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Preface 

The 14th International Conference on Conceptual Structures (ICCS 2006) was held in 
Aalborg, Denmark during July 16 – 21, 2006.  

Responding to the Call for Papers, we received 62 papers from 20 different 
countries, representing six different continents. This clearly indicates the international 
nature of the ICCS community as well as the widespread interest which was spawned 
by the previous conferences. By a thorough review process, 24 papers were selected 
to be included in this volume. In addition, six invited speakers made contributions 
which can be found in the first section of this volume. 

The theme of ICCS 2006––Conceptual Structures: Inspiration and Application––   
points to a dual focus of interest that is also reflected in the constellation of papers. 
From the beginning of the planning of this conference, we focused on inspirational 
sources that have led to the current state of research in our community, by tracing 
important historical influences which daily effect work in representing knowledge and 
in handling representations of conceptual structures. At the same time, we also 
focused on ways in which these legacies are employed to further advance theory and 
practice in the field of knowledge representation and processing. With this volume, 
we believe that a valuable contribution to both aspects of this field is being made. 

We wish to express our appreciation to all the authors of submitted papers, to the 
members of the Editorial Board and the Program Committee for all their work and 
valuable comments.  

More information regarding the details of the conference can be found on the 
conference homepage at http://iccs-06.hum.aau.dk. 
 
 
July 2006 Henrik Schärfe 

Pascal Hitzler 
Peter Øhrstrøm 
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Romuald Thion, Stéphane Coulondre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Representing Wholes by Structure
Yang Yu, Ji Wang, Ting Wang, Huowang Chen . . . . . . . . . . . . . . . . . . . 441

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455



Formal Ontology, Knowledge Representation
and Conceptual Modelling: Old Inspirations,

Still Unsolved Problems

Nicola Guarino

Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy
guarino@@loa-cnr.it

Abstract. According to the theme of ICCS 2006, I will revisit the old
inspirations behind the development of modern knowledge representation
and conceptual modelling techniques, showing how the recent results of
formal ontological analysis can help addressing still unsolved problems,
such as semantic interoperability and cognitive transparency.

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 2 – 21, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

The Persuasive Expansion - Rhetoric, Information 
Architecture, and Conceptual Structure 

Per F.V. Hasle 

Department of Communication - Aalborg University 
phasle@hum.aau.dk 

1   Introduction 

Conceptual structures are, as a rule, approached from logical perspectives in a broad 
sense. However, since Antiquity there has been another approach to conceptual 
structures in thought and language, namely the rhetorical tradition. The relationship 
between these two grand traditions of Western Thought, Logic and Rhetoric, is 
complicated and sometimes uneasy – and yet, both are indispensable, as it would 
seem. Certainly, a (supposedly) practical field such as Information Architecture 
bears witness to the fact that for those who actually strive to work out IT systems 
conceptually congenial to human users, rhetorical and logical considerations inter-
twine in an almost inextricable manner. 

While this paper shows that Rhetoric forms an obvious communication theory for 
Information Architecture, it will not deal with the questions of how to utilize this 
insight in concrete practise. The focus is on how Information Architecture (IA) and 
Rhetoric meet in what is in essence a common conceptual structure. I shall describe 
the basic concepts of classical rhetoric and then proceed to show how these fit most 
closely to the main concepts of Information Architecture. Specifically, the “Informa-
tion Architecture Iceberg” model of Morville and Rosenfeld can be shown to have a 
predecessor in Cicero’s considerations on oratio (speeches). Then an important cur-
rent development, in this paper called the Persuasive Expansion, is examined with an 
emphasis on its implications with respect to IA and Rhetoric. Finally, and most strik-
ingly of all, perhaps, it is suggested how the “hard” computer science paradigm of 
object orientation is rooted in the Topics of Rhetoric. The paper is concluded by a 
brief discussion of implications for Conceptual Structures and raising a vision of a 
Computer Rhetoric. 

In discussing Rhetoric I shall follow what has become standard usage in textbooks 
on classical rhetoric and use both Greek and Latin terms. This is partly to make the 
terms more readily recognisable, but partly also because in some cases the Greek 
terms cover the concept in question slightly better than the Latin terms, and some-
times vice versa. 

2   Core Concepts of Rhetoric 

What is Rhetoric about? Classical rhetoric is as a rule associated primarily with giving 
speeches (in Latin: oratio) whose aim is persuasion (in Latin: persuasio). However, 
while this is not entirely wrong, it is amputated to the point of being misleading, even 
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when only classical rhetoric is considered. There are good historical and cultural rea-
sons why classical rhetoric indeed gave its attention to speeches rather than other 
media, but even in the classical apparatus there is nothing at all which necessitates a 
limitation of the field of Rhetoric to speeches, or even to words, spoken or written. 
Rather, the concepts of Rhetoric have to do with how to present a subject matter with 
a specific purpose – in general, how to achieve effective or efficient communication. 
In this connection presentation should also be thought of as more than simply the 
question of how the exposition is couched in words and other expressive means. The 
notion of exposition is inherent in the rhetorical notion of presentation – thus the 
logical and temporal structure of the delivery is part of the presentation, and in fact, 
part of the relevant subject matter. The great Roman rhetorician Quintilian (ca. 35-
100 A.D.) clearly dispels any idea of limiting Rhetoric to a matter of outward style or 
persuasion only: 
 

Accordingly as to the material of oratory, some have said that it is speech, an 
opinion which Gorgias in Plato is represented as holding. If this be understood 
in such a way that a discourse, composed on any subject, is to be termed a 
speech, it is not the material, but the work, as the statue is the work of a statuary, 
for speeches, like statues, are produced by art. But if by this term we understand 
mere words, words are of no effect without matter. Some have said that the ma-
terial of oratory is persuasive arguments, which indeed are part of its business 
and are the produce of art, but require material for their composition (Quintilian, 
IO, 2,21,1-2). 

 
What Quintilian is saying here (in a perhaps somewhat complicated manner) is in 
essence that rhetorical work is really not on words, but on a subject matter; however 
the work consists in giving the subject matter an appropriate expression through 
words (or any other relevant expressive means). This passage thereby also states an-
other fundamental tenet of Rhetoric, which we have already touched upon: the idea 
that form and content are inseparable. Any change in form implies a change in content 
– however small – and any change in content necessitates a change in form. That is 
why presentation is not merely about expressive means and their delivery, but inevi-
tably also about conceptual structure. 

Indeed, we here begin to deal with nothing less than the contours of a rhetorical 
epistemology, and a rhetorical perspective on conceptual structures, however lacking 
it still is in detail. So this is probably the place to pause for a few but important pre-
cautions. Rhetoric began in ancient Greece about 500 BC. Since then this important 
tradition of Western thought has been developed further till this very day. This fact 
makes for both historical depth and great systematic refinement of Rhetoric, but it 
also introduces a complication – the simple fact that various thinkers and epochs have 
conceived of Rhetoric differently, have emphasised different aspects and so forth. In 
particular, there was and is an approach to Rhetoric which sees it mainly as a set of 
communicative techniques with no or little philosophical import (to which I would 
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count, for instance, the classical standard work Corbett 1999/1965).1 Indeed, one of 
the greatest contributors to Rhetoric, Aristotle (384-322 B.C.), is sometimes under-
stood this way (again, Corbett is an example of this). It is quite clear that a discussion 
of the arguments for or against this approach as opposed to a more philosophically 
inclined understanding of Rhetoric is quite beyond this paper. Nevertheless, decency 
demands that it be made clear here and now that this paper is based on the assump-
tions of what we could suitably call epistemic rhetoric (following Scott 1967). More 
precisely, the conception presented here is based on the works of in particular Karl 
Otto Apel (1963), Robert Scott (1967 and later), Ernesto Grassi (1980), Michael Bil-
lig (1996), and – in some ways - most of all Karsten Hvidtfelt Nielsen (1995).2 How-
ever, this reservation does not imply any reservations with respect to what I have to 
say about the basic meaning of rhetorical terms – such as oratio and persuasio, and a 
number of other ones to follow – explications which will be readily recognised by all 
professionals of Rhetoric.3  

So, we should now be ready for a fuller picture of Rhetoric and its epistemology. 
Rhetorical work sets out by a kind of question, or theme, or issue, which is perceived 
as problematic – the Latin term for this is quaestio: 

 
The question in its more general sense is taken to mean everything on which 
two or more plausible opinions may be advanced (Quintilian: 3,11,1). 
To a rhetorician, all issues present themselves under the aspect of a quaestio 
or causa ambigiendi, that is a sort of “issue in doubt”… In rhetoric, a case 

                                                           
1 This is particularly evident in the manner in which Corbett repeatedly stresses that argumenta-

tion and human understanding should proceed on the basis of pure logos: ‘Ideally, people 
should be able to conduct a discussion or argument exclusively on the level of reason [i.e. 
logos]. But the rhetoricians were realistic enough to recognize that people are creatures of 
passion and of will as well as of intellect. We have to deal with people as they are, not as they 
should be.’ (Corbett: 71-72). Thereby cognitively cogent thought is associated with pure 
logic, whereas the remaining rhetoric concerns must be banned from philosophical episte-
mology, although they may still be relevant to how human cognition actually works. But as 
pointed out by epistemic rhetoricians and not least Robert Scott, rhetoric really calls for a no-
tion of human rationality, wherein full human rationally rests on ethos and pathos as well as 
logos. Advances in neuroscience such as Antonio Damasio’s works (e.g. 2000) seem to pro-
vide actual empirical underpinnings of this ancient notion - traceable in Gorgias, Protagoras, 
Cicero and Quintilian to mention some. 

2 Unfortunately, Hvidtfelt Nielsen is ambiguous in this matter. The ambition underlying his 
(initially) epistemological reading of rhetoric is the dissolution of epistemology – in essence, 
a post-modern contention that makes content disappear. But we may disregard these grand 
ambitions and stick with his otherwise excellent examination of possible epistemological 
consequences of above all Cicero’s rhetoric. 

3 Moreover, these references to modern thinkers hopefully make it clear that this paper’s focus 
on classical rhetoric is not meant primarily as an historical exercise. The fact that for instance 
New Rhetoric is not discussed is simply due to the fact that the core concepts of classical 
rhetoric are fully sufficient to demonstrate the points of this paper. Since New Rhetoric is 
mainly an extension and adaptation of classical rhetoric, a demonstration of the systematic 
relevance of the latter is a fortiori a demonstration of the relevance former. It may be added, 
however, that the difference between classical and modernised rhetoric is smaller than often 
assumed, as shown by e.g. Lunsford and Ede (1994). 
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constitutes a question with as many angles and sides as there are competent or 
imaginative orators to represent them (Nielsen 1995: 61-62) 

Rhetorical work is aimed at reaching a presentation and a concomitant understanding 
of the subject matter. This process is directed by an intention implicit in the quaestio – 
for instance the intention of presenting a convincing case for the acquittal of a defen-
dant, or the intention of finding out whether violent computer games affect children 
adversely, and so on. The process initiated by quaestio is divided into five phases, the 
Partes Rhetorices, or the five canons of Rhetoric: 

• Inventio – in this phase the subject matter is determined and delimited, that is, 
a number of potentially relevant elements are selected (and others passed by, 
i.e. omitted). The selection is governed partly by the intention and partly by 
relations between the elements selected. 

• Dispositio – the arrangement of the selected elements, for instance into argu-
mentative sequences or conceptual hierachies. 

• Elocutio – in this phase the style of presentation is chosen and suitable means 
of expression selected – words and terms, of course, but all kinds of expres-
sive means may come under this phase (pictures etc.). Thus the presentation is 
given its final or almost final form. 

• Memoria – the presentation is gone over and memorised as much as possible 
(in classical times, the presentation was often learned by heart; even so, the 
speaker should also be able to improvise). 

• Actio – the delivery, i.e. the time and place when the presentation meets its 
audience (hearers, receivers, users). 

We thus have in view an entire process, initiated by quaestio and its associated inten-
tion and leading to a presentation. But we need to determine a little more closely how 
to conceive of the subject matter, and how the process operates upon it. It is fair, I 
hope, to say of this paper, that its subject matter is Rhetoric and Information Architec-
ture – with an affinity to conceptual structures. But it is immediately clear that this 
description opens up a huge domain of possible topics that could result in very many 
very different papers. We should therefore say that the subject matter (Latin res) 
roughly circumscribes a large domain of possibly relevant elements. This goes also 
for much more narrowly defined matters. For instance, the presentation of a case 
before court may be seen as concerned with, say, guilt or non-guilt of a person with 
respect to an alleged crime. Even so, the preparation of the defence may lead the in-
vestigator into realms not immediately within the scope of the matter – for instance, 
statistics, laws of acceleration of cars, developmental psychology etc. etc. – often 
topics not even thought of at the beginning of investigation. Therefore, we shall say 
that the process operates on a loosely delimited domain of elements. The elements we 
call doxa, following Greek tradition. Doxa means facts, loosely speaking, but not the 
kind of hard facts envisaged in referential semantics (like the building stones of the 
world in Wittgenstein’s Tractatus). Doxa are plausible facts, arguable tenets, and 
commonly held opinions. 

The phase of inventio searches for these facts and selects among them. The se-
lection is governed by the intention, of course, but also by relevance criteria. Rele-
vance criteria partly stem from the elements themselves – for example, how one 
element relates to another one in a possible conceptual hierarchy. But it is also most 
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significant that the selection of some facts (at the cost of others) by itself forms a 
momentum attributing for the further selection higher relevance to some facts and 
less to others. The following picture may serve as illustration (the term Topica will 
be explained later): 

Domain
Inventio
Dispositio

Topica

 

Fig. 1 

The chain of arrows indicates a series of consecutive selection of facts from which 
to build the presentation. Thus there is really an element of dispositio present already 
in this phase. Element is added to element – juxtaposed, as it were – thus forming a 
pattern, which, even if it does not determine the presentation definitively, surely an-
ticipates structures and sequence of the presentation to follow. Moreover, the working 
through the elements, the forming of a pattern, is also the forming of one’s under-
standing of the case. The crucial epistemological consequence of this picture is that 
the investigation, the understanding, and the presentation of a subject matter are mu-
tually dependent, indeed inseparably interwoven. The question as well as the intention 
of the process has to do with the need of a presentation/exposition of the subject mat-
ter – governing already the first probing steps of inventio. And the way one comes to 
see and understand the matter is obviously dependent upon what one has selected (and 
de-selected) and which patterns have been formed. We may picture it thus: 

Presentation
(exposition)

Understanding Investigation

Subject
matter

 

Fig. 2 

Hopefully, the idea that form and content are inseparable may become more 
tangible through these observations. 
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We shall now examine some more specific concepts of Rhetoric, and show how 
very closely these fit with the very modern discipline known as Information Architec-
ture (IA). Later, we shall see how the rhetorical understanding of IA’s core model can 
be embedded in the foregoing general outline of Rhetoric and what some of the possi-
ble consequences are. 

3   The Aptum Model and the Information Architecture Iceberg 

Classical rhetoric identifies three fundamental parameters for effective and felicitous 
presentation, known as logos, ethos, and pathos. The presentation must make an appeal 
to the rationality of the receivers (logos), it must establish the plausibility of the sender 
as well as the presentation itself (ethos), and it should also appeal to and involve the 
receivers’ emotions (pathos). These concepts are laid out in Aristotle’s Rhetoric, and 
later developed by Cicero (106-43 B.C.) into the idea of the three duties (officia) of the 
rhetor: he must inform his audience (docere), he must “delight” it (delectare), and he 
must stir the audience’s feelings (movere). As for delectare this does not merely mean 
“entertain”, but rather creating a personal rapport with the audience such that the good 
will and honesty of the speaker are perceived. Nevertheless, the idea that a communica-
tion is there not just to inform and to achieve a goal but also to create as much pleasure, 
or joy, as possible is very characteristic of Rhetoric (Cicero’s, in the very least).  

It is not sufficient, however, simply to be aware of these functions or duties. The 
decisive point - and one of the pieces of really hard work for any presenter – is to 
bring them into the proper balance according to the situation. In a lecture, informing 
should play the primary (but not exclusive) role; and in a birthday talk, the aim of 
delighting should (ordinarily) play the greater part. When the right balance is found it 
bestows upon the speaker a dignity, decorum, which can greatly contribute to the 
success of the communication in question. To achieve the right balance, however, it is 
necessary to consider some more concrete parameters of communication. Already 
Aristotle was aware of the triad sender, content, and receiver (or speaker, message, 
and hearer) as constitutive entities of communication. This insight has since been the 
starting point of most communication theory. Cicero added to this triad two further 
parameters, namely expressive means (verba), and the context of the communication 
in question (situatio). The full list then becomes: 

• Orator, that is speaker/sender. 
• Scena (or auditores, spectatores), that is audience/hearers/receivers. 
• Res, that is the subject matter to be investigated and presented – and hence the 

theme, respectively content, of the presentation. Cicero also calls this causa, 
the reason why a presentation is called for, respectively the cause which has 
initiated rhetorical discourse. 

• Verba, that is the style, choice and deployment of expressive means, in a 
broad sense the form of the presentation. 

• Situatio, that is the circumstances surrounding the presentation. This of course 
applies to the direct context of the presentation itself, but also to the wider set-
ting in which it is given. As already mentioned a lecture is one kind of situa-
tion, and a talk at a birthday another one, each setting different felicity condi-
tions for the presentation act to be performed. 
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situatio

scenaorator

verbares  

Fig. 3 

In Scandinavia, it has become commonplace to set these parameters up in a figure 
called the rhetorical pentagon:4 

The lines connecting all parameters directly are there not just for decorative pur-
poses. They are to be taken seriously as emphasising the fact that there are relations 
between all of them. Just to exemplify this, let me suggest some of the possible fac-
tors to take into consideration with respect to the relations between orator and the 
four other parameters: 

• Orator – res: whether the sender is an expert on the subject matter, does he 
have special interests in it (such as possible personal gain), etc. 

• Orator – verba: what kind of expressions, which words are befitting this 
orator – is he or she young and in a position to use trendy expressions, or is 
the orator an older person who should refrain from such youngish language, 
etc. 

• Orator – scena: is the orator a person in a position to make demands of the 
audience, being for instance its commander or its lecturer, or is he or she 
rather a supplicant, say a salesperson or an attorney appealing to a jury. 

• Orator – situatio: is the occasion festive or grave, is the presentation ordinary as 
a lecture which is just the part of a pre-planned course, or is it extraordinary as a 
lecture given in the honour of a recently deceased colleague, etc. 

Ideally, the task of the rhetorician is to bring these five parameters of presentation into 
their optimal balance. In practise, one must often be satisfied when a reasonably good 
balance is achieved, and when this happens the presentation is apt (aptum) – obviously, 
the better the balance, the more apt. Where a high degree of good balance is achieved 
the presenter, as well as the presentation, achieves decorum. The good balance will by 
implication also be a good balance of logos, ethos, and pathos. Hence the task of the 
rhetorician is really not located at the orator-parameter, as one might expect at first 

                                                           
4 The figure is ‘unauthorised’ in the sense that classical rhetoric did not avail itself of graphical 

figures such as this one. Therefore some purists find it at least anachronistic to use it. Be that 
as it may, in this paper I am not out to argue an interpretation as historically correct in all de-
tails as possible, but rather in seeing how fundamental concepts of classical rhetoric are ap-
plicable to information technology. Of course, it is for my endeavour still a crucial point that 
these parameters of communication can be clearly documented in Cicero’s thought and 
writings. 
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glance, but rather at the centre of the model – as the professional who is to work out and 
ensure the optimal adaptation between the five parameters of communication.5 

We now make a leap of two millennia and turn to Morville and Rosenfeld’s Infor-
mation Architecture Iceberg (Morville and Rosenfeld 2002: 258): 

 

Fig. 4 

The similarity with the Aptum-Model is in many ways striking. The bottom line of 
the triangle, or the iceberg, contains three concepts which obviously correspond to the 
Aptum-Model. The same thing applies to the top of the iceberg, its visible part. In 
general, we have the following correspondences: 

• Users corresponds to scena  
• Content corresponds to res  
• Context corresponds to situatio  
• Interface corresponds to verba  

While this correspondence is strikingly systematic we should not think of the rela-
tions in question as relations of identity. Rather, the IA-Iceberg is a special case of 
the Aptum-Model, calling for nuances and closer determination. This is obvious, 
when one considers the middle of the iceberg, with concepts such as wireframes, 
meta-data, project plans etc. These indicate principles and methods of organization 
which clearly have to do with the specific IT context considered in IA. Even so, the 
affinities are in my opinion obvious, also when one goes into greater depth with the 
conceptual relations at stake here. For instance, scena is in Cicero’s work to be 
thought of not only as the audience present at the time of delivery. Rather, it is a 

                                                           
5 In fact, Ciceronian rhetoric stresses that the persona of the orator is – just like verba - to be 

shaped and adapted according to the overall objective of achieving aptum. Hvidtfelt Nielsen 
lays out this point convincingly and with an emphasis on the fact that the shaping of one’s 
persona in a rhetorical context has nothing to do with “make-believe or trickery” (Nielsen 
1995, p. 31). 
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factor to be considered at all times of rhetorical work – and, moreover, the ultimate 
touchstone of the quality of the presentation, no matter how diligent the rhetorician 
has been in his work, and no matter which good arguments the rhetorician himself 
could give for the choices made (a point not irrelevant to the relation between IT 
developers and users). 

To be true, present day methods of reception analysis, user tests etc. – highly rele-
vant and obligatory in modern IT work - were not available at the times of classical 
rhetoric. Nevertheless, the principle involved remains the same, namely that the pres-
entation to be made should at all times take into consideration whatever knowledge 
one can have of the future audience. 

In De Oratore Cicero gives a good indication of this principle by letting one of his 
figures, the attorney Antonius, describe his work as follows: 
 

...when [my client] has departed, in my own person and with perfect impartiality 
I play three characters, myself, my opponent and the arbitrator (De Oratore: 
2,120). 

 
The starting point of Antonius’ work is to enact, firstly, his own possible role as the 
client’s spokesman, and then to counter-balance this by playing the adversary, which 
of course has to do with trying to find weak spots in his own first presentation. He 
then proceeds to consider how a special kind of audience, namely the judge, would 
probably react to the two previous competing presentations. At which point the whole 
process can be repeated to improve the first presentation, or alternatively, the case 
could be abandoned.6 In all of this the principle of imitation (imitatio) is involved – 
Antonius imitates to himself a possible adversary and a possible judge. (In fact, he 
even imitates himself to himself.)  Surely IA-workers, while availing themselves of as 
much solid information as can be had about future users, still are doing the same thing 
constantly in the course of their work – trying to imagine how future users will react 
to various features of the system to be developed. 

For all these similarities, there also is a thought-provoking difference. In the Ice-
berg, there is no sender-instance analogous to orator in the Aptum Model. Surely this 
does not mean that there is no sender at all, but rather that this component has become 
much more complex than in classical rhetoric. The sender-parameter comprises sev-
eral entities with complicated mutual relations – such as an organization commission-
ing the production of its website, a web-site company developing it, the information 
architects working in the process, and so on. Nevertheless, the continuing importance 
of sender-receiver relations is clearly indicated by the following remark:7 
 

The choice of organization and labelling systems can have a big impact on how 
users of the site perceive the company, its departments, and its products (Mor-
ville and Rosenfeld 2002: 54-55). 

 
                                                           
6 In fact, if the process shows the case for the client to be untenable, it is Cicero’s advice to 

decline taking the case  – for professional as well as ethical reasons. 
7 In fact, this applies to all the relations of the Aptum Model. 
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The same perspective is emphasised by Jesse James Garrett: 
 

In the minds of your users, an impression about your organization is inevitably 
created by their interaction with your site. You must choose whether that im-
pression happens by accident or as a result of conscious choices you have made 
in designing your site (Garrett 2003: 42). 

 
This very difference between the Aptum Model and the IA Iceberg focuses attention 
on the special conditions and features of IT-based communication. At the same time, 
the Aptum Model is a useful reminder to the IA-worker that he or she should carefully 
bear in mind the relation between sender(s), receivers (i.e. users) and the information 
architecture itself. 

Morville and Rosenfeld in their 2002 book put much care and energy into deter-
mining the work of the information architect as precisely as possible. To my mind, the 
end result is in fact a picture of the IA worker very much akin to the classical idea of 
rhetorical work: as the person whose task it is to ensure the optimal adaptation of the 
various components to each other – databases to interfaces, form and function to con-
tent, senders’ intentions to users’ needs, etc. The information architect is not a spe-
cialist in programming, graphical design, user tests or other specific IT-disciplines. 
He or she is a specialist in relating all these areas to each other in a manner striving 
for their optimal balance, or to use classical terms: to develop an optimal fit between 
form and content. Speaking of IA in the year 2006 this kind of work must of course 
take heed of the conditions and features specifically appertaining to the IT-medium. 

4   The Persuasive Expansion 

The concluding quotes of the previous section lead us straight into an emerging and 
apparently rapid development in IT, perhaps most poignantly characterised by the 
idea of Persuasive Design (PD). The most important individual contributor to this 
notion is B.J. Fogg, whose book Persuasive Technology (2003) described persuasive 
uses of technology, in particular computers, in greater detail than had been done be-
fore. Fogg himself calls the field “Captology”, an acronym for “Computers as Persua-
sive Technologies”, but I shall stick to the term Persuasive Design (which also seems 
to have achieved wider acceptance in IT- communities). Fogg defines persuasion as 
 

… an attempt to change attitudes or behaviours or both (without using coercion 
or deception) (Fogg 2003: 15). 

 
Furthermore, Fogg describes PD as a field and/or discipline by saying that it 
 

.. focuses on the design, research and analysis of interactive computing products 
created for the purpose of changing people’s attitudes or behaviour (Fogg 2003: 5). 

 
The decisive insight underlying Fogg’s work is the fact that software is increasingly 
being used with the conscious aim of influencing people in various ways. In a nar-
rower sense, it is used for persuading people – to buy a product, to join a party, to 
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support a cause, to become a good leader or a considerate driver. Indeed, in this 
respect a momentous and general development is going on in IT. Even good old-
fashioned information systems such as, say, library portals are increasingly given an 
overlay of persuasion. It has often been noted that the computer began its history 
rather as a super-calculator. With the personal computers in the 80’es its scope was 
broadened a good deal, a development which was brought further by the growth of the 
Internet in the 90’es. Altogether a development which made the use of the computer 
as information system more prominent than its use as calculator.8 The idea of PD, 
however, indicates yet another expansion of the scope of the computer, which may be 
briefly characterised as its expansion from information system into communication 
system. I call this development the Persuasive Expansion, to emphasise two points: 
that it is a development which expands rather than supersedes the customary use of 
computers for information purposes, and this expansion is guided by an increasing 
emphasis on persuasive purposes. As explained in the first section on rhetorical con-
cepts, persuasio, and the goal of Rhetoric in general, should not be seen narrowly as 
the attempt to get one’s way, but rather as the purposeful use of communication to 
achieve a goal (which may very well be idealistic and in the best interest of the re-
ceiver). We may illustrate the Persuasive Expansion as follows: 

Computer as 
communication system

Computer as 
information system

Computers as 
calculator

 

Fig. 5 

While Fogg focuses on persuasion in a somewhat narrower sense than is done here, it 
is clear that his proviso ”without coercion or deception” is meant to indicate a purpose 
more flexible than brute persuasion. Significantly, it seems to me, (Fogg 2003) in at 
least one place focuses on the wish to influence in a completely general sense: 
 

As I see it, if someone didn't want to influence others in some way, he or she 
would not take the time or energy to set up a website (Fogg 2003: 147). 

The original core task of IA was to organize and categorize knowledge in a way that 
would optimally support users in their attempts to find information for which they 
were looking: 

                                                           
8 Of course, the use of computer as calculator has not disappeared. On the contrary, it is more 

crucial than ever  to financial and technological development in general. However, the num-
ber of people (respectively the amount of time spent) interacting with computers as informa-
tion systems vastly outstrips the corresponding numbers of interacting with computers for 
obviously calculatory purposes. 
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As information-architects, we organize information so that people can find the 
right answers to their questions (Morville and Rosenfeld 2002: 50). 

 
It is clear that this task is still most necessary, but it is also clear that as it is stated 
here, it associates IA with the computer as an information system. PD takes the step 
of subsuming this IA core task under more general communicative purposes. Never-
theless, the observation previously quoted that “The choice of organization and labelling 
systems can have a big impact on how users of the site perceive the company…” shows that 
Morville and Rosenfeld are quite aware of the fact that categorization is not just a logical 
endeavour. It also creates the setting for achieving effective communication and has an impact 
on the image of the company or organization inevitably projected by the website. There is, 
however, more to this than image projection. The communicative design – that is, the choice of 
rhetorical conceptual structure – determines the very understandability of the website, as noted 
by Jesse James Garrett (a contributor to IA with an especially keen eye for communicative 
aspects): 
 

If your site consists mainly of what we Web types call ‘content’ - that is, informa-
tion - then one of the main goals of your site is to communicate that information as 
effectively as possible. It’s not enough just to put it out there. It has to be pre-
sented in a way that helps people absorb it and understand it (Garrett 2003: 14). 

 
Coming back to Fogg (2003), this work itself explicitly points to Rhetoric as at least 
part of its background (e.g. p. 24). Already at the beginning of his development of 
PD, Fogg wrote:9 
 

For example, Aristotle certainly did not have computers in mind when he wrote 
about persuasion, but the ancient field of rhetoric can apply to captology in in-
teresting ways (Fogg 1998: 230-231). 

 
On the other hand, Fogg 2003 does not purport to be a scientific theory, to the best of 
my comprehension. It is a presentation of concepts and guidelines which are useful 
for developing persuasive software. But it is also clear that at a general level it shares 
central concerns with classical rhetoric. In fact it also has many interesting connec-
tions with rhetorical concepts even at the level of detail. Especially the concept of 
Credibility has a strong connection with Rhetoric, which deserves to be mentioned. 
Aristotle’s concept of ethos is determined more precisely by identifying three compo-
nents of ethos. These are 

• Phronesis, approximately the same thing as ‘competence’ 
• Eunoia, approximately the same thing as ‘benevolence’ 
• Arete, approximately the same thing as ‘honesty’ or ‘trustworthiness’. 

                                                           
9 The development of PD and Fogg’s work was investigated by Sine Gregersen in her Master’s 

Thesis (2005). Herein she also points out that Fogg – as described in Fogg 1998 – met infor-
mally with other researchers interested in the intersection of persuasion and computing tech-
nology at the CHI - Human Factors in Computing – conference in 1997. I am indebted to her 
work for leading me to the quote used here. 
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To discuss the full philosophical meaning of these concepts certainly requires a 
deeper knowledge of Aristotle as well as ancient Greek culture than the present author 
commands. But from a rhetorical perspective we can have a quite satisfactory picture 
by saying that to exhibit, or achieve, ethos, the speaker must show relevant compe-
tence, good will towards his audience, and honesty. Indeed, ethos was arguably rec-
ognized as the most important factor in communication already in ancient Rhetoric. 
This corresponds entirely with the importance attributed to credibility by Fogg. Fogg 
describes credibility as consisting of two components, namely perceived expertise and 
perceived trustworthiness, using this figure (Fogg 2003:123): 

Perceived
trustworthiness

Perceived
expertise

Perceived
credibility

 

Fig. 6 

It is evident that Phronesis roughly corresponds to expertise and Arete roughly corre-
sponds to trustworthiness. The fact that Fogg qualifies these components as ‘per-
ceived’ raises some interesting aspects. Cicero argued that the speaker must mean 
what he says (in a telling contradiction to the bad reputation which is sometimes 
given to Rhetoric) – thus it would not be sufficient to simulate emotions or values or 
convictions not really held: 
 

…I never tried, by means of a speech, to arouse either indignation or compas-
sion, either ill-will or hatred, in the minds of a tribunal, without being really 
stirred myself… by the very feelings to which I was seeking to prompt them… 
(181) …the power of those reflections and commonplaces, handled in a speech, 
is great enough to dispense with all make-believe and trickery… (De Oratore: 
II, 191). 

 
While this passage deals especially with pathos, the demand for personal honesty is 
arguably generalizable also to ethos and logos within the thought of Cicero. Neverthe-
less, it may be that we have here found one of those points where classical rhetoric 
cannot be applied without modification to the field of IT. The place of eunoia (closely 
related to Cicero’s idea of delectare) and the call for sincerity stated above may de-
pend on the special situation of face-to-face communication characteristic of the clas-
sical speech. Without doubt computer-based communication also bears some imprint 
of the ‘authors’ behind it, but it is not necessary and in fact hardly possible to estab-
lish that kind of personal rapport between speaker and hearer which is so central to 
classical rhetoric. Thus the omission of eunoia in Fogg’s determination of credibility 
is really comparable to the omission of the orator from the IA Iceberg (if ‘omission’ I 
may call it).10 Nevertheless, the comparison between classical and present-day deter-
minations should inspire consciousness about what has been changed, and why. Put 
                                                           
10 In this connection it ought to be mentioned that Fogg devotes a whole chapter to a discussion 

of ‘The Ethics of Persuasive Technology’ – thus an aspect which is surely an integral part of 
his work. The point here is simply that these ethical deliberations have nothing or little to do 
with eunoia or arete for that matter. 
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negatively, it is certainly still the case that a website whose authors are obviously not 
benevolent towards their users will lose its persuasive power immediately. 

5   Object Orientation, Categorization and Topica 

In my experience, the observation that persuasive concerns in the uses of IT are on the 
rise is not lost on practitioners of IA and other IT-professionals – in many cases, their 
daily work support this point, often quite strongly. So, in these communities that ob-
servation is apparently a persuasive and convincing argument for the relevance of 
Rhetoric, once its concepts are explained a little more closely. Nevertheless, the rele-
vance of Rhetoric to IA is rooted at a much deeper level, having to do not only with 
the development of IT and the goals of IA, but also the very foundation of IA. One 
fairly straightforward way of showing this is, I believe, by focussing on the systems 
development paradigm of Object-Orientation (OO). OO is at the same time a pro-
gramming paradigm. In the following, by OO I mean OO in its entirety. 

The most characteristic feature of all in OO is that it is designed for categoriza-
tion, especially for the construction of conceptual hierarchies.11 In OO, these are 
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Fig. 7 
 

  

                                                           
11 From a computer science point of view, the crucial technical effects of these constructions 

are inheritance and what is known as virtual operations (or methods), which makes for code-
sharing. It is however clear that these properties derive from categorization at the conceptual 
level of OO (as in object-oriented analysis and design) as well as its linguistic level (i.e. ob-
ject-oriented programming languages). 
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subdivided into two major kinds, generalization structures and aggreration structures 
(cf. Mathiassen et al. 2000: 69 ff.) – also known as “is-a” hierarchies and “is-part-of” 
hierarchies. Here is an example of a generalization structure in UML-notation (UML 
is a standard within OO): 

This diagram expresses immediate hierarchical relations: a Secretary is an Em-
ployee, and an Employee is a Person. This of course also very directly explains why 
this is called an “is-a” hierarchy. In other words, Secretary is a sub-concept (subclass) 
of Employee, and Employee is a sub-concept of Person.  

The introduction of a common superclass for two or more classes is called gener-
alization within OO. Person is a superclass of Student as well as of Employee, and so 
forth. If you want to know what the properties of objects from a specific class are – 
say some Student – you read off the attributes stated in the Student class and then 
move upward in the tree to the next immediate superclass, the attributes of which 
must be added – and so on until you reach the top, i.e. a class with no superclass 
above it. So in the case of Student the relevant properties are:  

{StudentCardNumber, CoursesPassed, Study, Born, Ad-
dress, Name}. 

In other words, objects from a subclass inherit the properties of all its superclasses.12 In 
OO, the differentiation of a class into two or more subclasses is called specialization. 

An example of an aggregation structure could be this one, taken from (Mathiassen 
et al. 2000: 76): 

CylinderCamshaft

Car

Body Engine Wheel

 

Fig. 8 

This diagram indicates for instance that a Camshaft is part of an Engine, and a Cyl-
inder is part of an Engine, an Engine itself is part of a Car, etc. Thus an aggregation 
structure can describe how an object from a class is composed of objects from other 
classes.  

It is a remarkable fact that OO-languages contain constructions which are direct 
formal expressions of generalization structures. Thus in JAVA, for instance, we might 
introduce some class representing persons like this: 

Public class Person {….} 

- assuming, of course, that {…} fills in the relevant content of the class. 

                                                           
12 Indeed, this is exactly the procedure which leads to the determination of Human Being in the 

famous arbor Porphyrii – see also the brief remark on Porhyrios below. 
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With this definition, the language construct named extends can be used for directly 
creating a subclass of Person, with inheritance and other resulting computational 
consequences:  

Public class Student extends Person {….} 

Apart from being a very powerful programming construction, it is a remarkable fact 
that we have here a crucial programming language construct which is there primar-
ily in order to be able to express the conceptual structure of the relevant domain. 
The importance attributed to OO-programming language constructs’ ability not just 
to achieve computational advantages (such as code-sharing) is evident in many 
places in  OO-literature. The effect of having conceptual hierarchies directly in 
the language is to aid programmers in grasping the information structure of the 
domain as well as bridging the gap between domain understanding and computa-
tional modelling:  
 

To program is to understand: The development of an information system is not 
just a matter of writing a program that does the job. It is of the utmost impor-
tance that development of this program has revealed an in-depth understanding 
of the application domain. (Madsen et al. 1993:3)13 

 
As for aggregation structures, these are expressed differently and partly on the basis 
of choice in various OO-languages, but they too are generally simple to program, at 
least when you have the corresponding UML-diagrams. Thus for instance, assuming 
that we have definitions of 

Public class Body {….}, 

Public class Engine {….}, 

Public class Wheel {….}, 

the aggregation expressed in Figure 8 could be programmed in JAVA as follows: 

Public class Car 

{ 

 Private Body myBody; 

 Private Engine myEngine; 

 Private Wheel rightFront, rightRear, leftFront, 
leftRear; 

} 

These concepts and the uses of these constructions derive directly from Aristotle’s 
work on Categories, further developed by the Greek philosopher Porphyrios  
                                                           
13 Madsen et al. 1993 is in my opinion a culmination in the emphasis on the conceptual benefits 

of OO which is characteristic of the Scandinavian approach to OO. This emphasis is explicit 
and explained at length in the work quoted, which is also a textbook on the BETA program-
ming language.  
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(ca. 232-304 A.D.) and, of course, refined more over the centuries.14 In his Rhetoric 
Aristotle placed these concepts in their constructive and communicative context. 
Classical rhetoric contains a whole subfield called the Topics (Topica). Roughly 
and very briefly, these may be described as sets of strategies and general questions 
which support the investigation of the domain – especially the phase of inventio, but 
also dispositio in the manner described in the first section. Among the Topics the 
most important of all is known as Definition. In Rhetoric, Definition is normally 
subdivided into  

• Genus/species, which in effect means the establishment of conceptual hierar-
chies relevant to the domain,  

• Divisio, which means the investigation into and the working out of relevant 
“part-of” hierarchies. 

As the ideal form of definition Aristotle favoured genus/species, but he was aware 
that often the precise hierarchical specification is exceedingly difficult to establish, in 
which case we may resort to defining a concept by enumerating components of which 
it consists, or which it has as parts. (On the other hand, it can also be argued that defi-
nition in terms of composition is not merely something used for want of a better defi-
nition, but a conceptualization in its own right.) Be that as it may, genus/species and 
divisio are crucial concepts and methods for the overall rhetorical process, especially 
inventio. It must here be noted that categorization in IA, and in general, is more than 
what is contained in the topic of Definition. More flexible and nuanced approaches, 
such as grids or faceted categorization are clearly needed. But it is fair to say that 
historically and systematically (and arguably even cognitively) the forms contained in 
Definition are most fundamental. Moreover, in software matters programming re-
mains the basis of everything, even if IA-practitioners usually work with Content 
Management Systems and similar tools, which make work considerably easier than 
programming proper. Now OO is the only programming paradigm, at least with mas-
sive real-world usage, which is systematically built for categorization. As is hopefully 
evident by now, genus/species directly corresponds to the OO notions of generaliza-
tion and specialization, while divisio corresponds to aggregation. But clearly, concep-
tual hierarchies and whatever else is found in inventio and dispositio is in the end 
reflected in the presentation (cf. Figure 2).  

Now the full importance of this goes far beyond the mere demonstration of the phi-
losophical and also rhetorical roots of OO and categorization. For the very point of 
epistemic rhetoric is that the early choice of conceptualization (including categoriza-
tions) is inevitably reflected in the final presentation; and conversely, the goals inher-
ent in quaestio (i.e. the presentation to be made and its purposes) inevitably direct the 
whole conceptualization, including the categorization which takes place even at the 
earliest stages of the process.15 Some of the quotes from Garrett as well as Morville 
and Rosenfeld have already suggested this kind of connection – the importance of 

                                                           
14 A remark which also applies to OO itself, since OO is in a computational refinement of the 

classical concepts – that is, an operationalization. 
15 For OO, the consequences of some very similar observations are taken in (Soegaard 2005). In 

particular, the more classical OO-notion of the domain as a pre-existing “referent system” to 
be modelled is replaced by a notion of “programming for the future”, i.e. not a pre-existent 
but a future referent system. 
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categorization etc. for the company’s image etc. – and indeed, these IA-theorists have 
also recognized that categorization is important for the meaning which is created for 
users: 
 

The way we organize, label, and relate information influences the way people 
comprehend that information (Morville and Rosenfeld 2002: 50) 

 
At what appears to me to be an even more fundamental level, Garrett (2005) observed 
how the combination of information elements (what Rhetoric would call doxa) and 
the manner in which they are selected and juxtaposed is at the root of the creation of 
meaning. Having first noted how individual data in isolation fail to create meaning as 
well as the fact that “Humans are pattern makers”, Garrett’s argument culminates in 
this determination of IA: 
 

Information Architecture is the juxtaposition of information in order to convey 
meaning (Garrett 2005: dias 29). 

 
Hoping that this will not be felt as an imposition, it seems obvious to me that this 
determination could have been straight out of classical rhetoric. 

6   Conclusion: Computer Rhetoric 

In this paper, a special focus has been placed on the field and discipline of Informa-
tion Architecture. Part of the reason for this, I gladly admit, is that this author has a 
special interest in IA beforehand. But more importantly, the very term and idea of 
Information Architecture has much in common with Conceptual Structures (CS). 
Depending on one’s epistemology, one may say that an information architecture is, or 
represents, or induces a conceptual structure. But while there are thus different views 
on how the relation is to be conceived of, it seems wholly unreasonable to deny that it 
is there. The idea of conceptual structure is part of the idea of IA, whether implicitly 
or explicitly. 

Similarly, Rhetoric offers an idea of CS. While this is somewhat different from estab-
lished studies of CS, the issues and problems dealt with in Rhetoric quite obviously 
have to do with the conceptualization of subject matters or problem domains. But while 
this difference may have something to do with epistemological assumptions, it also has 
to do with different concerns. Roughly, classical work on CS has been oriented towards 
logical issues, whereas Rhetoric has concerned itself more with style, and how to struc-
ture presentations for specific communicative purposes. These two concerns as such are 
in no way contradicting each other – in fact they need each other.   

But it is true that epistemic rhetoric departs from classical foundationalist notions 
of CS – whether these are mentalist as Chomsky’s deep structures or referential like 
Montague’s universal grammar. It should be carefully noted however, that epistemic 
rhetoric is different from postmodern thought. The first quote of this paper (Quintilian 
on the material of oratory) says how: in Rhetoric, content (the material of rhetoric) 
does not disappear as it does in, say, Rorty’s postmodern conception. That is, in the 
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latter there seems to be just different vocabularies which can be played off against 
each other, but cannot be measured against any kind of “external” standards or crite-
ria. And here we find postmodernism in the flattest contradiction of Rhetoric: the 
emphasis upon the need for the rhetorician to be well instructed in the subject matter 
(= content) is unequivocal. Probably even worse to the postmodenist, Rhetoric admits 
of no doubt that certain styles and deliveries really are better than others. Thus is it 
almost objectivistic on a point which is often left over to mere subjectivity even by 
thinkers who are otherwise hard-nosed realists. So, as I see it Rhetoric by no means 
rejects a notion of content or for that matter truth. But it is relativistic in the sense that 
it abandons the ideal of definitive decidability underlying Chomsky’s deep structures, 
Montague’s universal algebra and lots of other kindred approaches – which means a 
great part of classical Western objectivism. 

These remarks are meant mainly to stimulate future discussion on the possible 
place of Rhetoric in work on Conceptual Structures. But however interesting these 
epistemological questions are, we need not be faced with stark choices when it comes 
to more practical matters. The usefulness of rhetorical thought is strongly indicated by 
its relation to IA as well as PD (even if this study has not dealt much with practise). In 
turn, much of the sometimes confusing field of IA (together with PD) can be system-
atically determined within rhetorical theory.  

But, to be true, there also is a still more encompassing vision at stake here, that of 
Computer Rhetoric. Thinking of the domain in terms of doxa to be selected and pat-
terns to be formed rather than a set of objective facts to be pictured really does make 
for a “rhetorical turn” not just in IA but in systems development in general. The same 
goes for thinking of the modelling function “as programming for the future” (cf. foot-
note 15) rather than picturing a referent system. In short, epistemic rhetoric leads to a 
novel conception of these matters, a conception for which I suggest the term Com-
puter Rhetoric. 

While the practical implications of this idea need to be worked out in more de-
tail, I think the general outlook is clear enough and may be suggested by a simple 
comparison. Anybody who has been taught to program in a computer science de-
partment has also been taught some basics of the relevant mathematics – automata 
theory, formal logic etc. But in fact, when actually programming one very rarely 
uses any of this knowledge directly. So why was it taught? The simple reason is that 
this mathematics is crucial for understanding what programming is (in its technical 
sense), and that understanding this stuff makes better programmers. The role of 
Rhetoric wrt. IA and PD, and Systems development in general is exactly the same. 
It is the theory of how to make all the communicative aspects of any computer-
system work in relation to human users. When actually designing a system one may 
think only to a limited extent about aptum, ethos, persusasio etc., but the basic 
knowledge of these constitute the full understanding of what one is doing, and mas-
tery of it makes better designers. 

Note: Website for the M.Sc. study programme in Information Architecture at Aalborg 
University: www.infoark.aau.dk 
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Abstract. Revision is a method to deal with non-monotonic processes.
It has been used in theory of truth as an answer to semantic paradoxes
such as the liar, but the idea is universal and resurfaces in many areas
of logic and applications of logic.
In this survey, we describe the general idea in the framework of pointer se-
mantics and point out that beyond the formal semantics given by Gupta
and Belnap, the process of revision itself and its behaviour may be the
central features that allow us to model our intuitions about truth, and is
applicable to a lot of other areas like belief, rationality, and many more.

1 Paradoxes

Paradoxes have been around since the dawn of formal and informal logic, most
notably the liar’s paradox:

This sentence is false.

Obviously, it is impossible to assign one of the truth values true or false to the
liar’s sentence without a contradiction. One of the most pertinacious urban leg-
ends about the liar’s paradox and related insolubilia is that the problem is just
self-reference. But it cannot be so simple; a lot of self-referential sentences are
completely unproblematic (“This sentence has five words”), and others that for-
mally look very similar to the liar, have a very different behaviour. For example,
look at the truthteller

This sentence is true.

As opposed to the liar, the truthteller can consistently take both the truth values
true and false, but it is still intuitively problematic: there is no way we can find
out whether the sentence is correctly or incorrectly asserting its own truth. The
same happens with the so-called nested liars:

The next sentence is false,
the previous sentence is false.

Here, the assumption that the first sentence is false and the second is true is
perfectly consistent, as is the assumption that the first sentence is true and the
� The author would like to thank Fabio Paglieri (Siena & Rome) for discussions about
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second false. If you mix the liar with a truthteller and let them refer to each
other, you get the nested mix,

the next sentence is false,
the previous sentence is true,

which again does not allow a consistent truth value assignment.
Even though all of them are problematic, their status is subtly different and

we get a rather clear picture of how and why they are different. Even more
striking is the following hemi-tautology:

At least one of the next and this sentence is false,
both the previous and this sentence are false.

Here we get a unique consistent truth value assignment; the first sentence must
be true and the second one false, and our intuition allows us to identify it
accurately1.

In this survey, we shall discuss structural approaches based on the concept
of revision due to Herzberger [He82a,He82b] and Gupta and Belnap [GuBe93]
called revision theory. We describe revision theory both as a partial truth
predicate based on revision (this is the way Gupta and Belnap phrase it in
their book) and as a conceptual method. We argue that the underlying ideas of
revision theory are widely applicable; the formal semantics has been reinvented
independently in many areas of logic (§ 6.1), and the conceptual framework of
recurrence and stability describes a wide range of phenomena (§ 6.2).

2 Pointer Semantics

In § 3, we shall describe the semantics of Herzberger, Gupta and Belnap in the sim-
ple logical language of pointer semantics invented by Gaifman [Ga088,Ga092].
The presentation of the system in this section is taken from [Bo003, § 5].

We shall define a propositional language with pointers L with countably many
propositional variables pn and the usual connectives and constants of infinitary
propositional logic (

∧
,
∨

, ¬, �, ⊥). Our language will have expressions and
clauses; clauses will be formed by numbers, expressions and a pointer symbol
denoted by the colon : .

We recursively define the expressions of L:

– Every pn is an expression.
– ⊥ and � are expressions.
– If E is an expression, then ¬E is an expression.
– If the Ei are expressions (for i ∈ N) and X ⊆ N, then

∧
i∈X Ei and

∨
i∈X Ei

are expressions.
– Nothing else is an expression.

1 For a critical discussion of reasoning of this type, cf. [Kr003, p. 331-332].
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If E is an expression and n is a natural number, then n : E is a clause. We
intuitively interpret n : E as “pn states E”. We can easily express all of the ex-
amples from § 1 as (sets of) clauses in this language. For instance, the liar is just
the clause 0 : ¬p0 (“the 0th proposition states the negation of the 0th proposi-
tion”). The truthteller is 0 : p0, the nested liars are {0: ¬p1, 1: ¬p0}, the nested
mix is {0: ¬p1, 1: p0}, and the hemi-tautology is {0: ¬p0 ∨ ¬p1, 1: ¬p0 ∧ ¬p1}.

We now assign a semantics to our language L. We say that an interpreta-
tion is a function I : N → {0, 1} assigning truth values to propositional letters.
Obviously, an interpretation extends naturally to all expressions in L. Now, if
n : E is a clause and I is an interpretation, we say that I respects n : E if
I(n) = I(E). We say that I respects a set of clauses if it respects all of its ele-
ments. Finally, we call a set of clauses paradoxical if there is no interpretation
that respects it.

Proposition 1. The liar 0: ¬p0, and the nested mix {0: ¬p1, 1: p0} are para-
doxical, the truthteller 0: p0, the nested liars {0: ¬p1, 1: ¬p0} and the hemi-
tautology {0: ¬p0 ∨ ¬p1, 1: ¬p0 ∧ ¬p1} are non-paradoxical.

Proof. There are four relevant interpretations for the mentioned sets of clauses:

I00 0 	→ 0; 1 	→ 0
I01 0 	→ 0; 1 	→ 1
I10 0 	→ 1; 1 	→ 0
I11 0 	→ 1; 1 	→ 1

It is easy to check that none of these respects the liar and the nested mix. All
four interpretations respect the truthteller, and the interpretations I01 and I10
respect the nested liars. In the case of the hemi-tautology, the only respecting
interpretation is I10. q.e.d.

So, if the truthteller and the nested liars are non-paradoxical, does that
mean that they are not problematic? Well, both I01 and I10 are interpretations
of the nested liars, but the interpretations disagree about the truth values of
both p0 and p1 and therefore do not allow any determination of truth. The
situation is quite different for the hemi-tautology where there is exactly one
respecting interpretation. We call a set of clauses Σ determined if there is
a unique interpretation respecting Σ. With this notation, the truthteller and
the nested liars are non-paradoxical but also non-determined, and the hemi-
tautology is determined.

In [Bo002, §§ 5&6], Bolander investigates self-referentiality and paradoxicality
in order to highlight that these two notions are related but there can be self-
reference without paradox and paradox without self-reference. The framework of
pointer semantics described so far is perfectly fit to making these claims precise.

Let Σ be a set of clauses. Then we can define the dependency graph of Σ
by letting {n ; pn occurs in some clause in Σ} be the set of vertices and defining
edges by

nEm if and only if pm occurs in X for some n : X ∈ Σ.
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With this definition, we get the following dependency graphs for our five
examples as depicted in Figure 1.

0 �� 0
��
1�� 0

��
�� 1�� ��

Fig. 1. Dependency graphs of our five examples from § 1: the first graph is the depen-
dency graph for the liar and the truthteller, the second is the one for the two nested
examples, and the third is the one for the hemi-tautology

We now call a set of clauses Σ self-referential if there is a loop in the
dependency graph of Σ. With this definition, it is obvious that self-reference
does not imply paradoxicality; the clause 0 : p0 ∨ ¬p0 shares the simple loop
as a dependency graph with the liar and the truthteller, but the interpretation
I(0) = 1 respects it. Yablo [Ya93] gave an example for the converse of this simple
fact:

Proposition 2 (Yablo). Let En :=
∧

i>n ¬pi and Υ := {n : En ; n ∈ N}. Then
Υ is not self-referential, but paradoxical.

Proof. The dependency graph of Υ is 〈N, <〉, so it does not contain any loops.
Let I be an interpretation respecting Υ . If for any n ∈ N, we have I(n) = 1,

then 1 = I(n) = I(
∧

i>n ¬pi), so we must have that I(i) = 0 for all i > n. That
means that 0 = I(n+1) = I(

∧
i>n+1 ¬pi), whence there must be some i∗ > n+1

such that I(i∗) = 1. But this is a contradiction.
So, I(n) = 0 for all n. But then I(E0) = I(

∧
n>0 ¬pn) = 1 �= 0 = I(0).

Contradiction. q.e.d.

3 Revision

So far, our analysis did not involve revision at all – everything was solely based on
the static picture given by the set of clauses. Revision theory now adds a rather
natural idea of revision along the pointers established by the clauses. From now
on, we shall assume that all sets of clauses Σ satisfy a simple consistency
condition: If n : E ∈ Σ and n : F ∈ Σ, then E = F . If Σ is a set of clauses,
then we can define the revision operator on interpretations I by

δΣ(I)(n) := I(E)

where E is the unique expression such that n : E ∈ Σ. This can now be used
to recursively define a revision sequence of interpretations from an initial
interpretation I (called “hypothesis” in revision theory) as

IΣ,0 := I

IΣ,n+1 := δΣ(IΣ,n).
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We call an interpretation J Σ-recurring if there is some I such that there are
infinitely many n with J = IΣ,n and we call it Σ-stable if there is some I and
some n such that for all k > n, we have J = IΣ,k.

Proposition 3. Let Σ be a set of clauses and I an interpretation. Then I re-
spects Σ if and only if I is Σ-stable.

Proof. Obviously, “I respects Σ” is equivalent to δΣ(I) = I. q.e.d.

Let us check our examples from § 1. For the liar and the truthteller, relevant
interpretations are just one bit (I(0) = 0 and I(0) = 1). For the liar, both
interpretations are recurring, but none of them is stable. For the truthteller,
both are recurring and stable. For the two nested examples, we have four relevant
interpretations whose revision sequences are as follows:

nested mix: 0: ¬p1 0 1 1 0 0 · · · 0 0 1 1 0 · · ·
1: p0 0 0 1 1 0 · · · 1 0 0 1 1 · · ·
0: ¬p1 1 1 0 0 1 · · · 1 0 0 1 1 · · ·
1: p0 0 1 1 0 0 · · · 1 1 0 0 1 · · ·

nested liars: 0: ¬p1 0 1 0 1 0 · · · 0 0 0 0 0 · · ·
1: ¬p0 0 1 0 1 0 · · · 1 1 1 1 1 · · ·
0: ¬p1 1 1 1 1 1 · · · 1 0 1 0 1 · · ·
1: ¬p0 0 0 0 0 0 · · · 1 0 1 0 1 · · ·

For the nested mix, all four interpretations are recurring, but none of them
is stable; for the nested liars, all of them are recurring, but only 01 and 10 are
stable.

Analysing the revision sequences for the hemi-tautology gives us a unique
stable interpretation 10 and two more recurring interpretations 00 and 11 as
described in Figure 2.

hemi-tautology: 0: ¬p0 ∨ ¬p1 0 1 0 1 · · · 0 1 1 1 · · ·
1: ¬p0 ∧ ¬p1 0 1 0 1 · · · 1 0 0 0 · · ·
0: ¬p0 ∨ ¬p1 1 1 1 1 · · · 1 0 1 0 · · ·
1: ¬p0 ∧ ¬p1 0 0 0 0 · · · 1 0 1 0 · · ·

Fig. 2. The revision sequences for the hemi-tautology

All of this conforms with the analysis of § 2, but does not add any new
insights. However, the revision approach can add new insights in the case that
there is no unique stable solution. For this, let us consider the following example
that we shall call nested liars with two observers:

The second sentence is false,
the first sentence is false,

exactly one of the first two sentences is true,
exactly one of the first three sentences is true.
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Intuition tells us that exactly one of the first two sentences should be true,
and therefore the third sentence should be true and the fourth sentence should
be false. (Again, we point the reader to Kremer’s debate [Kr003, p. 331-332]
concerning the dangers of applying ordinary reasoning to sets of sentences with
self-reference.) The natural language sentences can be translated into a set of
clauses as follows:

0 : ¬p1

1: ¬p0

2: (p0 ∨ p1) ∧ (¬p0 ∨ ¬p1)

3 :
∨
i∈3

pi ∧ ¬
∨
i�=j

i,j∈3

(pi ∧ pj)

They give rise to the revision sequences depicted in Figure 3, establishing
0110 and 1010 as the two stable interpretations, and 1100 and 0000 as recurring,
yet unstable.

0 0 1 0 1 · · · 0 1 0 1 · · · 0 1 0 1 · · · 0 1 0 1 · · ·
1 0 1 0 1 · · · 0 1 0 1 · · · 0 1 0 1 · · · 0 1 0 1 · · ·
2 0 0 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · · 1 0 0 0 · · ·
3 0 0 0 0 · · · 1 0 0 0 · · · 0 1 0 0 · · · 1 1 0 0 · · ·
0 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · ·
1 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · ·
2 0 1 1 1 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · ·
3 0 1 0 0 · · · 1 1 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · ·
0 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · ·
1 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · ·
2 0 1 1 1 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · ·
3 0 1 0 0 · · · 1 1 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · ·
0 1 0 1 0 · · · 1 0 1 0 · · · 1 0 1 0 · · · 1 0 1 0 · · ·
1 1 0 1 0 · · · 1 0 1 0 · · · 1 0 1 0 · · · 1 0 1 0 · · ·
2 0 0 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · · 1 0 0 0 · · ·
3 0 0 0 0 · · · 1 0 0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · ·

Fig. 3. The revision patters of nested liars with two observers

While the four recurring interpretations disagree about the truth values of
p0, p1, and p2, all of them agree that p3 should receive value 0. Therefore, even
in the absence of a unique solution, we can get information out of the revision
procedure and define a partial truth predicate.

If Σ is a set of clauses and n : X ∈ Σ, then we say that pn is stably true
(recurringly true) if for every stable (recurring) interpretation I, we have
I(n) = 1. Similarly, we define notions of being stably false and recurringly
false. The difference between the stable partial truth predicate and the recur-
ring partial truth predicate is roughly the difference between the Gupta-Belnap
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systems S0 and Sn
2. Gupta and Belnap argue [GuBe93, Example 5A.17] that S0

is not good enough to capture intuitions. The systems S∗ and S# proposed by
Gupta and Belnap [GuBe93, p. 182 & 191] are refinements of these systems. The
differences hardly matter for simple examples of the type that we are covering
in this paper.

Proposition 4. In the nested liars with two observers, the fourth sentence is
recurringly false.

Proposition 4 sounds like a success for the revision theoretic analysis of the con-
cept of truth, as it gives a prediction or analysis for a truth value that coincides
with the intuition. However, it is important to note that our reasoning used to
intuitively determine the truth value of the fourth sentence used the fact that
the third sentence seemed to be intuitively true. But the revision analysis is less
informative about the third sentence: it is neither recurringly true nor recur-
ringly false, but stably true. This phenomenon (with a different example) was
the topic of the discussion between Cook and Kremer in the journal Analysis
[Co02,Kr003,Co03] and will be discussed in detail in § 4.

4 Fully Revised Sequences and the Cook-Kremer Debate

In a dispute in the journal Analysis [Co02,Kr003,Co03], Roy Cook and Michael
Kremer debated whether the revision-theoretic analysis of self-referential sen-
tences yields intuitive or counterintuitive readings. Both Cook and Kremer fo-
cussed on what we called “recurring truth” in the last section.

The hemi-tautology from § 1 is a special case of the following set of clauses.
Denote by

(
n
k

)
the set of k-element subsets of n = {0, ..., n − 1}3. For every

positive natural number n, the set Σn has the n clauses

k :
∨

X∈(k+1
n )

∧
i∈X

¬pi

(for k < n), i.e., “there are at least k+1 many false sentences”. If n is odd, Σn is
paradoxical, if n is even, then it has a unique respecting interpretation, viz. the
one in which sentences 0, ..., n

2 are true and the rest false. The original example
in [Co02] is Σ4, the hemi-tautology is the example used in [Kr003] and is Σ2 in
the above notation. Analysing the revision sequences in Figure 2, we get:

Proposition 5. In the hemi-tautology, neither of the sentences receives a re-
curring truth value.

Proof. The recurring interpretations are 10, 00 and 11, and so they agree on
neither of the truth values. q.e.d.
2 Cf. [GuBe93, p. 123 & 147].
3 The usual notation

(
n
k

)
from finite combinatorics denotes the number of elements of

the set that we call
(

n
k

)
. Of course, in most cases the set is not equal to its number

of elements, but there is no risk of confusion in this paper.
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Cook [Co02] contrasts the partial truth predicate of recurring truth as calcu-
lated Proposition 4 with our intuitive expectations of a favoured interpretation
10 for the hemi-tautology, and considers this a failure of the revision theoretic
analysis.

It is surprising that neither Cook nor Kremer mention that this phenomenon
has been observed by Gupta and Belnap. They discuss this in a slightly less
transparent example [GuBe93, Example 6C.10]:

The third sentence is true,
It is true that the third sentence is false,
One of the first two sentences is false,

formalized as
{0: p3, 1: ¬p3, 2: p1, 3: ¬p0 ∨ ¬p2},

where intuition suggests that 1001 should be the only solution. Analysing the
revision sequences, we find that 1001 is the only stable interpretation, but
0101, 1011, and 1000 are recurring, and thus none of the four truth values
is determined in the Gupta-Belnap revision semantics defined via recurring
interpretations.

Gupta and Belnap deal with this situation with their notion of “fully varied”
revision sequences. We extend the sequences from sequences indexed with natural
numbers to transfinite sequences indexed with ordinal numbers4. Given a limit
ordinal λ, we say that a revision sequence s = 〈Iξ ; ξ < λ〉 coheres with an
interpretation I if the following two conditions are met:

1. If for some ξ < λ and all η > ξ, we have sη(n) = 1, then I(n) = 1.
2. If for some ξ < λ and all η > ξ, we have sη(n) = 0, then I(n) = 0.

So, going back to the case of λ = ω, if the value of n has stabilized after a finite
number of revisions, then an interpretation must agree with this value in order
to cohere. For those n that flip back and forth infinitely many times, the value
of I(n) can be both 0 or 1. Looking at the hemi-tautology as an example, we get
four revision sequences as in Figure 2:

0 1 0 1 · · ·
0 1 0 1 · · ·
0 1 1 1 · · ·
1 0 0 0 · · ·
1 1 1 1 · · ·
0 0 0 0 · · ·
1 0 1 0 · · ·
1 0 1 0 · · ·

4 The “forever” in the title of this paper is an allusion to this extension of the process
of revision into the transfinite.
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The ones starting with 01 and 10 stabilize on 10, and so only 10 is a coherent
interpretation for them. The other two flip back and forth infinitely many times
in both slots, and so every interpretation is coherent with those.

Using the notion of coherence, we can now define the notion of a transfinite
revision sequence. If Σ is a set of clauses and δΣ is the revision operator derived
from Σ in the sense of § 3, then a sequence s = 〈Iξ ; ξ < λ〉 of interpretations is
called a transfinite revision sequence if Iξ+1 = δΣ(Iξ) and I� coheres with
s�	 for limit ordinals 	. Note that for a fixed interpretation I0 there can be
different transfinite revision sequences starting with I0.

Gupta and Belnap call a transfinite revision sequence fully varied if ev-
ery interpretation coherent with it occurs in it [GuBe93, p. 168]. For the hemi-
tautology, the sequences starting with 01 and 10 are fully varied; the only co-
herent interpretation is 10 and it occurs in them. The other two sequences are
not fully varied, as 01 and 10 cohere with them, but do not occur. However, we
can transfinitely extend them to the four revision sequences

0 1 0 1 · · · 0 1 1 1 · · ·
0 1 0 1 · · · 1 0 0 0 · · ·
0 1 0 1 · · · 1 1 1 1 · · ·
0 1 0 1 · · · 0 0 0 0 · · ·
1 0 1 0 · · · 0 1 1 1 · · ·
1 0 1 0 · · · 1 0 0 0 · · ·
1 0 1 0 · · · 1 1 1 1 · · ·
1 0 1 0 · · · 0 0 0 0 · · · ,

characterized by their values at 0 and the ordinal ω as 00/01, 00/10, 11/01, and
11/10. All of these sequences (of length ω · 2) are fully varied, and together with
the sequences starting with 01 and 10, they are essentially the only fully varied
sequences.

We can now define a new notion of recurrence. Given a transfinite revision
sequence s of length λ for a set of clauses Σ, we say that I is recurring in s if for
all ξ < λ there is some η > ξ such that sη = I. Based on this notion, we say that
pn is transfinitely true (transfinitely false) if for all fully varied transfinite
revision sequences s and all interpretations I that are recurring in s, we have
I(n) = 1 (I(n) = 0).

Proposition 6. The first sentence of the hemi-tautology is transfinitely true,
the second is transfinitely false.

This alternative analysis arrives at the intuitive expectations by enforcing addi-
tional constraints on the notion of a revision sequence. Cook implicitly acknowl-
edges this possible defense of the revision analysis when he says

“The Revision Theorist might ... formulat[e] more complex revision rules
than the straightforward one considered here, ones that judged the sen-
tences [of the hemi-tautology] as non-pathological. [Co03, p. 257]”
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The fact that there are so many different systems of revision theory, all with
slightly different requirements on the sequences or variations of the semantic
predicate, each of them with some other set of advantages and disadvantages, is
raising a concern: we are trying to model a phenomenon as central as truth; if
revision theory is a fundamental tool to understanding it, shouldn’t it provide
answers that do not depend on such minor details?

One possible way out of trouble would be to get rid of the idea that a theory
of truth needs to define a partial truth predicate. Revision theory gives a rich
analysis of what happens, yielding patterns of behaviour of truth values. Instead
of superposing these patterns into a single (partial) interpretation as is done by
the notions of “stable truth”, “recurring truth” and “transfinite truth”, we could
understand the revision analysis as the description of what is going on:

The liar is problematic as there are no stable interpretations, the truthteller
is because there are two conflicting ones. This difference explains how they are
different types of problems for the theorist of truth – collapsing it into a uniform
partial truth function (which would give the value “undefined” to both the liar
and the truthteller) clouds a rather clear conceptual picture. We propose to
think of the sequences and their behaviour as the real analysis of truth without
the definition of a partial truth predicate; the fact that 10 is the only stable
interpretation for the hemi-tautology is good enough to explain our intuitions
with the set of sentences5.

It is this approach to revision sequences that we believe to be a powerful
tool for explaining intuitions with truth, much more than the different axiomatic
systems proposed by various authors in order to deal with inadequacies of earlier
definitions. We shall continue this discussion in § 6.2.

5 An Aside: “And What Is the Connection to Belief
Revision?”

In the community of applied and philosophical logic, the word “revision” is
much closer associated to the area of belief revision and belief update than to
the revision theory described in § 3. In 2002, I gave a talk on the complexity of
revision-theoretic definability at the annual meeting of the Pacific Division of the
American Philosophical Association with the title “Where does the complexity
of revision come from?”6, and received questions from philosophical logicians
asking about the complexity of belief revision in the style of [Li97,Li00].

Is the use of the phrase “revision” in both areas just an equivocation? Do the
two underlying concepts of revision (“update of belief states in light of changing
reality” and “update of truth value in a formal system”) have nothing to do with
each other?
5 Note that by Proposition 3, this is equivalent to saying that 10 is the only interpre-

tation that respects the hemi-tautology, so here the pointer semantics approach and
the revision approach are just two different ways of looking at the same phenomenon.

6 The results presented in this talk have in the meantime been published as
[KüLöMöWe05].
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In this section, we shall give a rough sketch of why revising belief states may
be incorporated into the framework described in §§ 2 and 3. Since this is a side
issue here, we cannot do justice to these questions here.

In belief revision and update, we have an ordinary propositional language
and consider sets of formulae as belief sets. Based on new information about
the true state of the world, we may get inconsistent intermediate stages of belief
sets which we then have to update in order to reach a consistent belief set again.
This is the main paradigm of an enormous amount of literature in philosophy,
logic and artificial intelligence7.

The most basic example is the following: an agent believes that p and p→ q
are true, but then learns that ¬q is true. The belief set has to be updated to
either {p,¬q,¬(p → q)} or {¬p,¬q, p → q}. Of course, which one is the correct
update will depend on the context.

We believe that revision theory as described in § 3 can provide a partial
semantics for belief update procedures in general, but will only develop this idea
for the simple examples given above here. Given a belief set Λ and some new
fact represented by a propositional variable, we can assign a set of clauses in our
language L as follows:

Let Λ∗ be the set of propositional variables occurring in a formula in Λ and
let π : Λ∗ → N be an injective function with coinfinite range. We can think of
π as associating an L-variable pn to each element of Λ∗. Clearly, π naturally
extends to all elements of Λ.

In a second step, we take an injective function π∗ : Λ→ N such that ran(π)∩
ran(π∗) = ∅. If n ∈ ran(π) ∪ ran(π∗), we define a clause n : E where

E :=
{

pn, if n ∈ ran(π),
π(ϕ), if ϕ ∈ Λ and π∗(ϕ) = n.

This defines the set Σ of L-clauses associated to Λ.
In our given example, this would be

{0: p0, 1: p1, 2: p0 → p1}.

The dependency graph of our set of clauses is

2
�� ��

0 1.

The key difference between the setting of revision theory and that of belief
update is that the new fact that triggers the update is given a special status: if
the initial belief set is {p, p→ q} and we learn ¬q as a fact, then we do not want
to disbelieve this fact in order to remedy the situation8.

7 As a token reference, we mention [Gä92], in particular the introduction.
8 This is the traditional approach to belief revision. The AGM success

postulate has been weakened in non-prioritized belief revision, as in
[Ga192,Bo1FrHa98,Ha199,Ha1FeCaFa01].
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We fix some n ∈ ran(π) and some truth value b ∈ {0, 1} for this n, as-
suming that the new fact that we learned corresponds to pn or ¬pn. An 〈n, b〉-
interpretation is a function I : N → {0, 1} that satisfies I(n) = b.

0: p0 0 0 0 · · · 0 0 0 · · ·
1: p1 0 0 0 · · · 0 0 0 · · ·
2: p0 → p1 0 1 1 · · · 1 1 1 · · ·
0: p0 1 1 1 · · · 1 1 1 · · ·
1: p1 0 0 0 · · · 0 0 0 · · ·
2: p0 → p1 0 0 0 · · · 1 0 0 · · ·

We see that 001 and 100 are the only stable interpretations. Taking our
remarks at the end of § 4 seriously, we shall not use this to define a partial truth
function (which would say that p1 is recurringly false and the others have no
assigned truth value), but instead look at the two stable interpretations and see
that

{p0,¬p1,¬(p0 → p1)} and {¬p0,¬p1, p0 → p1}
are the two possible outcomes for the belief set after belief update.

6 The Ubiquity of Revision

In the abstract, we mentioned that revision is a concept that is “universal and
resurfaces in many areas of logic and applications of logic”. It comes in two
very different flavours as discussed at the end of § 4: as formal Gupta-Belnap
semantics defining a partial truth predicate on the basis of revision sequences,
and in the wider sense as a conceptual framework for analysing our intuitions
about truth and circularity. So far, we have argued that revision plays a rôle in
the analysis of paradoxes and insolubilia, and that the approach may be applied
to belief revision. In this section, we shall lay out how the general ideas can
be extended to yield applications in other areas. We split the discussion into
applications of the Gupta-Belnap semantics and applications of the wider scope.

6.1 Independent Developments of Gupta-Belnap Semantics

The crucial mathematical element to the Gupta-Belnap truth predicate as de-
fined in § 3 (as “recurring truth”) is the following: we have a set of nonmonotonic
processes assigning a function I : N → {0, 1} to each ordinal. While monotonic
processes give rise to fixed points and thus allow us to talk about an “eventual
value”, nonmonotonicity forces us to be inventive here. The processes give rise
to a notion of recurrence, and we can define

TGB(n) :=

⎧⎨
⎩

0 if for all recurrent I, we have I(n) = 0,
1 if for all recurrent I, we have I(n) = 1,
↑ otherwise.

This is a general idea to integrate the process of revision into a single definition,
and Gupta and Belnap are not the only ones who came up with this idea. Es-
sentially the same semantics was developed independently by Stephan Kreutzer
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in [Kr102] for his partial fixed point logics on infinite structures. Also Field’s
revenge-immune solution to the paradoxes from [Fi03] is based on ideas very
similar to the Gupta-Belnap semantics9.

Widening the scope to other types of transfinite processes, cognate ideas can
be found in the limit behaviour of infinite time Turing machines as defined by
Hamkins and Kidder [Ha0Le00]10 and definitions of game labellings for non-
monotone procedures for game analyses in [Lö03].

6.2 The Wider Scope

Despite the fact that the general ideas have found applications in many places,
there are several problems with Gupta-Belnap semantics as a theory of truth. As
mentioned, there are many variants of formal systems with different properties,
thus raising the question of how to choose between them. The Cook-Kremer
debate discussed in § 4 is an indication for the problems generated by this. The
revision-theoretic definitions are also relatively complicated, leading (in the lan-
guage of arithmetic) to complete Π1

2 sets, in the case of using fully revised se-
quences even Π1

3 sets [We03a, Theorem 3.4]. This is too complicated for comfort,
as is argued in [We01, p. 351] and [LöWe01, § 6].

As we have discussed in § 4, the conceptual idea of analysing the nonmono-
tonic process by looking at the behaviour of interpretations under revision rises
above all this criticism. The problems associated with the arbitrariness and com-
plexity of the Gupta-Belnap are related to the fact that the full analysis has to
be condensed into one partial truth predicate. Allowing both 01 and 10 as stable
solutions of the nested liars is much more informative than integrating these two
solutions into undefined values.

This attitude towards allowing several possibilities as analyses should remind
the reader of game-theoretic solution concepts. In game theory, Nash equilibria
are not always unique. This connection between revision semantics and game
theory has been observed by Chapuis who gives a sketch of a general theory of
rationality in games based on revision analyses in his [Ch03]. We see Chapuis’
work as an interesting approach compatible with the spirit of the analysis of
belief update discussed in § 5, and would like to see more similar approaches to
revision in various fields of formal modelling.
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Abstract. Formal ontologies model classes and their properties and re-
lationships. This paper considers various choices for modelling of classes
and properties, and the interrelationship of these within a formal logical
framework. Unlike predicate logical usage with quantification over indi-
viduals only, in the applied metalogic classes and properties appear as
first class non-extensional objects. Using this framework miscellaneous
classification structures are examined ranging from mere partial orders
to distributive lattices. Moreover, we seek to capture notions such as in-
tensionality of classes and properties ascribed to individuals and classes
in an coherent ontological framework. In this analytic framework we fur-
ther present generative ontologies in which novel classes can be produced
systematically by means of given classes and properties.

1 Introduction

Ontology addresses the categorial structure of reality seeking answers to meta-
physical questions such as: what is there

– in our entire common actual/imaginable world?
– in a naturalistic (or any other) view of the world?
– in a particular application domain?

How can what-there-is be adequately classified? Are there a priori general classes,
i.e. categories? As stated in the introduction in [20]: “Now to provide a complete
metaphysical theory is to provide a complete catalogue of the categories under
which things fall and to obtain the sort of relations that obtain among those
categories”.

Formal ontologies in focus here serve to describe and systematize classes and
properties and their relationships in a formal (logical) language. Thus we have
to distinguish between classes and properties of entities in reality and on the
other hand modelling of classes and properties and their properties in turn, in
the formal logic.

1.1 Ontological Traditions

The philosophical ontological tradition as presented e.g. in [35, 38] has focussed on
ontologies as classifications, that is to say the identification of all encompassing
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and appropriate universals, categories or classes, and the subsequent organisa-
tion of these into sub- and superclasses. The field of computer science dealing
with data-, systems, and domain modelling has also addressed the identification
of classes of entities stressing the various relationships which can be identified
between entities as in the entity-relationship model [12]. Thus less emphasis has
traditionally been put on classification as such, though, however, classification is
considered central in object-oriented modelling.

The philosophical and the computer science approaches have begun merging
into ontological engineering methodologies, which consider classification together
with ascription of properties and relationships to entities in the identified classes
as in conceptual graphs [34].

Elaboration of major formal ontologies as taking place e.g. in contemporary
semantic web activities call for formal logical systems for the purpose of exact
specification and computerised reasoning. This in turn appeals to the logical
tradition examining properties and other intensional notions in analytical phi-
losophy, as e.g. in [3, 13, 29, 37] to mention just a few disparate contributions.

However, logic tends to focus on mathematical existence (or absence) of ob-
jects within concrete symbolic systems or their associated purely abstract mathe-
matical models, rather than the question of formation and existence of classes in
the real world. There is moreover a inclination towards concern with ontological
oddities and logical sophistry epitomized by the selfapplying properties giving
rise to the Russell antinomy. By contrast contemporary ontologists, e.g. [6, 31],
emphasises ontology building as being concerned with description of classes ex-
isting in reality.

There is yet a viewpoint to mention here, the linguistic one. The language
aspect is prevalent in the field of terminology analysis, cf. e.g. [21], since method-
ologically the domain analysis there proceeds in a bottom-up fashion from the
terms of the domain. In terminology analysis ontologies are understood as tax-
onomies serving to structure the specific terms and nomenclature of an applica-
tion domain, typically a scientific domain such as medicine.

1.2 Predicate Logic as Metalogic

In this paper we abstract, compare and seek to reconcile ontological essentials by
means of a metalogic apparatus. We encode ontological notions such as classes
and properties as terms in first order predicate calculus on a par with indi-
viduals. This enables us to endow these ontological notions with appropriate
(meta)properties of their own via introduction of suitable axioms. In this way
methodologically we can tailor a chosen ontological framework to form a consti-
tution prior to the elaboration of a specific domain ontology.

First order predicate logic (in the following just predicate logic) and its sublan-
guages and derivatives such as description logics and modal logics are commonly
adopted tacitly or explicitly as the underlying logical medium for formal ontolo-
gies describing concepts and their relationships. This paper discusses metalogic
use of predicate logic as “metaontologic” for design of ontological languages.
This means that concepts (classes, kinds, properties) are conceived as terms
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contrasting the more conventional use of predicate logic, where only individuals
are given as arguments to predicates. As such the metalogic approach bears re-
semblance to higher order logic, and indeed may be viewed as a simulation of
such.

The metalogical approach favours an intensional, i.e. non-extensional, un-
derstanding of encoded predicates. Thereby it overcomes the extensionality of
predicate calculus in traditional usage with its concomitant trivialisation of pred-
icate denotations to sets of (tuples of) individuals. As such it competes with the
possible worlds approach to intensionality as pursued in modal logics.

This paper endeavours at a clarification of the extensionality/intensionality
dichotomy in ontologies in parallel with formalization of the various ontological
notions. Therefore discussion of intensionality is conducted in a counterpoint
manner interleaved with sections dealing with ontological issues. It is our key
contention that the extension/intension distinction has not received the attention
it deserves in ontology research. Thus, these notions are hardly mentioned in the
volume [36].

Furthermore, the present paper advocates use of the metalogical medium for

– distinguishing and connecting linguistic and conceptual ontologies,
– stipulating appropriate classification structures
– introducing compound concept terms for producing novel subclasses.

The metalogic approach in this paper appeared in preliminary form in [25].

2 Logics for Ontologies

Until recently elaboration of ontologies often proceeded without resorting to
any specific formal logic. However, the strive for large scale ontologies as e.g.
in contemporary semantic web projects with ensuing problems of consistency
maintenance calls for use of formal logic in forms amenable to computation.

2.1 Taxonomies with Inclusion Relation

At the most basic level an ontology consists of an organization of classes of
entities into what is typically a hierarchy with the most comprehensive class,
possibly the allembracing universal class, at the root. Such a tree structure,
often referred to as a taxonomy, is spanned by the binary class inclusion or
subsumption relation traditionally denoted isa, where a isa b expresses that the
class a is a subclass of class b. This means that the individuals in the class a
are bound to be members of class b as well by virtue of their possessing all the
qualities possessed jointly by members of b. In philosophical parlance one would
say that particulars belonging to the universal a also belongs to the universal b.

2.2 The Case of Individuals and Substances

In ontologies individuals (particulars) tend to be of less interest than the classes
– with possible exception of distinguished particulars. These latter may, however,
be accorded special treatment as singleton classes.
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Sometimes the classes do not comprise individually distinguishable entities,
e.g. in the case of chemical substances. Suppose one would state tentatively in an
ontology that the class of vitamin comprises individuals vitaminA, vitaminB etc.
However, vitaminB is itself in turn to be divided into vitamin B1, vitaminB2
etc. Therefore, preferably, substances are modelled as classes, with individual
portions or molecules forming individual physical entities. A similar situation
exists for classes of states, such as for instance a named disorder as opposed to
the particular (occurrence) of a disease suffered by a particular patient.

2.3 Predicate Calculus as Candidate Ontologic

Returning to the logical formalization issue, predicate calculus – being the lin-
gua franca of artificial intelligence – is the most obvious candidate for logical
specification of ontologies. Trivially, the inclusion relationship stating that a is
a subclass of b might be formalized as

∀x a(x) → b(x)
introducing 1-argument predicates for classes. However, this formalization ap-
proach suffers from the shortcoming that is focusses on the individuals belonging
to the classes rather than the classes themselves. Thus it runs counter to the on-
tological focus on classes and class relations. Accordingly the above sentence is
often replaced with the atomic factual sentence

isa(a, b)
where isa is a two-place predicate, and classes a and b logically reappear as
individual constants. Trivial as it seems, this opens for quantification over classes
and not just quantification over individuals as in standard predicate logic. Thus
this is the initial step in a methodology where classes and properties become the
objects dealt with within the logic in contrast to conventional use of predicate
logic.

Most of the specifications in the following fall within the sublanguage of def-
inite clauses as used in logic programming, with atomic formulae as a special
case of these. All of the variables are here then distinguished by upper case let-
ters as common in logic programming, they being then universally quantified, by
default. We may therefore often drop explicit quantification. In those few cases
where we need to go beyond definite clauses we resort to standard notation for
predicate logic with explicit quantification. In order to account for negation,
then, a few places we assume implicitly appropriate formation of the completion
of the clauses for turning implication into double implication.

2.4 Description Logic as Candidate Ontologic

Description logic [2] has become a popular tool for elaboration of formal on-
tologies. Description logic in its basic form may be conceived as a fragment
of predicate calculus supporting unary and binary predicates, only, and de-
signed to meet computational desiderata such as decidability and preferably
also tractability.

Moreover the language is shaped in the form of an extended relation alge-
braic logic, cf. the analysis in [7]. Accordingly it offers an inventory of predicate
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formation operators such as conjunction and disjunction on classes conforming
with meta-language definitions

λx.(a(x) ∧ b(x)) and λx.(a(x) ∨ b(x))
and the so-called Peirce product

λx.∃y (r(x, y) ∧ b(y))
The latter one can be rephrased and understood as a first order predicate

formation device avoiding λ-notation through the auxiliary
∀x peircerb(x) ↔ ∃y r(x, y) ∧ b(y)

which derives a unary predicate from predicates r and b.
Sentences in the description logic are equations or inequations, for instance

a ≤ b
meaning ∀x a(x) → b(x), that is, if stated alternatively as an algebraic equation,

a = a ∧ b. In description logic the standard notation is � and ≡.
The inequations are handy in particular for the specification of ontologies, cf.

the above isa(a,b), which becomes a ≤ b. Moreover, the Peirce product serves
to provide attribution with properties, which is crucial in ascribing properties
to classes in ontologies as to be discussed.

The form of the language places it in the algebraic logical tradition dating
back to Boole via Tarski (relation-algebraic logic) and Peirce. However, in the
perspective of modern algebraic logic it may rather be seen as an extension of lat-
tice algebras or Boolean algebras with relation algebraic operations as explicated
in [7].

In spite of the undeniable appeal of description logic, especially from a com-
putational point of view, the logic falls short of handling classes as quantifiable
intensional objects, see however [22]. In addition and more fundamentally it takes
for granted that the class ordering structure should be Boolean and therefore
be a distributive lattice. This is in contrast to the more primitive pre-lattice
orderings which can be provided in a metalogic approach and which may better
reflect ontological practice.

2.5 Class Intensionality

Classes as used in ontologies are inherently intensional notions. That is to say,
classes and properties in general cannot be reduced to the set of instances falling
under them, let alone for the fact that one might well introduce two distinct
classes in an ontology both having no known individuals and thus being co-
extensional. On the other hand predicate logic is extensional in the sense that
coextensional predicates are mutually substitutable salve veritate. This means
that for all p and q if

∀x(p(x) ↔ q(x))

then p and q can be substituted for each other without affecting logical
consequences.

Description logic being in its basic form a algebraized fragment of predicate
logic is a fortiori also extensional, and therefore tends to reducing concepts to
their extension sets, cf. e.g. [26, 27]. However, [10] proposes a hybrid description
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language intended to overcome the extensionality of description logic. A desired
non-extensionality is traditionally achieved in philosophical logic by resorting to
higher order logic (type theory without extension axioms) or to modal logic with
its accompanying notion of possible worlds. The latter notions may further facil-
itate specification of rigid properties and other essentialist notions as examined
for the purpose of ontology building in [16]. We are going to advocate in favour
of metalogic as an alternative for achieving intensionality in ontologies.

3 Fundamentals of the Class Inclusion Relation

The isa class inclusion relation, also known as subsumption, is commonly
held to possess the properties of transitivity and reflexivity. Thus, for instance

isa(vitaminB1, vitamin)
by virtue of isa(vitaminB1, vitaminB) and isa(vitaminB, vitamin).

Moreover, there is reflexivity as in isa(vitamin, vitamin).
In addition to being a preorder, class inclusion may also be considered to

possess the property of antisymmetry, meaning that if isa(a, b) and isa(b, a),
then the classes a and b are identified. With these three properties the inclusion
relation thus becomes a partial order.

Philosophically inclined ontologists seem to prefer (if not insist) that the in-
clusion relation forms a hierarchy proper, that is a tree structure, cf. e.g. [32].
This requirement is fulfilled by imposing the condition: if isa(a, b′) as well as
isa(a, b′′) then either isa(b′, b′′) or isa(b′′, b′). In other words cross categories are
banned. However, this restriction is not endorsed by the object-oriented mod-
elling tradition, where cross-categories are considered routinely, giving rise to
the notion of multiple inheritance of class membership.

The inclusion relationship forming the backbone taxonomic structure of on-
tologies may be supplemented with another fundamental ontological relation-
ship, the parthood relation for establishing partonomies. See e.g. [33] for a
formalization proposal.

4 Metalogical Constitution of an Ontology

Adopting metalogic for classes and properties (jointly here called concepts)
means that these ontological categories become represented as term encoded
1-ary predicates. Thereby they prima facie appear as arguments to predicates
on a par with individual terms. Thus concepts can be quantified over. In this
way the extensionality of predicate logic is neutralised for concepts.

The key principle in metalogic is to replace the atomic formula p(t) with
ε(p′, t) where the predicate ε expresses predication and p′ is a novel constant
term representing p. This principle is examined in [4] for reconstructing (to the
extent possible) higher order type theory within predicate logic. We prefer here
the metalogic reification-of-predicates-as-terms point of view in favour of the
type-theoretical higher-order handling of predicates as arguments to predicates
since the axiom of extensionality is not to be introduced and endorsed.
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4.1 Ontological Constitution

The metalogic apparatus encourages a two phase modus operandi: The first phase
sets up an ontological constitution specifying properties of classes and properties
etc. We thereby commmit us to a meta-ontology for the ontological categories.
This is to be used in the second phase for elaborating an actual ontology for
the domain at hand. In the following sections we are discussing the various
constitutional choices in the first phase.

