
FCA-Based Browsing and Searching
of a Collection of Images

Jon Ducrou1, Björn Vormbrock2, and Peter Eklund3

1 School of Information Technology and Computer Science, The University
of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia

jrd990@uow.edu.au
2 AG Algebra und Logik, FB Mathematik, Technische Universität Darmstadt,

Schloßgartenstr. 7, D–64289 Darmstadt, Germany
vormbrock@mathematik.tu-darmstadt.de

3 School of Economics and Information Systems, The University of Wollongong,
Northfields Avenue, Wollongong, NSW 2522, Australia

peklund@uow.edu.au

Abstract. This paper introduces ImageSleuth, a tool for browsing and
searching annotated collections of images. It combines the methods of
Formal Concept Analysis (FCA) for information retrieval with the graph-
ical information conveyed in thumbnails. In order to use thumbnails of
images to represent concept extents, line diagrams can not be efficiently
utilised and thus other navigation methods are necessary. In addition
to established methods like search and upper/lower neighbours, a query
by example function and the possibility to restrict the attribute set are
included. Moreover, metrics on conceptual distance and similarity are
discussed and applied to automated discovery of relevant concepts. This
paper describes the FCA base of ImageSleuth which formed the basis for
its design and the implementation which followed.

1 Motivation

Formal Concept Analysis (FCA) has been successfully applied in Information
Retrieval for browsing and searching text documents ([CS01], [KC00]). The richer
structure of the concept lattice has advantages over simple keyword search or
tree structures. For keyword search, the user has to remember or guess the
correct keywords. For searching in trees, the names of nodes serve as keywords,
but there is a unique path leading to the desired information. Moreover, once
a categorisation scheme for the documents is chosen, this hierarchy is enforced
for every search. In concept lattices multiple paths can lead to a result, so the
user may guide the search via the addition of required properties step by step
without the restriction imposed by a single inheritance hierarchy. The order of
these properties is irrelevant.

This paper illustrates how ImageSleuth uses FCA methods for information
retrieval within a collection of images. Any such approach has to take into con-
sideration the graphical nature of this information. The established method for

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 203–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 J. Ducrou, B. Vormbrock, and P. Eklund

browsing collections of images is to display all images as thumbnails. A thumb-
nail is a smaller version of the original image, small enough to view many images
simultaneously but large enough to distinguish features of the full size image.
Within a collection of thumbnails, each thumbnail is usually the same size and
displayed in a two dimensional layout, sorted by a simple feature of the image
(e.g. name, date, filesize, etc). The desired outcome is to combine thumbnails
as the technique that best conveys the content of an image with the advantages
of FCA information retrieval for the annotated information associated with the
image. This requires that the concept lattice representation has a different pre-
sentation and navigation paradigm compared to that of text documents.

This paper contains four more sections. In Section 2, a description of the FCA-
background of ImageSleuth is presented. Section 3 explains the implementation,
while Section 4 describes an example. Finally, Section 5 contains concluding
remarks.

2 Using FCA to Browse Images

In this section, the mathematical structure underlying ImageSleuth and the re-
sulting search and browse options are described. We assume that the reader
is familiar with the basic notions of Formal Concept Analysis such as context,
formal concept and conceptual scaling. For an introduction to FCA we refer to
[GW99].

Following the approach used for browsing and searching of text documents,
ImageSleuth computes concept lattices of contexts having the collection of im-
ages as objects and their annotated features as attributes. These features may
be information about the depicted object annotated by hand as well as automat-
ically extracted graphical information. In contrast to most approaches for FCA
document retrieval, no line diagram of the lattice is displayed. Instead, following
[KC00], the user is always located at one concept of the concept lattice. This
allows thumbnails of the images to be shown as the extent of the present concept
and thus to convey most of the graphical information characterising this con-
cept. The intent is represented as a list of attributes. As no line diagram of the
lattice is shown, lists of upper and lower neighbours are the only representation
of the lattice structure around the present concept. Searching and browsing in
the image collection then corresponds to moving from concept to concept in the
lattice. By including new attributes in the intent, the user moves to a smaller
concept where all images in the extent have these features. ImageSleuth offers
the following possibilities to navigate in the concept lattice:

– Restriction of the set of attributes in consideration
– Move to upper/lower neighbour
– Search by attributes
– Search for similar objects (Query by example)
– Search for similar concepts

The possibility to restrict the set of attributes in consideration allows focus
on the features that are relevant for the current navigation needs of the user.

