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Abstract. Interactively learning from a small sample of unlabeled ex-
amples is an enormously challenging task. Relevance feedback and more
recently active learning are two standard techniques that have received
much attention towards solving this interactive learning problem. How to
best utilize the user’s effort for labeling, however, remains unanswered. It
has been shown in the past that labeling a diverse set of points is helpful,
however, the notion of diversity has either been dependent on the learner
used, or computationally expensive. In this paper, we intend to ad-
dress these issues by proposing a fundamentally motivated, information-
theoretic view of diversity and its use in a fast, non-degenerate active
learning-based relevance feedback setting. Comparative testing and re-
sults are reported and thoughts for future work are presented.

1 Introduction

An enormous challenge in interactive image and video retrieval is correlating the
user-dependent interpretation of image-content with low-level visual descriptors,
closing the so-called semantic gap. Relevance feedback has garnered much atten-
tion in the past decade in attempting to reach this goal [1][2][3][4]. At its heart,
relevance feedback suffers from the small sample learning problem [5]. Rankers
or classifiers must learn in high-dimensional feature spaces with only a handful
of labeled training examples. Consequently, many potential discriminating ob-
servations go unlabeled. As an additional practical consideration, because these
systems have a user in the loop, they must also be quick and robust to change.
In recent years, attention has been given to systems that employ active learning
to address these challenges.

Active learning is a paradigm that proposes ways to incrementally learn from
unlabeled data, provided the system has available to it an oracle, an entity which
knows the correct labeling of all examples [6][7]. Given an initial weak ranker or
classifier, the oracle labels a set of points the systems deems to be most infor-
mative, the pool query set. The information provided from this labeling can then
be used to update the system and this process can be repeated indefinitely to
improve the accuracy of those points in the returned or resultant set. Traditional
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relevance feedback can be seen as a degenerate case of active learning as the set
of top-k returned points serves both as the returned and pool query sets. Using
a unique pool query set, however, has been shown to improve performance [8].

Whether we use the traditional or active learning-based paradigm, the user
is often asked to label examples which are quite similar to one another, often
times as a result of examples clustering in the same area of the feature space.
In a small-sample setting, especially when the users and systems effort is at a
premium, it makes more sense for the user to label a diverse set of points for
each pool-query rather than many similar points which are, in comparison, much
less informative. There have been a handful of techniques which have addressed
this issue.

In the traditional relevance feedback scenario, NECs PicHunter [9] cast di-
versity for image retrieval as matter of exploration versus exploitation. Utilizing
Bayesian relevance feedback techniques, they ask users to label images with low-
posterior probability in addition to those with high probability. This notion of
diversity relies on the probabilistic modeling for it’s calculation, however, which
tends to limit its general application. The CLUE system of [10] also realizes
that images tend to be semantically clustered in the vicinity of query images. To
this end, they propose a local-neighborhood based clustering approach to more
efficiently present diverse information for labeling by the user. This clustering
must occur for every round of feedback, however, and the computational load of
doing so may in some cases outweigh the improved retrieval results.

From a purely active learning viewpoint, one of the first works to incorporate
diversity sampling was [11] and subsequently [12] where the notion of angu-
lar diversity was investigated for support vector machines (SVMs). The idea
of using angular diversity in particular, however, was motivated specifically by
the version-space reduction requirements inherent in SVM active learning. It is
not clear whether this specialized measure of diversity is suitable for general
problems.

In this work, we motivate and introduce a more general notion of diversity
based on information-theoretic concepts, and apply it to a fast, non-degenerate
active learning scheme for relevance feedback based on query-point refinement
which, to our knowledge, is a scenario that has not received much attention in
the past.

The rest of the paper is organized as follows: Section 2 motivates our measure
of diversity and leads into Section 3 which presents the active learning based
algorithm built around it. Experimental results and thoughts for future study
are presented in Sections 4 and 5 respectively.