The term encoded predicates constitute an object level for the target ontology,
whereas the predicates proper form a meta level of universal ontological notions.
In admitting quantification over classes and properties we recall Quine’s dictum:
to be is to be the value of a variable. This set-up proposed in our [25] is much
in line with [5, 23]; however the emphasis is here put here on the class/property
interplay and intensionality.

In [18] we describe a more comprehensive metalogic framework where not just
classes but entire definite clauses with n-ary predicates and hence logic programs
are encoded as terms. This framework is proposed for inductive synthesis of logic
programs.

At the constitutional level of an ontology one introduces ontological notions
like class, being instance of a class, property, class inclusion and class overlap
etc. These general ontological notions are to be expressed by predicates class(),
inst(,), prop() etc.

5 Intensional Versus Extensional Class Inclusion

Let us now reconsider formalization of inclusion isa in the adopted metalogic
framework. Following sect. 2.3 there is a tentative definition

isa(p, q) =df ∀x(p(x) → q(x))
In our metalogic framework using predicate calculus proper this would become

∀p∀q isa(p, q) ↔ ∀x(inst(p, x) → inst(q, x)) for classes p and q, and where
inst(p,x) expresses that individual object x is an instance of p.

In our metalogic framework using predicate calculus proper we introduce,
however, for isa only the weaker

∀p∀q isa(p, q)→ ∀x(inst(p, x) → inst(q, x))
which might be referred to as intensional inclusion. This is because classes in-
troduced in this way are not subject to the above-mentioned set trivialization
making co-extensional classes collapse.

However, we also admit the former definition as the special so-called exten-
sional subsumption relation

extisa(p, q)↔ ∀x(inst(p, x) → inst(q, x))
Accordingly, intensional inclusion implies extensional inclusion, but not vice

versa: isa(p, q) �� � extisa(p, q). This conforms with the slogan that intensions
determine extensions but not vice versa.

Using these axioms the intensional (non-extensional) inclusion isa cannot be
verified by inspection of individuals – in accordance with the principle that
individuals in general are less relevant to ontology construction. This is in
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contrast to the latter extensional inclusion which is verifiable by empirical ob-
servations. However, how is such a non-empirical class inclusion going to be
established by the ontologist in the first place? This foundational aspect of in-
tension/extension is discussed in connection with introduction of properties in
ontologies in sect. 10.1. As next steps we consider first the name/concept dis-
tinction and then in sect. 7 various forms of class inclusion orders.

6 Linguistic and Conceptual Ontologies

At the basic methodological level we can distinguish between ontologies leaning
towards relations between words versus relations between concepts. The latter
kind of ontology is ideally language neutral, and probably one can only achieve
such an ontology within “naturalistic” scientific realms. A classical example of
this issue is met in the domain of colours where different cultures tend to parti-
tion the physical spectrum somewhat differently with respect to colour names.

The considered metalogical set up facilitates specification of the relationhip
between a taxonomic word ontology and a proper conceptual ontology. A du-
alistic reconciliation of concepts vis-à-vis their linguistic manifestations may be
provided by introducing a predicate lex, where

word(W ) ← lex (W,C)
class(C) ← lex (W,C)

Thus the first argument of lex contains words, the second argument contains
names of classes.

For instance in an ontology we may have entries
lex (vitaminE , vitaminE )
lex(tocepherol , vitaminE )

yielding two synonyms for a class. The relation lex may approach identity relation
in practice. There may well be nodes (classes) in the ontology with no lexical
counterpart.

Lexical semantic notions may now be formalized, e.g. synonymity between
words X and Y

syn(X,Y )← lex (X,Z) ∧ lex (Y, Z) ∧ nonident(X,Y )
and homonymity:

hom(X)← lex (X,U) ∧ lex (X,V ) ∧ distinct(U, V )
The lex relation thus may serve to rule out confusions in the conceptual on-

tology proper due to homonyms. The taxonomic relationships hypo/hypernomy
are now distinguishable from subsumption via the tentative definition

hyper (X,Y )← lex (X,U) ∧ lex (Y, V ) ∧ isa(U, V )
Lexical translation from word X to word(s) Y between two languages (1) and

(2) via a common ontology may be specified via intermediating concepts Z in
the ontology with

translate(X,Y )← lex1 (X,Z) ∧ lex2 (Y, Z)
The lex coupling may be extended from nouns to noun phrases as explained

in [19] along the lines of sect. 11. In the following sections we assume for the
sake of simplicity that lex is a one-one relation so that the distinction between
conceptual and linguistic ontologies vanishes.
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7 Forms of Ontological Classification

The philosophical ontological tradition dating back to Aristotle prefer cate-
gories which partition into disjoint i.e. non-overlapping classes. This leads to
tree-shaped i.e. hierarchical orderings. The proto-typical hierarchical ordering is
the Linnean biological classification into the levels of kingdom, phylum/division,
class, order, genus (family), and species. The periodical table of elements exem-
plifies by contrast a paradigmatic non-hierarchical classification with its array-
like organisation.

Let us assume that a classification is specified by means of an immediate
subclass predicate, sub, as in the following sample ontology fragment:

sub(vitaminA, vitamin)
sub(vitaminB, vitamin)
sub(vitaminB1, vitaminB)
sub(vitaminC, vitamin)
sub(vitaminE, vitamin)

Moreover, classes are introduced at the metalogic level with the ground atomic
formula class(vitaminA) etc.

The following metalogic clauses then then contributes to the definition of the
class inclusion relation in an ontological constitution

isa(X,Y )← sub(X,Z) ∧ isa(Z, Y )
isa(X,Y )← sub(X,Y )
isa(X,X)

with
class(X ) ← isa(X,Y )
class(Y ) ← isa(X,Y )

The inclusion isa is thus established as the reflexive and transitive closure of
the sub relation. These clauses may serve in a logic program (indeed even in a
datalog program) for browsing the ontology.

There may be introduced a distinguished null class without member instances:
¬∃x inst(null, x), and with

isa(null, C)
Now for instance we may introduce class(ufo) claiming sub(ufo,null). This

class is distinct from though co-extensional with, say, an introduced empty class
unicorn. Thus extisa(unicorn , ufo) and vice versa.

8 Hierarchies and Beyond

Although there are often norms for performing classification within a given sci-
entific context, in general the ontologist faces the complication that classification
can be done optionally according to different competing criteria. And in addition
the partial ordering property of the inclusion relation does not favour hierarchical
classifications per se, but admits non-hierarchial classifications as well.

As an example consider an extension of the above example with
sub(vitaminC, antioxidant)
sub(vitaminE, antioxidant)
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If antioxidant is formally considered a class on a par with vitamin by way
of a declaration class(antioxidant) this ontology is non-hierarchical, albeit still
a partial ordering. The classes vitaminC and vitaminE are cross-categorial,
then.

Alternatively and perhaps more intuitively antioxidant may be conceived as a
property in case of which the above vitamin ontology remains hierarchical. This,
however, calls for an additional ontological category of properties to be discussed
further in sect. 9. Formally this may be instituted with prop(antioxidant).

Consider, as another variant now, a sample a classification of substances into
two additional classes class(fatsoluble) and class(watersoluble). In combining this
classification with the above vitamin ontology one obtains what is some times
called a multi-hierarchy, that is two or more superimposed hierarchies. (We may
assume the two latter classes being disjoint for the sake of the example.) However,
instead of assuming “multiple hierarchies” one may prefer to conceive of the
partial order as a non-hierarchical organisation, which may optionally possess
some additional structural properties to be discussed next.

8.1 Lattices

As a general principle we endavour to avoid reducing classes to sets. However,
if we recognise that classes do have extensions in the form of individuals, then
in principle we can perform set union, intersection and complementation on the
classes.

As contributions to the formal ontological constitution this may give rise to
existential assumptions forcing novel classes by way of compound terms with
function symbols

isa(X,meet(Y, Z))← isa(X,Y ) ∧ isa(X,Z)
isa(X,Y ) ← isa(X,meet(Y, Z))
isa(X,Z)← isa(X,meet(Y, Z))

Dually
isa(join(Y, Z), X)← isa(Y,X) ∧ isa(Z,X)
isa(Y,X)← isa(join(Y, Z), X)
isa(Z,X)← isa(join(Y, Z), X)

These clauses, if added to an ontological constitution, posit existence of great-
est lower bounds (meet, infimum, cf. conjunction) and least upper bounds (join,
supremum, cf. disjunction) for all pairs of classes. The axioms turn the partial
ordering into a lattice comprising in general a number of anonymous classes.

Here we have to distinguish existence in the logical model, vs. ontological
existence vs. linguistic presence. It seems reasonable at the discretion of the
ontologist to conceive of proper ontological class existence as being established
somewhere between the over-crowded mathematical set model world and the
sparse linguistic term world.Assuming underlying mathematical set models, the
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lattice models are bound to be distributive – implying even more classes than
imposed by the above existential assumptions.

In the above trans-hierarchical example there is implicitly the class of vitamin-
being-anti-oxidant having the subclasses vitaminE and vitaminC. Such ghost
classes are mathematically brought into existence in the ontological constitution
by the above lattice axioms, in casu as lattice meet of vitamin and anti-oxidant.
Observe that this requirement does not insist that any two classes have a proper
class overlap since the meet of two classes may degenerate to the distinguished
empty null class. Accordingly, a tree may be conceived as a distinguished form
of lattice by introducing the empty bottom class placed below all classes proper
in the ontology. Thus the infimum of two classes on different paths is the empty
class null.

As a next step one could argue that the ontological lattice should be speci-
fied as distributive since the underlying classes has extension sets which fulfill
the usual rules for the set operations of union and intersection. In the alge-
braic theory of lattices, cf. [14], distributivity is achievable by introducing an
axiom of distributivity known from Boolean algebra, cf. also the discussion in
[8, 9]. Apropos, distributive lattices are implicitly set model basis for description
logic.

A complement class Cnon of a class C is a class which do not overlap with C
and such that for classical complement C together with Cnon forms the most
general top class. If a distributive lattice is equipped with complement class
for all classes present the resulting structure becomes a Boolean algebra. Al-
ternatively it becomes a Heyting algebra in case that the complement Cnon
is formed as the join of all classes being disjoint with C. This crowding of an
ontology with not necesssarily useful ghost classes is sometimes referred to as
“Booleanism”. In particular the classes formed by set union and complementa-
tion of their extensions in most cases are useless ontological medleys, whereas
on the other hand the additional classes coming about by set intersection may
be empty.

One way of reconciling the set oriented claim of existence of swarms of class
derivatives contra the wish to keep the ontology sparse is to recognise mathe-
matical existence of the ghost classes but making the latter inaccessible via the
lex relation. This means that only classes having been properly baptized are
recognised as ontologically relevant. In the above example the ontologist may
choose to introduce a cross-class antioxidant vitamin comprising vitaminC and
vitaminE.

The above considerations do not address the crucial question of how classes
come about in the first place. This issue seems to be bound up with the notions
of properties and property ascription being addressed in formal concept analysis
(FCA) [15]. This is a mathematical technique for suggesting appropriate classes
given properties for a population of individuals. FCA applies lattice theory and
the classification structure resulting from applying the method forms a lattice.
However, FCA relies on an extensional understanding of classes in contrast to
the intensional view pursued here.



48 J. Fischer Nilsson

9 Classes and Properties

We conceive of the world as shaped not just by presence of individual material
objects and events but by objects belonging to certain classes and therefore
exhibiting certain characteristics. At the same time we classify objects based
on perceived properties and established classes. Therefore the interplay between
classes and properties is mutual and intricate.

In a linguistic view classes are expressed as common nouns (including nom-
inalised verbs typically expressing activites or states), with individuals being
denoted by proper nouns. The linguistic counterpart of properties is basically
adjectives. In addition, prepositional phrases also serve to express property as-
cription, see e.g. [19]. An adjective qualifying a common noun may also serve to
identify a subclass.

By contrast in a simplistic use of predicate logic both classes and properties
are expressed as unary (one-argument) predicates with no apriori distinction
between these notions. Such a unary predicate identifies a subset of the under-
lying model universe, irrespective of the predicate being (pre-)conceived by us
as representing a class or as a property.

The data modelling approaches in computer science traditionally model indi-
viduals as frames or records comprising slots (ex. colour) into which property val-
ues (ex. blue) are placed. Thus this view tends right from the outset to recognise a
distinction between an object and its properties in contrast to the simplistic pred-
icate logical approach. The frames or records are organised into database relations
or object classes (ex. car). Object classes form classification structures reflecting
subclass/superclass relationships (ex. sportscar - – car – vehicle). Property slots
are inherited as well as common properties for members of a class.

9.1 Properties in Conceptual Spaces

In the conceptual space view advanced in [17] in the context of cognitive sci-
ence concepts (classes in our terminology) are conceived as coherent regions in
an abstract space spanned by property dimensions. The property dimensions
are typically physical measurements corresponding to sense data. The concept
space is an abstract space, which may be visualised as, say, 3-dimensional Eu-
klidean space. However, it may have any dimensionality reflecting the available
properties. Concepts having cognitive import and/or linguistic representations
are claimed to correspond to coherent or even convex regions in the space con-
forming with the notion of natural kinds, cf. [30]. A subconcept of a concept
corresponds to a coherent subregion of the region of the concept. It is not quite
clear how to endow such conceptual spaces with logical formalizations in the
form of symbolic languages enabling computations. See [24] for an attempt us-
ing algebraic lattices.

In the conceptual space approach classes are distinguished from properties
by their possessing a more complex structure due to their multi-dimensionality
contrasting the one-dimensional property. In this approach intensionality may be
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claimed to be achieved by virtue of classes arising as situated point sets shaped
and embraced relative to other classes and embedded in a property structure.

10 Property Ascription in Ontologies

The present metalogic approach is readily extended with properties, which like
classes are conceived as term encoded predicates, in line with the property logics
developed in [13, 3], and also with [37].

Given a design choice that being-antioxidant is modelled as a property rather
than a class, the pure class ontology fragment from above

sub(vitaminC, vitamin)
isa(vitaminE, vitamin)
isa(vitaminC, antioxidant)
isa(vitaminE, antioxidant)

is accordingly replaced with the class/property ontology
class(vitaminA) etc.
prop(antioxidant)
isa(vitaminC, vitamin)
isa(vitaminE, vitamin)
hasprop(vitaminC, antioxidant)
hasprop(vitaminE, antioxidant)

Property ascription calls for extension of the ontological constitution.

10.1 Constitutions for Properties

An ontological constitution can now be further elaborated by means of metapred-
icates. First of all properties are to be inherited downwards in an ontology

hasprop(C,P ) ← isa(C,C′) ∧ hasprop(C′, P )
hasprop(X,P )← inst(C,X) ∧ hasprop(C,P )

Conversely all instances are to be ”exherited” upwards
inst(C′, X)← isa(C,C′) ∧ inst(C,X)

In addition to the above properties possessed jointly by individuals in a class
there are class properties such as

hasclassprop(eagle,endangeredspecies)
with the sole inheritance axiom

hasclassprop(C,P ) ← isa(C,C′) ∧ hasclassprop(C′, P )
Thus class properties do not inherit to class instances in contrast to properties

of individuals.
Further, there may be general metaclassifications

∀c concept(c) ↔ class(c) ∨ property(c)

10.2 Intensionality Revisited with Properties

Consider the following pair of definitions forming basis for FCA

– The extension of a class is the set of individuals falling under the class as
expressed by the predicate inst(C,X).
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– The intension of a class is the collection of properties possessed jointly by
all the members of the extension of the class.

These intuitively appealing definitions unfortunately may lead to deflation of in-
tensions to extensions in the sense that co-extensionality implies co-intensionality.
This is noticed in [11] and further examined in [27, 26]. This is unfortunate since
we would like to ensure that class inclusion be ontologically constituted by prop-
erties rather than instances, cf. sect. 5., by way of

∀c1, c2 isa(c1, c2)↔ ∀p(hasprop(c2, p)→ hasprop(c1, p))
when all properties are recorded in the ontology. However, in the case of a
pure class ontology where no properties are ascribed to classes, all classes are
co-intensional. Therefore coextensional classes in particular becomes also co-
intensional contrary to our intentions.

10.3 Property-Discernible Ontologies

However, reduction of intensions to extensions can be avoided in an ontology by
requiering that all its classes are property discernible. This means that no two
distinct classes possess the same properties, that is

∀c1, c2 identical(c1, c2)← ∀p(hasprop(c2, p)↔ hasprop(c1, P ))
This may be achieved by insisting that any pair of sibling classes must pos-

sess a distinguishing property or trait. With this condition fulfilled recursively
through the ontology we can maintain the above extension/intension definitions
without risking Carnap-Oldager deflation of intensions. This issue is reminis-
cent of Leibniz’ Identity of Indescernibles principle, with individuals, however,
replaced by class differentiation here.

11 Generative Ontologies

Basically an ontology is understood as a fixed “chest-of-drawers” with a finite
amount of classes. However, in sect. 8.1 we considered closed operations on classes
leading to new classes coming about from a finite given collection. Now further
operations combining classes with properties enable generation of useful further
subclasses from given classes. This leads to potentially infinite ontologies spanned
by a finite set of primitive concepts and operations on primitives. The crucial
operation for forming relevant subclasses consists of conjunction of a class with
an attributed property. Property attribution can be accomplished with the Peirce
product from description logic mentioned in sect. 2.4. For instance the concept
expressed by the phrase “lack with respect to vitaminB” can be achieved in the
formal ontology as the derived class meet(lack, peirce(wrt, vitaminB)). This
emerges as a subclass of a class lack being itself a subclass of state. This process
can be continued recursively so that for instance “disorders caused by lack with
respect to vitamin B” becomes

meet(disorder, peirce(causedby, and(lack, peirce(wrt, vitaminB)))
being situated below the class of diseases. In the usual framelike notation this is
recognised as the more readable disorder[causedby : lack[wrt : vitaminB]].
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The recursive formation of subclass terms gives rise to potentially infinite
ontologies with evermore restricted subclasses along paths downwards in the
ontology. The admissible attributes may be fetched from an inventory of case
roles including e.g. causality, parthood etc. Obviously many of these potential
nodes might be deemed useless if not senseless let alone for ontological reasons.
For instance parthood might accept only material objects as parts of objects,
and only states as part of states etc. This suggests development of a system of
ontological typing constraints called ontological affinities in our [1, 19], where
in [1] BNF production rules are suggested as a simplified practical means of
specifying generative ontologies.

In [19] the notion of generative ontologies is used to elaborate what is called an
ontological semantics for noun phrases in which a generative ontology forms the
semantic domain for noun phrases less their determiners as in the examples above.
Prepositional phrases and adjectives accompanying nouns are considered property
assignments which generate subclasses. As such this semantics extends the rela-
tion lex of sect. 6 in a principled compositional manner from common nouns to
noun phrases less the determiner and disregarding cases with pronouns. The on-
tological meaning of a noun phrase is thus identified with a point in a generative
ontology, which leaves room for phrases of unlimited syntactical complexity.

12 Summary and Conclusion

We have described a metalogic set-up in first order predicate logic for specifying
ontological constitutions in a formal and principled manner. An ontological con-
stitution primarily determines ordering principles for classes and operations on
classes and properties and their ascription to classes and their metaproperties
such as inheritance. In the course of this presentation we have discussed how to
ensure non-extensionality of classes and properties.

The metalogical approach fits well into the logic programming paradigm in
that many meta concepts can be readily expressed and computed within definite
clause logic. As a question for further study we wish to capture the distinction
between essential and contingent properties in the present framework.
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Abstract.  Peirce was a precocious child, a 19th-century scientist who had an 
international reputation in both logic and physics, and a largely neglected 
philosopher in the 20th century. Peirce's research in logic, physics, mathe-
matics, and lexicography made him uniquely qualified to appreciate the rigors 
of science, the nuances of language, and the semiotic processes that support 
both. Instead of using logic to understand language, the philosophers who began 
the analytic tradition — Frege, Russell, and Carnap — tried to replace language 
with a purified version of logic. As a result, they created an unbridgeable gap 
between themselves and the so-called Continental philosophers, they exacer-
bated the behaviorist tendency to reject any study of meaning, and they left 
semantics as an unexplored wilderness with only a few elegantly drawn, but 
incomplete maps based on Tarski's model theory and Kripke's possible worlds.  
This article reviews the ongoing efforts to construct a new foundation for 21st-
century philosophy on the basis of Peirce's research and its potential for 
revolutionizing the study of meaning in cognitive science, especially in the 
fields of linguistics and artificial intelligence. 

1   The Influence of Peirce and Frege 

Charles Sanders Peirce is widely regarded as the most important philosopher born in 
America, and many of his followers consider him the first philosopher of the 21st 
century.  An easy explanation for the neglect of his philosophy in the 20th century is 
that Peirce was "born before his time."  A better approach is to ask what trends in the 
20th century led to the split between analytic and Continental philosophy, and how 
Peirce's logic and philosophy relate to both sides of the split.  The short answer is that 
his logic was adopted by the analytic philosophers, but the questions he addressed 
were closer to the concerns of the Continental philosophers.  A longer answer is 
needed to show what Peirce's ideas can contribute to research and development 
projects in the 21st century.  

Frege (1879) and Peirce (1880, 1885) independently developed logically equi-
valent notations for full first-order logic.  Although Frege was first, nobody else 
adopted his notation, not even his most famous student, Rudolf Carnap. Schröder 
adopted Peirce's notation for his three-volume Vorlesungen über die Algebra der 
Logik, which became the primary textbook on logic from 1890 to 1910.  Peano (1889) 
also adopted Peirce's notation, but he changed the logical symbols because he wanted 
to include mathematical symbols in the formulas; he gave full credit to Peirce and 
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Schröder and criticized Frege's notation as unreadable.  Whitehead and Russell (1910) 
cited Frege, but they adopted Peirce-Schröder-Peano notation for the Principia 
Mathematica.  

To illustrate the differences in notation, consider the English sentence John is 
going to Boston by bus, which could be expressed in Peirce's algebraic notation as  

x y (Go(x) • Person(John) • City(Boston) • Bus(y) • 

Agnt(x,John) • Dest(x,Boston) • Inst(x,y)) 

Since Boole treated disjunction as logical addition and conjunction as logical 
multiplication, Peirce represented the existential quantifier by  for repeated dis-
junction and the universal quantifier by  for repeated conjunction. Peano began the 
practice of turning letters upside-down and backwards to form logical symbols.  He 
represented existence by , consequence by , the Latin vel for disjunction by , 
and conjunction by .  With Peano's symbols, this formula would become  

( x)( y)(Go(x)  Person(John)  City(Boston)  Bus(y) 
 Agnt(x,John)  Dest(x,Boston)  Inst(x,y)) 

Figure 1 shows a conceptual graph that represents the same information.  

 

Fig. 1.  Conceptual graph for John is going to Boston by bus 

For his Begriffsschrift, Frege (1979) adopted a tree notation for first-order logic 
with only four operators:  assertion (the "turnstile" operator), negation (a short vertical 
line), implication (a hook), and the universal quantifier (a cup containing the bound 
variable). Figure 2 shows the Begriffsschrift equivalent of Figure 1, and following is 
its translation to predicate calculus:  

~( x)( y)(Go(x)  (Person(John)  (City(Boston)  (Bus(y)  
(Agnt(x,John)  (Dest(x,Boston)  ~Inst(x,y))))))) 

Frege's choice of operators simplified his rules of inference, but they led to awkward 
paraphrases:  It is false that for every x and y, if x is an instance of going then if John 
is a person then if Boston is a city then if y is a bus then if the agent of x is John then 
if the destination of x is Boston then the instrument of x is not y.  
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Fig. 2.  Frege's Begriffsschrift for John is going to Boston by bus 

Peirce began to experiment with relational graphs for representing logic as early as 
1882, but he couldn't find a convenient representation for all the operators of his 
algebraic notation. Figure 3 shows a relational graph that expresses the same sentence 
as Figures 1 and 2. In that graph, an existential quantifier is represented by a line of 
identity, and conjunction is the default Boolean operator. Since Peirce's graphs did not 
distinguish proper names, the monadic predicates isJohn and isBoston may be used to 
represent names. Following is the algebraic notation for Figure 3:  

x y z w (Go(x) • Person(y) • isJohn(y) • City(z) • isBoston(z) • Bus(w) • 

Agnt(x,y) • Dest(x,z) • Inst(x,w)) 

 

Fig. 3.  Peirce's relational graph for John is going to Boston by bus 

In 1896, Peirce discovered a simple convention that enabled him to represent full 
FOL:  an oval enclosure that negated the entire graph or subgraph inside. He first 
applied that technique to his entiative graphs whose other operators were disjunction 
and the universal quantifier. In 1897, however, he switched to the dual form, the 
existential graphs, which consisted of the oval enclosure added to his earlier relational 
graphs. Peirce (1898) observed that metalevel relations could be attached to the oval 
to make further statements about the enclosed graphs. The most important innovation 
of the graphs was not the notation itself, but the rules of inference, which were an 
elegant and powerful generalization of natural deduction by Gentzen (1935).  

Hilbert and Ackermann (1928) gave equal credit to Peirce and Frege, but later 
publications almost completely ignored Peirce.  Frege was certainly a brilliant 
logician who deserves credit for the first publication of full FOL and for his high 
standards of rigor.  Yet he had little influence on the technical development of logic, 
and mathematicians in the late 19th century were developing higher standards without 
any assistance from logicians.  The historical footnotes have been amply documented 
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by Putnam (1982), Quine (1995), Dipert (1995), and Hintikka (1997), but those 
studies don't explain why references to Peirce disappeared from the literature during 
most of the 20th century.  

The primary reason for the focus on Frege at the expense of Peirce was not their 
logic, but their philosophy. Frege addressed narrow questions that could be expressed 
in logic; instead of broadening the scope of logic, many of his followers dismissed, 
attacked, or ridiculed attempts to address broader issues. In other areas of cognitive 
science, a similar emphasis on narrow technical questions led Watson (1913) to throw 
out the psyche from psychology by renaming the field behaviorism, and it led 
Bloomfield (1933) and Chomsky (1957) to throw out semantics from linguistics. Katz 
and Fodor (1963) reintroduced a tiny amount of semantics through a negative 
formula:  "Language description minus grammar is semantics".  

For linguistics and artificial intelligence, the narrow focus meant that the most 
important questions couldn't be asked, much less answered.  The great linguist Roman 
Jakobson, whose career spanned most of the 20th century, countered Chomsky with 
the slogan "Syntax without semantics is meaningless."  In AI, Winograd called his 
first book Understanding Natural Language (1972), but he abandoned a projected 
book on semantics when he realized that no existing semantic theory could explain 
how anyone, human or computer, could understand language.  In a later book, 
coauthored with the philosopher Fernando Flores, Winograd (1986) abandoned the 
analytic foundations of his first book in favor of methods inspired by Heidegger's 
phenomenology.  Winograd's disillusionment also affected many other AI researchers, 
who turned to the useful, but less ambitious problems of text mining, information 
retrieval, and user-interface design.  Those techniques may be practical, but they 
won't solve the problems of understanding language, meaning, intelligence, or life.  

After a century of narrow questions, it is time to examine the broader questions 
and ask how Peirce's methods might answer them.  His first rule of reason, "Do not 
block the way of inquiry" (CP 1.135), implies that no question is illegitimate.  
Peirce applied that principle in criticizing Ernst Mach, the grandfather of logical 
positivism:  

 
Find a scientific man who proposes to get along without any metaphysics — not 
by any means every man who holds the ordinary reasonings of metaphysicians 
in scorn — and you have found one whose doctrines are thoroughly vitiated by 
the crude and uncriticized metaphysics with which they are packed. We must 
philosophize, said the great naturalist Aristotle — if only to avoid philoso-
phizing. Every man of us has a metaphysics, and has to have one; and it will 
influence his life greatly. Far better, then, that that metaphysics should be 
criticized and not be allowed to run loose. (CP 1.129)  
 

Whitehead and Gödel were two distinguished logicians who also considered 
metaphysics to be the heart of philosophy.  The analytic philosophers cited them only 
for their contributions to logic, never for their philosophy. This article analyzes the 
origins of the extreme narrowness of analytic philosophy, Peirce's broader scope, and 
the potential of Peirce's semiotics to serve as the basis for reintroducing topics that the 
analytic philosophers deliberately rejected.  
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2   Logical Negativism 

In his book Beyond Analytic Philosophy, Hao Wang, a former student of Quine and 
assistant to Gödel, classified philosophers by the terms nothing else and something 
more.  The leaders of the analytic movement were mostly characterized by what they 
excluded:  they chose a methodology that could address a limited range of topics and 
declared that nothing else was a legitimate matter of discussion. By applying logic to 
a narrow range of questions, they often achieved high levels of precision and clarity.  
But the philosophers who sought something more felt that the unclear questions were 
often the most significant, and they tried to broaden the inquiry to topics that the 
nothing-else philosophers rejected.  Whitehead and Russell were two pioneers in logic 
who collaborated successfully on the Principia Mathematica, but were diametrically 
opposed in their attitudes toward philosophy. Whitehead (1929) constructed one of 
the largest and most ambitious metaphysical systems of the 20th century, but Russell 
was an outspoken critic of metaphysics. For the second edition of the Principia, 
Russell added a lengthy introduction based on his system of logical atomism, but 
Whitehead wrote a letter to Mind saying that he had taken no part in the revisions and 
he did not wish to be associated with any of the additions or modifications. Whitehead 
aptly characterized both of their philosophies in his introduction of Russell for the 
William James lectures at Harvard:  "I am pleased to introduce my good friend 
Bertrand Russell. Bertie thinks that I am muddle-headed, but then, I think that he is 
simple-minded" (Lucas 1989, p. 111).  

To describe the narrow scope, Wang (1986) coined the term logical negativism for 
the critical, but reductionist approach of his former thesis adviser:  

Quine merrily reduces mind to body, physical objects to (some of) the place-
times, place-times to sets of sets of numbers, and numbers to sets. Hence, we 
arrive at a purified ontology which consists of sets only.... I believe I am not alone 
in feeling uncomfortable about these reductions. What common and garden 
consequences can we draw from such grand reductions? What hitherto concealed 
information do we get from them? Rather than being overwhelmed by the result, 
one is inclined to question the significance of the enterprise itself. (p. 146)  

In support of this view, Wang quoted a personal letter from C. I. Lewis, the founder 
of the modern systems of modal logic, about the state of philosophy in 1960:  

It is so easy... to get impressive 'results' by replacing the vaguer concepts which 
convey real meaning by virtue of common usage by pseudo precise concepts 
which are manipulable by 'exact' methods — the trouble being that nobody any 
longer knows whether anything actual or of practical import is being discussed. 
(p. 116)  

The negativism began with Frege (1879), who set out "to break the domination of the 
word over the human spirit by laying bare the misconceptions that through the use of 
language often almost unavoidably arise concerning the relations between concepts." 
His strength lay in the clarity of his distinctions, which Frege (1884) summarized in 
three fundamental principles:  
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1. "always to separate sharply the psychological from the logical, the subjective from 
the objective;"  

2. "never to ask for the meaning of a word in isolation, but only in the context of a 
proposition;"  

3. "never to lose sight of the distinction between concept and object."  

These distinctions may sound good in isolation, but in practice the borderlines are not 
clear. Instead of trying to understand the reasons for the lack of clarity, Frege imposed 
arbitrary restrictions:  

 
In compliance with the first principle, I have used the word "idea" always in the 
psychological sense, and have distinguished ideas from concepts and from 
objects. If the second principle is not observed, one is almost forced to take as 
the meanings of words mental pictures or acts of the individual mind, and so to 
offend against the first principle as well.  
 

With this interpretation, Frege made it impossible to formalize metalanguage as 
language about language because there are no physical objects that can serve as the 
referents of metalevel terms.  In  the Tractatus, Wittgenstein (1921) observed Frege's 
restrictions and defined all meaningful language  in terms of references to physical 
objects and their relationships.  Everything else, including his own analysis of 
language, had no legitimate reference:  "My propositions are elucidatory in this way:  
he who understands me finally recognizes them as senseless" (6.54).  

While reviewing Quine's Word and Object, Rescher (1962) was struck by the 
absence of any discussion of events, processes, actions, and change. He realized that 
Quine's static views were endemic in the analytic tradition:  "The ontological doctrine 
whose too readily granted credentials I propose to revoke consists of several 
connected tenets, the first fundamental, the rest derivative:"  

1. "The appropriate paradigm for ontological discussions is a thing (most properly a 
physical object) that exhibits qualities (most properly of a timeless — i.e., either an 
atemporal or a temporarily fixed — character)."  

2. "Even persons and agents (i.e., "things" capable of action) are secondary and 
ontologically posterior to proper (i.e., inert or inertly regarded) things."  

3. "Change, process, and perhaps even time itself are consequently to be downgraded 
in ontological considerations to the point where their unimportance is so blatant 
that such subordination hardly warrants explicit defense. They may, without gross 
impropriety, be given short shrift in or even omitted from ontological discussions."  

"It is this combination of views, which put the thing-quality paradigm at the 
center of the stage and relegate the concept of process to some remote and 
obscure corner of the ontological warehouse, that I here characterize as the 
'Revolt against Process'."  

Rescher found that the only analytic philosopher who bothered to defend the static 
view was Strawson (1959), who adopted identity and independence as the criteria for 
ontological priority:  "whether there is reason to suppose that identification of 
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particulars belonging to some categories is in fact dependent on the identification  
of particulars belonging to others, and whether there is any category of particulars that 
is basic in this respect" (pp. 40-41). By applying that principle, Strawson concluded 
that physical objects are "basic" because processes cannot be identified without first 
identifying the objects that participate in them. Rescher, however, found Strawson's 
arguments unconvincing and presented three rebuttals:  

1. Since people are commonly identified by numbers, such as employee numbers or 
social-security numbers, Strawson should grant numbers ontological priority over 
people. Church (1958) observed that a similar argument could be made for the 
ontological priority of men over women because women are typically identified by 
the names of their fathers or husbands.  

2. All physical things are generated by some process. Therefore, they owe their very 
existence to some process. Processes can generate other processes, but inert things 
cannot generate anything without some process.  

3. The method of identifying an object is itself a process. Therefore, things cannot 
even be recognized as things without some process.  

Undeterred by the rebuttals, Strawson (1992) published a textbook that he used to 
inculcate philosophy students with the thing-property doctrine.  He mentioned event 
semantics as proposed by Davidson (1967), but dismissed it as "unrealistic" and 
"unnecessary."  He took no notice of the rich and growing literature on event 
semantics in linguistics and artificial intelligence (Tenny & Pustejovsky 2000).  

When the nothing-else philosophers turn their criticism on one another, they are 
left with nothing at all. In developing a semantics for a fragment of English, 
Montague (1967) stated his goal of reducing ontology to nothing but sets:  "It has 
for fifteen years been possible for at least one philosopher (myself) to maintain that 
philosophy, at this stage in history, has as its proper theoretical framework set 
theory with individuals and the possible addition of empirical predicates." To 
disguise the emptiness of the foundations, Montague called the elements of his sets 
possible worlds, but the logician Peter Geach, who was strongly influenced by 
Frege, dismissed Montague's worlds as "Hollywood semantics" (Janik & Toulmin 
1973). In his famous paper, "Two Dogmas of Empiricism," Quine turned his critical 
skills on the work of Carnap, his best friend and mentor. In the process, he 
destroyed the last positive claims of logical positivism.  In his mature review of 
topics he covered during his career, Quine (1981) began with the reduction of 
ontology to sets, which Wang deplored; he then continued in chapter after chapter 
to criticize various attempts to add something more, such as modality, belief state-
ments, or ethics. His conclusion was that precise, local, context-dependent state-
ments could be made, but no formalized general-purpose system of logic, ontology, 
knowledge representation, or natural language semantics is possible. Quine's 
arguments would seem to justify Winograd in abandoning the quest for artificial 
intelligence. Yet people somehow manage to learn languages and use them 
successfully in their daily lives. Other animals are successful even without 
language. What is the secret of their success?  
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3   Peirce's Contributions to the Study of Meaning 

Although Peirce had never read Quine's arguments, he wouldn't have been troubled 
by the negative conclusions.  In fact, he would probably agree. Like Leibniz, Quine 
would agree that absolute certainty is possible only in mathematics and that all 
theories about the physical world are fallible and context dependent.  Peirce went one 
step further:  he even extended fallibilism to mathematics itself.  A major difference 
between Peirce and Quine is that Peirce (1906) not only recognized context 
dependence, he even developed a notation for representing it in his existential graphs:  

 
The nature of the universe or universes of discourse (for several may be referred 
to in a single assertion) in the rather unusual cases in which such precision is 
required, is denoted either by using modifications of the heraldic tinctures, 
marked in something like the usual manner in pale ink upon the surface, or by 
scribing the graphs in colored inks.  
 

Peirce's later writings are fragmentary, incomplete, and mostly unpublished, but they 
are no more fragmentary and incomplete than most modern publications about 
contexts. In fact, Peirce was more consistent in distinguishing the syntax (oval 
enclosures), the semantics ("the universe or universes of discourse"), and the 
pragmatics (the tinctures that "denote" the "nature" of those universes).  

What is revolutionary about Peirce's logic is the explicit recognition of multiple 
universes of discourse, contexts for enclosing statements about them, and meta-
language for talking about the contexts, how they relate to one another, and how they 
relate to the world and all its events, states, and inhabitants. That expressive power, 
which is essential for characterizing what people say in ordinary language, goes far 
beyond anything that Kripke or Montague, let alone Frege or Quine, ever proposed. 
As an example, the modal auxiliary must in the following dialog expresses a context-
dependent necessity that is determined by the mother:  

 
Mother:  You must clean up your room. 
Child: Why? 
Mother:  Because I said so. 
 

The necessity in the first sentence is explained by the mother's reply I said so, which 
is a context-dependent law that governs the situation. To clarify the dependencies, 
Dunn (1973) demonstrated two important points:  first, the semantics of the modal 
operators can be defined in terms of laws and facts; second, the results are formally 
equivalent to the semantics defined in terms of possible worlds. For natural language 
semantics, Dunn's semantics can support methods of discourse analysis that can relate 
every modal or intentional verb to some proposition that has a law-like effect, to a 
context that is governed by that law, and to a lawgiver, which may be God, an official 
legislature, or the child's mother (Sowa 2003). Although Peirce could not have known 
the work of Kripke or Dunn, he anticipated many of the relationships among 
modality, laws, and lawgivers, and he recognized levels of authority from the absolute 
laws of logic or physics to more lenient rules, regulations, social mores, or even a 
single individual's habits and preferences.  
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Unlike Frege, Russell, and Carnap, Peirce did not avoid the challenge of 
characterizing the language people actually use by escaping to a purified realm of 
formal logic and ontology. He had been an associate editor of the Century Dictionary, 
for which he wrote, revised, or edited over 16,000 definitions. The combined 
influence of logic and lexicography is apparent in a letter he wrote to B. E. Smith, the 
editor of that dictionary:  

 
The task of classifying all the words of language, or what's the same thing, all 
the ideas that seek expression, is the most stupendous of logical tasks. Anybody 
but the most accomplished logician must break down in it utterly; and even for 
the strongest man, it is the severest possible tax on the logical equipment and 
faculty.  
 

In this remark, Peirce equated the lexicon with the set of expressible ideas and 
declared logic as essential to the analysis of meaning. Yet he considered logic only 
one of the three major subdivisions of his theory of signs:  

1. Universal grammar is first because it studies the structure of signs independent of 
their use. The syntax of a sentence, for example, can be analyzed without 
considering its meaning, reference, truth, or purpose within a larger context. In its 
full generality, universal grammar defines the types of signs and patterns of signs 
at every level of complexity in every sensory modality.  

2. Critical logic, which Peirce defined as "the formal science of the conditions of the 
truth of representations" (CP 2.229), is second because truth depends on a dyadic 
correspondence between a representation and its object.  

3. Methodeutic or philosophical rhetoric is third because it studies the principles 
that relate signs to each other and to the world: "Its task is to ascertain the laws by 
which in every scientific intelligence one sign gives birth to another, and especially 
one thought brings forth another" (CP 2.229).  By "scientific intelligence," Peirce 
meant any intellect capable of learning from experience, among which he included 
dogs and parrots. 

Many people talk as if logic is limited to deduction, but Peirce insisted that induction 
and abduction are just as important, since they are the branches of logic that derive 
the axioms from which deduction proceeds. Peirce also emphasized the importance of 
analogy, which is a very general method of reasoning that includes aspects of all three 
of the other methods of logic. In fact, analogy is essential to induction and abduction, 
and the method of unification used in deduction is a special case of analogy.  

One of the pioneers of formal semantics, Barbara Partee (2005), admitted that the 
formalisms developed by Montague and his followers have not yet come to grips with 
the "intended meanings" of their abstract symbols and that lexical semantics and 
lexicography cover material that is very far from being formalized:  

 
In Montague's formal semantics the simple predicates of the language of 
intensional logic (IL), like love, like, kiss, see, etc., are regarded as symbols 
(similar to the "labels" of [predicate calculus]) which could have many possible 
interpretations in many different models, their "real meanings" being regarded 
as their interpretations in the "intended model". Formal semantics does not 
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pretend to give a complete characterization of this "intended model", neither in 
terms of the model structure representing the "worlds" nor in terms of the 
assignments of interpretations to the lexical constants. The present formali-
zations of model-theoretic semantics are undoubtedly still rather primitive 
compared to what is needed to capture many important semantic properties of 
natural languages.... There are other approaches to semantics that are concerned 
with other aspects of natural language, perhaps even cognitively "deeper" in 
some sense, but which we presently lack the tools to adequately formalize. 
(Lecture 4)  
 

In Montague's terms, the intension of a sentence is a function from abstract sets 
(called possible worlds) to truth values, and the intensions of words are other abstract 
functions that can be combined to derive the function for a sentence. In lexical seman-
tics and lexicography, words are decomposed into patterns of words or word-like 
signs, and any connection to logic or possible worlds is rarely discussed and often 
denounced as irrelevant. As Partee said, there are no known mathematical "tools" for 
mapping all the words and signs of lexical semantics to Montague-style functions. 
Even if the words could be mapped, an even greater challenge would be to map the 
relatively loose patterns of lexical semantics to Montague's strictly regimented 
functions of functions for combining the basic functions.  

A more realistic way to bridge the gap between the formal and the informal is to 
recognize that loose informal patterns of signs are the foundation for perception and 
analogical reasoning by all mammals, including humans. Children learn language by 
mapping perceptual and motor patterns to verbal patterns, and for adults, there is a 
continuity between the informal patterns learned in childhood to the most highly dis-
ciplined patterns used in science, mathematics, and logic. The advantage of Peircean 
semiotics is that it firmly situates language and logic within the broader study of signs 
of all types.  The highly disciplined patterns of mathematics and logic, important as 
they may be for science, lie on a continuum with the looser patterns of everyday 
speech and with the perceptual and motor patterns, which are organized on 
geometrical principles that are very different from the syntactic patterns of language 
or logic.  Transferring the problems to a broader domain does not automatically solve 
them, but it provides a richer set of tools to address them.  

4   Patterns of Symbols in Language and Logic 

A semiotic view of language and logic gets to the heart of the philosophical 
controversies and their practical implications for linguistics, artificial intelligence, 
and related subjects. The analytic philosophers hoped that they could use logic to 
express facts with the utmost clarity and precision. Wang (1986) observed that 
Carnap, in particular, was "willing to exclude an exceptionally large range of things 
on the grounds that they are 'not clear,' or sometimes that 'everything he says is 
poetry.'" But the logicians Peirce and Whitehead and the poet Robert Frost 
recognized that clarity is often an oversimplification. Whitehead (1937) aptly 
characterized the problem:  
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Human knowledge is a process of approximation. In the focus of experience, 
there is comparative clarity. But the discrimination of this clarity leads into the 
penumbral background. There are always questions left over. The problem is to 
discriminate exactly what we know vaguely.  
 

And Frost (1963) suggested the solution:  
 
I've often said that every poem solves something for me in life. I go so far as to 
say that every poem is a momentary stay against the confusion of the world.... 
We rise out of disorder into order. And the poems I make are little bits of order.  
 

Contrary to Carnap, poetry and logic are not at opposite extremes. They are 
complementary approaches to closely related problems:  developing patterns of 
symbols that capture important aspects of life in a memorable form. Logic is limited 
to expressing factual content, but poetry can express aesthetic and ethical 
interpretations of the facts. Any particular interpretation of a poem can be asserted in 
logic, but a good poem can express a volume of possible interpretations in a single 
phrase.  

The greatest strength of natural language is its flexibility in accommodating 
patterns ranging from poetry and cooking recipes to stock-market reports and 
scientific treatises. A very flexible syntactic theory, which is also psychologically 
realistic, is Radical Construction Grammar (RCG) by Croft (2001). Unlike theories 
that draw a sharp boundary between grammatical and ungrammatical sentences, RCG 
can accept any kind of construction that speakers of a language actually use, including 
different choices of constructions for different sublanguages:  

 
Constructions, not categories or relations, are the basic, primitive units of 
syntactic representation.... the grammatical knowledge of a speaker is 
knowledge of constructions (as form-meaning pairings), words (also as form-
meaning pairings), and the mappings between words and the constructions they 
fit in. (p. 46)  
 

RCG makes it easy to borrow a word from another language, such as connoisseur 
from French or H2SO4 from chemistry, or to borrow an entire construction, such as 

sine qua non from Latin or x2+y2=z2 from algebra. In the sublanguage of chemistry, 
the same meaning that is paired with H2SO4 can be paired with sulfuric acid, and the 

constructions of mathematical and chemical notations can be freely intermixed with 
the more common constructions of English syntax.  

The form-meaning pairings of RCG are determined by language-specific or even 
sublanguage-specific semantic maps to a multidimensional conceptual space, which 
"represents conventional pragmatic or discourse-functional or information-structural 
or even stylistic or social dimensions" (Croft, p. 93). Although Croft has not 
developed a detailed theory of conceptual structures, there is no shortage of theories, 
ranging from those that avoid logic (Jackendoff 1990, 2002) to those that emphasize 
logic (Sowa 1984, 2000). The versions that avoid or emphasize logic represent stages 
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along a continuum, which an individual could traverse from infancy to childhood to 
adulthood. Each stage adds new functionality to the earlier stages, which always 
remain available; even the most sophisticated adult can find common ground in a 
conversation with a three-year-old child. Following are the basic elements of logic, 
each of which builds on the previous elements:  

1. Every natural language has basic constructions for expressing relational patterns 
with two or three arguments, and additional arguments can be added by 
constructions with prepositions or postpositions.  

2. The three logical operators of conjunction, negation, and existence, which are 
universally available in all languages, are sufficient to support first-order logic.  

3. Proper names, simple pronouns, and other indexicals are universal, but various 
languages differ in the selection of indexical markers.  

4. Metalanguage is supported by every natural language, and it appears even in the 
speech of children. Metalanguage supports the introduction of new words, new 
syntax, and the mapping from the new features to older features and to 
extralinguistic referents.  

5. Simple metalanguage can be used even without embedded structures, but the 
ability to encapsulate any expression as a single unit that can be embedded in other 
expressions provides enormous power.  

6. When combined in all possible ways, the above features support the ability to 
define modal operators and all the intensional verbs and structures of English.  

In addition to supporting any representation for logic, a general theory of intelligence 
must also support reasoning methods. The most primitive and the most general is 
analogy, which by itself supports case-based reasoning. Sowa and Majumdar (2003) 
showed how Peirce's three branches of logic — induction, deduction, and abduction 
— could be defined as highly disciplined special cases of analogy. Unlike the 
methods of logic, which are limited to language-like symbols, analogies can relate 
patterns of signs of any kind:  they can support the metaphors described by Lakoff 
and Johnson (1980), they can link abstract symbols to image-like icons, and they can 
relate similar patterns of percepts across different sensory modalities.  

5   Everything Is a Sign 

In focusing their attention on tiny questions that could be answered with utmost 
clarity in their logic, the analytic philosophers ignored every aspect of life that was 
inexpressible in their logic. The Continental philosophers did address the unclear 
questions, but their prose was so opaque that few people could read it. Although 
Peirce invented the logic that the analytic philosophers adopted, he incorporated logic 
in a much broader theory of signs that accommodates every possible question, 
answer, perception, feeling, or intuition — clear, unclear, or even unconscious. With 
that approach, the border between analytic and Continental philosophy vanishes. In 
fact, all borders in cognitive science vanish, except for local borders created by 
differences in methodology.  
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Fig. 4.  Evolution of semiosis 

To illustrate the generality of semiotics, the following examples show how Peirce's 
ideas can be applied to a wide range of topics:  
• Figure 4 illustrates the evolution of cognitive systems according to the 

sophistication of their semiotic capabilities. For the worm, a sign that serves as a 
stimulus triggers a response with only a few intermediate levels of signs passed 
from neuron to neuron. The fish, however, has highly developed perceptual and 
motor mechanisms that depend on vastly more complex neural mechanisms. For 
the cat, the ball of string is a mouse analog, which can be used in exercises that 
build the cat's repository of learned sign patterns to be invoked when hunting prey. 
The human inherits all the capabilities of earlier levels and adds the symbol 
processing that supports language and logic.  

• Peirce's fundamental assumption is that anything in the universe that can have a 
causal influence on anything else is a potential sign, independent of the presence of 
anything that can interpret signs. The big bang at the beginning of the universe, for 
example, could not be observed by any cognitive agent at the time, but 
astronomers today can observe its effects in the background microwave radiation.  

• In the classification of signs, three basic categories are Mark, Token, and Type. A 
mark is an uninterpreted sign of any kind, a type is a pattern for classifying marks, 
and a token is the result of classifying a mark according to some type. For 
example, a pattern of green and yellow in the lawn is a mark, which could be 
interpreted according to the viewer's interests as a token of type Plant, Weed, 
Flower, SaladGreen, Dandelion, etc.  

• A sign may be characterized by the way the mark determines the referent: 
1. Icon:  according to some similarity of image, pattern, or structure.  
2. Index:  according to some physical relationship; e.g., immediate presence, 

pointing to something remote, or causally indicating something not directly 
perceptible.  

3. Symbol:  according to some convention; e.g., spoken words, written words, 
money, flag, uniform...  
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• Communication, memory, learning, and reasoning depend on signs — but most 
signs are not symbols. In Figure 4, organisms from the level of bacteria to worms 
respond to indexes. With larger brains and more complex sensory organs, animals 
from fish to mammals add icons. The human level of symbol processing supports 
the open-ended levels of complexity possible with logic and language.  

• According to Peirce, the ability to respond to signs is characteristic of all living 
organisms. Since a virus cannot process signs, it is not alive. Instead, a virus is 
itself a sign, which a susceptible organism interprets by generating replicas.  

• Pietarinen (2004) pointed out that Peirce had anticipated much of the modern work 
on speech acts, relevance, and conversational implicatures; although he hadn't 
listed the principles as conveniently as Grice (1975), he discussed and analyzed 
versions of them in many of his writings. Peirce had also anticipated Davidson's 
event semantics by insisting that actions and states were entities just as real as their 
participants, and he anticipated Perry's "Essential Indexical" by pointing out that 
every statement in logic requires at least one indexical to fix the referents of its 
variables.  

• Although Peirce's graph logic is equivalent to his algebraic notation in expressive 
power, he developed an elegant set of rules of inference for the graphs, which have 
attractive computational properties. Ongoing research on graph-theoretic 
algorithms has demonstrated important improvements in methods for searching 
and finding relevant graphs during the reasoning processes (Majumdar et al. 
forthcoming).    

The key to Peirce's modernity is his solid foundation in history.  Unlike Frege and 
Russell, who made  a sharp break with the Aristotelian and Scholastic work on logic, 
many of Peirce's innovations were based on insights he had derived from his studies 
of medieval logic.  In fact, Peirce had boasted that he had the largest collection of 
medieval manuscripts on logic in the Boston area.  In general, major breakthroughs 
are most likely to come from unpopular sources, either because they're so new that 
few people know them, so old that most people have forgotten them, or so 
unfashionable that nobody looks at them.  
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Two different concepts of iconicity compete in Peirce’s diagrammatical logic. 
One is articulated in his general reflections on the role of diagrams in thought, 
in what could be termed his diagrammatology – the other is articulated in his 
construction of Existential Graphs as an iconic system for logic representation. 
One is operational and defines iconicity in terms of which information may be 
derived from a given diagram or diagram system – the other has stronger 
demands on iconicity, adding to the operational criterion a demand for as high a 
degree of similarity as possible.  

This paper investigates the two iconicity notions and addresses some of the 
issues they involve.  

1   Operational Iconicity 

The basic concept of iconicity in Peirce’s semiotics and logic is presented in his 
second tricotomy of sign types, the well-known distinction between icons, indices, 
and symbols, respectively.i This tricotomy deals with the relation between the sign 
and its dynamic object, and the idea is that this relation may take three different 
forms. Icons function by means of a similarity between the sign and the object, or, as 
Peirce may also say, by shared characteristics between the sign and its object. Indices 
function by means of an actual connection between the sign and its object, either of a 
causal character (the footprint on the beach) or of a purposive character (deictics, 
pronomina or proper names in language). Symbols, finally, function by means of a 
habit, in mind or in nature, of connecting two otherwise unconnected entities to a 
sign. It should immediately be added, that the sign types of this tricotomy, just as is 
the case in the later Peirce’s other nine tricotomies, do not correspond directly to 
distinct, natural kinds of signs. They rather pertain to aspects of signs, so that pure 
icons, indices, and symbols, respectively, may be conceived of as borderline cases 
only, while most typical, and indeed most interesting signs involve all three aspects to 
different degrees. It is possible, though, in many cases, to point out which of the three 
aspects is basic  in a given sign or a given sign type – so as for instance diagrams 
being basically icons, and only secondarily (but still necessarily) having also 
indexical and symbolical aspects.  

In this basic iconicity definition by similarity or shared characteristics, however, 
none of the two iconicity concepts to be discussed here, is obvious. They only appear 
when a further determination of similarity is attempted. The first, operational, 
definition appears exactly in the discussion of diagrams, and is developed by Peirce 
already in the 80s, even if the full articulation of it awaits Peirce’s mature philosophy 
of the years after the turn of the century. To continue in Peirce’s detailed taxonomy of 
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signs from that period, icons come in three subtypes, images, diagrams, and 
metaphors, respectively. Images are to be taken in a special, technical sense not 
corresponding to our everyday image notion: they are icons whose similarity 
functions by means of simple qualities only, colour, sound, shape, form, etc. Thus, 
images are very simple icons, functioning by one or few such qualities only. The 
recognition of a crescent form as a sign for the moon may serve as an example. The 
simplicity of images is made clear by their contrast to diagrams. Diagrams are 
skelettal icons, representing their object analyzed into parts among which ”rational 
relations” hold, be they explicit or implicit. Such relations may be spatial, logical, 
mathematical, or any other type which may make clear the kind of relation holding 
between parts. So, as soon as the icon consists of parts whose relations mirror the 
relations between the corresponding parts of the object, and the sign is used to gain 
information about those parts and their relations, a diagram is at stake.ii In contrast to 
the technical notion of image, being much more narrow than the everyday use of the 
word, Peirce’s technical notion of diagram is much more wide than the everyday 
diagram notion: it must include any use of, e.g. a painting, in which the relation 
between its parts plays a role in the interpretation – and it must include also algrabraic 
notations which may not, at a first glance, seem diagrammatical. Metaphors, to finish 
this tricotnomy, are icons functioning through the mediation of a third object, so as 
for instance an ancestral tree, charting family relationships in a branching diagram 
structure through the intermediate icon of a tree. The important notion here is the very 
wide sense of the notion of diagram which stems, in fact, from the operational 
criterion for iconicity. An icon is a sign ”... from which information may be derived.”, 
Peirce says (”Syllabus”, ca. 1902, CP 2.309), and this forms the basic idea in the 
operational criterion: icons as the only sign type able to provide information which is 
why all more complex sign types must involve or lead to icons in order to convey 
information.  Later in the same paper, Peirce adds that ”An Icon, however, is strictly a 
possibility involving a possibility ...” (CP.2.311), and in this enigmatic formula, the 
first ”possibility” should be read as referring to an icon being a possible sign of 
everything which resembles it in the respect so highlighted (only an index may make 
explicity which object or class of objects the sign more precisely refers to, so only the 
combination of icon and index holds the possibility of actually conveying information 
in the shape of a proposition).  The second ”possibility”, however, refers to the fact 
that the similarity characteristics defined by the first possibility involve ,in 
themselves, possibilities which are not explicit and which may be further developed: 

“For a great distinguishing property of the icon is that by the direct observation 
of it other truths concerning its object can be discovered than those which 
suffice to determine its construction”. ("That Categorical and Hypothetical 
Propositions are one in essence, with some connected matters," c. 1895, CP 
2.279).  

I have earlier argued (Stjernfelt 2000, Stjernfelt (forthcoming)) that this idea 
constitutes an epistemologically crucial property of the icon: it is nothing but an 
operational elaboration on the concept of similarity. The icon is not only the only kind 
of sign directly presenting some of the qualities of its object; it is also the only sign by 
the contemplation of which more can be learnt than lies in the directions for the 
construction of the sign. This definition immediately separates the icon from any 
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psychologism: it does not matter whether sign and object for a first (or second) glance 
seem or are experienced as similar; the decisive test for iconicity lies in whether it is 
possible to manipulate or develop the sign so that new information as to its object 
appears. This definition is non-trivial because it avoids the circularity threat in most 
definitions of similarity which has so often been noted.iii At the same time, it connects 
the concept of icon intimately to that of deduction. This is because in order to 
discover these initially unknown pieces of information about the object involved in 
the icon, some deductive experiment on the icon must be performed.  The prototypical 
icon deduction in Peirce’s account is the rule-governed manipulation of a geometrical 
figure in order to observe a theorem - but the idea is quite general: an icon is 
characterized by containing implicit information about its object which in order to 
appear must be made explicit by some more or less complicated deductive 
manipulation or experiment procedure accompanied by observation. Thus, Peirce’s 
diagrammatical logic rests on the basic idea that all knowledge, including logical 
knowledge, indispensably involves a moment of observation. Peirce thus writes, as 
early as 1885: 

”The truth, however, appears to be that all deductive reasoning, even simple 
syllogism, involves an element of observation; namely, deduction consists in 
constructing an icon or diagram the relations of whose parts shall present a 
complete analogy with those of the parts of the object of reasoning, of 
experimenting upon this image in the imagination, and of observing the result so 
as to discover unnoticed and hidden relations among the parts.” (”On the 
Algebra of Logic. A Contribution to the Philosophy of Notation” (1885), CP 
3.363) 

This operational criterion makes obvious the breadth of the diagram category within 
icons. As soon as rationally related parts of an icon is distinguished, and the 
manipulation of such parts is undertaken, we perform a diagram manipulation, 
developing some of the implicit possibilities involved in the icon. 

A very important use of this operational criterion of similiarity is now the 
appreciation of iconicity where it may not be, at a first glance, obvious. Peirce himself 
makes this use of the operational criterion when arguing that syllogistic logic or 
algebra are, in fact, instances of diagrammatical iconicity.  In what I believe is 
Peirce’s most detailed account for the diagrammatical reasoning process in general, 
abstracted from particular diagram systems, he thus argues this point (in ”PAP”  
(1906), a parallel version to ”Prologomena to an Apology for Pragmaticism” from the 
same year), Peirce (1976), p. 317-18): 

”Now necessary reasoning makes its conclusion evident. What is this 
“Evidence”? It consists in the fact that the truth of the conclusion is perceived, 
in all its generality, and in the generality of the how and the why of the truth is 
perceived. What sort of a Sign can communicate this Evidence? No index, 
surely, can it be; since it is by brute force that the Index thrusts its Object into 
the Field of Interpretation, the consciousness, as if disdaining gentle “evidence”. 
No Symbol can do more than apply a “rule of thumb” resting as it does entirely 
on Habit (including under this term natural disposition); and a Habit is no 
evidence. I suppose it would be the general opinion of logicians, as it certainly 
was long mine, that the Syllogism is a Symbol, because of its Generality. But 



 Two Iconicity Notions in Peirce’s Diagrammatology 73 

there is an inaccurate analysis and confusion of thought at the bottom of that 
view; for so understood it would fail to furnish Evidence. It is true that ordinary 
Icons, - the only class of Signs that remains for necessary inference, - merely 
suggest the possibility of that which they represent, being percepts minus the 
insistency and percussivity of percepts. In themselves, they are mere Semes, 
predicating of nothing, not even so much as interrogatively. It is, therefore, a 
very extraordinary feature of Diagrams that they show, - as literally show as a 
Percept shows the Perceptual Judgment to be true, - that a consequence does 
follow, and more marvellous yet, that it would follow under all varieties of 
circumstances accompanying the premisses.” 

Here, the operational criterion is used in order to include traditional syllogistic 
reasoning within the field of diagrams: the structure of syllogism simply is a diagram, 
even when presented in the clothing of ordinary language. The same criterion was 
early used by Peirce in order to include algebra as icons, even as involving icons ”par 
excellence” in the patterns of manipulation permitted: 

”As for algebra, the very idea of the art is that it presents formulæ which can be 
manipulated, and that by observing the effects of such manipulation we find 
properties not to be otherwise discerned. In such manipulation, we are guided by 
previous discoveries which are embodied in general formulæ. These are patterns 
which we have the right to imitate in our procedure, and are the icons par 
excellence of algebra.” (”On the Algebra of Logic. A Contribution to the 
Philosophy of Notation” (1885), CP 3.363) 

Even if Peirce in this very paper tries to develop a notation of logic which, unlike his 
later entiative and existential graphs, sticks to traditional algebraic representations, he 
already here acknowledges that such algebraic representations must necessarily be 
diagrammatic, as measured on the operational criterion of iconicity. Elsewhere, the 
extends that criterion to include also aspects of linguistic grammar in the diagram 
category. 

This operational criterion of iconicity thus becomes a very strong tool for a 
Peircean trying to chart the limits of iconicity. Unfortunately, Peirce never went into a 
further taxonomical exercise in order to chart the possible subtypes of diagrams – the 
only reference I found in this direction is a brief comment upon the diagram types of 
maps, algebra, and graphs, respectively.iv In any case, the operational criterion forms 
a very strong argument in a Peircean diagrammatology – yielding the means of a 
similarity test which is immune against psychologism and any subjective similarity 
impressions or confusions.  

This broad iconicity and diagram criterion is not, however, without any problems. 
One terminological issue is that the technical, Peircean notion of diagram is now 
extended to such a degree that the common-sense notion of diagrams vanishes in the 
haze and seems to constitute only a small subset of the new, enlarged category. 
Another, more serious problem, is that Peirce still tends to take such diagrams as 
prototypical diagrams in many discussions, generalizing diagram notions taken from 
them to the whole category of diagrams. This goes, e.g., for his distinction between 
corollarial and theorematical reasoning, distinguishing conclusions which may be 
directly read off the diagram, on the one hand, and more difficult inferences requiring 
the introduction of new entities in the diagram. This distinction is taken from the 



74 F. Stjernfelt 

prototypical diagram case of Euclidean geometrical diagrams where the new entities 
introduced are helping lines, etc. As Hintikka has argued, however, this distinction 
may be valid and indeed highly valuable when extrapolated to the more general 
category of diagrams. The most serious problem, however, in the generalization of the 
diagram concept, is connected to the lack of a rational sub-taxonomy of diagrams, 
namely: by which semiotic means should we now distinguish between, e.g. 
algebraical representations and topological-geometrical representations of the same 
content, as for instance the graphical and algebraical-arithmetical representations of 
the same mathematical functions? If the same amount of information may be 
operationally derived from such representations, they are, to the exact same degree, 
diagrammatical representations, and Peirce’s diagram category offers no means for us 
to distinguish the particular properties of these different representations. 

2   Optimal Iconicity 

This problem seems, indeed, to lie behind Peirce’s introduction of a second, 
moredemanding , notion of iconicity. It is well known that Peirce, in the latter half of 
the 90’s, gave up his early attempts from the 80’s at an algebra of logic (two versions 
of which were developed in 1880 and 1885), now preferring the development of 
graphical systems known as entiative and existential graphs. Especially the 
development of the latter was seen by Peirce himself as one of his major 
achievements, and they have been a central inspiration for diagrammatical or 
multimodal logic of our day, because they involve ”iconical” representations which 
differ highly from algebraical or ”symbolical” representation systems of formal logic, 
e.g. in the Peano-Russell tradition. I place ”iconical” and ”symbolical” in quotation 
marks here to emphasize that the use of such words in this context run directly 
counter to Peirce’s operational iconicity criterion. For according to this criterion, such 
representation systems are indeed diagrammatical and iconical to the exact same 
degree, provided they yield similar possibilities for extracting new information about 
their object. If the same theorems may be inferred from such systems, they are, on the 
operational criterion, both of them operationally iconical. And if we take Peirce’s two 
completed systems of ”iconical”  logic graphs, the Alpha and Beta systems of 
existential graphs, they have indeed been proved complete and consistent 
representations of propositional logic and first order predicate logic, respectively. So, 
in terms of which theorems may be derived from them, the Alpha and Beta graphs are 
just as iconical as propositional logic and first order predicate logic, as developed 
within mainstream formal logic, and vice versa. Peirce’s operational iconicity 
criterion does, it is true, provide the strong insight that these results of mainstream 
formal logic are not, contrary to widespread belief,  ”symbolical” in the sense that 
they do not involve iconical representations. They may, of course, be termed 
”symbolical” understood in the sense that they employ symbols to a larger degree 
than Peirce’s graphs (which also NB employ symbols), but this term may no longer be 
taken, implicitly, also to imply that they do not contain iconical representations of 
their object. This is, indeed, a very strong and to some extent counter-intuitive result 
of Peirce’s operational iconicity criterion. But it immediately raises a further question: 
what is then the difference between ”iconical” and ”symbolical” logic 
representations when it may no longer be expressed in terms of operational iconicity? 
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Even if Peirce does not explicitly (at least where I have searched in his writings) 
pose the question in these terms, this issue is involved in his introduction of a second, 
stronger iconicity criterion. This takes place especially in his discussion of the 
conventions used in his Beta system equivalent to first order predicate logic. While 
the Alpha system required only a sheet of assertion, letters representing propositions, 
same location of graphs indicating conjunctions, and cuts representing negations, the 
Beta system adds to these entities further conventions representing quantifications, 
variables, and predicates. The whole machinery of these issues  isintroduced by 
means of a very simple convention. Predicates with up to three variables (equivalent 
to functions with arguments in the Fregean tradition) are introduces by means of the 
verbal/predicative kernel of the predicate written directly on the graph with 
the corresponding subject slots indicated by blanks to be filled in by symbols for the 
subjects involved  (nouns, pronouns, or proper names). In ordinary text, such blanks 
are indicated by underlinings such as in ”________ gives _______ to __________” 
involving three blanks. In the Existential Graphs, similar lines are interpreted as ”lines 
of identity” so that any further determination of the identity of the subjects of these 
blanks are to be added to the ends of the lines. The very line of identity thus refers to 
a variable, and the line may branch in order to tie to different slots in different 
predicates, indicating that the individual(s) referred to by that line has those 
predicates. The spots at the end of such lines are, consequently, the second convention 
added: they refer, as indices, to the binding of the variables bearing the predicates in 
issue. Thus, the whole logical machinery of quantification, variables, and predicates is 
represented by these very simple means. If a line of identity abuts on the sheet of 
assertion (or on any evenly enclosed part of it, that is, by 2, 4, 6, ... cuts), then this 
immediately indicates the existential quantifier of ”Something exists which ...” and 
the three dots are then filled in by the predicates to which the line of identity connects 
this implicit quantification. Similarly, any such line of identity ending in an unevenly 
enclosed cut immediately indicates a negative universal quantifier.v  

In his development of the Beta system, Peirce lays a great emphasis on the fact that 
the representation of quantification and bound variables by the means of lines of 
identity is more iconical than the representation of the same issues by means of 
repeated identification of the same bound variables represented by symbols,vi so as for 
instance when he writes that 

”A diagram ought to be as iconic as possible, that is, it should represent 
relations by visible relations analogous to them.” (”Logical Tracts, vol. 2”, 
1903, CP 4.432) 

In quotes such as this, it may remain ambiguous which iconicity concept is exactly at 
stake, but the fact that Peirce considers alternative, more or less iconic, ways of 
representation of the same propositions and arguments, shows an alternative iconicity 
concept being considered. Peirce thus considers alternative representation as 
substitutes for Identity Lines (here ”Ligatures” as a concept for systems of Identity 
Lines meeting across cuts) under the headline of ”Selectives”: 

”A Ligature crossing a Cut is to be interpreted as unchanged in meaning by 
erasing the part that crosses to the Cut and attaching to the two Loose Ends so 
produced two Instances of a Proper Name nowhere else used; such a Proper 
name (for which a capital letter will serve) being termed a Selective.” 
(”Prolegomena to an Apology for Pragmaticism” (1906), CP 4.561) 
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In cases where the web of Lines of Identity in a Beta graph becomes so entangled that 
it is difficult to survey, some of these lines may be cut, and the identity of the now 
severed and scattered bits of Identity Line may be secured by the addition of identical 
symbolical letters to the outermost end of the remaining Identity Line bits. When 
reading the graph outside-in, the reader must now take note of the quantification 
indicated by the location of that outermost Identity Line end, remember the letter 
representing the Selective and identify the more innerly appearances of the same letter 
with the first quantification. Peirce explicitly regrets the introduction of these 
Selectives because they lack the iconicity of identity lying in the continuous line 
connecting the different predicate which this Identity Line takes:vii  

”[The] purpose of the System of Existential Graphs, as it is stated in the 
Prolegomena [533], [is] to afford a method (1) as simple as possible (that is to 
say, with as small a number of arbitrary conventions as possible), for 
representing propositions (2) as iconically, or diagrammatically and (3) as 
analytically as possible. [...] These three essential aims of the system are, every 
one of them, missed by Selectives.” (”The Bedrock beneath Pragmaticism” (2), 
1906, CP 4.561 n.1) 

The substition for the Identity Line by Selectives is less iconic because it requires the 
symbolic convention of identifying different line segments by means of attached 
identical symbols. The Identity Line, on the other hand, is immediately an icon of 
identity because it makes use of the continuity of the line which so to speak just 
stretches the identity represented by the spot – and which is, at the same time, a 
natural iconical representation of a general concept: 

”The second aim, to make the representations as iconical as possible, is likewise 
missed; since Ligatures are far more iconic than Selectives. For the comparison 
of the above figures shows what a Selective can only serve its purpose through a 
special habit of interpretation that is otherwise needless in the system, and that 
makes the Selective a Symbol and not an Icon; while a Ligature expresses the 
same thing as a necessary consequence regarding each sizeable dot as an Icon of 
what we call an ”individual object”; and it must be such an Icon if we are to 
regard an invisible mathematical point as an Icon of the strict individual, 
absolute determinate in all respects, which imagination cannot realize.” (ibid.) 

The Peircean Selective, of course, does exactly the same as quantification with bound 
variables undertake in the traditional system: the first presentation of the variable 
determines the quantification of it, and later occurrences of that variable in the logical 
expression remains under the scope of that quantifier. But it remains a  second-rate, 
anti-iconic representation when one and the same bound variable is no longer 
represented by one entity only (the line of identity) but is, instead, represented by a 
series of different lines of identity identified only by the addition of symbolical 
indices, or, as in ordinary formal logic, by the series of x’s or y’s, identified only by 
their merely symbolical identity. 

The reason why Peirce considers the introduction of Selectives at all is, of course, 
that in sufficiently complicated Beta graphs involving many variables taking many 
predicates, the network of Identity Lines may form a thicket hard to get a simple 
visual grasp of. The reason for introducing Selectives is thus heuristic and 
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psychological, pointing to the specific competences and limitatins of a human 
observer; we might imagine a mind better equipped than ours which would be able to 
survey in one glance any complicated web of Identity Lines without having to resort 
to Selectives.  

But the important issue here is Peirce’s very motivation for preferring Identity 
Lines to Selectives in the first place: they are more iconical, because they represent in 
one icon entity what is also, in the object, one entity. This thus forms an additional, 
stronger iconicity criterion in addition to the operational iconicity criterion. One could 
object that Peirce was in no position to know the informational equivalence between 
his Beta system and what was only later named first order predicate logic – but still 
his argument was implicitly aimed against his own earlier algebraical attempts at 
logic formalization (a formalization, we should add, which through Schröder yielded 
a huge impact on Peano’s formalization merging with Russell to result in mainstream 
“symbolic” formal logic). In any case, Peirce realized that the two versions of Beta 
graphs, with Identity Lines and with Selectives, respectively, was logically 
equivalent, and the latter even in some cases heuristically superior. And still he 
preferred the former version in as many cases as possible, thereby indicating a 
criterion for distinguishing more and less iconical (2) representations among iconical 
(1) representations being equivalent under the operational criterion. We may indicate 
these two different concepts of iconicity by iconicity (1), referring to the operational 
criterion, and iconicity (2), referring to the ”more iconical”, optimal type of iconicity. 
Peirce’s arguments pro et con Identity Lines and Selectives display two different 
constraints on logic representations. What counts for the Selectives was heuristic, 
practical issues tied to the psychology of the reasoner – obviously a constraint deemed 
less noble by an avowed anti-psychologist like Peirce. What counts for the Identity 
Lines is rather an ontological argument: the idea that using them, Beta graphs more 
appropriately depict logical relations like they really are, thus adding to the pragmatist 
operational criterion of iconicity an ontologically motivated extra criterion. According 
to this criterion, if two icons are equivalent according to iconicity (1), still the 
representation which is most iconical according to iconicity (2) must be preferred – if 
heuristic arguments do not count against it, that is.  

This implies that the addition of iconicity (2) to Peirce’s iconicity doctrine is 
connected to his realism. It is well known that Peirce’s realism developed over the 
years, such as is documented most famously by his own diamond example from the 
very birthplace of pragmatism, How To Make Our Ideas Clear (1878), to which he 
returns in Issues of Pragmatism (1905) in order to correct what he now sees as a 
youthful failure. In his early doctrine, he claimed that if a diamond was formed within 
a bed of cotton and remained there until it was consumed by fire, it would be a mere 
convention to call that diamond hard, because it was never put to any test. In his 
mature correction, Peirce says that his earlier idea was nominalist and tied to an 
actualist conception of being. Now, he refers to the ”real possibilities” inherent in the 
very concept of diamond which implies that it is hard because it would be tested hard 
if subjected to the adequate testing – the hardness of the diamond is not only subject 
to testing but connected to other pieces of knowledge of diamonds’ molecular 
structure, reflection abilities, heat development during burning, etc. While earlier only 
admitting subjective possibilities – possibilities due to the fact that we possess 
incomplete knowledge about the fact in issue (in this sense, it is possible that there are 
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living beings on other planets, because we do not know it is not the case) – Peirce 
now admit that certain such possibilities also have a real character, laws of nature 
being the most clear expressions of such real possibilities (if I held a stone and let go, 
the stone would fall to the ground). Peirce’s admission of such real possibilities in the 
latter half of the 90’s considerably changes and enriches his concept of thirdness as 
well as his conception of the pragmatic maxim in terms of would-bes. Still, this 
realism was never really incorporated into his logic graphs.  

In Max Fisch’s famous charting of Peirce’s almost life-long development into a 
still more extreme – or consequent – realism, the last step, only hinted at in some of 
Peirce’s late writings, was the rejection of material implication – the nomal logical 
interpretation of the implication p -> q according to which it is equivalent to non-p or 
q. Of course, the traditional uneasiness with this interpretation is that according to this 
interpretation, all cases of p being false automatically render p -> q true, in contrast to 
different versions of strong implication, among those implication in everyday 
language where p being false rather makes the implication irrelevant than true. Most 
of his lifetime, Peirce was a strong defender of material implication (under the title of 
”Philonian”, as opposed to ”Diodoran” implication, the names stemming from 
Cicero’s reference to two competing  Hellenistic logicians), but Fisch is right in 
indicating that the mature Peirce expressed increasing doubts as to the possible 
nominalism inherent in material implication, admitting as early as 1898 that it does 
indeed seems strange that an occurrence of non-lightning should really support the 
implication that ”If it is lightening, it will thunder.”viii: 

”For my part, I am a Philonian; but I do not think that justice has ever been done 
to the Diodoran side of the question. The Diodoran vaguely feels that there is 
something wrong about the statement that the proposition ”If it is lightening, it 
will thunder,” can be made true merely by its not lightening.” (”Types of 
Reasoning” (1898), Peirce 1976, 169). .  

One even stronger locus of such doubt appears eight years later, and interestingly it 
addresses the interpretation of exactly the issue of Identity Lines in Beta and Gamma 
graphs:  

”Second, In a certain partly printed but unpublished "Syllabus of Logic," which 
contains the only formal or full description of Existential Graphs that I have 
ever undertaken to give, I laid it down, as a rule, that no graph could be partly in 
one area and partly in another; and this I said simply because I could attach no 
interpretation to a graph which should cross a cut. As soon, however, as I 
discovered that the verso of the sheet represents a universe of possibility, I saw 
clearly that such a graph was not only interpretable, but that it fills the great 
lacuna in all my previous developments of the logic of relatives. For although I 
have always recognized that a possibility may be real, that it is sheer insanity to 
deny the reality of the possibility of my raising my arm, even if, when the time 
comes, I do not raise it; and although, in all my attempts to classify relations, I 
have invariably recognized, as one great class of relations, the class of 
references, as I have called them, where one correlate is an existent, and another 
is a mere possibility; yet whenever I have undertaken to develop the logic of 
relations, I have always left these references out of account, notwithstanding 
their manifest importance, simply because the algebras or other forms of 
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diagrammatization which I employed did not seem to afford me any means of 
representing them. I need hardly say that the moment I discovered in the verso 
of the sheet of Existential Graphs a representation of a universe of possibility, I 
perceived that a reference would be represented by a graph which should cross a 
cut, thus subduing a vast field of thought to the governance and control of exact 
logic. 

Third, My previous account of Existential Graphs 

 

Fig. 1 

was marred by a certain rule which, from the point of view from which I thought 
the system ought to be regarded, seemed quite out of place and inacceptable, 
and yet which I found myself unable to dispute. I will just illustrate this matter 
by an example. Suppose we wish to assert that there is a man every dollar of 
whose indebtedness will be paid by some man 

 

Figs. 2-3 

or other, perhaps one dollar being paid by one man and another by another man, 
or perhaps all paid by the same man. We do not wish to say how that will be. 
Here will be our graph, Fig. 1. But if we wish to assert that one man will pay the 
whole, without saying in what relation the payer stands to the debtor, here will 
be our graph, Fig. 2. Now suppose we wish to add that this man who will pay all 
those debts is the very same man who owes them. Then we insert two graphs of 
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teridentity and a line of identity as in Fig. 3. The difference between the graph 
with and without this added line is obvious, and is perfectly represented in all 
my systems. But here it will be observed that the graph "owes" and the graph 
"pays" are not only united on the left by a line outside the smallest area that 
contains them both, but likewise on the right, by a line inside that smallest 
common area. Now let us consider a case in which this inner connection is 
lacking. Let us assert that there is a man A and a man B, who may or may not be 
the same man, and if A becomes bankrupt then B will suicide. Then, if we add 
that A and B are the same man, by drawing a line outside the smallest common 
area of the graphs joined, which are here bankrupt and suicide, the strange rule 
to which I refer is that such outer line, because there is no connecting line within 
the smallest common area, is null and void, that is, it does not affect the 
interpretation in the least. . . . The proposition that there is a man who if he goes 
bankrupt will commit suicide is false only in case, taking any man you please, 
he will go bankrupt, and will not suicide. That is, it is falsified only if every man 
goes bankrupt without suiciding. But this is the same as the state of things under 
which the other proposition is false; namely, that every man goes broke while 
no man suicides. This reasoning is irrefragable as long as a mere possibility is 
treated as an absolute nullity. Some years ago, however, when in consequence 
of an invitation to deliver a course of lectures in Harvard University upon 
Pragmatism, I was led to revise that doctrine, in which I had already found 
difficulties, I soon discovered, upon a critical analysis, that it was absolutely 
necessary to insist upon and bring to the front, the truth that a mere possibility 
may be quite real. That admitted, it can no longer be granted that every 
conditional proposition whose antecedent does not happen to be realized is true, 
and the whole reasoning just given breaks down. 

 
Figs. 4-5 

I often think that we logicians are the most obtuse of men, and the most 
devoid of common sense. As soon as I saw that this strange rule, so foreign to 
the general idea of the System of Existential Graphs, could by no means be 
deduced from the other rules nor from the general idea of the system, but has to 
be accepted, if at all, as an arbitrary first principle -- I ought to have asked 
myself, and should have asked myself if I had not been afflicted with the 
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logician's bêtise, What compels the adoption of this rule? The answer to that 
must have been that the interpretation requires it; and the inference of common 
sense from that answer would have been that the interpretation was too narrow. 
Yet I did not think of that until my operose method like that of a hydrographic 
surveyor sounding out a harbour, suddenly brought me up to the important truth 
that the verso of the sheet of Existential Graphs represents a universe of 
possibilities. This, taken in connection with other premisses, led me back to the 
same conclusion to which my studies of Pragmatism had already brought me, 
the reality of some possibilities. This is a striking proof of the superiority of the 
System of Existential Graphs to either of my algebras of logic. For in both of 
them the incongruity of this strange rule is completely hidden behind the 
superfluous machinery which is introduced in order to give an appearance of 
symmetry to logical law, and in order to facilitate the working of these algebras 
considered as reasoning machines. I cannot let this remark pass without 
protesting, however, that in the construction of no algebra was the idea of 
making a calculus which would turn out conclusions by a regular routine other 
than a very secondary purpose. . . .” (”For the National Academy of Sciences, 
1906 April Meeting in Washington”, CP 4.579-81) 

In this long quotation, Peirce considerably revises the whole foundation of Beta and 
Gamma graphs. Cuts no longer represent negation, but merely possibility – they only 
represent negation if they enclose a further blank cut (meaning everything can be 
derived from the contents of the first cut, evidently making those contents false). 
Furthermore, material implication is given up or at least relativized: not all 
conditional propositions with false antecedents are true. References as relations are 
included as represented by graphs connecting actuality and possibility, evenly and 
unevenly enclosed cuts.  

Finally, there is the relation between Identity Line conventions and real 
possibilities which Peirce admitted in his metaphysics from the later 90’s onwards (cf. 
the diamond discussion). The ”strange rule” which Peirce refers to in the quote is 
presented earlier that very same year and says in its brief form that ”... there is some 
one individual of which one or other of two predicates is true is no more than to say 
that there either is some individual of which one is true or else there is some 
individual of which the other is true.” (”Prolegomena to an Apology for Pragmatism”, 
1906, CP 4.569). Now, this rule will imply that the two graphs representing ”if A 
becomes bankrupt, B will suicide”, and ”if A becomes bankrupt, A will suicide”, are 
identical. Both are falsified if every man goes bankrupt without any man suiciding. 
However, the two propositions are, evidently, not identical, A and B being potentially 
different persons in the former proposition, not so in the latter. But the ”strange rule” 
exactly makes of such possibilities mere ”nullities”. Peirce’s hasty and difficult 
reasoning at this point must refer to the fact that the possibility of A and B being 
identical is not a mere subjective possibility but a real possibility, given by the 
possible causal link between bankruptcy and suicidal tendencies, constituting a real 
tendency in social life.  

The fact that it is the very system of Existential Graphs which leads Peirce to these 
conclusions is taken to count among the chief virtues of that system. While his own 
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algebras hid such facts behind ”superfluous machinery” constructed with their 
(secondary) aim as reasoning machines, the Existential Graphs are not so constructed, 
but with the aim of displaying to the highest degree of detail and clarity every single 
logical step taken in reasoning. The efficiency of the algebras is thus contrasted to the 
logical detail of the graphs – this is an argument referring to the larger degree of 
iconicity (2) of the graphs, even if they may be equivalent as reasoning machines, that 
is, with respect to iconicity (1). 

This also leads to a further reinterpretation of the iconicity inherent in Identity 
Lines: 

”The System of Existential Graphs recognizes but one mode of combination of 
ideas, that by which two indefinite propositions define, or rather partially define, 
each other on the recto and by which two general propositions mutually limit 
each other upon the verso; or, in a unitary formula, by which two indeterminate 
propositions mutually determine each other in a measure. I say in a measure, for 
it is impossible that any sign whether mental or external should be perfectly 
determinate. If it were possible such sign must remain absolutely unconnected 
with any other. It would quite obviously be such a sign of its entire universe, as 
Leibniz and others have described the omniscience of God to be, an intuitive 
representation amounting to an indecomposable feeling of the whole in all its 
details, from which those details would not be separable. For no reasoning, and 
consequently no abstraction, could connect itself with such a sign. This 
consideration, which is obviously correct, is a strong argument to show that 
what the system of existential graphs represents to be true of propositions and 
which must be true of them, since every proposition can be analytically 
expressed in existential graphs, equally holds good of concepts that are not 
propositional; and this argument is supported by the evident truth that no sign of 
a thing or kind of thing -- the ideas of signs to which concepts belong -- can 
arise except in a proposition; and no logical operation upon a proposition can 
result in anything but a proposition; so that non-propositional signs can only 
exist as constituents of propositions. But it is not true, as ordinarily represented, 
that a proposition can be built up of non-propositional signs. The truth is that 
concepts are nothing but indefinite problematic judgments. The concept of man 
necessarily involves the thought of the possible being of a man; and thus it is 
precisely the judgment, "There may be a man." Since no perfectly determinate 
proposition is possible, there is one more reform that needs to be made in the 
system of existential graphs. Namely, the line of identity must be totally 
abolished, or rather must be understood quite differently. We must hereafter 
understand it to be potentially the graph of teridentity by which means there 
always will virtually be at least one loose end in every graph. In fact, it will not 
be truly a graph of teridentity but a graph of indefinitely multiple identity. 

We here reach a point at which novel considerations about the constitution of 
knowledge and therefore of the constitution of nature burst in upon the mind 
with cataclysmal multitude and resistlessness.” (op.cit., CP 4.583-84) 

All Identity Lines are now to be considered implicitly polyadic – for the realist reason 
that the entities referred to may have other predicates in common than the ones 
explicitly mentioned in the graph, thus sharing real possibilities which are not referred 
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to in the explicit graph. Peirce never consistently revised the Graphs according tothe 
cataclysms of ideas proposed here, but it is obvious that the revisions proposed 
pertain to the overall idea of iconicity (2) – the attempt at making the graphs match 
ontological structure to as large a degree as possible. 

3   The Pragmatic Maxim and the Two Iconicity Notions 

The coexistence of two competing iconicity criteria in the mature philosophy of 
Peirce raises further questions. What about the pragmatic maxim, Peirce’s  basic idea 
that the content of all conceptions may be exhausted by considering which practical 
effects those conceptions would be conceived to have under imagined circumstances? 
The operational iconicity criterion seems moulded after the pragmatic maxim due to 
the reductivist action foundation of both: anything which does not have conceived 
consequences, practically or theoretically, may be discarded. The investigation of 
possible practical consequences in the former case mirrors the investigation of 
possible theorems to be inferred in the latter. But this interpretation leaves iconicity 
(2) in  a strange vacuum. If optimal iconicity remains without any practically 
conceivable consequences, it may be thought to belong to what may be discarded by 
the maxim as superfluous verbiage. For is there any conceivable practical difference 
between Identity Lines and Selectives in Existential Graphs? Of course there is the 
realist conviction that Identity Lines may refer to real generals which may be easier 
grasped (in some cases, at least) by Identity Lines than by Selectives? And of course 
there is the practical issue that in complicated cases, Selectives may facilitate an 
easier use of the graphs than Identity Lines. But at the same time, the amount of 
theorems, of new information, accessible by the two means are supposed to be exactly 
the same? Maybe, this difference corresponds to two different readings of the 
pragmatic maxim, cf. Peirce’s own two readings without and with the hardness of the 
untested diamond, respectively. The untested diamond hardness and the realist 
interpretation of the pragmatic maxim seems to correspond to the addition of iconicity 
(2) as a criterion with its possibilities for distinguishing between more and less 
iconical representations in addition to the provision of new information, while the 
earlier, nominalist idea corresponds to the version of the maxim where it charts 
testable regularities and nothing more. Just like existence is no predicate, it seems like 
Peircean reality is no predicate neither, and the addition of reality does not add to the 
amount of information which may be taken out of any given predicate. But Iconicity 
(2) may add, in some cases, to the heuristics of working with representation systems, 
just like it presents the same information in a so to speak ontologically more valid 
form.  If that interpretation is correct, then the introduction of iconicity (2) as a 
criterion constitutes yet another step in Peirce’s lifelong movement towards realism, 
as charted by Max Fisch. In that case, Iconicity (2) is tightly interwoven with the step 
leading from the Real Possibilities introduced in the latter half of the 90’s as the 
central mode of Thirdness on the one hand,  and to Peirce’s final and most realist 
position in search for stronger implications than material implication in the years after 
1900, on the other hand. 
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NOTES 
i The tricotomy is the second out of Peirce’s three major tricotomies, referring to the sign’s 

relation to itself, to its object, and to its interpretant, respectively. In Peirce’s more developed 
series of ten tricotomies from his later years, it is the fourth. 

ii It is important to note that Peirce’s distinctions pertain to sign use rather than to the specific 
sign vehicles, based on his dictum ”A sign is only a sign in actu ...” ("Truth and Falsity and 
Error," Dictionary of Philosophy and Psychology, ed. J.M. Baldwin, pp. 718-20, vol. 2 
(1901); CP 3.569). Thus, the very same sign token may be used in some contexts as an image 
– paying no attention to what can be learnt from the relation between its parts – and in other 
contexts as a diagram. If, for instance, we took the crescent shape, image of the moon, and 
performed observations on it pertaining to the relation between its parts, if we, say, measured 
its area in comparison to the implicit full moon area, we would treat exactly the same sign 
token as a diagram.  

iii It is an interesting fact in the history of science that such attacks on the notion of similarity 
have come from otherwise completely opposed camps, namely the analytical tradition (.e.g. 
Nelson Goodman) on the one hand, and the (post-) structuralists in the continental tradition 
on the other (e.g. Umberto Eco). See Stjernfelt (2000a) and Stjernfelt (forthcoming).  

iv In “On Quantity” (ca. 1895, in Peirce 1976, p. 275). 
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v Peirce had already, in his algebras of logic and independently of Frege, invented the 

”symbolic” quantifier notion. Peirce’s version became later, through Schröder and Peano, the 
standard notation of ∀ and ∃ (in Peirce’s version ∏ and Σ, respectively).  

vi The issue of the iconicity of different aspects and conventions of Existential Graphs is far 
wider than the alternative between Identity Lines and Selectives which is chosen as the main 
case in our context because Peirce himself highlights it so thoroughly. The overall iconical 
motivation in the construction of the graphs is well indicated by Peirce when introducing the 
details of the graphs: 

“I dwell on these details which from our ordinary point of view appear unspeakably 
trifling, — not to say idiotic, — because they go to show that this syntax is truly 
diagrammatic, that is to say that its parts are really related to one another in forms of 
relation analogous to those of the assertions they represent, and that consequently in studying 
this syntax we may be assured that we are studying the real relations of the parts of the 
assertions and reasonings; which is by no means the case with the syntax of speech.” (MS 
514, “Existential Graphs” (1909), quoted from John Sowa’s commented version of that 
text). 