FCA-Based Browsing and Searching of a Collection of Images 205

Otherwise large sets of irrelevant attributes would increase the number of con-
cepts and make search unnecessarily complex. ImageSleuth offers predefined sets
of attributes (called perspectives) covering different aspects of the images. The
user may combine these perspectives and include or remove perspectives during
the search. Scale attributes are natural candidates for such attribute sets but
other sets are allowed (for example, overlapping perspectives and perspectives
which are subsets of other perspectives).

The option to search for similar concepts requires a similarity measure. In
order to use this similarity together with the normal search or query-by-example,
(where the user may describe the searched concept with attribute or object sets
which are not intent or extent of a concept) we want the similarity measure to be
defined for semiconcepts as introduced in [LW91] as a generalisation of concepts:

Definition 1. A semiconcept of a context K := (G, M, I) is a pair (A, B) con-
sisting of a set of objects A ⊆ G and a set of attributes B ⊆ M such that A = B′

or B = A′. The set of all semiconcepts of K is denoted by H(K).

Note that every concept is a semiconcept. The underlying structure of Im-
ageSleuth is thus:

1. A context K := (G, M, I) with a collection of images as object set G, possible
features as attribute set M and an incidence relation I assigning features to
objects.

2. A collection P of subsets of M called perspectives. Every subset A ⊆ P
defines a subcontext KA := (G,

⋃
A, IA) with IA := I ∩ (G ×

⋃
A) of K.

3. A similarity measure
s :

⋃

A⊆P
H(KA)2 → [0, 1]

assigning to every pair of semiconcepts of a subcontext KA a value between
0 and 1 which indicates the degree of similarity.

Since for every A ⊆ P the contexts KA and K have the same object set and
every attribute of KA is an attribute of K it follows for every m ∈

⋃
A that

mI = mIA . Since for (A, B) ∈ B(KA) we have

A = BIA =
⋂

{mIA | m ∈ B} =
⋂

{mI | m ∈ B}

it follows that A is the extent of a concept of B(K). Therefore, φ(A, B) := (A, AI)
defines a map φ : B(KA) → B(K) and the image of φ is a ∧-subsemilattice of
B(K). In the following, the different navigation means based on this structure
are described.

2.1 Restriction of the Attribute Set

By including different perspectives the user defines a subcontext of K in which
all operations are performed. She may change this subcontext while browsing,

206 J. Ducrou, B. Vormbrock, and P. Eklund

thus obtaining at the present concept further information and search options.
If at the concept (A, AIA) the perspective S ∈ P is included (i.e. the set of
attributes in consideration is increased), then ImageSleuth moves to the concept
(AIA∪{S}IA∪{S} , AIA∪{S}) of B(KA∪{S}). Since for A ⊆ P and S ∈ P the extent
of every concept of KA is an extent of KA∪{S} we have A = AIA∪{S}IA∪{S} and
the set of images shown does not need to be updated when a further perspective
is included. This allows the addition of perspectives during the search without
losing information. A similar strategy is known from Toscana (cp. [TJ02]) where
the user moves through different scales. At every point the user may also remove
a perspective S which takes her to the concept (AIA\{S} , AIA\{S}IA\{S}). If in
this way an attribute of AIA is removed from the current subcontext then the
extent may be increased since AIA ⊆ AIA\{S} .

2.2 Moving to Upper and Lower Neighbours

ImageSleuth uses most of its interface to show thumbnails of images in the extent
of the chosen concept. As a result the user never sees the line diagram of a lattice.
Instead, the lattice structure around the current concept is represented through
the list of upper and lower neighbours which allow the user to move to super-
or subconcepts. For every upper neighbour (C, D) of the current concept (A, B)
the user is offered to remove the set B \ D of attributes from the current intent.
Dually, for every lower neighbour (E, F) the user may include the set F \ B of
attributes which takes her to this lower neighbour. By offering the sets B \ D
and F \B dependencies between these attributes are shown. Moving to the next
concept not having a chosen attribute in its intent may imply the removal of a
whole set of attributes. In order to ensure that the extent of the given concept
is never empty it is not possible to move to the minimal concept.