2 Information-Theoretic Diversity

To motivate the discussion of our active learning framework, we will first de-
fine a basic diversity measure, based on Shannon’s entropy [13]. It’s intuitively
attractive to associate high entropy with diversity, as entropy is essentially a
measure of randomness. For any continuous random variable, X, which takes a
particular value x, entropy is defined as



Leveraging Active Learning for Relevance Feedback 125

h(x) = −
∫

p(x) log (p(x)) = −E [log (p(x))] (1)

where E[·] is the expectation (mean) operator. Calculating entropy in practice in-
volves density estimation, as the underlying probabilities are usually not known.
Given a set of points,{xi}N

i=1, we can approximate the expectation in (1) by the
sample mean so that

h(x) ≈ − 1
N

N∑
i=1

log (p(xi)) (2)

which by the Law of Large Numbers approaches the actual mean in the limit as
N → ∞. We are still left with the problem of estimating the distribution, p(x).
Through Parzen density estimation

p(x) =
1
N

N∑
i=1

K(x,xi) (3)

where K is the Parzen window.
Substituting this estimate of the density into (2), we now define a new quantity

called empirical entropy

he({xi}N
i=1) = − 1

N

N∑
i=1

log

⎛
⎝ 1

N

N∑
j=1

K(xi,xj)

⎞
⎠ (4)

Expanding this equation, we arrive at the final expression for empirical
entropy:

he({xi}N
i=1) =

1
N

log(N) − 1
N

N∑
i=1

log

⎛
⎝ N∑

j=1

K(xi,xj)

⎞
⎠ (5)

For all testing and experimentation, we used the Gaussian radial basis kernel

K(x,xi) =
exp

(
− 1

2 (x − xi)T Σ−1(x − xi)
)

(2π)−
d
2 |Σ|− 1

2
(6)

with isotropic covariance matrix Σ = σI.
Before utilizing empirical entropy in an active learning algorithm, it is worth

examining this quantity in a bit more detail. To gain better insight into entropy
as a general measure of diversity, we present the following theorem.

Theorem 1. If he({xi}N
i=1) denotes the empirical entropy of {xi}N

i=1, then a
large upper bound on this value corresponds to large distances and angles between
mutual paris of points in the sample set {xi}N

i=1.
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Proof. By definition of empirical entropy in Eqn. 4,

he({xi}N
i=1) = − 1

N

N∑
i=1

log

⎛
⎝ 1

N

N∑
j=1

K(xi,xj)

⎞
⎠

The logarithm function is concave and applying Jensen’s Inequality, we obtain

he({xi}N
i=1) ≤ − 1

N2

N∑
i=1

N∑
j=1

log (K(xi,xj))

Assuming K(xi,xj) is a Gaussian Kernel as in Equation (6) we obtain,

he({xi}N
i=1) ≤ 1

2N2

N∑
i=1

N∑
j=1

(d log(2π) +

log |Σ| + (xi − xj)T Σ−1(xi − xj)

Observe that the third term on the right-hand side in the above equation is
equivalent to the canonical inner product of

〈(x
′

i,x
′

j)〉 = (xi − xj)T Σ−1(xi − xj) = M(xi,xj)

where x
′

i = Σ−1/2xi, x
′

j = Σ−1/2xj and the (non-unique) existence of Σ−1/2

follows from the symmetric, positive semi-definite property of covariance matrix
Σ. In the new space induced by Σ−1/2, the distance between two points xi and
xj is

‖(x
′

i − x
′

j)‖
2

= ‖x′
i‖2 + ‖x′

j‖2 − 2‖x
′

i‖‖x
′

j‖ cos(θ)

where θ is the angle between x
′

i and x
′

j ; this follows from the definition of inner
product. This expression is largest when θ = π, the largest angle between two
vectors. �

The major implication of this analysis is that a large bound on empirical entropy
depends on a large mutual distance for points in a sample set, which by the
definition of the canonical inner product also implies large mutual angles. In
this way, entropic diversity in a general setting is able to capture both these
notions of uniqueness, and therefore, in the limit, diversity.

3 Algorithm for Pool-Query Selection

A general active learning algorithm chooses both a resultant and pool-query
set to present to the user at each step. We assume that the algorithm narrows
down the set of all unlabeled points at each step to a candidate pool-query set.
In the case of SVM active learning, these are the unlabeled points which lie in
the version space. In a query-point refinement algorithm, one can choose from



Leveraging Active Learning for Relevance Feedback 127

a large number of points in the neighborhood of the query centroid. We don’t
want to arbitrarily choose the most diverse points, however. We must keep proper
perspective and ensure that these points are still close to the query centroid. To
this end, the cost function we minimize is a convex sum of both query point
distance and the negative of entropic diversity.

At each round of feedback, then, we must choose from the set of M points
(where M >> k) closest to the query centroid, xc, an N point subset known as
the pool-query set for oracle labeling. Using brute force results in

(
M
N

)
unique

N point subsets for which we must compute our empirical entropy diversity
measure. Even for moderate sample sizes, however, this number quickly becomes
computationally intractable. Instead, we use an adaption of the greedy algorithm
in [11] used for calculating angular diversity. Starting with the point closest to
the query centroid, xmin, at each step we add to the pool-query set PQ that
point which most decreases the cost function C.

