Coventry University
Keith Jeffery CLRC Rutherford Appleton
Jessie Kennedy Napier University
Brian Lings University of Exeter
Weiru Liu Queen’s University Belfast
Michael Madden National University of Ireland, Galway
Nigel Martin Birkbeck College, University of London
Sally McClean University of Ulster
Lachlan MacKinnon University of Abertay Dundee
Peter Milligan Queen’s University Belfast
Ken Moody University of Cambridge
Fionn Murtagh Royal Holloway, University of London
David Nelson University of Sunderland
Werner Nutt Free University of Bozen-Bolzano
Norman Paton University of Manchester
Alexandra Poulovassilis Birkbeck College, University of London
Paul Sage Queen’s University Belfast
Jianhua Shao Cardiff University
Hui Wang University of Ulster
Howard Williams Heriot-Watt University

Preface IX

Web pages. However, the scope of the project has been extended over time. New
issues such as employing learning algorithms for the definition of extraction pro-
grams, automatically extracting data from Web pages featuring a table-centric
visual appearance, and extracting from alternative document formats such as
PDF are being investigated currently.

Witold Litwin is the Director of Centre d’Etudes et de Recherches en Infor-
matique Appliqué (CERIA) at University of Paris 9 and he has been Professor
of Computer Science at the University of Paris 9 (Dauphine) since 1990. He
was made an ACM Fellow in 2002 for pioneering research in dynamic storage
structures, scalable distributed file structures and multidatabases. His research
areas are in multidatabase systems and data structures, and in scalable distrib-
uted data structures. The techniques he proposed, including the linear hash data
structure invented in the 1980s, are among the most renowned contributions to
these domains. They are present in major database systems and in other prod-
ucts, including Netscape and Microsoft popular offerings.

Professor Litwin has worked in several universities and in industry. In the
USA, he taught at UC Berkeley in 1992-94, at Santa Clara University in 1991 and
Stanford University in 1990-91. He was a visiting scientist at, for example, IBM
Almaden Research Center, in 1997 and 1998, and part time at Hewlett Packard
Palo Alto Laboratories, between 1990 and 1994, as well as at the University of
Maryland in 1989. Between 1980 and 1989 he was Research Director at Insti-
tut National de Recherche en Informatique et Automatique (INRIA, France),
and Expert for ISO Committee on Open Systems. He has written over 150 re-
search papers, edited or contributed to 11 books, and served on the Program
Committees of over 50 international database conferences.

His talk was on the SD-SQL Server which incrementally repartitions grow-
ing tables on more and more linked SQL Server nodes. With his colleagues
Soror Soror and Thomas Schwarz, he prepared a paper for this volume, which
introduces SD-SQL as the first DBMS to avoid the cumbersome manual re-
partitioning, characteristic of current DBMS technology. A table expands by
splits of its overflowing segments, dynamically triggered by inserts. The parti-
tioning is invisible to users, hidden by scalable distributed updatable partitioned
views. With the comfort of a single node SQL Server user, the SD-SQL Server
user manages larger tables or processes the queries faster through dynamic par-
allelism. The paper presents the architecture of the system, its implementation
and the performance analysis. The analysis shows that the overhead of their
scalable distributed table management should be typically negligible.

We want to thank all the authors for providing us with these high-quality pa-
pers. We are also grateful to the members of the Programme Committee and the
other referees for their professionalism and dedication in the process of judging
the contributions of papers.

April 2006 David Bell (Programme Chair)
Jun Hong (Programme Co-chair)

BNCOD 2006

XII Organization

Steering Committee

Brian Lings (Chair) University of Exeter
Barry Eaglestone University of Sheffield
Alex Gray Cardiff University
Anne James Coventry University
Keith Jeffery CLRC Rutherford Appleton
Roger Johnson Birbeck College, University of London
Lachlan MacKinnon University of Abertay Dundee
Alexandra Poulovassilis Birkbeck College, University of London

Organizing Committee

Peter Milligan (Chair) Queen’s University Belfast
Abbes Amira (Local Arrangement Chair) Queen’s University Belfast
David Bell Queen’s University Belfast
Pat Corr (Sponsorship Chair) Queen’s University Belfast
Jun Hong Queen’s University Belfast
Weiru Liu (PhD Forum Chair) Queen’s University Belfast
Paul Sage (Workshop Chair) Queen’s University Belfast
Colette Tipping (Conference Secretary) Queen’s University Belfast

Additional Referees

Qingyuan Bai
Khalid Belhajjame
Rob Hidderley

Steven Lynden
Rudy Prabowa

Karen Renaud

Table of Contents

Invited Papers

The Lixto Project: Exploring New Frontiers of Web Data Extraction
Julien Carme, Michal Ceresna, Oliver Frölich, Georg Gottlob,
Tamir Hassan, Marcus Herzog, Wolfgang Holzinger,
Bernhard Krüpl . 1

An Overview of a Scalable Distributed Database System SD-SQL Server
Witold Litwin, Soror Sahri, Thomas Schwarz . 16

Data Modelling and Architectures and Transaction
Management

Using UML’s Sequence Diagrams for Representing Execution Models
Associated to Triggers

Harith T. Al-Jumaily, César de Pablo, Dolores Cuadra,
Paloma Mart́ınez . 36

An Experimental Consideration of the Use of the
TransrelationalTM Model for Data Warehousing

Victor Gonzalez-Castro, Lachlan M. MacKinnon,
David H. Marwick . 47

Reducing Sub-transaction Aborts and Blocking Time Within Atomic
Commit Protocols

Stefan Böttcher, Le Gruenwald, Sebastian Obermeier 59

Data Integration and Interoperability
and Information Retrieval

Query Translation for Distributed Heterogeneous Structured and
Semi-structured Databases

Fahad M. Al-Wasil, Nick J. Fiddian, W. Alex Gray 73

Information Retrieval Evaluation with Partial Relevance Judgment
Shengli Wu, Sally McClean . 86

Sources of Incompleteness in Grid Publishing
Alasdair J.G. Gray, Werner Nutt, M. Howard Williams 94

XIV Table of Contents

Query Processing and Optimization

Privacy Preservation and Protection by Extending Generalized Partial
Indices

Guoqiang Zhan, Zude Li, Xiaojun Ye, Jianmin Wang 102

On the Optimal Ordering of Maps, Selections, and Joins Under
Factorization

Thomas Neumann, Sven Helmer, Guido Moerkotte 115

An I/O Optimal and Scalable Skyline Query Algorithm
Yunjun Gao, Gencai Chen, Ling Chen,
Chun Chen . 127

Data Mining

A Novel Clustering Method Based on Spatial Operations
Hui Wang . 140

A FP-Tree-Based Method for Inverse Frequent Set Mining
Yuhong Guo, Yuhai Tong, Shiwei Tang,
Dongqing Yang . 152

SC-Tree: An Efficient Structure for High-Dimensional Data Indexing
Ben Wang, John Q. Gan . 164

A Heterogeneous Computing System for Data Mining Workflows
Ping Luo, Kevin Lü, Qing He, Zhongzhi Shi . 177

An Efficient System for Detecting Outliers from Financial Time Series
Carson Kai-Sang Leung, Ruppa K. Thulasiram,
Dmitri A. Bondarenko . 190

Data Warehousing and Decision-Support Systems

Efficient Update of Data Warehouse Views with Generalised Referential
Integrity Differential Files

Carson Kai-Sang Leung, Wookey Lee . 199

SAGA: A Combination of Genetic and Simulated Annealing Algorithms
for Physical Data Warehouse Design

Ladjel Bellatreche, Kamel Boukhalfa,
Hassan Ismail Abdalla . 212

Table of Contents XV

Data Streaming

Scheduling Strategies and Their Evaluation in a Data Stream
Management System

Sharma Chakravarthy, Vamshi Pajjuri . 220

The Anatomy of a Stream Processing System
Altaf Gilani, Satyajeet Sonune, Balakumar Kendai,
Sharma Chakravarthy . 232

Poster Papers

Analyzing the Genetic Operations of an Evolutionary Query Optimizer
Victor Muntés-Mulero, Josep Aguilar-Saborit, Calisto Zuzarte,
Volker Markl, Josep-L. Larriba-Pey . 240

An Evidential Approach to Integrating Semantically Heterogeneous
Distributed Databases

Xin Hong, Sally McClean, Bryan Scotney, Philip Morrow 245

Interoperability and Integration of Independent Heterogeneous
Distributed Databases over the Internet

Bryan Scotney, Sally McClean, Shuai Zhang . 250

Trust Obstacle Mitigation for Database Systems
Victor Page, Robin Laney, Maurice Dixon, Charles Haley 254

Towards a More Reasonable Generalization Cost Metric for
K-Anonymization

Zude Li, Guoqiang Zhan, Xiaojun Ye . 258

Verification Theories for XML Schema
Suad Alagić, Mark Royer, David Briggs . 262

DTD-Driven Structure Preserving XML Compression
Stefan Böttcher, Rita Steinmetz . 266

A Scalable Solution to XML View Materialization on the Web
Dae Hyun Hwang, Hyunchul Kang,
Byeong-Soo Jeong . 270

A Rule-Based Data Warehouse Model
Cécile Favre, Fadila Bentayeb, Omar Boussaid . 274

XVI Table of Contents

Enriching Data Warehouse Dimension Hierarchies by Using Semantic
Relations

Jose-Norberto Mazón, Juan Trujillo . 278

A Composite Approach for Ontology Mapping
Ying Wang, Jianbin Gong, Zhe Wang, Chunguang Zhou 282

Towards the Completion of Expressing and Checking Inheritance
Constraints in UML

Djamel Berrabah . 286

A New Trajectory Indexing Scheme for Moving Objects on Road
Networks

Jae-Woo Chang, Jung-Ho Um, Wang-Chien Lee 291

Author Index . 295

The Lixto Project: Exploring New Frontiers
of Web Data Extraction�

Julien Carme1, Michal Ceresna1, Oliver Frölich1, Georg Gottlob2,
Tamir Hassan1, Marcus Herzog1, Wolfgang Holzinger1, and Bernhard Krüpl1

1 Vienna University of Technology, Database and Artificial Intelligence Group,
Favoritenstraße 9-11, A-1040 Wien, Austria

2 Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford, OX1 3QD, United Kingdom

Abstract. The Lixto project is an ongoing research effort in the area
of Web data extraction. Whereas the project originally started out with
the idea to develop a logic-based extraction language and a tool to vi-
sually define extraction programs from sample Web pages, the scope
of the project has been extended over time. Today, new issues such as
employing learning algorithms for the definition of extraction programs,
automatically extracting data from Web pages featuring a table-centric
visual appearance, and extracting from alternative document formats
such as PDF are being investigated.

1 Introduction

Web data extraction is an active research field, dealing with the subject of ex-
tracting structured data from semi-structured Web sites. In order to extract
structured data from a Web page, we need to generate an appropriate extrac-
tion program, called a wrapper. We can distinguish two main methodological
approaches for constructing such extraction programs: the supervised and the
unsupervised approach. In the supervised approach, an operator needs to de-
fine the wrapper program either by coding the program manually or by using a
visual development environment to generate the program code. In the unsuper-
vised approach, the system generates wrappers automatically from a given set
of heuristics and domain knowledge.

Whilst the unsupervised approach is very scalable in terms of the number of
input Web pages that can be processed, this comes at the cost of precision. Due
to the quality control inherent in the supervised approach, this approach is best
suited where highly accurate data with an almost zero failure rate is required.

The Lixto Visual Wrapper introduced in [3] employs a supervised approach
to generate wrapper programs from a given sample Web page. The operator
highlights relevant data items on the Web page and the system generates logic-
based extraction rules to extract these data items from the sample Web page
� This work is funded in part by the Austrian Federal Ministry for Transport, Inno-

vation and Technology under the FIT-IT Semantic Systems program.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 J. Carme et al.

and other web pages with a similar structure. These rules utilize the document
structure and specific attributes of the user-selected data items to locate other
relevant data instances to be retrieved. The logical foundation on Web data
extraction, and on the complexity and expressive power on data extraction using
the Lixto approach were studied in [10, 11, 9].

In the first part of this paper, we will report on a recent addition within
this Web data extraction framework to employ a learning strategy to select an
optimal set of attributes for identifying the data items on a Web page. In the next
part, we will discuss our approach to unsupervised data extraction from Web
pages. Another topic that we are currently investigating is the extraction from
non-HTML formats such as PDF. We will use a use case, i.e., extracting data in
the domain of digital cameras, to illustrate the techniques that we have developed
in these various fields of Web data extraction. Furthermore, we will report on
industrial applications of Web data extraction and highlight the benefits that
these applications can generate in a real-world setting.

2 Supervised Wrapper Generation

We will use the digital camera domain to illustrate typical use cases for Web
data extraction. Let us imagine the application of monitoring camera prices.
Assume that we have several competitors and we want to continuously monitor
their websites for price development of the listed goods. We store the prices
collected from their websites into a local database. We can then use business
intelligence tools to analyse the aggregated prices, and this will allow us to
react to market changes with more effective pricing strategies and advertisement
campaigns. Figure 1 shows a sample of Web pages from the Dell online shop that
serves as an example for similar online shops from which price information could
be extracted.

This use case favors the usage of a supervised approach due to the following
requirements:

– if the wrapping algorithm does not work on the given website, we cannot go
to another site and collect the prices there;

– accuracy (precision/recall) must be high, because business decisions rely on
the gathered data, and the solution therefore must guarantee the quality of
the results obtained with the wrapping service;

– deep Web navigation is required before the actual data can be wrapped, e.g.,
it is required to fill Web forms or handle JavaScript (AJAX) execution.

In the following example, we need to collect prices of digital cameras from the
Web site www.dell.com. To obtain prices for some of the cameras we have to
navigate to the detail pages of the shopping cart. Informally, the problem we are
trying to solve is: given a Web site (or a set of Web pages) as input and a user
knowing what should be extracted from the Web site, we need to construct a
wrapper to extract exactly the required information items.

The Lixto Project: Exploring New Frontiers of Web Data Extraction 3

Fig. 1. Example of an information extraction scenario where a combination of wrapping
and focused crawling is required

2.1 Wrapper Structure

The navigation sequence, together with the wrapper, is captured in a navigation
language that we have described in one of our previous publications [4]. The
navigation sequence is created by an algorithm that records interaction of the
user with the Web browser and stores all mouse and key events that occur. An
example of the navigation sequence with an embedded wrapper for the Dell shop
scenario is shown in Algorithm 1.

The wrapping itself is embedded in the extract function. This function op-
erates on DOM trees – the standard tree model of Web pages in modern Web
browsers. It receives as input a list of DOM nodes and a definition of the ex-
traction (called pattern), and outputs another list of DOM nodes. For exam-
ple, in Algorithm 1, one of the extract functions receives a camera node and
pattern price1 as input and returns a price node as output.

2.2 Learning Patterns

Patterns describe one specific extraction task, for example, the extraction of
the pattern camera or pattern price1 from the wrapper in Algorithm 1. To
define each pattern, we use a boolean combination of basic conditions, denoted
as C(p, n).

The basic condition C(p, n) is a function that tests the correct position of
the target DOM node n with respect to the context DOM node p, and local
properties of the DOM node n. Examples of local properties of n are the presence
of a given attribute with some value, or the existence of another sibling node s.
Formally, C(p, n) is a triple (path1, path2, test) such that

C(p, n) ⇔ path1(p, n) ∧ ∃s path2(n, s) ∧ test(s)

4 J. Carme et al.

Algorithm 1. Navigation sequence and wrapper for the Dell online shop
load main page
load(’http://www1.us.dell.com/content/...’)
wrap all camera entries
cameras = extract(#doc, pattern camera)
for c in cameras do

c.name = extract(c, pattern name)
c.image = extract(c, pattern image)
c.price = extract(c, pattern price1)
if c.price == None then

load next page
cartImg = extract(c, pattern cartImg)
sendClick(cartImg)
wrap price from cart
c.price = extract(#doc, pattern price2)
return to main page
goBack()
goBack()

end if
end for

The expression path1 and path2 are called XPath [19, 12] expressions. As we have
shown earlier [7], there are boundaries of query-based learnability for XPath ex-
pressions. Therefore, here we use XPath expressions of simplified for, which con-
tain only the child (/) and ancestor (//) steps, index test ([i]) and no wildcards
(*) in tag names.

For example, for the wrapper in Algorithm 1, pattern camera is defined as
(//table/tr, ., true), pattern price1 as (./td/b, ., @bgcolor! = ‘red‘) and
pattern price2 is defined as (//table/tr/td[3], ., @bgcolor! = ‘red‘)∧(., ./parent ::
∗/parent :: ∗/tr/td[3], text() == ‘Unit Price‘).

When building our wrapper, no annotated data (Web page) exists in advance.
Therefore, we interact with the user to query the required annotations, but
with a goal to minimize the number of requested inputs. The patterns are then
induced from the positive and negative examples received from the user during
the interaction outline in Figure 2.

In each iteration cycle of the interaction, an exhaustive set of basic conditions
is generated from the set of examples that have so far been received. Then,
an optimal combination of some of these conditions is learned using a DNF-
learning algorithm. Unfortunately, the number of variables and therefore basic
conditions in the target formula is not bounded. This implies that the Vapnik-
Chervonenkis dimension of the hypothesis space of all boolean combinations
of the basic conditions is not bounded, and the problem is therefore not PAC
learnable [5].

Also, to the best of our knowledge, PAC- and query-based learnability of the
DNF itself is not known. Therefore, for our implementation to remain tractable,
we limit ourselves to only learning the k-DNF. The learning algorithm works

The Lixto Project: Exploring New Frontiers of Web Data Extraction 5

Fig. 2. Interaction of a user with the learning algorithm

in the following way: first all conjunctions of size smaller than k are generated,
and then the minimum disjunction of these conjunctions, still consistent with
the examples, is searched. Note that although finding the minimal disjunction is
NP-complete, efficient heuristics are known.

2.3 Results

The main advantage of the learning algorithm is that it allows non-experienced
users to build wrappers in an easy to understand way—point and select (or
deselect) the wanted (or unwanted) instances with the mouse.

Our experiments show that the interactivity of the learning algorithm reduces
the number of required examples to define a pattern. Usually, only 3–5 examples
are required to build a pattern. This is due to the fact that redundant examples
are not part of the annotation, e.g. receiving an image as a redundant positive
example, if our hypothesis already extracts images, or receiving a hyperlink as
an unrelated negative example if the pattern should extract only images.

Another advantage of the approach using boolean combination of basic condi-
tions is that it generates wrappers that are understandable by human users. This
allows the user to check or manually alter the learned pattern. The easiness of
understanding is in contrast with other approaches used in information extrac-
tion, such as Hidden Markov Models or Conditional Random Fields, which learn
a vector of real-valued parameters that is not intuitive for humans to understand.

3 Unsupervised Wrapper Generation

In contrast to the supervised approach, the unsupervised approach is feasible if
the goal is to extract from a huge number of Web resources without the need
to be able to successfully process every single Web resource that potentially
holds relevant data items. For example, in order to harvest domain knowledge
about cameras, it is sufficient to process a fraction of all potential descriptions

6 J. Carme et al.

of digital camera models on the Web in order to generate a knowledge base on
camera models describing all available camera models and their features.

3.1 Resource Discovery and Focused Crawling

In the unsupervised, approach the system needs to navigate and extract data from
Web pages fully automatically. The basic idea here is to mimic the behaviour of
an human expert. A person, given the task of collecting addresses of pages con-
taining useable tabular information about digital cameras, will typically apply the
following strategy: First, the person uses an internet search engine to find websites
about cameras. To do this, the user will pose queries to the search engine that con-
tain terms likely to appear on such a website. The user must have knowledge about
the digital camera domain, i.e., the specific language and technical terms used.
From the search engine’s results, the user then sorts out the relevant items and re-
peats the process, this time using a slightly different query. After some iterations,
some websites will stand out as exceptionally valuable sources of information—
appearing in the search engine results in each of the queries—thus indicating that
they are not only relevant to the exact phrase that was submitted during a single
query but are indeed relevant to the whole domain.

At this point, the user will deviate from the initial strategy of using a search
engine and begin to investigate these interesting websites directly. The user
knows that information on the Web comes in a clustered form: a website that
talks about some cameras is likely to talk about all cameras, or will at least
contain links to such sites. The user will start browsing websites, having basic
prior knowledge of how navigation on a website works (using fold-out menus,
hyperlinks, forms, etc). The user will then need to learn the particular idiosyn-
cracies that are used by each website to organize information. The user already
knows some of the relevant pages on the site from the search engine results; now
he has to find the path through the website’s navigational structure that leads
to these pages. Once this path is found, slight variations of it (i.e., go one step
back and try alternatives) will uncover a wealth of relevant pages.

Following this two-step strategy that a human expert would employ, we con-
structed a software implementation that works in two stages: In stage 1 we
select a small sample S from a collection C of phrases pertinent to our domain
at random. Very common words appearing in C are given a smaller probability
of being selected. S is converted to a (conjunctive) query and submitted to a
search engine; the top rated results are grouped by website and stored for further
processing. This query process is repeated until no significant new information
shows up, typically after several dozen iterations.

After this, we use the table extraction algorithm explained later in this sec-
tion to iterate through all the pages found and determine which pages contain
extractable tables, and are therefore relevant for further processing. Eventually,
we obtain a list of relevant websites pi, each associated with a set of relevant
pages that we call templates Ti.

In stage 2 we apply a Web crawler to all relevant websites, starting with
the website that contains the most templates and therefore looks the most

The Lixto Project: Exploring New Frontiers of Web Data Extraction 7

promising. This crawler is focused on finding pages that match the templates
Ti closely. For the matching algorithm we use a measure of structural similarity
of pages as follows: A HTML page is reduced to its skeleton code by first re-
moving all text nodes, tag attributes and closing tags. The remaining sequence
of tags is then converted to a string by replacing each tag by a unique char-
acter. Once we have determined the skeleton codes s1, s2 of two pages we can
measure their structural similarity d(s1, s2) with an appropriate string distance
function d; at the moment we use the Levenshtein distance [15]. The thresh-
old distance dT , above which we reject a page as being not sufficiently simi-
lar to our template pages, is determined by computing the pairwise distances
dij among the Ti. We observed a normal distribution of these dij and use the
99% quantile of the observed distribution as the threshold dT . Pages that fall
below the threshold are called extraction candidate pages, or candidate pages
for short.

Learning how to navigate a site in the same way as a human user turned out to
be the most difficult part of the problem: to rely on structure and image pattern
recognition—both of which are computationally expensive tasks—would not be
feasible in a crawler that is expected to process thousands of pages in a short
time. Instead, we turned to analysing the graph G spanned by the hyperlinks
among the pages of a website. Our assumption is that the navigational pages
have a special, central position in G that we can identify. After all, functional
navigation should be available to the user at any time and can be used to reach
even the remotest places on the website—the “trunk” of the website, so to speak.
Therefore, a random surfer on the website would invariably visit those central
pages more often—and we can use the PageRank algorithm [17] to identify these
navigational pages.

The crawler keeps following outgoing links on pages with the highest page
ranks until it hits upon one of the Ti or a page sufficiently similar to it. Once this
happens, a new heuristic comes into play: hubs, pages that contain links to a large
number of candidates, can be recognized. A page gets a hub score proportional to
the number of extraction candidate pages it links to. The heuristic that decides
which page to expand next is based on a weighted sum of both the page rank
and the hub score of the page. This way, the crawler turns its attention from
navigating the website to exploiting the nest of candidate pages it has stumbled
upon.

3.2 Results

Figure 3 gives an indication of the crawler’s performance when set to explore
a typical digital camera review website. It shows the harvest rate; the ratio of
candidate pages to visited pages, against the number of iterations. The crawler
first begins by visiting pages leading out from the main navigation, then hits
upon the first candidate at around iteration 50. It quickly focuses on the area of
this result and stabilizes, turning out new candidate pages every four iterations.
Due to irrelevant links present on the hub pages, the performance here never
gets closer to 1.

8 J. Carme et al.

200

0,1

0,05

300 4001000

0,25

0,15

0

0,2

Fig. 3. Harvest rate over iteration

3.3 Automatic Table Extraction from Web Documents

There are situations where it is desirable to make the extraction process com-
pletely unsupervised. For example, many technical product descriptions on the
Web are in the form of tables. A system that could locate, segment and anal-
yse these tables automatically would therefore be of great value: it could assist
the designer in the wrapper construction process by providing easier naviga-
tion within the document under consideration, or it could be used on its own
to build a fully unsupervised extraction system to automatically extract data
tables from a large amount of Web pages. We are currently implementing such
a table location and analysis component.

What makes tables different from free text is that they are inherently concise.
By extracting information from tables, we can avoid dealing with most of the
complexity of natural language, since tables usually contain information in a
condensed style. Thus, analysing the content with extraction ontologies [8] is
more promising than in the case of free text.

Several articles deal with the problem of classifying HTML tables as genuine
or non-genuine. This comes from the fact that the HTML <table> element
is often used just for the purpose of implementing a specific page layout. It is
therefore crucial for methods that analyse the source code of a Web page to
identify only those genuine table elements that are not for layout purposes. By
operating directly on the visual rendition, such a classification becomes obsolete.

Traditional wrappers operate on HTML input either in the form of a sequential
character string or a pre-parsed document tree. With the Lixto Visual Wrapper,
the wrapper is specified visually by interactively clicking on the rendition of
a page to annotate relevant content. The Lixto software then determines the
node in the pre-parsed document tree that best matches the selected region and
generates appropriate extraction statements. For automatic table extraction, we
decided not to use the HTML source code at all: if it is possible to visually define

The Lixto Project: Exploring New Frontiers of Web Data Extraction 9

the relevant data area, all the data required to locate the extraction instance
is clearly contained in the visual rendition. Going back to the document source
code, whether pre-parsed or not, is therefore an unnecessary step. If the wrapper
can be grounded on the same visual properties of a document that enable the user
to mark the relevant parts of the page, it should also be more robust regarding
future changes of the page.

3.4 Table Extraction Algorithm

We are currently implementing an automatic table location and analysis algo-
rithm. This algorithm operates on the rendition of a Web page provided by a Web
browser and thus avoids all the peculiarities and complications involved with the
interpretation of HTML and associated CSS code. The goal of the algorithm is
the identification of data-centric tables and the subsequent transformation of
the data contained in the table into a structural form preserving the relation-
ships between table cells. According to the literature [14], the steps involved are:
table location, segmentation, functional analysis and structural analysis. So far,
we have concentrated our work on a limited number of physical table models;
essentially simple, unnested tables with the possibility for intermediate headings
appearing as additional lines in the table.

Unlike most of the other implementations in the literature, our table algorithm
works in a bottom-up fashion by starting from pixel positions of single words that
have been determined with the help of the Web browser. These word bounding
boxes are grouped into larger clusters of possible cells based on their adjacency,
which is illustrated as step 1 in Figure 4. Since the pixel coordinates are derived
from the Web browser layout engine, we can assume that there is no noise in
the data and that there is a true adjacency of neighbouring cells with a pixel
distance of zero.

As in the table definition given in [18], we do not consider line-art or other
graphical properties of tables; we identify and segment a table just from the
positions of its inherent word bounding boxes. Rather than looking for tables as a
whole, we start by trying to identify possible table columns. A column candidate
in our context is a collection of cells that, within a small tolerance, share a
common coordinate on the horizontal axis. This can be either the left border,
centre, or right border pixel coordinate of the cell to account for left aligned,
centered, or right aligned columns. Figure 4 shows the column identification as
step 2.

On the vertical axis, we allow up to one non-column cell between every two col-
umn candidate cells to account for the possible intermediate headings mentioned
above; if this limit is exceeded, the column candidate is split into two column
candidates. Then we investigate whether all the separating cells (in other words,
the intermediate heading candidates) share a common coordinate. If they do, we
have found a column candidate. Otherwise, we split our column candidates into
column candidates that will be treated separately.

In the next stage, we try to find the best column candidate combination
that could possibly form a data table. Here we follow a strategy that we call

10 J. Carme et al.

1

L C R L C R

L C R

L C R

L C RL C R

222

3
3

3

Fig. 4. Operation of the table extraction algorithm on part of a sample page

comb alignment of columns: we look for adjacent columns where we observe
only 1:n or m:1 relationships between adjacent table cells. This means that
we can handle cases where a cell in one column corresponds to several cells
in the second column, usually representing a hierarchical relationship between
these cells. Step 3 in Figure 4 illustrates the comb alignment between two
columns. If we can establish such an alignment, we can derive a proper table
segmentation.

In the final stage, an analysis of the segmented table is performed. Here we
try to recover the relation of cells in the table or, put differently, the reading
order of the table. With the information about intermediate headings and the
direction of the comb alignment, we can already make a judgement about the
functional role of the respective cells. The analysis is finally finished by assigning
subject, predicate or object roles to the table cells based on cell neighbourhoods
and on our knowledge of table models.

Because our unsupervised table extraction algorithm generates a large number
of triples, its results are well suited for a statistical analysis aimed at leveraging
the great redundancy of information on the Web. This is in stark contrast to
other approaches that rely just on a few sources. The aggregation and integration
of all these information fragments is the objective of another research effort in
the Lixto context.

4 Wrapping from PDF Files

In today’s Web, the vast amount of HTML data is complemented by a signif-
icant number of documents published in Adobe’s Portable Document Format
(PDF). In general, these documents are primarily intended for printing, and
many business-critical documents fall into this category. Examples of such docu-
ments include financial reports, newsletters and price lists, such as our example
in figure 5 (left) from the digital camera domain. Clearly, the ability to semi-
automatically extract information from these documents proves to be extremely
useful for a number of business applications.

The success of PDF can be attributed to its roots as a page-description lan-
guage. Any document can be converted to PDF as easily as sending it to the

The Lixto Project: Exploring New Frontiers of Web Data Extraction 11

printer, with the confidence that the formatting and layout will be preserved
when it is viewed or printed across different computing platforms. This ease of
publication has led to a lot of data on the Web being available only in PDF
format, with no corresponding HTML alternative.

Unfortunately, this approach presents one major drawback: most PDFs have
little or no explicit structural information, making automated machine process-
ing and data extraction a difficult task. Although later versions of the PDF
specification support the use of XML tags to denote logical elements, these are
seldom found in business documents.

Our PDF extraction functionality within Lixto utilizes a variety of techniques
from document understanding literature to attempt to rediscover the logical
structure from the layout of the document. This structure can then be used in
a similar way to the HTML parse tree to locate data instances for wrapping.

In this section we describe our recent advances in PDF wrapping within Lixto,
and present an insight into our current work in this area, and what our future
releases may offer.

4.1 The Wrapping Process

The PDF import filter within Lixto is automatically activated when the input
document is detected as a PDF. Our algorithms detect structures on the page,
such as columns, lists and tables, and represent them in XHTML, much like a
web page. The wrapper designer is then able to interact with this representation
in the same way as with a web page, as shown in the example in figure 5 (right).

The latest version of our PDF filter benefits from a several improvements to
our document understanding algorithms, and can now produce good results even
with relatively complex layouts. The remainder of this section details some of
the techniques that we have used.

Document pre-processing: In general, the first step in understanding a doc-
ument is to segment it into blocks that can be said to be atomic, i.e. to represent

Fig. 5. Example of wrapping from a PDF price list

12 J. Carme et al.

one distinct logical entity in the document’s structure. Many of the segmentation
techniques in document understanding, such as those utilized in [2] and [1], have
been developed by the OCR community, and take a scanned, binarized image of
the page as input. Whilst we could make use of these techniques by rasterizing
each page of the PDF, this process would throw away useful information, intro-
duce noise, waste processing time and essentially take us backwards. Therefore,
we choose to segment the page directly on the object data that is contained
within the PDF.

A PDF file is little more than a collection of characters and graphic objects
placed on a page. Referring again to our example in figure 5, we consider the
title, the address of the store and the other single lines of text all to be distinct
logical entities. Inside the table, each individual cell is a distinct logical entity.
This definition gives us sufficient granularity for locating these data items later.

– Line finding: In a PDF file, text is stored in discrete blocks, usually with
no more than 2–3 characters per block (although this can depend on the
program used to generate the document). The first step is therefore to merge
these text fragments into complete lines. Space characters are not always
included in the original source, and therefore must be added to separate
words if the distance between two neighbouring blocks is too large. Our
algorithm examines the spacing between each character and, therefore, copes
with a variety of different character spacings.

– Clustering: The next stage is to merge these lines into discrete blocks that
are logically distinct. As text in a PDF can use a variety of different fonts,
sizes and leadings, we make use of a variable-threshold clustering algorithm.
This algorithm examines a variety of different possible groupings of para-
graphs, and a consistency heuristic is used to determine the correct grouping
from this set. Further heuristics are used to detect tabular structures and
ensure that each cell is distinct.

Logical structure understanding: After page segmentation, the task is to
identify higher-level logical relationships and detect substructures, such as lists
and tables, within the page. Currently, we have a set of heuristics that detect
multiple layers of headings, and cope with multiple column layouts. Our table
understanding algorithm converts tabular structures to <table> elements in
our XHTML representation, and can detect spanning columns or rows.

We are now investigating the use of an ontological framework to abstract these
rules and heuristics from our code. This will enable the rules in future releases to be
more easily adapted, and for domain-specific rules to be modularly “plugged in”.

4.2 Future Developments

Currently, wrapping from PDF is a two-step process. First, the PDF document
is imported, and the user then interacts with its representation in XHTML. To
improve interaction with the user, we are also developing a method that will
allow the user to select the desired wrapping instances directly on a rendition of
the PDF.

The Lixto Project: Exploring New Frontiers of Web Data Extraction 13

Behind this graphical rendition, the document is represented as an attributed
relational graph. Each block is represented as a vertex, and the vertices are
interconnected with various logical and geometric relationships. Wrapping is
then performed by the application of error-tolerant graph matching algorithms,
such as those described in [16]. This approach is described in more detail in
our forthcoming paper [13]. As well as the obvious benefits in user-friendliness,
this method will also allow more powerful wrappers to be generated, for a wider
variety of applications.

5 Application in Competitive Intelligence

In this chapter, we will give an example of a business case in the domain of
competitive intelligence. This business case describes the process using Lixto for
Web data extraction, transformation, and delivery to the data warehouse of the
SAP Business Information Warehouse (SAP BW).

A company sells consumer electronics, such as digital cameras, computers and
cellular phones, with a product catalogue of more than 1000 items (short: P1000).
Before using the Lixto software, many employees of the company spent many
hours a day searching the Web to collect information about their competitors’
pricing for items from the P1000 catalogue. The price information retrieved
was used for monthly price definitions. Product availability and regional price
differences should also be included in the data analysis.

By using the Lixto suite, Web pages of online shops of several competitors
are automatically searched on a daily basis. For a complete Web site, just one
Lixto wrapper is necessary. For every product on an overview page in the online
shop, the wrapper extracts all information (even from sub-pages with detailed
information). By automatically clicking on the “next overview page” button
at the bottom of the page and applying the same wrapping procedure to the
succeeding overview Web page, all necessary information can be retrieved for
all items sold in the online shop, from all overview pages and all sub-pages.
Complete product information is retrieved, i.e. price, manufacturer, model name,
model description, availability, discount rates, combined offers, etc. The wrapper
generates a hierarchically organized XML data file in a defined standard data
model. Highly nested structures representing the connections and interrelations
between the information items, such as price and combined offers, are possible
and allow for a detailed data analysis later.

Within the Lixto Transformation Server, the XML data from different wrap-
pers is then aggregated, reformatted and normalized. For example, all price
information (e.g. in £ Sterling or Swiss Francs) are normalized to the company
group standard currency (Euros), and differences in taxation are accordingly
considered to allow for a standardized price comparison. Finally, the data is
reformatted within the Lixto Transformation Server into SOAP, so that the re-
trieved information can be integrated into the SAP BW using Web services.

The data is then automatically transferred to the SAP BW in an automatic
ETL process. Within SAP BW, sophisticated pre-defined data analysis and work-

14 J. Carme et al.

flow capabilities exist. Together with the Web data supplied by the Lixto Suite,
it is now possible to automatically define prices on a weekly or even on a daily ba-
sis, taking into account short-term and regional market price fluctuations. This
“intelligent pricing” can increase the company’s revenue margins for their prod-
ucts and altogether increase the revenue per product. In practice, an increase
between 1% and 4% can be achieved.

With Lixto, the whole process of defining wrappers and data flows is per-
formed semi-automatically in a graphical user interface. Within the Lixto Trans-
formation Server, graphical objects symbolize components, such as an integrator
for the aggregation of data, or a deliverer for the transmission of information
to other software systems. By drawing connecting arrows between these objects,
the flow of data and the workflow are graphically defined. In our example, the
time-consuming and mostly manual process of mapping items from the competi-
tors’ Web sites to equivalent items from the P1000 product list is accomplished
in the GUI, allowing for fast and effective data mapping.

6 Conclusion

In this paper we have reported on the latest developments in the Lixto project.
In the field of supervised data extraction from Web documents, we have high-
lighted the benefits of employing learning strategies to guide the user in selecting
relevant information items to define patterns in wrappers. For unsupervised data
extraction, we have revealed strategies for resource discovery and focused crawl-
ing, as well as automatic table extraction from Web documents. We have also
discussed the related issue of extracting from non-HTML document formats such
as PDF. Finally, we have given a brief description of a real-world business case
that illustrates the applicability of Web data extraction technology in competi-
tive intelligence solutions.

References

[1] Aiello, M., Monz, C., Todoran, L. and Worring, M: Document understanding for
a broad class of documents. Int. J. of Document Anal. and Recog. 5(1) (2002)
1–16

[2] Altamura, O., Esposito, F. and Malerba, D.: Transforming Paper Documents into
XML Format with WISDOM++. Intl. J. of Doc. Anal. and Recog. 4(1) (2001)
2–17

[3] Baumgartner, R., Flesca, S. and Gottlob, G.: Visual Web Information Extraction
with Lixto. Proceedings of the 27th International Conference on Very Large Data
Bases (VLDB 2001), Rome, Italy, (2001) 119–128

[4] Baumgartner, R., Ceresna, M. and Ledermüller G.: Automating Web Navigation
in Web Data Extraction. Proceedings of International Conference on Intelligent
Agents, Web Technology and Internet Commerce, Vienna, Austria (2005) (to
appear)

[5] Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth M. K.: Learnability and
the Vapnik-Chervonenkis dimension. J. ACM 36(4) (1989) 929–965

The Lixto Project: Exploring New Frontiers of Web Data Extraction 15

[6] Chakrabarti, S., van den Berg, M., Dom, B.: Focused Crawling: A New Ap-
proach to Topic-Specific Web Resource Discovery. Computer Networks. 31(11–
16) (1999) 1623–1640

[7] Ceresna, M. and Gottlob G.: Query Based Learning of XPath Fragments. Pro-
ceedings of Dagstuhl Seminar on Machine Learning for the Semantic Web (05071),
Dagstuhl, Germany (2005)

[8] Embley, D. W.: Toward Semantic Understanding – An Approach Based on Infor-
mation Extraction Ontologies. Proceedings of the Fifteenth Australasian Database
Conference, Dunedin, New Zealand (2004) 3

[9] Gottlob, G., Koch, C.: A Formal Comparison of Visual Web Wrapper Genera-
tors. SOFSEM 2006: Theory and Practice of Computer Science, 32nd Conference
on Current Trends in Theory and Practice of Computer Science, Meŕın, Czech
Republic, (2006) 30–48

[10] Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages
for Web information extraction. J. ACM 51(1) (2004) 74–113

[11] Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto Data
Extraction Project - Back and Forth between Theory and Practice. Proceedings
of the Twenty-third ACM SIGACT-SIGMOD-SIGAR Symposium on Principles
of Database Systems, Paris, France (2004) 1–12

[12] Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst. 30(2) (2005) 444–491

[13] Hassan, T., Baumgartner, R.: Using Graph Matching Techniques to Wrap Data
from PDF Documents. To appear in Proceedings of the 15th International World
Wide Web Conference (Poster Track), Edinburgh, UK (2006)

[14] Hurst, M.: The Interpretation of Tables in Texts. PhD thesis, University of Edin-
burgh (2000)

[15] Levenshtein, V. I.: Binary Codes Capable of Correcting Spurious Insertions and
Deletions of Ones. Russian Problemy Peredachi Informatsii. 1 (1965) 12–25

[16] Llados, J., Marti, E. and Villanueva, J. J.: Symbol Recognition by Error-Tolerant
Subgraph Matching between Region Adjacency Graphs. IEEE Tran. on Pattern
Anal. and Mach. Intel. 23(10) (2001) 1137–1143

[17] Page, L., Brin, S.: The Anatomy of a Large-Scale Hypertextual Web Search En-
gine. Computer Networks. 30(1–7) (1998) 107–117

[18] Silva, A. C., Alipio, J., Torgo, L.: Automatic Selection of Table Areas in Docu-
ments for Information Extraction. 11th Protuguese Conference on Artificial In-
telligence, EPIA (2003) 460–465

[19] XML Path Language (XPath), Version 1.0. http://www.w3.org/TR/xpath

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 16 – 35, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Overview of a Scalable Distributed Database System
SD-SQL Server

Witold Litwin1, Soror Sahri1, and Thomas Schwarz2

1 CERIA, Paris-Dauphine University
75016 Paris, France

witold.litwin@dauphine.fr, Soror.Sahri@Dauphine.fr
2 Santa Clara University,

California, USA
tjschwarz@scu.edu

Abstract. We present a scalable distributed database system called SD-SQL
Server. Its original feature is dynamic and transparent repartitioning of growing
tables, avoiding the cumbersome manual repartitioning that characterize current
technology. SD-SQL Server re-partitions a table when an insert overflows
existing segments. With the comfort of a single node SQL Server user, the SD-
SQL Server user has larger tables or gets a faster response time through the
dynamic parallelism. We present the architecture of our system, its
implementation and the performance analysis. We show that the overhead of
our scalable table management should be typically negligible.

1 Introduction

Databases (DBs) are now often huge and grow fast. Large tables are typically hash or
range partitioned into segments stored at different storage sites. Current Data Base
Management Systems (DBSs) such as SQL Server, Oracle or DB2, provide only static
partitioning [1,5,11]. Growing tables have to overflow their storage space after some
time. The database administrator (DBA) has then to manually redistribute the
database. This operation is cumbersome, users need a more automatic solution, [1].

This situation is similar to that for file users forty years ago in the centralized
environment. Efficient management of distributed data presents specific needs.
Scalable Distributed Data Structures (SDDSs) address these needs for files, [6,7]. An
SDDS scales transparently for an application through distributed splits of its buckets,
whether hash, range or k-d based. In [7], we derived the concept of a Scalable
Distributed DBS (SD-DBS) for databases. The SD-DBS architecture supports
scalable (distributed relational) tables. As an SDDS, a scalable table accommodates
its growth through the splits of its overflowing segments, located at SD-DBS storage
nodes. Also like in an SDDS, we can use hashing, range partitioning, or k-d-trees. The
storage nodes can be P2P or grid DBMS nodes. The users or the application,
manipulate the scalable tables from a client node that is not a storage node, or from a
peer node that is both, again as in an SDDS. The client accesses a scalable table only
through its specific view, called the (client) image. It is a particular updateable
distributed partitioned union view stored at a client. The application manipulates

 An Overview of a Scalable Distributed Database System SD-SQL Server 17

scalable tables using images directly, or their scalable views. These views involve
scalable tables through the references to the images.

Every image, one per client, hides the partitioning of the scalable table and
dynamically adjusts to its evolution. The images of the same scalable table may differ
among the clients and from the actual partitioning. The image adjustment is lazy. It
occurs only when a query to the scalable table finds an outdated image. To prove the
feasibility of an SD-DBS, we have built a prototype called SD-SQL Server. The
system generalizes the basic SQL Server capabilities to the scalable tables. It runs on
a collection of SQL Server linked nodes. For every standard SQL command under
SQL Server, there is an SD-SQL Server command for a similar action on scalable
tables or views. There are also commands specific to SD-SQL Server client image or
node management.

Below we present the architecture and the implementation of our prototype as it
stands in its 2005 version. Related papers [14, 15] discuss the user interface. Scalable
table processing creates an overhead and our design challenge was to minimize it. The
performance analysis proved this overhead negligible for practical purpose. The
present capabilities of SQL Server allow a scalable table to reach 250 segments at
least. This should suffice for scalable tables reaching very many terabytes. SD-SQL
Server is the first system with the discussed capabilities, to the best of our knowledge.
Our results pave the way towards the use of the scalable tables as the basic DBMS
technology.

Below, Section 2 presents the SD-SQL Server architecture. Section 3 recalls the
basics of the user interface. Section 4 discusses our implementation. Section 5 shows
experimental performance analysis. Section 6 discusses the related work. Section 7
concludes the presentation.

2 SD-SQL Server Architecture

Fig. 1 shows the current SD-SQL Server architecture, adapted from the reference
architecture for an SD-DBS in [8]. The system is a collection of SD-SQL Server
nodes. An SD-SQL Server node is a linked SQL Server node that in addition is
declared as an SD-SQL Server node. This declaration is made as an SD-SQL Server
command or is part of a dedicated SQL Server script run on the first node of the
collection. We call the first node the primary node. The primary node registers all
other current SD-SQL nodes. We can add or remove these dynamically, using
specific SD-SQL Server commands. The primary node registers the nodes on itself, in
a specific SD-SQL Server database called the meta-database (MDB). An SD-SQL
Server database is an SQL Server database that contains an instance of SD-SQL
Server specific manager component. A node may carry several SD-SQL Server
databases.

We call an SD-SQL Server database in short a node database (NDB). NDBs at
different nodes may share a (proper) database name. Such nodes form an SD-SQL
Server scalable (distributed) database (SDB). The common name is the SDB name.
One of NDBs in an SDB is primary. It carries the meta-data registering the current
NDBs, their nodes at least. SD-SQL Server provides the commands for scaling up or
down an SDB, by adding or dropping NDBs. For an SDB, a node without its NDB is

18 W. Litwin, S. Sahri, and T. Schwarz

(an SD-SQL Server) spare (node). A spare for an SDB may already carry an NDB of
another SDB. Fig 1 shows an SDB, but does not show spares.

Each manager takes care of the SD-SQL Server specific operations, the
user/application command interface especially. The procedures constituting the
manager of an NDB are themselves kept in the NDB. They apply internally various
SQL Server commands. The SQL Servers at each node entirely handle the inter-node
communication and the distributed execution of SQL queries. In this sense, each SD-
SQL Server runs at the top of its linked SQL Server, without any specific internal
changes of the latter.

An SD-SQL Server NDB is a client, a server, or a peer. The client manages the
SD-SQL Server node user/application interface only. This consists of the SD-SQL
Server specific commands and from the SQL Server commands. As for the SQL
Server, the SD-SQL specific commands address the schema management or let to
issue the queries to scalable tables. Such a scalable query may invoke a scalable table
through its image name, or indirectly through a scalable view of its image, involving
also, perhaps, some static tables, i.e., SQL Server only.

Internally, each client stores the images, the local views and perhaps static tables.
These are tables created using the SQL Server CREATE TABLE command (only). It
also contains some SD-SQL Server meta-tables constituting the catalog C at Fig 1.
The catalog registers the client images, i.e., the images created at the client.

When a scalable query comes in, the client checks whether it actually involves a
scalable table. If so, the query must address the local image of the table. It can do it
directly through the image name, or through a scalable view. The client searches
therefore for the images that the query invokes. For every image, it checks whether it
conforms to the actual partitioning of its table, i.e., unions all the existing segments.
We recall that a client view may be outdated. The client uses C, as well as some
server meta-tables pointed to by C that define the actual partitioning. The manager
dynamically adjusts any outdated image. In particular, it changes internally the
scheme of the underlying SQL Server partitioned and distributed view, representing
the image to the SQL Server. The manager executes the query, when all the images it
uses prove up to date.

A server NDB stores the segments of scalable tables. Every segment at a server
belongs to a different table. At each server, a segment is internally an SQL Server
table with specific properties. First, SD-SQL Server refers to in the specific catalogue
in each server NDB, called S in the figure. The meta-data in S identify the scalable
table each segment belongs to. They indicate also the segment size. Next, they
indicate the servers in the SDB that remain available for the segments created by the
splits at the server NDB. Finally, for a primary segment, i.e., the first segment created
for a scalable table, the meta-data at its server provide the actual partitioning of the
table.

Next, each segment has an AFTER trigger attached, not shown in the figure. It
verifies after each insert whether the segment overflows. If so, the server splits the
segment, by range partitioning it with respect to the table (partition) key. It moves out
enough upper tuples so that the remaining (lower) tuples fit the size of the splitting
segment. For the migrating tuples, the server creates remotely one or more new
segments that are each half-full (notice the difference to a B-tree split creating a
single new segment). Furthermore, every segment in a multi-segment scalable table
carries an SQL Server check constraint. Each constraint defines the partition

 An Overview of a Scalable Distributed Database System SD-SQL Server 19

(primary) key range of the segment. The ranges partition the key space of the table.
These conditions let the SQL Server distributed partitioned view to be updateable, by
the inserts and deletions in particular. This is a necessary and sufficient condition for
a scalable table under SD-SQL Server to be updateable as well.

Finally a peer NDB is both a client and a server NDB. Its node DB carries all the
SD-SQL Server meta-tables. It may carry both the client images and the segments.
The meta-tables at a peer node form logically the catalog termed P at the figure. This
one is operationally, the union of C and S catalogs.

Every SD-SQL Server node is client, server or peer node. The peer accepts every
type of NDB. The client nodes only carry client NDBs & server nodes accept server
NDBs only. Only a server or peer node can be the primary one or may carry a primary
NDB. To illustrate the architecture, Fig 1 shows the NDBs of some SDB, on nodes
D1…Di+1. The NDB at D1 is a client NDB that thus carries only the images and
views, especially the scalable ones. This node could be the primary one, provided it is
a peer. It interfaces the applications. The NDBs on all the other nodes until Di are
server NDBs. They carry only the segments and do not interface (directly) any
applications. The NDB at D2 could be here the primary NDB. Nodes D2…Di could
be peers or (only) servers. Finally, the NDB at Di+1 is a peer, providing all the
capabilities. Its node has to be a peer node.

The NDBs carry a scalable table termed T. The table has a scalable index I. We
suppose that D1 carries the primary image of T, named T at the figure. This image
name is also as the SQL Server view name implementing the image in the NDB. SD-
SQL Server creates the primary image at the node requesting the creation of a
scalable table, while creating the table. Here, the primary segment of table T is
supposed at D2. Initially, the primary image included only this segment. It has
evolved since, following the expansion of the table at new nodes, and now is the
distributed partitioned union-all view of T segments at servers D2…Di. We symbolize
this image with the dotted line running from image T till the segment at Di.
Peer Di+1 carries a secondary image of table T. Such an image interfaces the
application using T on a node other than the table creation one. This image, named
D1_T, for reasons we discuss below, differs from the primary image. It only includes
the primary segment. We symbolize it with the dotted line towards D2 only. Both
images are outdated. Indeed, server Di just split its segment and created a new
segment of T on Di+1. The arrow at Di and that towards Di+1 represent this split. As
the result of the split, server Di updated the meta-data on the actual partitioning of T
at server D2 (the dotted arrow from Di to D2). The split has also created the new
segment of the scalable index I. None of the two images refers as yet to the new
segment. Each will be actualized only once it gets a scalable query to T. At the figure,
they are getting such queries, issued using respectively the SD-SQL Server sd_select
and sd_insert commands. We discuss the SD-SQL Server command interface in the
next sections.

Notice finally that in the figure that the segments of T are all named _D1_T. This
represents the couple (creator node, table name). It is the proper name of the segment
as an SQL Server table in its NDB. Similarly for the secondary image name, except
for the initial ‘_’. The image name is the local SQL Server view name. We explain
these naming rules in Section 4.1.

20 W. Litwin, S. Sahri, and T. Schwarz

3 Command Interface

3.1 Overview

The application manipulates SD-SQL Server objects essentially through new SD-SQL
Server dedicated commands. Some commands address the node management,
including the management of SDBs, NDBs. Other commands manipulate the scalable
tables. These commands perform the usual SQL schema manipulations and queries
that can however now involve scalable tables (through the images) or (scalable) views
of the scalable tables. We call the SD-SQL Server commands scalable. A scalable
command may include additional parameters specific to the scalable environment,
with respect to its static (SQL Server) counterpart. Most of scalable commands apply
also to static tables and views. The application using SD-SQL Server may
alternatively directly invoke a static command. Such calls are transparent to SD-SQL
Server managers.

Spl

User/Application User/Application

Linked
SQL

Servers

D1 NDBs D2 Di Di+1

_D1_T

SD-SQL
server

SD-SQL
server

SD-SQL
client

S S PC D1_T

SD-SQL
Server

Managers

_D1_T _D1_T

T

sd_select

SD-SQL
peer

sd_insert

Fig. 1. SD-SQL Server Architecture

Details of all the SD-SQL Server commands are in [14, 15]. The rule for an SD-SQL
Server command performing an SQL operation is to use the SQL command name (verb)
prefixed with ‘sd_’ and with all the blanks replaced with ‘_’. Thus, e.g., SQL SELECT
became SD-SQL sd_select, while SQL CREATE TABLE became sd_create_table. The
standard SQL clauses, with perhaps additional parameters follow the verb, specified as
usual for SQL. The whole specification is however within additional quotes ‘ ’. The
rationale is that SD-SQL Server commands are implemented as SQL Server stored
procedures. The clauses pass to SQL Server as the parameters of a stored procedure and
the quotes around the parameter list are mandatory.

The operational capabilities of SD-SQL Server should suffice for many
applications. The SELECT statement in a scalable query supports the SQL Server
allowed selections, restrictions, joins, sub-queries, aggregations, aliases…etc. It also
allows for the INTO clause that can create a scalable table. However, the queries to
the scalable multi-database views are not possible at present. The reasons are the
limitation of the SQL Server meta-tables that SD-SQL Server uses for the parsing.

 An Overview of a Scalable Distributed Database System SD-SQL Server 21

Moreover, the sd_insert command over a scalable table lets for any insert accepted by
SQL Server for a distributed partitioned view. This can be a new tuple insert, as well
as a multi-tuple insert through a SELECT expression, including the INTO clause. The
sd_update and sd_delete commands offer similar capabilities. In contrast, some of
SQL Server specific SQL clauses are not supported at present by the scalable
commands; for instance, the CASE OF clause.

We recall the SD-SQL Server command interface by the motivating example.
modelled upon our benchmark application that is SkyServer DB, [2].

3.2 Motivating Example

A script file creates the first ever (primary) SD-SQL Server (scalable) node at a
collection of linked SQL Server nodes. We can create the primary node as a peer or a
server, but not as a client. After that, we can create additional nodes using the
sd_create_node command. Here, the script has created the primary SD-SQL Server
node at SQL Server linked node at our Dell1 machine. We could set up this node as
server or peer, we made the latter choice. The following commands issued at Dell1
create then further nodes, alter Dell3 type to peer, and finally create our SkyServer
SDB at Dell1:

sd_create_node ‘Dell2’ /* Server by default */;

sd_create_node ‘Dell3, ‘client’ ;

sd_create_node ‘Ceria1’,’peer’

sd_alter_ node ‘Dell3’, ‘ADD server’ ;

sd_create_scalable_database ‘SkyServer, ‘Dell1’

Our SDB has now one NDB termed SkyServer. This NDB is the primary one of the
SDB and is a server NDB. To query , SkyServer one needs at least one client or peer
NDB. We therefore append a client NDB at Dell3 client node:

sd_create_node_database ‘SkyServer’, ‘Dell3’, ‘client’

From now on, Dell3 user opens Skyserver SDB through the usual SQL Server USE
Skyserver command (which actually opens Dell3.Skyserver NDB). The Skyserver
users are now furthermore able to create scalable tables. The Dell3 user starts with a
PhotoObj table modelled on the static table with the same name, [2]. The user wishes
the segment capacity of 10000 tuples. S/he chooses this parameter for the efficient
distributed query processing. S/he also wishes the objid key attribute to be the
partition key. In SD-SQL Server, a partition key of a scalable table has to be a single
key attribute. The requirement comes from SQL Server, where it has to be the case of
a table, or tables, behind a distributed partitioned updatable view. The key attribute of
PhotoObj is its objid attribute. The user issues the command:

sd_create_table ‘PhotoObj (objid BIGINT PRIMARY KEY…)’, 10000

We did not provide the complete syntax, using ‘…’ to denote the rest of the scheme
beyond the key attribute. The objid attribute is the partition key implicitly, since it is
here the only key attribute. The user creates furthermore a scalable table Neighbors,
modelled upon the similar one in the static Skyserver. That table has three key

22 W. Litwin, S. Sahri, and T. Schwarz

attributes. The objid is one of them and is the foreign key of PhotoObj. For this
reason, the user wishes it to be the partition key. The segment capacity should now be
500 tuples. Accordingly, the user issues the command:

sd_create_table ‘Neighbors (htmid BIGINT, objid BIGINT, Neighborobjid
 BIGINT) ON PRIMARY KEY…)’, 500, ‘objid’

The user indicated the partition key. The implicit choice would go indeed to htmid, as
the first one in the list of key attributes. The Dell3 user decides furthermore to add
attribute t to PhotoObj and prefer a smaller segment size:

sd_alter_table ‘PhotoObj ADD t INT, 1000

Next the user decides to create a scalable index on run attribute:

sd_create_index ‘run_index ON Photoobj (run)'

Splits of PhotoObj will propagate run_index to any new segment.
The PhotoObj creation command created the primary image at Dell3. The Dell3

user creates now the secondary image of PhotoObj at Ceria1 node for the SkyServer
user there::

sd_create_image ‘Ceria1’, ‘PhotoObj’

The image internal name is SD.Dell3_Photoobj, as we discuss in Section 0 and [15].
The Ceria1 user who wishes a different local name such as PhotoObj uses the SQL
Server CREATE VIEW command. Once the Ceria1 user does not need its image
anymore, s/he may remove it through the command:

sd_drop_image 'SD.Dell3_Photoobj'

Assuming that the image was not dropped however yet, our Dell3 user may open
Skyserver SDB and query PhotoObj:

USE Skyserver /* SQL Server command */

sd_insert ‘INTO PhotoObj SELECT * FROM Ceria5.Skyserver-S.PhotoObj

sd_select ‘* FROM PhotoObj’ ;

sd_select ‘TOP 5000 * INTO PhotoObj1 FROM PhotoObj’, 500

The first query loads into our PhotoObj scalable table tuples from some other
PhotoObj table or view created in some Skyserver DB at node Ceria5. This DB could
be a static, i.e., SQL Server only, DB. It could alternatively be an NDB of “our”
Skyserver DB. The second query creates scalable table PhotoObj1 with segment size
of 500 and copies there 5000 tuples from PhotoObj, having the smallest values of
objid. See [15] for examples of other scalable commands.

4 Command Processing

We now present the basics of SD_SQL Server command processing. We start with
the naming rules and the meta-tables. Next, we discuss the scalable table evolution.

 An Overview of a Scalable Distributed Database System SD-SQL Server 23

We follow up with the image processing. For more on the command processing
see [14].

4.1 Naming Rules

SD-SQL Server has its own system objects for the scalable table management.
These are the node DBs, the meta-tables, the stored procedures, the table and index
segments and the images. All the system objects are implemented as SQL Server
objects. To avoid the name conflicts, especially between the SQL Server names
created by an SD-SQL Server application, there are the following naming rules,
partly illustrated at Fig. 1. Each NDB has a dedicated user account ‘SD’ for SD-
SQL Server itself. The application name of a table, of a database, of a view or of a
stored procedure, created at an SD-SQL Server node as public (dbo) objects, should
not be the name of an SD-SQL Server command. These are SD-SQL server
keywords, reserved for its commands (in addition to the same rule already enforced
by SQL Server for its own SQL commands). The technical rationale is that SD-SQL
Server commands are public stored procedures under the same names. An SQL
Server may call them from any user account.

A scalable table T at a NDB is a public object, i.e., its SQL Server name is dbo.T.
It is thus unique regardless of the user that has created it1. In other words, two
different SQL Server users of a NDB cannot create each a scalable table with the
proper name T. They can still do it for the static tables of course. Besides, two SD-
SQL Server users at different nodes may each create a scalable table with the proper
name T.

A segment of scalable table created with proper name T, at SQL Server node N,
bears for any SQL Server the table name SD._N_T within its SD-SQL Server node (its
NDB more specifically, we recall). We recall that SD-SQL Server locates every
segment of a scalable table at a different node.

A primary image of a scalable table T bears the proper name T. Its global name
within the node is dbo.T. This is also the proper name of the SQL Server distributed
partitioned view implementing the primary view.

Any secondary image of scalable table created by the application with proper name
T, within the table names at client or peer node N, bears the global name at its node
SD.N_T. In Fig 1, e.g., the proper name of secondary image denoted T (2) would
actually be D1_T.

We recall that since SD-SQL Server commands are public stored procedures,
SQL Server automatically prefixes all the proper names of SD-SQL public objects
with dbo. in every NDB, to prevent a name conflict with any other owner within
NDB. The rules avoid name conflicts between the SD-SQL Server private
application objects and SD-SQL system objects, as well as between SD-SQL Server
system objects themselves. See [14] for more examples of the naming rules.

1 In the current version of the prototype.

24 W. Litwin, S. Sahri, and T. Schwarz

4.2 Meta-tables

These tables constitute internally SQL Server tables searched and updated using the
stored procedures with SQL queries detailed in [8]. All the meta-tables are under the
user name SD, i.e., are prefixed within their NDB with ‘SD.’.

The S-catalog exists at each server and contains the following tables.

- SD.RP (SgmNd, CreatNd, Table). This table at node N defines the scalable
distributed partitioning of every table Table originating within its NDB, let it be D,
at some server CreatNd, and having its primary segment located at N. Tuple
(SgmNd, CreatNd, Table) enters N.D.SD.RP each time Table gets a new segment at
some node SgmNd. For example, tuple (Dell5, Dell1, PhotoObj) in Dell2.D.SD.RP
means that scalable table PhotoObj was created in Dell1.D, had its primary
segment at Dell2.D, and later got a new segment _Dell1_PhotoObj in Dell5.D. We
recall that a segment proper name starts with ‘_’, being formed as in Fig. 1.

- SD.Size (CreatNd, Table, Size). This table fixes for each segment in some NDB at
SQL Server node N the maximal size (in tuples) allowed for the segment. For
instance, tuple (Dell1, PhotoObj, 1000) in Dell5.DB1.SD.Size means that the
maximal size of the Dell5 segment of PhotoObj scalable table initially created in
Dell1.DB1 is 1000. We recall that at present all the segment of a scalable table
have the same sizes.

- SD.Primary (PrimNd, CreatNd, Table). A tuple means here that the primary
segment of table T created at client or peer CreatNd is at node PrimNd. The tuple
points consequently to SD.RP with the actual partitioning of T. A tuple enters
N.SD.Primary when a node performs a table creation or split and the new segment
lands at N. For example, tuple (Dell2, Dell1, PhotoObj) in SD.Primary at node
Dell5 means that there is a segment _Dell1_PhotoObj resulting from the split of
PhotoObj table, created at Dell1 and with the primary segment at Dell2.

The C-catalog has two tables:

- Table SD.Image (Name, Type, PrimNd,Size) registers all the local images. Tuple (I,
T, P, S) means that, at the node, there is some image with the (proper) name I,
primary if T = .true, of a table using P as the primary node that the client sees as
having S segments. For example, tuple (PhotoObj, true, Dell2, 2) in Dell1.SD.C-
Image means that there is a primary image dbo.PhotoObj at Dell1 whose table
seems to contain two segments. SD-SQL Server explores this table during the
scalable query processing.

- Table SD.Server (Node) provides the server (peer) node(s) at the client disposal for
the location of the primary segment of a table to create. The table contains
basically only one tuple. It may contain more, e.g., for the fault tolerance or load
balancing.

Finally, the P-catalogue, at a peer, is simply the union of C-catalog and S-catalog.
In addition, each NDB has two tables:

- SD.SDBNode (Node). This table points towards the primary NDB of the SDB. It
could indicate more nodes, replicating the SDB metadata for fault-tolerance or load
balancing.

- SD.MDBNode (Node). This table points towards the primary node. It could indicate
more nodes, replicating the MDB for the fault-tolerance or load balancing.

 An Overview of a Scalable Distributed Database System SD-SQL Server 25

There are also meta-tables for the SD-SQL Server node management and SDB
management. These are the tables:

- SD.Nodes (Node, Type). This table is in the MDB. Each tuple registers an SD-SQL
Server node currently forming the SD-SQL configuration. We recall that every SD-
SQL Server node is an SQL Server linked server declared SD-SQL Server node by
the initial script or the sd_create_node command. The values of Type are ‘peer’,
‘server’ or ‘client’.

- SD.SDB (SDB_Name, Node, NDBType). This table is also in the MDB. Each tuple
registers an SDB. For instance, tuple (DB1, Dell5, Peer) means that there is an
SDB named DB1, with the primary NDB at Dell5, created by the command
sd_create_scalable_database ‘DB1’, ‘Dell5’, ‘peer’.

- SD.NDB (Node, NDBType). This meta-table is at each primary NDB. It registers all
the NDBs currently composing the SDB. The NDBType indicates whether the
NDB is a peer, server or client.

4.3 Scalable Table Evolution

A scalable table T grows by getting new segments, and shrinks by dropping some.
The dynamic splitting of overflowing segments performs the former. The merge of
under-loaded segments may perform the latter. There seems to be little practical
interest for merges, just as implementations of B-tree merges are rare. We did not
consider them for the current prototype. We only present the splitting now. The
operation aims at several goals. We first enumerate them, then we discuss the
processing:

1. The split aims at removing the overflow from the splitting segment by migrating
some of its tuples into one or several new segment(s). The segment should possibly
stay at least half full. The new segments should end up half full. The overall result is
then at least the typical “good” load factor of 69 %.
2. Splitting should not delay the commit of the insert triggering it. The insert could
timeout otherwise. Through the performance measures in Section 0, we expect the
split to be often much longer than a insert.
3. The allocation of nodes to the new segments aims at the random node load
balancing among the clients and /or peers. However, the splitting algorithm also
allocates the same nodes to the successive segments of different scalable tables of the
same client. The policy aims at faster query execution, as the queries tend to address
the tables of the same client.
4. The concurrent execution of the split and of the scalable queries should be
serializable. A concurrent scalable query to the tuples in an overflowing segment,
should either access them before any migrate, or only when the split is over.

We now show how SD-SQL Server achieves these goals. The creation of a new
segment for a scalable table T occurs when an insert overflows the capacity of one of
its segments, declared in local SD.Size for T. At present, all the segments of a scalable
table have the same capacity, denoted b below, and defined in the sd_create_table
command. The overflow may consist of arbitrarily many tuples, brought by a single
sd_insert command with the SELECT expression (unlike in a record-at-the-time
operations, e.g., as in a B-tree). A single sd_insert may further overflow several

26 W. Litwin, S. Sahri, and T. Schwarz

segments. More precisely, we may distinguish the cases of a (single segment) tuple
insert split, of a single segment bulk insert split and of a multi-segment (insert) split.
The bulk inserts correspond to the sd_insert with the SELECT expression.

In every sd_insert case, the AFTER trigger at every segment getting tuples tests for
overflow, [8]. The positive result leads to the split of the segment, according to the
following segment partitioning scheme. We first discuss the basic case of the partition
key attribute being the (single-attribute) primary key. We show next the case of the
multi-attribute key, where the partition key may thus present duplicates. We recall
that the partition key under SQL Server must be a (single) key attribute. In every case,
the scheme adds N ≥ 1 segments to the table, with N as follows.

Let P be the (overflowing) set of all the tuples in one of, or the only, overflowing
segment of T, ordered in ascending order by the partition key. Each server aims at
cutting its P, starting from the high-end, into successive portions P1…PN consisting
each of INT (b/2) tuples. Each portion goes to a different server to become a possibly
half-full new segment of T. The number N is the minimal one leaving at most b tuples
in the splitting segment. To fulfil goal (1) above, we thus always have N = 1 for a
tuple insert, and the usual even partitioning (for the partition key without duplicates).
A single segment bulk insert basically leads to N ≥ 1 half-full new segments. The
splitting one ends up between half-full and full. We have in both cases:

N = (Card(P) – b) / INT (b/2)

The same scheme applies to every splitting segment for a multiple bucket insert. If the
partition key presents the duplicates, the result of the calculus may differ a little in
practice, but arbitrarily in theory. The calculus of each Pi incorporates into it all the
duplicates of the lowest key value, if there is any. The new segment may start more
than half-full accordingly, even overflowing in an unlikely bad case. The presence of
duplicates may in this way decrease N. It may theoretically even happen that all the
partition key values amount to a single duplicate. We test this situation in which case no
migration occurs. The split waits till different key values come in. The whole duplicate
management is potentially subject of future work optimizing the Pi calculus.

The AFTER trigger only tests for overflow, to respond to goal (2). If necessary, it
launches the actual splitting process as an asynchronous job called splitter (for
performance reasons, see above). The splitter gets the segment name as the input
parameter. To create the new segment(s) with their respective portions, the splitter
acts as follows. It starts as a distributed transaction at the repeatable read isolation
level. SQL Server uses then the shared and exclusive tuple locks according to the
basic 2PL protocol. The splitter first searches for PrimNd of the segment to split in
Primary meta-table. If it finds the searched tuple, SQL Server puts it under a shared
lock. The splitter requests then an exclusive lock on the tuple registering the splitting
segment in RP of the splitting table that is in the NDB at PrimNd node. As we show
later, it gets the lock if there are no (more) scalable queries or other commands in
progress involving the segment. Otherwise it would encounter at least a shared lock at
the tuple. SQL Server would then block the split until the end of the concurrent
operation. In unlikely cases, a deadlock may result. The overall interaction suffices to
provide the serializability of every command and of a split, [14]. If the splitter does
not find the tuple in Primary, it terminates. As it will appear, it means that a delete of
the table occurred in the meantime.

 An Overview of a Scalable Distributed Database System SD-SQL Server 27

From now on, there cannot be a query in progress on the splitting segment; neither
can another splitter lock it. It should first lock the tuple in RP. The splitter safely
verifies the segment size. An insert or deletion could change it in the meantime. If the
segment does not overflow anymore, the splitter terminates. Next, it determines N as
above. It finds b in the local SD.Size meta-table. Next, it attempts to find N NDBs
without any segment of T as yet. It searches for such nodes through the query to NDB
meta-table, requesting every NDB in the SDB which is a server or peer and not yet in
RP for T. Let M ≥ 0 be the number of NDBs found. If M = N, then the splitter
allocates each new segment to a node. If M > N, then it randomly selects the nodes for
the new segments. To satisfy goal (3) above, the selection is nevertheless driven, at
the base of the randomness generation, by T creation NDB name. Any two tables
created by the same client node share the same primary NDB, have their 1st secondary
segments at the same (another) server as well etc… One may expect this policy to be
usually beneficial for the query processing speed. At the expense however, perhaps of
the uniformity of the processing and storage load among the server NDBs.

If M < N, it means that the SDB has not enough of NDBs to carry out the split. The
splitter attempts then to extend the SDB with new server or peer NDBs. It selects
(exclusively) possibly enough nodes in the meta-database which are not yet in the
SDB. It uses the meta-tables Nodes and SDB in the MDB and NDB at the primary
SDB node. If it does not succeeds the splitting halts with a message to the
administrator. This one may choose to add nodes using sd_create_node command.
Otherwise, the splitter updates the NDB meta-table, asks SQL Server to create the
new NDBs (by issuing the sd_create_node_database command) and allocates these
to the remaining new segment(s).

Once done with the allocation phase, the splitter creates the new segments. Each
new segment should have the schema of the splitting one, including the proper name,
the key and the indexes, except for the values of the check constraint as we discuss
below. Let S be here the splitting segment, let p be p = INT (b/2), let c be the key, and
let Si denote the new segment at node Ni, destined for portion Pi. The creation of the
new segments loops for i = 1…N as follows.

It starts with the SQL Server query in the form of :

SELECT TOP p (*) WITH TIES INTO Ni.Si FROM S ORDER BY c ASC

The option “with ties” takes care of the duplicates2. Next, the splitter finds the
partition key c of S using the SQL Server system tables and alters Si scheme
accordingly. To find c, it joins SQL Server system tables information_schema.Tables
and information_schema.TABLE_CONSTRAINTS on the TABLE_SCHEMA,
CONSTRAINT_SCHEMA and CONSTRAINT_NAME columns. It also determines the
indexes on S using the SQL Server stored procedure sp_helpindex. It creates then the
same indexes on Si using the SQL Server create index statements. Finally, it creates
the check constraint on Si as we describe soon. Once all this done, it registers the new

2 Actually, it first performs the test whether the split can occur at all, as we discussed, using the

similar query with count(*).

28 W. Litwin, S. Sahri, and T. Schwarz

segment in the SD-SQL Server meta-tables. It inserts the tuples describing Si into (i)
Primary table at the new node, and (ii) RP table at the primary node of T. It also
inserts the one with the Si size into Size at the new node. As the last step, it deletes
from S the copied tuples. It then moves to the processing of next Pi if any remains.
Once the loop finishes, the splitter commits which makes SQL Server to release all
the locks.

The splitter computes each check constraint as follows. We recall that, if defined
for segment S, this constraint C(S) defines the low l and/or the high h bounds on any
partition key value c that segment may contain. SQL Server needs for updates through
a distributed partitioned view, a necessity for SD-SQL Server. Because of our
duplicates management, we have: C(S) = { c : l ≤ c < h }. Let thus hi be the highest
key values in portion Pi> 1, perhaps, undefined for P1. Let also hN + 1 be the highest key
remaining in the splitting segment. Then the low and high bounds for new segment Si

getting Pi is l = hi+1 and h = hi .The splitting segment keeps its l, if it had any, while it
gets as new h the value h’ = hN+1, where h’ < h. The result makes T always range
partitioned.

4.4 Image Processing

4.4.1 Checking and Adjustment
A scalable query invokes an image of some scalable table, let it be T. The image can
be primary or secondary, invoked directly or through a (scalable) view. SD-SQL
Server produces from the scalable query, let it be Q, an SQL Server query Q’ that it
passes for the actual execution. Q’ actually addresses the distributed partitioned view
defining the image that is dbo.T. It should not use an outdated view. Q’ would not
process the missing segments and Q could return an incorrect result.

Before passing Q’ to SQL Server, the client manager first checks the image
correctness with respect to the actual partitioning of T. RP table at T primary server
let to determine the latter. The manager retrieves from Image the presumed size of T,
in the number of segments, let it be SI. It is the Size of the (only) tuple in Image with
Name = ‘T’. The client also retrieves the PrimNd of the tuple. It is the node of the
primary NDB of T, unless the command sd_drop_node_database or sd_drop_node
had for the effect to displace it elsewhere. In the last case, the client retrieves the
PrimNd in the SD.SDB meta-table. We recall that this NDB always has locally the
same name as the client NDB. They both share the SDB name, let it be D. Next, the
manager issues the multi-database SQL Server query that counts the number of
segments of T in PrimNd.D.SD.RP. Assuming that SQL Server finds the NDB, let SA
be this count. If SA = 0, then the table was deleted in the meantime. The client
terminates the query. Otherwise, it checks whether SI = SA. If so, the image is correct.
Otherwise, the client adjusts the Size value to SA. It also requests the node names of T
segments in PrimNd.D.SD.RP. Using these names, it forms the segment names as
already discussed. Finally, the client replaces the existing dbo.T with the one
involving all newly found segments.

The view dbo.T should remain the correct image until the scalable query finishes
exploring T. This implies that no split modifies partitioning of T since the client
requested the segment node names in PrimNd.D.SD.RP, until Q finishes mani-

 An Overview of a Scalable Distributed Database System SD-SQL Server 29

pulating T. Giving our splitting scheme, this means in practice that no split starts in
the meantime the deletion phase on any T segment. To ensure this, the manager
requests from SQL Server to process every Q as a distributed transaction at the
repeatable read isolation level. We recall that the splitter uses the same level. The
counting in PrimNd.D.SD.RP during Q processing generates then a shared lock at
each selected tuple. Any split of T in progress has to request an exclusive lock on
some such tuple, registering the splitting segment. According to its 2PL protocol,
SQL Server would then block any T split until Q terminates. Vice versa, Q in progress
would not finish, or perhaps even start the SA count and the T segment names retrieval
until any split in progress ends. Q will take then the newly added T segments into
account as well. In both cases, the query and split executions remain serializable.

Finally, we use a lazy schema validation option for our linked SQL Servers, [1,
10]. When starting Q’, SQL Server drops then the preventive checking of the schema
of any remote table referred to in a partitioned view. The run-time performance
obviously must improve, especially for a view referring to many tables [9]. The
potential drawback is a run-time error generated by a discrepancy between the
compiled query based on the view, dbo.T in our case, and some alterations of schema
T by SD-SQL Server user since, requiring Q recompilation on the fly.

Example. Consider query Q to SkyServer peer NDB at the Ceria1:

sd_select ‘* from PhotoObj’

Suppose that PhotoObj is here a scalable table created locally, and with the local
primary segment, as typically for a scalable table created at a peer. Hence, Q’ should
address dbo.PhotoObj view and is here:

SELECT * FROM dbo.PhotoObj

Consider that Ceria1 manager processing Q finds Size = 1 in the tuple with of
Name = ‘PhotoObj’ retrieved from its Image table. The client finds also Ceria1 in the
PrimeNd of the tuple. Suppose further that PhotoObj has in fact also two secondary
segments at Dell1 and Dell2. The counting of the tuples with Table = ‘PhotoObj’ and
CreatNd = ’Ceria1’ in Ceria1.SkyServer.SD.RP reports then SA = 3. Once SQL Server
retrieves the count, it would put on hold any attempt to change T partitioning till Q
ends. The image of PhotoObj in dbo.PhotoObj turns out thus not correct. The
manager should update it. It thus retrieves from Ceria1.SkyServer.SD.RP the SgmNd
values in the previously counted tuples. It gets {Dell1, Dell2, Ceria1}. It generates
the actual segment names as ‘_Dell1_PhotoObj’ etc. It recreates dbo.PhotoObj view
and updates Size to 3 in the manipulated tuple in its Image table. It may now safely
pass Q’ to SQL Server.

4.4.2 Binding
A scalable query consists of a query command to an SD-SQL Server client (peer)
followed by a (scalable) query expression. We recall that these commands are
sd_select, sd_insert, sd_update and sd_delete. Every scalable query, unlike a static
one, starts with an image binding phase that determines every image on which a table
or a view name in a query depends. The client verifies every image before it passes to
SQL Server any query to the scalable table behind the image. We now present the

30 W. Litwin, S. Sahri, and T. Schwarz

processing of scalable queries under SD-SQL Server. We only discuss image binding
and refer to more documentation for each command to [14].

The client (manager) parses every FROM clause in the query expression, including
every sub-query, for the table or view names it contains. The table name can be that
of a scalable one, but then is that of its primary image. It may also be that of a
secondary image. Finally, it can be that of a static (base) table. A view name may be
that of a scalable view or of a static view. Every reference has to be resolved. Every
image found has to be verified and perhaps adjusted before SD-SQL Server lets SQL
Server to use it, as already discussed.

The client searches the table and view names in FROM clauses, using the SQL
Server xp_sscanf function, and some related processing. This function reads data from
the string into the argument locations given by each format argument. We use it to
return all the objects in the FROM clause. The list of objects is returned as it appears
in the clause FROM, i.e. with the ‘,’ character. Next, SD-SQL Server parses the list of
the objects and takes every object name alone by separating it from it FROM clause
list. For every name found, let it be X, assumed a proper name, the client manager
proceeds as follows:

It searches for X within Name attribute of its Image table. If it finds the tuple with
X, then it puts X aside into check_image list, unless it is already there.

Otherwise, the manager explores with T the sysobjects and sysdepends tables of
SQL Server. Table sysobjects provides for each object name its type (V = view, T =
base table…) and internal Id, among other data. Table sysdepends provides for each
view, given its Id, its local (direct) dependants. These can be tables or views
themselves. A multi-database base view does not have direct remote dependants in
sysobjects. That is why we at present do not allow scalable multi-database views. The
client searches, recursively if necessary, for any dependants of X that is a view that
has a table as dependant in sysobjects or has no dependant listed there. The former
may be an image with a local segment. The latter may be an image with remote
segments only. It then searches Image again for X. If it finds it, then it attempts to add
it to check_image.

Once all the images have been determined, i.e., there is no FROM clause in the
query remaining for the analysis, the client verifies each of them, as usual. The
verification follows the order on the image names. The rationale is to avoid the (rare)
deadlock, when two outdated images could be concurrently processed in opposite
order by two queries to the same manager. The adjustment generates indeed an
exclusive lock on the tuple in Image. After the end of the image binding phase, the
client continues with the specific processing of each command that we present later.

With respect to the concurrent command processing, the image binding phase
results for SQL Server in a repeatable read level distributed transaction with shared
locks or exclusive locks on the tuples of the bound images in Image tables and with
the shared locks on all the related tuples in various RP tables. The image binding for
one query may thus block another binding the same image that happened to be
outdated. A shared lock on RP tuple may block a concurrent split as already
discussed. We’ll show progressively that all this behaviour contributed to the
serializability of the whole scalable command processing under SD-SQL Server.

 An Overview of a Scalable Distributed Database System SD-SQL Server 31

5 Performance Analysis

To validate the SD-SQL Server architecture, we evaluated its scalability and
efficiency over some Skyserver DB data [2]. Our hardware consisted of 1.8 GHz P4
PCs with either 785 MB or 1 GB of RAM, linked by a 1 Gbs Ethernet. We used the
SQL Profiler to take measurements. We measured split times and query response
times under various conditions. The split time was from about 2.5 s for a 2-split of
1000-tuple PhotoObj segment, up to 150 seconds for a 5-split of a 160 000 tuple
segment. Presence of indexes naturally increased this time, up to almost 200 s for the
5-split of a 160 000 tuple segment with three indexes.

The query measures included the overhead of the image checking alone, of image
adjustment and of image binding for various queries, [14]. Here, we discuss two
queries:

(Q1) sd_select ‘COUNT (*) FROM PhotoObj’

(Q2) sd_select 'top 10000 x.objid from photoobj x, photoobj y where x.obj=y.obj
 and x.objid>y.objid

Query (Q1) represents the rather fast queries, query (Q2) the complex ones, because
of its double join and larger result set. The measures of (Q1) concern the execution
time under various conditions, Fig. 2. The table had two segments of various sizes. We
measured (Q1) at SD-SQL Server peer, where the Image and RP tables are at the
same node, and at a client where they are at different nodes. We executed (Q1) with
image checking (IC) only, and with the image adjustment (IA). We finally compared
these times to those of executing (Q1) as an SQL Server, i.e., without even IC. As the
curves show, IC overhead appeared always negligible. (Q1) always executed then
under 300 msec. In contrast the IA overhead is relatively costly. On a peer node it is
about 0.5s, leading to the response time of 0.8sec. On a client node, it increases to
about 1s, leading to (Q1) response time of 1.5s. The difference is obviously due to the
remote accesses to RP table. Notice that IA time is constant, as one could expect. We
used the LSV option, but the results were about the same without it.

The measures of (Q2) representing basically longer to process typical queries than
(Q1), involved PhotoObj with almost 160 K tuples spreading over two, three or four
segments. The query execution time with IC only (or even without, directly by SQL
Server) is now between 10 – 12 s. The IA overhead is about or little over 1 s. It grows
a little since SQL Server ALTER VIEW operation has more remote segments to
access for the check constraint update (even if it remains in fact the same, which
indicates a clear path for some optimizing of this operation under SQL Server). IA
overhead becomes relatively negligible, about 10 % of the query cost. We recall that
IA should be in any case a rare operation.

Finally, we have measured again (Q1) on our PhotoObj scalable table as it grows
under inserts. It had successively 2, 3, 4 and 5 segments, generated each by a 2-split.
The query counted at every segment. The segment capacity was 30K tuples. We
aimed at the comparison of the response time for an SD-SQL Server user and for the
one of SQL Server. We supposed that the latter (i) does not enters the manual
repartitioning hassle, or, alternatively, (ii) enters it by 2-splitting manually any time
the table gets new 30K tuples, i.e., at the same time when SD-SQL Server would
trigger its split. Case (i) corresponds to the same comfort as that of an SD-SQL Server

32 W. Litwin, S. Sahri, and T. Schwarz

0

500

1000

1500

2000

39500 79000 158000

Segment Capacity (tuples)

E
xe

cu
ti

o
n

 T
im

e
(m

s)

SD-SQL Server Peer With IA SD-SQL Server Peer

SQL Server Peer SD-SQL Server Client With IA

SD-SQL Server Client SQL Server Client

Fig. 2. Query (Q1) execution performance

9862.4
11578.6610898

13036.5 14071.66

11712

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 4

Number of Segments

E
xe

cu
ti

o
n

 T
im

e
(m

s)

IA IC

Fig. 3. Query (Q2) with image checking only (IC) and with image adjustment (IA)

user. The obvious price to pay for an SQL Server user is the scalability, i.e., the worst
deterioration of the response time for a growing table. In both cases (i) and (ii) we
studied the SQL Server query corresponding to (Q1) for a static table. For SD-SQL
Server, we measured (Q1) with and without the LSV option.