2.3 Search and Query-by-Example

Browsing of the image collection is achieved by moving to neighbouring concepts.
In many cases the user will want to go directly to images having a certain set
of attributes B ⊆

⋃
A. This is offered by the search function which computes,

for the selected attributes, the concept (BIA , BIAIA). Its extent is the set of all
images having these attributes, its intent contains all attributes implied by B.

Another type of search is performed by the query-by-example function. In-
stead of defining a set of attributes, a set of objects A is defined as the sample set.
The query-by-example function then computes the common attributes of these
images (in the selected subcontext) and returns all other images having these
attributes by moving to (AIAIA , AIA). In this way, query-by-example is the dual
of the search function. While the search for images having certain attributes is
not affected by the removal or addition of perspectives to the subcontext, query-
by-example depends strongly on the selected subcontext. The more attributes
taken into consideration, the smaller the set of images that have exactly the
same attributes as the examples.

FCA-Based Browsing and Searching of a Collection of Images 207

2.4 Similarity

The aim of query-by-example is to find objects which are similar to the objects
in a given sample set. This is a narrow understanding of similarity implying
equivalence in the considered subcontext; for the query-by-example function two
objects g, h are “similar” in a subcontext KA if gIA = hIA . If the objects are
uniquely described by the attributes in the chosen subcontext then query-by-
example seldom yields new information. A more general approach is to define
a similarity measure. In [Le99] several similarity measures on attribute sets are
investigated. Similarity of two objects g and h is then described as the similarity
of the attribute sets g′ and h′. In order to use the grouping of objects provided
by the formal concepts, ImageSleuth works with a similarity measure on semi-
concepts which allows the return of a ranked list of similar concepts. We use
semiconcepts since the set of sample images chosen by the user is not necessarily
the extent of a concept. The similarity measure is derived from the following
metric:

Definition 2. On the set H(K) of semiconcepts of a context K := (G, M, I) the
metric d : H(K) × H(K) → [0, 1] is defined as

d((A, B), (C, D)) :=
1
2

(
|A \ C| + |C \ A|

|G| +
|B \ D| + |D \ B|

|M |

)

.

This definition formalizes the idea that two semiconcepts are close if there are
few objects and attributes belonging to only one of them. In order to compare the
number of objects and the number of attributes where they differ, these numbers
are set in relation to the total number of objects or attributes. Semiconcepts with
small distance are considered similar. ImageSleuth uses 1 − d((A, B), (C, D)) as
the similarity of (A, B) and (C, D).

For a similar purpose Saquer and Deogun introduced in [SD01] a related
similarity measure as

s((A, B), (C, D)) :=
1
2

(
|A ∩ C|
|A ∪ C| +

|B ∩ D|
|B ∪ D|

)

.

This definition of similarity extends to semiconcepts (A, B), (C, D) if A∪C �=
∅ and B ∪ D �= ∅. In particular, the similarity s((A, A′), (C, D))) is defined for
every nonempty set A of objects and every concept (C, D) �= (G, ∅). For a sample
set A of images, ImageSleuth uses a combination of both measures to return a
ranked list of concepts similar to the semiconcept (A, AIA).

The given metric on semiconcepts has two advantages. First, it allows the
return of a list of similar concepts rather than just a list of images. This provides
a reasonable grouping of the similar images and, since the attributes of the
concepts are displayed, it shows in which way the images relate to the sample
set.

