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Abstract. This paper presents a novel technique for learning the under-
lying structure that links visual observations with semantics. The tech-
nique, inspired by a text-retrieval technique known as cross-language
latent semantic indexing uses linear algebra to learn the semantic struc-
ture linking image features and keywords from a training set of annotated
images. This structure can then be applied to unannotated images, thus
providing the ability to search the unannotated images based on key-
word. This factorisation approach is shown to perform well, even when
using only simple global image features.

1 Introduction

Automatic annotation of images has come to the fore as a means of trying
to achieve the integration of content-based and text-based image retrieval. An
overview of the techniques which have been used in auto-annotation has been
provided by Hare et al [1], and we are currently exploring how such techniques
can meet the real needs of image searchers in limited domains. This work is
being undertaken within the Bridging the Semantic Gap Project, as described
by Enser et al [2].

In this paper, we propose a linear algebraic method for learning the semantic
structure between terms in an annotated training set of images. Unannotated
images can then be projected into the structure. The resulting space is unique
in that it allows images to be ranked on their relevance to terms that may not
have been explicitly assigned to the images, even though the image is relevant
to the term.

2 Using Linear-Algebra to Associate Images and Terms

Latent Semantic Indexing (LSI) [3] is a technique in text-retrieval for index-
ing documents in a dimensionally-reduced semantic vector space. Landauer and
Littman [4], demonstrate a system based on LSI for performing text searching
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on a set of French and English documents where the queries could be in either
French or English (or conceivably both), and the system would return documents
in both languages which corresponded to the query. Landauer’s system negated
the need for explicit translations of all the English documents into French; in-
stead, the system was trained on a set of English documents and versions of
the documents translated into French, and through a process called ‘folding-in’,
the remaining English documents were indexed without the need for explicit
translations. This idea has become known as Cross-Language Latent Semantic
Indexing (CL-LSI).

Monay and Gatica-Perez [5] attempted to use straight LSI with simple cross-
domain vectors for auto-annotation. They first created a training matrix of cross-
domain vectors and applied LSI. By querying the left-hand subspace they were
able to rank an un-annotated query document against each annotation term in
order to assess likely annotations to apply to the image.

Our approach, based on a generalisation of CL-LSI, is different because we
do not explicitly annotate images. The technique works by placing unannotated
images in a semantic-space which can be queried by keyword.

In general, any document (be it text, image, or even video) can be described
by a series of observations, or measurements, made about its content. We re-
fer to each of these observations as terms. Terms describing a document can be
arranged in a vector of term occurrences, i.e. a vector whose i-th element contains
a count of the number of times the i-th term occurs in the document. There is
nothing stopping a term vector having terms from a number of different modal-
ities. For example a term vector could contain term-occurrence information for
both ‘visual’ terms and textual annotation terms.

Given a corpus of n documents, it is possible to form a matrix of m observa-
tions or measurements (i.e. a term-document matrix). This m × n observation
matrix, O, essentially represents a combination of terms and documents, and
can be factored into a separate term matrix, T, and document matrix, D:

O = TD . (1)

These two matrices can be seen to represent the structure of a semantic-space
co-inhabited by both terms and documents. Similar documents and/or terms
in this space share similar locations. The advantage of this approach is that
it doesn’t require a-priori knowledge and makes no assumptions of either the
relationships between terms or documents. The primary tool in this factorisation
is the Singular Value Decomposition. This factorisation approach to decomposing
a measurement matrix has been used before in computer vision; for example, in
factoring 3D-shape and motion from measurements of tracked 2D points using
a technique known as Tomasi-Kanade Factorisation [6].

The technique presented here consists of two steps. In the first step, a fully-
observed training observation matrix is created and decomposed into separate
term and document matrices. For example, the observations may consist of both
‘visual’ terms and annotations from a set of training images. The second step
consists of assembling an observation matrix for the documents which are to be
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indexed. These documents need not be fully observed; for example, they may
consist of only ‘visual’ terms. Any unobserved terms are represented by zeros.
The document-space of this second observation matrix is then created using the
term matrix from the first stage as a basis. The idea behind this is that any term-
term relationships that were uncovered in the training stage will be applied to
the test data, thus giving the test data pseudo-values for the unobserved terms.
The net result is that we are left with a new document-space which can be
searched by any of the terms used in the training set, even if they were not
directly observed in the test set.