The figure displays the result. The curve named “SQL Server Centr.” shows the
case (i), i.e., of the centralized PhotoObj. The curve “SQL Server Distr.” reflects the
manual reorganizing (ii). The curve shows the minimum that SD-SQL Server could
reach, i.e., if it had zero overhead. The two other curves correspond to SD-SQL
Server.

We can see that SD-SQL Server processing time is always quite close to that of (ii)
by SQL Server. Our query-processing overhead appears only about 5%. We can also
see that for the same comfort of use, i.e., with respect to case (i), SD-SQL Server
without LZV speeds up the execution by almost 30 %, e.g., about 100 msec for the
largest table measured. With LZV the time decreases there to 220 msec. It improves
thus by almost 50 %. This factor characterizes most of the other sizes as well. All
these results prove the immediate utility of our system.

 An Overview of a Scalable Distributed Database System SD-SQL Server 33

93

156

220
250

326

106

164

226
256

343

283

203

93

356

436

220203
123

76
160

100

200

300

400

500

1 2 3 4 5

Number of Segments

E
xe

cu
ti

o
n

 T
im

e
(m

s)

SQL Server-Distr SD-SQL Server

SQL Server-Centr. SD-SQL Server LSV

Fig. 4. Query (Q1) execution on SQL Server and SD-SQL Server (Client/Peer)

Notice further that in theory SD-SQL Server execution time could remain constant
and close to that of a query to a single segment of about 30 K tuples. This is 93 ms in
our case. The timing observed practice grows in contrast, already for the SQL Server.
The result seems to indicate that the parallel processing of the aggregate functions by
SQL Server has still room for improvement. This would further increase the
superiority of SD-SQL Server for the same user’s comfort.

6 Related Works

Parallel and distributed database partitioning has been studied for many years, [13]. It
naturally triggered the work on the reorganizing of the partitioning, with notable
results as early as in 1996, [12]. The common goal was global reorganization, unlike
for our system.

The editors of [12] contributed themselves with two on-line reorganization
methods, called respectively new-space and in-place reorganization. The former
method created a new disk structure, and switches the processing to it. The latter
approach balanced the data among existing disk pages as long as there was room for
the data. Among the other contributors to [12], one concerned a command named
‘Move Partition Boundary’ for Tandem Non Stop SQL/MP. The command aimed on
on-line changes to the adjacent database partitions. The new boundary should
decrease the load of any nearly full partition, by assigning some tuples into a less
loaded one. The command was intended as a manual operation. We could not
ascertain whether it was ever implemented.

A more recent proposal of efficient global reorganizing strategy is in [11]. One
proposes there an automatic advisor, balancing the overall database load through the
periodic reorganizing. The advisor is intended as a DB2 offline utility. Another
attempt, in [4], the most recent one to our knowledge, describes yet another
sophisticated reorganizing technique, based on database clustering. Called AutoClust,
the technique mines for closed sets, then groups the records according to the resulting
attribute clusters. AutoClust processing should start when the average query response
time drops below a user defined threshold. We do not know whether AutoClust was
put into practice.

34 W. Litwin, S. Sahri, and T. Schwarz

With respect to the partitioning algorithms used in other major DBMSs, parallel
DB2 uses (static) hash partitioning. Oracle offers both hash and range partitioning,
but over the shared disk multiprocessor architecture only. Only SQL Server offers the
updatable distributed partitioned views. This was the major rationale for our choice,
since scalable tables have to be updatable. How the scalable tables may be created at
other systems remains thus an open research problem.

7 Conclusion

The proposed syntax and semantics of SD-SQL Server commands make the use of
scalable tables about as simple as that of the static ones. It lets the user/application to
easily take advantage of the new capabilities of our system. Through the scalable
distributed partitioning, they should allow for much larger tables or for a faster
response time of complex queries, or for both.

The current design of our interface is geared towards a “proof of concept”
prototype. It is naturally simpler than a full-scale system. Further work should expand
it. Among the challenges at the processing level, notice that there is no user account
management for the scalable tables at present. Concurrent query processing could be
perhaps made faster during splitting. We tried to limit the use of exclusive locks to as
little as necessary for correctness, but there is perhaps still a better way. Our
performance analysis should be expanded, uncovering perhaps further directions for
our current processing optimization. Next, while SD-SQL Server acts at present as an
application of SQL Server, the scalable table management could alternatively enter
the SQL Server core code. Obviously we could not do it, but the owner of this DBS
can. Our design could apply almost as is to other DBSs, once they offer the updatable
distributed partitioned (union-all) views. Next, we did not address the issue of the
reliability of the scalable tables. More generally, there is a security issue for the
scalable tables, as the tuples migrate to places unknown to their owners.

Acknowledgments. We thank J.Gray (Microsoft BARC) for the original SkyServer
database and for advising this work from its start. G. Graefe (Microsoft) provided the
helpful information on SQL Server linked servers’ capabilities. MS Research partly
funded this work, relaying the support of CEE project ICONS. Current support comes
from CEE Project EGov.

References

1. Ben-Gan, I., and Moreau, T. Advanced Transact SQL for SQL Server 2000. Apress
Editors, 2000

2. Gray, J. & al. Data Mining of SDDS SkyServer Database. WDAS 2002, Paris, Carleton
Scientific (publ.)

3. Gray, J. The Cost of Messages. Proceeding of Principles Of Distributed Systems, Toronto,
Canada, 1989

4. Guinepain, S & Gruenwald, L. Research Issues in Automatic Database Clustering. ACM-
SIGMOD, March 2005

5. Lejeune, H. Technical Comparison of Oracle vs. SQL Server 2000: Focus on
Performance, December 2003

 An Overview of a Scalable Distributed Database System SD-SQL Server 35

6. Litwin, W., Neimat, M.-A., Schneider, D. LH*: A Scalable Distributed Data Structure.
ACM-TODS, Dec. 1996

7. Litwin, W., Neimat, M.-A., Schneider, D. Linear Hashing for Distributed Files. ACM-
SIGMOD International Conference on Management of Data, 1993

8. Litwin, W., Rich, T. and Schwarz, Th. Architecture for a scalable Distributed DBSs
application to SQL Server 2000. 2nd Intl. Workshop on Cooperative Internet Computing
(CIC 2002), August 2002, Hong Kong

9. Litwin, W & Sahri, S. Implementing SD-SQL Server: a Scalable Distributed Database
System. Intl. Workshop on Distributed Data and Structures, WDAS 2004, Lausanne,
Carleton Scientific (publ.), to app

10. Microsoft SQL Server 2000: SQL Server Books Online
11. Rao, J., Zhang, C., Lohman, G. and Megiddo, N. Automating Physical Database Design

inParallel Database, ACM SIGMOD '2002 June 4-6, USA
12. Salzberg, B & Lomet, D. Special Issue on Online Reorganization, Bulletin of the IEEE

Computer Society Technical Committee on Data Engineering, 1996
13. Özsu, T & Valduriez, P. Principles of Distributed Database Systems, 2nd edition, Prentice

Hall, 1999.
14. Litwin, W., Sahri, S., Schwarz, Th. SD-SQL Server: a Scalable Distributed Database

System. CERIA Research Report 2005-12-13, December 2005.
15. Litwin, W., Sahri, S., Schwarz, Th. Architecture and Interface of Scalable Distributed

Database System SD-SQL Server. The Intl. Ass. of Science and Technology for
Development Conf. on Databases and Applications, IASTED-DBA 2006, to appear.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 36 – 46, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using UML’s Sequence Diagrams for Representing
Execution Models Associated to Triggers*

Harith T. Al-Jumaily, César de Pablo, Dolores Cuadra, and Paloma Martínez

Computer Science Department, Universidad Carlos III de Madrid
{haljumai, cdepablo, dcuadra, pmf}@inf.uc3m.es

Abstract. Using active rules or triggers to verify integrity constraints is a
serious and complex problem because these mechanisms have behaviour that
could be difficult to predict in a complex database. The situation is even worse
as there are few tools available for developing and verifying them. We believe
that automatic support for trigger development and verification would help
database developers to adopt triggers in the database design process. Therefore,
in this work we suggest a visualization add-in tool that represents and verifies
triggers execution by using UML's sequence diagrams. This tool is added in
RATIONAL ROSE and it simulates the execution sequence of a set of triggers
when a DML operation is produced. This tool uses the SQL standard to express
the triggers semantics and execution.

1 Introduction

The passive behaviour of traditional databases often causes semantic loss in database
systems. Users and applications always have the responsibility to protect these
semantics. For this reason, traditional databases have been improved by adopting
active behaviour. An active behaviour is a complex operation that is activated in an
autonomous way to perform predefined actions. Usually, this behaviour is known as
triggers or ECA rules. An ECA rule consists of three components; event, condition,
and action. The execution model of ECA rules follows a sequence of steps: event
detection, condition test, and action execution. An event in relational databases is a
DML (Data Manipulation Language) statement such as (INSERT, DELETE, and
UPDATE). Once a trigger is activated and its condition is evaluated to true, the
predefined actions are automatically executed.

Incorporating active rules enhances the functionality of database systems and
provides flexible alternatives to implement many database features, such as to enforce
integrity constraints [1]. Because of execution models of triggers, an active database
is more complicated than a passive one. For that reason we believe that automatic
support for triggers development could help to adopt active rules by database
designers and developers. The validation of active rules/triggers execution is the
major problem that makes the application development a difficult task. As rules can
act in a way that leads to conflict and undesirable problems, the developer needs

* This work is part of the project "Software Process Management Platform: modelling, reuse

and measurement". TIN2004/07083.

 Using UML’s Sequence Diagrams for Representing Execution Models 37

additional effort to control this behaviour. The objective of this validation is to
guarantee the successful execution of the triggers; that means to avoid non-
termination state in their execution.

In commercial CASE tools which support triggers development, we have detected
that developing triggers and plugging them into a given model is an insufficient task
because of the behaviour of such triggers is invisible to the developers.

Therefore, in this work we suggest a visualization tool to represent and verify
triggers execution by using UML’s sequence diagrams. This tool has three
contributions. First, we use the SQL standard [5] to express triggers semantics and
execution. Second, we use the UML sequence diagram to display interactions
between triggers. And finally, we use a commercial CASE tool (Rational Rose) to
add-in our approach. These contributions make our approach quite useful, practical
and intuitive to manage triggers using the triggering graph (TG) for checking non
termination state. TG is one of the most important tools in active rules to check the
termination execution for a set of rules and we adopt it for our approach.

The rest of this work is organised as follows. In section (2) the semantics of
triggers execution is explained according to the SQL standard. In section (3) works
related to rules behaviour analyzer tools or visualization tools are presented. In
section (4) we will explain our visualization tool design. Finally, in section (5) some
conclusions and future works are exposed.

2 Triggers Execution in SQl3

This section addresses common components according to the definition specified in
the SQL2003 standard which makes revisions to all parts of SQL99 and adds new
features [4]. A SQL standard trigger is a named event-condition-action rule that is
activated by a database state transition. Every trigger is associated with a table and is
activated whenever that table is modified. Once a trigger is activated and its condition
evaluated to true, the trigger’s action is performed. When we talk about the semantics
of triggers execution in the SQL standard, we consider the Knowledge Model and the
Execution Model.

A knowledge model supports the description of the active functionality; it is
considered to have three principal components; an event, a condition, and an action
[1]. The SQL3 syntax of triggers is shown in Fig.1.

In database systems, the triggers execution model specifies how a set of triggers is
treated and executed at runtime. Although triggers are available in most DBMS,
unfortunately their execution models change from one DBMS to another. Despite this
fact, a common execution strategy is shared among systems according to the two
main requirements for the SQL triggers execution. These requirements are [1]; (1) the
execution model must ensure consistency in the database, and (2) all Before-triggers
and After-triggers must be execute before or after the associated table will be
modified, respectively. Before-triggers are especially useful for maintaining a
constraint at the time that the data changes, while After-triggers are useful for
invoking functions and stored procedures which execute modification operations
inside and outside the database.

38 H.T. Al-Jumaily et al.

CREATE TRIGGER <trigger name>

[BEFORE | AFTER]

[INSERT | DELETE | UPDATE [OF <trigger column name>]]

ON <table name>

[REFERENCING <Old | New [Row | Table]>]

[FOR EACH {ROW | STATEMENT}]

[WHEN < condition >]

BEGIN ATOMIC

{< SQL procedure statement…… >}...

END;

Fig. 1. The SQL standard triggers syntax

The SQL standard allows the definition of multiple triggers associated to the same
table, same event, and same activation time. Multiple triggers can simultaneously be
selected for the execution. When multiple triggers are activated at the same time,
priorities are used to resolve triggers executions. A trigger with the highest priority is
executed first [5].

3 Related Work

As many works have been done in the area of static analysis [17] [18], we use in our
analyzer the concept of Triggering Graph (TG) to detect non-termination states. TG is
a straightforward graph where each node Ti corresponds to a rule and a direct arc
between T1 and T2 is the event which belongs to T1‘s action and causes the activation
of T2. A cycle is produced in TG when a rule Ti may trigger itself or when Ti triggers
the same initial subset. In the figure (2), the subset of active rules S={T1, T2, T3} is a
cycle when the rule T1 is fired again by the event e3. The termination analysis itself
focuses on identifying and eliminating arcs that could introduce cycles into the TG
[19]. Redefining the rule T3 and reconstructing again the graph TG is a good solution
to verify the termination state of the subset S.

Fig. 2. The TG of the rules execution

T3

T2

T1

e1

e3

e

 Using UML’s Sequence Diagrams for Representing Execution Models 39

Rules behaviour analyzer tools or visualization tools have been received strong
interest from active database community where various works have been mentioned
in the literature on using these tools in the verification of triggers execution. Arachne
[10] is one of such tools; it is used in the context of object oriented (OO) active
database systems. It accepts as input a set of Chimera active rules, and it uses
triggering graph analysis to detect non-termination behaviour at compile-time. Active
rules terminate if the triggering graph is acyclic. Once a cycle is detected, the user is
responsible for assuring the termination. VITAL [11] is another set of development
tools; it includes a tool for static analysis. This tool uses the triggering graph for
detecting cycles in a set of active rules. TriGS [12] is a graphical development tool of
active OO database application, it has been specifically designed for Trigger system
for GemSione. DEAR [13] tool has been implemented on an active OO database
system. It mainly focuses on a display form to rules interaction and sends information
to users to help them to detect errors.

On the other hand, multiple efforts have been devoted to face database modelling
problems. One of these problems is the automatization of database design process
using CASE tools. Frequently, these tools do not completely support all phases of
analysis and design methodology of databases. Triggers development is supported by
some of these CASE tools such as Rational Rose [14], ERwin [15], Designer2000
[16]. These tools provide editors to allow users define different types of triggers.
Furthermore, ERwin allows users generate triggers which enforce integrity
constraints. The drawback of these CASE tools is that the termination of triggers
execution is not guaranteed. Until now, there is no way to allow users of these tools to
verify the developed triggers without need to execute them in a real database.

4 Visualization Tool Design

For explaining our approach, let us consider the example shown in figure 3 (a). It is a
simple database schema using UML class diagram. It has three persistent classes
(Student, Professor, and Department). The mapping of each class and association into
Rational Rose Data model [20] [21] is shown in figure 3(b), and the data model
transformation into relational model is shown in figure 3(a).

The main objective of our tool is to display triggers execution scenarios and to
send messages to users for indicating whether these scenarios terminate or it is
necessary the users’ intervention to resolve a non termination execution. In this
proposal, we show triggers and integrity constraints interaction in a display form as
well as the non termination problem.

On the other hand, the UML’s sequence diagram is used to show the interactions
between objects and events in a sequential order according to the time. It is a two-
dimension diagram, the vertical dimension is the time axis, and the horizontal
dimension shows objects roles in their interactions.

In the context of triggers execution, it is very helpful to employ a tool to show the
behaviour and the interactions of triggers that belong to a model. Therefore, we will
use the sequence diagram elements to interpret the execution of triggers associated to

40 H.T. Al-Jumaily et al.

PROFESSOR

PK_PRF : INTEGER

DEPARTMENT

PK_DPT : INTEGER
1..n 1..n1..n 1..n

Tech_In STUDENT

PK_STD : INTEGER
1 1..n1 1..n

Fig. 3(a). Class diagram

TAB_PROF

PK_PRF : INTEGER

<<PK>> PK_PROF()

TAB_STUD

PK_STD : INTEGER
PK_DPT : INTEGER

<<PK>> PK_STUD()
<<FK>> DC_TAB_DEPT()
T3() : Trigger
T4() : Trigger

TAB_TECH
PK_PRF : INTEGER
PK_DPT : INTEGER

<<PK>> PK_TAB_TECH()
<<FK>> DC_TAB_PROF()
<<FK>> DC_TAB_DEPT()
T1() : Trigger
T2() : Trigger

1..*

1

1..*

1

<<Identi fying>>

TAB_DEPT

PK_DPT : INTEGER

<<PK>> PK_DEPT()

1..*1 1..*1

<<Non-Identifying>>

1..*

1

1..*

1

<<Identifying>>

Fig. 3(b). Transformation of (a) into Rational Rose Data model

Create Table TAB_DEPT (PK_DPT Primary Key …);

Create Table TAB_STUD (PK_STD Primary Key, PK_DPT,

Constraint DC_TAB_DEPT References TAB_DEPT(PK_DPT)

On Delete Cascade);

Create Table TAB_PROF (PK_PRF Primary Key …);

Create Table TAB_TECH (PK_PRF, PK_DPT,

Constraint DC_TAB_PROF FOREIGN KEY (PK_PRF)

References TAB_PROF(PK_PRF) On Delete Cascade,

Constraint DC_TAB_DEPT FOREIGN KEY (PK_DPT)

References TAB_DEPT(PK_DPT) On Delete Cascade);

Fig. 3(c). Transformation of (b) into relational model

a relational schema. We use Rational Rose CASE tool to implement our approach
because it is able to easily add-in software tools. It can be accessed from the
Tools menu.

4.1 Used UML Notation

In this section, we will explain how we use the UML notation [22] to represent
triggers execution and how we apply sequence diagrams to detect the non termination
problem. The figure (4) shows an example of a sequence diagram.

• Scenario Diagram: A scenario is an instance of a use case that describes the
sequential occurrences of events during the system execution. Sequence diagrams

 Using UML’s Sequence Diagrams for Representing Execution Models 41

Fig. 4. A Scenario Diagram (Rational Rose)

 allow users to create a display form of a scenario. In our approach, we create a
scenario diagram for each event that may be generated on a table and the sequence
of events and operations that follow after that event. Therefore, for each object
table in the model, we need to create three scenario diagrams, one for each DML
statement (INSERT, DELETE, and UPDATE).

• Tables: Tables are represented in Rational Rose as a stereotype of an object
instance. The scenario diagram contains one or more object instances which have
behaviour to be shown in the diagram. A table has three basic behaviours relevant
for static analysis of the termination which are the three DML operations
(INSERT, UPDATE, and DELETE). An object instance has a lifeline which
represents the existence of the object over a period of time.

• Message: Messages in a sequence diagram are methods or operations which are
used to illustrate the object behaviour. A message is the communication carried
between two objects to define the interaction between them. A message is
represented in the sequence diagram by using the message icon connecting two
lifelines together. The message icons appear as solid arrows with a sequence
number and a message label. The first message always starts at the top of the
diagram and others messages follow it. When theSender=theReceiver, this means
that the object theSender is sending a message to itself, MessageToSelf. Each
message is associated with an integer number that shows the relative position of
the message in the diagram. For example, if theSequence=3, the message is the
third message in the diagram.

Object instance
Tables

MessageToSelf
(Triggers)

DML Operation
issued by user

Operation
On Delete Cascade

Verification Note

42 H.T. Al-Jumaily et al.

• Note: We use notes to warn users about the results of the verification. Our tool
represents two types of notes to the users. The first is "Termination state was
correctly verified" which is sent when the execution of a given scenario is correctly
terminated. The second note is "Non termination state was detected. Please, solve
the problem and try again". This note is sent when the verification of the scenario
detects a non termination state in the execution of triggers.

4.2 Applying Sequence Diagrams

In general, triggers which are associated to a table are activated when that table is
modified. In this context, when a trigger is fired it must examine the associated table
and all other tables that can be modified by it. When an activated trigger examines its
associated table, this is exactly like when an object sends a message to itself
theSender=theReceiver. Therefore, a trigger instance is represented in sequence
diagrams as MessageToSelf (figure 4). The trigger name is included into the message
icon. BEFORE-triggers and AFTER-triggers are represented by using the same
notation MessageToSelf. Trigger conditions are not considered because we use the
static analysis approach to detect non termination state.

On the other hand, we used the notation Message for the other operations related to
the behaviour. Such operations are shown below:

• The first operation that starts the scenario diagram. This message represents the
operation which is sent from the user to a given object to start the scenario.

• DML statements (INSERT, DELETE, and UPDATE) included in a trigger’s action
and modify other object table theSender theReceiver.

• Referential constraint actions, CASCADE, SET DEFULT, and SET NULL are
considered. We represent these actions in the sequence diagrams as messages from
the parent object to the child object. The name and the type of the operation are
indicated on the message icon.

The message icon used to represent these operations is a solid horizontal arrow
with a sequence number and a message label.

The most important aspects that distinguish the SQL standard trigger execution
model from others models such as, (Ariel [6], HiPac [7], and Starburst [8]) are the
interactions between the triggers and the referential constraint actions [9]. In
relational databases, the tables are represented by sets of rows and connections
between tables are represented by defining foreign keys. Referential integrity
constraints are predicates on a database state that must be evaluated, if these
restrictions are violated the database is in an inconsistent state. In order to maintain
the referential integrity of the database, the SQL standard uses actions such as NO
ACTION, RESTRICT, CASCADE, SET DEFAULT, and SET NULL. In this work,
we consider the last three actions because they produce interactions among triggers.

We will present in this section two scenarios to illustrate the usefulness of our tool.

Scenario 1
Let us consider that the table TAB_TECH has two triggers (figure 3(b)). The
descriptions of these triggers are shown as follows:

 Using UML’s Sequence Diagrams for Representing Execution Models 43

The scenario 1 (figure 4) starts when the user Actor carries out the operation (1:
DELETE) in the table TAB_PROF. This table does not have any associated trigger,
but when this operation is carried out, the referential action On Delete Cascade
(2:DC_TAB_PROF) in TAB_TECH is executed; then the two triggers (3: T1) and (4:
T2) are executed as well. As figure (4) shows, when the execution of T2 is finished
the transaction is ended, so termination state is reached. The execution sequence of
this scenario is shown below:

1: When DELETE FROM TAB_PROF is carried out
2: The DC_TAB_PROF is executed (section 2.3)
3: T1 (X=1) is executed
4: T2 (Y=X) is executed END. "Termination state was correctly verified"

Scenario 2
The new scenario illustrates the non termination state (figure 5). We will redefine the
body of the trigger T2 incorporating in its action a delete operation from TAB_PROF.
As is shown below:

CREATE TRIGGER T2

AFTER DELETE ON TAB_TECH

WHEN C2

BEGIN ATOMIC

DELETE FROM TAB_PROF WHERE ……..;

END;

Now, if we examine this scenario, the operations sequence is similar to the

previous scenario until the execution reaches the message (4: T2). In this time, the
new statement incorporated into T2 is carried out after its execution. This operation
(5: DELETE) generates the referential action execution (6:DC_TAB_PROF). As
consequence, the last trigger operation (7: T1) is fired again. When a trigger is fired
twice in the same scenario this means that the non termination state is detected.
Therefore, the scenario is stopped and a message is sent to the developer which must
resolve the problem and repeat the scenario again. The execution sequence of this
scenario is shown below:

CREATE TRIGGER T1

AFTER DELETE ON TAB_TECH

WHEN C1

BEGIN ATOMIC

X:=1;

END;

CREATE TRIGGER T2

AFTER DELETE ON TAB_TECH

WHEN C2

BEGIN ATOMIC

Y:=X;

END;

44 H.T. Al-Jumaily et al.

1: When DELETE FROM TAB_PROF is carried out

2: The DC_TAB_PROF is executed (section 2.3)

3: T1 (X=1) is executed

4: T2 is executed

5: DELETE FROM TAB_PROF is executed

6: Again 2

7: Again 3 ; STOP; “Non termination state was detected. Please, solve the
problem and try again”

 : User : TAB_PROF : TAB_TECH
1. DELETE

2. DC_TAB_PROF

3. T1

4. T2

5. DELETE

6. DC_TAB_PROF

7. T1

No Termination state was detected. Please, solve
the problem and try again.

Fig. 3. Scenario 2, non termination state

5 Conclusions

Active rules/triggers systems are exposed in many studies and some challenges and
issues are addressed to control the execution of these systems. One of these
challenges is to encourage commercial CASE tools will cover all analysis phases with
extended conceptual models.

Using triggers means additional effort in database development because the
triggers execution model adds more complexity. We use UML’s sequence diagrams
to represent the triggers execution flow in order to verify the triggers behaviour and to

Non termination
state

 Using UML’s Sequence Diagrams for Representing Execution Models 45

guarantee the correct execution in Rational Rose Tool. Our principal objective in this
work is to motivate database designers to use triggers for completing semantic
specifications gathered in a conceptual schema through a CASE tool which shows
triggers execution associated to a relational schema in an intuitive way.

As future work, we will extend our approach to include the confluence problem of
triggers execution, and we will aggregate this tool into our toolbox in order to get to
transform integrity constraints of a given schema into triggers. Furthermore, we are
going to design some experiments to validate our tool and the efficiency use
according to our contributions: to make easy the complex problem of triggers
implementation and to check triggers execution.

References

1. Paton W. N., “Active Rules in Database Systems”, Springer-Verlag, New York, 1998.
2. Norman W. P., Diaz O., “Active Database Systems”, ACM Computing Surveys, Vol.31,

No.1, 1999.
3. Ceri S., Cochrane R. J., Widom J., “Practical Applications of Triggers and Constraints:

Successes and Lingering Issues”. Proc. of the 26th VLDB Conf., Cairo, Egypt, 2000.
4. A. Eisenberg, J. Melton, K. Kulkarni, J. Michels, F. Zemke, “SQL:2003 has been

published”, ACM SIGMOD Record, Volume 33 , Issue 1, March 2004.
5. Melton J., Simon A. R.. “SQL: 1999 Understanding Relational Language Components",

Morgan Kaufmann Publishers, 2002.
6. Hanson E. N., "The Design and Implementations of Ariel Active Database Rule System",

IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No.1, February 1996.
7. Dayal U., Buchmann A. P., Chakravarthy S., “The HiPAC Project” in Active database

systems: triggers and rules for advanced database processing, Widom J., Ceri S., Eds. San
Francisco, CA.: Morgan Kaufmann Publishers, 1996, pp. 177-205.

8. Widom J., Cochrane R. J., Lindsay B. G. "Implementing set-oriented production rules as
an extension to Starburst". Proc. 7th International Conference on VLDB, September 1991.

9. Kulkarni K., Mattos N., Cochrane R., "Active Database Features in SQL3", Active Rules
in Database Systems", Springer-Verlag, New York, 1998. pp 197-218.

10. Ceri S., Fraternalli, P., ”Designing database applications with objects and rules:the IDEA
Methodology”. Addsion-Wesley”.1997.

11. E. Benazet, H. Guehl, and M. Bouzeghoub. “VITAL a visual tool for analysis of rules
behaviour in active databases”, Proc of the 2nd Int. Workshop on Rules in Database
Systems. Pages 182-196, Greece 1995.

12. 12. G. Kappel, G. Kramler, W. Retschitzegger. “TriGS Debugger A Tool for Debugging
Active Database Behavior”, Proceedings of the 12th International Conference on Database
and Expert Systems Applications, Springer-Verlag London, UK , 2001

13. O. Díaz, A. Jaime, N. Paton. “DEAR a DEbugger for Active Rules in an object-oriented
context”. In M. Williams, N. Paton. Rules In Database Systems. Pages 180-193, LNCS
Springer Verlag 1993.

14. Rational Web site http://www.rational.com/support/documentation/
15. AllFusion® ERwin® Data Modeler site http://www3.ca.com/Solutions/
16. ORACLE Web site http://www.oracle.com/technology/products/
17. Alexander A., Jennifer W., “Behavior of Database Production Rules: Termination,

Confluence, and Observable Determinism”, Proc. ACM-SIGMOD Conf. 1992.

46 H.T. Al-Jumaily et al.

18. Paton N., Díaz O., "Active Database Systems", ACM Computing Surveys, Vol.31, No.1,
1999.

19. Hickey T., “Constraint-Based Termination Analysis for Cyclic Active Database Rules”.
Proc. DOOD'2000: 6th. International Conference on Rules and Objects in Databases,
Springer LNAI vol. 1861, July 2000, pp. 1121-1136.

20. Vadaparty, Kumar, “ODBMS - Bridging the Gap Between Objects and Tables: Object and
Data Models”, volume 12 - issue 2, 1999.

21. Timo Salo, Justin hill, “Mapping Objects to Relational Databases”, Journal of Object
Oriented Programming, volume 13 - issue 1, 2000.

22. UML 2 Sequence Diagram Overview http://www.agilemodeling.com/artifacts/
sequenceDiagram.htm

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 47 – 58, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Experimental Consideration of the Use of the
TransrelationalTM Model for Data Warehousing*

Victor Gonzalez-Castro1, Lachlan M. MacKinnon2, and David H. Marwick1

1 School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh, EH14 4AS, Scotland

{victor, dhm}@macs.hw.ac.uk
2 School of Computing and Creative Technologies, University of Abertay Dundee,

Dundee, DD1 1HG, Scotland
l.mackinnon@abertay.ac.uk

Abstract. In recent years there has been a growing interest in the research
community in the utilisation of alternative data models that abandon the
relational record storage and manipulation structure. The authors have already
reported experimental considerations of the behavior of Relational, Binary
Relational and Associative models within the context of Data Warehousing, to
address issues of storage efficiency and combinatorial explosion through data
repetition. In this paper we present an implementation of the TransrelationalTM
model, based on the public domain definition provided by C.J. Date, which we
believe to be the first reported instantiation of the model. Following the
presentation of the implementation, we also present the results of perfor-
mance tests utilising a set of metrics for Data Warehouse environments, which
are compared against a traditional N-ary Relational implementation. The
experiment is based on the standard and widely-accepted TPC-H data set.

1 Introduction

The TransrelationalTM model was defined by S. Tarin and patented in the United
States of America [14], and it has been promoted to the Database community by C.J.
Date through a series of seminars and in the latest edition of his widely-adopted
textbook [3]. However, as far as we can determine there is no implementation
available for either commercial or research use. Therefore, in order to carry out our
experimental consideration, we have utilised the general description made by Date [3]
of the TransrelationalTM model and its behavior to implement the essential algorithms
that make up the model. Since Date [3] has provided the only public domain
documentation of the model, which we shall henceforward refer to as TR following
his nomenclature, we shall make reference extensively to his work in describing our
experiment.

Our experimental consideration of the TR model follows on from research which
we have already reported considering the performance of Relational, Binary
Relational and Associative models in the context of Data Warehousing [4][5][8]. We

* The Transrelational model is based on the Tarin Transform Method and is the intellectual

property of Required Technologies Inc.

48 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

are interested in the use of alternative data models that can solve the problems of the
inefficiency of storage caused by models based on rows, which include repetitions at
field level no matter if they use normalized (snow-flake) or non-normalized (star)
schemas, as well as the database explosion phenomenon [7] that occurs in Relational
Data Warehouses.

According to Date [3:954], the TR model has an implicit data compression
mechanism by using condensed columns which eliminates the duplicate values at a
column level. This is very appealing in Data Warehouse environments where it is
common to have many repetitive values at column level, so we wanted to measure
and benchmark this characteristic of the model.

2 The Transrelational ModelTM

As already indicated the only public domain description of the TransrelationalTM

model is provided by Date [3]. In this section we introduce some of the basic
definitions of the model in order to establish a baseline for our experimental
consideration, all quotes and references to Date are attributable to [3] and where
necessary page number references are supplied. As a starting point Date states that,
“The TransrelationalTM (TR) is not intended as a replacement for the Relational
model”, from which we can infer that it can be seen as an alternative route to
implement the relational model and thus to build a Relational DBMS.

From the early days of data processing systems, through the development of
relational databases and up to the present day, data has predominantly been conceived
as Records of n number of fields or attributes. This approach has been called an N-ary
Storage Model (NSM) [2] or in Date’s nomenclature Direct Image Systems (DIS).
Within this approach data is seen (and stored) following a horizontal approach (rows).

Alternatively, there is also a vertical approach (columns) to store and process data,
and this has its origins in Copeland’s seminal paper “A Decomposition Storage
Model” (DSM) [2]. This has recently been used as the basis for the creation of some
novel database architectures and instantiations, such as MonetDB [1], [6], SybaseIQ
[11], [12] and C-store [10]. TR differs from both vertical and horizontal approaches,
but is closer to a vertical approach since, in the Field Values Table (FVT), each
column stores distinct values, and most of the processing can be done at column level.
This is analysed in more detail in section 3.

2.1 Model Data Structures

To illustrate the characteristics of the model, we utilise the examples developed by
Date [3]. The TR model consists basically of two storage structures: the Field Values
Table (FVT), where each column contains the values from the corresponding field of
the input file rearranged in an ascending sort order Fig. 1(b); and the Record
Reconstruction Table (RRT) Fig. 1(c), which keeps a set of values derived from the
original input file that can be thought of as pointers to enable the original record to be
rebuilt when necessary using the ZigZag algorithm [3:948].

 An Experimental Consideration of the Use of the TransrelationalTM Model 49

Record
Sequence

1 S4 Clark 20 London 1 S1 Adams 10 Athens 1 5 4 4 5
2 S5 Adams 30 Athens 2 S2 Blake 20 London 2 4 5 2 4
3 S2 Jones 10 Paris 3 S3 Clark 20 London 3 2 2 3 1
4 S1 Smith 20 London 4 S4 Jones 30 Paris 4 3 1 1 2
5 S3 Blake 30 Paris 5 S5 Smith 30 Paris 5 1 3 5 3

S# SNAME STATUS CITYS# SNAME STATUS CITYS# SNAME STATUS CITY

 Fig. 1. (a) A Suppliers relation, (b) Field Values Table, (c) Record Reconst. Table

To understand how both tables are used when rebuilding a record, utilising the
ZigZag algorithm, we provide Date’s description:

“Step 1: Go to cell [1, 1] of the Field Values Table and fetch the value stored there:
namely, the supplier number S1. That value is the first field value (that is. the S# field
value) within a certain supplier record in the suppliers file.

Step 2: Go to the same cell (that is, cell [1, 1]) of the Record Reconstruction Table
and fetch the value stored there: namely, the row number 5. That row number is
interpreted to mean that the next field value (which is to say, the second or SNAME
value) within the supplier record whose S# field value is S1 is to be found in the
SNAME position of the fifth row of the Field Values Table -in other words, in cell
(5,2) of the Field Values Table. Go to that cell and fetch the value stored there (sup-
plier name Smith).

Step 3: Go to the corresponding Record Reconstruction Table cell [5, 2] and fetch
the row number stored there (3). The next (third or STATUS) field value within the
supplier record we are reconstructing is in the STATUS position in the third row of
the Field Values Table-in other words, in cell [3,3]. Go to that cell and fetch the value
stored there (status 20).

Step 4: Go to the corresponding Record Reconstruction Table cell [3, 3] and fetch
the value stored there (which is 3 again). The next (fourth or CITY) field value within
the supplier record we are reconstructing is in the CITY position in the third row of
the Field Values Table-in other words, in cell [3,4]. Go to that cell and fetch the value
stored there (city name London).

Step 5: Go to the corresponding Record Reconstruction Table cell [3, 4] and fetch
the value stored there (1). Now, the "next" field value within the supplier record we
are reconstructing looks like it ought to be the fifth such value; however, supplier
records have only four fields, so that "fifth" wraps around to become the first. Thus,
the "next" (first or S#) field value within the supplier record we are reconstructing is
in the S# position in the first row of the Field Values Table-in other words, in cell
[1,1]. But that is where we came in, and the process stops.”

To this point, the model provides no potential database size reduction because all
values are kept and additional data is held in the Record Reconstruction Table, we
refer to this as TR Version 1. The desired reduction is achieved when the Condensed
columns are introduced. As can be observed in Fig. 1(b) a considerable amount of
redundant data is stored, this is also true in traditional N-ary systems (see Fig. 1(a)).
The Column-Condensing process aims to eliminate such redundancy by keeping
unique values at column level; we refer to this as TR Version 2.1. This process should

50 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

S# SNAME STATUS CITY
1 S1 Adams 10 [1:1] Athens [1:1]
2 S2 Blake 20 [2:3] London [2:3]
3 S3 Clark 30 [4:5] Paris [4:5]
4 S4 Jones
5 S5 Smith

Fig. 2. Condensed Field Values Table with row ranges

be applied selectively, since attempting to condense columns already consisting of
unique values does not make sense. However, as each value can be used in many
“records” it is necessary to keep Row Ranges (numbers in squared brackets in Fig. 2)
to avoid losing information on how to reconstruct the record, we refer to this as TR
Version 2.3. The resulting FVT with condensed columns and row ranges is presented
in Fig. 2.

The Column-Condensing process destroys the unary relationship between the cells
of the FVT and the cells in the RRT, but the ZigZag algorithm is easily adaptable as
stated in [3:956].

“Consider cell [i, j] of the Record Reconstruction Table. Instead of going to cell [i,j]
of the Field Values Table, go to cell [i’,j] of that table where cell [i’,j] is that unique
cell within column j of that table that contains a row range that includes row i.”

3 Implementation

We have implemented algorithms to create the Field Values Table, the Record
Reconstruction Table and the Zigzag algorithm to rebuild the records. Some
variations and improvements have been made during implementation and we will
describe those in the following subsections.

This implementation was focused on the initial bulk load of the Data Warehouse
and it retained the limitations identified by Date [3:943] where updates are discarded
and the Database is Read Only. Inherently, Data Warehouse environments are more
suited to these assumptions (with batch updates during off line hours and read only
during operation hours) than transactional systems. Consequently, we would argue
that the benchmarking of the TR model for Data Warehouse environments is both
relevant and important.

An extraction tool was written in order to generate the flat files that will be
processed by the TR model algorithms. One important point that was introduced
during the extraction process is that each record is pre-appended with its record
number, to provide additional support during the Transformation and Loading stages.

3.1 The Field Values Table

Data within each column is rearranged into ascending sort order. All operations are
made in bulk and parallelising as much as possible, extensive use of the sort,

 An Experimental Consideration of the Use of the TransrelationalTM Model 51

parallelisation and synchronisation mechanisms offered by the operating system has
been made. The sorting process of each column is made in parallel as each column is
independent. Improvements were introduced in order to prepare the creation of the
RRT and minimise reprocessing. The first step is to create a structure (we call it
Working File WKF and it enhances the algorithms described by Date) where each
column is in ascending order and maintains the original record number as sub-index
Fig. 3(a). From this structure (WKF) the Field Values Table with condensed columns
(Fig. 2) is derived by choosing unique values in ascending order and recording the
corresponding row ranges. The other structure derived from the WKF structure is the
Permutation Table [3:951] Fig. 3(b), which is required to build the Record
Reconstruction Table.

The Column-Condensing process is selective as recommended by Date [3:953]. In
our implementation we establish that columns with unique values and those where the
reduction would be lower than the established condensation threshold are not
condensed. The condensation threshold is not part of Date’s algorithms and we define
it as the ratio between the original number of values (including repetitions) and the
number of unique values. The condensation threshold is 30% and this was set after
testing different threshold values and considering the balance between the disk space
required to keep row ranges versus the disk space required to keep the complete
column with relatively few repetitive values. The processing time was also considered
to set the threshold. This approach was taken in order to maintain a balance between
the theoretical model and the pragmatic implementation.

(a) WKF Structure (d) RRT Table

1 S1 4 Adams 2 10 3 Athens 2 1 5 4 4 5

2 S2 3 Blake 5 20 1 London 1 2 4 5 2 4

3 S3 5 Clark 1 20 4 London 4 3 2 2 3 1

4 S4 1 Jones 3 30 2 Paris 3 4 3 1 1 2

5 S5 2 Smith 4 30 5 Paris 5 5 1 3 5 3

Copy sub-
indices sort asc by S#

 and write SNAME

1 4 2 3 2 1 4 3 2 2
2 3 5 1 1 2 5 1 4 1
3 5 1 4 4 3 2 4 1 4
4 1 3 2 3 4 1 5 3 3
5 2 4 5 5 5 3 2 5 5

sort ascending by S# and write its row #
sort ascending by SNAME and write its row #

(b) Permutation Table (c) Inverse Permutation Table

S# SNAME STATUS CITY

S# SNAME STATUS CITYS# SNAME STATUS CITY

S# SNAME STATUS CITY

Fig. 3. Proposed alternative generation algorithm to build the Record Reconstruction Table

52 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

3.2 The Record Reconstruction Table

A permutation is defined by Date [3:951] as the ordering of the records by a particular
column. For example the permutation corresponding to ascending S# ordering is
4,3,5,1,2 (refer to Fig. 1(a)). According to this definition, the Permutation Table is
computed directly from the original input file, but instead of doing it in this way we
derived it from the WKF structure by using the already ascending ordered values but
taking the sub-indices, see Fig. 3(a) and 3(b). Thus the columns of the Permutation
Table can be computed in parallel. The first column of the Permutation Table keeps
an ascending sequence from 1 to the number of records in the table (i.e. the row
number within the Permutation Table).

Date also defined the Inverse Permutation as, “That unique permutation that if
applied to the original sequence 4,3,5,1,2, will produce the sequence 1,2,3,4,5”. It is
computed column by column on the permutation table by applying the previous rule
to obtain the ascending sequence 1,2,3,4,5.

We found that is more efficient to compute the Inverse Permutation Table from the
existing Permutation Table by taking each column together with its corresponding
row number and then sorting ascending by the corresponding column values and
writing the row number in the Inverse Permutation Table rather than the column
values (in this example S#), see Fig 3(b) and 3(c). The resulting Inverse Permutation
Table is exactly the same as that described by Date, and its columns can be computed
in parallel.

Finally the Record Reconstruction Table can be built from the Inverse Permutation
Table. Date’s algorithm [3:952] is as follows:

“Go to the cell [i,1] of the Inverse Permutation Table. Let that cell contain the
value r; also the next cell to the right, cell [i,2], contain the value r’. Go to the rth
row of the Record Reconstruction Table and place the value r’ in cell [r,1].”

Following the algorithm for i=1,2,3,4,5 will produce the entire S# column of the
Record Reconstruction Table. The other columns are computed in a similar way.

This algorithm processes one row at a time which is inefficient. We propose the
following algorithm to compute the Record Reconstruction Table:

From the Inverse Permutation Table use column i and column i+1, sort in
ascending order by i-th column values and write the value held in i+1 column to the
corresponding i-column in the RRT. This applies to all columns except the last one
which must use the n-th column and the 1st column. See Fig. 3(c) and (d).

Our algorithm enables bulk processing and each column is processed in parallel as
there is no dependency between columns.

3.3 Implemented Versions

Four versions of the TR model were implemented in order to gather information
regarding its behavior with different characteristics. Each version, its characteristics,
and the implications for the ZigZag algorithm [3:948] are listed in Table 1.

 An Experimental Consideration of the Use of the TransrelationalTM Model 53

Table 1. TR model versions

Version 1 Field Values Table (FVT) keeps repetitive values. Both the Record
Reconstruction Table (RRT) and the ZigZag Algorithm are as stated
in [3].

Version 2.1 All columns in all tables are condensed in their corresponding FVT
tables and the remaining unique values keep row ranges. The
ZigZag Algorithm is enhanced to be aware of row ranges. The RRT
Table remains unchanged.

Version 2.2 Only the Fact Table is considered to condense its columns. The
ZigZag algorithm needs to be improved to detect the Fact Table and
be aware that row ranges only exist in the Fact Table but not in any
other table. RRT remains unchanged.

Version 2.3 Selective column condensation in the FVT is applied if the
established threshold is reached; this is applied to all tables as
proposed by Date. The ZigZag algorithm needs to be aware of
condensed and uncondensed columns, and those which are
condensed have row ranges. RRT Table remains unchanged.

4 Benchmarking Environment

In order to benchmark the TR model and its implementation in Data Warehouse
environments the standard and well accepted TPC-H [13] data set was chosen. TPC-H
has the characteristics of real life data warehouses where a big Fact table exists with
complementary tables around this table (no matter if it is a Star or Snow-flake
schema). The authors are very experienced in the use of this data set for
benchmarking Data Warehouses considering different data models [4],[5],[8] to
highlight their specific characteristics. The tests were executed with two database
sizes, called scale factors (SF=100 MB and SF=1GB).

The machine used to evaluate the defined metrics has 1 CPU Pentium IV @
1.60GHz, 512 MB in RAM, Cache size 256 KB, Bus speed 100MHz and Operating
System Fedora 2 version 2.4.9-12. The relational instantiation used is Oracle Version
9.0 with its corresponding SQL*Plus and SQL*Loader utilities.

SHQL version 1.3 [9] is used to provide a SQL interface. It was used to execute the
necessary DDL statements. The implemented algorithms made use of the initial
structures generated by SHQL to build and manipulate the required tables (FVTs
and RRTs).

5 Experimental Results and Analysis

The results presented in this section follow the flow of the Extraction Transformation
and Loading Process. As mentioned before, a tool was made to extract data and
generate the input flat files to be loaded in both Relational and TR instantiations. The
differences between input flat file sizes are small but the TR input files are slightly
bigger because of the extra column required to keep the row number that will be used
for further processing. Resulting flat file sizes are presented in Table 2.

54 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

Table 2. Extracted file sizes to be used as input

Scale Factor
(SF)

Relational
(MB)

TR

(MB)
100 MB 102.81 103.77

1GB 1,049.60 1067.46

The next step is to Transform and Load the input files into the instantiations for
both models. As stated before four different versions of TR were implemented (Table
1). The results for these versions are presented in Table 3. (SF=100MB) and Table 4.
(SF=1GB).

Table 3. DBMS Object size in MB with SF=100MB

TPC-H
Table Name

Relational TR V1
(with
repetitive
values)

TR V2.1
(everything
condensed)

TR V 2.2
(only Fact
Table
condensed)

TR V2.3
(selective
condensation)

Region 0.0625 0.0005 0.0005 0.0005 0.0005
Nation 0.0625 0.0024 0.0027 0.0024 0.0023
Supplier 0.1875 0.1600 0.1900 0.1600 0.1600
Customer 3.00 3.04 3.41 3.04 2.79
Part 3.00 3.41 2.34 3.41 2.12
PartSupplier 13.00 14.19 13.90 14.19 13.05
Orders 19.00 25.63 21.91 25.63 18.56
Lineitem 88.00 137.07 86.09 86.09 86.90
TOTAL 126.31 183.50 127.84 132.52 123.58

Table 4. DBMS Object size in MB with SF=1GB

TPC-H
Table Name

Relational TR V1
(with

repetitive
values)

TR V2.1
(everything
condensed)

TR V 2.2
(only Fact
Table
condensed)

TR V2.3
(selective

condensation)

Region 0.0625 0.0005 0.0005 0.0005 0.0005
Nation 0.0625 0.0024 0.0027 0.0024 0.0023
Supplier 2.0 1.75 2.07 1.75 1.68
Customer 27.0 32.00 36.23 32.00 29.3
Part 30.0 36.37 24.74 36.37 21.52
PartSupplier 128.0 149.00 137.69 149.00 130.93
Orders 192.0 274.96 235.32 274.96 200.89
Lineitem 848.0 1489.71 925.73 925.73 962.22
TOTAL 1,227.1 1,983.78 1,361.81 1,419.80 1,346.54

 An Experimental Consideration of the Use of the TransrelationalTM Model 55

TR Version 1 is of limited value because it keeps all repetitive values and adds
more information within the RRT table; as a result it increases the N-ary Relational
Instantiation DB size by a factor of around 50%.

From Tables 3 and 4 with version 2.1 (where all columns are condensed); in
medium sized tables (Supplier and Customer) the effect of condensing resulted in
bigger table sizes than the corresponding sizes without being condensed, this is as a
result of keeping the row ranges; for the bigger tables (Lineitem and Orders) the
Column-Condensing process is beneficial. Considering that the Lineitem Table (Fact
Table) is the biggest table, Version 2.2 was introduced. The benefit of this version is
that only the Fact Table is passed through the Column-Condensing process in order to
reduce the CPU processing time, but the downside is that the final DB size is bigger
than Version 2.1. Finally in version 2.3 all tables are processed by the Column-
Condensing process but in a selective fashion where if the estimated condensing level
reaches the established threshold then the column is condensed, otherwise there is no
benefit in investing CPU processing time which will not achieve significant column
size reductions. According to the results obtained, version 2.3 is the one that offers a
better balance between processing time and disk space consumption but requires a
complex ZigZag algorithm to rebuild records when necessary. The ZigZag algorithm
needs to be intelligent enough to identify condensed columns and uncondensed
columns and make use of row ranges when rebuilding the original record.

These analyses have been focused on the FVT since, as identified by Date [3:954]
the FVT will offer compression benefits. However, our experimental results show
that, even when condensing repetitive values, the final database size is bigger or, at
best, only slightly smaller than the traditional N-ary Relational instantiation.

Further analyses based on Version 2.3, show that the FVT behaves in keeping with
Date’s description, but the problem is with the RRT. While the RRT at first sight only
holds integers, after millions of rows (i.e. Lineitem=6 million rows for SF=1GB),
these integers are of more considerable size and occupy most of the final database
space. These results are presented in Table 5. (SF=100MB) and Table 6. (SF=1GB).

As in any Data Warehouse environment the Fact table (in this case LineItem)
occupies most of the space, with SF=1GB this table occupies 962MB of 1,346MB of
the total DB size. Importantly, however, the corresponding RRT for Lineitem
required 760MB of those 962MB. In general RRT structures are 65% of the total DB
space while FVT structures are the remaining 35%. From these results it is clear that
further work is necessary to tackle the RRT structures, and particularly the RRT for
Fact Tables, to enable the TR model to achieve the benefits predicted.

Another key finding of the experiment is that with the bigger scale factor, the
Version 2.3 (selective condensation) has better results than any other version (see
Table 4), including Version 2.1 where every column is condensed, but remains very
close (additional 10%) to the traditional N-ary Relational implementation.

Finally, another aspect to be considered is the time to Transform and Load the
input files into the DBMS. In this aspect the TR instantiation required more time than
the N-ary Relational instantiation. The Transformation and Loading time was not
linear with respect to DB size, as presented in Table 7. with around 4 times more
with SF=100MB and 10 times more with SF=1GB.

56 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

Table 5. TransrelationalTM RRTs and FVTs with SF=100MB

Table 6. TransrelationalTM RRTs and FVTs with SF=1GB

Table 7. Transformation and Loading Times

 Scale Factor
(SF)

Transformation
& Loading time

Relational 100MB 2.4 minutes
TransrelationalTM 100MB 10.2 minutes

Relational 1GB 19.9 minutes
TransrelationalTM 1GB 191.6 minutes

6 Conclusions and Future Work

The TR model as described by Date is very appealing for Data Warehouse
environments, but after analysis of our results it really does not offer the tangible

 An Experimental Consideration of the Use of the TransrelationalTM Model 57

benefits that we were looking for. It may reduce the inefficiency of storing repetitive
values at column level that exists in traditional N-ary Relational implementations, but
the expected reduction in Data Warehouse size was not achieved. This has to be set
against the results achieved for other alternative models [4][5][8], especially Binary
Relational. However we have been able to produce a novel public domain
instantiation of the TR model described by Date, and we have identified and
implemented improvements to the algorithms of that model. Further research needs to
be done on the RRT structure to minimise its size and thus reduce the final DB size,
but at the same time we envisage that this will increase the processing time. Date
[3:956] identifies another feature that could be used in TR (which we might call
Version 3) which uses Merged Columns. However, we have identified that the
existing drawbacks of the RRT should be the next problem to be tackled, and we
would argue that this needs to be undertaken before introducing more complexity to
the algorithms for the marginal benefits in terms of the final DB size that might be
achieved in Version 3.

Based on our research results [4][5][8] and the current state of the TR model, we
would argue that it does not represent the model of choice for future Data Warehouse
environments.

Acknowledgments. The present work has been possible due the financial support
of Consejo Nacional de Ciencia y Tecnología México (CONACYT) and Secretaría
de Educación Pública (SEP) México. The authors gratefully acknowledge that
support.

References

1. Boncz, Peter. Monet: A next generation DBMS Kernel for query intensive applications.
PhD Thesis. Amsterdam, 2002.

2. Copeland, George P. Khoshafian, Setrag N. A Decomposition Storage Model. In
Proceedings of the ACM SIGMOD Int’l. Conf. On Management of Data, pp 268-279, May
1985.

3. Date, C.J. An introduction to Database Systems. Appendix A. The Transrelational Model,
Eighth Edition. Addison Wesley. 2004. USA. ISBN: 0-321-18956-6. pp.941-966

4. Gonzalez-Castro, Victor. MacKinnon, Lachlan. A Survey “Off the Record” - Using
Alternative Data Models to increase Data Density in Data Warehouse Environments.
Proceedings BNCOD Volume 2. Edinburgh, Scotland 2004.

5. Gonzalez-Castro, Victor. MacKinnon, Lachlan. Data Density of Alternative Data Models
and its Benefits in Data Warehousing Environments. British National Conference on Data
Bases, BNCOD 22 Proceedings Volume 2. pp 21-24. Sunderland, England U.K. 2005.

6. MonetDB. ©1994-2004 by CWI. http://monetdb.cwi.nl
7. Pendse, Nigel. Database explosion. http://www.olapreport.com Updated Aug, 2003.
8. Petratos, P and Michalopoulos D. (editors) Gonzalez-Castro V. and Mackinnon

L.(authors). Using Alternative Data Models in the Context of Data Warehousing. 2005
International Conference in Computer Science and Information Systems. Athens Institute
of Education and Research, ATINER. Greece. ISBN: 960-88672-3-1. pp 83-100. 2005.

9. SHQL. http://backpan.cpan.org/modules/dbperl/scripts/shql/

58 V. Gonzalez-Castro, L.M. MacKinnon, and D.H. Marwick

10. Stonebraker, Mike, et.al. C-Store: A column Oriented DBMS. Proceedings of the 31st
VLDB conference, Trondheim, Norway, 2005. pp. 553-564.

11. SybaseIQ web site. www.sybase.com/products/informationmanagement/sybaseiq
12. Sybase Inc. Migrating from Sybase Adaptive Server Enterprise to SybaseIQ white paper.

USA 2005.
13. TPC Benchmark H (Decision Support) Standard Specification Revision 2.1.0. 2002.
14. U.S. Patent and Trademark Office: Value-Instance-connectivity Computer-Implemented

Database. U.S. Patent No. 6,009,432 (December 28, 1999).

Reducing Sub-transaction Aborts and Blocking
Time Within Atomic Commit Protocols

Stefan Böttcher1, Le Gruenwald2,�, and Sebastian Obermeier1

1 University of Paderborn, Computer Science
Fürstenallee 11, 33102 Paderborn, Germany

{stb, so}@uni-paderborn.de
2 The University of Oklahoma, School of Computer Science

200 Telgar street, Room 116 EL, Norman, OK 73019-3032, USA
ggruenwald@ou.edu

Abstract. Composed Web service transactions executed in distributed
networks often require an atomic execution. Guaranteeing atomicity in
mobile networks involves a lot more challenges than in fixed-wired net-
works. These challenges mostly concern network failures, e.g. network
partitioning and node disconnection, each of which involves the risk of
infinite blocking and can lead to a high number of aborts.

In this paper, we introduce an extension to existing atomic commit
protocols, which decreases the time during which a resource manager
that is involved in a web-service is blocked. In addition, our proposal
reduces the number of sub-transaction aborts that arise due to message
loss or due to conflicting concurrent transactions by distinguishing re-
usable and repeatable sub-transactions from aborting sub-transactions.

1 Introduction

The use of Web service transactions within fixed wired network structures is sup-
ported by multiple specification languages, e.g. BPEL4WS [1] or BPML [2]. Es-
pecially when Web service transactions are composed of several sub-transactions,
it is often crucial that either all or none of the sub-transactions are executed.
Atomic commit protocols are a standard technique to meet this requirement,
i.e. for guaranteeing an atomic execution of nested transactions. However, in
the context of Web services, sub-transactions may be dynamically invoked and
therefore are not always known in advance. Approaches like the “WS-Atomic-
Transaction” standard ([3]) suggest using a modified 2-Phase-Commit-protocol
(2PC, [4]), where each dynamically invoked sub-transaction registers at the co-
ordinator by itself.

However, if parts of a Web service transaction should be processed within a
mobile ad-hoc environment where mobile participants are suspect to disconnects
and network partitioning may occur, the use of 2PC may lead to a long blocking

� This material is based upon work supported by (while serving at) the National
Science Foundation (NSF) and the NSF Grant No. IIS-0312746.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 59–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

60 S. Böttcher, L. Gruenwald, and S. Obermeier

time of mobile participants. Even if we assume the coordinator to be stable, a
database that disconnects while executing a transaction blocks the data that the
transaction has accessed until it gets the commit decision.1

In addition, a high number of disconnects and reconnects may lead to an un-
necessarily high number of aborts since timeouts for reconnections are hard to
estimate. Imagine a coordinator that waits for the last missing vote for commit.
If the coordinator waits too long, concurrent transactions that access conflicting
data cannot be processed. If the coordinator does not wait and aborts the trans-
action due to the missing vote, the database may reconnect just at this moment
and the transaction was superfluously executed and aborted. Since estimations
about message delivery times and transaction execution times within dynamic
mobile ad-hoc networks are often significantly different to the observed times,
the coordinator will very likely estimate wrong timeouts.

Solutions like timeout-based approaches ([5]) optimistically suggest to commit
a transaction and apply compensation transactions to undo in the case of abort.
However, since committed transactions can trigger other operations, we cannot
assume that compensation for committed transactions in mobile networks, where
network partitioning makes nodes unreachable but still operational, is always
possible. Therefore, we focus on a transaction model, within which atomicity is
guaranteed for distributed, non-compensatable transactions.

In this paper, we show how the suspend state can be used within 2PC to
not only reduce the blocking times of databases, but also to reduce the num-
ber of aborts and reuse existing results as far as possible. Section 2 describes
details of our assumed transaction model and introduces necessary require-
ments for guaranteeing atomic commit in a mobile environment. In Section
3, we propose a solution, which consists of the following key ideas: a non-
blocking state for transactions that are ready to vote for commit; a flexible
reaction to concurrency failures by distinguishing failures that require a trans-
action abort, failures that only require the repetition of a sub-transaction, and
failures that allow the reuse of a sub-transaction; and finally, we show how
a tree data structure that represents the execution status of all active
sub-transactions can be used by the coordinator to efficiently coordinate the
transaction.

2 Problem Description

This section describes our assumed transaction model and identifies the addi-
tional requirements that arise when using mobile devices within a transaction.
Finally, we describe the goal, i.e., to reduce both blocking and the number of
transaction aborts.

2.1 Transaction Model

Our transaction model is based on the Web Services Transactions specifications.
However, since we focus on the atomicity property, we can rely on a much sim-
1 Even validation-based synchronisation shows a blocking behavior, cf. Section 2.4.

Reducing Sub-transaction Aborts and Blocking Time 61

pler transaction model, e.g., we do not need a certain Web service modeling or
composition language like BPEL4WS [1] or BPML [2]. Therefore, we have de-
signed our transaction model to consist only of the following objects, that are
“application”, “transaction procedure”, “Web service”, and “sub-transaction”.
In the following, we explain how we understand these terms as well as their
relationship to each other.

An application AP can consist of one or more transaction procedures. A trans-
action procedure is a Web service that must be executed in an atomic fashion.
Transaction procedures and Web services are implemented using local code,
database instructions, and (zero or more) calls to other remote Web services.
Since a Web service invocation can depend on conditions and parameters, differ-
ent executions of the same Web service may result in different local executions
and different calls to other Web services.

An execution of a transaction procedure is called a global transaction T . We
assume that an application AP is interested in the result of T , i.e., whether the
execution of a global transaction T has been committed or aborted. In case of
commit, AP may be further interested in the return values of T ’s parameters.

The relationship between transactions, Web services, and sub-transactions is
recursively defined as follows: We allow each transaction or sub-transaction T to
dynamically invoke additional Web services offered by physically different nodes.
We call the execution of such Web services invoked by the transaction T or by
a sub-transaction Ti the sub-transactions Tsi . . . Tsj of T or of Ti, respectively.

Whenever during the execution of the global transaction T , a child or descen-
dant sub-transaction Ts of T , or T itself, invokes the sub-transactions T1 . . . Tn,
the atomicity property of T requires that either all transactions T, T1 . . . Tn com-
mit, or all of these transactions abort.

Since we allow dynamic Web service invocations, we assume that each Web
service only knows which Web services it calls directly, but not which Web
services are invoked by the called Web services. This means that at the end of
its execution, each transaction Ti knows which sub-transactions Tis1 . . . Tisj it
has called directly, but Ti, in general, will not know which sub-transactions have
been called by Tis1 . . . Tisj . Moreover, we assume that usually a transaction Ti

does not know how long its invoked sub-transactions Tis1 . . . Tisj will run.
We assume that during the execution of a sub-transaction, a database enters

the following phases: the read-phase, the coordinated commit decision phase, and,
in case of successful commit, the write-phase. While executing the read-phase,
each sub-transaction carries out write operations only on its private transac-
tion storage. Whenever the coordinator decides to commit a transaction, each
database enters the write phase. During this phase, the private transaction stor-
age is transferred to the durable database storage, such that the changes done
throughout the read-phase become visible to other transactions after completion
of the write-phase.

In the mobile architecture for which our protocol is designed, Web services
must be invoked by messages instead of synchronous calls for the following rea-
son. We want to avoid that a Web service Ti that synchronously calls a sub-

62 S. Böttcher, L. Gruenwald, and S. Obermeier

transaction Tj cannot complete its read phase and cannot vote for commit before
Tj sends its return value. For this reason, we allow invoked sub-transactions only
to return values indirectly by asynchronously invoking corresponding receiving
Web services and not synchronously by return statements.2

T
1

I

T
3

T
4

attend

soiree

rent tuxedo

organize

shipping

T
2

update list of

participants

Fig. 1. The initiator I of a Web service trans-
action T and its sub-transactions T1 . . . T4

Since (sub-)transactions de-
scribe general services that do not
exclusively concern databases, we
also call the node executing a
sub-transaction resource manager
(RM).

The following example shows
the necessity of an atomic exe-
cution of transactions within our
transactional model:

Example 1. Assume a conference
participant decides to attend the
conference’s soiree and invokes
the corresponding Web Service. As shown in Figure 1, the corresponding global
transaction T , started by the Initiator I, invokes the Web Service for attend-
ing the soiree. The corresponding sub-transaction T1 then updates the partic-
ipant list by invoking sub-transaction T2 and detects that the participant has
not brought a tuxedo. Therefore, a tuxedo must be rented and T1 calls a sub-
transaction T3. To organize the shipping of the tux to the participant’s hotel, T3
calls the Web service T4 of a shipping company. It is obvious that no booking
component is allowed to fail: if the participant list is already full, if there are
no tuxedos available, or if the shipping company cannot deliver the tuxedo to
the participant on time, the participant cannot attend the soiree. Therefore, all
sub-transactions are required to be performed in an atomic fashion.

This example shows one characteristic of our Web service transactional model:
The Initiator and the Web services do not know every sub-transaction that is
generated during transaction processing.

Our model differs from other models that use nested transactions (e.g. [6],
[7], [3]) in some aspects including, but not limited, to the following: Since com-
pensation of a sub-transaction may not be possible if a mobile network is par-
titioned, we consider each sub-transaction to be non-compensatable. Therefore,
no sub-transaction is allowed to commit independently of the others or before
the commit coordinator guarantees – by sending the commit message – that all
sub-transactions will be committed.

2 However, if a synchronous call within Ti to Tj is needed, e.g. because Ti needs return
values from Tj , it is possible to achieve this behavior by splitting Ti into Ti1 and Ti2

as follows: Ti1 includes Ti’s code up to and including an asynchronous invocation
of its sub-transaction Tj ; and Ti2 contains the remaining code of Ti. After Tj has
completed its read phase, Tj performs an asynchronous call to Ti2 which can contain
return values computed by Tj that shall be further processed by Ti2.

Reducing Sub-transaction Aborts and Blocking Time 63

Different from CORBA OTS ([7]), we assume that we cannot always identify
a hierarchy of commit decisions, where aborted sub-transactions can be compen-
sated by executing other sub-transactions.

A Web service T may be programmed by using control structures, e.g. if
<Condition> then <T1> else <T2>. This means that resource managers exe-
cuting a Web service T may dynamically invoke other sub-transactions T1 . . . Tj .

We assume a message-orientated communication. This means that a Web ser-
vice does not explicitly return values but may pass parameters to other invoked
Web services which perform further operations based on these results.

2.2 Requirements

Besides the main requirement to design an atomic commit protocol for guar-
anteeing the atomic execution of non-compensatable Web service transactions
including sub-transactions in mobile networks, we identified the following addi-
tional requirements especially for mobile network protocols.

A resource manager failure or disappearance may occur at any time. This,
however, must not have blocking effects on other resource managers.

A general problem when guaranteeing atomicity for transactions that are non-
compensatable is that participating resource managers are blocked during pro-
tocol execution. The time that a distributed sub-transaction remains in a state
within which it waits for a commit decision can be much longer in dynamic mo-
bile environments than it is in fixed-wired networks, since link failures and node
failures occur significantly more frequently. Furthermore, each sub-transaction
Tsi of a transaction T running on a resource manager RM that resides in a block-
ing state also involves the risk of the infinite blocking of other sub-transactions
of T and sub-transactions of other transactions running on RM. Therefore, we
need efficient mechanisms to reduce the time that a resource manager is in a
blocking state and to unblock sub-transactions if other resource managers do
not respond.

Within mobile networks, message delay or message loss is no exception. In
case that the vote message of a resource manager is lost or delayed, traditional
protocols like 2PC either wait until the missing vote arrives and block all partic-
ipating resource managers in the meantime, or they abort the transaction which
thereafter can be repeated as a whole. Nevertheless, a lost vote differs from an
explicit vote for abort. On one hand, a general abort may not be necessary for
many sub-transactions, especially if there is no other concurrent transaction that
tries to get a lock on the same data that the sub-transactions are accessing. On
the other hand, if there are concurrent transactions that try to access data in
a conflicting way, an abort is necessary for processing these concurrent transac-
tions. Therefore, a requirement is to abort as few transactions as necessary.

There are situations, especially when network partitioning occurs, where
blocking is proven to be unavoidable until the network is reconnected again
([8]). Of course, our solution cannot avoid this blocking, but it should reduce
the chance that resource managers are blocked by minimizing the time period
during which a failure could have a blocking effect on the resource managers.

64 S. Böttcher, L. Gruenwald, and S. Obermeier

Our contribution should be an extension to existing atomic commit protocols,
such that a concrete protocol can be chosen depending on the applications’ needs.

Our protocol extension should use previous results to the greatest possible
extent, so that an unnecessary repetition of a sub-transaction can be avoided in
as many cases as possible.

It should be possible that the user can abort a transaction as long as the
transaction has not been globally committed.

2.3 Further Assumptions

Our atomic commit protocol extension is based on the following assumptions:
In case of resource manager failure, the atomicity property requires the fol-

lowing: Whenever a resource manager RMi is unreachable after the commit
decision on a transaction T was reached, i.e. RMi has failed or is separated from
the network for an indefinitely long time, it is not a violation of the atomicity
constraint if RMi has not executed its sub-transaction Ti of T . However, if the
resource manager RMi recovers and returns to the network, RMi must immedi-
ately execute or abort Ti, depending on whether the commit decision on T was
commit or abort, before further participating in the network.

We assume that at least some (sub-)transactions are non-compensatable. We
claim that this is a realistic assumption for mobile environments. Even in our
simple example given above (Example 1), some sub-transactions (e.g. T3 and
T4) can be considered to be non-compensatable since many of today’s rental or
shipping companies demand expensive cancellation fees. We cannot tolerate a
commit protocol which must repeatedly change or cancel contracts.

An aborted (sub-) transaction cannot be compensated by the invocation of a
different sub-transaction; in contrast to Corba OTS ([7]), in which a hierarchy
of commit decisions allows this kind of compensation.

The stability of the coordinator process itself is not a topic of this proposal.
There are many contributions that handle coordinator failures, e.g., by running
special termination protocols or by increasing coordinator availability with mul-
tiple coordinators (e.g [9], [10], or [11]). We only propose an improvement which
is compatible to each of these commit protocols. The concrete protocol can be
chosen depending on the desired coordinator stability. Therefore, we do not
discuss coordinator failure in this contribution.

2.4 Blocking Behavior of Locking and Validation

For synchronization of concurrent transactions in fixed-wired networks, valida-
tion is usually considered to be a scheduling technique that avoids blocking.
However, we argue that even validation-based synchronization shows a blocking
behavior if used in combination with an atomic commit protocol. More precisely,
in case of link failures or node failures, locking and validation are equivalent re-
garding their blocking behavior in the following sense. Assume a sub-transaction
Ti, reading the tuples t(R, Ti) and writing the tuples t(W, Ti), has voted for com-
mit and is waiting for a global commit decision.

Reducing Sub-transaction Aborts and Blocking Time 65

Two-phase locking would not allow any sub-transaction Tk with t(W, Ti) ∩
(t(W, Tk) ∪ t(R, Tk)) �= ∅ to get the required locks and would therefore block Tk

and prevent the completion of Tk´s read phase.
Validation (e.g. [12]) would allow any later sub-transaction Tk with t(W, Ti)∩

(t(W, Tk) ∪ t(R, Tk)) �= ∅ to enter the read phase. However, since the tuple sets
t(W, Ti) and (t(W, Tk) ∪ t(R, Tk)) are not disjoint, validation aborts Tk during
its validation phase and thereby prevents Tk to enter its write phase.

This means that both techniques show a similar behavior when dealing with
atomic commit decisions for mobile networks: A transaction Ti that has voted
for commit, is waiting for a global commit decision, and has accessed the tuples
t(W, Ti) ∪ t(R, Ti) prevents other sub-transactions Tk to gain access to the same
data. This means that Ti prevents Tk from being committed while Ti only waits
for the commit decision.

To reduce both, the blocking time and the probability of an abort, our solution
distinguishes between two states within which a transaction waits for the global
commit decision: Besides a blocking state “wait for global commit”, we introduce
the non-blocking “suspend state”.

3 Solution

In the following, we describe the solution to the requirements, i.e., how to guar-
antee atomicity for Web service transactions and how to reduce the time of
blocking and the number of transaction aborts compared to standard protocols
like 2PC or 3PC. To reduce the time of blocking to a minimum extent, we distin-
guish between two states where a transaction is waiting for a commit: a blocking
state (defined in Section 3.1) and a new non-blocking suspend state (introduced
in Section 3.2). In Section 3.3, we explain how the suspend state can be used
to reduce the number of transaction aborts and how previous results can be
reused to a maximum extent. Finally, Section 3.5 explains by means of a “com-
mit tree” how the coordinator learns of all sub-transactions that are dynamically
invoked.

3.1 The Wait for Global-Commit State

We define the wait for global-commit state for the sub-transaction Ti reading
the tuples t(R, Ti) and writing the tuples t(W, Ti) in the following way:

Definition 1. The wait for global-commit state of Ti is a state in which a re-
source manager waits for a final decision of a commit coordinator on Ti to
commit and blocks the tuples t(W, Ti) ∪ t(R, Ti). If another transaction Tk is
executed while Ti is in the wait for global-commit state, Tk is not allowed to
write on the tuples t(R, Ti), and it is not allowed to read or to write on the
tuples t(W, Ti). The concurrent transaction Tk must wait until Ti is back in
the suspend state or is committed or aborted and Ti has unlocked t(R, Ti) and
t(W, Ti).

66 S. Böttcher, L. Gruenwald, and S. Obermeier

3.2 The Non-blocking Suspend State

While waiting for the transaction’s commit decision, protocols like 2PC or 3PC
remain in a wait state and block the client that has voted for commit ([13], [4]).
To reduce the duration of this blocking, our protocol extension suggests an ad-
ditional suspend state, such that a transaction waiting for the global transaction
decision can be in either of two states: in the non-blocking suspend state or in
the blocking wait state.

For each sub-transaction Ti, let t(R, Ti) denote the data read by Ti and
t(W, Ti) denote the data written by Ti. Then, we define the suspend state for
the sub-transaction Ti in the following way:

Definition 2. The suspend state of Ti is a state in which the resource manager
RM executing Ti waits for a decision of the commit coordinator on Ti, but does
not block the tuples t(W, Ti) ∪ (R, Ti).

If another transaction Tk is executed while Ti is suspended, RM checks whether

t(W, Ti) ∩ (t(R, Tk) ∪ t(W, Tk)) �= ∅ or t(R, Ti) ∩ t(W, Tk) �= ∅

If this is the case, there is a conflict between Ti and Tk, and therefore, RM locally
aborts Ti and can either abort the global transaction T or try a repeated execution
of the sub-transaction Ti.

3.3 Using the Suspend State to Reduce the Number of Aborts

suspend

commit

wait for global

commit (block)

abort

pre-vote

sent

coordinator:

send vote!

coordinator:

commit!

abort

sent

coordinator:

suspend!

coordinator:

abort!

read-phase

abort

sent

re-

peat

invokeSubTransaction

Fig. 2. Automaton showing the states and the re-
ceived messages of a resource manager

Figure 2 shows an automa-
ton that demonstrates all pos-
sible state transitions of a
resource manager. Each re-
source manager enters the
suspend state after having
executed its read-phase and
having sent a pre-vote mes-
sage on the successful com-
pletion of the sub-transaction
to the commit coordinator.
The commit coordinator con-
siders this pre-vote as a vote
that does not bind the re-
source manager to a com-
mit decision; instead, it only
shows the resource manager’s
successful completion of the
read-phase. Note that in comparison to 3PC, a resource manager is not bound
to its pre-vote, but may still decide to abort the transaction as long as it is in
suspend state. Similar to 2PC and 3PC, whenever a resource manager decides
to abort a sub-transaction, it informs the coordinator, which then sends abort
messages to the global transaction and all its other sub-transactions.

Reducing Sub-transaction Aborts and Blocking Time 67

When the coordinator has received the pre-votes of all resource managers,
i.e., all resource managers have pre-voted for commit, the coordinator demands
the resource managers to vote on the commit status of the transaction. This
vote, in contrast to the pre-vote, is binding and the resource managers proceed
to a blocking state where they wait for the global commit decision, i.e., the
resource managers are not allowed to abort the transaction themselves while
in blocking “wait for global-commit” state. The second collection of votes is
needed because a resource manager may come to the decision to abort the sub-
transaction while waiting in the suspend state. The coordinator collects these
binding vote decisions on the sub-transactions and returns “abort” to the sub-
transactions, if at least one RM’s vote on its sub-transaction was “abort”, and it
returns “commit” to the sub-transactions, if it received the binding votes of all
sub-transactions and all sub-transactions voted for commit. If the coordinator
determines that vote messages are missing after a certain time, it can advise
the RMs to put their sub-transactions back to the non-blocking suspend state
instead of committing or aborting the sub-transaction. Note that this reduces
the number of aborts compared to time-out-based 2PC, in which the coordinator
decides to abort a transaction if votes do not arrive before time-out.

After a resource manager has successfully finished its read-phase, it sends
the pre-vote message to the coordinator and proceeds to suspend. The resource
manager waits in this non-blocking state until one of the following events occur:

• the coordinator demands the vote on the sub-transaction or
• the coordinator aborts the sub-transaction or
• a concurrent transaction causes an abort or a repetition of the sub-transac-

tion due to access conflicts on the tuples accessed by the sub-transaction.

After sending its vote to the coordinator, each resource manager proceeds to
the “wait for global-commit state”. Since it is now bound to its votes, concurrent
transactions are blocked until the coordinator either decides on commit or abort
or, after a timeout caused by missing votes, advises the sub-transaction to go
into the suspend state again.

In case that the user or the application program wants to abort the transac-
tion, the initiator sends an abort message to the coordinator, which is allowed
to abort the transaction anytime before the commit decision is reached.

The benefit of the suspend state lies in the reduction of blocking to only those
cases where all pre-votes are present at the coordinator and all are commit.
Even then, blocking only occurs for one message exchange cycle, i.e., while the
coordinator asks for and retrieves the binding votes. Our protocol definition
implies that all resource managers are able to give their vote on the transaction
immediately. If, however, not all resource managers respond immediately, the
coordinator may again advise the resource managers to go into suspend state
while waiting for the missing votes.

2PC, in contrast, blocks a resource manager from the time when it finishes
its read-phase, i.e., when it is ready to vote for commit, until the time when it
receives the commit decision. The more the duration of the read-phases varies

68 S. Böttcher, L. Gruenwald, and S. Obermeier

for different sub-transactions belonging to the same global transaction, the more
the suspend state reduces the blocking time compared to 2PC.

In addition, in our protocol resource managers may fail or disappear without
having a blocking effect on other sub-transactions, while in 2PC, in case of a
resource manager failure before reaching a commit decision, the participants are
blocked until the transaction is aborted due to timeout. Since timeouts must
be sufficiently long to allow the execution of all sub-transactions in 2PC, the
blocking time can be significantly long. However, if final votes are missing or de-
layed in our protocol extension, the coordinator can advise the sub-transactions
to go into the non-blocking suspend state after a very short timeout, and sub-
transactions do not have to stay in a blocking state until all resource managers
have reconnected and voted.

3.4 Abort and Repetition of Sub-transactions

The second key idea of the suspend state, besides reducing the time of blocking,
is to reduce the number of transaction aborts. For this purpose, we distinguish
three different cases that arise due to an abort of a sub-transaction Ti.

1. Ti cannot be restarted because Ti is not committable or shall not be repeated
anymore.

2. Ti is restarted and invokes the same sub-transactions Tsi . . . Tsj with the
same values for the actual parameters Psi . . . Psj during the repeated execu-
tion of the read-phase. This case includes the situation where both executions
of the sub-transaction do not invoke any other sub-transaction.

3. Ti is restarted, i.e. executed as T ′
i , and T ′

i invokes different sub-transaction
calls during execution of its read phase. In this case, the sub-transactions
called by Ti and T ′

i or their parameter values differ.

Only the first case requires the global transaction to be aborted, whereas the
other types of sub-transaction abort can be solved by a repetition of the aborted
sub-transaction Ti, which may involve calls to other sub-transactions Tsi . . . Tsj

as well. Now, we discuss each of these three cases in more detail.

Ti cannot be Restarted. There are different reasons why a restart of an
aborted transaction does not make sense:

• the transaction abort is caused by the user,
• the commit coordinator requires Ti to abort because another sub-transaction

belonging to the same global transaction T required T to abort,
• the abort is caused by the execution of Ti on a resource manager RM itself,

i.e., the result of running Ti on RM is that Ti cannot be committed.

In each of these cases, Ti and the global transaction T must be aborted. Note
that although we have a hierarchy of invoked sub-transactions, we do not have
a hierarchy of commit decisions: If a leaf node is not able to repeat the aborted
sub-transaction with a chance of commit, it must vote for abort and the complete
transaction T must be aborted and started again.

Reducing Sub-transaction Aborts and Blocking Time 69

Restart with Identical Sub-transaction Calls and Parameters. The
restart of a sub-transaction Ti is useful if Ti is in suspend state and a con-
current transaction Ck accesses at least one tuple accessed by Ti in a conflicting
access mode. The resulting abort of Ti does not necessarily mean that the whole
transaction T , of which Ti is a sub-transaction, must be aborted and restarted.
Instead, we monitor which sub-transactions Tsi are called by Ti with which pa-
rameters Psi

3 for each transaction Ti. Whenever Ti has called Tsi with parame-
ters Psi, and T ′

i , i.e. the restarted version of Ti, needs to call a sub-transaction
T ′

si with exactly the same parameters P ′
si, i.e. P ′

si = Psi, we have the following
optimization opportunity: We can omit a new invocation of Tsi for the following
reason. If Tsi is still in suspend state, the result of a new execution of Tsi will
be the same. If, however, the tuples accessed by Tsi change and Tsi leaves the
suspend state, the resource manager that executes Tsi detects this conflict and
starts T ′

si as the repeated execution of Tsi. The same argument applies to all
sub-transactions that Tsi has called. Since a sub-transaction does not directly
return values, but calls receiving Web services instead, T ′

i is not affected by the
time when T ′

si is executed.
Therefore, the repeated invocation of a previously called sub-transaction Tsi

can be omitted in the execution of T ′
i if the invocation parameters Psi have not

changed. In this case, we call Tsi a re-used sub-transaction.
After T ′

i has executed its read-phase, the resource manager again proceeds
to the suspend state. However, if the coordinator message to give a vote on the
transaction arrives while RM still executes T ′

i , RM can inform the coordinator
to unblock other waiting resource managers until the repetition is completed.

To summarize, if all sub-transaction calls are re-used or if no sub-transaction
was invoked, a renewed sending of the pre-vote is not necessary and the resource
manager can continue as in the first execution.

Restart with Different Sub-transaction Calls and Parameters. If we
allow repetition, a problem may arise if the invoked sub-transactions Tsi . . . Tsj

differ in a repeated execution of a sub-transaction Ti. Therefore, a resource
manager not only remembers invoked sub-transactions, but also the invocation
parameters Psi . . . Psk.

If Ti is restarted as T ′
i and needs to invoke the sub-transactions T ′

si . . . T ′
sj , it

checks whether it can re-use the sub-transaction calls Tsi . . . Tsj of Ti. If this is not
the case or if some calls are different, those sub-transactions T ′

si . . . T ′
sj that do

not find re-usable sub-transactions must be executed again. Furthermore, a sub-
transaction Tsi which is no longer needed for the execution of T ′

i can be locally
aborted. A local abort of Tsi means that Tsi and all of its sub-transactions are
aborted, but the global transaction T and all other sub-transactions not being a
descendant of Tsi are not aborted. The advantage is that the global transaction
T and all other sub-transactions of T do not have to be repeated.

Furthermore, the sub-transaction T ′
si now belongs to T and the coordinator

must be informed to wait for the pre-vote of this newly invoked sub-transaction
3 The parameters include the name of the transaction procedure or web-service and

all its actual parameters.

70 S. Böttcher, L. Gruenwald, and S. Obermeier

T ′
si instead of waiting for Tsi. This information is passed from Ti to the coor-

dinator by a renewed sending of the pre-vote with updated parameters to the
coordinator at the end of the sub-transaction execution of T ′

i .
In addition, a resource manager that is going to restart a sub-transaction

Ti can inform the coordinator about this restart, so that a possible abort vote
of a descendant sub-transaction Tsi will not cause an immediate global abort.
Instead, the coordinator can wait for the pre-vote of T ′

i , i.e. the restarted version
of Ti, to check whether Tsi is still needed at all.

3.5 The Coordinator’s Commit Tree

The coordinator’s commit tree is a data structure that allows the coordinator to
determine which votes are missing for a commit decision. The tree structure is
used to represent dependencies between sub-transactions.

To ensure that the commit tree gets knowledge of all invoked sub-transactions
belonging to T , we require that each pre-vote message, sent by a sub-transaction
Ti to the coordinator, not only contains the commit vote, but also informs
the coordinator about all sub-transactions Ts1 . . . Tsk that are called by Ti.
The coordinator then creates the nodes Ts1 . . . Tsk and adds these nodes as
child nodes of the commit tree node containing Ti. Since the coordinator needs
the pre-votes of all commit tree nodes, it must also wait for the pre-votes of
Ts1 . . . Tsk.

When a resource manager has repeated the execution of a sub-transaction
Ti as T ′

i according to Section 3.4, the resource manager sends a renewed pre-
vote to the coordinator, which includes the invoked sub-transactions T ′

si and
the IDs of the re-used sub-transactions T reused

si . The coordinator then replaces
the subtree with root node Ti with T ′

i . Each sub-transaction Tj ∈ Tsi that is
not needed anymore, i.e. Tj /∈ T reused

si , is locally aborted and deleted from the
commit tree. The re-used sub-transactions T reused

si and the new sub-transactions
T ′

si are appended as child nodes to T ′
si.

4 Related Work

To distinguish contributions in the field of atomicity and distributed transac-
tions, we can use two main criteria: first, whether flat or nested transactions
are supported and secondly, whether transactions and sub-transactions are re-
garded as compensatable or non-compensatable. Our contribution is based on
a transactional model that assumes sub-transactions to be non-compensatable
and allows nested transaction calls.

Our contribution differs from the Web service transaction model of [3] in
several aspects. For example, [3] uses a “completion protocol” for registering
resource managers at the coordinator, but does not propose a non-blocking state
– like our suspend state – to unblock transaction participants while waiting for
other participants’ votes. In comparison, our suspend-state may even be entered
repeatedly during the protocol’s execution. However, since the suspend state can
be used as a protocol extension, it can also be combined with [3].

Reducing Sub-transaction Aborts and Blocking Time 71

Besides the Web service orchestration model, there are other contributions
that set up transactional models to allow the invocation of sub-transactions, e.g.
[6] or [14]. Common with these transaction models, we have a global transaction
and sub-transactions that are created during transaction execution and cannot
be foreseen. The main differences to these nested transactional models is that
we consider all sub-transactions to be non-compensatable.