Second, in contrast to other approaches such as graph distance, the number of
different objects of two concepts is taken into account. Instead of counting only

208 J. Ducrou, B. Vormbrock, and P. Eklund

the attributes in which two concept intents differ, we assume that the significance
of this difference is reflected in the difference of their corresponding attribute
sets. If (A, B) is a concept and (C, D), (E, F) are upper neighbours of (A, B)
with |C| ≤ |E| then the attributes in B \F are considered as more characteristic
for the concept (A, B) than the attributes in B \ D. Thus, if |D| = |F | then
(C, D) is closer to (A, B) than (E, F) even though they differ from (A, B) in
the same number of attributes. In this way, even an incomparable concept may
be the closest. This contradicts the intuition that, for a concept, its sub- and
superconcepts should be closest. Yet upper and lower neighbours are directly
accessible by other navigation means. The advantage of the search for similar
concepts for a given concept is that it offers a selection of (in the lattice order)
incomparable but close concepts which are otherwise invisible.

As the original query-by-example function described above is the dual of a
search this approach can be used for the search function, too. If a search is
carried out for a set of attributes B, and if B′ is empty, then the concept (B′, B′′)
contains only the information that these attributes do not occur together. No
images are returned as a result of this search, since there are no images having
the required attributes. In this case, the user may be shown a list of concepts
similar to or with small distance to the semiconcept (B′, B).

3 Implementation

This section introduces the application ImageSleuth. Focus is placed on the
dataset used for testing, its history, navigation overview and a method for re-
solving the empty extent search result.

3.1 Image Collection

The dataset used is taken from the popular computer game “The Sims 2”. It
features 412 objects of household funiture and fittings, described by 120 at-
tributes which include in-game properties, suggestions for use and automatically
extracted colour information. There are 7,516 concepts in the complete context.
Each attribute of the context is assigned to one or more perspectives. In this
dataset, 10 perspectives have been constructed.

3.2 History

The version of ImageSleuth presented here is the second version. The origi-
nal prototype used concept neighbourhoods and include/remove attributes, but
was limited to traversal between three mutually exclusive subcontexts via sin-
gle objects. It underwent user-evaluation to test functionality and opinion of
ImageSleuth’s navigation paradigm. 29 honours level university students (from
various disciplines) were asked to perform tasks and provide feedback on Im-
ageSleuth v1. Results are overviewed in [DE05]. Results indicated that concept
neighbourhoods offered a useful navigation method, users liked the “grouping

FCA-Based Browsing and Searching of a Collection of Images 209

Fig. 1. An example screenshot of ImageSleuth and the lattice representation of the
corresponding neighbourhood. The screenshot shows the four primary navigation func-
tions of ImageSleuth. On the left is the listings of current and available perspectives
(currently, advanced and simple colour perspectives are selected). Top and bottom
show the remove and include functions respectively. The central pane shows the cur-
rent concept; with intent listed as textual attributes and extent as thumbnailed images.
The lattice neighbourhood shows the current concept at its centre.

of similar objects”1 (concept extents) and the efficient searching by selection of
defined attributes. Negative feedback included complaints about the interface
and the systems performance. Analysis of the task results revealed the biggest
problem: if a search included mutually exclusive attributes, it returned an empty
extent, which left users confused. According to [Co99], making a user feel stupid
is the worst possible software interaction fault.

The second version of ImageSleuth addressed the primary problems experi-
enced by participants in the user testing sessions. These included interface layout,
slow performance, inability to combine contexts and the empty extent search re-
sult problem. In the first version, include and search functionality was listed
after the thumbnails, and users needed to scroll to the bottom of the page to
continue navigation. This was repaired by partitioning the page into frames with

1 A term used by more than one of the participants.

210 J. Ducrou, B. Vormbrock, and P. Eklund

each frame assigned a set amount of screen space and function. This means a
given functionality is always found in the same location regardless of conceptual
position in, or content of, the dataset.

To address performance issues, the entire system (which was implemented as
a single Perl script) was rewritten in C++ as a set of executables. The database
was ported to PostGreSQL to take advantage of performance advantages for
FCA systems outlined in [Ma06]. This process lead to a system that is roughly
10,000% faster.

ImageSleuth is accessed as a web site which allows simple access via a web
browser. This also means that ImageSleuth is platform independent for users
as all code is run on the server. Another reason for centralising the running
of ImageSleuth is to allow logging of users’ activities during usability testing
sessions for analysis.