Shin (2002, 53-58) lists three basic iconical features of Beta graphs, namely Identity 
Lines, quantifiers and scope. Quantifiers do seem to come naturally because the end of an 
Identity Line in an unenclosed graph is simply taken to mean ”something is ...”, but it 
deserves mention that in Peirce’s earlier formalization attempt from the 90’s known as 
Entiative Graphs, in many respects dual to Existential Graphs, the very same sign is taken to 
stand for the universal quantifier. Maybe it could be argued that a point in a plane does 
indeed more naturally mean ”something” than ”all”. Scope seems to come natural in the 
endoporeutic, outside-in, reading of the graphs (which Shin is otherwise out to dismantle), 
because the outermost occurrence of part of an Identity Line defines the scope of the 
corresponding quantifier, and more innerly located quantifiers are taken to lie within the 
scope of the more outerly ones.  

In addition to these iconicities, a basic iconicity in Existential Graphs is one of its very 
motivating ideas in Peirce, namely the representation of material implication by means of a 
”scroll”, that is, two nested cuts where the premiss is placed within the outer cut but outside 
the inner cut, while the conclusion is placed in the inner cut. This geometrical inclusion of 
the conclusion within the premiss furnishes a simple iconic representation of the idea that the 
conclusion lies in, is inherent in, or is im-plicated by the premiss. Peirce proudly refers to this 
in CP 4,553 n1 (from ”The Bedrock beneath Pragmaticism”, 1906) while at the same time 
complaining about the lack of iconic representation of modality in the Graphs, a lack he 
attempts to remedy not much later, cf. below. 

Another issue discussed by Shin – but not in relation to iconicity – is Peirce’s distinction 
between logic systems as result-oriented calculi and logic systems as representations of 
logical thought process (a distinction she strangely thinks loses its relevance in graphical 
systems). Here, the former aims at quick and easy results, and a plurality of logical 
connectors and rules may be used to further that aim as expediently as possible. In the 
dissection of logical inference steps, on the other hand, as few connectors and rules as 
possible should be chosen, in order to be able to compare the single steps taken – a guideline 
explicitly followed in Peirce’s graphs. In this connection, Peirce remarks that it is ”... a defect 
of a system intended for logical study that it has two ways of expressing the same fact, or any 
superfluity of symbols, although it would not be a serious defect for a calculus to have two 
ways of expressing a fact.” (”Symbolic Logic”, in Baldwin’s Dictionary, 1901/1911, CP 
4.373). This requirement – which Existential Graphs do not perfectly satisfy – is obviously 
iconical, demanding the extinction of arbitrary, that is, non-iconical, choices between parallel 
representations. 

Finally, Pietarinen’s (forthcoming, 128-31) argument against Shin runs along these lines: 
her rewriting of the inference rules of Peirce’s  graphs gives many more rules and connectors 
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than does Peirce’s own version, and so is less analytical and iconical than his (even if maybe 
facilitating easier readability on some points). In his defense of the endoporeutic, outside-in, 
interpretation of the graphs against Shin’s attacks, Pietarinen highlights a further and very 
basic iconical feature in them: the dialogic structure, rhythmically changing between a 
Graphist and a Grapheus, responsible for existentially and universally quantified 
propositions, respectively, and thus responsible for taking turns in a dialogue where each of 
them manipulates the graph according to Peirce’s rules. Pietarinen of course makes this point 
in order to facilitate his interesting, Hintikkan interpretation of the graphs in terms of game-
theoretical semantics, where the two interlocutors hold opposed atrategic aims in the 
conversation: the proof or disproof of the initial proposition, respectively.In our context, we 
may emphasize the basic iconicity inherent in this conversational structure of the graphs, 
motivated in the supposedly dialogical structure of thought, be it between persons or between 
positions in one person’s thought and mind.  

vii Given the equivalence between Identity Line and Selective representations, we might use this 
idea in reconsidering ordinary Peano-Russell-style formal logic – here, we might see the 
different instances of the same bound variable in a symbolic expression as invisibly 
connected by an erased Identity Line running in an additional line parallel to the line of the 
normal expression.  

viii  Two years earlier, not long before the introduction of Real Possibilities in January 1897, the 
doubt is awakening: ”It may, however, be suspected that the Diodoran view has suffered 
from incompetent advocacy, and that if it were modified somewhat, it might prove the 
preferable one.” (”The Regenerated Logic”, 1896, CP 3.442-3). But as early as the second 
”On the Algebra of Logic” (1885, 3.374), Peirce states that ”If, on the other hand, A [the 
premiss] is in no case true, throughout the range of possibility, it is a matter of indifference 
whether the hypothetical be understood to be true or not, since it is useless. But it will be 
more simple to class it among true propositions, because the cases in which the antecedent is 
false do not, in any other case, falsify a hypothetical.” Here, Peirce observes the problem,  
but accepts material implication out of simplicity (and not iconicity) reasons. 
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Abstract. Sowa’s Conceptual Graphs and Formal Concept Analysis
have been combined into another knowledge representation formalism
named Concept Graphs. In this paper, we compare Simple Conceptual
Graphs with Simple Concept Graphs, by successively studying their dif-
ferent syntaxes, semantics, and entailment calculus. We show that these
graphs are almost identical mathematical objects, have equivalent se-
mantics, and similar inference mechanisms. We highlight the respective
benefits of these two graph-based knowledge representation formalisms,
and propose to unify them.

1 Introduction

Introduced in [19], Conceptual Graphs were extended in [20]. Since [5], the
“Montpellier school of conceptual graphs” has been studying this knowledge rep-
resentation formalism as a family of formal languages whose objects are graphs
and where inferences are computed using graph-based operations (e.g. [3]). In the
same way, [22] has proposed to combine conceptual graphs with Formal Concept
Analysis (FCA). This work has been developed in [18,7,8].

In this paper, we compare these two approches and focus on the mathematical
and computational viewpoints. Since we are interested in conceptual graphs
and concept graphs as logics, we will successively compare the syntax (Sect. 2),
semantics (Sect. 3), and calculus (Sect. 4) of these two languages.

2 Syntax

We show here that simple conceptual graphs and simple concept graphs are
avatars of the notion introduced by Sowa [19]. Only simple conceptual (or con-
cept) graphs are considered, thus the adjective simple is implicit hereafter.

In the first subsection, we show that, up to a well-known transformation, the
objects described by bipartite graphs and directed hypergraphs have the same
structure. Then we show that the vocabulary (or support) upon which conceptual
graphs are defined and the alphabet used for concept graphs are identical, with
some minor variants. Finally, we compare various definitions used for conceptual
and concept graphs.
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2.1 Hypergraphs and Bipartite Graphs

Let us recall a very well known bijection between hypergraphs and bipartite
graphs (see [4] for relationships between graphs and hypergraphs and [10] for
a more recent introduction to graph theory). Let H = (X, E) be a hypergraph
over X , that is X is a set (of vertices) and E a set of hyperedges i.e. non-empty
subsets of X . Let α(H) be the bipartite graph (X,R,E) defined as follows:

– R is disjoint from X and there is a bijection f from E to R,
– let c ∈ C and r ∈ R, (c, r) is in E iff c ∈ f−1(r).

It is simple to check that α is a bijection from the set of hypergraphs over X to
the set of bipartite graphs with the first vertex set X .

α(H) is called the incidence (bipartite) graph of H. It is straightforward to
extend the bijection α to a bijection from multi-hypergraph (i.e. E is no longer
a set of subsets but rather a family of subsets) to bipartite multi-graphs (E is
a family of edges). Let us call ordered multi-hypergraph a multi-hypergraph in
which any hyperedge is totally ordered. Let us call ordered bipartite multi-graph
a bipartite multi-graph in which any set of edges incident to a vertex of R is
totally ordered. α can be trivially extended to the ordered objects and one gets:

Property 1. The application α from the set of ordered multi-hypergraphs over X
to the set of ordered bipartite multi-graphs with first vertex set X is a bijection.

A bipartite graph is a graph, this trivial remark leads to a first important conse-
quence (other will be discussed after introducing conceptual graphs). When one
wants to graphically represent a hypergraph, a representation of its incidence
bipartite graph is generally drawn (see fig. 1). Although conceptual graphs
are usually defined via bipartite graphs, the alternative hypergraph definition is
sometimes used (e.g. [2], for more efficient algorithms).

2.2 Vocabulary and Alphabet

The structure, called support in [5], encoding terms, as well as type orderings
is the core of the canon [20]. Here we use the name vocabulary, which is more
standard in KR. A similar structure, named alphabet, is used in the concept
graphs formalism [18,7]. In this subsection we compare these two structures.

Definition 1 (Vocabulary). A vocabulary is a triple (TC , TR, I) where:

– TC , TR, I are pairwise disjoint sets.
– TC, the set of concept types, is partially ordered by a relation ≤ and has a

greatest element denoted �.
– TR, the set of relation symbols, is partially ordered by a relation ≤, and

is partitioned into subsets T 1
R, . . . , T

k
R of relation symbols of arity 1, . . . , k

respectively. The arity of a relation r is denoted arity(r). Furthermore, any
two relations with different arities are not comparable.

– I is the set of individual markers.
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Definition 2 (Alphabet). Relationships between an alphabet (G, C,R) and a
vocabulary are as follows:

– G = I the object names are the individual markers,
– C = TC the concept names are the type of concepts,
– R = TR ∪ {=} the relation names include the equality symbol.

Some definitions incorporate the generic marker ∗ in the vocabulary. This is not
necessary, since it is the same for all vocabularies, so we will only introduce it
in the definition of conceptual graphs. In the same way, the equality symbol is
not required in the definition of an alphabet. In logics, it is usually considered
separately from the relation symbols.

Both vocabulary and alphabet encode the same information, which could be
represented in logics by an ordered FOL language without function symbols in
which some unary predicates are distinguished.

2.3 Comparing Conceptual Graphs and Concept Graphs

Conceptual Graphs. The following definition is directly inspired from [5].
We will add in Sect. 4 conditions about coreference (they are only relevant for
computational purposes).

Definition 3 (Conceptual graph). A conceptual graph over a vocabulary V
is a 5-tuple (C,R,E, l, coref) such that:

– (C,R,E) is a multi-bipartite graph,
– coref is an equivalence relation over C,
– l is a labelling function of C ∪R such that:

• for any x ∈ C, l(x) ∈ TC × (I ∪ {∗}),
• for any x ∈ R, l(x) ∈ TR

• for any x ∈ R, the edges incident to x are labelled {1, . . . , arity(l(x))}

Concept Graphs. The first definition of a concept graph was proposed in [22].
We also present here the definitions from[18] and [7].

Definition 4 (Concept graph, [22]). An abstract concept graph is a struc-
ture G = (V, F, ν,D, κ, θ) for which:

– V and F are finite sets and ν is a mapping of E to
⋃n

k=1 V
k (n ≥ 2 s. t.

(V, F, ν) can be considered as a finite directed multi-hypergraph with vertices
from V and edges from F (we define | e |= k if ν(e) = (v1, . . . , vk)),

– D is a finite set and κ a mapping of V ∪ F to D s. t. κ(e1) = κ(e2) ⇒
| e1 |=| e2 | (the elements of D may be understood as abstract concepts),

– θ is an equivalence relation on V .

Prediger [18] slightly transforms the previous definition by removing the label
set D, and replacing it by the (exterior) notion of an alphabet:
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Definition 5 (Concept graph, [18]). A concept graph over the alphabet
(C,G,R) is a structure G = (V, F, ν, κ, ρ), where

– (V, F, ν) is a finite directed multi-hypergraph
– κ: V ∪ F → C ∪R is a mapping such that κ(V ) ⊆ C and κ(F ) ⊆ R, and all

e ∈ F with ν(e) = (v1, . . . , vk) satisfy κ(e) ∈ Rk,
– ρ: V → P(G) \ {∅} is a mapping.

There are two other syntactical differences between Wille and Prediger, in Wille’s
definition there is an equivalence relation over V , which is not the case in Predi-
ger, and in Prediger two labels are associated to an element of V : an element of
C and a non-empty subset of G. Thus, as Prediger said [18]:

”Apart from some little differences, the concept graphs correspond to
the simple conceptual graphs as defined in [5] or [20].”

More precisely, it is straightforward to extend the canonical bijection α from a
class of ordered multi-hypergraphs to the class of their incidence graphs to an
injective mapping, also called α, from the class of concept graphs over V to the
class of conceptual graphs over V .

Let G = (V, F, ν, κ, θ) be a concept graph, G = α(G) = (C,R,E, l, coref) is
defined as follows. Any x ∈ V with ρ(x) = {g1, . . . , gk}, k ≥ 2, is duplicated
into k nodes x1, . . . , xk. C is the union of the {x ∈ V s.t.|ρ(x)| = 1 and the set
of duplicated nodes. If ρ(x) = {g} then l(x) = (κ(x), g). If ρ(x) = {g1, . . . , gk}
then l(xi) = (κ(x), gi).

Any e ∈ F with ν(e) = (v1, . . . , vk) is transformed into |ρ(v1)| × . . .× |ρ(vk)
relation nodes of R with label κ(e) and whose neighborhood are the arity(κ(e))-
tuples associated with ρ(v1)× . . .× ρ(vk). The equivalence coref is the discrete
equivalence. This coding preserves the graphs semantics (Sect. 3).

Let’s consider now the third definition of concept graphs [7].

Definition 6 (Concept graphs, [7]). A concept graph over V is a structure
G = (V, F, ν, κ, ρ), where:

– V and F are pairwise disjoint, finite sets whose elements are called vertices
and edges,

– ν : F →
⋃

k∈N V k is a mapping (we write | e |= k for ν(e) ∈ V k,
– κ:V ∪ F → C ∪R is a mapping such that κ(V ) ⊆ C and κ(F ) ⊆ R, and all

e ∈ F with | e |= k) satisfy κ(e) ∈ Rk,
– ρ: V → G ∪ {∗} is a mapping.

This is almost the definition of conceptual graphs (modulo α). Instead of con-
sidering the equivalence relation induced by coreference links, it keeps, as Sowa,
coreference links. Considering two steps as in def 6 (a symmetric relation over
C or V , then its reflexo-transitive closure coref or θ), or directly the equivalence
relation as in def 3 and 4 is a matter of taste.

Let G = (V,E, ν, κ, ρ) be a Dau’s concept graph over A. The conceptual
graph α(G) = (C,R,E, l, coref) is defined as follows:
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The simple concept graph G (arguments are implicitely ordered from left to right)
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1 12
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The simple conceptual graph associated to G (arguments order is explicit)

Fig. 1. Drawings of G and of α(G)

– C = V , the concept nodes of α(G) are the vertices of G,
– R is a set in bijection with E, to each edge e of G a relation node noted α(e)

is associated (α is a bijection and C and R are disjoint),
– if ν(e) = (c1, . . . , ck), then for i = 1, . . . , k, {r = α(e), ci} is an edge of α(G),
– the label of a concept node c is l(c) = (κ(c), ρ(c)),
– the label of a relation node r is l(r) = κ(α−1(r)),
– the label of an edge {r = α(e), ci} of α(G) is i,
– a class of coref is composed of a connected component of the graph (V,=).

Let us consider the concept graph in fig. 1 (copied from [7]). If the equality
relation is replaced by coreference links, this is the drawing of α(G). Note that,
in the drawing of G there are no labels on the edges, but at least for the edges
incident to the oval vertices labelled R1, R2, S they must be added since it is
not stated that these relations are symmetrical. We think that it is interesting
to consider that the equality is a specific relation, and this is achieved by coref,
which is an equivalence relation and by drawing it with specific edges (coreference
links). In Figure 1 a drawing of α(G) is reproduced besides the drawing of G.

At this moment of our discussion, preferring concept or conceptual graphs
is a matter of taste not of real mathematical differences, since they are almost
the same mathematical objects. In the rest of the paper, we will now call CGs
conceptual as well as concept graphs, and will consider them as the same objects.

3 Semantics

In logics, semantics are provided to define the conditions under which an as-
sertion is true. An interpretation is a structure encoding a possible world. An
interpretation is a model of a formula F if the assertion encoded by F is true in
that world. The notions of interpretations and models lead to logical consequence
(or entailment), whose calculus will be detailed in Sect. 4.
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Definition 7. Let L be a logic, and G and H be two formulas of L. We say
that G entails H (or that H is a logical consequence of G) and note G |=L H iff
every interpretation that is a model of G is also a model of H.

We show here that models of CGs, defined in standard model-theoretic semantics
[20,16] or in Formal Concept Analysis [22,18,7], are equivalent.

3.1 Semantics for Conceptual Graphs

Historically, conceptual graphs semantics have been presented by a translation
Φ to FOL. This “logical semantics” is equivalent to model-theoretic semantics.

FOL Semantics of Conceptual Graphs. FOL semantics of conceptual graphs
described below were introduced by Sowa [20]. A FOL language is associated to
a vocabulary , and is composed of a set of constants equal to I and a set of
predicates equal to TC ∪ TR with their arities. The order over the symbol types
is represented by the following set of formulas.

Definition 8 (Φ(V)). Type ordering is translated by: ∀t1, t2 types of V of arity p
such that t2 ≤ t1, we obtain the formula ∀x1...xp(t2(x1, ..., xp)→ t1(x1, ..., xp)).

Definition 9 (Φ(G)). Given any CG G, the formula Φ(G) is built as follows.

1. A term term(c) is assigned to each concept c in the following way. If c is
generic (labelled by ∗), then term(c) is a variable, and if c and c′ are two
different generic concepts, then term(c) �= term(c′). If c is labelled by the
individual i, then term(c) = i.

2. An atom is assigned to each relation or concept:
– the atom t(term(c)) is assigned to each concept c of type t;
– the atom r(term(c1), . . . , term(ck)) is assigned to each relation node x,

where r is its type, k the arity of r and ci denotes the i-th neighbor of x.
3. To any coreference link between two nodes c and c′ is associated the formula

term(c) = term(c′). Let ϕ(G) be the conjunction of all preceding atoms.
4. Φ(G) is the existential closure of ϕ(G).

It is simple to check that definition 6 of a concept graph is simply a graph
reformulation of such a formula.

Model Theoretic Semantics for Conceptual Graphs. It is a direct trans-
lation [16] of the model-theoretic semantics of the formulas obtained by Φ.

Definition 10 (Interpretation of terms). The terms of a vocabulary (TC , TR,
I) are the elements of TC ∪ TR ∪ I. Their interpretation is a pair (D, δ) s.t.:

– D is a non-empty set;
– δ maps each marker of I to an element of D, each concept type of TC to a

subset of D, and each relation type of arity k in TR to a subset of Dk.
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Definition 11 (Model of a vocabulary). A model of a vocabulary V is an
interpretation I = (D, δ) of its terms s. t.:

– ∀c, c′ ∈ TC, c ≤ c′ ⇒ δ(c) ⊆ δ(c′)
– ∀r, r′ ∈ TR, r ≤ r′ ⇒ δ(r) ⊆ δ(r′)

Definition 12 (Model of a graph). Let G = (C,R,E, l, coref) be a conceptual
graph over a vocabulary V. An interpretation (D, δ) of the terms of V is a model
of G iff there is a mapping (an assignment) α from C to D s. t.:

– For any individual concept c with marker i: α(c) = δ(i);
– ∀c ∈ C, α(c) ∈ δ(type(c));
– ∀r ∈ R with neighbors (c1, . . . , ck), (α(c1), . . . , α(ck)) ∈ δ(type(r));
– ∀c, c′ ∈ C, (c, c′) ∈ coref ⇒ α(c) = α(c′).

It is easy to check that the models (as usually defined in FOL) of Φ(V) (resp.
Φ(G)) are exactly the models of V (resp. G).

Definition 13 (Deduction for Conceptual Graphs). Let V be a vocabulary,
and G and H be two conceptual graphs over V. We say that H is deducible from
G and V and note V , G |= H iff every interpretation that is a model of V and G
is also a model of H.

3.2 Semantics for Concept Graphs

The first semantics, based upon power context families [22], for concept graphs
was given by Prediger [18], we present here the slightly different version in [7].

Definition 14 (Power context family). A power context family is a family
−→K := (K0,K1, . . .) of formal contexts Kk := (Gk,Mk, Ik) such that G0 �= ∅
and for every k : Gk ⊆ (G0)k. The elements of G0 are the objects of −→K . A
pair (A,B) with A ⊆ Gk and B ⊆ Mk is called a concept of Kk if and only if
A = {g ∈ Gk |g Ik b for all b ∈ B} and B = {m ∈ Mk| a Ik m for all a ∈ A}.
A is called the extension ext((A,B)) and B is called the intension int((A,B)) of
the concept (A,B). The set of all concepts of a formal context Kk is denoted by
B(Kk). The elements of

⋃
k∈N0

B(Kk) are called concepts, and the elements of
R−→K =

⋃
k∈N

B(Kk) are called relation-concepts.

The structure used to interpret concept graphs is a power context family. Below
we split the definition of [7] (to differentiate interpretations and models), and
use conceptual graphs notations to facilitate comparison.

Definition 15 (Contextual interpretation). Let V be a vocabulary. A con-
textual interpretation of the terms of V is a pair (−→K , λ), where −→K is a power
context family and λ is a mapping that maps each marker of I to an element of
G0, each concept type of TC to an element of B(K0) ( i.e. a formal concept of
K0), and each relation type of arity k in TR to an element of B(Kk).
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Definition 16 (Contextual model of a vocabulary). Let V be a vocabulary.
A contextual interpretation of the terms of V is a contextual model of V iff the
mapping λ is order-preserving.

Equivalence Between Interpretations and Contextual Interpretations.
Here we present two transformations, the first c2i is from contextual interpreta-
tions into interpretations, and the second i2c from interpretations into contextual
interpretations. These transformations preserve the models of a vocabulary.

(c2i) Let C = (−→K , λ) be a contextual interpretation of V . We obtain c2i(C) =
(G0, δ) where δ is defined by:
– ∀i ∈ I, δ(i) = λ(i);
– ∀t ∈ TC , δ(t) = ext(λ(t));
– ∀r ∈ TR, δ(r) = ext(λ(r)).

(i2c) Let (D, δ) be an interpretation of V . We obtain i2c(I) = (−→K , λ) as follows:
– G0 = D;
– ∀c, c′ ∈ TC , we note c ≤δ c′ iff δ(c) ⊆ δ(c′). K0 is then the power con-

text over G0 associated with the partial order ≤δ (Dedekind-MacNeille
Completion theorem, [11], pp. 48);

– The power contexts Ki are constructed in the same way from the sets of
relation types of arity i.

Property 2. Let V be a vocabulary. I is a model of V ⇒ i2c(i) is a contextual
model of V ; conversely, C is a contextual model of V ⇒ c2i(C) is a model of V .

Proof. We successively prove the two assertions of this property:

– t ≤ t′ ⇒ δ(t) ⊆ δ(t′) (since I is a model of V , with t and t′ being concept or
relation types) ⇔ t ≤δ t′ (by construction of i2c) ⇔ λ(t) ≤ λ(t′) (Def. 16).

– t ≤ t′ ⇔ λ(t) ≤ λ(t′) ⇔ ext(λ(t)) ⊆ ext(λ(t′)) ⇔ δ(t) ⊆ δ(t′).
��

Definition 17 (Contextual model of a graph). Let V be a vocabulary and
G = (C,R,E, l, coref) be a CG over V. A contextual interpretation of the terms
of V is a contextual model of G iff there is a mapping α from C into G0 s.t.:

– if c is an individual concept node having marker i, α(c) = λ(i);
– ∀c ∈ C, α(c) ∈ ext(λ(type(c)));
– ∀r ∈ R, with neighbors (c1, . . . , ck), (α(c1), . . . , α(ck)) ∈ ext(λ(type(r)));
– (c, c′) ∈ coref⇒ α(c) = α(c′).

It is simple to check that the following property holds:

Property 3. Let V be a vocabulary, and G be a CG over V . I is a model of G ⇒
i2c(I) is a contextual model of G; conversely, C is a contextual model of G ⇒
c2i(C) is a model of G.
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Definition 18 (Deduction for Concept Graphs). Let V be a vocabulary,
and G and H be two concept graphs defined over V.We say that H is deducible
from G and note G |=c H iff all contextual models of G are also contextual
models of H.

The following theorem proves the equivalence between the two semantics. Thanks
to Props. 2 and 3., its proof is straightforward.

Theorem 1 (Equivalence of deductions). Let V be a vocabulary, and G and
H be two CGs over V. Then V , G |= H iff V , G |=c H.

In concept graphs, concept lattices are used to define the order relation on con-
cepts and relations as well as their interpretations. In conceptual graphs, there is
a separation between the syntax (the orders) and the semantics (set inclusions).
By considering interpretations at a syntactic level, concept lattices theory pro-
vide useful tools to build a vocabulary from examples.

4 Calculus

In this section, we discuss the various calculi proposed to compute entailment
in conceptual and concept graphs. In the first subsection (4.1), we compare the
derivation rules used as a sound and complete calculus for conceptual graphs [15]
and concept graphs [18,7]. Then (4.2) we compare their reformulation as a kind
of graph homomorphism named projection [5,18], and discuss the interests of this
global operation for efficiency purpose. Finally (4.3), we discuss the normality
requirement for a sound and complete projection mechanism, and the various
methods proposed to ensure that any graph could be put into its normal form.

4.1 Elementary Generalization/Specialization Rules

To compute conceptual graphs entailment, [20] proposed a sound set of derivation
rules that transform one graph into another one. This set of derivation rules has
been corrected in [15] to achieve completeness w.r.t. CGs semantics. Similar sets
of rules have been proposed in [18,7] for concept graphs.

These sets of derivation rules respect the same behavior: let G be a conceptual
or concept graph, and R be a set of derivation rules. A CG G′ is immediately
derived from G in R if G′ is obtained by applying a rule of R to G. A CG H is
derived from G in R if there is a sequence G = G0, G1, . . . , Gk = H where, for
i = 1 to k, Gi is immediately derived from Gi−1 in R. We note G �R H .

Rules for Conceptual Graphs. Two sets of rules have been proposed for CGs
in [20]. The first set S of rules, specialization rules, transforms a CG into a more
specific one, i.e. G �S H iff G,V |= H . The second set G of generalization rules
transforms a CG into a more general one i.e. H �G G iff G,V |= H . We present
here the sound and complete version of these rules proposed in [15].
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Specialization rules

1. Relation simplify: If two relation nodes have the same label and the same
ordered neighbours, delete one of them.

2. Restrict: Replace the label of any node by a more specific one.
3. Join: Merge two concept nodes having the same label.
4. Disjoint sum: Draw another CG next to the original one.
5. Co-reference addition: Merge two co-reference classes.
6. Co-identical join: Merge two concept-nodes that belong to the same co-

reference class.

Generalization rules The set of generalization rules is obtained by building the
inverse rules of the specialization rules presented above.

1. Relation duplicate: Duplicate a relation node (with the same ordered neigh-
bors and the same label).

2. Unrestrict: Replace the label of a relation or a concept node by a more
general one.

3. Detach: Split a concept node into two nodes of the same label. The union of
their neighbors is the original set.

4. Substract: Delete a connected component.
5. Co-reference deletion: Split a co-reference class.
6. Co-identical split: Split a node into two co-referent ones. The union of their

neighbors is the original set.

Rules for Concept Graphs. The following set of rules in [7] correspond to the
generalization rules of [15]. They update the rules in [18] to take co-reference into
account. The twelve rules in [7] are named Erasure, Iteration:, Deiteration, Gen-
eralization, Isomorphism, Exchanging references, Merging two vertices, Splitting
a vertex, �-erasure, �-insertion, Identify erasure and Identify deletion.

Since we have proven in Sect. 3 that conceptual graphs and concept graphs
have equivalent semantics, and since both generalization rules in [15] and [7] are
sound and complete w.r.t. these equivalent semantics, it follows that these two
sets of rules create the same graphs (up to the bijection in Sect. 2).

4.2 From Specialization Rules to Graph Homomorphism

Although with generalization/specialization rules we have a sound and complete
calculus for CGs, the need for efficient algorithms led us to consider another
operation: a graph homomorphism named projection [5]. We first show that the
equivalence between specialization rules and graph homomorphism is a well-
known characterization in graph theory. We then present two versions of projec-
tion, although the first does not require any normality condition, the second is
more efficient.
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Graph Theoretical Background. Let us first consider the two specialization
rules in [15] that have a direct impact on the structure of the graph, Join and
Disjoint Sum. Without any consideration on the labels, using these rules consists
in checking whether or not we can obtain a graph G from a graph H by making
a disjoint sum of H and a graph D, then by merging its vertices, i.e. by checking
whether or not a sequence of merges on H leads to a subgraph of G. This is
a well-known caracterization of the graph homomorphism problem, where the
merges are ususally called retracts [13].

Basically, a graph homomorphism is a mapping from the nodes of a graph into
the nodes of another one that preserves neighborhood. This standard definition
is easily updated to bipartite graphs (it must also preserve the bipartition) and
to labels (it must preserve some order relation on the labels). The main difficulty
in extending this definition to CGs is to take coreference into account.

CGs Homomorphism. We present here an extension of the usual graph homo-
morphism (usually called projection) that takes the particular features of CGs
specialization rules into account. This version does not require any normality
condition, since it projects coreference classes into other coreference classes (in-
stead of nodes into nodes). The following definition [6] translates the algorithm
in [12].

Definition 19 (Coreference projection). Let G and H be two CGs over a
vocabulary V. A coreference projection (or coref-projection) from H into G is a
mapping Π from the coreference classes of H into the coreference classes of G
such that:

– For each co-reference class C in H, let us consider the set of individual
markers I = {i1, . . . , ik} labelling the nodes of C. Then I is a subset of the
individual markers of Π(C).

– For each relation node r in H, with neighbors x1, . . . , xk and label t, let
us consider Ci the coreference class of xi, for 1 ≤ i ≤ k. Then there is a
relation node r′ in G whose label is more specific than t and whose neighbors
y1, . . . , yk are such that yi ∈ Π(Ci), 1 ≤ i ≤ k.

Theorem 2 (Soundness and completeness [6]). Let G and H be two CGs
over a vocabulary V. Then H coref-projects into G iff G,V |= H

Generalization/specialization rules and coref -projection are thus two calculi for
entailment of CGs. An immediate advantage of generalization/specialization
rules is that they allow us to generate all CGs that are more general/specific
than the given one. However, coref -projection is more efficient w.r.t. computing
entailmment between two CGs. Let us consider the difference between “compute
a graph homomorphism from H into G” and “check if a sequence of retracts of
H generates a graph isomorphic to a subgraph of G”. This simplification of our
problem corresponds to the core, which is the NP-complete part of our entail-
ment problem. Deciding on the existence of an homomorphism is an NP-complete
problem, and efficient algorithms can be used (e.g. see [15,2] for relationships
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with constraint networks). However, for specialization rules, even checking if a
graph is isomorphic to another one is an ISO-complete problem (an intermedi-
ary class between P and NP), and this test must be done after applying each
application of a rule. And even with a carefully written algorithm, there can be
an exponential number of rule applications.

The Need for a Normal Form. The normal form of a CG is an artefact
used to optimize coref -projection. It is neither a syntactic (see Sect. 2) nor a
semantic (see Sect. 3) requirement of CGs. A CG is said in normal form if every
coreference class contains a single node. If the graph G we look for a projection
into is in normal form, coref -projection becomes the standard projection [16]
(and also [18] for concept graphs), as expressed by the following definition. Since
we only have to examine the edges incident to the current node, and not those
incident to all the nodes belonging to the same coreference class, the calculus is
more efficient.

Definition 20 (Projection). Let G and H be two CGs over a vocabulary V.
A projection from H into G is a mapping π from the nodes of H into the nodes
of G such that:

– For each concept node c ∈ C(H), the type of c is more general than the type
of π(c), and if the marker of c is individual, π(c) has the same marker.

– For each coreferent concept nodes c, c′ in H, π(c) = π(c′).
– For each relation node r in H, with neighbors x1, . . . , xk and label t, there is

a relation node r′ in G having a more specific type and whose neighbors are
π(x1), . . . , π(xk).

Since projection is equivalent to coref -projection when G is in normal form, the
following theorem is a direct consequence of the previous one:

Theorem 3 (Soundness and completeness [20,16]). Let G and H be two
CGs over a vocabulary V, G being in normal form. Then H projects into G iff
G,V |= H.

Note that, historically, projection was proposed in [5] without any normality
condition. A counterexample was exhibited simultaneously in [16,21], leading to
two corrections: the normal form presented here, and the antinormal form [21]
for the query, which is less efficient for computational purposes.

4.3 CGs and Normalization

Although projection is an interesting, efficient algorithm to compute entailment
of CGs, it requires putting a CG into its normal form. This is done by merging
all vertices that belong to the same coreference class. However, this is not always
possible (what is the resulting type of the merge of two nodes having different
types?). Different solutions to this problem have been proposed:
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1. Syntactic restrictions: The conformity relation (assigning a type to each
individual marker), as well as explicit restrictions on co-reference are used
to force all vertices belonging to the same coreference class to have the
same type (e.g. [16]). A weakness of this solution is to impose syntactic
restrictions to solve calculus problems. It is of interest from a KR standpoint:
the conformity relation defined in the vocabulary is a modelling guide.

2. Semantic modifications: When merging concept nodes having different types,
the resulting type is their greatest common subtype. This lattice-theoretic
interpretation changes the semantics of the vocabulary, and also imposes a
syntactic restriction: the order on concept types must be a lattice (see CG-
list: CG: Individual Markers refer to unique entities? for a discussion on this
topic).

3. Syntactic extensions: Using type conjunction (e.g. [2,6]) in CGs naturally
solves this problem, but does not extend the expressivity of the language
(we have seen in Sect. 3 that concept types and unary relations have the
same interpretation, so a conjunction of concept types could be represented
by multiple unary relations).

5 Conclusion

In this paper, we have compared simple conceptual graphs and simple concept
graphs w.r.t. their syntax, semantics, and calculus.

Syntax. As mathematical objects, we have proven that, up to superficial differ-
ences, they are identical objects (there are simple injective mappings from one
class of objects to the other one).

Semantics. Concerning the interpretation of CGs, power context families are
not specific since they can define any ordered FOL structure. This shows that
the (model-theoretical) semantics for conceptual graphs and for concept graphs
are identical. Furthermore, power context families are not wholly used in the
definition of the entailment relation, only the order relation between concepts
(and relation-concepts) is used. Thus, in the development of a unified CG theory,
we propose to use power context families only for the construction of vocabularies
(i.e. ordered FOL languages).

Calculus. If the aim is to build software tools in order to solve actual problems,
one has to go beyond the decision problem of deduction and consider algorithms
for constructing solutions and thus computational efficiency. This explains why,
besides the interesting visual aspect of graphs in knowledge representation, we
emphasize the graph viewpoint in dealing with CGs. Graph theory is a mature
mathematical theory with many mathematical and algorithmic results that can
be imported into CGs, especially the homomorphism (projection) notion, which
is central in many computational and combinatorial problems (from graph col-
oring to category representation along with constraint satisfaction problems or
query inclusion problems in relational databases).
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Further Works. During our work on the different CGs semantics, it appeared
that conceptual graphs canonical models [14] (or isomorphic interpretations [1,2])
and concept graphs canonical models [18] (or Standard models in [7]) are similar
notions. Altogether, they correspond to Herbrand models in FOL. For space
requirements, this part of our work was not included in this paper, but will be
developed later.

Finally, we have shown in this paper that power context families were a too
expressive a structure for the reasonings involved in CGs. We intend to study
if this conclusion is still valid in different extensions of conceptual and concept
graphs (e.g. negation).
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Abstract. Conceptual Graphs Rules were proposed as an extension of
Simple Conceptual Graphs (CGs) to represent knowledge of form “if A
then B”, where A and B are simple CGs. Optimizations of the deduction
calculus in this KR formalism include a Backward Chaining that unifies
at the same time whole subgraphs of a rule, and a Forward Chaining
that relies on compiling dependencies between rules.
In this paper, we show that the unification used in the first algorithm
is exactly the operation required to compute dependencies in the second
one. We also combine the benefits of the two approaches, by using the
graph of rules dependencies in a Backward Chaining framework.

1 Introduction

Conceptual graphs (CG) rules [13] were proposed as an extension of simple CGs
[12] to represent knowledge of form ”if A then B”, where A and B are simple
CGs. This graph-based knowledge representation (KR) formalism (named SR
in [3]) was further formalized in [11]. Notwithstanding the interest of graphical
representation of knowledge for an human interaction purpose, we are mainly
motivated in using the graph structure of CGs to improve sound and complete
deduction algorithms. Using graph-theoretical operations, instead of translat-
ing CGs into their equivalent formulae and use a FOL solver, the algorithms
presented in this paper explore a different optimization paradigm in KR.

Simple CGs [12] form the basic KR formalism (named SG in [3]) on which
CG rules are built. The semantics Φ identifies them with formulae in positive,
conjunctive, existential FOL (without function symbols) [13]. Sound and com-
plete reasonings in SG (a NP-hard problem) can be computed with a kind of
graph homomorphism named projection [5].

Projection is also the elementary operation in Forward Chaining (FC) of
CG rules [11], a graph-based algorithm computing deduction in SR. Since CG
Rules can be translated into FOL formulae having the form of Tuple Generating
Dependencies (TGDs) [7], SR-deduction is semi-decidable.

A Backward Chaining (BC) framework is often used to avoid a major pitfall in
FC: applying rules that are unrelated to the query. Though CG Rules deduction
can be computed using a PROLOG-like BC algorithm, successively unifying
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predicate after predicate in the equivalent FOL formulae, [10] proposed to rely
upon the structure of the graph and unify at the same time whole subgraphs of
the rule (called pieces), effectively reducing the number of backtracks [7].

To optimize FC, [4] defines neutrality: a CG Rule R1 is neutral w.r.t. a rule
R2 if no application of R1 on a CG can create a new application of R2. The
resulting graph of rules dependencies (GRD) allows to reduce the number of
checks for rule applicability as well as the cost of these checks in FC.

In this paper, we show that the criterium used to compute dependencies in
[4] and the piece unification of [10] are similar operations. In particular, piece
unification generalizes computation of dependencies to rules having individual
markers in their conclusion (excluded in [4]). On the other hand, we generalize
piece unification to any type hierarchy (and not only lattices, as in [10]). We
propose solutions to use the GRD in a BC framework.

Organization of the paper. Sect. 2 and 3 are respectively devoted to simple
CGs (the SG language) and CG rules (SR). We present the syntax, the semantics
(via the translation Φ to FOL), and a sound and complete calculus (projection in
the first case, basic FC in the latter) of both languages. The first enhancement
of SR-deduction, the BC based upon piece unification [11,10], is presented
in Sect. 4. The graph of rules dependencies (GRD) [4], its use in FC, and its
relationships with piece unification, are presented in Sect. 5. Finally, in Sect. 6,
we show how to efficiently use the GRD in a BC framework.

2 Simple Conceptual Graphs

We recall fundamental results on simple CGs (without coreference links) [12,13].
Sect. 2.1 presents their syntax, and Sect. 2.2, their semantics [13]. We use these
formulas to define simple CGs deduction (SG-deduction in [3]). In Sect. 2.3,
we use projection [5] as a calculus for SG-deduction.

2.1 Syntax

Definition 1 (Vocabulary). A vocabulary is a tuple (TC , (T 1
R, . . . , T

N
R ), I, κ)

where TC , T
1
R, . . . , T

N
R are pairwise disjoint partially ordered sets (partial orders

are denoted by ≤), I is a set, and κ : I → TC is a mapping. Elements of TC

are called concept types, elements of T i
R relation types of arity i, elements of

I individual markers, and κ is the conformity relation.

Definition 2 (Simple CGs). A simple CG over a vocabulary V is a tuple
G = (E,R, ε, γ) where E and R are two disjoint sets, respectively of entities
and relations. The mapping ε labels each entity of E by a pair of TC × (I ∪ {∗})
(its type and marker). An entity whose marker is ∗ is called generic, other-
wise it is an individual. For each individual x ∈ E, type(x) = κ(marker(x)).
The mapping ε also labels each relation of R by a relation type (its type). We call
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degree of a relation the arity of its type. The mapping γ maps each relation of
degree k to a k-tuple of Ek. If γ(r) = (x1, . . . , xk) we denote by γi(r) = xi the
ith argument of r. If x and y are two arguments of r, x and y are neighbours.

Simple CGs can be seen both as bipartite multigraphs, as in [5] (γi(r) = e means
that there is an edge labelled i between the concept node e and the relation node
r); or as directed multiple hypergraphs, as in [2] (γ(r) = (x1, . . . , xk) is a directed
hyperarc whose ends are the concept nodes x1, . . . , xk).

Whatever the structure used to encode them, they share the same drawing. An
entity e with ε(e) = (t, m) is represented by a rectangle enclosing the string “t: m”.
A relation r typed t is represented by an oval enclosing the string “t”. If γ(r) =
(x1, . . . , xk), then for 1 ≤ i ≤ k, we draw a line between the oval representing r and
the rectangle representing xi, and write the number i next to it.

2.2 Semantics

Simple CGs semantics are often expressed via a translation Φ to first-order logics
[13], and deduction is defined by the logical consequence of associated formulas.
This translation Φ is explicited in [13,8].

– The interpretation Φ(V) of a vocabulary V is a FOL formula translating
the order on concept and relation types; i.e. a conjunction of formulae
∀x1 . . .∀xk(t(x1, . . . , xk) → t′(x1, . . . , xk)) where t is a type (concept or re-
lation) more specific than t′.

– The interpretation Φ(G) of a simple CG G is the existential closure of a
conjunction of atoms interpreting concepts and relations between them.

Definition 3 (SG-Deduction). Let G and H be two simple CGs over a vocab-
ulary V. We say that G entails H in V (and note G |=V H) iff Φ(H) is a logical
consequence of Φ(G) and Φ(V).

2.3 Calculus

Definition 4 (Projection). Let G and H be two simple CGs over a vocabulary
V, with G = (EG, RG, εG, κG) and H = (EH , RH , εH , κH). A projection from H
into G (according to V) is a mapping π : EH → EG such that:

– For each entity e ∈ EH , type(π(e)) ≤ type(e). If, moreover, e is an individ-
ual, then marker(π(e)) = marker(e).

– For each relation r ∈ RH , with γH(r) = (x1, . . . , xp), there exists a relation
r′ ∈ RG such that type(r′) ≤ type(r) and γG(r′) = (π(x1), . . . , π(xk)).

As a generalization of graph homomorphism, projection is NP-complete.

Normal form of a simple CG. A simple CG G over V is said normal if all its
individuals have distinct markers. A simple CG G is put into its normal form
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nf(G) by successively joining all pairs of individuals having the same marker.
We note join(e1, e2) the individual resulting from a join: it has same marker and
same type (thanks to the conformity relation) as e1 and e2. Putting a simple
CG into its normal form is linear in the size of the graph.

Theorem 1 (Soundness and completeness [9]). Let G and H be two simple
CGs over a vocabulary V. Then G |=V H if and only if there is a projection from
H into nf(G), the normal form of G, according to V.

3 Conceptual Graphs Rules

CG rules have been introduced in [13] as an extension of simple CGs allowing to
represent knowledge of form “if H then C”, where H and C are simple CGs.
As for simple CGs, we first present their syntax (Sect. 3.1) and semantics. As a
sound and complete calculus for SR-deduction, we present Forward Chaining
(FC) [11], based upon projection of simple CGs.

3.1 Syntax

Definition 5 (CG rules). A conceptual graph rule (or CG rule) over a vo-
cabulary V is a triple R = (λ,H,C) where H = (EH , RH , εH , γH) and C =
(EC , RC , εC , γC) are two simple CGs over V, and λ is a bijection between a
distinguished subset of generic entities of EH (called connecting entities of H)
and a subset of generic entities of EC (called connecting entities of C), s.t.
λ(e) = e′ ⇒ type(e) = type(e′). The simple CG H is called the hypothesis of R,
and C its conclusion. They are respectively denoted by Hyp(R) and Conc(R).

This definition of CG rules clearly relates to a pair of λ-abstractions [11].
The usual way to represent such a rule is by drawing two boxes next to each other.

The box to the left is the hypothesis box, and the box to the right the conclusion box.
Draw between these boxes an implication symbol ⇒. Draw the simple CG H (as done
in Sect. 2.1) in the hypothesis box and the simple CG G in the conclusion box. Finally,
for each pair (e, λ(e)) of connecting entities, draw a dashed line (a coreference link)
between the rectangle representing e and the rectangle representing λ(e).

3.2 Semantics

Interpretation of a CG Ruleset. Let R be a CG ruleset (a set of CG rules)
over V . Its interpretation Φ(R) is the conjunction of the FOL formulas Φ(R) of
form ∀x1 . . .∀xp(Φ(R) → (∃y1 . . .∃yqΦ(R))) interpreting its CG rules [11].

Definition 6 (SR-Deduction). Let G and H be two simple CGs over V, and
R be a CG ruleset. We say that G,R entails H in V (and note G,R |=V H) iff
Φ(H) is a logical consequence of Φ(G), Φ(R) and Φ(V).
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3.3 Calculus

Application of a CG rule. Let R = (λ,H,C) be a CG rule and G =
(E,R, ε, γ) be a simple CG over V . The CG rule R is said applicable to G iff
there is a projection π from Hyp(R) into nf(G). In that case, the application of
R on G following π produces a simple CG G′ = α(G,R, π) built as follows. We
define the disjoint union of two graphs G1, G2 as the graph whose drawing is
the juxtaposition of those of G1 and G2. We build the disjoint union of a copy
of nf(G) and of a copy of Conc(R). Then, for each pair (e, λ(e)) of connecting
entities in R, we join the entity x in the copy of nf(G) obtained from π(e) and
the entity y in the copy of Conc(R) obtained from λ(e). Since ε(e) = ε(λ(e)), the
label of x (i.e. the label of π(e)) is a specialization of the label of y, and ε(x) is
used as the label of join(x, y).

Deriving a simple CG with CG rules. Let R be a CG ruleset and G,G′

be two simple CGs over a vocabulary V . We say that G′ is immediately derived
from G in R (and note G

R	→ G′) iff there is a rule R ∈ R and a projection π
from Hyp(R) into G such that G′ = α(G,R, π). We say that G′ is derived from
G in R (and note G

R
� G′) iff there is a sequence G = G0, G1, . . . , Gn = G′ of

simple CGs over V such that, for 1 ≤ i ≤ n, Gi−1
R	→ Gi.

Theorem 2 (Soundness and completeness [11]). Let R be a CG ruleset,
and G and H be two simple CGs over a vocabulary V. Then G,R |=V H if and
only if there is a simple CG G′ such that G R

� G′ and H projects into nf(G′).

Forward Chaining of CG rules. The Forward Chaining (FC) algorithm [11]
immediately follows from theorem 2 and the property of confluence (Prop. 1).

Property 1 (Confluence). Let R be a CG ruleset, and G and H be two simple
CGs over a vocabulary V . Let us suppose that G,R |=V H . Then for every
simple CG G′ such that G

R
� G′, the entailment G′,R |=V H holds.

Any algorithm exploring all rule applications (Th. 2), e.g. using a breadth-first
method, in any order (Prop. 1), will lead to a simple CG entailing the query H ,
if it exists. Such an algorithm, named FC, is proposed here (Alg. 1).

Algorithm 1. Forward Chaining
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: yes iff G, R |=V H (infinite calculus otherwise).
ProjList ← ∅ ;
while true do

for R ∈ R do
for π ∈ Projections(Hyp(R), G) do

ProjList ← ProjList ∪{(R, π)} ;

for (R, π) ∈ ProjList do
G ← α(G, R, π) ;
if Projects?(H, G) then return yes ;
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Decidability. Since FOL formulae associated with CG rules have the same form
as TGDs [7], SR-deduction is semi-decidable (a sound and complete algorithm
can compute in finite time whenever the answer is yes, but cannot always halt
otherwise). Some decidable subclasses of the problem are proposed in [3]: let us
suppose that, after the nth execution of the while loop in Alg. 1, the simple CG
G obtained is equivalent to G as it was at the beginning of this loop. In that
case, the algorithm could safely stop and answer no. A CG ruleset ensured to
have this behavior is called a finite expansion set. Examples of finite expansion
sets are disconnected CG rules (having no connecting entities) or range restricted
CG rules (having no generic entity in the conclusion). Note that the union of
two finite expansion rulesets is not necessarily a finite expansion ruleset.

4 Piece Unification and Backward Chaining

FC generates explicitly knowledge implicitly encoded in CG rules. By opposition,
a Backward Chaining (BC) algorithm starts with the query H and rewrites it
using unification. The interest of piece unification [11,10] w.r.t. a PROLOG-like
unification, is that it unifies at the same time a whole subgraph, instead of a
simple predicate. Sect. 4.1 present preliminary definitions and Sect. 4.2 piece
unification. A BC algorithm using piece unification is presented in Sect. 4.3.

4.1 Preliminary Definitions

Definition 7 (Cut points, pieces). Let R = (λ,H,C) be a CG rule over V.
A cut point of C is either a connecting entity (Def. 5) or an individual of C. A
cut point of H is either a connecting entity of H or an individual of H whose
marker also appears in C. A piece P of C is a subgraph of C whose entities are
a maximal subset of those of C s.t. two entities e1 and e2 of C belong to P if
there is a path e1, x1, . . . , xk, e2 where the xi are not cut points of C.

Conjunctive CGs. When a CG rule R is applied to a simple CG G, the entities
of α(G,R, π) obtained from a join between a connecting entity of Conc(R) and
an entity of G may have a more specific label than the former entities (Sect. 3.3).
So to compute unification, we have to find which cut points of Conc(R) have
a common specialization with entities of the query. In [11,10], such common
specialization of two entities e1 and e2 was typed by the greatest lower-bound
(glb) of type(e1) and type(e2). The existence of the glb was ensured by using a
lattice as partial order on concept types. We generalize the previous approach
by considering, as in [2,6], conjunctive types.

A conjunctive CG is defined as a simple CG, but the type of an entity can
be the conjunction of types of TC . The interpretation of an entity e with ε(e) =
(t1� . . .�tp,m) is the conjunction φ(e) = t1(f(e))∧ . . .∧tp(f(e)). The partial or-
der on TC is extended to the partial order≤� on conjunctive types: t1�. . .�tp ≤�
t′1 � . . . � t′q iff ∀t′i, ∃tj with tj ≤ t′i. We define the join operation between two
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entities e1 and e2 having different (conjunctive) types: the type of e = join(e1, e2)
is the conjunction of the types of e1 and e2. If both e1 and e2 are individuals
with same marker m, or generic entities with m = ∗, the marker of e is also m.
If e1 has individual marker m and e2 is generic, the marker of e is m. The label
ε(e) defined here is the common specialization of ε(e1) and ε(e2). The projection
algorithm is the same as in Sect. 2.3, but relies on ≤� to compare conjunc-
tive types. Normalization relies on the above-mentioned join operation. Up to
these two differences, the soundness and completeness result (Th. 1) remains the
same.

Compatible partitions. A set of entities E is join compatible iff there is a
concept type of TC more specific than all types in E and there is at most one
individual marker in E. Let G be a simple or conjunctive CG and E be a join
compatible subset {e1, . . . , ep} of entities of G. The join of G according to E
is the conjunctive CG obtained by joining e1 and e2 into e, then by joining G
according to {e, e3, . . . , ep}, until this subset contains a single entity e: we note
e = join(E). Let S and S′ be two disjoint sets of entities. Let P = (P1, . . . , Pn)
and P ′ = (P ′

1, . . . , P
′
n) be two ordered partitions, resp. of S and S′ (a parti-

tion of X is a set of pairwise disjoint sets whose union equals X). P and P ′

are compatible partitions of S and S′ iff Pi ∪ P ′
i is a join compatible set, for

1 ≤ i ≤ n.

Definition 8 (Specialization according to a compatible partition). Let
G and G′ be two simple or conjunctive CGs over V. Let E and E′ be respective
subsets of entities of G and G′. Let P = (P1, . . . , Pn) and P ′ = (P ′

1, . . . , P
′
n)

be two compatible partitions of E and E′. The specialization of G according to
(P, P ′) is the conjunctive CG sp(G, (P, P ′)) built from G by building the join of
G according to Pi, for 1 ≤ i ≤ n, then by replacing the label of each join(Pi)
with its common specialization join(P ′

i ).

The join of G and G′ according to compatible partitions P and P ′ is the con-
junctive CG obtained by making the disjoint union of sp(G, (P, P ′)) and of
sp(G′, (P, P ′)), then by joining each join(Pi) with join(P ′

i ).

4.2 Piece Unification

Definition 9 (Piece unification). Let Q be a simple (or conjunctive) CG (the
query) and R = (λ,H,C) be a CG rule over V. Q and R are said unifiable iff
there is a piece unification between Q and R, i.e. a triple μ = (PC , PQ, Π)
where:

– PC and PQ are two compatible partitions, resp. of a subset of cut points of
C and a of subset of entities of Q that will be considered as cut points of
Q;
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– Π is a projection from a non-empty set of pieces of μ(Q) = sp(Q, (PC , PQ))
(cut points of μ(Q) are entities resulting from the join of cut points of Q)
into μ(R) = sp(C, (PC , PQ)) such that Π(join(PQ

i )) = join(PC
i ).

Rewriting of a query. An unification μ between a query Q and a CG rule R
determines a rewriting of Q (that can become a conjunctive CG). Simply put,
we remove from the new query the conclusion of R and add its hypothesis.

More precisely, let Q be a simple (or conjunctive) CG, R = (λ,H,C) be a
CG rule, and μ = (PC , PQ, Π) be a piece unification between Q and R. We call
unification result of μ on Q and note β(Q,R, μ) the conjunctive CG built as
follows:

1. Let SC and SQ be the sub-partitions of PC and PQ formed respectively
from the codomain and the domain of Π ;

2. Let SH be a partition of the subset of cut points of H that correspond to
the partition SC of cut points of C (if e is an entity of a partition SC

i of
SC , the entities g1, . . . , gq of H that correspond to e, i.e. either q = 1 and
λ(g1) = e or g1, . . . , gq and e have the same individual marker, belong to the
partition SH

i );
3. Build the conjunctive CGs Q′ = sp(Q, (SH , SQ)) and H ′ = sp(H, (SH , SQ));
4. Let P be a piece of Q whose entities are in the domain of Π . We remove

from Q′ all relations of P and all entities of P that are not cut points of
Q′;

5. We finally join Q′ and H ′ according to (SH , SQ).

Definition 10 (Resolution). Let H be a simple CGs, and R be a CG ruleset
(that includes the facts CG G as a rule with an empty hypothesis) over V. We
call resolution of H in R a sequence H = H1, H2, . . . , Hp+1 of conjunctive CGs
such that, for 1 ≤ i ≤ p, there is a piece unification μ between Hi and a rule
R ∈ R, Hi+1 = β(Hi,R, μ) and Hp+1 is the empty CG.

Theorem 3 (Soundness and completeness [11]). Let G and H be two sim-
ple CGs, and R be a CG ruleset over V. Then G,R |=V H if and only if there
is a resolution of H in R∪ {G} (G = (λ, ∅, G) is a CG rule equivalent to G).

Proof. [11,10] proves that if H = H1, H2, . . . , Hp+1 = ∅ is a resolution of H in
R using successively the rules Ri1 , . . .Rip = G, then there is a FC derivation
sequence G = G1, . . . , Gp that successively applies the rules Ri1 , . . .Rip−1 in re-
verse order, and such that H projects into Gp. Conversely, from a FC derivation,
we can extract a subsequence that corresponds to a resolution using the same
rules in reverse order. The theorem is a consequence of this correspondences
between FC and BC.
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4.3 Backward Chaining

Algorithm 2. Backward Chaining
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: If yes, then G, R |=V H , if no, then G, R �|=V H (no halting ensured).
UnifList ← NewFilo() ;
for R ∈ R ∪ {G} do

for μ ∈ Unifications(R, H) do
UnifList ← AddFilo(UnifList, (μ, R, H)) ;

while UnifList �= ∅ do
(μ, R, H) ← FiloRemove(UnifList) ;
H ′ ← Rewrite(μ, R, H) ;
if H ′ = ∅ then return yes ;
for R′ ∈ R do

for μ′ ∈ Unifications(R′, H ′) do
UnifList ← AddFilo(UnifList, (μ′, R′, H ′)) ;

return no ;

Comparing FC and BC. It is well known (e.g. [1]) in Logic Programing that,
from BC or FC, no algorithm is always better. The main differences are that
1) FC enriches the facts until they contain an answer to the query while BC
rewrites the query until all its components have been proven; 2) FC deriva-
tion is a confluent mechanism, while BC rewritings depends upon the order of
these rewritings, and thus requires a backtrack; and 3) FC enumerates all so-
lutions to the query by applying rules breadth-first, while BC usually (as in
Alg. 2) tries to find them quicker by rewriting the query depth-first (eventu-
ally missing solutions). A breadth-first version of BC, that misses no solution,
can be implemented by replacing the Filo structure of UnifList in Alg. 2 by a
Fifo. Completeness is then achieved at the expense of efficiency. [7] compares
piece unification with the standard PROLOG that unifies one predicate at a
time. Though piece unification leads to fewer backtracks in query rewriting, it
does not always translate to the overall efficiency of the algorithm, since these
backtracks are hidden in unifications. Optimization and compilation of unifi-
cations in the graph of rules dependencies (Sect. 6) can be solutions to this
problem.

5 Rules Dependencies in Forward Chaining

The notions of neutrality/dependency between CG rules were introduced in [4]
to enhance the basic FC (Alg. 1). The basic idea is expressed as follows: suppose
that the conclusion of R1 contains no entity or relation that is a specialization
of an entity or a relation in the hypothesis of R2. Then an application of R1 on
a given simple CG does not create any new application of R2. This is a simple
case of neutrality between rules. A general definition is provided in Sect. 5.1.We
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present in Sect. 5.2 a characterization of dependency (the inverse notion of neu-
trality), based upon piece unification, that generalizes the characterization of
[4]. Finally, in Sect. 5.3, we enhance FC by encoding all dependencies of a CG
ruleset (in the graph of rules dependencies [4]).

5.1 Neutrality and Dependency

Though the definition of neutrality and dependency expressed below seems
strictly identical to [4], it is indeed more general. A component of this def-
inition is rule application (Sect. 3.3). In this paper, the graph on which the
rule is applied is put into normal form, and not in [4]. As a consequence, the
algorithm was not complete for CG rulesets containing rules having individ-
uals in the conclusion. Since our definition of derivation takes into account
the need to put a simple CG into its normal form after each application of
a rule, the following definition of neutrality/dependency is more adapted to
SR-deduction.

Definition 11 (Neutrality, Dependency). Let R1 and R2 be two CG rules
over a vocabulary V. We say that R1 is neutral w.r.t. R2 iff, for every simple
CG G over V, for every projection π of Hyp(R1) into G, the set of all pro-
jections of Hyp(R2) into α(G,R1, π) and the set of all projections of Hyp(R2)
into G are equal. If R1 is not neutral w.r.t. R2, we say that R2 depends
upon R1.

5.2 Piece Unification and Dependency

Since we have changed the definition of derivation used in [4] the characterization
of dependency must take that change into account. We prove here that this
updated characterization corresponds to the piece unification of [11,10], for CG
rules that are not trivially useless. A CG rule R is said trivially useless if, for
every simple CG G, for every projection π of Hyp(R) on G, G = α(G,R, π). We
can remove in linear time all trivially useless rules from a CG ruleset.

Theorem 4. Let R1 and R2 be two CG rules over a vocabulary V, where R1 is
not trivially useless. Then R2 depends upon R1 if and only if Hyp(R2) and R1
are unifiable (see Def. 9).

Composition of unification and projection (noted  ). Let G and H be a simple
CG, and R be a CG rule over V . Let μ = (PC , PQ, Π) be a unification between
H and R. Let π be a projection from Hyp(R) into G. We say that μ and π
are composable iff for each compatible partition PH

i whose join belongs to the
domain of Π , the entities of Hyp(R) associated (by λ−1 or by sharing the same
individual marker) with the compatible partition PC

i of Conc(R) are all mapped
by π into the same entity noted f(PH

i ). If μ and π are composable, then we note
μ π : H → α(G,R, π) the partial mapping defined as follows: if e is a cut point
of PH

i in the domain of Π , then μ  π(e) = f(PH
i ), otherwise, if e is an entity



112 J.-F. Baget and É. Salvat

in the domain of Π that is not a cut point, μ  π(e) is the entity of α(G,R, π)
that corresponds to Π(e) in Conc(R). It is immediate to check that μ  π is a
partial projection from H into α(G,R, π).

Proof. Let us successively prove both directions of the equivalence:

(⇐) Suppose that Hyp(R2) and R1 are unifiable, and note μ such an uni-
fication. Let us consider the conjunctive CG G = β(Hyp(R2),R1, μ). We
transform it into a simple CG by replacing all its conjunctive types by one
of their specializations in TC (it exists, by definition of compatible partitions,
Sect. 4.1). There exists a projection π from Hyp(R1) into G: if e has been
joined in G, π(e) is this join, and π(e) = e otherwise. This mapping π is a
projection. It is immediate to check that μ and π are composable (see above).
Then μ π is a partial projection from Hyp(R2) into G′ = α(G,R1, π) that
uses an entity or relation of G′ that is not in G (or R1 would have been
trivially useless). Since BC is sound and complete, μ π can be extended to
a projection π′ of Hyp(R2) into G′, and π′ is not a projection from Hyp(R2)
into G. Then R2 depends upon R1.

(⇒) Suppose that H = Hyp(R2) and R1 are not unifiable. Let us consider
a simple CG G, and a projection π from H = Hyp(R1) into G. If there is a
projection from H) into α(G,R1, π) that is not a projection of H into G, it
means that there is a solution to the query H that requires the application
of R1. Since H and R1 are not unifiable, such a solution could not be found
by BC, which is absurd. ��

5.3 Graph of Rules Dependencies in Forward Chaining

In this section, we present an enhancement of FC (Alg. 1) that relies upon the
graph of rules dependencies (GRD) [4].

Building the Graph of Rules Dependencies. Let R be a CG ruleset over
V . We call graph of rules dependencies (GRD) of R, and note GRDV(R) the
(binary) directed graph whose nodes are the rules of R, and where two nodes R1
and R2 are linked by an arc (R1,R2) iff R2 depends upon R1. In that case, the arc
(R1,R2) is labelled by the set of all unifications between Hyp(R2) and R1. By con-
sidering the simple CG G encoding the facts as a CG rule with empty hypothesis
and the simple CG H encoding the query as a CG rule with empty conclusion, we
can integrate them in the GRD, obtaining the graph GRDV(R, G,H). Finally,
we point out that if a rule R is not on a path from G to H , then no application of
R is required when solving SR-deduction [4]. The graph SGRDV(R) obtained
by removing all nodes that are not on a path from G to H , called the simplified
GRD, is used to restrain the number of unnecessary rules applications.

The problem SR-dependency (deciding if a CG rule R2 depends upon a CG
rule R1) is NP-complete (since a unification is a polynomial certificate, and when
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R1 is disconnected, a unification is exactly a projection). Building the GRD is
thus a costly operation, that requires |R|2 calls to a NP-hard operation.

Using the Graph of Rules Dependencies in Forward Chaining. The
GRD (or its simplified version) can be used to enhance FC (Alg. 1) as fol-
lows. Let us consider a step of FC (an execution of the main while loop). The
PartialProjList contains all partial projections from the hypothesis of the CG
rules inR into G. If one of these partial projections can be extended to a full pro-
jection π of the hypothesis of a rule R, then R is applicable and the only rules that
will be applicable on α(G,R, π) (apart from those already in PartialProjList) are
the successors of R in the GRD. Moreover, the operator  is used to efficiently
generate partial projections of the hypothesis of these rules.

Algorithm 3. Forward Chaining using Rules Dependencies
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: yes iff G, R |=V H (infinite calculus otherwise).
D ← SimplifiedRulesDependenciesGraph(R, G, H) ;
PartialProjList ← NewFifo() ;
for R �= H ∈ Successors(D, G) do

for μ ∈ Unifications(D, G, R) do
PartialProjList ← AddFifo(PartialProjList, (R, μ)) ;

while true do
(R, π) ← FifoRemove(PartialProjList) ;
for π′ ∈ ExtendPartialtoFullProjections(Hyp(R), G, π) do

G ← α(G, R, π′) ;
if Projects?(H, G) then return yes ;
for R′ �= H ∈ Successors(D, R) do

for μ ∈ Unifications(D, R, R′) do
if Composable(μ, π′) then

PartialProjList ← AddFifo(PartialProjList, R′, μ � π′) ;

Evaluating the algorithm. With respect to the standard FC, FC with rules
dependencies (FCRD, Alg. 3) relies on three different optimizations:

1. using the simplified GRD allow to ignore some CG rules during derivation;
2. though FC, at each step, checks applicability of all rules in R, FCRD only

checks the successors of the rules applied at the previous step;
3. the operator  , by combining projections and unifications into a partial

projection, reduces the search space when checking applicability of a rule.

Though generating the GRD is a lengthy operation, it can be done once and
for all for a knowledge base (G,R), leaving only to compute the |R| unifications
of the query Q at run time. Moreover, even if the KB is used only once, the cost of
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the operations required to compute the GRD is included in the two first steps
(the main while loop) of the basic FC algorithm.

Finally, the GRD has been used in [4] to obtain new decidability result. If the
GRD (or the simplified GRD) has no circuit, then SR-deduction is decidable.
Moreover, if all strongly connected components of the GRD (or simplified GRD)
are finite expansion sets (see Sect. 3.3), then SR-deduction is decidable.

6 Rules Dependencies in Backward Chaining

The identification of dependencies and unifications (Th. 4) naturally leads to
the following question: how to efficiently use the GRD in a Backward Chain-
ing framework ? We consider the three interests of the simplified GRD in a FC
framework, at the end of Sect. 5.3, and show how they translate to a BC frame-
work (Sect. 6.1). In Sect. 6.2,we provide an update of BC (Alg. 2) that relies on
the simplified GRD. Further works on that algorithm are discussed in Sect. 6.3.

6.1 Reducing the Number of Searches for Unification

The simplified GRD can be used as in Forward Chaining to remove rules that
are not involved in reasonings: if there is no derivation sequence from G into
a solution of H that involves the rule R, then the correspondence between FC
and BC proves that no rewriting of H into ∅ involves that same CG rule R. We
should note that, if there is a path from R to H , but no path from G to R in
the GRD, simplifying the GRD removes this rule though the standard Backward
Chaining may try to use it in a rewriting sequence.

The second optimization brought by the GRD to Forward Chaining consists
in reducing the number of checks for applicability of a rule. To translate that
feature to Backward Chaining, we must ask if, after unifying a query with a
rule and rewriting this query w.r.t. this unification, we need to compute the
unifications of this new query with all the rules in the CG ruleset R. By giving a
negative answer to this question, Th. 5 shows that the GRD can be used during
BC for added efficiency.

Theorem 5. Let H be a simple CG, and R be a CG ruleset over a vocabulary
V. Let μ be an unification between H and R ∈ R. Let H ′ = α(H,R, μ) be the
rewriting of H according to μ. The following property holds: if R′ and H ′ are
unifiable then R′ is a predecessor of H or R in GRD(R, G,H).

Proof. Suppose R′ and H ′ are unifiable, by a unification μ′. We note H ′′ =
β(H ′,R′, μ′). Let us consider the simple CG G′ that specializes the conjunctive
CG H ′′, built in the same way as in the proof of Th. 4. Since G′ proves H ′′,
the correspondence between FC and BC implies that there exists a derivation
sequence G′, G′′ = α(G′,R′, π1), G′′′ = α(G′′,R, π2) such that H projects into
G′′′. Since FC with rules dependencies is complete, it means that either H de-
pends upon R′, or that R depends upon R′. ��



Rules Dependencies in Backward Chaining of Conceptual Graphs Rules 115

6.2 Backward Chaining with Rules Dependencies

The following algorithm uses the graph of rules dependencies in a Backward
Chaining framework to include the two optimizations discussed in Sect. 6.1.

Algorithm 4. Backward Chaining using Rules Dependencies
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: If Backward Chaining halts on yes, then G, R |=V H , if it halts on no,

then G, R �|=V H (but it can run infinitely).
D ← SimplifiedRulesDependenciesGraph(R, G, H) ;
UnifList ← NewFilo() ;
for R ∈ Predecessors(D, H) do

for μ ∈ Unifications(D, R, H) do
UnifList ← AddFilo(UnifList, (μ, R, H)) ;

while UnifList �= ∅ do
(μ, R, H) ← FiloRemove(UnifList) ;
H ′ ← Rewrite(μ, R, H) ;
if H ′ = ∅ then return yes ;
for R′ ∈ Predecessors(R) do

for μ′ ∈ ComputeNewUnifications(R′, H ′) do
UnifList ← AddFilo(UnifList, (μ′, R′, H ′)) ;

return no ;

6.3 Further Work: Combining Unifications

Finally, we point out that we have not used in this BC framework the third
optimization of FC brought by the GRD. In FC, the composition operator  
between the current projection and unifications is used to reduce the size of
projections that have to be computed during the following execution of the main
while loop. A similar operator, composing unifications into a partial unification,
would be required to achieve the same optimization result in BC.

7 Conclusion

In this paper, we have unified two optimization schemes used for computing
deduction with conceptual graphs rules [13,11] (SR-deduction), namely piece
unification in Backward Chaining [11,10], and the graph of rules dependencies
in Forward Chaining [4]. Our main contributions are listed below:

1. Unification of syntax: [11,10] defines simple CGs as bipartite multigraphs
and CG rules as pairs of λ-abstractions, while [4] defines them as directed
hypergraphs and colored CGs. We have unified these different syntaxes.

2. Generalization of piece unification: the definition of piece unification in
[11,10] does no longer rely on concept types being ordered by a lattice.

3. Generalization of dependencies: the definition of dependencies in [4] is
restricted to CG rules having no individual in the conclusion. This restriction
is dropped here.
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4. Identification of piece unification and dependencies: Up to the gener-
alizations above, we prove that piece unification and neutrality (the inverse
of dependency) are equivalent (Th. 4 in Sect. 5.2).

5. Use of the graph of rules dependencies in a Backward Chaining
framework: we show how the optimizations allowed by the GRD of [4] in a
FC framework are adapted to the BC framework of [11,10] (Th. 5 in Sect. 6).

Though the GRD already increases efficiency in both FC and BC, we are now
considering the following problems as research perspectives:

1. Traversals of the GRD: FC and BC rely respectively on a breadth and
depth-first traversal of the GRD. Different types of traversals can be tested.

2. Rewriting of a CG ruleset: Some transformations of rules preserve their
semantics (e.g. a rule with k pieces is equivalent to k rules with one piece).
What transformations can give a more efficient FC or BC?

3. Finding a composition operator for unifications: (Sect. 6.3)
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Abstract. We focus on two approaches to formal concept analysis
(FCA) of data with fuzzy attributes recently proposed in the literature,
namely, on the approach via hedges and the approach via thresholds.
Both of the approaches present parameterized ways to FCA of data with
fuzzy attributes. Our paper shows basic relationships between the two of
the approaches. Furthermore, we show that the approaches can be com-
bined in a natural way, i.e. we present an approach in which one deals
with both thresholds and hedges. We argue that while the approach via
thresholds is intuitively appealing, it can be considered a special case of
the approach via hedges. An important role in this analysis is played by
so-called shifts of fuzzy attributes which appeared earlier in the study
of factorization of fuzzy concept lattices. In addition to fuzzy concept
lattices, we consider the idea of thresholds for the treatment of attribute
implications from tables with fuzzy attributes and prove basic results
concerning validity and non-redundant bases.

1 Introduction and Motivation

Recently, there have been proposed several approaches to formal concept anal-
ysis (FCA) of data with fuzzy attributes, i.e. attributes which apply to objects
to various degrees taken from a scale L of degrees. In particular, parameterized
approaches are of interest where the parameters control the number of the ex-
tracted formal concepts. In this paper, we deal with two of these approaches,
namely the approach via hedges and the approach via thresholds. Hedges were
proposed as parameters for formal concept analysis of data with fuzzy attributes
in [10], see also [8, 11]. For particular choices of hedges, one obtains the original
approach by Pollandt and Bělohlávek [3, 23] and one-sided fuzzy approach, see
[9, 22, 14]. The idea of thresholds in formal concept analysis of data with fuzzy
attributes is the following. In a fuzzy setting, given a collection A of objects, the
collection A↑ of all attributes shared by all objects from A is in general a fuzzy
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set, i.e. attributes y belong to A↑ in various degrees A↑(y) ∈ L. It is then intu-
itively appealing to pick a threshold δ and to consider a set δA↑ = {y |A↑(y) ≥ δ}
of all attributes which belong to A↑ in a degree greater than or equal to δ. With
δ = 1, this approach was proposed independently in [22, 14]. In [15], this was ex-
tended to arbitrary δ. However, the extent- and intent-forming operators defined
in [15] do not form a Galois connection. This shortcoming was recognized and
removed in [16] where the authors proposed new operators based on the idea of
thresholds for general δ.

In our paper, we take a closer look at [16]. We show that while conceptually
natural and appealing, the approach via thresholds, as proposed in [16], can
be seen as a particular case of the approach via hedges. In particular, given a
data with fuzzy attributes, the fuzzy concept lattices induced by the operators
of [16] are isomorphic (and in fact, almost the same) to fuzzy concept lattices
with hedges induced from a data containing so-called shifts of the given fuzzy
attributes. This observation suggests a combination of the approaches via hedges
and via thresholds which we also explore. It is interesting to note that shifts
of fuzzy attributes play an important role for an efficient computation in a
factorization by similarity of a fuzzy concept lattice, see [2, 7]. In addition to
that, we apply the idea of thresholds to attribute implications from data with
fuzzy attributes and extend some of our previous results, see e.g. [6, 12].

2 Fuzzy Concept Lattices with Hedges and Thresholds

2.1 Preliminaries from Fuzzy Logic

We first briefly recall the necessary notions from fuzzy sets and fuzzy logic (we
refer to [3, 20] for further details). As a structure of truth degrees, we use an
arbitrary complete residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉, i.e. 〈L,∧,∨, 0, 1〉
is a complete lattice with 0 and 1 being the least and greatest element of L, re-
spectively (for instance, L is [0, 1], a finite chain, etc.); 〈L,⊗, 1〉 is a commutative
monoid (i.e. ⊗ is commutative, associative, and a⊗1 = 1⊗a = a for each a ∈ L);
and ⊗ and → satisfy so-called adjointness property, i.e. a⊗ b ≤ c iff a ≤ b → c
for each a, b, c ∈ L. Elements a of L are called truth degrees (usually, L ⊆ [0, 1]).
⊗ and → are (truth functions of) “fuzzy conjunction” and “fuzzy implication”.
Note that in [16], the authors do not require commutativity of ⊗ (but this plays
no role in our note). Note that complete residuated lattices are basic structures
of truth degrees used in fuzzy logic, see [18, 20]. Residuated lattices cover many
structures used in applications.

For a complete residuated lattice L, a (truth-stressing) hedge is a unary func-
tion ∗ satisfying (i) 1∗ = 1, (ii) a∗ ≤ a, (iii) (a → b)∗ ≤ a∗ → b∗, (iv) a∗∗ = a∗,
for all a, b ∈ L. A hedge ∗ is a (truth function of) logical connective “very true”
[21]. The largest hedge (by pointwise ordering) is identity, the least hedge is
globalization which is defined by a∗ = 1 for a = 1 and a∗ = 0 for a < 1.

For L = {0, 1}, there exists exactly one complete residuated lattice L (the
two-element Boolean algebra) and exactly one hedge (the identity on {0, 1}).
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By LU or LU we denote the set of all fuzzy sets (L-sets) in universe U , i.e.
LU = {A | A is a mapping of U to L}, A(u) being interpreted as a degree to
which u belongs to A; by 2U we denote the set of all ordinary subsets of U ,
and by abuse of notation we sometimes identify ordinary subsets of U with crisp
fuzzy sets from LU , i.e. with those A ∈ LU for which A(u) = 0 or A(u) = 1 for
each u ∈ U . For A ∈ LU and a ∈ L, a set aA = {u ∈ U | A(u) ≥ a} is called an
a-cut of A; a fuzzy set a→ A in U defined by (a→ A)(u) = a→ A(u) is called
an a-shift of A. Given A,B ∈ LU , we define a subsethood degree

S(A,B) =
∧

u∈U

(
A(u)→ B(u)

)
,

which generalizes the classical subsethood relation ⊆. S(A,B) represents a de-
gree to which A is a subset of B. In particular, we write A ⊆ B iff S(A,B) = 1
(A is fully contained in B). As a consequence, A ⊆ B iff A(u) ≤ B(u) for each
u ∈ U .

2.2 Fuzzy Concept Lattices with Hedges

A formal fuzzy context can be identified with a triplet 〈X,Y, I〉 where X is a
non-empty set of objects, Y is a non-empty set of attributes, and I is a fuzzy
relation between X and Y , i.e. I : X × Y → L. For x ∈ X and y ∈ Y , a degree
I(x, y) ∈ L is interpreted as a degree to which object x has attribute y. A formal
fuzzy context 〈X,Y, I〉 can be seen as a data table with fuzzy attributes with
rows and columns corresponding to objects and attributes, and table entries
filled with truth degrees I(x, y). For L = {0, 1}, formal fuzzy contexts can be
identified in an obvious way with ordinary formal contexts.

Let ∗X and ∗Y be hedges. For fuzzy sets A ∈ LX and B ∈ LY , consider fuzzy
sets A↑ ∈ LY and B↓ ∈ LX (denoted also A↑I and B↓I to make I explicit)
defined by

A↑(y) =
∧

x∈X(A∗X (x) → I(x, y)), (1)

B↓(x) =
∧

y∈Y (B∗Y (y) → I(x, y)). (2)

Using basic rules of predicate fuzzy logic, A↑ is a fuzzy set of all attributes
common to all objects (for which it is very true that they are) from A, and B↓

is a fuzzy set of all objects sharing all attributes (for which it is very true that
they are) from B. The set

B (X∗X , Y ∗Y , I) = {〈A,B〉 | A↑ = B, B↓ = A}

of all fixpoints of 〈↑, ↓〉 is called a fuzzy concept lattice of 〈X,Y, I〉; elements
〈A,B〉 ∈ B (X∗X , Y ∗Y , I) will be called formal concepts of 〈X,Y, I〉; A and B
are called the extent and intent of 〈A,B〉, respectively. Under a partial order ≤
defined on B (X∗X , Y ∗Y , I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2,

B (X∗X , Y ∗Y , I) happens to be a complete lattice and we refer to [10] for results
describing the structure of B (X∗X , Y ∗Y , I). Note that B (X∗X , Y ∗Y , I) is the
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basic structure used for formal concept analysis of the data table represented by
〈X,Y, I〉.
Remark 1. Operators ↑ and ↓ were introduced in [8, 10] as a parameterization of
operators A⇑(y) =

∧
x∈X(A(x) → I(x, y)) and B⇓(x) =

∧
y∈Y (B(y) → I(x, y))

which were studied before, see [1, 4, 23]. Clearly, if both ∗X are ∗Y are identities
on L, ↑ and ↓ coincide with ⇑ and ⇓, respectively. If ∗X or ∗Y is the identity on L,
we omit ∗X or ∗Y in B (X∗X , Y ∗Y , I), e.g. we write just B (X∗X , Y, I) if ∗Y = idL.

2.3 Fuzzy Concept Lattices Defined by Thresholds

In addition to the pair of operators ⇑ : LX → LY and ⇓ : LY → LX , the authors
in [16] define pairs of operators (we keep the notation of [16]) � : 2X → 2Y

and � : 2Y → 2X , � : 2X → LY and � : LY → 2X , and ♦ : LX → 2Y and
♦ : 2Y → LX , as follows. Let δ be an arbitrary truth degree from L (δ plays a
role of a threshold). For A ∈ LX , C ∈ 2X , B ∈ LY , D ∈ 2Y define C� ∈ 2Y and
D� ∈ 2X by

C� = {y ∈ Y |
∧

x∈X(C(x) → I(x, y)) ≥ δ}, (3)
D� = {x ∈ X |

∧
y∈Y (D(y) → I(x, y)) ≥ δ}; (4)

C� ∈ LY and B� ∈ 2X by

C�(y) = δ →
∧

x∈C I(x, y), (5)
B� = {x ∈ X |

∧
y∈Y (B(y) → I(x, y)) ≥ δ}; (6)

and A♦ ∈ 2Y and D♦ ∈ LX by

A♦ = {y ∈ Y |
∧

x∈X(A(x) → I(x, y)) ≥ δ}, (7)

D♦(x) = δ →
∧

y∈D I(x, y), (8)

for each x ∈ X , y ∈ Y .
Denote now the corresponding set of fixpoints of these pairs of operators by

B (X�, Y�, I) = {〈A,B〉 ∈ 2X × 2Y |A� = B,B� = A},
B (X�, Y�, I) = {〈A,B〉 ∈ 2X × LY |A� = B,B� = A},
B (X♦, Y♦, I) = {〈A,B〉 ∈ LX × 2Y |A♦ = B,B♦ = A},
B (X⇑, Y⇓, I) = {〈A,B〉 ∈ LX × LY |A⇑ = B,B⇓ = A} (= B (X,Y, I)).

2.4 Fuzzy Concept Lattices with Hedges and Thresholds

We now introduce a new pair of operators induced by a formal fuzzy context
〈X,Y, I〉. For δ, ε ∈ L, fuzzy sets A ∈ LX and B ∈ LY , consider fuzzy sets
A↑I,δ ∈ LY and B↓I,ε ∈ LX defined by

A↑I,δ (y) = δ →
∧

x∈X(A∗X (x) → I(x, y)), (9)

B↓I,ε(x) = ε→
∧

y∈Y (B∗Y (y)→ I(x, y)). (10)

We will often write just A↑ and B↓ if I, δ, and ε are obvious, particularly if
δ = ε.
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Remark 2. Note that, due to the properties of →, we have that A↑I,δ (y) = 1 iff

δ ≤
∧

x∈X(A∗X (x) → I(x, y)),

i.e. iff the degree to which y is shared by all objects from A is at least δ. In
general, A↑I,δ (y) can be thought of as a truth degree of the degree to which y is
shared by all objects from A is at least δ. We will show that this general approach
involving the idea of thresholds subsumes the proposals of [16] as special cases.
Moreover, unlike formulas (5) and (6), and (7) and (8), formulas for operators
↑I,δ and ↓I,δ are symmetric.

The set
B (X∗X

δ , Y ∗Y
ε , I) = {〈A,B〉 | A↑ = B, B↓ = A}

of all fixpoints of 〈↑, ↓〉 is called a fuzzy concept lattice of 〈X,Y, I〉; elements
〈A,B〉 ∈ B (X∗X

δ , Y ∗Y
ε , I) will be called formal concepts of 〈X,Y, I〉; A and B

are called the extent and intent of 〈A,B〉, respectively.

Remark 3. Since 1 → a = a for each a ∈ L, we haveA↑I,1 = A↑I and B↓I,1 = B↓I

and, therefore, B (X∗X
1 , Y ∗Y

1 , I) = B (X∗X , Y ∗Y , I).

Basic Relationships to Earlier Approaches. The following theorem shows
that from a mathematical point of view, B (X∗X

δ , Y ∗Y

δ , I) is, in fact, a fuzzy
concept lattice with hedges (i.e. without thresholds) induced by a δ-shift δ → I
of I.

Theorem 1. For any δ ∈ L, ↑I,δ coincides with ↑δ→I , and ↓I,δ coincides with
↓δ→I . Therefore, B (X∗X

δ , Y ∗Y

δ , I) = B (X∗X , Y ∗Y , δ → I).

Proof. Using a → (b → c) = b → (a → c) and a → (
∧

j∈J bj) =
∧

j∈J (a → bj)
we get

A↑I,δ (y) = δ →
∧

x∈X(A∗X (x) → I(x, y)) =
=

∧
x∈X(δ → (A∗X (x) → I(x, y))) =

=
∧

x∈X(A∗X (x) → (δ → I(x, y))) = A↑δ→I (y).

One can proceed analogously to show that ↓I,δ coincides with ↓δ→I . Then the
equality B (X∗X

δ , Y ∗Y

δ , I) = B (X∗X , Y ∗Y , δ → I) follows immediately.

Remark 4. (1) Using [10], Theorem 1 yields that B (X∗X

δ , Y ∗Y

δ , I) is a complete
lattice; we show a main theorem for B (X∗X

δ , Y ∗Y

δ , I) below.
(2) In addition to A↑I,δ (y) = A↑δ→I we also have A↑I,δ (y) = (δ ⊗ A∗X )⇑I ;

similarly for B↓I,δ .

Remark 5. Note that shifted fuzzy contexts 〈X,Y, a→ I〉 play an important role
in fast factorization of a fuzzy concept lattice B (X,Y, I) by a similarity given by
a parameter a, see [2, 7]. Briefly, B (X,Y, a→ I) is isomorphic to a factor lattice
B (X,Y, I)/a≈ where a≈ is an a-cut of a fuzzy equivalence relation ≈ defined
on B (X,Y, I) as in [2]. An investigation of the role of a → I in factorization
of fuzzy concept lattices involving hedges is an important topic which will be a
subject of a forthcoming paper.
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The next theorem and Remark 6 show that the fuzzy concept lattices defined
in [16] are isomorphic, and in fact identical, to fuzzy concept lattices defined by
(9) and (10) with appropriate choices of ∗X and ∗Y .

Theorem 2. Let B (X�, Y�, I), B (X�, Y�, I), and B (X♦, Y♦, I) denote the con-
cept lattices defined in Section 2.3 using a parameter δ.

(1) B (X�, Y�, I) is isomorphic to B (X∗X

δ , Y ∗Y

δ , I), and due to Theorem 1 also
to B (X∗X , Y ∗Y , δ → I), where both ∗X and ∗Y are globalizations on L.

(2) B (X�, Y�, I) is isomorphic to B (X∗X

δ , Y ∗Y

δ , I), and due to Theorem 1 also to
B (X∗X , Y ∗Y , δ → I), where ∗X is globalization and ∗Y is the identity on L.

(3) B (X♦, Y♦, I) is isomorphic to B (X∗X

δ , Y ∗Y

δ , I), and due to Theorem 1 also
to B (X∗X , Y ∗Y , δ → I), where ∗X is the identity and ∗Y is globalization on L.

Proof. We prove only (2); the proofs for (1) and (3) are similar. First, we show
that for 〈C,D〉 ∈ B (X∗X

δ , Y ∗Y

δ , I) we have 〈1C,D〉 ∈ B (X�, Y�, I). Indeed, for
∗X being globalization we have 1C = C∗X and thus

(1C)� = δ →
∧

x∈1C I(x, y) = δ →
∧

x∈X((1C)(x) → I(x, y)) =

= δ →
∧

x∈X(C∗X (x) → I(x, y)) = C↑I,δ ,

and

D� = {x ∈ X |
∧

y∈Y (D(y)→ I(x, y)) ≥ δ} =
= {x ∈ X | δ →

∧
y∈Y (D(y) → I(x, y)) = 1} =

= {x ∈ X |D↓I,δ (x) = 1} = 1(D↓I,δ ) = 1C.