The use of a suspend state is also proposed by [15]. However, these approaches
are intended for use within an environment with a fixed-wired network and sev-
eral mobile cells, where disconnections are detectable and therefore transactions
are considered to be compensatable.

Our work is based on [16], but goes beyond this in several aspects, e.g., we dis-
tinguish three different types of transaction aborts and provide technologies for
reusing and locally restarting sub-transactions. In addition, we use the suspend
state not only to treat network failures, but also in the failure-free case in order
to further reduce the blocking time during failure-free transaction execution.

Corba OTS ([7]) uses the term “suspend” for a concept which differs from
our model because our suspend state is a non-blocking state for a mobile en-
vironment. Regarding the transactional model, Corba OTS uses a hierarchy
of commit decisions, where an abort of a sub-transaction can be compensated
by other sub-transactions. However, in the presence of non-compensability, this
implies waiting for the commit decision of all descendant nodes. In a mobile
environment where node failures are likely, we neither propose to wait nor to
block the participants until the commit decision has reached all participants.

5 Summary and Conclusion

We have presented two key ideas for guaranteeing atomicity for web-service
transactions in a mobile context that also reduce the time of blocking and the
number of aborts. The first idea is to use the suspend state for a transaction
that has finished its read phase while the coordinator waits for the votes of other
sub-transactions of the same global transaction. Being in suspend state, a sub-
transaction can still be aborted by the resource manager if the resource manager
decides to grant the resources used by this sub-transaction to other concurrent
transactions to prevent them from blocking.

Secondly, for reducing the number of aborts in case of conflicts or missing
votes, we identify those aborted sub-transactions that are repeatable or reusable,
instead of only aborting and restarting all sub-transactions of the global trans-
action. Additionally, we have introduced the commit tree as a data structure
that can be used to implement the coordinator’s management of transaction
atomicity for a dynamically changing set of sub-transactions.

We have embedded our atomic commit protocol in a web-service transactional
model, the characteristics of which is that sub-transactions must not be known
in advance. We have furthermore presented all key solutions as an extension to
2PC. Note however, that our contributions are applicable to a much broader
set of protocols. For example, the extension of an atomic commit protocol by a

72 S. Böttcher, L. Gruenwald, and S. Obermeier

non-blocking suspend state is not limited to 2PC, but appears to be compatible
with a variety of other atomic commit protocols, e.g. [9], [10], or [11].

Finally, our protocol extension can nicely be combined with various concur-
rency control strategies including validation and locking. Although a proof of
serializability for any schedule of concurrent transactions is beyond the scope of
this paper, we have evidence that serializability can be guaranteed, and we plan
to report about this on a forthcoming paper.

References

1. Curbera, F., Goland, Y., Klein, J., Leymann, F., et al.: Business Process Execution
Language for Web Services, V1.0. Technical report, BEA, IBM, Microsoft (2002)

2. Arkin, A., et al.: Business process modeling language, bpmi.org. (Technical report)
3. Cabrera, L.F., Copeland, G., Feingold, M., et al.: Web Services Trans-

actions specifications – Web Services Atomic Transaction. http://www-
128.ibm.com/developerworks/library/specification/ws-tx/ (2005)

4. Gray, J.: Notes on data base operating systems. In Flynn, M.J., Gray, J., Jones,
A.K., et al., eds.: Advanced Course: Operating Systems. Volume 60 of Lecture
Notes in Computer Science., Springer (1978) 393–481

5. Kumar, V., Prabhu, N., Dunham, M.H., Seydim, A.Y.: Tcot-a timeout-based mo-
bile transaction commitment protocol. IEEE Trans. Com. 51 (2002) 1212–1218

6. Dunham, M.H., Helal, A., Balakrishnan, S.: A mobile transaction model that
captures both the data and movement behavior. Mobile Networks and Applications
2 (1997) 149–162

7. Object Management Group: Trans. Service Spec. 1.4. http://www.omg.org (03)
8. Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed

system. In: Berkeley Workshop. (1981) 129–142
9. Reddy, P.K., Kitsuregawa, M.: Reducing the blocking in two-phase commit with

backup sites. Inf. Process. Lett. 86 (2003) 39–47
10. Gray, J., Lamport, L.: Consensus on transaction commit. Microsoft Research –

Technical Report 2003 (MSR-TR-2003-96) cs.DC/0408036 (2004)
11. Böse, J.H., Böttcher, S., Gruenwald, L., Obermeier, S., Schweppe, H., Steenweg, T.:

An integrated commit protocol for mobile network databases. In: 9th International
Database Engineering & Application Symposium IDEAS, Montreal, Canada (2005)

12. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Trans. Database Syst. 6 (1981) 213–226

13. Skeen, D.: Nonblocking commit protocols. In Lien, Y.E., ed.: Proceedings of
the 1981 ACM SIGMOD International Conference on Management of Data, Ann
Arbor, Michigan, ACM Press (1981) 133–142

14. Pitoura, E., Bhargava, B.K.: Maintaining consistency of data in mobile distributed
environments. In: Intl. Conf. on Distributed Computing Systems. (1995) 404–413

15. Dirckze, R.A., Gruenwald, L.: A toggle transact. management technique for mobile
multidatabases. In: CIKM ’98, New York, USA, ACM Press (1998) 371–377

16. Böttcher, S., Gruenwald, L., Obermeier, S.: An Atomic Web-Service Transaction
Protocol for Mobile Environments. In: Proceedings of the 2nd EDBT Workshop
on Pervasive Information Management, Munich, Germany (2006)

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 73 – 85, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Query Translation for Distributed Heterogeneous
Structured and Semi-structured Databases

Fahad M. Al-Wasil, N.J. Fiddian, and W.A. Gray

School of Computer Science
Cardiff University
Queen's Buildings

5 The Parade, Roath
Cardiff CF24 3AA

Wales, UK
{Wasil, N.J.Fiddian, W.A.Gray}@cs.cardiff.ac.uk

Abstract. The main purpose of building data integration systems is to facilitate
access to a multitude of data sources. A data integration system must contain a
module that uses source descriptions in order to reformulate user queries which
are posed in terms of the composite global schema, into sub-queries that refer
directly to the schemas of the component data sources. In this paper we propose
a method for this user query translation task to target distributed heterogeneous
structured data residing in relational databases and semi-structured data held in
well-formed XML documents (XML documents which have no referenced
DTD or XML schema) produced by Internet applications or human-coded.
These XML documents can be XML files on local hard drives or remote
documents on Web servers. Our method is based on mappings between the
master (composite) view and the participating data source schema structures
that are defined in a generated XML Metadata Knowledge Base (XMKB).

1 Introduction

Users and application programs in a wide variety of businesses today are increasingly
requiring the integration of multiple distributed autonomous heterogeneous data
sources [1, 2]. The continuing growth and widespread popularity of the Internet mean
that the collection of useful data sources available for public access is rapidly
increasing both in number and size. Furthermore, the value of these data sources
would in many cases be greatly enhanced if the data they contain could be combined,
"queried" in a uniform manner (i.e. using a single query language and interface), and
subsequently returned in a machine-readable form. For the foreseeable future, much
data will continue to be stored in relational database systems because of the
reliability, scalability, tools and performance associated with these systems [3, 4].
However, due to the impact of the Web, there is an explosion in complementary data
availability: this data can be automatically generated by Web-based applications and
Web services or can be human-coded [5]. Such data is called semi-structured data
(ssd) due to its varying degree of structure. In the domain of semi-structured data, the
eXtensible Markup Language (XML) is a major data representation as well as data
exchange format. XML is a W3C specification [6] that allows creation and

74 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

transformation of a semi-structured document conforming to the XML syntax rules
and having no referenced DTD or XML schema. Such a document has metadata
buried inside the data and is called a well-formed XML document. The metadata
content of XML documents enables automated processing, generation, transformation
and consumption of semi-structured information by applications. Much interesting
and useful data can be published as a well-formed XML document by Web-based
applications and Web services or by human-coding.

Hence, building a data integration system that provides unified access to
semantically and structurally diverse data sources is highly desirable to link structured
data residing in relational databases and semi-structured data held in well-formed
XML documents produced by Internet applications or human-coded [7, 8]. These
XML documents can be XML files on local hard drives or remote documents on Web
servers. The data integration system has to find structural transformations and
semantic mappings that result in correct merging of the data and allow users to query
the so-called mediated schema [9]. This linking is a challenging problem since the
pre-existing databases concerned are typically autonomous and located on
heterogeneous hardware and software platforms. In this context, it is necessary to
resolve several conflicts caused by the heterogeneity of the data sources with respect
to data model, schema or schema concepts. Consequently, mappings between entities
from different sources representing the same real-world objects have to be defined.
The main difficulty is that the related data from different sources may be represented
in different formats and in incompatible ways. For instance, the bibliographical
databases of different publishers may use different formats for authors' or editors'
names (e.g. full name or separated first and last names), or different units for prices
(e.g. dollars, pounds or euros). Moreover, the same expression may have a different
meaning, or the same meaning may be specified by different expressions. This
implies that syntactical data and metadata alone cannot provide sufficient semantics
for all potential integration purposes. As a result, the data integration process is often
very labour-intensive and demands more computing expertise than most application
users have. Therefore, semi-automated approaches seem the most promising way
forward, where mediation engineers are given an easy tool to describe mappings
between the integrated (integrated and master are used interchangeably in this paper)
view and local schemas, to produce a uniform view over all the participating local
data sources [10].

XML is becoming the standard format to exchange information over the Internet.
The advantages of XML as an exchange model - such as rich expressiveness, clear
notation and extensibility - make it an excellent candidate to be a data model for the
integrated schema. As the importance of XML has increased, a series of standards has
grown up around it, many of which were defined by the World Wide Web
Consortium (W3C). For example, the XML Schema language provides a notation for
defining new types of XML elements and XML documents. XML with its self-
describing hierarchical structure and the language XML Schema provide the
flexibility and expressive power needed to accommodate distributed and
heterogeneous data. At the conceptual level, they can be visualized as trees or
hierarchical graphs.

In [11] we proposed and described a System to Integrate Structured and Semi-
structured Databases (SISSD) through a mediation layer. Such a layer is intended to

 Query Translation for Distributed Heterogeneous SSD 75

combine and query distributed heterogeneous structured data residing in relational
databases with semi-structured data held in well-formed XML documents (that
conform to the XML syntax rules but have no referenced DTD or XML schema)
produced by Internet applications. We investigated how to establish and evolve an
XML Metadata Knowledge Base (XMKB) incrementally to assist the Query
Processor in mediating between user queries posed over the master view and the
underlying distributed heterogeneous data sources. The XMKB is built in a bottom-up
fashion by extracting and merging incrementally the metadata of the data sources. It
contains and maintains data source information (names, types and locations), meta-
information about relationships of paths among data sources, and function names for
handling semantic and structural discrepancies. The associated SISSD system
automatically creates a GUI tool for meta-users (who do the metadata integration) to
describe mappings between the master view and local data sources by assigning index
numbers and specifying conversion function names. From these mappings the SISSD
produces the corresponding XML Metadata Knowledge Base (XMKB), which is
capable of supporting the generation of queries to local data sources from user queries
posed over the master view. The GUI tool parses the master view to generate an index
number for each element and parses local schema structures to generate a path for
each element. Mappings assign indices to match local elements with corresponding
master elements and to names of conversion functions, which can be built-in or user-
defined functions. The XMKB is derived based on the mappings by combination over
index numbers.

We have proposed a generic mechanism to compute index numbers for the master
view elements. By applying this mechanism, a unique index number is generated for
each element in an XML document whatever the nesting complexity of the document.
We have also described several mapping cases between master view and local schema
structure elements (e.g. One-to-One, One-to-Many and Many-to-One) and how to
resolve structural and semantic conflicts that may occur between elements.

This system is flexible: users can assemble any virtual master view they want from
the same set of data sources depending on their interest. It also preserves local
autonomy of the local data sources, thus these data sources can be handled without
rebuilding or modification. The SISSD uses the local-as-view approach to map
between the master view and the local schema structures. This approach is well-suited
to supporting a dynamic environment, where data sources can be added to or removed
from the system without the need to restructure the master view. The XML Metadata
Knowledge Base (XMKB) is evolved and modified incrementally when data sources
are added to or removed from the system, without the need to regenerate it from
scratch.

This paper concentrates on the problem of querying a multiplicity of distributed
heterogeneous structured data residing in relational databases and semi-structured
data held in well-formed XML documents. The important aspect is to develop a
technique to seamlessly translate user queries over the master view into sub-queries -
called local queries - fitting each participating data source, by exploiting the mapping
information stored in the XMKB.

User queries are formulated in XQuery (a powerful universal query language for
XML) FLWR (short for For-Let-Where-Return) expressions and processed

76 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

according to the XMKB, by generating an executable (sub-) query for each relevant
local data source.

The rest of this paper is organized as follows. The next section presents related
work. The SISSD architecture and the internal architecture of its Query Processor
(QP) are described in section 3. Section 4 presents the structure, content and
organization of knowledge in the XMKB. Section 5 summarises the query translation
process in algorithmic form. Finally, we present conclusions in section 6.

2 Related Work

Data integration has received significant attention since the early days of databases. In
recent years, there have been several projects focusing on heterogeneous information
integration. Most of them are based on a common mediator architecture [12] such as
Garlic [13], the Information Manifold [14], Disco [15], Tsimmis [16], Yat [17], Mix
[18], MedMaker [19] and Agora [20]. The goal of such systems is to provide a
uniform user interface to query integrated views over heterogeneous data sources. A
user query is formulated in terms of the integrated view; to execute the query, the
system translates it into sub-queries expressed in terms of the local schemas, sends the
sub-queries to the local data sources, retrieves the results, and combines them into the
final result provided to the user. Data integration systems can be classified according
to the way the schemas of the local data sources are related to the global, unified
schema. A first approach is to define the global schema as a view over the local
schemas: such an approach is called global-as-view (GAV). The opposite approach,
known as local-as-view (LAV), consists of defining the local sources as views over
the global schema [21].

Now consider query processing. In the GAV approach, translating a query over the
global schema into queries against the local schemas is a simple process of view
unfolding. In the case of LAV, the query over the global schema needs to be
reformulated in terms of the local data source schemas; this process is traditionally
known as "rewriting queries using views" and is a known hard problem [22].

Projects like Garlic, Disco, Tsimmis, Mix, MedMaker and Yat all adopt the GAV
approach, and therefore do not compare directly to our system since we use the LAV
approach. Projects like the Information Manifold and Agora are integration systems
with a LAV architecture; however, in the Information Manifold the local and global
schemas are relational, while the Agora system supports querying and integrating data
sources of diverse formats, including XML and relational sources under an XML
global schema, but assumes explicit schemas for XML data sources.

SilkRoute [23] and XPERANTO [4, 24] focus on exporting relational databases
under an XML interface. Since the mapping is done from tuples to XML, these
projects adopt the GAV approach; also, they can only integrate relational data
sources. By contrast, our integration approach can handle diverse data sources (XML
and relational), not just relational. Also SISSD follows the Information Manifold and
Agora systems by adopting the LAV approach.

The LAV approach provides a more flexible environment to meet users’ evolving
and changing information requirements across the disparate data sources available
over the global information infrastructure (Internet). It is better suited and scalable for

 Query Translation for Distributed Heterogeneous SSD 77

Fig. 1. The SISSD Architecture

integrating a large number of autonomous read-only data sources accessible over
communication networks. Furthermore the LAV approach provides a flexible
environment able to accommodate the continual change and update of data source
schemas, especially suitable for XML documents on Web servers since these remote
documents are not static and are often subject to frequent update.

3 The SISSD Architecture and Components

In this section, we present an overview of the SISSD architecture and summarize the
functions of the main components. The architecture we adopt is depicted in Figure 1.
Its main components are the Metadata Extractor (MDE), the Knowledge Server (KS)
and the Query Processor (QP).

3.1 Metadata Extractor (MDE)

The MDE needs to deal with heterogeneity at the hardware, software and data model
levels without violating the local autonomy of the data sources. It interacts with the
data sources via JDBC (Java Database Connectivity) if the data source is a relational
database or via JXC (Java XML Connectivity) if the data source is an XML
document. The MDE extracts the metadata of all data sources and builds a schema
structure in XML form for each data source.

78 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

We developed JXC using a JDOM (Java Document Object Model) interface to
detect and extract the schema structure of a well-formed XML document (that
conforms to the XML syntax rules but has no referenced DTD or XML schema),
where the metadata are buried inside the data.

3.1.1 Schema Structures
Typically, the heterogeneous data sources use different data models to store their data
(e.g. relational model and XML model). This type of heterogeneity is referred to as
syntactic heterogeneity. The solution commonly adopted to overcome syntactic
heterogeneity is to use a common data model and to map all schemas to this common
model. The advantages of XML as an exchange model make it a good candidate to be
the common data model and for supporting the integrated data model. The metadata
extracts generated on top of the data sources by using this data model are referred to
as schema structures. We define a simple XML Data Source Definition Language
(XDSDL) for describing and defining the relevant identifying information and the
data structure of a data source. The XDSDL is represented in XML and is composed
of two parts. The first part provides a description of the data source name, location
and type (relational database or XML document). The second part provides a
definition and description of the data source structure and content. The emphasis is on
making these descriptions readable by automated processors such as parsers and other
XML-based tools. This language can be used for describing the structure and content
of relational databases and well-formed XML documents which have no referenced
DTD or XML schema.

For relational databases the MDE employs JDBC to access the DB without making
any changes to it. The MDE accepts the information necessary to establish a
connection to a DB to retrieve the metadata of its schema and uses the XDSDL to
build the target schema structure for that DB, together with necessary information
such as the DB location (URL), where to save the schema structure, the User ID and
Password.

It opens a connection to that DB through a JDBC driver. Opening this connection

enables SQL queries to be issued to and results to be retrieved from the DB. Once the
connection is established, the MDE retrieves the names of all the tables defined in the
accessed DB schema and then uses the XDSDL to define these tables as elements in
the target schema structure. Furthermore, for each table the MDE extracts and
analyses the attribute names, then defines these attributes as child elements for that
table element in the target schema structure using the XDSDL.

For XML documents the MDE employs JXC to access the document without
making any changes to it. The MDE accepts the information necessary to establish a
connection to a well-formed XML document to retrieve the metadata of its schema

 Query Translation for Distributed Heterogeneous SSD 79

where the metadata are buried inside the data. It then uses the XDSDL to build the
target schema structure for that XML document, together with necessary information
such as the document location (URL), where to save the schema structure, and the
document name.

It opens a connection to that XML document through a JDOM interface. Once the

connection is established, the JXC automatically tracks the structure of the XML
document, viz. each element found in the document, which elements are child
elements and the order of child elements. The JXC reads the XML document and
detects the start tag for the elements. For each start tag, the JXC checks if this element
has child elements or not: if it has then this element is defined as a complex element
in the target schema structure using the XDSDL, otherwise it is defined as a simple
element by the MDE. The defined elements in the target schema structure take the
same name as the start tags.

3.2 Knowledge Server (KS)

The Knowledge Server (KS) is the central component of the SISSD. Its function is to
establish, evolve and maintain the XML Metadata Knowledge Base (XMKB), which
holds information about the data sources and provides the necessary functionality for
its role in assisting the Query Processor (QP). The KS creates a GUI tool for meta-
users to do metadata integration by building the XML Metadata Knowledge Base
(XMKB) that comprises information about data structures and semantics. This
information can then be used by the Query Processor (QP) to automatically rewrite a
user query over the master view into sub-queries called local queries, fitting each
local data source, and to integrate the results.

3.3 Query Processor (QP)

The Query Processor (QP) is responsible for receiving a user query (master query)
over a master view to process it and return the query result to the user. The master
view provides the user with the elements on which the query can be based. The QP
gives flexibility to the user to choose the master view that he/she wants to pose his/her
query over and then automatically selects the appropriate XMKB that will be used to
process any query posed over this master view. The query language that our QP
supports is XQuery FLWR expressions. XQuery is the standard XML query language
being developed by the W3C [25]. It is derived from Quilt, an earlier XML query
language designed by Jonathan Robie together with IBM's Don Chamberlin, co-
inventor of SQL, and Daniela Florescu, a well-known database researcher. XQuery is

80 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

Fig. 2. Internal Architecture of the Query Processor

designed to be a language in which queries are concise and easily understood. It is
also flexible enough to query a broad spectrum of XML information sources,
including both databases and documents. It can be used to query XML data that has
no schema at all, or that is governed by a W3C standard XML Schema or by a
Document Type Definition (DTD).

XQuery is centered on the notion of expression; starting from constants and
variables, expressions can be nested and combined using arithmetic, logical and list
operators, navigation primitives, function calls, higher order operators like sort,
conditional expressions, element constructors, etc. For navigating in a document,
XQuery uses path expressions, whose syntax is borrowed from the abbreviated syntax
of XPath. The evaluation of a path expression on an XML document returns a list of
information items, whose order is dictated by the order of elements within the
document (also called document order).

A powerful feature of XQuery is the use of FLWR expressions (For-Let-Where-
Return). The for-let clause makes variables iterate over the result of an expression or
binds variables to arbitrary expressions, the where clause allows specification of
restrictions on the variables, and the return clause can construct new XML elements
as output of the query. In general, an XQuery query consists of an optional list of
namespace definitions, followed by a list of function definitions, followed by a single
query expression.

Supporting FLWR expressions for querying a master view makes it easy to
translate the sub-queries directed at relational databases into SQL queries since
syntactically, FLWR expressions look similar to SQL select statements and have
similar capabilities, only they use path expressions instead of table and column
names.

The internal architecture of the Query Processor (QP) is shown in Figure 2. It
consists of five components: XQuery Parser, XQuery Rewriter, Query Execution,
XQuery-SQL Translator, and Tagger. The core of the QP and the primary focus of

 Query Translation for Distributed Heterogeneous SSD 81

this paper is the XQuery Rewriter. This component rewrites the user query posed over
the master view into sub-queries which fit each local data source, by using the
mapping information stored in the XMKB. The main role played by each of the
components in Figure 2 is described below.

• XQuery Parser: parses a given XQuery FLWR expression in order to check it for

syntactic correctness and ensure that the query is valid and conforms to the
relevant master view. Also the parser analyses the query to generate an XQuery
Internal Structure (XQIS) which contains the XML paths, variables, conditions and
tags present in the query, then passes it to the XQuery Rewriter.

• XQuery Rewriter: Takes the XQIS representation of a query, consults the XMKB
to obtain the local paths corresponding to the master paths and function names for
handling semantic and structural discrepancies, then produces semantically
equivalent XQuery queries to fit each local data source. That is, wherever there is a
correspondence between the paths in the master view and local schema structures
concerned (otherwise the local data source is ignored).

• Query Execution: Receives the rewritten XQuery queries, consults the XMKB to
determine each data source’s location and type (relational database or XML
document), then sends each local query to its corresponding query engine, to
execute the query and return the results.

• XQuery-SQL Translator: Translates an XQuery query addressed to a relational
database into the SQL query needed to locate the result, then hands the query over
to the relational database engine to execute it and return the result in tabular format
through the Tagger.

• Tagger: Adds the appropriate XML tags to the tabular SQL query result to
produce structured XML documents for return to the user.

4 The Structure of the XMKB

The XML Metadata Knowledge Base (XMKB) is an XML document composed of
two parts. The first part contains information about data source names, types and
locations. The second part contains meta-information about relationships of paths
among data sources, and function names for handling semantic and structural
discrepancies. The XMKB structure is shown in Figure 3. The <DS_information>
element here contains data source names, types and locations. The <DS_information>
element has one attribute called number which holds the number of data sources
participating in the integration system (3 in the example shown). Also the
<DS_information> element has child elements called <DS_Location>. Each
<DS_Location> element contains the data source name, its type (relational database
or XML document) as an attribute value and the location of the data source as an
element value. This information is used by the Query Processor to specify the type of
generated sub-query (SQL if the data source type is relational database, or XQuery if
it is XML document) and the data source location that the system should submit the
generated sub-query to.

82 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

Fig. 3. A sample XMKB document

The <Med_component> element in Figure 3 contains the path mappings between
the master view elements and the local data source elements, and the function names
for handling semantic and structural discrepancies. The master view element paths are
called <source> elements, while corresponding element paths in local data sources
are called <target> elements. The <source> elements in the XMKB document have
one attribute called path which contains the path of the master view elements. These
<source> elements have child elements called <target> which contain the
corresponding paths for the master view element paths in each local data source, or
null if there is no corresponding path. The <target> elements in the XMKB document
have two attributes. The first one is called name and contains the name of the local
data source, while the second is called fun and contains the function name that is
needed to resolve semantic and structural discrepancies between the master view
element and the local data source element concerned, or null if there is no
discrepancy.

5 The Query Translation Process

From the foregoing descriptions of the SISSD Query Processor (QP) component
architecture (section 3.3) and the XML Metadata Knowledge Base (XMKB)
organization and contents (section 4), we are now in a position to summarise the
query translation (rewriting) process carried out at the heart of our system by the QP
module. We do so in algorithmic form as follows, c.f. Figure 2 earlier. The algorithm
is both conceptually simple and generally applicable. We have successfully
implemented and tested it on a variety of relational and XML data source integration
examples in our prototype SISSD system.

 Query Translation for Distributed Heterogeneous SSD 83

Algorithm. Master query translation process

Input: Master View, Master XQuery query q, and XMKB

Output: local sub-queries q1, q2…, qn

Step1: parse q;

Step2: get global paths g1, g2…., gn from Master View;

Step3: read XMKB;

Step4: identify the number of local data sources participating in the integration
 system, their locations and types;

Step5: for each data source Si do
 for each global path ge in q do
 if the corresponding local path le not null then
 get le;
 if the function name fe not null then
 get fe;
 end if
 else
 no query generated for this local data source Si ;
 end if
 end for
 replace g1 by l1 with f1, g2 by l2 with f2 ..., gn by ln with fn, in qi;
 if data source type is relational database then
 convert qi XQuery into SQL;
 end for

Step6: execute the generated local query qi by sending it to the corresponding local
 data source engine, and return the result, with XML tags added to SQL tables.

6 Conclusions

In this paper, we have described an approach for querying a multiplicity of distributed
heterogeneous structured data residing in relational databases and semi-structured
data held in well-formed XML documents (XML documents which have no
referenced DTD or XML schema) produced by Internet applications or human-coded.
These XML documents can be XML files on local hard drives or remote documents
on Web servers. Our method is based on mappings between the master view and the
participating data source schema structures that are defined in a generated XML
Metadata Knowledge Base (XMKB). The basic idea is that a query posed to the
integrated system, called a master query, is automatically rewritten into sub-queries
called local queries which fit each local data source, using the information stored in
the XMKB. This task is accomplished by the Query Processor module. Such an
approach produces a system capable of querying across a set of heterogeneous
distributed structured and semi-structured data sources. We have developed a

84 F.M. Al-Wasil, N.J. Fiddian, and W.A. Gray

prototype system to demonstrate that the ideas explored in the paper are sound and
practical, also clearly convenient from a user standpoint.

As a result, our system can easily incorporate a large number of relational
databases and XML data sources from the same domain. However, most of the
existing data integration systems concerned with XML documents are interested in
documents that use DTD (Document Type Definition) or XML Schema language for
describing the schemas of the participating heterogeneous XML data sources. We
have investigated and used XML documents which have no referenced DTD or XML
schema, rather the schema metadata are buried inside the document data. This paper
has shown that querying a set of distributed heterogeneous structured and semi-
structured data sources of this form and in this way is possible; its relevance in the
Internet/Web context is readily apparent.

In addition to this, our Query Processor (QP) has been implemented using Java,
JDOM API, and the JavaCC compiler. It accepts FLWR expressions as an XML
query language, this is a subset of XQuery which supports the basic requirements of
our approach, particularly the uniform querying of heterogeneous distributed
structured (relational database) and semi-structured (well-formed XML document)
data sources.

References

1. Hu, G. and H. Fernandes, Integration and querying of distributed databases, in Proceedings
of the IEEE International Conference on Information Reuse and Integration (IRI 2003),
October 27-29, 2003: Las Vegas, NV, USA. p. 167-174.

2. Segev, A. and A. Chatterjee, Data manipulation in heterogeneous databases. Sigmod
Record, December 1991. 20(4): p. 64-68.

3. Funderburk, J.E., et al., XTABLES: Bridging Relational Technology and XML. IBM
Systems Journal, 2002. 41(4): p. 616-641.

4. Shanmugasundaram, J., et al., Efficiently Publishing Relational Data as XML Documents,
in Proceedings of the 26th International Conference on Very Large Databases
(VLDB2000), September 2000: Cairo, Egypt. p. 65-76.

5. Lehti, P. and P. Fankhauser, XML data integration with OWL: Experiences & challenges,
in Proceedings of the International Symposium on Applications and the Internet (SAINT
2004), 2004: Tokyo, Japan. p. 160-170.

6. World Wide Web Consortium, http://www.w3.org/TR/2004/REC-xml-20040204/.
Extensible Markup Language (XML) 1.0 W3C Recommendation, third edition, February
2004.

7. Gardarin, G., F. Sha, and T. Dang-Ngoc, XML-based Components for Federating Multiple
Heterogeneous Data Sources, in ER '99: Proceedings of the 18th International Conference
on Conceptual Modeling, 1999, Springer-Verlag. p. 506-519.

8. Lee, K., J. Min, and K. Park, A Design and Implementation of XML-Based Mediation
Framework (XMF) for Integration of Internet Information Resources, in HICSS '02:
Proceedings of the 35th Annual Hawaii International Conference on System Sciences
(HICSS'02) - Volume 7. 2002, IEEE Computer Society. p. 202-210.

9. Kurgan, L., W. Swiercz, and K. Cios, Semantic Mapping of XML Tags using Inductive
Machine Learning, in Proceedings of the International Conference on Machine Learning
and Applications - ICMLA '02. 2002: Las Vegas, Nevada, USA.

 Query Translation for Distributed Heterogeneous SSD 85

10. Young-Kwang, N., G. Joseph, and W. Guilian, A Metadata Integration Assistant
Generator for Heterogeneous Distributed Databases, in Proceedings of the Confederated
International Conferences DOA, CoopIS and ODBASE. October 2002, LNCS 2519,
Springer, p. 1332-1344.: Irvine CA.

11. Al-Wasil, F.M., W.A. Gray, and N.J. Fiddian, Establishing an XML Metadata Knowledge
Base to Assist Integration of Structured and Semi-structured Databases, in ADC '2006:
Proceedings of The Seventeenth Australasian Database Conference. January 16th - 19th
2006: Tasmania, Australia.

12. Wiederhold, G., Mediators in the Architecture of Future Information System. IEEE
Computer, March 1992. 25(3): p. 38-49.

13. Carey, M.J., et al., Towards heterogeneous multimedia information systems: the Garlic
approach, in RIDE '95: Proceedings of the 5th International Workshop on Research Issues
in Data Engineering-Distributed Object Management (RIDE-DOM'95). 1995, IEEE
Computer Society. p. 124-131.

14. Kirk, T., et al., The Information Manifold, in Proceedings of the AAAI Spring Symposium
on Information Gathering from Heterogeneous, Distributed Environments, p. 85-91.
March, 1995.: Stanford University, Stanford, CA.

15. Tomasic, A., L. Raschid, and P. Valduriez, Scaling access to heterogeneous data sources
with DISCO. IEEE Transactions on Knowledge and Data Engineering, 1998. 10(5): p.
808-823.

16. Ullman, J.D., Information Integration Using Logical Views, in ICDT '97: Proceedings of
the 6th International Conference on Database Theory. 1997, Springer-Verlag. p. 19-40.

17. Christophides, V., S. Cluet, and J. Simèon, On wrapping query languages and efficient
XML integration, in Proceedings of ACM SIGMOD Conference on Management of Data.
May 2000.: Dallas, Texas, USA.

18. Baru, C., et al., XML-based information mediation with MIX, in SIGMOD '99:
Proceedings of ACM SIGMOD International Conference on Management of Data. 1999,
ACM Press. p. 597-599.

19. Papakonstantinou, Y., H. Garcia-Molina, and J.D. Ullman, MedMaker: A Mediation
System Based on Declarative Specifications, in ICDE '96: Proceedings of the 12th
International Conference on Data Engineering. 1996, IEEE Computer Society. p. 132-141.

20. Manolescu, I., D. Florescu, and D. Kossmann, Answering XML Queries over
Heterogeneous Data Sources, in Proceedings of the 27th International Conference on Very
Large Data Bases (VLDB). September 2001: Rome, Italy.

21. Lenzerini, M., Data integration: a theoretical perspective, in Proceedings of the 21st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2002:
Madison, Wisconsin.

22. Levy, A., et al., Answering queries using views, in Proceedings of the 14th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 1995: San
Jose, CA, USA.

23. Fernndez, M., W.-C. Tan, and D. Suciu, SilkRoute: Trading between Relations and XML,
in Proceedings of the Ninth International World Wide Web Conference. May 15 - 19
2000: Amsterdam.

24. Shanmugasundaram, J., et al., Querying XML Views of Relational Data, in proceedings of
the 27th International Conference on Very Large Data Bases (VLDB). September 2001:
Rome, Italy.

25. World Wide Web Consortium, http://www.w3.org/TR/xquery/. XQuery 1.0: An XML
Query Language, W3C Working Draft, November 2003.

Information Retrieval Evaluation with Partial
Relevance Judgment

Shengli Wu and Sally McClean

School of Computing and Mathematics
University of Ulster, Northern Ireland, UK

{s.wu1, si.mcclean}@ulster.ac.uk

Abstract. Mean Average Precision has been widely used by researchers
in information retrieval evaluation events such as TREC, and it is believed
to be a good system measure because of its sensitivity and reliability. How-
ever, its drawbacks as regards partial relevance judgment has been largely
ignored. In many cases, partial relevance judgment is probably the only
reasonable solution due to the large document collections involved.

In this paper, we will address this issue through analysis and exper-
iment. Our investigation shows that when only partial relevance judg-
ment is available, mean average precision suffers from several drawbacks:
inaccurate values, no explicit explanation, and being subject to the eval-
uation environment. Further, mean average precision is not superior to
some other measures such as precision at a given document level for
sensitivity and reliability, both of which are believed to be the major ad-
vantages of mean average precision. Our experiments also suggest that
average precision over all documents would be a good measure for such
a situation.

1 Introduction

Since the beginning of information retrieval research, the evaluation issue has
been paid considerable attention because of its complexity. Recall (the fraction of
all the relevant documents which are retrieved) and precision (the fraction of the
retrieved documents which are relevant) are considered by many researchers as
the two most important (but very different) aspects [6, 8, 12]. Using a single value
measure for a comprehensive consideration of these two aspects is an attractive
opinion [13]. Some such measures have been proposed: Borko’s BK measure [12],
Vickery’s Q and V measures [12]. van Rijsbergen’s E measure [12], the harmonic
mean by Shaw, Burgin, and Howell [10], and cumulated gain by Jävelin and
Kekäläinen [5, 7], etc. However, most of them have not been used widely.

One exception to this is average precision over all relevant documents, which
has been referred to as mean average precision recently. Mean average precision
has been used in Text REtrieval Conferences1 [11] since 1994 (TREC 3) and now
it is widely used by many researchers to evaluate their systems, algorithms, etc.
1 TREC is a major event for the evaluation of information retrieval. Since 1992, it has

been held yearly by the National Institute of Standards and Technology of USA and
USA Department of Defence.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 86–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Information Retrieval Evaluation with Partial Relevance Judgment 87

Some previous research [1, 2, 9, 14, 16] suggests that mean average precision
is a good system measure for several reasons. First, it is a single value measure
therefore convenient for use, especially for comparing the performances of several
different information retrieval systems. Second, it is sensitive since its calcula-
tion uses the complete information of relevant documents: the total number of
relevant documents in the whole document collection and the ranked positions
of them in a resultant list. Third, it is reliable. The reason for this is the same
as for the second point.

Compared with mean average precision, precision at a given document level
is quite different and is believed to be a good user-oriented measure. First, very
often users’ major concern is how many relevant documents exist in the top k
(say, 5 or 10) documents. Second, it is very convenient for evaluation and requires
much less effort than mean average precision does. Third, its value is explicit
and easy to understand, while a mean average precision value is abstract and
cannot be explained explicitly.

The above conclusion on mean average precision should be true if all the
relevance judgment information is available. However, this is not the case in
some situations. For example, in TREC, a pooling strategy is used. For every
information need statement (topic) the top 100 documents in all or some sub-
mitted runs are put in the pool. Only those documents in the pool are judged
by human assessors and all the documents which are not in the pool are un-
judged and assumed to be irrelevant. Therefore, many relevant documents may
be missed using such a pooling strategy [18]. Results from a Web search service
is another situation where complete relevance judgment is impossible. However,
the harmful effect of the incompleteness of relevance judgment information on
mean average precision has not been discussed.

In this paper we would like to investigate this issue through analysis and
experimentation with TREC data. The analysis and experiments will reveal
some drawbacks of mean average precision for incomplete relevance judgment
besides the one already known – only obscure explanation available for any
mean average precision value.

Furthermore, a new measure is introduced and investigated in this paper. It is
average precision over all documents. It will be demonstrated in this paper that
this measure has the advantages of both mean average precision and average
precision at a given document level, but does not have some shortcomings of
mean average precision.

2 Two Measures

Mean average precision has been used by TREC in TREC 3 and onwards [11].
Since then, mean average precision has been widely used by researchers to evaluate
their information retrieval systems and algorithms. It uses the following formula:

map =
1
n

n∑
i=1

i

ri
(1)

88 S. Wu and S. McClean

where n is the total number of relevant documents in the whole collection for that
information need and ri is the ranking position of the i-th relevant document in
the list. For example, suppose there are 4 relevant documents for a topic, and
these relevant documents are ranked in number 1, 4, 10, and 12 in a result, then
this result’s mean average precision is (1/1+2/4+3/10+4/12)/4=0.525.

Precision at a given document level is not very sensitive because it does not
consider the positions of the relevant documents involved. For example, a rel-
evant document appearing in rank 1 and in rank 100 has the same effect on
precision at the 100 document level.

A new measure, average precision over all documents, is introduced in this
paper. It can be a better choice than precision at a given document level since it
concerns with the positions of relevant documents. It uses the following formula
to calculate scores:

ap all(m) =
1
m

m∑
i=1

r(i)
i

(2)

Where r(i) is the number of relevant documents in the top i documents and m is
the total number of documents considered. Comparing Formula 1 and Formula 2,
they bear some similarities.

If a document in rank j is relevant, then its contribution to the final score is
ap all(j, m) = 1

m

∑m
i=j

1
i . H(m) =

∑m
i=1

1
i is a Harmonic number [4], which has

some interesting characteristics. Let us consider ap all′(j, m) = ap all(j, m) ∗
m =

∑m
i=j

1
i , which is a tail of a Harmonic number and we have ap all′(j, m) =

H(m)−H(j − 1). Actually, the measure of discounted cumulated gain proposed
by Jävelin and J. Kekäläinen [5] is a “general” measure of weighting schemas.
Also they suggested a weighting schema: 1 for rank 1 and 2, 1/2 for rank 3,
1/3 for rank 4,..... Average precision over all documents can be regarded as a
specialised form of discounted cumulated gain. In the remainder of this paper,
we will focus on average precision over all documents and will not discuss other
weighting schema variations.

3 Experiments

Experimental results using TREC data are reported in this section. We hope
this can help us to obtain a better understanding about these measures. Com-
pared with previous work [2, 3, 9, 14, 16], our experiments have different goals:
we would like to find out how mean average precision perform when only in-
complete relevance judgment information is available, and we also would like to
investigate the new measure introduced in this paper – average precision over
all documents.

3.1 Experimental Setting

9 groups of results (TREC 5, 6, 7, and 8: ad hoc track; TREC 9, 2001, and 2002:
web track; TREC 2003 and 2004: robust track) submitted to TREC ad hoc, web

Information Retrieval Evaluation with Partial Relevance Judgment 89

and robust track are used in the experiments. Three measures, mean average
precision, average precision over all documents, and precision at 10 document
level, are used in the experiment. In order to eliminating the effect of pooling,
only the top 100 documents are used for the evaluation of all the involved results.

3.2 Error Rates Using Different Measures

First we carry out an experiment to investigate the stability and sensitivity of
different measures. For a given measure, we evaluate all the results in a year
group and obtain the average performance of them. Then for those pairs whose
performance difference is above 5%, we check if this is true for all the topics.
Suppose we have two results A and B such that A’s average performance is better
than B’s average performance by over 5% in all l topics. Then we consider these
l topics one by one. We find that A is better than B by over 5% for m queries,
and B is better than A by over 5% for n queries (l ≥ m + n). In this case the
error rate is n/(m + n).

The result of this experiment is shown in Table 1. On average, average pre-
cision over all document levels (ap all) is the best, precision at 10 document
level (p10) is in the second place, while mean average precision (map) is the
worst. The differences between these measures are not big (p10-map: 2.69%,
ap all-map: 3.86%, and ap all-p10: 1.13%).

On the other hand, when using mean average precision, more pairs are selected
than when using the two other measures. This suggests that mean average pre-
cision is more sensitive than the two others. However, the difference is not large
here either (map-p10: 3.68% and map-ap all: 3.57%). Our experimental results
suggest that these three measures are close in sensitivity and stability.

A similar experiment was carried out by Buckley and Voorhees [2]. They used
all results submitted to the TREC 8 query track and tested the stability of
several measures over different query formats. The experimental result reported
here is consistent with that of Buckley and Voorhees’s [2] though the experi-
mental settings are different. In their experiment, they considered the top 1000
documents for every result and they found that precision at 1000 document level
has lower error rates than mean average precision, while precision at 10 and 30
document levels have higher error rates than mean average precision. This sug-
gests that precision at certain document level can be as good as mean average
precision if the same number of documents are used.

3.3 Correlation Among Different Measures

Our second experiment aims to investigate how similar or different these mea-
sures are. Given a group of results, we use different measures to evaluate them
and rank them based on their performances. Then we compare those rank-
ings generated by using different measures. The experimental result is shown in
Table 2. Both Spearman and Kendall’s tau ranking coefficients are calculated.
In table 2, all Kendall’s tau ranking coefficient values are lower than the corre-
sponding Spearman coefficient values, though the difference does not affect their
relative rankings in most cases.

90 S. Wu and S. McClean

Table 1. Error rates of using different measures (numbers in parentheses are numbers
of compared pairs)

Group map p10 ap all
TREC 5 0.2731(1657) 0.2771(1694) 0.2710(1631)
TREC 6 0.2559(2262) 0.2650(2317) 0.2549(2257)
TREC 7 0.2451(4707) 0.2481(4837) 0.2429(4716)
TREC 8 0.2270(7096) 0.2304(7375) 0.2255(7119)
TREC 9 0.2351(5116) 0.2421(5114) 0.2315(5028)

TREC 2001 0.2839(4147) 0.2936(4261) 0.2798(4114)
TREC 2002 0.2641(2331) 0.2739(2374) 0.2595(2343)
TREC 2003 0.3006(2315) 0.3239(2478) 0.2916(2347)
TREC 2004 0.3223(4616) 0.3184(5053) 0.3241(4724)

Average 0.2675(3805) 0.2747(3945) 0.2645(3809)

Table 2. Correlation among rankings generated using different measures (S for Spear-
man coefficient and K for Kendall’s tau coefficient)

map vs. ap all map vs. p10 ap all vs. p10Group
S K S K S K

TREC 5 0.9683 0.8656 0.9628 0.8546 0.9822 0.9060
TREC 6 0.9551 0.8342 0.9482 0.8149 0.9773 0.8954
TREC 7 0.9754 0.8759 0.9523 0.8233 0.9797 0.8942
TREC 8 0.9710 0.8697 0.9466 0.8241 0.9807 0.8934
TREC 9 0.9689 0.8579 0.9526 0.8176 0.9851 0.9011

TREC 2001 0.9701 0.8621 0.9302 0.7934 0.9685 0.8565
TREC 2002 0.9243 0.7835 0.9538 0.8157 0.9036 0.7730
TREC 2003 0.9443 0.8069 0.8512 0.6830 0.8689 0.7362
TREC 2004 0.9800 0.8902 0.9460 0.8202 0.9588 0.8445

Ave. 0.9619 0.8496 0.9382 0.8052 0.9594 0.8556

The rankings generated using these three measures are strongly correlated
with each other. On average the correlation is above 0.8 (Kendall’s tau coeffi-
cient) or 0.9 (Spearman coefficient). In addition, the rankings generated using
average precision over all documents are almost equally and very strongly corre-
lated to the rankings generated using either of the two other measures, while the
ranking correlation between precision at 10 document level and mean average
precision is weaker.

3.4 Effect of Environment on Results Evaluation and Ranking

To evaluate information retrieval results using mean average precision demands
much more efforts than using some other measures such as precision at the 10 or
100 document level, mainly because all relevant documents need to be identified. If
complete relevance judgment is not available, then the performance of a result on
mean average precision will depend on the relevant documents detected to a certain

Information Retrieval Evaluation with Partial Relevance Judgment 91

Table 3. Correlation of rankings using full sets of results and rankings using partial
sets of results (the numbers in parentheses indicate the performance difference of the
same result in different environments)

Group 20% 40% 60% 80%
TREC 5 0.9606 (18.15%) 0.9724 (9.67%) 0.9832 (6.18%) 0.9867 (3.47%)
TREC 6 0.9582 (16.00%) 0.9793 (8.40%) 0.9905 (4.92%) 0.9941 (2.78%)
TREC 7 0.9768 (15.21%) 0.9870 (7.22%) 0.9930 (4.20%) 0.9963 (1.96%)
TREC 8 0.9690 (11.49%) 0.9833 (6.39%) 0.9922 (2.95%) 0.9968 (1.49%)
TREC 9 0.9714 (9.47%) 0.9934 (2.75%) 0.9944 (1.10%) 0.9970 (0.67%)

TREC 2001 0.9602 (15.40%) 0.9738 (7.54%) 0.9852 (3.86%) 0.9900 (2.02%)
TREC 2002 0.9604 (16.84%) 0.9810 (7.39%) 0.9856 (3.80%) 0.9879 (2.36%)
TREC 2003 0.9562 (16.39%) 0.9574 (12.10%) 0.9600 (10.10%) 0.9664 (8.95%)
TREC 2004 0.9740 (12.82%) 0.9797 (9.24%) 0.9862 (8.25%) 0.9849 (7.27%)

Average 0.9652 (14.64%) 0.9786 (8.73%) 0.9856 (5.04%) 0.9889 (3.44%)

degree. In TREC, only the documents in the pool are assessed and the pool com-
prises the top 100 documents from all or some of the submitted results. Therefore, a
result’s performance on mean average precision is affected by the other submitted
results, and we refer to this phenomenon as the effect of environment.

We carry out an experiment to investigate this effect. For every year group, we
evaluate and rank themaswell bymeanaverage precision.Thenwe randomly select
a subset (20%, 40%, 60%, and 80%) of all the systems and assume these are all the
results submitted, then we follow the TREC routine to generate a pool, and eval-
uate these systems by mean average precision and rank these results. We compare
the ranking obtained from the subset of all the results and the one obtained from
all the results to see if there is any ranking exchange for any two results appearing
in both cases. Kendall’s tau coefficient is calculated for them. Table 3 shows the
experimental result. Each data point in Table 3 is the average of 10 runs.

In Table 3, the ranking correlation coefficient values are close to 1 all the time.
this means that the relative rankings of a group of results do not change much
when some new results are included. Though it can be regarded as a good news,
it is not good enough. Since no ranking position exchanging at all is a norm
with other measures such as precision at 10 or 100 document level and average
precision over all documents.

On the other hand, considerable difference exists for the performance of the
same result when the environment changes. When 20% of all results are consid-
ered, the difference is over 10% compared with the environment in which all the
results are involved.

4 Conclusions

In this paper we have discussed three information retrieval evaluation measures,
which are average precision over all relevant documents (mean average precision),
precision at a given document level, and average precision over all documents,
under the condition of incomplete relevance judgment.

92 S. Wu and S. McClean

Though it has been believed that average precision over all relevant docu-
ments is a good measure, our investigation shows that it suffers from several
drawbacks when only partial relevance judgment is available. First, the correct
mean average precision value can never be calculated. Hence complete relevance
judgment is required for a correct calculation of average precision over all rel-
evant documents. Second, when a pair of results take part in an information
retrieval evaluation event such as TREC, their relative ranking positions may
reverse if other results involved are different at each time. Though the possibil-
ity for such a contradiction is very small, there is no guarantee that it does not
happen. Besides, a mean average precision value is difficult to explain, and to
calculate average precision values demands great effort. These are two drawbacks
of mean average precision even with complete relevance judgment.

Then what about these measures’ stability and sensitivity?Our experiment sug-
gests that mean average precision’s stability and sensitivity is not superior to the
two other measures: average precision over all documents and precision at a given
document level, if we use the same (or similar) number of documents for the cal-
culation of these measures. This observation is consistent with previous research
[2, 9, 16]. Buckley and Voorhees in [2] find that precision at 1000 documents is more
stable than mean averageprecision, andmean averageprecision ismore stable than
precision at 10 documents. The last point is also echoed in [9, 16].

We argue that mean average precision is not a very good measure when rele-
vance judgment is severely incomplete. Although in theory mean average preci-
sion has some advantages, its use within TREC evaluation methodology has led
to the anomalies discussed above. The difficulties are inevitable in modern IR
contexts such as retrieval over the Web. Meanwhile, precision at a given docu-
ment level and especially average precision over all documents are good measures
in such situations. Average precision over all documents has been introduced in
this paper and it is more reasonable than precision at a given document level
since it distinguishes relevant documents’ position. In addition, the similarity be-
tween mean average precision and average precision over all documents is more
than that between mean average precision and precision at a given document
level. Therefore, we consider that average precision over all documents would
be a good measure for information retrieval evaluation events such as TREC as
well as for researchers to evaluate information retrieval systems and algorithms
when the document collection is too big for a complete relevance judgment.

References

1. J. A. Aslam, E. Yilmaz, and V. Pavlu. The maximum entropy method for analysing
retrieval measures. In Proceedings of ACM SIGIR’2005, pages 27–34, Salvador,
Brazil, August 2005.

2. C. Buckley and E. M. Voorhees. Evaluating evaluation measure stability. In Pro-
ceedings of ACM SIGIR’2000, pages 33–40, Athens, Greece, July 2000.

3. C. Buckley and E. M. Voorhees. Retrieval evaluation with incomplete information.
In Proceedings of ACM SIGIR’2004, pages 25–32, Sheffield, United Kingdom, July
2004.

Information Retrieval Evaluation with Partial Relevance Judgment 93

4. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics. Addison-
wesley publishing company, 1989.

5. K. Jävelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems, 20(4):442–446, October 2002.

6. Y. Kagolovsky and J. R. Moehr. Current status of the evaluation of information
retrieval. Journal of Medical Systems, 27(5):409–424, October 2003.

7. J. Kekäläinen. Binary and graded relevance in IR evaluations – comparison of
the effects on ranking of IR systems. Information Processing & Management,
41(5):1019–1033, September 2005.

8. S. E. Robertson and M. M. Hancock-Beaulieu. On the evaluation of IR systems.
Information Processing & Management, 28(4):457–466, July-August 1992.

9. M. Sanderson and J. Zobel. Information retrieval system evaluation: Effort, sensi-
tivity, and reliability. In Proceedings of ACM SIGIR’2005, pages 162–169, Salvador,
Brazil, August 2005.

10. W. M. Shaw, R. Burgin, and P. Howell. Performance standards and evaluations
in IR test collections: Cluster-based retrieval models. Information Processing &
Management, 33(1):1–14, January 1997.

11. TREC. http://trec.nist.gov/.
12. C. J. van Rijsbergen. Information Retrieval. Butterworths, 1979.
13. V. G. Voiskunskii. Evaluation of search results: A new approach. Journal of the

American Society for Information Science, 48(2):133–142, February 1997.
14. E. M. Voorhees. Variations in relevance judgments and the measurement of re-

trieval effectiveness. In Proceedings of ACM SIGIR’1998, pages 315–323, Mel-
bourne, Australia, August 1998.

15. E. M. Voorhees. Variations in relevance judgments and the measurement of
retrieval effectiveness. Information Processing & Management, 36(5):697–716,
September 2000.

16. E. M. Voorhees and C. Buckley. The effect of topic set size on retrieval experiment
error. In Proceedings of ACM SIGIR’2002, pages 316–323, Tampere, Finland,
August 2002.

17. S. Wu and S. McClean. Modelling rank-probability of relevance relationship in
resultant document list for data fusion, submitted for publication.

18. J. Zobel. How reliable are the results of large-scale information retrieval experi-
ments. In Proceedings of ACM SIGIR’1998, pages 307–314, Melbourne, Australia,
August 1998.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 94 – 101, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Sources of Incompleteness in Grid Publishing

Alasdair J.G. Gray1, Werner Nutt2, and M. Howard Williams1

1 School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, UK

2 Faculty of Computer Science, Free University of Bozen,
Dominikanerplatz 3, I-39100 Bozen, Italy

Abstract. There is a wide variety of data, both static and streaming, being
published on and about computing Grids. However one aspect of Grid data that
has received relatively little attention thus far is that of incompleteness. With
potentially many data sources available to choose from, each with its own
limitations in terms of coverage of data sets and of overall reliability, there are
many opportunities for inaccuracy due to incompleteness in the data. In this
short paper different types of incompleteness are identified in the context of R-
GMA as part of an ongoing research project aimed at finding solutions to some
of these.

1 Introduction

Computational Grids have become an important tool for eScience since they allow
access to large amounts of data and the ability to process that data. The data is
typically the measurements collected whilst performing some experiment, with a mix
of static and streaming data, with some data sources merely providing different views
of parts of an overall system. This is true in the case of astronomical data, where a
number of different repositories provide overlapping views of heavenly data, or for
bio-informatic data sets which cover a wide range of overlapping views on life forms.
When publishing data, the source will try to describe its content, but it is difficult and
cumbersome to describe accurately the data that is actually available in the repository,
e.g. the SuperCOSMOS Science Archive (SSA) astronomical repository [1] claims to
contain measurements for the entire southern hemisphere sky in a number of
wavebands, although there are patches of the sky which either have not been
measured or cannot be observed as they are dominated by a stellar object. This leads
to incompleteness in the data source with respect to its description.

R-GMA [2, 3] is a monitoring and information service that publishes static and
streaming data about the status of the Grid. At its heart, R-GMA is an information
integration system for streaming data. This has posed interesting new problems in
describing the information published [3]. As well as incompleteness with respect to
its description, there are other sources of incompleteness found in R-GMA.

R-GMA is not the only system looking at publishing streaming data on a Grid.
Streaming astronomical data is being published in the StreamGlobe project [4] and
publishing static and streaming environmental data is the focus of the Linked
Environments for Atmospheric Discovery (LEAD) project [5]. In all of these projects
there are sources of incompleteness that have not yet been addressed.

 Sources of Incompleteness in Grid Publishing 95

While the topic of incompleteness has previously been studied for distributed
databases [6], these are only concerned with static data sources. This paper identifies
different types of incompleteness found when publishing static and streaming data on
a Grid in which R-GMA is used as an example of a typical Grid publishing system.
Section 2 describes how streaming data, such as monitoring data, may be published
on a Grid. Section 3 discusses how incompleteness arises and how it can be dealt
with in the Grid environment. Related work is presented in Section 4 and our
conclusions in Section 5.

2 Publishing Monitoring Data

R-GMA is a Grid Information and Monitoring system that allows users to locate
monitoring data of interest without knowledge of where it is published [2, 3]. R-
GMA is a local-as-view information integration system. The architecture is shown in
Fig. 1 and consists of Primary Producers (which publish monitoring data about the
Grid according to some view description), Consumers (which retrieve specific
monitoring data by posing a query), and a Registry (which matches Consumer
requests with Producer descriptions). For scalability and robustness, the system also
has Secondary Producers that pose queries to the Primary Producers and publish the
combined results.

Registry

Consumer

Primary

Producer

Secondary

Producer

Data flow

Meta data

Primary

Producer

Primary

Producer

Fig. 1. The architecture of R-GMA

Primary Producers publish their data as a stream of tuples conforming to a
selection view description over an agreed global schema. The Primary Producer may
additionally maintain a history buffer of the stream, i.e. all the tuples that have been
published during some allotted period of time, and/or a latest-state buffer which
contains the most recent tuple seen for a given value of the key.

To access the data, Consumers may pose three different types of query over the
agreed global schema. The first, a continuous query would return every new tuple
that satisfies the condition of the query. The second, a history query would return all
the tuples that have previously been published that satisfy the condition of the query
and which fall within the stated time period. The third, a latest-state query would
return the most recent tuples for the key values that satisfy the query. These last two

96 A.J.G. Gray, W. Nutt, and M.H. Williams

are referred to as one-time queries as they are answered once, at the point in time that
they are posed. The different modes of query may be combined, e.g. a history query
can be combined with a continuous query to retrieve all the tuples in some stream.

Whenever a Consumer poses a query in R-GMA, it is the role of the Registry to
find the relevant producers. The Consumer can then construct a query plan to retrieve
the answer to their query. At present, for a continuous query the Consumer may only
use Primary Producers and will contact all the Primary Producers which have a view
that is relevant. For a one-time query, the Registry will return both Primary and
Secondary Producers which are relevant. At present, certain complex queries such as
aggregate queries involving streams from several Primary Producers, can only be
answered if there is a Secondary Producer that publishes the entire table. When there
is no Secondary Producer present, certain classes of queries may be answered by
querying the Primary Producers.

3 Working with Incomplete Data on a Grid

This section considers the types of incompleteness that may be encountered when
publishing and querying static and streaming data on a Grid.

3.1 Types of Incompleteness

Within the data published by R-GMA, four areas where incompleteness is introduced
can be identified: (i) incompleteness at the data source level, (ii) incompleteness
arising from the data integration process, (iii) incompleteness due to the data sources
being distributed, and (iv) incompleteness with respect to a query. A more detailed
description of each of these sources of incompleteness is provided below with
examples drawn from the development of R-GMA. Throughout, the examples will
use a simplified version of the GlueCE relation from the global schema of R-GMA.
The GlueCE relation is used to monitor the number of jobs running on the various
Computing Elements (CEs) on the Grid. The schema of the relation is

GlueCE (machineID, siteID, totalCPUs, freeCPUs,
runningJobs, SE, [timestamp]),

(1)

where machineID is an identifier for the CE at a site, siteID is a unique identifier
for the site where the CE is located, totalCPUs stores the number of CPUs that the
CE has while freeCPUs monitors the number of CPUs that are available,
runningJobs is the current number of jobs running on the CE, the attribute SE is
used to identify a storage element that is linked with the CE1, and timestamp
records the time at which a reading was taken.

Incompleteness at the Data Source Level. A classic example of this type of
incompleteness is the use of null values. Null values continue to be used in Grid
applications when data is being published against a schema that no longer correctly
models it. In the GlueCE example, a CE would put a null value in the SE attribute as

1 The SE attribute is made up for the purposes of the following examples. In R-GMA there is a

separate relation for mapping CEs to SEs that allows for a many to many mapping.

 Sources of Incompleteness in Grid Publishing 97

there is now a relation in the global schema that allows multiple storage elements
(SEs) to be linked with multiple CEs. The SE attribute is kept in GlueCE to allow
for the adoption of the new table in the schema.

Data source incompleteness also arises when the source promises to contain more
data than it actually does. For example, consider the case of there being several
Primary Producers for GlueCE where each maintains a short history of at most one
hour, and the creation of a new Secondary Producer which will maintain a history for
the last week. The Secondary Producer can quickly retrieve the tuples covering up to
the last hour by posing a history query over the Primary Producers, but it will be
unable to retrieve the rest of the tuples for the desired history period as the Primary
Producers have discarded the tuples. In this case it will take one week for the
Secondary Producer to be complete with respect to its description.

In R-GMA this specific example has been dealt with by the Secondary Producer
gradually increasing its declared history period until it reaches the desired length.
However, this type of incompleteness is common in the area of astronomical data
repositories where meta-data is published expressing what areas of sky are covered
and in which wavebands. With these repositories it is often the case that it does not
contain all the data from the area claimed; either because no measurements have been
made for some small sections, or because some areas cannot be measured due to
interference from stellar objects.

Incompleteness from the Data Integration Process. In data integration systems the
data in the sources is related to some global schema. It is often not possible or is very
cumbersome to accurately map the content of the data sources to the global schema
which results in incompleteness. In R-GMA this is due to the limited language
supported. For example, a Primary Producer for GlueCE may only publish values
for freeCPUs that are between 0 and totalCPUs. However, the view that the
Primary Producer registers cannot restrict freeCPUs to these values so it must claim
to cover a larger set of values than it will ever publish. Consider that there is a CE
with a total of 5 CPUs and a Consumer query asking for at least 6 free CPUs. The
Primary Producer for this CE would be returned as being relevant for the query since
it is unable to restrict its view on the freeCPUs attribute to the range 0 to 5.

R-GMA currently copes with this type of incompleteness by treating all Primary
Producers as incomplete, but non-overlapping data sources, i.e. all tuples with a
specific key value may only be published from a single Primary Producer. This
naturally fits the R-GMA system where Primary Producers publish data about the
resources of the Grid and the result of the incompleteness on the query is contacting
additional data sources that cannot answer the query. However there are other
situations in which data streams could be integrated together where the sources
publish the same data but with different levels of granularity or accuracy, e.g. stock
tickers, and there would be a cost implication in contacting more sources.

Another source of incompleteness due to the integration process arises from the
construction of query plans. Consider the history aggregate query trying to find the
average number of jobs on each CE over the last 5 minutes. If there are several
Primary Producers for GlueCE (which is likely in a Grid where each CE would have
a Primary Producer publishing this information), then currently R-GMA can only
answer this query if there exists a Secondary Producer which publishes the entire

98 A.J.G. Gray, W. Nutt, and M.H. Williams

table and maintains a history buffer. However, since each Primary Producer is
disjoint in R-GMA the correct answer can be achieved by taking the average at each
Primary Producer and taking the union of the results, providing that they each
maintain an adequate history buffer. The current R-GMA Registry would not be able
to construct this plan and the Consumer would be unable to retrieve its answer if the
Secondary Producer does not exist.

Incompleteness Due to Distributed Data Sources. A Grid is a complex distributed
system with resources being supplied by multiple autonomous organisations, and with
users forming inter-organisational collaborations. The distribution of the resources on
the Grid can itself lead to incompleteness in the data. For example, incompleteness
can arise from network failures. To try and overcome network failures, some sort of
soft-state registration is often adopted. In R-GMA, each Primary and Secondary
Producer maintains its entry in the Registry by sending “heartbeat” messages.
However, this mechanism can fail. For example, when returning the set of relevant
producers to a Consumer, it is possible that a particular producer is currently not
contactable. (The network has failed since its last heartbeat message.) In this case,
the system knows of a potential answer to the query but is unable to return the tuples
to the Consumer.

Another important aspect of Grids is the security that needs to be imposed. The
resources in a Grid are shared between several different groups of scientists, where
each group has its own access rights. It is the responsibility of the resources on the
Grid to uphold these access rights. Thus, when a Primary Producer claims to publish
some view, a particular group of scientists may only be able to access a portion of this
view due to their access restrictions. A scientist in this group may pose a query which
could be answered completely from the data available on the Grid, but due to the
research group’s access rights the scientist will only get an answer from a subset of
the data.

A further source of incompleteness due to distribution arises when one data set is
derived from another. For example, in R-GMA a Secondary Producer derives its data
set from the available Primary Producers. The communication between the
Secondary Producer and the Primary Producers can lead to a loss of tuples which
results in incompleteness in the derived source. The loss of tuples in the
communication is possible because tuples are streamed from the Primary Producers to
the Secondary Producer and if the Secondary Producer cannot receive tuples at the
rate that they are published they will be dropped and hence lost. This is a common
problem arising in stream systems when the stream arrival rate is faster than the rate
the system can process the data.

The fact that some data sources on a Grid are derived from others results in
inconsistencies due to propagation delays. For example, consider that there is a
Primary Producer and a Secondary Producer for the GlueCE relation, both of which
maintain a latest-state buffer and publish for the same view so that they should
contain identical data2. Also consider that there is a slow network connection
between the Primary Producer and the Secondary Producer such that a Consumer can
pose a latest-state query in the time taken to propagate a newly published tuple from

2 This is a desirable situation as it can allow the system to balance the load of answering a

query across several producers.

 Sources of Incompleteness in Grid Publishing 99

the Primary Producer to the Secondary Producer. In this case, if the Consumer were
to query the Primary Producer it would receive the newly published tuple but if
instead the Consumer had queried the Secondary Producer it would receive some
other tuple previously published. The Secondary Producer is no longer complete.

Incompleteness with Respect to a Query. The data available in the repositories on a
Grid may not contain sufficient data to answer a query. For example, consider a
Secondary Producer that maintains a history of 24 hours and a query that is interested
in data from the last 48 hours. In this situation the query cannot be answered
completely as the available data does not cover the entire period of the query, even
though the Secondary Producer is complete with respect to its description. The
Secondary Producer may still be used to return some answer to the query.

3.2 Answering Queries in the Presence of Incompleteness

It is not always immediately apparent how to answer a query in the presence of
incompleteness as there can be an infinite number of possible complete extensions. In
an ideal world, where data sources are complete, available all the time, where data can
be described accurately, and query plans can be constructed without limitations, there
is only one answer set to a query, the complete answer as there is only one possible
information state. When there is a source of incompleteness this answer set cannot be
derived accurately from the available data. In order to be able to return some answer
to a query, and to be able to interpret that answer, different answer sets are possible
based on the possible complete information states. The choice of which answer set
should be returned often depends on the requirements of the user. The following
discusses the semantics of these answer sets but does not discuss how these answer
sets may be derived from the available data in practice.

First there is the set of certain answers. This set contains the tuples that are an
answer to the query in all complete information states [7]. The certain answers are a
subset of the answer in a complete information state and are desirable when a query
answer must be entirely accurate. The resulting set can be quite small though.

The other possibility is the set of possible answers. This set contains the tuples
that are an answer to the query in some information state. The possible answers are a
superset of the answer in a complete information state and are desirable in exploratory
settings where some incorrect answers can be tolerated.

To understand the differences between these two answer sets consider an
astronomical query that is interested in objects that appear in the light waveband
that do not have an infrared reading. Consider that we have two data sources which
are complete with respect to their descriptions, one for the light waveband and one
for the infrared, which partially overlap in the area of sky covered. The set of
certain answers would contain tuples for the objects that are in the area of sky
covered by both data sources for which there is a reading in the light band but not
the infrared band. On the other hand, the set of possible answers would additionally
contain those tuples in the light band for which there is no data available in the
infrared band.

100 A.J.G. Gray, W. Nutt, and M.H. Williams

An answer set could contain tuples along with a query which more accurately
describes the tuples returned. This more precise query is an intensional answer.
Consider again the example of the history query with a period of 48 hours but the data
source available only maintaining a history of 24 hours. In this case the Consumer
could be returned the tuples covering the last 24 hours together with the more precise
query covering the 24 hour period as an intensional answer. If the original query is a
monotonic query then the tuples returned by the Secondary Producer with a 24 hour
history forms the set of all certain answers as all complete information states are a
superset of this source, otherwise the tuples are possible answers.

When tuples are allowed to include null values, then there is the possibility of
returning partial answers [8]. These are tuples that contain only part of the
information requested.

3.3 Generating Query Answers

This section considers whether the type of answer returned can be identified when
there is a source of incompleteness. Again, R-GMA is used as an example.

Since R-GMA follows a local-as-view approach to data integration, an intensional
answer could be returned. When a query is posed over the global schema, it is
translated into a plan over the available data sources. The descriptions of the data
sources in the plan can then be used to translate the plan back into a query over the
global schema that describes the tuples. This would be particularly useful when there
is incompleteness with respect to a query.

In R-GMA it is relatively straightforward to distinguish between when a certain
answer or a possible answer is returned. This is because the views are not allowed to
include projections or joins. Thus, whenever the query is monotonic the result set
will contain certain answers; otherwise it will contain possible answers. More
specialised techniques would be required if the views were allowed to contain semi-
joins or projections.

In order to be able to inform the user of the type of answer returned, there would
need to be some way of attaching meta-data to a result set. In R-GMA this is possible
by attaching a warning to the result set and allows meaningful answers to be returned.

4 Related Work

The topic of incompleteness has previously been addressed in the context of
incomplete relational databases [7] and in information integration systems [8]
resulting in the concepts of certain, possible, and partial answers.

There has recently been a lot of attention to the publication of data on a Grid. The
OGSA-DAI system [9] allows for the publication and querying of databases. The
StreamGlobe system [4] allows for the publication of sensor data but has no support
for static data sources. The Calder system [10] aims to provide an interface between
databases published by OGSA-DAI and a data stream query processing engine. So
far none of these systems have addressed the issue of incompleteness, although the
problem of data sources becoming unavailable has already been highlighted in the
Calder system as a source of incompleteness.

 Sources of Incompleteness in Grid Publishing 101

5 Conclusions

This paper has shown that incompleteness is an important characteristic of some Grid
applications. To date, there has been little or no work looking at how to handle the
incompleteness found in streaming applications on a Grid.

In this paper, several types of incompleteness have been identified that arise whilst
publishing stream data on a Grid. Some of the types of incompleteness also arise in
other Grid applications, for example astronomical data sets.

We have begun to consider what answers could be returned to queries in the
presence of the types of incompleteness identified. Already now, more meaning
could be given to tuples returned by R-GMA by flagging them as certain or possible
answers and by adding intensional answers. We are currently investigating
generating intensional answers when there is incompleteness with respect to a query
where the histories also contain periods of missing information. One of the major
challenges in this area lies in the development of a coherent framework that returns
meaningful answers to users in the presence of incomplete data.

References

1. SuperCOSMOS Science Archive (SSA). http://surveys.roe.ac.uk/ssa/
2. A.W. Cooke, et al. The relational grid monitoring architecture: Mediating information

about the grid. Journal of Grid Computing, 2(4):323-339, Dec 2004.
3. A. Cooke, A.J.G. Gray, and W. Nutt. Stream integration techniques for grid monitoring.

Journal on Data Semantics, 2:136-175, 2005.
4. B. Stegmaier, R. Kuntschke, and A. Kemper. StreamGlobe: Adaptive query processing

and optimization in streaming P2P environments. In proc DMSN, pages 88-97, Aug 2004.
5. Linked Environments for Atmospheric Discovery. http://lead.ou.edu/
6. M. Lenzerini. Data integration: A theoretical perspective. In proc PODS, Madison (WI,

USA), pages 233-246, June 2002.
7. W. Lipski. On semantic issues connected with incomplete information databases. In ToDS,

4(3):262-296, Sept 1979.
8. G. Grahne, and V. Kiricenko. Partial answers in information integration systems. In proc

WIDM, New Orleans (LA, USA), pages 98-101, Nov 2003.
9. M. Antonioletti, et al. The design and implementation of Grid database services in OGSA-

DAI. Concurrency – Practice and Experience, 17(2-4):357-376, Feb 2005.
10. N. Vijayakumar, Y. Liu, and B. Plale. Calder: Enabling Grid access to data streams. In

proc HPDC, Raleigh (NC, USA), pages 283-284, July 2005.

Privacy Preservation and Protection by
Extending Generalized Partial Indices

Guoqiang Zhan, Zude Li, Xiaojun Ye, and Jianmin Wang

School of Software, Tsinghua University, Beijing, 100084, China
{zhan-gq03, li-zd04}@mails.tsinghua.edu.cn,

{yexj, jimwang}@tsinghua.edu.cn

Abstract. Privacy1 violation has attracted more and more attention
from the public, and privacy preservation has become a hot topic in aca-
demic communities, industries and societies. Recent research has been
focused on purpose-based techniques and models with little considera-
tion on balancing privacy enhancement and performance. We propose
an efficient Privacy Aware Partial Index (PAPI) mechanism based on
both the concept of purposes and the theory of partial indices. In the
PAPI mechanism, all purposes are independent from each other and or-
ganized in a flatten purpose tree(FPT). Thus, security administrators
can update the flatten purpose tree by adding or deleting purposes. In-
tended purposes are maintained in PAPI directly. Furthermore, based
on the PAPI mechanism, we extend the existing query optimizer and
executor to enforce the privacy policies. Finally, the experimental results
demonstrate the feasibility and efficiency of the PAPI mechanism.

1 Introduction

The privacy issue has currently become a critical one. Many privacy-aware ac-
cess control models [1, 11, 13] and specifications [10, 5, 18] have been proposed.
Especially the most recent Purpose-Base Access Control model (PBAC) [4, 2]
and Micro views [3] have been developed as feasible models and experiments
have demonstrated their efficiency. The core techniques, which are used in cur-
rent models, include query modification and privacy labelling relational (PLR)
data models derived from MLR [14]. However, the two approaches lead to lower
performance essentially: PLR increases disk IO and requires extra computing re-
sources for relevant labels; while query modification techniques rewrite a user’s
queries by appending extra predicates or nested queries, which increases opti-
mizing time, and probably leads to an inefficient executing plan.

An ideal solution to the privacy preservation problem would flexibly protect
donor sensitive information without privacy violation, and would incur minimal

1 The work is supported by both National Basic Research Program of China, Project
No.2002CB312006 and National Natural Science Foundation of China, Project
No.60473077.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 102–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Privacy Preservation and Protection 103

privacy enforcing overhead when processing queries. Motivated by this require-
ment, we propose a new technique, which avoids using both the query modi-
fication and PLR data models, to support privacy access control based on the
concept of purposes and the theory of partial indices. In our mechanism, we
develop a notion of Privacy Aware Partial Index (PAPI), by which privacy poli-
cies (i.e. intended purposes in PBAC) are stored and enforced efficiently. We
also extend Purpose Trees in PBAC into flatten purpose trees with address-
ing restrictions on Purpose Trees in PBAC. Our experimental results verify the
feasibility and efficiency of our model.

The rest of our paper is organized as follows. In Section 2, we summarize the
recent achievements in the privacy enhancing techniques pertain to purposes. In
Section 3, by extending the general partial index, we develop two notions which un-
derlie our research work. In next section, we illustrate how to maintain PAPIs, and
how to organize and manage intended purposes based on PAPI. In Section 5, based
on PAPI, we extend the traditional query processing engine to provide privacy en-
hancement. In Section 6, we introduce how to implement our PAPI mechanism,
and describe some experiments that demonstrate the efficiency and scalability of
our approach. Finally, we conclude the paper and outline future work.

2 Related Work

Privacy protection is related to many different areas in secure data manage-
ment. As described in Common Criteria (CC) [12], to implement a solid privacy
preserving data management system, we have to support at least the follow-
ing three security requirements: Access Control, Unobservability and linkabil-
ity. According to the above privacy preserving requirements, privacy enhancing
techniques can be classified into three categories: Privacy Aware Access Control
(PAAC) [4, 2, 11], Private Information Retrieval (PIR) [8] and Privacy Informa-
tion Inference Control (RIIC) [7](k-anonymity technique [17] belongs to this
category).

Our work focuses on the PAAC technique for access control. The most recent
popular techniques in this field include privacy policy specification [10, 5, 18] ,
purpose specification and management [1, 4, 18] and privacy polices enforcement
models [4, 3]. In addition, we have used the following three core concepts in our
work: partial indices [16], query optimizer [15] and executing engines [9].

The Platform for Privacy Preferences(P3P) [18] by W3C enables users to
gain more control over the use of their personal information on web sites they
visit. And also, APPEL [5] by W3C and EPAL [10] by IBM provide a formal
way to define the privacy policies or usage preferences, but without detailed
specifications to enforce the policies in an information system or product, such
as DBMS.

Based on HDB [1], LeFevre etc. [11] presented a database architecture for
enforcing limited disclosure expressed by privacy polices based on their proposed
ten principles. They also suggested an implementation based on query modifi-
cation techniques. By extending the concepts of purposes in [18], Ji-Won Byun

104 G. Zhan et al.

etc. [4, 2] presented a comprehensive approach to purpose management (called
purpose-based access control, PBAC for short), in which all the purposes are or-
ganized in a hierarchical way. In the PBAC model [4], they developed three
basic concepts: intended purposes, access purposes and purpose compliance.
Based on these concepts, they suggested an implementation for PBAC based
on the query modification technique and PLR derived from MLR [14]. In [2],
extended their previous work in [4] to the XML-oriented information system
and Object-oriented system, and proposed a systematical model to determine
the access purposes based on RBAC. In [3], Ji-Won Byun etc. go even further
on the purpose-based access control (PBAC) with incorporating generalization
techniques to enhance the privacy preservation.

As drawn from the above models, some open issues are listed below, which
have motivated us to seek more feasible and efficient solutions to enforce privacy
policies.

• Query Modification Techniques. Query rewriting always changes the
original queries by introducing some extra predicates or the nested queries, which
increase optimizing time and require extra computing time.

• Privacy Labelling Relational Data Model (PLR). PLR is adopted in
many models, which changes the standard relational data model by adding the
privacy labelling attributes [4] or choice columns [11]. This strategy will actually
increase the I/O cost and involve considerable extra computation against the
labels. Especially if there are many privacy-sensitive attributes in a relation, the
performance will be degraded drastically.

• Hierarchy Relationship Among Purposes. In [4], it is assumed that
all the purposes are predetermined. However, this assumption does not always
hold, especially in small organizations (which are project-oriented). The organi-
zational structures will change frequently in these project-oriented organizations,
leading the purpose tree being reshaped repeatedly because of the hierarchical
relationships among purposes. As a result, all intended purposes in the relation
have to be re-evaluated too. In addition, a non-leaf purpose is combinational
purpose, which consists of multiple nested purposes. If a donator allows her/his
information accessed for a purpose, then the information can also be used for its
nested purposes. So donators should have knowledge of the purpose tree or the
organizational structure. Obviously, it is very inconvenient for users to protecting
their sensitive data.

To address the above challenges, we have developed a privacy-aware query pro-
cessing mechanism based on partial indices to provide an efficient solution to the
above problems. In our model, we first adopt from [4] three concepts, namely
purpose,intended purpose and access purpose. We then avoid using the query
modification technique and discard the PLR data model. Finally, by transform-
ing a purpose tree PT [4] to a flatten purpose tree (FPT) as shown in Fig.1,
all purposes in FPT are peers without hierarchical relationships. Thus DBA
can easily change purposes and reshape FPT without re-evaluating all intended
purposes.

Privacy Preservation and Protection 105

G eneral Purpose

A dmin M arketing D irect D -Email D -PhoneProfiling

Fig. 1. Flatten Purpose Tree

Based on the concept of FPT , relevant concepts in [4], including purpose &
purpose tree, intended purpose, and access purpose, are redefined.

Definition 1. (Purpose and Flatten Purpose Tree) A purpose describes the rea-
sons for what data is collected or used. Purpose are organized in a flatten hi-
erarchical structure, referred to Flatten Purpose Tree (FPT). Actually, all the
purposes are peer except the root purpose which is a virtual purpose.

Definition 2. (Intended Purpose) Let FPT be a flatten purpose tree and P be
the set of all purposes in FPT . An intended purpose, denoted by IP, is used to
describe usage granted by the donators, and it is {AIP −PIP}, where AIP ⊆ P
is a set of allowed intended purpose, and PIP ⊆ P is a set of prohibited purpose.

Example 1. Suppose AIP = {Admin, Direct}, P IP = {D Email} is defined
over FPT given in Fig.1. Then, intended purposes (IP) is evaluated as:
IP = AIP − PIP = {Admin, Direct}.

Definition 3. (Access Purpose) Let FPT be a flatten purpose tree. An access
purpose(AP), is the purpose for accessing data, and it is included in FPT .

Definition 4. (Access Purpose Compliance) Let FPT be a flatten purpose tree,
Let IP and AP be intended purpose and access purpose respectively. AP is said
to be compliant with IP, only if the following condition is satisfied: AP ∈ IP .

3 Purpose Aware Partial Indices

The concept and performance of partial indices are surveyed in [16], which illus-
trated that partial indices would lead to a great improvement of performance in
many scenarios, especially in distributed system. In traditional indexing schemes,
some of the columns are not indexed. A partial indexing scheme takes this one
step further, and some of the tuples are not indexing into the indexes.

In this paper, we propose a new approach to take privacy preservation tech-
niques further, called privacy-aware query processing based on the privacy aware
partial index (PAPI) which is an extension to the generalized partial index [16]
and is mainly used to store intended purpose and enforce privacy policies. For
complicated features in SQL (like, conjunctive or disjunctive Selection), we pro-
pose two kinds of PAPI to enforce the privacy policies efficiently: attribute-
oriented PAPI (APAPI) and tuple-oriented PAPI (TPAPI). And TPAPI is mainly
used to process non-conjunctive queries. Based on PAPI, our model can support

106 G. Zhan et al.

both tuple-level and element-level privacy access control, and partial results for
queries are supported,too.

Definition 5. (Attribute oriented Privacy Aware Partial Index, APAPI) Let
R = {A1, A2, . . . , An} be a relation, P be the set of all purposes in FPT , and
Pk(∈ P) be a purpose. An APAPI(Ai, Pk) is a partial index defined on Ai, and
index the tuple tj(aj1, aj2, ..., aji, ..., ajn) (tj ∈ R) if and only if Pk ∈ IPji is
held (IPji is the intended purpose on aji in tj).
An APAPI(Ai, Pk)is defined as < key, CI, T ID >, where:

– key is the element aji for Ai which APAPI(Ai, Pk) is defined on.
– Compliance Indicator(CI) is a bit string {b1b2 . . . bn},the size of CI is

determined by the number of attributes in R. Given a tuple tj, ajh is an ele-
ment in tj with the intended purpose IPjh, then bh(j = 1, . . . , n) is assigned
according to the following rules:

• bh = 1, if and only if Pk ∈ IPjh is true, or there is no privacy protection
requirement for ajh;

• bh = 0, otherwise.
CI is mainly used to support the partial result of a query, which is different
from PBAC which filters out the whole tuples if any of its elements violate the
privacy policies. In CI, there are some reserved bits used for new appending
attributes in future.

– TID is the physical address locating a tuple uniquely and directly.

Table 1. Personal Information Table : PI Table

TID Name N L Gender G L Age A L
1 Jone Marketing Male Marketing 18 Analysis
2 Smith Profiling Male Analysis 34 Marketing
3 Alice Marketing Female Analysis 18 Marketing
4 Vincent Third Party Male Marketing 29 Third Party

Example 2. Given (PI Table) which records the personal information and will
be as an example throughout this paper. An APAPI, denoted as Name APAPI,
is created on the attribute Name for the purpose Marketing, and the last five
bits in its CI are the reserved bits. The result is shown in the Table 2.

Table 2. APAPI on PI Table Table 3. TPAPI on PI Table

Name N CI TID
Jone 110 00000 1
Alice 001 00000 2

N CI TID
110 00000 1
101 00000 3
010 00000 4

As we know, in traditional DBMS, it is difficult for an optimizer to choose
an index access method to access the relation on which has disjunctive selection
predicates, except few combinational indices. And in our model, the privacy

Privacy Preservation and Protection 107

policies are enforced in privacy aware query optimizer firstly by choosing optimal
and suitable PAPIs to access the relevant relation. So, when there exists an
disjunctive conditions on the base relation, the model probably fail to enforce
the privacy policies because the optimizer can not choose APAPIs to access this
relation under this scenarios. Fortunately, we introduce TPAPI, whenever we
can choose the TPAPI as the access method to a relation. Because a TPAPI is
independent from any attributes.

Definition 6. (Tuple oriented Privacy Aware Partial Index, TPAPI) Let R =
{A1, A2, . . . , An} be a relation,P be a set of purposes inFPT , andPk(∈ P) be a pur-
pose. A TPAPI(Pk) is a partial index to index the tuple tj(aj1, aj2, ..., aji, ..., ajn)
(tj ∈ R) if and only if there exists any element aji satisfying Pk ∈ IPji(IPji is the
intended purpose on aji in tj),at least. A TPAPI(Pk)is defined as < CI, T ID >,
where:

– Compliance Indicator(CI) is same to the counterpart defined in APAPI
– TID is the physical address locating a tuple uniquely and directly.

Example 3. The TPAPI, denoted as Name TPAPI, is created on PI Table
for the purpose Marketing, and the result is shown in the Table 3.

4 PAPI Maintenance and Intended Purpose Management

This section focuses on how to collect and store user data and designated privacy
policies (i.e. purposes) by donators. When users request some services, necessary
data is collected by terminals, like Web Browsers, according to P3P [18]. Users
provide the necessary personal information, and specify the usage type (intended
purpose, short for IP), thus the tuple < data, IP > is formed and transported
into the back-end privacy aware DBMS. Then, data is inserted into the relation,
and update the PAPIs according to IP.

4.1 Establishing Basic PAPIs

The objectives of PAPI include: 1) store the privacy policies completely; 2)
improve the processing performance of privacy-oriented query (in which users
designate access purposes) based on the feature of indices. And the former is
a fundamental and indispensable objective. We should ensure the completeness
for the privacy policies in PAPIs. It is equal to the question: how many PAPIs
should be created to store the privacy policies completely, or at least?