3.3 Empty Extent Search Result

The most common solution to concept searches in FCA, that result in an empty
extent, is to offer attributes that can be removed from the search to supply a more
general answer that meets a majority of search attributes. Most other forms of
search (for example, text search) do not work this way - instead they supply the
user with a list of results that are ranked by a relevance to the query. ImageSleuth
tries to address this using the semiconcept search result and a combination of
distance and similarity measures (see section 2.4). When a search is performed
that would return the concept with an empty extent, the user can opt to allow
the system to find and rank conceptually relevant concepts. This process is
achieved by finding possible neighbours of the semiconcept and performing a
bounded traversal which ranks the traversed concepts. These possible neighbours
(Fig. 3, Line 3.) become the first concepts traversed. Each concept visited has
its relevance calculated and stored. A test is applied to each concept visited
to calculate whether it is to be used for further traversal. The test condition
is based on the distance metric compared to a weighted average of the query
concepts intent and extent size (Fig. 3, Line 8.). The condition is represented as:

Dist((A, B), (C, D)) × SearchWidth < 1
2 (|A|/|G| + |B|/|M |)

where (A, B) is the query concept and (C, D) is the current concept of the
traversal. SearchWidth is a modifier to allow the search to be made wider or
narrower. If the traversal is to continue, the concept’s neighbourhood is added
to the traversal list, the concept is marked as visited and the process continues
(Fig. 3, Lines 9-11.).

Relevance is calculated as the average of the similarity scores which is pre-
sented to the user as a percentage.

4 Empty Extent Search Result Example

The following is a simple example of how ImageSleuth’s semi-concept searching
works. This example uses two perspectives, Function and RoomType which have

FCA-Based Browsing and Searching of a Collection of Images 211

Fig. 2. An example of lattice traversal starting from a semi-concept. The traversal in
this example is complete in 3 steps. The shaded area shows the computed concepts at
each step.

1. find similar (Concept: input, Number: width)
2. input size = size (input.intent) + size (input.extent)
3. candidate = upperNeigh (input) ∪ lowerNeigh (input)
4. exclude = (input)
5. while (size (candidate) > 0)
6. concept = pop (candidate)
7. exclude = exclude ∪ concept
..
.. compute and store rank information for concept.
..
8. if (distance (input , concept) × width

< weightedAverage(input))
9. candidate = candidate ∪ upperNeigh (concept)
10. candidate = candidate ∪ lowerNeigh (concept)
11. candidate = candidate / exclude
12. end if
13. end while
14. end

Fig. 3. Pseudocode representation of search traversal. Parameters are the starting con-
cept or semiconcept (input) and a numeric value used to modify the width of the search
(width).

20 attributes in total. The Function perspective is a simple nominal scale with
each object having one function attribute. The RoomType perspective, on the
other hand, is more complex with each object having zero or more room type
attributes. With this context the complete lattice has 194 concepts.

212 J. Ducrou, B. Vormbrock, and P. Eklund

Fig. 4. Results of a concept traversal from the query “Applications, Electronics, Study”
using the perspectives “Function, RoomType”

The query for this example will be “Applications, Electronics, Study”, the
first two attributes from the Function perspective and the remaining one from
RoomType. Function being nominally scaled, the inclusion of two attributes from
this perspective means that if the concept was completed it would result in the
empty extent concept or (∅, M). Although this result is technically correct, it
does not suit the query’s intention.

To identify a concept that is more representative, a concept traversal is started
using the semiconcept, (∅, (Applications,Electronics,Study)). In this example,
the traversal visits 12 concepts, four of which are conceptually close enough to
extend the traversal. Consequently, only 6.19% of the total lattice is computed.
The first three of five rankings are shown in Fig. 4. Relevance is shown as a
large percentage, while individual distance and similarity scores are displayed
below. Each result is displayed as a list of attributes representing the intent and

FCA-Based Browsing and Searching of a Collection of Images 213

a collection of thumbnails representing the extent. The highest ranking concept,
with relevance 64.92%, has the intent (Electronics, Study), which is two of the
three original query attributes. Following that, at 55.74%, is the concept with the
intent (Bedroom, Electronics, LivingRoom, Study). The third ranking, at 54.42%
relevance, has two concepts, with the intents (Applications) and (Electronics),
which represent the mutually exclusive elements of the original query.