1 :xmin = xargmin
i

‖xi−xc‖

2 :PQ = {xmin}

3 :do

4 : hmax = max
i

(PQ ∪ {xi − xc})

5 : hmin = min
i

(PQ ∪ {xi − xc})

6 : C(i) = α||xi − xc|| + (1 − α)
[
−he(PQ∪{xi−xc})

hmax−hmin

]

∀i : i �∈ PQ

7 : PQ ∪ {xargmin
j /∈PQ

C(j)}

8 :while|PQ| ≤ N

The mixing parameter, α, allows us to scale up or down the influence of empir-
ical entropy to the cost function. When α = 1, the pool-query technique defaults
to a nearest neighbour regime completely discounting any diversity information.
When α = 0, the cost function becomes purely an entropic diversity measure.
We will explore the effects of mixing later.

3.1 Biased Discriminant Analysis

In the evaluation of our proposed diversity-framework, we chose to use a small-
sample learner especially suited for information-retrieval problems, Biased Dis-
criminant Analysis [5]. BDA casts the problem of relevance feedback from a
two-class (positive and negative) to a one-to-many class (one positive, mul-
tiple negative) problem. The goal is to find a transformation of the feature
space which closely clusters positive examples while pushing away negative
ones.
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The optimal transformation is obtained by maximizing the following objective
function

argmax
W

∣∣∣∣W
T SPNW

WT SPW

∣∣∣∣ (7)

where SP is the intra-class-scatter matrix for all the training examples and SPN

is the inter-class scatter matrix between positive examples and negative training
examples, treating each negative example as an individual class.

The optimal value of W is the solution to the generalized eigenvalue problem
presented by the Rayleigh Coefficient in (7). The optimal transformation then
becomes

A = ΦΛ1/2 (8)

where Λ is the diagonal eigenvalue matrix and Φ is the corresponding eigenvector
matrix and W = AAT . The distance between two points in the new space can
be computed using the standard Euclidean measure, or in the original space
using the distance metric

distance(x − y) = (x − y)T A(x − y) (9)

Although BDA can also be used for feature reduction, in its full form it is
essentially a query point refinement algorithm. Each round of user feedback
yields a new transformation of the feature space which results in the centroids
of both the positive and negative examples being moved.

4 Image Retrieval Experimentation

4.1 Image Features and Testing Procedure

To explore the practical performance of our entropy-based active learning sys-
tem, we performed extensive tests using a 5000 image subset of the COREL
image database. To appropriately model the small-sample scenario, only 1400
images were used for target sets. The target set consisted of 13 unique query
concepts.

The first, second and third moments in each channel of the HSV color space,
first and second wavelet sub-band moments at three levels of decomposition
and a Waterfilling algorithm were used for color, texture and shape features
respectively. In total, a 47-dimensional feature vector was extracted from each
image.

Initially, the user (oracle) is presented with 20 randomly chosen images. Af-
ter each round of retrieval, they mark which images they deem to be relevant.
The remaining are assumed to be irrelevant. From this information, the systems
adjusts its understanding of the query concept using BDA, and returns both
the k most similar images and the pool-query set of images to label for active
learning.

For each query class, we conducted 25 random feedback sessions of 6 rounds
each. In total, there were 325 user-guided sessions, with 1950 total rounds of
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Fig. 1. Effect of α across Feedback Round for (a) α = 1, (b) α = 0.5, (c) α = 0

feedback for each method tested. The size of the pool-query was chosen to reflect
a reasonable number of image a human operator could label at one time, 20.
Results were averaged across all 325 tests.

4.2 Temporal Role of Diversity

It is reasonable to suspect that diversity is not equally important at every stage
of the learning process. Intuition would suggest that at lower feedback rounds,
the diversity strategy would be more important as the system has the smallest
amount of knowledge and thus needs the most diverse set of labeled examples
to learn its query concept. In higher rounds, diversity should be less important
as the system should have utilized the information from prior diverse labelings
to localize the area in the feature space were most of the relevant images are.