• PAPI Completeness. Given P is the set of purposes in FPT , P =
{P1, P2, . . . , Pm}, and a relation R defined as: R = {A1, A2, . . . , An}.

Theorem 1. Given P and R, and considering the APAPI only. For an at-
tributes Ai, at least m APAPIs have to be defined on it for m purposes respec-
tively to ensure the completeness.

108 G. Zhan et al.

Proof . All the possible purposes are defined in FPT . Give an element elemi

in the tuple T for Ai , if its intended purpose (IPi) satisfies: IPi ∈ P , there
must exist an entry for T in the APAPI(Ai, Pk). If there is only (m-1) APAPIs
are defined, then there must exists a purpose Ph on which an APAPI (Ak, Ph)
is not defined. So if there certainly exists a tuple T ′ in which elem′

i for Ai can
used for Ph, then elem′

i will lose the privacy policy for Ph because of absenting
APAPI(Ak, Ph). So, we need to define m APAPIs on each purpose, at least.

Therefore, according to the Theorem 1, for a relation R with n attributes, we
have to create n ∗ m APAPIs totally to ensure the privacy completeness.

Theorem 2. Given P and R, and considering the TPAPI only. For R, m TPA-
PIs need to be defined for m purposes respectively to ensure the completeness.

Proof . According to the definition for TPAPI, and given a TPAPI(Pi), if a
tuple T including any element used for Pi at least, then there must exist an
entry for T in TPAPI(Pi). Obviously, if TPAPI(Pk) is not created, then tuple
for Pk cannot be located by TPAPIs. So m TPAPIs have to be maintained for
m purposes respectively.

For considering the complexity of SQL syntax and diversity of applications,
we maintain APAPI and TPAPI simultaneously to facilitate different kinds of
queries and applications.

So, given P = {P1, . . . , Pm} in FPT , and a relation R with n attributes,
we have to create n*m APAPIs, and m TPAPIs. These are demonstrated in a
matrix (X-coordinate for attributes, Y-coordinate for purposes) in Fig.2.

A1 A2 A3 ... AN-1 AN

PAPI TPAPI APAPI

P1 TPAPI1 APAPI11 APAPI12 APAPI13 ... APAPI1,N-1 APAPI1,N

P2 TPAPI2 APAPI2,1 APAPI2,2 APAPI2,3 ... APAPI2,N-1 APAPI2,N

P3 TPAPI3 APAPI3,1 APAPI3,2 APAPI3,3 ... APAPI3,N-1 APAPI3,N

...

PM-1 TPAPIM-1 APAPIM-1,1 APAPIM-1,2 APAPIM-1,3 ... APAPIM-1,N-1 APAPIM-1,N

PM TPAPIM APAPIM,1 APAPIM,2 APAPIM,3 ... APAPIM,N-1 APAPIM,N

Fig. 2. PAPI matrix for all basic PAPIs

4.2 Updating PAPIs

Updating PAPIs occurs in the following three cases: 1) update the relation R,
including insertion, update, and delete; 2)update the privacy policies on data
by donators; 3) update the flatten purpose tree FPT . We discuss how to adjust
the PAPIs to these changes.

Assuming that R contains n attributes, P includes m purposes, and each data
item can only used for one purpose (actually, one intended purpose may contain
several purpose).

Privacy Preservation and Protection 109

– Updating Relation. When a relation R is updated, associated PAPIs are
updated simultaneously, as general indices do.

– Updating Privacy Policies on Data. As a flexible privacy preserving
model, it has to facilitate donators to modify their privacy policies efficiently
and conveniently. In our model, when donators change privacy policies on
an element, four PAPIs have to be updated,(including two TPAPIs and two
APAPIs respectively).

– Updating FPT . If security administrator has to remove a purpose, they
just need to remove the relevant row in the matrix shown in Fig.2. Taking the
purpose P2 for example, if P2 is deleted, only the second row in the matrix
is deleted without any influence to the rest PAPIs. When a new purpose is
appended, only a new row is appended into the matrix.

4.3 Analysis of PAPI

The analysis focuses on PAPI selectivity which is defined as the number of
entries in each PAPI and its storage cost. The smaller the selectivity is,the
faster it will accelerate query processing. The analysis is based on the following
assumptions:

• Probability of an element used for a purpose is equal.
• Average number of intended purposes for each cell is denoted as l.
• R contains n attributes and c tuples, and P includes m purposes.

Selectivity
According to the above assumptions, given APAPI(Ai, Pi) and a tuple tj(aj1,
aj2, . . . , ajn) , the probability of aji used for Pi is l/m. So the probability of
indexing t in APAPI(Ai, Pi) is also l/m, and there are (l × c)/m entries on
average for APAPI(Ai, Pi).

As we know that the probability of aji used for Pi is l/m, while there are n
elements in a tuple t, and if all the attributes are independent from each other,
thus the probability of indexing t in TPAPI(Pi) is (n × l)/m according to the
definition of TPAPI. So, there are (n×l)×c/m entries for TPAPI(Pi) on average.

Storage Overhead
According to the above analysis, for an APAPI, there are (l × c)/m (c is cardi-
nality of R) entries. So, for n×m APAPIs, there are (n×m)× (l × c)/m entries
in all. And also there are (n × l) × c/m for each TPAPI, thus for m TPAPIs,
there are m× (n× l)× c/m entries in all. So, in a privacy-aware DBMS based on
PAPI mechanism, the number of all the indices entries in PAPIs (both APAPI
and TPAPI) sums to (n × m) × (l × c)/m + m × (n × l) × c/m = 2(n × c) × l.
While, in R, there are n∗c data cells, so the whole extra storage overhead is 2× l
times as the original table. So, the storage overhead is attributed to l, while l is
due to the specific applications.

From the above analysis, the selectivity for TPAPI on average is n times lower
than it for APAPI. So, the retrieval performance of TPAPI may be greatly lower
than that of APAPI theoretically.

110 G. Zhan et al.

5 Privacy-Aware Query Processing Engine

This section mainly focuses on how to enforce privacy policies in query processing
engine. And we assume that user’s access purposes are authenticated. As we
known, a general query processing engine consists of two modules: optimizer
and executor. So, our efforts focus on extending existing optimizer and executor
to enhance privacy policies with incorporating PAPI mechanism.

5.1 Privacy Aware Query Optimizer (PAQO)

As described in [15, 9], the mechanism for a general query optimizer facility can
formulated briefly as: 1) choose two optimal access methods for each base rela-
tion firstly. One is the cheapest access method returning tuples in an interesting
order, another one is the cheapest access method without considering order; 2)
choose an overall optimal path (mainly considering the join orders), which is
generated by combining these optimal access methods based on dynamic plan-
ning algorithm, greedy algorithm, or genetic algorithm etc. Then, the optimal
path is passed into the executor in which tuples are processed one by one.

According to principles of the optimizer, in PAQO, the optimal access meth-
ods on each relation are restricted within these PAPIs which are created for the
access purpose indicated in users’ queries. So, when a plan is determined, privacy
policies are enforced at tuple level, because accessible tuples are pre-determined
by PAPIs. However, we don’t know which attributes can be accessed. This prob-
lem can be solved by the compliance indicator (CI) in PAPIs, CI need to be
checked in executor when accessing cells in tuples. That’s why we extend the
existing query executor.

5.2 Privacy Aware Query Executor (PAQE)

Through PAQO, the coarse privacy policies (PP) have been enforced. The fine-
grained PP enforcement is left for executor to check the compliance indicator
(CI) further and return the suitable partially incomplete result.

Without considering the inference violation, the fine-grained PP is enforced
according to below rules(called Loose Rules):

– Let tj{aj1, aj2, . . . , ajn} be a tuple, and CIj(bj1bj2 . . . bjn) is the CI.
– If bji(CI) = 1(i = 1, . . . , n), output the aji if necessary;
– If bji = 0, replace aji by NULL.

Example 4. Display the personal information used for Marketing.
Q2: SELECT * FROM PI Table WHERE Name=’Jone’ And Age=18;
The result for Q2 is displayed as in the Table 4.

Table 4. Result under Loose Rules Table 5. Result under Strict Rules

Name Gender Age
Jone Male NULL
Jone NULL 18

Name Gender Age
Jone NULL 18

Privacy Preservation and Protection 111

There is an inference violation from the result of Q2 in Table 4. The Q2’owner
can easily infer that age for Jone in the first row is also 18 and its intended
purposes do not include Marketing.

To avoid this inference disclosure, we find out selective attributes (SA) which
are used to filter out unqualified tuples in the relation R. With considering the
inference control, based on Loose Rules, Strict Rules for the fine-grained PP
enforcement are developed:

– Let tj{aj1, aj2, . . . , ajn} be a tuple, and CIj(bj1bj2 . . . bjn) is the CI.
– If bji(CI) = 1(i = 1, . . . , n), output the aji if necessary;
– If bji = 0

∧
Ai /∈ SA, replace aji by NULL.

– If bji = 0
∧

Ai ∈ SA, tj is discarded directly.

According the strict PP enforcing rules, SA for Q2 is { Name, Age}, and the
result for Q2 is shown in Table 5.

To summarize, privacy policies are enforced through two steps: coarse PP
enforcement which is fixed in privacy aware query optimizer (PAQO) and fine-
grained PP enforcement which is fixed in privacy aware query executor (PAQE).

6 Implementation and Experiments

6.1 Implementation on PostgreSQL

The implementation mainly involves the below aspects: purpose management,
PAPI maintenance, and extending query optimizer and executor.

Purposes are stored in a system catalog (called Pg Purpose) which is created
as a part of data dictionary (DD) when database is installed initially. DBAs can
create new purpose by extended DDL. And each purpose has a unique code.

In reality, purposes, in our implementation, can be considered as special priv-
ileges, and it will be granted or revoked as general privileges do. The access
purposes are granted to users firstly. If a user intends to access data for a pur-
pose, DBMS checks the access purpose against allowed access purposes in ACL.
If the access purpose is allowed, then the request is processed; else, rejected
directly.

Basic PAPIs are created automatically, when a relation is created, and auto-
matically establish dependency with target relations. The command for PAPIs
is extended from the standard command for the index. Maintenance for PAPIs
follows the paradigm for general indices. Besides, all PAPIs have to establish the
dependency on Pg Purpose, too. When any updates on FPT , cascading actions
will take effect on the corresponding PAPIs.

For the privacy aware query optimizer (PAQO), we only need to add a new
branch to support the privacy feature without influencing its original function.
When users submit privacy-oriented queries, the optimizer chooses optimal path
from those PAPIs defined for the access purpose.

According to PAQO, all tuples, which are indexed in PAPIs, can be accessed
for privacy-oriented queries. And PAQE enforces strict rules on cell level by
filtering out the unqualified tuples or suppressing tuple cells.

112 G. Zhan et al.

6.2 Experimental Evaluation

The goal of our experiments is to investigate the feasibility and performance of
our mechanism. We mainly focus on comparing the performance against the two
traditional techniques, namely query modification techniques, labelling schema
(such as element-based labelling PBAC model), varying the number of attributes
accessed and privacy policies selectivity. Sequentially, we demonstrate the rela-
tionship between the performance of our model and different cardinalities. Fi-
nally, we analyze the storage overhead of our model.

Experimental Setup. The main experimental environment is configured as
below: CPU is Intel P4C with 1G DDR-400, Redhat Linux AS 4.0 is installed on
the machine, and PostgreSQL-7.43 is used as the RDBMS. Our PAPI mechanism
is implemented by extending the PostgreSQL-7.43, while the element-base PBAC
model is simulated: each attribute is entailed with two extra labels with the type
smallint, and the privacy policies enforcement function (i.e. Comp check(AP,
AIP, PIP)) is substituted by a simple predicate involving the two corresponding
labels. The tested data set is a version of large size tuples schema used in [6] .

Fig. 3. Mechanisms VS Performance Fig. 4. Selectivity and Performance

Fig. 5. PAPI and Element-based PBAC Fig. 6. Cardinality and Performance

Privacy Preservation and Protection 113

Response time is used as the metric to measure the performance. In our exper-
iments, the response time is referred to the retrieval time and a trivial counting
time by evaluating the standard aggregate function COUNT(). A sample of
queries used in the experiments is:

SELECT COUNT(unique1),COUNT(two),COUNT(unique2),
COUNT(four) FROM mtuples5;
Before we execute the target testing cases, we load the data set into memory as
possible as we can, and each testing case is run for ten times.

Experimental Results. In order to compare the performance of different tech-
niques, firstly we assume the selectivity of all data elements (for both actual
attributes and purpose labels) to be 100 percent, but vary the number of at-
tributes accessed in each query. The result shown in Fig. 3 demonstrates that
PAPI gains the best performance, and has a significant improvement against the
query modification technique and element-based PBAC model. Actually PAPI
mechanism introduces some extra overhead against the standard relational data
model (without any labels and PAPI’s indices), because the in PAPI mechanism,
it has to access the PAPI’s indices to locate every tuples whatever method the
tuples are accessed. Fig. 4 shows the performance of different techniques in case
of different privacy policy selectivity (i.e. the selectivity of data elements for
actual attributes is still 100 percent, but the selectivity of data elements for pur-
pose labels is variable), varying from 10 percent to 100 percent, and all testing
queries access the same six attributes. We learn that PAPI mechanism gains the
best performance in any selectivity, too.

As we know that element-base PBAC model will achieve a drastic improve-
ment on performance based on the functional index by pre-computing the given
function which is used to enforce the privacy policies. Fig.5 shows the compar-
ison between PAPI mechanism and element-base PBAC model(with indices).
And from the experimental results, PAPI mechanism also has a little better
performance, because in element-base PBAC model, each attribute are entailed
with two labels for AIP and PIP respectively, and thus the size of each tuple is
enlarged, directly leading to the longer accessing time in both memory and disks.
If using the functional index to accelerate PBAC model, it will achieve a signif-
icant improvement; unfortunately, it will not support the partially incomplete
result which is acceptable in some application environment.

Also, we investigate the scalability of our PAPI mechanism by considering dif-
ferent cardinalities. Fig.6 shows that the query processing cost merely increases
in a linear way against the cardinality.

7 Conclusions

In this paper, we summarize the recent achievements on purpose-based pri-
vacy enhancing techniques. Motivated by some problems in these techniques,
we propose a PAPI mechanism to facilitate the privacy policies enforcement by
extending the traditional query processing engine based on two concepts: at-

114 G. Zhan et al.

tribute oriented privacy-aware partial index and tuple oriented privacy-aware
partial index. And intended purposes are efficiently maintained by PAPIs. Fi-
nally, through experiments, the feasibility and performance of PAPI mechanism
are demonstrated. We plan to design a privacy-aware DBMS based on PAPI
mechanism with incorporating other techniques, such as suppression, general-
ization and so on.

References

1. R. Agrawal, J. Keirnan, R. Srikant, and Y. Xu. Hippocratic database. In Proceed-
ings of the 28th VLDB Conference., 2002.

2. J.-W. Byun, E. Berino, and N. Li. Purpose based access control of complex data
for privacy protection. Proceedings of the tenth ACM symposium on Access control
models and technologies (SACMAT’05), pages 102–110, June 2005.

3. J.-W. Byun and E. Bertino. Vision paper: Micro-views, or on how to protect
privacy while enhancing data usability. To be published in SIGMOD Record., 2005.

4. J.-W. Byun, E. Bertino, and N. Li. Purpose based access control for privacy pro-
tection in relational dtabase systems. Technical Report 2004-52,Purdue Univ,2004.

5. W. W. W. Consortium(W3C). A p3p preference exchange language 1.0 (appel
1.0). available at. www.zurich.ibm.com/security/enterprise-privacy/epal.

6. D.Bitton, D.J.DeWitt, and C.Turbyfill. Benchmarking database: system a system-
atic approach. In Ninth International Conference on Very Large Data Bases, pages
8–19, Oct 1983.

7. D.Bitton, D.J.DeWitt, and C.Turbyfill. Benchmarking database system a system-
atic approach. In Proceeding of CCS’04., pages 25–29, Oct 2004.

8. W. Gasarch. A survey on private information retrieval. The Bulletin of the EATCS,
82:72–107, 2004.

9. G. Graef. Query evaluation techniques for large databases. ACM Computing
Surveys, 25(2):73 – 169, June 1993.

10. IBM. The enterprise privacy authorization language (epal). available at.
www.w3.org/TR/P3P-preferences.

11. K.LeFevre, R.Agrawal, V.Ercegovac, R.Ramakrishnan, Y.Xu, and D.DeWitt. Lim-
iting disclosure in hippocratic database. In The 30th International Conference on
Very Large Databases, Aug. 2004.

12. T. C. C. P. S. Organisations. Common criteria for information technology security
evaluation, part 2, draft version 3 and version 2.1-2.3, august. 2005.

13. P.Ashley, C. Powers, and M.Schunter. Privacy, access control, and privacy man-
agement. In Third International Symposium on Electronic Commerce, 2002.

14. R. Sandhu and F. Chen. The multilevel relational(mlr) data model. ACM Trans-
actions on Information and System Security., 1(1):93–132, November 1998.

15. P. Selinger, M.M.Astrahan, D.d.Chamberlin, R.A.Lorie, and T.G.Price. Access
path selection in a relational dababase management system. In Proceedings of the
1979 ACM SIGMOD Conference on the Management of Data., May-June 1979.

16. P. Seshadri and A. Swami. Generalized partial indexes. Proceedings of the Eleventh
International Conference on Data Engineering (ICDE), pages 420 – 427, Mar. 1995.

17. L. SWEENEY. k-anonymity: A model for protecting privacy. International Journal
on Uncertainty,Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

18. W. W. W. C. (W3C). Platform for privacy preferences (p3p). Available at
www.w3.org/P3P.

On the Optimal Ordering of Maps, Selections,
and Joins Under Factorization

Thomas Neumann1, Sven Helmer2, and Guido Moerkotte3

1 Max-Planck Institute of Computer Science, Saarbrücken, Germany
neumann@mpi-inf.mpg.de

2 University of London, Birkbeck College, London, United Kingdom
sven@dcs.bbk.ac.uk

3 University of Mannheim, Mannheim, Germany
moerkotte@informatik.uni-mannheim.de

Abstract. We examine the problem of producing the optimal evaluation
order for queries containing joins, selections, and maps. Specifically, we
look at the case where common subexpressions involving expensive UDF
calls can be factored out. First, we show that ignoring factorization during
optimization can lead to plans that are far off the best possible plan: the
difference in cost between the best plan considering factorization and the
best plan not considering factorization can easily reach several orders of
magnitude. Then, we introduce optimization strategies that produce op-
timal left-deep and bushy plans when factorization is taken into account.
Experiments (1) confirm that factorization is a critical issue when it comes
to generating optimal plans and (2) we show that to consider factorization
does not make plan generation significantly more expensive.

1 Introduction

Two things matter in optimizing queries with predicates containing user-defined
functions (UDFs): (1) UDFs tend to be much more expensive to evaluate than
other functions and (2) the same expensive UDF may be called repeatedly. To
deal with the former, the optimizer finds an optimal ordering of selections and
joins; to deal with the latter, it identifies common subexpressions in selection
predicates, factorizes them (i.e. makes sure that each common subexpression is
only evaluated once), and orders their evaluation optimally. Both these prob-
lems are already NP-hard in isolation [11, 14], combining them does not make
things easier. However, improvements by one or more orders or magnitude are
possible if factorization is taken into account during the ordering of joins and
selections. Although Yajima first considered ordering expensive selections and
joins in 1991 [19], the relevance of factorization in this context has never been
considered. Indeed, all existing algorithms for ordering expensive selections and
joins yield suboptimal results in the presence of common subexpressions involv-
ing expensive predicates. We show that when optimizing queries that contain
expensive predicates and also share common subexpressions, it is critical to take
both into account. Surprisingly, this can be done without increasing the cost of
plan generation.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 115–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 T. Neumann, S. Helmer, and G. Moerkotte

Motivating Example. Let us illustrate the optimization potential with an ex-
ample from cell biology [3]. In a cell, some proteins are translocated into the
endoplasmatic reticulum (ER). Out of these, some are cleaved, that is, their
signal sequence is cut off. It is important to know (1) given a protein, does it
have an ER signal and (2) is the signal cleaved and, if so, where (cleavage site)?
When designing a new prediction method to improve upon existing state of the
art predictors1, it is important to look at cases where the prediction methods
agree with or differ from experimental data. Consider the following scenario. The
set of sequences under investigation is contained in a relation Sequence with a
varchar attribute seq containing the actual amino acid sequence. The results
of state of the art predictors for signals and cleavage sites are materialized in re-
lations SignalPred and SitePred. Two user-defined functions signalpred and
sitepred implement a new pair of prediction methods. Their result is not ma-
terialized in a relation since they still change frequently. Actual results of exper-
iments are available in the relation Experiment. All relations have an attribute
id which uniquely identifies a sequence. Figure 1 shows the typical pattern for
a query searching for correspondences and deviations between prediction meth-
ods and experiments. The operator θ is a simple SQL expression (often using
(not) between on the difference of the arguments of θ) selecting the degree of
accordance or deviation the user is interested in.

select *
from Sequence S, Experiment E,

SignalPred A, SitePred B
where S.id = E.id

and S.id = A.id
and S.id = B.id
and E.signal θ1 signalpred(S.seq)
and A.signal θ2 signalpred(S.seq)
and E.site θ3 sitepred(S.seq)
and B.site θ4 sitepred(S.seq)

Fig. 1. A SQL query template

While building execu-
tion plans for the query
we follow one of three
strategies. Strategy 1 ig-
nores the costs of all (ex-
pensive) selections com-
pletely and considers only
join costs. Strategy 2
takes into account the
costs of selections, but
does not look for com-
mon subexpressions. Fi-
nally, Strategy 3 consid-
ers the full selection costs
as well as factorization. We determined the optimal left-deep tree for the example
query using each of the strategies. When calculating the actual costs of a plan,
we assumed that common subexpressions need only be evaluated once during
query evaluation. The differences in costs are quite astonishing. For Strategy 1
the total costs were 1.3∗1011, for Strategy 2 1.1∗1011, and for Strategy 3 8.8∗109.

Contributions. The contributions of this paper are as follows:

– to describe and quantify the differences in evaluation costs if factorization
is not considered by plan generators (the relevance of factorization has been
overlooked for almost fifteen years in this area)

1 e.g. SignalP [1] which correctly predicts the cleavage site in 70% of all cases.

On the Optimal Ordering of Maps, Selections, and Joins 117

– to present two plan generators that create optimal left-deep and bushy plans
taking factorization into account

– to show experimental evidence that plan generation itself does not become
more expensive if factorization is taken into account.

The rest of the paper is organized as follows. We formalize the problem in Sec-
tion 2. Section 3 introduces algorithms that generate optimal left-deep and bushy
tree plans while taking factorization into account. Section 4 presents experiments
that verify our claim and demonstrate that plan generation performance does
not suffer. Section 5 discusses related work, while Section 6 concludes the paper.

2 Formalization

In order to formalize the problem, we need — besides selection and join operators
— the map operator (χ) [2] to evaluate UDF calls. It takes an expression as a
subscript and evaluates the expression for each tuple in its input during query
evaluation. The result of the evaluation is then stored in some additional (new)
attribute. Formally, the map operator is defined as follows:

χa:e(R) = {t ◦ [a : e(t)] | t ∈ R}

where [] and ◦ represent tuple construction and concatenation. The expression
e(t) denotes the result of evaluating e using attribute values provided by the
tuple t. The attribute name a must be new, that is, it may not be one of R.
When it is of no further interest, we skip this attribute name and abbreviate
χa:e as χe. So, for every UDF call in queries we introduce a map operator and a
new attribute for storing the result and for every comparison a selection operator
referring to this attribute. The other algebraic operators we use in this paper
are the well-known selection and join operators.

The map operator is used to make the UDF calls explicit and visible to the
reader. For our approach to work it is not really necessary to implement it in
exactly this way. However, we think that introducing an explicit treatment of
UDF calls makes the approach more readable.

Applying the above to our example query from the introduction results in the
following set of map and selection operators:

σE.signalθsigp σA.signalθsigp σE.siteθsitep σB.siteθsitep

χsigp:signalpred(S.seq) χsitep:sitepred(S.seq)

When looking at the query in Figure 1, we can identify the following common
subexpressions: the function signalpred and sitepred are called twice with
the same parameter S.seq. Factoring these means that we only evaluate each of
them once.

Generating the optimal evaluation plan for our query now boils down to find-
ing an optimal ordering of maps, selections, and joins. In doing so, we have to pay
attention to the following: when an operator’s subscript refers to an attribute
generated by a map, this map has to be evaluated before that operator. These
dependencies induce a dependency graph.

118 T. Neumann, S. Helmer, and G. Moerkotte

������

������

�
���

�
��	

�

��	
�

���

χsitep:sitepred(S.seq)χsigp:signalpred(S.seq)

S

σE.siteθsitepσE.signalθsigp

E

σB.siteθsitepσA.signalθsigp

A B

Fig. 2. Dependency graph for example query

2.1 Dependency Graph

The dependency graph captures the consumer/producer relationship of attributes.
Its nodes are the relations and the selection and map operators of the query.
There is an edge between two nodes n1 and n2, iff n2 references attributes
produced by n1. For our example query, the dependency graph is shown in
Figure 2. The notion of dependency graph and our subsequent algorithms can
easily be extended to capture join predicates which require the evaluation of
(expensive) UDFs. For ease of exposition, we do not consider this here.

If there is a path in the dependency graph from some χj to some σi, then
the evaluation of σi depends on χj and we write χj →∗ σi. We use the notation
req(σi) to describe the set of map operators a given selection σi depends on.

req(σi) = {χj | χj →∗ σi}

If χj ∈ req(σi) we say that σi requires χj .
As we factorize common subexpressions, we do not have to recalculate map

operators that have already been computed in a (partial) plan P . By maps(σi, P)
we denote the set of map operators in req(σi) which have not been evaluated in
P yet:

maps(σi, P) = req(σi) \ {χj | χj evaluated in P}

2.2 Cardinalities

We denote the cardinality of a relation R by |R|. As a map operation only adds
attributes, but does not influence a relation in any other way, the cardinality
of |χi(R)| = |R|. The cardinality of the output of a selection σi (or a join �i)
depends on its selectivity seli, so |σi(R)| = |R|·seli (and |L �i R| = |L|·|R|·seli).

2.3 Costs

Our results are cost model invariant. In particular, the algorithms work for any
cost model. In order not to overcomplicate the matter, we use a very simple cost
model.

On the Optimal Ordering of Maps, Selections, and Joins 119

Let cost(R) stand for the costs for scanning a relation R. For joins we assume
main memory hash joins (only CPU costs) with an average chain length of 1.2:

cost(L �i R) = 1.2 · |L| + |R| + 1.2 · |R| · ji

where ji is the cost for evaluating the join predicate.
Depending on the strategy used for optimizing the query plan, we have to dis-

tinguish different costs for the other operators. Each of the following paragraphs
focuses on one strategy.

Zeroed Selection Costs. (Strategy 1 from the introduction) This is the sim-
plest alternative. We just ignore the costs of map and selection operators by
setting their cost to zero:

cost(χi(R)) = 0
cost(σi(R)) = 0

This strategy was employed by early plan generators and resulted in the well-
known heuristic of pushing down selections in the query plan.

Maximized Selection Costs. Later it became apparent that selection costs
are indeed important and that the traditional heuristics of pushing down se-
lections can result in suboptimal plans (see Section 5 for references). However,
factorization was not yet considered, which means that the costs for the selec-
tions may be overestimated. We call this model maximized selection costs (this
is Strategy 2 from the introduction). The cost functions are

cost(χi(R)) = |R| · xi

cost(σi(R)) =
∑

χj∈req(σi)

cost(χj(R)) + |R| · si

where xi are the costs of evaluating χi per tuple and si the costs of σi per tuple.

Correct Selection Costs. Last but not least we consider the costs for selections
under factorization. We call these correct selection costs and they are computed
as follows:

cost(χi(R)) = |R| · xi

cost(σi(R), P) =
∑

χj∈maps(σi,P)

cost(χj(R)) + |R| · si

This time we only consider the costs of map operators that have not yet been
evaluated in P .

3 Algorithms

We present two algorithms for generating optimal query plans: one for generating
left-deep trees and one for bushy trees. Depending on the cost model, these

120 T. Neumann, S. Helmer, and G. Moerkotte

algorithms either ignore selections, consider the (full) costs of their required
map operators or factorize the costs of the required map operators. Thus, we
can use the same algorithms for all three strategies, only the way the costs of a
plan are computed is different for each strategy.

3.1 Left-Deep Trees

We start with a relation Ri and add operators to it: Rioj1oj2oj3 . . . (with ojk
∈

{σ, �}). The join operators have an implicit right-hand side, which is determined
by the current subplan. For example, let us assume that �12 joins R1 and R2,
�23 joins R2 and R3, and σ1 checks a selection predicate on attributes of R1,
then R3 �23�12 σ1 describes the query plan σ1((R3 �23 R2) �12 R1). Using this
notation, left-deep trees can be generated by choosing one starting relation and
then adding all permutations of joins and selections. By choosing each relation
as the starting relation (in a partial plan) once, the optimal left deep tree can
be found.

// Input: P : prefix of a complete plan
// Output: optimal sequence starting with P
left-deep(P) {

O = {o | o missing in P}
if(|O| > 0) {

P ′ = {p | p contained in P};
if (memoization table contains entry for P ′) {

return P ◦ P ′;
}
for each o in O {

Mo = {χ | χ required by o};
Po = P ◦ Mo ◦ o;
if (Po is valid) {

Co = left-deep(Po);
}

}
C = Co with the smallest costs;
add entry C \ P for P ′ to memoization table;
return C;

}
else {

return P ;
}

}

Fig. 3. Generating left-deep trees with memoization

Figure 3 shows our algorithm to generate an optimal completion of a partial
plan P . If we know from our memoization table how to complete this plan
optimally, we are already done. That is, it memoizes for a given (unordered) set
of operators P ′ an (ordered) sequence that will complete a partial plan missing

On the Optimal Ordering of Maps, Selections, and Joins 121

these operators optimally. If we do not find an entry in the memoization table, we
consider all operators not yet in P in turn; for each of them, we extend P by that
operator and all required map operators, compute the best completion for this
new partial solution (recursively) 2 and store the completion. We regard partial
plans to be equivalent (for the purpose of storing and retrieving completions) if
they are permutations of each other.

3.2 Bushy Trees

For generating an optimal bushy tree we use an iterative dynamic programming
algorithm. It first creates all query plans that consist of just a single relation
(representing the scan of this relation). It then combines existing plans with
operators that have not been applied yet and with other existing plans, creating
larger plans. In each step it only keeps the cheapest plan for a given set of
operators (e.g. either R1 � R2 or R2 � R1). In the last step of the outer loop
plans containing all operators are generated. The pseudocode of the algorithm is
shown in Figure 4. It uses the function ops() which returns the set of all operators
included in a plan. Further, A(P) denotes the set of attributes produced by the
(sub)plan P . By F(χ) we denote the set of attributes that are needed to evaluate
the map operator χ.

4 Evaluation

4.1 General Description

In order to estimate the effect of the different strategies, we created random-
ized chain and star queries3 for different numbers of relations. Due to space
constraints, we only present the results for chain queries here. Nevertheless, the
results for star queries are similarly encouraging.

The term chain query refers to the shape of the query graph and means
that each relation Ri (except for the first and last relation) is connected to its
neighbors Ri−1 and Ri+1. For each query graph size we constructed 1000 queries
and averaged their results. The optimal execution plan was found for each of the
three different costing strategies.

We measured the average runtime, average actual costs 4 relative to the op-
timum, and the average number of generated plans. Actual costs mean that for
comparing the costs of plans we assumed that the underlying query engine was
always able to factorize common subexpressions and computed the actual costs
2 Plans are checked for validity: attributes referenced by χ must be present in P ;

attributes referenced by σ must be present in P ◦ Mo; one of the argument relations
of � must be contained in P and join attributes in P ◦ Mo.

3 Chain and star queries (using a star schema) reflect typical queries in real-world
database systems.

4 For the evaluation of selection and join predicates we assumed a cost of 1, for evalu-
ating map operators a cost between 100 and 800 (determined randomly), while the
cardinality of the relations ranged from 500 to 10,000 (also determined randomly).

122 T. Neumann, S. Helmer, and G. Moerkotte

// Input: R = {R1, . . . , Rm}
// O = {σ1, . . . , σn, �1, . . . , �m−1}
// Output: optimal bushy tree
bushy(R, O) {

for each relation Ri ∈ R {
create an optimal access path for Ri;
store this plan;

}
for i = 1 to |O| {

for each σ ∈ O {
for all plans e with |ops(e)| = i − 1 and σ �∈ ops(e) {

Mσ = {χ | χ required by σ};
Pσ = σ(e ◦ Mσ);
if(Pσ is valid) {

keep Pσ if it is the cheapest plan with
operators identical to ops(Pσ);

}
}

}
for each �∈ O {

for all plans l, r with |ops(l)| + |ops(r)| = i − 1
and � �∈ (ops(l) ∪ ops(r)) {
M l

� = {χ | χ required by �, F(χ) ⊆ A(l)};
Mr

� = {χ | χ required by �, F(χ) ⊆ A(r)};
P� = (l ◦ M l

�) � (r ◦ Mr
�);

if(P� is valid) {
keep P� if it is the cheapest plan with

operators identical to ops(P�);
}

}
}

}
return the cheapest plan with |O| operations;

}

Fig. 4. Generating bushy tree permutations

of each plan taking factorization into consideration. During the optimization, on
the other hand, the three different strategies used various cost models ignoring
(zeroed, maximized) or taking into account factorization (correct).

4.2 Results for Left-Deep Trees

The results for left-deep trees are shown in Figure 5(a) (runtime of the algo-
rithm), Figure 5(b) (number of generated plans), and Figure 5(c) (relative costs
to optimal plan). Comparing the runtime and the number of generated plans
we notice that all strategies are on a par with each other. They all generated
exactly the same number of plans. This should not come as a surprise, since
all strategies were implemented by the same algorithm. The only difference was

On the Optimal Ordering of Maps, Selections, and Joins 123

that the zeroed and maximized strategy were slightly faster. The correct costs
strategy had a very slightly higher per-plan overhead.

When looking at the evaluation costs of the different strategies, however, we
see huge differences (Figure 5(c); please note the logarithmic scale). Already for a
moderate number of relations to be joined the plans generated by the zeroed and
maximized strategy are off by a factor of more than 1000. While the maximized
strategy usually behaves better than the zeroed strategy, this was not always
the case. Its overestimation of the costs of map operators resulted in plans that
applied selections too late, which is as bad as applying them too early.

4.3 Results for Bushy Trees

For bushy trees the average runtime and the corresponding average number of
generated plans for the different strategies are shown in Figure 5(d) and 5(e).
The zeroed strategy was slightly better here, as the optimizer quickly decided to
push down selections and therefore had to generate fewer plans. The correct and
the maximized strategy generated about the same number of plans. Interestingly,
the correct strategy generated slightly fewer plans than the maximized strategy.
This is due to the fact that the maximized strategy overestimated the costs,
which resulted in less pruning. The difference in average number of generated
plans was greater than the runtime difference. This is due to the fact that the
correct strategy had a slightly higher per-plan overhead which compensated for
some of the savings in the number of plans.

When looking at the error made by the different strategies for bushy trees, it
becomes clear that both zeroed and maximized costs produced even larger errors
than for left-deep trees. Figure 5(f) shows the average ratio between the actual
costs for the produced plans and the optimal plan. In contrast to left-deep trees,
where the error seems to level off at a certain point, for bushy trees the error
kept growing with the number of relations (again, note the logarithmic scale).

5 Related Work

Related work comes from two areas: (1) optimization techniques for ordering
expensive selection predicates and joins and (2) optimization techniques for the
efficient evaluation of boolean expressions containing expensive function calls
(but not considering joins). The former area is more closely related to this paper.

The problem of ordering expensive selections and joins is considered by many
different authors [5, 6, 7, 8, 10, 16, 17, 19]. However, none of these papers considers
factoring out common subexpressions. As we have seen, this can lead to subop-
timal plans. Furthermore, experiments presented in Section 4 indicate that the
plans generated by any of the approaches cited above may be several orders of
magnitude worse than the best plan.

Let us now briefly discuss the second area of related work. Kemper et al. dis-
cuss several approaches to optimize complex boolean expressions with expensive
selection predicates. [12, 13, 18]. However, neither factoring out common subex-
pressions nor joins are considered. Neumann et al. discuss the optimal ordering

124 T. Neumann, S. Helmer, and G. Moerkotte

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14

m
s

no of relations

Runtime of memoization algorithms

correct
zeroed

maximized
 0.001

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

m
s

no of relations

Runtime of DP algorithms

correct
zeroed

maximized

(a) avg runtime, left-deep (d) avg runtime, bushy

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14

no
 o

f g
en

er
at

ed
 p

la
ns

no of relations

Search space of memoization algorithms

correct
zeroed

maximized
 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14

no
 o

f g
en

er
at

ed
 p

la
ns

no of relations

Search space of DP algorithms

correct
zeroed

maximized

(b) avg no of generated plans, left-deep (e) avg no of generated plans, bushy

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14

co
st

s
re

la
tiv

e
to

 o
pt

im
al

no of relations

Relative result costs of memoization algorithms

correct
zeroed

maximized 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 2 4 6 8 10 12 14

co
st

s
re

la
tiv

e
to

 o
pt

im
al

no of relations

Relative result costs of DP algorithms

correct
zeroed

maximized

(c) avg relative result costs, left-deep (f) avg relative result costs, bushy

Fig. 5. Results for evaluating algorithms (please note the logarithmic scales)

of selections taking factorization into account. However, they do not consider
joins yet [14]. Only a single paper by Chaudhuri et al. explicitly handles the
problem of factorization [4]. However, they do so at the level of physical query
optimization. Their work deals with the evaluation of complex boolean predicates
(containing many simple comparisons between attribute values and constants)
by considering how to merge the results of several index scans optimally. Heller-
stein and Naughton discuss caching results for expensive UDFs [9]. While this
is an important performance improving technique, it does not solve the problem

On the Optimal Ordering of Maps, Selections, and Joins 125

of finding an optimal evaluation order. In fact, whether results of UDF calls are
cached or not is orthogonal to the issue presented here.

6 Conclusion

Early work in plan generation applied the heuristics of pushing selection predi-
cates as far down as possible. Later, it was shown that applying these heuristics
in case of expensive predicates can lead to suboptimal plans. Several algorithms
have been devised to order expensive selections and joins. The fact that expen-
sive selection predicates can share expensive subexpressions (e.g. in the form of
UDF calls) is ignored by all these algorithms. We have shown that ignoring the
benefits of sharing may lead to highly inefficient plans.

Motivated by this finding, we proposed two algorithms that optimally order
joins, selections, and maps while taking factorization of shared subexpressions
into account. The first algorithm produces optimal left-deep trees, the other op-
timal bushy trees. Using these algorithms we carried out several experiments to
illustrate the optimization potential gained when considering common subex-
pressions. In every experimental setting, improvements of several orders of mag-
nitudes are the rule.

Generating better plans is typically achieved by generating more alternatives,
that is by extending the search space of the plan generator (e.g. by going from
left-deep trees to bushy trees). Unfortunately, this usually leads to higher runtime
and memory consumption during plan generation. Not so for our algorithms;
except for the zeroed cost strategy for bushy plans, which generated very bad
plans and was slightly faster, there was no noticeable difference in the runtime
of the different strategies.

References

1. J. Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak. Improved prediction of
signal peptides: SignalP 3.0. J. Mol. Biol., 340:783–795, 2004.

2. R. Bird and P. Wadler. An Introduction to Functional Programming. Prentice
Hall, 1988.

3. G. Blobel. Protein targeting. ChemBioChem, 1:86–102, 2000.
4. S. Chaudhuri, P. Ganesan, and S. Sarawagi. Factorizing complex predicates in

queries to exploit indexes. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 361–372, 2003.

5. S. Chaudhuri and K. Shim. Optimization of queries with user-defined predicates.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 87–98, 1996.

6. S. Chaudhuri and K. Shim. Optimization of queries with user-defined predicates.
ACM Trans. on Database Systems, 24(2):177–228, 1999.

7. J. Hellerstein. Predicate migration: Optimizing queries with expensive predicates.
Computer Science Division, EECS Department, University of California at Berke-
ley, CA 94720, Dec. 1992.

8. J. Hellerstein. Practical predicate placement. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 325–335, 1994.

126 T. Neumann, S. Helmer, and G. Moerkotte

9. J. Hellerstein and J. Naughton. Query execution techniques for caching expensive
methods. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
423–434, 1996.

10. J. Hellerstein and M. Stonebraker. Predicate migration: Optimizing queries with
expensive predicates. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 267–277, 1993.

11. T. Ibaraki and T. Kameda. On the optimal nesting order for computing n-relational
joins. ACM Transactions on Database Systems, 9(3):482–502, September 1984.

12. A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimizing disjunc-
tive queries with expensive predicates. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 336–347, 1994.

13. A. Kemper, G. Moerkotte, and M. Steinbrunn. Optimization of boolean expressions
in object bases. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 79–
90, 1992.

14. T. Neumann, S. Helmer, and G. Moerkotte. On the optimal ordering of maps and
selections under factorization. In Proc. IEEE Conference on Data Engineering,
pages 490–501, 2005.

15. K. Ono and G. Lohman. Measuring the complexity of join enumeration in query
optimization. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 314–
325, 1990.

16. W. Scheufele and G. Moerkotte. Optimal ordering of selections and joins in acyclic
queries with expensive predicates. Technical Report 96-3, RWTH-Aachen, 1996.

17. W. Scheufele and G. Moerkotte. Efficient dynamic programming algorithms for
ordering expensive joins and selections. In Proc. of the Int. Conf. on Extending
Database Technology (EDBT), pages 201–215, 1998.

18. M. Steinbrunn, K. Peithner, G. Moerkotte, and A. Kemper. Bypassing joins in
disjunctive queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
228–238, 1995.

19. K. Yajima, H. Kitagawa, K. Yamaguchi, N. Ohbo, and Y. Fujiwara. Optimization of
queries including adt functions. In International Symposium on Database Systems
for Advanced Applications, pages 366–376, 1991.

An I/O Optimal and Scalable Skyline
Query Algorithm

Yunjun Gao, Gencai Chen, Ling Chen, and Chun Chen

College of Computer Science, Zhejiang University, Hangzhou, 310027, P.R. China
{gaoyj, chengc, lingchen, chenc}@cs.zju.edu.cn

Abstract. Given a set of d-dimensional points, skyline query returns
the points that are not dominated by any other point on all dimensions.
Currently, BBS (branch-and-bound skyline) is the most efficient skyline
processing method over static data in a centralized setting. Although
BBS has some desirable features (e.g., I/O optimal and flexibility), it re-
quires large main-memory consumption. In this paper, we present an im-
proved skyline computation algorithm based on best-first nearest neigh-
bor search, called IBBS, which captures the optimal I/O and less memory
space (i.e., IBBS visits and stores only those entries that contribute to
the final skyline). Its core enables several effective pruning strategies to
discard non-qualifying entries. Extensive experimental evaluations show
that IBBS outperforms BBS in both scalability and efficiency for most
cases, especially in low dimensions.

1 Introduction

Skyline query is one of important operations for several applications involving
multi-criteria decision making, and has received considerable attention in the
database community. Given a set of d-dimensional points P = {p1, p2, . . . , pn},
the operator returns a set of points pi, which is not dominated by any other point
pj in P on all dimensions, forming the skyline of P . A point dominates another
one if it is as good or better in all dimensions and better in at least one dimension
[19]. Consider, for instance, a common example in the literature, “choosing a
set of hotels that is closer to the beach and cheaper than any other hotel in
distance and price attributes respectively from the database system at your travel
agents’ [3]”. Figure 1(a) illustrates this case in 2-dimensional space, where each
point corresponds to a hotel record. The room price of a hotel is represented
as the x-axis, and the y-axis specifies its distance to the beach. Clearly, the
most interesting hotels are the ones {a, g, i, n}, called skyline, for which there
is no any other hotel in {a, b, . . . , m, n} that is better on both dimensions.
For simplicity, in this paper, we use the min condition on all dimensions to
compute the skyline, even though the proposed algorithm can be easily applied
to different conditions (e.g., max metric). Using the min condition, a point p
is said to dominate another one q if (i) p is not larger than q in all dimensions,
and (ii) p is strictly smaller than q in at least one dimension. This implies that
p is preferable to q for the users in real life. Continuing the running example,

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 127–139, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

128 Y. Gao et al.

1 2 3 4 5 6 7 8 9 100
1
2
3
4
5
6
7
8
9

10

x (Price)

y (Distance)

Skyline point

a
b

c

d
e

f

g h

i

j
k

l m

n

Dominating point

1 2 3 4 5 6 7 8 9 100
1
2
3
4
5
6
7
8
9

10

x

y

Skyline point

N1

N2

N3

N4

N5

N7

N6

a
b

c

d

e

f
g h

i
j

k

l
m

n

Dominating point

N1 N2

N3 N4 N5 N6

a b c d e f g h i l mn

N1 N2

N3 N5N4 N7

Root Level 2

Level 1

Level 0

N7

j k
N6

(a) (b) (c)

Fig. 1. Example of skyline and an R-tree in 2-dimensional space

hotel a dominates hotels b, d, and e because the former is nearer to the beach
and cheaper than the latter.

Skyline query processing has been extensively studied, and a large number
of algorithms have been also proposed [1, 3, 5, 7, 9, 12, 13, 15, 16, 19, 21]. These
methods can be mainly divided into two categories. Specifically, (i) non-index-
structure-based schemes, which do not assume any index structure on the un-
derlying dataset, but compute the skyline through scanning the entire dataset at
least once, resulting in expensive CPU overhead; (ii) index-structure-based solu-
tions, which significantly reduce CPU and I/O costs by performing the skyline
retrieval on an appropriate index structure (e.g., R*-tree [2]). We concentrate on
the second category in this paper. In addition, the skyline computation problem
is also closely related to several other well-known problems that have been ex-
tensively investigated in the literature, such as convex hull [4, 17], top-k queries
[6, 8, 11, 14], and nearest neighbor search [10, 18].

Currently, BBS (branch-and-bound skyline), presented by Papadias et al. in
[15], is the most efficient skyline query algorithm over static datasets in a central-
ized setting. It employs a best-first based nearest neighbor search paradigm [10] on
dataset indexedbyR*-tree.BBSminimizes the I/Ooverhead, and the considerable
experiments of [15] show that it outperforms previous algorithms in terms of CPU
and I/O costs for all problem instances. Although BBS has some desirable advan-
tages, it yet needs large memory space. As reported in [15], the heap size of BBS
is larger than the to-do list size of NN [12] in 2-dimensional space. In fact, we can
greatly reduce space consumption used by the heap and speed up the execution of
the algorithm via several dominance checking based pruning heuristics (discussed
detailedly in Section 3 of this paper) for filtering all the non-qualifying entries that
may not contain (become) any skyline point. As known, the less the memory space
requires, the more scalable the algorithm is. Thus, in this paper, we present an
improved skyline query algorithm, called IBBS, which, like BBS, is depended on
best-first nearest neighbor search on R*-tree, whereas (unlike BBS) it enables sev-
eral effective pruning strategies to discard unnecessary entries. IBBS incorporates
the virtues of BBS (e.g., I/O optimal, low CPU cost, etc.), while gaining less main-
memory consumption (i.e., smaller heap size). Finally, extensive experiments with
synthetic datasets confirm that IBBS outperforms BBS in both efficiency and scal-
ability for most cases, especially in low dimensions.

The rest of the paper is organized as follows. Section 2 reviews existing al-
gorithms for skyline queries, focusing more on BBS as it is more related to our

An I/O Optimal and Scalable Skyline Query Algorithm 129

work. Section 3 describes IBBS, together with some pruning heuristics and a
proof of its memory space optimality. Section 4 experimentally evaluates IBBS,
comparing it against BBS under various setting. Section 5 concludes the paper
with some directions for future work.

2 Related Work

To our knowledge, Borzsonyi et al. [3] first introduce the skyline operator in
the database context and develop two skyline computation methods including
divide-and-conquer (D&C) and block-nested-loop (BNL). Chomicki et al. [7]
present a sort-first-skyline (SFS) algorithm as an improved version of BNL. Tan
et al. [19] propose the first progressive technique that can return skyline points
instantly, and develop two solutions for skyline queries, termed Bitmap and
Index, respectively. Another two progressive skyline query algorithms, nearest
neighbor (NN) and branch-and-bound skyline (BBS), are proposed by Kossmann
et al. [12] and Papadias et al. [15], respectively, based on nearest neighbor search
[10, 18] on datasets indexed by R-trees. The great difference of both algorithms
is that NN requires multiple nearest neighbor queries, but BBS executes only a
single retrieval of the tree. Furthermore, BBS guarantees the minimum I/O cost.
Since our work in this paper is more related to BBS, the following discussion
describes its executive steps, using an illustrative example.

Table 1. Execution of BBS

Action Heap Contents S

Visit root (N2, 4),(N1, 7) Ø
Expand N2 (N5, 5),(N1, 7),(N7, 9),(N6, 11) Ø
Expand N5 (N1, 7),(g, 8),(i, 8),(N7, 9),(h, 10),(N6, 11) Ø
Expand N1 (N3, 7),(g, 8),(i, 8),(N7, 9),(h, 10),(N6, 11),(N4, 13) Ø
Expand N3 (g,8),(i,8),(a,9),(N7 , 9),(c, 10), (h, 10),(b, 11),(N6, 11),(N4, 13) {g, i, a}
Expand N7 (c,10),(h,10),(n,10),(b,11), (N6,11),(N4,13) {g, i, a, n}

As an example, suppose that we use the 2-dimensional dataset of Figure 1(a),
organized in the R-tree of Figure 1(c), together with the minimum bounding
rectangles (MBRs) of the nodes whose capacity is 3. Note that the distances
from an intermediate entry (e.g., N3, N4, etc.) or a data point (e.g., a, b, etc.)
to the beginning of the axes are computed according to L1 norm, that is, the
mindist of a point equals the sum of its coordinates (e.g., mindist(g) = 3 + 5 =
8) and the mindist of a MBR (i.e., intermediate entry) equals the mindist of its
lower-left corner point (e.g., mindist(N5) = 3 + 2 = 5). Initially, all the entries
in the root node are inserted into a heap H sorted in ascending order of their
mindist. Then, BBS circularly computes the skyline until H becomes empty.
Each circulation, it first removes the top entry E with the minimum mindist
from H and accesses it. Here are two cases. (i) If E is an intermediate entry and

130 Y. Gao et al.

not dominated by the existing skyline points, the algorithm en-heaps its child
entries there. (ii) If E is a data point and not dominated by the skyline points
obtained, the algorithm inserts it into the list S of the skyline as a skyline point.
Table 1 illustrates the executive steps of BBS. Also notice that skyline points
discovered are bold and pruned entries are shown with strikethrough fonts.

Recently, Balke et al. [1] extend the skyline computation problem for the
web information systems. Lin et al. [13] study continuous skyline monitoring on
data streams. Chan et al. [5] consider skyline computation for partially-ordered
domains. Godfrey et al. [9] present an algorithm, called linear-elimination-sort for
skyline (LESS), which has attractive worst-case asymptotical performance. Pei
et al. [16] and Yuan et al. [21] independently present the skyline cube consisting
of the skylines in all possible subspace.

3 Improved Branch-and-Bound Skyline Algorithm

3.1 Dominance Checking Based Pruning Strategy

Consider the execution of BBS demonstrated in Table 1 of Section 2, some non-
qualifying entries for the skyline are existed in the heap. For example, entry N6
inserted into the heap after expanding entry N2 is such one because it completely
falls into the dominating region (DR for short) of entry N5, and may not contain
any skyline point. Similarly, entries h, N4, b, and c are all redundant ones. Thus,
they must be discarded, and not be en-heaped there. In fact, only those entries
that may potentially contain (or become) the skyline points (e.g., N3, g of Figure
1(b)) are needed to be kept in the heap. Based on this observation, it may be
helpful to identify these entries and prevent them from being inserted in the
heap. Fortunately, we can achieve this goal by careful dominance checking for
each entry before it is inserted in the heap. Next, we present several pruning
heuristics that is inspired by the analysis of per entry’s DR.

Let S be a set of the skyline points, there must be at least one entry Ej

(j �= i) that dominates Ei, if an entry Ei does not appear in S. If we can know
Ej when inserting Ei into the heap, Ei can be discarded immediately as it is an
unnecessary entry for the skyline. However, the problem is now how to get such
Ej in order to safely prune Ei. Since such a Ej must come from all the entries
that have been visited by the algorithm, we can pick possible Ej from them. To
address this problem, we need to consider for an entry Ej its ability to dominate
and then prune other entries. For simplicity, we take 2-dimensional data space
into account in the following discussion. However, similar conclusions also hold
for d-dimensional (d > 2) data space.

Toward a point entry P with coordinates (x1, x2), its ability to dominate other
entries, including point and intermediate entries (i.e., MBRs), is determined by
its own values and the boundaries of the data space, that is, the rectangle whose
diagonal is the line segment with P and the maximum corner of the data space
as coordinates. Any other entry that resides in that region is dominated by P
and it excluded from the final skyline. For this reason, we call that rectangle

An I/O Optimal and Scalable Skyline Query Algorithm 131

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

P

Dominating
Region of P

Maximal Corner of Data Space

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

N1

Dominating
Region of N1

Lower-left point of N1

Maximal Corner of Data Space

Upper-right point of N1

ul

lr

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

P

N1

N2

Dominating Region of P

N3

Maximal Corner of Data Space

Non-qualifying Point

Skyline Point

Non-qualifying MBR

Qualifying MBR
a

b

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

N1

N2

N4

N8

N5

N7

Maximal Corner of Data Space

Pruning Seeds of N1

N6

N3

Dominating Region of N1

Non-qualifying Point

Skyline Point

a

b

f

c
d

e

Non-qualifying MBR

Qualifying MBR

(a) DR of P (b) DR of N1 (c) Pruning with P (d) Pruning with N1

Fig. 2. Illustration of DRs of one point, one MBR, and their pruning ability

the DR of P . Intuitively, the larger P ′s DR is, the more other entries are dom-
inated by P because a larger rectangle covers more entries in the data space,
especially for the entries following independent (uniform) distribution. For ease
of comprehension, we use a 2-dimensional illustration as shown in Figure 2 in
this discussion. Specifically, Figure 2(a) shows the DR of P (represented as the
shaded rectangle), assuming that the maximum corner of data space is 10. The
P ′s ability to dominate other entries is plotted in Figure 2(c) under the same
supposition as Figure 2(a). Clearly, in Figure 2(c), entry N1 is dominated by
point P since it fully falls into the DR of P . Hence, N1 can be pruned instantly,
and need not to be inserted into the heap for further consideration. However,
entries N2 and N3 that intersect the P ′s DR must en-heap there, because they
may contain some skyline points (e.g., a and b). Therefore, we call that N1 the
non-qualifying MBR, but N2 and N3 the qualifying MBRs.

Assume that the boundaries of an intermediate entry N are [x1
l, x1

h] × [x2
l,

x2
h], then the coordinates of its lower-left, lower-right, upper-left, and upper-

right corners are the points (x1
l, x2

l), (x1
h, x2

l), (x1
l, x2

h), and (x1
h, x2

h),
respectively. Thus, the DR of N is defined by its own boundaries and the bound-
aries of the data space. As an example, the DR of entry N1 is shown in Figure
2(b) (specified the shaded area). From the diagram, we can also see that the N ′

1s
DR is determined by the upper-left, bottom-right corners of N1 (denoted as two
red points), and the maximal corner of data space, respectively. Specifically, let
ul be the upper-left vertex of N1 and lr the lower-right vertex of N1, then the
DR of N1 is the union of the dominating regions of ul and lr, i.e., formally, DR
(N1) = DR (ul) DR (lr). So, it implies that the N ′

1s ability to dominate other
entries can be done by dominance checking with ul and lr. For this reason, we
term that ul and lr the pruning seeds of N1.

Those entries, including points and MBRs, which completely fall into the DR
of N1 are dominated by N1, and they must not appear in the final skyline. As
known, an intermediate entry N is dominated by a point entry P with coordi-
nates (x1, x2) only if its bottom-left corner is dominated by P . Similarly, N is
dominated by another intermediate entry N ′ only if the lower-left vertex of N
resides in the DR of N ′. Figure 2(d) demonstrates the pruning with a MBR N1,
where the pruning seeds of N1 are denoted as two red points (i.e., b and e). Evi-
dently, entries N2, N3, and N4 are non-qualifying ones since they are dominated
by N1. As a result, they can be discarded in security, and have not to be inserted
in the heap. Entries N5, N6, N7, and N8, however, need be stored in the heap

132 Y. Gao et al.

in order to access them later, because their lower-left corners are not dominated
by N1, and they may contain some skyline points, such as points a, c, d, and f
of Figure 2(d) are such ones.

In summary, we can derive the following pruning heuristics to prune the non-
qualifying entries for the skyline based on the above discussion. Suppose that, in
d-dimensional data space, two point entries P and P ′ with coordinates (x1, x2, . . . ,
xd) and (x′

1, x
′
2, . . . , x′

d) respectively, and two intermediate entries N and N ′ with
boundaries [x1

l,x1
h]× [x2

l,x2
h]× . . . × [xd

l,xd
h] and [x′

1
l,x′

1
h]× [x′

2
l,x′

2
h]× . . . ×

[x′
d

l, x′
d

h], respectively. Then several pruning heuristics are developed as follows.

Heuristic 1. If P ′ is dominated by P , i.e., (i) xi ≤ x′
i for i ∈ [1, d], and (ii)

xi < x′
i in at least one dimension, then it can be safely pruned immediately and

not be inserted into the heap, since it must not appear in the skyline.
Heuristic 2. If the bottom-left corner of N is dominated by P , then N can

be also safely discarded and not be en-heaped there, as it must not contain any
skyline point.

Heuristic 3. If P is dominated by N , that is, P fully falls into the N ′s DR,
then P can be safely removed instantly and excluded from the heap, because it
may not become a skyline point.

Heuristic 4. If N dominates N ′, namely, the lower-left corner of N ′ fully
resides in the DR of N , then N ′ can be also safely discarded immediately and
not be kept in the heap, since it may not contain any skyline point.

3.2 Algorithm Description

Like BBS, IBBS is also based on best-first nearest neighbor search. Although
IBBS can be applied to various multi-dimensional access methods, in this paper,
we assume that the dataset is indexed by an R*-tree due to its efficiency and
popularity in the literature. Unlike BBS, IBBS enables several effective prun-
ing heuristics to discard non-qualifying entries in order to greatly decrease the
memory space and speed up its execution. In particular, IBBS incorporates two
pruning strategies. The first one is that when expanding an intermediate entry,
all entries dominating each other in its child nodes are removed according to
heuristics 1 to 4 (proposed in Section 3.1 of this paper). The other one involves
pruning strategy that checks the contents of the heap H before the insertion of
an entry E. If E is dominated by some entry in H , it is pruned immediately and
not en-heaped there. In contrast, E is stored in H , and all entries in H that are
dominated by it are also discarded accordingly.

The pseudo-code of IBBS is shown in Figure 3. Note that an entry is checked
for dominance twice: before it is inserted into the heap and before it is expanded.
Furthermore, the algorithm also implements pruning twice. Specifically, line 13
filters all entries dominated by some entry in the heap. Line 15 excludes all entries
dominating each other from the heap. Thus, only those entries that contribute
to the final skyline are maintained in the heap, such that the maximum heap
size (i.e., memory consumption) is reduced by factors, as well as the CPU cost
is decreased accordingly.

An I/O Optimal and Scalable Skyline Query Algorithm 133

Algorithm IBBS (R-tree R)
/* S is used to keep the final skyline. */
1. S = Ø;
2. Insert all entries in the root of R into the heap H;
3. While H is not empty do;
4. Remove the first entry E from H;
5. If E is dominated by any point in S then
6. Discard E;
7. Else // E is not dominated by any point in S
8. If E is a data point then
9. Insert E into S;
10. Else // E is an intermediate entry
11. For each child entry Ei of E do
12. If Ei is not dominated by any point in S then
13. If Ei is not dominated by any entry in H then
14. Insert Ei into H;
15. Prune all entries dominating each other in H by heuristics 1 to 4;
16. End while
End IBBS

Fig. 3. Pseudo-code of an IBBS algorithm

Table 2. Execution of IBBS

Action Heap Contents S

Visit root (N2, 4),(N1, 7) Ø
Expand N2 (N5, 5),(N1, 7),(N7, 9) Ø
Expand N5 (N1, 7),(g, 8),(i, 8),(N7, 9) Ø
Expand N1 (N3, 7),(g, 8),(i, 8),(N7, 9) Ø
Expand N3 (g,8),(i,8),(a,9),(N7 , 9) {g, i, a}
Expand N7 (n,10) {g, i, a, n}

Continuing the example of Figure 1, for instance, let us give an illustrative ex-
ample of IBBS to simulate its executive steps for skyline query. Initially, all the
entries in the root node are inserted into a heap H sorted in ascending order of
their mindist, resulting in H = {(N2, 4), (N1, 7)}. Then, the algorithm removes
the top entry (i.e.,N2) fromH , visits it, and en-heaps its children there, after which
H = {(N5, 5), (N1, 7), (N7, 9)}. Here N6 is discarded since it is dominated by N5.
Similarly, the next expanded entry is N5 with the minimum mindist, in which the
data points are added into H = {(N1, 7), (g, 8), (i, 5), (N7, 9)}. Also notice that h
is pruned as it is dominated by g. The algorithm proceeds in the same manner until
H becomes empty. The final list S of skyline points becomes S = {g, i, a, n}. As
with the settings of Table 1, Table 2 illustrates the execution of IBBS. From Table
2, we can see that the heap size of IBBS is smaller significantly than that of BBS,
which is also verified by the experiments in the next section of this paper.

3.3 Discussion

In this section, we focus on proving the memory space optimality of IBBS, and
omit the proofs of its correctness and I/O optimality because they are similar
to those of BBS in [15].

134 Y. Gao et al.

Lemma 1. If an entry E, either an intermediate entry or a data point entry,
does not inserted into the heap H, then there must exist another entry E’ in H
or some skyline point discovered that dominates E.

Proof. The proof is straightforward since our proposed pruning heuristics discard
all entries that are dominated by any other entry in the given dataset before they
are en-heaped there. ��

Lemma 2. All entries that may contain (or become) skyline points must be kept
in the heap H.

Proof. Clear, by Lemma 1, all entries in H must not be dominated by any other
entry in the given dataset. Also, they act on the skyline, that is, they either
contain some skyline points or are skyline points. Thus, Lemma 2 holds. ��

Theorem 1. The main-memory consumption for IBBS is optimal.

Proof. The Theorem 1 trivially holds, since Lemmas 1 and 2 ensure that the
heap H used by IBBS only stores those entries that may contain (or be) skyline
points, as well as they are inserted into H at most once by their mindist. ��

4 Experimental Evaluation

This section experimentally verifies the efficiency of IBBS by comparing it with
BBS under a variety of settings. We implemented two versions of IBBS, called
IBBS-OS and IBBS-WOS, respectively. Specifically, IBBS-OS incorporates two
pruning strategies (described in Section 3.2), but IBBS-WOS employs only the
first one, i.e., when expanding an entry, all its child entries dominating each other
are removed by heuristics 1 to 4. All algorithms (involving IBBS-OS, IBBS-WOS,
and BBS) were coded in C++ language. All experiments were performed on a
Pentium IV 3.0 GHz PC with 1024 MB RAM running Microsoft Windows XP
Professional. We considered L1 norm to compute mindist from the origin of the
data space in all experiments.

4.1 Experimental Settings

Following the common methodology in the literature, we generated three syn-
thetic datasets conforming the independent (uniform), correlated, and anti-
correlated, respectively. Figure 4 illustrates such datasets with cardinality N
= 10000 and dimensionality d = 2. We utilized these datasets with d varied
between 2 and 5, and N in the range [100k, 10M]. All datasets are indexed by
R*-tree [2], whose node size was fixed to 4096 bytes resulting in node capacities
altered 204 (d = 2), 146 (d = 3), 113 (d = 4), and 92 (d = 5), respectively. All
experiments examined several factors, including d, N , and progressive behavior,
which affect the performance of the algorithms.

An I/O Optimal and Scalable Skyline Query Algorithm 135

(a) Independent (b) Correlated (c) Anti-correlated

Fig. 4. Illustration of three synthetic datasets

4.2 Experimental Results

The first set of experiments studies the effect of dimensionality d using the
datasets with N = 1M and d varied from 2 to 5. Figure 5 shows the maximum
size of the heap (in Kbytes) as a function of d. Clearly, the maximal heap size
(MHS for short) of both IBBS-OS and IBBS-WOS almost equals under various
dimensionalities, which implies that most of non-qualifying entries are pruned
after doing the first pruning strategy, and few entries can be further discarded
via the second one. As validated again in the following experiments. For all
datasets, however, the MHS of IBBS-WOS is greatly smaller than that of BBS,
especially in low dimensions. Notice that the difference of both algorithms de-
creases gradually with the dimensionality, since the larger overlap among the
MBRs at the same level of R-trees occurs in the high-dimensionality [20]. De-
spite the gain of IBBS-WOS reduces in this case (e.g., d = 5), it is yet less than
BBS, which is also pointed out by the number at the side of each polyline in the
diagrams.

Figure 6 illustrates the number of node access versus d. From these graphs,
we can see that three algorithms display the same efficiency for all datasets.
This explains the I/O overhead of IBBS is the same as that of BBS. Similar
to Figure 6, Figure 7 compares the algorithms in terms of CPU time (in secs).
By and large, the CPU costs of both IBBS-WOS and BBS are similar. How-
ever, as shown in Figure 7, IBBS-WOS slightly outperforms BBS in the lower
dimensionality. The CPU time of IBBS-OS increases fast as d increases, and it
is clearly higher than other algorithms. The reason is that IBBS-OS introduces
some CPU overhead for implementing the second pruning strategy. Additionally,
it is expected that the performance of all algorithms degrades because the over-
lapping among the MBRs of R-tree increases and the number of skyline points
grows.

HS VS. d (N = 1M) on Independent Dataset

1E-2

1E-1

1E+0

1E+1

2D 3D 4D 5D
Dimensionality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s)

BBS

IBBS-OS

IBBS-WOS

1.583

1.531
0.4

0.341

HS VS. d (N = 1M) on Correlated Dataset

1E-3

1E-2

1E-1

1E+0

2D 3D 4D 5D
Dimensionality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s)

BBS

IBBS-WOS

HS VS. d (N = 1M) on Anti-correlated Dataset
988.161 999.216

594.055 946.567

1E-1

1E+0

1E+1

1E+2

1E+3

2D 3D 4D 5D
Dimensionality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s)

BBS

IBBS-WOS

Fig. 5. Maximal Heap Size (Kbytes) VS. d (N = 1M)

136 Y. Gao et al.

NA VS. d (N = 1M) on Independent Dataset

1E+0

1E+1

1E+2

1E+3

1E+4

2D 3D 4D 5D
Dimensionality

N
od

e
A

cc
es

se
s

BBS

IBBS-OS

IBBS-WOS

NA VS. d (N = 1M) on Correlated Dataset

1E+0

1E+1

1E+2

1E+3

1E+4

2D 3D 4D 5D
Dimensionality

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

NA VS. d (N = 1M) on Anti-correlated Dataset

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

2D 3D 4D 5D
Dimensionality

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

Fig. 6. Node Accesses VS. d (N = 1M)

CPU time VS. d (N = 1M) on Independent Dataset

0

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

2D 3D 4D 5D
Dimensionality

C
PU

 ti
m

e
(S

ec
s)

BBS

IBBS-OS

IBBS-WOS

CPU time VS. d (N = 1M) on Correlated Dataset

0

1E-2

1E-1

1E+0

2D 3D 4D 5D
Dimensionality

C
PU

 ti
m

e
(S

ec
s)

BBS

IBBS-WOS

CPU time VS. d (N = 1M) on Anti-correlated Dataset

0.234

31.172

1955.6881
10121.9845

0.141

19.672

1706.5151
9953.5785

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

2D 3D 4D 5D
Dimensionality

C
P

U
 ti

m
e

(S
ec

s)

BBS

IBBS-WOS

Fig. 7. CPU time VS. d (N = 1M)

HS VS. N (d = 3) on Independent Dataset

0.068

0.064

0.086 0.092

0.044

0.104

0.041 0.053

0.098

0.071 0.072 0.086

1E-2

1E-1

1E+0

100k 500k 1M 2M 5M 10M
Cardinality

M
ax

im
al

 H
ea

p
Si

ze
 (

K
by

te
s) BBS IBBS-WOS IBBS-OS

HS VS. N (d = 3) on Correlated Dataset

1E-2

1E-1

1E+0

100k 500k 1M 2M 5M 10M
Cardinality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s) BBS IBBS-WOS

HS VS. N (d = 3) on Anti-correlated Dataset

1E+0

1E+1

1E+2

1E+3

100k 500k 1M 2M 5M 10M
Cardinality

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s) BBS IBBS-WOS

Fig. 8. Maximal Heap Size (Kbytes) VS. N (d = 3)

Next, we investigate the influence of cardinality N . Toward this, we deployed
the 3-dimensional (the parameter d = 3 is the median value used in Figures 5
to 7) datasets whose cardinality range varies between 100k and 10M. Figures
8-9 show the MHS and CPU cost, respectively, versus N . Obviously, IBBS-WOS
exceeds BBS in all cases. Specifically, the heap of IBBS-WOS is several orders of
magnitude smaller than that of BBS. For CPU time, IBBS-WOS is also faster
than BBS, especially in low dimensions. In addition, as the above experiments,
the heap of IBBS-OS is similar to that of IBBS-WOS, but its CPU cost is
greatly larger than other algorithms. Also note that, as shown in Figure 9(c),
the difference increases with the cardinality, which is due to the positions of the
skyline points and the order in which they are discovered.

Finally, we also inspect the progressive behavior of the algorithms for skyline
query on 3-dimensional datasets. Figure 10 compares the size of the heap as
a function of the number of skyline points (NSP for short) for datasets with
N = 1M (for dependent and correlated datasets) or 100k (for anti-correlated
dataset) and d = 3. Note that the NSP in the final skyline is 94, 26, and 13264,
for independent, correlated, and anti-correlated datasets, respectively. From the
diagrams, we see that IBBS-WOS clearly exhibits smaller heap size than BBS
(over orders of magnitude) in all cases, since most of non-qualifying entries are
pruned by IBBS-WOS. As expected, the heap size of both IBBS-OS and IBBS-
WOS is highly adjacent. On the other hand, notice that the heaps reach their

An I/O Optimal and Scalable Skyline Query Algorithm 137

CPU time VS. N (d = 3) on Independent Dataset

0.0310.0150.0160.016

0.031
0.0160.0150.015

0

1E-2

1E-1

1E+0

100k 500k 1M 2M 5M 10M
Cardinality

C
PU

 ti
m

e
(S

ec
s)

BBS IBBS-WOS IBBS-OS

CPU time VS. N (d = 3) on Correlated Dataset

0.0160.0150.016 0.016 0.016

0.0150.015 0.016

0

1E-2

1E-1

100k 500k 1M 2M 5M 10M
Cardinality

C
PU

 ti
m

e
(S

ec
s)

BBS IBBS-WOS

CPU time VS. N (d = 3) on Anti-correlated Dataset

1E+0

1E+1

1E+2

1E+3

100k 500k 1M 2M 5M 10M
Cardinality

C
PU

 ti
m

e
(S

ec
s)

BBS IBBS-WOS

5.14

3.734

169.031

64.766

Fig. 9. CPU time VS. N (d = 3)

HS VS. NSP (N = 1M, d = 3) on Independent Dataset

1E-3

1E-2

1E-1

1E+0

1 10 20 30 40 50 60 70 80 90 94
Number of Skyline Points

M
ax

im
al

 H
ea

p
Si

ze
 (K

by
te

s)

BBS

IBBS-WOS

IBBS-OS

0.027

0.004

0.001

0.343

0.061

0.052

HS VS. NSP (N = 1M, d = 3) on Correlated Dataset

0

1E-2

1E-1

1E+0

1 4 8 12 16 20 24 26
Number of Skyline Points

M
ax

im
al

 H
ea

p
S

iz
e

(K
by

te
s)

BBS

IBBS-WOS

0.033

0

0.343

0.042

HS VS. NSP (N = 100k, d = 3) on Anti-correlated Dataset

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1 1000 4000 7000 10000 13000 13130 13150 13200 13220 13240 13264
Number of Skyline Points

M
a
x

im
al

 H
ea

p
 S

iz
e

(K
b

y
te

s)

BBS

IBBS-WOS

1.004

0.026

85.207

22.979

Fig. 10. Maximal Heap Size (Kbytes) VS. NSP (N = 1M or 100k, d = 3)

NA VS. NSP (N = 1M, d = 3) on Independent Dataset

0

20

40

60

80

100

120

1 10 20 30 40 50 60 70 80 90 94
Number of Skyline Points

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

IBBS-OS

NA VS. NSP (N = 1M, d = 3) on Correlated Dataset

0

5

10

15

20

25

30

1 4 8 12 16 20 24 26
Number of Skyline Points

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

NA VS. NSP (N = 100k, d = 3) on Anti-correlated Dataset

0

100

200

300

400

500

600

700

800

1 1000 4000 7000 10000 13000 13130 13150 13200 13220 13240 13264
Number of Skyline Points

N
od

e
A

cc
es

se
s

BBS

IBBS-WOS

Fig. 11. Node Accesses VS. NSP (N = 1M or 100k, d = 3)

CPU time VS. NSP (N = 1M, d = 3) on Independent Dataset

0

1E-2

1E-1

1E+0

1 10 20 30 40 50 60 70 80 90 94
Number of Skyline Points

C
P

U
 t

im
e

(S
ec

s)

BBS

IBBS-WOS

IBBS-OS

CPU time VS. NSP (N = 1M, d = 3) on Correlated Dataset

0

1E-2

1 4 8 12 16 20 24 26
Number of Skyline Points

C
P

U
 ti

m
e

(S
ec

s)

BBS

IBBS-WOS

CPU time VS. NSP (N = 100k, d = 3) on Anti-correlated Dataset

5.0784.5154.203

3.187 3.438 3.547

3.812

3.7353.8133.703

3.469 3.531 3.547

3.625

1E-1

1E+0

1E+1

1 1000 4000 7000 10000 13000 13130 13150 13200 13220 13240 13264
Number of Skyline Points

C
P

U
 t

im
e

(S
ec

s)

BBS

IBBS-WOS

Fig. 12. CPU time VS. NSP (N = 1M or 100k, d = 3)

maximum size at the beginning of all algorithms, and stepwise decrease with the
growth of NSP , which is also shown in Figure 10. The reason of this phenomenon
is these algorithms insert respective all necessary entries visited in the heap (due
to no any skyline point found) before they discover the first skyline point.

Figures 11 and 12 show all experimental results on the number of node accesses
and CPU time, respectively, versus NSP under the same settings as Figure 10.
Similar to Figure 6, all algorithms are I/O optimal, and their I/O costs grow as
the skyline points returned increase. For CPU cost, both IBBS-WOS and BBS
are similar in most cases, as well as they are faster than IBBS-OS. Addition-
ally, in Figure 12(c), notice that BBS outperforms IBBS-WOS initially, which is
caused mainly that IBBS-WOS need expend some time to remove non-qualifying
entries at the beginning of it. However, the difference gradually decreases with

138 Y. Gao et al.

the NSP , and then IBBS-WOS faster than BBS. This happens because the heap
of BBS keeps some redundant entries (that can be removed in IBBS-WOS using
our proposed pruning heuristics of this paper).

5 Conclusion and Future Work

Although BBS has some desirable features such as I/O optimal and flexibil-
ity, it requires large main-memory consumption. Motivated by this problem, an
improved skyline query algorithm based on best-first nearest neighbor search,
termed IBBS, is proposed in this paper. It enables several dominance check-
ing based pruning strategies to eliminate non-qualifying entries, thus reducing
significantly the memory space and speed up slightly the skyline computation.
Extensive experiments with synthetic datasets confirm that the proposed algo-
rithm is efficient and outperforms its alternative in both space overhead (i.e.,
heap size) and CPU cost for most cases, especially in low dimensions. In the
future, we plan to study new algorithms for skyline queries relied on breadth-
first (or depth-first) nearest neighbor retrieval paradigm. Another interesting
topic is to explore parallel skyline query processing methods for various parallel
environments (e.g., multi-disk or multi-processor setting).

Acknowledgement. This research was supported by the National High Tech-
nology Development 863 Program of China under Grant No. 2003AA4Z3010-03.

References

1. Balke, W.-T., Gntzer, U., Zheng, J.X.: Efficient Distributed Skylining for Web
Information Systems. In: EDBT. (2004) 256-273

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. In: SIGMOD. (1990) 322-
331

3. Borzsony, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE. (2001)
421-430

4. Böhm, C., Kriegel, H.-P.: Determining the Convex Hull in Large Multidimensional
Databases. In: DaWaK. (2001) 294-306 265–318

5. Chan, C.-Y., Eng, P.-K., Tan. K.-L.: Stratified Computation of Skylines with
Partially-Ordered Domains. In: SIGMOD. (2005) 203-214

6. Chang, Y.-C., Chang, Y.-C., Bergman, L.D., Castelli, V., Li, C.-S., Lo, M.-L.,
Smith, J.: The Onion Technique: Indexing for Linear Optimization Queries. In:
SIGMOD. (2000) 391-402

7. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: ICDE.
(2003) 717-719

8. Fagin, R.: Fuzzy Queries in Multimedia Database Systems. In: PODS. (1998) 1-10
9. Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data

Sets. In: VLDB. (2005) 229-240
10. Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Databases. ACM TODS

24 (1999) 265-318

An I/O Optimal and Scalable Skyline Query Algorithm 139

11. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A System for the Effi-
cient Execution of Multi-parametric Ranked Queries. In: SIGMOD. (2001) 259-270

12. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algo-
rithm for Skyline Queries. In: VLDB. (2002) 275-286

13. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the Sky: Efficient Skyline Compu-
tation over Sliding Windows. In: ICDE. (2005) 502-513

14. Natsev, A., Chang, Y.-C., Smith, J.R., Li., C.-S., Vitter. J.S.: Supporting Incre-
mental Join Queries on Ranked Inputs. In: VLDB. (2001) 281-290

15. Papadias, D., Tao, Y., Greg, F., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM TODS 30 (2005)41-82

16. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the Best Views of Skyline: A Semantic
Approach Based on Decisive Subspaces. In: VLDB. (2005) 253-264

17. Preparata, F., Shamos, M. Computational Geometry: An Introduction. Springer-
Verlag (1985)

18. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD.
(1995) 71-79

19. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In:
VLDB. (2001) 301-310

20. Theodoridis, Y., Sellis, T.K: A Model for the Prediction of R-tree Performance.
In: PODS. (1996) 161-171

21. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient Computation
of the Skyline Cube. In: VLDB. (2005) 241-252

A Novel Clustering Method Based on Spatial
Operations

Hui Wang

School of Computing and Mathematics, University of Ulster at Jordanstown
Newtownabbey, BT37 0QB, Northern Ireland, UK

H.Wang@ulster.ac.uk

Abstract. In this paper we present a novel clustering method that can
deal with both numerical and categorical data with a novel clustering
objective and without the need of a user specified parameter. Our ap-
proach is based on an extension of database relation – hyperrelations. A
hyperrelation is a set of hypertuples, which are vectors of sets.

In this paper we show that hyperrelations can be exploited to develop
a new method for clustering both numerical and categorical data. This
method merges hypertuples pairwise in the direction of increasing the
density of hypertuples. This process is fully automatic in the sense that
no parameter is needed from users. Initial experiments with artificial and
real-world data showed this novel approach is promising.

1 Introduction

The clustering of data is to organise data by abstracting the underlying struc-
ture of the data, either as a grouping of objects or as a hierarchy of groups. The
representation can then be investigated to see if these data groups accord to pre-
conceived ideas or to suggest new experiments (1). The objective of clustering is
simply to find a convenient and valid organisation of the data. Clustering algo-
rithms are geared toward finding structure in the data, organised around clus-
ters. A cluster is comprised of a number of similar objects collected or grouped
together.

In the context of knowledge discovery from databases, clustering is the process
of discovering a set of categories to which objects should be assigned. Clustering
algorithms are required to discover distinct categories using an unlabeled set
of data. Objects in the dataset are then assigned (often as a by-product of the
clustering process) to these categories.

Most of the existing clustering algorithms are either for numerical data only
or for categorical data only. In the case of mixed data (that is, some attributes
are numerical while others are categorical) the numerical-only clustering algo-
rithms have to treat categorical attributes as numerical in some ways; while the
categorical-only algorithms have to treat numerical attributes as categorical in
some ways (2). Many existing clustering algorithms also needs some parameters
from users. For example, the number of clusters (one of the most common param-
eters demanded from users), the neighbourhood radius and minimum number of
points (3), and the number of sub-cells into which to partition a cell (4).

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 140–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Novel Clustering Method Based on Spatial Operations 141

It would then be desirable to have a clustering algorithm which can treat
numerical and categorical data uniformly and which needs little input from users.
In this paper we present a method for clustering having this trait. Our method
is based on an extension of database relation.

The extension of a relation is underpinned by a mathematical structure called
a domain lattice (5), which underlies any relational data scheme. A domain lattice
is a set of all hypertuples in a problem domain, equipped with a partial ordering.
A hypertuple is a vector of sets; in contrast, a database tuple is a vector of single
values in its basic form. A hypertuple is then a generalisation of a database tuple.
A hyperrelation is a set of hypertuples. The concept of relations in database
theory and applications can be generalised to hyperrelations. Domain lattice
has previously been exploited to address the data reduction problem in data
mining (5).

In this paper we show that the hyperrelations and the domain lattice can
be further exploited to develop a new method for clustering both numerical and
categorical data uniformly. In Section 2 we introduce some notation and concepts
for use in this paper, including hyperrelations and domain lattice. The central
notion of our approach – density of hypertuples – is introduced in Section 3.
Section 4 examines three fundamental issues about clustering from our density
perspective. An efficient algorithm for clustering is presented and analysed in
Section 5. Experimental results are reported in Section 6. Section 7 concludes
the paper.

2 Definitions and Notation

Figure 1 illustrates the concepts of simple relations, hyperrelations, and domain
lattice, which we define formally below.

2.1 Order and Lattices

A partial order on a set L is a binary relation ≤ which is reflexive, antisymmetric
and transitive. A semilattice L is a nonempty partially ordered set such that for
x, y ∈ L the least upper bound x + y exists. Then for A ⊆ L, its least upper
bound exists and is denoted by lub(A). The greatest element of L, if it exists, is
denoted by 1; if L is finite then 1 exists, and it is equal to

∑
a∈L a.

The sub-lattice of L generated from M ⊆ L, written by [M], is [M] = {t ∈
L : ∃X ⊆ M such that t = lub(X)}. The greatest element in [M] is lub(M).

For A, B ⊆ L, we say A is covered by B (or B covers A), written A � B, if
for each a ∈ A there is some b ∈ B such that a ≤ b. We write A ≺ B if A � B
and B �� A.

2.2 Domain Lattice

Let D be a relation with a schema Ω = {x1, · · · , xT } and domains Vx of at-
tributes x ∈ Ω.

Let L def=
∏

x∈Ω 2Vx . Then L is a semilattice (in fact, it is a Boolean algebra,
but we will not need this here) under the ordering

142 H. Wang

∀t, s ∈ L, t ≤ s ⇐⇒ t(x) ⊆ s(x) for all x ∈ Ω.(1)

with the least upper bound or the sum of t, s ∈ L given below

t + s
def= 〈t(x) ∪ s(x)〉x∈Ω(2)

If t ≤ s we say t is below s. L is called domain lattice for D. The elements of
L are called hypertuples; in particular, the elements t of L with |t(x)| = 1 for
all x ∈ Ω are special hypertuples called (simple) tuples. A set of hypertuples is
called a hyperrelation, and a set of simple tuples is called a (simple) relation.
Simple relations are database relations in the traditional sense.

Note that t(x) is the projection of tuple t onto attribute x. In practical terms,
t(x) can be treated as a set if x is a categorical attribute, and it can be treated
as an interval if x is numerical.

In domain lattice L, D is the set of simple tuples given in the dataset. There
is a natural embedding of D into L by assigning

Ω(a) �→ 〈{x1(a)}, {x2(a)}, . . . , {xT (a)}〉.

and we shall identify D with result of this embedding. Thus we have D ⊆ L.
In the sections below our discussion focuses mainly on a subset of the domain

lattice (sublattice) [D] generated from the dataset D.

Node Size Colour Shape Label
E Large Red Triangle +
G Large Blue Circle +
J Small Blue Triangle -
L Small Green Rectangle -

(a)

0

A

1

B C

FE G H I LKJ

D

(b)

Node Size Colour Shape Label
B Large {Blue,Red} {Circle,Triangle} +
D Small {Blue,Green} {Rectangle,Triangle} -

(c)

Fig. 1. (a) A relation extension. (b) An abstract domain lattice implied in the relation.
(c) A hyper relation.