5 Conclusion

Presented is an image based navigation paradigm combining the methods of
Formal Concept Analysis for information retrieval with the graphical informa-
tion conveyed as thumbnails. This paradigm is formalised and realised via the
ImageSleuth application which uses a collection of images taken from the game,
The Sims 2.

It was required that the concept lattice representation used in ImageSleuth
had a different presentation and navigation paradigm compared to that of text
documents; in contrast to most approaches for FCA document retrieval, no line
diagram of the lattice is displayed. In our approach, the user chooses perspectives
of interest and is always located at one concept of the concept lattice, with the
extent of the current concept displayed as thumbnails. Query-by-example and
a method for ranking attribute search results when an exact match is not to
be found are also described and exemplified in ImageSleuth. Also shown is how
ImageSleuth has been improved from the previous version after testing and user
evaluation.

References

[Co99] A.Cooper: The Lunatics are Running the Asylum, SAMS, 1999.
[CS01] R.Cole, G. Stumme: CEM – A conceptual email manager. In: B.Ganter,

G.W.Mineau (eds.): Conceptual structures: Logical, linguistic, and compu-
tational issues. Proc. ICCS 2000. LNAI 1867. Springer, Heidelberg 2000,
438–452.

[DE05] J.Ducrou, P. Eklund: Browsing and Searching MPEG-7 Images using Formal
Concept Analysis. To Be Published, Feb 06 in: ACTA: IASTED AIA.

[GW99] B.Ganter, R.Wille: Formal concept analysis: mathematical foundations.
Springer, Heidelberg 1999.

[KC00] M.Kim, P.Compton: Developing a Domain-Specific Document Retrieval
Mechanism. In: Proc. of the 6th pacific knowledge acquisition workshop
(PKAW 2000). Sydney, Australia.

[Le99] K.Lengnink: Ähnlichkeit als Distanz in Begriffsverbänden. In: G. Stumme,
R.Wille (eds.): Begriffliche Wissensverarbeitung: Methoden und Anwendun-
gen. Springer, Heidelberg 2000, 57–71.

[LW91] P. Luksch, R.Wille: A mathematical model for conceptual knowledge sys-
tems. In: H.H.Bock, P. Ihm (eds.): Classification, data analysis, and knowl-
edge organisation. Springer, Heidelberg 1991, 156 – 162.

214 J. Ducrou, B. Vormbrock, and P. Eklund

[Ma06] B.Martin, P. Eklund: Spatial Indexing for Scalability in FCA. In: Formal
Concept Analysis: 4th International Conference (ICFCA 2006), Lecture
Notes in Computer Science, Volume 3874, 2006, 205–220.

[SD01] J. Saquer, J. S.Deogun: Concept aproximations based on rough sets and sim-
ilarity measures. In: Int. J. Appl. Math. Comput. Sci., Vol.11, No.3, 2001,
655 – 674.

[TJ02] P.Becker, J. Hereth, G. Stumme: ToscanaJ - An Open Source Tool for Quali-
tative Data Analysis,In: Advances in Formal Concept Analysis for Knowledge
Discovery in Databases. Proc. Workshop FCAKDD of the 15th European
Conference on Artificial Intelligence (ECAI 2002), 2002.

[TJ] The ToscanaJ Homepage. <http://toscanaj.sourceforge.net>
[VW95] F.Vogt, R.Wille: TOSCANA - a graphical tool for analyzing and exploring

data. In: Proceedings of the DIMACS International Workshop on Graph
Drawing (GD’94), 1995, 226 – 233.

	Motivation
	Using FCA to Browse Images
	Restriction of the Attribute Set
	Moving to Upper and Lower Neighbours
	Search and Query-by-Example
	Similarity

	Implementation
	Image Collection
	History
	Empty Extent Search Result

	Empty Extent Search Result Example
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