2.1 Decomposing the Observation Matrix

Following the reasoning of Tomasi and Kanade [6], although modified to fit
measurements of terms in documents, we first show how the observation matrix
can be decomposed into separate term and document matrices.

Lemma 1 (The rank principle for a noise-free term-document matrix).
Without noise, the observation matrix, O, has a rank at most equal to the number
of independent terms or documents observed.

The rank principle expresses the simple fact that if all of the observed terms
are independent, then the rank of the observation matrix would be equal to
the number of terms, m. In practice, however, terms are often highly dependent
on each other, and the rank is much less than m. Even terms from different
modalities may be interdependent; for example a term representing the colour
red, and the word “Red”. This fact is what we intend to exploit.

In reality, the observation term-document matrix is not at all noise free. The
observation matrix, O can be decomposed using SVD into a m × r matrix U,
a r × r diagonal matrix Σ and a r × n matrix VT , O = UΣVT , such that
UT U = VVT = VT V = I, where I is the identity matrix. Now partitioning
the U, Σ and VT matrices as follows:

U =
[
Uk UN

] }m,

︸︷︷︸
k

︸︷︷︸
r−k

Σ =
[
Σk 0
0 ΣN

] }k

}r−k
,

︸︷︷︸
k

︸︷︷︸
r−k

VT =
[
VT

k

VT
N

] }k

}r−k
,

︸︷︷︸
n

(2)

we have, UΣVT = UkΣkVT
k + UNΣNVT

N .
Assume O∗ is the ideal, noise-free observation matrix, with k independent

terms. The rank principle implies that the singular values of O∗ are at most
k. Since the singular values of Σ are in monotonically decreasing order, Σk

must contain all of the singular values of O∗. The consequence of this is that
UNΣNVT

N must be entirely due to noise, and UkΣkVT
k is the best possible

approximation to O∗.

Lemma 2 (The rank principle for a noisy term-document matrix). All
of the information about the terms and documents in O is encoded in its k largest
singular values together with the corresponding left and right eigenvectors.
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We now define the estimated noise-free term matrix, T̂, and document matrix,
D̂, to be T̂ def= Uk, and, D̂ def= ΣkVT

k , respectively. From Equation 1, we can
write

Ô = T̂D̂, (3)

where Ô represents the estimated noise-free observation matrix.

Interpreting the Decomposition. The two vector bases created in the de-
composition form an aligned vector-space of terms and documents. The rows of
the term matrix create a basis representing a position in the space of each of the
observed terms. The columns of the document matrix represent positions of the
observed documents in the space. Similar documents and terms share similar
locations in the space.

2.2 Using the Terms as a Basis for New Documents

Theorem 1 (Projection of partially observed measurements). The
term-matrix of a decomposed fully-observed measurement matrix can be used
to project a partially observed measurement matrix into a document matrix that
encapsulates estimates of the unobserved terms.

Manipulating Equation 3 gives us a method of projecting a partially-observed
observation matrix, P into the basis created by the term matrix, T̂. The un-
derlying assumption is that if we were to project the original fully-observed
observation matrix (i.e. P = Ô), then we should get the same document basis.

P = T̂D̂
∴ D̂ = T̂−1P = T̂T T̂T̂−1P = T̂T P (4)

Therefore, to project a new partially observed measurement matrix into a
basis created from a fully observed training matrix, we need only pre-multiply
the new observation matrix by the transpose of the training term matrix. The
columns of this new document matrix represent the locations in the semantic
space of the documents. In order to query the document set for documents
relevant to a term, we just need to rank all of the documents based on their
position in the space with respect to the position of the query term in the space.
The cosine similarity is a suitable measure for this task.

Thus far, we have ignored the value of k. The rank principle states that k
is such that all of the semantic structure of the observation matrix, minus the
noise is encoded in the singular values and eigenvectors. k is also the number of
independent, un-correlated terms in the observation matrix. In practice, k will
vary across data-sets, and so we have to estimate its value empirically.