A Novel Clustering Method Based on Spatial Operations 143

3 Density of Hypertuples

In the sequel we shall use D as described above as a generic dataset, L as the
domain lattice implied in D, and [D] as the sublattice generated from D ⊆ L.
The sum operation and partial ordering are as defined in the previous section.

Clustering is a partition P of D with classes {D1, · · · ,DK}. Each class Di is
a subset of data objects in D and is called a cluster. In traditional approaches
to clustering a cluster is represented by the set of objects in the cluster, or by
the center of gravity of the cluster (k-means) or by one of the objects of the
cluster located near its center (k-medoid) (6). In our approach we represent a
cluster by a hypertuple. For each class Di we merge all simple tuples in Di by
the lattice sum operation in Eq. 2 resulting in a hypertuple hi = lub(Di). Then
we get a hyperrelation H = {h1, · · · , hK}. Therefore we can take clustering as a
process of transforming a simple relation (D) into a hyperrelation (H). Putting
this formally, a clustering of D is a hyperrelation H ⊆ [D] and therefore h ∈ H
implies there is A ⊆ D such that h = lub(A).

Clearly there are many possible partitions of the dataset. To choose one from
among them we need a measure of hyperrelations. In our approach we use the
measure of density, defined below.

Definition 3.1. Let h ∈ [D] be a hypertuple, and x ∈ Ω be an attribute. The
magnitude of h(x) is defined as

mag(h(x)) =

{
max(h(x)) − min(h(x)), if x is numerical
|h(x)|, if x is categorical

(3)

Note that h(x) is the projection of h onto attribute x, min(h(x)) is the minimal
value in h(x) while max(h(x)) is the maximal value.

Definition 3.2. The volume of h is defined as

vol(h) =
∏
x∈Ω

mag(h(x))(4)

The coverage of h is cov(h) def= {d ∈ D : d ≤ h}.

Definition 3.3. The density of h is defined as

den(h) = |cov(h)|/ vol(h)(5)

The density of hyperrelation H, den(H), is then the average density of the hy-
pertuples in H.

The above definition of density can not be directly applied to compare different
hypertuples since different hypertuples may differ at different attributes, and
different attributes may have different scales. Therefore we need to re-scale the
attributes up to a same uniform scale. The re-scaling can be achieved as follows.

144 H. Wang

Table 1. A relation on the scheme {A1, A2} where attribute A1 is categorical and A2

is numerical

A1 A2

t0 a 2
t1 f 10
t2 c 4
t3 f 9
t4 c 3
t5 e 7
t6 b 1
t7 d 6

Let λ be the expected uniform scale. For an attribute x ∈ Ω, the re-scaling
coefficient is s(x) def= λ/ mag(Vx). Note that Vx is the domain of attribute x. Then
the volume of a hypertuple h after re-scaling is vol(h) =

∏
x∈Ω s(x)×mag(h(x)).

The density definition can be re-scaled similarly.
This re-scaled notion of density is fine for hypertuples. But there is a problem

for simple tuples. Consider Table 1. Suppose the uniform scale is 2. Then s(A1) =
2/3 and s(A2) = 1. Following the above definition, the density for all simple
tuples is 0 since the projection of each simple tuple to (numerical) attribute A2
contains only one value. This is not desirable, the reason for which will be seen in
the next section. Therefore we need a method to allocate density values to simple
tuples in such a way that the values can be compared with the density values of
hypertuples for the purpose of clustering. Our solution is through quantization
of attributes. For an attribute x ∈ Ω the measurement of a unit after re-scaling
is |Vx|/λ = 1/s(x). For a tuple t, if t(x) is less than the unit value (1/s(x)) it
should be treated as one unit. If t is a simple tuple then t(x) is treated as a unit
for all x ∈ Ω and hence vol(t) = 1. Since a simple tuple covers only itself, i.e.,
cov(t) = {t}, we have den(t) = 1. Consequently den(H) = 1 if H is a simple
relation. If t is a hypertuple, then den(t) may be greater or less than 1.

In the rest of this paper whenever we talk of density we refer to the re-scaled
and quantized density.

The notion of density is also used in some well known clustering methods
(7; 3; 4), but their uses of this notion are different from ours: they are defined
for numerical attributes only and they are not re-scaled and quantized. Our
definition of density applies to both numerical and categorical attributes and,
since re-scaled and quantized, can be used to compare among hypertuples and
among hyperrelations.

4 Merging Hypertuples to Increase Density

Having a notion of density as defined above we now present our clustering
method. Our philosophy for clustering is merging tuples to increase the den-
sity of hyperrelations: for any set of tuples, if their sum has higher density then

A Novel Clustering Method Based on Spatial Operations 145

we are inclined to merge them and use their sum to replace this set of tuples.
We discuss our method along three fundamental axes regarding any clustering
methods: the criteria for clustering, the determination of the number of clusters
and the assignment of new tuples to clusters.

4.1 Criteria for Clustering

An important notion in clustering is neighbourhood (or similarity). “Similar”
objects should be clustered together. In the context of domain lattice, “similar”
tuples should end up in same hypertuples. The meaning of neighbourhood varies
in different approaches and contexts. For example, the Euclidean distance (or
Lp metric 1 in general) and density (7; 8) for numerical data; and the Jaccard
coefficient 2 (9; 1), the links 3 (10), the co-occurence in hypergraph (11; 2) 4, the
interestingness (12) and the share (13) for categorical data .

Clustering is then to optimise one or more of these measures one way or
another. In hierarchical clustering there is a basic operation — merge: two data
objects can be merged if they are neighbouring or close enough. A prerequisite for
this approach is the availability of a proximity matrix (1). In the case of numerical
data this matrix is obtained by some distance measure, e.g., Euclidean distance;
in the case of categorical data it is usually not available.

Our approach is hierarchical, and two tuples are deemed neighbours if the
density of their sum (see Eq. 2) is higher than the density of the hyperrela-
tion containing only the two tuples (i.e., the average density of the two tuples).
More formally, let D be the dataset and H = {H : H is a clustering of D}.
Our objective is to find H0 ∈ H such that den(H0) > den(D) and den(H0) =
max{den(H) : H ∈ H}. In other words our expected clustering should have the
highest possible density. We call this H0 the optimal clustering of D. From the
previous section we know that den(D) = 1 and hence den(H0) should be much
greater than or equal to 1.

The optimal clustering of the data in Table 1 is shown in Table 2. Readers
can check for themselves that any other hyperrelations obtained by merging
simple tuples in the dataset using the lattice sum operation has lower density.
For example, merging {t0, · · · , t3} and {t4, · · · , t7} results in a hyperrelation in
Table 3, which has lower density.

With such a criteria we can obtain a proximity matrix for any relational data,
no matter it is numerical, categorical or mixed. Table 4 is a proximity matrix
for the data in Table 1, where entry (i, j) is 1 if den(ti + tj) ≥ den({ti, tj}) and
0 otherwise.
1 Lp = (

∑d
1 |xi − yi|p)1/p, 1 ≤ p ≤ ∞ and d is the dimensionality of the data points.

2 The Jaccard coefficient for similarity between two sets S1 and S2 is |S1∩S2|/|S1∪S2|.
3 The number of links between a pair of data points is the number of common neigh-

bours for the points.
4 In this approach each tuple in the database is viewed as a set of data objects, and

the entire collection of tuples is treated as a hypergraph. The co-occurence between
two tuples is the number of common elements and is noted as the weight of the edge
between the two hyper notes.

146 H. Wang

Table 2. The optimal clustering of the relation in Table 1 obtained by our method. The
uniform scale used is 4, so the re-scaling coefficients are s(A1) = 2/3 and s(A2) = 4/9.
The density of this hyperrelation is then 1.313. Note that the density values are re-
scaled, and that the density for the original dataset is 1.

A1 A2 Coverage cov() Density den()
t′
0 {a, b, c} {1, 2, 3, 4} {t0, t2, t4, t6} 1.500

t′
1 {d, e, f} {6, 7, 9, 10} {t1, t3, t5, t7} 1.125

Table 3. An arbitrary hyperrelation obtained by merging simple tuples in Table 1.
The uniform scale used is the same as in Table 2, so are the re-scaling coefficients. The
density of this hyperrelation is 0.5625.

A1 A2 Coverage cov() Density den()
t′′
0 {a, c, f} {2, 4, 9, 10} {t0, t1, t2, t3} 0.5625

t′′
1 {b, c, d, e} {1, 3, 6, 7} {t4, t5, t6, t7} 0.5625

Table 4. A proximity matrix for the relation in Table 1

t0 t1 t2 t3 t4 t5 t6 t7

t0 1 0 1 0 1 0 1 0
t1 0 1 0 1 0 1 0 0
t2 1 0 1 0 1 1 1 1
t3 0 1 0 1 0 1 0 1
t4 1 0 1 0 1 0 1 1
t5 0 1 1 1 0 1 0 1
t6 1 0 1 0 1 0 1 0
t7 0 0 1 1 1 1 0 1

This approach has a major advantage: numerical and categorical attributes can
be treated uniformly. Simple tuples, either numerical or categorical or a mixture
of the two, can thus be uniformly measured for their neighbourhood.

4.2 Determination of the Number of Clusters

Some clustering algorithms require the number of clusters be given by users.
Our approach can determine the number of clusters automatically; it can also
be tuned to find a required number of clusters as stated by a user.

As discussed in the previous section our criteria for clustering is to maximise
the density of hyperrelations. Naturally the optimal number of clusters should
be the number of hypertuples in the optimal clustering. Whether or not we can
find the optimal clustering depends on the algorithm used.

For the data in Table 1, its optimal clustering is shown in Table 2. Therefore
the optimal number of clusters for this dataset is 3.

In some data mining exercises, however, we have a preconceived (given) num-
ber of clusters and we wish the clustering algorithm to find the given number of

A Novel Clustering Method Based on Spatial Operations 147

clusters for us. Examples are: in business systems, to allocate stock to a given
number of warehouses, or to allocate tuples to a given number of disk volumes in
physical database design (14; 15). Some clustering algorithms require the number
of clusters be given in this way.

Suppose we wish to find N clusters. With the availability of a proximity matrix
we can take an agglomerative hierarchical approach. Assume we have a hierarchy
of clusterings (hyperrelations) of the dataset, Q0, Q1, · · · , Qq, where Q0 = D,
Qq = lub(D) and |Qi| = |Qi−1| − 1. Clearly we can select a hyperrelation Qk in
the hierarchy such that |Qk| = N .

4.3 Assignment of New Data Tuples to Clusters

Suppose we have already clustered a dataset, resulting in a clustering H =
{h1, · · · , hK} where each hi is a hypertuple. When new data arrives we may need
to assign the new data objects to the existing clusters to get a new clustering5;
or we may want to assign new data objects to clusters for data mining pur-
poses like categorisation, classification or association. In traditional approaches
to clustering this is usually done via calculating distances (or proximities) be-
tween a new data object and the clusters using some metric and assigning the
new data object to whichever cluster is closest to the new data object (1). In
our approach we have available proximity matrices so we can do it in a similar
way, but in a more general context (since our method works for both numerical
and categorical data). Specifically, we sum the new data object with each cluster
and see if, and to what extent, the sum increases density. If none of the sums
increases density, then it is likely the new data object belongs to a new cluster;
otherwise the new data object is assigned to one cluster the sum of which with
the new data object has the greatest increase of density.

More formally, let t be a new data object – a simple tuple. We have two main
steps for the assignment procedure:

– If den(hi + t) < den({hi, t}) for all i = 1, · · · , K, then t is taken as a new
cluster on its own.

– Otherwise assign t to cluster hi0 such that (den(hi0 + t) − den({hi0 , t}))/
den({hi0 , t}) is highest.

For an example, consider Table 2. If we are given a new tuple t = 〈b, 8〉, then
we have den(t′0 + t) = 0.804 and den(t′1 + t) = 1.055. However den({t′0, t}) = 1.25
and den({t′1, t}) = 1.063. This indicates that the new tuple should stand as
a new cluster. If the new tuple is t = 〈b, 5〉, then den(t′0 + t) = 1.406 and
den(t′1 + t) = 0.844, and den({t′0, t}) and den({t′1, t}) remain the same. This
indicates that we should assign this new tuple to t′0.

5 An Efficient Algorithm for Clustering

Based on the above discussions we designed an efficient clustering algorithm,
LM/Clus. The following is an outline of the algorithm.
5 This is in fact incremental clustering (8).

148 H. Wang

– Input: D as defined above.
– Initialisation: Q0 = D; flag = 1; i = 0;
– WHILE (flag = 1)

1. flag = 0; H = Qi;
2. WHILE (there are x, y ∈ Qi that haven’t been examined)

Let w = x + y;
IF (den(w) > den({x, y})

THEN Qi+1 = Qi ∪ {w} \ {x, y}; i = i + 1; flag = 1;
//Replace x and y by their sum.

– Output: H .

Execution starts with Q0 = D. Then a pair of elements x, y ∈ Q0 such
that x + y increases density is merged, resulting in Q1. The next loop starts
from Q1 and results in Q2. This process continues until Qm where no pair of
elements can be merged in this way. Thus we get a sequence Q0, Q1, · · · , Qm,
where Q0 is the original dataset and Qm is the quasi-optimal clustering. Clearly
Q0 � Q1 � · · · � Qm, and |Qi| = |Qi−1| − 1. Therefore this is an agglomerative
hierarchical clustering algorithm (1).

This algorithm has a worst case complexity of O(n log n) where n = |D|. In
our implementation of the algorithm we take advantage of the operations in our
Lattice Machine (5) so the average computational complexity is close to linear
(see below). The algorithm is implemented as part of our Lattice Machine based
KDD suite, called Dr .

6 Experimental Results

In this section we present experimental results showing the effectiveness and
efficiency of our clustering algorithm LM/Clus. We used two types of data:
artificial data and real world data. These datasets are a good mix of numerical
and categorical data. Artificial datasets were generated from known clusters
with added noise, and they are mainly used to show the effectiveness of the
algorithm (i.e., can the known clusters be discovered?) as well as efficiency. The
data generator we used is also available in our Dr system. Real world datasets
are public and are frequently used in KDD literature. They are used in our
experiment mainly to show the efficiency of the algorithm since the underlying
clusters are not known.

6.1 Artificial Datasets

We used two seeds to generate our artificial datasets. The seeds are described
in Table 5. For each seed we generated four datasets of varying sizes with 2%
random noise added, and with 100, 1000, 5000, 10000 tuples respectively. The
time used to cluster these data is shown in Table 6. From this table we can
see that the algorithm is close to linear in the number of tuples. The under-
lying cluster structures were fully recovered. Readers are invited to evaluate
our system which is available online (for the Web address see the footnote on
page 148).

A Novel Clustering Method Based on Spatial Operations 149

Table 5. Two seeds used to generate artificial data

Attribute1 Attribute2 Attribute3
Cluster 1 [0, 4] [100, 130] {a, b, c}
Cluster 2 [6, 10] [160, 199] {c, d, e}

(a) Seed one: gd1. The first two attributes are numerical and the third
is categorical.

Attribute1 Attribute2 Attribute3 Attribute4
Cluster 1 [0, 4] [100, 130] [1000, 1300] {a, b, c}
Cluster 2 [6, 10] [160, 199] [1400, 1650] {d, e, f}
Cluster 3 [3, 7] [140, 150] [1750, 1999] {c, d}

(b) Seed two: gd2. The first three attributes are numerical and the
fourth is categorical.

Table 6. Time in seconds used to cluster the artificial data

gd1.100x2 gd1.1000x20 gd1.5000x100 gd1.10000x200
Time 0.44 3.84 22.24 93.65

gd2.100x2 gd2.1000x20 gd2.5000x100 gd2.10000x200
Time 1.15 10.27 61.24 229.98

Table 7. Some general information about the real world data and the time in seconds
used to cluster the data

Dataset #Attributes #Size #Numeric Attribute #Categorical Attribute Clustering Time
German 20 1000 6 14 820.14
Heart 13 270 9 4 56.68
Iris 4 150 4 0 2.53

6.2 Real World Datasets

We chose three public datasets to show the efficiency of the algorithm for cluster-
ing: German Credit, Heart Disease and Iris, all available from UCI Machine
Learning Data Repository. Some general information about the datasets and
clustering time are shown in Table 7.

7 Conclusion

In this paper we present a novel method of automatically clustering both nu-
merical and categorical data or mixed data in a uniform way. The first major
contribution of this paper is the provision of a uniform measure of density for
both numerical and categorical data. After re-scaling and quantization this mea-
sure can be used to compare among any (simple or hyper) tuples and among

150 H. Wang

any (simple or hyper) relations to see which is denser. Since the density measure
is local, its calculation is very efficient. Based on this measure our clustering
method is simply to transform simple relations (original data) to hyperrelation
guided by the density measure. Data tuples are merged with the aim of increasing
the density of hyperrelations. The optimal clustering is the hyperrelation with
highest possible density, and the number of hypertuples in this hyperrelation is
the optimal number of clusters.

Another major contribution of this paper is the provision of an efficient algo-
rithm for clustering, LM/Clus. This algorithm is (agglomerative) hierarchical
and it takes advantage of our (local) measure of density. It examines pairs of
tuples and merges those which increase the density of the relation. This pro-
cess continues until the density of the relation cannot be increased. Experiments
with both artificial data and real world data showed that this algorithm is very
efficient and is, in average, close to linear in the number of data tuples. Exper-
iments with the artificial datasets showed that this algorithm is also effective
as it recovers completely the underlying cluster structures used to generate the
datasets.

Bibliography

[1] Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, New Jersey (1988)

[2] Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical data: An
approach based on dynamical systems. In: Proc. 24th International Con-
ference on Very Large Databases, New York (1998)

[3] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise. In: Proc. 2nd
Int. Conf. on Knowledge Discovery and Data Mining, AAAI Press (1996)
226–231

[4] Wang, W., Yang, J., Muntz, R.: STING: A statistical information grid
approach to spatial data mining. In: Proc. 23rd Int. Conf. on Very Large
Databases, Morgan Kaufmann (1997) 186–195

[5] Wang, H., Düntsch, I., Bell, D.: Data reduction based on hyper relations.
In: Proceedings of KDD98, New York. (1998) 349–353

[6] Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley & Sons (1990)

[7] Schikuta, E.: Grid clustering: an efficient hierarchical clustering method
for very large data sets. In: Proc. 13th Int. Conf. on Pattern Recognition.
Volume 2., IEEE Computer Society Press (1996) 101–105

[8] Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental
clustering for mining in a data warehousing environment. In: Proc. 24th
International Conference on Very Large Databases. (1998)

[9] Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. John
Wiley & Sons (1973)

[10] Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for
categorical attributes. Technical Report 208, Bell Laboratories (1998)

A Novel Clustering Method Based on Spatial Operations 151

[11] Han, E.H., Karypis, G., Kumar, V., Mobasher, B.: Clustering based on
association rule hypergraphs. In: 1997 SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery. (1997)

[12] Gray, B., Orlowska, M.E.: Clustering categorical attributes into interesting
association rules. In: Proc. PAKDD98. (1998)

[13] Hilderman, R.J., Carter, C.L., Hamilton, H.J., Cercone, N.: Mining market
basket data using share measures and characterized itemsets. In: Proc.
PAKDD98. (1998)

[14] Bell, D.A., McErlean, F., Stewart, P., Arbuckle, W.: Clustering related
tuples in databases. Computer Journal 31(3) (1988) 253–257

[15] Stewart, P., Bell, D.A., McErlean, F.: Some aspects of a physical database
design and reorganisation tool. Journal of Data and Knowledge Engineering
(1989) 303–322

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 152 – 163, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A FP-Tree-Based Method for Inverse Frequent
Set Mining

Yuhong Guo, Yuhai Tong, Shiwei Tang, and Dongqing Yang

Department of Computer Science
Peking University, Beijing 100871, China

{yhguo, yhtong, tsw, dqyang}@pku.edu.cn

Abstract. Recently, the inverse frequent set mining problem has received more
attention because of its important applications in different privacy preserving
data sharing contexts. Several studies were reported to probe the NP-complete
problem of inverse frequent set mining. However, it is still an open problem
that whether there are reasonably efficient search strategies to find a compatible
data set in practice. In this paper, we propose a FP-tree-based method for the
inverse problem. Compared with previous “generation-and-test” methods, our
method is a zero trace back algorithm, which saves huge computational costs.
Furthermore, our algorithm provides a good heuristic search strategy to rapidly
find a FP-tree, leading to rapidly finding the compatible databases. More
importantly, our method can find a set of compatible databases instead of
finding only one compatible database in previous methods.

1 Introduction

As the frequent itemsets can be considered as a kind of summary of the original data
set, recently the inverse frequent set mining problem inferring the original data set
from given frequent itemsets with the supports has received more attention because of
its potential threat to privacy [1], its use in synthetic benchmark data set generation
[2], and its potential application in sensitive association rule hiding in database [3].

Inverse frequent set (or “itemset”) mining can be described as follows: “Given a
collection of frequent itemsets and their supports, find a transactional data set (or
“database”) such that the new dataset precisely agrees with the supports of the given
frequent itemset collection while the supports of other itemsets would be less than the
pre-determined threshold” [4]. This inverse data mining problem is related to the
questions of how well privacy is preserved in the frequent itemsets and how well the
frequent itemsets characterize the original data set. It has very practical applications
in different privacy preserving data sharing contexts from privacy preserving data
mining (PPDM) to knowledge hiding in database (KHD), as the problem roots in
people’s increasing attention to information protection either to individual private
data preserving or to business confidential knowledge hiding.

Mielikainen first proposed this inverse mining problem in [1]. He showed finding a
dataset compatible with a given collection of frequent itemsets or deciding whether
there is a dataset compatible with a given collection of frequent sets is NP-complete.

 A FP-Tree-Based Method for Inverse Frequent Set Mining 153

1.1 Related Work

Towards the NP-complete problem, several methods were proposed. The authors of
[2, 3] designed a linear program based algorithm for approximate inverse frequent
itemset mining, aiming to construct a transaction database that approximately satisfies
the given frequent itemsets constraints. As for the exact inverse frequent itemset
mining, Calder in his paper [5] gave a naive “generate-and-test” method to “guess”
and build a database horizontally(transaction by transaction) from given frequent
itemsets. On the contrary, the authors of [4] proposed a vertical database generation
algorithm to “guess” a database vertically---column by column when looking the
transaction database as a two-dimensional matrix. Unfortunately, under the
generation-test framework, neither of the algorithms works well in terms of
effectiveness and efficiency as they belong to simple enumerative search approaches
essentially, which blindly try all possible value assignments, even those devoid of
solutions. This means, once the “test” processes fail, the algorithms must rollback
some costly “generate-and-test” operations, leading to huge computational cost.

Thus, a feasible and sufficient solution to the exact inverse frequent itemset mining
is still expected. Obviously, if the given frequent sets collection comes from a real
database, at least this original database must be one which exactly agrees with the
given even though it is computationally hard to “render” it. The questions and
challenges are: Is it unique? Can we find an efficient algorithm without trace back to
find one? Can we find a good heuristic search strategy to reach one quickly?

This paper describes our effort towards finding an efficient method to find a set of
databases that exactly agree with the given frequent itemsets and their supports
discovered from a real database. Compared with previous “generation-and-test”
methods, our proposed FP-tree-based method is a zero trace back algorithm, which
saves huge computational costs. Furthermore, our algorithm provides a good heuristic
search strategy to rapidly find a FP-tree, leading to rapidly finding the compatible
databases. More importantly, our method can find a set of compatible databases
instead of finding only one compatible database in previous methods.

1.2 Paper Layout

In section 2 we define the inverse frequent set mining problem that we focus on. In
section 3 we review the FP-tree structure, and in section 4 we present our proposed
algorithm. We analyze correctness and efficiency of our algorithm and discuss the
number of databases generated in section 5. Section 6 summarizes our study.

2 Problem Description

Let I = {I1, I2, ..., Im} be a set of items, and a transaction database D = {T1, T2, ..., Tn}
where Ti (i [1..n]) is a transaction which contains a set of items in I. The support of
an itemset A I in a transaction database D over I, denoted support(A), is defined as
the number of transactions containing A in D. A is a frequent itemset if A’s support is
no less than a predefined minimum support threshold . If A is frequent and
there exists no superset of A such that every transaction containing A also contains the
superset, we say that A is a frequent closed itemset.

154 Y. Guo et al.

The well-known frequent itemset mining problem aims to find all frequent itemsets
from a transaction database. And the objective of frequent closed itemset mining is to
find all frequent closed itemsets. Conversely, inverse frequent itemset mining is to
find the databases that satisfy the given frequent itemsets and their supports. If the
given frequent itemsets are frequent closed itemsets, we call the inverse mining
process inverse frequent closed itemset mining. Furthermore, if the frequent closed
itemsets and their supports are discovered from a real database, we call the inverse
mining process inverse real frequent closed itemset mining. Here, “real” only
represents “existent”, which means the real database can be an artificial data set.

In this paper, we focus on the inverse real frequent closed itemset mining defined
as: Given a set of items I = {I1, I2, ..., Im}, minimum support threshold “ ”, and a set of
all frequent closed itemsets F = {f1, f2, ...fn} with fix supports S = {support(f1),
support(f2), ..., support(fn)} discovered from a real database D, find a set of databases
DBs in which each database D’ satisfies the following constraints:

(1) D’ is over the same set of items I;
(2) From D’, we can discover exactly same set of frequent closed itemsets“F”with

the same support“S”under the same minimum support threshold“ ”.

3 Frequent Pattern Tree

Frequent pattern tree (or FP-tree in short) proposed by Jiawei Han and efficiently used
in frequent set mining, is an extended prefix-tree structure for storing compressed,
crucial information about frequent patterns.

root

E 1

A 4

B 7

item HeaderLink

B 7

A 6

C 6

D 2

E 2 D 1

C 2D 1

E 1

C 2

C 2

A 2

Header Table
TID Items Ordered Frequent

Item Sets

1 A B E B A E

2 B D B D

3 B C B C

4 A B D B A D

5 A C A C

6 B C B C

7 A C A C

8 A B C E B A C E

9 A B C B A C

Fig. 1. A transaction database and its frequent pattern tree (FP-tree)

Fig. 1 gives an example of a transaction database and its FP-tree, which will be
used in the next section. The database includes nine transactions comprising the items
in the set {A, B, C, D, E}, which are shown in the mid column of the table. The FP-
tree is constructed by two scans of the database. First scan of the database derives a
list of frequent items B:7, A:6, C:6, D:2, E:2 (the number after “:” indicates the
support), in which items ordered in support descending order. The frequent items in
each transaction are listed in this ordering in the rightmost column of the table. The

 A FP-Tree-Based Method for Inverse Frequent Set Mining 155

FP-tree forms in the second scan of the nine transactions in the rightmost column,
with each transaction ‘climbing’ the FP-tree one by one. An item header table is built
to facilitate tree traversal. Details of FP-tree construction process can be found in [6].

4 Proposed Method

4.1 Basic Idea

Our method to generate a database D from given frequent itemsets uses FP-tree as a
transition “bridge” and can be seen as the reverse process of the FP-tree-based
frequent itemsets mining method proposed in [6]. The idea comes from the fact that
FP-tree is a highly compact structure which stores the complete information of a
transaction database D in relevance to frequent itemsets mining. Thus we can look
upon FP-tree as a medium production between an original database and its
corresponding frequent itemsets. Intuitively, FP-tree reduces the gap between a
database and its frequent itemsets, which makes the transformation from given
frequent itemsets to database more smoothly, more naturally and more easily.

Our method works as follows. First, we try to “guess” a FP-tree that satisfies all the
frequent itemsets and their supports. We call such a FP-tree a compatible FP-tree.
Second, generate a corresponding database TempD directly from the compatible FP-
tree by outspreading all the paths of the tree. Third, generate expected databases based
on TempD by scattering some infrequent itemsets into the transactions in TempD,
with the “new” itemsets brought below the given minimum support threshold.

DatabaseFP-treeFrequent Itemsets TempD

(1)(2)(3)

Fig. 2. Basic process of FP-tree-based inverse frequent set mining vs. frequent set mining

Fig. 2 shows the basic process of our proposed method for inverse frequent set
mining, which is marked as , and . It corresponds the three steps described
above. The process of the FP-tree-based frequent itemsets mining is also shown in the
Fig. 2, which is composed of the three steps: (1), (2) and (3). Detailed information
about the FP-tree-based frequent itemset mining process can be found in [6].

4.2 Algorithm

The sketch of our proposed inverse frequent closed set mining algorithm, which is
composed of three procedures, is given as follows.

Gen_DB(F, I,)
Begin
1. DBs , FI I - { all items in F };
2. FP Gen_FPtree(F,);
3. TempD Outspread(FP);

156 Y. Guo et al.

4. DBs DBs {TempD};
5. NewTempD insert “some” items in FI into “some” transactions in TempD, be

sure that each item in FI can only be inserted less than“ ” transactions;
6. DBs DBs {NewTempD};
7. Goto 5 until no different NewTempD generated;
8. Return DBs;
End

Gen_FPtree(F,)
Begin
1. Create the root of an FP-tree, FP, and label it as “null”;
2. F’ Sort(F);
3. While (F’ =) DO

a) Select the first itemset f1:s1 , where f1 is the itemset and s1 is its support;
b) Let f1 be [p|P], where p is the first element and P is the remaining list of

f1;
c) Insert_tree([p|P]:s1, FP);
d) Update F’:

For all f F’ and f f1,
i. support(f) support(f) - s1;
ii. if (support(f)=0) then F’ F’-{f};

e) F’ Sort(F’);
4. Return FP;
End

Outspread(FP)
Begin
1. TempD
2. if (FP=null) then return TempD

else
(a) search the tree by in-depth order to find a leaf node ln:s, where ln is its item

and s is its count;
(b) t all items in the path from the root FP to the leaf node ln;
(c) For i=1 to s, TempD TempD t};//TempD can include duplicates for t
(d) Update FP:

For each node n in the path from the root FP to the leaf node ln,
i. n.count n.count - s;
ii. if (n.count=0) then delete n from the tree FP;

(e) Outspread(FP);
End

The input of the algorithm is a set of items I, minimum support threshold “ ”and
frequent closed itemsets collection F with the support S. The output is a set of
databases DBs. Each element of the DBs is a transaction database that agrees with F.

In the main procedure “Gen_DB()”, we use FP to represent the tree obtained from
the frequent closed itemsets collection F by calling the sub-procedure
“Gen_FPtree()”. We use TempD to represent the result of outputting FP by calling

 A FP-Tree-Based Method for Inverse Frequent Set Mining 157

the sub-procedure “Outspread()”. Notice that FP and TempD include only the items
occurring in F. FI represents infrequent items included in I but not occurring in F.
NewTempD is used to record the new generated database based on TempD.

In the sub-procedure “Gen_FPtree()”, the function Sort(F) sort the itemsets in F
by the number of items and support in descending order. Moreover, the items in each
itemset are sorted in 1-itemset’s support descending order. The function
Insert_tree([p|P]:s1, FP)is performed as follows: If FP has a child N such that
N.item-name=p.item-name, then increment N’s count by s1; else create a new node N,
and let its count be s1, its parent link be linked to FP. If P is nonempty, call
Insert_tree(P,N) recursively.

We use F’ to store the sorted frequent itemsets so far by the number of items and
support in descending order. First, an itemset f1:s1 in the forefront of F’ “climbs”
the FP-tree. Then, the supports of all frequent itemsets in F’ that are subset of f1
subtract s1 and F’ is updated. The two steps repeat until all supports of the frequent
itemsets in F’ are equal to “0”, and F’ is equal to The sort routine of F’ insures
that each time the longest itemset with highest support is submitted first to “climb”
the FP-tree. That is, the longer itemsets with higher supports are always satisfied
prior to the shorter itemsets with lower supports during the FP-tree generation. This
heuristic idea leads that once the longest itemset with highest support in the
forefront of F’ “climbs” the tree, the remaining tasks decrease sharply because more
supports will probably be subtracted and more itemsets will probably be wiped off
in the updating process of F’.

In the sub-procedure “Outspread()”, the itemsets on each path of the FP-tree
“come down” from the tree and form transactions of TempD one by one until the
tree is equal to null. The result of this sub-procedure TempD can be seen as the
status of an “Ordered Frequent Items” transaction database in [6] deleting
infrequent items in each transaction (like the database in the rightmost column of
the table in Fig. 1).

Lines 4-7 of the procedure “Gen_DB()” generate a set of databases DBs by
scattering some infrequent items (elements of FI) into TempD, just be sure that
each infrequent item can only be scattered less than “ ”(minimum support
threshold) transactions of TempD. Concretely speaking, suppose the number of
infrequent items equals to n (| FI |=n), FI = {item1, ..., itemi, ..., itemn}, |TempD|=m,
then DBs={TempD} NewTempDSet1 NewTempDSeti NewTempDSetn,
where NewTempDSet1 is a set of all the new generated databases by scattering item1
into TempD, and NewTempDSeti is a set of all the new generated databases by
scattering itemi into all the previous generated databases in {TempD}
NewTempDSeti-1.

4.3 Example

Let’s illustrate our algorithm with an example: Given I={A, B, C, D, E}, minimum
support threshold =1 , and frequent closed itemsets collection

}B,AB,A,AC,BCA,BC,C,DB,DBA,EAB,{EABCF 74642462121= (the subscripts represent

supports) discovered from the transaction database in Fig. 1 of section 3.

158 Y. Guo et al.

 Generate FP-tree
We first sort itemsets in F by the number of items and support in descending order.
We get }C,A,B,DB,AC,BC,AB,DBA,EAB,BCA,{EABCF' 66724441221= . Then the items in

each itemset are sorted in 1-itemset’s support descending order. Now
}C,A,B,BD,AC,BC,BA,BAD,BAE,BAC,{BACEF' 66724441221= .

FP

C 1

A 1

B 1

E 1

FP

C 2

A 2

B 2

E 1

FP FP

C 2

A 3

B 3

E 1

E 1

FP

C 2

A 4

B 4

E 1

E 1 D 1

FP

C 2

A 4

B 6

E 1

E 1 D 1

C 2

FP

C 2

A 4

B 6

E 1

E 1 D 1

C 2 C 2

A 2

FP

C 2

A 4

B 7

E 1

E 1 D 1

C 2 C 2

A 2

D 1

(1) Insert "BACE1" (2) Insert "BAC1"

(5) Insert "BC2" (6) Insert "AC2"

(3) Insert "BAE1" (4) Insert "BAD1"

(7) Insert "BD1"

(0) Initial

1-iterationNull

7-iteration6-iteration5-iteration

3-iteration2-iteration 4-iteration

F'(7)={}F'(6)={BD1 ,B1}F'(5)={AC2 ,BD1 ,A2 ,C2 ,B1}

F'(4)={BC2 ,...}F'(3)={BAD1 ,...}F'={BACE1 ,...} F'(1)={BAC1 ,...} F'(2)={BAE1 ,...}

Fig. 3. The change of the FP-tree during the FP-tree generation

During the first iteration, the first itemset “BACE1” is selected and inserted to the
tree rooted as “FP”. We get the tree like Fig.3-(1). Then F’ is updated by subtracting
“1” from the supports of all subsets of “BACE” occurring in F’. Itemsets with support
equal to “0” are wiped off during updating. Now we get F’(1)= F’-{BACE, BAC,
BAE, BA, BC, AC, B, A, C}1={BAC1, BAE1, BAD1, BA3, BC3, AC3, BD2, B6, A5, C5}.
The itemsets in F’(1) has already been sorted by the number of items and support in
descending order, so the result of function Sort(F’) performing on F’(1) is still F’(1).
We can see that after the first iteration, F’ becomes F’(1) whose itemsets and related
supports decrease much, which means the remaining itemsets and their related
supports needed to satisfy in the followed iteration decrease much. This dramatically
reduces the cost effects on the FP-tree generation.

 A FP-Tree-Based Method for Inverse Frequent Set Mining 159

During the second iteration, “BAC1” is inserted to the tree and we get F’(2)=
{BAE1, BAD1, BA2, BC2, AC2, BD2, B5, A4, C4}. Then “BAE1 ”, “BAD1 ”, “BC2 ”, “AC2

” and “BD1 ” are inserted to the tree (or we say “climb” the tree) one after the other
and we get the following update sequence of F’ after each iteration: F’(3)= {BAD1,
BC2, AC2, BD2, BA1, B4, C4, A3}; F’(4)= {BC2, AC2, BD1, C4, B3, A2}; F’(5)= {AC2,
BD1, A2, C2, B1}; F’(6)= {BD1, B1}; F’(7)= . The “Gen_FPtree” process terminates
after seven iterations when F’= . Fig. 3 shows the change of the FP-tree during the
whole process of the FP-tree generation.

Generate temporary transaction database TempD by outspreading FP-tree
Fig. 4 shows the change of the FP-tree during the whole process of the TempD
generation. First, “BACE1” which is the leftmost branch of the original FP-tree
“comes down” from the tree. At the same time, all the items in this branch form into
the first transaction of TempD : TempD(1)=(B, A, C, E) After deleting the “BACE1”
branch from the tree, the “FP” tree changes into the form shown as Fig.4-(2). By
calling the Outspread(FP) recursively, we perform the similar operations on the
remaining six “FP” trees (Fig.4-(2) to Fig.4-(7)) in turn. “BAC1”, “BAE1”, “BAD1”,

FP

C 2

A 4

B 7

E 1

E 1 D 1

C 2 C 2

A 2

D 1

(1) "BACE1" comes down

FP

C 1

A 3

B 6

E 1 D 1

C 2 C 2

A 2

D 1

FP

A 2

B 5

E 1 D 1

C 2 C 2

A 2

D 1

(2) "BAC1" comes down

FP

A 1

B 4

D 1

C 2 C 2

A 2

D 1

(3) "BAE1" comes down

FP

B 3

C 2 C 2

A 2

D 1

(4) "BAD1" comes down

FP

B 1

C 2

A 2

D 1

(5) "BC2" comes down

FP

C 2

A 2

(6) "BD1" comes down

FP

(7) "AC2" comes down (8) End

(1) B A C E

(2) B A C

(3) B A E

(4) B A D

(5) B C

(6) B C

(7) B D

(8) A C

(9) A C

TempD =

Fig. 4. The change of the FP-tree during the TempD generation

160 Y. Guo et al.

“BC2”, “BD1” and “AC2” comes down from the tree one by one and we get the
remaining eight transactions of TempD: TempD(2)=(B, A, C); TempD(3)=(B, A, E);
TempD(4)=(B, A, D); TempD(5)=(B, C); TempD(6)=(B, C); TempD(7)=(B, D);
TempD(8)=(A, C); TempD(9)=(A, C). Notice that when “BC2” and “AC2” come
down, our algorithm generates two same transactions respectively. The whole
algorithm ends when FP=null (Fig.4-(8)) and we get a temporary transaction database
TempD shown as the table in Fig. 4.

 Generate a set of databases DBs by scattering infrequent items into TempD
In last process , we have generated a transaction database TempD from the FP-tree
generated in . In fact, TempD, which involves only frequent items, keeps all
information about frequent itemsets and constitutes skeleton of the compatible
databases we are to find. By scattering infrequent items into TempD, we can get more
than one database, exactly a set of databases satisfying the given constraints.

In our example, the set of infrequent items FI = , as all the items in the set of
I={A, B, C, D, E} occur in the set of frequent itemsets

}B,AB,A,AC,BCA,BC,C,DB,DBA,EAB,{EABCF 74642462121= . So according to lines 4-7

of the procedure “Gen_DB()” in our whole algorithm, no NewTempD is generated
and the eventual DBs={TempD}. This means we find only one transaction database
TempD satisfying F in this example. Interestingly, TempD (see Fig.4) happens to be
the transaction database shown in Fig.1 of section 3, without regard to the order of
transactions and the items order in each transaction. Another interesting thing is the
FP-tree generated in this example by our inverse mining algorithm (see Fig.3-(7))
happens to be the tree shown in Fig.1 of section 3 generated from the transaction
database in Fig. 1 by the FP-growth algorithm in [6], without regard to the order of
children of each node. What do the interesting results indicate? At least we can get the
following three valuable hints from the interesting results.

First, it validates the correctness of the result, as the input frequent sets F is
discovered from the database in Fig. 1. So from TempD we must be able to discover
exactly the same F, and TempD really satisfies F. Second, it indicates the feasibility
and effectiveness of our method, as we really find a database satisfying F only based
on the inputs (I, F,) and our algorithm, without knowing any other things about the
original database. Third, it induces us to think: It is what factors that lead to the
interesting results? How many compatible databases can be found by the proposed
algorithm in usual cases? These questions will be probed in the next section 5.

5 Analysis

In this section, we analyze the correctness, efficiency of our algorithm. Then we focus
on discussing the number of compatible databases that our algorithm can generate.

(1) Correctness
The correctness of our algorithm can be ensured by the three steps during our
algorithm performing. The first step “Generate FP-tree” insures the generated FP-tree
is compatible with the given frequent sets constraints, because all the given frequent
sets “climb” the FP-tree and FP-tree can store the complete information in relevance

 A FP-Tree-Based Method for Inverse Frequent Set Mining 161

to frequent itemsets mining. The second step “Generate TempD by outspreading FP-
tree” ensures the generated TempD is also compatible with the given frequent sets
constraints, because all frequent sets “come down” from the FP-tree and from TempD
we can construct a same FP-tree. The third step “Generate a set of databases DBs by
scattering infrequent items into TempD” guarantees all the frequent sets and their
supports related information keeps down exactly, no changes happen on any frequent
sets’ supports, and no new frequent sets are brought. So that all the databases in DBs
preserve the complete and exact information of the given frequent sets constraints and
are correct compatible databases we are to find.

(2) Effectiveness
The effectiveness of our algorithm lies in the two facts. One fact is our algorithm is a
zero trace back algorithm with no rollback operations, since during constructing a
compatible FP-tree process each itemset “climbs” the FP-tree following the
prescribed order. And the remaining two transformations “from FP-tree to TempD”
and “from TempD to the set of compatible databases” are natural and direct, with no
rollback too. The other fact is, with the longest itemset with highest support
“climbing” the FP-tree first during each iteration, our algorithm provides a good
heuristic search strategy to rapidly find a compatible FP-tree.

Suppose the number of the given frequent closed sets in collection F is k and the
number of transactions generated in TempD is m, i.e. F , TempD . Then the
FP-tree construction can be accomplished in O(klogk+(k-1)log(k-1)+...+1) time, in
which klogk represents the time to sort the k frequent closed sets in F in the frequent
sets length and support descending order. The number of elements in F decrease one
each time the first frequent set climbs the FP-tree. The time consumed in TempD
generation is determined by the number of branches in the FP-tree and approximates
to O(m). Hence the first two processes in our algorithm can both be accomplished in
polynomial time. The most time-consuming process in our algorithm may be the third
process to generate a set of compatible databases DBs. This is because our algorithm
may generate an exponential number of compatible databases (see the number of
compatible databases analysis in part (3) of this section). But it does not show our
algorithm is inefficient. On the contrary, it shows the effectiveness of our algorithm
because we can generate so many compatible databases. In fact, in our algorithm the
generation of new databases is very easy and quick just scattering a new infrequent
item into all the previous databases in prescribed principle. It may be time-consuming
only because there are so many answers to be output.

All in all, with no trace back and with the good search strategy, our algorithm can
work very effectively generating lots of compatible databases.

(3) The number of compatible databases
Fig. 5 illustrates mapping relation among compatible database space, compatible FP-
tree space and given frequent closed sets collection, which helps to probe the number
of compatible databases that our algorithm can output. In Fig. 5, FCS is a frequent
closed sets collection discovered from one of the databases in DBsi undergoing
TempDi and FP-treei by FP-growth method in [6]. DBsj is the output set of compatible
databases generated from FCS undergoing FP-treej and TempDj by our algorithm. All

162 Y. Guo et al.

TempDi<—>FP-treei FCS

TempDj<—>FP-treejDBsj

DBsi...

...

...

All the compatible databases space boundary

database

All the compatible FP-trees space boundary

Frequent Closed
Sets Collection

>=2

=1 =1

>=2

Fig. 5. Mapping relation among database space, FP-tree space and FCS

the databases in DBsi map into the same FP-treei and have the same number of
transactions as TempDi, so do the DBsj, FP-treej and TempDj. The figure shows that
what our algorithm outputs is only a small part (a class having the same number of
transactions and corresponding to the same FP-tree) of the whole compatible database
space. Then how many databases our algorithm can output?

The number of compatible databases that our algorithm can output (indicated as
DBs) is related to the three parameters: (1) the number of transactions in TempD,

i.e. TempD ; (2) the number of infrequent items in FI , i.e. FI ; (3) the minimum

support threshold“ ”. Suppose TempD nFI = and f(n) represents the number

of generated databases after the n-th infrequent item in FI has been scattered into all
of the previous generated databases fully, we have the recurrence equation:

)CCCf(n)(f(n)1)f(n 1
m

2
m

1
m

−++++=+ σ (n 0, 2 m, m 1, N) (1
mC means the

number of selecting one transaction from m transactions of a generated database that
has not included the (n+1)-th infrequent item); and f(0)=1 which means when there is
no infrequent items in FI , there is only one compatible database (TempD) our
algorithm finds. By solving the recurrence equation, we get

n
mmm)CCC1()n(fDBs 121 −++++== (n 0, 2 m, m 1, N). When =1,

1DBs = ; and when <<m, DBs is in direct proportion to n
m)C(σ . In practice we

can limit the number of compatible databases to be generated when DBs is
astronomical or when we are trying to find fixed number of compatible databases.

Notice that our other examples show usually(when 2) FP-treej is different from
FP-treei, DBsi and DBsj are disjoint, and the database set that our algorithm outputs
does not include the original database. However, when =1, FP-treej happens to be the
same with FP-treei, leading TempDj is just the same with TempDi, and the only
compatible database we are to find is just the original database because there exists no
infrequent items can be scattered under “ =1”. This explains the two interesting facts
in the example in section 4: The TempD in Fig.4 happens to be the original database

 A FP-Tree-Based Method for Inverse Frequent Set Mining 163

in Fig.1; and the FP-tree in Fig.3-(7) happens to be the same FP-tree in Fig.1. The two
dashed lines with arrowheads in Fig.5 illustrate the different execution paths of our
algorithm in usual case (>=2) and special case (=1).

6 Conclusions

We have presented a feasible and efficient algorithm for the NP-complete problem of
inverse frequent set mining. The algorithm can effectively generate a set of databases
that exactly agree with the given frequent closed itemsets and their supports
discovered from a real database. Compared with previous “generation-and-test”
methods, our method is a zero trace back algorithm, without rollback operations
during the databases’ generation, which saves huge computational costs. Furthermore,
our algorithm provides a good heuristic search strategy to rapidly find a FP-tree
satisfying the given frequent sets constraints, leading to rapidly finding the
compatible databases. More importantly, our algorithm can find a set of compatible
databases (usually a lot of databases) instead of finding only one compatible database
in previous methods. We also probe the number of databases found by our algorithm.

This study is just our first step towards solving this inverse mining problem. More
work will be done in the near future, such as refinement of the algorithm, and
empirical experiments on real databases. However, for this NP-complete inverse
mining problem, our study has shown that there do exist reasonably efficient search
strategies and solutions to find some (at least one, not all, but usually a lot of) data
sets compatible with a given data set. This study can be used to deal with privacy
preserving data sharing, in which data owners will have a choice in releasing different
versions of the original data for different sharing (benchmark, mining, etc.).

References

1. Mielikainen, T.: On Inverse Frequent Set Mining. In: IEEE ICDM Workshop on Privacy
Preserving Data Mining, IEEE Computer Society (2003) 18–23

2. Wu, X., Wu, Y., Wang, Y., Li, Y.: Privacy-Aware Market Basket Data Set Generation: A
Feasible Approach for Inverse Frequent Set Mining. In: Proc. 5th SIAM International
Conference on Data Mining (2005)

3. Wang, Y., Wu, X.: Approximate Inverse Frequent Itemset Mining: Privacy, Complexity,
and Approximation. In: Proc. 5th International Conference on Data Mining (2005) 482–489

4. Chen, X., Orlowska, M.: A Further Study on Inverse Frequent Set Mining. In: Proc. 1st
International Conference on Advanced Data Mining and Applications (ADMA), Lecture
Notes in Computer Science, Vol. 3584. Springer-Verlag (2005) 753–760

5. Calders, T.: Computational Complexity of Itemset Frequency Satisfiability. In: Proc. 23rd
ACM PODS 04, ACM Press (2004) 143–154

6. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Proc.
of the ACM SIGMOD International Conference on Management of Database (2000) 1–12

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 164 – 176, 2006.
© Springer-Verlag Berlin Heidelberg 2006

SC-Tree: An Efficient Structure for High-Dimensional
Data Indexing

Ben Wang and John Q. Gan

Department of Computer Science, University of Essex,
Colchester CO4 3SQ, UK

{bwangm, jqgan}@essex.ac.uk

Abstract. In content-based information retrieval (CBIR) of multimedia data,
high-dimensional data indexing and query is a challenging problem due to the
inherent high dimensionality of multimedia data. As a data-based method, metric
distance based high-dimensional data indexing has recently emerged as an
attractive method because of its ability of making use of the properties of metric
spaces to improve the efficiency and effectiveness of data indexing. M-tree is one
of the most efficient indexing structures for searching data from metric space, and
it is a paged, balanced, and dynamic tree that organizes data objects in an arbitrary
metric space with fixed sizes for all its nodes. However, inherent disadvantages
are veiled in the M-tree and its variants, which prevent them from further
improvement of their indexing and query efficiency. To avoid these
disadvantages, this paper proposes a sorted clue tree (SC-tree), which essentially
modifies the nodes, entries, indexing algorithm, and query algorithm of the M-tree
but reserves its advantages. Experimental results and complexity analyses have
shown that the SC-tree is much more efficient than the M-tree with respect to the
query time and indexing time without sacrificing its query accuracy.

1 Introduction

Efficient access is essential for content-based information retrieval of large
multimedia databases because multimedia data are usually characterized by high-
dimensional features which bring about the curse of dimensionality problem in
similarity searching operation.

There are two general categories of partitioning methods for data indexing: space-
based partitioning and data-based partitioning. Space-based partitioning [12]
[14][15][16][17] is also called grid-based partitioning, which partitions each
dimension of the space into intervals and thus the whole space into grids. Although
this is a simple partitioning method, the number of grids increases exponentially with
the space dimension, resulting in the curse of dimensionality problem. Data-based
partitioning [3][4][7] can also be called prototype-based partitioning, clustering-based
partitioning, or distance-based partitioning. The number of partitions in data-based
partitioning depends on the data distribution, e.g., the number of clusters, which is not
directly related to the space dimension. Therefore, data-based partitioning does not

 SC-Tree: An Efficient Structure for High-Dimensional Data Indexing 165

have the curse of dimensionality problem and has found wide applications in high-
dimensional data indexing.

As a data-based method, metric distance based high-dimensional data indexing
has recently emerged as an attractive method because it is able to make use of the
properties of metric spaces to improve the efficiency and effectiveness of data
indexing [3][4][19]. Typical metric distance based indexing structures include
vantage point tree (VP-tree) [18], multiple vantage points tree (MVP-tree) [5],
geometric near-neighbour access tree (GNAT) [6], and paged metric tree (M-tree)
series [2][7]. VP-tree partitions a data set according to distances that the objects
have with respect to a vantage point, and then utilizes the triangle inequality to filter
data objects to reduce the similarity search cost. However, due to its small fan-out,
VP-tree structure is very deep, thus a search operation is time-consuming. MVP-
tree employs multiple vantage points, and exploits pre-computed distances to
reduce the number of distance computations during query process, but it is static
and cannot be incrementally updated. GNAT captures the geometry of a data set by
hierarchically breaking it down into regions. Long preprocessing time is the main
disadvantage of GNAT. M-tree [7] is a paged, balanced, and dynamic tree that
organizes data objects in an arbitrary metric space with fixed sizes for all its nodes.
Since metric spaces strictly cover vector spaces, M-tree has a far more general
applicability than multi-dimensional access methods, such as R-tree [13] and its
variants [10]. For instance, a set of strings can be compared and organized in the M-
tree according to edit distance which is defined as the minimal number of character
changes needed to transform one string into another. In recent years, four important
improvements have been made to the original M-tree: complex similarity search,
approximate search, cost models, and user-defined distances. Complex similarity
search handles several features, such as color, shape, or texture [8]. Approximate
searching introduces PAC-NN (probably approximately correct nearest neighbor)
queries, where error bound and accurate ratio can be tuned during a query period to
trade query accuracy for query time [9]. Cost models concern the distance
distribution of objects and predict both I/O and CPU query costs [11]. The user-
defined distance approach develops a QIC-M-tree (QIC stands for query, index,
comparison distances), which involves several distinct metrics at the same time
[10]. However, three inherent disadvantages are veiled in the M-tree and its
variants, which prevent the M-tree and its invariants from further improvement of
their indexing and query efficiency. To avoid these disadvantages, this paper
proposes a sorted clue tree (SC-tree), which essentially modifies the nodes, entries,
indexing algorithm, and query algorithm of the M-tree but reserves its advantages.

In this paper, the M-Tree indexing structure is briefly introduced in section 2. The
SC-tree is proposed in section 3. Experimental results and analyses are given in
section 4. And conclusion is given in section 5.

2 M-Tree

M-tree is an efficient indexing structure for searching data from metric space [7]. A
generic metric space is a pair, M = (U, d), where U is a domain of feature vectors and

166 B. Wang and J.Q. Gan

d is a distance function with the following postulates: symmetry, positivity, and
triangle inequality:

).,(),(xydyxd = (Symmetry) (1)

0),(≥yxd and 0),(=yxd iff yx = . (Positivity) (2)

),(),(),(zxdzydyxd ≥+ . (Triangle inequality) (3)

For the sake of self-containment, this section briefly describes the indexing
structure and indexing and query algorithms of the M-tree.

2.1 Indexing Structure

M-tree indexing structure is constructed by hierarchical nodes. Each node consists of
a fixed number of entries. There are two types of nodes: internal nodes and leaf nodes,
corresponding to two types of entries. An internal entry, stored in internal nodes,
contains a routing object, covering radius, a pointer to its sub-tree (a node at the next
level), and the distance between the routing object and its parent. The routing object is
defined as the representative centroid of objects in the sub-tree, and the covering
radius is the farthest distance between any objects in the sub-tree and the routing
object. However, in a leaf entry, an object identifier, its feature vector, and the
distance between the object and its parent are recorded.

The formal definitions of the M-tree node, leaf entry, and internal entry are as
follows: An M-tree node has a fixed number of entries, defined as entriesi, i <
numOfEntries. A leaf entry has the format of [Oi, oid(Oi), d(Oi, P(Oi))], where

iO is

defined as the feature vectors of the routing object, oid(Oi) as the object identifier, and
d(Oi, P(Oi)) as the distance between Oi and its parent object)(iOP . An internal entry

has the format of [Or, r(Nr), ptr(Nr), d(Or,P(Or))], where
rO is defined as the routing

object, r(Nr) as the covering radius of sub-tree Nr, and ptr(Nr) as the pointer to Nr. For
each Oi’ in the sub-tree rooted at Nr, it has the property)()',(rir NrOOd ≤ .

2.2 Indexing Algorithm

The indexing algorithm of the M-tree inserts data objects into its nodes one by one.
The insert algorithm recursively locates the most suitable internal or leaf node to
accommodate a new data object. The strategy to find the most suitable node is to
minimize the enlargement of the covering radius of the entries at each level. If a node
is full of entries, the split algorithm will be called to deal with the overflow situation.
Regardless of the specific split policy, the semantics of covering radius has to be
preserved after each splitting operation.

In general, the indexing algorithm of the M-tree follows a bottom-up approach.
Initially, an empty root node is generated. The first leaf entry is generated by selecting
an object from the data set and inserting it into the root node. A leaf entry is inserted
into a node if the node is not full. Otherwise, the split algorithm partitions the node
into two sub-trees and a new node is generated at the same time. From these sub-trees,
two routing objects are chosen as the new internal entries, whose pointers point to the

 SC-Tree: An Efficient Structure for High-Dimensional Data Indexing 167

sub-trees respectively. These two internal entries are then inserted into the new node.
At this moment, the first M-tree with one root node and two sub-trees is formed. After
that, the second leaf entry is generated by selecting another object form the data set
and inserting it into the root node. The covering radius of the inserted entry in the root
node should be updated. If the current node (the root node in this case) has sub-trees,
the entry is recursively inserted into one of the sub-trees until a leaf node is reached.
If the leaf node is full, the split algorithm has to be called. Otherwise, the entry is
inserted into the leaf node. Following the above procedure, all the objects in the data
set are inserted into the M-tree indexing structure.

2.3 k-NN Query Algorithm

The k-NN query algorithm retrieves k most similar objects with respect to a given
query object Q. A priority queue PR and an array NN with k elements are utilized in
the algorithm. The PR is a queue of pointers to active sub-trees where qualified
objects can be found. A lower bound that records the distance between any object in
the sub-trees and the query object Q is also kept in the PR, and the node with the
minimal lower bound will be chosen. Since the pruning criterion of k-NN query
algorithm is dynamic, the search radius is the distance between Q and its current k-th
nearest neighbor. The order of the accessing nodes is crucial for high query
performance. The query algorithm starts from the root node. It firstly locates active
sub-trees of the root node and their lower bounds, and inserts them into the PR. After
that, the query algorithm chooses one sub-tree from the PR, stores the node identifiers
and the distances from the query Q in the array NN, and returns a k-NN value, dk.,
which is used later as the search radius to remove sub-trees in the PR whose lower
bounds exceed dk. At the end of execution, the k-NN query results are stored in the
array ,Q)]), d(O[oid(ONN[i] ii= , ki <≤0 , where oid(Oi) is the object identifier of

the i-th nearest neighbor of Q and d(Oi,Q) represents the distance of the i-th nearest
neighbor from Q [10].

2.4 Advantages and Disadvantages

M-tree has the following major innovative properties [9]. It is a balanced and
incremental updating indexing structure that is able to index data sets from generic
metric spaces. It is also dynamic and scalable. The k-NN query can be performed on
the M-tree, with query results ranked in terms of the distances with respect to a given
query object. It is suitable for indexing high-dimensional data.

However, M-tree has three inherent disadvantages that largely limit its indexing
and query efficiency. Firstly, the entries in a node are stored randomly. As a result,
the split algorithm has to find two farthest objects by comparing every pair of objects
in the entry, which is obviously not efficient for the splitting operation. Secondly, in
both the insert and split algorithms, locating the parent of the current node is needed
frequently, but the searching has to inefficiently travel from the root node to all sub-
trees until the current node is located [9]. Thirdly, for k-NN search algorithm, the
chosen node is added into the priority queue PR without sorting the position of sub-
trees according to the lower bounds between the query object and sub-trees. As a
result, it influences the order of accessing nodes. The first two disadvantages will

168 B. Wang and J.Q. Gan

largely decrease the indexing efficiency, and the second and the third disadvantages
will add much unnecessary query time. In order to improve the indexing and query
efficiency for the M-tree, the SC-tree is proposed in the next section.

3 SC-Tree

SC-tree proposed in this paper is a high-dimensional data indexing structure that sorts
entries in nodes, maintains a pointer to its parent for each node, and supports indexing
and querying data from metric space. The entries in the SC-tree are sorted by the
distance between routing objects and their parents. The pointer from current entry to
its parent is called a “clue”. Details about the indexing structure, indexing algorithm,
and query algorithm of the SC-tree are described in the following subsections.

3.1 Indexing Structure

The indexing structure of the SC-Tree includes two parts: nodes and entries. The
entries in a node are sorted according to distances between routing objects and their
parent objects, represented as distFromParent. There are a fixed number of entries in
an internal node or leaf node, which are inserted into the node in ascending order of
distFromParent. More formally, the entry and node structure are defined as follows:

An entry has five attributes: the feature vector of an routing object, On, the pointer
to the root of the sub-tree, sub-tree, the object identifier of the entry, oid, the covering
radius of its sub-tree, coverRadius, and the distance between the routing object and its
parent, distFromParent. If the entry is internal, set oid=1. If the entry is a leaf one, set
sub-tree=Nil and coverRadius=0.

A node has five attributes: the number of total entries in the node, totalEntries,
the entries in a node, entriesi (i < totalEntries), the number of non-empty entries in
the node, currentEntries, the pointer to the parent node, parentNode, and the index
of the entry in parentNode, entryIndex, which points to the current node. To locate
the parent entry of current object is to simply return parentNode[entryIndex]. The
parentNode[entryIndex].routObjectFeature is the feature vector of the current
object.

3.2 Indexing Algorithm

The indexing algorithm specifies how objects are inserted and how to deal
with node overflow when a node has already been full before inserting a new
object. In this section, an insert algorithm and a split algorithm are described in
detail, with >< i change denoting the major differences between the SC-tree and the

M-tree.

Insert Algorithm: Insert(treeNode, entry(On))
Input parameters: treeNode, entry(On)
Return: updated treeNode with the inserted entry(On)
S1. Get all the entries in treeNode.
S2. If treeNode is not a leaf node

 S2.1. Select those entries whose covering radiuses will not increase if entry(On)
is inserted into them.

 SC-Tree: An Efficient Structure for High-Dimensional Data Indexing 169

 S2.2. If the selected entries are not empty, select an entry, denoted as
chosenEntry, whose routing object Or is the closest to the routing object On of
entry(On).

 S2.3. Else select the chosenEntry with the minimal distance (d(Or, On) –
coverRadius).

 S2.4. Get the sub-tree of chosenEntry, recursively call Insert(sub-tree, entry(On)).
S3. Else the treeNode is a leaf node.
 S3.1. If the treeNode is not full, insert entry(On) in the treeNode in ascending order

of distFromParent and increase currentEntries by 1. <change 1>
S3.2. Else Split (treeNode, entry(On)).

S4. Return the updated treeNode.

Split Algorithm: Split(treeNode, entry(On))
Input parameters: treeNode, entry(On)
Return: splitTreeNode

S1. Set combinedEntries = {entries of treeNode ∪ entry(On)} and sort
combinedEntries by distFromParent.

S2. Get the parent node of treeNode by its parentNode pointer. <change 2>
S3. If treeNode is the root node (its parentNode is empty)

S3.1. Set entry1 = the first entry of treeNode. <change 3>
S3.2. Set entry2 = the last entry of treeNode. <change 4>

S4. Else if treeNode is not the root node
S4.1. Set entry1 = parentNode[entryIndex]. <change 5>
S4.2. Set entry2 = the last entry of combinedEntries. <change 6>
S4.3. Set routObject1 = the routing object of entry1.
S4.4. Set routObject2 = the routing object of entry2.

S5. Divide combinedEntries into two tree nodes, treeNode1 and treeNode2, based on
the distances from the objects in combinedEntries to routObject1 and routObject2.

S6. If treeNode is the root node
S6.1. Allocate a newRootNode.
S6.2 Store entry1 and entry2 in newRootNode.
S6.3 Record the parentNode and entryIndex for treeNode1 and treeNode2. <change

7>
S6.4. Set splitTreeNode = newRootNode.

S7. Else if treeNode is not the root node
 S7.1. Replace parentNode[entryIndex] = entry1. <change 8>
 S7.1. If parentNode is full
 S7.1.1. Split(parentNode, entry2).
 S7.2. Else if parentNode is not full
 S7.2.1. Store entry2 in parentNode.
S8. Set splitTreeNode = parentNode.
S9. Return splitTreeNode.

In the construction of an M-tree, the split algorithm is frequently called in the
insert algorithm, hence its efficiency will largely influence the efficiency of the insert
algorithm. There are two disadvantages in the split algorithm of the M-tree. The first
is that the distance between each object in an entry and its parent object has to be
calculated in order to choose two routing objects from the split entry. The second is
that the split algorithm has to travel from the root node to all its sub-trees until the

170 B. Wang and J.Q. Gan

current node is reached in order to find the parent node of current node. To overcome
these two disadvantages, there are several noticeable modifications in the SC-tree,
compared with the M-tree. In step S3.1 of the insert algorithm, the entry is inserted
into the tree node in ascending order of distFromParent. This modification makes it
possible to implement steps S3.1, S3.2, and S4.2 in the split algorithm. Due to the
modifications, the SC-tree simply selects the first object and the last object from the
entry as the routing objects for the split sub-trees because they are sorted by the
distance between any object and their parent object. Furthermore, the modifications
also speed up step S5 of the split algorithm because it is almost done for distributing
objects to the first tree node, treeNode1, in which the objects are already sorted.
Another modification is in step S6.3 of the split algorithm, in which the parent node
of the current node is recorded .This modification, which is based on the indexing
structure of SC-Tree, makes steps S2, S4.1, and S7.1 in the split algorithm much more
efficient. To get the parent object of current node, parentNode and entryIndex
attributes of current node can be directly returned.

3.3 k-NN Query Algorithm

The k-NN query algorithm of the SC-tree implements its search logic, which is
described as follows:

k-NN Query Algorithm: k-NN(startNode, query, k)
Parameters: startNode, query , k
Return: an array NN storing k-NN query results
S1. If startNode is a rootNode
 S1.1. Initialize an array NN.
 S1.2. Choose active sub-trees based on their lower bounds, and insert them into

the
priority queue PR.

Note: Different from the M-tree, the SC-tree inserts active sub-trees in
ascending order of their lower bounds, which are defined by

dmin = max{distFromRoutObjectToQuery -
coverRadius} (4)

where distFromRoutObjectToQuery represents the distance between the
routing object and the query object. <change 9>

S1.3. If the PR is not empty, select the first sub-tree, denoted as chosenNode, for
which the dmin is minimal. Set dk =dmin when dmin < dk. <change 10>

 S1.3.1. Select the parentNode of chosenNode by its pointer to parent.
<change 11>

 S1.3.2. Calculate the distance distFromParentToQuery between the routing
object of parentNode[entryIndex] and the query object.

 S1.3.3. If the entry in chosenNode satisfies the following condition:

 |distFromParentToQuery - distFromParent| ≤ (dk + coverRadius) (5)

 where distFromParentToQuery is the distance between the parent object
to the query object, and distFromParent is the distance between the
routing object and the parent object.

S1.3.3.1. Calculate distFromRoutObjectToQuery.
S1.3.3.2. If distFromRoutObjectToQuery < dk

 SC-Tree: An Efficient Structure for High-Dimensional Data Indexing 171

 S1.3.3.2.1. Perform an ordered insertion of distFromRoutObjectToQuery
into NN, and get back the new k-NN distance dk.

 S1.3.3.2.2. Remove entries in the PR if their lower bounds dmin exceed dk.
Firstly, the position in the PR where the first sub-tree with its

lower bound exceeds dk is found by binary search. Secondly, all
the entries after that position in PR will be removed. <change
12>

 S1.4. Else the PR is empty
S1.4.1 Return the array NN.

S2. If startNode is not a rootNode
 Return null (empty tree node).

In M-tree active sub-trees and their lower bounds are not sorted in the priority

queue PR, which means that the sub-tree with the minimal lower bound has to be
searched before it can be accessed by the query object. Another disadvantage of M-
tree is that its algorithm has to travel from the root node to all sub-trees in order to
locate the parent node of the current node. In order to avoid the first disadvantage, in
step S1.2 of the k-NN query algorithm of the SC-tree, the sub-trees are sorted in
ascending order of their lower bounds in the PR. As a result, in step S1.3, the first
sub-tree stored in the PR is the one with the minimal lower bound, i.e., the nearest one
to the query object. Furthermore, it also speeds up step S1.3.3.2.2 as a result of the
sorted lower bounds of sub-trees. To avoid the second disadvantage, the SC-tree
simply returns the attributes parentNode and entryIndex of current node.

In order to test the indexing and query efficiency of the SC-tree, experiments are
carried out and analyzed in the next section.

4 Experimental Results and Analyses

Experiments have been carried out on five high-dimensional datasets: Census,
Corel, FaceR, Forest, and Synthetic, in order to evaluate the performance of the
proposed method. The Census data set contains 22,784 139-dimensional feature
vectors, which is a highly clustered dataset with about 80% vectors clustered in
20% regions. The Corel dataset contains 68,040 32-dimensional image feature
vectors. The FaceR dataset contains 2000 99-dimensional feature vectors extracted
from face images. The Forest dataset contains 41012 54-dimensional feature vectors
among which 44 are Boolean attributes and 10 are real-valued attributes. Finally,
the Synthetic data set, generated by Aggarwal [1], contains 12,040 40-dimensional
feature vectors, which is a very sparse data set. In our experiments, the proposed
SC-tree and the M-tree are tested on the five data sets. All objects in the data set are
inserted into the M-tree and the SC-tree one by one in the indexing stage.
Every object acts as a query object during the k-NN query stage. The number of
children nodes for each node (fan-out), denoted as CN, is chosen from 10, 20, 30,
40, 50, and 60. The indexing efficiency is measured by indexing time, while the k-
NN query efficiency is measured by the query time spent on all the query objects in
a data set. The query accuracy is measured by a query accuracy ratio, which is

172 B. Wang and J.Q. Gan

defined as the ratio of the number of correctly returned query results to the total
number of query results.

Firstly, the indexing performance of the M-tree and the SC-tree are compared in
Fig. 1~5. It is clear that the indexing time of the SC-tree is much shorter than that of
the M-tree. In fact, the SC-tree is about 20% quicker than the M-tree on five data sets.
It is probably because in the M-tree objects were inserted into nodes randomly, but in
the SC-tree objects were inserted into nodes in order. As a result, in the split operation
of the SC-Tree, the first and the last entries can be easily used for choosing routing
objects. However, the split operation of the M-tree has to calculate the distance
between every pair of entries in a node to select two entries with the farthest distance.
Both the SC-tree and the M-tree construct indexing structures by inserting objects in
the data set one by one. It is reasonable to analyze the efficiency of inserting and
splitting operations to reflect the indexing efficiency. Let the number of entries in a
node be np . For the SC-tree, the time to insert one object into a node is))(log(npO ,

and the time to select two new routing objects from the split node in splitting
operation equals to)1(O by selecting the first object and the last object as the new

routing objects, thus the total indexing time complexity of SC-tree can be
approximated as)]1())(log([OnpO +))(log(npO≈ . For the M-tree, the time to insert one

object into a node is)1(O by adding the object to the end of the node directly, the time

to select routing objects from the split node in splitting operation is 2)1(2 −= npnpCn

by comparing every pair of objects in the split node, and thus the total indexing time
complexity of M-tree can be approximated as)]1()2/)1(([OnpnpO +−)(2npO≈ . From the

analysis of the indexing time complexity, the indexing time of the SC-tree is much
shorter than that of the M-tree.

Secondly, the query time of the two methods are compared in Fig. 6~10. It can
be seen that the k-NN query time of the SC-tree is shorter than that of the M-tree. In
the k-NN search algorithm, the chosen node in the M-tree is added into the priority
queue PR without sorting the positions of sub-trees according to the lower bounds
between the query object and sub-trees. As a result, it influences the order of
accessing nodes. While the SC-tree sorts the sub-trees in ascending order of the
lower bounds between the query object and sub-trees, thus the nearest sub-tree to
the query can be accessed firstly. Consequently, the SC-tree reserves better
candidate objects and prunes irrelative sub-tree at an earlier stage, which greatly
reduces distance calculations. Another important difference between the SC-tree
and the M-tree is the pointer to the parent of the current object. If there are pp
objects in the indexing tree, the level of the tree is)(log ppO . For instance, if a tree

has two entries in each node and contains 8 objects, then the level of the tree equals
3)8(log 2 = . The M-tree has to locate its parent node by travelling the indexing tree,

which starts from the root node until the node itself is reached. The time complexity
of travelling in the M-tree is)(log ppO , whilst it is)1(O in the SC-tree directly using

pointer parentNode[entryIndex]. Because locating a parent node is a very frequent
operation in both indexing and query, this complexity has a great impact on the
indexing and query efficiency.

Finally, the query accuracy ratios for the M-tree and the SC-tree are very similar,
as shown in Fig. 11 and Fig. 12 respectively. The query accuracy ratios of both the

 SC-Tree: An Efficient Structure for High-Dimensional Data Indexing 173

SC-tree and the M-tree are between 92% and 99% when NC=10~60, which are
quite stable.

From the above experimental results and analyses, it can be concluded that, without
sacrificing the query accuracy, the SC-tree largely improves the indexing and query
efficiency in comparison with the M-tree.

Fig. 1. Indexing time on Corel

Fig. 2. Indexing time on Synthetic Data

Fig. 3. Indexing time on Forest Fig. 4. Indexing time on FaceR

Fig. 5. Indexing time on Census Fig. 6. k-NN query time on Core

174 B. Wang and J.Q. Gan

Fig. 7. k-NN query time on Synthetic Data Fig. 8. k-NN query time on Forest

Fig. 9. k-NN query time on FaceR

Fig. 10. k-NN query time on Census

Fig. 11. k-NN query accuracy ratios on 5 data
sets by M-tree

Fig. 12. k-NN query accuracy ratios on 5 data
sets by SC-tree

5 Conclusion

M-tree is an efficient dynamic indexing structure which indexes and queries data
objects from a generic metric space and utilizes the triangle inequality postulate to

 SC-Tree: An Efficient Structure for High-Dimensional Data Indexing 175

prune irrelative sub-trees during the query stage. This paper proposes an SC-tree
indexing structure which inherits the advantages of the M-tree and overcomes its
disadvantages. Experimental results and complexity analyses show that the SC-tree is
much more efficient than the M-tree with respect to the query time and indexing time
without sacrificing its query accuracy.

References

1. Aggarwal, C. C., Procopiuc, C., Wolf, J.L., Yu, P. S., Park, J. S.: Fast algorithms for
projected clustering. Proc. of the ACM SIGMOD Conference, Philadelphia, USA (1999)
61-72

2. Bartolini, I., Ciaccia, P., Patella, M.: String matching with metric trees using an
approximate distance. Proc. of the 9th Int. Symposium on String Processing and
Information Retrieval (SPIRE), Lisbon, Portugal (2002) 271-283

3. Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B.: The R*-tree: An efficient and
robust access method for points and rectangles. Proc. of the 1990 ACM SIGMOD
International Conference on Management of Data, Atlantic City, NJ (1990) 322-331

4. Berchtold, S. Keim, D. A., Kriegel, H. P.: The X-tree: An index structure for high-
dimensional data. Proc. 22nd Int. Conference on Very Large DataBases (VLDB), Bombay,
India (1996) 28-39

5. Bozkaya, T., Ozsoyoglu, M.: Distance-based indexing for high-dimensional metric spaces.
Proc. of ACM SIGMOD, Tucson, USA (1997) 357-368

6. Brin, S.: Near neighbor search in large metric spaces. Proc. 21nd Int. Conference on Very
Large DataBases (VLDB), San Francisco, USA (1995) 574-584

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. Proc. Int. Conference of VLDB, Athens, Greece (1997) 522-525

8. Ciaccia, P., Patella, M., Zezula, P.: Processing complex similarity queries with distance-
based access methods. Proc. of the 6th EDBT, Spain (1998) 9-13

9. Ciaccia P., Patella, M.: PAC nearest neighbor queries: Approximate and controlled search
in high-dimensional and metric spaces. Proc. of the 16th Int. Conference on Data
Engineering (ICDE), California, USA (2000) 244-255

10. Ciaccia , P., Patella, M.: Searching in metric spaces with user-defined and approximate
distances. ACM Transactions on Database Systems, Vol. 27, (2002) 398- 437

11. Ciaccia,P., Nanni, A., Patella, M.: A query-sensitive cost model for similarity queries with
M-tree. Proc. of the 10th Australasian Database Conference (ADC), New Zealand, (1999)
65-76

12. Finkel, R., Bentley, J. : Quad-trees: A data structure for retrieval on composite keys.
ACTA Informatica, Vol. 4, (1974) 1-9

13. Guttman, A.: R-trees: A dynamic index structure for spatial searching. Proc. of ACM
SIGMOD, Boston, USA (1984) 47-57

14. Heisterkamp, D. R., Peng, J.: A kernel vector approximation file for nearest neighbor
search using kernel methods. Proc. of the 6th Kernel Machines Workshop at Neural
Information Processing Systems Conference, Whistler, Canada (2002) 1-12

15. McNames, J.: A fast nearest neighbor algorithm based on a principal axis search tree.
IEEE Transactions on Pattern Analysis and Intelligence, Vol. 23, (2001) 964-976

16. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: An adaptable, symmetric
multikey file structure. ACM Trans. on Database Systems, Vol. 9, (1984) 38-71

176 B. Wang and J.Q. Gan

17. Robinson, J.: The KDB-tree: A search structure for large multidimensional dynamic
indexes. Proc. of the ACM SIGMOD Int. Conference on Management of Data, Ann Arbor,
Michigan (1981) 10-18

18. Uhlmann, J. K.: Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters, Vol. 40, (1991) 175-179

19. Zezula,P., Savino, P., Amato, G., Rabitti, F.: Approximate similarity retrieval with M-
trees. VLDB Journal, Vol. 7, (1998) 275-293

A Heterogeneous Computing System for Data
Mining Workflows

Ping Luo1,2, Kevin Lü3, Qing He2, and Zhongzhi Shi1

1 Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences,

P.O. Box 2704-28, Beijing 100080 China
2 Graduate School of the Chinese Academy of Sciences, Beijing, China

3 Brunel University, Uxbridge, U.K. UB8 3PH
luop@ics.ict.ac.cn

Abstract. The computing-intensive Data Mining (DM) process calls
for the support of a Heterogeneous Computing (HC) system, which con-
sists of multiple computers with different configurations, connected by a
high-speed LAN, for increased computational power and resources. DM
process can be described as a multi-phase pipeline process, and in each
phase there could be many optional methods. This makes the workflow
of DM very complex and can be modelled only by a Directed Acyclic
Graph (DAG). An HC system needs an effective and efficient scheduling
framework, which orchestrates all the computing hardware to perform
multiple competitive DM workflows. Motivated by the need of a practi-
cal solution of the scheduling problem for the DM workflow, this paper
proposes a dynamic DAG scheduling algorithm according to the charac-
teristics of execution time estimation model for DM jobs. Based on an
approximate estimation of job execution time, this algorithm first maps
DM jobs to machines in a decentralized and diligent (defined in this
paper) manner. Then the performance of this initial mapping can be im-
proved through job migrations when necessary. The scheduling heuristic
used in it considers the factors of both the minimal completion time cri-
terion and the critical path in a DAG. We implement this system in an
established Multi-Agent System (MAS) environment, in which the reuse
of existing DM algorithms is achieved by encapsulating them into agents.
Practical classification problems are used to test and measure the system
performance. The detailed experiment procedure and result analysis are
also discussed in this paper.

Keywords: Data mining, heterogeneous computing, directed acyclic
graph, multi-agent system environment.

1 Introduction

Current Data Mining (DM) tools contain a plethora of algorithms, but lack
the guidelines to appropriately select and arrange these algorithms according
to the nature of the problem under analysis. Given a practical DM problem,

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 177–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

178 P. Luo et al.

an expedient solution is to evaluate all the possible DM schemes modeled as
a Directed Acyclic Graph (DAG), and rank them according to certain perfor-
mance metrics. This yields a Grid computing problem, which aims to construct
an Heterogeneous Computing (HC) system, supporting the executions of DM
workflows.

An HC system, which consists of multiple computers with different configura-
tions connected by a high-speed LAN, responses multiple computational requests
of DM simultaneously. This system emerges as the provider of Internet-based
data mining services, and offers an attractive option for small to medium range
organizations, which are the most constrained by the high cost of data mining
software, and consequently, stand to benefit by paying for software usage without
having to incur the costs associated with buying, training and maintenance.

This study aims to construct such an HC system and mainly focuses on the
effective and efficient scheduling framework to orchestrate all the computing
hardware in it to perform multiple competitive DM workflows. According to the
characteristics of execution time estimation model for DM jobs, we propose a
dynamic scheduling framework for DM workflows. It has the following features:

– The scheduling operation performs in a totally decentralized and diligent
manner, which avoids the computation bottleneck for centralized scheduling
and increases the system robustness.

– This scheduling framework supports simultaneous computing of multiple
competitive DAGs. The execution sequence of DM jobs considers the factors
of both the precedence constraints in a DAG and the arrival order of these
DAGs.

– This scheduling framework is tolerant to approximate time estimations of
DM jobs. The initial mapping, based on the approximate running time esti-
mations, will be improved by job migrations.

The arrangement of the rest of this paper is as follows. Section 2 describes the DM
workflow for classification as a running example and formalizes the scheduling
problem. In Section 3 we propose the dynamic scheduling algorithm for com-
petitive DM workflows. Section 4 evaluates the performance of the data mining
HC system with the presented scheduling algorithm by real-world datasets. The
related work and conclusions will be given in Section 5. The discussions about
the execution time estimation model for DM jobs, the implementation issues
of this DM HC system in a Multi-Agent System (MAS) environment, and the
details about the approximate execution time estimation method used in the ex-
periment are omitted due to the space limitation. The full version of this paper
can be downloaded from [1].

2 Data Mining Workflow for Heterogeneous Computing

2.1 Data Mining Workflow for Classification: A Running Example

The DM workflow for classification in Figure 1, used as a running example in
this paper, aims to find the optimal classification pattern for the input dataset.

A Heterogeneous Computing System for Data Mining Workflows 179

Data Mining Process
T

ra
in

in
g

S
et

 a
nd

 E
va

lu
at

io
n

Se
t

T
ra

in
in

g
S

et
s

A
nd

 E
va

lu
at

io
n

S
et

s
A

ft
er

Pr

ep
ro

ce
ss

in
g

M
od

el
s

A
nd

 P
re

di
ct

in
g

R
es

ul
ts

E
va

lu
at

io
n

M
ea

su
re

m
en

t

Normalization
Phase

Discretization
Phase

Attribute
Reduct
Phase

Training&Testing
Phase

Evaluation
Phase

Preprocessing Phase

step n1

step 1

step n2

step 1 step 1

step n3

step 1

step n4

Fig. 1. Data mining process for classification

It is a complex, highly dynamic, and resource-intensive process, which consists
of several different phases. In each phase, many different algorithms are available
with different parameters. The workflow in Figure 1 consists of preprocessing,
training&testing and evaluation phase. The preprocessing phase can be sub-
divided into three sequential sub-phases of normalization, discretization, and
attribute reduction. The mining steps within a phase are optional operations,
which would output different results. For convenience and clarity, we give the
following definitions.

Definition 1 (DM Step). A DM step corresponds to a particular algorithm
to be executed, provided a dataset and a certain set of input parameters for it.
Each DM step Λ is described as a quadruple:

Λ = (A, F, D, P)

where A is the data mining algorithm, F is the data mining phase that con-
tains the algorithm A, D is the input dataset and P is the vector of algorithm
parameters.

Definition 2 (DM Path). Let Λ1=(A1, F1, D1, P1), · · · , Λk=(Ak, Fk, Dk, Pk),
DM Path is Λ = (Λ1, · · · , Λk), where Fi(1 ≤ i ≤ k) is the i-th phase of the whole
k-phase data mining process.

In Figure 1, a DM path can be easily obtained after we select a DM step from
each mining phase. If there are n1, n2, n3, n4 different DM steps in each of the four
phases of normalization, discretization, attribute reduction and training&testing
respectively, the number of all possible DM paths would be n1 × n2 × n3 × n4
according to the Multiply Theorem. Along a DM path, a mining step transfers its

180 P. Luo et al.

output to the following step until the path terminates and the final result would
be obtained. Then, using the training and validation datasets as an input of the
DM path, a measurement will be obtained for this path according to certain
evaluation criterion. For classification problems, the evaluation measurements
could be accuracy, weighted accuracy and AUC (Area Under Curve), etc. After
exhaustively evaluating all the DM paths, ranks of all resultant patterns for all
DM paths are generated.

2.2 Workflow Model of Data Mining

We model the DM workflow as a weighted DAG, G = G(V, E), where V =
{v1, · · · , vn} is a set of weighted nodes and E is a set of weighted directed
edges, representing data dependencies and communications between nodes. A
node in the DAG represents a job (referred to as the corresponding DM step),
which must be executed without preemption on a host. Consider the HC system
consisting of l machines m1, · · · , ml, the weight vector of a node v is referred to as
the computation cost vector Δ(v) = {Δ(v, m1), · · · , Δ(v, ml)}, where Δ(v, mi)
represents its execution time on a machine mi. eij = (vi, vj) ∈ E indicates data
transportation from job vi to vj , and |eij | represents communication cost between
these two jobs if they are not executed on the same machine. The precedence
constraints of a DAG require that a node should not start executing before it
gathers all the data from its predecessors. The node without predecessors is
called the entry of G. The node without successors is called the end of G. The
critical path of G is the longest path (there can be more than one longest path)
from an entry to an end of G. The weight of this path is the sum of the weights
of the nodes and edges along this path. In the following, a task refers to a DAG
and a job refers to a node in a DAG.

n n n n

n n

n

n n n n

n n

n

n

Fig. 2. The DAG of classification workflow

Figure 2 is the corresponding un-weighted DAG of the DM process in Figure 1.
The direction of all the edges in Figure 2 is from the node in the upper layer to the
one in the lower layer. If we feed the dataset to the uppermost node in Figure 2,
after the whole computation the lowermost node in this figure will output the rank
of all patterns for all DM paths, indicating the optimal classification pattern.