Clearly, 〈C,D〉 	→ 〈1C,D〉 defines an injective mapping of B (X∗X

δ , Y ∗Y

δ , I) to
B (X�, Y�, I). This mapping is also surjective. Namely, for 〈A,B〉 ∈ B (X�, Y�, I)
we have 〈A↑I,δ↓I,δ , B〉 ∈ B (X∗X

δ , Y ∗Y

δ , I) and A = 1(A↑I,δ↓I,δ ). Indeed, since
A = A∗X , [8], ↑I,δ = ↑δ→I , and ↓I,δ = ↓δ→I give A↑I,δ↓I,δ↑I,δ = A↑I,δ = A� = B.
Furthermore, B↓I,δ = A↑I,δ↓I,δ . This shows 〈A↑I,δ↓I,δ , B〉 ∈ B (X∗X

δ , Y ∗Y

δ , I).
Observing

B� = δ(B↓I ) = 1(B↓δ→I ) = 1(B↓I,δ ) = 1(A↑I,δ↓I,δ )

finishes the proof.

Remark 6. (1) As one can see from the proof of Theorem 2, an isomorphism
exists such that the corresponding elements 〈A,B〉 ∈ B (X�, Y�, I) and 〈C,D〉 ∈
B (X∗X

δ , Y ∗Y

δ , I) are almost the same, namely, 〈A,B〉 = 〈1C,D〉. A similar fact
pertains to (1) and (3) of Theorem 2 as well.

(2) Alternatively, Theorem 2 can be proved using results from [11]. Consider
e.g. B (X�, Y�, I): It can be shown that B (X�, Y�, I) coincides with “one-sided
fuzzy concept lattice” of 〈X,Y, δ → I〉 (in the sense of [22]); therefore, by [11],
B (X�, Y�, I) is isomorphic to a fuzzy concept lattice with hedges where ∗X is
globalization and ∗Y is identity, i.e. to B (X∗X , Y, δ → I).

From (9) and (10) one easily obtains the following assertion.
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Corollary 1. B (X�, Y�, I) coincides with an ordinary concept lattice B
(
X,Y, δI

)
where δI = {〈x, y〉 | I(x, y) ≥ δ} is the δ-cut of I.

Remark 7. The foregoing results show that B (X�, Y�, I) and B (X∗X

δ , Y ∗Y

δ , I)
are isomorphic (with appropriate ∗X and ∗Y ). Moreover, B (X�, Y�, I) is almost
identical to B (X∗X

δ , Y ∗Y

δ , I), but they are not equal. Alternatively, one can pro-
ceed so as to define our operators by

A↑I,δ (y) =
(
δ →

∧
x∈X(A(x) → I(x, y))

)∗Y
, (11)

B↓I,ε(x) =
(
ε→

∧
y∈Y (B(y) → I(x, y))

)∗X . (12)

Then, we even have B (X�, Y�, I) = B (X∗X

δ , Y ∗Y

δ , I) (with the same choices of
∗X and ∗Y ). We still prefer (9) and (10) to (11) and (12) for reasons we omit
here due to lack of space.

Main Theorem of Fuzzy Concept Lattices Defined by Thresholds and
Hedges. Due to Theorem 1 and Theorem 2, we can obtain main theorems for
fuzzy concept lattices defined by thresholds. Omitting the proof due to lack of
space, we only give here a version for the general case of B (X∗X

δ , Y ∗Y

δ , I) for the
sake of illustration.

Theorem 3. (1) B (X∗X

δ , Y ∗Y

δ , I) is under ≤ a complete lattice where the infima
and suprema are given by∧

j∈J 〈Aj , Bj〉 = 〈(
⋂

j∈J Aj)↑I,δ↓I,δ , (
⋃

j∈J B∗Y

j )↓I,δ↑I,δ 〉, (13)∨
j∈J 〈Aj , Bj〉 = 〈(

⋃
j∈J A∗X

j )↑I,δ↓I,δ , (
⋂

j∈J Bj)↓I,δ↑I,δ 〉. (14)

(2) Moreover, an arbitrary complete lattice K = 〈K,≤〉 is isomorphic to
B (X∗X

δ , Y ∗Y

δ , I) iff there are mappings γ : X×fix(∗X) → K, μ : Y ×fix(∗Y )→ K
such that

(i) γ(X × fix(∗X)) is
∨

-dense in K, μ(Y × fix(∗Y )) is
∧

-dense in K;
(ii) γ(x, a) ≤ μ(y, b) iff a⊗ b⊗ δ ≤ I(x, y),

with fix(∗) = {a | a∗ = a} denoting the set of all fixpoints of ∗.

3 Attribute Implications from Shifted Fuzzy Attributes

Let Y be a finite set of attributes (each y ∈ Y is called an attribute). A fuzzy at-
tribute implication (over Y ) is an expression A⇒ B, where A,B ∈ LY are fuzzy
sets of attributes. In [6, 12, 13] we showed that (i) fuzzy attribute implications
can be interpreted in data tables with fuzzy attributes (i.e., in formal fuzzy con-
texts); (ii) truth (validity) of fuzzy attribute implications (FAIs) in data tables
with fuzzy attributes can be described as truth of implications in fuzzy concept
intents; (iii) FAIs which are true in a data table with fuzzy attributes can be
fully characterized by a so-called non-redundant basis of that table and the ba-
sis itself can be computed with polynomial time delay; (iv) semantic entailment
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from collections of fuzzy attribute implications can be characterized syntacti-
cally by an Armstrong-like set of deduction rules (two versions of completeness:
characterization of FAIs which are fully entailed and characterization of degrees
of entailment).

In this section we show that using the idea of thresholds one can generalize
the notion of a truth of an attribute implication to a notion of δ-truth, where δ
is a truth degree acting as a threshold degree. We show results answering basic
questions arising with the notion of a δ-truth.

For an L-set M ∈ LY of attributes and a truth degree δ ∈ L, define a degree
||A⇒ B||δM ∈ L to which A⇒ B is δ-true in M by

||A⇒ B||δM = (δ → S(A,M))∗X → (δ → S(B,M)). (15)

Since S(B,M) can be interpreted as “a degree to which M has each attribute
from B”, δ → S(B,M) expresses a truth degree of proposition “a degree to which
M has each attribute from B is at least δ”. Thus, one can see that ||A⇒ B||δM
is interpreted as a degree to which it is true that “if it is very true that M has
all attributes from A at least to degree δ, then M has all attributes from B at
least to degree δ”. Hence, δ acts as a threshold for antecedent and consequent
of A ⇒ B which influences the truth of A ⇒ B in M . The notion of truth
||· · ·||M being used in [6, 12, 13] is now but a particular case for δ = 1, i.e.
||A ⇒ B||M = ||A ⇒ B||1M . For δ = 0, which is the other borderline case,
||A⇒ B||0M = 1 for each A,B,M ∈ LY .

Theorem 4. For each A,B,M ∈ LY and δ ∈ L,

||A⇒ B||δM = ||A⇒ B||1δ→M = ||δ⊗A⇒ δ⊗B||1M = δ → ||δ⊗A⇒ B||1M . (16)

Proof. Using a → (b → c) = b → (a → c), a →
∧

i bi =
∧

i(a → bi), and
1 → a = a, see [3], one can conclude δ → S(C,M) = S(C, δ → M) = 1 →
S(C, δ →M). Thus, ||A⇒ B||δM = ||A⇒ B||1δ→M . The second equality follows
by using a→ (b→ c) = (a⊗ b)→ c. The last one is also clear.

For technical reasons we introduce the following convention. For a set M⊆ LY

(i.e.M is an ordinary set of L-sets) we define a degree ||A⇒ B||δM ∈ L to which
A⇒ B is δ-true in M by ||A⇒ B||δM =

∧
M∈M ||A⇒ B||δM . Obviously,

||A⇒ B||δM =
∧

M∈M ||A⇒ B||δM =
∧

M∈M ||A⇒ B||1δ→M = ||A⇒ B||1δ→M,

where δ → M = {δ → M |M ∈ M}. For 〈X,Y, I〉, let Ix ∈ LY (x ∈ X) be
an L-set of attributes such that, for each y ∈ Y , Ix(y) = I(x, y). Described
verbally, Ix is the L-set of all attributes of object x ∈ X in 〈X,Y, I〉. Now, a
degree ||A⇒ B||δ〈X,Y,I〉 ∈ L to which A⇒ B is δ-true in (each row of ) 〈X,Y, I〉
is defined by

||A⇒ B||δ〈X,Y,I〉 = ||A⇒ B||δM, where M = {Ix |x ∈ X}. (17)

Using previous observations, we get the following
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Corollary 2. Let 〈X,Y, I〉 be a data table with fuzzy attributes, δ ∈ L. Then

||A⇒ B||δ〈X,Y,I〉 = ||A⇒ B||1〈X,Y,δ→I〉. (18)

The following assertion generalizes a well-known characterization of a degree of
truth of an attribute implication. It also shows that the notion of a δ-truth is
well-connected to the formulas for ↑I,δ and ↓I,δ .

Theorem 5. Let 〈X,Y, I〉 be a data table with fuzzy attributes, δ ∈ L. Then

||A⇒ B||δ〈X,Y,I〉 = S(B,A↑I,δ↓I,δ ).

Proof. Using [12], we have ||A⇒ B||1〈X,Y,J〉 = S(B,A↑J↓J ) for any fuzzy relation
J between X and Y . Therefore, by Theorem 1 and Corollary 2,

||A⇒ B||δ〈X,Y,I〉 = ||A⇒ B||1〈X,Y,δ→I〉 = S(B,A↑δ→I↓δ→I ) = S(B,A↑I,δ↓I,δ ).

Using the concept of δ-truth, we can define appropriate notions of a model and
a semantic entailment from collections of FAIs. Let T be a set of FAIs, δ ∈ L.
M ∈ LY is called a δ-model of T if ||A ⇒ B||δM = 1 for each A ⇒ B ∈ T . The
set of all δ-models of T will be denoted by Modδ(T ), i.e.

Modδ(T ) = {M ∈ LY | for each A⇒ B ∈ T : ||A⇒ B||δM = 1}. (19)

In our terminology, models used in [6, 12, 13] are the 1-models. Using the notion
of a δ-model, we define a degree of semantic δ-entailment from T . A degree
||A⇒ B||δT ∈ L to which A⇒ B is semantically δ-entailed from T is defined by

||A⇒ B||δT = ||A⇒ B||δModδ(T ). (20)

Again, semantic 1-entailment coincides with the semantic entailment as it was
introduced in [6, 12, 13]. The following assertion shows relationship between var-
ious degrees of δ-entailment.

Theorem 6. Let A,B ∈ LY , δ ∈ L, T be a set of FAIs. Then

(i) Modδ(T ) = {M ∈ LY | δ →M ∈ Mod1(T )},
(ii) ||A⇒ B||1T ≤ ||A⇒ B||δT ≤ ||A⇒ B||0T ,
(iii) ||A⇒ B||1T =

∧
δ∈L ||A⇒ B||δT .

Proof. (i): By definition and using (16), Modδ(T ) = {M ∈ LY | for each A ⇒
B ∈ T : ||A ⇒ B||δM = 1} = {M ∈ LY | for each A ⇒ B ∈ T : ||A ⇒ B||1δ→M =
1} = {M ∈ LY | δ →M ∈ Mod1(T )}.

(ii): Taking into account (i), we get ||A⇒ B||1T =
∧

M∈Mod1(T ) ||A⇒ B||1M ≤∧
δ→M∈Mod1(T ) ||A ⇒ B||1δ→M =

∧
M∈Modδ(T ) ||A ⇒ B||δM = ||A ⇒ B||δT . The

rest is true because 0 → S(B,M) = 1 for all B,M ∈ LY .
(iii): The “≤”-part follows from (ii); the “≥”-part is trivial since 1 ∈ L.
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Remark 8. In some cases we even have

||A⇒ B||1T = ||A⇒ B||δT

for δ > 0. Inspecting the proof of Theorem 6, one can see that this is, for instance,
the case when each M ∈ LY is of the form M = δ → N for some N ∈ LY . This
condition is satisfied for a product structure on [0, 1], i.e. when a ⊗ b = a · b.
Then, M = δ → (δ ⊗M) as one can verify.

The following assertion shows that if ∗X is a globalization, then the degrees of
semantic δ-entailment can be expressed as degrees of semantic 1-entailment.

Theorem 7. Let ∗X be globalization. For each set T of fuzzy attribute implica-
tions and δ ∈ L there is a set T ′ ⊇ T of fuzzy attribute implications such that,
for each A⇒ B,

||A⇒ B||δT = ||A⇒ B||1T ′ . (21)

Proof. Take any T and δ ∈ L. Since ||A ⇒ B||δT =
∧

M∈Modδ(T ) ||A ⇒ B||δM =∧
δ→M∈Mod1(T ) ||A ⇒ B||1δ→M , it suffices to find T ′ ⊇ T so that Mod1(T ′) =

Mod1(T )∩{δ →M |M ∈ LY }. From [6, 12, 13] we have that Mod1(T ) is a closure
system, i.e., an intersection of arbitrary 1-models of T is again a 1-model of T . In
addition,

⋂
i∈I(δ →Mi) = δ →

⋂
i∈I Mi is true for each {Mi ∈ Mod1(T ) | i ∈ I}

from which we get that Mδ = Mod1(T ) ∩ {δ → M |M ∈ LY } is closed under
arbitrary intersections. Thus, for each M ∈ LY let clδ(M) ∈ LY denote the
least fuzzy set of attributes (w.r.t. “⊆”) which belongs to Mδ. Moreover, put
T ′ = T ∪ {M ⇒ clδ(M) |M ∈ LY }. Clearly, Mod1(T ′) ⊆ Mδ because T ⊆ T ′,
and for each M ∈ Mod1(T ′) there is N ∈ LY such that M = δ → N (the
existence of N follows from the fact that M is a 1-model of {M ⇒ clδ(M) |M ∈
LY }, i.e., it belongs to {δ → M |M ∈ LY }). The “⊇”-part is true because
if M �∈ Mod1(T ′), then either M �∈ Mod1(T ) or there is N ∈ LY such that
||N ⇒ clδ(N)||1M �= 1 from which we further obtain N ⊆ M and clδ(N) �⊆ M
yielding M �∈ {δ → M |M ∈ LY }. In either case, assuming M �∈ Mod1(T ′),
we get M �∈ Mδ. Finally, ||A ⇒ B||δT =

∧
δ→M∈Mod1(T ) ||A ⇒ B||1δ→M =∧

M∈Mod1(T ′) ||A⇒ B||1M = ||A⇒ B||1T ′ .

We now turn our attention to particular sets of FAIs which describe δ-truth of
attribute implications in a given data table via semantic entailment. Let 〈X,Y, I〉
be a data table with fuzzy attributes, δ ∈ L be a truth degree. A set T of FAIs is
called δ-complete in 〈X,Y, I〉 if, for each A⇒ B, ||A⇒ B||1T = ||A⇒ B||δ〈X,Y,I〉.
If T is δ-complete and no proper subset of T is δ-complete, then T is called a
non-redundant δ-basis of 〈X,Y, I〉. The following assertion gives a criterion of
δ-completeness.

Theorem 8. Let 〈X,Y, I〉 be a data table with fuzzy attributes, δ ∈ L, ∗Y be
identity. Then T is δ-complete in 〈X,Y, I〉 iff Mod1(T ) = Int(X∗X

δ , Y ∗Y

δ , I).
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Proof. By definition, we get that T is δ-complete in 〈X,Y, I〉 iff, for each A ⇒
B, ||A ⇒ B||1T = ||A ⇒ B||δ〈X,Y,I〉, which is true iff ||A ⇒ B||1T = ||A ⇒
B||1〈X,Y,δ→I〉, i.e., iff T is 1-complete in 〈X,Y, δ → I〉. The latter is true, by re-
sults on 1-completeness [6, 12], if and only if Mod1(T ) = Int(X∗X , Y ∗Y , δ →
I). By Theorem 1, Int(X∗X , Y ∗Y , δ → I) = Int(X∗X

δ , Y ∗Y

δ , I), finishing the
proof.

size distance
small (s) large (l) far (f) near (n)

Mercury 1 0 0 1
Venus 0.75 0 0 1
Earth 0.75 0 0 0.75
Mars 1 0 0.5 0.75

Jupiter 0 1 0.75 0.5
Saturn 0 1 0.75 0.5
Uranus 0.25 0.5 1 0.25

Neptune 0.25 0.5 1 0
Pluto 1 0 1 0

Fig. 1. Data table with fuzzy attributes and fuzzy concept lattice

Remark 9. (1) Theorem 8 says that a set T of FAIs which is δ-complete in a
given data table with fuzzy attributes not only describes truth of all FAIs in
the table, but also fully determines the corresponding concept lattice (intents of
B(X∗X

δ , Y ∗Y

δ , I) are exactly the models of T ). More importantly, the claim was
proven due to existing results on FAIs and due to a reduction of the problem of
δ-completeness to the problem of 1-completeness.

(2) Previous results [6, 12] allow us to determine a non-redundant basis of a
data table with fuzzy attributes. The procedure is the following. Given 〈X,Y, I〉
and δ ∈ L, first determine 〈X,Y, δ → I〉, then find a non-redundant basis T of
〈X,Y, δ → I〉 (in the sense of [6, 12]) which is, in consequence, a non-redundant
δ-basis of 〈X,Y, I〉. Note that the well-known Guigues-Duquenne basis [17, 19]
is a particular case of the above-described basis for L = 2 and δ = 1.

4 Illustrative Example

Take a finite �Lukasiewicz chain L with L = {0, 0.25, 0.5, 0.75, 1} as a structure
of truth degrees. Consider an input data table 〈X,Y, I〉 depicted in Fig 1 (left)
which describes properties of planets of our solar system. The set X of ob-
ject consists of objects “Mercury”, “Venus”, . . . , set Y contains four attributes:
size of the planet (small / large), distance from the sun (far / near). Let ∗X be
globalization and ∗Y be identity. Fuzzy concept lattice B(X∗X , Y ∗Y , I) (i.e.,
B(X∗X

1 , Y ∗Y
1 , I)) is depicted in Fig.1 (right). A non-redundant (minimal) basis

(i.e., 1-basis) of 〈X,Y, I〉 consists of the following fuzzy attribute implications.
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{0.75/s, 0.75/l, f}⇒{l, n}
{0.75/s, 0.5/n}⇒{n}
{0.75/s}⇒{s}
{0.5/s, 0.75/n}⇒{s, n}
{l}⇒{0.75/n}
{0.5/l, 0.75/n}⇒{l}
{0.5/l}⇒{0.75/l, f}
{f, 0.5/n}⇒{0.75/l}
{0.5/f}⇒{0.75/f}
{n}⇒{s}
{}⇒{0.25/s, 0.25/l, 0.25/f, 0.25/n}

{s, 0.75/l}⇒{n}
{s, 0.75/n}⇒{n}
{0.75/s, n}⇒{s}
{0.75/l}⇒{l, f}
{0.75/f}⇒{f}
{}⇒{0.5/s, 0.5/l, 0.5/f, 0.5/n}

{l}⇒{f}
{}⇒{0.75/s, 0.75/l, 0.75/f, 0.75/n}

Fig. 2. Fuzzy concept lattices and corresponding non-redundant bases

{s, 0.5/l, f}⇒{l, n} {0.75/l}⇒{l, 0.5/n}
{s, 0.5/f, n}⇒{l, f} {0.25/l, 0.5/n}⇒{l}
{0.75/s, 0.5/f}⇒{s} {0.25/l}⇒{0.5/l, 0.75/f}
{0.75/s, 0.25/n}⇒{0.75/n} {f}⇒{0.25/s}
{0.5/s}⇒{0.75/s} {0.75/f, 0.25/n}⇒{0.5/l}
{0.25/s, 0.75/f}⇒{f} {0.25/f}⇒{0.5/f}
{0.25/s, 0.5/n}⇒{0.75/s, 0.75/n} {0.75/n}⇒{0.75/s}

Models of the basis are exactly the intents of B(X∗X , Y ∗Y , I), see [6, 12]. We
now show how the fuzzy concept lattice and its minimal basis change when
we consider thresholds δ ∈ L. Recall that if δ = 1, then B(X∗X

1 , Y ∗Y

1 , I) =
B(X∗X , Y ∗Y , I), and a 1-basis of 〈X,Y, I〉 is the previous set of FAIs. For δ = 0
the concept lattice is trivial (one-element) and the basis consists of a single fuzzy
attribute implication {}⇒ {s, l, f, n}. Fig. 2 (left) depicts fuzzy concept lattice
B(X∗X

0.75, Y
∗Y
0.75, I) and its non-redundant basis (below the lattice); Fig. 2 (middle)

depicts fuzzy concept lattice B(X∗X
0.5 , Y

∗Y
0.5 , I) and the corresponding basis. Fi-

nally, Fig. 2 (right) depicts B(X∗X
0.25, Y

∗Y
0.25, I) and its basis.

5 Conclusions

We showed that the extent- and intent-forming operators from [16], based on
the idea of thresholds, form, in fact, a particular case of Galois connections with
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hedges. Furthermore, we showed that the formulas for Galois connections with
hedges can be extended using the idea of thresholds and that this extension still
reduces to the original formulas. This enables us to reduce the problems of Galois
connections with hedges and thresholds and their concept lattices to problems
of Galois connections with hedges and their concept lattices. Nevertheless, the
concept of Galois connections with hedges and thresholds is intuitively appealing,
the thresholds being parameters which influence the size of the resulting concept
lattices. In addition to that, we introduced thresholds to the definition of truth
of fuzzy attribute implication and proved some results concerning reduction to
the case without thresholds and some further results.

Further research will deal with the following problems:

– the role of shifted attributes in FCA of data with fuzzy attributes,
– analysis of the relationship between δ1 and δ2, and the corresponding struc-

tures B
(
X∗X

δ1
, Y ∗Y

δ1
, I

)
and B

(
X∗X

δ2
, Y ∗Y

δ2
, I

)
,

– further investigation of thresholds in fuzzy attribute implications.
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130 R. Bělohlávek, J. Outrata, and V. Vychodil
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Abstract. The paper presents a general method of imposing constraints
in formal concept analysis of tabular data describing objects and their
attributes. The constraints represent a user-defined requirements which
are supplied along with the input data table. The main effect is to filter-
out outputs of the analysis (conceptual clusters and if-then rules) which
are not compatible with the constraint, in a computationally efficient
way (polynomial time delay algorithm without the need to compute all
outputs). Our approach covers several examples studied before, e.g. ex-
traction of closed frequent itemsets in generation of non-redundant as-
sociation rules. We present motivations, foundations, and examples.

1 Introduction and Motivation

Formal concept analysis (FCA) is a method of data analysis and visualization
which deals with input data in the form of a table describing objects (rows),
their attributes (columns), and their relationship (table entries ×’s and blanks
indicate whether or not object has attribute) [4, 6]. Basic outputs of FCA are
the following: First, a collection of maximal rectangles of the table which are
full of ×’s. These rectangles are interpreted as concept-clusters (so-called formal
concepts), can be hierarchically ordered and form a so-called concept lattice.
Second, a (non-redundant) set of if-then rules describing attribute dependencies
(so-called attribute implications). FCA proved to be useful in several fields either
as a direct method of data analysis, see e.g. [4], the references therein and also
[5, 11], or as a preprocessing method, see e.g. [12]. In the basic setting, it is
assumed that no further information is supplied at the input except for the
data table. However, it is often the case that there is an additional information
available in the form of a constraint (requirement) specified by a user. In such a
case, one is not interested in all the outputs (maximal full rectangles or if-then
rules) but only in those which satisfy the constraint. The other outputs may
be left out as non-interesting. This way, the number of outputs is reduced by
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focusing on the “interesting ones”. Needless to say, the general idea of constraints
is not new. A reader can find examples of using constraints in data mining in [3].

In this paper, we develop a method of constraints in FCA which are expressed
by means of closure operators. The constraints can be used both for constraining
maximal rectangles and if-then rules. Our approach is theoretically and computa-
tionally tractable and covers several interesting forms of constraints. For instance,
one can set the closure operator in such a way that the maximal full rectangles sat-
isfying the constraint correspond exactly to closed frequent itemsets [10], used e.g.
in generating non-redundant association rules [12], see also Section 4. As another
example, one can set the closure operator in such a way that at the output one
gets exactly the formal concepts respecting a given hierarchy of attributes (a user
tells some attributes are more important than others), see [1].

In Section 2, we present preliminaries from FCA. Section 3 presents our ap-
proach, theoretical foundations, and algorithms. In Section 4, we present several
examples of constraints by closure operators and demonstrating examples. Sec-
tion 5 is a summary and an outline of future research.

2 Preliminaries

In what follows, we summarize basic notions of FCA. An object-attribute data ta-
ble describing which objects have which attributes can be identified with a triplet
〈X,Y, I〉 where X is a non-empty set (of objects), Y is a non-empty set (of at-
tributes), and I ⊆ X×Y is an (object-attribute) relation. Objects and attributes
correspond to table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that
object x has attribute y (table entry corresponding to row x and column y con-
tains ×; if 〈x, y〉 �∈ I the table entry contains blank symbol). In the terminology
of FCA, a triplet 〈X,Y, I〉 is called a formal context. For each A ⊆ X and B ⊆ Y
denote by A↑ a subset of Y and by B↓ a subset of X defined by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.

That is, A↑ is the set of all attributes from Y shared by all objects from A (and
similarly for B↓). A formal concept in 〈X,Y, I〉 is a pair 〈A,B〉 of A ⊆ X and
B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a formal concept consists of a
set A (so-called extent) of objects which fall under the concept and a set B (so-
called intent) of attributes which fall under the concept such that A is the set of
all objects sharing all attributes from B and, conversely, B is the collection of all
attributes from Y shared by all objects from A. Alternatively, formal concepts
can be defined as maximal rectangles of 〈X,Y, I〉 which are full of×’s: For A ⊆ X
and B ⊆ Y , 〈A,B〉 is a formal concept in 〈X,Y, I〉 iff A×B ⊆ I and there is no
A′ ⊃ A or B′ ⊃ B such that A′ ×B ⊆ I or A×B′ ⊆ I.

A set B(X,Y, I) = {〈A,B〉 |A↑ = B,B↓ = A} of all formal concepts in data
〈X,Y, I〉 can be equipped with a partial order ≤ (modeling the subconcept-
superconcept hierarchy, e.g. dog ≤ mammal) defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (1)
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Note that ↑ and ↓ form a so-called Galois connection [6] and that B(X,Y, I) is
in fact a set of all fixed points of ↑ and ↓. Under ≤, B(X,Y, I) happens to be
a complete lattice, called a concept lattice of 〈X,Y, I〉, the basic structure of
which is described by the so-called main theorem of concept lattices [6]:

Theorem 1. (1) The set B(X,Y, I) is under ≤ a complete lattice where the
infima and suprema are given by∧

j∈J 〈Aj , Bj〉 = 〈
⋂

j∈J Aj , (
⋃

j∈J Bj)↓↑〉,∨
j∈J 〈Aj , Bj〉 = 〈(

⋃
j∈J Aj)↑↓,

⋂
j∈J Bj〉.

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to
B(X,Y, I) iff there are mappings γ : X → V , μ : Y → V such that

(i) γ(X) is
∨

-dense in V, μ(Y ) is
∧

-dense in V;
(ii) γ(x) ≤ μ(y) iff 〈x, y〉 ∈ I.

For a detailed information on formal concept analysis we refer to [4, 6] where a
reader can find theoretical foundations, methods and algorithms, and applica-
tions in various areas.

Recall that a closure operator in a set Y is a mapping C : 2Y → 2Y satisfying

B ⊆ C(B),
B1 ⊆ B2 implies C(B1) ⊆ C(B2),
C(C(B)) = C(B)

for any B,B1, B2 ∈ 2Y , see e.g. [6].

3 Constraints by Closure Operators

Selecting “interesting” formal concepts from B(X,Y, I) needs to be accompa-
nied by a criterion of what is interesting. Such a criterion can be seen as a
constraint and depends on particular data and application. Therefore, the con-
straint should be supplied by a user along with the input data 〈X,Y, I〉. One way
to specify “interesting concepts” is to focus on concepts whose sets of attributes
are “interesting”. This seems to be natural because “interesting concepts” are
determined by “interesting attributes/properties of objects”. Thus, for a formal
context 〈X,Y, I〉, the user may specify a subset Y ′ ⊆ 2Y such that B ∈ Y ′ iff
the user considers B to be an interesting set of attributes. A formal concept
〈A,B〉 ∈ B(X,Y, I) can be then seen as “interesting” if B ∈ Y ′. In this section
we develop this idea provided that the selected sets of attributes which are taken
as “interesting” form a closure system on Y .

3.1 Interesting Formal Concepts (Maximal Full Rectangles)

We start by formalizing interesting sets of attributes using closure operators.
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Definition 1. Let Y be a set of attributes, C : 2Y → 2Y be a closure operator on
Y . A set B ⊆ Y of attributes is called a C-interesting set of attributes (shortly,
a set of C-attributes) if B = C(B).

Throughout the paper, Y denotes a set of attributes and C : 2Y → 2Y denotes a
closure operator on Y . Described verbally, Definition 1 says that C-interesting
sets of attributes are exactly the fixed points of the closure operator C. Thus,
given any set B ⊆ Y of attributes, C(B) can be seen as the least set of C-
interesting attributes containing B.

Remark 1. (1) Representing interesting sets of attributes by closure operators
has technical as well as epistemic reasons. Specifying particular C : 2Y → 2Y ,
we prescribe a particular meaning of “being interesting”. Given a set B ⊆ Y
of attributes, either we have B = C(B), i.e. B is C-interesting, or B ⊂ C(B)
which can be read: “B is not C-interesting, but additional attributes C(B)−B
would make B interesting”. Thus, C can be seen as an operator describing which
attributes must be added to a set of attributes to make it interesting.

(2) A definition of C depends on particular application. In our approach, we
assume that C is any closure operator, covering thus all possible choices of C. On
the other hand, in real applications, it is necessary to have a collection of easy-
to-understand definitions of such closure operators. In Section 4 we give several
examples to define C which are intuitively clear for an inexperienced user.

Definition 2. Let 〈X,Y, I〉 be a formal context, C : 2Y → 2Y be a closure
operator on Y . We put

BC(X,Y, I) = {〈A,B〉 ∈ 2X× 2Y |A↑ = B, B↓ = A, B = C(B)}, (2)
ExtC(X,Y, I) = {A ⊆ X | there is B ⊆ Y such that 〈A,B〉 ∈ BC(X,Y, I)}, (3)
IntC(X,Y, I) = {B ⊆ Y | there is A ⊆ X such that 〈A,B〉 ∈ BC(X,Y, I)}. (4)

Each 〈A,B〉 ∈ BC(X,Y, I) is called a C-interesting concept (C-concept); A ∈
ExtC(X,Y, I) is called a C-interesting extent (C-extent); B ∈ IntC(X,Y, I) is
called a C-interesting intent (C-intent).

Remark 2. (1) According to Definition 2, 〈A,B〉 is a C-concept iff 〈A,B〉 is a
concept (in the ordinary sense) such that B is a set of C-attributes. Therefore,
C-concepts 〈A,B〉 can be seen as maximal rectangles in the input data table
which are full of ×’s, see Section 2, with B being closed under C. Notice that
two boundary cases of closure operators on Y are (i) C(B) = B (B ∈ 2Y ), (ii)
C(B) = Y (B ∈ 2Y ). For C defined by (i), the notion of a C-concept coincides
with that of a concept. In this case, BC(X,Y, I) equals B(X,Y, I). In case of (ii),
BC(X,Y, I) is a one-element set (not interesting).

(2) Observe that B is a C-intent iff B = B↓↑ = C(B). Denoting the set of all
fixed points of C by fix(C), we have IntC(X,Y, I) = Int(X,Y, I) ∩ fix(C).

The following assertion characterizes the structure of C-concepts:
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Theorem 2. Let 〈X,Y, I〉 be a formal context, C : 2Y → 2Y be a closure opera-
tor. Then BC(X,Y, I) equipped with ≤ defined by (1) is a complete lattice which
is a

∨
-sublattice of B(X,Y, I).

Proof. In order to show that BC(X,Y, I) equipped with ≤ is a complete lat-
tice, it suffices to check that IntC is closed under arbitrary infima. Take an
indexed system {Bi ∈ IntC(X,Y, I) | i ∈ I} of C-intents. Since Bi ∈ Int(X,Y, I),
Theorem 1 gives that

⋂
i∈I Bi ∈ Int(X,Y, I). Now, it remains to prove that

B =
⋂

i∈I Bi is a set of C-attributes. Since each Bi is a set of C-attributes and
C is a closure operator, we get B =

⋂
i∈I Bi =

⋂
i∈I C(Bi) = C

(⋂
i∈I C(Bi)

)
=

C
(⋂

i∈I Bi

)
= C(B). Hence, B =

⋂
i∈I Bi is a set of C-attributes. Altogether,

B ∈ IntC(X,Y, I). To see that BC(X,Y, I) is a
∨

-sublattice of B(X,Y, I) observe
that Int(X,Y, I) and IntC(X,Y, I) agree on arbitrary intersections and then ap-
ply Theorem 1. ��

Remark 3. For each context 〈X,Y, I〉, Y ∈ Int(X,Y, I) and C(Y ) = Y because C
is extensive. Therefore, Y ∈ IntC(X,Y, I), i.e. the set of all attributes determines
the least C-concept of BC(X,Y, I), see (1). This might seem strange at first sight
because the least C-concept of BC(X,Y, I) which is also the least concept of
B(X,Y, I) is rather not interesting—it is basically a concept of objects having
all attributes. It might be tempting to “remove this concept from BC(X,Y, I)”,
however, this would dissolve important structural properties of BC(X,Y, I). For
instance, after the removal, BC(X,Y, I) would not be a lattice in general.

We now focus on the computational aspects of generating all C-concepts. The
naive way to compute BC(X,Y, I) is to find B(X,Y, I) first and then go through
all of its concepts and filter out the C-concepts. This method is not efficient
because in general, BC(X,Y, I) can be considerably smaller than B(X,Y, I). In
the sequel we show that BC(X,Y, I) can be directly computed using Ganter’s
NextClosure [6] algorithm without the need to compute B(X,Y, I).

In order to use the NextClosure [6] algorithm, we need to combine together
two closure operators: ↓↑ (operator induced by the Galois connection given by
a formal context 〈X,Y, I〉) and C (operator specifying interesting sets of at-
tributes). For any B ⊆ Y define sets Bi (i ∈ N0) and C(B) of attributes as
follows:

Bi =
{
B if i = 0,
C(Bi−1

↓↑) if i ≥ 1.
(5)

C(B) =
⋃∞

i=1 Bi. (6)

Theorem 3. Let Y be a finite set of attributes, 〈X,Y, I〉 be a formal context,
C : 2Y → 2Y be a closure operator on Y , C be defined by (6). Then C : 2Y → 2Y

is a closure operator such that B = C(B) iff B ∈ IntC(X,Y, I).

Proof. Since both ↓↑ and C are closure operators, B0 ⊆ B1 ⊆ · · · , and Bi ⊆ C(B)
for each i ∈ N0. Extensivity and monotony of ↓↑ and C yield extensivity and
monotony of C. To check idempotency of C, we show C((C(B))↓↑) ⊆ C(B) for
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Input: 〈X, Y, I〉
Output: IntC(X, Y, I)

B := ∅, IntC(X, Y, I) := ∅
while B �= Y :

B := B+

add B to IntC(X, Y, I)

Input: 〈X, Y, I〉
Output: PC (C-pseudo-intents of 〈X, Y, I〉)

B := ∅, PC := ∅
if B �= C(B): add B to PC

while B �= Y :
T := {P ⇒ C(P ) | P ∈ PC}
B := B+

T

if B �= C(B): add B to PC

Fig. 1. Algorithms for computing C-intents (left) and C-pseudo-intents (right); B+

denotes the lectically smallest fixed point of C which is a successor of B; B+
T denotes

the lectically smallest fixed point of clT which is a successor of B

each B ⊆ Y . For each y ∈ C(B) denote by iy an index iy ∈ N such that y ∈ Biy ,
where Biy is defined by (5). We have C(B) =

⋃
y∈C(B) Biy . Since Y is finite, C(B)

is finite, i.e. for an index i = max{iy | y ∈ C(B)}, we have C(B) = Bi, where Bi

is defined by (5). Therefore, C((C(B))↓↑) = C(Bi
↓↑) = Bi+1 ⊆ C(B), i.e. C is

idempotent. Altogether, C is a closure operator. We now prove that B = C(B)
iff B ∈ IntC(X,Y, I).

“⇒”: Let B = C(B). Using the above idea, C(B) = Bi for some index i ∈ I.
Therefore, B = Bi = C(Bi−1

↓↑) for some i ∈ I which proves that B is a set
of C-attributes. Moreover, B↓↑ = Bi

↓↑ ⊆ C(Bi
↓↑) = Bi+1 ⊆ C(B) = B, i.e.

B ∈ Int(X,Y, I). Putting it together, B ∈ IntC(X,Y, I).
“⇐”: Let B ∈ IntC(X,Y, I). By definition, B = C(B) and B = B↓↑. Thus,

for each i ∈ N, Bi = B, yielding B = C(B). ��
Theorem 3 gives a way to compute C-interesting intents and thus the complete
lattice of C-concepts in case of finite Y : we can use Ganter’s NextClosure [6] algo-
rithm for computing fixed points of closure operators because the C-interesting
intents are exactly the fixed points of C. The algorithm is depicted in Fig. 1 (left).

Remark 4. Notice that NextClosure, being used in Fig.1 to compute the fixed
points of C, works with polynomial time delay provided that C(B) (B ⊆ Y ) can
be computed with a polynomial time complexity. Indeed, for each B ⊆ Y , B↓↑

can be computed with a polynomial time delay (well-known fact). Since Y is
finite, there is an index i ≤ |Y | such that C(B) = Bi, where Bi is defined by (5).
Thus, if C(B) can be computed in a polynomial time, NextClosure can use C
with a polynomial time delay (the same complexity as if NextClosure were using
↓↑). In practical applications, the computation of C(B) is usually more time con-
suming than the computation of B↓↑. Still, the number of C-interesting concepts
is usually much smaller than the number of all concepts, thus, NextClosure with
C is in most situations considerably faster than NextClosure with ↓↑.

3.2 Bases of Interesting Attribute Implications

In this section we show that each lattice of C-concepts can be alternatively de-
scribed by particular sets of “interesting” implications between attributes. We
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present a way to compute minimal sets of such implications. We suppose that
Y is finite. Recall basic notions of attribute implications and their validity [6, 7]:
an attribute implication (over attributes Y ) is an expression A ⇒ B, where
A,B ∈ 2Y are sets of attributes. An attribute implication A ⇒ B is true in
M ⊆ Y , written M |= A ⇒ B, if A ⊆ M implies B ⊆ M . Given a set T of
attribute implications, M ⊆ Y is called a model of T if, for each A ⇒ B ∈ T ,
M |= A⇒ B. The system of all models of T is denoted by Mod(T ).

If we focus only on “interesting models” of sets of attribute implications (or
sets of “interesting attribute implications”), we naturally come to the following
notions of a C-implication and a C-model:

Definition 3. Let Y be a set of attributes, C : 2Y → 2Y be a closure operator,
T be a set of attribute implications in Y . An attribute implication A⇒ B in Y
is called a C-implication if A and B are sets of C-attributes. M ⊆ Y is called
a C-model of T if M is a set of C-attributes and M ∈ Mod(T ). Denote by
ModC(T ) the system of all C-models of T .

Using the notion of a C-model, we define sets of attribute implications which
are C-complete in a given formal context:

Definition 4. Let 〈X,Y, I〉 be a formal context, C : 2Y → 2Y be a closure
operator. A set T of attribute implications is called C-complete in 〈X,Y, I〉 if

ModC(T ) = IntC(X,Y, I). (7)

A set T of C-implications is called a C-basis of 〈X,Y, I〉 if T is C-complete in
〈X,Y, I〉 and no proper subset of T is C-complete in 〈X,Y, I〉.

Remark 5. (1) Described verbally, a set T of attribute implications is C-complete
if the C-models of T are exactly the C-interesting intents. From this point of
view, a C-complete set of attribute implications fully describes the lattice of C-
concepts using the notion of a C-model. A C-basis is a set of C-implications
T (i.e., implications of the form “set of C-attributes A implies a set of C-
attributes B”) fully describing C-concepts so that one cannot remove any C-
implication from T without losing C-completeness. Hence, C-bases are the least
C-complete sets of C-implications.

(2) In general, a C-complete set T of attribute implications (C-implications)
has models which are not C-models. Also note that if C is given by C(B) = B
(B ∈ 2Y ), then the notions of a C-model and a C-completeness coincide with
that of a model and a completeness [6].

We now show a way to find particular C-bases. For that purpose, we introduce
the following generalized notion of a pseudo-intent:

Definition 5. Let 〈X,Y, I〉 be a formal context, C : 2Y → 2Y be a closure
operator, C be defined by (6). A set P of C-attributes is called a C-pseudo-intent
of 〈X,Y, I〉 if P ⊂ C(P ) and, for each C-pseudo-intent Q of 〈X,Y, I〉 such that
Q ⊂ P , we have C(Q) ⊆ P .
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If C is the identity mapping, the notion of a C-pseudo-intent coincides with the
notion of a pseudo-intent, see [6, 7]. All C-pseudo-intents determine a C-basis of
a given formal context:

Theorem 4. Let 〈X,Y, I〉 be a formal context, C : 2Y → 2Y be a closure oper-
ator, C be defined by (6). Then

T = {P ⇒ C(P ) |P is a C-pseudo-intent of 〈X,Y, I〉} (8)

is a C-basis of 〈X,Y, I〉.

Proof. We first check that T given by (8) is C-complete, i.e. we check equality
(7) by showing both inclusions.

“⊆”: Let M ∈ ModC(T ). Thus, M is a set of C-attributes. By contradiction,
let M �= C(M), i.e. M ⊂ C(M) because C is extensive. Now, for each C-pseudo-
intent Q, we have M |= Q ⇒ C(Q) because M is a model of T . Therefore, for
each C-pseudo-intent Q, if Q ⊂ P then C(Q) ⊆ P , i.e. M is a C-pseudo-indent
by Definition 5. On the other hand, M �|= M ⇒ C(M) because C(M) � M , a
contradiction to M ∈ ModC(T ).

“⊇”: Let M ∈ IntC(X,Y, I). Then M = C(M). For each C-pseudo-intent P ,
if P ⊆M then C(P ) ⊆ C(M) = M , i.e. M |= P ⇒ C(P ).

T is a C-basis: T is obviously a set of C-implications; for each C-pseudo-intent
P , P |= Q⇒ C(Q) where Q �= P is any C-pseudo-intent. Thus, P is a C-model
of TP = T − {P ⇒ C(P )} which gives ModC(TP ) ⊇ IntC(X,Y, I), i.e. TP is not
C-complete. ��

Due to Theorem 4, in order to get a C-basis of 〈X,Y, I〉, it suffices to compute all
C-pseudo-intents. We now turn our attention to the computation of C-pseudo-
intents. Given a set T of attribute implications define sets BTi , clT (B) (i ∈ N0):

BTi =
{
B if i = 0,
C

(
BTi−1 ∪

⋃
{D |A⇒ D ∈ T and A ⊂ BTi−1}

)
if i ≥ 1, (9)

clT (B) =
⋃∞

i=0 B
Ti . (10)

Operator clT : 2Y → 2Y has the following property:

Theorem 5. Let 〈X,Y, I〉 be a formal context, T be defined by (8), PC be the
system of all C-pseudo-intents of 〈X,Y, I〉. Then clT defined by (10) is a closure
operator such that {clT (B) |B ⊆ Y } = PC ∪ IntC(X,Y, I).

Proof. clT is a closure operator (apply arguments from the proof of Theorem 3).
We check that {clT (B) |B ⊆ Y } = PC ∪ IntC(X,Y, I).

“⊆”: Let B = clT (B). If B �∈ IntC(X,Y, I), it suffices to check that B is a C-
pseudo-intent. Since Y is finite, B = clT (B) = BTi0 for some i0 ∈ N. That is, B is
of the form C(· · ·), yielding that B is a set of C-attributes. Moreover, for each C-
pseudo-intent Q, if Q ⊂ B then C(Q) ⊆ B because B = clT (B) = BTi0 = BTi0+1 .
Therefore, B is a C-pseudo-intent.

“⊇”: Clearly, for each C-intent B, BTi = B (i ∈ N), i.e. B is a fixed point of
clT . The same is true if B is a C-pseudo-intent. ��
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a b c d e f g h i

leech 1 × × ×
bream 2 × × × ×

frog 3 × × × × ×
dog 4 × × × × ×

spike-weed 5 × × × ×
reed 6 × × × × ×
bean 7 × × × ×

maize 8 × × × ×

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12
C13

C14C15

C16
C17

C18

Fig. 2. Context (left) and concept lattice (right); the attributes are: a: needs water to
live, b: lives in water, c: lives on land, d: needs chlorophyll to produce food, e: two seed
leaves, f : one seed leaf, g: can move around, h: has limbs, i: suckles its offspring

Theorem 5 says that the set of all C-pseudo-intents and all C-intents is the set
of all fixed points of clT . This provides us with a way to determine a C-basis:
we can use the NextClosure [6] algorithm to compute all fixed points of clT and
then {P |P = clT (P ) and P �= C(P )} is the system of all C-pseudo-intents, i.e.

T = {P ⇒ C(P ) |P = clT (P ) and P �= C(P )}

is a C-basis due to Theorem 4. The algorithm is depicted in Fig. 1 (right).

4 Examples

Consider an illustrative formal context [6] 〈X,Y, I〉 given by Fig. 2 (left). The set
X of objects contains objects 1, 2, . . . denoting organisms “leech”, “bream”, . . . ;
the set Y contains attributes a, b, . . . denoting certain properties of organisms,
see the comment under Fig. 2. The concept lattice B(X,Y, I) corresponding with
〈X,Y, I〉 has 19 concepts, here denoted by C0, . . . , C18:

C0 = 〈{1, 2, 3, 4, 5, 6, 7, 8}, {a}〉, C1 = 〈{1, 2, 3, 4}, {a, g}〉,
C2 = 〈{2, 3, 4}, {a, g, h}〉, C3 = 〈{5, 6, 7, 8}, {a, d}〉,
C4 = 〈{5, 6, 8}, {a, d, f}〉, C5 = 〈{3, 4, 6, 7, 8}, {a, c}〉,
C6 = 〈{3, 4}, {a, c, g, h}〉, C7 = 〈{4}, {a, c, g, h, i}〉,
C8 = 〈{6, 7, 8}, {a, c, d}〉, C9 = 〈{6, 8}, {a, c, d, f}〉,
C10 = 〈{7}, {a, c, d, e}〉, C11 = 〈{1, 2, 3, 5, 6}, {a, b}〉,
C12 = 〈{1, 2, 3}, {a, b, g}〉, C13 = 〈{2, 3}, {a, b, g, h}〉,
C14 = 〈{5, 6}, {a, b, d, f}〉, C15 = 〈{3, 6}, {a, b, c}〉,
C16 = 〈{3}, {a, b, c, g, h}〉, C17 = 〈{6}, {a, b, c, d, f}〉,
C18 = 〈{}, {a, b, c, d, e, f, g, h, i}〉.

Fig. 2 (right) depicts the concept lattice B(X,Y, I) [6].

(a) Define C so that B is C-interesting iff B = Y or |B↓| ≥ s where s is a
non-negative integer. It is easy to see that C-interesting sets form a closure
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Concept lattice constrained by various closure operators

system. |B↓| ≥ s means that the number of objects sharing all attributes
from B exceeds a user-defined parameter s called support in association
rules [13]. Condition B = Y is a technical one to ensure that C-interesting
sets form a closure system. The corresponding closure operator is defined by

C(B) =
{
B if |B↓| ≥ s,
Y otherwise.

Then, the set IntC(X,Y, I) − {Y } of all C-interesting intents without Y
coincides with the set of closed frequent itemsets defined by Zaki [12] in
order to get non-redundant association rules.

(b) Define C by

C(B) =
{
B if |B| ≤ n,
Y otherwise.

That is, B ⊆ Y is C-interesting iff B contains at most n attributes or
B = Y . That is, C can be used to determine intents with at most n at-
tributes. Fig. 3 (a) depicts the situation for n = 3: “•” denote concepts of
B(X,Y, I) which are not present in BC(X,Y, I); “◦” denote C-concepts; dot-
ted lines denote edges of the original concept lattice which are not present
in BC(X,Y, I); bold solid lines denote edges which are presented in both
B(X,Y, I) and BC(X,Y, I); bold dashed lines denote new edges which are
in BC(X,Y, I) but are not in the original concept lattice.

(c) For any Z ⊆ Y , C defined by C(B) = B ∪ Z is a closure operator. This
closure operator determines intents containing Z. Notice that the boundary
cases mentioned in Remark 2 (1) are given by choices Z = ∅ and Z = Y ,
respectively. For instance, Z = {d, f} determines a constraint on “organisms
with one seed leaf that need chlorophyll to produce food”, see Fig. 3 (b).
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(d) For any Z ⊆ Y , we can define C so that B is C-interesting iff B does not
contain any attribute from Z (or B = Y ) by putting

C(B) =
{
B if B ∩ Z = ∅,
Y otherwise.

Fig. 3 (c) contains a lattice for Z = {c, e, f}.
(e) A general method for defining C is the following. Consider a binary relation

R on Y , 〈y1, y2〉 ∈ R meaning that if y1 is an attribute of a concept then y2
should also be an attribute of that concept. Now, put

Bi =
{
B if i = 0,
Bi−1 ∪ {y′ | there is y ∈ Bi−1 : 〈y, y′〉 ∈ R} if i ≥ 1,

C(B) =
⋃∞

i=0 Bi.

Since Y is finite, we have C(B) = Bi0 for some i0 ∈ N. B is C-interesting iff
all dependencies given by R are satisfied. In more detail, B is C-interesting
iff IF 〈y1, y2〉 ∈ R and y1 ∈ B THEN y2 ∈ B. Fig. 3 (d) depicts the resulting
structure for R = {〈g, b〉, 〈d, e〉}.

(f) A particular case of (e) is a constraint given by an equivalence relation
(i.e., R is reflexive, symmetric, and transitive), see also [2]. In this case,
C(B) =

⋃
{[y]R | y ∈ B}, where [y]R denotes the class of R containing y.

Fig. 3 (e) contains a structure determined by an equivalence R induced by a
partition {{a, b}, {c}, {d}, {e}, {f}, {g, h, i}}.

(g) Let T be a set of attribute implications. The system of all models of T is
a closure system [6], the corresponding closure operator C can be described
as follows [6]:

Bi =
{
B if i = 0,
Bi−1 ∪

⋃
{D |A⇒ D ∈ T and A ⊆ Bi−1} if i ≥ 1,

C(B) =
⋃∞

i=0 Bi.

C(B) is the least model of T containing B. Hence, B is C-interesting iff B is a
model of attribute implications from T . For T = {{b, c}⇒{h}, {d}⇒{c}},
the resulting structure in depicted in Fig. 3 (f). Notice that this type of
definition of a closure operator is, in fact, the most general one, because each
closure operator on a finite set of attributes can be completely described by
a set of attribute implications (i.e., the fixed points of C are exactly the
models of some set of attribute implications).

Consider a closure operator C such that C(B) = B (B ∈ 2Y ). Let T be the
C-basis given by (8). Since C is an identical operator, T is a basis of the concept
lattice B(X,Y, I). In this particular case, T is the following:

T = {{a, b, c, g, h, i}⇒Y, {a, b, d}⇒{a, b, d, f}, {a, c, d, e, f}⇒Y,

{a, c, g}⇒{a, c, g, h}, {a, d, g}⇒Y, {a, e}⇒{a, c, d, e}, {a, f}⇒{a, d, f},
{a, h}⇒{a, g, h}, {a, i}⇒{a, c, g, h, i}, {}⇒{a}}.

If we define C as in Example (b), T defined by (8) is a C-basis of the constrained
lattice of C-concepts depicted in Fig. 3 (a):
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T = {{a, b, d}⇒Y, {a, c, g}⇒Y, {a, d, g}⇒Y, {a, e}⇒Y, {a, f}⇒{a, d, f},
{a, h}⇒{a, g, h}, {a, i}⇒Y, {}⇒{a}}.

Observe that since C determines concepts with at most three attributes, each
implication in the latter T has at most three attributes on both sides of “⇒” or
the right-hand side of the implication consists of the whole set of attributes Y .

5 Further Issues

For limited scope, we did not present the following topics some of which will
appear in a full paper or are subject of future research:

– Interactive specification of constraining closure operators. An expert might
not be able to explicitly describe a constraining closure operator. However,
he/she is usually able to tell which formal concepts from the whole B(X,Y, I)
are interesting. If I is a subset of B(X,Y, I) identified as (examples of) inter-
esting formal concepts, an important problem is to describe a possibly largest
closure operator C such that each 〈A,B〉 ∈ I is C-interesting. Namely,
putting C1 ≤ C2 iff for each B ∈ 2Y we have C1(B) ⊆ C2(B) for closure
operators C1 and C2, we have C1 ≤ C2 iff fix(C2) ⊆ fix(C1) where fix(Ci) is
a set of all fixed points of Ci. Therefore, since we require B ∈ fix(C) for each
〈A,B〉 ∈ I, larger C means a better approximation of I by BC(X,Y, I). The
problem is to find a tractable description of C. For instance, if C is supposed
to be given by an equivalence relation R, see Section 4 (e), then given I,
the largest closure operator C we look for is the one induced by a relation
R = RI where

〈y1, y2〉 ∈ RI iff for each 〈A,B〉 ∈ I : y1 ∈ B iff y2 ∈ B.

Then, one can present BC(X,Y, I) to the expert who might then revise the
selection of I, etc., to finally arrive at a satisfactory closure operator C.

– Entailment of constraints. Intuitively, a constraint C1 (semantically) entails
a constraint C2 iff each B ⊆ Y satisfying C1 satisfies C2 as well. A study
of entailment is important for obtaining small descriptions of constraining
closure operators.

– More detailed results and more efficient algorithms for particular closure
operators can be obtained (we omit details).
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Abstract. Formal concept analysis has been proved to be useful to sup-
port knowledge discovery from boolean matrices. In many applications,
such 0/1 data have to be computed from experimental data and it is
common to miss some one values. Therefore, we extend formal concepts
towards fault-tolerance. We define the DR-bi-set pattern domain by al-
lowing some zero values to be inside the pattern. Crucial properties of
formal concepts are preserved (number of zero values bounded on objects
and attributes, maximality and availability of functions which “connect”
the set components). DR-bi-sets are defined by constraints which are ac-
tively used by our correct and complete algorithm. Experimentation on
both synthetic and real data validates the added-value of the DR-bi-sets.

1 Introduction

Many application domains can lead to possibly huge boolean matrices whose rows
denote objects and columns denote attributes. Mining such 0/1 data has been
studied extensively and quite popular data mining techniques have been designed
for set pattern extraction (e.g., frequent sets or association rules which capture
some regularities among the one values within the data). We are interested in bi-
set mining, i.e., the computation of sets of objects and sets of attributes which
are somehow “associated”. An interesting case concerns Conceptual Knowledge
Discovery [8,9,10,11,6]. It is based on the formal concepts contained in the data,
i.e., the maximal bi-sets of one values [17]. Examples of formal concepts in r1
(Table 1) are ({o1, o2, o3, o4}, {a1, a2}) and ({o4}, {a1, a2, a3, a4}). Formal con-
cept discovery is related to the popular frequent (closed) set computation. Ef-
ficient algorithms can nowadays compute complete collections of constrained
formal concepts (see, e.g., [15,2]).

In this paper, we address one fundamental limitation of Knowledge Discovery
processes based on formal concepts. Within such local patterns, the strength of
the association of the two set components is often too strong in real-life data.
Indeed, errors of measurement and boolean encoding techniques may lead to
erroneous zero values which will give rise to a combinatorial explosion of the
number of formal concepts. Assume that K1 represents a real phenomenon but

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 144–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. A formal context K1 (left), K2 with 17% of noise (right)

a1 a2 a3 a4

o1 1 1 0 0
o2 1 1 0 0
o3 1 1 0 0
o4 1 1 1 1
o5 0 0 1 1
o6 0 0 1 1

a1 a2 a3 a4

o1 1 1 0 0
o2 1 0 1 0
o3 1 1 0 1
o4 1 1 1 1
o5 0 0 1 0
o6 0 0 1 1

that data collection and preprocessing lead to the data K2. The number of formal
concepts in K2 is approximately twice larger than in K1. Based on our expertise
in real-life data mining, it is now clear that the extraction of formal concepts,
their post-processing and their interpretation is not that relevant in noisy data
which encode measured and/or computed boolean relationships. Our hypothesis
is that mining formal concepts with some zero values might be useful and should
be considered as a valuable alternative to formal concept discovery. For example,
the bi-set ({o1, o2, o3, o4}, {a1, a2}) appears to be relevant in K2: its objects and
attributes are strongly associated (only one zero value) and the outside objects
and attributes contain more zero values.

Therefore, we propose to extend formal concepts towards such fault-tolerant
patterns by specifying a new type of bi-sets, the so-called DR-bi-sets. The main
challenge is to preserve important properties of formal concepts which have been
proved useful during pattern interpretation:

– The numbers of zero values are bounded on objects and attributes.
– These bi-sets are maximal on both dimensions.
– It does not exist an outside pattern object (resp. attribute) which is identical

to an inside pattern object (resp. attribute). It increases pattern relevancy.
– There exist two functions, one which associates to a set of objects (resp.

attributes) a unique set of attributes (resp. objects). Such functions ensure
that every DR-bi-set captures a relevant association between the two set
components. As such it provides powerful characterization mechanisms.

Section 2 discusses related work. Section 3 is a formalization of our new pattern
domain. It is shown that DR-bi-sets are a fairly natural extensions of formal
concepts. Section 4 sketches our correct and complete algorithm which computes
every DR-bi-set. Section 5 provides experimental results on both synthetic and
real data. Section 6 concludes.

2 Related Work

Looking for fault-tolerant pattern has been already studied. To the best of our
knowledge, most of the related work has concerned mono-dimensional patterns
and/or the use of heuristic techniques. In [18], the frequent set mining task is
extended towards fault-tolerance. A level-wise algorithm is proposed but their
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fault-tolerant property is not anti-monotonic while this is needed to achieve
tractability. Therefore, [18] provides a greedy algorithm leading to an incom-
plete computation. [14] revisits this work and it looks for an anti-monotonic
constraint such that a level-wise algorithm can provide every set whose density
of one values is greater than δ in at least σ situations. Anti-monotonicity is ob-
tained by enforcing that every subset of extracted sets satisfies the constraint as
well. The extension of such dense sets to dense bi-sets is difficult: the connection
which associates objects to properties and vice-versa is not decreasing while this
is an appreciated property of formal concepts. Instead of using a relative density
definition, [12] considers an absolute threshold to define fault-tolerant frequent
patterns: given a threshold δ, a set of attributes P , such that �P > δ, holds in an
object X iff �(X∩P ) ≥ �P−δ where �X denotes the size of X . To ensure that the
support is significant for each attribute, they use a minimum support threshold
per attribute beside the classical minimum support. Thus, each object of an ex-
tracted pattern contains less than δ zero values and each attribute contains more
one values than the given minimum support for each attribute. This definition is
not symmetrical on the object and attribute dimension, and the more the support
increases, the less the patterns are relevant. In [7], the authors are interested in
geometrical tiles (i.e., dense bi-sets which involve contiguous elements given or-
ders on both dimensions). Their local optimization algorithm is not deterministic
and thus can not guarantee the global quality of the extracted patterns. Fur-
thermore, the hypothesis on built-in orders can not be accepted on many data.

Some fault-tolerant extensions of formal concepts have been recently pro-
posed as well. In [1], available formal concepts are merged while checking for a
bounded number of exceptions on both dimensions. The proposed technique is
however incomplete, and the mapping between set components of the extracted
bi-sets is not guaranteed. The proposal in [13] concerns an extension which can
be computed efficiently but none of the appreciated properties are available. This
research is also related to condensed representations of concept lattices or dense
bi-sets. [16] introduces a “zooming” approach on concept lattices. The so-called
α-Galois lattices exploit a partition on the objects to reduce the collection of
the extracted bi-sets: a situation s is associated to a set G if α% of the objects
which have the same class value than s are associated to elements from G and
if s is associated to G as well. Our context is different since we want to preserve
the duality between objects and attributes as far as possible.

3 Formalization

Let G and M be sets, called the set of objects and attributes respectively. Let I be
a relation I ⊆ G×M between objects and attributes: for g ∈ G,m ∈M, (g,m) ∈
I holds iff the object g has the attribute m. The triple K = (G,M, I) is called
a (formal) context.

A bi-set (X,Y ) is a couple of sets from 2G×2M . Some specific types of bi-sets
have been extensively studied. This is the case of formal concepts which can be
defined thanks to Galois connection [17]:
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Definition 1. Given X ⊆ G and Y ⊆ M , the Galois connection on K is the
couple of functions (φ, ψ) s.t. ψ(X) = {m ∈ M | ∀g ∈ X, (g,m) ∈ I} and
φ(Y ) = {g ∈ G | ∀m ∈ Y, (g,m) ∈ I}. A bi-set (X,Y ) is a formal concept with
extent X and intent Y iff X = φ(Y ) and Y = ψ(X).

We now give a new way to define formal concepts which will be generalised to
DR-bi-sets.

Definition 2. Let us denote by Zo(x, Y ) the number of zero values of an object
x on the attributes in Y : Zo(x, Y ) = �{y ∈ Y |(x, y) �∈ I}. Similarly Za(y,X) =
�{x ∈ X |(x, y) �∈ I} denotes the number of zero values of an attribute y on the
objects in X.

Formal concepts can now be characterized by the following lemma:

Lemma 1. A bi-set (X,Y ) is a formal concept of the context K iff:
∀x ∈ X, Zo(x, Y ) = 0 or similarly, ∀y ∈ Y, Za(y,X) = 0 (1)
(∀x ∈ G \X, Zo(x, Y ) ≥ 1) and (∀y ∈M \ Y, Za(y,X) ≥ 1) (2)

It introduces constraints which can be used to compute formal concepts [2].
Interestingly, these constraints ensure the maximality (w.r.t. set inclusion) of
the bi-sets which satisfy them. It is well-known that constraint monotonicity
properties are extremely important for a clever exploration of the associated
search space. These properties are related to a specialization relation. Let us
consider an unusual specialization relation for building concept lattices.

Definition 3. Our specialization relation ( on bi-sets is defined as follows:
(X1, Y1) ( (X2, Y2) iff X1 ⊆ X2 and Y1 ⊆ Y2. A constraint C is said anti-
monotonic w.r.t. ( iff ∀D,E ∈ 2G × 2M s.t. D ( E, C(E) ⇒ C(D). Dually, C
is said monotonic w.r.t. ( iff C(D) ⇒ C(E). Notice that C(D) denotes that the
constraint C is satisfied by the bi-set D.

For instance, we might use a minimal size constraint Cms(σ1, σ2, (X,Y )) ≡ �X ≥
σ1 ∧ �Y ≥ σ2. Such a constraint is monotonic w.r.t. (.

3.1 Dense Bi-sets

We want to compute bi-sets with a strong association between the two sets and
such that its number of zero values can be controlled. We can decide to bound the
number of zero values per object/attribute or on the whole bi-set (strong density
vs. weak density). We can also look at relative or absolute density, i.e., to take
into account the density w.r.t. the size of the whole bi-set or not. If we use the
weak density, we can obtain bi-sets containing objects or attributes with only
zero values. In this case, these objects (resp. attributes) are never associated
to the bi-set attributes (resp. objects). We decided to use an absolute strong
density constraint that enforces an upper bound for the number of zero values
per object and per attribute. Using strong density enables to get the important
monotonicity property.
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Definition 4. Given (X,Y ) ∈ 2G × 2M and a positive integer value α, (X,Y )
is said dense iff it satisfies the anti-monotonic constraint Cd(α, (X,Y )) ≡ (∀x ∈
X, Zo(x, Y ) ≤ α) and (∀y ∈ Y, Za(y,X) ≤ α).

3.2 Relevant Bi-sets

We want to extract bi-sets (X,Y ) such that the objects of X (resp. the attributes
of Y ) have a larger density of one values on the attributes from Y (resp. on
the objects from X) than on the other attributes, i.e., M \ Y (resp. objects,
i.e., G \ X). It leads to the formalisation of a relevancy constraint where the
parameter δ is used to enforce the difference of zero values inside and outside
the bi-set.

Definition 5. Given (X,Y ) ∈ 2G × 2M , and a positive integer value δ, (X,Y )
is said relevant iff it satisfies the following constraint:

Cr(δ, (X,Y )) ≡ (∀g ∈ G \X, ∀x ∈ X, Zo(g, Y ) ≥ Zo(x, Y ) + δ)
and (∀m ∈M \ Y, ∀y ∈ Y, Za(m,X) ≥ Za(y,X) + δ)

3.3 DR-Bi-sets

The bi-sets which satisfy both Cd and Cr constraints are a new type of fault-
tolerant patterns. Dense and relevant bi-sets are indeed a generalisation of formal
concepts (bi-sets with α = 0 and δ = 1). Cd is a straightforward generalisation of
the first equation in Lemma 1. Cr generalizes the second equation in Lemma 1
by enforcing that all outside elements of the bi-set contain at least δ zero values
in addition to the one of every inside element. Parameter α controls the density
of the bi-sets whereas the parameter δ enforces a significant difference with the
outside elements. Cd is anti-monotonic w.r.t. ( (see Definition 3) and can give
rise to efficient pruning. Cr is neither monotonic nor anti-monotonic but we
explain in Section 4 how to exploit this constraint efficiently. Fig. 1 shows the
collection of bi-sets in K3 which satisfy Cd ∧ Cr when α = 5 and δ = 1 ordered
w.r.t. (. Each level indicates the maximal number of zero values per object and
per attribute. For instance, if α = 1, a sub-collection containing five bi-sets is

Fig. 1. A formal context K3 and the bi-sets satisfying Cd ∧ Cr with α = 5 and δ = 1
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extracted, four of them being formal concepts (α = 0). Density and relevancy
constraints do not ensure maximality which is a desired property. For instance,
in Fig. 1, if B denotes ({o1, o2, o3}, {a1, a2}), we have ({o1, o2}, {a1, a2}) ( B
and ({o1, o2, o3}, {a2}) ( B. As a result, to increase bi-set relevancy, we finally
consider the so-called DR-bi-sets which are the maximal dense and relevant
bi-sets.

Definition 6. Let (X,Y ) ∈ 2G × 2M be a dense and relevant bi-set (i.e., satis-
fying Cd ∧Cr). (X,Y ) is called a DR-bi-set iff it is maximal w.r.t. (, i.e. it does
not exist (X ′, Y ′) ∈ 2G×2M s.t. (X ′, Y ′) satisfies Cd∧Cr and (X,Y ) ( (X ′, Y ′).

This collection is denoted DRαδ. For example, DR11 on K3 contains the three
circled bi-sets of Fig. 1. It is important to notice that different threshold values
might be considered on objects/attributes (say α/α′ for the density constraint
and δ/δ′ for the relevancy constraint).

3.4 Properties

Let us first emphasize that the DR-bi-set size increases with parameter α.

Property 1. Given 0 ≤ α1 ≤ α, ∀(X1, Y1) ∈ DRα1δ, ∃(X,Y ) ∈ DRαδ such that
(X1, Y1) ( (X,Y ).

Proof. ∀(X,Y ) satisfying Cd(α1, (X,Y )) ∧ Cr(δ, (X,Y )) then (X,Y ) satisfies
Cd(α, (X,Y )) ∧ Cr(δ, (X,Y )). DRαδ contains (X,Y ) or a bi-set (X ′, Y ′) s. t.
(X,Y ) ( (X ′, Y ′). �

The larger α is, the more the size of each extracted bi-set from DRαδ increases
while extracted associations with smaller α value are preserved. In practice, an
important reduction on the size of the extracted collections is observed when
the parameters are well chosen (see Section 5). As a result, a zooming effect is
obtained when α is varying. Parameter δ enables to select more relevant patterns.
For example, when δ = 2 and α ≤ 1 the collection in K3 is reduced to the DR-
bi-set ({o1}, {a1, a2, a3, a4}).

The following property ensures that DR-bi-sets are actually a generalisation
of formal concepts, i.e., they are related by two functions.

Property 2. For δ > 0, there exists two functions called ψDR and φDR such that
ψDR : 2G → 2M and φDR : 2M → 2G such that (X,Y ) is a DR-bi-set iff
X = φDR(Y ) and Y = ψDR(X).

Proof. Let (S1, S2), (S1, S3) ∈ DRαδ such that S2 �= S3. Let MaxZa(X,Y ) ≡
maxm∈X Za(m,Y ) and MinZa(X,Y ) ≡ minm∈X Za(m,Y )

As DRαδ contains maximal bi-sets, S2 �⊆ S3 and S3 �⊆ S2. We have

MaxZa(S1, S3) ≤MinZa(S1,M \ S3)− δ (Cr constraint)
≤MinZa(S1, S2 \ S3)− δ (set inclusion)
<MinZa(S1, S2 \ S3) (δ > 0) ≤MaxZa(S1, S2 \ S3)
≤MaxZa(S1, S2)
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Then, we have MaxZa(S1, S3) < MaxZa(S1, S2) and similarly we can derive
MaxZa(S1, S2) <MaxZa(S1, S3) which leads to a contradiction.

Thus, we have a function between 2G and 2M . The existence of a function
between 2M and 2G can be proved in a similar way. �
These functions are extremely useful to support pattern interpretation: to a set
of objects X corresponds at most one set of attributes. Typically, they were
missing in previous approaches for fault-tolerance extensions of formal concepts
[1,12]. Unfortunately, we do not have an explicit definition of these functions.
This remains an open problem.

4 A Complete Algorithm

The whole collection of bi-sets ordered by ( forms a lattice whose bottom is
(⊥G,⊥M ) = (∅, ∅) and top is (�G,�M ) = (G,M). Let us note by B the
set of sublattices1 of ((∅, ∅), (G,M)), B = {((X1, Y1), (X2, Y2)) s.t. X1, X2 ∈
2G, Y1, Y2 ∈ 2M and X1 ⊆ X2, Y1 ⊆ Y2}, where the first (resp. the second) bi-
set is the bottom (resp. the top) element. The algorithm DR-Miner explores
some of the sublattices of B built by means of three mechanisms: enumeration,
pruning and propagation.

Table 2. DR-Miner pseudo-code

K = (G, M, I) is a formal context, C a conjunction of
monotonic and anti-monotonic constraints on 2G × 2M

and α, δ are positive integer values.
DR-Miner

Generate((∅, ∅), (G, M))
End DR-Miner

Generate(L)
Let L = ((⊥G, ⊥M ), (�G, �M ))
L ← Prop(L)
If Prune(L) then

If (⊥G, ⊥M ) �= (�G, �M ) then
(L1, L2) ← Enum(L,Choose(L))
Generate(L1)
Generate(L2)

Else Store (⊥G, ⊥M )
End if

End if
End Generate

1 X is a sublattice of Y if Y is a lattice, X is a subset of Y and X is a lattice with
the same join and meet operations as Y .
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Fig. 2. Example of DR-Miner execution

DR-Miner starts with the complete lattice ((∅, ∅), (G,M)) and then recursively
propagates the constraints using Prop function, check the consistency of the
obtained sublattice with Prune function and then generates two new sublattices
thanks to Enum function (see Table 2). The Figure 2 shows an example of DR-
Miner execution.

– Enumeration: Let Enum : B ×G ∪M → B2 such that

Enum(((⊥G,⊥M ), (�G,�M )), e)

=
{

(((⊥G ∪ {e},⊥M), (�G,�M )), ((⊥G,⊥M ), (�G \ {e},�M))) if e ∈ G
(((⊥G,⊥M ∪ {e}), (�G,�M )), ((⊥G,⊥M ), (�G,�M \ {e}))) if e ∈M

where e ∈ �G \ ⊥G or e ∈ �M \ ⊥M . Enum generates two new sublattices
which are a partition of its input parameter.
Let Choose : B → G ∪M be a function which returns (one of) the element
e ∈ �G \⊥G∪�M \⊥M containing the largest number of zero values on �M

if e ∈ G or on �G if e ∈ M . It is an heuristic which tends to increase the
efficiency of propagation mechanisms by reducing the search space as soon
as possible.

– Pruning: We prune a sublattice if we are sure that none of its bi-sets satis-
fies the constraint. Let Prunem

C : B → {true,false} be a function which
returns True iff the monotonic constraint C (w.r.t. () is satisfied by the top
of the sublattice: Prunem

C ((⊥G,⊥M ), (�G,�M )) ≡ C(�G,�M )

Let Pruneam
C : B → {true,false} be a function which returns True iff

the anti-monotonic constraint C (w.r.t () is satisfied by the bottom of the
sublattice: Pruneam

C ((⊥G,⊥M ), (�G,�M )) ≡ C(⊥G,⊥M )

Cd is anti-monotonic and thus it can be used as Pruneam
Cd

. Nevertheless,
Cr is neither monotonic nor anti-monotonic. The Cr constraint is adapted
to ensure that the elements which do not belong to the sublattice might
contain more zero values on the top (the elements that can be included in
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the bi-sets) than the inside ones do on the bottom (the elements that belong
to each bi-set). Let PruneCr : B → {true,false} be a function such that

PruneCr ((⊥G,⊥M ), (�G,�M )) ≡
∀s ∈ G \ �G, ∀t ∈ ⊥G,Zo(s,�M ) ≥ Zo(t,⊥M ) + δ and
∀s ∈M \ �M , ∀t ∈ ⊥M ,Za(s,�G) ≥ Za(t,⊥G) + δ

If Prunem
C1

(L) (resp. Pruneam
C2

(L) and PruneCr(L)) is False, then any bi-
set contained in L does not satisfy C1 (resp. C2 and Cr).
In DR-Miner, we use Prune : B → {true,false} which is such that
Prune(L) ≡ Prunem

C1
(L) ∧ Pruneam

C2
(L) ∧ PruneCr(L) ∧ Prunem

Cd
(L)

– Propagation: Cd and Cr can be used to reduce the size of the sublattices by
moving objects of �G \ ⊥G into ⊥G or outside �G. The fonctions Propin :
B → B and Propout : B → B are used to do it as follow:

Propin((⊥G,⊥M ), (�G,�M )) = {((⊥′
G,⊥′

M ), (�G,�M )) ∈ B |
⊥′

G = ⊥G ∪ {x ∈ �G \ ⊥G | ∃t ∈ ⊥G, Zo(x,�M ) < Zo(t,⊥M ) + δ}
⊥′

M = ⊥M ∪ {x ∈ �M \ ⊥M | ∃t ∈ ⊥M , Za(x,�G) < Za(t,⊥G) + δ}}

Propout((⊥G,⊥M ), (�G,�M )) = {((⊥G,⊥M ), (�′
G,�′

M )) ∈ B |
�′

G = �G \ {x ∈ �G \ ⊥G | Zo(x,⊥M ) > α}
�′

M = �M \ {x ∈ �M \ ⊥M | Za(x,⊥G) > α}}

Prop : B → B is defined as Prop(L) = Propin(Propout(L)). It is recursively
applied as long as its result changes.

To prove the correctness and completeness of DR-Miner, a sublattice L =
((⊥G,⊥M ), (�G,�M )) is called a leaf when it contains only one bi-set i.e.,
(⊥G,⊥M ) = (�G,�M ). DR-bi-sets are these maximal bi-sets. To extract only
maximal dense and relevant ones, we have adapted the Dual-Miner strategy
for pushing maximality constraints [4].

DR-Miner correctness: Every bi-set (X,Y ) belonging to leaf L satisfies Cd∧Cr

according to Pruneam
Cd

and PruneCr .

DR-Miner completeness: Let T1 = ((⊥1
G,⊥1

M ), (�1
G,�1

G)) and
T2 = ((⊥2

G,⊥2
M ), (�2

G,�2
G)). Let � be a partial order on B defined as T1 � T2

iff (⊥2
G,⊥2

M ) ( (⊥1
G,⊥1

M ) and (�1
G,�1

G) ( (�2
G,�2

G) (see Definition 3). � is the
partial order used to generate the sublattices.

We show that for each bi-set (X,Y ) satisfying Cd ∧ Cr, it exists a leaf L =
((X,Y ), (X,Y )) which is generated by the algorithm.

Property 3. If F is a sublattice such that L � F then among the two sublattices
obtained by the enumeration of F (Enum(F , Choose(F))) one and only one is
a super-set of L w.r.t. �. This property is conserved by function Prop.
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Proof. Let F = ((⊥G,⊥M ), (�G,�M )) ∈ B such that L � F . Assume that the
enumeration is done on objects (it is similar on attributes) and that the two
sublattices generated by the enumeration of o ∈ �G \ ⊥G are L1 and L2. If
o ∈ X then L � L1 and L �� L2, otherwise L � L2 and L �� L1.

Let us now show that constraint propagation (function Prop) on any sub-
lattice F = ((⊥G,⊥M ), (�G,�M )) such that L � F preserves this order. More
precisely, no element of X is removed of �G due to Propout (Case 1) and no
element of G \X is moved to ⊥G due to Propin (Case 2).

– Case 1: (X,Y ) satisfies Cr then ∀p ∈ �G \ ⊥G s.t. p ∈ G \ X and ∀t ∈
⊥G, we have Zo(p, Y ) ≥ Zo(t, Y ) + δ. But ⊥M ⊆ Y ⊆ �M , and thus
Zo(p,�M ) ≥ Zo(p, Y ) ≥ Zo(t, Y ) + δ ≥ Zo(t,⊥M ) + δ. Consequently,
Zo(p,�M ) < Zo(t,⊥M ) + δ is false. Consequently, p is not moved to ⊥G.

– Case 2: (X,Y ) satisfies Cd then ∀p ∈ �G\⊥G s.t. p ∈ X , we have Zo(p, Y ) ≤
α. But ⊥M ⊆ Y , and thus Zo(p,⊥M ) ≤ Zo(p, Y ) ≤ α. Consequently, p is
not removed from �G. �

Since DR-Miner starts with ((∅, ∅), (G,M)) which is a super-set of L, given
that B is finite and that recursively it exists always a sublattice which is an
super-set of L w.r.t. � even after the propagation has been applied, then we can
affirm that every bi-set satisfying Cd ∧ Cr is extracted by DR-miner.

5 Experimentation

5.1 Robustness on Synthetic Data

Let us first illustrate the added-value of DR-bi-set mining in synthetic data. Our
goal is to show that the extraction of these patterns in noisy data sets enables to
find some originally built-in formal concepts blurred by some random noise. Our
raw synthetic data is a matrix 30 × 15 in which three disjoint formal concepts
of size 10 × 5 hold. Then, we introduced a uniform random noise on the whole
matrix and 5 different data sets have been produced for each level of noise, i.e.,
from 1% to 30% (each zero or one value has a probability of X% to be changed).

To compare the extracted collections with the three original built-in formal
concepts, we used a measure which tests the presence of a subset of the original
pattern collection in the extracted ones. This measure σ associates to each pat-
tern of one collection C1 the closest pattern of the other one C2 (and reciprocally).
It is based on a distance measure taking into account their shared area:

σ(C1, C2) =
ρ(C1, C2) + ρ(C2, C1)

2

ρ(C1, C2) =
1
�C1

∑
(Xi,Yi)∈C1

max
(Xj ,Yj)∈C2

� (Xi ∩Xj) ∗ � (Yi ∩ Yj)
� (Xi ∪Xj) ∗ � (Yi ∪ Yj)

when ρ(C1, C2) = 1, each pattern of C1 has an identical instance in C2, and when
σ = 1, the two collections are identical. High values of σ mean that (a) we can
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Fig. 3. Mean and standard deviation of the number of bi-sets (5 trials) (left) and of σ

(right) w.r.t. the percentage of noise

find all the formal concepts of the reference collection within the noised matrix,
and (b) the collection extracted from noised matrices does not contain many
bi-sets that are too different from the reference ones.

Figure 3 presents the mean and the standard deviation of the number of
extracted bi-sets (left) and the mean and standard deviation of σ (right) for each
level of noise. Two collections are represented: one for α = 0 and δ = 1 (i.e.,
the case of formal concepts), and the second one for α = 2 and δ = 3. On both
collections, a minimal size constraint is added which enforces that each pattern
contains at least 3 elements on each dimension (i.e., satisfying Cms(3, 3)). It
avoids the computation of the smallest bi-sets which can indeed be due to noise.

We can observe that when the noise level increases, the number of extracted
formal concepts (i.e., α = 0 and δ = 1) increases drastically, whereas σ decreases
drastically as well. For α = 2 and δ = 3, we observe an important reduction
of the number of extracted DR-bi-sets and an important increase of the DR-
bi-set quality: for 10 % of noise the collection is similar to the built-in formal
concept collection. These graphics emphasize the difference between the use of
formal concepts and DR-bi-sets in noisy data: the first one constitutes a large
collection (tens to hundreds of patterns) of poorly relevant patterns, whereas the
second one is clearly closer to the three built-in patterns. Indeed, we get between
2 and 4 patterns with higher σ values. When the level of noise is very high (say
over 20%), the DR-bi-sets are not relevant any more. Indeed, with such level of
noise, the data turns to be random.

5.2 Impact of Parameters α and δ

To study the influence of the α parameter, we performed several mining tasks
on the UCI data set Internet Advertisements which is large on both dimensions
(matrix 3 279× 1 555) [3].
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Fig. 4. Number of extracted DR-bi-sets (left) and average increase of bi-set size w.r.t.
formal concepts (right) for several frequency thresholds on both dimensions (�), with
δ = 1 and α ∈ 0..2

We have extracted DR-bi-set collections with a minimal size constraint on
both dimensions varying between 12� and 7�, where δ = 1 and α varying
between 0 and 2. Figure 4 (left) shows the size of DR-bi-set collections. In this
data set, the collection sizes decrease with α. Figure 4 (right) shows the average
number of added objects and attributes of each formal concept. More formally,
if C0 denotes the collection of formal concepts and if Cα denotes the collection
of DR-bi-sets obtained with parameter α, the measure is computed as follow:

1
�C0

∑
(X0,Y0)∈C0

max
(Xα,Yα)∈A(X0,Y0)

�(Xα \X0) ∗ �(Yα \ Y0)

where A(X0, Y0) = {(X,Y ) ∈ Cα suchthat(X0, Y0) ( (X,Y )} and ( is the order
of Definition 3. As proved in Property 1, the average sizes of the extracted bi-sets
increase with α. But we can observe that this increase is quite important: for
example, for α = 2 and frequency = 11, one element has been added to each
formal concept in average.

To study the influence of the δ parameter, we have also performed experi-
ments on the UCI data set Mushroom (matrix 8 124× 128) [3] and on the real
world medical data set Meningitis [5]. Meningitis data have been gathered from
children hospitalized for acute meningitis. The pre-processed Boolean data set
is composed of 329 patients described by 60 Boolean properties.

A straightforward approach to avoid some irrelevant patterns and to re-
duce the pattern collection size is to use size constraints on bi-set components.
For these experiments, we use the constraint Cms(500, 10) on Mushroom and
Cms(10, 5) on Meningitis. Using D-Miner [2], we have computed the collec-
tion of such large enough formal concepts and we got more than 1 000 formal
concepts on Mushroom and more than 300 000 formal concepts on Meningi-
tis (see Table 3). We used different values of δ on G (denoted δ) and on M
(denoted δ′).
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Table 3 gathers the results obtained on the two data sets. For Mushroom, α
is fixed to 0 and δ = δ′ are varying between 2 and 6. We can observe that the
collection sizes drastically decrease with δ and δ′. On Meningitis, α is set to 1
and δ′ is varying between 2 and 6 whereas δ is set to 1. We use different values
for δ and δ′ because the pattern sizes were greater on the object set components
and thus we wanted to enforce the difference with the outside elements on these
components. For this data set, not only the collection sizes, but also the com-
putational times are considerably reduced when δ′ increases. Notice that δ′ = 1
leads to an intractable extraction but, with δ′ = 2, the resulting collection is 80%
smaller than the related formal concept collection. Such decreases are observed
when considering higher δ′ values.

Table 3. DR-bi-set collection sizes and extraction time when δ′ is varying from 1 to 6
on Mushroom and Meningitis

Mushroom (Cms(500, 10), α = 0)
δ = δ′ Concepts 1 2 3 4 5 6
size 1 102 1 102 11 6 2 1 0
time 1.6s 10s 4s 4s 3s 2s 2s

Meningitis (Cms(10, 5), α = 1, δ = 1)
δ′ Concepts 1 2 3 4 5 6

size 354 366 - 75 376 22 882 8 810 4 164 2 021
time 5s - 693s 327s 181s 109s 70s

6 Conclusion

We have considered the challenging problem of computing fault-tolerant bi-sets.
Formal concepts fail to emphasize relevant associations when the data is intrin-
sically noisy. We have formalized a new task, maximal dense and relevant bi-set
mining, within the constraint-based data mining framework. We propose a com-
plete algorithm DR-Miner which computes every DR-bi-set by pushing these
constraints during an enumeration process. Density refers to the bounded num-
ber of zero values and relevancy refers to the specificities of the elements involved
in the extracted bi-sets when considering the whole data set. We experimentally
validated the added-value of this approach on both synthetic and real data. Fix-
ing the various parameters might appear difficult (it is often driven by tractability
issues) but this is balanced by the valuable counterpart of completeness: the user
knows exactly which properties are satisfied by the extracted collections.
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Abstract. This article presents a data warehouse used for risk assess-
ment in food products. The experimental data stored in this warehouse
are heterogeneous, they may be imprecise; the data warehouse itself is
incomplete by nature. The MIEL++ system – which is partially com-
mercialized – is composed of three databases which are queried simul-
taneously, and which are expressed in three different data models: the
relational model, the Conceptual Graph model and XML. Those models
have been extended in order to allow the representation of fuzzy val-
ues. In the MIEL++ language, used to query the data warehouse, the
end-users can express preferences in their queries by means of fuzzy sets.
Fuzzy pattern matching techniques are used in order to compare prefer-
ences and imprecise values.

Preamble

In ICCS 2000, we presented an article that summarized our project to build a
tool that aimed at preventing microbiological risk in food products [1]. That led
us to work on the integration of a Relational Database and a Conceptual Graph
database, and on an extension of the CG model allowing the representation of
fuzzy values in the concept vertices [2]. Our work which took place in an impor-
tant project called Sym’Previus1 has significantly evolved since 2000. Indeed, it
was the basis for a new French project, called e.dot, which aimed at building
thematic data warehouses automatically fed from data extracted from the Web.
We think that it could be interesting to present to the Conceptual Structure
community the 2006 version of the MIEL++ system which is the result of 5-
years work. That system, which involves Relational Databases, XML data and,
of course, Conceptual Graphs, is now partially commercialized, and it is still
being developed.

1 This project is backed by the French Ministries of Agriculture and Research.

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 158–171, 2006.
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Note that some parts of this work have been already published in more de-
tails, particularly in the Journal of Intelligent Information Systems and in IEEE
Transactions on Fuzzy Systems [3, 4, 5]. Our goal in this article is to provide a
synthetic overview of the system, which has never been presented globally in an
international event.

1 Introduction

Since 1999, we have been working with industrial2 and academic3 partners on
several projects which concern knowledge representation and data integration in
the field of predictive microbiology. In the Sym’Previus [6] and e.dot [7] projects,
we worked on the building of a data warehouse composed of data concerning the
behaviour of pathogenic germs in food products. Those data are designed to be
used in a tool dedicated to researchers in microbiology or to industrials. Our
goal is to help them in a decision support approach in order to prevent food
products from contamination.

The information we have to store in our data warehouse presents several
specificities. It is weakly-structured because information comes from heteroge-
neous sources (scientific literature, industrial partners, Web sites...) and is still
rapidly evolving since predictive microbiology is a research field. It is imprecise
because of the complexity of the underlying biological processes, and because
of the internal imprecision of the measurement tools. The data warehouse is
incomplete by nature since the number of experiments is potentially infinite: it
will never contain information about all the possible food products and all the
possible pathogenic germs in any possible experimental conditions.

Those three characteristics are taken into account in the following ways. The
weak structure of the data led us to build a data warehouse composed of three
bases: a Relational Database which contains the stable part of the information,
a Conceptual Graph base which contains the weakly-structured part of the in-
formation and an XML base filled with data semi-automatically extracted from
the Web. The imprecision of the data is represented by means of possibility
distributions expressed by fuzzy sets, in each of the three bases. Finally, the in-
completeness is partially solved by allowing the end-users to express large queries
with expression of preferences in the selection criteria; we also propose a mech-
anism of generalization of the queries. The knowledge of the application domain
is represented by means of the MIEL++ ontology which was built by experts of
the domain during the Sym’Previus project.