Investigating this intuitive idea, we performed tests using mixing parameter α
values of 0, 0.25, 0.5, 0.75 and 1 corresponding to, at the extremes, pure diversity
and pure distance (k nearest neighbors). Precision values for oracle-query sets
of size 20 were calculated. Figure 1 shows the values of precision versus number
of images returned for increasing rounds of feedback, marginalized across query
class.
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Table 1. Percentage Change in Precision between (a) Entropic Diversity Sampling
versus Pure Distance (k-nearest neighbours), α-varying Entropic Diversity versus (b)
Angular SVM and (c) Angular Diversity Sampling Techniques

α
R 0.75 0.5 0.25 0.0
1 0 0 0 0
2 11.84 11.74 12.00 12.59
3 10.28 11.22 13.10 12.27
4 7.34 6.90 8.21 7.46
5 2.97 2.69 3.42 2.83
6 -0.87 -2.76 -2.49 -2.42

α
R 0.75 0.5 0.25 0.0
1 100 100 100 100
2 42.42 42.32 42.59 43.17
3 29.66 30.60 32.47 31.65
4 21.81 21.37 22.68 21.93
5 15.16 14.89 15.61 15.03
6 9.65 7.77 8.04 8.11

α
R 0.75 0.5 0.25 0.0
1 0 0 0 0
2 3.61 3.22 1.73 0.63
3 2.82 2.46 2.84 0.91
4 2.05 1.78 2.63 0.54
5 2.40 1.50 2.46 1.17
6 2.61 0.31 0.00 0.62

(a) (b) (c)

Trivially, the first round of feedback yields the same precision for all values
of α. As the round number increases, however, we can begin to resolve the
performance of different values of the mixing parameter. Comparing the purely
distance strategy (α = 1, Figure 1 (a)) with the first introduction of diversity
(α = 0.5, Figure 1 (b)) we see marked improvement in precision for Rounds
2-3. (Round 1, initial labeling, is the same for all values.) This improvement
increases as we decrease α and weight more toward diversity (α = 0, Figure 1(c)).
Conversely, the addition of diversity in the final rounds is not as beneficial as
there is only slight improvement in Round 5 and a decrease in improvement
when using diversity in Round 6. This agrees with our intuition that in higher
rounds diversity is not as important.

The exact percentage change in precision between α = 1.0, pure distance,
and differing degrees of diversity marginalized over different number of returned
images can be seen in Table 1 (a).

We can now adjust our entropic diversity pool-query selection scheme to reflect
the temporal effect of the mixing parameter. In Round 2, we set α= 0 because it
yields the largest percent increase, 12.59%. Rounds 3-5 we tune diversity down
by changing α to 0.25. Finally, in the last round, we move to a purely distance-
based strategy, setting α= 1.

4.3 Comparing with Other Relevance Feedback Algorithms

To further investigate the performance of this α-varying, entropic diversity
framework, testing with other active learning-based relevance feedback tech-
niques was performed. Comparisons between the proposed system, angular di-
versity BDA of [14] and a basic version of the angular-diversity SVM framework
of [8] and [12] were conducted. (Comparison with plain BDA was unnecessary
as it was done already in Section 5.2.) As before, the same batch of 325 user-
guided tests using pool-query size of 20 were done. The results of these tests can
be summarized in Figure 2.

Looking at Figure2(a)-(b), we can seen that entropy-based diversity yields
substantially better results than angular SVM and better results than purely
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Fig. 2. Precision Comparison for Entropic Diversity BDA, Angular Diversity BDA and
Angular SVM for (a) Rounds 1-3 and (b) Rounds 4-6, (c) Recall Comparison for all
algorithms (k=20)

angular-based BDA. The recall curves of Figure2(c) also show similar behavior.
(Since we are comparing the algorithms themselves, the first round of angular-
based SVM is zero, since there are two rounds of labeling before the user begins
to see results.) Tables 1(a) and 1(b) show specific quantitative results.

As the results show, the incorporation of an information-based diversity mea-
sure into a general active learning framework can, indeed, improve performance.
Given a weak learner, BDA, we have seen marked improvement over the degen-
erate case (BDA with nearest neighbors) of at most 12-13% in the lower rounds.
In addition, these empirical results also coincide with our notion that an entropic
diversity measure should perform as well or better than angular diversity.

5 Summary

In this work, we have proposed a fundamentally motivated, information theo-
retic view of diversity and incorporated it into a non-degenerate, query-point
refinement scheme for relevance feedback. Our results support entropic diver-
sity’s viability as a useful tool for pool-query selection in active learning. In the
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future, we plan to investigate the viability of these types of measures in more
general active learning scenarios, as well as looking into these ideas for video
mining and active ranking for collaborative filtering.
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