A Heterogeneous Computing System for Data Mining Workflows 181

3 Dynamic Scheduling for Competitive DAGs in an HC
System

We consider the following 4 issues in developing the scheduling algorithm within
an HC system.

– The time estimation model for DM jobs. It is assumed to be provided in
advance as a function with three parameters: 1) DM algorithm, 2) feature
vector of input data and 3) user-specified algorithm attributes. Thus, the
execution time of the node is not known a priori until its input datasets are
all gathered. When a DAG is being processed, only if all the predecessors of a
node are finished, the estimation model then can use the gathered immediate
results to predict the execution time of this node. Therefore, the mapping
process must be performed during the job executions and only dynamic
scheduling can be adopted under this situation.

– Because it is hard to induce an accurate execution time estimation model of
DM jobs, this scheduling algorithm should be tolerant to approximate time
estimations of DM jobs.

– To avoid the the computation bottleneck for centralized scheduling and in-
crease the system robustness, this algorithm should be totally decentralized.

– When multiple competitive DAGs arrive at an HC system, the execution
sequence of DM jobs should consider the factors of both the precedence
constraints in a DAG and the arrival order of these DAGs.

Therefore, the scheduling, in fact, can be described as a problem of dynamic sched-
uling for competitive DAGs. The scheduling objective is to minimize the average
makespan (the time when the last job of a DAG finishes) of competitive DAGs.
This problem has been proved, in general, to be NP-complete [2], thus requiring
the development of heuristic techniques [3, 4] for practical usage. In this paper we
propose a scheduling framework, which satisfies the aforementioned issues.

It should be noted that the communication cost between computers within an
HC system is ignored due to the following reasons: 1) the network bandwidth
within an HC system is high speed and 2) even if the volume of the transferred
data is large, its corresponding processing time on a computer is much longer
than its communication time.

3.1 Decentralized and Diligent Job Mapping

We propose a decentralized and diligent scheduling algorithm, compared with the
algorithm in [3], which performs in a centralized and lazy manner. A scheduler
resides on each machine. When a job Λ is finished, the scheduler on the same
machine will find all the ready jobs (A job is ready when all the input data
from its predecessors are available) in the successive nodes of Λ, and then map
them to suitable machines immediately. The heuristic min-min [5] for mapping
a class of independent jobs can be used to map this group of ready jobs. We
call this scheduling paradigm diligent in the sense that the mapping decision is
made as soon as a job is ready. The pseudo-code for scheduling algorithm on
each machine of an HC system is presented in Algorithm 1.

182 P. Luo et al.

Algorithm 1. Scheduling Algorithm on Each Machine of an HC system
1: if a job Λ finished on the same machine then
2: S = {Λ

′ |Λ′
is the successor of Λ}

3: S
′
= {Λ

′′ |Λ′′
is ready and Λ

′′ ∈ S}
4: while S

′ �= Φ do
5: according to min-min, find the best pair of job Λ

′′ ∈ S
′
and machine m, based

on current job pending queues of each machine
6: map job Λ

′′
to machine m

7: update the job pending queue on machine m
8: S

′
= S

′ − {Λ
′′}

9: end while
10: end if

3.2 Job Execution Control with Priority

Usually, the pending job queue E on each machine, which stores all the waiting
jobs for executing, is processed in a FIFO manner. To consider the critical path
factor of a DAG, the jobs from a DAG will be executed in descending order of
their estimation times. Thus, Algorithm 2 for job execution control is proposed,
which supports the execution of multiple DAGs. In this algorithm when a new
job arrives at a machine and suppose at the same time the machine is executing
another job, it will be inserted into the job queue E at a suitable position, to
keep that the jobs from the same DAG are arranged in descending order of their
estimation times while the positions of the jobs from the other DAGs in the
queue E will not be changed. Then, the jobs in the pending job queue E are
processed in a FIFO manner.

Altogether Algorithms 1 and 2 form the whole heuristic scheme, which con-
sider both the minimal completion time criterion and the critical path of a DAG.
These two factors are integrated and implemented in job mapping process and
job execution control, respectively.

3.3 Job Migration After Initial Mapping

The system efficiency of an HC system is defined in (1)

η =
tcomputation

ttotal
(1)

where tcomputation is the system CPU time for computation and ttotal is the total
system CPU time. Then the system waste μ is defined in (2)

μ =
tidle

ttotal
(2)

where tidle is the system blocking time and ttotal is the same as the one in (1). It is
clear that η + μ = 1 because tcomputation + tidle = ttotal. Furthermore, the system
waste μ can be divided into two parts: the intrinsic system waste μi and the system
waste μs caused by approximate execution time estimations of DM jobs.

A Heterogeneous Computing System for Data Mining Workflows 183

Algorithm 2. Algorithm for Job Execution Control with Priority on machine
m
1: loop
2: E is the job queue on machine m
3: if a new job Λ arrives at machine m and the machine is executing one another

job then
4: if |E|==1 then
5: append Λ to the end of E
6: else
7: newPosition = |E| + 1
8: for i = |E| to 2 do
9: Λ

′
is the i-th element of E

10: if Λ and Λ
′

are from the same DAG then
11: if Δ(Λ

′
, m) < Δ(Λ, m) then

12: move Λ
′

to the newPosition-th position of E
13: newPosition = i
14: else
15: break
16: end if
17: end if
18: end for
19: move Λ to the newPosition-th position of E
20: end if
21: end if
22: if a job-finished notification received then
23: remove the front job of E
24: if E �= Φ then
25: execute the new front job of E
26: end if
27: end if
28: end loop

Consider the HC system consisting of l machines m1, · · · , ml and the job pend-
ing queue (including the current executing job) on each machine is E1, · · · , El, re-
spectively. |Ei| (0 � i � k) is the number of jobs in Ei. μi counts at the time that
∃Ei such that |Ei| = 0 and �Ej such that |Ej | > 1. This kind of system waste is
intrinsic, because a job is the computation atom, representing the minimal granu-
larity for parallelization, and can be only executed on a single machine. The other
kind of system waste μs increases while ∃Ei, Ej such that |Ei| = 0 and |Ej | > 1.
It is caused by the mapping decision based on inaccurate execution time estima-
tions of DM jobs. μi is intrinsic, so it is unavoidable. And μs is seemingly also un-
avoidable because the task for accurate time estimation of DM jobs is so difficult.
However, the technique of job migration after initial mapping can decrease μs. The
key point of the job migration is that when |Ei| = 0 and |Ej | > 1 a suitable job Λ
in Ej would migrate from mj to mi and begins executing immediately on mi. The
satisfying condition for migration is that tcompletion(Λ, mj) > Δ(Λ, mi), which

184 P. Luo et al.

means that the completion time of Λ on mi is early than that on mj . Conformed
to the job execution priority in 3.2, the job in the front of the job pending queue is
firstly selected to check the migration condition. Thus, a system monitor is created
for the whole HC system, checks the job pending queue on each machine every Tm

time units and is responsible for job migrations. The pseudo-code for this system
monitor is in Algorithm 3.

Algorithm 3. Algorithm for Job Migration after Initial Mapping
1: while (t=the current system time) mod Tm=0 do
2: receive the copy of job pending queues on each machine E = {E1, · · · , El}
3: Eidle = {Ei|Ei ∈ E and |Ei| = 0} {In Eidle, Ei is arranged in decrease order of

the computing speed of the corresponding host, which Ei is from}
4: Ebusy = {Ei|Ei ∈ E and |Ei| > 1} {In Ebusy , Ei is arranged randomly}
5: if |Eidle| > 0 and |Ebusy | > 0 then
6: E(i) is the i-th element of E
7: for i = 1 to |Ebusy | do
8: pop the front of Ebusy(i) {the front is running on machine i}
9: end for

10: q =
∑

Ei∈Ebusy
(|Ei| − 1)

11: Ecandidate=null {Ecandidate is the queue of candidate jobs for migration}
12: while |Ecandidate| < q do
13: for i = 1 to |Ebusy | do
14: if Ebusy(i) is not empty then
15: Λ =pop the front of Ebusy(i)
16: add Λ to Ecandidate

17: end if
18: end for
19: end while
20: while |Ecandidate| > 0 and |Eidle| > 0 do
21: Λ =pop the front of Ecandidate

22: m is the machine which owns Λ
23: m

′
is the machine which owns Eidle(0)

24: if tcompletion(Λ, m) > Δ(Λ, m
′
) then

25: Λ migrates from m to m
′

26: pop the front of Eidle

27: end if
28: end while
29: end if
30: end while

3.4 The Overall Scheduling Framework

In summary, the scheduling framework consists of three parts: 1) a scheduler on
each machine, 2) a job execution controller on each machine, and 3) a system
monitor for job migration. The job mapping process starts immediately after a
job on the same machine is finished. All the ready jobs in the successors of the

A Heterogeneous Computing System for Data Mining Workflows 185

finished job are mapped, by the scheduler on the same machine, to the machines
according to Algorithm 1. According to Algorithm 2 the job execution controller
is responsible for inserting a mapped job into a suitable position and executing
them one after another. The system monitor migrates a job according to Al-
gorithm 3. Therefore, this scheduling framework first maps jobs to machines in
a decentralized and diligent manner, based on a approximate estimation of job
execution time. Then the performance of this initial mapping can be improved
through the use of job migration. The scheduling heuristic considers both the
minimal completion time criterion and the critical path in a DAG. These two as-
pects are integrated and implemented in job mapping process and job execution
control process, respectively.

4 Experiment Procedure and Results

Based an established MAS environment named MAGE [6], we have developed a
data mining HC system with the newly proposed scheduling framework. In our
experiment 9 machines with different configurations are used to form this HC
system. The main configurations of these machines are listed in Table 1. The
performance metrics measured in the experiments include task response-time,
system throughput and system efficiency defined in the following. To measure
these metrics, a DM task for classification denoted by G∗, is constructed for the
whole experiment process. The corresponding DAG of this task, which contains
16 jobs, is isomorphic with the DAG in Figure 2. After removing the end node of
the DAG it becomes a tree, which indicates that all the successors of an internal
node in the tree can be mapped once its execution is completed. The input data
for this DAG is from a practical classification problem, well logging analysis to
identify the pay zones of gas or oil in the reservoir formations. It contains 2000
labeled examples with 10 numeric condition attributes.

Table 1. Machine Configuration List

Machine Type Index CPU Main Memory Machine Amount
1 3 GHz 512 M 5
2 2.8 GHz 512 M 1
3 2.4 GHz 1024 M 1
4 2.2 GHz 512 M 1
5 731 MHz 448 M 1

The experiments are performed in two parts. In the first part, the 4 ma-
chines from Machine Type 1 are used to form a homogeneous system, in order
to measure task response time and system throughput versus the number of
joining machines with the same configuration. Let the arrival time of the task
G be a(G), the completion time of G be c(G), then the response-time of G is
r(G) = c(G) − a(G). The system throughput is defined by the number of G∗s,
which are completed by the system in a fixed time.

186 P. Luo et al.

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

re
sp

on
se

 ti
m

e
(s

ec
)

number of machines

without job migration
with job migration

(a) response time versus homoge-
neous machines

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5

th
ro

ug
hp

ut
 (

ta
sk

s/
10

0s
ec

)

number of machines

without job migration
with job migration

(b) throughput versus homogeneous
machines

Fig. 3. The experimental results for homogeneous computing

The second part of the experiments is to evaluate the scheduling performance
in a heterogeneous system, which contains all the 9 machines listed in Table 1. In
these experiments exponential distribution is used to generate the task sequence,
including 100 G∗s. These tasks are assigned under two average task arrival in-
tervals, tl and th, where tl = 25 seconds, th = 50 seconds. The task arrival
time is generated, which satisfies |ta−t|

t < 0.06, where ta is the actual average
inter-arrival time of the task sequence and t is the expected inter-arrival time.
We record the average response time of the tasks in the sequence and compute
the weighted system efficiency in (3), which considers the machine heterogeneity
in an HC system.

ηweighted =
tcomputation

ttotal
=

∑l
i=1

tcomputation(i)
ρi∑l

i=1
ttotal(i)

ρi

(3)

where tcomputation(i) is the system CPU time for the computation on machine
i, ttotal(i) is the total system CPU time on machine i, l is the number of ma-
chines in our system, and ρi is the performance coefficient for machine i. All the
above experiments are performed under two situations, with and without job
migrations after initial mapping, and repeated five times.

Figure 3(a) and Figure 3(b) show the results from the first part of experiments.
Figure 3(a) illustrates that the response time of a single task G∗ decreases along
with the increase of the number of machines. However, the response time de-
creases in a non-linear manner and eventually reaches at a minimal level, because
in our application the minimal computing granularity is a job, which could not
be broken down any further for parallelization. In theory, the minimum response
time of a DAG is the weight sum of the critical path in the DAG. Figure 3(b)
shows that the throughput of the HC system increases close to linear along with
the increase of the number of joining machines. These two figures also show that
the use of job migration could improve the system performance in terms of task
response time and system throughput.

The results from the second part of the experiments can be seen in Figure 4(a)
and Figure 4(b). In Figure 4(a) it can be found that through the use of job

A Heterogeneous Computing System for Data Mining Workflows 187

 0

 200

 400

 600

 800

 1000

 1200

5025

re
sp

on
se

 ti
m

e
(s

ec
)

inter-arrival time (sec)

with job migration
without job migration

(a) average response time of the tasks
in task sequence

 0

 20

 40

 60

 80

 100

5025

w
ei

gh
te

d
ef

fic
ie

nc
y

(%
)

inter-arrival time (sec)

with job migration
without job migration

(b) weighted efficiency when execut-
ing the tasks in task sequence

Fig. 4. The experimental results for heterogeneous computing

migration technique the average response times of the 100 tasks decrease 5.58%
and 13.21% for the cases of 25-second inter-arrival and 50-second inter-arrival,
respectively. The weighted efficiency of the HC system is also improved through
job migration, as shown in Figure 4(b).

5 Related Work and Conclusions

The issues of building a computational Grid for Data Mining have been recently
addressed by a number of researchers. WEKA4WS [7] adapts the Weka toolkit
to a Grid environment and exposes all the 78 algorithms as WSRF-compliant
Web Services. FAEHIM (Federated Analysis Environment for Heterogeneous
Intelligent Mining) [8] is Web Services based on a toolkit of DM and mainly
focuses on the composition of existing DM Web Services by Triana problem
solving environment [9]. The Knowledge Grid [10, 11] is a reference software
architecture for geographically distributed knowledge discovery systems. It is
built on top of a computational Grid of Globus and uses basic Grid services
to implement the DM services on connected computers. A visual environment
for Grid application (VEGA) is developed in this system, supporting visual DM
plan generation and automatic DM plan execution.

To make good use of the computing hardware in heterogeneous systems for
DM workflow a scheduling framework is urgently needed. Although this comput-
ing paradigm can be achieved by exposing all the DM algorithms as Web Ser-
vices on every host in this system or by dynamic Web Service deployment, how-
ever, the scheduling framework for DM DAG applications, in general, has drawn
a very little attention except for the scheduling heuristics mentioned in [11].
Paper [11] also emphasizes the importance of scheduling algorithm in Knowl-
edge Grid and uses the concept of abstract hosts to represent any computing
host.

To the best of our knowledge, the study in this paper is the first attempt in
developing a data mining HC system with an efficient and effective scheduling
framework. It is formalized as a problem of dynamic scheduling for competi-
tive DM DAGs in a heterogeneous computing system. According to the char-

188 P. Luo et al.

acteristics of execution time estimation model of DM jobs, a new scheduling
framework is presented with three features: totally decentralized, the hybrid
heuristic scheme, and the use of job migration after initial mapping. The DM
computing platform with this scheduling framework has been implemented in a
multi-agent system environment. Its performance has also been tested by real-
world datasets, which is demonstrated by our experiments. It should also be
noted that the scheduling framework in this paper is a generic dynamic schedul-
ing algorithm for DAGs, and thus has wide applicability in other fields besides
data mining.

Acknowledgements

Our work is supported by the National Science Foundation of China
(No.60435010), the national 863 Project (No.2003AA115220), the national 973
Project (No.2003CB317004) and the Nature Science Foundation of Beijing
(No.4052025). Kevin Lü gratefully acknowledges the support of K.C.Wong Edu-
cation Foundation, Hong Kong.

References

1. Ping Luo, Kevin Lü, Qing He, and Zhongzhi Shi. A heterogeneous computing
system for data mining workflows. Technical report, Institute of Computing Tech-
nology, Chinese Academy of Sciences, 2006. http://www.intsci.ac.cn/users/luop/.

2. D. Fernandez-Baca. Allocating modules to processors in a distributed system.
IEEE Transaction on Software Engineering, 15(11):1427–1436, 1989.

3. Michael Iverson and Fusun Ozguner. Dynamic, competitive scheduling of multiple
dags in a distributed heterogeneous environment. In Proceedings of the Eighth
Heterogeneous Computing Workshop, 1999.

4. Rizos Sakellariou and Henan Zhao. A hybrid heuristic for dag scheduling on hetero-
geneous systems. In Poceedings of the 13th Heterogeneous Computing Workshop,
2004.

5. Tracy D. Braun, Debra Hensgen, Richard F. Freund, Howard Jay Siegel, Noah
Beck, Lasislau L. Boloni, Muthucumara Maheswaran, Albert I. Reuther, James P.
Robertson, Mitchell D. Theys, and Bin Yao. A comparison of eleven static heuris-
tics for mapping a class of independent tasks onto heterogeneous distributed com-
puting systems. Journal of Parallel and Distributed Computing, 61(6):810–837,
2001.

6. Zhongzhi Shi, Haijun Zhang, Yong Cheng, Yuncheng Jiang, Qiujian Sheng, and
Zhikung Zhao. Mage: An agent-oriented programming environment. In Proceedings
of IEEE International Conference on Cognitive Informatics, pages 250–257, 2004.

7. D. Talia, P. Trunfio, and O. Verta. Weka4ws: a wsrf-enabled weka toolkit for
distributed data mining on grids. In Proceedings of the 9th European Conference
on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal,
2005.

8. Ali Shaikh Ali, Omer F. Rana, and Ian J. Taylor. Web services composition for
distributed data mining. In Proceedings of International Conference on Parallel
Processing Workshops, pages 11–18, 2005.

A Heterogeneous Computing System for Data Mining Workflows 189

9. The Triana Problem Solving Environment. http://www.trianacode.org.
10. M. Cannataro and D. Talia. Knowledge grid an architecture for distributed knowl-

edge discovery. Communication of the ACM, 46(1), 2003.
11. M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, and P. Trunfio. Distributed

data mining on grids: Services, tools, and applications. IEEE Transactions on
Systems, Man and Cybernetics, 34(6):2451– 2465, 2004.

An Efficient System for Detecting Outliers
from Financial Time Series

Carson Kai-Sang Leung, Ruppa K. Thulasiram, and Dmitri A. Bondarenko

The University of Manitoba, Winnipeg, MB, Canada
{kleung, tulsi, umbonda1}@cs.umanitoba.ca

Abstract. In this paper, we develop an efficient system to detect out-
liers from real-life financial time series comprising of security prices. Our
system consists of a data mining algorithm and a statistical algorithm.
When applying each of these two algorithms individually, we observed its
strengths and weaknesses. To overcome the weaknesses of the two algo-
rithms, we combine the algorithms together. By so doing, we efficiently
detect outliers from the financial time series. Moreover, the resulting
(processed) datasets can then be used as input for some financial models
used in forecasting future security prices or in predicting future mar-
ket behaviour. This shows an alternative role of our outlier detection
system—serving as a pre-processing step for other financial models.

Keywords: Databases, data mining, computational finance.

1 Introduction

Data mining refers to the search for implicit, previously unknown, and poten-
tially useful information or patterns that might be embedded in data. Many
of the existing studies focused on finding patterns that apply to the majority
of items in the dataset [1, 2, 8, 10, 11, 14]. However, patterns that apply to the
minority of items can also be interesting and important. For example, a rare
event could be an indication of some unusual, suspicious, or criminal activities.
Hence, several studies focused on outlier detection [6, 7, 9, 13], which aimed to
analyse and find these exceptional activities from datasets like the performance
statistics of professional athletes, workers’ compensation data, and medical test
data. Moreover, outlier detection could be used in various application areas such
as e-commerce and finance. In this paper, we show how outlier detection can be
applicable to financial data in an emerging cross-disciplinary area of research,
known as computational finance, that addresses problems in finance or busi-
ness (e.g., option pricing, portfolio management) by using advanced scientific
computing or data mining techniques. In this area, several models have been de-
veloped to forecast future security prices and to predict future market behaviour.
These models usually rely on standardised historical data, and are sensitive to
data variations. Any unusual noise (i.e., outliers / data polluters) present in
the data may lead to incorrect forecast or prediction. To ensure good predic-
tion of price behaviour, many models require historical price data over a long

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 190–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Efficient System for Detecting Outliers from Financial Time Series 191

(a) Missing data (b) Short-lived sudden (c) Long-lived sudden
price changes price changes

Fig. 1. Data polluters

period of time (e.g., ≥ 10 years) for thousands of securities. Similarly, to en-
sure accuracy in applications like option pricing and risk management, several
models require the input price series to be free from noise. Although the price
series are normally obtained from reliable sources (e.g., Bloomberg), the series
might still contain some data polluters (as shown in Fig. 1) such as: (a) missing
data1, (b) short-lived sudden price changes2, and (c) long-lived sudden price
changes3.

Outliers can significantly influence financial model outputs (e.g., the forecast
or prediction). Hence, to achieve better forecast or prediction, we need a system
for detecting and eliminating outliers as well as pre-processing data. Algorithms
in such a system should: (i) run efficiently on large datasets; (ii) detect both
missing data and short-lived sudden price changes as outliers, and eliminate
them; (iii) accommodate and ignore long-lived sudden price changes (as they
should not be considered as outlier); and (iv) allow user input and control.

Over the past few years, some studies [12, 15, 16] in finance have suggested
that noise/outlier detection from time series forms a fundamental problem. They
often require data for their financial models to be free from noise. However, these
studies mainly dealt with portfolio selection but not focused on outlier detec-
tion; they did not mention how to remove noise either. To detect outliers, other
related works have been proposed. Some of them used statistical techniques
like principal component analysis [5, 15] and independence component analy-
sis [3], while some others used data mining techniques like clustering4 [4] and
anomaly detection [6, 7, 9]. However, most of these works did not use both data
mining and statistical techniques. In contrast, we apply both techniques in this
paper.

Our key contribution of this paper is the development of an efficient system
for detecting outliers from financial time series. More specifically, our technical
contributions of this paper are as follows:

1 They could be caused by market closure in observation of a bank holiday, the stock
not being traded on that day, or incomplete information at the sources.

2 They could be caused by a price recording error or by market over-reaction.
3 They are usually caused by a stock split—a situation when the stock price moves far

up (under the normal condition), the issuing company splits the stock into two (or
more) so as to keep up with the market demand while at the same time making it
affordable for common investors by reducing the original price to half (or lesser).

4 An item in the data is an outlier if it does not belong to any clusters.

192 C.K.-S. Leung, R.K. Thulasiram, and D.A. Bondarenko

– We develop a data mining algorithm, which uses a distance-based outlier
detection technique to detect outliers from time series of security prices.
The algorithm checks the values of security prices within certain distance so
as to verify if the current price is an outlier.

– We also develop a statistical algorithm, which uses normal distribution prop-
erties of data to detect outliers. Moving averages are used in this algorithm
to render the algorithm efficient.

– Due to their varying nature and properties, the above two algorithms may
detect different outliers from the same time series. However, they are com-
plementary. So, by putting them together into our outlier detection system,
most (if not all) outliers can be effectively detected and removed. The re-
sulting time series (i.e., the processed financial data) can then be used as
input to existing financial models (e.g., neural network architecture) for a
more accurate forecast of future security prices, a more accurate predic-
tion of future market behaviour, and more accurate computation of option
prices. This demonstrates an alternative role of outlier detection technique
(as a pre-processor than as a stand-alone tool for obtaining insight into data
distribution).

This paper is organised as follows. The next section describes our outlier de-
tection system for financial applications. Section 3 shows experimental results.
Finally, conclusions are presented in Section 4.

2 Our Proposed Outlier Detection System

In this section, we start describing our proposed outlier detection system, which
consists of two phases. In Phase I, we identify the missing prices in a given
dataset (i.e., financial time series), and substitute them with a new price. The
new price is calculated in such a way that it ensures consistency with its neigh-
bouring prices. This is done to avoid the introduction/generation of “artificial”
outliers (noise). In Phase II, we run both a data mining algorithm and a sta-
tistical algorithm to detect those short-lived sudden price changes (i.e., outliers)
based on data mining (or more specifically, distance-based data mining) and sta-
tistical approaches, respectively. We note that the execution of the data mining
algorithm does not depend on the result of the statistical algorithm, and vice
versa. Hence, by combining these two underlying algorithms, we nullify their
individual weaknesses and speed up the outlier detection process.

2.1 Phase I: Identifying Missing Data

The goal of Phase I of our system is to identify gaps (i.e., missing data/prices,
such as those depicted in Fig. 1(a), in the financial time series) and to fill them
with new prices. With this respect, we develop a gap-identification algorithm
based on the following realistic assumptions: There are five business days every
week, and data for each business day are available (regardless whether it is a
holiday or not). The algorithm, which has a linear complexity with a single scan

An Efficient System for Detecting Outliers from Financial Time Series 193

Fig. 2. The search space for the DetectOutliersDM algorithm

of the dataset, runs as follows. It scans the whole dataset once, and divides price
items on a weekly basis. If any item for a certain weekday is missing, it is sub-
stituted with an item generated by a function, called NewPrice, which is used
to obtain (i) an approximate value for the missing item or (ii) a new value of an
item that is considered an outlier. The complexity of function NewPrice is linear
with respect to the size of interval used for calculating the average. Here, we
assume that items are normally distributed. Prices that are close (based on the
date) are expected to influence each other to a greater extent than those prices
that are far apart. So, in abstract terms, the new price can be computed based
on the following equation:

NewPrice = [max (
∑n

i=1 It−iwui, 0) /2n] + [max (
∑m

i=1 It+iwdi, 0) /2m],
where It is an item in the time series, wui are the weights of the preceding (up-
stream) items, and wdi are the weights of the following (downstream) items; m
and n are numbers of neighbouring data items in the downstream and upstream
directions, respectively.

2.2 Phase II: Detecting Short-Lived Sudden Price Changes

Once the missing prices are identified, we can apply Phase II of our system
to detect outlying prices from the financial time series. For this phase, we de-
velop a data mining algorithm (DetectOutliersDM) and a statistical algorithm
(DetectOutliersStat), and then effectively combine them into our system.

The Data Mining Algorithm. An algorithm in Phase II is a distance-based
data mining algorithm called DetectOutliersDM. This algorithm is based on
the FindAllOutsM algorithm [7], which uses a distance-based notion of outliers
to detect outlying items. According to this notion, an item It in a dataset is an
outlier if most items in the dataset lie at a distance greater than a user-defined
threshold D from It.

The key idea of our DetectOutliersDM algorithm can be described as follows.
The financial time series can be represented in the two-dimensional space with
prices along the y-direction and time along the x-direction. Similarly, we divide
the space between the maximum and minimum item values (i.e., price values) of
the dataset into K equal intervals along the y-axis, where K is a user-specified
constant and the size of each interval is (MaxPrice − MinPrice)/K. The space
between the first and the last dates is divided into L intervals along the x-axis.
We then map these L time intervals into the K price intervals so that each cell
is a square and uses the same units of measurement. This scenario is depicted

194 C.K.-S. Leung, R.K. Thulasiram, and D.A. Bondarenko

DetectOutliersStat
(1) Calculate the sum and the sum of squares of the first i items that follow the first item in the

set (where i is a constant or a user-defined value).
(2) For each item in the dataset:

(a) Calculate the mean and the standard deviation for the current item based on the sum and
the sum of squares. There are two means and two standard deviations for each item (based
on items in the upstream and downstream directions).

(b) Calculate item rankings, and compare them to some predefined threshold (which is either
a constant or a user-defined value). An item is an outlier if both rankings are greater
than the threshold. If the current item is marked as an outlier, replace it with a new item
generated by NewPrice (as described in Section 2.1).

(c) Update the sum and the sum of squares for the next item in the set.

Fig. 3. A Skeleton for the DetectOutliersStat algorithm

in Fig. 2. The distance that defines the neighbourhood for each item is then
equal to:

D = (MaxPrice − MinPrice)/K × 2
√

2.

We use the Euclidean distance for calculation. With this setting, a price item is
considered an outlier if it has insufficient number of neighbours within distance D
(i.e., within a cell with low item density). For the financial time series (with each
price quantised into a two-dimensional space), the complexity of this cell-based
algorithm depends on the number of price items N in the dataset and the number
of cells in the space. More precisely, the algorithm has a linear complexity with
respect to N .

As a preview, we will show in Section 3 that our distance-based data min-
ing algorithm is effective in detecting outliers (especially in detecting those
short-lived sudden price changes that are lying away from the normal price
range).

The Statistical Algorithm. The second algorithm in Phase II is a statisti-
cal based algorithm called DetectOutliersStat. Here, we make an assumption
that items are normally distributed. Although it might not be true for the whole
dataset, this assumption usually holds for many short continuous sub-groups in
the dataset. The DetectOutliersStat algorithm is based on a statistical obser-
vation that most items are located within three standard deviations from the
mean (or average). Thus, if an item is 10 standard deviations away from the
mean, it is very likely to be an outlier. The distance that measured in standard
deviations from the mean is defined as item ranking. Each item It has two such
rankings: One ranking is based on the items that precede It (i.e., upstream)
and another ranking is based on the items that follow It (i.e., downstream). In
order to be considered an outlier, an item It needs to have both rankings greater
than some specified thresholds. To improve efficiency, we avoid calculating the
mean for each item from scratch; instead, we use the moving averages. Since the
algorithm works in a sequential manner, the averages (means) for the current
price item can be calculated by adjusting the averages for the upstream items.
The complexity of this algorithm is linear, and it requires only a single scan of
the entire dataset. The items that are marked as outliers are replaced with new
items generated by the NewPrice function described in Section 2.1. Fig. 3 shows
a skeleton of this statistical algorithm.

An Efficient System for Detecting Outliers from Financial Time Series 195

(a) IBM datasets with outliers (b) Results from DetectOutliersDM

(c) Results from DetectOutliersStat (d) Results from combined algorithm

Fig. 4. Experimental results on the IBM Corporation dataset

3 Experimental Results

We ran our proposed system over sets of real (historical) security price time
series, which were originated from www.yahoo.com. To test the performance and
effectiveness of our system, we added some “artificial” outliers to the time series.
Regarding our system, the interface was built using Microsoft Excel with Visual
Basic for Applications, and the underlying mining engine was implemented using
Visual C++. As security datasets are processed one at a time, we assume that
a dataset for a particular security will fit entirely into memory. This realistic
assumption holds because in an extreme case, there are only about 26,000 prices
for each security if day-to-day historical data are available for the past 100 years.

In the experiments, we tested our proposed system using various datasets (e.g.,
financial time series comprising of security prices for IBM Corporation, Boeing,
Microsoft Corporation, etc.). The results were consistent. So, for lack of space,
we only show the experimental results on the time series for IBM Corporation for
the period 1962–2004. For this dataset (Fig. 4(a)), there are several important
items that are worth special mentioning: A is a single outlier that is outside of
the normal range of that interval in the time series. B is not an outlier; it is
just a point where the stock price suddenly drops (due to some natural factors
such as a change in economic situation or a stock split). C is a double-itemed
outlier (where the two price items are very close to each other), which does not
fall outside of the normal range of the dataset. D (which occurs not too far after
the long-lived sudden price change) and E are single outliers that are within the
normal range of the time series.

We first applied DetectOutliersDM to the IBM time series. Results in
Fig. 4(b) show that our algorithm was able to successfully detect and remove
outliers A and C, while leaving non-outlier B intact. An advantage of this algo-
rithm is its effective removal of double-itemed (or multi-itemed) outliers. This
stems from the fact that the algorithm relies on the number of neighbours of a
given data item to determine an outlier. Having only a small number of neigh-

196 C.K.-S. Leung, R.K. Thulasiram, and D.A. Bondarenko

bours would be a good indication of an outlier. However, the algorithm failed
to identify outliers D and E, because these two outliers were within the normal
range of the dataset and they had a large number of items in their surrounding
neighbourhood; hence, the algorithm did not see them as outliers.

We then applied DetectOutliersStat, which calculates moving averages for
each item. As shown in Fig. 4(c), our algorithm successfully detected and re-
moved outliers A, D and E, while leaving non-outlier B intact. However, the
algorithm failed to identify double-itemed outlier C. It is because this algorithm
used statistical methods based on averages and standard deviations. When there
were several outliers that are close to each other, they would influence each
other’s averages and standard deviation. This would lead to a lower ranking of
the individual items in the time series, and hence failed to correctly identify
outliers.

To summarise, the above experimental results show the strengths and weak-
nesses of DetectOutliersDM and DetectOutliersStat. Due to their varying nature
and properties, the algorithms may not necessarily detect and remove the same
outliers from the financial time series. Instead, they may detect different outliers
caused by short-lived sudden price changes. For example, both algorithms were
able to detect outlier A (a single outlier that is outside of the normal range)
and leave non-outlier B intact. However, outlier C (a multi-itemed outlier) was
only detected by DetectOutliersDM; outliers D and E (outliers that are within
normal range) were only detected by DetectOutliersStat.

Observing the strengths and weaknesses of these two algorithms, we finally
put the two together into our proposed system. Results in Fig. 4(d) indicate
that our system comprising of both algorithms successfully detected outliers
A, C, D and E while left non-outlier B intact. This shows the effectiveness of
our system.

Next, let us then turn our attention to the efficiency issue. Experiments were
conducted using the above IBM dataset on a single processor machine with
512 MB of operating memory. Results show that the execution times for both
algorithms were short (≈ 1 second) and approximately the same.

As the output from our system (the resulting/processed datasets) can be
used as input for financial models used in forecasting future security prices or
in predicting future market behaviour, we plan to conduct some experiments
to study the improvement in the forecasting of future security prices and the
computation of option prices.

4 Conclusions

We developed an efficient system to successfully detect outliers from financial
time series. Our system consists of two phases: Phase I identifies the missing
data, and replaces them with new prices that are consistent with their neigh-
bouring prices; Phase II detects short-lived sudden price changes. We developed
two algorithms for this second phase. Our data mining algorithm, called De-
tectOutliersDM, uses a distance-based approach to detect outliers (especially
those items having insufficient neighbours and those multi-itemed outliers). Our

An Efficient System for Detecting Outliers from Financial Time Series 197

statistical algorithm, called DetectOutliersStat, uses moving averages of each
item to detect outliers (especially those outlying items that are within the
normal range and those single-itemed outliers). While both of these two al-
gorithms are effective in detecting most outliers, there exist some outliers that
are detected by only one of the algorithms. We observed and understood the
strengths and weaknesses of the two algorithms, and we put them together.
Then, an item in the time series is considered as an outlier if it is detected
by one of the algorithms. Consequently, more outliers can be effectively de-
tected and removed. This, in turns, leads to cleaner time series (i.e., with less
noise).

This paper shows a confluence of various disciplines—namely, data mining,
statistics, and finance. It also shows an additional applicability of outlier de-
tection techniques. To elaborate, many existing outlier detection algorithms are
generally served as stand-alone tools for obtaining insight into data distribu-
tion. In contrast, our proposed outlier detection system can be served as a pre-
processing step for other algorithms (e.g., financial models for forecasting future
security prices, predicting future market behaviour, and/or pricing complex fi-
nancial instruments such as derivatives).

Acknowledgement. This project is partially sponsored by Science and Engi-
neering Research Canada (NSERC) and The University of Manitoba in the form
of research grants.

References

1. Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., Swami, A.: An interval classifier
for database mining applications. In: Proc. VLDB 1992. 560–573

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In: Advances in Knowledge Discovery and Data Mining (1996)
ch. 12

3. Back, A.D., Weigend, A.S.: A first application of independent component analysis
to extracting structure from stock returns. World Scientific - IJNS 8 (1997) 473–484

4. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proc. KDD 1996. 226–231

5. Jolliffe, I.: Principal Component Analysis, Springer-Verlag (1986)
6. Keogh, E., Lonardi, S., Chiu, B.Y.: Finding surprising patterns in a time series

database in linear time and space. In: Proc. KDD 2002. 550–556
7. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large

datasets. In: Proc. VLDB 1998. 392–403
8. Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Dynamic mining of constrained

frequent sets. ACM TODS 28 (2003) 337–389
9. Leung, C.K.-S.: Evaluation of data mining opportunities at Workers’ Compensation

Board. Research report, Workers’ Compensation Board of BC, Canada (1998)
10. Leung, C.K.-S., Khan, Q.I., Hoque, T.: CanTree: a tree structure for efficient in-

cremental mining of frequent patterns. In: Proc. ICDM 2005. 274–281
11. Omiecinski, E., Savasere, A.: Efficient mining of association rules in large dynamic

databases. In: Proc. BNCOD 1998. 49–63

198 C.K.-S. Leung, R.K. Thulasiram, and D.A. Bondarenko

12. Park, J.: Modern portfolio theory and its application to hedge funds: Part II. MFA
Reporter (Aug. 2001) 1–2, 4, 12–13

13. Schwertman, N.C., Owens, M.A., Adnan, R.: A simple more general boxplot
method for identifying outliers. Elsevier - CSDA 47 (2004) 165–174

14. Srikumar, K., Bhasker, B., Tripathi, S.K.: MaxDomino: efficiently mining maximal
sets. In: Proc. BNCOD 2003. 131–139

15. Utans, J.W., Holt, T., Refenes, A.N.: Principal components for modelling multi-
currency portfolios. In: Proc. NNCM 1996. 359–368

16. Victoria-Feser, M.-P.: Robust portfolio selection. Working paper 2000.14, Univer-
sity of Geneva, Switzerland (2000)

Efficient Update of Data Warehouse Views
with Generalised Referential Integrity

Differential Files

Carson Kai-Sang Leung1 and Wookey Lee2

1 The University of Manitoba, Winnipeg, MB, Canada
kleung@cs.umanitoba.ca

2 Sungkyul University, Anyang, Korea
wook@sungkyul.ac.kr

Abstract. Data warehouse (DW) views provide an efficient access to
information integrated from source data. When changes are made to
the source data, the corresponding views may be outdated. Thus, the
maintenance of DW views is crucial for the currency of information. Re-
cently, a method was proposed to use referential integrity differential files
(RIDFs) to self-maintain DW views that contain select-project-joins over
relations modelled in a star schema. However, it is not uncommon for
applications to have relations that are modelled in other schemas such as
a snowflake schema or a galaxy schema. In this paper, we generalise the
concept of RIDFs; we propose a method that uses generalised RIDFs to
self-maintain the DW views that contain joins over relations modelled in
the star schema as well as non-star schemas. Our method computes new
views by using only the old materialised views and files that keep the
truly relevant tuples in the “delta”. Consequently, it avoids accessing the
underlying source data, and hence leads to efficient update of DW views.

Keywords: Data warehousing, view maintenance, referential integrity
constraints, snowflake schema, galaxy schema, self-maintainability.

1 Introduction

A data warehouse (DW) is a subject-oriented, integrated, time-variant, and non-
volatile collection of data organised in such a way that it supports the decision
making process of management [8]. In general, DW views provide a fast access
to integrated source data. As changes can be made to the source data, the
corresponding views may be outdated. Thus, the maintenance of views is crucial
for the currency of information. In other words, views need to be periodically
refreshed so as to reflect those updates that have been made to the source data.
In response to the changes to the source data, many existing DW views are
refreshed by recomputing the contents from scratch (i.e., computing the new
views from the updated source data), while some other views are incrementally
maintained by accessing the source data. However, these approaches can be
costly. Moreover, in many real-life situations, it is not uncommon that only a

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 199–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

200 C.K.-S. Leung and W. Lee

tiny fraction of some huge source data gets changed. The above approaches
require an access to a huge amount of source data. Consequently, both CPU and
I/O costs of these approaches can be extremely high. A better approach is to
incrementally maintain views without accessing the source data. This calls for
efficient view maintenance approaches.

Over the past decade, many approaches (e.g., [1-7, 9-13, 15-19]) have been pro-
posed. However, some of these works focused mainly on conventional database
views than DW views, and some did not fully exploit referential integrity (RI) con-
straints for viewmaintenance. For those thatmaintainDW views based onRI, they
used auxiliary structures (e.g., auxiliary views [17], auxiliary relations [15], auxil-
iary data [9], complements [11]), which can be costly to build in some situations.

Recently, an efficient method, which incurred a lower cost, was proposed to
exploit the RI constraints imposed on relations in the source data [13]. Specifi-
cally, the method used referential integrity differential files (RIDFs) to keep all
and only those tuples that are relevant to the maintenance of views. By so doing,
DW views can be self-maintained in the sense that the new views (reflecting the
changes that were made to the source data) can be formed by using only the
old materialised views, differential files (DFs—i.e., files containing the inserted
or the deleted tuples), and RIDFs. In other words, the update of views avoided
accessing the underlying databases. Such a method was designed for, and worked
well on, self-maintaining views that contain a select-project-join (SPJ) over mul-
tiple relations modelled in a star schema. However, there exist many situations
where relations are not modelled in the star schema (e.g., a snowflake schema in
Example 1, a galaxy schema in Example 2).

Example 1. Consider a DW for shipment consists of the following tables:
– Item (itemID, name, description);
– Location (locCode, city, county, region);
– Shipper (shipperID, locCode, shipperName)

where locCode references Location; and
– Shipment (shipmentID, itemID, shipperID)

where itemID references Item, shipperID references Shipper.

Here, information about shippers and their locations is stored in two different dimension
tables, namely Shipper and Location, due to normalisation. Relations/tables in this
DW are modelled in a snowflake schema, where the fact table Shipment references
dimension tables Shipper (which, in turn, references the dimension table Location)
and Item. In this model, view v1 ≡ πitemID,shipperNameσcity=Belfast(Shipment �	 Shipper
�	 Location), which finds IDs of items and names of shippers for those shippers located
in Belfast, contains an SPJ over three relations modelled in a snowflake schema. ��

Example 2. Let us add the following table to the above shipment DW:
– Sales (invoiceID, itemID, locCode, price)

where itemID references Item, locCode references Location.

Then, in the resulting model, relations/tables are in a galaxy schema consisting of a
collection of stars and snowflakes. Here, two fact tables Sales and Shipment share the
dimension table Item. In this model, view v2 ≡ πinvoiceID,shipmentIDσdescription=book (Sales
�	 Shipment �	 Item), which finds invoice IDs and shipment IDs for all books, contains
an SPJ over three relations modelled in a galaxy schema. ��

Efficient Update of Data Warehouse Views 201

Given that there exist situations where relations can be modelled in a non-
star schema, some natural questions are: How to handle these situations? Can
we use RIDFs in these situations? Can RIDFs be helpful? Can we self-maintain
the views using just the old materialised views, DFs and RIDFs? If not, what
else is needed?

In this paper, we study these questions. Our key contribution is the de-
velopment of a novel method, which exploits RI constraints and generalises the
ideas of RIDFs, for self-maintaining DW views. Our method uses generalised
RIDFs (GRIDFs), which keep all and only those tuples that are (directly or
indirectly) relevant to the updates of views. By so doing, the method efficiently
self-maintains the views modelled in the star schema as well as non-star schemas
(e.g., the snowflake schema, the galaxy schema). With our method, new views
can be formed by using only (i) the old materialised views, (ii) DFs, (iii) RIDFs,
and (iv) GRIDFs. In other words, the method avoids accessing any underlying
databases to form the new views.

The outline of this paper is as follows. Section 2 gives background. Section 3
describes how we generalise the concepts of RIDFs for self-maintaining DW views
involving joins over relations modelled in a snowflake or a galaxy schema. Sec-
tion 4 discusses further generalisation and potential improvements of GRIDFs.
Experimental results are given in Section 5. Finally, conclusions are presented
in Section 6.

2 Background

In this section, we present some background materials about RI constraints and
RIDFs, which are relevant to the rest of this paper.

2.1 Referential Integrity Constraints

A referential integrity (RI) constraint can be specified between relations in data-
base and data warehousing environments; it is used to maintain consistency
among tuples in the relations. Informally, the constraint states that a tuple r in
a relation R (called the referencing relation) that refers to another relation S
(called the referenced relation) must refer to an existing tuple s in S. More
formally, the foreign key of R (denoted as R.fk) must “match” a candidate key of
S (denoted as S.ck), that is, they must have the same domain and R.fk = S.ck.1

Without loss of generality, we assume in this paper that all relations in the DW
are “linked” by RI constraints.

Whenever there is a change to a relation in an underlying database, the corre-
sponding views need to be updated to reflect the change. This can be done using
either an immediate mode or a deferred mode. For the former, the views are

1 A candidate key of a relation is a minimal set of attributes whose values uniquely
identify each tuple in the relation. A foreign key is a set of attributes (in a referencing
relation R) that either refers to a candidate key of the referenced relation S or is
NULL.

202 C.K.-S. Leung and W. Lee

refreshed immediately; for the latter, all the changes are first recorded in some
differential files (DFs), and the views are then updated periodically using these
DFs. Whenever a tuple is inserted into, or deleted from, a referencing relation R
or a referenced relation S, appropriate actions need to be taken as described
below. (i) When a tuple r is inserted into a referencing relation R, a look-
up in S is required to ensure the presence of a tuple s ∈ S where s.ck = r.fk.
If s is present, then r is inserted into R as well as the differential file ΔR;2

otherwise, RI is violated. (ii) When a tuple r is deleted from a referencing
relation R, the tuple r is recorded in the differential file ∇R. (iii) When a tuple
s is inserted into a referenced relation S, the tuple s is recorded in the
differential file ΔS. (iv) When a tuple s is deleted from a referenced rela-
tion S, a (reverse) look-up in R is required (for the default mode of “on delete
no action”) to ensure the absence of a tuple r ∈ R satisfying r.fk = s.ck. If r
is absent, then s is safely removed from S; otherwise (i.e., r exists in R), RI is
violated and the deletion is rejected. It is interesting to note that the insertion
into, or deletion from, one relation (R or S) does not affect another one.

2.2 Referential Integrity Differential Files

Let us consider view v3 ≡ πitemID,cityσprice>50(Sales � Item � Location),
which finds item IDs and cities of those sales with price > $50. This view con-
tains an SPJ over three relations modelled in a star schema, where the fact
table Sales references dimension tables Item and Location. This view can be
expressed—in abstract terms—as πAσC(v4), where v4 ≡ (F � D1 � D2) such
that F.fk1 references D1.ck and F.fk2 references D2.ck. In subsequent expres-
sions, let us focus on how to efficiently update the join component because it
dominates the SPJ operations.

When changes are made to the source data, a näıve method to update
a DW view—whenever its underlying relations (e.g., F, D1, D2) of a view are
updated—is to ignore the old view and to compute the new view from scratch
(e.g., v′4 = (F ′ � D′

1 � D′
2)). However, this method can be very costly, especially

when updates are made very frequently or when only a tiny fraction of underlying
relations is updated.

It is well-known that an updated relation R′ can be expressed as R′ = R −
∇R ∪ ΔR, where R is the old relation (e.g., F, D1, or D2), ΔR is its insertion,
and ∇R is its deletion. So, an improved method is to obtain the new view v′4
from the old view v4 ≡ (F � D1 � D2), DFs (e.g., ΔF, ∇D1, . . .), and source
relations (e.g., F, D1, D2), as follows:

v′4 = (F − ∇F ∪ ΔF) � (D1 − ∇D1 ∪ ΔD1) � (D2 − ∇D2 ∪ ΔD2)
= (F � D1 � D2) − (F � D1 � ∇D2) ∪ (F � D1 � ΔD2) ∪ . . .

− (ΔF � ΔD1 � ∇D2) ∪ (ΔF � ΔD1 � ΔD2). (1)
2 Since the views can be updated using the deferred mode, it is more precise to state

the following. An insertion of a tuple r into R requires a look-up in the “current”
referenced relation (S − ∇S ∪ ΔS). If there exists a tuple s ∈ (S − ∇S ∪ ΔS) such
that s.ck = r.fk, then r is inserted into R as well as ΔR.

Efficient Update of Data Warehouse Views 203

Note that, among the 33 = 27 terms in Equation (1), the first term (F �
D1 � D2) is the old view v4. However, many of the remaining 26 terms (e.g.,
(F � D1 � ΔD2)) involve source relations.

To avoid accessing the source relations and to efficiently self-maintain DW
views, we proposed in BNCOD 2005 a self-maintainable method with ref-
erential integrity differential files (RIDFs) [13]. By exploiting the prop-
erties of RI constraints as well as the nature of the expression for view up-
dates and by using RIDFs, Equation (1) can be simplified to become the
following:

v′4 = v4 ∪ (ΔF � RIDFF (D1) � RIDFF (D2))
∪ (ΔF � RIDFF (D1) � ΔD2) ∪ (ΔF � ΔD1 � RIDFF (D2))
∪ (ΔF � ΔD1 � ΔD2) � ∇F � ∇D1 � ∇D2. (2)

Such a simplification is possible because of the following:

– The term (F � D1 � D2) in Equation (1) represents the old view v4.
– Any terms with (F � ΔD1) give empty relations. Because of RI constraints,

for all f ∈ F , there must exist d ∈ D1 such that d.ck = f.fk1. In other
words, there does not exist a tuple d′ ∈ ΔD1 satisfying d′.ck = f.fk1.
Similar comments apply for all terms with (F � ΔD2).

– All the terms involving ∇F can be grouped together (denoted as �∇F) as
they basically represent the action that all the tuples containing f ∈ ∇F
can be deleted. Similar comments apply for all terms involving ∇D1 as well
as ∇D2.

– The term (ΔF � ΔD1 � ΔD2) involves only three differential files
(ΔF, ΔD1 and ΔD2). In other words, no access to the source data is
required.

– The remaining three terms—namely, (ΔF � RIDFF (D1) � RIDFF (D2)),
(ΔF � RIDFF (D1) � ΔD2) and (ΔF � ΔD1 � RIDFF (D2))—all use
RIDFs. Recall from Section 2.1 that when a tuple f is inserted into F , we
check if there exists a tuple d ∈ Di such that d.ck = f.fk. If such d exists, the
insertion is successful and f is then recorded in ΔF . Given that the search
and check has been performed, one can record the tuple f in a file called
RIDF. By so doing, the RIDF contains all those tuples (d) that are related
to the tuples in ΔF . In other words, the RIDF contains all and only those
tuples that could be joined with ΔF in the term (ΔF � Di). Therefore, with
the RIDF, the term (ΔF � Di) can be rewritten as (ΔF � RIDFF (Di)),
which no longer requires an access to the source data.

While more details can be found in our BNCOD 2005 paper [13], it is important
to note that the self-maintenance of DW views with RIDFs was designed and
worked well on joins over relations that are modelled in a star schema. In the
current BNCOD 2006 paper, we extend and generalise the RIDFs to handle sit-
uations where relations are modelled in a non-star schema (as well as in a star
schema).

204 C.K.-S. Leung and W. Lee

3 Our New Method: Self-maintenance of DW Views with
Generalised RIDFs (GRIDFs)

In this section, we start describing our new method that uses our generalised
RIDFs to self-maintain DW views. Like the method with RIDFs, this new one
with GRIDFs also exploits referential integrity. However, unlike the method with
RIDFs, the method with GRIDFs can be applicable for updating views involving
relations that are modelled in non-star schemas (as well as in a star schema).

Here, we start with the base case where views involve an SPJ over three
relations; then, in Section 4, we give the general case for k relations. For three
relations R, S and T , there are various ways in which these relations reference
others. For example, R may reference both S and T (e.g., views v3, v4 shown
above). Alternatively, R may also reference S, which in turn references T (e.g.,
view v1 in Example 1). As the third way, it may be the case where both R and
S reference T (e.g., view v2 in Example 2).

3.1 “Forward-Linked” Generalised RIDFs (fGRIDFs)

Let us consider view v1 ≡ πitemID,shipperNameσcity=Belfast(Shipment � Shipper
� Location) in Example 1. How to self-maintain v1? Or, a more general question
is: How to compute a new view of the form πAσC(v5), where v5 ≡ (F � D1
� D2) such that F.fk references D1.ck and D1.fk references D2.ck?

Learned from Section 2.2, we know the disadvantages of using the näıve
method (i.e., start from scratch) and the improved method (i.e., using the old
view, DFs, and source relations). Specifically, the former can be very costly,
whereas the latter requires accesses to source relations. So, we exploit the RI
constraints and obtain the following expression:

v′5 = v5 ∪ (ΔF � RIDFF (D1) � D2) ∪ (ΔF � ΔD1 � RIDFD1(D2))
∪ (ΔF � ΔD1 � ΔD2) � ∇F � ∇D1 � ∇D2. (3)

Observed from Equation (3), we can easily spot that one of the terms (i.e., the
term (ΔF � RIDFF (D1) � D2)) still involves D2 (the underlying database).
Hence, even if we could use RIDFs, the new view v′5 could not be computed
without accessing the source data.

On the surface, it may appear that this is the best we could do. However,
a careful study reveals that we could do better. Specifically, are we required to
access D2? Do we need to join with the entire D2? The answer in each case
is no. We can avoid accessing D2 by using some “files” similar to RIDFs. The
“files” store only truly relevant tuples. To elaborate, we extend and generalise
the concept of RIDFs, and we come up with generalised RIDFs (GRIDFs).
Specifically, our idea can be described as follows. When a tuple f is inserted
into F , we check if there exists a tuple d1 ∈ D1 such that d1.ck = f.fk. If such
d1 exists, the insertion is successful. Then, (i) f is recorded in ΔF and (ii) d1
is recorded in RIDFF (D1). Up to this point, the procedure sounds familiar as
it is the same as the creation of the RIDF. However, next step is different: The

Efficient Update of Data Warehouse Views 205

insertion of d1 into RIDFF (D1) then triggers a look-up of d2 ∈ D2 such that
d2.ck = d1.fk. Due to the RI constraint, we know that there exists such d2 ∈ D2.
So, d2 is then inserted into a “file” called the “forward-linked” generalised RIDF
(fGRIDF). See the definition below.

Definition 1 (“Forward-linked” generalised referential integrity differ-
ential file (fGRIDF)). Let (i) an SPJ view πAσC(F � D1 � D2) be created in
terms of three relations F, D1 and D2; (ii) a RI constraint be imposed on F and
D1 such that F.fk = D1.ck, where F.fk denotes the foreign key of the referencing
relation F and D1.ck denotes a candidate key of the referenced relation D1; and
(iii) a RI constraint be imposed on D1 and D2 such that D1.fk = D2.ck, where
D1.fk denotes the foreign key of the referencing relation D1 and D2.ck denotes
a candidate key of the referenced relation D2. (Note that D1 plays two different
roles: It is a referenced relation with respect to F , but a referencing relation with
respect to D2.) Then, when a tuple f is successfully inserted into F (i.e., f is put
in ΔF), the corresponding tuple d1 (where d1.ck = f.fk) is then inserted into
D1. This triggers the insertion of d2 into a “forward-linked” generalised ref-
erential integrity differential file, denoted as fGRIDFD1(D2), which keeps
all and only those tuples (in D2) that are truly relevant to the update of the view.
Precisely, for each tuple d1 ∈ RIDFF (D1), its corresponding d2 ∈ D2 (such that
d2.ck = d1.fk) is kept in fGRIDFD1(D2).

There are some nice properties of fGRIDFD1(D2). First, fGRIDFD1(D2)
keeps all and only those tuples (in D2) that are truly relevant to the join
(ΔF � RIDFF (D1) � D2). Thus, the number of tuples in fGRIDFD1(D2) is
bounded above by the number of tuples in D2 (i.e., |fGRIDFD1(D2)| ≤ |D2|).
Second, for each candidate key of D2, the number of tuples in fGRIDFD1(D2)
is bounded above by the number of tuples in RIDFF (D1). This is due to RI
constraints. More specifically, because d1.fk = d2.ck, many d1 ∈ RIDFF (D1)
can reference one d2 (but each d1 can only reference one d2). Hence, if D2
only has one candidate key (which is quite common for dimension tables), then
|fGRIDFD1(D2)| ≤ |RIDFF (D1)|. Third, since |RIDFF (D1)| ≤ |ΔF |, we have
|fGRIDFD1(D2)| ≤ |RIDFF (D1)| ≤ |ΔF |. Therefore, by exploiting properties
of RI constraints and using fGRIDFD1(D2), Equation (3) can be simplified to
become the following (i.e., the new view can be computed as follows):

v′5 = v5 ∪ (ΔF � RIDFF (D1) � fGRIDFD1(D2))
∪ (ΔF � ΔD1 � RIDFD1(D2))
∪ (ΔF � ΔD1 � ΔD2) � ∇F � ∇D1 � ∇D2. (4)

It is important to note that, with this self-maintainable method with GRIDFs, we
no longer require accesses to the source data. The new view v′5 can be computed
using only (i) the old view v5, (ii) DFs, (iii) RIDFs, and (iv) GRIDFs (i.e.,
fGRIDFs). See the following example.

Example 3. Let us consider the self-maintenance of view v6 ≡ (Shipment �	 Shipper �	
Location), which is modelled in a snowflake schema. (Note that view v1 in Example 1

206 C.K.-S. Leung and W. Lee

can be expressed as πitemID,shipperNameσcity=Belfast(v6).) When the underlying databases
are updated, the new view v′

6 can be computed as follows:

v′
6 = v6 ∪ (ΔShipment �	 RIDFShipment(Shipper) �	 fGRIDFShipper(Location))

∪ (ΔShipment �	 ΔShipper �	 RIDFShipper(Location))

∪ (ΔShipment �	 ΔShipper �	 ΔLocation)

� ∇Shipment � ∇Shipper � ∇Location. ��

3.2 “Backward-Linked” Generalised RIDFs (bGRIDFs)

Next, let us consider view v2 ≡ πinvoiceID,shipmentID σdescription=book(Sales �
Shipment � Item) in Example 2. How to self-maintain v2? Or, a more gen-
eral question is: How to compute a new view of the form πAσC(v7), where
v7 ≡ (F1 � F2 � D) such that F1.fk references D.ck1 and F2.fk references
D.ck2?

By applying the method with RIDFs [13] (or applying our proposed method
with fGRIDFs described in Section 3.1), we obtain the following expression:

v′7 = v7 ∪ (F1 � ΔF2 � RIDFF2(D)) ∪ (ΔF1 � F2 � RIDFF1(D))
∪ (ΔF1 � ΔF2 � [RIDFF1(D) ∩ RIDFF2(D)])
∪ (ΔF1 � ΔF2 � ΔD) � ∇F1 � ∇F2 � ∇D. (5)

Observe that two of the terms (i.e., the second and the third terms) still in-
volve those underlying databases (i.e., F1 and F2). So, what we need is another
type of generalised RIDF, which we call the “backward-linked” generalised RIDF
(bGRIDF). Specifically, the idea can be described as follows. When a tuple fi is
inserted into Fi, we check if there exists a tuple d ∈ D such that d.ck = fi.fk.
If such d exists, the insertion is successful. Then, (i) fi is recorded in ΔFi and
(ii) d is recorded in RIDFFi(D). Again, the extra/new step is as follows: The
insertion of d into RIDFFi(D) triggers a reverse look-up of fj ∈ Fj (where
j �= i) such that fj .fk = d.ck. Due to the RI constraint, we know that there
could be no such fj ∈ Fj . However, if one exists, it is then inserted into a
“backward-linked” generalised RIDF (i.e., bGRIDFD(Fj)). See the definition
below.

Definition 2 (“Backward-linked” generalised referential integrity dif-
ferential file (bGRIDF)). Let (i) an SPJ view πAσC(F1 � F2 � D) be
created in terms of three relations F1, F2 and D; and (ii) a RI constraint be
imposed on Fi and D such that Fi.fk = D.ck where Fi.fk denotes the for-
eign key of the referencing relation Fi (for i = 1, 2) and D.ck denotes a can-
didate key of the referenced relation D. Then, when a tuple fi is successfully
inserted into Fi (i.e., fi is put in ΔFi), the corresponding tuple d (where d.ck =
fi.fk) is then inserted into D. This triggers the insertion of fj (where j �=
i) into a “backward-linked” generalised referential integrity differen-
tial file, denoted as bGRIDFD(Fj), which keeps all and only those tuples (in
Fj) that are truly relevant to the update of the view. Precisely, for each tuple

Efficient Update of Data Warehouse Views 207

d ∈ RIDFFi(D), its corresponding fj ∈ Fj (such that fj.fk = d.ck) is kept in
bGRIDFD(Fj).

A nice property of the bGRIDFD(Fj) is that it keeps all and only those
tuples (in Fj) that are truly relevant to the join (ΔFi � Fj � RIDFFi(D)).
Thus, the number of tuples in bGRIDFD(Fj) is bounded above by the number
of tuples in Fj (i.e., |bGRIDFD(Fj)| ≤ |Fj |). Another property is that, for
a given d ∈ RIDFFi(D), there could be no fj ∈ Fj (where fj .fk = d.ck)
referencing it. This potentially reduces the size of bGRIDFD(Fj). Therefore, by
exploiting properties of RI constraints and using bGRIDFD(Fi), Equation (5)
can be simplified to become the following:

v′7 = v7 ∪ (bGRIDFD(F1) � ΔF2 � RIDFF2(D))
∪ (ΔF1 � bGRIDFD(F2) � RIDFF1(D))
∪ (ΔF1 � ΔF2 � [RIDFF1(D) ∩ RIDFF2(D)])
∪ (ΔF1 � ΔF2 � ΔD) � ∇F1 � ∇F2 � ∇D. (6)

It is important to note that, with this self-maintainable method with GRIDFs, we
no longer require accesses to the source data. The new view v′7 can be computed
using (i) the old view v7, (ii) DFs, (iii) RIDFs, and (iv) GRIDFs (e.g., bGRIDFs).
See the following example.

Example 4. Let us consider the self-maintenance of view v8 ≡ (Sales �	 Shipment
�	 Item), which is modelled in a galaxy schema. (Note that view v2 in Example 2 can
be expressed as πinvoiceID,shipmentIDσdescription=book (v8).) When the underlying databases
are updated, the new view v′

8 can be computed as follows:

v′
8 = v8 ∪ (bGRIDFItem(Sales) �	 ΔShipment �	 RIDFShipment(Item))

∪ (ΔSales �	 bGRIDFItem(Shipment) �	 RIDFSales(Item))

∪ (ΔSales �	 ΔShipment �	 [RIDFSales(Item) ∩ RIDFShipment(Item)])

∪ (ΔSales �	 ΔShipment �	 ΔItem) � ∇Sales � ∇Shipment � ∇Item. ��

4 Discussion: Generalisation to Multiple Relations

So far, we have described and explained our proposed efficient method with
GRIDFs for self-maintaining DW views involve an SPJ over three relations:
(i) the use of fGRIDFs for an SPJ over a chain of one fact table and two dimension
tables (Section 3.1), and (ii) the use of bGRIDFs for an SPJ over two fact tables
that share a dimension table (Section 3.2). As expected, our method is not
confined to just three relations. It can be further generalised to handle multiple
relations by exploiting RI constraints. For example, a new view containing an
SPJ over a chain of a fact table F and k levels of dimension tables D1, . . . , Dk

can be computed using 2k + 3 terms as follows:

v′ = F ′ � D′
1 � · · · � D′

k

= v ∪ (ΔF � RIDFF (R1) � fGRIDFR1(R2) � · · · � fGRIDFR1(Rk))

208 C.K.-S. Leung and W. Lee

∪ [
k−1⋃
j=2

(ΔF � ΔR1 � · · · � ΔRj−1 � RIDFRj−1(Rj)

� fGRIDFRj (Rj+1) � · · · � fGRIDFRj (Rk))]
∪ (ΔF � ΔR1 � · · · � ΔRk−1 � RIDFRk−1(Rk))
∪ (ΔF � ΔR1 � · · · � ΔRk) � ∇F � ∇R1 · · · � ∇Rk. (7)

Similarly, a new view containing an SPJ over k fact tables F1, . . . , Fk that share
a dimension table D can be computed using 2k + k + 2 terms as follows:

v′ = F ′
1 � · · ·F ′

k � D′

= v ∪
(⋃

ΔFi � bGRIDFD(Fj) � [∩iRIDFFi(D)]
)

∪ (ΔF1 � · · · � ΔFk � ΔD) � ∇F1 · · · � ∇Fk � ∇D, (8)

where 1 ≤ i, j ≤ k. With this generalisation, one would be able to efficiently
compute the new DW views that contain an SPJ over different numbers of
relations modelled in various schemas (e.g., star, snowflake, or galaxy schemas).
One does not need to access the underlying databases during the update. All it
needs is the old view, DFs, RIDFs, and our proposed GRIDFs (i.e., fGRIDFs
and/or bGRIDFs).

Our proposed GRIDFs can further be improved by keeping only relevant at-
tributes of the relevant tuples. Any attributes that do not contribute to the up-
date of DW views can be discarded. Moreover, any tuples that do not contribute
to the selection operator (of the SPJ) can also be discarded.

5 Experimental Results

We ran several experiments on various DWs. The results cited below are based on
a DW that consists of a fact table (with 6,000,000 tuples) and multiple dimension
tables (each with 800,000 tuples) that are modelled in a snowflake schema. In
the experiments, we compared the results of the following four implemented
methods:

– The näıve method, which recomputes new views from scratch.
– The improved method, which uses old views, DFs, and source relations to

update the views.
– The self-maintainable method with RIDFs [13], which uses only old views,

DFs, and RIDFs.
– Our efficient self-maintainable method with GRIDFs, which uses only

old views, DFs, RIDFs, and GRIDFs. This method avoids accessing source
relations even for those that are modelled in a non-star schema (e.g., the
snowflake or galaxy schema).

In the first experiment, we fixed the number of dimension tables to 2 (i.e., the
view (F � D1 � D2) that contains an SPJ over a fact table F and two dimen-
sion tables D1 & D2. We varied the percentage of tuples being updated/changed

Efficient Update of Data Warehouse Views 209

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

 r
el

at
iv

e
to

 th
e

na
iv

e
m

et
ho

d

Percentage of updated tuples

Relative speedup of view maintenance methods

Self-maintainable method with GRIDFs
Self-maintainable method with RIDFs

Improved method

Fig. 1. Relative speedup of view maintenance methods

from 1% to 50%. The x-axis of Fig. 1 shows the percentage of updated tuples;
the y-axis shows the speedup of the improved method, the method with RIDFs,
and our self-maintainable method with GRIDFs against the näıve method. As
observed from Fig. 1, the lower the percentage of updated tuples, the higher
is the benefit of using our method. For example, the speedup of our method
is above 40 times when 1% of tuples are updated. A much higher speedup is
expected when the percentage of updated tuples is lower (e.g., 0.1%). Note that
a low percentage of updated tuples is not uncommon. In many real-life appli-
cations, DW views need to be refreshed frequently (which usually leads to a
low percentage of tuples being updated between each refresh) so as to facilitate
accurate decision making.

While Fig. 1 shows the relative speedup, the table below gives some samples
of the total runtime (i.e., both CPU and I/O time) for updating view.

% updated tuples Näıve Improved RIDFs GRIDFs
1% 714 mins 520 mins 135 mins 17.6 mins
10% 714 mins 621 mins 222 mins 88.1 mins

Note that our proposed method with GRIDFs requires a much shorter runtime
than the other three methods. The reason is that our method uses GRIDFs; it
does not need to access source relations. In contrast, the method with RIDFs,
which uses DFs and RIDFs, needs to access the source relation D2. The improved
method, which uses DFs but not RIDFs, needs to access more source relations
(both D1 and D2).

Next, we varied the number of dimension tables. The results show that in-
creasing the number of dimension tables increases the speedup of our method
and increases the runtime gaps. Note that when there are k dimension tables, the
improved method and the method with RIDFs need to access k and (k−1) source
relations respectively. In contrast, our proposed method with GRIDFs does not
need to access any source relations.

210 C.K.-S. Leung and W. Lee

Then, let us count the numbers of tuples in the source relations, the “delta”,
RIDFs, and GRIDFs. It was observed that the number of tuples needed to be
stored in a GRIDF is bounded above by the numbers of tuples in its correspond-
ing source relations, RIDFs, and “delta” (e.g., |fGRIDFF (D2)| ≤ min{|D2|,
|RIDFF (D1)|, |ΔF |}).

To summarise, the experimental results show the effectiveness of our proposed
self-maintainable method with GRIDFs. Since the results on various DWs were
consistent (and for lack of space), we do not show all the results here. For more
details, please refer to our technical report [14].

6 Conclusions

Data warehouse (DW) views provide an efficient access to integrated data. As
changes are made to the source data, the corresponding views may be outdated.
Hence, the maintenance of views is crucial for the currency of information. In this
paper, we proposed a novel method to efficiently self-maintain the DW views that
contain a select-project-join (SPJ) over multiple relations. Specifically, we exploit
the RI constraints imposed on the relations in the source data, and generalise the
referential integrity differential files (RIDFs). The generalised RIDFs (GRIDFs),
proposed in this paper, keep the truly relevant tuples in the “delta”; they avoid
accessing the underlying databases. Consequently, our method can update DW
views by using only the old views, differential files (e.g., the insertion file ΔR
and the deletion file ∇R), RIDFs, and GRIDFs. The method is applicable to the
efficient self-maintenance of views that contain an SPJ over relations modelled
in various schemas in data warehousing environments.

Acknowledgements. This project is partially sponsored by Science and Engi-
neering Research Canada (NSERC) and The University of Manitoba, as well as
Korea Science and Engineering Foundation (KOSEF) through Advanced Infor-
mation Technology Research Centre (AITrc), in the form of research grants.

References

1. Blakeley, J.A., Larson, P.-Å., Tompa, F.W.: Efficiently updating materialized
views. In: Proc. SIGMOD 1986. 61–71

2. Bruckner, R.M., Tjoa, A.M.: Managing time consistency for active data warehouse
environments. In: Proc. DaWaK 2001. 254–263

3. Engström, H., Lings, B.: Evaluating maintenance policies for externally materi-
alised multi-source views. In: Proc. BNCOD 2003. 140–156

4. Fǐser, B., Onan, U., Elsayed, I., Brezany, P., Tjoa, A.M.: On-line analytical process-
ing on large databases managed by computational grids. In: Proc. DEXA Workshop
(GLOBE) 2004. 556–560

5. Griffin, T., Libkin, L., Trickey, H.: An improved algorithm for the incremental
recomputation of active relational expressions. IEEE TKDE 9 (1997) 508–511

6. Gupta, H., Mumick, I.S.: Selection of views to materialize in a data warehouse.
IEEE TKDE 17 (2005) 24–43

Efficient Update of Data Warehouse Views 211

7. Hyun, N.: Multiple-view self-maintenance in data warehousing environments. In:
Proc. VLDB 1997. 26–35

8. Inmon, W.H.: Building the Data Warehouse. John Wiley & Sons (1996)
9. Khan, S., Mott, P.: LeedsCQ: a scalable continual queries system. In: Proc. DEXA

2002. 607–617
10. Kotidis, Y., Roussopoulos, N.: A case for dynamic view management. ACM TODS

26 (2001) 388–423
11. Laurent, D., Lechtenbörger, J., Spyratos, N., Vossen, G.: Monotonic complements

for independent data warehouses. VLDB Journal 10 (2001) 295–315
12. Lee, W.: On the independence of data warehouse from databases in maintaining

join views. In: Proc. DaWaK 1999. 86–95
13. Leung, C.K.-S., Lee, W.: Exploitation of referential integrity constraints for efficient

update of data warehouse views. In: Proc. BNCOD 2005. 98–110
14. Leung, C.K.-S., Lee, W.: GRIDFs: generalised referential integrity differential files

for maintaining data warehouse views. Technical report TR 06/02, Department of
Computer Science, The University of Manitoba, Canada (2006)

15. Mohania, M., Kambayashi, Y.: Making aggregate views self-maintainable. DKE 32
(2000) 87–109

16. Qian, X., Wiederhold, G.: Incremental recomputation of active relational expres-
sions. IEEE TKDE 3 (1991) 337–341

17. Quass, D., Gupta, A., Mumick, I., Widom, J.: Making views self-maintainable for
data warehousing. In: Proc. PDIS 1996. 158–169

18. Theodoratos, D., Xu, W.: Constructing search spaces for materialized view selec-
tion. In: Proc. DOLAP 2004. 112–121

19. Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J.: View maintenance in a
warehousing environment. In: Proc. SIGMOD 1995. 316–327

SAGA: A Combination of Genetic and
Simulated Annealing Algorithms for Physical

Data Warehouse Design

Ladjel Bellatreche1, Kamel Boukhalfa2, and Hassan Ismail Abdalla3

1 LISI/ENSMA - Poitiers University France
bellatre@ensma.fr

2 Laghouat University - Algeria
k.boukhalfa@mail.lagh-univ.dz

3 Prince Sultan University - Saudi Arabia
habdalla@cis.psu.edu.sa

Abstract. Data partitioning is one of the physical data warehouse de-
sign techniques that accelerates OLAP queries and facilitates the ware-
house manageability. To partition a relational warehouse, the best way
consists in fragmenting dimension tables and then using their fragmen-
tation schemas to partition the fact table. This type of fragmentation
may dramatically increase the number of fragments of the fact table and
makes their maintenance very costly. However, the search space for se-
lecting an optimal fragmentation schema in the data warehouse context
may be exponentially large. In this paper, the horizontal fragmentation
selection problem is formalised as an optimisation problem with a main-
tenance constraint representing the number of fragments that the data
warehouse administrator may manage. To deal with this problem, we
present, SAGA, a hybrid method combining a genetic and a simulated
annealing algorithms. We conduct several experimental studies using the
APB-1 release II benchmark in order to validate our proposed algorithms.

1 Introduction

A data warehouse stores large amounts of consolidated and historical data. It
is especially designed to support complex business decision queries. A relational
data warehouse is usually modelled using a star schema (or a snow flake schema)
which is characterised by one or more very large fact tables and a number of
much smaller dimension tables. On the top of this schema, star queries are
executed. The main characteristic of these queries is that they impose restrictions
on the dimension values that are used for selecting specific facts; these facts
are further grouped and aggregated according to the user demands. The major
bottleneck in evaluating such queries has been the join of a large fact table with
the surrounding dimension tables [8].

The horizontal data partitioning is an important aspect of physical database
design [7,6]. It has a significant impact on performance of OLAP queries and

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 212–219, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SAGA: A Combination of Genetic and Simulated Annealing Algorithms 213

manageability of the data warehouse. In context of relational warehouses, hor-
izontal partitioning allows tables, indexes and materialised views to be parti-
tioned into disjoint sets of rows that are physically stored and accessed sepa-
rately [7]. Contrary to materialised views and indexes, data partitioning does not
replicate data, thereby reducing space requirements and minimising the update
overhead [6]. It can also be combined with others optimisation structures like
indexes, materialised views, and parallel processing [8]. Several work and com-
mercial systems show its utility and impact in optimising OLAP queries [7, ?].
But few studies have formalised the problem of selecting a horizontal partitioning
schema to speed up a set of queries and proposed selection algorithms.

In [1], we showed that the best way to partition a relational warehouse is
to decompose the fact table based on the fragmentation schemas of dimension
tables. Concretely, we (1) partition some/all dimension tables using their simple
selection predicates, and then (2) partition using the fragmentation schemas of
the fragmented dimension tables. The number of horizontal fragments of the
fact table (denoted by N) generated by this partitioning procedure is given by:
N =

∏g
i=1 mi, where mi and g are the number of fragments of the dimension

table Di, and the number of dimension tables participating in the fragmentation
process. This number may be very large [1]. Consequently, instead to manage
one star schema, the data warehouse administrator (DWA) will manage N sub
star schemas. It will be very difficult for him to maintain all these sub-star
schemas. In [1], we developed a genetic algorithm to partition a data warehouse
modelled by a star schema. The main limitation of this algorithm is that the
used fitness function did not take into account the maintenance constraint. In
this paper, we propose an approach, called, SAGA that combines genetic and
simulated annealing algorithms. It penalises the fragmentation schemas that
violate the maintenance constraint. A penalty function is incorporated in the
fitness function used by both algorithms (genetic and simulated annealing).

This paper is divided in five sections: Section 2 formalises the fragmentation
selection problem in data warehouses modelled using star schemas. Section 3
presents the components of the SAGA, where the GA and the SA are described in
details. Section 4 gives the experimental results using benchmark APB-1 release
II benchmark. The Section 5 concludes the paper by summarising the main
results and suggesting future work.

2 Horizontal Partitioning Selection Problem

A formulation of the horizontal partitioning problem is the following: given (1)
a set of dimension tables D = {D1, D2, ..., Dd} and a fact table F , (2) a set
of OLAP queries Q = {Q1, Q2, ..., Qm}, where each query Qi (1 ≤ i ≤ m) has
an access frequency, and (3) a threshold (W fixed by the DWA) representing
the maximal number of fragments that he can maintain. The satisfaction of
this constraint avoids an explosion of the number of the fact fragments. The
horizontal partitioning problem consists in determining a set of dimension tables
D′ ⊆ D to be partitioned and using their fragmentation schemas to partition the

214 L. Bellatreche, K. Boukhalfa, and H.I. Abdalla

fact table F into a set of horizontal fragments (called fact fragments) such that:
the sum of the query cost when executed on top of the partitioned star schema
is minimised, and the maintenance constraint is satisfied (N ≤ W).

Our approach, SAGA, uses first a genetic algorithm (GA) [3] and then a simu-
lated annealing algorithm (SA) [5]. GAs have been used in the database physical
design [9, 4]. Given a well-defined search space they apply three different genetic
search operations, namely, selection, crossover, and mutation, to transform an
initial population of chromosomes, with the objective to improve their quality.
Note that GA is not guaranteed to find the global optima. One of the main rea-
sons is the problem of premature convergence of the GAs. To avoid this problem,
we use a SA. It is an iterative improvement scheme with the hill-climbing abil-
ity, which allows it to reject inferior local solutions and find more globally near
optimal solutions. It starts with a solution candidate obtained by the GA, then
repeatedly attempts to find a better solution by moving to a neighbour with
higher fitness, until it finds a solution, where none of its neighbours has a higher
fitness. To avoid getting trapped in poor local optima, SA allows occasionally an
uphill moves to solutions with lower fitness by using a temperature parameter to
control the acceptance of the moves (with a probability). These two algorithms
will be described in details in next sections.

3 Th Description of SAGA

3.1 Genetic Algorithm Setting

Each chromosome (fragmentation schema) can be represented by a multidimen-
sional array [1], where each cell i represents a a sub domain of the whole do-
main of the fragmentation attribute Ai. This multidimensional array representa-
tion may be used to generate all possible fragmentation schemas (an exhaustive
search), given by: 2(

∑ K
i=1 ni), where K and ni represent the number of fragmen-

tation attributes and the number of sub domains of fragmentation attribute Ai.
Selection, crossover and mutation operations of our GA are detailled in [1].

Constraint Handing: Penalty Ranking. Each fragmentation schema FSi

generated by our GA is evaluated using a fitness function representing by a
cost model which calculates the sum of page accesses (inputs/outputs) incurred
by each query executed on the fragmented data warehouse. Our cost model
supposes that all dimension tables are stored in the main memory. Let Dsel =
{Dsel

1 , ..., Dsel
k } be the set of dimension tables having selection predicates, where

each selection predicate pj (defined on a dimension table Di) has a selectivity
factor denoted by Sel

pj

Di
(Sel

pj

Di
∈ [0, 1]). For each predicate pj , we define its

selectivity factor on the fact table, denoted by Sel
pj

F (Sel
pj

Di
�= Sel

pj

F) [1]. In this
study, the selectivity factors are chosen using an uniform distribution (UD) and
a non uniform distribution (NUD).

To compute our fitness function, each query Qk is executed over each par-
titioned schema FSi {S1, S2, ..., SNi}. In order to identify relevant sub star
schemas used by this query, we introduce a boolean variable (denoted by

SAGA: A Combination of Genetic and Simulated Annealing Algorithms 215

V (Qk, Si)) defined as follows: V (Qk, Si) = 1 if the sub star schema Si is needed
for Qk, 0 otherwise. Therefore, the cost in terms of number of inputs out-
puts needed by this query is IOC(Qk, FSj) = (

∑Ni

j=1 V (Qk, FSj)
∏Mj

i=1 Selpi

F ×⌈
||F ||×L)

PS

⌉
), where, Mj , F , L and PS represent the number of selection pred-

icates defining the fact fragment of the sub star schema Sj , the cardinality of
the fact table (number of tuples) F , the width, in bytes, of a tuple of a table
F and the page size of the file system (in bytes), respectively. The total cost of
executing all queries Q is given by: TIOC(Q, FSi) =

∑m
k=1 IOC(Qk, FSi). Our

horizontal partitioning schema problem can be formulated as follows:

Maximize Eval(Q, FSi) = (TIOC(Q, φ) − TIOC(Q, FSi)) subject to Ni ≤ W ,
where TIOC(Q, φ) is the cost of executing the set of queries on the no partitioned
schema. Note that our GA may generate fragmentation schemas that violate the
maintenance constraint (see Section 2). In order to penalise these schemas, a
penalty value is introduced as a part of the fitness function. In our study we
used a linear penalty [9] defined as: Pen(Q, FSi) = α × (Ni − W), where α is
the penalty factor (a constant > 0). Our final fitness function follows the divide
mode [9] and defined as follows:

F (Q, FSi) = Eval(Q,FSi)
Pen(Q,FSi)

, if Pen(Q, FSi) > 1, Eval(Q, FSi); otherwise.

3.2 Simulated Annealing Algorithm Setting

The SA is applied on the final solution obtained by the GA. This means that
the initial state of SA is the fragmentation schema generated by the GA. Ran-
dom moves used by the SA are applied on the final multidimensional array of
GA. In order to facilitate their implementation, the initial array is transformed
into one dimensional array, by concatenating its all rows. This is gives a new
representation of the fragmentation schema of fact table. The random moves
generate a new problem, called the validation of a solution. This is due to the
fact that our SA consists in modifying cell values of the array by incrementing
or decrementing them. This may cause an overflow of domain values of cells.
To solve this problem, we have developed a function that checks the validity of
each solution generated by SA. The fitness of each solution is calculated using
the cost model (TC) developed in Section 3.1. The steps of our SA are shown
in Algorithm 1.

4 Experimental Studies

For our study, we use the dataset from the APB1 benchmark [2]. The star schema
of this benchmark has one fact table Actvars and four dimension tables: Actvars
(24 786 000 tuples), Prodlevel (9 000 tuples), Custlevel (900 tuples), Timelevel (24
tuples), and Chanlevel (9 tuples). This warehouse has been populated using the
generation module of APB1. Our simulation softwarewas built using Visual C per-
formed under a Pentium IV 1,5 Ghz microcomputer (with a memory of 256 Mo).

216 L. Bellatreche, K. Boukhalfa, and H.I. Abdalla

Algorithm 1. Simulated Annealing Algorithm
Input: initial state (the fragmentation schema generated by GA), initial temperature;
Output: minstate;
begin

minstate:= initial state; cost := TC(initial state); mincost := cost;
temp := initial temperature;
repeat

repeat
newstate:=after random move; validation check(newstate); newcost:=

TC(newstate);
if (newcost ≤ cost) then state := newstate; cost := newcost

else with probability e(newcost−cost
temp

)

state := newstate; cost := newcost
end;
if (cost < mincost) then minstate := state; mincost := cost
end
until equilibrium not reached;
reduce temperature

until not frozen;
return minstate

end

Experimental Setup. Wehave considered 15 queries. Eachquery has selectionpred-
icates, where each one has its selectivity factor. The page size (PS) is 65536 bytes.
We considered 9 fragmentation attributes. The number of sub domains generated
by these attributes is 40. An exhaustive algorithm should generate 240 fragmen-
tation schemas to get the optimal solution. Due to this large number we did not
consider an exhaustive search. Our experiments were conducted as follows: firstly,
we conduct experimentation to identify the good parameters of our GA: (1) num-
ber of generations, (2) number of chromosomes, (3) crossover rate, (4) mutation
rate, secondly, using these parameters, we run our GA and then the SA.

The relevant parameters obtained by the first experimentation is 1: 500 gener-
ations (40 chromosomes per generation), crossover and mutation rates are 70%
and 30%, respectively, in the beginning. After several generations, the mutation
rate of 6% was used to ovoid a redundant search.

We have conducted experiments to get the best value of penalty factor α. To
do so, we have chosen several values of α and for each one we execute our GA.
The results show that the penalty factor has a great impact of the final solution.
Figure 1 shows that when α is small, the performance of queries is good. The
logic behind this result is that when α is small, the maintenance constraint will
be relaxed, therefore our GA explores more solutions and does not ignore the
penalised solutions. Figure 2 confirms this result by showing the explosion of
the number of fragments when α is less than 0.5 for non uniform distribution
(NUD). For the rest of experiments, we choose α = 0.01.