The three bases are queried in a transparent way by means of the user interface
of the MIEL++ system. The MIEL++ system is a kind of mediated architecture
[8] between three different databases; each piece of information is stored in the
most suited base.

This article aims at presenting the data warehouse as a whole. In section 2 we
make an overall presentation of the MIEL++ architecture. In the next sections,
2 Danone, Pernod-Ricard. . .
3 INRIA, LRI, Institut Pasteur. . .
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we present the two most innovative subsystems among the three which compose
our data warehouse: the CG subsystem in section 3 and the XML subsystem in
section 4. More detailed explanations about the Relational Database subsystem
(called RDB subsystem in the following) can be found in [5].

2 The MIEL++ Architecture

The MIEL++ architecture is composed of three distinct databases – which are
called subsystems in the following – which have been added successively during
the development of the projects we are involved in. The first one is a Relational
Database which contains the stable part of the information which can fit a given
relational schema. Since the evolution of a database schema is an expensive
operation, we proposed to add a second database dedicated to the less structured
part of the data. We chose to use the Conceptual Graph model. Finally, we have
a third database composed of XML data. That XML database contains data
semi-automatically extracted from the Web. Fig. 1 presents an overview of the
architecture of the MIEL++ system.

query

answers

relational

database

RDB wrapper

conceptual

graph

database

CG wrapper

XML

database

XML wrapper

MIEL++

graphical user interface

MIEL++ ontology

taxonomy views

SQL query query graph Xquery query

answer graphstuples XML fragments

MIEL++ 

query
MIEL++

answer

Fig. 1. A general overview of the MIEL++ architecture

When a query is asked to the MIEL++ system, that query is asked through
a single graphical user interface, which is based on the MIEL++ ontology. The
query is translated by each subsystem’s wrapper into a query expressed in the
query language of the subsystem (an SQL query in the RDB subsystem, a Con-
ceptual Graph in the CG subsystem and a XQuery query in the XML subsystem).
Finally, the global answer to the query is the union of the local results of the
three subsystems. Note that, for the moment, the MIEL++ ontology is partially
duplicated in each subsystem, as we will see for example in section 3.
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2.1 The Data in MIEL++

The MIEL++ ontology. The MIEL++ ontology is notably composed of:

1. a taxonomy of terms, composed of the set of attributes which can be queried
on by the end-user, and their corresponding definition domains. Each at-
tribute has a definition domain which can be: (1) numeric, (2) “flat” symbolic
(unordered constants such as a set of authors) or (3) hierarchized symbolic
(constants partially ordered by the “kind-of” relation). Fig. 2 is a part of the
taxonomy composed of the attribute Substrate and its hierarchized symbolic
definition domain. The taxonomy contains for instance the food products,
the pathogenic germs, etc.

2. a relational schema, which corresponds to the schema of the Relational
Database of the MIEL++ system. That schema is composed of a set of
signatures of the possible relations between the terms of the taxonomy. For
example, the relation FoodProductPH is used to link a food product and its
pH value.

3. a set of views, which consists of pre-written queries, which are given to help
the end-users express their queries.

Whole milk Half
skim
milk

Milk
Meat

Substrate

Skim
milk

Poultry

Beef Pork
Pasteurized

milk

Pasteurized
whole milk

Fig. 2. A part of the taxonomy corresponding to the attribute Substrate

The fuzzy values in MIEL++. As we mentioned in the introduction of
this article, the MIEL++ data can be imprecise, due to the complexity of the
biological processes as well as the intrinsic imprecision of the measurement tools.
We decided to allow the representation of such imprecise values by means of
possibility distributions, expressed by means of fuzzy sets. Thus we proposed a
representation of fuzzy values in our three databases. We use the representation
of fuzzy sets proposed in [9, 10].

Definition 1. A fuzzy set f on a definition domain Dom(f) is defined by a
membership function μf from Dom(f) to [0, 1] that associates the degree to
which x belongs to f with each element x of Dom(f).

2.2 The Queries in MIEL++

In the MIEL++ system, the query processing is done through the MIEL++
query language. We do not introduce extensively the MIEL++ query language
in this article. The reader who wants a formal description of the MIEL++
query language can refer to [3]. In this article, we present the query language
through the graphical user interface which is dedicated to end-users who are
non-computer scientists.
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Fig. 3. The GUI permits to select an ordered list composed of soft cheese and cheese
in the hierarchy of food products

This MIEL++ query language relies on the set of views and the taxonomy
of the MIEL++ ontology. In the MIEL++ language, the end-users select the
view they are interested in, then they instantiate it by specifying the selection
attributes and their corresponding searched values, and the projection attributes
of the query. As the three databases are incomplete (since the number of potential
experiments is very large), we propose a mechanism of query enlargement by
means of expression of preferences – represented by fuzzy values – in the values
of the searched attributes.

The first screenshot (see Fig. 3) presents the first step of the expression of a
query. The end-users choose in the taxonomy (here the hierarchy of food prod-
ucts) an ordered list of food names which represent their preferences for the at-
tribute FoodProduct. In this example, the end-user expresses that he/she is first
interested in soft cheese, but if there is no information about it in the databases,
he/she accepts to enlarge to all kind of cheese with a lower preference degree.

The second screenshot (see Fig. 4) presents the second step of the expression
of a query. Here, the end-user expresses his/her preferences for the attribute pH
defined on a numeric domain. In this example, the end-user is first interested by
pH values in the interval [6, 7], but he/she accepts to enlarge the querying till
the interval [4, 8] with decreasing degrees of preference.

The third screenshot (see Fig. 5) presents the answers returned by the MIEL++
system. The resulting tuples are presented to the end-user ordered by their ade-
quation degree δ which is presented in the following. In the screenshot, the two
first answers fully match the preferences of the end-user (δ = 1) for the Food-
Product (soft cheese) and pH ([6, 7]) attributes. The next three answers (δ = .9)
correspond to the second choice expressed for the attribute FoodProduct attribute
(cheese). The other ones (δ < .9) also correspond to a kind of cheese, but with a
pH value which goes away from the interval [6, 7]. It can be noticed that the pH
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Fig. 4. The GUI permits to define a trapezoidal fuzzy set which represents the end-
user’s preferences for the numerical attribute pH

Fig. 5. The answers provided by the MIEL++ querying system ordered by the ade-
quation degree δ which is stored in the first column pertinence

value retrieved in the answer is considered by the MIEL++ system as an imprecise
datum, presented to the end-user in two columns pH min and pH max.

In order to quantify the adequation of an imprecise datum D to a fuzzy
selection criterion Q, both being represented by a fuzzy set, two degrees are
classically used: (i) the possibility degree [10] and (ii) the necessity degree [11].
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Definition 2. Let Q and D be two fuzzy sets defined on the same definition
domain Dom, representing respectively a selection criterion and an imprecise da-
tum, and μQ and μD being their respective membership functions. The possibil-
ity degree of matching between Q and D is Π(Q,D) = supx∈Dom(min(μQ(x),
μD(x))). The necessity degree of matching between Q and D is N(Q,D) =
1−Π(Q,D) = infx∈Xmax(μQ(x), 1 − μD(x)).

In the case where the fuzzy value of a selection attribute has a hierarchized
symbolic definition domain, the fuzzy set used to represent the fuzzy value can
be defined on a subset of this definition domain. We consider that such a fuzzy
set implicitly defines degrees on the whole definition domain of the selection
attribute. For example, if end-users are interested in Milk in their query, we
assume that they are also interested in all the specializations of Milk. In order to
take those implicit degrees into account, the fuzzy set closure has been defined in
[12, 5]. The fuzzy set closure is systematically used when a comparison involving
two fuzzy sets defined on a hierarchical definition domain is considered.

3 The Conceptual Graphs in MIEL++

3.1 The Schema of the Conceptual Graph Database

The flexibility of the Conceptual Graph model [13, 14] played an important part
in the choice of that knowledge representation model in the MIEL++ system:
we can build pieces of information which have different shapes by adding or
removing graph vertices easily, contrary to a RDB schema.

We now summarize how the terminological knowledge is built in the MIEL++
Conceptual Graph subsystem (called CG subsystem in the following).

The concept type set is used to represent the main part of the MIEL++
taxonomy, since it is a partially ordered set, designed to contain the concepts of
a given application. It is built as follows. A concept type ta is associated with
each attribute a of the taxonomy. If a is a hierarchized attribute, then a concept
type tvi is associated with each element vi of the definition domain of a. The
ta’s and tvi ’s are inserted into the concept type set, w.r.t. the partial order of
that definition domain.

The hierarchized structure of the concept type set allows us to store the
attribute names and the values belonging to hierarchized definition domains
into the same set. For example, Fig. 6 represents a part of the concept type set
of the MIEL++ Conceptual Graph database. The attribute Substrate and its
hierarchized definition domain presented in Fig. 2 appear as a partial subgraph
of that concept type set.

The set of individual markers is used to store the definition domain of
each attribute a that has a flat symbolic or a numerical definition domain. More
precisely, all the values of the definition domains of the flat symbolic attributes
as well as the values of IR are inserted into the set of individual markers [12].

We do not detail the set of relation types since it does not play an important
part in our Conceptual Graph database, the semantics being mainly contained
in the concept vertices.
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Fig. 6. A part of the concept type set of the MIEL++ CG subsystem

In order to allow a homogeneous expressivity between the three subsystems
of MIEL++, we proposed an extension of the Conceptual Graph model to the
representation of fuzzy values presented in [2]. A fuzzy set can appear in two
ways in a concept vertex: (i) as a fuzzy type when the definition domain of the
fuzzy set is hierarchized. A fuzzy type is a fuzzy set defined on a subset of the
concept type set; (ii) as a fuzzy marker when the definition domain of the fuzzy
set is “flat symbolic” or numerical. A fuzzy marker is a fuzzy set defined on a
subset of the set of individual markers.

The Conceptual Graph database is composed of a set of Conceptual Graphs,
each of them representing an elementary datum. For example, Fig. 7 is a part
of a Conceptual Graph extracted from the MIEL++ CG subsystem.
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Fig. 7. An example of Conceptual Graph extracted from the MIEL++ CG subsystem.
The concept vertex framed in bold is a concept with a fuzzy marker.

3.2 Query Processing in the CG Subsystem

The views. The CG subsystem uses a set of view graphs which allow us to define
views on the Conceptual Graph database. A view graph is a pre-defined “empty”
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query which has to be instantiated in order to become an actual query graph.
When a query is asked in the CG subsystem, the view graph corresponding to the
considered view is specialized by instantiating concept vertices in order to take
into account the selection attributes of the query. The result is a query graph.

Temperature : *

1 2

Temp.Unit

1

2

Degree : *

1 2

Experiment : *

Listeria : *

1

2

1

2

:   *

1

2

Char

Obj

Char

Res Expe.Result : *

NumVal

NumericalValue :

SkimMilk HalfSkimMilk

Q
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Fig. 8. An example of a query graph. The selection attributes are framed in bold, the
projection attributes are dashed. One of the selection criteria is expressed by a concept
with a numerical fuzzy marker.

The query processing. In the CG subsystem of the MIEL++ system, the
query processing consists in searching for Conceptual Graphs which contain a
more precise information than the information contained in the query (we search
for specializations of the query graph) or, at least, for Conceptual Graphs which
contain “approximate” answers. In order to find such Conceptual Graphs, we
propose to use the δ-projection operation which is a flexible mapping operation
between two Conceptual Graphs. The δ-projection is adapted from the classic
projection operation, by taking into account the possibility and the necessity
degrees of matching (see Definition 2).

Definition 3. A δ-projection Π from a Conceptual Graph G into a Conceptual
Graph G′ is a triple (f, g, δ), f (resp. g) being a mapping from the relation (resp.
concept) vertices of G into the relation (resp. concept) vertices of G′ such that:
(i) the edges and their labels are preserved; (ii) the labels of the relation vertices
can be specialized; (iii) each concept vertex ci of G has an image g(ci) of G′

which satisfies it with the degrees πi et ni. The adequation degree between G
and G′ denoted δ is computed as the average of the minimum of the possibility
degrees of adequation between the concept vertices of G and G′ and the minimum
of the necessity degrees of adequation between the concept vertices of G and G′:
δ = min(πi)+min(ni)

2 , with 1 ≤ i ≤ nb (nb being the number of concept vertices
in G).

The query processing in the CG subsystem consists in selecting the view graph,
building the query graph, and δ-projecting that query graph into all the Con-
ceptual Graphs of the database. Every time a δ-projection into a fact graph AG

is found, the Conceptual Graph AG is considered an answer graph. A tuple with
the adequation degree δ is built using this answer graph by extracting the values
of the projection attributes.
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Example 1. If the query Q of Fig. 8 is asked on a Conceptual Graph database
containing graph D of Fig. 7, the resulting tuple is: (′ListeriaScottA′,
′Stability′, δ = 0, 38). Q can be δ-projected into D with the adequation degree
δ = 0, 38: the vertices of Q of which the image in D is a specialization have
degrees π et n equal to 1. c1 satisfies c′1 with π1 = 1 and n1 = 0, c2 satisfies c′2
with π2 = 0, 77 and n2 = 0, 46, then δ = min(1, 0,77)+min(0, 0,46)

2 = 0, 38.

4 Data Extracted from the Web

4.1 The XML Base

The XML base has been built in the MIEL++ system in order to store infor-
mation retrieved from the Web. More precisely, we focus on tables included in
scientific papers, which contain experimental data. The step of collecting data
from the Web is achieved by a semi-automatic process called AQWEB, which is
based on the MIEL++ ontology. Fig. 9 presents the AQWEB process.

crawler/filter

html
xml

pdf

any2Xtab

xtab

Xtab2SML

sml

ontology

Local schema

RDB query processor

Local schema

CG query processor

MIEL++

Local schema

XML query processor

Fig. 9. The AQWEB semi-automatic process

Step 1 (crawler/filter in Fig. 9) consists in acquiring, by means of a search
engine, documents on the Web which correspond to our application domain (that
search is oriented by a combination of key words belonging to the MIEL++
taxonomy). We restrict our search to pdf and html documents which contain
data tables. Step 2 (any2Xtab) consists in translating those data tables into
XML documents, following the XTab dtd which allows one to represent a table
classically by means of rows and cells. Step 3 (Xtab2SML) transforms those
XTab documents into SML4 documents, by a semantization process based on
the MIEL++ taxonomy.

4 For Semantic Markup Language.



168 P. Buche et al.

That transformation allows one to enrich semantically the data tables by
means of terms extracted from the MIEL++ taxonomy. Then it becomes possible
to query the SML data through the MIEL++ query language.

SML process [15] achieves three kinds of semantic enrichment: (i) it associates
terms of a Web table with their corresponding terms in the MIEL++ taxonomy
(for example, the term Stewed exotic fruit of a Web table is associated with
the term Sweet fresh fruit belonging to the taxonomy), (ii) when enough terms
are identified in a given column of a Web table, it becomes possible to identify
the “title” of the column; (iii) it instantiates semantic relations of the ontology
which appear in the Web table schema (for example, the relation FoodProductPH
is instantiated in a Web table that contains a column composed of food product
names and another column with pH values). Some heuristics and disambigu-
isation mechanisms are used during this process (see [15] for a more detailed
presentation of SML).

Moreover, in [16], we propose a fuzzy semantic tagging of the terms of a Web
table: each association between a term of a Web table and a term belonging
to the taxonomy is weighted by a possibility degree depending on their syntac-
tic closeness (for example, the association between the term Stewed exotic fruit
of a Web table and the term Sweet fresh fruit belonging to the taxonomy is
weighted by the degree of possibility 0.33 computed thanks to the words belong-
ing to both terms). The SML documents thus contain fuzzy data: for a given
term of a Web table, its associated terms belonging to the taxonomy are repre-
sented by a discrete fuzzy set. A simplified example of SML document is given
in Fig. 10.

<table> <title><table-title> </table-title>
<title-col> Item </title-col> <title-col> pH value </title-col>... </title>
<content>
...
<relLine> <FoodProductPH>
<Product><originalVal>Red onion</originalVal>
<ontoVal> <DFS>
<ValF> <item> Tree onion </item> <MD> 0.69 </MD> </ValF>
<ValF> <item> Welsh onion </item> <MD> 0.69 </MD> </ValF>
<ValF> <item> Red cabbage </item> <MD> 0.69 </MD> </ValF>
</DFS></ontoVal>
</Product>
<ph> <originalVal>5.2</originalVal> <ontoVal/></ph>
</FoodProductPH> </relLine>
</content> </origine> </table>

Fig. 10. Simplified representation in SML of a Web data table

We do not detail the query process of SML documents in this article. It
has been presented in [4]. The main idea is that the query asked through the
MIEL++ user interface is translated into a XQuery query by the wrapper of
the XML subsystem. A mechanism allowing one to represent fuzzy queries in
XQuery and fuzzy values in SML data has been proposed. The adequation of
a fuzzy SML data to a fuzzy XQuery query is very close to that of the CG
subsystem, which has been presented in section 3.



The MIEL++ Architecture When RDB, CGs and XML Meet 169

5 Implementation and Experimentation

The MIEL++ system has been implemented. It conforms to the J2EE standard
(HTML client and servlet/JSP server). The RDB and XML subsystems have been
developed in Java. The CG subsystem has been developed in C++ using the CoG-
ITaNT platform [17]. At the moment, the Relational Database contains about
10.000 data. The MIEL++ RDB subsystem is used by our industrial partners
of the Sym’Previus project. The Conceptual Graph database contains about 200
Conceptual Graphs manually built by analyzing the relevant sentences of scientific
publications which do not fit the RDB subsystem schema. Each CG of the base is
composed of about 70 vertices. The XML base contains about 200 scientific docu-
ments retrieved from the Web. Both CG and XML subsystems are currently under
testing in collaboration with our partners of the Sym’Previus project.

RDB schema updating is a very rare operation (one update performed in
5 years) because it requires a huge work which can be performed only by a
computer scientist. It requires firstly a schema updating and a data migration
using SQL and secondly an updating of the data uploading tool and the MIEL++
querying system written in Java language. On the contrary, adding new weakly-
structured data in the CG subsystem is a very less technical operation which
can be performed by the database administrator. Data graphs and query graphs
uploading is performed using the GUI available in the CoGITaNT platform. New
concept types or new relation types only need to be registered in a text file to
be available in the CG subsystem.

The RDB is regularly updated with data provided by the industrial partners,
the projects financed by the French government and the scientific publications
in the main journals of the domain. Data extracted from the Web thanks to
AQWEB have been judged very pertinent by our partners because they come
from other types of documents. They are also mainly composed of scientific in-
formation, but often this information is already synthetic, integrating a lot of
results. Therefore, it contains an added value provided by experts which consists
in the selection task and the treatment needed to compile the data. It is the type
of information which can be found in lectures, thesis, reports published by na-
tional and international public organisations and state of the art reports realised
by big research projects. In the evaluation process realised by our partners, 152
pertinent Web tables have been retrieved.

6 Perspectives

Even if the MIEL++ system is partially commercialized, it is currently being de-
veloped in several directions. Concerning each subsystem, several enhancements
are being done. The RDB subsystem is stable, but its content is constantly evolv-
ing, with a lot of new pieces of information stored. The taking into account at
query time of the fuzzy semantic tagging used in the XML data will be enhanced.
As mentioned in section 4, in the current version of SML, fuzzy data stored in
SML documents represent the mapping between terms found in Web tables and
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their corresponding terms in the MIEL++ taxonomy. As we accept partial in-
stanciations of the semantic relations of the ontology in a Web table, we will
also introduce fuzziness in the representation of semantic relation instanciation.
Concerning the CG subsystem, we will work on an interface which will facilitate
the insertion of new CGs in the database, for example by means of pre-written
patterns used to build pieces of information.

At ontology level, we need to allow the use of non-taxonomic relations (for
example the composition relation which will be very useful in the context of food
industry).

We also have to work on a closer/tighter integration of our three subsystems.
The first step will consist in uniformising our ontology, which is partially dupli-
cated in each subsystem. Two ways are considered: (i) using the CG model in
order to represent the whole ontology, then interfacing the RDB subsystem and
the XML subsystem with an ontology server based on CoGITaNT; (ii) using an
ontology server based on OWL-DL.

The second step will consist in integrating the subsystems by combining their
partial answers in order to build global answers with pieces of information coming
from different subsystems. At the moment, the global answer is only a juxtapo-
sition/union of partial answers, but a single answer tuple comes exclusively from
one subsystem.

We think about adding rules in our ontology, in order to allow a kind of fuzzy
inferences in the three subsystems. Those rules could be represented in the CG
formalism [18], extended to the representation of fuzzy conclusions.

Finally, we think about adapting our MIEL++ architecture to other applica-
tion domains. This will be possible in the framework of a new important French
project, which reunites 15 industrial and academic partners: the WebContent
project, which will consist in building a platform dedicated to the integration of
Semantic Web techniques.
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Abstract. It is well-known that Peirce’s Alpha graphs correspond to
propositional logic (PL). Nonetheless, Peirce’s calculus for Alpha graphs
differs to a large extent to the common calculi for PL. In this paper, some
aspects of Peirce’s calculus are exploited. First of all, it is shown that the
erasure-rule of Peirce’s calculus, which is the only rule which does not
enjoy the finite choice property, is admissible. Then it is shown that this
calculus is faster than the common cut-free calculi for propositional logic
by providing formal derivations with polynomial lengths of Statman’s
formulas. Finally a natural generalization of Peirce’s calculus (including
the erasure-rule) is provided such that we can find proofs linear in the
number of propositional variables used in the formular, depending on the
number of propositional variables in the formula.

1 Introduction

At the dawn of modern logic, Peirce invented his system of Existential Graphs
(EGs), starting in 1896 and working extensively on it until he passed away in
1914 (see for example [Pei35, Pei92, PS00]). Peirce’s EGs are divided into three
parts which built upon each other, namely Alpha, Beta, and Gamma. Alpha
corresponds to propositional logic (PL), Beta correspond to first order logic,
and Gamma, which was never completed, encompasses aspects of higher order
logic, modal logic and other features. Although not mathematically formalized,
his Alpha and Beta EGs are one of the very early elaborations of mathematical
logic.1 But at the end of the 19th century, symbolic notations had already had
taken the vast precedence in the development of formal logic, and EGs did not
succeed against symbolic logic.

Several authors investigated Peirce’s EGs from different perspectives, some of
them aiming to elaborate a (more or less) mathematical theory of them (see for
example [Zem64, Rob73, Bur91, Shi02a, Dau06]). Some works focus particularly
on Alpha graphs (like [Ham95, Shi02b]) or more particular on finding proofs
within Alpha ([Liu05]). But there are only few people who try to implement
Peirce’s calculus for automated theorem proving (see [HK05, vH03]), and one
has to say that in the automated theorem proving community, Peirce’s calculus
is not acknowledged at all. This paper aims to exploit some aspects of Peirce’s
calculus which may be helpful for automated theorem proving with this calculus.
1 Although Peirce did not provide any mathematical definitions for EGs, a mathe-

matical elaboration of EGs can be obtained from a closer scrutiny of his works. See
[Dau06].
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Peirce’s calculus for Alpha graphs differs to a large extent to the common
calculi for propositional logic (PL). In usual calculi for PL, the transformation
rules are defined along the inductive construction of formulas. That is, each
transformation rule modifies formulas only on their top-level of their construction
trees. In other words: We have shallow inferences. In contrast to that, Peirce’s
calculus allows to transform arbitrary deep subformulas of given formulas, i.e. to
carry out deep inferences. To the best of my knowledge, there is only one proof-
system which employs deep inferences as well, namely the calculus of structures
of Gulielmi (see [Brü03]). But deep inference systems, particularly Peirce’s rules
for EGs, have some interesting properties which are of interest for automated
theorem proving, as it is argued by Gulielmi for his calculus of structures. Some
of these properties of Peirce’s rules for Alpha graphs are investigated in this
paper.

The organization of the paper is as follows: In Sec. 2, the basic notations,
including syntax, semantics, and the calculus for Alpha graphs are introduced.
Due to space limitations, we will use the linear notation for Alpha graphs. In
Sec. 3, some basic theorems for Alpha graphs are provided. In Sec. 4, it is shown
how Alpha graphs can be converted to normalforms, and, in order to obtain
an analytic calculus, it is proven that the erasure-rule of the calculus can be
removed. In Sec. 5 it is proven that the calculus is faster than the common
calculi for propositional logic by showing that Statman’s formulas can be proven
in polynomial time. In Sec. 6, a version of the calculus with generalized rules
is introduced, and it is shown that with this calculus, the number of steps of a
proof for a formula f depends linearly from the number of propositional variables
which occur in f . Finally in Sec. 7, the paper concludes with a discussion of the
results.

2 Basic Notations for Alpha Graphs

In this paper, we will use the linear notion for Peirce’s Alpha graphs. More pre-
cisely: Alpha graphs are introduced as formulas of propositional logic, equipped
with an equivalence relation which encompasses the syntactical properties of
Alpha graphs, mainly the commutativity and associativity of the juxtaposition
of graphs, which corresponds on the semantical side to the commutativity and
associativity of conjunction.2

The formulas of propositional logic, thus Alpha graphs as well, are built over
a set P := {P1, P2, P3, . . .} of propositional variables and a symbol � /∈ P for
truth, and we use the logical junctors ¬ and ∧. Now each Pi for i ∈ N and �
are formulas, if f is a formula, then ¬f is a formula, and if f1, f2 are formulas,
then (f1 ∧ f2) is a formula. We will omit brackets if it is convenient. As usual,

2 A similar approach is common in mathematical logic as well. For example, sequents in
a sequent calculus are usually defined as multisets of formulas, thus we already have
on the syntactical side encompassed commutativity and associativity of conjunction.
Similarly, sometimes formulas are considered only modulo an equivalence relation.
The equivalence classes are called structures. See for example [Brü03].
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the formulas Pi and ¬Pi with i ∈ N are called literals. We will use the letters
A,B to denote propositional variables as well, and the letters f, g, h, k, l to denote
formulas.

In Peirce’s calculus for EGs, the transformation rules allow to modify ar-
bitrary subgraphs in arbitrary contexts. This idea will be carried over to the
symbolic notion of propositional logic. First of all, when we speak in this paper
about subformulas, we mean subformula occurrences. For example, for the for-
mula P1 ∧ P1, as P1 appears twice in this formula, we will say that it has two
subformulas P1. Square brackets are used to denote contexts. For example, with
f [g] we denote a formula f with a subformula g. A subformula g of f is evenly
enclosed resp. is placed in a positive context if it is a subformula of an
even number of subformulas ¬h of f . Otherwise it is said to be oddly enclosed
resp. to be placed in a negative context. This will be denoted by f [g]+

resp. f [g]−. This notation can be nested. For example, with f [P2 ∧ g[h]], it is
expressed that g is a formula with a subformula h, and f is a formula with the
subformula P2 ∧ g (= P2 ∧ g[h]).

In Peirce’s graphs, conjunction can only be expressed up to commutativity
and associativity. Moreover, empty negations are allowed: For this reason, we had
to add the symbol � to our alphabet. In the following, formulas are considered
only up to the following equivalence relation ∼:

Commutativity: (f ∧ g) ∼ (g ∧ f)
Associativity: ((f ∧ g) ∧ h) ∼ (f ∧ (g ∧ h))
Truthelement: (f ∧�) ∼ f
Congruence: f [g] ∼ f [h] if g ∼ h

Each class of formulas corresponds to a Peircean Alpha graph, thus this definition
of propositional logic can be understood as a formalization of Peirce’s Alpha
system.

Now we are prepared to introduce the calculus. It consists of the following six
rules (where f, g, h, i denote arbitrary formulas).

Erasure: f [g ∧ h]+ � f [g]+

Insertion: f [g]− � f [g ∧ h]−

Iteration: f [g ∧ h[i]] � f [g ∧ h[g ∧ i]]
Deiteration: f [g ∧ h[g ∧ i]] � f [g ∧ h[i]]
Double Cut i): f [¬¬g] � f [g]
Double Cut ii): f [g] � f [¬¬g]

Let f , g be two graphs. Then g can be derived from f (which is written
f � g), if there is a finite sequence (f1, f2, . . . , fn) with f = f1 and g = fn such
that each fi+1 is derived from fi by applying one of the rules of the calculus.
The sequence is called a proof or derivation for f � g (of length n− 1).
Two graphs f, g with f � g and g � f are said to be provably equivalent.

If F is a set of graphs, we write F � f if there are f1, . . . , fi ∈ F with
f1 ∧ . . . ∧ fi � f . With f �n g we mean that g can be derived from f in (at
most) n steps. For � � f , we write more simply � f resp. �n f . This set of
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rules is (strongly) sound and complete, as it is shown in [Dau04]. We use the
usual abbreviation, i.e., f∨g is a (mere syntactical) abbreviation for ¬(¬f ∧¬g),
f → g abbreviates ¬(f ∧¬g), and f ↔ g abbreviates (f → g)∧ (f → g), that is
¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f).

The semantics are now defined in the usual way. A valuation or model is
a mapping val : P ∪ {�} 	→ {ff, tt} with val(�) = tt. Let val : P 	→ {ff, tt}
be a valuation. We set val |= Pi :⇔ val(Pi) = tt, val |= (f ∧ g) :⇔ val(f) =
tt = val(g), and val |= ¬f :⇔ val(f) = ff. For val |= f , we say that f holds
in val. If we have two formulas f , g such that val |= g for each valuation val
with val |= f , we write f |= g, and we say that f entails g. Finally, a formula
f is called satisfiable, iff there exists a valuation val with val |= f , it is called
valid or a tautology, iff val |= f for each valuation val, and it is called
contradictory, iff val �|= f for each valuation val.

3 Some Simple Theorems

In [Pei35] Peirce provided 16 useful transformation rules for EGs which he de-
rived from his calculus. These rules are logical metalemmata in the sense that
they show some schemata for proofs with EGs, i.e., they are derived ‘macro’-
rules. In this section we provide the formal Alpha graph versions for two of these
transformation rules. We start with a (weakened) version of the first transfor-
mation rule of Peirce.

Lemma 1 (Reversion Theorem). Let f and g be two formulas. Then we have:

f �n g ⇒ ¬g �n ¬f and ¬g �n ¬f ⇒ f �n+2 g

Proof: Let (h1, h2, . . . , hn) with h1 = f and g = hn be a proof for f � g.
Then, due to the symmetry of the calculus, (¬hn,¬hn−1, . . . ,¬h1) is a proof for
¬g � ¬f . Analogously, from ¬g �n ¬f we conclude ¬¬f �n ¬¬g. An additional
application of the double cut rule at the beginning and the end of the proof
yields f �n+2 g. �

Let g be a subformula of f . With f [h/g] we denote the graph where g is sub-
stituted by h. If g is a subgraph in a positive context, we will more explicitely
write f [h/g]+, and analogously f [h/g]− for negative contexts.

All rules in the calculus which are applied in a context only depend on whether
the context is positive or negative. In particular if a proof for f � g is given,
this proof can be carried out in arbitrary positive contexts. Together with the
previous lemma, this yields the following lemma. It can also be found in [Sow97]
(from where we adopted the name of the theorem).

Lemma 2 (Cut-And-Paste-Theorem I). Let g �n h for formulas g, h. Then:

f �n f [h/g]+ and f �n+2 f [g/h]−

Particularly, tautologies can be inserted into arbitrary contexts of arbitrary
formulas.
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With f [[h/g]] we denote the formula we obtain from f by substituting every
subformula (i.e., every occurence of the subformula) g by h.

Lemma 3 (Cut-And-Paste-Theorem II). Let g be a formula with �n g,
let Pi be a propositional variable and f be another formula. Then we have �n

f [[g/Pi]].

Proof: Let (h0, h2, . . . , hn) with hn = f be a proof for f . Then it is easy to see
that (h0[[g/Pi]], h2[[g/Pi]], . . . , hn[[g/Pi]]) is a proof for f [[g/Pi]]. �

The next two lemmata are two other metalemmata which ease the handling of
proofs (they will be needed in Sec. 6). To ease the readability of the proofs, we
have sometimes underlined the subformulas which will be used in the next step
(for example, by deiterating them).

Lemma 4 (Proof by Distinction). Let f, g be formulas. Then we have

(g → f) ∧ (¬g → f) �7 f

Proof : (g → f) ∧ (¬g → f) = ¬(g ∧ ¬f) ∧ ¬(¬g ∧ ¬f)
it.
� ¬(g ∧ ¬f) ∧ ¬(¬(g ∧ ¬(g ∧ ¬f)) ∧ ¬f)

era.

� ¬(¬(g ∧ ¬(g ∧ ¬f)) ∧ ¬f)
deit.
� ¬(¬(g ∧ ¬g) ∧ ¬f)

deit.
� ¬(¬(g ∧ ¬�) ∧ ¬f)

era.

� ¬(¬¬� ∧ ¬f)
dc.

� ¬(� ∧ ¬f)

∼ ¬¬f
dc.

� f �

Lemma 5. Let f, g be formulas. Then we have (f ↔ g)↔ g �14 f .

Proof: We provide a formal derivation of (f ↔ g) ↔ g � f . The last step is
done with Lem. 4. As we had 7 derivational steps so far, we have a total of 14
steps.

(f ↔ g) ↔ g = (¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f)) ↔ g

= ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f)))
deit.
� ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(¬(f ∧ ¬g) ∧ ¬¬f))
dc.

� ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(¬(f ∧ ¬g) ∧ f))
deit.
� ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(¬¬g ∧ f))
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dc.

� ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(g ∧ f))
deit.
� ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬f)

deit.
� ¬(¬(f ∧ ¬g) ∧ ¬g) ∧ ¬(g ∧ ¬f)

deit.
� ¬(¬f ∧ ¬g) ∧ ¬(g ∧ ¬f)

∼ ¬(g ∧ ¬f) ∧ ¬(¬g ∧ ¬f)

= (g → f) ∧ (¬g → f)

�7 f �

4 Normalforms and Admissibility of Erasure

In automatic theorem proving, for tracking back a proof, a desirable feature of
the calculus is the so-called subformula property which states that all formulas
in a derivation are subformulas of the endformula. The essence of the subfor-
mula property is the fact that given a conclusion, every inference rule yields
a finite set of possible premises. Let us call this property finite choice prop-
erty (see for example [Brü03]). It is easy to see that in Peirce’s calculus, only
the erasure-rule does not satisfy the finite choice property. In this section, it
is shown that the erasure-rule is admissible, i.e. the remaining calculus is still
complete.

The restricted version of the calculus, where the erasure-rule is removed, is
denoted by �−e. Due to symmetry reasons, we will consider a calculus �−i, that
is � without the insertion-rule, as well. In this section, it will be firstly shown
how formulas can be converted to normalforms with � and �−e, and then how
proofs with �−e can be found in an effective way.

Lemma 6 (Reducing Transformation I). The formulas ¬(f ∧¬(g∧h)) and
¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h) are provably equivalent in �−i. More precisely, we have

¬(f ∧ ¬(g ∧ h)) �3
−i ¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h) �4

−i ¬(f ∧ ¬(g ∧ h)) (1)

Proof: ¬(f ∧ ¬(g ∧ h))
it.
�−i ¬(f ∧ ¬(g ∧ h)) ∧ ¬(f ∧ ¬(g ∧ h))
era.

�−i ¬(f ∧ ¬g) ∧ ¬(f ∧ ¬(g ∧ h))
era.

�−i ¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h) (∗)
it.
�−i ¬(f ∧ ¬(g ∧ ¬(f ∧ ¬h))) ∧ ¬(f ∧ ¬h)
era.

�−i ¬(f ∧ ¬(g ∧ ¬(f ∧ ¬h)))
deit.
�−i ¬(f ∧ ¬(g ∧ ¬¬h))
dc.

�−i ¬(f ∧ ¬(g ∧ h))
The proof until (∗) shows the first part of the lemma, the remaining proof shows
the second part. �
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The proof of this lemma shows even more. It is carried out on the sheet of
assertion, thus, due to the Cut-And-Paste-Theorem I (Lem. 2), in can be carried
out in positive contexts. Moreover, its inverse direction can be carried out in
arbitrary negative contexts, where the rules iteration and deiteration as well as
the rules erasure and insertion are mutually exchanged. Thus we immediately
obtain the following corollary.

Corollary 1 (Reducing Transformation II).

F [¬(f ∧ ¬(g ∧ h)]− �4
−e F [¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h)]− �3

−e F [¬(f ∧ ¬(g ∧ h)]−(2)
F [¬(f ∧ ¬(g ∧ h)]+ �3

−i F [¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h)]+ �4
−i F [¬(f ∧ ¬(g ∧ h)]+(3)

With these results, it is possible to reduce the depth of a formula and to
transform it into its conjunctive normalform. Before we do so, some technical
notations have to be introduced. If g is a strict subformula of f (i.e., g is a
subformula of f and g �= f), we write g < f resp. f > g. A sequence f =
f0, f1, f2, . . . , fn is called a nest of contexts of f , if

1. fi = ¬f ′
i for each i ≥ 1 (i.e., each fi+1 begins with a negation sign ‘¬’),

2. fi > fi+1 for each i ≥ 0, and
3. For each 0 ≤ i ≤ n− 1, there is no formula ¬g with fi > ¬g > fi+1.

The number n is called the depth of the nest. A formula f is said to have
depth n if n is the maximal depth of all nests of f . Such a formula is said to be
normalized to depth n, if moreover for each nest f = f0, f1, f2, . . . , fn, there
exists a propositional variable Pi, i ∈ N, with fn = ¬Pi. Consider for example
the following formulas:

f := ¬(P1 ∧ ¬P2 ∧ ¬P3) ∧ ¬P4 and g := ¬(P1 ∧ ¬(P2 ∧ P3)) ∧ ¬P4

Both f and g have depth 2, but only f is normalized to depth 2. A formula f
which is normalized to depth 2 is a conjunction of formulas ¬(g1∧. . .∧gn), where
each gi is a literal. Thus f can be understood to be in CNF (conjunctive normal
form), expressed by means of ¬ and ∧ only. As � is sound and complete, it is
not surprising that each formula can be transformed into its CNF. This is not
possible if we restrict ourselves to �−e, but even then, it is possible to normalize
each formula to depth 3.

Lemma 7 (Normalform).

1. Using �−e, each formula can effectively be transformed into a provably equiv-
alent formula which is normalized to depth 3.

2. Using �, each formula can effectively be transformed into a provably equiva-
lent formula which is normalized to depth 2.

Proof: We first prove 1. Let f be an arbitrary formula, assume that f is not
normalized to depth 3. Then there exists a nest f,¬f1,¬f2,¬f3 where f3 is not
a propositional variable, i.e., f3 is either of the form ¬g3, or it is the conjunction
of at least two nontrivial formulas, i.e., f3 = g3 ∧ g′3, with g3, g

′
3 �= �.
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In the first case, we have more explicitely

f = g0∧¬f1 = g0∧¬(g1∧¬f2) = g0∧¬(g1∧¬(g2∧¬f3)) = g0∧¬(g1∧¬(g2∧¬¬g3))

Obviously, we can apply the double cut rule i) and obtain

f � g0 ∧ ¬(g1 ∧ ¬(g2 ∧ g3)) � f

In the latter case, we have f = g0 ∧ ¬(g1 ∧ ¬(g2 ∧ ¬(g3 ∧ g′3))). Now Eqn. (2)
yields

f � g0 ∧ ¬(g1 ∧ ¬((g2 ∧ ¬g3)) ∧ (g2 ∧ ¬g′3))) � f

These transformations are carried out until we reach a formula which is normal-
ized to depth 3. Thus 1) is proven.

A formulawhich is normalized todepth3 cannotbe further reducedwithEqn. (2),
but Eqn. (3) can still be applied in the outermost context. Thus an analogous ar-
gument shows that with the double cut rule or Eqn. (3), each formula can be trans-
formed into a syntactically equivalent formula normalized to depth 2. �

Example:

¬(P1 ∧ ¬(P2 ∧ ¬(P3 ∧ ¬(P4 ∧ ¬(P5 ∧ ¬(P6 ∧ P7))))))
Cor. 1
�−e ¬(P1 ∧ ¬(P2 ∧ ¬(P3 ∧ ¬(P4 ∧ ¬P5) ∧ ¬(P4 ∧ ¬(¬(P6 ∧ P7))))))
dc.

�−e ¬(P1 ∧ ¬(P2 ∧ ¬(P3 ∧ ¬(P4 ∧ ¬P5) ∧ ¬(P4 ∧ P6 ∧ P7))))
2 xCor. 1

�−e ¬(P1 ∧ ¬(P2 ∧ ¬P3) ∧ ¬(P2 ∧ ¬(¬(P4 ∧ ¬P5))) ∧ ¬(P2 ∧ ¬(¬(P4 ∧ P6 ∧ P7))))
2 x dc.

�−e ¬(P1 ∧ ¬(P2 ∧ ¬P3) ∧ ¬(P2 ∧ P4 ∧ ¬P5) ∧ ¬(P2 ∧ P4 ∧ P6 ∧ P7))

In the following, we will show that each tautology can be derived with �−e.
A well-known method to check the validity of a formula f is to check whether
¬f is contradictory with the method of resolution. The basic idea of resolution
is as follows: If k, l are formulas and if A is a propositional variable which does
neither occur in k nor in l, then (A∨k)∧ (¬A∨ l) is satisfiable if and only if k∨ l
is satisfiable. Now, in order to check whether ¬f is contradictory, subformulas
of the form (A ∨ k) ∧ (¬A ∨ l) are successively replaced by k ∨ l until a formula
is reached from which it can be easily decided whether it is satisfiable.

For the ¬,∧-formalization of propositional logic, this basic transformation can
be reformulated as follows: Let k, l formulas, let A be a propositional variable
which does neither occur in k nor in l. Then ¬(A ∧ k) ∧ ¬(¬A ∧ l) is satisfiable
if and only if ¬(k ∧ l) is satisfiable. The next lemma shows that the inverse
direction of the transformation of resolution can be derived in negative contexts
with �−e.

Lemma 8 (Inverse Resolution). Let A be a propositional variable, let k, l be
formulas where A does not occur. Then we have:

f [¬(k ∧ l)]− �−e f [¬(A ∧ k) ∧ ¬(¬A ∧ l)]−
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Moreover, ¬(k ∧ l) is satisfiable if and only if ¬(A ∧ k) ∧ (¬A ∧ l) is satisfiable.

Proof: f [¬(k ∧ l)]−
ins.
�−e f [¬(A ∧ k) ∧ ¬(k ∧ l)]−

dc.

�−e f [¬(A ∧ k) ∧ ¬(¬¬k ∧ l)]−

ins.
�−e f [¬(A ∧ k) ∧ ¬(¬(A ∧ ¬k) ∧ l)]−

it.
�−e f [¬(A ∧ k) ∧ ¬(¬(A ∧ ¬(A ∧ k)) ∧ l)]−

deit.
�−e f [¬(A ∧ k) ∧ ¬(¬A ∧ l)]− �

Now we are prepared to show that the erasure-rule is admissible.

Theorem 1 (Erasure is Admissible). If f is a tautology, we have �−e f .

Proof: Due to Lem. 7, we can assume that f is normalized to depth 3, and f
cannot be a literal. For f = g1 ∧ g2, �−e g1 and �−e g2 yield �−e f . Thus without
loss of generality, we can assume that f = ¬g for a formula g. Obviously, g is
normalized to depth 2, and g is contradictory (which is equivalent to f being
tautologous).

Now we can resolve g to a formula h which is not resolvable (i.e., h does not
contain any subformula of the form ¬(A ∧ k) ∧ ¬(¬A ∧ l), that is, the rule of
resolution cannot be applied). Then g is satisfiable if and only if h is satisfiable.
Next, as g is normalized to depth 2, h is normalized to depth 2, too. Moreover,
as the inverse direction of the resolution is derivable in �−e due to Lem. 8, we
have ¬h �−e ¬g. Thus it is sufficient to show that ¬h is derivable with �−e.

As h is not resolvable, no propositional variable appears in different subfor-
mulas ¬h1, ¬h2 of h one time in a positive and one time in a negative context.
Moreover, due to the iteration-rule, we can assume that each propositional vari-
able A ∈ P occurs at most once in each subformula ¬h′ of h. Now we can assign
the following truth-values to all Pi ∈ P : We set val(Pi) := ff, if Pi occurs in a
negative context of h, and we set val(Pi) := tt otherwise. It is easy to see that
if h is not of the form ¬�∧ k, then val |= h. Thus h has the form ¬�∧ k. Then

�
dc.

�−e ¬¬�
ins.
�−e ¬(¬� ∧ k) (= ¬h) is a derivation of ¬h in �−e, thus we are

done. �

Due to f |= g ⇔ |= f → g, we can check f |= g with �−e as well. But in general,
we do not have f |= g ⇒ f �−e g, as the simple example P1∧P2 |= P1 shows.

5 An Exponential Speed Up

The most prominent rule in sequent-calculi is the cut-rule, a generalized version

of the modus ponens: Γ1 � Δ1, A A, Γ2 � Δ2

Γ1, Γ2 � Δ1, Δ2
. Due to the ‘erasing of A’, this

rule does not satisfy the finite choice property. Gentzen’s famous cut-elimination-
theorem states that the cut-rule is admissible: Every proof using the cut-rule can
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be converted into another proof without the cut-rule (proofs that do not use the
cut-rule are called analytic). But by doing so, the size of the proof generally grows
exponentially. In particular, there are classes of tautologies such that their proofs
in sequent-calculi including the cut-rule grow polynomially with their size, whilst
in cut-free sequent-calculi, their proofs grow exponentially. In this section, such
a class will be investigated.

In [Sta78], R. Statman studied a class of polynomial-size formulas and in-
vestigated their proof-lengths in sequent calculi. First we present the formulas
constructed by Statman. Let Ai, Bi with i ≥ 1 propositional variables. We set:

fi :=
∧i

k=1(Ak ∨Bk)

g1 := A1 induction start

h1 := B1 induction start

gi+1 := fi → Ai+1 =
∧i

k=1(Ak ∨Bk) → Ai+1 induction step

hi+1 := fi → Bi+1 =
∧i

k=1(Ak ∨Bk)→ Bi+1 induction step

kn := ((g1 ∨ h1) ∧ (g2 ∨ h2) ∧ . . . ∧ (gn ∨ hn))→(An ∨Bn)
For example, we have

k2 = [(A1 ∨B1) ∧ ( ((A1 ∨B1) → A2) ∨ ((A1 ∨B1) → B2) )]→ (A1 ∨B1)

It is straightforward to see that the formulas kn are tautologies. R. Statman
has proven that in cut-free sequent-calculi, the lengths of the proofs for kn grow
exponentially, whereas in sequent-calculi including the the cut-rule, it is possible
to find proofs of polynomial length. Gulielmi has proven that kn can be derived
within his cut-free deep inference system, In contrast to usual sequent-calculi,
in polynomial time. We provide an analogous result for so-to-speak analytic
calculus �−e. So in this respect, the strong rules of �−e, yield an exponentially
speed-up in the length of proofs, compared to a analytic sequent-calculus.

Theorem 2 (Statman’s formulas can be proven with �−e in polynomial
time). For Statman’s formula fn there exists a formal proof of length n(n+ 1).

Proof: We provide a formal derivation of kn. To ease the readability and to save
space, we abbreviate (Ai ∨Bi), i.e., ¬(¬Ai ∧ ¬Bi), by ABi.

� � ¬¬�
insertion

� ¬(AB1 ∧ AB2 ∧ . . . ∧ ABn−2 ∧ ABn−1 ∧ ABn ∧ ¬�)
it. ABn� ¬(AB1 ∧ AB2 ∧ . . . ∧ ABn−2 ∧ ABn−1 ∧ ABn ∧ ¬ABn)

= ¬(AB1 ∧ AB2 ∧ . . . ∧ ABn−2 ∧ ABn−1 ∧ ¬(¬An ∧ ¬Bn) ∧ ¬ABn)
2 ×it. of ABn−1

� ¬(AB1 ∧ AB2 ∧ . . . ∧ ABn−2 ∧ ABn−1

∧¬(ABn−1 ∧ ¬An ∧ ABn−1 ∧ ¬Bn) ∧ ¬ABn)

= ¬(AB1 ∧ AB2 ∧ . . . ∧ ABn−2 ∧ ¬(¬An−1 ∧ ¬Bn−1)

∧¬(ABn−1 ∧ ¬An ∧ ABn−1 ∧ ¬Bn) ∧ ¬ABn)
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4 ×it. of ABn−2

� ¬(AB1 ∧ AB2 ∧ . . . ∧ ABn−2 ∧ ¬(ABn−2 ∧ ¬An−1 ∧ ABn−2 ∧ ¬Bn−1)

∧¬(ABn−2 ∧ ABn−1 ∧ ¬An ∧ ABn−2 ∧ ABn−1 ∧ ¬Bn) ∧ ¬ABn)
...

2(n−1) ×it. of AB1� ¬(AB1

∧¬(AB1 ∧ ¬A2 ∧ AB1 ∧ ¬B2)

∧¬(AB1 ∧ AB2 ∧ ¬A2 ∧ AB1 ∧ AB2 ∧ ¬B2)
...

∧¬(AB1 ∧ . . . ∧ ABn−1 ∧ ¬An ∧ AB1 ∧ . . . ∧ ABn−1 ∧ ¬Bn)

∧¬ABn)
2(n−1) ×dc.

� ¬(AB1

∧¬(¬¬(AB1 ∧ ¬A2) ∧ ¬¬(AB1 ∧ ¬B2))

∧¬(¬¬(AB1 ∧ AB2 ∧ ¬A2) ∧ ¬¬(AB1 ∧ AB2 ∧ ¬B2))
...

∧¬(¬¬(AB1 ∧. . . ∧ ABn−1 ∧ ¬An)∧¬¬(AB1 ∧ . . . ∧ ABn−1 ∧ ¬Bn))

∧¬ABn)

= ¬(AB1

∧((AB1 → A2) ∨ (AB1 → B2))

∧((AB1 ∧ AB2 → A2) ∨ (AB1 ∧ AB2 → B2))
...

∧((AB1 ∧ . . . ∧ ABn−1 → An) ∨ (AB1 ∧ . . . ∧ ABn−1 → Bn))

∧¬ABn)

= kn

So we need 1+1+2(1+2+ . . .+(n−1))+2(n−1) = 2(1+ . . .+n) = n(n+1)
steps to derive fn. �

6 Proofs of Linear Length

In [BZ93], Baaz and Zach show that adding the scheme of equivalence (Eq), i.e.,

(f ↔ g)→ (h[f ]↔ h[g]) (Eq)

to an arbitrary hilbert-style calculus H for propositional logic allows to find
proofs of linear length, depending on the number of propositional variables in the
formula. More precisely, if Tn is the set of all tautologies in up to n propositional
variables, they show that there exists a linear function φ such that for all n and
all A ∈ Tn it satisfies H+EQ �φ(n) A.
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In this section, by adapting the proof of [BZ93] for our system, it will be
shown that we can find a similar approximation for prooflengths. In contrast to
[BZ93], it is not needed to add new rules or axioms to our calculus. Instead, it
suffices to generalize the rules iteration, deiteration and double cut in a natural
manner.

Recall the definition of the iteration rule: f [g ∧ h[i]] � f [g ∧ h[g ∧ i]]. If f
is a formula with a subformula g, then each subformula i such that f has the
form f [g ∧ h[i]] is said to be receivable for the iteration of g. We now
generalize the rules of the calculus. This calculus will be denoted by ��.

gen. Iteration: If f [g] is a formula, then it is allowed to add to each context i
which is receivable for the iteration of g an arbitrary number of copies of g.

gen. Deiteration: Inverse direction of deiteration.
gen. Double Cut i): An arbitrary number of double negations may be re-

moved from a formula.
gen. Double Cut ii): An arbitrary number of double negations may be added

to a formula.

Some simple examples shall illustrate the rules. Consider the following proof,
where in each step, the outermost subformula A ∧¬B is iterated (one time into
the outermost context, two times into the context of D ∧ F ). In this derivation,
the iterated copies of the subformula are underlined.

A ∧ ¬B ∧ C ∧ ¬(D ∧ F )
it.
� A ∧ ¬B ∧A ∧ ¬B ∧C ∧ ¬(D ∧ F )
it.
� A ∧ ¬B ∧A ∧ ¬B ∧C ∧ ¬(A ∧ ¬B ∧D ∧ F )
it.
�A ∧¬B ∧A ∧¬B ∧ C ∧ ¬(A ∧ ¬B ∧A∧¬B∧D∧ F )

This derivation is now consolidated to one application of the generalized iter-
ation rule. But a ’nested’ application of the iteration-rule is not considered as
generalized iteration rule, i.e., although we have

A ∧ ¬B ∧ C ∧ ¬(D ∧ F )
it.
� A ∧ ¬B ∧A ∧ ¬B ∧ C ∧ ¬(D ∧ F )
it.
� A ∧ ¬B ∧A ∧ ¬(A ∧ ¬B ∧B) ∧ C ∧ ¬(D ∧ F )

the last formula is not obtained from the first formula with a single application
of the application of the generalized iteration rule, as in the second step, the
subformula A ∧ ¬B is iterated into a context which was not created until the
first step, i.e., into a context which does not exist in the starting formula.

The generalized double cut rule is easier to understand.

A ∧ ¬B ∧ C ∧ ¬(D ∧ F )
gen. dc.

�� A ∧ ¬B ∧ ¬¬(C ∧ ¬¬¬(¬¬D ∧ F ))

We can now prove that with �� we can find derivations of tautologies whose
length depend linearly from the number of the propositional variables in the
tautology.
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Theorem 3 (Proofs of linear length in the generalized calculus). If f
is a tautology with n different propositional variables, we have ��24+14n f .

Proof: The proof is done by induction over n.
So, for the induction start, let f be a tautology without propositional vari-

ables. For f �∼ � and f �∼ ¬�, f contains ¬¬� or ¬� ∧ ¬� as subformula. We
can successively replace subformulas ¬¬� by � (with the double cut rule) and
subformulas ¬� ∧ ¬� by ¬� (by deiterating one occurrence of ¬�). As both
rules are equivalence rules, it is easy to see that f is a tautology if and only if
this procedure eventually yields �.

This idea is captured by the ongoing proof, which is based on Yukami’s trick
([Yuk84]). In the formal derivation of f we have to construct, the manifold
replacements of ¬¬� by � of the double cut rule will be performed in one step by
an application of the generalized double cut rule. But the manifold replacements
of ¬�∧¬� by ¬� cannot be analogously be captured by one application of the
generalized deiteration rule, as in the different applications of the deiteration
rule take place in different contexts (i.e., different occurrences of ¬� are used
for deiterating other occurrences of ¬�). To overcome with this problem, instead
of replacing ¬�∧¬� directly by ¬�, we first replace each occurrence ¬�∧¬�
by ¬¬(¬� ∧ ¬�) with the generalized double cut rule. Then all occurrences of
¬(¬� ∧ ¬�) are replaced by � with the generalized deiteration rule, using a
subformula ¬(¬� ∧ ¬�) in the uppermost context.

In order to construct the formal derivation, we first define a mapping Δ(f),
which formalizes the three different modifications of formulas as follows:

1. If f contains a double negation ¬¬� as subformula, then Δ(f) is obtained
from f by removing the double negation, i.e.: For f [¬¬�] we set

Δ(f [¬¬�]) := f [�] .

2. If f contains (¬� ∧ ¬�) as subformula, then Δ(f) is obtained from f by
replacing this subformula by ¬¬(¬� ∧ ¬�), i.e.: For f [¬� ∧ ¬�] we set

Δ(f [¬� ∧ ¬�]) := f [¬¬(¬� ∧ ¬�)] .

3. If f contains ¬(¬� ∧ ¬�) as subformula, then Δ(f) is obtained from f by
removing this subformula, i.e.: For f [¬(¬� ∧ ¬�)] we set

Δ(f [¬(¬� ∧ ¬�)]) := f [�] .

Due to the discussion at the beginning of this proof, we know that f is a
tautology if and only if there is an n such that Δn(f) = �.

Now let f be a tautology and n ∈ N with Δn(f) = �. Let

f−1
d := Δf ↔ (Δ2f ↔ (Δ3f ↔ . . . (Δn−1f ↔ �) . . .) ,

fd := f ↔ (Δf ↔ (Δ2f ↔ . . . (Δn−1f ↔ �) . . .)
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= f ↔ (f−1
d ) and

fΔ
d := Δf ↔ (Δ2f ↔ (Δ3f ↔ . . . (Δnf ↔ �) . . .)

= Δf ↔ (Δ2f ↔ (Δ3f ↔ . . . (� ↔ �) . . .)

Now we can derive f from �. We start with the construction of ¬(¬� ∧ ¬�),
and we derive fd ↔ fd as well.

�
gen. dc
�� ¬¬� ∧ ¬¬�
it.
�� ¬(¬� ∧ ¬�) ∧ ¬¬�
ins.
�� ¬(¬� ∧ ¬�) ∧ ¬(fd ∧ ¬�)
it.
�� ¬(¬� ∧ ¬�) ∧ ¬(fd ∧ ¬fd)
it.
�� ¬(¬� ∧ ¬�) ∧ ¬(fd ∧ ¬fd) ∧ ¬(fd ∧ ¬fd)
= ¬(¬� ∧ ¬�) ∧ (fd ↔ fd)
= ¬(¬� ∧ ¬�) ∧ ((f ↔ (f−1

d ))↔ fd)

��3 ¬(¬� ∧ ¬�) ∧ ((f ↔ (f−1
d ))↔ fΔ

d )

The last step reflects the discussion at the beginning of the proof. It is carried
out each with one application of:

1. the generalized double cut insertion rule
2. the generalized double cut erasure rule
3. the generalized deiteration rule

The formulas f−1
d and fΔ

d differ only in the innermost formula, which is
� ↔ � for fΔ

d and � for f−1
d . We have

� ↔ � = ¬(� ∧ ¬�) ∧ ¬(� ∧ ¬�) ∼ ¬¬� ∧ ¬¬�

Thus the most inner formula � ↔ � of fΔ
d can be replaced with the generalized

double cut rule by �. That is, we get:

¬(¬� ∧ ¬�) ∧ ((f ↔ (f−1
d ))↔ fΔ

d )
gen. dc.

�� ¬(¬� ∧ ¬�) ∧ ((f ↔ f−1
d )↔ f−1

d )
era
�� (f ↔ f−1

d ) ↔ f−1
d

According to Lem. 5, we can derive f from this formula within 14 steps. As we
needed 10 steps so far, we see that f can be derived with a total number of 24
steps from �. This finishes the induction start.

Assume now we have shown that the Lemma holds for formulas with at most
n propositional variables. Now let f be a tautology with n + 1 propositional
variables, let A be one of these variables. As we have

|= f ⇔ |= f [[�/A]] ∧ f [[¬�/A]] ,
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there exists a formal derivation of f [[�/A]]∧f [[¬�/A]] with length 24+14n. From
this formula, we proceed as follows:

f [[�/A]] ∧ f [[¬�/A]]
dc.

�� ¬¬� ∧ f [[�/A]] ∧ f [[¬�/A]]
ins.
�� ¬(A ∧ ¬�) ∧ f [[�/A]] ∧ f [[¬�/A]]

it. of A

�� ¬(¬A ∧A) ∧ f [[�/A]] ∧ f [[¬�/A]]
dc.

�� ¬(¬A ∧ ¬¬A) ∧ f [[�/A]] ∧ f [[¬�/A]]
it. of f [[�/A]]

�� ¬(¬(A ∧ f [[�/A]]) ∧ ¬¬A) ∧ f [[�/A]] ∧ f [[¬�/A]]
it. of f [[¬�/A]]

�� ¬(¬(A ∧ f [[�/A]]) ∧ ¬(¬A ∧ f [[¬�/A]])) ∧ f [[�/A]] ∧ f [[¬�/A]]
era.

�� ¬(¬(A ∧ f [[�/A]]) ∧ ¬(¬A ∧ f [[¬�/A]]))
gen. it. of A

�� ¬(¬(A ∧ f [[A/A]]) ∧ ¬(¬A ∧ f [[¬�/A]]))
gen. it. of ¬A

�� ¬(¬(A ∧ f [[A/A]]) ∧ ¬(¬A ∧ f [[¬¬A/A]]))
gen. dc.

�� ¬(¬(A ∧ f [[A/A]]) ∧ ¬(¬A ∧ f [[A/A]]))
= ¬(¬(A ∧ f) ∧ ¬(¬A ∧ f))
era.

�� ¬(¬f ∧ ¬(¬A ∧ f))
era.

�� ¬(¬f ∧ ¬f)
deit.
�� ¬¬f
dc.

�� f

As we needed 14 further steps, we obtain � ��24+14(n+1) f , thus we are done. �

7 Further Research

This paper is a first step to the proof-theoretic foundations of Peirce’s calculus
for Alpha graphs. The calculus has powerful rules, and it has to be investigated
whether the results of this paper can be improved. Firstly, it is natural to ask
whether the deiteration rule is admissible as well. Kocura uses in [HK05] a system
consisting of the rules insertion, iteration, and double cut, but a proof whether
this system is complete is still missing. Secondly, one might ask whether the
results of the last section hold for the non-generalized calculus as well. I strongly
suspect that this is not the case. Consider the formula f := ¬¬� ∧ . . . ∧ ¬¬�
consisting of 2n subformulas ¬¬�. Then f can can be derived with � within
n + 1 steps as follows: First insert a double cut, then in each step, iterate the
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whole formula derived so far. It is likely that this is the optimal derivation of f ,
but so far, I did not succeed in proving that.

Besides these two questions, the results of the paper show that Peirce’s cal-
culus may be of interest for automated theorem proving, thus it should be in-
vestigated further from a proof-theoretic point of view.
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Abstract. In this paper, we explore the process of interorganizational ontol-
ogy engineering. Scalable ontology engineering is hard to do in interorganiza-
tional settings where there are many pre-existing organizational ontologies and
rapidly changing collaborative requirements. A complex socio-technical process
of ontology alignment and meaning negotiation is therefore required. In partic-
ular, we are interested in how to increase the efficiency and relevance of this
process using context dependencies between ontological elements. We describe
the DOGMA-MESS methodology and system for scalable, community-grounded
ontology engineering. We illustrate this methodology with examples taken from
a case of interorganizational competency ontology evolution in the vocational
training domain.

1 Introduction

In collaborative communities, people sharing goals and interests work together for
a prolonged period of time. For collaboration to be successful, conceptual common
ground needs to be developed. Ontologies are instrumental in this process by providing
formal specifications of shared semantics. Such formal semantics are a solid basis for
the development of useful collaborative services and systems. However, scalable on-
tology engineering is hard to do in interorganizational settings where there are many
pre-existing organizational ontologies and ill-defined, rapidly evolving collaborative
requirements. A complex socio-technical process of ontology alignment and meaning
negotiation is therefore required. Much valuable work has been done in the Semantic
Web community on the formal aspects of ontology representation and reasoning. How-
ever, the socio-technical aspects of the ontology engineering process in complex and
dynamic realistic settings are still little understood. A viable methodology requires not
building a single, monolithic domain ontology by a knowledge engineer, but support-
ing domain experts in gradually building a sequence of increasingly complex versions
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of interrelated ontologies over time. Contexts are necessary to formalize and reason
about the structure, interdependencies and versioning of these ontologies, thus keeping
their complexity managable. In Sect. 2, we describe our view on interorganizational on-
tology engineering. Sect. 3 introduces the DOGMA-MESS methodology for scalable
community-grounded ontology engineering. In Sect. 4, we describe the approach to or-
ganizational ontology alignment taken in DOGMA-MESS, focusing on the relevance
of organizational definitions. We end the paper with discussion and conclusions.

2 Interorganizational Ontology Engineering

Many definitions of ontologies exist. The classical definition is that an ontology is an
explicit specification of a conceptualization [12]. Other definitions, such as that an on-
tology is a shared and common understanding of a domain that can be communicated
across people and application systems [7], stress more the community and application
side of ontologies. However, the problem is not in what ontologies are, but how they be-
come common formal specifications of a domain useful for building computerized ser-
vices. Many open issues remain with respect to how these ontologies are to be efficiently
engineered in communities of practice. This is all the more true in inter-organizational
ontology building, where there are multiple, existing organizational ontologies that need
to be aligned. In such settings, common domain ontologies need to be developed that
adequately capture relevant interorganizational commonalities and differences in mean-
ing. Such multiple, continuously shifting sources of meaning make knowledge sharing
very difficult [8]. This is all the more true since in interorganizational settings, orga-
nizational ontologies cannot easily be merged, as they represent strong individual in-
terests and entrenched work practices of the various participants. This means that such
value-laden ontologies can only be defined in a careful and gradual process of mean-
ing negotiation [5]. This we define as community-grounded processes for reaching the
appropriate amount of consensus on relevant conceptual definitions.

Promising related work on reaching consensus on ontologies in a distributed en-
vironment has focused on architectures for consensual knowledge bases (e.g. [9]) and
the cooperative construction of domain ontologies (e.g. [1]). Still, although these ap-
proaches work out basic principles for cooperative ontology engineering, they do not
provide community-grounded methodologies addressing the issues of relevance and ef-
ficiency of definition processes. In interorganizational settings, however, these quality
issues are of the greatest importance for ontology engineering processes to scale and
be useful in daily practice. The basic question therefore is: how to develop a scalable
approach to interorganizational ontology engineering? A crucial formal issue underly-
ing such an approach is that multiple types of context dependencies need to be handled
between ontological elements. Whereas much work in knowledge engineering looks at
formal properties of contexts and their dependencies, in this paper we focus on how
such formal approaches to handling context dependencies can be applied in interorga-
nizational ontology engineering processes to increase relevance and efficiency of engi-
neering processes. Our aim is not to be exhaustive, but to show that a systematic analysis
of such context dependencies and their use in interorganizational ontology engineering
processes can help optimize this very complex socio-technical process. We focus on one
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very important type: specialization dependencies, which play a major role in fostering
both the efficiency and relevance of interorganizational ontology engineering processes.

2.1 A Model of Interorganizational Ontology Engineering

We now present a generic model for understanding interorganizational knowledge
engineering.

In the model, we make the following assumptions:

– An interorganizational ontology needs to be modeled not by external knowledge
engineers, but by domain experts themselves. Only they have the tacit knowledge
about the domain and can sufficiently assess the real impact of the conceptualiza-
tions and derived collaborative services on their organization.

– The common interest only partially overlaps with the individual organizational in-
terests. This means that the goal is not to produce a single common ontology, but
to support organizations in interpreting common conceptualizations in their own
terms, and feeding back these results. A continuous alignment of common and or-
ganizational ontologies is therefore required.

– An interorganizational ontology cannot be produced in one session, but needs to
evolve over time. Due to its complexity, different versions are needed.

– Starting point for each version should be the current insight about the common
interest, i.e common conceptual definitions relevant for the collaborative services
for which the interorganizational ontology is going to be used.

– The end result of each version should be a careful balance of this proposal for
a common ontology with the various individual interpretations represented in the
organizational ontologies.

Fig. 1 shows how an interorganizational ontology (IOO) consists of various, related
sub-ontologies. The engineering process starts with the creation of an upper common
ontology (UCO), which contains the conceptualizations and semantic constraints that
are common to and accepted by a domain. Each participating organization specializes

Fig. 1. A Model of Interorganizational Ontology Engineering
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this ontology into its own Organizational Ontology (OO), thus resulting in a local in-
terpretation of the commonly accepted knowledge. In the Lower Common Ontology
(LCO), a new proposal for the next version of the IOO is produced, aligning relevant
material from the UCO and various OOs. The part of the LCO that is accepted by the
community then forms the legitimate UCO for the next version of the IOO.

Ontology engineering involves a number of knowledge engineering processes.
Many, partially overlapping, classifications of these processes have been developed so
far. Our intention with the model is not to add to these processes themselves, but to po-
sition them, indicating how they can be used in the bigger picture of interorganizational
ontology engineering. Of course, many mappings of these processes are conceivable.
In this paper, we connect only an initial, coarse-grained mapping of standard ontology
engineering processes to the model. In future research, we will refine both the model
and mappings of associated engineering processes.

This conceptual model of the interorganizational ontology engineering process is
sufficiently specific to derive and organize practical methodological guidelines, yet
generic enough to represent and compare many different approaches and techniques
from an application point of view. This will help identify gaps in theory and method-
ologies, providing a conceptual lens to focus scattered research on a very confusing
topic. In the next section, we show how this model underlies the development of STAR-
Lab’s own DOGMA-MESS methodology.

3 DOGMA-MESS

The DOGMA (Designing Ontology-Grounded Methods and Applications) approach to
ontology engineering, developed at VUB STARLab, aims to satisfy real-world needs
by developing a useful and scalable ontology engineering approach [17]. Its philosophy
is based on a double articulation: an ontology consists of an ontology base of lexons,
which holds (multiple) intuitive conceptualizations of a domain, and a layer of rei-
fied ontological commitments. These essentially are views and constraints that within
a given context allow an application to commit to the selected lexons. Contexts group
commitments, allowing ontological patterns to be represented and compared at various
levels of granularity [2]. In this way, scalable ontological solutions for eliciting and
applying complex and overlapping collaboration patterns can be built.

A fundamental DOGMA characteristic is its grounding in the linguistic representa-
tion of knowledge. This is exemplified most clearly in the linguistic nature of the lexons,
with terms and role strings chosen from a given (natural) language, and that constitute
the basis for all interfaces to the ontology. Linguistic “grounding” is achieved through
elicitation contexts, which in DOGMA are just mappings from identifiers to source
documents such as generalized glosses, often in natural language. As this paper how-
ever is focusing on the process architecture of interorganizational ontology building,
the detailed aspects of this linguistic grounding fall mostly outside of our scope.

3.1 Outline of the Methodology

The efficiency and relevance of eliciting and applying ontological knowledge is at the
heart of the DOGMA methodology. However, still undeveloped was the layer in which
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Fig. 2. Interorganizational Ontology Engineering in DOGMA-MESS

the DOGMA ontology engineering processes are grounded in communities of use. This
is the purpose of the DOGMA-MESS methodology.

Based on our model of interorganizational ontology engineering, the approach
adopted in DOGMA-MESS is characterized in Fig. 2. Arrows in the diagram indicate
specialization dependencies between ontologies. Each version of the IOO construction
consists of three stages: (1) creation of the templates; (2) definition of the organizational
specializations (divergence of definitions); and (3) definition of the common specializa-
tions (convergence of definitions). After that, the relevant knowledge to be retained is
moved to the first stage of the next cycle (still under design). Some important properties
of the intra-version processes are:

– A (permanent) Meta-Ontology is the same for all applications of DOGMA-MESS
and only contains stable concept types like ‘Actor’, ‘Object’, ‘Process’, and ‘Qual-
ity’. Three main types of Actors are defined: Core Domain Experts represent the
common interest, Domain Experts represent the various organizational interests,
and Knowledge Engineers help the other experts define and analyze the various on-
tologies. The Meta-Ontology also contains a set of core canonical relations, similar
to the ones described in [16], such as the ‘Agent’, ‘Object’, and ‘Result’-relations.

– Each domain has its own Upper Common Ontology, and is maintained by the core
domain expert. It first of all contains a specialization of the concept type hierar-
chy of the Meta-Ontology. This Upper Common Concept Type Hierarchy organizes
the (evolving) concept types common to the domain. Domain canonical relations
specialize core canonical relations in terms of the domain. For instance, whereas
‘Agent’ is a core canonical relation, in a particular domain this may be translated
into ‘Person’. The most important type of construct in the UCO are the Templates.
A template describes a common knowledge definition most relevant to the com-
mon interest. At the beginning of each new version, the core domain expert defines
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Fig. 3. An organizational specialization of a task template

templates that best capture the focus interests of that moment. Over time, templates
should become more numerous and specialized.

– Templates are specialized into Organizational Specializations by the domain ex-
perts representing the various organizations. To this purpose, domain experts can
add concept types that are particular to their organization. These Organizational
Concept Type Hierarchies themselves need to be a specialization of the Upper
Common Concept Type Hierarchy. Fig. 3 gives an example from the CODRIVE
project (see below) of a definition by one of the partners in the Dutch Bakery case
having specialized the task template for the task ’Panning’ (=’Fonceren’ in Dutch).

– The most important layer for meaning negotiation is the Lower Common Ontology.
This is where the ‘specification agenda’ as represented by the UCO and the, often
widely differing, organizational interpretations need to be aligned and the most rel-
evant conceptualizations for the next version need to be selected. This process is far
from trivial. In the current implementation of DOGMA-MESS, there is only a very
simple rule: all (selected) definitions need to be full specializations of the templates,
hence they are called Common Specializations. Likewise, the Lower Common Con-
cept Type Hierarchy needs to be a specialization of the Upper Common Concept
Type Hierarchy. This, however, is overly simplified. In the meaning negotiation
process, new definitions may be created that are not (complete) specializations, but
represent a new category of template for the next version of the IOO, for exam-
ple. This is where many of the DOGMA existing ontology analysis processes, for
example based on lexon and commitment comparison, as well as ORM constraint
analysis may play a role. At any rate, our framework allows for such methodology
evolution to be clearly described. In Sect. 4.3, we give an example of one of the
LCO processes currently being developed: organizational ontology alignment.

3.2 System Implementation

The system supporting the DOGMA-MESS methodology is being implemented as a
web server that can be accessed by any web browser, thus ensuring maximum accessi-
bility and ease-of-use (Fig. 4).
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Fig. 4. The DOGMA-MESS system

The core of the server is a Java server that interacts with the DOGMA Studio server,
which in turn implements the standard DOGMA ontology engineering and analysis
engine. Special converters translate standard DOGMA representations to and from a
simple native DOGMA-CG format (amongst other things limited to simple referents).
CharGer is one of the tools allowing core domain experts to create templates in
CharGer-XML, which can also be converted into DOGMA-CG. Concept type hier-
archies can be imported as indented text files, easily to be edited with simple ASCII-
editors. Type hierarchies and templates, like organizational specializations, can also
be edited through the DOGMA-MESS web interface. This interface, for example, al-
lows concept and relation types to be defined and graph concepts and relations to be
added, changed, or removed. Prolog+CG has been embedded in DOGMA-MESS as the
conceptual graph inference engine. The main operation currently being used is the pro-
jection operation for checking whether organizational specializations conform to their
templates. To visualize stored and inferred graphs, AT&T’s GraphViz engine is being
used.

3.3 Initial User Experiences

The explicit mission of DOGMA-MESS is to increase the efficiency and relevance of the
interorganizational ontology engineering process. A continuous process of testbed-like
development of methodology and system is therefore essential. Its socio-technical fine-
tuning is being done in the CODRIVE project. This project aims to develop a method-
ology for shared competency ontology definition between organizations representing
the educational sector, industry, and public employment agencies. Common competency
models are essential for the interoperability of the information systems of these



196 A. de Moor, P. De Leenheer, and R. Meersman

organizations. This in turn is required for them to provide better training and job matching
services, which by their very nature require close interorganizational collaboration.

A first full version of DOGMA-MESS is operational now. We are currently experi-
menting with experts representing multiple educational organizations in the Dutch bak-
ery sector. Pilot tests have been done, and a set of templates is currently being specialized
by a number of domain experts representing various Dutch Bakery schools, under su-
pervision of a core domain expert from the Dutch National Bakery Centre. Initial user
experiences with tool and system are generally positive. The most serious limitation is
complexity rather than lack of functionalities. One of our main development activities
therefore is experimentally simplifying workflows and interfaces. For example, initially
users had to define their concept types before they were going to create a definition.
However, often they find out which concept type they need only during definition con-
struction. We now allow for a type creation process to be spawned from a definition
creation process, and afterwards to return to the right step in that originating process.

After a face-to-face demo and one hour practice session, most are able to create spe-
cializations online asynchronously. Task and competency templates have been defined
for the hundreds of tasks that bakery students need to master by the core domain expert.
A task template, for example, has the task as the focus concept, around which relations
need to be specialized such as who is the person doing the task, what resources, mate-
rials, equipment, and tools are needed as inputs, what is the resulting output, and what
quality aspects are required for task components.

The templates are currently being specialized by these experts into organizational
specializations (see Fig. 3 for an example of such a specialization). With most start-up
problems having been addressed, the initial knowledge base of dozens of definitions is
now growing into hundreds of definitions. Ultimately, thousands, tens of thousands, or
even more definitions will be obtained in a typical domain. Given that time of these
experts is very expensive, they should only focus on the most relevant definitions at
any moment in time. How to reach this definition convergence after the divergence of
the organizational specialization process is the aim of the third stage of each ontology
version. Ontology alignment is a key issue here.

4 Organizational Ontology Alignment in DOGMA-MESS

Ontology alignment means making -literally- common sense out of a set of individual
ontologies. This is the most difficult ontology engineering process, with the most of
degrees of freedom for operationalization. Formalization of the ontology engineering
process is required to ensure the quality of the design of this process.

4.1 Characterizing Ontology Engineering Processes

An important class of ontology engineering processes concerns ontology integration.
This process has been studied extensively in the literature (for a state-of-the-art survey,
cf. [10,14]). Although different groups vary in their exact definition, ontology inte-
gration is generally considered to consist of four key subprocesses: the articulation,
mapping, alignment, and merging of ontologies. Ontology articulation deals with the
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problem of how to define conceptualizations. Ontology mapping concerns how to link
elements from different ontologies, alignment how meanings common to different on-
tologies can be identified, and merging focuses on how to generate completely new
ontologies out of existing ones. Interorganizational ontology engineering to a large ex-
tent focuses on the first three subprocesses, merging being of less relevance.

All ontology integration methodologies use some combination of these macro-
ontology engineering processes. However, in their operational implementation of these
processes, which we call micro-ontology engineering processes, methodologies differ
widely. We use the following (non-exhaustive) set of micro-process primitives: the cre-
ation, modification, termination, linking, and selection of ontological definitions. The
creation of a definition generates a new definition, often from a template. A modifica-
tion changes concepts and relations in an existing definition. A termination removes the
definition from the ontology. These operations were described in detail in terms of pre
and post conditions in [4]. Still lacking were formal definitions of the micro-processes
of explicitly linking ontologies and elements from ontologies and selecting relevant de-
finitions from a (growing) ontology. Many operationalizations of these processes have
already been developed in the field. The question is how to apply and (re)combine them
to increase the quality of real-world ontology engineering processes.

Contexts are important building blocks in our decomposition and linking of ontol-
ogy engineering processes [2]. We define a context of an entity as the set of circum-
stances surrounding it. Context dependencies constrain the possible relations between
the entity and its context. Many different types of context dependencies exist, within and
between ontological elements of various levels of granularity, ranging from individual
concepts of definitions to full ontologies. One of the best studied dependencies, which
we focus on in this paper, are specialization dependencies. For instance, an organiza-
tional definition of a particular task (the entity) can have a specialization dependency
with a task template (its context). The constraint in this case is that each organizational
definition must be a specialization of the template. In conceptual graphs terms, this
would mean that the template must have a projection into the organizational definition.
We give an exhaustive analysis of such dependencies in interorganizational ontology
engineering in [3]. In Sect. 4.3, we will only illustrate specialization dependencies,
by formally describing and decomposing one type of ontology integration (macro)-
process: the alignment of organizational ontologies.

4.2 A Formalization of Specialization Dependencies

We formalize the DOGMA-MESS methodology in terms of a set of ontologies and their
(specialization) context dependencies. First, we define an ontology as a logical theory:

Ontology. An ontology is defined as a structure O = 〈S,A〉, where S is the signature
and A is a set of ontological axioms. The signature typically consists of a set of con-
cept symbols and relation symbols, the latter denotes relations whose arguments are
defined over the concepts.The axiomatization specifies the intended interpretation of
the signature. It essentially defines which relation symbol r in S is to be interpreted as
subsumption relation. Formally, this requires that r defines a strict partial order (poset).
Furthermore, A optionally defines a strict partial order on the relation symbols in S
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(thus defining a specialization hierarchy on the relations), and a particular sort or class
of axioms (or semantic constraints), depending on the kind of ontology.

Specialization Dependencies. These dependencies, illustrated by arrows in Fig. 2, are
an important context dependency in DOGMA-MESS, and are used to connect the var-
ious interorganizational ontology entities. Conceptual graph theory is one of the most
universal and powerful formalisms for dealing with specializations, with its concept and
relation type hierarchies and generalization hierarchies of graphs. We use it here to fur-
ther define and operationalize our methodology. A conceptual graph can be represented
by a logical theory 〈S,A〉, where the signature consists of concept types, canonical re-
lation types, and a set of ontological definitions (CGs). The axiomatization consists of
a concept type hierarchy and a relation type hierarchy defined by partial orders in terms
of concept types and relation types in S respectively. Most ontological entities, such as
the definitions stored in an ontology (i.e. template, organizational specializations), can
be represented as conceptual graphs, and the usual conceptual graph operations can be
applied to reason about them.

– An interorganizational ontology IOO contains the following sub-ontologies: a
meta-ontology MO, an upper common ontology UCO, a lower common ontology
LCO, and a set of organizational ontologies OOi, one for each member organiza-
tion.

– Each ontology O contained in IOO consists of a concept type hierarchy CTH
and a set of ontological definitions D. Each definition d ∈ D is a well-formed
conceptual graph.

– The meta-ontology MO consists of a meta-concept type hierarchy CTHM , and an
optional set of core canonical relations CRM . Each relation crm = 〈c1, r, c2〉 ∈
CRM ,with c1, c2 ∈ CTHM , and r ∈ CR, which is a standard set of relation types
similar to the canonical relation types described in [16].

– The upper common ontology UCO consists of a upper common concept type hi-
erarchy CTHUC , an optional set of domain canonical relations CRUC , and a non-
empty set of templates T . CTHUC ≤ CTHM and CRUC ≤ CRM , in the stan-
dard CG theory sense.

– The lower common ontology LCO consists of a lower common concept type hier-
archy CTHLC , and a set of common specializations DLC . At the start of a version
period DLC = ∅. CTHLC ≤ CTHUC and ∀dlc ∈ DLC : ∃t ∈ T ∧ dlc ≤ t.

– Each organizational ontology OOi consists of an organizational concept type hier-
archy CTHOi and a set DOi of organizational specializations of templates from
the UCO, with CTHOi ≤ CTHUC and ∀dOi ∈ DOi : ∃t ∈ T ∧ dOi ≤ t.

– Each of the constructs defined above is indexed by a version number v. For clarity,
this index number is not shown in the definitions.

4.3 Selecting Relevant Organizational Specializations

In this section, we formalize the process of aligning organizational ontologies in
DOGMA-MESS by selecting the most relevant organizational specializations as the
common specializations (see Fig. 2). Such a process increases the relevance of defini-
tions, since the community will focus on those definitions most in line with its (evolv-
ing) goals. The rationale is that templates at first will be coarse, as the community is
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still learning about its goals and interests of its members. Over time (and versions),
however, templates can become more focused. This requires that only the most rele-
vant definitions are passed on as templates (and possibly other domain definitions) to
the UCO of the next version, since time and energy of domain experts are limited. The
notion of relevance of ontological definitions in an evolving collaborative community
is still almost unexplored in the ontology engineering literature.

As collaborative communities evolve and learn, their number of ontological defini-
tions, often specializations of earlier definitions, grows. Furthermore, the collaborative
goals and requirements become clearer over time, often leading to new types of defini-
tions that need to be created. At the same time, certain older ones become less relevant
because of the shifting collaborative focus. The process of creating and modifying on-
tological definitions is very expensive, since many experts are to be involved, who often
have to consult their respective organizations before being able to make a commitment.

To increase relevance and efficiency of the interorganizational ontology engineering
process, some way of selecting the most relevant definitions in a particular stage of the
evolution of the interorganizational ontology is needed. DOGMA-MESS has currently
implemented this selection process in the following way:

– The organizational ontology alignment process starts the moment the set of organi-
zational ontologies OOi has been updated for the current version v of the IOO.

– The community defines a set of relevance definitions DR.
Example: a group of bakers started of with making definitions of general bak-
ing tasks, but has now discovered that the real education gap is in baking sweet
products:

DR = { }

– Each dr ∈ DR is now lexonized, which means that it is automatically flattened
into a set of lexons LR. Lexons are similar to binary conceptual relations, with
a role/co-role pair instead of a single connecting relation type. If no role/co-role
mapping exists in the DOGMA knowledge base, the co-role is left empty. The co-
role helps to find additional linguistic forms of the same conceptual relation. Using
these lexons, the set of relevance relations RR now is formed by all ”surface forms”
of relevant conceptual relations (i.e. creating a conceptual relation from a role, and
another relation from the co-role, arrows inverted).

Example: RR = { , }
– For each organizational specialization dOi in each organizational ontology OOi, a

relevance score sr is now computed, by checking if the relevance relations project
into the definition. ∀dOi ∈ DOi, with CTHOi :

• sr(dOi) = 0.
• ∀rr ∈ RR : if ∃π rr in dOi, then sr(dOi) = sr(dOi) + 1.

Example: assume Baker A is an expert in cakes, and always stresses that cakes
should be just sweet enough. His organizational ontology OOA therefore contains
this organizational task specialization dOA:
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.

Also, in his concept type hierarchyCTHOA, Cake < Sweet Stuff. Since the second
relevance relation projects into this graph, its relevance score is increased by one.

– Now, all definitions have an associated relevance score. The scores can now be used
to rank the relevance of the organizational definitions to the common interest. Once
ranked, either the x highest ranked definitions can be selected, or those definitions
that meet a certain threshhold. If the community is very busy, or has only very
limited time, the threshold level can be set higher, so that less definitions need to
be considered for lifting into the UCO of IOO version v + 1.

Of course, this is only a crude measure of relevance. Important is that a start has been
made with operationalizing this fuzzy, but necessary idea and grounding it in a useful
interorganizational ontology engineering methodology, from where it can evolve into
more sophisticated approaches. The relevance assessment procedure is currently being
experimented with in the CODRIVE project as a way of increasing focus and thus
motivation of users.

5 Discussion

This paper has made several contributions. A conceptual model of interorganizational
ontology engineering was presented, and the beginning of its formalization, which can
be used to analyze and compare ontology engineering methodologies. DOGMA-MESS
was introduced, as a prime example of an interorganizational ontology engineering
methodology. One core IOE process, organizational ontology alignment, was described.
This process explicitly addresses the fundamental problem of keeping ontological de-
finition processes relevant, a necessary condition for these complex socio-technical
processes to scale.

The aim of this paper was not to examine any particular ontology engineering
process in depth, much work has been done in this respect in, for example, Semantic
Web research. Neither was it to provide a full theory of ontological context dependency
management. Substantial work already exists on this in the Conceptual Structures com-
munity, e.g. [16,15,11]. Also outside this community much relevant work already exists.
For example, Guha et al. [13] adopt a notion of context primarily for scaling the man-
agement of the very large knowledge base Cyc. Our aim, however, was to introduce a
framework and concrete methodology to apply this valuable theoretical work to a very
pressing organizational and societal problem: making interorganizational ontology en-
gineering work. In other words, our interest is how to apply such semantic techniques
to community meaning negotiation goals [6].

In future work, we will refine our conceptual model of interorganizational ontology
engineering and position related methodologies in our descriptive framework. Extensive
intra and cross-case analyses will be done, providing both valuable data and extensions
and refinements of the DOGMA-MESS methodology and system.

Having specialization and other context dependencies clearly defined and inform the
design of knowledge definition processes is a necessary but not a sufficient condition for
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guaranteeing efficient and relevant interorganizational ontology engineering processes.
A thorough grounding in socio-technical principles of community informatics, such as
legitimate meaning negotiation, is required for interorganizational ontology engineering
to succeed [5]. Systematically supporting this meaning negotiation process through a
community portal and guided discussion facilities, tightly linked to the DOGMA-MESS
knowledge base, is is one of our key research foci at the moment.

6 Conclusions

In this paper, literally speaking, we have put ontology engineering in context. We have
characterized interorganizational ontology engineering as a process involving different
domain experts, with well-defined roles, producing increasingly specialized versions of
composite interorganizational ontologies.

Our goal is to efficiently produce relevant ontological definitions. To support this
complex process, we introduced our DOGMA-MESS methodology. It combines a
comprehensive socio-technical methodology with a formal framework of specializa-
tion context dependencies. With it, macro-processes like ontology alignment can be de-
composed into managable combinations of micro-processes, such as template creation
and specialization. Moreover, various ways of relevance scoring can support the subtle
socio-technical dynamics in expert communities of practice. There is thus not one right
way of designing these macro/micro processes. We aim to expand our work in intensive
empirical evaluations of DOGMA-MESS in and across a range of high-impact cases.

Our aim was not to produce a comprehensive formal definition of macro and micro
ontology engineering processes nor of context dependencies. This would have been far
too ambitious, nor do justice to the large amount of related work. Rather, our method-
ology is in fact a meta-methodology that can accommodate many different ontological
methodologies and technologies, synthesizing and tailoring them to the needs of of real
communities of use.