3 Experimental Results

In this section, we present experiments using real images from both the Washing-
ton data-set [7] and the Corel data-set proposed in [8]. Because all of the images
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in these data-sets have ground truth annotations, it is possible to automatically
assess the performance of the retrieval. By splitting the data-sets into a training
set and testing set, it is possible to attempt retrieval for each of the keyword
terms and mark test images as relevant if they contained the query term in their
annotations. Results from this technique are presented against results using the
hard annotations from the vector-space propagation technique described in [9].

3.1 Experiments with the Washington Data-Set and SIFT ‘Visual’
Terms

We split the Washington data-set [7] into a training set of 349 images, and a
test set of 348 images. Each of the images was indexed using ‘visual’ terms from
quantised local SIFT descriptors about interest points picked from peaks in a
difference-of-Gaussian pyramid [9, 10]. The size of the visual vocabulary was
fixed to 3000 terms [10].

Choosing a Good Value for k. In order to select a value for k, we need to try
and optimise the retrieval. A good statistic of overall retrieval performance is the
Mean Average Precision (MAP). Plots of the average precision versus varying
values of k for four different queries in the test set are shown in Figure 1. A plot
of the MAP over all possible queries in the training set, is shown in Figure 2.

Figure 1 shows that there is a very large amount of variation of average
precision across different queries. This is in a large part due to biases in both
the training set of images and in the test set. For example, both the training
set and test set contain an approximately equal number of images of a football
stadium, however, the number of stadium images in the training set is quite large
in comparison to many of the other queries. The net effect is that the “Stadium”
query is particularly well trained. Well trained queries can also result from few
training images when the training image is sufficiently visually dissimilar to the
other images (i.e. it contains a fairly unique combination of visual terms).

Unfortunately, Figure 2 doesn’t show a peak from which to select a good value
of k, instead it is asymptotic to a mean average precision of about 0.38. However,
given the constraint that we want to choose k such that it is the smallest it can
be whilst still giving good retrieval, we chose a value of k = 100 for the following
experiments.

Overall Retrieval Effectiveness. The overall retrieval effectiveness of the
technique is characterised in Figure 3. As can be seen, the factorisation approach
outperforms the propagation approach at all values of recall.

The precision-recall curves in Figure 3 don’t truly reflect the whole perfor-
mance of the approach because certain queries are better performing than others.
Figure 5 illustrates this by showing the average precision for each of the queries,
sorted by decreasing precision. For clarity, only queries yielding an average pre-
cision of above 0.5 are shown.

Example: Querying for “Bridge”. We now take an example query using the
term “Bridge” to investigate the performances of the approaches in more detail.
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Fig. 1. The effect of k on average preci-
sion for four different queries
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Fig. 2. The effect of k on the Mean-
Average Precision over all queries
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Fig. 3. Average precision-recall curves for
the different algorithms over all queries
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Fig. 4. Precision-Recall curves for query-
ing with the keyword “Bridge”

There are ten occurrences of the annotation keyword “Bridge” in the Washington
data-set. Of these ten occurrences, four images are in the test set and six in
the training set. One of the training images has been labelled with “Bridge”,
although it doesn’t actually appear to contain a bridge. This mislabelling of
images corresponds to noise, and the algorithms need to be robust to noise within
the data-set. The training images are shown in Figure 6. Figure 4 illustrates
the effect on precision over different recall values using both the Factorisation
algorithm and the vector-space propagation algorithm. Three different values of
k for the factorisation algorithm are shown in the figure. The precision recall
curves show that both of the algorithms exhibit perfect precision up to recall
values of 0.5, but then tend to drop off.

Figure 7 shows the test images containing the “Bridge” keyword, along with
the rank-position of the images using the factorisation and propagation tech-
niques. The images were retrieved in the same order by the two algorithms,
however, the positions at which they occur varies greatly. The factorisation
approach retrieved all four relevant images within the top five images, whilst
the propagation approach didn’t achieve full recall until 332 images had been
retrieved.
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Fig. 5. Average precision of all queries with precision > 0.5, sorted by decreasing
precision

Fig. 6. Training images containing the “Bridge” keyword

3.2 The Corel Data-Set

In the previous subsection we proposed using SIFT visual terms to model the
image content. However, this is not the only option; the observation matrix could
conceivably contain observations of any type of feature. In order to demonstrate
the power of the factorisation technique, we use a much simpler feature; a 64-bin
global RGB histogram. We use the training set of 4500 images and test set of
500 images from the Corel data-set described in [8].