1 For lack of space these experiments are not presented.

SAGA: A Combination of Genetic and Simulated Annealing Algorithms 217

0

5000

10000

15000

20000

25000

100 10 1 0,5 0,01 0,0001 0,00001

I/O

UD NUD

α

Fig. 1. The effect of the penalty factor on
the quality of fragmentation schemas

0

5000

10000

15000

20000

25000

30000

35000

40000

100 10 1 0,5 0,01 0,0001 0,00001

#
of
f
r
a
g
m
e
n
t
s

UD NUD

Fig. 2. Impact of penalty factor on the
number of generated fragments

0

500

1000

1500

2000

2500

N
u

m
b

e
r

o
f

fr
a

g
m

e
n

ts

1 2 3 4 5 6 7 8

Number of attributes

NUD UD

Fig. 3. The impact of the number of frag-
mentation attributes on number of final
fragments

0

50000

100000

150000

200000

250000

300000

350000

I/
O

2 3 4 5 6 7 8 9

Number of attributes

NUD UD

Fig. 4. The impact of the number of frag-
mentation attributes on total IO

Experimentation of GA. In order to evaluate the impact of the used fragmen-
tation attributes, we did an experimentation that varies the number of these
attributes. It starts from one to nine attributes, and for each step, it calculates
the number of generated fragments, the number of inputs outputs for execut-
ing the 15 queries. The results show that the number of fragments and IOs
are proportional with the number of used fragmentation attributes (Figures 3
and 4). The main guideline that a DWA can consider is that if he wants to
speed up his queries, he should use a large number of attributes covering all
dimension tables. This is because OLAP queries are executed on the whole
schema. Figure 5 studied the effect of the dimension tables participating on
the fragmentation process. The performance of OLAP queries is proportional
with the number of these tables. In Figure 6, we realised that the rate be-
tween the returned fragments by our GA and the possible ones varies according
the number of the used fragmentation attributes. When only six attributes are
used, this rate is high. Starting from six attributes, this rate becomes small
(less than 1.5%). This is due to the augmentation of the number of possible
fragments.

218 L. Bellatreche, K. Boukhalfa, and H.I. Abdalla

0

20000

40000

60000

80000

100000

120000

I/O

1 2 3 4

Number of fragmented tables

NUD UD

Fig. 5. Number of dimension tables par-
ticipating in the fragmentation process
and their impact on performance

0

10

20

30

40

50

60

70

80

%

2 3 4 5 6 7 8 9

 Number of attributes

NUD UD

Fig. 6. The rate between the number of
generated fragments and possible frag-
ments

0

10

20

30

40

50

60

70

I/
O

Q1 Q3 Q10 Q11

Query

GA GA+SA

Fig. 7. Profitable queries

GA
4951

GA+SA
2785

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

I/O

Fig. 8. Query reduction after SA

Experimentation of the SA. Parameters used in our SA are: initial temperature
was 400 which is decremented by 2 each 100 iterations, threshold was 2000, α
was 0.01, and the number of generations with improvement was fixed at 21000.
We have studied the effect of GA and SA on different queries. The reduction is
significantly when using the SA. We realised that among the initial set of queries
(15), some queries do not get benefit from the application of SA. This is because
that their selection predicates do not match with the fragmentation predicates
generated by SA (see Figure 7). Finally, Figure 8 shows the impact of SA on
global query processing cost reduction. It was reduced by 44% after applying
the SA. We can conclude that the combination of GA and SA gets a good result
(SA is complementary to GA).

5 Conclusion

In this paper, we concentrate on horizontal partitioning of relational warehouses.
The number of fact fragments generated by our partitioning methodology can

SAGA: A Combination of Genetic and Simulated Annealing Algorithms 219

be very huge. Therefore, it will be difficult for the data warehouse administrator
to maintain all fragments. To solve this problem, firstly, we formalised it as an
optimisation problem. Secondly, we proposed a hybrid method combining ge-
netic and simulated annealing algorithms. The use of SAs avoids the problem
of premature convergence inherent to GAs by allowing uphill moves to solutions
with a worse fitness. This fitness is characterised by a cost model that evalu-
ates the cost of executing a set of most frequently queries performed on a top
of the partitioned warehouse schema. This cost model takes into account the
penalty function. Finally, we implement the proposed solution using the APB-1
benchmark. Our experimental studies go through three steps: (1) identification
of relevant parameters that will be used for our GA, (2) execution of GA using
these parameters, and (3) execution of our SA based on the solution obtained
by our GA. The experimental results are encouraging and show the feasibility
of SAGA.

Interesting extension of this work concerns the application of the proposed
algorithms to select join indexes due to the similarity between star join index
and fact fragments.

References

1. L. Bellatreche and Boukhalfa K. An evolutionary approach to schema partition-
ing selection in a data warehouse environment. Proceeding of the International
Conference on Data Warehousing and Knowledge Discovery (DAWAK’2005), pages
115–125, August 2005.

2. OLAP Council. Apb-1 olap benchmark, release ii. http://www.olapcouncil.org/
research/bmarkly.htm, 1998.

3. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, Michigan, 1975.

4. Y. Ioannidis and Y. Kang. Randomized algorithms algorithms for optimizing large
join queries. Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 9–22, 1990.

5. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, May 1983.

6. S. Papadomanolakis and A. Ailamaki. Autopart: Automating schema design for
large scientific databases using data partitioning. Proceedings of the 16th Inter-
national Conference on Scientific and Statistical Database Management (SSDBM
2004), pages 383–392, June 2004.

7. A. Sanjay, V. R. Narasayya, and B. Yang. Integrating vertical and horizontal parti-
tioning into automated physical database design. Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 359–370, June 2004.

8. T. Stöhr, H. Märtens, and E. Rahm. Multi-dimensional database allocation for
parallel data warehouses. Proceedings of the International Conference on Very Large
Databases, pages 273–284, 2000.

9. J. X. Yu, C-H. Choi, and G. Gou. Materialized view selection as constrained evolu-
tion optimization. IEEE Transactions On Systems, Man, and Cybernetics, Part 3,
33(4):458–467, November 2004.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 220 – 231, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Scheduling Strategies and Their Evaluation in a Data
Stream Management System*

Sharma Chakravarthy and Vamshi Pajjuri

Information Technology Laboratory and Department of Computer Science and Engineering
The University of Texas at Arlington

sharma@cse.uta.edu

Abstract. MavStream, a Data Stream Management System (DSMS), has been
developed for processing stream data from applications such as network moni-
toring, sensor monitoring and traffic management systems that require near-real
time results and have to process unbounded streams of data. In order to be use-
ful, a result produced by MavStream has to meet certain Quality of Service
(QoS) requirements on tuple latency, memory usage, and throughput. Strategies
used for scheduling the operators of continuous query (CQ) significantly affect
the QoS metrics and hence are of interest. This paper discusses scheduling
strategies used in MavStream, their design, implementation, and evaluation.
Scheduling is done in MavStream at the operator level. The scheduler maintains
a ready queue of operators and decides on the operators to be scheduled based
on the scheduling strategy. We first introduce the path capacity scheduling
strategy with the goal of minimizing tuple latency by scheduling operator paths
with maximum processing capacity. Later we discuss segment-scheduling strat-
egy that aims at minimization of total memory requirement by scheduling op-
erator segments with maximum memory release capacity. We then discuss sim-
plified segment strategy, which splits operator path into just two segments pro-
viding better tuple latency performance than segment scheduling strategy and
lower memory utilization than path capacity scheduling strategy. Extensive set
of experiments have been designed and performed to evaluate the proposed
scheduling strategies by simulating real time streams. The performance metrics
of average tuple latency, memory utilization and throughput are compared with
each other for different strategies and with round robin strategy to validate the
analytical conclusions.

1 Introduction

Traditional database management systems (DBMSs), consisting of a set of persistent
relations, a set of well-defined operations, and a highly optimized query processing
engine, have been researched for over 25 years and are widely used in applications
that require persistent storage and processing of ad hoc queries to manage and process
large volume of data. DBMSs are designed for managing large amounts of data and

* This work was supported, in part, by the following NSF grants: IIS-0326505, EIA-0216500,

MRI 0421282, and IIS 0534611.

 Scheduling Strategies and Their Evaluation 221

for ad hoc querying and generating reports. They support features such as consis-
tency, concurrency and recovery over well-defined operations over relations such as
insertion, deletion, and update and is efficient for supporting large volume of transac-
tions over persistent data.

However, the past few years have witnessed a large class of data-intensive applica-
tions that produce data at high update rates (e.g., stock markets, sensor applications,
and pervasive environments). Also these applications produce data continuously and
the data is typically presented in the form of a stream. As a result, the volume of a
data stream is huge. These applications need processing capability for data arriving
continuously which may be used for monitoring interesting changes or patterns over
the data in a timely manner. An example would be to find traffic accidents on a high-
way. These applications are different from DBMS applications in terms of their data
sources and computation requirements.

It is clear that these applications do not fit the traditional DBMS processing model
and its querying paradigm. DBMSs are not designed to load data in the form of
streams and to provide continuous computation, expressed as continuous queries,
over this data. The techniques developed for DBMSs cannot be directly applied to
these applications as they were not designed for real-time applications and to support
quality of service (QoS) requirements. A re-examination of the processing model and
query processing techniques are needed to match the requirements of an increasing
number of stream-based applications. The systems that are used to process data
streams and satisfy the needs of those stream-based applications are termed Data
Stream Management Systems (DSMSs).

MavStream is a generalized DSMS designed for supporting continuous query proc-
essing on stream data and to support QoS specifications associated with queries. In
MavStream [1], user can give a query from a GUI, which is instantiated, scheduled
and executed. Queries can be ad-hoc or continuous [3]. Continuous streams are given
as input and results are computed in real-time without storing the data in secondary
memory. This paper mainly concentrates on scheduling alternatives to support the
predefined Quality of Service (QoS) requirements for a continuous query. The con-
tinuous streams are unbounded and can be thought of as a relation with infinite tuples.
The result produced has to be within a specified average tuple latency range since
most of these applications need to react in a timely manner. This could significantly
be affected by the way a query is scheduled. As the size of the main memory and the
CPU speed is limited and DSMS requires real time results, optimization of memory
usage is critical for DSMSs. Maximum memory utilization should be bounded as the
queries are executed in main memory. Thus, we address the two QoS requirements:
average tuple latency and maximum memory utilization, in this paper. The user speci-
fies a threshold for the average tuple latency and the memory utilization. This QoS for
a query can be achieved by selecting the appropriate strategy for scheduling the op-
erators of the query and hence is a major area of interest and the main focus of this
paper. In this paper the scheduling strategies are extended and then a comparison is
made to evaluate their effectiveness. A single scheduling strategy would not be able
to satisfy both QoS measures, as there are tradeoffs among the performance metrics
and the usage of limited resources. So we have introduced several scheduling
strategies [7].

222 S. Chakravarthy and V. Pajjuri

1. Path Capacity scheduling to achieve minimum tuple latency.
2. The segment scheduling strategy to achieve the minimal memory requirements.
3. The simplified segment strategy, which requires slightly more memory but gives

better tuple latency than the segment strategy.

In Section 2 we describe related work in this field. In section 3 we describe the ar-
chitecture of MavStream while section 4 discusses the design of the scheduling strate-
gies presented in MavStream and their limitations. In section 5, the experiments and
results are given to evaluate the strategies. We conclude with our contributions and a
summary of directions for future work in Section 6.

2 Related Work

Aurora [5] is a data flow system that uses the primitive box and arrow representation.
Tuples flow from source to destination through the operational boxes. The scheduler
is responsible for multiplexing the processor usage to multiple queries. To reduce the
scheduling and operator overhead, Aurora relies on batching. Aurora scheduler per-
forms dynamic scheduling-plan construction and QoS-aware scheduling. Aurora em-
ploys two level [8] scheduling approach to address the execution of multiple simulta-
neous queries. The first level handles the scheduling of super boxes, which is a set of
operators, and the second level decides how to schedule a box within a super box.
They have discussed their strategy to decrease the average tuple latency based on
superbox traversal. However, we have used a different approach and have proved that
our PCS is optimal in terms of overall tuple latency. Although their tuple batching -
termed train processing, uses a similar concept used in the Chain strategy and our
segment strategies, no algorithm has been provided to construct those superboxes.

STREAM [3] is a prototype implementation of a complete data stream manage-
ment system being developed at Stanford. STREAM has a central scheduler that has
the responsibility for scheduling operators. The scheduler dynamically determines the
time quantum of execution for each operator. Period of execution may be based on
time, or on the number of tuples consumed or produced. STREAM uses the chain
scheduling strategy [9] with the goal of minimizing the total internal queue size. It
supports continuous queries but has not addressed the issue of ad-hoc queries. As a
complement to this, path capacity scheduling proposed in this paper minimizes the
tuple latency.

In Rate Based Optimization [10] the fundamental statistics used are estimated from
the rate of the streams in the query evaluation tree. They estimate the output rates of
various operators as a function of the rates of their input and use these estimates to
optimize queries. The Rate Based Optimization aims at maximizing the throughput of
the query. They do not consider tuple latency and memory requirement, which are the
prominent QoS measures.

Eddies [11] support dynamic re-optimization in decentralized dataflow query proc-
essing. It relies on simple dynamic local decisions to get a good global strategy. Ed-
dies have flexible prioritization scheme to process tuples from its priority queue. Lot-
tery Scheduling is utilized to do local scheduling based on selectivity. By adding a
feedback to the control path, it effectively favors the low-selectivity operators. Eddy

 Scheduling Strategies and Their Evaluation 223

module directs the flow of tuples from the inputs through the various operators to the
output, providing the flexibility to allow each tuple to be routed individually through
the operators. Eddy’s tuple buffer is implemented as a priority queue with a flexible
prioritization scheme. They use a router to schedule that also continuously monitors
the system status. The large amount of status information associated with the each
tuple affects its scalability.

3 MavStream Overview

MavStream is modeled as client-server architecture in which client accepts input from
the user and sends the transformed input to the server over predefined protocols. The
various components of MavStream are shown in Figure 1. The web-based client pro-
vides a graphical user interface to accept queries. It constructs a query plan object,
which is a tree of operator nodes that represents a single complete query and includes
QoS requirements from user specifications. MavStream server is a TCP Server, which
listens on a predefined port. It is responsible for executing user requests, and produc-
ing desired output. It accepts commands and requests from a client that describes the
task to be carried out. It provides integration and interaction of various modules. It
provides details of available streams and schema definitions to clients so that they can
pose relevant queries to the system. It initializes and instantiates operators constitut-
ing a query and schedules them. It also handles the starting and stopping of a query.

The query plan object and stream definitions are sent to the server. The Instantiator
has the responsibility of initializing and instantiating streaming operators and their
associated buffers on accepting the query plan object from the client. Instantiator
traverses the query tree in a bottom-up manner to ensure that child operators are in-
stantiated prior to parent operators, to respect query semantics as data flows from
leaves to root. It also associates input and output buffers (or queues) with desired
parameters to operators for consuming and producing tuples.

Fig. 1. MavStream Architecture

224 S. Chakravarthy and V. Pajjuri

The Alternate Plan Generator module takes the plan given by the user as input
and gives alternate plans that are more efficient than the input plan. The best alter-
nate plan (locally optimal) of a query tree may not be the optimal with respect to a
global plan. An alternate plan is considered the best when most of its operators are
merged with the existing global plan or the global plan satisfies user-specified QoS
specifications.

Run time optimizer uses alternate plan generator in order to dynamically select an
alternate plan when the result produced by the previous plan does not satisfy the qual-
ity of service requirements. To ensure QoS, optimizer monitors output and may ask
the scheduler to change the scheduling policy or increase the priority of the operators
or assign different time quantum for specific operators which need more time.

The scheduler is one of the critical components in MavStream. The scheduler
maintains a ready queue, which maintains the order in which operators are scheduled.
The server initially populates this queue. Operators must be in a ready state in order to
be scheduled. The rest of the paper discusses the scheduling strategies used in
MavStream.

4 Scheduling Strategies

Operating systems provide a coarse control over thread scheduling and are not useful
when scheduling needs some prioritization derived from application or query seman-
tics. In MavStream, we do operator level scheduling as it provides better control and
less overhead. Design of a scheduler and the scheduling strategies used have a signifi-
cant impact on meeting the QoS specifications. A good scheduling strategy should be
able to handle unexpected overload situation and should have low scheduling over-
head. Unfortunately, all of the QoS requirements listed above cannot be satisfied by a
single scheduling scheme. Hence we have implemented three scheduling strategies [7,
13] to deal with the different QoS metrics.

1. Path capacity scheduling strategy (PCS) to minimize tuple latency.
2. Segment scheduling to minimize memory utilization.
3. Simplified segment strategy, which is hybrid of the above two strategies.

MavStream supports relational operators such as select, split, project and windowed
versions of operators [4] such as aggregate and join. User query is made up of these
operators where the tuples are pushed from the bottom node (leaf node) to the root.
The following notations are used in the description of scheduling all the strategies.

i) Operator selectivity σi: The ratio of the number of tuples going out to the number
of tuples coming in.

ii) Operator processing capacity CPOi: The number of tuples that can be processed
in one time unit at operator Oi.

iii) Operator memory release capacity CMOi: The number of memory units that can
be released within one time unit by operator Oi.

iv) Operator path processing capacity CPPi: The number of tuples that can be proc-
essed within one time unit by operator path Pi.

 Scheduling Strategies and Their Evaluation 225

v) Operator service time (1/ CPOi): The number of time units needed to process one
tuple at this operator Oi.

vi) Path memory release capacity CMPi: The number of memory units released
within one time unit by the operator path Pi.

4.1 Path Capacity Scheduling Strategy

The path from the leaf node to the root node is called an operator path. The number of
operator paths is equal to the number of leaf nodes. The total time spent by a tuple to
reach the root node for an operator path with k operators with selectivity σi (where
i=1…k-1) is 1/ CP O1 + σ1/ CPO2 + ……+ σ1*…*σk-1/ CPOk. The time taken by one tuple
to go from the leaf node to the root node is the service time of the operator path. Proc-
essing capacity of the operator path is the inverse of service time of the operator path.

Path Capacity Scheduling (PCS) schedules the operator path with maximum proc-
essing capacity as long as there are tuples present in the input buffer of the operator
path. Once the operator path is chosen for scheduling, a bottom-up approach is used
to schedule the operators along the operator path. It is a static scheduling strategy as
the processing capacity of operator completely depends on the system and the selec-
tivity of the operator, which can be found by monitoring the output of the operator.

PCS minimizes tuple latency and has less scheduling overhead as the number of
operator paths is less than the number of operators. In round robin and other operator
scheduling strategies, the operators of two operator paths are scheduled in an inter-
leaving manner. The tuples are buffered in the intermediate queues that increase the
tuple latency. Path capacity strategy has starvation problem as most of the resources
are given to the operator path having maximum processing capacity. As each operator
is implemented as a single thread, context-switching overhead for both scheduling
strategies are same.

4.2 Segment Scheduling Strategy

Segment strategy is developed with the goal of minimizing the total internal queue
size. Segment construction involves partitioning the operator path into segments and
then pruning the segment list. Consider the operator path with k operators O1, O2…
Ok, with O1 being the leaf operator and Ok the root operator. Segment creation starts
by adding O1 to the segment and then adding to the segment the next operator if it has
a higher memory release capacity. This process is continued until the next operator in
the sequence has lower memory release capacity. Then a new segment is started and
the process continues until the root operator is added.

Memory release capacity of a segment with k operators is CP
S (InputTupleSize -

OutputTupleSize * σ1σ2…. σk). The scheduler chooses the segment with maximum
memory release capacity as long as there are tuples present in the input buffer of the
segment or there exists another segment with more memory release capacity than the
current segment. Once the segment is chosen for scheduling, a bottom-up approach is
used to schedule the operators along the segment. It is a static scheduling strategy.

In the query plan construction, we generally push the lower selectivity operators
down the tree, due to which there will be less number of tuples present in the system.

226 S. Chakravarthy and V. Pajjuri

Segment scheduling takes advantage of lower selectivity and higher processing rates
of the bottom side operators by scheduling the segment with maximum memory re-
lease capacity more often. In the segment scheduling, we buffer partially processed
tuples at the start of a segment that contributes towards higher tuple latency than the
path capacity strategy. Segment scheduling has less scheduling overhead than the
round robin as the number of segments is less than the number of operators in a query
plan.

4.3 Simplified Segment Scheduling Strategy

Simplified segment scheduling strategy is a variant of the segment scheduling strat-
egy. The operator path is partitioned into at most two segments. The first segment
includes the leaf operator and its adjacent operators such that the ratio of the memory
release capacity of the next operator to the current operator is more than the constant
factor γ, which is less than one to reduce the number of segments. All the other opera-
tors along the operator path will form the second segment. In the previous segment
construction algorithm, γ value used is 1.

Memory requirement is slightly more than the segment scheduling strategy because
the first segment releases more memory. The tuple latency is less than the segment
scheduling strategy because the tuples are buffered at most two times in the operator
path. The scheduling overhead is less than the segment scheduling because the num-
ber of segments in a segment strategy is more than the number of simplified segments
in a query plan.

4.4 Design Issues

The scheduler generally maintains a ready queue (containing the operators) that pro-
vides the order in which operators are scheduled. When a query plan and their opera-
tors are instantiated by the instantiator, server populates the ready queue. The tradi-
tional approach of maintaining a single ready queue does not allow switching between
scheduling strategies depending on QoS requirements. Also, it is not appropriate to be
generating segments at run time as it interferes with processing and causes increased
tuple latency. Figure 2 shows the new design, which will allow us to switch from one
scheduling strategy to other dynamically at run time. Instead of a single ready queue,
we have a sequence of ready queues each of which contains paths/segments for a
scheduling strategy. These are sorted with respect to their processing or memory re-
lease capacities. The processing capacity of operator paths and the memory release
capacity of the segments depend on the selectivity of each operator. If QoS require-
ments are not met, a different scheduling strategy is taken. All of the described sched-
uling constructs are created when a query plan is instantiated. The paths are revised
on server during the course of query execution, as the selectivity of each operator is
monitored and updated. The query given by the user is a tree of operator nodes that
has complete information about the flow of data. The starting selectivity of each op-
erator is assumed by the system and the paths are computed from the query tree be-
fore operators are instantiated.

 Scheduling Strategies and Their Evaluation 227

Fig. 2. Ready Queues

During query execution as the selectivity of operators is monitored, the values of
the selectivity might change and because of this the priorities of the operator paths
might change as well. To handle this problem, we sort the ready queue of the sched-
uler at the end of iteration. This approach introduces an overhead of sorting. As the
number of paths in a ready queue is quite small, the overhead introduced is minimal.

The use of the above scheduling strategies can lead to starvation of tuples present
in input buffers of the non-scheduled paths. To avoid this we schedule paths using a
minimum threshold (τ) number of tuples present in the input queue. The threshold
value is chosen based on the system load. If we choose a small value then the schedul-
ing overhead increases, and a large value might result in increased tuple latency.

5 Experimental Evaluation

All experiments were run on an unloaded machine with 2 Xeon processors, 2.4GHz
each, 2GB RAM and Red Hat Linux 8.0 as the operating system. The data set for
performance evaluation is obtained from MavHome [6]. The continuous stream col-
lected from MavHome is stored in a database. A feeder module generates input data
streams which are fed to the MavStream server. The feeder module can be configured
such that the delays between tuples follow a Poisson distribution with a specified
arrival rate.

The performance metrics considered are: average tuple latency, memory utilization
and throughput. To calculate the average tuple latency, we timestamp each tuple when
entering and leaving the system and use these timestamps to calculate the actual tuple
latency. To calculate memory utilization, we monitor each buffer every second and
determine the number of tuples present in it. Multiplying number of tuples by the
average size of tuple in that buffer gives memory utilization. To calculate throughput,
we monitor the output buffer every second and determine the number of tuples com-
ing out and convert it into an average for a period.

5.1 Effect on Varying Data Rate on Average Tuple Latency and Maximum
Memory

In this experiment, the effect of varying data rate on average tuple latency is observed
for various scheduling strategies. It is run using a single query with six operators in

228 S. Chakravarthy and V. Pajjuri

Fig. 3. Data Rate vs. Avg Tuple Latency

Fig. 4. Data Rate vs. Memory Utilization

the system. This experiment is done in main memory (with the buffer manager
off). The data rate is varied from 100 tuples/sec to 900 tuples/sec. The data set is
fixed with 1000 tuples/window with 5 windows. It can be observed from the
Figure 3 that as the data rate increases the “Average Tuple Latency” increases. This
is due to the increase in waiting time in the buffer which is proportional to the
data rate.

In the path capacity scheduling strategy, tuples are processed without buffering in
the intermediate queues, whereas in the other scheduling strategies, tuples are buff-
ered in the intermediate queues and the waiting time as well as the tuple latency in-
creases. Simplified segment strategy is better than the segment strategy as the number
of times a tuple gets buffered is at most two. In this experiment, the effect of varying
data rate on Maximum Memory Utilization is also computed for various scheduling
strategies. It can be observed from Figure 4 that, as the data rate increases the “Maxi-
mum Memory Utilization” also increases. In the path capacity scheduling strategy,
unprocessed tuples are buffered in the input queues of base operators. Segment
scheduling strategy takes advantage of lower selectivity and processing capacity of
the bottom operator. Segment scheduling strategy picks out the particular segment
that is most effective at reducing memory usage and schedules it repeatedly as long as

 Scheduling Strategies and Their Evaluation 229

there are tuples present in its input queue, reducing memory utilization. On the other
hand, round robin executes the best operator less frequently, increasing the memory
usage.

5.2 Throughput of the System During the Query Execution

In this experiment, the number of tuples given out by the system is monitored during
the course of execution of the query in various scheduling strategies. It is run using a
single query with six operators in the system for different input data rates. This ex-
periment is done in the main memory. This is done so as to study the throughput. The
data set is fixed at 1000 tuples/window with 5 windows.

Fig. 5. Throughput vs. Time

It is observed from Figure 5 (simplified scheduling strategy is not shown for im-

proved legibility) that the output pattern of the path capacity scheduling strategy is
much smoother than the segment scheduling strategy as well as the round robin
scheduling strategy.

5.3 Memory Utilization by the System During the Query Executions

In this experiment, the memory utilized by the system is monitored during the course
of execution of the query in various scheduling strategies. It is run using a single
query with six operators in the system. This experiment is done in the main memory.
The data rate is 40 tuples/sec for the first 150 seconds and then it is increased to 80
tuples/sec until 200 seconds. The data rate is again decreased to the normal rate of 40
tuples/second until 300 seconds and then increased to 80 tuples/sec until 350 seconds
and brought down to 40 tuples/second and fixed until the end of execution. This is
done so as to study the memory utilization when the input rates change and to observe
the effectiveness of scheduling algorithms on memory utilization during bursty input.
The data set is fixed at 2000 tuples/window with 10 windows.

230 S. Chakravarthy and V. Pajjuri

Fig. 6. Memory Utilization Vs Time

It can be observed from the Figure 6 that the memory utilized by the segment

scheduling strategy is less than the path capacity scheduling. As the bottom operators
have low selectivity, they can release more memory and segment scheduling takes
advantage of these operators and schedules these operators more often to release more
memory. Simplified segment take slightly more memory than the segment strategy as
it divides the operator path into two segments. Path capacity strategy has some bursty
nature in the memory consumed at the times when there is an increase in the input
rate. As the tuples are fed to the base buffers the memory utilization increases and
when tuples are no longer fed to base buffers the memory utilization decreases.

6 Conclusion and Future Work

In this paper, we have discussed several scheduling strategies for MavStream that will
help address the QoS requirements. All the strategies described in this paper have
been implemented as part of the MavStream system. Path capacity scheduling strat-
egy minimizes the average tuple latency of the stream processing system. Segment
scheduling is implemented to minimize the maximum memory required by the system
by prioritizing the segment, which can release more memory. Similarly, simplified
segment scheduling takes slightly more memory than segment strategy and gives
better tuple latency. We have evaluated these scheduling strategies for various per-
formance metrics such as tuple latency, memory utilization and throughput.
MavStream server is designed to construct the operator paths, segments and simpli-
fied segments from the query tree. It also helps in calculating the performance pa-
rameters used by the scheduler such as processing capacity of operator path, memory
release capacity by the segments and simplified segments.

A number of extensions to the Mavstream system are underway. Shedding [12]
of tuples (termed load shedding) need to be employed when QoS requirements are
not met even after changing scheduling to the best possible strategy. This may in-
volve sacrificing some accuracy [2] of the results. A run-time optimizer is being

 Scheduling Strategies and Their Evaluation 231

implemented to monitor QoS of the system and match it against user-specified val-
ues to heuristically change scheduling and load shedding to maximize the perform-
ance of the system. Currently, we are combining event processing with stream proc-
essing in a synergistic manner to provide an end-to-end system for advanced moni-
toring applications.

Acknowledgments

The authors would like to thank Vihang Garg, Raman Adaikkalavan, and Balakumar
Kendai on their help in revising the paper and formatting it.

References

1. A. Gilani. Design and Implementation of Stream Operators, Query Instantiator and Stream
Buffer Manager. MS Thesis, CSE Dept.. The University of Texas at Arlington, 2003.
[online] http://www.cse.uta.edu/research/publications/Downloads/CSE-2003-37.pdf

2. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing, approximation, and resource management
in a data stream management system. In Proc of CIDR, Jan 2003: pages 245-256.

3. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data
stream systems. In Proc of ACM PODS, June 2002: pages 1-16.

4. S. Sonune. Design and Implementation of Windowed Operators and Scheduler for Stream
Data. MS Thesis CSE Department. The University of Texas at Arlington, 2003. [online]
http://www.cse.uta.edu/research/publications/Downloads/CSE-2003-38.pdf

5. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, and S. Zdonik. Monitoring streams - a new class of data management applica-
tions. In Proc of the VLDB, 2002.

6. Cook, D., et al., MavHome: An Agent-Based Smart Home. In Proc of the Conference on
Pervasive Computing, 2003. http://mavhome.uta.edu

7. Jiang Q., Chakravarthy S., Scheduling strategies for Processing Continuous Queries over
Streams In Proc of 21st BNCOD (2004), pages: 16-30, July 2004.

8. D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebraker. Opera-
tor scheduling in a data stream manager. In Proc. Of the VLDB, 2003.

9. B Babcock, S. Babu, M. Datar, R. Motwani, Chain: Operators Scheduling for Memory
Minimization in Stream Systems. In Proc of the ACM SIGMOD, 2003.

10. S. Viglas, J. Naughton, Rate-based Query Optimization for Streaming Information
Sources. In Proc of the ACM SIGMOD, 2002.

11. R. Avnur, J. Hellerstein, Eddies: Continuously adaptive query processing. In Proc of the
ACM SIGMOD, 2000: pages 261-272.

12. N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, Load Shedding in
a Data Stream Manager. In proc of the VLDB, 2003.

13. V. Pajjuri. Design and implementation of scheduling strategies and their evaluation in
MavStream. , MS Thesis CSE Department. The University of Texas at Arlington, 2004.
[online] http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Vamshi.pdf.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 232 – 239, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Anatomy of a Stream Processing System*

Altaf Gilani, Satyajeet Sonune, Balakumar Kendai, and Sharma Chakravarthy

Information Technology Laboratory
and Department of Computer Science and Engineering

The University of Texas at Arlington
sharma@cse.uta.edu

Abstract. Data intensive applications such as network monitoring, financial ap-
plications; sensor-based applications etc. need to be supported by general-
purpose systems rather than customized implementations. They have a continu-
ous, unpredictable and unbounded flow of data as input, referred as streams.
The fact that data comes as a stream with varying input rates (instead of access-
ing data stored on a disk in a predictable way) and that quality of service (QoS)
requirements are stringent for these applications warrants a re-examination of
the fundamental architecture of a DBMS. This paper describes the basic proc-
essing model and architecture of MavStream - a new Data Stream Management
System (DSMS) being developed at UT Arlington. The architecture of
MavStream is the primary focus of this paper. The user can give a continuous
query from a graphical user interface (GUI), which is instantiated, scheduled,
and executed by the MavStream server. We first provide an overview of the ba-
sic model and architecture and then describe some of the components of the
system. We provide some experimental results to demonstrate the utility of the
system and the effect of different scheduling strategies and buffer sizes on the
performance and output.

1 Introduction

Traditional database management systems (DBMSs) are geared towards commercial
data processing. They are not designed to support the needs of stream-based applica-
tions. Streaming applications [1, 2] have their own characteristics such as unbounded
input, and arrival rates that are unpredictable (bursty). In a data stream management
system (or DSMS), stored (continuous) queries [3] are applied to stream data. The
approach taken by a DBMS (store the data and apply queries) is not applicable as near
real-time responses are expected. First, some of the operators used in a DBMS are
blocking in nature when applied to non-finite data. Second, DBMS has no provision
for supporting quality of service (QoS) requirements of applications. A DBMS as-
sumes data elements to be synchronized but most of the stream-oriented applications
are asynchronous in nature. A DBMS produces exact and complete answers where as

* This work was supported, in part, by the following NSF grants: IIS-0326505, EIA-0216500,

MRI 0421282, and IIS 0534611.

 The Anatomy of a Stream Processing System 233

DSMS applications need to produce incremental outputs and these applications can
tolerate approximate answers (when load shedding is used).

The novel requirements of stream-processing applications motivated us to design
and develop MavStream [13, 14] to support continuous queries over data streams.
Some of the application areas include security, telecommunications data management,
manufacturing, pervasive environments, click stream analysis, and military applica-
tions (such as monitoring soldier characteristics in a battle field).

The remainder of the paper is organized as follows. Section 2 describes related
work. In section 3, we discuss the system architecture, operators, buffer management,
and scheduling. This section also includes the implementation status. Section 4 pre-
sents experimental results. Conclusions are in section 5.

2 Related Work

Most of the ongoing research in data streams including MavStream has adapted the
relational operators for a stream-processing environment. But systems such as Tele-
graph [4] does not rely upon a traditional query plan, but instead, constructs a query
plan that contains adaptive routing modules, which are able to re-optimize [5,6] the
plan on a continuous basis while a query is running. In Cougar [7] queries deter-
mine the data extracted from sensors thereby reducing the volume of raw data
transmitted. NiagaraCQ [8] is a system that mainly focuses on supporting continu-
ous query processing over multiple, distributed XML files. Aurora’s [9] query alge-
bra supports several primitive operations. Quality of service is associated with the
output. Scheduler [10] is designed to cater to the needs of a large-scale system with
real time response requirements. Stream [11] uses a modified version of SQL
(CQL) as the query interface. Operators can produce approximate answers based on
the available memory [12].

3 MavStream Architecture

MavStream [13, 14] uses a client-server architecture in which the client accepts input
queries from the user, transforms it and sends the request to the server. The various
components of MavStream are show in Fig. 1. The client provides a graphical user
interface to accept queries. It constructs a plan object data structure which is a tree of
operator nodes where every node describes the operator completely. The plan object
is sent to the server using a pre-defined set of protocols.

MavStream server is responsible for instantiating the plan object and executing it
to produce desired output. It consists of a number of modules such as instantiator,
actual operators, queues associated with each operator to hold unprocessed tuples,
buffer manager and a scheduler, and handles interaction between them through shared
data structures and synchronization. It provides details of available streams and
schema definitions to clients so that they can pose relevant queries to the system. It
also allows new streams to be registered with the system. It initializes and instantiates

234 A. Gilani et al.

Fig. 1. Server Architecture

operators con-
stituting a
query and sch-
edules them. It
also stops a
query on re-
ceiving com-
mand for query
termination or
when the life
span of the
query is over.

The instan-
tiator module
in MavStream
has the respon-

sibility of initializing and instantiating stream processing operators (such as select,
project, windowed join and aggregate operators) and their associated buffers before
a continuous query can be executed. The query plan is traversed in post order by the
instantiator to ensure that child operators are instantiated prior to the parent opera-
tor in order to properly create the query tree (or plan). Instantiator extracts the in-
formation from the plan object data structure and uses it to create an executable
operator.

The scheduler [14] initiates the execution of a query plan and sends the result
back to the user through the client. The other modules in this architecture are: alter-
nate plan generator and a runtime optimizer. The Alternate plan generator can be
used for generating equivalent alternative plans for a given query. The gain may be
magnified when it comes to optimizing a global plan by selecting one of the alter-
nate plans in which most number of operators in an alternate plan merges with the
existing operators in the global plan to share memory and computation. Run time
optimizer is responsible for using the output and deciding changes (a different
scheduling strategy, load shedding) that need to be carried out dynamically to sat-
isfy user quality of service (QoS) requirements (such as minimizing tuple latency or
memory).

3.1 Stream Operators

The operators are designed to produce continuous, real-time output as a result of
processing queries. Blocking operators such as aggregates and join may block for-
ever on their input, as streams are potentially unbounded. Hence, operators are
broadly classified into: Non-blocking Operators and blocking operators. Non-
blocking operators [13] process each tuple independently and hence the size of the
stream is not an issue. Blocking Operators, on the other hand, require all tuples for
their computation. However, in a streaming environment that is equivalent to wait-
ing and not producing any output until the stream input is over. Since streams are

 The Anatomy of a Stream Processing System 235

assumed to be unbounded, this is not possible. Hence, the concept of a window
(either a time interval or number of tuples) is used to compute blocking operators.
Output is produced at the end of each window resulting in a continuous output that
is also a stream.

3.2 Operator Model

The varying nature of an input stream is handled with data flow architecture for proc-
essing input tuples. Hence, it requires that the operators perform computation only
when data is available. An operator processes tuples in its input buffers when it is
allocated time by the scheduler. Further the operator should suspend itself when all
the tuples in the input buffer are processed to maximize the time spent for computa-
tion. All operators interact frequently with other modules such as the buffer manager
and the scheduler. Therefore it is necessary to present an abstraction of all operators
to other modules of MavStream.

Each operator [13, 14] in MavStream is modeled as a separate thread. This allows
one to schedule each operator explicitly and provides fine-grain control over their
scheduling. Every operator in MavStream is modeled as a generic operator. This ab-
straction consists of properties common to all operators such as state, priority, output
queues, and also provides an interface for other modules to start, stop, suspend and
resume the operator. Through its lifetime an operator can be in one of the four states:
ready, running, suspended, and stopped depending on the availability of data and the
scheduling policy. All operators get a specified time quantum which is dependent on
the scheduling policy and the priority of the operator.

Each operator reads a tuple from its input buffer processes it and delivers the re-
sult to the output buffer. Further window-based operators maintain an internal syn-
opsis of tuples based on window definition. For join operator the synopsis will con-
tain the input tuples that belong to a window from the both the streams. The join
operator consumes a tuple from the input buffer, joins the tuple with all the tuples
of other stream maintained in the synopsis that belong to current window and sat-
isfy the join condition. The aggregate operators also computes the results incremen-
tally as tuples are read from input buffer and output is given at the end of the
window.

3.3 Window Specifications

The blocking nature of join and aggregate operators necessitates the use of windows,
which allows the operator to not block entirely and provide continuous output. Win-
dows [13] are classified as physical or logical based on how they are defined. Physical
windows are defined using physical time while logical windows are defined using
number of tuples in a window. Both physical and logical windows are further charac-
terized based on how window endpoints are defined. A Snapshot Window is a single
fixed window, typically used by a DBMS. A Landmark Window has a fixed starting
point and the end point moves. As a result, windows get larger and larger. A Sliding
Window has both of its end points moving in the same direction and by the same

236 A. Gilani et al.

amount. Landmark and sliding window can be further classified based on the direc-
tion in which the window moves. Sliding windows can also be overlapping or disjoint
based on the starting point of the next window.

In order to represent stream-based queries, the representation should clearly handle
all of the above window specifications. SQL does not support window-based opera-
tions. Hence an extension has been added to support window-based queries. Also, this
representation should support both physical and logical windows. The following four
clauses are used in MavStream for specifying windows. Begin Window defines the
starting point for the first window. End Window defines the ending point for the first
window. Hop Size represents the amount by which the window will be moving in
either direction. It is the hop size that determines the type of query window. Positive
(negative) hop sizes moves the window forward (backward).Start and End time define
the start and end query times.

3.4 Buffer Management

In a DSMS, between any two operators, there is a queue to hold the tuples that are
yet to be processed by the operator. These queue sizes will vary during processing
depending upon the input rate and the scheduling strategy. Storing all partially
processed tuples may require an unbounded amount of memory. In reality as mem-
ory is bounded, we have implemented a pure main-memory alternative (buffer) and
a disk-based alternative [13]. This can be specified as a parameter in the configura-
tion file of the server. If the disk-based option is chosen, the tuples are written into
indexed files after the buffer reaches a specified limit. The information that a tuple
is stored or retrieved from main memory or a file is totally transparent to the
operators.

The other feature of the buffer is that there can be more than one operator reading
from a buffer at different consumption rates. In order to support these different rates
of tuple consumption, buffer maintains a pointer (currentUnReadElement) for each
operator associated with the buffer. This pointer points to the next tuple in the buffer
that has not been read by the operator. Initially, each consumer operator has to regis-
ter with the buffer. Buffer maintains a table, which contains the operators registered
with the buffer and its currentUnReadElement pointer. This pointer needs to be ad-
justed when elements are de-queued from the buffer.

Purging tuples from a buffer has to be handled carefully as more than one operator
is registered with the buffer. Before dequeuing a tuple from the buffer, purging logic
needs to make sure that the element is not of use to any of its consumers; that is, all
operators have read the element. For this, the purging logic makes use of currentUn-
ReadElement pointer of each buffer. The minimum value of these pointer values is
used for purging tuples.

Another important decision is to determine when to call the purging logic. Purging
logic is called whenever an operator reads a tuple. Other operations on buffers do not
invoke purging. This is done so that tuples are emptied out of the buffers at the earli-
est, creating more space for new tuples.

 The Anatomy of a Stream Processing System 237

Fig. 2. Average tuple latency /Response time vs. Buffer size

3.5 Implementation Status

MavStream has been implemented in Java. All modules except the alternate plan
generator and the run-time optimizer has been implemented and tested. Split, se-
lect, joins and aggregate operators (sum, count, average, maximum, and minimum)
have been implemented. For joins, both nested-loop and hash-based join algorithms
have been implemented. Further, incremental and non-incremental (recomputed)
versions of join have been implemented. All forms of windows including overlap-

ping windows are
supported.

Currently, round
robin, weighted ro-
und robin, and flow-
based scheduling
(first-in, first-out)
[14] has been im-
plemented. A nu-
mber of instrumen-
tation has been in-
corporated to meas-
ure various usages:
tuple latency, mem-
ory used, throughput
etc.

4 Experimental Evaluation

All the experiments were performed on an unloaded machine with 2 Xeon proces-
sors, 2.4GHz, and 2GB RAM and Red Hat Linux 8.0 as the operating system. The
data set for performance evaluation has been collected from smart home application
[15] over a period of time. The live feed is stored in our database and is used as a
stream to this system. Tuples are generated with a poison distribution to simulate
real data set.

In the first experiment we observe the effect of buffer size on processing and re-
sponse time. This experiment was run on five windows each consisting of 5000 tuples
with a query having six operators. From Fig.2 it can be seen that when only main
memory buffer is used (unbounded in the figure) it takes very negligible amount of
time. As the buffer size is restricted, more tuples are stored on the disk and retrieved.
This introduces additional I/O cost for reading and writing tuples. Hence both tuple
latency and response times increase. Tuples stay longer the queues because of read
and write to secondary storage.

In the second experiment different scheduling algorithms (round robin and
weighted round robin) are studied to understand the behavior of average tuple latency
with respect to availability of main memory. A single query with four operators is

238 A. Gilani et al.

Fig. 3. Buffer size vs. Tuple latency

used for this experiment. The buffer assigned to each operator can contain at the most
1000 tuples. The data rate is fixed at 70 tuples/second. The data set is varied from 500
tuples per window to 1500 tuples per window.

As expected
the average
tuple latency is
inversely pro-
portional to
available mem-
ory. Higher the
memory avail-
able to opera-
tors, the lower
is the average
tuple latency
since no/few
disk operations
are involved.

As the buffer sizes associated with operators are reduced, tuples that cannot be accommo-
dated in main memory buffer are persisted on disk thus increasing the average tuple la-
tency. This effect was observed by varying the scheduling schemes. It is observed again
that data flow (or greedy approach) outperforms the other two scheduling strategies. Also
weighted scheduling outperforms simple scheduling in all the cases. Join which is more
complex and time consuming than select is assigned a higher priority. Since select opera-
tors are closer to data source in a query tree, they are assigned higher priority than project
as they need to cope up with high input rates. This meaningful distribution of priorities to
operators generates better result as observed in the Fig. 3. Simple scheduling scheme as-
sign fixed priority to operators, hence cannot be used effectively to meet QoS
requirements.

5 Conclusions

This paper briefly discusses the components of a stream data processing system and
the issues that are specific to stream processing as compared to database query proc-
essing. Different types of streaming queries are identified and a general-purpose
query representation is proposed. This representation covers all types of windows
required for representing continuous queries.

A generic streaming operator is proposed which satisfies the query processing re-
quirements of stream data. This provides a base model for implementing future opera-
tors. Effective buffer management strategies have been proposed to reduce the main
memory utilized by the tuples and using secondary storages transparently at times of
high load. We further analyze the effect of various scheduling strategies on varying
the buffer size and the dataset. This work is being enhanced to include alternate plan
generator and run time optimizer.

 The Anatomy of a Stream Processing System 239

References

1. D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, S. Zdonik. Monitoring Streams- A new class of data management applications.
In Proc of the 28th Intl. Conf. on VLDB, 2002.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. Models and Issues in Data Stream
Systems. Invited paper in Proc. of PODS 2002.

3. S. Chandrasekharan, M.J. Franklin. Streaming Queries over Streaming Data. In Proc of
the 28th Intl. Conf VLDB, 2002: 203-214.

4. S. Chandrasekharan, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M.A. Shah. TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In Proc. of CIDR 2003.

5. R. Avnur, J.M. Hellerstein. Eddies: Continuously adaptive query processing. In Proceed-
ings of ACM SIGMOD 2000: 261-272.

6. S. Madden, M.J. Franklin. Fjording the stream: An architecture for queries over streaming
sensor data. In Proc of the Intl. Conf. on Data Engineering, 2002: 555-566.

7. P. Bonnet, J. Gehrke, P. Seshadri. Towards sensor database systems. In Proc. Of 2nd Intl.
Conf. on Mobile Data Management, 2001.

8. J. Chen, D.J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A scalable continuous query system
for internet databases. In proc of ACM SIGMOD, 2000.

9. D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N.
Tatbul, S. Zdonik. Aurora: A New Model and Architecture for Data Stream Management.
In VLDB Journal (12)2: 120-139, August 2003.

10. D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, M. Stonebraker. Operator
Scheduling in a Data Stream Manager. In Proc of VLDB, 2003.

11. The STREAM Group. STREAM: The Stanford Stream Data Manager. IEEE Data Engi-
neering Bulletin, March 2003

12. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J.
Rosenstein, R. Varma. Query Processing Resource Management and Approximation in a
Data Stream Management System. In Proc. of CIDR 2003.

13. A. Gilani. Design and implementation of stream operators, query instantiator and stream
buffer manager. MS Thesis, CSE Department, UT Arlington, 2003. [online]
http://www.cse.uta.edu/research/publications/Downloads/CSE-2003-37.pdf

14. S. Sonune. Design and implementation of windowed operators and scheduler for stream
data. MS Thesis, CSE Department, University of Texas at Arlington, 2003. [online]
http://www.cse.uta.edu/research/publications/Downloads/CSE-2003-38.pdf

15. Cook, D.J., et al., MavHome: An Agent-Based Smart Home. In Proc of the Conference on
Pervasive Computing, 2003.

Analyzing the Genetic Operations of an
Evolutionary Query Optimizer

Victor Muntés-Mulero1, Josep Aguilar-Saborit1, Calisto Zuzarte2,
Volker Markl3, and Josep-L. Larriba-Pey1

1 DAMA-UPC, Computer Architecture Dept., Universitat Politècnica de Catalunya,
Campus Nord UPC, C/Jordi Girona Módul D6 Despatx 117 08034 Barcelona, Spain

vmuntes, jaguilar, larri@ac.upc.edu
http://www.dama.upc.edu

2 IBM Canada Ltd, IBM Toronto Lab.,
8200 Warden Ave., Markham, Ontario, Canada L6G1C7

calisto@ca.ibm.com
3 IBM Almaden Research Center, 650 Harry Road,

K55/B1, San Jose, CA, 95139 USA
marklv@us.ibm.com

Abstract. In this paper we analyze the importance of the operations in
a genetic programming-based optimizer. Among the several conclusions,
we show that crossover operations have a larger impact on the quality of
the best obtained execution plan than mutation operations.

1 Introduction

Genetic programming applied to query optimization was first proposed by Still-
ger et al. in [6]. Stillger presents a first crossover operation which handles QEPs
represented by tree structures instead of strings of integers. The idea is further
developed in [4], presenting The Carquinyoli Genetic Optimizer, which is a sound
genetic optimizer that is able to handle acyclic query graphs.

In this paper we show how genetic operations oriented to query optimization
improve the competitiveness of a genetic optimizer. Our study remarks the im-
portance of crossover operations compared to mutation operations, although it
also shows that mutation operations are essential to grant quality in the results.

This paper is organized as follows. Section 2 introduces genetic optimization
and CGO. In Section 3, we analyze the evolution cost using the different genetic
operations in CGO. In sections 4 and 5, we present related work and draw some
conclusions.

2 Genetic Programming in Query Optimization

Inspired by the principles of natural selection, genetic programming performs
operations on the members of a population. Each member in the population
represents a path to achieve a specific objective and has an associated cost.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 240–244, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analyzing the Genetic Operations of an Evolutionary Query Optimizer 241

Starting with an initial population containing a known number of members,
usually created from scratch, two operations are used to produce new mem-
bers in the population: crossover operations, which combine properties of the
existing members in the population and mutation operations, which introduce
new properties into the population. In order to keep the size of the popula-
tion constant, a third operation, usually referred as selection, is used to dis-
card the worst fitted members, using a fitness function. This process gener-
ates a new population, also called generation, that includes both the old and
the new members that have survived to the selection operation. This is re-
peated iteratively until a stop condition ends the execution. Once the stop
criterion is met, we take the best solution from the final population. Query
optimization can be reduced to a search problem where the DBMS needs to
find the optimum query execution plan (QEP) in a vast search space. Each
QEP can be considered as a possible solution for the problem of finding a
good access path to retrieve the required data. Therefore, every member in
the population is a valid QEP. In this paper we use CGO since, in our un-
derstanding, it is the most complete and tested genetic programming-based
optimizer.

CGO assumes that a QEP is the typical directed data flow graph. The physical
implementations of the operations used in the QEP are called plan operations.
CGO includes the basic plan operations, which are typically used in most com-
mercial DBMSs: (i) Scan Operations: sequential scan and index scan; (ii) Join
Operations: CGO allows for the three basic join implementations: Hash Join,
Nested-Loop Join and Merge-Scan Join; (iii) Other Operations: Besides scan
and join operations, CGO allows for two more operations: Sorting and mate-
rializing (Temp Operator). All these QEP operations implicitly include their
corresponding selection and projection operations.

Regarding genetic operations, crossover operations randomly choose two
QEPs of the population and produce two new trees preserving two subtrees
from the parent plans. CGO includes four different kinds of mutation: (i) Swap
(S): A join operation is randomly selected and its input relations are swaped.
S is specially useful if we take into account that join operations are not sym-
metric (i.e. the hybrid hash join); (ii) Change Scan (CS): CGO randomly
chooses a scan operation and changes the scan method if indexes are available;
(iii) Change Join (CJ): The optimizer randomly chooses a join operation and
it changes its implementation to one of the other two available implementations;
(iv) Random Subtree (RS): A subtree S from a QEP chosen at random is
selected. The remaining join operations, not included in S, are selected in ran-
dom order until we have inserted all of them, and therefore, a new and complete
QEP is created. Further details of CGO can be found in [4].

3 CGO Analysis

This section studies the evolution of the best cost obtained. We use 200 members
in the populations and 100 generations per execution. We perform 26 crossover

242 V. Muntés-Mulero et al.

Scaled Best Cost Plan

0,1

1

10

100

1000

10000

1 10 20 30 40 50 60 70 80 90 100

Generation

S
ca

le
d

 C
o

st S
CS
CJ
RS
C

Fig. 1. Scaled best cost evolution vs. the combination of all the genetic operations

operations and 48 mutation operations (12 of each type) per generation, thus
generating 100 new QEPs per iteration. We analyze the cost evolution for the
best QEP in each generation. We use CGO to optimize each query using 6
different policies. The first five policies consist in applying only one type of
mutation or crossover operation during the whole optimization. The last policy
combines all the genetic operations. We perform 150 executions involving the
random creation of 5 different databases, creating a random query for each one
and executing the 6 policies 5 times with queries involving 20 relations. In [3],
the experiment is repeated for 30 and 50 relations to analyze the impact of the
number of relations involved in the query.

Figure 1 shows, for each of the first five policies, the average best cost di-
vided by the average best cost obtained with the combined use of the five poli-
cies. The combination of all the genetic operations always leads in average to
QEPs with associated costs several times lower than the other approaches. By
nature, CS and S cannot solve critical structural shortcomings such as ineffi-
cient join order. Therefore, their application without being combined with other
genetic operations results in very high-costed QEPs. Using CJ the best cost usu-
ally decreases very fast during the first generations, typically discarding Nested-
Loop Join operations not using indexes, but it quickly converges yielding QEPs
with associated costs which usually are about one order of magnitude higher
than the combination of operations. RS outperforms CJ although, after the
first generations, it presents a slow convergence compared to other approaches.
Crossover operations on their own (C) show a fast convergence, although after
the first generations the quality of the results is generally several times higher
than the cost of the best QEP yielded by the combination of all the genetic
operations.

Analyzing the Genetic Operations of an Evolutionary Query Optimizer 243

4 Related Work

The first genetic technique, applied to query optimization, was proposed in [1],
where the amount of information per plan was very limited since plans were
transformed to chromosomes. Stillger et al. [6] proposed an optimizer based on
genetic programming that directly uses QEP as the members in the population.
The idea is further developed in [4], where CGO is presented, introducing the
ability to handle cyclic query graphs and mutation operations that also use trees
as data structures. CGO is validated against the DB2 UDB optimizer, proving
that, for large join queries, it can outperform the greedy algorithm used by the
commercial DBMS when the memory resources are exhausted due to the size
of the search space. Other analysis of CGO can be found in [3]. Also, several
variants of random walk algorithms have been proposed in [2, 5, 7].

5 Conclusions

We present an analysis of the cost evolution of the QEPs generated by different
genetic operations in CGO. Our main conclusions are as follows. First, in the
multidimensional search space, each type of mutation usually exploits one dimen-
sion. The combined use of all the mutations opens the genetic optimizer to the
traversal of the whole search space. Second, the percentage of operations of each
type used has an effect on the quality of the best plan. Although crossover oper-
ations are in general more powerful, the use of mutation operations is necessary
to improve the quality of the optimizer as a whole. As a last conclusion and most
important, some dimensions of the search space are better than others to obtain
execution plans close to optimum. The combination of some mutations exploring
orthogonal dimensions does not necessarily lead to improvements which are the
addition of their independent gains, although they may be better.

References

1. Kristin Bennett, Michael C. Ferris, and Yannis E. Ioannidis. A genetic algorithm for
database query optimization. In Rick Belew and Lashon Booker, editors, Proceedings
of the Fourth International Conference on Genetic Algorithms, pages 400–407, San
Mateo, CA, 1991. Morgan Kaufman.

2. Y. E. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join
queries. In SIGMOD ’90: Proc. of the 1990 ACM SIGMOD international conference
on Management of data, pages 312–321, New York, NY, USA, 1990. ACM Press.

3. Victor Muntes, Josep Aguilar, Calisto Zuzarte, Volker Markl, and Josep Lluis Lar-
riba. Genetic evolution in query optimization: a complete analysis of a genetic
optimizer. Technical Report UPC-DAC-RR-2005-21, Dept. d’Arqu. de Comp. Uni-
versitat Politecnica de Catalunya (http://www.dama.upc.edu), 2005.

4. V. Muntes-Mulero, J. Aguilar-Saborit, C. Zuzarte, and J-L. Larriba-Pey. Cgo: a
sound genetic optimizer for cyclic query graphs. In Proceedings of the International
Conference on Computer Science (To be published), May 2006.

244 V. Muntés-Mulero et al.

5. Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and random-
ized optimization for the join ordering problem. VLDB Journal: Very Large Data
Bases, 6(3):191–208, 1997.

6. M. Stillger and M. Spiliopoulou. Genetic programming in database query optimiza-
tion. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 388–393,
Stanford University, CA, USA, 28–31 July 1996. MIT Press.

7. Arun Swami and Anoop Gupta. Optimization of large join queries. In SIGMOD ’88:
Proceedings of the 1988 ACM SIGMOD international conference on Management
of data, pages 8–17, New York, NY, USA, 1988. ACM Press.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 245 – 249, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Evidential Approach to Integrating Semantically
Heterogeneous Distributed Databases

Xin Hong, Sally McClean, Bryan Scotney, and Philip Morrow

School of Computing and Information Engineering, Faculty of Engineering,
University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland

{x.hong, si.mcclean, bw.scotney, pj.morrow}@ulster.ac.uk

Abstract. We present an evidential scheme for integrating semantically
heterogeneous aggregates, stored as summary tables, of distributed databases.
The ontology of discourse at which to carry out the integration of aggregates is
the common ontology derived from local ontologies in the form of classification
schemes. The distributed aggregation combination operator DAggCom is
developed to combine aggregates from local databases and requires minimal
communication with local data sources.

1 Introduction

In this paper we are concerned with the integration of aggregate views of distributed
databases that use heterogeneous classification schemes, where local ontologies in the
form of classification schemes, may be mapped onto a global ontology. Aggregates
stored as summary tables are commonly used for summarizing information held in
very large databases [4]. At the raw data level, the integration of aggregates may be
achieved by simply appending the data sets to each other, aggregating and
recalculating. However, it is cumbersome and costly, particularly because of the
inaccessibility, or expense of communicating the original data.

This paper extends our previous work [3, 6] regarding aggregation of imprecise
and uncertain datasets, to integration of aggregates from distributed databases. We
propose mass function models for representing aggregate views using different local
classification schemes and extend the mass function models onto the common
ontology derived from the local ontologies. A new aggregate combination operator
DAggCom is developed to integrate semantically heterogeneous aggregate views from
distributed sources. DAggCom also takes into account weights of different datasets,
where each site is weighted proportional to the “credibility” of its beliefs. The
combined aggregate presents the summary of the distributed database on the common
ontology. Distributed data sites need only pass on aggregates and weights to the
operational site, which means that the communication between local data sources and
the operational site is kept minimal; aggregation computation is therefore efficient.

2 Semantically Heterogeneous Aggregate Views

Notation 1. A set of all possible values that an attribute A can be assigned forms its
domain, D = {v1, …, vk}. The elements of D are grouped to give categories (classes)

246 X. Hong et al.

of the classification schemes. For aggregate data views Vr, r = 1, …, m, D is

partitioned into categories } ..., ,{ 1
r
T

r
r

cc , with the cardinality of category r
tc , denoted

by r
tn , t = 1,…, Tr. Here Tr is the number of categories in the classification for

attribute A in the aggregate view Vr. Nr is the cardinality of A in Vr,
=

=
rT

t

r
t

r nN
1

.

Definition 1. An ontology is defined as the Cartesian-product of a number of
attributes, along with their corresponding classifications. An ontology, in the form of
classification schemes, is a set of classes, C = {c1, …, cm}.

In a distributed database environment, ontologies of local databases may be mapped
to a global ontology.

Definition 2. Q local databases in a distributed database produce Q aggregate views

based on Q different classification schemes, },...,{ 1
q
I

q
q

q
ccC = , q = 1, …, Q. Denoting

the global ontology by G = {g1, …, gn}, the correspondence table between Q local
ontologies and the global ontology is defined as

} ..., , ,{) ..., , ,(1
1 1

><= Q
iikQ
Q

ccgCCGCT

where q
ik q

cg ∈ ; k = 1, …, n; q
q
i Cc
q

∈ ; iq = 1, …, Iq; q =1, …, Q.

Definition 3. From Q local ontologies, },...,{ 1
q
I

q
q q

ccC = (q = 1, …, Q), the common

ontology denoted C, is derived and defined by the union of Cq, q = 1, …, Q. The
common ontology C in the form of classification schemes is the set of classes,

C = {cj, j = 1, …, J}

where (a) if i ≠ j, then ci ≠ cj, i, j = 1, …, J; (b) Cq ⊆ C, q = 1, …, Q; (c)
=

≤≤
Q

q
qIJ

1

 1 .

The common ontology is the ontology of discourse at which to carry out the
integration of aggregate views.

3 Evidential Models of Aggregate Views

The Dempster-Shafer theory of evidence (DS theory) [1, 2, 5, 7] is a generalization of
traditional probability theory, in which mass functions are used to quantify our belief
degree in various propositions. We denote the domain of an attribute by Θ. The mass
function is defined on subsets of Θ as follows.

Mass function: A mass function m is a mapping: 2Θ → [0, 1], satisfying:

 1. ,0)(=φm where φ is an empty set

 2. .1)(=
Θ⊆A

Am

 An Evidential Approach to Integrating 247

In what follows, we propose mass function models of aggregate views. In a
distributed database consisting of Q local databases, the qth aggregate view

(associated with attribute A) uses the classification scheme },...,{ 1
q
I

q
q q

ccC = with

associated cardinality q
in of q

ic , i = 1, …, Iq, and the cardinality Nq of A, for q = 1,

…, Q. With each class q
ic is associated a mass function q

im ,
q

q
iq

i
N

n
m = . We represent

the qth aggregate view as the set Sq, } ..., ,1 ,,{ q
q
i

q
iq IimcS =><= .

Suppose that the common ontology, C = {c1, …, cJ}, is derived from the Q local
ontologies. For each aggregate view, we introduce the trivial extension of the set Sq

},...,1,~,{
~

JjmcS q
jjq =><= ,

where

=∈∃
=

otherwise. 0

. for which } ..., ,1{ if ~
q
ijq

q
iq

j

ccIim
m

It can obviously be seen that qm~ is also a mass function.

4 Integrating Semantically Heterogeneous Aggregate Views

We now develop a new aggregation combination operator for distributed databases,
for integrating semantically heterogeneous aggregate views to which the mass
distributions have already been assigned. We integrate the aggregates to have the
mass distribution on the common ontology derived from the local databases.

Consider that a distributed database contains Q local databases, each of which uses

a different ontology },...,{ 1
q
I

q
q

q
ccC = for q = 1,…, Q. The aggregate view of a local

database is represented by } ..., ,1 ,,{ q
q
i

q
iq IimcS =><= with associated weight Wq.

The common ontology derived from the Q local databases is denoted by C = {cj, j = 1,

…, J}. },...,1,~,{
~

JjmcS q
jjq =><= is the extension of Sq on the common ontology.

The Q aggregate views in the extension form may then be combined using the
aggregation combination operator DAggCom defined as follows:

} ..., ,1 ,,{) ..., ,1 ,
~

(JjmcQqSDAggCom jjq =><==

where .)~(
1

1

=

=

×=
Q

q

q
jQ

q
q

q
j m

W

W
m

The output of the DAggCom operator is a set of the common ontology categories
along with the associated mass functions.

As an illustrative example, the EU Labour Force Survey data for the job status
attribute is considered. The global ontology is given as a set of possible attribute

248 X. Hong et al.

values, {full-time self-employed; full-time employees; part-time employment; on
government training scheme; unemployed (receiving benefits); in full-time education;
economically inactive but not in full-time education}. Two local classification
schemes along with aggregates are produced from two local databases.

Scheme 1: {<full-time employment, 217>, <part-time employment including
government training schemes, 73>, <unemployed, 14>,
<economically inactive, 196>}

Scheme 2: {<in employment, 540>, <unemployed, 33>, <in full-time education,
370>, <economically inactive but not in full-time education, 30>, <on
government training scheme, 27>}

From the two local ontologies, the common ontology can be derived as follows:

{c1: full-time employment; c2: part-time employment, including government
training schemes; c3: unemployed; c4: economically inactive; c5: in employment;
c6: in full-time education; c7: economically inactive but not in full-time education;
c8: on government training scheme}.

Table 1. The common classification scheme for the job status attribute

Common
ontology
categories

1~m 2~m m
Common
ontology
categories

1~m 2~m m

c1 0.434 0.000 0.145 c5 0.000 0.540 0.360
c2 0.146 0.000 0.049 c6 0.000 0.370 0.247
c3 0.028 0.033 0.031 c7 0.000 0.030 0.020
c4 0.392 0.000 0.131 c8 0.000 0.027 0.018

Table 1 displays the extended mass function distributions of the two aggregate

views for the job status attribute, 1~m and 2~m . Taking the cardinality as the weight,
using DAggCom the mass distribution m associated with the integrated aggregate on
the common ontology is obtained and shown in Table 1.

Since we only need aggregate views and cardinalities from distributed data sites,
aggregate combination, which requires minimal communication between local data
sources and the operational site, is therefore computationally efficient. This work will
be extended further to integration of aggregate views that may include summary data
on non-partitions of attribute domain.

References

1. Dempster, A. P.: A Generalisation of Bayesian Inference. J. Royal Statistical Soc., Series B,
Vol. 30 (1968) 205 – 247.

2. Guan, J. W., Bell, D. A.: Evidence Theory and Its Applications: Vol 1. Studies in Computer
Science and Artificial Intelligence, Elsevier, North-Holland (1991).

3. McClean, S., Scotney, B.: Using Evidence Theory for the Integration of Distributed
Databases. Int'l J. Intelligent Systems, Vol.12 (1997) 763 – 776.

 An Evidential Approach to Integrating 249

4. McClean, S., Scotney, B., Greer, K.: A Scalable Approach to Integrating Heterogeneous
Aggregate Views of Distributed Databases. IEEE Trans. Knowledge and Data Eng., Vol. 15
No. 1 (2003) 232 – 236.

5. McClean, S., Scotney, B., Shapcott, M.: Using Background Knowledge in the Aggregation
of Imprecise Evidence in Databases. Data & Knowledge Engineering, Vol. 32 (2000)
131 – 143.

6. Scotney, B., McClean, S.: Database Aggregation of Imprecise and Uncertain Evidence. Int'l
J. Information Sciences, Vol. 155 (2003) 245 – 263.

7. Shafer, G.: The Mathematical Theory of Evidence. Princeton University Press (1976).

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 250 – 253, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Interoperability and Integration of Independent
Heterogeneous Distributed Databases over the Internet

Bryan Scotney, Sally McClean, and Shuai Zhang

1 School of Computing and Information Engineering, University of Ulster,
Coleraine, Northern Ireland, UK

{bw.scotney, si.mcclean, zhang-s1}@ulster.ac.uk

Abstract. A key challenge for independent databases that are distributed over
the Internet is to provide mechanisms for interoperability to facilitate resource
discovery, access, distributed processing and integration. Additional challenges
arise when there is semantic heterogeneity of the underlying ontologies
associated with the databases. This paper develops a mechanism that facilitates
interoperability of independent distributed database applications that is useful in
situations where databases have evolved separately but where post hoc semantic
mappings between schema are possible. Such functionality can be obtained by
storing metadata in a common format, such as RDF, thus allowing the databases
to be discovered and accessed by browsing registries that contain details of the
database objects. Once interoperability has been achieved, we describe a
flexible user-centric method for integration and knowledge discovery from
semantically heterogeneous data, based on the specification of ontology
mappings from distributed local data sources to a derived ontology of discourse.

1 Background

Improved interoperability of Web-based information systems and increased
automation in information processing were the original motivations for the
development of the Semantic Web [4]. The Semantic Web brings, in particular,
challenges to the integration of independent heterogeneous distributed databases over
the Internet. The process of data integration [1] can be used to make explicit the often
rich latent information in the data, and hence provides benefits in terms of knowledge
acquisition. Thus, the provision of efficient automated integration facilities is an
important aspect of using distributed database technology for knowledge discovery
[5]. For large-scale data resources it is necessary that the contributing databases can
be accessed and data retrieved in a decentralised way according to their own
constraints, and that heterogeneity in ontologies and content is reconciled. Also, user-
centric integration algorithms are desirable for matching users’ query requirements.

In order to facilitate development of interoperability and automation, this paper
develops mechanisms that facilitate discovery, access, integration and processing of
independent heterogeneous distributed database applications over the Internet. A
conceptual data and metadata model (including ontology mappings) is introduced into
the logical layer of the three-tier information architecture system so as to facilitate the
interoperability. The key to the model development is that the conceptual model is

 Interoperability and Integration of Independent Heterogeneous Distributed Databases 251

flexible enough to accommodate data and metadata stored in a range of physical
layers that can facilitate users to extract components in a variety of formats for
presentation and publication. Registries form an essential part of the logical layer and
are used for indexing data and metadata objects, enabling them to be discovered,
accessed and extracted [3]. Once interoperability has been achieved, we describe a
flexible method for data integration and knowledge discovery.

2 Interoperability Mechanisms for Information Exchange

The first step towards achieving interoperability between database application
systems is to transform the users’ required data and metadata that various systems
serve into objects that are described using a common format (e.g., RDF). For the
successful exchange of metadata, mappings are needed from the terminologies used
by each individual database system to the common format. We will deal principally
with data objects of database tables, metadata objects of classifications, and mappings
between classifications. However, other metadata objects are required, relating to
logistical information about data providers and data access.

The common browser facility should be
in a position to keep track of which system
has exported the metadata objects, and
once queries are posed, it should thus be
able to re-direct the requests for the data to
the appropriate systems. Thus, the user will
be unaware of the fact that, although
metadata are browsed in a single
application, the queries on the associated
data are answered by (potentially) different
distributed systems. In order to achieve
efficient browsing and searching
capabilities, an intermediate indexing level
consisting of registries is required, and
browsing may thus be achieved through a
common application (e.g., ebXML
Registry browser). Registries are used to
maintain information related to issues such
as provision of, type of, and access to
datasets. Registries are central to
interoperability of distributed database
systems, being required for registration of
data publishers, published information,
querying, and information exchange.

To enable registry browsing, it is
necessary to establish classification

schemes so that the data and metadata objects can be classified. The classification of
data and metadata objects is the principal mechanism by which the registry can be
queried. Classification is carried out by a cataloguing service. Any data or metadata
object must be classified by the following three mandatory classification schemes.

common model

Published Objects
According to the

specification (RDF)

Communicate Published
Objects to the registry
(SOAP/XML, JAXR)

Communicate objects
to GUI (Web/HTTP)

Common Metadata
Model Definition

DataSet
Title : String Classification

Id : UUID
Title : String

COSMOSObject
Id : UUID 0..n 1

0..n 1

ClassificationNode

DDI_Dataset
uuid_metadata

DB App_2

DB App_3

…

DB App_n

DB App_1
R
E
G
I
S
T
R
Y

Registry

Interface

Fig. 1. System architecture to enable key-
word searches

252 B. Scotney, S. McClean, and S. Zhang

(1) ObjectType scheme: the way of identifying object types in an ebXML registry.
(2) DataFormat scheme: to identify the format of the object as published on the web.
(3) Publisher scheme: this identifies the database application system that has
published the object.

However, an object may be classified by additional optional schemes.
Figure 1 shows the architecture of a system that is able to perform keyword

searches by using individual database application systems as repositories of
data/metadata. In the system, each of the individual applications has two main tasks:

(i) to make its data and metadata objects known to the registry by publishing them
in a predefined manner according to the common metadata model specification;

(ii) to transfer these data and metadata objects among the applications, or between
the applications and the Registry GUI application.

Ideally, all of the individual applications should communicate with each other only
through the common metadata model and registry, using their own graphical GUIs.
New data and metadata objects can be created from old ones through a sequence of
events for exchange and processing of information between publishers.

3 Data Integration and Knowledge Discovery

Based on the mechanisms for interoperability of web systems discussed above, in this
section we develop mechanisms for integrating and processing data from independent
heterogeneous distributed databases on the Web. We focus on the semantic
integration of the ontologies and corresponding data values (summaries in particular).

Definition 1. An ontology is defined as the Cartesian-product of a number of
attributes along with their corresponding schema.
Definition 2. Two ontologies are defined to be semantically equivalent if there is a
mapping between their respective schema.
Definition 3. An ontology O1 is said to be refined by another ontology O2 if O1 and
O2 can be combined to provide a derivable classification finer than O1.

Firstly, the ontology of discourse (OOD) needs to be determined to provide a
common ontology that specifies how the local semantics relate to the meaning of the
query ontology adopted by the user. Our aim is then to integrate data that are at the
finest possible aggregation of the OOD. The OOD is computed by refining the query
ontology by the various database ontologies, using the Ontint refinement algorithm
[5]. The computation may be regarded as metadata integration which is followed by
integration of data. The approach is illustrated in the following example:

.

10

01

01

A ,

100

010

011

A Q21Q ==

The correspondence matrices that relate the query ontology (OQ) to ontologies O1
and O2, are given by AQ1 and AQ2 respectively. We first refine OQ with O1 which gives

 JOB2
Working

NotWorking

Ontology O1 Ontology OQ Ontology O2

JOBQ
FullTime
PartTime

Not Working

JOB1
Permanent
Temporary

Not Working

 Interoperability and Integration of Independent Heterogeneous Distributed Databases 253

the new refined ontology OQ* {Permanent, Temporary∩FullTime, PartTime,
NotWorking}; but there is no further possible refinement of OQ* by O2. The OOD is
therefore OQ* with a new derived value Temporary∩FullTime. Aggregates will be
computed for this value, even though none was present in the original data.

Once metadata integration is complete, we integrate the aggregate data at a level of
detail determined by OOD, using the integration algorithm Aggint [2]; this algorithm
is based on minimisation of the Kullback-Leibler information divergence using the
EM algorithm. Here, the respective probabilities for the OOD are } , , ,{ 4321 ππππ .

Table 1. Aggregates data (cardinalities) for the concept JOB

.

10
01
01
01

A ,

100
010
010
001

A *2Q*1Q

JOB1 JOBQ JOB2

Permanent 170 FullTime 60 Working 125
Temporary 37 PartTime 10 NotWorking 25
NotWorking 23 NotWorking 30

Using Table 1, and new correspondence matrices AQ1* AQ2*, the integrated
summaries are obtained by iterative solution of the following equations:

;480/)
*125*60

170(
321

1

21

1
1 πππ

π
ππ
ππ

++
+

+
+= ;480/)

*125*60*37
(

321

2

21

2

32

2
2 πππ

π
ππ
π

ππ
ππ

++
+

+
+

+
=

;480/)
*125*37

10(
321

3

32

3
3 πππ

π
ππ
π

π
++

+
+

+= .480/)253023(4 ++=π

The converged solutions are π1=0.688, π2=0.030, π3=0.120, π4=0.162, with
corresponding integrated cardinalities given by N*πi (N=480 is the total cardinality).

4 Conclusion and Future Work

We have discussed interoperability mechanisms to facilitate discovery, access and
processing of independent distributed databases and have described algorithms for
integration of the corresponding ontologies and data. Further work will extensively
evaluate the approach and develop new algorithms for user-centric integration.

References

1. Dao, S., Perry, B. Applying a data miner to heterogeneous schema integration. KDD-95,
AAAI Press, Montreal, Canada, 1995, pp. 63-68.

2. McClean, S.I., Scotney, B.W., Greer, K.R.C. A Scalable Approach to Integrating
Heterogeneous Aggregate Views of Distributed Databases. IEEE Transactions on
Knowledge and Data Engineering, 2003, 15(1), pp. 232-236.

3. Nelson, C. Use of Metadata Registries for Searching for Statistical Data. 14th IEEE
SSDBM, 2002, pp. 232-235.

4. Payne, T., Lassila, O. Semantic Web Services, IEEE Intelligent Systems, 2004, pp. 14-15.
5. Scotney, B.W., McClean, S.I. Knowledge Discovery from Databases on the Semantic Web.

16th IEEE SSDBM, 2004, pp. 333-336.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 254 – 257, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Trust Obstacle Mitigation for Database Systems

Victor Page1, Robin Laney2, Maurice Dixon1, and Charles Haley2

1 Department of Computing,
Communications Technology and Mathematics,

London Metropolitan University, 31 Jewry Street, London, EC3N 2EY
{Vic.Page, M.Dixon}@Londonmet.ac.uk

2 Department of Computing
The Open University, Walton Hall, Milton Keynes, MK7 6AA

{R.C.Laney, C.B.Haley}@Open.ac.uk

Abstract. This paper introduces the Trust Obstacle Mitigation Model (TOMM),
which uses the concept of trust assumptions to derive security obstacles, and the
concept of misuse cases to model obstacles. The TOMM allows a development
team to anticipate malicious behaviour with respect to the operational database
application and to document a priori how this malicious behaviour should be
mitigated.

1 Introduction

The Lowell Database Research Self-Assessment [1] discusses “trustworthy systems
that safely store data, protect it from unauthorized disclosure, protect it from loss, and
make it always available to authorized users”. It also suggests that “the information
management community should play a central role in addressing these needs and en-
hancing DBMSs with mechanisms to support these capabilities”.

This work reports progress on addressing these needs at the application level with-
out the need to enhance the DBMS. To do this we have derived a model, the Trust
Obstacle Mitigation Model (TOMM), for analysing the detection and mitigation of
security obstacles within a database system. An obstacle is something that, should it
occur, will invalidate a trust assumption and result in a deviation between a use case
and the realisation of the use case in the operational system. Security obstacles are
caused by malicious agents, external to the system, that might destroy, reveal, modify,
or block information assets. This is in line with the security requirements of confiden-
tiality, integrity, availability, and authentication as presented in [2] and given the ac-
ronym CIAA.

The TOMM draws on three existing concepts, obstacle analysis [3, 4, 5], trust as-
sumptions [6] and misuse cases [7, 8]. Trust assumptions are used to derive obsta-
cles and misuse cases are used to provide a diagrammatic and textual representation
of an obstacle. The contribution of this work is the bringing together of these con-
cepts coupled with a ‘traffic light’ approach to ranking obstacles and their
consequences.

The paper is structured as follows. Section 2 provides an overview of the TOMM.
Finally conclusions are presented in Section 3 along with future work.

 Trust Obstacle Mitigation for Database Systems 255

2 The Trust Obstacle Mitigation Model

Fig. 1 presents an activity diagram for the TOMM. The swim lanes show the three
phases of the TOMM Elicit Use Cases, Derive Obstacles, and Derive Mitigations. The
swim lanes are present to show that each phase could be carried out in a different fa-
cilitated workshop.

List and Priori tise
Use Cases

Unti l no more Use Cases

Choose Use
Case from List

List T rust
Assumpti ons

List and Rank
Obstacles

List and Rank
Consequences

Fi lter
Obstacles

Unti l no more Trust Assumptions

Until no more Obstacles

Until no more Consequences

Unti l no more Use Cases

Define Obstacle
Case

Outl ine
Mi tigations

Define Mi tigation
Case

Fi lter
Mi tigations

Until no more Mitigations

Choose Fil tered
Obstacle

Until no more Obstacles

Derive MitigationsDerive ObstaclesElicit Use Cases

Fig. 1. Activity diagram of the TOMM

The above is not a strictly sequential process and there is an implied iteration in
some of the activities. Specifically the development team may wish to re-prioritise the
use case list either at the end of the Derive Obstacles phase, or at the end of the De-
rive Mitigations phase.

Elicit Use Cases Derive Obstacles Derive Mitigations

256 V. Page et al.

The phases and activities of the TOMM allow a development team to anticipate
malicious behaviour with respect to the operational system and document a priori how
this malicious behaviour should be mitigated. This is achieved by requiring the devel-
opment team to reason about how the trust assumptions on which the database system
will be built could be undermined.

The following lists alphabetically the definitions of the concepts and terminology
that are used within the TOMM:

• Consequence: A consequence defines what would happen to the operational sys-
tem if a trust assumption is invalidated due to the manifestation of an obstacle.
Consequences are given a RAG code that signifies their severity to the operational
system.

• Filter: Filter means to choose based on available data. For obstacles we choose
those obstacles that need to be mitigated, based on the RAG codes. For mitigations
we choose the most effective mitigation based on an overview of the mitigation
along with its estimated cost and duration.

• Mitigation: A mitigation is something, that should it be implemented, will counter
the effect of an obstacle.

• Mitigation Case: A Use Case that shows what should be done to counter the effect
of malicious behaviour on the operational system.

• Obstacle: An obstacle is something that, should it occur, will invalidate a trust as-
sumption and result in a deviation between a use case and the realisation of the use
case in the operational system. Obstacles are given a RAG code that signifies the
likelihood of them occurring.

• Obstacle Case: A Use Case that shows the effect of malicious behaviour on the
operational system. The main function of the obstacle case is to decide and docu-
ment a priori how the operational system would react to malicious use. This is
based on the concept of a Misuse Case.

• RAG Code: RAG codes form an intuitive ‘traffic light’ approach to ranking obsta-
cles and their consequences. RAG is an acronym for Red, Amber, and Green. The
RAG codes are classified as follows;
− R: signifies either a high likelihood of an obstacle occurring or a fatal conse-

quence should an obstacle occur.
− A: signifies either a medium likelihood of an obstacle occurring or a non-fatal

consequence should an obstacle occur.
− G: signifies either little likelihood of an obstacle occurring or low negative con-

sequence should an obstacle occur.
• Security Obstacle: An obstacle that is caused by the malicious behaviour of an ex-

ternal agent (human or machine).
• Trust Assumption: Documents the way in which a use case, when realised in the

operational system, can be trusted to have certain stated properties and/or behav-
iour.

• Use Case: A representation by diagram and text of a sub-set of the database system
functionality.

 Trust Obstacle Mitigation for Database Systems 257

3 Conclusions and Future Work

Use Case diagrams are at the heart of the Trust Obstacle Mitigation Model. They pro-
vide a simple yet powerful diagrammatic representation of database system require-
ments at a level of granularity appropriate for reasoning about security obstacles in
facilitated workshops. The TOMM is visually intuitive and it can be adopted by pro-
jects where use case modeling would normally be applied. Also the TOMM provides
an intuitively direct approach to ranking obstacles and their consequences – via the
use of RAG codes.

The TOMM can be improved by deriving taxonomies of trust assumptions, obstacles,
consequences and mitigations, along with heuristics to support their use. We have in-
corporated trust assumptions in the TOMM, which are assumptions by the development
team that a requirement, when realised in the operational system, will cause that system
to have certain stated properties and/or behaviour [6]. This suggests that the obstacles
caused by this trust being misplaced can be classed as trust obstacles. The incorporation
of the formal semantics described in UMLSec [9] will provably show that the model is
consistent, correct and optimal for its purposes. Future work will focus on these im-
provements. A tool will also be developed to support the model.

References

1. Abiteboul, S., Agrawal, R., Bernstein, P., et al: The Lowell Database Research Self-
Assessment. Communications of the ACM, Vol. 48. No. 5. (2005) 111-118

2. Stallings, W.: Business Data Communications 5th edn. Pearson Prentice Hall, Upper Saddle
River USA (2005)

3. Page, V., Dixon, M., and Bielkowicz, P.: Object-Oriented Graceful Evolution Monitors: In:
Konstantas, D., Leonard, M. and Patel, S. (eds): Proceedings of the Ninth International Con-
ference on Object-Oriented Information Systems, University of Geneva Geneva Switzerland
(2003) 46-59

4. Anton, A.: Goal Identification and Refinement in the Specification of Software-Based In-
formation Systems. Ph.D. Thesis, College of Computing Georgia Institute of Technology
(1997)

5. Lamsweerde, A., Letier, E.: Integrating Obstacles in Goal-Driven Requirements Engineer-
ing. ICSE’98 – 20th International Conference on Software Engineering, Kyoto Japan (1998)
53-62

6. Haley, C., Laney, R., Moffett, J., Nuseibeh, B.: (2004), The Effect of Trust Assumptions on
the Elaboration of Security Requirements. Proceedings of the 12th International Require-
ments Engineering Conference (RE'04), Kyoto Japan (2004) 102-111

7. Alexander, I.: Misuse Cases: Use Cases with Hostile Intent. IEEE Software, Vol. 20, Issue
1. (2003) 58-66

8. Sindre, G., and Opdahl, A.: Eliciting Security Requirements by Misuse Cases. Proceedings
of the 37th International Conference on Technology Object-Oriented Languages and Sys-
tems, Sydney Australia (2000) 120-131

9. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In Jézéquel, J.,
Hussmann, H. and Cook, S. (eds): Proceedings of the 5th International Conference on The
Unified Modeling Language, Dresden Germany (2002) 412-425

Towards a More Reasonable Generalization Cost
Metric for K-Anonymization

Zude Li, Guoqiang Zhan, and Xiaojun Ye�

Institute of Information System and Engineering
School of Software, Tsinghua University, Beijing, 100084, China

{li-zd04, zhan-gq03, yexj}@mails.tsinghua.edu.cn

Abstract. A k-anonymity model contains an anonymity cost metric
mechanism, which is critical for the whole k-anonymization process. The
existing metrics cannot sufficiently identify the real cost on tabular mi-
crodata anonymization. We define a new cost metric that can be used
for k-anonymization with the data generalization approach. The metric
is more reasonable than the existing ones as it considers generalization
range and range ratio rather than generalization height or height ratio,
and the contribution of an attribute to the whole tuple rather than the
amount of suppression cells. It can be used in most k-anonymity models
for computing more precise anonymity costs.