By positioning related work using our conceptualization of interorganizational on-
tology engineering and its practical implementation in a working methodology and
system, the factors influencing the relevance and efficiency of this extremely complex
socio-technical process can be better understood. This understanding should consid-
erably progress the identification of research gaps, alignment of research efforts, and
applicability of results from ontology integration research. In the end, ontologies are
not a goal in themselves, but instruments to facilitate collaborative community dynam-
ics. We are confident that DOGMA-MESS will help improve this dynamics by discov-
ering new ways for communities to find conceptual common ground.
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Abstract. This paper introduces ImageSleuth, a tool for browsing and
searching annotated collections of images. It combines the methods of
Formal Concept Analysis (FCA) for information retrieval with the graph-
ical information conveyed in thumbnails. In order to use thumbnails of
images to represent concept extents, line diagrams can not be efficiently
utilised and thus other navigation methods are necessary. In addition
to established methods like search and upper/lower neighbours, a query
by example function and the possibility to restrict the attribute set are
included. Moreover, metrics on conceptual distance and similarity are
discussed and applied to automated discovery of relevant concepts. This
paper describes the FCA base of ImageSleuth which formed the basis for
its design and the implementation which followed.

1 Motivation

Formal Concept Analysis (FCA) has been successfully applied in Information
Retrieval for browsing and searching text documents ([CS01], [KC00]). The richer
structure of the concept lattice has advantages over simple keyword search or
tree structures. For keyword search, the user has to remember or guess the
correct keywords. For searching in trees, the names of nodes serve as keywords,
but there is a unique path leading to the desired information. Moreover, once
a categorisation scheme for the documents is chosen, this hierarchy is enforced
for every search. In concept lattices multiple paths can lead to a result, so the
user may guide the search via the addition of required properties step by step
without the restriction imposed by a single inheritance hierarchy. The order of
these properties is irrelevant.

This paper illustrates how ImageSleuth uses FCA methods for information
retrieval within a collection of images. Any such approach has to take into con-
sideration the graphical nature of this information. The established method for
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browsing collections of images is to display all images as thumbnails. A thumb-
nail is a smaller version of the original image, small enough to view many images
simultaneously but large enough to distinguish features of the full size image.
Within a collection of thumbnails, each thumbnail is usually the same size and
displayed in a two dimensional layout, sorted by a simple feature of the image
(e.g. name, date, filesize, etc). The desired outcome is to combine thumbnails
as the technique that best conveys the content of an image with the advantages
of FCA information retrieval for the annotated information associated with the
image. This requires that the concept lattice representation has a different pre-
sentation and navigation paradigm compared to that of text documents.

This paper contains four more sections. In Section 2, a description of the FCA-
background of ImageSleuth is presented. Section 3 explains the implementation,
while Section 4 describes an example. Finally, Section 5 contains concluding
remarks.

2 Using FCA to Browse Images

In this section, the mathematical structure underlying ImageSleuth and the re-
sulting search and browse options are described. We assume that the reader
is familiar with the basic notions of Formal Concept Analysis such as context,
formal concept and conceptual scaling. For an introduction to FCA we refer to
[GW99].

Following the approach used for browsing and searching of text documents,
ImageSleuth computes concept lattices of contexts having the collection of im-
ages as objects and their annotated features as attributes. These features may
be information about the depicted object annotated by hand as well as automat-
ically extracted graphical information. In contrast to most approaches for FCA
document retrieval, no line diagram of the lattice is displayed. Instead, following
[KC00], the user is always located at one concept of the concept lattice. This
allows thumbnails of the images to be shown as the extent of the present concept
and thus to convey most of the graphical information characterising this con-
cept. The intent is represented as a list of attributes. As no line diagram of the
lattice is shown, lists of upper and lower neighbours are the only representation
of the lattice structure around the present concept. Searching and browsing in
the image collection then corresponds to moving from concept to concept in the
lattice. By including new attributes in the intent, the user moves to a smaller
concept where all images in the extent have these features. ImageSleuth offers
the following possibilities to navigate in the concept lattice:

– Restriction of the set of attributes in consideration
– Move to upper/lower neighbour
– Search by attributes
– Search for similar objects (Query by example)
– Search for similar concepts

The possibility to restrict the set of attributes in consideration allows focus
on the features that are relevant for the current navigation needs of the user.
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Otherwise large sets of irrelevant attributes would increase the number of con-
cepts and make search unnecessarily complex. ImageSleuth offers predefined sets
of attributes (called perspectives) covering different aspects of the images. The
user may combine these perspectives and include or remove perspectives during
the search. Scale attributes are natural candidates for such attribute sets but
other sets are allowed (for example, overlapping perspectives and perspectives
which are subsets of other perspectives).

The option to search for similar concepts requires a similarity measure. In
order to use this similarity together with the normal search or query-by-example,
(where the user may describe the searched concept with attribute or object sets
which are not intent or extent of a concept) we want the similarity measure to be
defined for semiconcepts as introduced in [LW91] as a generalisation of concepts:

Definition 1. A semiconcept of a context K := (G,M, I) is a pair (A,B) con-
sisting of a set of objects A ⊆ G and a set of attributes B ⊆M such that A = B′

or B = A′. The set of all semiconcepts of K is denoted by H(K).

Note that every concept is a semiconcept. The underlying structure of Im-
ageSleuth is thus:

1. A context K := (G,M, I) with a collection of images as object set G, possible
features as attribute set M and an incidence relation I assigning features to
objects.

2. A collection P of subsets of M called perspectives. Every subset A ⊆ P
defines a subcontext KA := (G,

⋃
A, IA) with IA := I ∩ (G×

⋃
A) of K.

3. A similarity measure
s :

⋃
A⊆P

H(KA)2 → [0, 1]

assigning to every pair of semiconcepts of a subcontext KA a value between
0 and 1 which indicates the degree of similarity.

Since for every A ⊆ P the contexts KA and K have the same object set and
every attribute of KA is an attribute of K it follows for every m ∈

⋃
A that

mI = mIA . Since for (A,B) ∈ B(KA) we have

A = BIA =
⋂
{mIA | m ∈ B} =

⋂
{mI | m ∈ B}

it follows that A is the extent of a concept of B(K). Therefore, φ(A,B) := (A,AI)
defines a map φ : B(KA) → B(K) and the image of φ is a ∧-subsemilattice of
B(K). In the following, the different navigation means based on this structure
are described.

2.1 Restriction of the Attribute Set

By including different perspectives the user defines a subcontext of K in which
all operations are performed. She may change this subcontext while browsing,
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thus obtaining at the present concept further information and search options.
If at the concept (A,AIA ) the perspective S ∈ P is included (i.e. the set of
attributes in consideration is increased), then ImageSleuth moves to the concept
(AIA∪{S}IA∪{S} , AIA∪{S}) of B(KA∪{S}). Since for A ⊆ P and S ∈ P the extent
of every concept of KA is an extent of KA∪{S} we have A = AIA∪{S}IA∪{S} and
the set of images shown does not need to be updated when a further perspective
is included. This allows the addition of perspectives during the search without
losing information. A similar strategy is known from Toscana (cp. [TJ02]) where
the user moves through different scales. At every point the user may also remove
a perspective S which takes her to the concept (AIA\{S} , AIA\{S}IA\{S}). If in
this way an attribute of AIA is removed from the current subcontext then the
extent may be increased since AIA ⊆ AIA\{S} .

2.2 Moving to Upper and Lower Neighbours

ImageSleuth uses most of its interface to show thumbnails of images in the extent
of the chosen concept. As a result the user never sees the line diagram of a lattice.
Instead, the lattice structure around the current concept is represented through
the list of upper and lower neighbours which allow the user to move to super-
or subconcepts. For every upper neighbour (C,D) of the current concept (A,B)
the user is offered to remove the set B \D of attributes from the current intent.
Dually, for every lower neighbour (E,F ) the user may include the set F \ B of
attributes which takes her to this lower neighbour. By offering the sets B \ D
and F \B dependencies between these attributes are shown. Moving to the next
concept not having a chosen attribute in its intent may imply the removal of a
whole set of attributes. In order to ensure that the extent of the given concept
is never empty it is not possible to move to the minimal concept.

2.3 Search and Query-by-Example

Browsing of the image collection is achieved by moving to neighbouring concepts.
In many cases the user will want to go directly to images having a certain set
of attributes B ⊆

⋃
A. This is offered by the search function which computes,

for the selected attributes, the concept (BIA , BIAIA). Its extent is the set of all
images having these attributes, its intent contains all attributes implied by B.

Another type of search is performed by the query-by-example function. In-
stead of defining a set of attributes, a set of objects A is defined as the sample set.
The query-by-example function then computes the common attributes of these
images (in the selected subcontext) and returns all other images having these
attributes by moving to (AIAIA , AIA). In this way, query-by-example is the dual
of the search function. While the search for images having certain attributes is
not affected by the removal or addition of perspectives to the subcontext, query-
by-example depends strongly on the selected subcontext. The more attributes
taken into consideration, the smaller the set of images that have exactly the
same attributes as the examples.
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2.4 Similarity

The aim of query-by-example is to find objects which are similar to the objects
in a given sample set. This is a narrow understanding of similarity implying
equivalence in the considered subcontext; for the query-by-example function two
objects g, h are “similar” in a subcontext KA if gIA = hIA . If the objects are
uniquely described by the attributes in the chosen subcontext then query-by-
example seldom yields new information. A more general approach is to define
a similarity measure. In [Le99] several similarity measures on attribute sets are
investigated. Similarity of two objects g and h is then described as the similarity
of the attribute sets g′ and h′. In order to use the grouping of objects provided
by the formal concepts, ImageSleuth works with a similarity measure on semi-
concepts which allows the return of a ranked list of similar concepts. We use
semiconcepts since the set of sample images chosen by the user is not necessarily
the extent of a concept. The similarity measure is derived from the following
metric:

Definition 2. On the set H(K) of semiconcepts of a context K := (G,M, I) the
metric d : H(K)× H(K)→ [0, 1] is defined as

d((A,B), (C,D)) :=
1
2

(
|A \ C|+ |C \A|

|G| +
|B \D|+ |D \B|

|M |

)
.

This definition formalizes the idea that two semiconcepts are close if there are
few objects and attributes belonging to only one of them. In order to compare the
number of objects and the number of attributes where they differ, these numbers
are set in relation to the total number of objects or attributes. Semiconcepts with
small distance are considered similar. ImageSleuth uses 1− d((A,B), (C,D)) as
the similarity of (A,B) and (C,D).

For a similar purpose Saquer and Deogun introduced in [SD01] a related
similarity measure as

s((A,B), (C,D)) :=
1
2

(
|A ∩ C|
|A ∪ C| +

|B ∩D|
|B ∪D|

)
.

This definition of similarity extends to semiconcepts (A,B), (C,D) if A∪C �=
∅ and B ∪D �= ∅. In particular, the similarity s((A,A′), (C,D))) is defined for
every nonempty set A of objects and every concept (C,D) �= (G, ∅). For a sample
set A of images, ImageSleuth uses a combination of both measures to return a
ranked list of concepts similar to the semiconcept (A,AIA ).

The given metric on semiconcepts has two advantages. First, it allows the
return of a list of similar concepts rather than just a list of images. This provides
a reasonable grouping of the similar images and, since the attributes of the
concepts are displayed, it shows in which way the images relate to the sample
set.

Second, in contrast to other approaches such as graph distance, the number of
different objects of two concepts is taken into account. Instead of counting only
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the attributes in which two concept intents differ, we assume that the significance
of this difference is reflected in the difference of their corresponding attribute
sets. If (A,B) is a concept and (C,D), (E,F ) are upper neighbours of (A,B)
with |C| ≤ |E| then the attributes in B \F are considered as more characteristic
for the concept (A,B) than the attributes in B \ D. Thus, if |D| = |F | then
(C,D) is closer to (A,B) than (E,F ) even though they differ from (A,B) in
the same number of attributes. In this way, even an incomparable concept may
be the closest. This contradicts the intuition that, for a concept, its sub- and
superconcepts should be closest. Yet upper and lower neighbours are directly
accessible by other navigation means. The advantage of the search for similar
concepts for a given concept is that it offers a selection of (in the lattice order)
incomparable but close concepts which are otherwise invisible.

As the original query-by-example function described above is the dual of a
search this approach can be used for the search function, too. If a search is
carried out for a set of attributes B, and if B′ is empty, then the concept (B′, B′′)
contains only the information that these attributes do not occur together. No
images are returned as a result of this search, since there are no images having
the required attributes. In this case, the user may be shown a list of concepts
similar to or with small distance to the semiconcept (B′, B).

3 Implementation

This section introduces the application ImageSleuth. Focus is placed on the
dataset used for testing, its history, navigation overview and a method for re-
solving the empty extent search result.

3.1 Image Collection

The dataset used is taken from the popular computer game “The Sims 2”. It
features 412 objects of household funiture and fittings, described by 120 at-
tributes which include in-game properties, suggestions for use and automatically
extracted colour information. There are 7,516 concepts in the complete context.
Each attribute of the context is assigned to one or more perspectives. In this
dataset, 10 perspectives have been constructed.

3.2 History

The version of ImageSleuth presented here is the second version. The origi-
nal prototype used concept neighbourhoods and include/remove attributes, but
was limited to traversal between three mutually exclusive subcontexts via sin-
gle objects. It underwent user-evaluation to test functionality and opinion of
ImageSleuth’s navigation paradigm. 29 honours level university students (from
various disciplines) were asked to perform tasks and provide feedback on Im-
ageSleuth v1. Results are overviewed in [DE05]. Results indicated that concept
neighbourhoods offered a useful navigation method, users liked the “grouping



FCA-Based Browsing and Searching of a Collection of Images 209

Fig. 1. An example screenshot of ImageSleuth and the lattice representation of the
corresponding neighbourhood. The screenshot shows the four primary navigation func-
tions of ImageSleuth. On the left is the listings of current and available perspectives
(currently, advanced and simple colour perspectives are selected). Top and bottom
show the remove and include functions respectively. The central pane shows the cur-
rent concept; with intent listed as textual attributes and extent as thumbnailed images.
The lattice neighbourhood shows the current concept at its centre.

of similar objects”1 (concept extents) and the efficient searching by selection of
defined attributes. Negative feedback included complaints about the interface
and the systems performance. Analysis of the task results revealed the biggest
problem: if a search included mutually exclusive attributes, it returned an empty
extent, which left users confused. According to [Co99], making a user feel stupid
is the worst possible software interaction fault.

The second version of ImageSleuth addressed the primary problems experi-
enced by participants in the user testing sessions. These included interface layout,
slow performance, inability to combine contexts and the empty extent search re-
sult problem. In the first version, include and search functionality was listed
after the thumbnails, and users needed to scroll to the bottom of the page to
continue navigation. This was repaired by partitioning the page into frames with

1 A term used by more than one of the participants.
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each frame assigned a set amount of screen space and function. This means a
given functionality is always found in the same location regardless of conceptual
position in, or content of, the dataset.

To address performance issues, the entire system (which was implemented as
a single Perl script) was rewritten in C++ as a set of executables. The database
was ported to PostGreSQL to take advantage of performance advantages for
FCA systems outlined in [Ma06]. This process lead to a system that is roughly
10,000% faster.

ImageSleuth is accessed as a web site which allows simple access via a web
browser. This also means that ImageSleuth is platform independent for users
as all code is run on the server. Another reason for centralising the running
of ImageSleuth is to allow logging of users’ activities during usability testing
sessions for analysis.

3.3 Empty Extent Search Result

The most common solution to concept searches in FCA, that result in an empty
extent, is to offer attributes that can be removed from the search to supply a more
general answer that meets a majority of search attributes. Most other forms of
search (for example, text search) do not work this way - instead they supply the
user with a list of results that are ranked by a relevance to the query. ImageSleuth
tries to address this using the semiconcept search result and a combination of
distance and similarity measures (see section 2.4). When a search is performed
that would return the concept with an empty extent, the user can opt to allow
the system to find and rank conceptually relevant concepts. This process is
achieved by finding possible neighbours of the semiconcept and performing a
bounded traversal which ranks the traversed concepts. These possible neighbours
(Fig. 3, Line 3.) become the first concepts traversed. Each concept visited has
its relevance calculated and stored. A test is applied to each concept visited
to calculate whether it is to be used for further traversal. The test condition
is based on the distance metric compared to a weighted average of the query
concepts intent and extent size (Fig. 3, Line 8.). The condition is represented as:

Dist((A,B), (C,D)) × SearchWidth < 1
2 (|A|/|G|+ |B|/|M |)

where (A,B) is the query concept and (C,D) is the current concept of the
traversal. SearchWidth is a modifier to allow the search to be made wider or
narrower. If the traversal is to continue, the concept’s neighbourhood is added
to the traversal list, the concept is marked as visited and the process continues
(Fig. 3, Lines 9-11.).

Relevance is calculated as the average of the similarity scores which is pre-
sented to the user as a percentage.

4 Empty Extent Search Result Example

The following is a simple example of how ImageSleuth’s semi-concept searching
works. This example uses two perspectives, Function and RoomType which have
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Fig. 2. An example of lattice traversal starting from a semi-concept. The traversal in
this example is complete in 3 steps. The shaded area shows the computed concepts at
each step.

1. find similar ( Concept: input, Number: width )
2. input size = size ( input.intent ) + size ( input.extent )
3. candidate = upperNeigh ( input ) ∪ lowerNeigh ( input )
4. exclude = ( input )
5. while ( size ( candidate ) > 0 )
6. concept = pop ( candidate )
7. exclude = exclude ∪ concept
..
.. compute and store rank information for concept.
..
8. if ( distance ( input , concept ) × width

< weightedAverage( input ) )
9. candidate = candidate ∪ upperNeigh ( concept )
10. candidate = candidate ∪ lowerNeigh ( concept )
11. candidate = candidate / exclude
12. end if
13. end while
14. end

Fig. 3. Pseudocode representation of search traversal. Parameters are the starting con-
cept or semiconcept (input) and a numeric value used to modify the width of the search
(width).

20 attributes in total. The Function perspective is a simple nominal scale with
each object having one function attribute. The RoomType perspective, on the
other hand, is more complex with each object having zero or more room type
attributes. With this context the complete lattice has 194 concepts.



212 J. Ducrou, B. Vormbrock, and P. Eklund

Fig. 4. Results of a concept traversal from the query “Applications, Electronics, Study”
using the perspectives “Function, RoomType”

The query for this example will be “Applications, Electronics, Study”, the
first two attributes from the Function perspective and the remaining one from
RoomType. Function being nominally scaled, the inclusion of two attributes from
this perspective means that if the concept was completed it would result in the
empty extent concept or (∅,M). Although this result is technically correct, it
does not suit the query’s intention.

To identify a concept that is more representative, a concept traversal is started
using the semiconcept, (∅, (Applications,Electronics,Study)). In this example,
the traversal visits 12 concepts, four of which are conceptually close enough to
extend the traversal. Consequently, only 6.19% of the total lattice is computed.
The first three of five rankings are shown in Fig. 4. Relevance is shown as a
large percentage, while individual distance and similarity scores are displayed
below. Each result is displayed as a list of attributes representing the intent and
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a collection of thumbnails representing the extent. The highest ranking concept,
with relevance 64.92%, has the intent (Electronics, Study), which is two of the
three original query attributes. Following that, at 55.74%, is the concept with the
intent (Bedroom, Electronics, LivingRoom, Study). The third ranking, at 54.42%
relevance, has two concepts, with the intents (Applications) and (Electronics),
which represent the mutually exclusive elements of the original query.

5 Conclusion

Presented is an image based navigation paradigm combining the methods of
Formal Concept Analysis for information retrieval with the graphical informa-
tion conveyed as thumbnails. This paradigm is formalised and realised via the
ImageSleuth application which uses a collection of images taken from the game,
The Sims 2.

It was required that the concept lattice representation used in ImageSleuth
had a different presentation and navigation paradigm compared to that of text
documents; in contrast to most approaches for FCA document retrieval, no line
diagram of the lattice is displayed. In our approach, the user chooses perspectives
of interest and is always located at one concept of the concept lattice, with the
extent of the current concept displayed as thumbnails. Query-by-example and
a method for ranking attribute search results when an exact match is not to
be found are also described and exemplified in ImageSleuth. Also shown is how
ImageSleuth has been improved from the previous version after testing and user
evaluation.
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Abstract. In this paper, we introduce the term “Semantology” for nam-
ing the theory of semantic structures and their connections. Semantic
structures are fundamental for representing knowledge which we demon-
strate by discussing basic methods of knowledge representation. In this
context we discuss why, in the field of knowledge representation, the term
“Semantology” should be given preference to the term “Ontology” .
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1 Introduction

In today’s scientifically oriented world, knowledge representations are considered
to be of great importance. Hence multifarious methods are offered for repre-
senting knowledge in an immeasurable variety of domains. Such methods are
grounded consciously or unconsciously on semantic structures which carry the
meaning of the represented knowledge. In this paper we want to discuss ba-
sic methods of knowledge representation constituted by structures of scientific
semantics; the corresponding methodology is treated in the frame of “Semantol-
ogy” which we understand as the general theory of semantic structures and their
connection. The term “Semantology” may help to avoid naturalistic or essen-
tialistic fallacies, which the term “Ontology” may suggest as, for instance, the
naturalistic idea that scientific models can match existing realities of nature.

2 Semantic Structures

Semantic structures considered in this treatment obtain their meaning from some
scientific semantics. For discussing semantic structures and their meanings in
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general, it is useful to refer to Peirce’s classification of sciences. This classifi-
cation scales the sciences “in the order of abstractness of their objects, so that
each science may largely rest for its principles upon those above it in the scale
while drawing its data in part from those below it” ([Pe92]; p.114). We mainly
activate the first level of Peirce’s classification:

I. Mathematics II. Philosophy III. Special Sciences

where Mathematics is viewed as the most abstract science studying hypothe-
ses exclusively and dealing only with potential realities, Philosophy is consid-
ered as the most abstract science dealing with actual phenomena and realities,
while all other sciences are more concrete in dealing with special types of actual
realities.

Since modern mathematics is essentially based on set-theoretical semantics, se-
mantic structures having mathematical meaning can be represented by set struc-
tures. Mathematicians are developing those structures in great variety, many of
which even in advance. Peirce already wrote that mathematicians are “gradu-
ally uncovering a great Cosmos of Forms, a world of potential being” ([Pe92],
p.120).

Fig. 1. Formal context concerning the shell of a one-family house
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Semantic structures having philosophical meaning are based on philosophic-
logical semantics which are grounded on networks of philosophical concepts. In
traditional philosophical logic, concepts are viewed as the basic units of thought;
they and their combinations to judgments and conclusions form “the three es-
sential main functions of thinking” ([Ka88], p.6), which constitutes the logical
semantics of philosophy. Semantic structures having their meaning with respect
to special sciences are based on semantics which are grounded on networks of
special concepts of those sciences.

Let us illustrate the described understanding of semantic structures by an
example. For this we choose a project which was initiated by the Department
of Building and Housing of the State of “Nordrhein-Westfalen”. At the begin-
ning of the 1990th, representatives of that department asked the Darmstadt
Research Group on Concept Analysis whether members of the group could de-
velop, in cooperation with them, a prototype of an information system about
laws and regulations concerning building construction. The main purpose of that
system was defined to be a support for the planning department and building
control office as well as for people that are entitled to present building projects
to the office in order to enable these groups to consider the laws and tech-
nical regulations in planning, controlling, and implementing building projects
(cf. [KSVW94], [EKSW00], [Wi05c]).

The first question in starting the project was how to find an adequate knowl-
edge representation for the desired information system. The natural idea to es-
tablish a slender-boned thesaurus about all relevant aspects of laws and building
techniques turned out to be too extensive and therefore not manageable. Thus,
more elementary semantic structures became desirable which could be repre-
sented by formal contexts as defined in Formal Concept Analysis [GW99a]1.

Now the main question was: What are the “information objects” users of the
information system have to look for? It was a breakthrough when we finally
identified the relevant text units of the laws and regulations as those informa-
tion objects. With this understanding we needed only five hours to establish
a comprehensive formal context having as objects the relevant text units and
as attributes building components and requirements concerning a one-family
house. A smaller subcontext of that context is shown in Fig. 1; its concept lat-
tice depicted in Fig. 2 functioned later as a query structure of the information
system.

1 Let us recall that a formal context is mathematically defined as a set structure
(G, M, I) in which G and M are sets and I is a binary relation between G and M ;
the elements of G and M are called formal objects and formal attributes, respectively.
One says: a formal object g has a formal attribute m if g is in relation I to m. A
formal concept of (G, M, I) is a pair (A, B) where A and B are subsets of G and M ,
respectively, and A is just the set of all objects having all attributes of B, and B is
just the set of all attributes applying to all objects of A. A formal concept (A1, B1)
is said to be a subconcept of a formal concept (A2, B2) if A1 is contained in A2 or,
equivalently, if B1 contains B2. The set of all formal concepts of (G, M, I) together
with the subconcept-relation always forms the mathematical structure of a complete
lattice which is named the concept lattice B(G, M, I).
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Fig. 2. Concept lattice as query structure “Shell of a one-family house”

Such a labelled concept lattice represents a semantic structure in a threefold
manner: it can be understood as a set structure having purely mathematical
meaning, as a general conceptual structure having philosophic-logical meaning,
and as special conceptual structure having purpose-oriented meaning concern-
ing planning, controlling, and implementing building projects. The mathematical
understanding is important for developing a mathematical structure theory of
concept lattices. This theory yielded, for instance, the means to establish and
justify the TOSCANA software (cf. [KSVW94]), [BH05]) which makes possi-
ble to use suitable query structures to navigate purpose-oriented through the
represented knowledge about laws and technical regulations. The philosophic-
logical understanding allows in general to unify special conceptual structures on
a more abstract level, still refering to actual realities; one might consider, for in-
stance, the aggregation of the query structures “Shell of a one-family house” and
“Operation and fire security” in [KSVW94], p.279. Since the philosophic-logical
level is the most abstract level refering to actual realities, it may function also
well as a transdisciplinary bridge between mathematical structures and (special)
conceptual structures (cf. [Wi05a]).

Experiences have shown that labelled concept lattices, which purposefully rep-
resent semantic structures, usually stimulate the creation of knowledge caused
by those semantic structures. This shall be indicated by just one event in the
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Department of Building and Housing. After a longer period of collaboration in
developing the information system, directors of the department wanted to see
the progess of our collaboration. They understood fairly well how to read the
labelled diagrams of the concept lattices and made many remarks and even help-
ful suggestions. When we showed the diagram of the query structure “Shell of
a one-family house”, suddenly, the head of directors shouted: “This is unbeliev-
able! For building a chimney of a one-family house, one has to observe twelve
laws and regulations! We really need law compression!” Indeed, since laws and
regulations are usually created and revised over a long time, they are in danger
to become too large and too many. Therefore it is helpful to represent laws and
regulations in networks of concepts which allow to notice more connections and
even improvements of them. In general, experts of the represented contents are
very fast in grasping essential relationships within a labelled diagram of a con-
cept lattice; in particular, they even recognize mistakes in the underlying data
contexts.

3 Basic Methods for Knowledge Representation

Representations of knowledge about scientifically accessible domains should en-
able the reconstruction of the represented knowledge by users with a relevant
scientific background, i.e., users who have internalized enough semantic struc-
tures of the corresponding special sciences. What are methods for establishing
those knowledge representations? In this paper, answers to that question are
concentrating on basic methods for knowledge representations (cf. [Wi06]) which
allow the three-fold semantic understanding discussed in Section 2.

3.1. A (formal) context, as the one in Fig. 1, is a semantic structure which
yields the most elementary representation of knowledge. Mathematically, such
a context is a set structure which is usually called an incidence structure and
investigated predominantly combinatorially (e.g. [De70]). Philosophically, such
a context may be understood as a logical structure consisting of a collection of
(general) objects and a collection of (general) attributes joined by relationships
indicating which objects have which attributes. In special sciences, such a context
is mainly viewed as an elementary data table representing relationships between
(special) objects and (special) attributes.

In the example in Fig. 1, objects are text units of laws resp. regulations
and attributes are building components; a cross in the data table indicates that
the text unit whose name is heading the row of the cross is relevant for the
component whose name is heading the column of the cross. For example, the
crosses in the row headed by “DIN 1054” indicate that the standard “DIN 1054”
is relevant for the components “substructure”, “baseplate”, “chimney”, and not
relevant for the other components. For reconstructing the represented knowledge,
it might sometimes help to increase the readability of the data table by suitably
permuting rows and columns.
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3.2. A concept lattice presented by a labelled line diagram, as the one depic-
ted in Fig. 2, yields a representation of conceptual knowledge which humans
comprehend very well. Many experiences have shown that experts of the contents
represented by a concept lattice reconstruct astonishingly fast relevant meanings
of the presented concepts and relationships. Therefore, one can assume that
depicted concept lattices are able to activate corresponding semantic structures
in human thought.

Mathematically, concept lattices belong to the class of lattice-ordered struc-
tures which have been intensively studied since the late nineteenth century (cf.
[DP02]). Today there exists a huge network of lattice-ordered structures which
serve as mathematical semantic structures in theoretical and practice-oriented
research. In particular, Formal Concept Analysis as mathematical theory of con-
cept lattices benefits from this research.

Philosophically, labelled line diagrams of concept lattices are understood as
representations of contextually founded concept hierarchies in which the concepts
are constituted by their extensions and intensions (cf. [DIN79], [DIN80]). Those
concept hierarchies function as logical semantic structures for the representation
of knowledge. Thus, the philosophical logic of concepts has to play a basic role
for the actual research on knowledge representation.

In special sciences, knowledge representations by concept lattices and their
line diagrams are grounded on the special semantics of those sciences. Which
semantic structures are activated, respectively, is usually dependent on aim and
purposes of the knowledge representation. For example, the knowledge repre-
sentation of the concept lattice depicted in Fig. 2 has the purpose to support
architects in planning the shell of a one-family house subject to the relevant
laws and regulations. For designing the connection of the chimney and the roof,
the architect has therefore to observe all text units which are relevant for both.
These text units form the extension of the largest subconcept of the two con-
cepts generated by the attributes “chimney” and “roof”. In the line diagram,
those three concepts are represented by the non-labelled circle on the very left
and the two circles with the labels “chimney” and “roof”. The wanted text units
are indicated by the labels to circles which can be reached by descending pathes
starting from the non-labelled circle on the very left. Thus, the architect has to
consider §15, §16, §17, and §18 Abs.1 of the Building Law of Nordrhein-Westfalen
(BauONW) and the German standard DIN 1055.

3.3. A system of concept lattices based on subcontexts of a given formal con-
text is desirable if the concept lattice of the whole context is too large. The
general idea is that the concept lattice of the whole context are reconstructable
from the concept lattices of the distinguished subcontexts. One might think of
an atlas of maps where the maps are the concept lattices of the system (cf.
[Wi85]). Knowledge representations by those systems could be metaphorically
viewed as conceptual landscapes of knowledge where the navigation through such
landscapes is supported by activated semantic structures (cf. [Wi97])
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Mathematically, different types of concept lattice systems have been exten-
sively investigated which is documented in [GW99a], mainly in the chapters on
decompositions and constructions of concept lattices. A frequently used method
of decomposition and construction leads to the so-called nested line diagrams
which are often better readable than the usual line diagrams of concept lattices
(cf. [Wi84]). In the basic case, the attribute set of a formal context is divided
into two subsets which together with the object set form two subcontexts. Then,
a line diagram of the concept lattice of one of the subcontexts is drawn with
large rectangles for representing the formal concepts. Following that, the line di-
agram of the concept lattice of the other subcontext is copied in each of the large
rectangles of the first diagram. Finally, in each copy of the second diagram those
little circles are marked which represent the formal concepts of the original con-
text (cf. [GW99a], p.90). To justify this construction, some basic mathematical
argumentations are necessary (see [GW99a], p.75ff.).

Philosophically, a system of concept lattices visualized by labelled line di-
agrams is understood as a contextually founded logical system of concept hi-
erarchies which can be elaborated to obtain useful knowledge representations.
The most successful knowlege systems elaborated in that way are the so-called
TOSCANA-systems, the design of which was inspired by the metaphor of con-
ceptual landscapes of knowledge (cf. [KSVW94], [VW95], [Wi97]). Basically, a
TOSCANA-system is founded on a formal context and a system of attribute
collections covering all attributes of the given context. Each of those attribute
collections together with the object collection of the context yields a subcontext,
named a conceptual scale. The concept lattice of such a scale, visualized by a
well-drawn line diagram, is named a query structure because it can be used to
interrogate knowledge represented by the TOSCANA-system (see e.g. Fig. 2).
Query structures can even be combined to show nested line diagrams which
particularly support the navigation through the represented knowledge. The de-
scription of actual software for maintaining and activating TOSCANA-systems
can be found in [BH05].

Special sciences with their special semantics and purposes give rise to special
systems of concept lattices. This shall be exemplified by the following research
project in developmental psychology: The psychologist Th. B. Seiler together with
coworkers has investigated how the concept of “work” develops in the mind of
children of the age of 5 to 13 (see [SKN92]). 62 children were interviewed about
their understanding of “work”, and the content of each of these interviews were
represented by a concept lattice. Then the researchers put the line diagrams of
those concept lattices up in a row according to the age of the children. That lin-
ing up made already clear to a large extent how to reconstruct the development
of the concept of “work”. Therefore no further analysis of connections between
the 62 concept lattices was necessary. Nevertheless, a TOSCANA-system could
have helped to represent an even more complete representation of the knowl-
edge gained by the investigation. How much a special TOSCANA-system is
formed according to the special contents and purposes of the desired knowledge
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system, this has been described in [EKSW00] for the already discussed informa-
tion system about laws and regulations concerning building construction.

3.4. A concept lattice with a collection of its attribute inferences2 extends the
knowledge representations discussed in subsection 3.2 by offering knowledge
about attribute inferences valid in the underlying context. This enlargement
adds elements of an inferential semantics based on (formal) attributes to the
structural semantics of the given concept lattice. Dually, one can enlarge the
structural semantics by elements of an inferential semantics based on (formal)
objects. Both enlargements can be unified in an inferential semantics based on
(formal) concepts. The contextual foundation of those semantics allows to make
structurally explicit the relationships between all those semantics.

Mathematically, a theory of attribute implications of formal contexts has
been developed which, in particular, states that a concept lattice can be re-
constructed as lattice, up to isomorphism, by the set of all attribute implica-
tions valid in the underlying context (cf. [GW99a], Section 2.3). Furthermore,
the theory of attribute clauses yields that a concept lattice with its object con-
cepts as constants can be reconstructed as lattice with constants, up to iso-
morphism, by the set of all attribute clauses valid in the underlying context
(cf. [GW99b], Section 2). Both results show how close the structural seman-
tics of concept lattices and the inferential semantics of attribute inferences are
mathematically.

Philosophically, a concept lattice with a collection of attribute inferences can
be understood as a contextual logic of attribute inferences based on a concept
hierarchy. Such a logic is mathematically supported by the Contextual Con-
cept Logic (cf. [Wi00a]), particularly by the Contextual Attribute Logic (cf.
[GW99b]), both founded on Formal Concept Analysis. In the extended case of
a system of concept lattices together with a collection of attribute inferences,
the corresponding philosophical logic can be understood as a logic of distributed
systems as developed in [BS97]. This logic has already remarkable applications
as, for instance, to the construction and analysis of switching circuits (see e.g.
[Kr99]).

In special sciences, a contextual logic of attribute inferences based on a concept
hierarchy have a great variety of applications. Here, only the so-called attribute
exploration (see [GW99a], p.85ff.) shall be mentioned as an appplication method.
This method is used to complete knowledge representations making knowledge
explicit which is implicitly coded in a specified universe of discourse. The key
idea of the exploration is to ask step by step whether an attribute implication
valid in the actual context is also valid in the universe. If yes, then the impli-
cation is listed as valid in the universe. If not, then an object of the universe,
which has all attributes of the implication premise but not all of the implication

2 The most important attribute inferences of a formal context (G, M, I) are the at-
tribute implications B1 → B2 where B1 and B2 are subsets of M satisfying that each
formal object having all formal attributes of B1 has also all formal attributes of B2.
Further attribute inferences are the attribute clauses B1 � B2 satisfying that each
formal object having all formal attributes of B1 has at least one attribute of B2.
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conclusion, has to be made explicit and added to the actual context (cf. [Wi06],
method M9.1). For example, in exploring how adjectives can characterize musi-
cal pieces a typical question was: If the adjectives “dramatic”, “transparent”, and
“lively” apply to a musical piece, do the adjectives “sprightly”, “rhythmizing”,
and “fast” also apply to that piece? The answer was “No” and justified by naming
as counterexample the third movement of Beethoven’s moonlight sonata which
was judged to be “dramatic”, “transparent”, and “lively”, but not “sprightly”
(cf. [WW06]).

3.5. A power context family3 is a semantic structure which yields elementary
representations of knowledge about connections between objects, attributes, ba-
sic and relational concepts. Mathematically, investigations of those connections
may benefit from the research in the Algebra of Relations (cf. [PK79], [Poe04]).
Philosophically, the multifarious work on the logic of relations yields a support-
ing background; in particular, Peirce’s extensive work on the logic of relatives is
a valuable source (for an introduction see [Pe92], Lecture Three). R. W. Burch
has amalgamated various systems of logic, developed by Peirce over his long
career, under the title PAL (Peircean Algebraic Logic) which extends the logic
of relatives (see [Bu91]). In special sciences, a power context family might be
viewed as a sequence of data tables representing relationships between (special)
objects resp. object sequences and (special) attributes.

For creating knowledge representations by power context families, it is im-
portant to understand the close relationship between power context families and
relational databases [AHV95]. In [EGSW00] it is shown how a representation of
all flights inside Austria by a relational model in the sense of Codd can be trans-
ferred into a representation by a power context family. This power context family
could even serve as basis for a contextual-logic extension of a TOSCANA-system,
which was established by using PAL-term formations and their derivatives.
Representations of the knowledge coded in the extended TOSCANA-system
could then be activated by query graphs for retrieving flight information (see
[EGSW00], Section 4).

3.6. Concept graphs of a power context family are semantic structures which rep-
resent (formal) judgments based on the knowledge represented by the underlying
power context family and its concept lattices. Those judgments are understood
in the sense of the traditional philosophical logic with its doctrines of concepts,
judgments, and conclusion. This means that “the matter of judgment consists in
given cognitions that are joined into unit of consciousness; in the determination
of the manner in which various presentations as such belong to one consciousness
consists the form of judgment” ([Ka88], p.106f).

3 A power context family is mathematically defined a sequence �K := (K0, K1, K2, . . .)
of formal contexts Kk := (Gk, Mk, Ik) with Gk ⊆ (G0)k for k = 1, 2, . . .. The formal
concepts of K0 are called basic concepts, those of Kk with k = 1, 2, . . . are called
relation concepts because they represent k-ary relations on the basic object set G0

by their extents (resp. extensions).
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Mathematically, the form of judgment is set-theoretically defined as concept
graph of a power context family4. The mathematical theory of concept graphs
has been mainly developed to establisch a Contextual Judgment Logic which is
understood as an extension of the Contextual Concept Logic (cf. [Wi00b]). This
development does not only extend the structural semantics of formal concepts,
but also the inferential semantics of concept graphs (cf. [Wi04]).

Philosophically, matter and form of judgments can be successfully represented
by conceptual graphs which have been invented by J. F. Sowa [So84] and further
developed by him and many other collaborators. In [So92], Sowa wrote: “Con-
ceptual graphs are a system of logic based on the existential graphs of Charles
Sanders Peirce and the semantic networks of artificial intelligence. The purpose
of the system is to express meaning in a form that is logically precise, humanly
readable, and computationally tractable.” Conceptual graphs gave rise to their
mathematical abstraction by concept graphs; therefore there is a very close con-
nection between the representation of judgments by conceptual graphs and by
concept graphs. A comparison of the philosophical foundations of conceptual
graphs and of formal concept analysis in general is presented in [MSW99].

In special sciences, knowledge representations by concept(ual) graphs are fre-
quent which could already be seen by papers published in the series of Springer
lecture notes on conceptual structures. As example, only the TOSCANA rep-
resentations, mentioned already under 3.5, shall be discussed further. Such a
TOSCANA-system offers flight information in the form of conceptual graphs.
Those graphs occur as answers to requests which are given by constraints con-
cerning flight connections, time intervals for departures and arrivals, possible
flight days, etc. The answers are graphically presented as information networks
which can be interactively changed, in particular, to smaller networks by increas-
ing the inserted constraints and, finally, to a fixed flight schedule (cf. [EGSW00]).

4 Semantology and Ontology

It may be helpful to have a clear idea of the epistomological status of the struc-
tural entities which we call “semantic structures” in the field of knowledge rep-
resentation and processing. How do we address the meaningful totality these
structures are part (and taken) of? In which way are semantic structures related
to the world? Is there a general methodological perspective on what knowledge
representations are dealing with?

4 A concept graph of a power context family �K := (K0, K1, K2, . . .) with Kk :=
(Gk, Mk, Ik) for k = 0, 1, 2, . . . is a structure G := (V, E, ν, κ, ρ) for which
- (V, E, ν) is a relational graph, i.e. a structure (V, E, ν) consisting of two disjoint
sets V and E together with a map ν : E → ⋃

k=1,2,... V k,
- κ: V ∪ E → ⋃

k=0,1,2,... B(Kk) is a mapping such that κ(u) ∈ B(Kk) for all u with
u ∈ V if k = 0 or ν(u) = (v1, . . . , vk) ∈ V k if k = 1, 2, . . .,
- ρ: V → P(G0)\{∅} is a mapping such that ρ(v) ⊆ Ext(κ(v)) for all v ∈ V and,
furthermore, ρ(v1) × · · · × ρ(vk) ⊆ Ext(κ(e)) for all e ∈ E with ν(e) = (v1, . . . , vk);
in general, Ext(c) denotes the extent of the formal concept c.
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We propose the term “Semantology” as a first step to answer those questions
and as a basic methodological concept for knowledge representation research.
“Semantology” is an existing expresion in linguistics. There it stands for “sci-
ence of the meaning of words” or “science of semantics”, but as far as we see
without any important terminological function within the linguistic field. In a
recent philosophical publication the word appears in the pejorative sense, mean-
ing something like: thinking too much in semantical terms (cf. [Wa04]). In our
context, “Semantology” can directly refer to the idea of a semantics implying,
as semantics, meta-structure or universe or “archive” ([Fou69] p.103ff.) that can
be explored by the means of different sciences of concepts (in the field of mathe-
matics, e.g. the science of set-theoretic concepts versus the science of geometric
concepts (cf. [Th71]); in the field of philosophy, one should, in particular, name
the philosophical history of concepts; in special sciences, e.g. the science of mu-
sical concepts (cf. [Eg78])). More precisely, we understand Semantology as the
theory of semantic structures and their connections which, in particular, make
possible the creation of suitable methods for knowledge representations. Thus,
Semantology should also cover the general methodology of representing infor-
mation and knowledge.

In the discourse of computer sciences the term “Ontology” is used to indicate
a certain complex or totality of meanings - an “entity” on a meta-level that
semantic structures imply or on that they refer. Ontology in this general sense
of exploring the relation of data to “world in general” or “reality” is also a
keyword of todays artificial intelligence research. It aims at the idea of modelling
how language is used to specify our practical world. So why do not speak of an
ontology (or of ontologies in plural) to point out what may be the implicit
and ultimate meta-structure/totality of “semantic structures” in the field of
knowledge representation and processing?

The concept of ontology has a long and tangled history, although it has not at
all, as an interpreter promoted it, “as old as philosophy itself” ([Bi03], p.632).
The epistomological program named “Ontology” takes shape with the post-
scholastical re-reading of Aristotle during the 17th Century. In the philosophy of
enlightenment the idea of a “science of being” was part of the project of meta-
physics as a general science of all that is possible to be thought insofar it as
itself “is”: in words of Leibniz: A Scientia Generalis “de Cogitabili in universum
quatenus tale est” ([Lei03], p.511). Kant and Hegel criticized this sentence of
“ontology” and replaced the term by more complex, at most indirectly ontolog-
ical (“transcendental”, “speculative”) concepts.

Todays usage of the term “Ontology” in computer sciences seems to refer
more or less vaguely to E. Husserl’s idea of a “formal ontology” ([Hu50], p.27).
According to P. Øhrstrøm et al. the analytic philosopher W. V. O. Quine must
be considered as an author of great influence ([OAS05], p.433) what may be the
case in the sphere of analytic philosophy. The claim of Husserl’s theory (as of
Quine’s) is not a metaphysical one. Nevertheless, the pragmatic usage of the
word “Ontology” in todays computer science is imprecise - and exactly in this
point: it is indecisive in regard to possible metaphysical implications. “Ontology”
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leaves the question of the status of the background-idea of a “world” as a meta-
structure of semantic structures either open or it shifts more or less involuntarily
into ancient philosophical metaphysics: it indicates the existence or even truth
of something like a “plain” reality in a quite näıve way. In other words: a tacid
suggestion is lying in the term “Ontology”, the suggestion that there may exist
a plain reality which a scientific model can match.

From our point of view the coining of the term “Semantology” may help to
avoid naturalistic or essentialistic fallacies. It is precisely a complex semanto-
logical, and not an ontological totality, that is built-up (and reduced) by the
semantic structures that knowledge representation addresses (and reveals). One
may speak of a semantological “world” or better - as above - of a “universe”.
But neither a certain semantic structure nor a complex totality of them should
be linked to the idea of being.

5 Further Research

Our idea of Semantology has to be elaborated further which, in particular, in-
cludes to make the corresponding notion of reality more explicit. On such basis
the methods of knowledge representation have to be widely extended and consol-
idated; that research may be supported by the detailed analysis of the concept
of concepts in [Wi05b] and the presented methods of conceptual knowledge pro-
cessing in [Wi06]. The development of further graphical representation methods
is particularly interesting. Generally, it would be scientifically important to in-
vestigate methods developed in computer science by the program of Ontology
(cf. [SS04]) whether they could also be understood semantologically.
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Technikfolgenabschätzung - Theorie und Praxis Nr. 2, 14. Jahrgang, For-
schungszentrum Karlsruhe 2005, 57–62.

[Wi05b] R. Wille: Formal Concept Analysis as mathematical theory of concepts and
concept hierarchies. In: [GSW05], 1–33.

[Wi05c] R. Wille: Conceptual Knowledge Processing in the field of economics. In:
[GSW05], 226–249.

[Wi06] R. Wille: Methods of Conceptual Knowledge Processing. In: R. Missaoui,
J. Schmid (eds.): Formal Concept Analysis. ICFCA 2006. LNAI 3874.
Springer, Heidelberg 2006, 1–29.

[WW06] R. Wille, R. Wille-Henning: Beurteilung von Musikstücken durch Adjek-
tive: Eine begriffsanalytische Exploration. In: K. Proost, E. Richter (Hrsg.):
Von Intentionalität zur Bedeutung konventionalisierter Zeichen. Festschrift
für Gisela Harras zum 65. Geburtstag. Narr, Tübingen 2006, 453–475.
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Abstract. A main source of inspiration for the work on Conceptual
Graphs by John Sowa and on Contextual Logic by Rudolf Wille has been
the Philosophy of Charles S. Peirce and his logic system of Existential
Graphs invented at the end of the 19th century. Although Peirce has
described the system in much detail, there is no formal definition which
suits the requirements of contemporary mathematics.

In his book A Peircean Reduction Thesis: The Foundations of topo-
logical Logic, Robert Burch has presented the Peircean Algebraic Logic
(PAL) which aims to reconstruct in an algebraic precise manner Peirce’s
logic system.

Using a restriction on the allowed constructions, he is able to prove the
Peircean Reduction Thesis, that in PAL all relations can be constructed
from ternary relations, but not from unary and binary relations alone.
This is a mathematical version of Peirce’s central claim that the category
of thirdness cannot be decomposed into the categories of firstness and
secondness.

Removing Burch’s restriction from PAL makes the system very similar
to the system of Existential Graphs, but the proof of the Reduction
Thesis becomes extremely complicated. In this paper, we prove that the
teridentity relation is – as also elaborated by Burch – irreducible, but
we prove this without the additional restriction on PAL. This leads to a
proof of the Peircean Reduction Thesis.

Introduction

The influence of Peirce’s philosophy on the development of the theory of con-
ceptual structures is visible in many areas. Both conceptual graphs (see [Sow84],
[Sow92], [Sow00]) and the developments in contextual logic (see [Arn01], [Wil00],
[Wil00b], [DaK05]) are influenced by his ideas in general and his system of ex-
istential graphs in particular.

Philosphical ideas and Peirce’s work on formalizing logic converge on the
Reduction Thesis “The triad is the lowest form of relative from which all others
can be derived.” (MS 482 from [PR67]). This expresses both his philosophical
believe that the categories of firstness, secondness and thirdness suffice and no
category of fourthness etc. is needed. Also it is to be understood that all relatives
(these correspond to relations in nowadays mathematical terminology) can be
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generated from triads (ternary relations) but not from unary and binary relations
alone. Peirce was conviced that at least on the mathematical level this thesis
can be proven. According to Herzberger in [Her81] Peirce mentioned he found a
proof, but no corresponding publication has been found.

In his article [Her81], Herzberger summarizes Peirce’s understanding on the
thesis and provides a first approach for an algebraic proof. In [Bur91], Burch gives
a more extended and elaborated framework. He shows that his framework, the
Peircean Algebraic Logic is able to represent the same relations as the existential
graphs. However, to prove the Reduction Thesis, he imposes a restriction on
the constructions in PAL. The juxtaposition of graphs (this corresponds to the
product Def. 1.1(PAL1)) is only allowed as last or before the last operation.
Removing this restriction PAL simpler (our version of PAL needs only
one join-operator as opposed to two in [Bur91]) and probably more alike to
the system of existential graphs. The proof of the reduction thesis in contrast
becomes exceedingly difficult.

Many attempts have failed for non-obvious reasons. In fact, often the parts
that seemed to be obvious turned out to be wrong afterwards. For this reason
we present the complete mathematical proof of the difficult part of the reduction
thesis. Due to space restrictions, we will not show the part that any relation can
be constructed (in PAL) from ternary relations. For this, we refer to [Her81],
[Bur91] or [HCP04].

Organization of This Paper

In the following section we present the various tools needed to describe the
relations that can be generated from unary and binary relations. Each subsection
will be introduced by a comment on the purpose of the subsequent definitions.
Then the representation theorem for the relations that can be generated without
ternary relations will be presented. The paper concludes with a short final section
consisting of only the reduction thesis.

Mathematical Notations

To avoid disambiguities, we define some abbreviations used in this paper. The set
of all m-ary relations over some set A is denoted by Rel(m)(A) := {	 | 	 ⊆ Am}
(and relations will be denoted by greek letters). The set of all relations is denoted
by Rel(A) :=

⋃
{Rel(m)(A) | m ∈ N}. Please note, that also empty relations have

arities. Empty relations with different arities are considered to be that
is for n �= m the empty relations ∅n ⊆ An and ∅m ⊆ Am are considered to be
different. Often we will talk about the places of a relation. If m is the arity of
a relation, we will write m instead of {1, . . . ,m}. The empty set ∅ is identified
with ∅1. The arity of a relation 	 is denoted by ar(	).

A tuple (a1, . . . , an) will be shortened to the notation a if the arity of the
relation the tuple belongs to can be derived from the context. If not otherwise
noted, A denotes an arbitrary set.

makes

different,
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1 Peircean Algebraic Logic (PAL)

The operations of the Peircean Algebraic Logic (PAL) are closely related to the
existential graphs that Peirce developed in the late 1890s. They have been identi-
fied by Burch in [Bur91] as the fundamental operations in Peirce’s understanding
of the manipulation of relations. For a detailed discussion of these operations we
refer to [Bur91], for this paper we adopt Burch’s operations.

Let 	 ∈ Rel(m)(A) and σ ∈ Rel(n)(A). We define the following
operations:

(PAL1) The product of relations:

	× σ := {(a1, . . . , am, b1, . . . , bn) ∈ Am+n | a ∈ 	, b ∈ σ},

(PAL2) for 1 ≤ i < j ≤ m the join of i and j of a relation is defined by

δi,j(	) :=

{(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , am) ∈ Am−2 | ∃ a ∈ 	 : ai = aj}

(PAL3) ¬	 := {a ∈ Am | a /∈ 	} (the complement of 	),
(PAL4) if α is a permutation on m, then

πα(	) := {(a1, . . . , am) | (aα(1), . . . , aα(m)) ∈ 	}.
Remark 1. Let 	 be an m-ary relation, let 1 ≤ i < j ≤ m and let α be the
folowing permutation on m:(

1, . . . , i− 1, i + 1, . . . , j − 1, j + 1, . . . , m− 1, m, i, j
1, . . . , i− 1, i, . . . , j − 2, j − 1, . . . , m− 3, m− 2, m− 1, m

)
πα moves the i-th and j-th place of a relation to the m − 1-th and m-th place.
Then we have δi,j(	) = δm−1,m(πα(	)). For this reason we will only have to
investigate the specific case δm−1,m(	) as the general case can be derived together
with the permutation operation.

Syntactically the terms of PAL are symbols combined by (symbols of) the
operations of PAL. In this paper, the symbols will always stand for relations
which will be naturally interpreted as the relations themselves. Formally, this is
expressed by the following definition.

Let Σ be a set with id3 /∈ Σ and let ar : Σ → N be a mapping.
Let Σ0 := Σ ∪ . The elements of Σ are called atomic (Σ, ar)-PAL-terms
(briefly atomic Σ-term), id3 is called (syntactical) teridentity. We set ar0(t) :=
ar(t) for all t ∈ Σ and ar0(id3) := 3. We define recursively for all i ∈ N the sets

Σi+1 := Σi

∪ {(t× s) | t, s ∈ Σi}
∪ {δi,j(t) | t ∈ Σi and 1 ≤ i < j ≤ ari( )}
∪ {¬t | t ∈ Σi}
∪ {πα(t) |∈ Σi and α is permutation of ari(t)}

1.1 Definition.

1.2 Definition.
{id3}

t
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(note that the operations are considered as syntactical symbols, not as operations
on relations) and correspondingly ari+1(u) := ari(u) if t ∈ Σi ∩ Σi+1 and for
u ∈ Σi+1 \Σi we define

ari+1(u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ari(t) + ari(s) if u = (t× s),
ari(t)− 2 if u = δi,j(t),
ari(t) if u = ¬t,
ari(t) if u = πα(t).

Obviously, we have ari+1 �Σi = ari. Instead of the (syntactially correct)
δi,j((t× s)) we will write δi,j(t× s). The set of (Σ, ar)-PAL-terms (or Σ-terms
for short) is TPAL(Σ, ar) :=

⋃
i∈N

Σi. The mapping ar′ :=
⋃

i∈N
ari assigns the

arity to each PAL-term.
An interpretation of TPAL(Σ, ar) over A is a mapping from TPAL(Σ, ar) into

Rel(A), based on a mapping � � : Σ → Rel(A) satisfying ar(�t�) = ar(t), that
is an n-ary atomic term has to be mapped to an n-ary relation. This mapping
is then extended canonically to the set TPAL(Σ, ar) by translating the syntactial
operation symbols into the corresponding operations on the relations, that is
�id3� := {(a, a, a) | a ∈ A} and

�u� :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�t�× �s� if u = (t× s),
δi,j(�t�) if u = δi,j(t),
¬(�t�) if u = ¬t,
πα(�t�) if u = πα(t).

In the case Σ ⊆ Rel(A) the natural interpretation is given by �	� := 	 for
	 ∈ Σ. In this case we deliberately blur the distinction between syntax and
semantics which is clear from the context. Because the arity ar(	) is canonically
given for 	 ∈ Σ ⊆ Rel(A) we write TPAL(Σ) instead of TPAL(Σ, ar). The set of
relations which can be generated with PAL from the relations in Σ is denoted
by 〈Σ〉APAL := {�t� | t ∈ TPAL(Σ)}.

Analogously we define the set of (Σ, ar)-PAL\{id3}-terms which is denoted
by TPAL\{id3}(Σ, ar), and for Σ ⊆ Rel(A) the sets TPAL\{id3}(Σ) and 〈Σ〉APAL\{id3}
for PAL without teridentity by replacing the definition of Σ0 by Σ0 := Σ.

Connected Places

Associated with PAL is a graphical notation, as presented in [Bur91] and
[HCP04]. In the graphical representation it is obvious how places (called hooks
in [Bur91]) are connected with each other. As we need the notion of connected-
ness but will not introduce the graphical representation, we define connectedness
formally following the constructions by PAL-terms.

Remark 2. Different terms may be interpreted as the same relation. For in-
stance, for relations 	, σ, τ ∈ Σ ⊆ Rel(A) the following identity of interpretations
�((	×σ)×τ)� = �(	×(σ×τ))� is easy to see, but formally the terms ((	×σ)×τ)
and (	× (σ × τ)) are different.

J. Hereth Correia and R. Pöschel
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Let Σ ⊆ Rel(A) and t ∈ TPAL(Σ) be a term with m := ar(t).
The places k, l ∈ m are said to be t-connected if one of the following conditions
is satisfied:

(i) t ∈ Σ ∪ {id3} or
(ii) t = (u× v) and k, l are u-connected or (k−m), (l−m) are v-connected or
(iii) t = δm−1,m(u) and k, l are u-connected or
(iii’) t = δm−1,m(u) and k,m− 1 and l,m are u-connected or
(iii”) t = δm−1,m(u) and l,m− 1 and k,m are u-connected or
(iv) t = ¬u and k, l are u-connected or
(v) t = πα(u) and α−1(k), α−1(l) are u-connected.

A set P ⊆ m is said to be t-connected if the elements of P are pairwise t-
connected.

For the reduction thesis the relations generated by PAL without teridentity
are very important. The following lemma is a first indication on a special prop-
erty of these relations.

Let Σ be a set and ar : Σ → N with max{ar(σ) | σ ∈ Σ} ≤ 2. Let
t ∈ TPAL\{id3}(Σ, ar) and let X ⊆ ar(t) be t-connected. Then |X | ≤ 2.

Proof. We proceed by induction on the structure of terms. For atomic terms the
assertion trivially holds. The case t = id3 is not possible because PAL is consid-
ered without teridentity. If t = (u×v), it is easy to verify that two places can be
t-connected only if they are both less or equal to ar(u) or both strictly greater.
This means that either max(X) ≤ ar(u) or min(X) > ar(u), and consequently
X is u-connected or {x − ar(u) | x ∈ X} is v-connected. By the induction hy-
pothesis one concludes |X | = |{x− ar(u) | x ∈ X}| ≤ 2. Now let us consider the
case t = δm−1,m(u) where m := ar(u). If there are x, y ∈ X with x �= y such
that x and y are u-connected, one conludes from the induction hypothesis that
x and y cannot be u-connected to m − 1 or m, therefore the cases Def. 1.3(iii’)
and (iii”) cannot apply for x and y and there can be no third element t-connected
to x or y. If all x, y ∈ X with x �= y are not u-connected then in order to be
t-connected they must be u-connected to m − 1 or m. Therefore in this case
X ⊆ ({k ∈ m | k,m−1 u-connected}∪{k ∈ m | k,m u-connected})\{m−1,m}
and therefore |X | ≤ 2 + 2 − 2 = 2. For t = ¬u the set X is t-connected if and
only if X is u-connected, therefore the assertion holds. For t = πα(u) the asser-
tion can easily be seen because α is a bijection and one can therefore apply the
inverse mapping: X is t-connected⇐⇒ {α−1(x) | x ∈ X} is u-connected.

Essential Places

Later we shall introduce representations of relations as unions of intersections of
special relations. Formally, these special relations have to have the same arity as
the relation represented. However, they are essentially unary or binary relations.
To make formally clear what “essentially” means, we introduce the notion of
“essential places”.

1.3 Definition.

1.4 Lemma.
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Let 	 ∈ Rel(m)(A) and i ∈ m a place of the relation. A place i
is called a fictitious place of 	 if

∀a ∈ 	 ∀b ∈ A =⇒ (a1, . . . , ai−1, b, ai+1, . . . , am) ∈ 	.

A non-fictitious place is called essential place of 	. The set of essential places of
	 is denoted by E(	).

Essential places are the places of the relation, where one cannot arbitrarily
exchange elements in the tuple.

For any relation 	 ∈ Rel(m)(A) holds

	 ∈ {∅m, Am} ⇐⇒ E(	) = ∅.

Proof. “ =⇒ ” is easy to see. For “⇐=” let 	 ∈ Rel(m)(A) \ {∅m}. Let a ∈ 	 and
b ∈ Am. Every i ∈ m is a fictitious place of 	, therefore ai can be replaced by
bi and one gets (a1, . . . , ai−1, bi, ai+1, . . . , am) ∈ 	. Consecutively applying this
exchange for all places shows b ∈ 	 and consequently 	 = Am.

The following lemmata are useful to show in the representation Theorem 2.1
that the special relations of the representations are essentially at most binary.

Let A be a set with at least two elements, let 	 be an m-ary relation
and let σ be another relation over A. Then

(i) E(	) ⊆ m,
(ii) E(id3) = 3,
(iii) E(	× σ) = E(	) ∪ {m + i | i ∈ E(σ)},
(iv) E(δm−1,m(	)) ⊆ E(	) \ {m− 1,m}
(v) E(¬	) = E(	)
(vi) E(πα(	)) = {α−1(i) | i ∈ E(	)}.

Proof. (i) and (ii) are trivial. For (iii) let 	 ∈ Rel(m)(A) and σ ∈ Rel(n)(A). For
1 ≤ i ≤ m and i /∈ E(	) one has the following equivalencies:

(a1, . . . , am, b1, . . . , bn) ∈ 	× σ, c ∈ A

⇐⇒ a ∈ 	, b ∈ σ, c ∈ A

⇐⇒ ai ∈ A, (a1, . . . , ai−1, c, ai+1, . . . , am) ∈ 	, b ∈ σ

⇐⇒ ai ∈ A, (a1, . . . , ai−1, c, ai+1, . . . , am, b1, . . . , bn) ∈ 	× σ

and similarly for 1 ≤ i ≤ n

(a1, . . . , am, b1, . . . , bn) ∈ 	× σ, c ∈ A

⇐⇒ a ∈ 	, b ∈ σ, c ∈ A

⇐⇒ bi ∈ A, a ∈ 	, (b1, . . . , bi−1, c, bi+1, . . . , bn) ∈ σ

⇐⇒ bi ∈ A, (a1, . . . , am, b1, . . . , bi−1, c, bi+1, . . . , bn) ∈ 	× σ.

1.5 Definition.

1.6 Lemma.

1.7 Lemma.
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Therefore ¬E(	 × σ) = (m \ E(	)) ∪ {m + i | i ∈ n \ E(σ)}, consequently
E(	 × σ) = E(	) ∪ {m + i | i ∈ E(σ)}. (iv) Let i ∈ m− 2 \ E(	), c ∈ A and
(a1, . . . , am−2) ∈ δm−1,m(	), then there exists b ∈ A with (a1, . . . , am−2, b, b) ∈ 	.
Because i is fictitious we have (a1, . . . , ai−1, c, ai+1, . . . , am−2, b, b) ∈ 	 and there-
fore (a1, . . . , ai−1, c, ai+1, . . . , am−2) ∈ δm−1,m(	). We deduce m− 2 \ E(	) ⊆
¬E(δm−1,m(	)), that is E(δm−1,m(	)) ⊆ E(	) \ {m − 1,m}. (v) If 	 = ∅m

then this follows from Lem. 1.6. Otherwise let a ∈ Am \ 	 and i ∈ m \ E(	).
Let us assume that i ∈ E(¬	). Then there must be some c ∈ A such that
(a1, . . . , ai−1, c, ai+1, . . . , am) ∈ 	. But because i /∈ E(	) and ai ∈ A this implies
a ∈ 	, contradiction. Therefore m \ E(	) = m \ E(¬	), that is E(¬	) = E(	).
(vi) is easy to verify.

Let S ⊆ Rel(m)(A). Then

E(
⋂

S) ⊆
⋃
σ∈S

E(σ).

Proof. Let i ∈ m \ (
⋃

σ∈S E(σ)), a ∈
⋂
S and c ∈ A. Then for all σ ∈ S

holds i /∈ E(σ) and therefore (a1, . . . , ai−1, c, ai+1, . . . , am) ∈ σ and consequently
(a1, . . . , ai−1, c, ai+1, . . . , am) ∈

⋂
S, therefore i ∈ m \ E(

⋂
S). Thus we get

E(
⋂
S) ⊆

⋃
σ∈S E(σ).

Let S ⊆ Rel(m)(A) for some m ∈ N. Then

δm−1,m(
⋂

S)=

⎛
⎜⎜⎝ ⋂

σ∈S
{m−1,m}∩E(σ)=∅

δm−1,m(σ)

⎞
⎟⎟⎠∩ δm−1,m

⎛
⎜⎜⎝ ⋂

σ∈S
{m−1,m}∩E(σ) �=∅

σ

⎞
⎟⎟⎠ .

Proof. “⊆”: Let a ∈ δm−1,m(
⋂
S). Then there exists some c ∈ A such that

b := (a1 . . . , am−2, c, c) ∈
⋂
S, therefore for all σ ∈ S also b ∈ σ, consequently

a ∈ δm−1,m(σ). Because of S′ := {σ ∈ S | {m− 1,m} ∩ E(σ) �= ∅} ⊆ S we have
b ∈

⋂
S′ and therefore a ∈ δm−1,m (

⋂
S′).

Core and Comparability

The proof of Thm. 2.1 became more complex because the join between relations
does not preserve inclusions. They do in many cases but not in all. For the
special case of domains with two elements the exceptions were investigated by

1.8 Lemma.

1.9 Lemma.

“⊇”: Let a ∈
(⋂
{δm−1,m(σ) | σ ∈ S, {m− 1,m} ∩ E(σ) = ∅}

)
∩ δm−1,m (

⋂
{σ ∈ S | {m− 1,m} ∩ E(σ) �= ∅}). Then there exists some c ∈ A

such that (a1, . . . , am−2, c, c) ∈
⋂
{σ ∈ S | {m − 1,m} ∩ E(σ) �= ∅}, that is

(a1, . . . , am−2, c, c) ∈ σ for all σ with {m−1,m}∩E(σ) �= ∅. For every σ ∈ S with
{m−1,m}∩E(σ) = ∅ there is some dσ ∈ A such that (a1, . . . , am−2, dσ, dσ) ∈ σ.
Because of m − 1,m /∈ E(σ) one can replace the dσ by c and gets
(a1, . . . , am−2, c, c) ∈ σ. As this tuple is in each σ ∈ S one concludes
a ∈ δm−1,m(

⋂
S).
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classifying relations by separability (see [DHC06]). With the notions of the core
K(	) of a relation 	 and of comparability between relations this is incorporated
into the relation (, which basically checks if the projection of a binary relation
(ignoring those elements which can not be separated) is included in a unary
relaiton (or conversely).

Let 	 ∈ Rel(2)(A) be a binary relation. Then

K(	) := {c ∈ A | ∀a, b ∈ A : (a, b) ∈ 	 =⇒ (a, c) ∈ 	}.

is called the core of 	.

¬K(¬	) = {c ∈ A | ∃a, b ∈ A : (a, b) /∈ 	 and (a, c) ∈ 	}.

Let σ, τ ∈ Rel(1)(A) ∪Rel(2)(A). We define

σ( τ : ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ ⊆ τ if ar(σ) = ar(τ) = 1
σ = τ if ar(σ) = ar(τ) = 2
σ ⊆ K(τ) if ar(σ) = 1, ar(τ) = 2
¬K(¬σ) ⊆ τ if ar(σ) = 2, ar(τ) = 1

To simplify notation we set 	−1 := 	 for any unary relation 	 ∈ Rel(1)(A). We
say the relations σ and τ are comparable if

σ( τ or τ ( σ

and we say σ and τ are inverted comparable if σ−1 and τ−1 are comparable.

The following lemma shows that the comparability is stable under some PAL-
operations. These are the operations we will need in Thm. 2.1.

Let 	1 ∈ Rel(1)(A) and let 	2 ∈ Rel(2)(A) such that 	1 and 	2
are comparable. Then:

(i) ¬	1 and ¬	2 are comparable.
(ii) 	1 and δ1,2(τ1 × 	2) are comparable for any τ1 ∈ Rel(1)(A).
(ii′) 	1 and δ2,3(τ2 × 	2) are comparable for any τ2 ∈ Rel(2)(A).

Proof. (i) follows trivially from Def. 1.12. (ii) We define σ := δ1,2(τ1 × 	2) =
{c ∈ A | ∃a ∈ τ1 : (a, c) ∈ 	2}. If σ ∈ {∅1, A1} the assertion holds. Otherwise,
we have two possibilities for 	1 and 	2 to be comparable. (ii.a) If 	1( 	2, then
we have for any t ∈ 	1 ⊆ K(	2) that from s ∈ σ �= ∅1 follows that there is
some a ∈ A such that a ∈ τ1, (a, s) ∈ 	2 and by Def. 1.10 a ∈ τ1, (a, t) ∈ 	2,
consequently t ∈ σ. We deduce 	1 ⊆ σ which implies 	1( δ1,2(τ1×	2). (ii.b) The
second possiblity for 	1 and 	2 to be comparable is 	2( 	1. Then exists for any
s ∈ σ some a ∈ τ1 such that (a, s) ∈ 	2. From σ �= A1 we know that there is

1.10 Definition.

1.11 Corollary

1.12 Definition.

1.13 Lemma.
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some b ∈ A with (a, b) /∈ 	2. Therefore by Cor. 1.11 we deduce s ∈ ¬K(¬	) ⊆ 	1
and therefore σ ⊆ 	1. We conclude δ1,2(τ1 × 	2)( 	1.

The proof for (ii’) is similar. We define analogously σ := δ2,3(τ2 × 	2). If
for σ holds ∀a ∈ A : (({a} × A ⊆ σ) or ({a} × A ⊆ ¬σ)), then K(σ) = A1

and therefore 	1( δ2,3(τ2 × 	2). Otherwise we consider the following two cases:
if 	1( 	2, then there exists for any t ∈ 	1 and (a, b) ∈ σ some c ∈ A such
that (a, c) ∈ τ2, (c, b) ∈ 	2, and with t ∈ 	1 ⊆ K(	2) we deduce (a, c) ∈ τ2
and (c, t) ∈ 	2 which implies (a, t) ∈ σ, therefore t ∈ K(σ) and consequently
	1 ⊆ K(σ) and therefore 	1( δ2,3(τ2 × 	2). Otherwise, we have 	2( 	1. Then
there are by Cor. 1.11 for any c ∈ ¬K(¬σ) elements a, b ∈ A with (a, b) ∈ σ and
(a, c) /∈ σ. From (a, b) ∈ σ one deduces the existence of d ∈ A with (a, d) ∈ τ2
and (d, a) ∈ 	2. Let us assume (d, c) ∈ 	2 then one has together with (a, d)
∈ τ2 that (a, c) ∈ σ, contradiction. Therefore (d, c) /∈ 	2 and together with
(d, a) ∈ 	2 one gets by Cor. 1.11 that c ∈ ¬K(¬	2), that is ¬K(¬σ) ⊆ ¬K(¬	2)
⊆ 	1 and therefore δ2,3(τ2 × 	2)( 	1.

The following lemma was an important clue to find the proof of Thm. 2.1. It al-
lows us to represent a connected graph (in the graphical representation, elements
are denoted by lines and c connects the four relations 	1, 	2, σ1 and σ2)1 by
the intersection of four other graphs (each element c1, . . . , c4 is connecting only
two relations). Of course, this is not possible in general, but only for comparable
relations.

Let 	1, σ1 ∈ Rel(1)(A) and 	2, σ2 ∈ Rel(2)(A) such that 	1
and 	2 are comparable and σ1 and σ2 are comparable. Then for any a, b ∈ A

ba
σ2	2

c
σ1

	1

c1
σ1

	1
	2

c2
σ1

σ2
c3

	1

σ2	2
c4

a

a b

b

∃c ∈ A : c ∈ 	1 ∩ σ1, �A

(a, c) ∈ 	2, �B

(b, c) ∈ σ2 �C

⇐⇒
∃c1, c2, c3, c4 ∈ A : c1 ∈ 	1 ∩ σ1, �a

(a, c2) ∈ 	2, c2 ∈ σ1, �b

c3 ∈ 	1, (b, c3) ∈ σ2, �c

(a, c4) ∈ 	2, (b, c4) ∈ σ2 �d

Proof. “ =⇒ ” is obvious. For “⇐=” we have to consider several cases.
(I) (∗) 	1( 	2 and (∗∗) σ1( σ2: Then we can set c := c1. Condition �A is then
the same as �a , in particular it follows that c1 ∈ 	1 ⊆

(∗)
K(	2). Together with

(a, c2) ∈ 	2 from �b we get by the definition of the core that (a, c1) ∈ 	2, that
is �B . Analogously we conclude from �a that c1 ∈ σ1 and by the equations (∗∗)
and �b that (b, c1) ∈ σ2, that is �C .

1 In this paper, we do not introduce the graphical notation due to space restrictions.
See [HCP04] for details.

1.14 Crux-Lemma.
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(II) (∗) 	1( 	2 and (∗∗) σ2( σ1. There are two subcases: (II.i) ∀c′ ∈ A :
(b, c′) ∈ σ2 and (II.ii) ∃c′ ∈ A : (b, c′) /∈ σ2. For (II.i), we chose c = c1, as
in (I) we conclude, that c1 fulfills �A and �B . From the condition of (II.i) we
obtain �C . For (II.ii), we can set c = c3. We have by �c that c3 ∈ 	1. From the
condition of (II.ii) and (b, c3) ∈ σ2 (follows from �c , this is �C ) we deduce by
Cor. 1.11 that c3 ∈ ¬K(¬σ2) ⊆

(∗∗)
σ1, and therefore c3 ∈ 	1∩σ1, that is �A . Due

to c3 ∈ 	1 ⊆∗
K(	2) and (a, c2) ∈ 	2 (by �b ) we conclude (a, c3) ∈ 	2, hence �B .

(III) The case 	2( 	1 and σ1(σ2 is handled analogously to (II). If ∀c′ ∈ A :
(a, c′) ∈ 	2, we can set c = c1, if ∃c′ ∈ A : (a, c′) /∈ 	2, we chose c = c2.
(IV) Finally, we consider (∗) 	2( 	1 and (∗∗) σ2( σ1. Now we have four
subcases:
(IV.i) (�) ∀c′ ∈ A : (a, c′) ∈ 	2 and (�) ∀d′ ∈ A : (b, d′) ∈ σ2. For c = c1 we
get �A from �a , �B from (�), and �C from (�).
(IV.ii) (�) ∃c′ ∈ A : (a, c′) �∈ 	2 and (�) ∀d′ ∈ A : (b, d′) ∈ σ2. We show that
c = c2 is a possible choice. With (�) and (a, c2) ∈ 	2 we obtain by Cor. 1.11
that c2 ∈ ¬K(¬	2) ⊆

(∗)
	1. Also from �b we know c2 ∈ σ1 and therefore �A .

Condition �B follows directly from �b , while �C follows from (�).
(IV.iii) ∀c′ ∈ A : (a, c′) ∈ 	2 and ∃d′ ∈ A : (b, d′) /∈ σ2. This case is analogous
to (IV.ii), we can set c = c3.
(IV.iv) (�) ∃c′ ∈ A : (a, c′) �∈ 	2 and (�) ∃d′ ∈ A : (b, d′) �∈ σ2. From (�)
and (a, c4) ∈ 	2 (from �d ) we deduce (by Cor. 1.11) that c4 ∈ ¬K(¬	2) ⊆

(∗)
	1,

analogously from (�) and (b, c4) ∈ σ2 ( �d again), that c4 ∈ ¬K(¬σ2) ⊆
(∗∗)

σ1,

therefore c4 ∈ 	1 ∩ σ1, that is �A . Conditions �B and �C follow from �d .

⋃⋂
-representations of Relations

Now, we will introduce the notion of
⋃⋂

-representation. It corresponds to the
disjunctive-conjunctive (normal) form of first-order predicate logic formulas.

Let 	 ∈ Rel(n)(A). Then we say the set S ⊆ P(Rel(n)(A)) is
a

⋃⋂
-representation of 	 if

(i) 	 =
⋃
{
⋂
S | S ∈ S} and

(ii)
⋃
S is finite.

For Σ ⊆ Rel(A) and a Σ-term t a
⋃⋂

-representation S ⊆ P(Rel(n)(A)) is said
to be consistent with t if S is a

⋃⋂
-representation of 	 := �t� and for every

σ ∈
⋃
S we have:

(iii) E(σ) is t-connected and
(iv) σ�E(σ) ∈ 〈Σ〉APAL.

The following lemmata show how
⋃⋂

-representations have to be transformed to
provide a

⋃⋂
-representation of the result of the PAL-operation under

consideration.

1.15 Definition.
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Let 	1, 	2 ∈ Rel(A) and let S1 and S2 be
⋃⋂

-representations of
	1 and 	2 respectively. Then

S := {{σ1 × Aar(�2) | σ1 ∈ S1} ∪ {Aar(�1) × σ2 | σ2 ∈ S2} | S1 ∈ S1, S2 ∈ S2}

is a
⋃⋂

-representation of 	1 × 	2.

Proof. Let m := ar(	1) and n := ar(	2), let a ∈ Am and b ∈ An. It is
easy to see that for any relation τ1 ∈ Rel(m)(A) we have (∗) a ∈ τ1 ⇐⇒
(a1, . . . , am, b1, . . . , bn) ∈ τ1 × An and analogously (∗′) b ∈ τ2 ⇐⇒
(a1, . . . , am, b1, . . . , bn) ∈ Am × τ2 for every τ2 ∈ Rel(n)(A). Consequently

(a1, . . . , am, b1, . . . , bn) ∈ 	1 × 	2

Def. 1.1(1)⇐=====⇒ a ∈ 	1, b ∈ 	2

Def. 1.15⇐====⇒ ∃S1 ∈ S1, S2 ∈ S2 : a ∈
⋂

S1 and b ∈
⋂

S2

(∗),(∗′)⇐===⇒ ∃S1 ∈ S1, S2 ∈ S2 :

(a1, . . . , am, b1, . . . , bn) ∈ ((
⋂

S1)×An) ∩ (Am × (
⋂

S2))

Def of S⇐====⇒ ∃S ∈ S : (a1, . . . , am, b1, . . . , bn) ∈
⋂

S

Def. 1.15⇐====⇒ (a1, . . . , am, b1, . . . , bn) ∈
⋃
{
⋂

S | S ∈ S}.

The finiteness condition (ii) follows from the finiteness of
⋃
S1 and

⋃
S2.

Let S1 be a
⋃⋂

-representation of 	 ∈ Rel(A). Then

S := {{¬τ(S1) | S1 ∈ S1} | τ : S1 →
⋃
S1, τ(S) ∈ S for all S ∈ S1}

is a
⋃⋂

-representation of ¬	.

Proof. Basically we use de Morgan’s law and the distributivity of ∩ and ∪,
although in a generalized version. We show first, that every tuple not in 	 is an
element of the relation described by S. Let m := ar(	) and a ∈ ¬	. Because S1
is a

⋃⋂
-representation of 	 and by Def. 1.15 one can conclude that for every

S ∈ S1 there is some relation σS ∈ S such that a /∈ σS (otherwise a ∈
⋂
S ⊆ 	,

contradiction). The mapping τa : S1 →
⋃
S1 with τa(S) := σS is obviously

a choice function (as used in the definition of the
⋃⋂

-representation S) and
a /∈ τa(S1) (i. e. a ∈ ¬τa(S1)) for all S1 ∈ S1 and consequently a ∈

⋂
{¬τa(S)1) |

S1 ∈ S1} ⊆
⋃
{
⋂
S | S ∈ S}.

After having shown that every tuple in ¬	 is described by S, one can similarly
show that every element not in ¬	, that is every a ∈ 	 is not described by S.
By Def. 1.15 we see that there is some Sa ∈ S1 such that a ∈

⋂
Sa. Then for

any choice function τ : S1 →
⋃
S1 one has a ∈ τ(Sa), that is a /∈ ¬τ(Sa) ⊇⋂

{¬τ(S1) | S1 ∈ S}, consequently a /∈
⋃
{
⋂
S | S ∈ S}.

1.16 Lemma.

1.17 Lemma.
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We have |S| ≤ |S1| for all S ∈ S and |S| ≤ |
⋃
S1||S1|. Due to |

⋃
S| ≤ max{|S| |

S ∈ S} · |S| ≤ |S1| · |
⋃
S1||S1| the finiteness condition (ii) for

⋃
S follows from

the finiteness of
⋃
S1.

Let S be a
⋃⋂

-representation consistent with some Σ-term t.
Then there exists a

⋃⋂
-representation S′ consistent with t, satisfying the fol-

lowing conditions:

(i) ∀σ1, σ2 ∈ S ∈ S′ : σ1 ⊆ σ2 =⇒ σ1 = σ2,
(ii) ∀σ ∈

⋃
S′ : σ �= ∅ar(t),

(iii) ∀σ ∈
⋃
S′ : σ �= Aar(t),

(iv) S �= ∅ for every S ∈ S′ if |S′| > 1 and
(v)

⋃
S′ ⊆

⋃
S.

Proof. (i): From Def. 1.15(ii) we deduce that every set S ∈ S is finite. For that
reason there are minimal relations (w. r. t. inclusion) in S. Let S̃ be the set
of these minimal relations, then

⋂
S̃ =

⋂
S and S(i) := {S̃ | S ∈ S} fulfills

condition (i) and
⋃
S(i) ⊆

⋃
S.

(ii): The empty relation ∅ar(�) absorbes all other relations, in the sense that⋂
S = ∅ar(�) if ∅ar(�) ∈ S and for this reason the

⋃⋂
-representation given

by S(ii) := {S | S ∈ S(i), ∅ar(�) /∈ S} fulfills conditions (i) and (ii) and also⋃
S(ii) ⊆

⋃
S(i) ⊆

⋃
S.

(iii): The full relation Aar(�) has no influence on the intersection of relations,
that is for all S ∈ S holds

⋂
S =

⋂
(S \ {Aar(�)}. Therefore the

⋃⋂
-repre-

sentation S(iii) := {S \ {Aar(�) | S ∈ S(ii)} fulfills conditions (i)–(iii) and also⋃
S(iii) ⊆

⋃
S(ii) ⊆

⋃
S. Finally, because of

⋂
∅ = Aar(�) it is either 	 = Aar(�)

and S′ := {∅} fulfills conditions (i)–(v) or ∅ /∈ S(iii) and S′ := S(iii) fulfills
conditions (i)–(v).

From the inclusion property (v) also follow the finiteness and consistency
properties Def. 1.15(ii)–(iv).

A
⋃⋂

-representation fulfilling the conditions (i), (ii), (iii)
and (iv) of Lem. 1.18 is said to be normalized.

Let 	1 ∈ Rel(1)(A) and 	2∪Rel(2)(A) be arbitrary relations. Then
	1 and 	2 are comparable with ∅1 and A1, and 	1 is comparable with ∅2 and A2.

Proof. For ∅1 and A1 this is trivial. From K(∅2) = K(A2) = A1. this follows
also for ∅2 and A2.

2 The Representation Theorem

After the mathematical tools have been prepared, we can now prove the first
central result, the representation theorem for the relations generated from unary
and binary relations in PAL without the teridentity. Many parts of the proof
are rather technical because many subcases have to be distinguished. The most
difficult case is the join operation, where the Crux-Lemma is needed to show
that property (iii) of Thm. 2.1 is preserved, which states that we do not need
the teridentity to construct the essential relations of the representation.

1.18 Lemma.

1.19 Definition.

1.20 Lemma.

J. Hereth Correia and R. Pöschel
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Let Σ := Rel(1)(A) ∪ Rel(2)(A). Then for every Σ-PAL\{id3}-
term t there is a

⋃⋂
-representation S consistent with t such that

(i) |E(σ)| ≤ 2 for all σ ∈
⋃
S,

(ii) ∀σ1, σ2 ∈
⋃
S : E(σ1) ∩ E(σ2) �= ∅ =⇒ σ1�E(σ1) and σ2�E(σ2) are

comparable or inverted comparable and
(iii) {σ�E(σ) | σ ∈

⋃
S} ⊆ 〈Σ〉APAL\{id3}.

Proof. The proof works by induction over the possible constructions of a
Σ-term (see Def. 1.2). When checking the consistency of a

⋃⋂
-representation

with a term, we do not have to consider the condition Def. 1.15(iv) because
condition (iii) of the theorem is stronger. Condition (i) of the theorem holds
by Lem. 1.4 for all t ∈ TPAL\{id3}(Σ). We have stated this condition explicitly
to make clear that the essential relations are at most binary and the notion of
comparability (see Def. 1.12) can therefore be applied as in condition (ii).

(I) If t is atomic then t = σ ∈ Σ. We can therefore simply set S := {{σ}}.
Conditions (ii) and (iii) hold trivially. Obviously, S is a

⋃⋂
-representation of σ =

�t�. Due to E(σ) ⊆ ar(σ) the representation is consistent with t by Def. 1.3(i).
(II) The case t = id3 is not possible because id3 /∈ Σ = Σ0.
(III) If t = (t1 × t2) then by the induction hypothesis there exist

⋃⋂
-repre-

sentations S1 and S2 consistent with t1 and t2 respectively. Let n1 := ar(t1)
and n2 := ar(t2). We set S as in Lem. 1.16. By this lemma we see that S is a⋃⋂

-representation of �t1�× �t2� = �t�.
It is easy to see that E(σ1 × An2) = E(σ1) and E(An1 × σ2) = {n1 + i | i ∈

E(σ2)} for all σ1, σ2 ∈ Rel(A).Using the induction hypothesis we can deduce
(�) σ1 × An2�E(σ1×An2) = σ1�E(σ1) ∈ 〈Σ〉APAL\{id3} and An1 × σ2�E(An1×σ2) =
σ2�E(σ2) and therefore condition (iii) of the theorem holds.

The consistency of S with t follows by Def. 1.3(ii). Now let τ1, τ2 ∈
⋃
S. If τ1 is

of the form σ1×An2 and τ2 of the form An1×σ2 (or vice-versa) for some σ1 ∈
⋃
S1

and σ2 ∈
⋃
S2 then E(τ1) ⊆ {1, . . . , n1} and E(τ2) ⊆ {n1 +1, . . . , n1 +n2}, that

is E(τ1) ∩ E(τ2) = ∅ and they do not fulfill the premise of condition (ii). If
τ1 = σ1×An2 and τ2 = σ2×An2 for σ1, σ2 ∈

⋃
S1 then τ1�E(τ1) and τ2�E(τ2) are

comparable by (�) and the induction hypothesis. Analogously we can show that
they are comparable if they are both of the form An1 × σ for some σ ∈

⋃
S2.

This proves condition (ii) of the theorem.
(IV) The most complicated case is t = δi,j(t1). Let S1 be a

⋃⋂
-representa-

tion consistent with t1 and m := ar(t1). There are three subcases: (IV.i) if every
place p ∈ m is t1-connected to i or j then by Def. 1.3(iii-iii”) we have that m is
t-connected. Then {{�t�}} is trivially a

⋃⋂
-representation consistent with t. As

for the atomic case we see that conditions (ii) and (iii) hold.
In the cases following now (the subcases (IV.ii) and (IV.iii)), there is some

place in ar(t1) which is not t1-connected to i and j. Without loss of generality
we assume i = m and j = m − 1 and that 1 is not t1-connected to these two
places. Let S1 be a normalized

⋃⋂
-representation consistent with t1 with the

properties given in the theorem (which exists by the induction hypothesis and
Lem. 1.18) and let S1 ∈ S1.

2.1 Theorem.
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(IV.ii) If m− 1 and m are t1-connected, then we have by Lem. 1.8 and condi-
tion (i) that E(τ) ⊆ {m− 1,m} for τ :=

⋂
{σ | σ ∈ S1, E(σ)∩ {m− 1,m} �= ∅}.

By Lem. 1.7(iv) and Lem. 1.6 we see that δm−1,m(τ) ∈ {∅m−2, Am−2}.
By Lem. 1.9, δm−1,m(

⋂
{σ ∈ S1}) =

⋂
{δi,j(σ) | σ ∈ S1 and m − 1,m /∈

E(σ)} ∩ δm−1,m(τ). If δm−1,m(τ) = ∅m−2 we set simply S′
1 := {∅}, otherwise

S′
1 := {δm−1,m(σ) | σ ∈ S1 and m − 1,m /∈ E(σ)} and have in both cases

δm−1,m(
⋂
{σ ∈ S1}) =

⋂
S′

1. Due to S′
1 ⊆ S1 we also have {σ′�E(σ′) | σ′ ∈ S′

1} ⊆
{σ�E(σ) | σ ∈ S1} ∪ {∅m−2} and therefore conditions (i) and (iii) hold.

Let S := {S′ | S ∈ S1}, applying the same construction to all elements
of S1. It is easy to see that this is a

⋃⋂
-representation of �t�. We have

⋃
S ⊆⋃

S1 ∪ {∅m−2} and by the induction hypothesis (condition ii) and Lem. 1.20 we
see that condition (ii) holds and that S is consistent with t.

(IV.iii) Finally we consider the case, that 1 is not t1-connected to m − 1 or
m, but some place other than these three is connected to m− 1 or m.