Following the methodology for optimising k based on MAP described previ-
ously, we set k = 43. Overall averaged precision-recall curves of the factorisation
and propagation approaches are shown in Figure 8. As before, the factorisation
approach outperforms the propagation approach. Whilst the overall averaged
precision-recall curve doesn’t achieve a very high recall and falls off fairly rapidly,
this isn’t indicative of all the queries; some query terms perform much better
than others. Figure 9 shows precision-recall curves for some queries with good
performance.

Ideally, we would like to be able to perform a direct comparison between our
factorisation method and the results of the statistical machine-translation (MT)

Factorisation (k=100) 1 2 3 5
Vector-space Prop. (1NN) 1 2 125 332

Fig. 7. Test Images and the rank-order in which they were retrieved by the two algo-
rithms
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model presented by Duygulu et al [8], which has become a benchmark against
which many auto-annotation systems have been tested. Duygulu et al present
their precision and recall values as single points for each query, based on the
number of times the query term was predicted throughout the whole test set. In
order to compare results it should be fair to compare the precision of the two
methods at the recall given in the MT results. Table 1 summarises the results
over the 15 best queries found by the MT system (base results), corresponding
to recall values greater than 0.4.

Table 1 shows that nine of of the fifteen queries had better precision for the
same value of recall with the Factorisation algorithm. This higher precision at

Table 1. Comparison of precision values for equal values of recall between the machine
translation model [8] and the factorisation approach

Query Word Recall Precision
Machine Translation Factorisation,
Base Results, th=0 RGB Histogram, K=43

petals 0.50 1.00 0.13
sky 0.83 0.34 0.35

flowers 0.67 0.21 0.26
horses 0.58 0.27 0.24
foals 0.56 0.29 0.17
mare 0.78 0.23 0.19
tree 0.77 0.20 0.24

people 0.74 0.22 0.29
water 0.74 0.24 0.34
sun 0.70 0.28 0.52
bear 0.59 0.20 0.11
stone 0.48 0.18 0.22

buildings 0.48 0.17 0.25
snow 0.48 0.17 0.54
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the same recall can be interpreted as saying that more relevant images are re-
trieved with the factorisation algorithm for the same number of images retrieved
as with the machine learning approach. This result even holds for Duygulu et al’s
slightly improved retrained result set. This implies, somewhat surprisingly, that
even by just using the rather simple RGB Histogram to form the visual observa-
tions, the factorisation approach performs better than the machine translation
approach for a number of queries. This, however does say something about the
relative simplicity of the Corel dataset [11]. Because not all of the top perform-
ing results from the factorisation approach are reflected in the best results from
the machine translation approach, it follows that the factorisation approach may
actually perform better on a majority of good queries compared to the machine
translation model.

4 Conclusions and Future Work

This paper presented a novel approach to building a semantic space for image
retrieval using a linear algebraic factorisation. Performance of the technique is
good, even when using a simple global image feature such as the RGB histogram.
The approach is exciting because it models the semantic gap between image
descriptors and keywords in a flexible way. The factorisation technique does not
produce equal performance for all queries. The reasons for this are most likely
two-fold; firstly, the visual features used to represent the image may not have
been sufficient to represent the keyword. Secondly, the training data may not
have been sufficient to learn a good representation for the term. In terms of
the Corel data-set using RGB histogram features, the factorisation approach
works particularly well with annotations that can be described globally across
the image by colour alone. For example, searching for ‘sun’ returns images with
many warm yellow tones, and searching for ‘snow’ returns images with lots of
white colours.

More experimentation needs to be performed to investigate the performance
of the factorisation approach. In particular, it would be interesting to use the
image descriptors created by [8] to build our observation matrix, and then to
directly compare retrieval results with other automatic annotation approaches.
It would also be interesting to investigate the scalability of the approach.

In the ‘Bridging the semantic gap’ project, we aim to test this approach more
extensively with picture librarians, in an attempt to establish its ability as a
system offering the potential of semantic search.
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