1 Introduction

An individual represented as a record in a database might be re-identified by join-
ing the released data with another publicly available database. To reduce the risk
of this type of attacks, k-anonymity is proposed as a privacy protection model
against individual re-identification in microdata publishing [9, 12]. Many in-
stances illustrating such attacks are listed in literature such as [9, 12, 7, 4, 5, 2, 8],
which are the motivations for most k-anonymity models introduced in the past
several years. In general, k-anonymity means that one can only be certain that
a value is associated with one of at least k values, or in a k -anonymized dataset,
each record is indistinguishable from at least k-1 other records with respect to
certain identifying attributes [7].

Any k-anonymity model or mechanism contains an anonymity cost metric
(i.e. generalization cost metric with the data generalization approach) as the
preference criteria for data anonymization in a dataset (i.e. an original table).
For instance, the precision metric Prec in [11], the cost function Cost in [2], etc.
Such a preference criteria computing mechanism should be more important since
it acts in the whole anonymization process as the base of defining “optimal” for
k-anonymity solutions derived from the original table. Generally, a derived table
with the minimal anonymity cost is always the “optimal” k-anonymity solution
[9, 12, 11].

� Funded by National Basic Research Program of China, Project No.2002CB312006
and National Natural Science Foundation of China, Project No.60473077.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 258–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards a More Reasonable Generalization Cost Metric 259

The contributions of this paper are to analyze and categorize the existing
anonymity cost metrics, and to define a more reasonable generalization cost
metric taking into account several critical factors that can be used for most k-
anonymity models. The paper is organized as follows: in Section 2 we briefly
discuss and categorize several existing cost metric mechanisms. We then analyze
some critical factors for anonymity cost metrics and define a more reasonable
generalization cost metric in Section 3. Finally, we gives a short conclusion and
a brief prospect for future work in Section 4.

2 Related Work

In a relational table, a set of identifying attributes is called a Quasi-Identifier
attribute set (QI), as they can be joined with external information to uniquely
re-identify at least one individual in Ω with sufficiently high probability (Ω is
a large population) [9, 5, 4]. A released table is said to adhere to k-anonymity if
each released record has at least k-1 other records whose values are indistinct
over QI. Suppose the approach to implement k-anonymity on QI attributes is
data generalization. Each attribute in a table has a value domain containing all
values for the attribute. Given a domain, it is possible to construct a more “gen-
eral” domain in a variety of ways, such as the domain generalization hierarchy
in [9, 11].

Current generalization cost metrics can be classified into four types: (a) on
generalization hierarchy; (b) on the amount of suppression cells; (c) on partition,
and (d) on entropy.

[On generalization hierarchy] Typically, the Prec calculation in [11] is one of

this type, as Prec(RT) = 1 −
∑ n

i=1
∑m

j=1

H(Aij, A′
j
)

HAj

n × m , where H returns the height
of a generalization hierarchy or a generalization relation, Prec(RT) refers to
the generalization cost on all m QI attributes in n tuples. As it is defined, a
generalization hierarchies is constructed as part of the preference criteria. The
Cost function in [2] is also based on the generalization hierarchies of attributes,
which on the whole table is the sum of the ratio of the generalization level on
an attribute in a tuple to the hierarchy height on the attribute, i.e. Cost(RT)
=

∑
i

∑
jCost(i, j) / lj , where RT denotes the derived table, Cost(i, j) denotes

the cost of generalizing the j th attribute’s value in the ith tuple to the form in
RT, lj indicates the generalization hierarchy height on the j th attribute.
[On the amount of suppression cells] In [1], the cost is based on the Ham-
ming distance among tuples. For example, the Hamming distance on <82-02-57,
M, 14890> and <11-22-42, M, 13092> is 2 since the values of 2 attributes in two
corresponding tuples are different. The diameter merit in [8] is similar, as d(S)
= Maxu,v∈S d(u, v), where S is a set and d(S) denotes the maximal amount of
different coordinates between any two elements. Both belong to this type.
[On partition] In [6], the cost metric is identified as a classification metric,
which is computed as the sum of the individual penalties for each tuple in the

260 Z. Li, G. Zhan, and X. Ye

table (with n tuples: tup1, · · ·, tupn): CM =
∑n

i=1 penalty(tupi)
n , where penalty

function returns 1 if the tuple (parameter) is suppressed or its class label is
not the majority class, others penalty returns 0. The discernibility metric and
the classification metric in [3] are also in this type. The discernibility metric
assigns a penalty (the penalty reflects the fact that a suppressed tuple cannot
be distinguished) to each tuple based on how many tuples in the transformed
dataset are indistinguishable from it. The classification metric assigns no penalty
to an unsuppressed tuple if it belongs to the majority class within its induced
equivalence class. The normalized average equivalence class size metric CAV G in
[4] is similar to the above two metrics.
[On entropy] The generalization cost based on entropy computation is a classi-
cal measure used in information theory to characterize the purity of data, which
is used in the Datafly system [10]. It is described as the anonymity levels be-
tween 0 and 1 specifying the minimum bin size (similar to k in k-anonymity) for
every attribute. Attribute values need to be generalized to attain the minimum
bin size. The metric for �-diversity on sensitive attribute clusters [7], i.e. the
condition for a cluster satisfying the �-diversity requirement is defined as below:
−

∑
s∈S

n(q,s)∑
s′∈S n(q,s′) log(n(q,s)∑

s′∈S n(q,s′)) ≥ log(�), where n(q, s) denotes the ap-
pearing amount of element s in cluster q. The larger the left side entropy is, the
more difficult it is to infer a right element in the cluster q.

3 A More Reasonable Generalization Cost Metric

In the semantics of data generalization for k-anonymity, the generalization range
and the corresponding range ratio should be more important than the discussed
generalization height and height ratio, because the generalization range expresses
the exact generalization loss and the range ratio describes the relative general-
ization degree of the attribute in the tuple. Two generalization relations with
the same generalization height ratio may have very different generalization range
ratios. The generalization range ratio expresses the generalization degree on an
attribute, which is more closely related to the precise generalization loss metric
than the simple generalization range. Furthermore, in a tuple the ratio of the
generalization range on an attribute to the whole generalization range presents
the influence of the generalization on the attribute to the whole tuple for general-
ization, which is called generalization range contribution ratio. This is a method
to express the influence of generalization range on an attribute to the cost metric
in the whole tuple through the ranges of other attributes.

Based on the above factors, we define a new generalization cost GC on a cluster
S with sz elements of m1 QI attributes and m2 sensitive attributes (sz = m1
+ m2). It can capture the above critical factors for expressing the more precise
generalization cost on S. The GC value on S is calculated as follows.

GC = (
sz∑

j=1

m1∑
i=1

cj
i × R(Aj

i , A
′
i)

RAi

×

√√√√ R(Aj
i , A

′
i)∏m1

k=1,k �=i R(Aj
k, A

′
k)

) × δ

En

Towards a More Reasonable Generalization Cost Metric 261

En = −
m2∑
i=1

∑
s∈Si

n(q, s)∑
s′∈Si

n(q, s′)
log(

n(q, s)∑
s′∈Si

n(q, s′)
)

where A
′
i represents the generalized form of all elements on the ith attribute in

the cluster, q is the cluster of sensitive attributes tuples mapping to Si (the ith
sensitive attribute), c and δ are relative balance factors.

4 Conclusion

In this paper, we systemically summarize the existing generalization cost metrics.
We then build a new cost metric that is more reasonable than the existing ones.
This metric can be used in more general k-anonymity models with the data
generalization approach for optimal or approximate-optimal k-anonymization
solution derived from the original table. In the near future, we will put the new
metric into several k-anonymity models to test its effects by experiments.

References

1. Gagan Aggarwal, Tomas Feder, and etc. Anonymizing tables for privacy protection.
Available: http://theory.standford.edu/ rajeev/privacy.html, 2004.

2. Gagan Aggarwal, Tomas Feder, and etc. Approximation algorithms for k-
anonymity. Journal of Privacy Technology, Nov. 2005.

3. Reberto J.Bayardo and Rakesh Agrawal. Data privacy through optimal k-
anonymization. ICDE’05, 2005.

4. Kristen LeFevre, David J.DeWitt, and Raghu Ramakrishnan. Multidimensional
k-anonymity. Technical Report, Available: www.cs.wisc.edu/techreports/2005/.

5. Kristen Lefevre, David J.DeWitt, and Raghu Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. SIGMOD’05, 2005.

6. Vijay S. Lyengar. Transforming data to satisfying privacy constraints. SIGKDD’02,
2002.

7. Ashwin Machanavajjhala, Johannes Gehrke, and Daniel Kifer.
-diversity: Privacy
beyond k-anonymity. ICDE’06, 2006.

8. Adam Meyerson and Ryan Williams. On the complexity of optimal k-anonymity.
PODS’04, France, 2004.

9. Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing
information: K-anonymity and its enforcement through generalization and sup-
pression. Technical Report, SRI Computer Science Lab., 1998.

10. Latanya Sweeney. Guaranteeing anonymity when sharing medical data, the datafly
system. Journal of the American Medical Informatics Association, 1997.

11. Latanya Sweeney. Achieving k-anonymity privacy protection using generalization
and suppression. In International Journal on Uncertaining, Fuzziness and Knowl-
edge -based Systems, 10(5):571–588, 2002.

12. Latanya Sweeney. K-anonymity: A model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570,
2002.

Verification Theories for XML Schema

Suad Alagić, Mark Royer, and David Briggs

Department of Computer Science
University of Southern Maine

Portland, ME 04104-9300
{alagic, mroyer, briggs}@cs.usm.maine.edu

Abstract. XML Schema types and structures are represented as the-
ories of a verification system, PVS, for proving properties related to
XML schemas. Type derivations by restriction and extension as defined
in XML Schema are represented in the PVS type system using predi-
cate subtyping. Availability of parametric polymorphism in PVS makes
it possible to represent XML sequences and sets via PVS theories. Trans-
action verification methodology is based on declarative, logic-based spec-
ification of frame constraints and the actual transaction updates. XML
applications, including constraints typical for XML schemas, such as keys
and referential integrity, have been verified.

1 XML Schema Types as PVS Theories

We describe a theorem prover technology for verifying properties related to XML
schemas. We chose the PVS (Prototype Verification System [11]) theorem prover
for our work because its type system includes predicate subtyping and bounded
parametric polymorphism along with very general, and even higher order, logic
capabilities. This makes PVS a suitable tool for expressing the complexity of
XML Schema.

A PVS specification consists of a collection of theories. A theory is a spec-
ification of type signatures (of functions in particular) along with constraints
applicable to instances of the theory expressed in the chosen logic. Hence in our
approach, types and structures of the XML Schema have been represented as a
collection of PVS theories.

We claim several advantages for this approach. First, structural properties
are expressed in a type system that conforms to well-established type systems of
programming languages with subtyping and parametric polymorphism. Second,
complex rules specified in the XML Schema documents in semi-formal English
are now specified in PVS theories much more precisely and formally in a suitable
logic. Likewise, specification of a variety of constraints in an application schema
is now both required and possible in a more general formal framework. The most
important advantage is that PVS allows automated reasoning about properties
expressed in its theories, even application properties that are not expressible
in XML Schema. Thus, reasoning and verification are supported in situations
when XML data is processed by a transaction or a general purpose programming
language.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 262–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verification Theories for XML Schema 263

One particularly important application of a prover technology is verification
that a transaction respects the integrity of a schema equipped with constraints.
Our methodology for addressing this application requires explicit specification of
frame constraints that the transaction does not affect, thus focusing the prover’s
attention on constraints that are at risk. The actual transaction update is spec-
ified in a declarative style as a binary predicate over pairs of database states,
and the prover verifies that the update cannot violate the constraints. Although
we use PVS to specify transaction updates, the methodology could be used with
a variety of transaction languages.

2 Type Derivations in XML Schema

XML type anyType is the root of the XML type hierarchy [16, 17]. All other
XML types are directly or indirectly derived from anyType by restriction or
extension, and XML Schema has specific requirements on what derivations are
valid. Two types that are derived directly from the type XMLany are XMLsimple
and XMLcomplex. The subtyping relationships among XML types and our types
specifying XML structures in PVS are represented in the following diagram:

XMLany

XMLsimple XMLcomplex

Types derived
from XMLsimple

Types derived
from XMLcomplex

XMLparticle XMLterm

XMLgroupXMLelement

XMLsequenceGroup

XMLchoiceGroup

XMLallGroup

Specific element types

XMLset

XMLsequence

Type Structure

XMLattribute

A complex type is always derived from some other type, which may be either
simple or complex. A complex XML type is equipped with a set of attributes
and a content, which may be simple or complex. Complex content is specified
via XML notions of elements, particles, groups, and group operators. Briefly,
a complex content model determines a regular language of acceptable element
instances, where the element tags are the symbols of the alphabet. A content
derived by restriction will have a language that is a subset of the language of
the base type, and a content derived by extension will have a language that is
the concatenation of the base type’s language with another language.

We define PVS theories for the XML constructs used in declaring XML com-
plex types and predicates extends and restricts to formally capture the rules

264 S. Alagić, M. Royer, and D. Briggs

of XML Schema. A core idea behind type derivations in XML Schema is that
an instance of a derived type may be viewed as a valid instance of its base type.
This implies that all constraints associated with the base type are still valid when
applied to an instance of a derived type. Our construction of PVS theories for
XML Schema types and structures is governed by this basic requirement. This
requirement corresponds to the notion of behavioral compatibility as presented
in [4].

3 Related Research

The types as theories view is the basis of our previous results on generic data
model management [1], semantics of objectified XML [3], and semantic compat-
ibility problems for the object-oriented model [4].

A classical result on the application of theorem prover technology based on
computational logic to the verification of transaction safety is [13]. Other results
include usage of Isabelle/HOL [14] and PVS [2].

Results that address the problems of integration of a type system for XML
with standard type systems [8, 9, 15] are confined to the problems of an integrated
type system. These results do not address the issue of logic-based constraints,
which is a distinctive feature of our work.

A variety of results are available on constraints for XML such as [7, 6, 10]. We
consider XML constraints associated with a type system, and provide a prover
technology to reason about constraints. This is probably the most distinctive
feature of our work with respect to other related results.

4 Conclusions

Our experience with PVS had several lessons. First, intuitive techniques for
verifying properties of transactions are inadequate. The PVS prover frequently
exposed implicit assumptions we were making that were not logical consequences
of the specifications. One advantage of using a prover tool is that it forces the
developer to think more precisely and carefully about the application. Even
when the goal theorem fails to prove, the prover gives valuable feedback to the
developer. However, this feedback provided by PVS is not easy for a typical
programmer to understand.

PVS does not check the consistency of a collection of axioms, and when pos-
sible such collections should not be used in writing specifications. We instead
employ a definitional style which describes constraints as formulas, and then ask
the PVS prover to show that the desired properties follow from the definitions.

A further conclusion is that tools such as PVS are not easy to use and require
expertise and experience. A valid research goal is to develop proof strategies for
particular tasks following the guidelines in [12, 5]. For a transaction verification
proof strategy, a critical issue was separation of frame constraints from the logic-
based specification of the actual updates. This strategy avoids expanding and
rewriting the frame constraints and makes it possible to focus on the details of

Verification Theories for XML Schema 265

the proof of the active part of a transaction. In order to make these tools usable
by typical programmers, a high-level user friendly interface based on suitable
proof strategies is really required.

A major future research issue is extending this approach with reflective ca-
pabilities to allow the expression of XML features beyond conventional typing
notions extended with constraints. In a separate piece of research we make use of
a temporal logic specified by a suitable PVS theory in order to prove properties
of object-oriented programs.

References

1. S. Alagić and P. A. Bernstein, A model theory for generic schema management,
Proceedings of DBPL 2001, Lecture Notes in Computer Science, 2397, pp. 228 -
246, 2002.

2. S. Alagić and J. Logan, Consistency of Java transactions, Proceedings of DBPL
2003, Lecture Notes in Computer Science 2921, pp. 71-89, Springer, 2004.

3. S. Alagić and D. Briggs, Semantics of Objectified XML, Proceedings of DBPL
2003, Lecture Notes in Computer Science 2921, pp. 147-165, Springer, 2004.

4. S. Alagić, S. Kouznetsova, Behavioral compatibility of self-typed theories, Pro-
ceedings of ECOOP 2002, Lecture Notes in Computer Science 2374, pp. 585-608,
Springer, 2002.

5. M. Archer, B. Di Vito, and C. Munoz, Developing user strategies in PVS: A tuto-
rial, Proceedings of STRATA 2003.

6. P. Buneman, S. Davidson, W. Fan, C. Hara and W-C. Tan, Reasoning about keys
for XML, Proceedings of DBPL 2001, Lecture Notes in Computer Science, 2397,
pp.133 -148, 2002.

7. W. Fan and J. Simeon, Integrity constraints for XML, Journal of Computer and
System Sciences 66, pp. 254-291, 2003.

8. H. Hosoya and B. Pierce, XDuce: A typed XML processing language, ACM Trans-
actions on Internet Technology, 3(2), pp. 117-148, 2003.

9. H. Hosoya, A. Frisch, and G. Castagna, Parametric polymorphism for XML, Pro-
ceedings of POPL 2005, ACM, pp. 50-62.

10. G. M. Kuper and J. Simeon, Subsumption for XML types, Proceedings of ICDT,
Lecture Notes in Computer Science 1973, pp. 331-345, Springer, 2001.

11. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Clavert: PVS Lan-
guage Reference, SRI International, Computer Science Laboratory, Menlo Park,
California.

12. S. Owre and N. Shankar, Writing PVS proof strategies, Computer Science Labo-
ratory, SRI International, http://www.csl.sri.com.

13. T. Sheard and D. Stemple, Automatic verification of database transaction safety,
ACM Transactions on Database Systems 14, pp. 322-368, 1989.

14. D. Spelt and S. Even, A theorem prover-based analysis tool for object-oriented
databases, Lecture Notes in Computer Science 1579, pp 375 - 389, Springer, 1999.

15. J. Simeon and P. Wadler, The Essence of XML, Proceedings of POPL 2003, ACM,
pp. 1-13, 2003.

16. W3C: XML Schema Part 0: Primer, Second Edition, http://www.w3.org/
TR/xmlschema-0/.

17. W3C: XML Schema Part 1: Structures, Second Edition, http://www.w3.org/
TR/xmlschema-1/.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 266 – 269, 2006.
© Springer-Verlag Berlin Heidelberg 2006

DTD-Driven Structure Preserving XML Compression

Stefan Böttcher and Rita Steinmetz

University of Paderborn (Germany), Computer Science
Fürstenallee 11, D-33102 Paderborn

{stb, rst}@uni-paderborn.de

Abstract. Whenever XML is used as the data format to exchange large amounts
of data or even for data streams, the verbose behavior of XML is one of the
bottlenecks. While compression of XML data seems to be a way out, it is
essential for a variety of applications that the compression result still can be
parsed, searched, transformed or modified efficiently. In order to support
efficient search in compressed XML data, we have developed a compression
technique that links two components: the first component uses the DTD to
perform a structure-preserving compression of XML markup data, while the
second uses a trie for the compression of text constants and attribute values.

1 Introduction

XML is a widespread standard for the exchange of data. Although XML has several
advantages like the semi-structured nature of the data and the semantics that can be
added by tag-names, XML bears the following major disadvantage. While the
additional structure information added by the tags is an advantage when searching for
sub-fragments that meet certain filter conditions, this markup makes the document
rather verbose. Therefore, it is often argued that XML data is too verbose for the
storage and exchange of huge data collections, and many practical applications today
use relational databases or lists of comma-separated values instead of XML for data
storage or data exchange. In comparison, we argue that a good compression algorithm
should be able to compress not only most of the redundant markup, but also should
compress the text or data values in such a way that the compressed data is more
compact than a comma-separated list of values or a relational database table.

Another line of argumentation is that ordinary compression algorithms like zip can
be used when the volume of the data to be stored or exchanged is critical. While this
is true in principle, general compression algorithms will perform poorly, if an
application requires access to only a very limited subset of the data. Whenever this
subset of data is not known in advance, which is typical e.g. for ad-hoc querying
applications to databases, it is difficult if not impossible to isolate a compressed
fragment of the data that has to be decompressed in order to answer the query. In
comparison, we prefer that queries can be applied to the compressed data without
decompressing the whole data.

In Section 2 of this paper, we outline the requirements to a compression technique
which is appropriate for very large XML documents and XML streams and which
supports search on compressed data without decompression. In Section 3, we sketch a

 DTD-Driven Structure Preserving XML Compression 267

flexible architecture for implementing our approach, but due to space limitations, we
defer some technical details to a forthcoming paper. In Section 4, we compare our
approach with related work, and Section 5 outlines the summary and conclusions.

2 Requirements to the Compression of XML Documents

An algorithm for compression of XML documents should meet at least the following
requirements:

The compression of an XML document should return a compressed XML (cXML)
result which still allows answering queries without decompression of the complete
cXML. As typical XML query languages like XQuery are based on XPath, at least the
basic concepts of XPath like searching paths should be supported on the cXML data.

Additionally, transformations of XML documents, e.g., using XSLT or XQuery
should be supported. Because these transformations use XPath as their access
language to XML data, the support of XPath evaluation on compressed data is
sufficient to meet this requirement too.

Furthermore, compression is especially useful when documents are very large, i.e.,
the compression method should support the compression of huge XML documents.
When limited main memory is insufficient to store and compress large XML
documents, the swapping of XML fragments to secondary storage may be considered
a way out, but significantly slows down performance. Therefore, e.g. algorithms that
are based on the Document Object Model (DOM) are expected to perform poorly.
Instead, efficient compression of huge documents is required.

Finally, the compression method should be able to compress XML streaming data
correctly. And XPath query execution on compressed streams should be supported as
far as possible.

3 Design Decisions Meeting the Requirements to XML
Compression

In order to meet the requirements, we have developed an XML compression system
that is based on the following design decisions. We have designed a component-based
XML compression system that combines a component for the compression of markup
with a component for the compression of text constants and attribute values contained
in the XML document. This allows us to find a suitable structure compression
algorithm for markup independently of finding a suitable compression algorithm for
text constants and attribute values, as long as both components are linked to each
other. More precisely, there still has to be a pointer or identification mechanism which
associates each text constant or attribute value with the markup that surrounds it.
However, which technique is chosen for this association (pointers like in BPLEX [3],
identifiers or simply an embedding of constants in place as e.g. suggested in [9]) is
independent of the compression technique used for text constants and attribute values.

Inspired by ideas also found in [9], we use information found in the DTD to
compress the structural information given in XML documents. However different
from [9], we separate the storage and compression of structural information from the
storage and compression of text constants and attribute values. We have linked both

268 S. Böttcher and R. Steinmetz

compression modules by the use of IDs, i.e., each ID uniquely represents a text
constant or an attribute value used. For the compression of text constants and attribute
values, we have implemented a trie [5] storing the constants in a prefix tree. Note
however that our current implementation of the compression module for text
constants can be replaced by any other approach for compressing text values, that
assigns IDs to each value and that allows to compare the compressed values.

Finally, in order to enable the compression of very large documents and even XML
streams, we have implemented a SAX-based parsing and compression method.

Due to space limitations, we delay the detailed description of our approach to a
forthcoming publication.

4 Relation to Other Works

There exist several algorithms for XML compression. The first approach to XML
compression was the XMill algorithm presented in [7]. It compresses the structural
information, i.e., the tags, separately from the data, i.e., text constants and attribute
values. The data is collected in several containers, where each container represents the
data given for one kind of enclosing tags, and the whole container is compressed after
data collection has been completed. This approach does not allow querying the
compressed data and is not applicable to data streams.

The approaches XGrind [10], XPRESS [8] and XQueC [1] extend the XMill-
approach in several aspects. Each of these approaches compresses the tag information
using dictionaries and Huffman-encoding [6] and replaces the end tags by either a ‘/’-
symbol or by parentheses. All three approaches allow querying the compressed data,
and, although not explicitly mentioned, they all seem to be applicable to data streams.
XQzip [4] and the approach presented in [2] compress the data structure of an XML
document by combining bottom-up identical sub-trees. Afterwards, the data nodes are
attached to the leaf nodes, i.e., one leaf node may point to several data nodes. The
data is compressed by an arbitrary compression approach. These approaches allow
querying compressed data, but they are not applicable to data streams.

An extension of [2] and [4] is the BPLEX algorithm presented in [3]. This ap-
proach does not only combine identical sub-trees, but also recognizes patterns that
may span several levels of inner nodes within the XML tree, and therefore allows a
higher degree of compression. As its predecessors, it allows querying the compressed
data, but it is not applicable to data streams.

In contrast to all these approaches, our structure compression algorithm allows
querying compressed data without fully decompressing it and is applicable to
‘infinite’ XML data streams, i.e., to continuous data streams and to data streams of
previously unknown length. Our structure compression algorithm achieves an even
higher level of compression than previous approaches supporting path queries, as the
compressed data structure only contains compressed data plus some sparse structural
information. As our compressed data structure contains nearly no structural
information, only valid documents can be decompressed, i.e., our structure
compression algorithm does not allow checking validity.

The approach presented in [9] follows the same basic ideas as our structure
compression algorithm, i.e., to omit all information that is redundant because of the
DTD. Whenever the document contains information not found in the DTD, this
information is written to the compressed document. So the resulting compressed

 DTD-Driven Structure Preserving XML Compression 269

document generated by the approach of [9] is similar to our compressed structure
except that e.g. text values and details of the compressed structure are encoded
differently. However, the approach described in [9] to implement this compression
idea is completely different from our structure compression algorithm. In [9], a DOM-
tree is built and traversed simultaneously for the DTD and the XML document. In
comparison, our approach is capable to sequentially compress ‘infinite’ data streams
and to perform path queries on the compressed data stream, whereas the approach
presented in [9] is limited by the size of main memory, i.e., only rather small
documents can be compressed. For example, according to [9], they had problems
with a file of 281 kB, as it exceeded their time threshold, whereas we were able to
compress a document of more than 300 MB in a reasonable time.

5 Summary and Conclusions

The architecture for XML compression presented in this paper combines a technique
that reduces the verbose structural parts of XML documents by removing information
that is redundant when regarding the structure of a given DTD with a trie-based
technique to compress text constants and attribute values. Both compression
techniques are linked to each other by using unique IDs for text constants and
attribute values that are stored in the trie. Although not described in this paper, our
approach uses a SAX-based approach to compression which is capable to compress
‘infinite’ XML data streams, and which allows evaluating path queries on the
compressed data without decompressing it. We are optimistic that our approach to
compression and path query processing on compressed data is not only extensible to
general XPath queries, but could also be applied to XQuery and XSLT.

References

[1] A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu, and A. Pugliese. XQueC:
Pushing queries to compressed XML data. In Proc. VLDB, pages 1065–1068, 2003.

[2] Peter Buneman, Martin Grohe, Christoph Koch: Path Queries on Compressed XML.
VLDB 2003: 141-152

[3] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth, Efficient Memory
Representation of XML Dokuments, DBPL 2005, LNCS 3774, S. 199–216, 2005.

[4] James Cheng, Wilfred Ng: XQzip: Querying Compressed XML Using Structural
Indexing. EDBT 2004: 219-236

[5] E. Fredkin: Trie Memory. Communications of the ACM, 3(9):490-499, Sept. 1960
[6] D. Huffman, “A Method for Construction of Minimum-Redundancy Codes”, Proc. of

IRE, September 1952.
[7] H. Liefke and D. Suciu. XMill: An Efficient Compressor for XML Data, Proc. of ACM

SIGMOD, May 2000.
[8] J. K. Min, M. J. Park, C. W. Chung. XPRESS: A Queriable Compression for XML Data.

In Proceedings of SIGMOD, 2003.
[9] Neel Sundaresan, Reshad Moussa: Algorithms and programming models for efficient

representation of XML for Internet applications. WWW 2001
[10] P.M. Tolani and J. R. Hartisa. XGRIND: A query-friendly XML compressor. In Proc.

ICDE 2002, pages 225–234. IEEE Computer Society, 2002.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 270 – 273, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Scalable Solution to XML View Materialization
on the Web∗

Dae Hyun Hwang1, Hyunchul Kang1, and Byeong-Soo Jeong2

1 School of Computer Science and Engineering, Chung-Ang University, Korea
dhhwang@dblab.cse.cau.ac.kr,

hckang@cau.ac.kr

2 College of Electronics and Information, Kyung Hee University, Korea
jeong@khu.ac.kr

Abstract. Despite the practical importance of XML materialized views for XML
database-backed Web applications and much attention to the issues for cache-
answerability of XML queries with the static XML materialized views, the is-
sues related to incremental refresh of XML materialized views against the rele-
vant updates of the XML source have received little and limited attention. In
this paper, we introduce our on-going project on XML view materialization on
the Web. The main contribution of our solution is its scalability in the Web ap-
plication environment. An overview of our design, the current status of imple-
mentation, and preliminary performance results are presented.

1 Introduction

In the past decades, much research was conducted on view materialization in rela-
tional database systems [3]. Would the same technology be needed and efficiently
possible in the XML context? Since XML has now been established as a standard for
data representation and exchange on the Web, materialization of XML views defined
by XPath or XQuery expressions and their incremental refresh against the updates of
XML source will be core techniques in efficiently supporting XML database-backed

Web applications. Techniques for cache-answerability of
XML queries which exploit middle-tier caching at the
application server in the multi-tier architecture for XML
database-backed Web applications (see Figure 1) have
already received considerable attention. In those works,
however, the XML materialized views are assumed to be
static. As such, once they are materialized, no further
maintenance is done. When they get obsolete due to the
updates of their source, they might be recomputed from
scratch.

To provide a full-fledged solution, the XML material-
ized views could be incrementally refreshed against the

∗ This work was supported by the Basic Research Program of the Korea Science & Engineer-

ing Foundation (grant No. R01-2003-000-10395-0).

Web
Server

Application
Server

D ata
Server

XML
M ate riali ze d
V iew

XM L
Source

Fig. 1. Multi-tier Architec-
ture for XML Database-
backed Web Applications

 A Scalable Solution to XML View Materialization on the Web 271

relevant updates of the source. So far, little work has been done for that. In [6], a
technique for incrementally refreshing an XML materialized view defined by a subset
of XQL was investigated. The key of this technique is maintenance of the auxiliary
information called aggregate path index [1], which holds the collection of the source
data objects relevant to the query pattern, in order to check the source update’s rele-
vance to the view. The main limitation of this technique, however, is that the size of
the auxiliary information would be huge when the volume of XML source is large
and/or when there are a number of materialized views. More general approach based
on an XQuery algebra was proposed in [2]. However, it still suffers from possibly
large amount of auxiliary information. A technique that utilizes the view correspon-
dence assertions, which define the relationship between the schema of XML view and
that of the source, in checking the source update’s relevance to the view was proposed
in [9]. This technique requires the existence of schema information. In [7], incre-
mental maintenance of the path expression views defined by a subset of XPath 1.0
was investigated. The size of the auxiliary information that needs to be maintained
with a view depends only on the expression size and on the answer size regardless of
the source size. However, the path expression view dealt with is just a node set ob-
tained as the result of evaluating an XPath expression rather than a fully materialized
one.

In this paper, we introduce our on-going efforts for the development of XML mate-
rialized view technology, describing the main contribution compared with the previ-
ous work. In Section 2, the goal of our project along with the major design directions
to realize it is described. Section 3 describes the current status of implementation and
presents some preliminary performance results.

2 Design Overview

The main goal of our project is to provide a scalable solution to XML view materiali-
zation that is viable in the Web application environment. There are two aspects here.
First, since XML views are defined against the XML source on the Web, the volume
of view’s source could be huge. Secondly, the number of materialized views could
also be huge, maybe on the Internet scale. These led to the following major design
decisions.

First, the storage structures of XML materialized views should be disk-based ones.
If materialized views were maintained on main memory, the system would not scale
at all. The issue of storage structures of XML materialized views was addressed by
none of the previous work despite its practical importance. Only tree-based data struc-
tures that would fit in main memory were considered. The two major types of opera-
tions on a materialized view are retrieving the whole to provide the requested view
and fixing just a small portion of it for incremental refresh. There exist performance
tradeoffs between these two types of operations. As such, we need the storage struc-
tures of XML materialized views that compromise well between the two. We have
designed three storage structures that respectively employ an indexed log-structured
text file, an indexed persistent DOM (PDOM [5]) file, and an RDBMS. Due to space
limitation, the details are omitted here.

272 D.H. Hwang, H. Kang, and B.-S. Jeong

Fig. 2. View Retrieval Time Fig. 3. View Retrieval Time

Fig. 4. View Retrieval Time Fig. 5. View Retrieval Time

Secondly, deferred incremental refresh of XML materialized views, which requires
logging of updates done to the XML source, should be the choice rather than its im-
mediate counterpart to support a huge number of XML materialized views on the
Web. With the deferred update propagation, the overhead incurred on XML update
processing is just the update logging, which is negligible because the time it takes for
update logging is dependent on the complexity of the update operation itself not on
the number of materialized views supported. Another important advantage of deferred
refresh policy is that it enables the optimized incremental refresh of a materialized
view. By identifying the interrelationships among the logged updates, some can be
cancelled with each other, merged into one, and/or just ignored. As for the space
overhead incurred for update logging, it is regarded as small because the logged data
is shared for all the materialized views, whose number may be enormous. Besides, it
shall be fully amortized by the performance gain through view materialization.

Thirdly, the XML views considered should be the ones against a huge set of XML
documents on the Web, rather than against a single document as assumed in the pre-
vious work. As such, our XML view is the result of document filtering as well as of
element retrieval out of each filtered document.

3 Implementation and Performance Evaluation

We have implemented four schemes for maintaining XML materialized views in Java
on Windows 2000 Server. They are called Rx-S, Rx, Fx/T, and Fx/PD. The first two

 A Scalable Solution to XML View Materialization on the Web 273

employ an RDBMS (Oracle 9i) with JDBC connection. Fx/T employs an indexed log-
structured text file whereas Fx/PD employs an indexed PDOM file. (For this, PDOM
implementation of GMD-IPSI XQL Engine Version 1.0.2 [4] was used.) All except
Rx-S perform optimized batch processing of update log. We have also implemented
recomputation of the view. The performance of XML view retrieval by all these
schemes was compared through a set of experiments.

The order documents in XML of TPC-W benchmark [8] were used as XML
source, which was stored in an RDBMS (Oracle 9i). The experiments were conducted
on a system of Celeron 2GHz PC with 512 MB main memory. Figure 2 through Fig-
ure 5 compare the view retrieval times as the ratio of source document updates in-
creases. The parameter s denotes the selectivity of the view, and I:D:M the ratio
among source insert: delete: modify. Our schemes considerably outperformed the
recomputation as long as source update ratio was not too high. The efficiency of op-
timized batch processing of update log was also confirmed.

References

1. Chen, L., Rundensteiner, E.: Aggregate Path Index for Incremental Web View Maintenance.
Proc. Int’l Workshop on Advanced Issues of EC and Web-based Info. Systems. (2000)

2. Dimitrova, K. et al.: Order-sensitive View Maintenance of Materialized XQuery Views.
Tech. Rep. WPI-CS-TR-03-17. Comp. Sci. Dept. Worcester Polytechnic Institute. (2003)

3. Gupta, A., Mumick, I: Materialized Views: Techniques, Implementations, and Applications.
MIT Press (1999)

4. Huck, G, Macherius, I.: GMD-IPSI XQL Engine. http://xml.darmstadt.gmd.de/xql/
5. Huck, G. et al.: PDOM: Lightweight Persistency Support for the Document Object Scheme.

Proc. OOPSLA Workshop on Java and Databases: Persistence Options. (1999)
6. Quan, L. et al.: Argos: Efficient Refresh in an XQL-Based Web Caching System. Proc.

Workshop on the Web and Databases. (2000) 23-28
7. Sawires, A. et al.: Incremental Maintenance of Path-Expression Views. Proc. ACM

SIGMOD Int'l Conf. on Management of Data. (2005)
8. TPC-W: Transaction Processing Performance Council. http://www.tpc.org/tpcw/
9. Vidal, V., Casanova, M.: Efficient Maintenance of XML Views Using View Correspon-

dence Assertions. Proc. Int'l Conf. on EC and Web Technologies. (2003) 281-291

A Rule-Based Data Warehouse Model

Cécile Favre, Fadila Bentayeb, and Omar Boussaid

ERIC Laboratory, University of Lyon 2,
5 av. Pierre Mendès-France, 69676 Bron Cedex, France

{cfavre, bentayeb}@eric.univ-lyon2.fr
omar.boussaid@univ-lyon2.fr

Abstract. A data warehouse is built by collecting data from external
sources. Changes that occur have to be reflected in the data warehouse
thanks to schema updating or versioning. However a data warehouse has
also to evolve according to users’ analysis needs. This evolution is rather
driven by knowledge than by data. To take into account these changes, we
propose a new Rule-based Data Warehouse (R-DW) model in which rules
integrate users’ knowledge to dynamically create dimension hierarchies.
The R-DW model is composed of a fixed part which is a fact table related
to its first level dimensions, and an evolving part which contains the rules.
Our model allows analysis context evolution and increases interactions
between users and the decision support system.

1 Introduction

A data warehouse constitute an effective support in managing an increasing
mass of data from heterogeneous sources and in providing an answer to analysis
needs. Exhaustively establishing the users’ needs is a complex task. Sometimes,
users have knowledge which is not represented in the data warehouse and which
may be needed to have a complete analysis. We therefore have to make the data
warehouse evolve to be able to take into account users’ knowledge. But this kind
of evolution is not easy to achieve in the traditional rigid data warehouse models.

Indeed, a data warehouse schema evolution is performed following two differ-
ent ways, namely schema updating and schema versioning. The first approach
consists in updating a schema and transforming data from an old schema into
a new one [1]. The second approach, on the contrary, keeps track of all versions
of a schema [2]. These two approaches constitute a solution to the dimensions
evolution, when the latter is induced by the evolution of data. However, once
the data warehouse made up, the users may only carry out analysis provided by
the model. These approaches do not take into account new analysis needs driven
by the expression of knowledge ; thus they are not flexible enough.

Works aiming at an increased flexibility in data warehouses generally use rules
to either define the data warehouse schema from source schemas [3, 4] or support
various types of constraints [5] in order to keep the data and the analysis coherent,
or manage the exceptions during the aggregation process [6]. The rule-based lan-
guages contributed in making the data warehouse more flexible. We want to bring
such a flexibility for the evolution of analysis needs driven by knowledge.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 274–277, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Rule-Based Data Warehouse Model 275

Thus, we propose a new Rule-based Data Warehouse (R-DW) model, in which
rules create new granularity levels in dimension hierarchies by integrating the
users’ knowledge. Our R-DW model has several advantages as compared to ex-
isting data warehouse models. It allows (1) to dynamically create hierarchies ; (2)
to makeanalysis on evolving contexts ; (3) to increase the interactionbetween users
and the information system since they can integrate their own knowledge.

Section 2 explains principles of our R-DW model and an example is described
in Section 3. Its implementation and a case study are presented in Section 4.
Section 5 concludes this paper and provides future research directions.

2 The R-DW Model

The R-DW model is composed of a fixed part and an evolving part (Figure 1a).
The fixed part is a star schema, it is composed of a fact table and first level di-
mensions. The evolving part is composed of rules which generate new granularity
levels in dimension hierarchies based on the user’s knowledge.

The metamodel described in Figure 1b is a generalization of the R-DW model.
It contains a definition of the fixed part of the model represented by the Fact
table and Dimension classes. The evolving part is represented by Rule defined
extensionally and Rule defined intentionally classes. Rules are defined exten-
sionally when they are based on well-known values that can be enumerated ; on
contrary, they can be defined intentionally using functions.

Rules defined extensionally are “if-then” rules. The then-clause contains the
definition of a higher granularity level. The if-clause contains conditions on the
lower granularity levels. Rules defined intentionally allow inferences on the gran-
ularity level according to lower levels. For instance, to obtain the department of
a customer, we just have to extract the first two characters of the postal code.

Fig. 1. R-DW model and metamodel

276 C. Favre, F. Bentayeb, and O. Boussaid

Our model provides to the end-users a mean to define their own rules to deter-
mine new dimensions hierarchies. Then users can therefore analyze data according
to the new granularity levels. The data warehouse model becomes thus more flex-
ible for analysis.

3 Example

As an example, we use the case study of Le Crédit Lyonnais (LCL). The annual
Net Banking Income (NBI) is the profit obtained from the management of cus-
tomers account. This is a measure studied according to customers, agencies and
years. The students portfolio manager of LCL knows that some agencies have stu-
dents as only customers.Our R-DW model (Figure 2) can integrate this knowledge
to carry out an analysis taking into account the student dedicated agencies. The
fixed part of the model is made up of the fact table TF NBI and the dimension
tables CUSTOMER, YEAR and AGENCY. To the fixed part we add the evolving
part containing rules that describe the manager’s knowledge on student agencies
(R1 and R2).The induced model makes it possible to carry out new analysis based
on the user’s knowledge. A new granularity level has been added in the hierarchy.
Therefore our R-DW model allows us to build aggregates, by considering that the
facts to aggregate concern a student agency (R1), or a classical agency (R2).

Fig. 2. Rule-based Data Warehouse model for the NBI analysis

4 Implementation and Case Study

We developed a Web platform (HTML/PHP) behind Oracle DBMS used to store
the fact table and dimension tables. Two additional tables contain the rules
defined extensionally and intentionally. The Web platform allows the user to
define the rules that generate the analysis axes. We initially restricted ourselves
to decisionnal queries with an aggregation according to one granularity level.
This aggregation is computed by a PL/SQL stored procedure.

The R-DW model for the NBI analysis previously presented is enriched by the
granularity levels which are created by the evolving part of the Figure 3. From
this model, the user will be able to run NBI analyses, not only by considering
first level dimensions, but also by considering new dimension levels like agency
type, department, age classes.

A Rule-Based Data Warehouse Model 277

Fig. 3. Evolving part of the R-DW data warehouse for the NBI analysis

5 Conclusion

We proposed a rule-based data warehouse model. Rules introduce users’ knowl-
edge into the data warehouse for new analysis purposes. Our R-DW model is
composed of two parts: a fixed part that contains a fact table and first level
dimensions ; and an evolving part that is defined by rules defining granular-
ity levels of dimension hierarchies. The R-DW model presents the advantage
of being able to dynamically create dimension hierarchies, according to users’
knowledge therefore satisfying their analysis needs. The implementation we de-
veloped was applied on the LCL case study and gave some promising results.

The perspectives opened by this study are numerous. First, we have to extend
the analysis possibilities of our implementation. Then we intend to measure
the performance of our approach in terms of storage space and response time.
Furthermore we plan to define constraints on rules and a language that allows
us to validate these rules. Moreover, we think it would be interesting to use non
supervised learning methods for discovering new rules.

References

1. Blaschka, M., Sapia, C., Höfling, G.: On Schema Evolution in Multidimensional
Databases. In: DaWaK’99: 1st International Conference on Data Warehousing and
Knowledge Discovery. (1999) 153–164

2. Eder, J., Koncilia, C.: Changes of dimension data in temporal data warehouses.
In: DaWaK’01: 3rd International Conference on Data Warehousing and Knowledge
Discovery. (2001) 284–293

3. Kim, H.J., Lee, T.H., Lee, S.G., Chun, J.: Automated Data Warehousing for Rule-
Based CRM Systems. In: 14th Australasian Database Conference on Database
Technologies. (2003) 67–73

4. Peralta, V., Illarze, A., Ruggia, R.: On the Applicability of Rules to Automate Data
Warehouse Logical Design. In: CAiSE Workshops. (2003)

5. Carpani, F., Ruggia, R.: An Integrity Constraints Language for a Conceptual Mul-
tidimensional Data Model. In: SEKE’01: XIII International Conference on Software
Engineering & Knowledge Engineering. (2001)

6. Espil, M.M., Vaisman, A.A.: Efficient Intensional Redefinition of Aggregation Hi-
erarchies in Multidimensional Databases. In: DOLAP’01: 4th ACM International
Workshop on Data Warehousing and OLAP. (2001)

Enriching Data Warehouse Dimension
Hierarchies by Using Semantic Relations�

Jose-Norberto Mazón and Juan Trujillo

Dept. of Software and Computing Systems
University of Alicante, Spain

{jnmazon, jtrujillo}@dlsi.ua.es

Abstract. Data warehouse dimension hierarchies are of paramount im-
portance in OLAP (On-Line Analytical Processing) tools to support the
decision-making process, since they allow the analysis of data at differ-
ent levels of detail (i.e. levels of aggregation). This is why it is crucial to
capture adequate hierarchies in the requirement analysis stage. However,
operational sources may not be able to supply enough data to construct
every level of these hierarchies. In this paper, we propose the application
of semantic relations among WordNet concepts to enrich hierarchies by
adding the required levels of aggregation. Decision makers will thus be
able to achieve their information needs for analysis.

1 Introduction

In the early nineties, Inmon [4] coined the term data warehouse (DW) as “a
subject oriented, integrated, non-volatile, and time-variant data collection in
support of management’s decision”. It is widely accepted that data warehouses
(DWs) are based on multidimensional (MD) modelling which structures infor-
mation into facts and dimensions. A fact contains useful measures of a business
process (sales, deliveries, etc.), whereas a dimension represents the context for
analysing a fact (product, customer, time, etc.) by means of hierarchically orga-
nized dimension attributes [1, 9]. These hierarchies are of a crucial importance
when OLAP (On-Line Analytical Processing) tools support the decision-making
process, since they are used in such operations as roll-up or drill-down to analyse
the large amount of data stored in the DW.

Lately, we have been developing an approach [5, 6], based on UML (Unified
Modelling Language) [8] and the i* notation [10] for the conceptual modelling
of DWs from user requirements. With this approach, once user requirements are
correctly captured, we obtain the corresponding MD schema (i.e. required MD
schema). The required MD schema is then conformed to the operational sources
that will populate the DW. Nevertheless, in this conformation process we found
� Work supported by the projects: TIN2004-00779 from the Spanish Government,

GV05/220 from the Valencia Government, and PBC-05-012-2 from the Castilla-La
Mancha Government. Jose-Norberto Mazón is funded by the Spanish Ministry of
Science and Education under a FPU grant (AP2005-1360).

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 278–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Enriching Data Warehouse Dimension Hierarchies 279

Fig. 1. Using WordNet to enrich the conformed MD schema

that the required MD schema could not be totally specified as many terms and
data were missing from the operational sources and only a reduced version of
this schema was obtained: the conformed MD schema.

Consequently, data sources may not be enough to obtain required hierarchies
and DW users can only analyse data by using conformed hierarchies1. The fi-
nal DW will not therefore completely satisfy final user requirements. This is why
this paper presents a preliminary, novel approach to enrich conformed dimension
hierarchies by adding new levels of aggregation in order to obtain the required
hierarchies, although not enough data is stored in the operational sources. DW
users will thus satisfy their analysis needs. To accomplish this, we propose the
use of semantic relations among concepts provided by WordNet [7]. The ini-
tial hypothesis is that both DWs and WordNet present hierarchical structures:
dimension hierarchies in DWs show the relationships between value domains
from different dimension attributes (set by levels of aggregation), while Word-
Net presents hierarchical semantic relations between concepts, such as hyper-
nymy/hyponymy or meronymy/holonymy. Therefore, our approach is based on
using these WordNet semantic relations to add new levels to conformed dimen-
sion hierarchies in order to obtain the required hierarchies. Figure 1 summarizes
this scenario.

2 Using UML for Data Warehouse Modelling

In this paper we use our UML profile for the conceptual design of DWs according
to MD modelling [5], which divides data into facts and dimensions. In order to
provide data on a suitable level of granularity, hierarchies are defined on the
dimensions. The profile is defined by a set of stereotypes and tagged values to
represent MD properties elegantly on a conceptual level by using a UML class
diagram (see Table 1). We refer reader to [5, 9] for further explanations.

1 We regard required hierarchies to be those obtained from end user requirements (i.e.
they are part of the required MD schema); while conformed hierarchies are those
that conform to the data provided by operational sources (i.e. they are part of the
conformed MD schema).

280 J.-N. Mazón and J. Trujillo

Table 1. Class stereotypes of our UML profile related to dimension hierarchies

Stereotype Description Icon

Dimension Represents dimensions consisting of hierarchy levels.

Base Represents dimension hierarchy levels and attributes.

3 Using WordNet to Enrich Dimension Hierarchies

Our approach is based on using the semantic relations provided by Wordnet to
enrich conformed hierarchies (i.e. adding the new aggregation levels) in order
to obtain the required ones. The main tasks are shown in Fig. 2. A dimension
attribute (denoted as D) is chosen from a conformed hierarchy. All instance val-
ues of this attribute (denoted as W) are then obtained from operational data
sources. These values must be disambiguated by using a word sense disambigua-
tion (WSD) algorithm to obtain their right senses (denoted as S). Afterwards,
iterations are used to obtain hypernyms or meronyms of senses (denoted as H).
A new hierarchy level is created for each of these iterations with its correspond-
ing instance values. Iterations are repeated until every hierarchy level needed by
the required hierarchy is obtained. In this way we take advantage of semantic
relations of WordNet (hypernyms or meronyms) to enrich dimension hierarchies.

Figure 3 shows an example of our approach: a user requirement states that a
quantity of sold product must be analysed according to several aggregation levels
(subtype, type, and class of product). So a hierarchy is constructed according
to this requirement (i.e. required hierarchy). However, only the name of the
product is available from the data sources. Thus, when the required hierarchy
is conformed to these sources, the resulting conformed hierarchy does not have

Fig. 2. Main tasks of our approach

Fig. 3. An example of applying our approach

Enriching Data Warehouse Dimension Hierarchies 281

enough aggregation levels to satisfy user needs. Our approach was then applied to
enrich this conformed hierarchy and obtain the required hierarchy. The instances
of the new levels (provided by WordNet) can also be seen in Fig. 3.

4 Conclusion and Future Work

Obtaining the required dimension hierarchies captured from DW users in the
requirement analysis stage is crucial for improving the decision-making process.
However, when required hierarchies are conformed to operational sources, we
found that these sources may not provide enough data to construct every level
of required hierarchies, meaning that only conformed hierarchies can be obtained.
Therefore, user requirements are not satisfied, as conformed hierarchies may not
deliver the information expected to support the decision-making process. In this
paper, we propose the application of semantic relations from WordNet to obtain
the required hierarchies. The advantage of our proposal is clear: the enrichment
of conformed hierarchies by adding new aggregation levels in order to satisfy
the required hierarchies. These required hierarchies allow DW users to satisfy
their information analysis needs, since they better support the decision-making
process. Finally, we plan to use WordNet within DWs systems to overcome
inaccuracy problems regarding summarizability [2, 3].

References

1. Akoka J., Comyn-Wattiau I., Prat N.: Dimension Hierarchies Design from UML
Generalizations and Aggregations. ER 2001. LNCS 2224, pp. 442-455, Springer.

2. Horner J., Song I-Y., Chen P.: An Analysis of Additivity in OLAP Systems. 7th
ACM Int. Workshop on Data Warehousing and OLAP (DOLAP), pp. 83-91, 2004.

3. Horner J., Song I-Y.: A Taxonomy of Inaccurate Summaries and Their Manage-
ment in OLAP Systems. ER 2005. LNCS 3716, pp. 433-448.

4. Inmon W.: Building the Data Warehouse, John Wiley & Sons, 1996.
5. Luján-Mora S., Trujillo J., and Song I-Y.: A UML Profile for Multidimensional

Modelling in Data Warehouses, Data & Knowledge Engineering. In Press.
6. Mazón J-N, Trujillo J., Serrano M., Piattini M.: Designing Data Warehouses: from

Business Requirement Analysis to Multidimensional Modelling. Int. Workshop on
Requirements Engineering for Business Needs and IT Alignment, REBNITA 2005.

7. Miller G.A., Beckwith R., Fellbaum C., Gross D., Miller K.J.: WordNet: An On-
Line Lexical Database, International Journal of Lexicography, 3(4), 1990.

8. Object Management Group (OMG). Unified Modelling Language Specification 1.5.
http://www.omg.org/cgi-bin/doc?formal/03-03-01. 2004.

9. Trujillo J., Palomar M., Gómez J., Song I.Y.: Designing Data Warehouses with
OO Conceptual Models. IEEE Computer, 34(12):66-75, 2001.

10. Yu, E.: Modelling Strategic Relationships for Process Reenginering, Ph.D. thesis.
University of Toronto, 1995.

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 282 – 285, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Composite Approach for Ontology Mapping*

Ying Wang, Jianbin Gong, Zhe Wang, and Chunguang Zhou

College of Computer Science, Key Laboratory of Symbol Computation
and Knowledge Engineering of the Ministry of Education,

Jilin University, Changchun 130012, China
yichunwy@163.com, cgzhou@jlu.edu.cn

Abstract. Ontology mapping is one of the important problems for the develop-
ment of Semantic Web. Establishing such mappings has been the focus of a va-
riety of research originating from diverse communities. In this paper, we pro-
pose a Composite Approach for Ontology Mapping (ACAOM) for semi-
automatic ontology mapping based on the combination of the name and in-
stance methods. We conclude that the combination is a promising method.

1 Introduction

Ontologies are the cores of the Semantic Web because they are the carriers of the
meaning contained in the Semantic Web. However in many cases, different domains
define different ontologies containing the same concepts. A flexible approach is
needed to establish semantic correspondences between ontologies. We propose a
mapping approach based on the combination of the name and instance methods.

The rest of the paper is organized as follows. Section 2 describes the main ideas in
our approach and the mapping strategies used. Section 3 discusses the experimental
results and concludes the paper with discussions on future research.

2 A Composite Approach for Ontology Mapping (ACAOM)

2.1 Name-Based Strategy

In this paper, we use a semantic dictionary WordNet [1] and add a path method to it.
We use WordNet as auxiliary information to calculate similarity values between con-
cepts in two ontologies and integrate the measure of path length into our mapping
approach. We modify Lin’s method [2] to obtain the following formula:

()()
()() ()()

1 2

1 2

1 2

2 log , 1
(,)

2log log
l

new

p s s
sim s s

p s p s
α= •

+
 (1)

When we search for the common hypernym of word senses (senses for short there-

after) s1 and s2, we design a punishment coefficient 1
2

lα , where is a constant between

* This work was supported by the Natural Science Foundation of China (Grant No. 60175024)

and the Key Science-Technology Project of the National Education Ministry of China (Grant
No. 02090). To whom correspondences should be addressed, Email: cgzhou@jlu.edu.cn.

 A Composite Approach for Ontology Mapping 283

0 and 1 and is used to adjust a decrease on the similarity between two senses when the
path length between them is deepened. When we search for the common hypernym of
senses s1 and s2, l expresses the longest distance either sense s1 or sense s2 passes by
in a hierarchical hypernym structure. Because senses s1 and s2 occupy one of the
common branches, this value has to be halved.

Words w1 and w2 may contain many senses, we use s(w1) and s(w2) to denote the
set of senses of word w1 and word w2 respectively, that is, s(w1)={s1i | i=1,2,……,m}
and s(w2)={s1j | j=1,2,……,n}. Assume that the numbers of senses that words w1 and
w2 contain are m and n, we define the similarity between them as follows:

()1 2 1 , 2(,) max ()i jsim w w sim s s= (2)

2.2 Instance-Based Strategy

This strategy exploits the vector space model to denote documents and then finds
mapping results between entities. In this paper, we assume that documents have been
associated with concept nodes in ontologies. We establish feature vectors for each
document that belongs to the concept nodes and then compute the feature vectors for
each concept node.

In the pre-processing stage, we process documents in order to perform the compu-
tation described below. This process includes removing html or other tags, removing
stop words according to a stop list, such as, a, the etc, and performing word normali-
zation using the porter stemming algorithm [3]. Then we use vectors to denote the
weight values of the documents.

In a vector space model, we attach a weight to each word to measure how impor-
tant the word is in the document and we deploy the method developed in the Smart
system [4]. The formulas used in the method are given below:

_ (0 .5 0 .5) lg
m ax_

i
i i i

t

t f N
w n ew tf id f

tf n
= = + (3)

where new_tfi expresses the computation of word frequency, tfi term frequency is
the number of times that word i appears in document d, idfi expresses inverse docu-
ment frequency and N is the total number of documents in document set D, nt is the
number of documents containing word i and wi is the weight of word i.

We differentiate between leaf-nodes and non-leaf nodes in an ontology and process
them differently. For each leaf-node, its feature vector is computed as the average
number of documents assigned to it. Let CK be the feature vector of concept node K
and Dj is the collection of documents that have been assigned to it. wij is the weight of
word i in document j. We have:

j

i j
D Kk

i

j

w

C
D

∈=

(4)

284 Y. Wang et al.

We put an emphasis on all the sub nodes of non-leaf nodes. The vector of feature i
is thus constructed as follows:

k s u b
i iC C= (5)

where Ci
sub is the vector of feature i for a leaf-node that is under node K and the vector

of feature i of a non-leaf node is defined as the sum of feature vectors associated with
its child-nodes.

A new approach [5] is proposed to measure the degree of similarity between two
vectors:

() ()

22

1
2 2 2 2

1 1

()
n

a b
a b i i

i
n na b a b

i i
i i

C CC C
SIM

C C C C

=

= =

−−
= =

+ +
 (6)

where SIM is the degree of similarity between concept nodes a and b, Ca and Cb are
the feature vectors of a and b respectively and n is the given count of feature vectors.
The SIM approach takes into account both the angle and the length of vectors. When
two vectors are equal, the value of SIM is 0. If two vectors are orthogonal, the value
of SIM is 1. However, the results are opposite to the common sense. So we modify the
formula as follows:

1newSIM SIM= − (7)

We integrate the results that are computed by the two mapping strategies and use
the following common combination method:

1 1 2 2 1 1 2 2

2
,, 1

() ()i j i j k k i j i jk
sim e e w sim e e

=
= (8)

where wk is the weight for an individual strategy and assigned by hand. For this

method a fixed constant a is taken as a threshold value. If sim(
1 1i je ,

2 2i je)>a, then the

mapping will be correct.

3 Experimental Results and Conclusions

We evaluated ACAOM using two data sets that describe courses at Cornell University
and Washington University [6]. We run both our system and the iMapper [7] system
and used information retrieval metrics, Precision and Recall, to evaluate our method.
The ontologies of Course Catalog I have between 34 to 39 concepts and precisions
range from 82.4% to 85.3% and recalls range from 75.7% to 85.3%. The ontologies of
Course Catalog II have between 166 to 176 concepts and precisions range from
66.1% to 72.9% and recalls range from 57.4% to 70%. As these results show,
ACAOM can achieve better results than the iMapper System.

Although ACAOM produces better results of ontology mapping, there are several
reasons that prevent ACAOM from correctly matching the remaining nodes. First, in

 A Composite Approach for Ontology Mapping 285

the name-based strategy, ACAOM does not consider the structures between words
and assumes that all the words are equally important. Second, in the instance-based
strategy, we use word frequencies only to carry out the computation and do not ana-
lyze the importance of words.

In this paper, we proposed an ontology mapping approach which combines two
strategies. These two strategies make use of the information about both names and
instances assigned to concept nodes respectively to calculate similarities between
entities. An integrated approach has been designed to incorporate both strategies. The
experimental results show that ACAOM performs better than iMapper and it im-
proves the precision of iMapper from +2.4% to 5.9%.

There are several aspects that can be improved in our proposed system. (1) We
could realize ontology merging and integration in the same system. ACAOM can be
applied to other aspects of ontology related issues, such as, queries based on distrib-
uted ontology. (2) Our method cannot support n:m mappings at present, which are
useful in many cases. We will extend our method to address issues in the future.

References

1. Miller,G.A.: WordNet: A Lexical Database for English. Communications of the
ACM,Vol.38 (1995) 39–41

2. Lin, Dekang.: An Information-Theoretic Definition of Similarity. In Proceedings of the 15th
International Conference on Machine Learning, Madison, WI, (1998) 296-304

3. http://www.tartarus.org/~martin/PorterStemmer/
4. Buckley,C., Lewit, A.F.:Optimization of Inverted Vector Searches. SIGIR (1985) 97-110
5. Wang Jianyong, Xie Zhengmao, Lei Ming, and Li Xiaoming: Research and Evaluation of

Near-replicas of Web Pages Detection Algorithms. Chinese Journal of Electronics,
Vol s1.(2000)

6. http://anhai.cs.uiuc.edu/archive/summary.type.html
7. Su,Xiaomeng., Gulla, J.A.: Semantic Enrichment for Ontology Mapping. In Proceedings of

the 9th International Conference on Natural Language to Information Systems (NLDB04),
Salford, UK, June 23-25, (2004) 217-228

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 286 – 290, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards the Completion of Expressing and Checking
Inheritance Constraints in UML

Djamel Berrabah

CRIP5, Paris 5 University
45 rue des Saints Pères, 75270 Paris cedex 06, France
berrabah@math-info.univ-paris5.fr

Abstract. The automation of a conceptual schema translation to design a da-
tabase using CASE tools is one of the multiple efforts devoted to face the
problems of database modeling. These tools often do not take into account all
the information (structures and constraints) of the real word. Our goal is to
enrich these tools and to improve them in order to take into account a big
number of the defined constraints. We aim to combine the advantages of the
object and relational approaches. So, constraints in object databases are ex-
pressed in OCL while they are expressed in relational databases by using ac-
tive mechanisms.

1 Introduction

In database (DB) design methodologies [8, 17], rules are defined to translate a "con-
ceptual schema" (CS), such as UML class diagram, into a relational or object "target
schema" (TS). TS-elements obtained do not coincide completely with CS-elements,
thus bringing about some semantic losses [3]. This problem often arises when con-
straints are not correctly translated. “Participation constraints” (PCs) defined on gen-
eralization/specialization relationships may be one of those constraints. These con-
straints concern the linking rules of general object to special objects. Today’s most
current commercial CASE tools like Power AMC [16] and Rational Rose [15] do not
take these constraints into account and only generate an incomplete database schema.

This paper represents a part of our research dealing with database modelling proc-
ess (from conceptual level to database implementation) [2, 3]. The aim is to provide
an efficient mechanism which deals automatically with PCs (to express and translate
them). These mechanisms consist in creating additional OCL-constraints (Object
Constraint Language) [12, 14] or trigger-based SQL constraints. Thus, an automatic
module to express PCs defined in a CS has been thought to be a good idea to imple-
ment and check them during DB manipulations. Thus, the translation is improved and
the semantic loss is reduced.

The structure of this paper is as follows. Section 2 presents basic concept of con-
straints. Section 3 points out how to deal with PCs that are defined on generaliza-
tion/specialization relationships using a constraint specification language. Our ap-
proach is based on trigger-based SQL scripts and OCL. Finally, the paper ends with a
conclusion.

 Towards the Completion of Expressing and Checking Inheritance Constraints in UML 287

2 Constraints

A constraint constitutes a semantic restriction linked to one or several elements of the
CS (property, class, relationship). It represents semantic information associated with
these elements. A CS must include the correct constraint definitions, without conflicts
[3], of all suitable constraints. The graphic elements offered by the CASE tool do not
allow expressing the totality of the constraints. In addition, no mechanism is gener-
ated to ensure the satisfaction of all the expressed constraints which must be trans-
lated in the TS. These constraints are known as integrity constraints. They must be
satisfied in each DB state. Sometimes, they are checked by declarative constraints
which are not always sufficient. Thus other means, such as OCL and triggers, are
needed to express and check them. OCL is a formal specification language to express
additional constraints in UML. The kind of constraints which can be expressed using
OCL includes invariants on the structures of the CS. In SQL 2003 [7], a trigger is
expressed by ECA rules [5, 6]. It constitutes a good means to implement referential
actions. It is activated during DB transition state.

3 Transformation Rules of a CS

In this section, we study participation constraints (PCs) defined on generalization/
specialization relationships. In other words, we provide rules to translate these con-
straints using a constraint specification language. PCs refer to the conditions of link-
ing general class objects to two or several special class objects. They can have the
same definition as those defined on binary relationships but they have not the same
semantic. The aim of this study is to combine the advantages of both OCL and SQL in
checking these constraints. All SQL statements are represented in ECA-rules form.

Person

Professor Student

 {disjoint, incomplete}: PC on generalization/specialization relationship

Fig. 1. Human resources management schema

3.1 Translation of Generalization/Specialization Relationships

Generalization/specialization relationships naturally arise from superclass/subclass
hierarchies in semantic data modeling [8]. In this kind of relationship, every object
can belong to the generalization as well as to its specialization. Each special object
has a link with exactly one general object but the reverse does not obligatory hold.
This kind of relationship may be represented as a one-to-one relationship. A multi-
plicity "1" on the side of the generalization which means that a special object is
obligatory related to one and only one general object. On the side of the specializa-
tion, a multiplicity "0..1" which means that a general object may relates at most one
special object.

288 D. Berrabah

3.2 Checking PCs on Generalization/Specialization Relationships

Inheritance constraints are divided into disjoint and complete constraint (Fig.2). Dis-
joint constraint specifies whether two objects of different specializations may be re-
lated to the same object of the generalization. Therefore, we say that an inheritance
constraint is disjoint if each general object has a link to at most one special object. In
the reverse case, constraint is said overlapping. To check disjoint constraint, we must
ensure that each general object is member of at most one specialization. Complete
constraint specifies whether objects of the specifications are related to all general
objects. So, we say that an inheritance constraint is complete if each general object
has a link to at least one special object (but not in the same specialization), else it is
said incomplete. Inheritance constraint can be disjoint and complete at the same time.
In this case each general object must be related to at least one special object but at
most one object in both specializations.

*

general2

spec1
Additional constraints

Generalization

Specialization2 Specialization1 Specialization2
*

1 1

spec2
{participation constraints}

Generalization

Specialization1

general1

Fig. 2. PCs on generalization/specialization relationship

Example
In this example, we show how to translate disjoint and complete constraints when
they are defined together on generalization/specialization relationships. In this case,
we can do it in two different ways; using disjoint and complete translation together or
the following translation.

Context g: generalization inv:
Self.allInstances forAll(g| g.spec1 notEmpty xor g.spec2 notEmpty

Trigger1
event: insert on Generalization
condition: none
action: insert obligatory object
in one in only Specialization

Trigger3
event: update on Specialization1
condition: none
action: delete new object from Specialization2 if it exists there or

reject operation
delete old object from Generalization or insert it in Spe-
cialization2

Trigger2
event: delete on Specialization1
condition: none
action: delete object from generaliza-
tion or insert it in Specialization2

 Towards the Completion of Expressing and Checking Inheritance Constraints in UML 289

4 Conclusion and Perspectives

In the literature, two categories of studies can be found. The first one concerns the
formal and/or semi-formal translation. Among these studies, [9] discusses the expres-
sion of structure properties in a UML class diagram through UML basic structures
and OCL. [10, 13] present how to translate UML diagrams into formal specification Z
and B. The second category groups studies on checking the constraints of the target
schema. Among these, we can find those which deal with multiplicity constraints
using assertions [4] or triggers [1]. We also find [2] which uses OCL to translate par-
ticipation constraints defined on binary relationships. Our major aim is to study both
categories.

In this paper, we reported a systematic study of the use of participation constraints
for the specification of assertions defined on the behavior of superclass/subclass ob-
ject participations. The use of these constraints in a conceptual schema is necessary to
satisfy the customer requirement. Our aim is to remove ambiguities from the defini-
tion of participation constraints. Though these later have, on binary relationships as
well as on generalization, the same definitions, their semantics is not the same. We
have translated participation constraints using OCL and riggers-based SQL additional
constraints to cover object and relational models.

References

1. Al-Jumaily, H.T., Cuadra, D., Martinez, P. "Plugging Active Mechanisms to Control Dy-
namic Aspects Derived from the Multiplicity Constraint in UML. The workshop of 7th In-
ternational Conference on the Unified Modeling Language, Portugal (2004) pages.

2. Berrabah, D., Boufarès, F., Ducateau, C.F.: Analysing UML Graphic Constraint, How to
cope with OCL. 3rd International Conference on Computer Science and its Applications,
California USA (2005).

3. Berrabah, D., Boufares, F., Ducateau, C. F., Gargouri, F.: Les conflits entre les contraintes
dans les schémas conceptuels de Bases de Données: UML – EER. Journal of Information
Sciences for Decision Making, Special Issue of the 8th MCSEAI'04, N°19 (2005) Paper
number 234.

4. Boufarès, F.: Un outil intelligent pour l’analyse des schémas EA. Interne Report. Informat-
ics Laboratory of Paris Nord, University of Paris 13 France (2001).

5. Ceri, S. and Widom, J.: Deriving production rules for constraint maintenance. In Proc. of
the 16th International Conference on Very Large Data Bases, Brisbane Australia (1990)
566-577.

6. Cochrane, R.J., Pirahesh, H. and Mattos, N.M.: Integrating triggers and declarative con-
straints in SQL database systems. In Proceedings of the 22nd International Conference on
Very Large Data Bases, Mumbai India (1996) 567-578.

7. Eisenberg, A., Melton, J., Kulkarni, K., Michels, J., Zemke, F.: SQL: 2003 has been
published. ACM SIGMOD Record, Volume 33, Issue 1, March (2004).

8. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. 4th ed., Addison-Wesley
(2003).

9. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL. Object
Modeling with the OCL. Springer, (2002) 85-114.

290 D. Berrabah

10. Laleau, A., Mammar, A.: Overview of method and its support tool for generating B from
UML notations. Proceeding of 15th international conference on Automated Software En-
gineering, Grenoble France (2000).

11. OMG, editor: UML 2.0 Object Constraint Language Specification. OMG (2005).
http://omg.org.

12. Shroff, M., France, R. B.: Towards a Formalization of UML Class Structures in Z. 21st
IEEE Annual international computer Software and Applications Conference (1997) 646-
651.

13. Warmer, J., Kleppe, A. The Object Constraint Language: Getting Your Models Ready for
MDA. 2nd Ed. Paperback-Edition (2003).

14. Rational: http://www-306.ibm.com/ software/ rational/ sw-bycategory/ subcategory/
SW710.html

15. Sybase: http://www.sybase.com/products/information management/powerdesigner.
16. Toby, J. T.: Database Modeling & Design. 3rd ed. Morgan, Kaufmann Series in data man-

agement systems (1999).

D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 291 – 294, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Trajectory Indexing Scheme for Moving Objects
on Road Networks*

Jae-Woo Chang1, Jung-Ho Um1, and Wang-Chien Lee P

2
P

1 Dept. of Computer Eng., Chonbuk National Univ., Chonju, Chonbuk 561-756, Korea
jwchang@chonbuk.ac.kr, jhum@dblab.chonbuk.ac.kr

2 Dept. of CS&E., Pennsylvania State Univ., University Park, PA 16802

Abstract. In this paper, we propose an efficient signature-based indexing
scheme for efficiently dealing with the trajectories of current moving objects on
road networks. We show that our indexing scheme achieves much better trajec-
tory retrieval performance than the existing trajectory indexing schemes, such
as TB-tree, FNR-tree and MON-tree.

1 Introduction

Even though most of the existing work on spatial databases considers Euclidean
spaces, objects in practice can usually move on road networks, where the network
distance is determined by the length of the real shortest path on the network. For ex-
ample, a gas station nearest to a given point in Euclidean spaces may be more distant
in a road network than another gas station. Therefore, the network distance is an im-
portant measure in spatial network databases (SNDB). Meanwhile, there have been a
couple of studies on trajectory indexing schemes for both Euclidean spaces and spa-
tial networks (i.e., roads) [PJT00, F03, AG05]. First, Pfoser et al. [PJT00] proposed a
hybrid index structure which preserves trajectories as well as allows for R-tree typical
range search in Euclidean spaces, called TB-tree (Trajectory-Bundle tree). The TB-
tree has fast accesses to the trajectory information of moving objects, but it has a
couple of problems in SNDB. First, because moving objects move on a predefined
spatial network in SNDB, the paths of moving objects are overlapped due to fre-
quently used segments, like downtown streets. Secondly, because the TB-tree con-
structs a three-dimensional MBR including time, the dead space for the moving object
trajectory can be highly increased. Next, Frentzos [F03] proposed a new indexing
technique, called FNR-tree (Fixed Network R-tree), for objects constrained to move
on fixed networks in two-dimensional space. Its general idea is to construct a forest of
1-dimensional (1D) R-trees on top of a 2-dimensional (2D) R-tree. The 2D R-tree is
used to index the spatial data of the network while the 1D R-trees are used to index
the time interval of each object movement inside a given link of the network. The
FNR-tree outperforms the R-tree in most cases, but it has a critical drawback that the
FNR-tree has to maintain a tremendously large number of R-trees. This is because it
constructs as large number of R-trees as the total number of segments in the networks.
Finally, Almeida and Guting proposed a new index structure for moving objects on

* This work is financially supported by the Ministry of Education and Human Resources De-

velopment(MOE), the Ministry of Commerce, Industry and Energy(MOCIE) and the Minis-
try of Labor(MOLAB) though the fostering project of the Lab of Excellency.

292 J.-W. Chang, J.-H. Um, and W.-C. LeeP

network, called MON-tree, for both edge-oriented and route-oriented models. The
MON-tree outperforms the FNR-tree in both updating and querying, but it has a
drawback that the MON-tree should still maintain a very large number of R-trees, like
the FNR-tree.

2 Trajectory Indexing Scheme for Current Moving Objects

To overcome the weaknesses of the existing schemes, we propose a new trajectory
indexing scheme for moving objects on road networks, which is based on a signature
file technique for efficiently dealing with the trajectories of moving objects. Figure 1
shows the structure of our trajectory indexing scheme. Our main idea is to create a
signature of a moving object trajectory and maintain partitions which store the fixed
number of moving object trajectories and their signatures together in the order of their
start time. The main reason to use partitions is that because a partition is created and
maintained depending on its start time, it is possible to efficiently retrieve the trajecto-
ries of moving objects on a given time. So, our trajectory indexing scheme has the
following advantages. First, our indexing scheme is not affected by the overlap of
moving objects’ paths and never causes the dead space problem because it is not a

MO(timestamp)

1

2

Partition Table

Partition i-1

…

1
2

m

Trajectory Info

Signature Info

Location Info

1
2

m

3

…

…

Partition 1

Partition i-1

…

1
2

m

Trajectory Info

Signature Info

Location Info

1
2

m

3

…

…

Partition 2

Partition i-1

…

1
2

m

Trajectory Info

Signature Info

Location Info

1
2

m

3

…

…

Partition n

n

Fig. 1. Structure of our trajectory indexing scheme

tree-based structure like TB-tree. Secondly, our indexing scheme well supports a
complex query containing a partial trajectory condition since it generates signatures
using a superimposed coding. Finally, our indexing scheme can achieve very good
insertion performance because it does not maintain a large number of trees, like FNR-
tree and MON-tree. Our trajectory indexing scheme consists of a partition table and a
set of partitions. A partition can be divided into three areas; trajectory information,
location information, and signature information. A partition table for maintaining a set
of partitions to store trajectories can be resided in a main memory due to its small
size. To achieve good retrieval performance, we also store both the signature and the

 A New Trajectory Indexing Scheme for Moving Objects on Road Networks 293

location information in a main memory because of their relatively small size. To an-
swer a user query, we find partitions to be accessed by searching the partition table.
The trajectory information area maintains moving object trajectories which consist of
a set of segments (or edges). The location information area contains the location of an
object trajectory stored in the trajectory information area. This allows for accessing
the actual object trajectories corresponding to potential matches to satisfy a query
trajectory in the signature information area. To construct our trajectory indexing
scheme in an efficient manner, we make use of a superimposed coding because it is
very suitable to SNDB applications where the number of segments for an object tra-
jectory is variable [ZMR98].

3 Performance Analysis

TWe implement our trajectory indexing scheme under Pentium-IV 2.0GHz CPU with
1GB main memory. For our experiment, we use a road network consisting of 170,000
nodes and 220,000 edges [WMA]. We also generate 50,000 moving objects randomly
on the road network by using Brinkhoff’s algorithm [B02]. For performance analysis,
we compare our indexing scheme with TB-tree, FNR-tree and MON-tree, in terms of
insertion time, storage space, and retrieval time for moving object trajectories. First,
Table 1 shows insertion times to store a moving object’s trajectory. It is shown that
our indexing scheme preserves nearly the same insertion performance as TB-tree,
while it achieves about two orders of magnitude better insertion performance than
FNR-tree and MON-tree. This is because both FNR-tree and MON-tree construct an
extremely great number of R-trees. Secondly, we measure storage space for storing
moving object trajectories, as shown in Table 1. It is shown that our indexing scheme
requires nearly the same storage space as TB-tree, while it needs about one fifth of the
storage space required for FNR-tree and MON-tree.

Table 1. Trajectory insertion time and storage space

 TB-tree FNR-tree MON-tree Our indexing scheme
Trajectory insertion
time(sec)

0.7488 344 260 0.6552

Storage space(MB) 4.42 20.2 23.75 4.87

Finally, we measure retrieval time for answering queries whose trajectory contains 2 to
20 segments, as shown in Figure 2. It is shown that our indexing scheme requires about
9 ms while MON-tree, FNR-tee and the TB-tree needs 15ms, 21ms, and 630ms, respec-
tively, when the number of segments in a query is 2. It is shown that our indexing
scheme outperforms the existing schemes when the number of segments in a query
trajectory is small. The TB-tree achieves the worst retrieval performance due to a large
extent of overlap in its internal nodes. As the number of segments in queries increase,
the retrieval time is increased in the existing tree-based schemes; however, our indexing
scheme requires constant retrieval time. The reason is why our indexing scheme creates
a query signature combining all the segments in a query and it searches for potentially
relevant trajectories of moving objects once by using the query signature as a filter.
When the number of segments in a query is 20, it is shown that our indexing scheme
requires about 9 ms while MON-tree, FNR-tree and TB-tree needs 108ms, 157ms and

294 J.-W. Chang, J.-H. Um, and W.-C. LeeP

1.3s, respectively. Thus our indexing scheme achieves at least one order of magnitude
better retrieval performance than the existing schemes. This is because our indexing
scheme constructs an efficient signature-based indexing structure by using a superim-
posed coding technique. On the contrary, because the TB-tree builds a MBR for each
segment in a query and the number of range searches increases in proportion to the
number of segments, the TB-tree dramatically degrades on trajectory retrieval perform-
ance when the number of segments is great. Similarly, because both MON-tree and
FNR-tree search for an R-tree for each segment in a query, they degrade on retrieval
performance as the number of segments in the query is increased.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6 8 10 12 14 16 18 20
query segment

ti
m

e(
se

c)

Our Indexing Scheme
T B-T ree
MON-T ree
FNR-T ree

Fig. 2. Trajectory retrieval performance

4 Conclusions

We proposed an efficient signature-based indexing scheme for current moving ob-
jects’ trajectories on road networks. We showed that our indexing scheme achieved at
least one order of magnitude better retrieval performance than the existing trajectory
indexing schemes, such as TB-tree, FNR-tree and MON-tree.

References

[AG05] V.T. Almeida and R.H. Guting, "Indexing the Trajectories of Moving Objects in
Networks," GeoInformatica, Vol. 9, No. 1, pp 33-60, 2005.

[B02] T. Brinkhoff, "A Framework for Generating Network-Based Moving Objects,"
GeoInformatica, Vol. 6, No. 2, pp 153-180, 2002.

[F03] R. Frentzos, "Indexing Moving Objects on Fixed Networks," Proc. of Int’l Conf on
Spatial and Temporal Databases (SSTD), pp 289-305, 2003.

[PJT00] D. Pfoser, C.S. Jensen, and Y. Theodoridis, "Novel Approach to the Indexing of
Moving Object Trajectories," Proc. of VLDB, pp 395-406, 2000.

[WMA] http://www.maproom.psu.edu/dcw/
[ZMR98] J. Zobel, A. Moffat, and K. Ramamohanarao, "Inverted Files Versus Signature Files

for Text Indexing," ACM Tran. on Database Systems, Vol. 23, No. 4, pp 453-490,
1998.

Author Index

Abdalla, Hassan Ismail 212
Aguilar-Saborit, Josep 240
Alagić, Suad 262
Al-Jumaily, Harith T. 36
Al-Wasil, Fahad M. 73

Bellatreche, Ladjel 212
Bentayeb, Fadila 274
Berrabah, Djamel 286
Bondarenko, Dmitri A. 190
Böttcher, Stefan 59, 266
Boukhalfa, Kamel 212
Boussaid, Omar 274
Briggs, David 262

Carme, Julien 1
Ceresna, Michal 1
Chakravarthy, Sharma 220, 232
Chang, Jae-Woo 291
Chen, Chun 127
Chen, Gencai 127
Chen, Ling 127
Cuadra, Dolores 36

de Pablo, César 36
Dixon, Maurice 254

Favre, Cécile 274
Fiddian, Nick J. 73
Frölich, Oliver 1

Gan, John Q. 164
Gao, Yunjun 127
Gilani, Altaf 232
Gong, Jianbin 282
Gonzalez-Castro, Victor 47
Gottlob, Georg 1
Gray, Alasdair J.G. 94
Gray, W. Alex 73
Gruenwald, Le 59
Guo, Yuhong 152

Haley, Charles 254
Hassan, Tamir 1
He, Qing 177

Helmer, Sven 115
Herzog, Marcus 1
Holzinger, Wolfgang 1
Hong, Xin 245
Hwang, Dae Hyun 270

Jeong, Byeong-Soo 270

Kang, Hyunchul 270
Kendai, Balakumar 232
Krüpl, Bernhard 1

Laney, Robin 254
Larriba-Pey, Josep-L. 240
Lee, Wang-Chien 291
Lee, Wookey 199
Leung, Carson Kai-Sang 190, 199
Li, Zude 102, 258
Litwin, Witold 16
Lü, Kevin 177
Luo, Ping 177

MacKinnon, Lachlan M. 47
Markl, Volker 240
Mart́ınez, Paloma 36
Marwick, David H. 47
Mazón, Jose-Norberto 278
McClean, Sally 86, 245, 250
Moerkotte, Guido 115
Morrow, Philip 245
Muntés-Mulero, Victor 240

Neumann, Thomas 115
Nutt, Werner 94

Obermeier, Sebastian 59

Page, Victor 254
Pajjuri, Vamshi 220

Royer, Mark 262

Sahri, Soror 16
Schwarz, Thomas 16
Scotney, Bryan 245, 250

296 Author Index

Shi, Zhongzhi 177
Sonune, Satyajeet 232
Steinmetz, Rita 266

Tang, Shiwei 152
Thulasiram, Ruppa K. 190
Tong, Yuhai 152
Trujillo, Juan 278

Um, Jung-Ho 291

Wang, Ben 164
Wang, Hui 140

Wang, Jianmin 102
Wang, Ying 282
Wang, Zhe 282
Williams, M. Howard 94
Wu, Shengli 86

Yang, Dongqing 152
Ye, Xiaojun 102, 258

Zhan, Guoqiang 102, 258
Zhang, Shuai 250
Zhou, Chunguang 282
Zuzarte, Calisto 240

	Frontmatter
	Invited Papers
	The Lixto Project: Exploring New Frontiers of Web Data Extraction
	An Overview of a Scalable Distributed Database System SD-SQL Server

	Data Modelling and Architectures and Transaction Management
	Using UML's Sequence Diagrams for Representing Execution Models Associated to Triggers
	An Experimental Consideration of the Use of the Transrelational<Superscript>TM</Superscript>Model for Data Warehousing
	Reducing Sub-transaction Aborts and Blocking Time Within Atomic Commit Protocols

	Data Integration and Interoperability and Information Retrieval
	Query Translation for Distributed Heterogeneous Structured and Semi-structured Databases
	Information Retrieval Evaluation with Partial Relevance Judgment
	Sources of Incompleteness in Grid Publishing

	Query Processing and Optimization
	Privacy Preservation and Protection by Extending Generalized Partial Indices
	On the Optimal Ordering of Maps, Selections, and Joins Under Factorization
	An I/O Optimal and Scalable Skyline Query Algorithm

	Data Mining
	A Novel Clustering Method Based on Spatial Operations
	A FP-Tree-Based Method for Inverse Frequent Set Mining
	SC-Tree: An Efficient Structure for High-Dimensional Data Indexing
	A Heterogeneous Computing System for Data Mining Workflows
	An Efficient System for Detecting Outliers from Financial Time Series

	Data Warehousing and Decision-Support Systems
	Efficient Update of Data Warehouse Views with Generalised Referential Integrity Differential Files
	SAGA: A Combination of Genetic and Simulated Annealing Algorithms for Physical Data Warehouse Design

	Data Streaming
	Scheduling Strategies and Their Evaluation in a Data Stream Management System
	The Anatomy of a Stream Processing System

	Poster Papers
	Analyzing the Genetic Operations of an Evolutionary Query Optimizer
	An Evidential Approach to Integrating Semantically Heterogeneous Distributed Databases
	Interoperability and Integration of Independent Heterogeneous Distributed Databases over the Internet
	Trust Obstacle Mitigation for Database Systems
	Towards a More Reasonable Generalization Cost Metric for K-Anonymization
	Verification Theories for XML Schema
	DTD-Driven Structure Preserving XML Compression
	A Scalable Solution to XML View Materialization on the Web
	A Rule-Based Data Warehouse Model
	Enriching Data Warehouse Dimension Hierarchies by Using Semantic Relations
	A Composite Approach for Ontology Mapping
	Towards the Completion of Expressing and Checking Inheritance Constraints in UML
	A New Trajectory Indexing Scheme for Moving Objects on Road Networks

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