If there is some relation 	̃1 ∈ S with E(	̃1) = {m} we set 	1 := 	̃1�{m}
(because S1 is normalized and by condition (ii) there can be at most one such
relation), otherwise we set 	̃1 := Am and 	1 := A1 (and therefore 	1 = 	̃1�{m})).
In the second case we have E(	̃1) = ∅ ⊆ {m}. Analogously, if there is some
relation σ̃1 ∈ S with E(σ̃1) = {m − 1} we set σ1 := σ̃1�{m−1}, and otherwise
σ̃1 := Am and σ1 := A1.

If there is some place k ∈ m \ {m − 1,m} which is t1-connected to m and
some relation 	̃2 ∈ S with E(	̃2) = {k,m} ( (�) will denote this condition) we
set 	2 := 	̃2�{k,m}. By condition (i) there can be at most one such place, and by
condition (ii) and Lem. 1.18(i) there can be at most one such relation. If there
is no such relation or no such place we set k := 1, 	̃2 := Am and 	2 := A2

(denoted by (�)). In all these cases we have 	̃2�{k,m} = 	2 and that 	1 and 	2
are comparable (the latter by condition (ii) or Lem. 1.20).

Similarly, if there is some place l ∈ m\ {m−1,m} which is t1-connected with
m−1 and some relation σ̃2 ∈ S with E(σ̃2) = {l,m−1} we set σ2 := σ̃2�{l,m−1}
(denoted by (	)). If no such place or no such relation exists we set l := 1,
σ̃2 := Am and σ2 := A2 (condition (
)). We have E(σ̃2) ⊆ {l,m − 1} and
σ̃2�{l,m−1} = σ2 in all cases and that σ1 and σ2 are comparable.

Because S1 is normalized we know that ∅m /∈ {	̃1, 	̃2, σ̃1, σ̃2} and that the
places m− 1,m /∈ E(ϕ̃) for all ϕ̃ ∈ S \ {	̃1, 	̃2, σ̃1, σ̃2}.

Let τ11 := 	1 × σ1 and τ̃11 := Am−2 × τ11. Then we have τ̃11�E(τ11) = τ11 ∈
〈Σ〉APAL\{id3} (if 	̃1, σ̃1 ∈ S) or τ̃11�E(τ11) = 	1 ∈ 〈Σ〉APAL\{id3} (if 	̃1 ∈ S, σ̃1 =
Am) or τ̃11�E(τ11) = σ1 ∈ 〈Σ〉APAL\{id3} (if 	̃1 = Am, σ̃1 ∈ S) or τ̃11�E(τ11) =
A0 ∈ 〈Σ〉APAL\{id3} (if 	̃1 = σ̃1 = Am), that is in all cases (♦11) τ̃11�E(τ11) ∈
〈Σ〉APAL\{id3}.

We set τ̃21 := {a ∈ Am | (ak, am) ∈ 	2, am−1 ∈ σ1} and τ21 := 	2 × σ1.
We get τ̃21�{k,m−1,m} = π(23)(τ21) in any case and τ̃21�E(τ21) = π(23)(τ21) ∈
〈Σ〉APAL\{id3} (if (�) and σ̃1 ∈ S), τ̃21�E(τ21) = 	2 ∈ 〈Σ〉APAL\{id3} (if (�) and
σ̃1 = Am), τ̃21�E(τ21) = σ1 ∈ 〈Σ〉APAL\{id3} (if (�) and σ̃1 ∈ S) and τ̃21�E(τ21) =
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A0 ∈ 〈Σ〉APAL\{id3} (if (�) and σ̃1 = Am), consequently in each of these cases
(♦21) τ̃21�E(τ21) ∈ 〈Σ〉APAL\{id3}.

Analogously we set τ̃12 := {a ∈ Am | am ∈ 	1, (al, am−1) ∈ σ2} and get
τ̃12�{l,m−1,m} = π(132)(	1 × σ2) and (♦12) τ̃12�E(τ12) ∈ 〈Σ〉APAL\{id3}.

In this subcase (IV.iii) we know that some place in m \ {m − 1,m} is
t1-connected to m−1 or m, therefore we can deduce k �= l. We set τ22 := 	2×σ2
and τ̃22 := {a ∈ Am | (ak, am) ∈ 	2, (al, am−1) ∈ σ2}. We get τ̃22�{k,l,m−1,m} =
π(243)(τ22) if k < l, τ̃22�{k,l,m−1,m} = π(1243)(τ22) if l < k, for the restriction on
the essential places we have:

(�) (�)
(	) (
) (	) (
)

k < l l < k
τ̃22�E(τ22) = π(243)(τ22) π(1243)(τ22) 	2 σ2 ∅2

and in all cases (♦22) τ22�E(τ22) ∈ 〈Σ〉APAL\{id3}.
As noted before, 	1 and 	2 are comparable as are σ1 and σ2. Therefore we

can apply the Crux-Lemma. We will use the fact that the essential places of 	̃1,
	̃2, σ̃1 and σ̃ alre all contained in {k, l,m− 1,m} (this will be marked by (∗)).

∃a1, . . . , am−2 : (a1, . . . , am−2) ∈ δm−1,m(
⋂
{	̃1, 	̃2, σ̃1, σ̃2})

⇐==⇒ ∃a1, . . . , am−2, c ∈ A : (a1, . . . , am−2, c, c) ∈
⋂
{	̃1, 	̃2, σ̃1, σ̃2}

(∗)⇐==⇒ ∃ak, al, c ∈ A : c ∈ 	1 ∩ σ1, (ak, c) ∈ 	2, (al, c) ∈ σ2

Crux-Lemma⇐=======⇒ ∃ak, al, c1, c2, c3, c4 ∈ A : c1 ∈ 	1 ∩ σ1,

(ak, c2) ∈ 	2, c2 ∈ σ1, c3 ∈ 	1, (al, c3) ∈ σ2,

(ak, c4) ∈ 	2, (al, c4) ∈ σ2

⇐==⇒ ∃ak, al, c1, c2, c3, c4 ∈ A : (c1, c1) ∈ τ11,

(ak, c2, c2) ∈ τ21, (c3, al, c3) ∈ τ12, (ak, c4, al, c4) ∈ τ22
(∗)⇐==⇒ ∃a1, . . . , am−2, c1, . . . , c4 ∈ A : (a1, . . . , am−2, c1, c1) ∈ τ̃11,

(a1, . . . , am−2, c2, c2) ∈ τ̃21, (a1, . . . , am−2, c3, c3) ∈ τ̃12,

(a1, . . . , am−2, c4, c4) ∈ τ̃22

⇐==⇒ ∃a1, . . . , am−2 ∈ A :

(a1, . . . , am−2) ∈
⋂
{δm−1,m(τ̃xy) | x, y ∈ {1, 2}}.

Let S′ := {δm−1,m(σ) | σ ∈ S, m−1,m /∈ E(σ)}∪{δm−1,m(τ̃x,y) | x, y ∈ {1, 2}}.
By Lem. 1.9 we get δm−1,m(

⋂
S) =

⋂
S′. For σ ∈ S, m− 1,m /∈ E(σ) we have

δm−1,m(σ)�E(δm−1,m(σ)) = σ�E(σ) and together with (♦11), (♦21), (♦12) and (♦22)
we see that conditions (i) and (iii) of the theorem hold for all relations in S′.

Now we set S := {S′ | S ∈ S1}, applying the same construction to all elements
in S1. As before it is easy to see that conditions (i) and (iii) hold for all relations
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in
⋃
S and that S is a

⋃⋂
-representation of �t� = δm−1,m(t1) = δm−1,m(�t1�) =

δm−1,m(
⋃
{
⋂
S | S ∈ S1}) =

⋃
{δm−1,m(

⋂
S | S ∈ S1) =

⋃
{
⋂
S′ | S ∈ S1},

which is due to Def. 1.3(iii) consistent with t.
To show that condition (ii) holds requires again to consider several cases.

Let ϕ̃1, ϕ̃2 ∈
⋃
S. (IV.iii.a) If there is no place in E(ϕ̃1) ∩ E(ϕ̃2) which is

t1-connected to m − 1 or m, then we see by Def. 1.3(iii-iii”) and the foregoing
construction that there are relations ψ̃1, ψ̃2 ∈

⋃
S such that ϕ̃1 = δm−1,m(ψ̃1),

ϕ̃2 = δm−1,m(ψ̃2) and m − 1,m /∈ E(ψ̃1) ∪ E(ψ̃2). Consequently, ϕ̃1�E(ϕ1) =
ψ̃1�E(ψ1)

and ϕ̃2�E(ϕ2) = ψ̃2�E(ψ2)
are comparable according to the induction

hyposthesis.
(IV.iii.b) If there is some place in E(ϕ̃1) ∩ E(ϕ̃2) which is t1-connected to

m− 1 or m, then due to property (i) we have E(ϕ̃1), E(ϕ̃2) ⊆ {k, l}. There are
several possibilities.

(IV.iii.b.1) ϕ̃1 = δm−1,m(ψ̃1) and ϕ̃2 = δm−1,m(ψ̃2) with E(ϕ̃1) = E(ϕ̃2) ∈
{{k}, {l}}. Then ψ̃i�E(ψi)

= ϕ̃i�E(ϕi) for i ∈ {1, 2} which are comparable due to
the induction hypothesis.

(IV.iii.b.2) ϕ̃1 = δm−1,m(ψ̃1) with E(ψ̃1) = E(ϕ̃2) = {k}, but ϕ̃2 is of
the form ϕ̃2 = δm−1,m(τ̃21) or ϕ̃2 = δm−1,m(τ̃22). From k ∈ E(ϕ̃2) ⊆

L. 1.7(iv)

E(ψ̃2) we deduce τ̃21�E(τ21) ∈ {π(23)(τ21), 	2, πα(τ22)} with α = (243) if k < l

and α = (1243) otherwise. Therefore ψ̃2�E(ψ2)
∈ {δ2,3(	2 × σ1), δ2,3(	2 × A1),

δ2,3(	2×σ2), δ2,3(σ−1
2 ×	−1

2 )} (if k < l we have δ2,3(τ22) and if l < k it is the join
of the inverted relations). By the induction hypothesis are ϕ2�E(ϕ2) = ψ̃2�E(ψ2)
and 	̃2�E(�2) = 	2 inverted comparable, by applying Lemma 1.13(ii) we see that
ϕ̃1�E(ϕ1) and ϕ̃2�E(ϕ2) are inverted comparable (or comparable if l < k).

(IV.iii.b.3) The case ϕ̃1 = δm−1,m(ψ̃1) with E(ψ̃1)={l} and ϕ̃2 =δm−1,m(τ̃12)
or ϕ̃2 = δm−1,m(τ̃22) is handled analogously to case (IV.iii.b.2).

(IV.iii.b.4) Finally, if E(ϕ̃1) = E(ϕ̃2) = {k, l} then both must be of the
form ϕ̃1 = δm−1,m(τ̃22) and ϕ̃2 = δm−1,m(τ̃ ′22) with τ̃22�E(τ22) = 	2 × σ2 and
τ̃ ′22�E(τ ′

22) = 	′2 × σ′
2 (they may come from different sets S1, S2 ∈ S1). However,

by induction hypothesis 	2 and 	′2 are comparable and therefore 	2 = 	′2 and for
the same reason σ2 = σ′

2 and consequently τ̃22 = τ̃ ′22 and therefore ϕ̃1 and ϕ̃2
are equal and comparable (and inverted comparable).

Therefore, property (ii) of the theorem also holds for S in the case (IV.iii).
(V) If t = ¬t1 then there exists by the induction hypothesis a

⋃⋂
-represen-

tation S1 consistent with t1. By Lem. 1.17 the set {{¬τ(S1) | S1 ∈ S1} | τ :
S1 →

⋃
S1, τ(S) ∈ S for all S ∈ S1} is a

⋃⋂
-representation of ¬�t1� = �t�

which is consitent with t by Def. 1.3(iv) and Lem. 1.7(v). Condition (i) follows
from Lem. 1.7(v), condition (ii) follows from Lem. 1.13(i).

(VI) If t = πα(t1) for some permutation α on ar t, then there exists by the
induction hypothesis

⋃⋂
-representations S1 consistent with t1. Obviously S :=

{{πα(σ) | σ ∈ S} | S ∈ S1} is a
⋃⋂

-representation consistent with �t� (by
Lem. 1.7(vi)). It is easy to see that conditions (i) and (iii) hold. For relations
πα(σ), πα(τ) ∈ S with α(i) ∈ E(πα(σ)) ∩ E(πα(τ)). If |E(σ) ∪ E(τ)| = 1 this

J. Hereth Correia and R. Pöschel
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trivially holds, if |E(σ)| = |E(τ)| = 2 we can deduce E(σ) = E(τ) using Lem. 1.4
and even σ = τ because σ and τ are comparable by the induction hypothesis
and therefore πα(σ) and πα(τ) are equal, in particular comparable and inverted
comparable. Otherwise, we can assume without loss of generality that |E(σ)| = 2
and |E(τ)| = 1. Let E(σ) = {i, j} and i ∈ E(τ). By the induction hypothesis we
know that σ�E(σ) and τ�E(τ) are comparable if i < j and inverted comparable if
j < i. If α inverts the order of i and j we get that πα(σ)�E(πα(σ)) = (σ�E(σ))−1.
We see that then either πα(τ)�E(πα(τ)) and πα(σ)�E(πα(σ)) are comparable (if
α(i) < α(j)) or inverted comparable (otherwise). Therefore condition (ii) holds
in all cases.

3 The Peircean Reduction Thesis

The representation theorem presented in the last section allows to prove the
difficult part of the Peircean Reduction Thesis. It is easy to see that all relations
can be generated from the unary and binary relations – if the teridentity can be
used. Thus the Peircean Reduction Thesis is true if and only if it is impossible
to generate the teridentity itself from unary and binary relations. In fact, using
the properties of the

⋃⋂
-representation provided by Theorem 2.1 we can prove

that the teridentity cannot be generated. Therefore at least one ternary relation
is needed besides unary and binary relations to generate all relations.

Let |A| ≥ 2 and Σ := Rel(1)(A) ∪ Rel(2)(A). Then

〈Σ〉APAL\{id3} � 〈Σ〉APAL.

Proof. By definition we have id3 ∈ 〈Σ〉APAL. Let 	 ∈ 〈Σ〉APAL\{id3} be a ternary
relation. Let us assume id3 = 	. Let t ∈ TPAL\{id3}(Σ) be a term describing 	.
Then by Thm. 2.1 and Lem. 1.18 there exists a normalized

⋃⋂
-representation S

consistent with t. From Lem. 1.4 we can deduce that there is some place in 3
which is not t-connected to the other two places. Without loss of generality we
assume that 1 is not t-connected to 2 or 3. Let S ∈ S. Because S is normalized,
there is some tuple (x, x, x) ∈ S. Let y ∈ A with x �= y. For any relation σ ∈ S
with 1 /∈ E(σ) we have σ = A1 × σ�{2,3} and therefore (y, x, x) ∈ σ. If we have
1 ∈ E(σ) for no σ ∈ S, then we have (y, x, x) ∈

⋂
S ⊆

⋃
{
⋂
S | S ∈ S} = 	 but

(y, x, x) /∈ id3, a contradiction.
Therefore, for every S ∈ S there has to be a relation 	S with 1 ∈ E(	S),

and because 1 is not t-connected to any other place we have E(	S) = {1}. Let
a, b ∈ A be two distinct elements. Let Sa be an element of S with (a, a, a) ∈

⋂
Sa

(and therefore a ∈ 	Sa�E(�Sa )), and analogously Sb such that (b, b, b) ∈
⋂
Sb and

therefore b ∈ 	Sb
�E(�Sb

). By condition (ii) of Thm. 2.1 we know that 	Sa and
	Sb

are comparable and therefore a ∈ 	Sa ⊆ 	Sb
or b ∈ 	Sb

⊆ 	Sa . The set S
is normalized and by condition (ii) of Thm. 2.1 we know that 	Sa is the only
relation σ ∈ Sa with 1 ∈ E(σ) (and likewise for 	Sb

). Therefore we can deduce
either (a, b, b) ∈

⋂
Sb ⊆ 	 or (b, a, a) ∈

⋂
Sa ⊆ 	, in both cases a contradiction

to	= id3 .Thus the teridentity is not representable in PALwithout teridentity.

3.1 Theorem.
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Abstract. Whilst the Multi-Agent System (MAS) paradigm has the
potential to enable complex heterogeneous information systems to be in-
tegrated, there is a need to represent and specify the nature of qualitative
conceptual transactions in order that they are adequately comprehended
by a goal-directed MAS. Using the Transaction Agent Model (TrAM)
approach we examine the use of Conceptual Graphs to model an exten-
sion to an existing MAS in the community healthcare domain, whereby
the existing agent capabilities are augmented with a robust set of be-
haviours that provide emergency healthcare management. We illustrate
how TrAM serves to enrichen the requirements gathering process, whilst
also supporting the definition and realisation of quantitative measures
for the management of qualitative transactions.

1 Introduction

Complex information systems are often rich with convoluted interactions, involv-
ing repetitive and bespoke transactions that frequently consist of many other,
smaller, heterogeneous sub-systems. The Multi-Agent System (MAS) paradigm
is attractive to the systems designer in that these complex organisational oper-
ations can be mapped to ‘agents’ in a way that corresponds better to the real-
world view. Accordingly a MAS designer typically assembles, iterates and refines
a series of design using the Unified Modelling Language (UML) or, more recently,
Agent-oriented UML (AUML) [1]. However whilst the emerging methods that
assist the conversion of initial requirements into program code are proliferating
there still remains a significant intellectual distance between MAS model and
implementation.

As we have identified elsewhere [11] [12], [13], [19] Agent Oriented Software
Engineering (AOSE) methodologies such as Gaia [23], Prometheus [17], Zeus
[16] and MaSE [6] have attempted to provide a unifying development framework.
Except for Tropos [4] however, little work has been published that encompasses
the whole cycle from initial requirements capture through to implementation of
MAS. To prevent significant disparities between program code and the more ab-
stract models, Tropos facilitates the modelling of systems at the knowledge level

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 247–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and highlight the difficulties encountered by MAS developers, especially since
notations such as UML force the conversion of knowledge concepts into program
code representations [4]. As a methodology Tropos seeks to capture and specify
‘soft’ and ‘hard’ goals during an ‘Early Requirements’ capture stage, in order
that the Belief-Desire-Intention (BDI) architectural model [10] of agent imple-
mentation can be subsequently supported. Whilst model-checking is provided
through the vehicle of Formal Tropos [8], this is an optional component and is
not implicit within the MAS realisation process.

Therefore we describe an extension to an existing demonstrator in the
community healthcare domain, whereby qualitative transactions in emergency
healthcare management are elucidated and expressed in order that an informa-
tion system can be designed and developed as a MAS. As such we explain how
an improved MAS design framework that places a greater emphasis upon the
initial requirements capture stage, by supplementing the modelling process with
Conceptual Graph notation [21] can assist the realisation of complex information
systems.

2 The Problem Domain Addressed

High quality medical care depends upon prompt, accurate recording, commu-
nication, and retrieval of patient data and medical logistics information. In
emergency medicine, such information can make the difference between life
and death [15] or severe permanent injury. To elaborate; this vital informa-
tion enables better planning and scheduling of medical resources [15]. Further-
more, a hospital can assemble the appropriate team of specialists and prepare
the necessary equipment at the earliest opportunity, before they encounter the
patient.

Prior experience with the Intelligent Community Alarm (InCA) [2] has illus-
trated the potential of information systems designed using the MAS approach.
Home-based community care requires a variety of healthcare services to be de-
livered within the recipient’s own home, allowing them to continue to live in-
dependently, maintaining the best possible quality of life. Healthcare services
include help with domestic cleaning, ‘meals-on-wheels’, medical treatment and
assistance with basic bodily functions. Whilst the aims of community care ad-
dress humanitarian issues, other services such as emergency healthcare are an
example of the challenging and expensive tasks of managing the organisation,
logistics and quality assurance [3].

As each element of care is often delivered by independent agencies, the num-
ber of autonomous command and control systems quickly increases, leaving
the overall managers of the care (the Local Authority) to protect the indi-
vidual agencies from disclosing sensitive and irrelevant information. Although
information technology is established in emergency healthcare management,
it is clear that in many instances the vast quantities of disparate heteroge-
neous information repositories can lead to the undermining of effective system
operations [15].
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Collaborative intelligent agents, which overcome the difficulties of integrat-
ing disparate hardware and software platforms, enables queries to be mediated
to
the most appropriate information source, with the potential to build effective,
co-ordinated emergency healthcare management systems. As such the benefits of
multi-agent systems, and examples of the types of improvements offered for
healthcare management, are documented by Zambonelli et al. [24] and Beer
et al. [2].

Human agents regularly engage in economic transactions and Beer et al. [3]
demonstrated the transactions involved when processing emergency alarm condi-
tions in a community care environment. These apparently innocuous transactions
proved much more difficult to deploy than first envisaged, though there were dis-
tinct advantages in favour of the agent approach. Upon raising the alarm, the
message from the Elderly Person required brokering to determine the correct
type of service, as well as locating the nearest, most available source of help.
Subsequent work has enabled the further development of the Intelligent Com-
munity Alarm (InCA) to include the management of information in response to
emergency healthcare requests.

3 Transaction Agent Model (TrAM)

Prior work has established that there is a stage whereby the elicitation of quali-
tative issues within a problem domain can assist the MAS development process
[11], [12], [13], [20]. The combination of requirements capture and analysis with
Conceptual Graphs (CG), and its transformation into the Transaction Model
(TM), based upon the work of Geerts and McCarthy [9], provides a much more
rigorous input artefact in readiness for design specification with UML [22]. We
have accordingly defined this combination as the Transaction Agent Model or
TrAM. The use of TrAM enriches the requirements capture stage and serves as a
precursor to existing AOSE methodologies that require a design representation
such as AUML as an input.

3.1 Modelling the System

Initial requirements models such as use case diagrams can be mapped to a CG
[19] as in Figure 1.

The TM denotes that the emergency care is a transaction that arises due
to the occurrence of two complementary economic events, namely ‘999 call’ and
‘Life-threatening Incident’ (Figure 3). These are considered economic events be-
cause they denote the demand upon a limited resource. The ‘999 call’ requires
limited resources of the UK health authority, who have to make provision for
this support at the potential expense of other resources (e.g. community care)
upon which their finances could be spent.
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Fig. 1. Conceptual representation of use case model

Fig. 2. Generic Transaction Model (TM)

For TrAM we then review this CG to determine how it fits in to the generic
TM (Figure 2).

Similarly the life-threatening incident calls upon the paramedics’ priorities,
in terms of potentially being required elsewhere or more simply the time it
takes the paramedic to arrive at the scene. Hence the health authority needs to
provide (i.e. be the source of) some optimally cost-effective estimated time of
arrival (ETA).

Clearly if money was no object then an infinite number of paramedics could
be employed and the ETA would be zero thus the most lives would be saved.
However as the health authority’s finances are limited by what it receives from
the government, plus competing prioritising demands for that finance to be spent
elsewhere, money is an economic resource that is scarce. This in turn makes an
unrestricted number of paramedics impossible, thus also making ETA an eco-
nomic resource. This is demonstrated by the very fact that ETA denotes a delay
caused by competing demands (e.g. another accident being attended to by the
paramedic) or the physically remote location of the paramedic when the 999 call
is made (as there is only a limited amount of money to pay for paramedics).
The corresponding benefit for these ‘costs’ is the economic resource of the saved
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Fig. 3. Emergency Care Transaction Model

Fig. 4. Emergency Care transaction model with added ‘measure’ concept

life of the casualty patient. This concept of life being an economic resource may
sound callous, but as we see from the cost-benefit trade-off, there are sadly some
lives that the health authority cannot afford to be saved. Once again an optimal
ETA vs. monetary cost must be found, and efficiencies continually found to
improve this optimisation further for the benefit of saving more lives.

Accordingly, following the TrAM process the following CG for the TM can
be derived as in Figure 3. In accordance with TrAM the CG of Figure 3 should
also show a transaction between the casualty patient and the health authority
or the paramedic. But this cannot as yet be defined because, unlike the money
destination (e.g. salary paid) to the paramedic, the above TM has the rather
odd situation of the ETA destination being the paramedic.

This clearly does not model the relationship between the concepts in a real-
istic manner, therefore it is necessary to represent the economic resource with a
meaningful measure such as a Performance Indicator (PI). This PI would then be
used to measure the effectiveness of the paramedic in attending life-threatening
situations.
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Fig. 5. Conceptual representation of use case model

Likewise the health authority is shown as the destination of the saved life
when, once again, it would better be informed by some effective measure. Hence
we find the need for an expressive PI. These measures thereby offer the rele-
vant, quantifiable information upon which the health authority and paramedic
can make the most informed decisions, as indeed would their software agents.
The following CG in Figure 4 thus captures these dimensions. We thus re-
quire that some economic resources need to have a characteristic of being
measurable.

Figure 5 illustrates how we can proceed to capture the transaction of the
casualty patient, whilst the type hierarchy deduced after transformation with
the TM is illustrated in Figure 6.

Fig. 6. Emergency Care Type Hierarchy

Once again, a PI enables the casualty patient to be most informed about the
duty of care that he or she was given (and consequently the aggregate quality
of ‘duty of care’ that a person can expect, perhaps against some benchmark,
should that person be in the unfortunate situation of being a casualty patient).
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3.2 Designing the Agent Classes

Our exemplar emergency healthcare transaction illustrates the how TrAM can
be used to develop a complex multi-agent system for the management of an
emergency healthcare information system.

Emergency healthcare management exposes a vast number of qualitative is-
sues in the widest sense, and it is apparent that AUML has limitations when
attempting to elicit these conceptual issues. Our experiences with CG illustrate
that this notation appears to offer the multi-agent system designer a consider-
able advantage when it comes to assembling a specification of requirements that
captures the essence of real-world representations, particularly when used in
conjunction with AUML. It is also apparent that CG models lack the detail nec-
essary to specify agent program code, unlike the comprehensive representations
that can be expressed with AUML.

Fig. 7. Deriving the agent classes and relationships from the Transaction Model

Once the initial requirements have been captured and transformed with the
TM, it is necessary to convert the resulting models into a design specification in
readiness for program code generation. Figure 7 describes the mappings between
the TM concepts, relationships, and the resulting classes, leading to the model
in Figure 8.
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3.3 Building the Demonstrator

The TrAM approach to MAS construction has enabled disparate emergency
services to be integrated in order to share information, whilst retaining loose
coupling. The basic HES architecture is illustrated in Figure 9, and contains
details specific to the deployed demonstrator:

– External Agent : This agent provides an interface to the user to access the
emergency services. It executes outside the platform main container and
makes remote request to the Broker agent, enhancing system security.

– Broker Agent : this agent control the access to emergency services agents; it
is also be used to verify the identity of the user in terms of role-based access
control to sensitive patient data.

– Casualty Department and Ambulance Call Operator Agent : both agents are
an example of health emergency service agents. These agents can allow the
user to contribute or access information about a specific incident. Such agents
cooporate and collaborate to enrich the information captured, facilitating
proactive behaviours.

– Buffer Agent : This agent retains information if the platform is not reachable
due to infrastructure problems.

– Casualty Department and Ambulance Control Operator database wrappers:
agents that control access to heterogeneous data sources.

The process of eliciting agents using the TrAM model has exposed both
singular agents and agent roles that are performed by a MAS. The details of
this process are omitted for brevity.

4 Conclusions

Emergency healthcare management systems are an example of the complexity
often encountered in many problem domains. They incorporate many islands of
both information and functionality, therefore the MAS paradigm seems relevant,
providing the necessary design abstraction.

There are higher order issues and these affect the eventual system. If we
consider the individual goals of an agent, they aspire to satisfy some rules
predetermined by their owner (the human agent). Typically these goals arecap-
tured as qualitative concepts such as: ‘To better serve the public’, ‘to improve
the standard of living’, ‘to make money now and in the future’, ‘to improve
quality of care’.

Thus if we elect to model concepts then it immediately opens up the pos-
sibility of modelling at much greater levels of abstraction. The need to cap-
ture and express qualitative concepts demands a means of representation that
is rich and flexible. If these qualitative concepts are to be represented later
as quantitative measures then it is important that the thought processes and
design iterations are documented and rigorously evaluated. Without such a
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Fig. 8. Class diagram derived from the Transaction Model

representation medium, the quantification would not be documented and key
ideas and opportunities may have been missed.

There is a need to represent the complexity of multi-agent based systems and
it is becoming increasingly common to embody software with human character-
istics such as beliefs, desires and intentions (BDI) [10]. Since the CG notation is
flexible, it can be used to quickly capture the high level requirements of a sys-
tem. Additionally, the in-built type hierarchy (where every concept inherits from
the universal supertype ‘T’) enables the concept types elicited to be scrutinised
both in terms of the name by which the concept will be referred to as well as
the relationships between two or more concepts with respect to ‘T’.

Since agents in an organisation will be required to conduct transactions, it
seems appropriate to consider the notion of transactions and how they might
offer a possible representation for agent system design. Geerts and McCarthy [9]
offer ‘event accounting’, upon which the work of Polovina [18], as well as Sowa
[21][pp109-111], is based. The attractions of the TM are:
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Fig. 9. Deployment architecture of the Emergency Healthcare MAS

– the model is generic and applicable to a wide variety of domain transactions;
– models are straightforward to comprehend and relate to standard business

vocabulary;
– a hierarchy of types is introduced into the requirements gathering process;
– the notion of ‘balance’ forces discussion pertaining to the respective concept

names (or ‘slot’ names as they will inevitibly become later).

Balanced transactions are particularly powerful when qualitative concepts are
recorded. Rather than force the analyst to quantify the qualitative concepts,
these can be left in the model to achieve a balance. Subsequent analysis focuses
attention upon the qualitative concepts that need to be resolved, whilst rein-
forcing the importance of the inclusion of the concept, albeit qualitative and
therefore difficult to deal with. Aware of this, the system design participants are
motivated to select the most appropriate domain term for the concept. Copnse-
quently, we believe that the TrAM route from abstract requirements gathering
through to design specification contributes towards the development of complex
information systems by:

– ensuring that a conceptual representation of the information system has
captured qualitative transactions that can be decomposed into quantitative
measures prior to verification;

– permitting the deduction of performance indicators from the ‘measure’ con-
cept. Relationships between the concepts in the TM force questions to be
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asked, enabling terms and rule for the ontology to be derived, before a bal-
ance is achieved;

– using Conceptual Graphs and the Transaction Model to elicit an ontology
that agents can utilise as part of a knowledge base;

– providing a mapping from conceptual model to AUML design specification.

The mappings identified so far have proved repeatable across different scenarios
and assist agent code generation.

5 Further Work

Since the key mappings have been identified, we are now automating the transla-
tion of the iterated Transaction Model into a design specification such as UML,
in order to facilitate the use of TrAM in many other disparate domains.
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Querying Formal Contexts with Answer Set
Programs�
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Abstract. Recent studies showed how a seamless integration of formal
concept analysis (FCA), logic of domains, and answer set programming
(ASP) can be achieved. Based on these results for combining hierarchical
knowledge with classical rule-based formalisms, we introduce an expres-
sive common-sense query language for formal contexts. Although this
approach is conceptually based on order-theoretic paradigms, we show
how it can be implemented on top of standard ASP systems. Advanced
features, such as default negation and disjunctive rules, thus become
practically available for processing contextual data.

1 Introduction

At the heart of formal concept analysis (FCA) lies the formation of formal con-
cepts from formal contexts. As such, formal concept analysis is a powerful tool
for extracting conceptual hierarchies from raw data. The resulting lattices struc-
ture the knowledge hidden in the raw data, i.e. formal contexts, in a way which
appeals to human experts, and allows them to navigate the data in a new way
in order to understand relationships or create new hypotheses.

Formal concept analysis thus has a commonsense knowledge representation
aspect. This also becomes apparent by its multiple uses in the creation of ontolo-
gies for the semantic web. It serves as a basic tool for the conceptualization of
data, and the conceptual hierarchies obtained from it can often form a modelling
base for ontologies in more expressive logical languages.

In this paper, we address the question of querying the conceptual knowl-
edge hidden within a formal context. We present a query language based on
commonsense reasoning research in artificial intelligence. It allows to query for-
mal contexts by means of logic programs written over attributes and objects,
and features default negation in the sense of the knowledge representation and
reasoning systems known as answer set programming (ASP).

Our results will also show how the resulting query system can be implemented
on top of standard ASP systems, which allows to utilize the highly optimized
systems currently available. Our work also sheds some foundational light on ASP
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itself, whose theoretical underpinnings, in particular in relation to order-theoretic
perspectives, are not yet understood in a satisfactory way.

The paper will be structured as follows. We first review the foundational
results from [1] which serve as a base for our contribution. Section 2 introduces
the logical formalism of reasoning on hierarchical knowledge that we will build
upon, and recalls some basics of formal concept analysis. Section 3 discusses de-
fault negation for conceptual hierarchies. Section 4 describes the query language
which we introduce. In Section 5 we present the theoretical results which enable
the implementation of the querying system on top of the dlv ASP system. We
close with the discussion of related and future work in Section 6.

2 Logic of Domains and FCA

We need to establish a certain amount of formal terminology in order to be able
to motivate our contribution. This will be done in this and the next section.
Following [2], we first introduce the logic of domains, and then recall the basics
of formal concept analysis.

We assume the reader to be familiar with the basic notions of order theory,
and recall only the relevant notions of domain theory. Thus let (D,�) be a
partially ordered set. A subset X ⊆ D is directed if, for all x, y ∈ X , there is
z ∈ X with x � z and y � z. We say that D is a complete partial order (cpo)
if every directed set X ⊆ D has a least upper bound

⊔
X ∈ D. Note that we

consider the empty set to be directed, and that any cpo thus must have a least
element

⊔
∅ that we denote by ⊥.

An element c ∈ D is compact if, whenever c �
⊔
X for some directed set X ,

there exists x ∈ X with c � x. The set of all compact elements of D is written
as K(D). An algebraic cpo is a cpo in which every element d ∈ D is the least
upper bound of the – necessarily directed – set {c � d | c ∈ K(D)} of compact
elements below it.

A set O ⊆ D is Scott open if it is upward closed, and inaccessible by directed
suprema, i.e., for any directed set X ⊆ D, we have

⊔
X ∈ O if and only if

O ∩ X �= ∅. The Scott topology on D is the collection of all Scott open sets
of D, and a Scott open set is compact, if it is compact as an element of the
Scott topology ordered under subset inclusion. A coherent algebraic cpo is an
algebraic cpo such that the intersection of any two compact open sets is compact
open. Coherency of an algebraic cpo implies that the set of all minimal upper
bounds of a finite number of compact elements is finite, i.e. if c1, . . . , cn are
compact elements, then the set mub{c1, . . . , cn} of minimal upper bounds of
these elements is finite. As usual, we set mub ∅ = {⊥}, where ⊥ is the least
element of D.

In the following, (D,�) will always be assumed to be a coherent algebraic
cpo. We will also call these spaces domains. All of the above notions are standard
and can be found e.g. in [3].

We can now define the basic notions of domain logic. The following is taken
from [2], where further details can be found.
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Definition 1. Let D be a coherent algebraic cpo with set K(D) of compact ele-
ments. A clause of D is a finite subset of K(D). Given a clause X over D, and
an element m ∈ D, we write m |= X if there exists x ∈ X with x � m, i.e. X
contains an element below m. In this case, we say that m is a model of X.

The clausal logic introduced in Definition 1 will henceforth be called the Logic RZ
for convenience.

Example 1. In [2], the following running example was given. Consider a count-
ably infinite set of propositional variables V , and the set T = {f ,u, t} of truth
values ordered by u < f and u < t. This induces a pointwise ordering on the
space TV of all interpretations (or partial truth assignments). The partially or-
dered set TV is a coherent algebraic cpo1 and has been studied, e.g., in [4] in a
domain-theoretic context, and in [5] in a logic programming context. Compact
elements in TV are those interpretations which map all but a finite number of
propositional variables to u. We denote compact elements by strings such as pqr,
which indicates that p and q are mapped to t, and r is mapped to f . Clauses in
TV can be identified with formulae in disjunctive normal form, e.g. {pqr, pq, r}
translates to (p ∧ q ∧ ¬r) ∨ (¬p ∧ q) ∨ r.

The Logic RZ provides a framework for reasoning with disjunctive information.
However, it is also possible to encode conjunctive information: given a finite set
X of compact elements of a domain D, the “conjunction” of the elements of D
can be expressed by the clause mub(D). Indeed, whenever an element models
all members of X , it is greater or equal than one of the minimal upper bounds
of X .

Example 2. Consider the domain TV of Example 1. The set of minimal upper
bounds of every finite set of compact elements in TV is either singleton or empty.
For instance, the only minimal (and therefore least) upper bound of pr and pq
is pqr.

The Logic RZ enables logical reasoning with respect to a background theory of
hierarchical knowledge that is encoded in the structure of the domain. Formal
concept analysis (FCA), in contrast, provides techniques for representing data
in form of conceptual hierarchies, that allow for simple relational descriptions.
We quickly review the basic notions of FCA, and refer to [6] for an in-depth
treatment.

A (formal) context K is a triple (G,M, I) consisting of a set G of objects,
a set M of attributes, and an incidence relation I ⊆ G ×M . Without loss of
generality, we assume that G ∩M = ∅. For g ∈ G and m ∈ M we write g I m
for (g,m) ∈ I, and say that g has the attribute m.

For a set O ⊆ G of objects, we set O′ = {m ∈ M | g I m for all g ∈ O},
and for a set A ⊆ M of attributes we set A′ = {g ∈ G | g I m for all m ∈ A}.
A (formal) concept of K is a pair (O,A) with O ⊆ G and A ⊆ M , such that
O′ = A and A′ = O. We call O the extent and A the intent of the concept (O,A).
1 In fact it is also bounded complete.
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The set B(K) of all concepts of K is a complete lattice with respect to the order
defined by (O1, A1) ≤ (O2, A2) if and only if O1 ⊆ O2, which is equivalent to
the condition A2 ⊆ A1. B(K) is called the concept lattice of K.

The mappings (·)′ are closure operators, which, under appropriate conditions,
can be regarded as logical closures of theories in the Logic RZ. Details on this
relationship between Logic RZ and formal concept analysis can be found in [7].

3 Logic Programming in the Logic RZ

In this section, we discuss how the Logic RZ can be extended to a logic pro-
gramming paradigm, thus adding disjunctive rules and default negation to the
expressive features of the formalism. In addition, we review the classical ap-
proach of answer set programming that will be related to logic programming in
the Logic RZ in Section 5.

Following [2], we first explain how the Logic RZ can be extended naturally
to a disjunctive logic programming paradigm.

Definition 2. A (disjunctive logic) program over a domain D is a set P of
rules of the form Y ← X, where X,Y are clauses over D. An element w ∈ D is
a model of P if, for every rule Y ← X in P , if w |= X, then w |= Y . We write
w |= P in this case. A clause Y is a logical consequence of P if every model
of P satisfies Y . We write cons(P ) for the set of all clauses which are logical
consequences of P .

Note that the condition w |= P is strictly stronger than w |= cons(P ). For an
example, consider the domain {p, q,⊥} defined by ⊥ < p and ⊥ < q, and the
program P consisting of the single rule {p} ← {q}. Then cons(P ) contains only
tautologies, and thus is modelled by the element q. Yet q is not a model for P .

In [1], a notion of default negation was added to the logic programming frame-
work presented above. The extension is close in spirit to mainstream develop-
ments concerning knowledge representation and reasoning with nonmonotonic
logics. It will serve as the base for our query language.

Since the following definition introduces a nonmonotonic negation operator
∼ into the logic, we wish to emphasize that the negation · from Example 1 is
not a special symbol of our logic but merely a syntactical feature to denote the
elements of one particular example domain. Similar situations are known in FCA:
in some formal contexts, every attribute has a “negated” attribute that relates
to exactly the opposite objects, but FCA in general does not define negation.
Analogously, by choosing appropriate domains, Logic RZ can be used to model
common monotonic negations. In contrast, the semantic extension introduced
next cannot be accounted for in this way.

Definition 3. Consider a coherent algebraic domain D. An extended rule is
a rule of the form H ← X,∼Y , where H, X, and Y are clauses over D. An
extended rule is trivially extended if Y = {}, and we may omit Y in this case.
We call the tuple (X,Y ) the body of the rule and H the head of the rule. An
( extended disjunctive) program is a set of extended rules.
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Informally, we read an extended rule H ← X,∼Y as follows: if X holds, and
Y does not, then H shall hold. As usual in logic programming, the formal se-
mantics of ∼ is defined by specifying the semantics of logic programs in which
∼ is contained. But in contrast to classical negation, semantics is not defined by
specifying the effect of ∼ on logical interpretations, e.g. by using truth tables.
The reason is that we want to enrich our reasoning paradigm with nonmonotonic
features, which are characterized by the fact that previously drawn conclusions
might become invalid when adding additional knowledge (i.e. program rules).
But such semantics clearly cannot be defined locally by induction on the struc-
ture of logical formulae – the whole program must be taken into account for
determining logical meaning. We consider the following formal definition, akin
to the answer set semantics that will be introduced later on in this section.

Definition 4. Consider a coherent algebraic domain D, an element w ∈ D,
and an extended disjunctive program P . We define P/w to be the (non-extended)
program obtained by applying the following two transformations:

1. Replace each body (X,Y ) of a rule by X whenever w �|= Y .
2. Delete all rules with a body (X,Y ) for which w |= Y .

An element w ∈ D is an answer model of P if it satisfies w |= cons(P/w). It is
a min-answer model of P if it is minimal among all v satisfying v |= cons(P/w).

Note that every min-answer model is an answer model. We do not require answer
models w to satisfy the rules of the program P/w. However, one can show the
following lemma.

Lemma 1. Consider a coherent algebraic domain D and a disjunctive program
(i.e. without default negation) P over D. If w ∈ D is minimal among all elements
v with property v |= cons(P ), then w |= P .

Proof. This was shown in [2, Lemma 5.3]. ��

The proof of the following statement refers to [2, Lemma 5.1] which uses Zorn’s
Lemma (or, equivalently, the Axiom of Choice).

Lemma 2. Consider a coherent algebraic domain D, and a disjunctive program
P over D. If w ∈ D is such that w |= cons(P ), then there is an element w′ � w
such that w′ |= P and which is minimal among all v that satisfy v |= cons(P ).

Proof. By [2], cons(P ) is a logically closed theory. By [2, Proof of Theorem
3.2], the set M of all models of cons(P ) is compact and upwards closed. By
[2, Lemma 5.1] we have that M is the upper closure of its finite set C(M) of
minimal compact elements. Consequently, for any w |= cons(P ) we have w ∈M
and there is a w′ ∈ C(M) with the desired properties. ��

Intuitively, the above lemma enables us to conclude that there is a minimal
model below any model of the program P . The rationale behind the definition of
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min-answer model is that it captures the notion of answer set as used in answer
set programming which we will introduce next.

Answer set programming (ASP) is a reasoning paradigm in artificial intel-
ligence which was devised in order to capture some aspects of commonsense
reasoning. We now briefly review the basic concepts of ASP so that we can make
the relationship to nonmonotonic logic programming in the Logic RZ explicit in
Section 5.

ASP is based on the observation that humans tend to jump to conclusions
in real-life situations, and on the idea that this imprecise reasoning mechanism
(amongst other things) allows us to deal with the world effectively. Formally,
jumping to conclusions can be studied by investigating supraclassical logics, see
[8], where supraclassicality means, roughly speaking, that under such a logic
more conclusions can be drawn from a set of axioms (or knowledge base) than
could be drawn using classical (e.g. propositional or first-order) logic. Answer set
programming, as well as the related default logic [9], is also nonmonotonic, in
the sense that a larger knowledge base might yield a smaller set of conclusions.

We next describe the notion of answer set for extended disjunctive logic
programs, as proposed in [10]. It forms the heart of answer set programming
systems like dlv2 or smodels3 [11,12], which have become a standard paradigm
in artificial intelligence.

Let V denote a countably infinite set of propositional variables. An ASP-rule
is an expression of the form

L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk,

where each Li is a literal, i.e. either of the form p or ¬p for some propositional
variable p ∈ V . Given such an ASP-rule r, we set Head(r) = {L1, . . . , Ln},
Pos(r) = {Ln+1, . . . , Lm}, and Neg(r) = {Lm+1, . . . , Lk}.

In order to describe the answer set semantics, or stable model semantics, for
extended disjunctive programs, we first consider programs without ∼.

Thus, let P denote an extended disjunctive logic program in which Neg(r)
is empty for each ASP-rule r ∈ P . A set W ⊆ V± = V ∪ ¬V is said to be
closed by rules in P if, for every r ∈ P such that Pos(r) ⊆ W , we have that
Head(r) ∩W �= ∅. W is called an answer set for P if it is a minimal subset of
V± such that the following two conditions are satisfied.

1. If W contains complementary literals, then W = V±.
2. W is closed by rules in P .

We denote the set of answer sets of P by α(P ). Now suppose that P is an
extended disjunctive logic program that may contain ∼. For a set W ⊆ V±,
consider the program P/W defined as follows.

1. If r ∈ P is such that Neg(r)∩W is not empty, then we remove r i.e. r /∈ P/W .

2 http://www.dbai.tuwien.ac.at/proj/dlv/
3 http://www.tcs.hut.fi/Software/smodels/
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object(1). object(2). ...
attribute(a). attribute(b). ...
incidence(1,b). ...

in_extent(G) :- object(G), not outof_ext(G).
outof_ext(G) :- object(G), attribute(M), in_intent(M), not incidence(G,M).

in_intent(M) :- attribute(M), not outof_int(M).
outof_int(M) :- object(G), attribute(M), in_extent(G), not incidence(G,M).

Fig. 1. Computing formal concepts using answer set programming

2. If r ∈ P is such that Neg(r) ∩W is empty, then the ASP-rule r′ belongs
to P/W , where r′ is defined by Head(r′) = Head(r), Pos(r′) = Pos(r) and
Neg(r′) = ∅.

The program transformation (P,W ) 	→ P/W is called the Gelfond-Lifschitz
transformation of P with respect to W .

It is clear that the program P/W does not contain ∼ and therefore α(P/W )
is defined. We say that W is an answer set or stable model of P if W ∈ α(P/W ).
So, answer sets of P are fixed points of the operator GLP introduced by Gelfond
and Lifschitz in [10], where GLP (W ) = α(P/W ).4 We note that the operator
GLP is in general not monotonic, and call it the Gelfond-Lifschitz operator of P .

Example 3. We illustrate answer set programming by means of a program due to
Carlos Damasio [13] given in Fig. 1. It computes all formal concepts for a given
formal context. The program consists of declarations of the objects, attributes,
and incidence relation in the form of facts, hinted at in the first three lines of
Fig. 1. The remaining four lines suffice to describe the problem – run in an
answer set programming system, the program will deliver several answer sets,
which coincide with the formal concepts of the given context if restricted to
the predicates in_extent and in_intent. Note that “not” stands for default
negation ∼, and “:-” stands for ←. Variables are written uppercase.

We follow common practice in allowing variables to occur in programs, but
we need to explain how the syntax of Fig. 1 relates to the answer set semantics
given earlier. This is done by grounding the program by forming all ground
instances of the rules by making all possible substitutions of variables by the
constants occurring in the program. Variable bindings within a rule have to be
respected. For example, the first rule

in_extent(G) :- object(G), not outof_ext(G).

has the ASP-rules

in_extent(1) :- object(1), not outof_ext(1). and
in_extent(b) :- object(b), not outof_ext(b).

4 GLP being a multi-valued map, we speak of W as a fixed point of GLP if W ∈
GLP (W ).
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as two examples of ground instances. The resulting ground atoms, i.e. atomic
formulae such as object(b) and outof_ext(1), can then be understood as
propositional variables, and the semantics given earlier can be derived.

It was shown in [1] that extended disjunctive programs over the domain TV from
Example 1 can be closely related to classical answer set programming over a set
of ground atoms V . We will generalize this result in Theorem 1 below, where we
incorporate information from formal contexts as well.

4 Querying Formal Contexts

In this section, we integrate hierarchical background knowledge specified by a
formal context with the generalized programming paradigm for the Logic RZ.
The result can be considered as a query language for formal contexts.

Definition 5. Let K be a finite formal context with concept lattice B(K), and let
TV be the domain from Example 1. A query over K is any extended disjunctive
program over the domain B(K)× TV .

The fact that B(K)× TV is a domain follows since both factors of this product
are domains as well. That B(K) is a domain is ensured by restricting the above
definition to finite contexts. Concepts of K can be viewed as conjunctions of
attributes of K (or, similarly, as conjunctions of objects), thus allowing for a
straightforward intuitive reading of the rules of a query. When formulating a
rule, however, the restriction to concepts can be unwanted, and one might prefer
to state arbitrary conjunctions over attributes and objects. To this end, we now
develop a more convenient concrete syntax for queries.

Definition 6. Given a context K = (G,M, I), a literal over K is either an
element of G∪M , or a formula of the form p(t1, . . . , tn) or ¬p(t1, . . . , tn), where
p is an n-ary predicate symbol and t1, . . . , tn are terms over some first-order
language. A rule over K then is of the form

L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk,

where each of the Li is a literal over K. A simplified query for K is a set of rules
over K.

The intention is that rules over a context allow for an intuitive reading which
is similar to that for classical ASP-rules, and that finite sets of rules unambigu-
ously represent queries over the given context. We consider rules with variables
as a short-hand notation for the (possibly infinite) set of all ground instances
(with respect to the considered first-order signature), and thus can restrict our
attention to rules that do not contain first-order variables.

When relating Definition 6 to Definition 5, we have to be aware that both def-
initions are somewhat implicit about the considered logical languages. Namely,
the notion of a simplified query depends on the chosen first order language, and,



268 P. Hitzler and M. Krötzsch

similarly, queries employ the domain TV that depends on choosing some con-
crete set of propositional variables V . Given standard cardinality constraints,
the choice of these invariants is not relevant for our treatment, but notation is
greatly simplified by assuming that V is always equal to the set of ground atoms
(i.e. atomic logic formulae without variables) over the chosen language. Thus,
we can also view ground atoms as elements of TV mapping exactly the specified
element of V to true, and leaving everything else undetermined.

Moreover, note that both B(G,M, I) and TV have least elements (M ′,M ′′)
and ⊥, respectively. We exploit this to denote elements of B(G,M, I) × TV

by elements of G ∪ M ∪ V ∪ V . Namely, each element o ∈ G denotes the el-
ement (({o}′′, {o}′),⊥), a ∈ M denotes (({a}′, {a}′′),⊥), and p ∈ V ∪ V de-
notes ((M ′,M ′′), p). This abbreviation is helpful since the atomic elements are
supremum-dense in B(G,M, I) × TV and thus can be used to specify all other
elements.

Definition 7. Consider a context K = (G,M, I), and a rule over K of the form

L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk.

The associated extended disjunctive rule over B(K)× TV is defined as

{L1, . . . , Ln} ←
⊔
{Ln+1, . . . , Lm},∼{Lm+1, . . . , Lk}.

Given a simplified query P , its associated query P̂ is obtained as the set of rules
associated to the rules of P in this sense.

Conversely, it is also possible to find an appropriate simplified query for arbitrary
queries. The problem for this transformation is that the simplified syntax does
not permit disjunctions in the bodies of rules, and generally restricts to atomic
expressions. It is well-known, however, that disjunctions in bodies do usually
not increase expressiveness of a rule language. Indeed, consider the extended
disjunctive rule

{l1, . . . , ln} ← {ln+1, . . . , lm},∼{lm+1, . . . , lk},

where li are elements of B(K) × TV as in Definition 5. Using a simple form of
the so-called Lloyd-Topor transformation, we can rewrite this rule into the set
of rules

{{l1, . . . , ln} ← {lj},∼{lm+1, . . . , lk} | j ∈ {n+ 1, . . . ,m}} .

It is straightforward to show that this transformation preserves answer models
and min-answer models, and we omit the details.

Similarly, it is possible to treat heads {l1, . . . , ln}, where the li are not
necessarily literals. Indeed, each li can be written as li =

⊔
Ai, where Ai =

{ai1, . . . , aini} is a finite set of literals, and a rule of the form

{l1, . . . , ln} ← {l},∼{lm+1, . . . , lk}

can thus be transformed into the set of rules
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{{e1, . . . , en} ← {lj},∼{lm+1, . . . , lk} | ei ∈ Ai} .

Intuitively, this transformation is obtained by bringing the head into conjunctive
normal form (using a distributivity law) and subsequent splitting of conjunctions
into different clause heads. This constitutes another Lloyd-Topor transformation,
and it is again straightforward – but also quite tedious – to show that the
transformation preserves answer models and min-answer models.

Similar techniques could be applied to transform complex expressions in the
default negated part of the body. Therefore, we can restrict our subsequent
considerations to simplified queries without loss of generality.

5 Practical Evaluation of Queries

Based on the close relationship to answer set programming discussed in Section 3,
we now present a way to evaluate queries within standard logic programming sys-
tems. This has the huge advantage that we are able to employ highly optimized
state of the art systems for our reasoning tasks. Furthermore, the connection to
standard answer set programming creates further possibilities to combine con-
textual knowledge with other data sources that have been integrated into answer
set programming paradigms.

Our goal is to reduce queries to (classical) answer set programs. For this
it is necessary to translate both the rules of the program and the data of the
underlying formal context into the standard paradigm. On a syntactic level, we
already established a close correspondence based on the notion of a simplified
query. We now show how to take this syntactic similarity to a semantic level.

Definition 8. Given a simplified query P for a context K = (G,M, I), consider
the syntactic representation of P as an extended disjunctive logic program over
the set of variables G∪M ∪V. Furthermore, define a program ASP(K) over this
set of variables to consist of the union of

1. all rules of the form o← a1, . . . , an, with a1,. . . ,an ∈M , o ∈ {a1, . . . , an}′,
2. all rules of the form a← o1, . . . , on, with o1,. . . ,on ∈ G, a ∈ {o1, . . . , on}′.

By ASP(P ), we denote the extended disjunctive logic program P ∪ ASP(K) that
is thus associated with the simplified query P .

Obviously, ASP(K) (and therefore also ASP(P )) will in general contain redun-
dancies, which could be eliminated if desired by using stem base techniques (see
[6]). We will not discuss this optimization in detail as it is not necessary for our
exhibition.

On the semantic level of min-answer models and answer sets, the relationship
between queries and logic programs is described by the following function.

Definition 9. Consider the domain TV and a context K = (G,M, I). A map-
ping ι from elements of B(K)×TV to subsets of G∪M ∪V± is defined by setting
ι(w) = {p | w |= p}.
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Note that the above definition is only meaningful when employing our convention
of using elements p ∈ G ∪M ∪ V± to denote (not necessarily atomic) elements
of B(K) × TV , as discussed in the previous section. This relationship need not
be injective, but elements from V± and G ∪M are never associated with the
same element of B(K)× TV , and this suffices to eliminate any confusion in our
following considerations.

Lemma 3. Consider a simplified query P for a context K with associated query
P̂ . For any element w ∈ B(K) × TV , we find that ASP(P )/ι(w) = P/ι(w) ∪
ASP(K).

Furthermore, an ASP-rule L1, . . . , Ln ← Ln+1, . . . , Lm is in P/ι(w) iff the
corresponding rule {L1, . . . , Ln} ←

⊔
{Ln+1, . . . , Lm} is in P̂ /w.

Proof. The first part of the claim is immediate, since there are no default negated
literals in ASP(K). For the second part, note that any rule in either P/ι(w) or
P̂ /w stems from a rule of the form L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk

in P . To finish the proof, we just have to observe that w |= {Lm+1, . . . , Lk} iff
ι(w) |= Li for some i = m + 1, . . . , k. ��

Restricting to non-extended disjunctive programs only, the next lemma estab-
lishes the basis for the main result of this section.

Lemma 4. Consider a simplified query P over some context K = (G,M, I),
such that no default negation appears in P . If w ∈ B(K) × TV is such that
w |= P̂ , then ι(w) is closed under rules of P ∪ ASP(K).

Conversely, assume there is a consistent set W ⊂ (G∪M ∪V)± closed under
rules of P ∪ ASP(K). Then W ⊇ ι(w) for some element w ∈ B(K) × TV with
property w |= P̂ . In particular, if W is minimal among all sets closed under said
rules, then W is equal to ι(w).

Proof. For the first part of the claim, let w |= P̂ be as above, and consider an
ASP-rule r ∈ P ∪ ASP(K) given by L1, . . . , Ln ← Ln+1, . . . , Lm. First consider
the case r ∈ P . By Definition 7, {L1, . . . , Ln} ←

⊔
{Ln+1, . . . , Lm} is in P̂ . If

Ln+1, . . . , Lm ∈ ι(w), then w |= Li, i = n + 1, . . . ,m by the definition of ι.
Hence w |=

⊔
{Ln+1, . . . , Lm} and thus w |= Lj for some j ∈ {1, . . . , n}. But

then Lj ∈ ι(w) and so ι(w) satisfies the rule r.
On the other hand, that ι(w) satisfies any ASP-rule r ∈ ASP(K) is obvious

from the fact that ι(w) ∩ G is an extent with corresponding intent ι(w) ∩M .
This finishes the proof that ι(w) is closed under rules of ASP(P )/ι(w).

For the second part of the claim, consider a set W as in the assumption.
First note that elements of ¬G ∪ ¬M do not occur in the rules of P ∪ ASP(K).
Consequently, whenever W is closed under rules of P ∪ ASP(K), we find that
V = W ∩ (G ∪M ∪ V±) has this property as well.

Now consider sets O = V ∩ G and A = V ∩M . We claim that (O,A) is a
concept of K, i.e. O′ = A. Since V is closed under ASP(K), whenever a ∈ O′ for
some a ∈M , we find a ∈W , and hence A ⊇ O′. Analogously, we derive O ⊇ A′.
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Using standard facts about concept closure (·)′ [6], we obtain O′′ ⊆ A′ ⊂ O and
A′′ ⊆ O′ ⊂ A which establishes the claim.

Given that V ∩ (G ∪M)± is the (disjoint) union of the extent and intent of
a concept, it is obvious that V = ι(w) for some w ∈ B(K)×TV . Here we use the
assumed consistency of W and V to ensure that the TV -part of V can indeed be
expressed by an appropriate w.

We still have to show that w |= P̂ . For any rule {L1, . . . , Ln} ←
⊔
{Ln+1, . . . ,

Lm} in P̂ , there is an ASP-ruleL1, . . . , Ln ← Ln+1, . . . , Lm inP . By the definition
of ι, it is clear that ι(w) = V models this ASP-rule iff w models the corresponding
rule, which establishes the claim, since V models all ASP-rules. ��

Theorem 1. Consider a simplified query P with associated query P̂ and pro-
gram ASP(P ). If P̂ has any min-answer models, then the function ι from Defini-
tion 9 is a bijection between min-answer models of P and answer sets of ASP(P ).

Proof. Consider an answer set W of ASP(P ) such that W �= (G ∪M ∪ V)±.
Considering P/W as a simplified query, we can apply Lemma 4, to find some
element w |= P̂/W such that W = ι(w). By Lemma 3, an ASP-rule is in P/W

iff a corresponding rule is in P̂ /w, and we conclude w |= P̂ /w. We claim that
w additionally is a min-answer model. Indeed, by Lemma 2, there is an element
w′ � w such that w′ |= P̂ /w and which is minimal among all v |= cons(P ). For
a contradiction, suppose that w �= w′, i.e. w is not a min-answer model. Using
Lemmas 3 and 4, we find that w′ |= P̂ /w implies that ι(w′) is closed under rules
of P/ι(w). Closure of ι(w′) under rules of ASP(K) is immediate since the first
component of w′ is required to be a concept. Thus, we obtain a model ι(w′)
for ASP(P ) which is strictly smaller than ι(w). This contradicts the assumed
minimality of ι(w) = W , so that w must be a min-answer model.

Conversely, we show that ι(w) is an answer set of ASP(P ) wheneverw is a min-
answer model of P̂ . Combining Lemmas 3 and 4, we see that ι(w) is closed under
rules of ASP(P )/ι(w). For a contradiction, suppose that ι(w) is not minimal, i.e.
there is some model V ⊆ W that is also closed under rules of ASP(P ). Then, by
Lemma 4, we have V ⊇ ι(v) for some v for which v |= P̂ /w. Clearly, ι(v) ⊆ V ⊆W
implies v � w, thus contradicting our minimality assumption on w. ��

The above result can be compared to the findings in [1], where programs over TV

were related to answer set programs. The corresponding result can be obtained
from Theorem 1 by restricting to the empty context (∅, ∅, ∅).

6 Conclusions and Further Work

We have shown how artificial intelligent commonsense reasoning in the form
of answer set programming can be merged with conceptual knowledge in the
sense of formal concept analysis. We have utilized this in order to develop a
commonsense query answering system for formal contexts, which features the
full strength of disjunctive answer set programming.
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Based on our results, it is straightforward to implement this e.g. on top of the
dlv system5 [11], which has recently been supplemented to support extensions
like ours in a hybrid fashion [14].

The dlv system also provides modules for interfacing with conceptual knowl-
edge in other paradigms like OWL [15] or RDF [16], resulting in a hybrid rea-
soning system. These features become available for us by way of dlv and thus
allow for an integrated querying and reasoning paradigm over heterogeneous
knowledge. This could also be further enhanced with query-based multicontext
browsing capabilities in the sense of [17].

Finally, let us remark that our work sheds some light on recently discussed
issues concerning the interplay between conceptual knowledge representation
and rule-based reasoning.6 Indeed, our approach realizes a strong integration
between paradigms, with the disadvantage that it is restricted to hierarchical
conceptual knowledge in the sense of formal concept analysis. It may nevertheless
be a foundation for further investigations into the topic from an order-theoretic
perspective.
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Abstract. What does it take to possess a concept? Behaviour of various
degrees of complexity is based on different levels of cognitive abilities.
Concept possession ranges between mere stimulus-response schemes and
fully developed propositional representations. Both biological and artifi-
cal systems can be described in terms of these levels of cognitive abilities,
and thus we can meaningfully ask whether a given system has concepts.
We regard that question not in terms of behavioural criteria, but from
a formal point of view. We focus on the interrelation between a given
objective structure of concepts and a subject’s representation of that
structure. The main question is how much of the structure of the objec-
tive side needs to be mirrored subjectively in order to grant possession of
concepts. Our approach shows a strong parallel to epistemic logic. There,
the objective side can be represented by an algebra of true propositions,
and an epistemic subject can represent some of these propositions as
what she believes to be true. As in propositional epistemic logic, in an
epistemic logic of concepts the main issue is finding adequate closure
conditions on the subjective set of representations. We argue that the
appropriate closure conditions can be stated formally as closure under
witnesses for two types of relationships among concepts: in order for a
subject to possess a concept c she has to represent both a sibling and a
cousin of c. We thus arrive at a first formally perspicious candidate for
a psychologically adequate epistemic logic of concepts.

1 Introduction

Biological systems show behaviour of various degrees of complexity, some of
which is based on cognition. Some types of behaviour clearly do not presuppose
cognition; among them are reflexes, but also mere stimulus-response behaviour
such as that exhibited by Pavlov’s dogs who slobber when they hear a bell ring.
On the other hand, some types of human behaviour are clearly based on proposi-
tional representations and thus, on a high form of cognitive abilities; reading this
article is among them. In between there are types of behaviour that presuppose
conceptual representations without demanding full propositional cognition. Such
behaviour is not confined to human beings: there are also some types of animal
behaviour that fall within that range, e.g., the behaviour of parrots that Pep-
perberg describes in her book The Alex Studies [8]. Once these different levels of
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cognitive abilities have been recognised, it becomes possible to use them for de-
scribing not just biological, but also artificial systems. Thus we can meaningfully
ask whether a given biological or artificial system has concepts.

When does a system have concepts? We will address this question from a
formal point of view: we will presuppose that we know what a system represents,
and we will try to describe minimal structural conditions that have to be met by
the set of those representations in order to call them conceptual. Thus we leave
the empirical question of how to derive representations from behaviour aside. The
main link between behaviour and representation ascriptions will clearly have to
be via various types of classificatory tasks. — We will also not consider the
problem of concept acquisition, but aim at describing fully competent epistemic
subjects. The concepts we focus on are perception-based ones like colour concepts
or concepts of natural kinds, not theoretical concepts.

Our approach shows a strong parallel to epistemic logic. In that well-estab-
lished branch of modal logic, one assumes that there is an objective side (that
which can be represented) in the form of an algebra of true propositions, and an
epistemic subject can represent some of these propositions as what she believes to
be true. Whether the subject is granted knowledge normally depends on a number
of side conditions, most of which are closure conditions for the set of propositions
believed to be true. E.g., many systems of epistemic logic presuppose closure
under logical consequence, so that a subject will only be granted knowledge of a
proposition p if she also represents all logical consequences of p as believed-true.
There is a long-standing debate about the adequacy of such closure conditions
under the heading of “the problem of logical omniscience”: empirical subjects
just cannot represent all logical consequences of any proposition as believed-
true, since empirical subjects are finite, but there are infinitely many logical
consequences of any given proposition (cf. [2], [3]).

In developing an epistemic logic of concepts, we have to face a similar problem.
In parallel to propositional epistemic logic, we distinguish between an objective
side of concepts and a subjective side of representations. Our main question can
be phrased in terms of closure conditions: which conditions does a subjective set
of representations have to meet in order to be truly conceptual? Just like for
propositions, a trivial condition which would allow for representing only a single
concept won’t do. On the other hand, imposing strict closure conditions runs
the risk of ruling out too many empirical subjects for concept possession at all.
Our task will be to find a good balance between these two extremes.

In Section 2, we will first describe the objective side of how concepts are
structured. In Section 3, we then address the question of how much of that
structure must be mirrored on the subjective side in order to grant subjective
possession of concepts.

2 The Structure of Sets of Concepts

In this section we will regard relations between the elements of a set of concepts.
But let us first say a word about the kind of such elements: we focus on perception
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based concepts and we do not assume that the epistemic subject possesses a
language. This restricts the concepts that we will be dealing with to rather simple
ones. In particular, we do not consider second-order concepts, i.e., concepts that
are themselves sets of concepts. Also, as we are interested in minimal conditions
of concept possession, we presuppose only a thin notion of concept, not one that
has rich internal structure. In this respect, our approach differs from, e.g., the
detailed account of human concepts proposed by Kangassalo [6].

In line with this approach, we do not wish to presuppose too fine-grained a
structure among the concepts that we are dealing with. We will focus exlusively
on the subconcept relation and on relations definable in terms of it. The sub-
concept relation is the most basic relation on any set of concepts, and it will
have to be considered in any case. There are further relations on a set of con-
cepts that might be interesting. E.g., each concept could have a complement, or
we could consider an incompatibility relation among concepts. However, in this
paper we stick to positively defined, perception based concepts. With respect
to these, negation appears to presuppose an additional layer of theory. Finally,
having opted for first-order concepts only, the element relation among such a set
of concepts is empty.

The fact that we do not require language capability as an essential ingredient
of concept possession means that we must not assume that the epistemic subject
can individuate concepts by name. Thus, the fact that languages can have syn-
onymous terms referring to one and the same concept, does not pose a problem
for our approach.

We will only consider finite structures in this paper. This will allow us to
sidestep a number of technical issues, but there is also a philosophical basis
for this restriction: we are interested in ascribing concept possession to actual
(biological or artificial) epistemic subjects, i.e., to finite beings.

We will denote a set of concepts by C. Single concepts will be denoted by
lower case sans serif expressions, e.g., a, b, cornflower etc.

2.1 The Subconcept Relation

C is structured by the (reflexive) subconcept relation, usually dubbed ISA —
e.g., as in bird ISA animal.

Now let us regard how the subconcept relation orders a set C of concepts.
If C is a singleton there is not much to order, except that ISA is reflexive on
the element. If C contains two concepts, we have the following possibilities: one
concept can be a subconcept of the other or they can have nothing to do with
each other. In case C contains three or more elements, two concepts can have
a common sub- or superconcept, and they can be otherwise connected by the
subconcept relation via a chain of intermediate concepts. It never happens that
a concept is both a proper sub- and a proper superconcept of another concept.
This suggests that, formally, the set of concepts C is at least partially ordered:
ISA is reflexive, antisymmetric and transitive on C.

Does the notion of a partial order really characterise ISA? The alternatives
would be either to drop or to add formal requirements. Dropping requirements
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appears implausible: ISA is certainly reflexive. It is also transitive: a subconcept
of a subconcept of c is itself a subconcept of c. How about antisymmetry? Could
there be concepts a and b such that a is a subconcept of b and b a subconcept
of a while a �= b? We frankly do not understand what that would mean. Thus,
ISA is at least a partial order.

Maybe ISA satisfies additional formal requirements? Two intuitions pull in dif-
ferent directions at this point. On the one hand, in the tradition of formal concept
analysis [5], it is customary to suppose that a set of concepts forms a lattice. This
means that any two concepts have a common subconcept and a common super-
concept, which is a lot of structure. On the other hand, in a philosophical tradition
stemming from Aristotle, concepts can be thought of as ordered in a taxonomic
tree. Formally, ISA on a taxonomic tree is a partial ordering that fulfills the ad-
ditional formal requirement of backward linearity. In a taxonomic tree, concepts
are distinguished by their genus proximumand their differentia specifica. Ordering
concepts in such trees is intuitively appealing — think of zoology. However, such
an order is unable to account for many of our intuitive uses of concepts, as taxon-
omy is always just with respect to one hierarchy of classification. We do however
mix different classifying hierarchies. For example, peas are both vegetables and
green. In a taxonomic tree, it follows that vegetable must be a subconcept of green
or vice versa. Apparently, this is not the case. One can force concepts into a tree
by adding multiple copies of nodes, as in Fig. 1. This is, however, both inelegant
and yields an exponential overhead of new nodes.

Faced with the task of deciding between general partial orders, lattices or trees,
wedonot see overwhelming, univocal arguments in favourof oneof themore specific
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vegetable fruit
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Fig. 1. From a partial order to a tree
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structures. Thus we will only presuppose that 〈C, ISA〉 is a partial order. This does
not exclude the more specific cases, while keeping our theory general.

Note that we do not require ISA to connect all of C. Let con(a) be the set of
concepts connected to a concept a via the ISA relation (i.e., the reflexive transitive
closure of ISA and its converse). There could be some b ∈ C such that b �∈ con(a),
in which case con(a)∩con(b) = ∅. We do not exclude the possibility of C consisting
of several of such ISA-clusters, isolated from each other. In fact, we do not think it
likely that this is the case for an objective ordering of concepts, but in this paper
we will maintain full generality. In Sect. 3.3 we will argue that it is useful to allow
a subjective ordering of concepts to contain disconnected elements.

In the finite case (as well as in ‘friendly’ infinite cases), the ISA relation gives
rise to a covering relation that relates just closest subconcepts in the partial order.
Let a, b ∈ C. Then a is covered by b, written a ≺ b, iff (i) a ISA b, (ii) a �= b, and
(iii) on the assumption that a ISA c and c ISA b we have c = a or c = b.

2.2 Siblings and Cousins

Let us introduce two useful notions with the help of ≺: the sibling relation and
the cousin relation.

The intuition for the sibling relation comes from trees: in a tree, a sibling of a
node is a node with the same mother. Here, we generalise this notion to partial
orders, excluding the reflexive case.

sib(a, b)⇔df a �= b ∧ ∃c (a ≺ c ∧ b ≺ c) .

This relation is irreflexive and symmetric, but not transitive (in view of a �= b).
Sharing a covering node (∃c(a ≺ c∧ b ≺ c)) is not necessarily transitive (though
on trees it is). Staying in the family metaphor, one could say that partial orders
allow for half-siblings. And the half-sister of Eve’s half-brother need not be her
sister at all (see Fig. 2 (a)).

The second relation that we will introduce is the cousin relation. Two concepts
are cousins if they have immediate superconcepts that are siblings. Cousins are
more independend than siblings, but still connected via the ISA relation.

cousin(a, b)⇔df a �= b ∧ ∃c, d(a ≺ c ∧ b ≺ d ∧ sib(c, d))

Eve John Mary

father stepmother

a

e

d

b

c

(a) (b)

Fig. 2. (a) patchwork families, (b) a is a candidate for being one’s own cousin
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Again, reflexivity it excluded. We have to put in this condition explicitly
because otherwise in the case of the partial order of Fig. 2 (b), a would be its
own cousin. Note that cousin is a symmetric relation.

3 Possession of a Concept

After we have made some observations on the form of sets of concepts in general
and introduced relations on them, we now turn to the subjective side of concept
possession. We thus consider the epistemic view that an animal or artificial
system has of the objective set of concepts. The question is how much of that
set has to be grasped in order to ascribe concept possession sensibly. In the
following we will first discuss the extreme cases of requiring no structure at
all and of demanding so much that even humans cannot be ascribed concept
possession any more. Then we will present an intermediate position, based on
results of cognitive science as well as on solutions to the problem of omniscience
(see Sect. 1).

To state the question formally, let i be an epistemic subject. Now let us
introduce a set Pi ⊆ C for each i. Pi shall denote the set of concepts i possesses.
Now we can state the question as follows: given a ∈ Pi, what other concepts
must Pi contain? And what structure does Pi need to have?

Relations on Pi

Each Pi might just be a small subset of C. Still, Pi can have an internal structure.
In the following, we presuppose that the epistemic subject does not err in the
concepts nor in their relations (cf. Sect. 1). A similar presupposition is operative
in propositional epistemic logic. In general, we would not ascribe possession of
some cognitive content to a subject who mixes up the inferential relations in
which that content stands. Thus, for a, b ∈ Pi we have

a ISAi b iff a ISA b,

where ISAi denotes the ISA relation defined on Pi instead of on C. From the
epistemic point of view this is reasonable, since if an epistemic subject possesses
both a concept and one of its superconcepts, he has to treat them as concept and
superconcept. If he treated them differently, e.g., as siblings, our intuition would
not grant him possession of both concepts. Formally, Pi is thus a subordering
of C.

This perfect matching need not hold for the covering relation. Pi is likely to
be less fine-grained than C. In the examples of Fig. 3, all nodes belong to C, but
just the circled ones belong to Pi. Let ≺i denote the covering relation of ISAi.
We have plum ≺i fruit, but not plum ≺ fruit. Similarly with all the other nodes
at the bottom level. This does not conflict with our use of concepts. What we
use extensively is the ISA relation, but we would always be reluctant to label
a concept as a direct superconcept absolutely — there is always the possibility
that we do not know enough of the area, or that we have missed some in-between
concept.
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Regarding sib and cousin, which depend on the covering relation, even more
can change if we determine them via Pi. Let sibi and cousini denote the relations
defined on Pi instead of on C, i.e., in terms of ≺i instead of ≺, via the respective
definitions from Sect. 2.2. Now regard the example of Fig. 3(a) once more. We have
sib(plum, apricot) and cousin(plum, grape), but no cousini relation holds inPi, and
we have derived relations like sibi(plum, grape) etc. For this special example, sibi is
even larger than sib, while cousini gets trivialised onPi. Using a different example,
for Pj = Pi \ {fruit}, sibj = ∅, we can enlarge cousini as well (see Fig. 3(b)).
These examples illustrate the fact that sibi and cousini generally are only weakly
related to sib and cousin. If we use sibling or cousin relationships in specifying
closure conditions, it therefore seems advisable to employ the objective relation,
i.e., the restrictions of sib and cousin toPi. This means that these relations cannot
in general be defined internally (in terms ofPi and≺i): sib(a, b) can hold inPi even
if the superconcept c witnessing the sibling relation is not inPi. The same holds for
cousin. We therefore adopt sib and cousin as primitive relations on Pi: sib(a, b)
holds in Pi if and only if a, b ∈ Pi and sib(a, b) holds in C.

This way, concepts not connected via ISAi can still stand in the sibling or
cousin relation in Pi.

plum apricot grape apple

fruit without stone

fruit

stonefruit

(a) (b)
Fig. 3. Examples of two Pis smaller than C: (a) more siblings (b) more cousins

3.1 Atomism

The absolutely minimal requirement for possession of a concept is just posses-
sion of that very concept. The approach to concept possession that specifies no
additional requirement is called atomism. That view appears to be endorsed by
Fodor [4, p. 121]. Atomism yields maximal independence of concepts. In par-
ticular, there are no conditions on the complexity of the structure of the set
of concepts an epistemic subject can possess. Since every concept can be pos-
sessed on its own, the test for concept possession cannot go far beyond testing
the capability to classify objects with respect to the concepts. This opens up
the possibility of ascribing concepts to small children and animals. However, it
turns out that atomism is untenable.

Seen from the point of cognitive science, the problem with atomism lies ex-
actly in its generous openness. Since there is no complexity of the structure
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of concepts required, there is no distinction between concept possession and
stimulus-response behaviour. As discussed in Sect. 1, this is not adequate.

3.2 Holism and Other Closure Conditions

Now we address the issues on the other side of the scale: demanding as much
structure as there is.

Holism. According to a stricly holistic approach, an epistemic subject needs to
possess the whole set of concepts in order to be granted possession of even a
single concept. This is too harsh a requirement even for humans. Even if the
objective set should be finite, it is probably very large; too large for the capacity
of a single mortal being. Recall from Sect. 2.1 that con(a) is the set of concepts
connected to a concept a via the ISA relation. Then the holism condition reads
as follows:

∀a, b[(a ∈ Pi ∧ b ∈ con(a)) → b ∈ Pi].

Note that this condition does not necessarily require possession of all concepts
from C. It just requires possession of all concepts that are connected to the
concept in question via ISA. Should there be two or more isolated structures of
concepts (cf. Sect. 2.1) all but one could be left out completely.

Closure under Superconcepts. Closure under superconcepts is a bit less demanding.

∀a, b[(a ∈ Pi ∧ a ISA b)→ b ∈ Pi].

In this case, one does not need to possess the whole set of concepts, but just
everything along the order relation starting with the concept in question. This
recursive abstraction and generalisation is very natural for humans (a dog is
a mammal, a mammal is an animal, an animal is a living being, . . . ), but it
is not clear why it should be essential for concept possession. In particular, it
will be next to impossible to find an animal capable of this level of abstraction.
On the other hand, there are clever animals to whom we want to ascribe con-
cept possession, e.g., the parrot Alex (see Sect. 1). So this condition demands
too much.

Closure under Subconcepts. Closure under subconcepts is formally similar, but
has a different motivation.

∀a, b[(a ∈ Pi ∧ b ISA a)→ b ∈ Pi].

Again, the order relation is followed, but this time downwards in the set of
concepts. It is not a process of abstraction but of specialisation that is carried
out. Once more, this is natural for humans (some dogs are large dogs, some
large dogs are St. Bernhards, some St. Bernhards are trained for rescue in the
mountains, . . . ), but might rule out concept possession for animals.
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Closure under Sub- and Superconcepts. For the sake of completeness, let us
regard the conjunction of the closures of the above, closure under both super-
concepts and subconcepts.

∀a, b [(a ∈ Pi ∧ (a ISA b ∨ b ISA a)) → b ∈ Pi] .

This closure is subject to both objections raised above. In addition, as this
condition has to hold for every concept in Pi, this type of closure yields the
whole set of concepts connceted to a: we are back at holism.

Closure under Siblings and Cousins. A closure condition that requires less ab-
straction is closure under sibling and cousin concepts.

∀a, b[(a ∈ Pi ∧ (sib(a, b) ∨ cousin(a, b)))→ b ∈ Pi].

Note that we talk here about the sib and cousin relations on the objective set
of concepts (cf. the discussion before Sect. 3.1). But again, do we have to possess
all sibling concepts in order to possess one single concept? In the Indo-European
language family, we have eleven basic colour concepts. There are other languages
that have considerably less basic colour concepts (down to just two concepts, for
black and white). If closure under siblings were a necessary condition, people
with just the concepts of black and white could not even have the same colour
concepts for these two colours as we have. But they do, as Berlin and Kay have
shown in [1]. So this condition is not adequate either.

Closure under Witnesses. Another approach towards more realistic closure con-
ditions consists in weakening the universal quantification to an existence
quantification. Instead of requiring all concepts of a certain kind (e.g., all su-
perconcepts) one can just require (at least) one concept of that kind. This one
concept witnesses that the condition does not run empty (which might be an-
other danger for all-quantified conditions). We will call this kind of closure clo-
sure under witnesses. For example, one can demand closure under the following
condition:

∀a [(a ∈ Pi ∧ ∃b(a ISA b)) → ∃b(a ISA b ∧ b ∈ Pi)] ,

which means that if i possesses a concept a and there is a superconcept of a at
all, i possesses at least one superconcept of a as well. This condition is met if
Pi contains just one chain of concepts connected through ISA. Analogously, one
could formulate a definition using subconcepts, going down in the order instead
of up.

The problem of this approach lies again in our goal to leave a possibility
for animals to possess concepts. As we discussed already in the case of closure
under all superconcepts, humans do not appear to have a problem with iterated
generalisation. Neither do they have a problem with iterated specialisation. But
there is no reason why these faculties should be essential for concept possession.
There is even a reason against that. From psychology we know that there is
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a level of perceptually based prototype concepts that are learned easiest by
children. Learning how to generalise or to specialise such concepts comes much
later in the development. Still our intuition tells us that children possess these
concepts as soon as they show the appropriate classification behaviour.

So far we have seen that requiring no structure of Pi does not give enough
complexity for concept possession. On the other hand, stipulating closure condi-
tions that are universally quantified amounts to requiring more cognitive abilities
than are necessary for mere concept possession. So the adequate condition must
lie somewhere in between. We have discussed weakening the closure under super-
concepts and subconcepts to existential quantification. This still runs into the
problem of requiring the capability of repeated generalisation or specification for
concept possession. In the next section we will regard a weakened condition on
closure under siblings and cousins, which appears to be psychologically adequate.

3.3 Closure Under Witnesses for Siblings and Cousins

In their paper [7], Newen and Bartels propose an account of what it takes to
possess a concept based on psychology and animal studies. They argue that there
are certain levels of complexity of behaviour that can be related to levels of cog-
nitive ability. Concepts are located on an intermediate level. Concept possession
requires flexible behaviour more complex than fixed stimulus-response schemata,
but less complex than, e.g., planning based on propositional knowledge.

Based on their assessment of the complexity of behaviour typically thought
to require conceptual representations, Newen and Bartels propose two structural
requirements for concept possession. In order to possess a concept, an epistemic
subject should first possess another concept of the same dimension of classifica-
tion, e.g., not just red, but blue, too. We formalise this in terms of the (objective)
sibling relation

∀a[a ∈ Pi → ∃b(sib(a, b) ∧ b ∈ Pi)].

The other requirement is to possess another concept on the same level of
abstraction that is not, however, a sibling. The intuition behind this goes back
to classifying objects: an epistemic subject shall be capable of sorting objects
under different dimensions of classifications, with respect to different aspects.
This, of course, need not work for an arbitrary object — just for those that fall
under more than one concept that the epistemic subject possesses. Again, this
requirement is symmetric. So far, the cousin relation is our best canditate for a
formalisation.

∀a[a ∈ Pi → ∃b(cousin(a, b) ∧ b ∈ Pi)].

This condition does not exactly match the above intuition. What we have
is that in a tree, if the condition is fulfilled, we can ascribe concept possession
to the epistemic subject. So the condition is sufficient, but it is not necessary:
there can be nodes on the same level that are related more distantly. On general
partial orders, the condition is not even sufficient. We encounter two issues: a
concept can be both a cousin and a sibling of another concept, with respect
to different superconcepts. One would have to exclude that this one concept is
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used to fulfill both conditions. The second issue is with the intuition of levels of
abstraction: it can happen that two concepts on different levels are cousins. In
this case it is not possible to ascribe levels unambiguously to C.

Some partial orders admit the definition of levels, while others do not. For-
mally, we can capture this distinction as follows: If a ISA b, then c1, . . . , cn ∈ C
form a direct conection from a to b if a = c1 ≺ · · · ≺ cn = b. We call n the length
of the connection. Let dc(a, b) be the set of all direct connections from a to b.
Then we can say that C respects levels if for any elements a and b, all direct
connections are of the same length, i.e.,if the following holds:

∀a, b ∈ C ∀〈c1, . . . , cn〉, 〈d1, . . . , dm〉 ∈ dc(a, b) [a ISA b→ n = m] .

That is, in a partial order that respects levels, any two nodes have a fixed
distance. In trees, this is obvious: if a ISA b, then dc(a, b) has exactly one element.

If C respects levels, we can define a level function: Let L : C → Z be a function,
assigning every concept in C an integer indicating its level of abstraction. If a
is a perceptually based prototype concept, L(a) = 0 shall hold. In addition, we
require a ≺ b ⇔ L(a) + 1 = L(b).

With this terminology, we can state the following condition for possessing
concepts on the same level of abstraction.

∀a [a ∈ Pi → ∃b(L(a) = L(b) ∧ a �= b ∧ ¬sib(a, b) ∧ b ∈ Pi)] .

That is, to every concept possessed by the epistemic subject i there is a different
concept possessed by i that is on the same level of abstraction, but not in the
same dimension of classification (i.e., not a sibling).

Further work will be required to weigh carefully the pros and cons of demand-
ing the additional structure embodied in L. So far, we have the condition on the
existence of siblings and we search for another symmetric condition requiring
the existence of one more element of Pi. By closure under these conditions, we
get a set of at least four concepts.

4 Conclusion

When does a biological or artifical system have concepts? In this paper, we
addressed this question from a formal point of view. We focused on the inter-
relation between a given objective structure of concepts, which we argued is a
partial ordering, and a subject’s representation of that structure, which we ar-
gued should be a subordering. The main question was how much of the structure
of the objective side needs to be mirrored subjectively in order to grant posses-
sion of concepts. We thus discussed a number of closure conditions for subjective
sets of representations. Based on results from cognitive science, we argued that
the appropriate closure condition that strikes a balance between atomism and
holism is closure under witnesses for siblings and cousins.

As we argued in Sect. 3.3, we believe that closure under witnesses for siblings is
both formally and psychologically adequate. Closure under witnesses for cousins
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is a formally precise condition that psychologically at least points in the right
direction. In order to further develop the epistemic logic of concepts we hope to
benefit from discussions with both cognitive scientists and scientists working in
the field of AI.
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Abstract. Amine is a Java open source multi-layer platform dedicated to the 
development of intelligent systems and multi-agents systems. This paper and 
companion papers [2, 3] provide an overview of Amine platform and illustrate 
its use in the development of dynamic programming applications, natural 
language processing applications, multi-agents systems and ontology-based 
applications. 

1   Introduction 

Amine is a Java open source multi-layer platform and a modular Integrated Develop-
ment Environment, dedicated to the development of intelligent systems and multi-
agents systems. Amine is a synthesis of 20 years of works, by the author, on the 
development of tools for various aspects of Conceptual Graph theory. 

This paper shows how dynamic programming, natural language processing and 
multi-agents systems can be developed using Amine. The companion paper [2] 
illustrates the use of Amine in the development of ontology based applications. A 
forthcoming paper will describe the use of Amine in problem-solving applications; 
and especially in the development of a strategic card game called Tijari (which has 
some similarity with Bridge card game).  

We urge the reader to consult Amine web site1 for more detail. Source code, 
samples and documentation can be downloaded from sourceforge site2. 

The paper is organized as follows: section 2 introduces briefly Amine platform. A 
more detailed description of Amine architecture is provided in the companion paper 
[3]. Section 3 introduces the re-engineering, extension and integration of Prolog+CG 
language [4, 5] in Amine. Section 4 introduces the re-engineering, extension and 
integration of Synergy language [6, 7] in Amine. It shows also how Synergy has been 
extended to enable dynamic programming. Section 5 discusses the use of the new 
version of Prolog+CG in the development of natural language processing applica-
tions. Section 6 illustrates briefly the use of Amine, in conjunction with Jade3 (Java 

                                                           
1 amine-platform.sourceforge.net  
2 sourceforge.net/projects/amine-platform  
3 jade.tilab.com/  
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Agent Development Environment), in the development of a multi-agents system 
called Renaldo. A forthcoming paper will describe the development of Renaldo in 
more detail. 

Section 7 provides a comparison of Amine with other CG tools. Section 8 outlines 
some current and future work. Section 9 concludes the paper. 

2   An Overview of Amine Platform 

Amine is a modular integrated environment composed of four hierarchical layers: a) 
ontology layer provides “structures, processes and graphical interfaces” to specify the 
“conceptual vocabulary” and the semantic of a domain, b) algebraic layer is build on 
top of the ontology layer: it provides “structures, operations and graphical interfaces” 
to define and use “conceptual” structures and operations, c) programming layer is 
build on top of the algebraic layer: it provides “programming paradigms/languages” 
to define and execute “conceptual” processes and, d) multi-agent layer provides 
plugs-in to agent development tools, allowing for the development of multi-agent 
systems.  

More specifically: 

1. Ontology layer: It concerns the creation, edition and manipulation of multi-lingua 
ontology. The companion paper [2] presents this layer in detail (including 
ontology meta-model and ontology related processes).  

2. Algebraic layer: this layer provides several types of structures and operations: 
elementary data types (AmineInteger, AmineDouble, String, Boolean, etc.) and 
structured types (AmineSet, AmineList, Term, Concept, Relation and 
Conceptual Graph). In addition to operations that are specific to each kind of 
structure, Amine provides a set of basic common operations (clear, clone, 
toString, etc.) and various common matching-based operations (match, equal, 
unify, subsume, maximalJoin and generalize). Structures can be generic; they 
can contain variables and the associated operations take into account variable 
binding (the association of a value to a variable) and binding context (the 
programming context that determines how variable binding should be inter-
preted and resolved, i.e. how to associate a value to a variable and how to get 
the value of a variable).  

Amine structures and operations (including CG structure and CG operations) 
are APIs that can be used by any Java application. They are also “inherited” by 
the higher layers of Amine. 

The companion paper [3] provides more detail on the algebraic layer of 
Amine. It highlights also the use of Java interfaces to enhance the genericity of 
Amine. See also Amine web site for mode detail on this basic feature of Amine. 

3. Programming layer: Three complementary programming paradigms are provided 
by Amine: a) pattern-matching and rule-based programming paradigm, 
embedded in PROLOG+CG language which is an object based and CG-based 
extension of PROLOG language, b) activation and propagation-based 
programming paradigm, embedded in SYNERGY language, and c) ontology or 
memory-based programming paradigm which is concerned by incremental and 
automatic integration of knowledge in an ontology (considered as an agent 
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memory) and by information retrieval, classification and other related 
ontology/memory-based processes. 

4. Agents and Multi-Agents Systems layer: Amine can be used in conjunction with a 
Java Agent Development Environment to develop multi-agents systems. Amine 
does not provide the basic level for the development of multi-agents systems (i.e. 
implementation of agents and their communication capabilities using network 
programming) since this level is already offered by other open source projects 
(like Jade). Amine provides rather plugs-in that enable its use with these projects 
in order to develop multi-agents systems. 

Amine provides also several graphical user interfaces (GUIs): Ontology GUI, CG 
Notations editors GUI, CG Operations GUI, Dynamic Ontology GUI, Ontology 
processes GUI, Prolog+CG GUI and Synergy GUI. Amine Suite Panel provides an 
access to all GUIs of Amine, as well as an access to some ontology examples and to 
several tests that illustrate the use of Amine structures and their APIs. Amine has also 
a web site, with samples and a growing documentation. 

Amine four layers form a hierarchy: each layer is built on top of and use the lower 
layers (i.e. the programming layer inherits the ontology and the algebraic layers). 
However, a lower layer can be used by itself without the higher layers: the ontology 
layer (i.e. with the associated APIs) can be used directly in any Java application 
without the other layers. Algebraic layer (i.e. with the associated APIs) can be used 
directly too, etc. Among the goals (and constraints) that have influenced the design 
and implementation of Amine was the goal to achieve a higher level of modularity 
and independence between Amine components/layers. 

Amine platform can be used as a modular integrated environment for the 
development of intelligent systems. It can be used also as the kernel; the basic 
architecture of an intelligent agent: a) the ontology layer can be used to implement 
the dynamic memory of the agent (agent’s ontology is just a perspective on the 
agent’s memory), b) the algebraic layer, with its various structures and operations, 
can be used as the “knowledge representation capability” of the agent, c) the 
programming layer (i.e. dynamic ontology engine, Prolog+CG and Synergy) can be 
used for the formulation and development of many inference strategies (induction, 
deduction, abduction, analogy) and cognitive processes (reasoning, problem 
solving, planning, natural language processing, dynamic memory, learning, etc.), d) 
Synergy language can be used to implement the reactive and event-driven 
behaviour of the agent.  

One long-term goal of the author is to use Amine, in conjunction with Java Agent 
Development Environments (like Jade), to build various kinds of intelligent agents, 
with multi-strategy learning, inferences and other cognitive capabilities. 

The group of Peter Ohrström and Henrik Scharfe has developed on-line course that 
covers some parts of Amine Platform4. Amine is used by the author to teach Artificial 
Intelligence (AI) courses. Amine is suited for the development of projects in various 
domains of AI (i.e. natural language processing, problem solving, planning, 
reasoning, case-based systems, learning, multi-agents systems, etc.).  

                                                           
4 www.huminf.aau.dk/cg/ 
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3   Re-engineering, Extension and Integration of Prolog+CG in 
Amine 

Prolog+CG has been developed by the author as a “stand-alone” programming 
language [4, 5]. The group of Peter Ohrström developed a very good on-line course 
on some aspects of Prolog+CG. Let us recall three key features of previous versions 
of Prolog+CG: 

• CG (simple and compound CGs) is a basic and primitive structure in Prolog+CG, 
like list and term. And like a term, a CG can be used as a structure and/or as a 
representation of a goal. Unification operation of Prolog has been extended to 
include CG unification. CG matching-based operations are provided as primitive 
operations. 

• By a supplementary indexation mechanism of rules, Prolog+CG offers an object 
based extension of Prolog.  

• Prolog+CG provides an interface with Java: Java objects can be created and 
methods can be called from a Prolog+CG program. Also, Prolog+CG can be 
activated from Java classes. 

The interpreter of Prolog+CG, that takes into account these features (and others) has 
been developed and implemented in Java by the author. 

The above three key features are still present in the new version of Prolog+CG but 
the re-engineering of Prolog+CG, which was necessary for its integration in Amine 
platform, involved many changes in the language (and its interpreter). Five main 
changes are of interest (see Amine Web Site for more details): 

• Type hierarchy and Conceptual Structures (CSs) are no more described in a 
Prolog+CG program. Prolog+CG programs are now interpreted according to a 
specified ontology that includes type hierarchy and CSs. Also, a Prolog+CG 
program has the current ontology as support: Prolog+CG interpreter attempts first 
to interpret each identifier in a program according to the current lexicon of the 
current ontology. If no such identifier is found, then the identifier is considered as 
a simple identifier (without any underlying semantic). 

• The notion of project is introduced: user can consult several programs (not only 
one) that share the same ontology.  

• Prolog+CG inherit the first two layers of Amine: all Amine structures and 
operations are also Prolog+CG structures and operations. And of course, 
Prolog+CG user can manipulate the current ontology and the associated lexicons 
according to their APIs.  

• The interface between the new version of Prolog+CG and Java is simpler and 
“natural” in comparison with previous interfaces (see Amine Web site for more 
detail). 

• Interoperability between Amine components: Prolog+CG can be used in 
conjunction with the other components of Amine (i.e. dynamic ontology engine 
and Synergy can be called/used from a Prolog+CG program). 
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4   Re-engineering, Extension and Integration of Synergy in Amine 

In [6, 7] we proposed CG activation-based mechanism as a computation model for 
executable conceptual graphs. Activation-based computation is an approach used in 
visual programming, simulation and system analysis where graphs are used to 
describe and simulate sequential and/or parallel tasks of different kinds: functional, 
procedural, process, event-driven, logical and object oriented tasks. Activation-based 
interpretation of CG is based on concept lifecycle, relation propagation rules and 
referent/designator instantiation. A concept has a state (which replaces and extends 
the notion of control mark used by Sowa) and the concept lifecycle is defined on the 
possible states of a concept. Concept lifecycle is similar to process lifecycle (in 
process programming) and to active-object lifecycle (in concurrent object oriented 
programming), while relation propagation rules are similar to propagation or firing 
rules of procedural graphs, dataflow graphs and Petri Nets. 

SYNERGY is a visual multi-paradigm programming language based on CG activa-
tion mechanism. It integrates functional, procedural, process, reactive, object-oriented 
and concurrent object-oriented paradigms. The integration of these paradigms is done 
using CG as the basis knowledge structure, without actors or other external notation. 
Previous versions of Synergy have been presented [6, 7]. The integration of Synergy 
in Amine required re-engineering work and some changes and extensions to the 
language and to its interpreter. New features of Synergy include: 

• Long-term memory introduced in previous definitions of Synergy corresponds 
now to ontology that plays the role of a support to a Synergy “expression/ 
program”, 

• Previous versions of Synergy did not have an interface with Java. The new 
version of Synergy includes such an interface; Java objects can be created and 
methods activated from Synergy. This is an important feature since user is not 
restricted to (re)write and to define anything in CGs. Also, primitive operations 
are no more restricted to a fixed set of operations. 

• The new version of Synergy has an access to the two first layers of Amine. Also, 
since Prolog+CG, Synergy and dynamic ontology formation process are 
integrated in the same platform and share the same underlying implementation; it 
is now possible to develop applications that require all these components. We 
provide an example of this synergy in the next section. 

• Another new feature is the possibility to perform dynamic programming, i.e. 
dynamic formation-and-execution of the program. We focus on this feature in the 
rest of this section. 

4.1   Dynamic Programming with Synergy 

To illustrate what we mean by “dynamic programming”, let us start with the idea of 
database inference proposed by Sowa [9, p. 312] that combines the user’s query with 
background information about the database to compute the answer. Background 
information is represented as type definitions and schemata. Sowa stressed the need 
for an inference engine to determine what virtual relations to access. By joining 
schemata and doing type expansions, the inference engine expands the query graph to 
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a working graph (WG) that incorporates additional background information. Actors 
bound to the schemata determine which database relations to access and which 
functions and procedures to execute. According to Sowa, his inference engine can 
support a dynamic way of deriving dataflow graphs [9, p. 312]. In other words, his 
inference engine can be considered as a basis for a dynamic programming approach 
(recall that dataflow graphs, Petri Nets, executable CG and other similar notations 
have been used to develop visual programming languages). Indeed, his inference 
engine is not restricted to database, it can be extended to other domains and be 
considered as an approach to dynamic programming. 

Our task was to adapt, generalize and integrate the inference engine of Sowa to 
Synergy. The new version of Synergy includes the result of this integration. Figure 1 
illustrates the implementation of Sowa’s example in Synergy. Background 
information (procedural knowledge in terms of strategies, methods, procedures, 
functions, tasks, etc.) is stored in ontology as situations associated to concept types 
(Figure 1.a). During the interpretation/execution of the working graph (WG) (Figure 
1), if a concept needs a value that can not be computed from the actual content of the 
WG (Figure 1.b), then Synergy looks, in the ontology, for the best situation that can 
compute the value (i.e. the descriptor) of the concept. The situation is then joined to 
the WG (Figure 1.c) and Synergy resumes its execution. In this way, the program (i.e. 
the WG) is dynamically composed during its execution (Figure 1). 

This simple example illustrates the advantage of Amine as an Integrated Develop-
ment Environment (IDE); it illustrates how various components of Amine (ontology, 
CG operations, Prolog+CG, Synergy) can be easily used in one application: semantic 
analysis of the request can be done by a Prolog+CG program. The result (an executable 
CG), will be provided to Synergy which illustrates the visual execution of the “dynamic 
program”. After the termination of the execution, the final CG will be an input for a text 
generation program (that can be implemented in Prolog+CG) to provide a text that 
paraphrases the composed “program” responsible for the result. See Amine Web Site 
for more detail on dynamic programming with Synergy. 

    

 (a) Snapshot of the ontology b) The request: initial state of the WG 
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   (c) WG after first maximalJoin      (d)  WG after second maximalJoin and termination  

 of execution 

Fig. 1. Example of Dynamic programming with Synergy (adapted from Sowa [9]) 

5   Natural Language Processing with Prolog+CG 

As stressed in a previous paper [5], several features of Prolog+CG makes it a suitable 
language for the development of natural language processing (NLP) applications: a) 
Prolog+CG is an extension of Prolog which is suited for NLP, b) CG, both simple and 
compound, is provided as a basic data structure, c) Prolog+CG allows CG with 
variables (variable as concept type, concept designator, concept descriptor, or as 
relation type), d) several CG matching-based operations are provided (maximalJoin, 
generalize, subsume, contract, expand, analogy, etc.), e) CG basic operations are 
available (find a concept or a relation in a CG that verify some constraints, etc.), f) the 
possibility to construct and update a CG (by adding more concepts and relations). 

All these features (and others) are made simpler with the integration of Prolog+CG 
in Amine platform. Note that with the new version of Prolog+CG, there is also the 
possibility to use directly the first two layers of Amine. To illustrate the usefulness of 
all these features for NLP, let us consider briefly their use in three sub-tasks of NLP: 
semantic analysis, question/answering and phrase/text generation. 

Semantic analysis with Prolog+CG 
In [5], we illustrated how the above features of Prolog+CG can be exploited to 
develop a semantic analysis process. As a recall, let us consider the following rule 
that shows also the use of new features of Prolog+CG. It illustrates : a) the use of 
variables as concept type, concept designator, concept descriptor and relation type,  b) 
the construction of a concept (E_NP = [N : A1]), c) the construction of a CG (G =   
[N: A1]-R1->[T1 = V1]), d) the use of the primitive branchOfCG that locates a 
branch B in the CG G so that B unifies with the pattern given as the second argument 
of branchOfCG, e) the use of the first two layers of Amine: branch (i.e. a relation with 
its source and target concepts) and CG are two structures of Amine, these structures 
with their methods can be used directly in a Prolog+CG program. In our example, we 
have a call to the method getSourceConcept() that returns the source of the 
branch/relation and a call to the method specialize() that specializes a CG by the 
maximal join of another CG. 
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stativePart([A|P1], P1, G_NP, E_NP, G) :- 
   Adj(A, R1, T1, V1), !,  
   E_NP = [N : A1], 
   G = [N : A1]-R1->[T1 = V1],  
   branchOfCG(B, [N : A1]-R1->[T1 = V1], G), 
   E_N is B:getSourceConcept(), 
   G:specialize(E_N, G_NP, E_NP). 
 
Let us consider now the change in the formulation of the lexicon: in previous 

versions of Prolog+CG, the semantic of the words should be specified in the 
Prolog+CG program itself. For instance, consider the word “open” with some of its 
different meanings: 

 
lexicon("open",verb, 

[Human]<-agnt-[Open]-obj>[OpenableObject]). 
lexicon("open", verb, [Key]<-agnt-[Open]-obj->[Door]). 
lexicon("open", verb, [Open_Box]<-agnt-[Open]-obj->[Box]). 
lexicon("open", verb, [Shop]<-pat-[Open]-   
        -obj->[Door], 
        -ptime->[Time]). 
 
With the new version of Prolog+CG, another formulation is now possible: the 

above different meanings can be considered as background information, stored in the 
used ontology as situations associated to the type Open. User can access the ontology 
to get background information (definition, canon, situation, etc.) for a specific type or 
individual. These changes in the formulation of a lexicon in Prolog+CG lead to the 
following reformulation:   

 
lexicon("open", verb, Open). // one entry for the word “open” 

 
lexicon(_verb, verb, _type, _sem) :- 
   lexicon(_verb, verb, _type), 
   getSemantic(_type, _sem). 
 
Definition of the goal getSemantic/2 is provided below. It searches, from the 

ontology, the background information for a specific type or individual. Note the call 
to the method getCanon() that returns the canon of the type (or returns null if the type 
has no canon) and the call to the method getSituationsDescription() that returns, in a 
list, all situations descriptions that are associated to the specified type. 

 
getSemantic(_Type, _Sem) :- 
   _Sem is  _Type:getCanon(), 
   dif(_Sem, null). 
 
getSemantic(_Type, _Sem) :- 
   _EnumSitDescr  is  _Type:getSituationsDescription(), 
   dif(_EnumSitDescr, null), 
   _ListSitDescr is  
      "aminePlatform.util.AmineObjects": 

enumeration2AmineList(_EnumSitDescr), 
   member(_Sem, _ListSitDescr). 
 
Word disambiguation is performed in the current version of our semantic analysis 

process by using the backtracking of Prolog+CG: if the maximal join of the word’s 
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semantic with the working graph fails, Prolog+CG backtracks and resatisfies the goal 
getSemantic/2 which returns another meaning (i.e. another conceptual structure) for 
the current word. 

Question/Answering 
Semantic analysis of a (short) story would produce a compound CG (see the fragment 
below). Let us call it CGStory. In our example, CGStory is a fusion of three networks: 
a) temporal network composed by "after" relations that specify the temporal 
succession of actions, events, and states, b) causal network composed by "cause" 
relations, and c) intentional network composed by "motivationOf" and "reason" 
relations: 

 
story( 
[Action #act1 =  

[Time : Early]<-time-[WakeUp]-pat->[Man: John]]-after-> 
[State #stt1 = [Hungry]-pat->[Man: John]]-after-> 
 ... 
[State #stt1]<-reason-[Goal=  

[Action=[Food]<-obj-[Eat]-agnt->[Man:John]]]- 
      <-reason-[Action #act2], 
      <-reason-[Action #act5], 
      <-reason-[Action #act7], 
      <-reason-[Action #act8] 
[Action #act3]<-motivationOf-[Goal =  

[Action = [Man:John]<-dest-[Greet]-agnt->[Woman: Mary]] 
]<-reason-[Action #act4] 

[Event #evt1]- 
          -cause->[State #stt2 = [ParkingLot]<-pat-[Slick]], 
          <-cause-[Event #evt2] 
   ). 
 
Semantic analysis process is applied also to questions and for each type of 

question; there is a specific strategy responsible for the search and the composition of 
the answer [1]. Here is the formulation in Prolog+CG of the strategy for answering 
“why” question. It concerns the intentional network: the strategy locates in CGStory 
the branch/relation with relation type “reason” or “motivationOf” and the branch’s 
source concept should unify with the content of the request. The recursive definition 
of the goal reason/2 provides the possibility to follow an “intentional path” to get the 
reason of the reason, etc. 

 
answerWhy(A, Y) :-  
   story(_story), 
   member(R, [reason, motivationOf]), 
   branchOfCG(B, [T = G]<-R-[T2 = A], _story), 
   reason([T = G], Y). 
 
reason(X, X). 
reason([T = G], Y) :- 
   story(_story), 
   member(R, [reason, motivationOf]), 
   branchOfCG(B, [T1 = G1]<-R-[T = G], _story), 
   reason([T1 = G1], Y). 
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For instance, to the question "why did john drive to the store ?", the question/ 
answering program returns: 

 
?- questionAnswering("why did john drive to the store ?",  

_answer). 
{_answer = [Goal = [Action = [Eat #0] - 
                           -agnt->[Man :John], 
                           -obj->[Food] 
                  ] 
         ]}; 
{_answer = [State = [Hungry]-pat->[Man :John]]}; 
 no 
?- 
 
Of course, the above definition of “why-strategy” is simplistic, but the aim of the 

example is to show how Prolog+CG, in the context of Amine, constitutes a suitable 
programming environment for CG manipulation and for the development of NLP 
applications. 

Phrase generation 
Nogier [8] proposed a phrase generation process that is based on: a) word selection, b) 
transformation of the input CG to a “syntactic CG” using semantic/syntactic 
corresponding rules, c) and then linearization of the “syntactic CG” using syntactic 
and morphological rules. All these rules can be implemented in Prolog+CG. To 
produce a concise and precise sentence, the generation process has to select the most 
specific words for the concepts in the input CG [8]. The approach proposed by Nogier 
can be implemented in Amine as follows: use the dynamic ontology engine of Amine 
to classify the input CG according to its concepts. The result of the classification, for 
each concept, is a list of “Conceptual Structures (CS) nodes” in the ontology that are 
the most close to the input CG. Select from these CS nodes, those that correspond to 
type definitions. Compute the correlation coefficient proposed by Nogier on the 
selected definitions to get the “best” words for the current concepts in the input CG. 
We are developing a phrase generation process that is based on the work of Nogier [8] 
and that uses the above implementation for the “word selection” procedure. 

6   Multi-Agents Systems (MAS) with Amine and Jade: The Case of 
Renaldo 

Instead of developing a specific multi-agents layer for Amine, we decided to use 
available open-source “Java Agent Development Environments” in conjunction with 
Amine. In her DESA, Kaoutar ElHari explored the use of Amine and Jade5. Jade 
allows the creation of Agents (i.e. it offers a Java class Agent and manages the 
underlying network processing), the use of different kinds of behaviours and the 
communication with ACL according to FIPA specification. Currently, we use Jade to 
handle the lower level of the MAS (i.e. creation and communication between agents) 
and Amine for the higher level (i.e. cognitive and reactive capabilities of the agents 
are implemented using Amine).  
                                                           
5 jade.tilab.com 
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Currently, the MAS layer of Amine contains one plug-in (Amine/Jade) imple-
mented as a package: amineJade. Other plugs-in (i.e. other packages) could be added 
as other combinations of Amine and “Java Agent Development Environments” are 
considered (for instance Amine and Beegent6). The package “amineJade” offers 
basically two classes:  

• The class PPCGAgent that extends the class Agent (provided by Jade) with 
Prolog+CG interpreter (as its main attribute) and with other attributes and 
methods (like send, sendAndWait and satisfyGoal). 

• The class JadeMAS that offers the possibility, via the method createMAS, to 
create and initiate a multi-agents system.  

Let us consider briefly the case of Renaldo; a MAS that concerns the simulation of a 
child story. The setting of the story is a forest; it corresponds to the environment of 
Renaldo. The characters of the story (the bear John, the bird Arthur, the bee Betty, 
etc.) are the agents of Renaldo. Each type of agents (bear, bird, bee, etc.) has a set of 
attributes, knowledge, goals, plans and actions that are specified as a Prolog+CG 
program. A specific agent can have, in addition, specific attributes, knowledge, goals, 
plans and actions, specified also as a Prolog+CG program.  

The MAS Renaldo is implemented as a Prolog+CG program/file: “Renaldo.pcg”. 
The execution of the MAS Renaldo is initiated by calling the goal “renaldo” which is 
defined as follows: 
 

renaldo :- 
   "aminePlatform.mas.amineJade.JadeMAS":createAgents( 

[John, Arthur, Betty, Environment]), 
   John:satisfyGoal( 
       goal([Bear: John]<-pat-[SatisfyNeed]-obj-> 

  [Hungry]-Intensity-> [Intensity = High])). 
 

The argument of the method createAgents() is a list of agents identifiers. From 
the identifier of each agent (i.e. John), the method gets the associated Prolog+CG 
program/file that specifies the agent (i.e. “John.pcg”). It then locates the header fact 
of the agent to get the ontology and names of other Prolog+CG programs associated 
to the agent. For instance, the header of the agent John (from the program 
“John.pcg”) is:  
 

   header("RenaldoOntology.xml", ["Bear.pcg"]). 
 

The method createAgents() will then create an instance of PPCGAgent class for 
each agent and initiates the associated Prolog+CG interpreter with the specified 
Prolog+CG files and ontology file. For instance, createAgents() will create an 
instance of PPCGAgent class for John and will initiate its Prolog+CG interpreter with 
the files “John.pcg” and “Bear.pcg”, and with the ontology “RenaldoOntology.xml”. 

Note: the environment is implemented as an agent that manages the access, by the 
agents, to shared objects (resources like foods, water, river, etc.) and it is responsible 
also for the treatment of events. 
                                                           
6 www2.toshiba.co.jp/beegent/index.htm 
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After the creation and initiation of the agents (due to the execution of the method 
createAgents()), “renaldo” assigns to John the goal “satisfy hungry with intensity 
high”. The method satisfyGoal() of PPCGAgent calls the Prolog+CG interpreter of 
the agent (recall that each agent has its own Prolog+CG interpreter) to resolve the 
specified goal. 

Renaldo in particular and Amine’s MAS layer in general will be described in more 
detail in a forthcoming paper. 

7   Related Works 

Philip Martin7 provides a detailed comparison of several available CG tools8 (Amine, 
CharGer, CGWorld, CoGITaNT, Corese, CPE, Notio, WebKB). CGWorld is a Web 
based workbench for joint distributed development of a large KB of CG, which 
resides on a central server. CGWorld is no more developed. Corese is a semantic web 
search engine based on CG. WebKB is a KB annotation tool and a large-scale KB 
server. CoGITaNT is an IDE for CG applications. CharGer is a CG editor with the 
possibility to execute primitive actors and to perform matching operation. Notio is not 
a tool but a Java API specification for CG and CG operations. It is no more 
developed. It is re-used however by CharGer and Corese. CPE has been developed as 
a single standalone application. Currently, CPE is being upgraded to a set of 
component modules (to render CPE an IDE for CG applications). Its author 
announces that CGIF and basic CG operations (projection and maximal join) are 
coming soon. The new upgraded version of CPE is underway and it is not yet 
available. CGWorld, Notio and CPE will not be considered in our comparison of 
available (and active) CG tools.  

In his comparison, Philip focuses mainly on the “ontology-server dimension” 
which is specific to his tool (WebKB); he did not consider other dimensions, i.e. other 
classes of CG tools. Indeed, CG tools can be classified under at least 8 categories of 
tools: CG editors, executable CG tools, algebraic tools (tools that provides CG 
operations), KB/ontology tools, ontology server tools, CG-based programming 
languages, IDE tools for CG applications and, agents/MAS tools.  

The category “IDE for CG applications” means a set of APIs and hopefully of 
GUIs that allow user to construct and manipulate CGs and to develop various CG 
applications. Only Amine and CoGITaNT belong to this category. The category 
“CG-based programming language” concerns any CG tools that provide a 
programming language with CG and related operations as basic construct. Only 
Amine belongs to this category, with its two programming languages: Prolog+CG 
and Synergy. The category “Agents/MAS Architecture” concerns CG tools that 
allow the construction and execution of intelligent agents (with cognitive and 
reactive capabilities) and multi-agents systems (MAS). As illustrated in this paper, 
Amine, in conjunction with a Java Agent Development Environment, can be 
classified under this category. 

                                                           
7 en.wikipedia.org/wiki/CG_tools 
8 These tools are listed also in www.conceptualgraphs.org/  
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Symbols used in the table: 
“++”: the tool offers different features concerning the associated category. For 
instance, Amine provides multi-lingua and multi-notations CG editors. The same for 
executable CG: it offers not only the equivalent of actors, as CharGer does, but a 
programming language based on executable CG. This paper illustrates in addition a 
new feature of Synergy: dynamic programming. The same for “KB/Ontology” 
category: Amine provides a rich ontology API, ontology editors and various basic 
ontology processes. And the same for “Programming” category: Amine provides two 
CG based programming languages (i.e. Prolog+CG and Synergy).  

“+”: the tool can be classified under the associated category. 
“-“: the tool can not be classified under the associated category. 
“/”: the tool is not intended to belong to the specified category but it uses some 

aspects of the category. For instance, “web ontology tools” like Corese and WebKB 
are not intended to be used as “algebraic tools” even if they use some CG operations 
(like projection and generalization).  

 

 Amine CharGer CoGITaNT Corese WebKB 

CG Editor(s) ++ ++ ++ - - 

Exec.  CG ++ + - - - 
Algebraic ++ + + / / 

KB/Ontology ++ - ? + + 

Ont. Server - - - - ++ 
IDE ++ / + - - 

Programming ++ - - - - 

Multi-Agent + - - - - 

Fig. 2.  Comparison of available CG tools 

8   Current and Future Work 

Current and future works concern all layers of Amine as well as the development of 
applications in various domains: 

a) Development of the ontology layer: development of interfaces with ontologies 
that use RDF/OWL, development of Web services so that Amine ontologies can 
be used from the Web, development of an ontology server, enhance the current 
ontology drawing module, enhance the basic ontology processes, etc. 

b) Development of the algebraic layer: enhance the implementation of CG operations, 
consider other implementations, enhance the CG drawing module, etc. 

c) Development of the programming layer: enhance the debugger of Prolog+CG as 
well as its interpreter and its GUI, complete the implementation of all the features 
of Synergy, etc.  

d) Development of inference and learning strategies, that will be considered as 
memory-based strategies to provide an operational memory-based and multi-
strategy learning programming paradigm, 
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e) Development of several applications in various areas: reasoning, expert systems, 
ontology-based applications, natural language processing, problem solving and 
planning, case-based systems, multi-strategy learning systems, multi-agents 
systems, intelligent tutoring systems, etc. 

9   Conclusion 

Amine platform can be used to develop different types of intelligent systems and 
multi-agents systems, thanks to its architecture; a hierarchy of four layers (ontology, 
algebraic, programming and agents layers) and to the “openness” of Amine to Java. 
This paper illustrates the use of Amine in the development of dynamic programming 
applications, natural language processing, and in multi-agents systems applications. 
The companion paper illustrates the use of Amine in ontology-based applications.  

We hope that Amine will federate works and efforts in CG community (and 
elsewhere) to develop a robust and mature platform for the development of intelligent 
systems (including semantic web) and multi-agents systems. 
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Abstract. The theoretical part of this paper presents and discusses the conflict 
between Ontology and Commonsense Knowledge (CK) in the context of 
Computer-Human Interaction/Communication. A resolution of this conflict is 
proposed, where Ontology is considered as a special case of CK (i.e. a formal 
CK). By this “rehabilitation” of Ontology to “CK Base”, we extend “by the 
way” the meaning and scope of Ontology to include “CK-based Ontology”. 
This new kind of ontology considers both definitional and schematic/situational 
knowledge. Moreover, we propose for this new kind of ontology an 
organizational scheme based on the use of Conceptual Structures (like 
Definition, Canon and Schematic Clusters).  

The technical part presents the “implementation” of this theoretical 
framework in Amine platform [14] and especially in its Ontology layer. 
Amine’s ontology meta-model is presented as well as various Ontology/CK-
Base related processes.  

1   Introduction 

In Metaphysic and Philosophy, Ontology is not concerned by our “Commonsense 
Knowledge about the World”, but by “the quest of what is necessary true about the 
Physical World” [20-22, 4]. Knowledge should be discarded in favour of a truthful 
and formal description of the “essence” of the World. 

In the last decade, Artificial Intelligence (AI) and Information Sciences scientists 
started with “an analogical use” of the term Ontology; viewed as a 
Terminological/Definitional Knowledge Base that guarantees an efficient sharing of 
(Large) Knowledge Bases (KB). Ontology is therefore viewed as a “terminological” 
support to (large) KB [10-12, 21, 7, 3, and 24]. 

This “analogical use” of the term/concept Ontology has been criticized by 
philosophers [20-22, 10-12, 3, 7, 24] who propose instead the use of “Formal 
Ontology” and a methodology suited for ontology design [21, 10-12]. 

“Applied Ontology”, based on Formal Ontology, is now emerging as a new multi-
disciplinary field, with Semantic Web as the application domain “par excellence”  
[9, 3].  

In general, Formal Ontology is proposed as a new approach to Computer-Human 
Interaction/Communication (CHI/C). However, “Full/Natural” (i.e. uncontrolled, 
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unrestricted, unlimited) CHI/C is also a central topic in Cognitive Science in general 
and in AI in particular. It is well established, from these sciences, that Commonsense 
Knowledge (CK) is a (if not the) vital aspect, in this “big/hard” problem. 

There is therefore a conflict between two opposite approaches to the same domain 
(CHI/C): Formal Ontology, which is (in principle) knowledge-free, and 
Commonsense Knowledge based approach. 

In the theoretical part of this paper (sections 2-3), the first author presents this 
problematical conflict and proposes the following solution: a/an (formal) ontology is 
considered as a special case of Commonsense Knowledge –CK-; formal ontology is a 
“formal CK”: a rigorous, systematic, definitional and truthful CK.  

By this “rehabilitation” of Ontology to “CK based perspective”, we extend “by the 
way” the meaning and scope of Ontology to include “CK-based Ontology”. This new 
kind of ontology considers both definitional and schematic/situational knowledge. 
Moreover, we propose for this new kind of ontology an organizational scheme based 
on the use of Conceptual Structures –CS- (like Definition, Canon and Schematic 
Clusters). More specifically, CSs are used to organize the meaning of (i.e. the CK 
related to) concept types and relations inside an Ontology. 

The technical part of this paper (sections 4-5) presents the “implementation” of this 
theoretical framework in Amine platform [14] and especially in its Ontology layer. 
Amine’s ontology meta-model is presented as well as various Ontology/CK-Base 
related processes. 

2   Ontology vs Commonsense Knowledge (CK) 

2.1   Ontology, Formal Ontology and “Applied Ontology” 

As an inquiry in Metaphysic and Philosophy, Ontology is not concerned by our “CK 
about the World”, but by “the quest of what is necessary true about the Physical 
World”. It is concerned by “What are the types of objects that exist in the World?, 
What are the types of relations between these objects?” etc. [20-22, 10-12]. A type 
corresponds to the form/essence of a set/category of objects. These objects, with their 
types and relations, “exist” even if there is no human to observe them (Trees, 
Animals, Bus … exist even if no human observes them) [20-22]. In this sense, these 
objects (and their forms/essences) are independent of human mind and they are 
different from concepts as considered in Cognitive Psychology, Artificial Intelligence 
(AI) and Cognitive Science [20-22]. Also, CK should not be considered in THIS 
context since the purpose of developing World Ontology is to specify the essence of 
the objects of the World, not to specify our CK about the World [20-22]. For instance, 
in THIS context, Ontology should contain the definition of the Type Bus but not the 
following schema: “typically, a Bus contains a set of about 50 passengers, it is the 
instrument of travel by those passengers at a speed less than or equal to 55 miles per 
hour, and it is the object of driving by some driver” [25 p. 129]. This schema 
represents a “generic/typical situation”; a CK about the type Bus. Several other 
schemata can be related to the type Bus (the same holds for any other type). A schema 
is not (necessarily) a domain-specific knowledge and not (necessarily) a linguistic 
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construct (i.e. a “context of use” of a word); it may represent a generic situation or 
CK, as illustrated by the above schema.  

However, for the Metaphysician/Philosopher, this CK about the type Bus, even if it 
is used by human in his everyday life/activity and in his interaction/communication, is 
not relevant for his Ontology and should not be included in it, because it is not about 
the essence (the essential form) of “what is the type” Bus.  

Conclusion: if the purpose is the construction/development of a World Ontology 
that should contain only the “essence” of the physical objects, then yes, CK should be 
discarded and ignored.  

To complete this brief introduction to “Metaphysical/Philosophical perspective of 
Ontology”, let us consider the following points:  

1. In Metaphysic/Philosophy, World Ontology is considered along two perspectives 
[4, 20, 21]: (i) “Realist” perspective (revisionary metaphysics) which considers 
only the Physical World; it is concerned only by types of the physical objects, not 
by abstract types. Informally, we can say that “realist” perspective is interested by 
the “World without Human” (or Human as a simple physical object, among the 
other physical objects)! (ii) “Phenomenological” perspective (descriptive 
metaphysics) which considers the “Commonsense World” including physical 
objects created (and actions performed) by human and abstract types 
(“Commonsense World” should not be confused with the “CK about the 
Commonsense World”). 

2. Metaphysicians/Philosophers have developed various “Universal Ontologies” for 
the World in totality. They have developed also “Domain-specific Ontologies” like 
“Ontology for Physics”, “Ontology for Biology”, “Ontology for Medicine”, 
“Ontology for Math”, etc. as well as “Ultra-domain-specific Ontologies” like 
“Ontology for Emotion”, “Ontology for Human Action”, etc. 

3. Metaphysicians/Philosophers/Logicians have used/developed formal tools (formal 
logic, formal semantic, set theory, mereology, topology, etc.) for the formulation 
of their ontologies. They have developed “Formal Ontology” [20, 21, 10, and 11]. 
The philosopher Cocchiarella defines “Formal Ontology” as “the systematic, 
formal, axiomatic development of the logic of all forms and modes of being” [11]. 
Guarino insists that “formal” in this definition means "rigorous" and "related to the 
forms of being". Guarino concludes that Formal Ontology is concerned by the 
rigorous description of the forms (i.e. essence) of the physical Objects. He adds 
that in practice, Formal Ontology can be intended as the theory of a priori 
distinctions: (i) among the entities of the world (physical objects, events, regions, 
quantities of matter...); (ii) among the meta-level categories used to model the 
world (concepts, properties, qualities, states, roles, parts...).  

Guarino proposed “ontological principles” that “operationalize” the above “a 
priori distinctions” [10, 11]. He developed also a methodology for “Ontology 
design” based on these principles. He proposed these principles as a foundation for 
the “Ontology Level” of any Knowledge Representation system [12]. 

1. Metaphysicians/Philosophers/Logicians have used computer science (and some AI 
tools and techniques) for the implementation of their ontologies. The Basic Formal 
Ontology (BFO) framework, in which the philosopher B. Smith (and other 
philosophers) is involved, is an example of this “Applied Ontology”. 
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2. With this new interest to Ontology, it became clear that any domain could/should 
have its ontology formally defined and implemented (using hopefully the 
methodology proposed by Guarino). Computer scientists, involved in Information 
Sciences (Data Bases, Information Systems, Semantic Web [3, 9], etc.), as well as 
AI scientists, involved in the development of Large/Sharable Knowledge Bases, 
have developed several ontologies, producing a new field that can be called 
“Applied Ontology” (this is the name of a new Journal edited by Guarino). 

In conclusion, Formal Ontology should be used to develop ontologies for Computer-
Computer Interaction/Communication (CCI/C) or when human is involved in a very 
limited, controlled and restricted way. 

2.2   Commonsense Knowledge (CK) in Cognitive Psychology/Science 

Aristotle defined Human as “Animal with Rationality”. Maybe a better definition 
would be “Animal with Knowledge”. Human intelligence and cognition is based on 
his Conceptual System, Knowledge, Memory and, of course, the related cognitive 
processes. This is the main conclusion from Cognitive Science and AI ([6, 8, 15-19, 
23-25] … it is nonsensical to cite in this paper the huge literature that confirms this 
conclusion). Natural language, Human behaviour, thinking and reasoning, Human 
interaction and communication … can’t be treated adequately without taking into 
account (and seriously) this centrality of Knowledge. 

Following Kant, Peirce, Whitehead and the mainstream of AI and Cognitive 
Science, we may say that “Human IS Process/Knowledge”, the World for Human IS 
his “World of Processes/Knowledge” which includes his CK about the 
“commonsense World”. And his “direct perception” of this “commonsense World” 
may be a “faithful image” of the Physical World [20-22], but an image that is 
included (immersed) in his CK. 

At a more concrete level, “Knowledge about the commonsense World” can be 
viewed as a subset (a fragment) of Human Knowledge (even if this view is very 
simplistic; Knowledge about Commonsense World can't be clearly separated from the 
other Knowledge "parts").  

CK describes generic (and typical) knowledge about the “commonsense World”. 
CK is composed of definitional Knowledge AND situational/typical knowledge. A 
CK Base may contain for instance, the definition of the concept Bus AND a 
“schematic cluster” for concept Bus. Schematic cluster is a collection of schemata like 
the schema for Bus presented before. 

A schema represents (in general) a generic situation. It provides (in general) default 
knowledge and it is an important source of expectation and prediction. It may provide 
causal knowledge, explanation knowledge, axiomatic/constraint and rule based 
knowledge, procedural knowledge, strategic knowledge, emotional knowledge, etc.  

Often, human is unable to provide a precise definition of a type. An ontologist will 
consider such a type as a primitive type and no related knowledge (especially CK) is 
specified in the Ontology. From the knowledge-perspective view, this position is too 
restrictive. CK, in terms of schematic clusters related to concept types, are a valuable 
source of knowledge, for primitive types as well as for defined types. 

Schema Theory is a central component in Cognitive Science and AI [6, 8, 15-19, 
23-25]. It is however outside the scope of this paper. 



304 A. Kabbaj et al. 

The important point here is that “What is the World?” for “ordinary” Human (not 
for the Metaphysician/Philosopher) IS the CK. In other words: what is refereed by 
Metaphysician/Philosopher as “Ontology” is refereed by “ordinary” Human as CK. 
Human, in his everyday life and activity, is not concerned by the “essence” of the 
objects or by “what is necessary true about the World or about a specific domain”. He 
is concerned by his knowledge about the World (or knowledge about a specific 
domain). In his use/practice of natural language, in his activity, in his reasoning, in his 
problem solving activity, in his interaction and communication, etc., “ordinary” 
human uses his CK, not a Metaphysical/Philosophical ontology. 

In Human-Human Interaction/Communication, the situation is very clear: the 
shared knowledge is not a “metaphysical/formal ontology” but CK.  

The situation becomes problematic however, when the application domain 
concerns Computer-Human Interaction/Communication (CHI/C): Which approach to 
consider: "Formal Ontology" or CK? 

2.3   CHI/C: Between Formal Ontology and Commonsense Knowledge 

Human, in his communication and interaction with human or with computer, uses his 
CK. Therefore, the above question becomes: In the context of "real/natural" CHI/C, 
does the Computer (the intelligent system or agent) needs a "Formal Ontology Base" 
or a "CK Base"? Computer and Human should use/share similar Knowledge. It is 
therefore clear that the Computer should have also a CK Base (not a "Formal 
Ontology").  

CK Base has a long history in AI. The importance of CK for (all) intelligent 
activities is strongly established. Different approaches have been (and are being) 
developed in AI to deal with (build and develop) CK. Among these approaches: (a) 
acquisition from natural language, (b) learning, (c) building a huge CK Base. 

Cyc1 is the best example of building a huge CK Base. It is build however with an 
"ad hoc" approach [11]. In Cyc, CK is represented by a partitioned hierarchy and a 
flat collection of axioms. Our proposition is to organize CK in terms of Conceptual 
Structures (especially Definition and Schematic Cluster) around concept types and 
relations. This is crucial for a more modular AND “cognitively-inspired” 
organization. 

Another problematic treatment of CK is encountered in the very used KL-ONE-
like family (and Description Logic) [2, 1]. For instance, our schema for Bus should 
not be inserted in TBox since this Knowledge Base concerns only 
intensional/definitional knowledge. And it should not be inserted in ABox since this 
Knowledge Base concerns only assertional/extensional knowledge; knowledge which 
is specific to a particular problem [1, p. 12] (or a particular “state of affairs”). As 
noted before, our schema for Bus (and many others) is not specific to a particular 
problem; it is a general knowledge. In fact, Brachman uses this same expression 
("general knowledge") to refer to TBox [2]. However, the most part of "general 
knowledge" belongs to CK, which has no (clear) places in TBox/ABox scheme. 
Related critics to KL-ONE-like family (and to Description Logic) have been 
formulated by Doyle and Patil [5]. 

                                                           
1 http://www.cyc.com/cyc 
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Let us recapitulate: we started this section with the question “Which approach to 
consider for ‘real/natural’ CHI/C: ‘Formal Ontology’ or CK?” The answer is “the use 
of CK”. But is it sufficient to share the same (or similar) content of CK (between 
Computer and Human) in order to guarantee a “natural-like” Interaction/ 
Communication? For instance, is it sufficient to use Cyc to guarantee a “natural-like” 
Interaction/Communication with Human? It is not enough because it is well known in 
computer science and in AI that the “Organization of Information/Knowledge” is as 
central and fundamental as the information/knowledge itself [15-19, 23]. If Human 
(cognition) organizes his CK in a way that is totally different from the organization 
used by Cyc (or by other similar axiomatic commonsense-based Ontology) then, the 
access, the retrieval, the use and the update of the knowledge base will not be the 
same, and the Interaction/Communication will not be “natural” (human will be 
frustrated by the behaviour of the computer). Communication/Interaction between 
humans is possible and efficient because humans share similar CK AND similar 
‘Knowledge Organization”. “Knowledge Organization” is an inescapable and a 
fundamental phenomenon. From Cognitive Science and AI, we retain the basic 
conclusion that Conceptual Structures (like Definition, Canon and Schematic 
Clusters) are good candidates for CK Organization at the level of concept types. 

2.4   A Solution to the Conflict Between Formal Ontology and CK in the Context 
        of CHI/C 

In definitive, there isn’t a sharp distinction between “Formal Ontology” and “CK 
Base”: unlike the belief of some philosophers (like B. Smith [20-22]), an Ontology is 
Knowledge “after all”. It is a formalized CK, with a focus on Necessity-Truth and a 
discard of schematic/situational/typical knowledge. It is argued in previous sections 
that Knowledge is more important than Necessity-Truth in the context of 
“full/natural” CHI/C. Therefore, in this context, Formal Ontology can be considered 
as a special case of CK Base (CK where only definitional/axiomatic knowledge is 
considered). For CHI/C domains that require more CK, i.e. that require 
schematic/situational/typical knowledge, the domain ontology should correspond to a 
“full” CK base.  

Amine’s Ontology Layer allows the creation and use of ontologies that belong to 
this Ontology-CK base continuum.  

3   Amine’s Ontology Meta-model 

Amine does not provide a specific ontology, but it provides “epistemological 
constructs” that determine the organization of “multi-lingua conceptual ontology”. It 
is the responsibility of the user/designer to use “adequately” these constructs to model 
her/his ontology according to her/his domain semantics.  

A “multi-lingua conceptual ontology”, or “CK-based ontology” is a generic 
hierarchical knowledge base that “defines” the conceptual vocabulary (concept types, 
relations and individuals) of a domain. Several lexicons (for different languages) can 
be associated to a CK-based ontology. 
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The “definition” of a concept type is considered in Amine in a large sense: it 
corresponds not only to the (classical) type definition, but to the whole CK associated 
to the type. The CK for each type is organized in terms of different Conceptual 
Structures (CS). More specifically, Amine’s ontology meta-model proposes three 
kinds of CS for three kinds of CK (CK that is related to each type): 

a) Definition: this CS enables the expression of definitional knowledge.  
b) Canon: this CS enables the expression of constraint and axiomatic knowledge. It is 

currently limited to the expression of canonical constraints [25]. 
c) Schematic cluster (schemata): schematic cluster is an open-end extendible and 

dynamic set of schemata. Concept, Relation and Schema are the three basic, 
fundamental and essential constituents of Knowledge. In most cases, we can’t 
reduce the meaning of a concept to a closed and situation-free definition (assuming 
that such a definition is possible). A concept is like a “coin with two sides”: a 
possible closed-fixed-static side (the definition) and an open-extendible-dynamic 
side (the schematic cluster). Schematic cluster constitutes a fundamental part in the 
specification of concept meaning. Schema is strongly related to other fundamental 
cognitive notions like “Patterns”, “Conceptual Network”, “Mental Models”, 
“Situations”, “Contexts” and “Experiences” (chunk of Knowledge) and to various 
implementations of schema in AI (frames, scripts, situation, schema, MOP, TOP, 
TAU, etc.). Schemata are high level discrete units of Knowledge (concepts 
represent the low level discrete units). Schemata are dynamic, interconnected, 
continually combined in higher schemata that are themselves combined, etc., 
forming a continuous, dynamic and extendible web of schemata. 

At the structural level: an ontology in Amine is a generalization graph where nodes 
represent Conceptual Structures (CSs). Currently, there are four types of nodes (the 
first author is working on a fifth type of node: metaphor. See Amine Web Site for 
more detail). The fourth type of nodes; context node, is not presented in this paper: 

a. Type and RelationType nodes: nodes that represent concept type and relation type 
respectively. These nodes contain the definition of the type (if provided) and/or the 
canon of the type (if provided). 

b. Individual node: a node that represents an individual (an instance) of a concept 
type. This node contains the description of the individual (if provided). 

c. Schema/Situation node: a node that contains the description of a schema/situation.  
 
There are three types of links used in the composition of a “CK-based ontology”: 

a. Specialization link (s): A type (node) can be specialized by other types (related to 
them by the (s)pecialization/subtype link). Also, a schema/situation can be 
specialized by other schemas/situations. 

b. Instantiation link (i): the (i)ndividual link relates an individual (an instance) to its 
type. 

c. Utilisation link (u):  In general, a schema/situation is not indexed under all types 
contained in it, but only to some of them (determined by the user or by a process 
that interact with the ontology). The schema is related to these types with (u)se 
links. 
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None of the above Conceptual Structures are mandatory: a “minimal” definition of 
a type is the specification of its super-types (the equivalent of primitive concepts in 
KL-ONE family). Then, if a definition is available, it can be specified. Also, 
schemata/situations can be added to the ontology as more CK is acquired and 
required. Also, the content of a canon can be augmented by more constraints and 
axiomatic rules as needed. 

By constraining what kind of CK to consider, Amine’s user can define and use 
different kinds of ontologies. For instance, the simple kind of ontologies is 
“taxonomic ontology”; ontology composed of primitive-types hierarchy. Another kind 
of Ontology is “terminological ontology” where the hierarchy is enriched by type 
definitions (and optionally axioms). Lastly, user can define and use “Commonsense 
Knowledge-based Ontology”, where “full” CK is considered; with the use of 
schematic clusters. 

Amine Ontology Layer can be used to develop all these kinds of ontologies. 
 

Ontology modelling language: Amine ontology Layer is not committed to a specific 
modelling language; any language (CG, KIF, XML, RDF, Frame-Like, etc.) that is 
interfaced with Java may be used as a modelling language for the description of CS. 
Indeed, at the implementation level, a description of a CS is declared as “Object” (the 
root class in Java). However, since we adopt Conceptual Graph (CG) as the basic 
modelling language in the other layers of Amine (algebraic, programming and multi-
agents layers), we use also CG as a modelling language in our ontology examples (see 
next sections and Amine Web Site for more information about this point).  

To be able to create/edit/update ontology in Amine, the developer may either (i) 
use ontology layer’s APIs, from a Java program, or (ii) use directly Amine’s ontology 
GUI. Amine Web Site provides examples of ontology creation and update using 
related APIs from Java programs. The next section presents Amine’s ontology 
GUI/Editor. 

4   Amine’s Ontology GUI 

Amine’s ontology GUI is a multi-view editor (a tree view, a drawing view and a 
browser view) that allows the creation, consultation, browsing, edition and update of 
ontology. This section briefly presents these three views. Figure 1 is a snapshot of an 
ontology edited using the tree view editor. The ontology is visualized in the main 
frame as a hierarchy. Tree nodes represent CSs nodes of the ontology (each type of 
node is represented with a different colour). As noted before, a type node can be 
specialized by other types (and related to them by the (s)pecialization link). For 
instance, PetrolEngine is a specialization of Engine and Gasoline. Also, a type can be 
related to several individuals (by (i)ndividual link) and it can be related to several 
schemata/situations (by (u)se link). For instance, situation SIT#7 is associated to the 
type Container. Also, a situation can be specialized by other situations. For instance, 
SIT#7 is specialized by SIT#9. 

The user can select a specific language (from the languages list associated to the 
ontology) to get the ontology according to the selected language. If required by the 
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Fig. 1. Ontology Tree View Editor 

user, the content of a node is visualized in an auxiliary frame. Some auxiliary frames 
are shown in Figure 1: one frame shows the content of the type node “PetrolEngine” 
and two other frames show contents of two situations. A Type node contains type’s 
definition (if provided) and canon (if provided). For instance, “PetrolEngine” has only 
a definition. The description of a CS (see the three auxiliaries’ frames in Figure 1) is a 
CG that is displayed in multi-lingua multi-notations CG editor (Figure 1): CG can be 
visualized according to the selected language (one tab for every language) and 
according to the selected CG notation (one tab for every notation: Linear form, CGIF 
and Graphical form).  

Ontology’s GUI provides also the possibility to display the super types of a given 
type. For example, the frame “Super Types” shows the super types of the type 
“Steel”. It is also possible to edit synonyms in all available languages for a given type. 
For instance, the Frame “Edit Synonyms for the type: Container” shows synonyms of 
the type “Container” in both English and French.  
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The second possibility is to edit/consult ontology in “Draw View” Editor. Using 
graphical components (graphical nodes for CSs and arrows for links), this view allows 
to use the same functions as those available in tree view mode. Of course, the 
classical graphical operations are available (edition, selection, move, cut/copy/past, 
etc.) and any change (addition, suppression, modification of nodes and/or links) made 
on either modes affect directly the ontology and thus is visible in both modes. Also, 
user can zoom in/out the ontology, she/he can fix the vertical spacing between 
ontology nodes and she/he can locate the position of a specific type or an individual 
node in the ontology.  

To produce an automatic drawing view of an ontology from its tree view, we use 
the basic Sugiyama algorithm2 that enables automatic drawing of a hierarchical graph. 
An improvement of automatic drawing of ontology is underway. 

For a large ontology, the user may have trouble reading the ontology from the 
drawing view. To accommodate this problem, a “Browser View Editor” is provided 
that allows the user to focus on a particular area of the ontology: a) the Browser 
Editor allows getting the neighbourhood of a particular node in the ontology, b) then, 
functions “expand” and “collapse” allow user to explore neighbourhood of any node 
in the Browser view. With expand/collapse functions, user can perform selective 
browsing of her/his ontology.   

5   Ontology Related Processes 

This section presents a short description of Amine’s ontology related processes (see 
Amine Web Site for a detailed description). Unlike most of the “ontology dedicated 
tools/systems”, Ontology processes in Amine are not limited to Classification (and 
related processes). Indeed, since Amine considers Ontology as a special case of CK 
Base, several CK Base processes are also offered (Classification, Information 
Retrieval, Dynamic Knowledge Integration, Elicitation and Elaboration). Here is a 
brief description of these processes:  

• Classification process uses subsumption operation to classify a description in an 
ontology. 

• Information retrieval process (IR) uses the classification process and searches to 
know if the specified description is contained or not in the ontology/memory. The 
aim of IR is not to answer by “yes” or “no”, but rather to situate the specified 
description in the ontology; to determine its neighbourhood: which nodes are 
“fathers” (minimal generalizations of the specified description), which nodes are 
“children” (minimal specialization of the specified description) and which node is 
equal to the specified description. Here is an example that illustrates the use of IR 
from Prolog+CG program/console (see the companion paper for more detail on 
Prolog+CG [14]): 

 
?- ask([Robot]<-agnt-[Wash]-thme->[Inanimate], [Wash]). 
 
The description is : EQUAL to/than the known 
[Wash #0] - 

                                                           
2 plg.uwaterloo.ca/~itbowman/CS746G/Notes/Sugiyama1981_MVU/ 
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       -Agnt->[Robot], 
       -Thme->[Inanimate] 
 
The description is : MORE_GENERAL to/than the known 
[Wash #0] - 
       -Thme->[Truck], 
       -Agnt->[Robot] 
 
The description is : MORE_GENERAL to/than the known 
[Wash #0] - 
       -Thme->[Car], 
       -Agnt->[Robot] 
 yes 
?- 

 
• Dynamic integration process concerns especially the integration of a description of 

type definition or of schema/situation. Dynamic integration process (or knowledge 
acquisition) performs automatic and incremental integration of new information in 
the ontology. The use of this integration process involves a similarity and 
generalization based construction and re-organization of the ontology. Contrary to 
classification, dynamic integration process is a “constructive learning task”: it may 
create a new concept as a result of comparison between other concepts. Dynamic 
integration process is related to concept learning and machine learning in general, 
and to dynamic memory models in particular [15, 19]. 

• Elicitation process is an interactive process that helps a user to make his 
description D more precise and more explicit. For instance, assume that D is: 
[Vehicle]-engn->[Engine]. The user is asked if, by using Engine, he intends 
PetrolEngine or RocketEngine. The user may ask for the definition of the specified 
subtype (to decide if the proposed subtype is indeed the intended type). If the user 
selects one subtype (PetrolEngine for instance), the description is updated (Engine 
will be replaced by PetrolEngine): [Bus]-engn->[PetrolEngine]. The process will 
continue iteratively: it considers all the types used in the current description 
including the new types (PetrolEngine could be replaced by a more specific type). 
Beside this type-directed elicitation process, Amine provides a situation-directed 
elicitation process: while type-directed elicitation operates at the concept level 
(change of concept types), situation-directed elicitation operates at the structural 
level: the current description is integrated in the ontology, using the classification 
process, in order to situate the description in the ontology and to identify its 
neighbourhood; to determine situations that are more specific to the current 
description. The user is then asked if one of these situations fits his/her intended 
description. For instance, situation-directed elicitation may start from the result of 
the above type-directed elicitation ([Bus]-engn->[PetrolEngine]).  The user gets 
then a request from Amine: 

Does this situation tally with your description? : 
[Average]<-mass-[Bus]-engn->[PetrolEngine] 

If the user’s response is yes, the current description is replaced by the selected 
situation and the process continues with situations that are more specific than the 
selected situation. In this sense, the user is involved in an elicitation process. 
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• Elaboration process is introduced below. 

See Amine Web Site for more detail about these processes. Classification, 
Information Retrieval and Dynamic Knowledge Integration will be described in more 
detail in a forthcoming paper. 
Elaboration process uses the inheritance mechanism to provide more information 
about a description D. We differentiate between “deductive elaboration” which uses 
inheritance of type definitions and “inductive/plausible elaboration” which uses 
inheritance of schemata/situations (“plausible elaboration” because a situation 
provides only typical/plausible information about a type, contrary to a definition). A 
mixture of the two kinds of elaboration is possible. 

Elaboration process is an interactive process: user provides a description D (of a 
proposition or of a situation). Then she/he asks the system to “elaborate/explicitate” 
D; “Can you provide more information about D?” The system “elaborates” by 
applying the inheritance mechanism to join “relevant information”, from the current 
ontology, to D. For instance, if a concept type used in D has a definition, then this 
definition is joined to D. After that, user can ask the system to elaborate D further 
involving other joins (specialization), etc. Elaboration process is useful for users that 
are not familiar with (or expert in) a domain (and its conceptual vocabulary). 

Let us consider the following simple example (Figure 2): the process starts with the 
user’s description D (for instance, D = [Bus]-engn->[PetrolEngine]). The system 
locates, in the ontology, the definition of PetrolEngine and joins it to D (Figure 2.a). If 
the system is asked by the user to elaborate further, the process continues with the 
 

     (a)     (b) 
[Bus]-engn->[PetrolEngine]- 
          -fuel-

>[Gasoline], 
          -force-

>[Average] 
 

[Bus]-engn->[PetrolEngine]- 
                       -fuel->[Gasoline]-state->[State = 

Volatile], 
                       -force->[Average] 
 

 

 

Fig. 2. Elaboration process 
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join of the Gasoline definition (Figure 2.b). The elaboration process will terminate 
after that because all superTypes of types present in the (new) formulation of D have 
no definition.  

A similar treatment is performed by “plausible elaboration” which uses inheritance 
of schemata/situations. For instance, Figure 2.c shows the result of the specialization 
of the current description (Figure 2.b) by the join of an inherited schema/situation 
(schema that is associated to a superType of a type specified in the description). 

Note that an inherited situation that can’t be joined with the current description is 
ignored. 

6   Conclusion, Current and Future Work 

Formal Ontology is a formalized CK, with a focus on Necessity-Truth and a discard 
of schematic/situational/typical knowledge (which corresponds to a broader view and 
approach to CK). It is argued in this paper that Knowledge is more important than 
Necessity-Truth in the context of “full/natural” CHI/C. Therefore, in this context, 
Formal Ontology can be considered as a special case of CK Base (CK where only 
definitional/axiomatic knowledge is considered). For CHI/C domains that require 
more CK, i.e. that require schematic/situational/typical knowledge, the domain 
ontology should correspond to a “full” CK base.  

Amine’s Ontology Layer allows the creation and use of ontologies that belong to 
this Ontology-CK base continuum.  

Amine’s ontology layer presents a specific ontology meta-model and various 
related processes (edition, elaboration, elicitation, classification, information retrieval 
and dynamic integration). All these processes are considered as “basic” ontology 
processes; they can be used or extended in many ways according to the need of the 
application’s domain. 

Amine platform, with its Ontology Layer, constitutes a starting point for “integrative 
development” of ontology-based intelligent systems and intelligent agents. Many works 
are still to be done however, in several directions (“Applied Ontology”, Commonsense 
KB, improving ontology editors and processes, investigating the links between ontology 
and metaphoric knowledge, between ontology and dynamic memory, development of 
intelligent agent with ontology/memory, etc.). 

References 

[1]  Baader, F., et al. (eds.): Description Logic Handbook, Cambridge University Press, 2002 
[2] Brachman R. J. and J. G. Schmolze, An Overview of the KL-ONE Knowledge 

Representation System, Cognitive Science 9, 171-216, 1985 
[3] Brewter C. and K. O’Hara, Knowledge Representation with Ontologies: The Present and 

Future, p. 72-81, IEEE Intelligent Systems, January/February 2004 
[4] Dölling J., Commonsense Ontology and Semantics of Natural Language, 1993 

//www.uni-leipzig.de/~doelling/publikationen.html 
[5]  Doyle J. and R. S. Patil, Two theses of knowledge representation, Artificial Intelligence 

48, pp. 261-297, 1991 



 Ontologies in Amine Platform: Structures and Processes 313 

[6] Eysenck M. W., A Handbook of Cognitive Psychology, Lawrence Erlbaum Associates, 
1984 

[7] Farrar S. and J. Bateman, General Ontology Baseline, 2004, //www.sfbtr8. 
uni-bremen.de/project.html 

[8] Fauconnier G. and M. Turner, The Way We Think, Basic Books, 2002 
[9] Fensel D. and al., OIL: An Ontology Infrastructure for the Semantic Web, IEEE 

Intelligent Systems, p. 38-45, March/April 2001 
[10] Guarino N. Formal Ontology and Information Systems. 1998 www.ladseb.pd.cnr.it/ 

infor/Ontology/ontology.html 
[11] Guarino N., Formal Ontology, Conceptual Analysis and Knowledge Representation. 1995  

see URL [10] 
[12] Guarino N. The Ontological Level, 1993. see URL [10] 
[13]  Kabbaj A., Development of Intelligent Systems and Multi-Agents Systems with Amine 

Platform, 2006 (in this volume). 
[14]  Kolodner J. L. and C. K. Riesbeck (eds.), Experience, Memory, and Reasoning, Lawrence 

Erlbaum Associates, 1986. 
[15]  Lakoff G., Women, Fire, and Dangerous Things: what categories reveal about the Mind, 

University of Chicago Press, 1987. 
[16] Luger G. F. and al., Cognitive Science, Academic Press, 1995 
[17] Murphy, G. L., The big book of concepts, MIT Press, 2002 
[18] Schank R. C., Tell Me a Story: A new look at real and artificial memory,MacMillan, 

1991. 
[19] Smith B., Formal Ontology, Common Sense and Cognitive Science, 1995 

http://ontology.buffalo.edu/smith/articles/ 
[20] Smith B., Ontology, 2003. See URL in [22] 
[21] Smith B., Beyond Concepts: Ontology as Reality Representation, 2004. See URL in [21] 
[22] Sternberg R. J. (Ed.), Thinking and Problem Solving, Academic Press, 1994 
[23] Sowa J. F., Knowledge Representations, Brooks Cole Publishing, 2000. See also 

www.jfsowa.com 
[24] Sowa J. F., Conceptual Structures: Information Processing in Man and Machine, 

Addison-Wesley, 1984 



H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 314 – 330, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Building a Pragmatic Methodology  
for KR Tool Research and Development 

Mary A. Keeler1 and Heather D. Pfeiffer2 

1 Center for Advanced Research Technology in the Arts and Humanities 
University of Washington, Seattle, Washington 98117, USA 

mkeeler@u.washington.edu 
2 Department of Computer Science 

New Mexico State University, Las Cruces, New Mexico 88003-8001, USA 
hdp@cs.nmsu.edu 

Abstract. Reviewing the evidence of CG-tool research and development in 
conference papers, we find little attention devoted to the issues and institution 
of scientific methodology, and only vague awareness of how that deficiency 
impairs progress.  To focus attention and improve awareness, we briefly de-
lineate the evolution of C.S. Peirce's theory of inquiry toward Eduard Hovy’s 
general methodology for research, tracing from Peirce’s early pragmatism to his 
"conditional idealism." We claim that methodological theory suggests a prag-
matic method for KR research and tool advancement, in the form of an open-
ended game somewhat like a child's game of building blocks, in which the 
forms of the "blocks" would be propositional rather than physical, with 
conditional propositions establishing the "dimensions," in place of the physical 
dimensions of blocks.  The constraints would be logical and evidential (factual) 
rather than geometrical and gravitational (forceful).  We challenge the entire 
Conceptual Structures community to help build a truly pragmatic methodology. 

1   Introduction 

Over the 14 years of ICCS meetings, some participants have wondered why work done 
in the Conceptual Graphs (CG) community exhibits so little scientific conduct, and what 
Peirce himself might recommend to improve its "pragmatic progress."  Eduard Hovy 
informally expressed his disappointment after hearing CG papers presented, when he 
was invited to speak on methodology at the 2005 meeting [see 1].  He complained that 
the CG researchers presented insular work, making no comparisons with other 
techniques in similar applications outside the CG community or evaluation of tools 
within.  His paper critiques the progress of several research communities, including the 
CG, and urges that their poor record of ontology-building success could most readily 
improve if at least two conditions are met: good methodologies for building and 
evaluating ontologies are developed, and those ontologies prove their utility in real 
applications [see 1: 91].  He identifies the problem for knowledge representation (KR), 
in general, after assessing its accomplishments: "KR work has been excellent in 
developing formalisms for representation, and for investigating the properties and 
requirements of various classes of deductive systems.  But for practical applications 
such formalisms need content; the deductive systems need to work on something" 
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[1: 92].  His summary observation is that KR researchers are not yet able to build large, 
general-purpose semantic theories or semantic resources required for practical use on 
the scale of NLP: "such semantic data and theories as do exist are almost always limited 
to small-scale (or toy) applications ... [and] no accepted standard set of relations exists 
either" [1: 92]. 

Hovy stresses that the most troublesome aspect of work underway (such as in CGs) 
is "the near-complete absence of methodological discussion and emerging 
'methodological theory' that would provide to the general enterprise of ontology 
building and relation creation the necessary rigor, systematicity, and eventually, 
methods for verification that would turn this work from an art to a science. ... Without 
at least some ideas about how to validate semantic resources, both the semantics 
builder and the eventual semantics user are in trouble" [1: 92-93]. 

In this paper, we review attempts to consider methodology within the CG 
community.  We then investigate (with the aid of a host of Peirce scholars who have 
blazed productive paths through the maze of Peirce's writings) what methodological 
insights and guidance can be derived from Peirce's theory of inquiry.  We conclude 
that both pragmatic methods and methodology might be instituted in the creation of 
an open-ended game. 

2   Looking for Methodology in the CG Community 

In the history of the CG community, the Peirce Workbench (also called "Peirce 
project") was an early attempt (1992) to establish some sort of context for at least 
comparing CG tools in some application domains.  It was launched at the 7th 
workshop on Conceptual Graphs as an attempt to build cooperation among some 40 
researchers, by coordinating their 27 tools into one test environment of 11 types 
[see 2].  Each participant group used different formatting and storing operations for 
graphs, and there was no well-defined Application Program Interface (API) for 
communication among all tools, which were built on different platforms in different 
programming languages.  Nevertheless, the project marked the beginning of work on 
the Conceptual Graphs Interchange Format (CGIF), with the objective of making it 
possible to translate tools into exchangeable languages such as Java.  Although the 
project itself did not continue, it demonstrated some need for developing collaborative 
methods among those in the community, but no apparent recognition of the need for 
methodological discussion of the sort Hovy describes. 

The first obvious attempt came at the 1998 conference, when Tepfenhart outlined 
some of the fundamental technical ideas that form the basis of research efforts across 
the conceptual structures community.  He concluded, "The variety of approaches, 
processing styles, and assumptions make it difficult for one author to apply the results 
of another.  The same problem, framed in different language, is being solved many 
times by researchers who do not realize that it is the same problem" [see 3: 345]. 

2.1   Promising Efforts in 1999 

Then came the Sisyphus I (SCG-1) initiative in 1999, devised by researchers at the 
Knowledge Science Institute, which challenged CG tool developers to solve a 
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room-allocation task [see LNAI 1640, pp. 272-355].  Many hoped this testbed 
would "pour life into the CG community" by providing the opportunity: to compare 
various CG-tool approaches and determine the "CG state of the art," and to 
distinguish CG from other knowledge representation formalisms according to 
pertinent criteria [4: 213].  And yet, only the group testing the CoGITaNT tool even 
mentioned using an "experimental methodology": beginning with a theoretically 
formal model, then building software tools to implement the model, followed by a 
real-world application (presumably a prototype), and finally evaluating the system 
built—and reiterating this four-step process [see 5: 374].  Unfortunately, these 
researchers apparently attenuated that methodological plan: "This prototype is not 
yet a really usable tool.  Further developments are needed in order to enable 
communication with the user in a friendly way, give the user the possibility to 
intervene at several stages of the solving process, and improve computational 
complexity of the solving process" [5: 375]. 

2.2   Assessment in 2000 

No further obvious effort was attempted to achieve methodological procedures or 
standards until 2000, when Chein and Genest surmised that perhaps only a handful of 
operational CG applications remained.  At conferences, they observed: "A program 
may be presented in a session [called] "applications" ... but it does not become, ipso 
facto, an AI or CGs application. ... External characteristics, those which consider the 
software from outside, like a black box, are essential for a software which claims to 
be an application" [6: 128].  In their paper ("CG Applications: Where Are We 7 Years 
After the First ICCS?"), they also discuss "the essential Internal characteristics" for an 
application: "[it] must have precise specifications, its conditions of use must be 
described, it must be reliable and robust, it must be validated, documentation must 
zbe available, its evolution must be anticipated, and so on" [6: 128].  And they 
identify four basic additional components specifically required for AI applications 
[see 6: 131-32]. 

In summary, Chein and Genest stressed: "In order to build applications, efficient 
tools are needed, and, what is rather distressing, we could deliver exactly the same 
discourse that Bob Levinson and Gerard Ellis had done when they launched the Peirce 
project in 1992!"  They concluded that the CG community has difficulty "analyzing, 
synthesizing, and accumulating its knowledge," and further that "we have made 
numerous experiments, most of the time without drawing serious conclusions" [6: 
138].  Nowhere in this paper is the question of methodology explicitly raised, but that 
is the question thoroughly begged throughout. 

Guy Mineau's invited talk that year offered twenty-two recommendations for good 
practice in CG-based systems engineering, conceived in a three-layer architecture, as 
a "first set of guidelines" toward the common goal of a widely-supported, large-scale 
CG-based platform [see 7: 154].  But not until 2004, was a whole conference session 
devoted to frameworks for applications [see section "Conceptual Frameworks for 
Applications" in LNAI 3127, pp. 242-332], only two of which explicitly addressed 
the need for KR tool-development methodology [see 8 and 9], although it had been 
previously urged in 1999 and 2000 [see 10 and 11]. 
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2.3   Recent Appraisement 

Without solid methodological requirements, Hovy explains, "the reality is that most 
people build ontologies to support their knowledge representation needs in some 
practical application, and ... are more concerned about the computational effectiveness 
and correctness of their application than about the formal completeness, correctness, or 
consistency of the ontology per se."  While theoretically, completeness, consistency, 
etc., would ensure that ontologies will avoid unwelcome surprises in system behavior, 
he observes that in development the strictures these requirements introduce are usually 
"so onerous that they make adopting the requirements tantamount to placing a severe 
limitation on the eventual scope of the ontology and hence of the whole practical 
enterprise" [1: 93].  Consequently, he explains, ontologies are built as relatively simple-
term taxonomies with some inheritance inference, and do not enforce stricter logical 
requirements. 

Hovy concludes that KR (among other techniques) lacks "a systematic and 
theoretically motivated methodology that guides the builder and facilitates 
consistency and accuracy, at all levels."  In fact, he finds no evidence of an adequate 
theory on which to base such a methodology, and furthermore: "It is not even clear 
how one would begin to approach the problem of designing theoretically motivated 
procedures from a suitably general point of view" (our emphasis).  He finds not one 
of the current builders of ontologies able "to provide a set of operationalizable tests 
that could be applied to every concept and relation to inform in which cases his or her 
choices were wrong" [1: 94]. 

Indicating how to approach such a methodology, Hovy considers what ontology 
builders actually do, in core operation(s) and in justifying their actions.  He stresses 
that builders perform an act of creation, every time they generate a new (candidate) 
ontology item: "[they] decide whether to create a term, and if so, how to place it with 
regard to the other existing terms" [1: 94].  This portion of the act of defining the term 
begins the process of additional specification and definition.  Hovy then traces this 
decision process as it plays out for the five "personality types" of builders he 
identifies, including "the philosophers," where he classifies those using the CG 
technique [1: 95].  He then describes a general methodology for building domain 
models [see 1: 97-98].   

We eventually identify Hovy's approach to a general methodology as implicitly 
pragmatic, by first explicating (or clarifying) the motivation for such a methodology 
in terms of Peirce's theory of inquiry, then indicating how a particular sort of game 
can institute Peirce's pragmatic methodology systematically in KR tool development. 

3   Pursuing a General Methodology in Peirce's Theory of Inquiry 

When Peirce's Collected Papers was published in the early twentieth century, scholars 
were discouraged to find that Peirce never coherently stated his theory of inquiry.  
Thankfully, their persistent investigations provide substantial advantage in 
deciphering Peirce's writings, and the hope of addressing the concerns Hovy raises.  
The studies of early scholars such as Bronstein, Chisholm, Weiss, and Feibleman 
agree that Peirce considered his pragmatism to be a maxim (or general rule) for 
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inquiry, and that his theory explained the course of inquiry in three elementary stages: 
abduction, deduction, and induction1. Abduction, the creative foundation of inquiry 
(which is presupposed by all induction), he came to identify as the essence of the 
pragmatic method [see 13: 166].   

The puzzle that drove Peirce's pursuit of a theory of inquiry was the difficulty of 
explaining how man could have managed to guess so many fruitful hypotheses in such 
a short historical time.  He argued that there must be an affinity between our minds 
and the course of the universe giving us insight into the general elements of nature.  
But he knew this alone could not enable the progress humans have made; it could not 
reduce the number of possible hypotheses to manageable numbers — and would not 
explain the countless useless and perverse ones tried in the history of science.  His 
"better theory," says Weiss, is that our efforts to guess are self-corrective, "no matter 
where we start we arrive at results which we can modify as the circumstances 
demand, until they have the shape which satisfies the entire community" [13: 173].  
Still, Peirce was not convinced that this was adequate to explain how science could 
progress so quickly. 

We all know that in any development, some starting points are better and some 
results are more significant, some techniques are more effective than others and some 
means of production more efficient.  How can we explain the selection of good 
enough guesses, throughout this process, that humans could progress so swiftly to 
civilization, and their science even more swiftly?  According to Peirce, any such 
explanation is and always will be hypothetical (in fact, history is entirely hypothetical 
[see CP 2.511 fn.]).  Any such hypothesis then must explain how, from the countless 
possibilities in any situation, do we formulate and select good hypotheses to test (or 
good hunches to try)?  All of Peirce's philosophical work comes together in this 
challenge, which he eventually tried to explain as "the economics of research" [see 
CP 7.83-90]. 

Weiss gives us an account of the scope of deficiencies that Peirce suggested any 
economic methodology might address: "All men do not make signalized discoveries 
because they do not all adopt promising initial positions, are not familiar with new 
provocative items, do not have the requisite technical skill to express [themselves] to 
the satisfaction of technical arbiters whatever discoveries they might happen to make, 
and do not have the patience or time to add inference to inference so as to move 
forward steadily" [13: 178].  These are all possible errors or inefficiencies that any 
method at its core must help investigators routinely self-correct — by forming self-
corrective habits. 

Judged on this self-corrective requirement, all of Peirce's well-known, early 
formulations of a theory fail to be convincing, according to the scholarly literature.  
Clearly he does not maintain in his later writings the "guess" proposed in his early 
work, "The Fixation of Belief": that inquiry is a struggle to escape the irritation of 
doubt by attaining belief, true or false, and that the settlement of opinion is its sole 
aim [see, for best evidence, CP 6.485 (1908)].  The consequence, he realized, would 
be that any inquiry which settles belief is as good as any other, with no way of 
showing that some beliefs more likely conform to the facts than others. 

                                                           
1 Note: Sowa and others have used these terms to discuss types of reasoning [12], but Peirce 

related these ideal types in his theory to account for the evolution of human knowledge. 



 Building a Pragmatic Methodology for KR Tool Research and Development 319 

3.1   Belief, Error, and Continuing Hypothetical Inference 

Peirce's mature theory of inquiry abandons his early conclusions, on good grounds: If 
the settlement of opinion, by establishing belief that relieves the irritation of doubt, is 
the sole object of inquiry, and if belief is of the nature of habit, why should we not 
attain the desired end by taking anything we may fancy as answer to a question, and 
constantly reiterating it to ourselves, dwelling on all which conduce to that belief, and 
learning to turn with contempt and hatred from anything that might disturb it? [see CP 
5.337].  Bronstein thinks Peirce revised his theory of inquiry because he realized that 
what we should demand of a method of attaining belief is that it should minimize 
error, not doubt.  The urge to remove the irritation of doubt, is a biological fact which 
may cause us to adopt one or another method of fixing or re-establishing belief, but 
that fact tells us nothing about the validity of any method.  It will not tell us how any 
self-correction is determined in the sustained inquiry that Peirce says is required to 
achieve true knowledge [see 13: 40-41]. 

In his later work Peirce proposes a more "fundamental hypothesis" to explain the 
successful method of science by inquiry that must lead to true knowledge, rather than 
merely conveniently settled opinion.  He explicitly guesses: "there are Real things 
whose characters are entirely independent of our opinions about them; these Reals 
affect our senses according to regular laws" [CP 5.384].  We initiate inquiry when we 
confront a puzzling situation, then attempt to resolve the puzzle in the construction of 
a hypothesis that will enable us to anticipate the course of our experience (or not be 
surprised).  A hypothesis is a tentative belief which may become firmer if it improves 
our anticipation.  Theoretical as well as practical beliefs must involve expectation: 
when certain conditions are fulfilled, we obtain the consequence we expect.  The 
general form of any hypothesis answers the pragmatic question: "What would be the 
consequences in my conduct (remembering that thinking is a form of conduct), if my 
conception of some observed phenomenon turned out to be true?"  In other words, 
"what would I do  (or think) differently if that conception explained what I observe of 
that phenomenon?" [see CP 5.534, 8.209]  Any answer to this question is a 
hypothesis, whether implicit or explicitly expressed. 

3.2   Beliefs Asserted as Conditional Propositions 

Any belief can serve as an explicit hypothesis, if it is formulated in a conditional 
proposition whose antecedent specifies a course of action to be performed and whose 
consequent describes certain consequences to be expected.  The hypothesis can be 
judged correct when we have perceived a correspondence between the description of 
these consequences and their occurrence.  This, stresses Bronstein, is not a test of 
truth: "Rather, it is an attempt to explain what we mean when we say that a statement 
or belief is true"  [13: 42].  In his 1903 "Lectures on Pragmatism," Peirce first clearly 
claims there is an "antecedent reality" and dismisses his earlier view that truth should 
be defined as the end of inquiry [see CP 5.211].  "What an inquiry presupposes," as 
Bronstein interprets Peirce, "is that there are phenomena subject to law, over which 
our thinking has no control," and which "we perceive directly in the course of 
inquiry," but which are “not introduced into the operation of knowing" [13: 43; our 
italics and punctuation]. 
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Bronstein concludes that the principal weakness in Peirce's early theory was his 
failure to distinguish between something being true and our knowing that it is true.   
What results from inquiry is not that the belief becomes true, but that we gain some 
additional knowledge that we didn't have before the inquiry: that the belief is justified 
[13: 44].  Peirce clearly identified this confusion between truth and justification in his 
later work, but other pragmatists have perpetuated it.  The confusion reaches to the 
depths of metaphysics, as Peirce discovered in reading Aristotle's works: "the first 
thing that strikes [the reader] is the author's [Aristotle’s] unconsciousness of any 
distinction between grammar and metaphysics, between modes of signifying and 
modes of being" [CP 2.384; see 14].  The problem comes to focus in the question of 
identification and classification: "But identity ... is not a relation between two things, 
but between two representamens of the same thing" [CP 4.464]. 

Peirce then began to distinguish his theory of inquiry from the many contemporary 
theories known as "pragmatism" by calling it conditional idealism, expressed in a 
conditional proposition that aligned his theory with experimentalism: If a certain 
experiment were performed, then an experience of a given description would ensue. 
[CP 5.494] 

3.3   What Will Be the Facts? 

When we make a statement of fact, according to Peirce, we are asserting a real 
possibility: an imaginable event that would be realized under certain describable 
conditions, which must be specified in an explicit hypothesis.  Bronstein reminds us 
that, on Peirce's view, "only individuals have actual existence (Firstness), ... [but] the 
world would be a mere chaos if these individuals were not related to each other and 
also subject to laws which govern their behavior" [13: 48].  The facts of science, then, 
are the conditional discoveries of those relations and behaviors (or habits).  There is 
no such thing as an isolated fact, and the relations we discover and call facts are all 
conditionally dependent on how we perceive and conceive them.  Any statement of 
fact (or assertion of something's reality) relies on the assumed truth of some general 
conditional proposition [see CP 5.457].  An assertion of scientific fact means that 
under certain conditions something would be true, whether the assertion explicitly 
(using the subjunctive conditional form) includes reference to those conditions or not.   
(This view underlies Peirce’s theory of induction and distinguishes his philosophy, 
fundamentally, from some claimed followers, such as Popper, whose falsificationism 
is strictly deductive [see Haack (1995) Evidence and Inquiry, p. 131].  Putnam tells us 
that Popper even rejected the very idea of inductive logic [see Putman (2002) The 
Collapse of the Fact/Value Dichotomy, p. 141]).   

Peirce's later theory distinguishes between a proposition and the assertion of that 
proposition, and insists that when you assert a proposition, you become responsible 
for it, as though you had placed a wager on it.  "Now, if in the future it shall be 
ascertained that your assertion is correct, you win the wager.  The rational meaning, 
then, or intellectual purport of your assertion lies in the future" [CP 5.543].  
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4   Genuine Inquiry and the Growth of Knowledge 

Bronstein contends that Peirce's "signal contribution," in his revision of what we will 
continue to refer to as "pragmatism," was to realize "the importance of subjunctive 
conditionals for science and their irreducibility to material implications" [see 13: 49; 
CP 4.580].  Along with Bronstein, Chisholm concludes that Peirce's account of 
inquiry still relies on the account of belief as habit, but adds what might be called 
"outlook," expectations that anticipate imposed real constraints.  A belief-habit is a 
law connecting behavior and possible experience, and a symbol (such as a statement 
or a sentence) is meaningful only if it can express a belief.  But if it purports to 
concern matters that "transcend the limits of possible experience," then it cannot mean 
anything: any meaningful hypothesis must be verifiable (see expanded explanation, 
below, in section 4.3) [see 13: 93-4; CP 5.536; 5.597].  His theory of inquiry then 
becomes also a theory of meaning [see 13: 50]. 

Peirce's remark, "That belief gradually tends to fix itself under the influence of 
inquiry is, indeed, one of facts with which logic sets out," encouraged Chisholm to 
attempt a formulation of Peirce's basic theory of inquiry ("independently of the 
complications of his account of probability and induction") [CP 2.693; see also 
3.161].  Chisholm compiled ten distinct tenets, which he entitled "The Conduct of 
Inquiry," from "the bewildering collection of Peirce's statements concerning doubt, 
surprise, habits of action, judgments of perception, common-sense, indubitability, 
fallibility, and truth" in the Collected Papers [see 13: 93].  We have modified 
Chisholm's list to serve in tracing the evolution of inquiry through Peirce's three 
stages (abduction, deduction, and induction) [see 13: 95-99].  We include abbreviated 
relevant discussion and comments from Peirce after each tenet; but we found it 
necessary to enrich the tenets we list under "Deduction," since Chisholm almost 
entirely neglects what Peirce describes must occur in that stage. 

4.1   Abduction: Belief, Surprise, and Conjecture 

"Abduction merely suggests that something may be" [CP 5.171]. 
 
1) The inquirer must have some beliefs to begin with; for inquiry does not 
begin until experience, by shock or surprise, breaks in upon some belief-
habit.  An empty mind cannot be surprised [see CP 5.512]. 
 
2) The inquirer should be guided by those personal beliefs which have 
survived the shock, many of which are indubitable.  There is no genuine 
"complete doubt," as Cartesian theory presumes [see CP 5.416, 5.265]. 
 
3) As the inquirer ponders the surprising phenomena in relation to beliefs 
already held, conjectures or hypotheses instinctively suggest themselves. 
Each conjecture or hypothesis furnishes a possible explanation: "a syllogism 
exhibiting the surprising fact as necessarily consequent upon the circumstances 
of its occurrence together with the truth of the credible conjecture, as premisses" 
[CP 6.469]; each comes in a flash of insight [see CP 5.173].  
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4) The relative plausibility of these hypotheses is considered in terms of what 
the inquirer happens to believe already.  The hypothesis ought first, to be 
"entertained interrogatively," for there are many hypotheses "in regard to which 
knowledge already in our possession may, at once, quite justifiably either raise 
them to the rank of opinions, or even positive beliefs, or cause their immediate 
rejection" [CP 6.524].  "Accepting the conclusion that an explanation is needed 
when facts contrary to what we should expect emerge, it follows that the 
explanation must be such a proposition as would lead to the prediction of the 
observed facts, either as necessary consequences or at least as very probable 
under the circumstances" [CP 7.202]. 

4.2   Deduction: Conditional Prediction of Possible Consequences 

"Deduction proves that something must be" (under what we can imagine would be the 
ideal conditions) [CP 5.171]. 

 
5) Most of the hypotheses which any inquirer is thus led to adopt will be 
false, but many of them will be true, at least under ideal conditions.  
Unfortunately, the faculty which originates conjectures supplies us with more 
false conjectures than with true ones.  (The terms "true" and "false" are explained 
below, under "Induction.").  Our insight is "strong enough not to be over-
whelmingly more often wrong then right" [CP 5.173].  But in order to prevent 
future surprises and the ensuing misfortunes and irritable states, we need a way of 
sifting out the bad guesses.  "Deduction ... relates exclusively to an ideal state of 
things.  A hypothesis presents such an ideal state of things, and asserts that it is 
the icon, or analogue of an experience" [CP 7.205].  Experimentation requires 
preliminary "logical analysis," which renders the hypothesis as distinct as 
possible and deduces experimental predictions from the conjunction of the 
hypothesis and our other beliefs [see CP 6.472; 6.527]. The hypothesis has two 
relations to experience, one to the facts [induction] but the other to the 
hypothesis, and what effect that hypothesis, if embraced, must have in modifying 
our expectations in regard to future experience.  Peirce clarifies in a footnote, "we 
infer by Deduction that if the hypothesis be true, any future phenomena of certain 
descriptions must present such and such characters" [CP 7.115 fn. and see 7.115].    
 
6) Experience can eliminate a false hypothesis by virtually predicting the 
results of possible experiment.  As soon as a hypothesis is adopted, deduction 
must trace out its necessary and probable experiential consequences [see CP 
7.202]. Deduction draws virtual predictions. A virtual prediction is "an experien-
tial consequence deduced from the hypothesis, and selected from among possible 
consequences independently of whether it is known, or believed, to be true, or 
not; so that at the time it is selected as a test of the hypothesis, we are either 
ignorant of whether it will support or refute the hypothesis, or, at least, do not 
select a test which we should not have selected if we had been so ignorant" [CP 
2.96].  "The Deductions which we base upon the hypothesis produce conditional 
predictions concerning our future experience" [CP 7.115 fn.]. "'Conditional' is the 
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right appellation, and not 'hypothetical,' if the rules of [my] Ethics of Philoso-
phical Terminology are to be followed" [CP 2.316 fn.].  Experience, if given the 
opportunity, will perform a sifting or "pruning" function.  In fact, this is the main 
service which experience renders — "to precipitate and filter off the false ideas, 
eliminating them" [CP 5.50]. 

4.3   Induction: Conditional Truth, Verifiability, Essential Fallibility 

"Induction shows that something actually is operative" [CP 5.171]. 
 

7) If experience causes surprise, the new surprise will be accompanied by a 
series of events similar to those which accompanied the first surprise.  "We 
now institute a course of quasi-experimentation in order to bring these 
predictions to the test, and thus to form our final estimate of the value of the 
hypothesis, and this whole proceeding I term Induction. ... By quasi-
experimentation I mean the entire operation either of producing or of searching 
out a state of things to which the conditional predictions deduced from hypothesis 
shall be applicable and of noting how far the prediction is fulfilled" [CP 7.115 
fn.].  If experience surprises, there will be new doubt leading to a new struggle to 
recover belief with a new hypothesis.  If experience confirms, it will not inspire 
further inquiry, which is particularly unfortunate when the confirmed hypothesis 
happens to be false.  Even when the confirmed hypothesis is true, complacency 
may result, which can impair the ultimate success of inquiry [see CP 5.168-69].  
In so far as they greatly modify our former expectations of experience and in so 
far as we find them, nevertheless, to be fulfilled, we accord to the hypothesis a 
due weight in determining all our future conduct and thought.  Even if the 
observed conformity of the facts to the requirements of the hypothesis has been 
fortuitous, we have only to persist in this same method of research and we shall 
gradually be brought around to the truth [see CP 7.115]. 
 
8) If given sufficient opportunity, experience would eliminate all false beliefs 
and leave us with none but true beliefs; this follows from Peirce's definitions 
of "true" and "false."  In the long run "if inquiry were sufficiently persisted in" 
and experience given every opportunity to prune out the unstable beliefs, "the 
community of inquirers" would reach an agreement and all would share the same 
perfectly stable beliefs; some beliefs would continued to be re-affirmed and some 
would be denied [see CP 5.384, 5.311].  And the more we thus persist, 
particularly if we work together in community, the closer we come to this ideal.  
Peirce defines a true belief as a belief which would thus be an "ultimate 
conclusion" of inquiry.  "The truth" is that to which belief would tend if it were to 
tend indefinitely toward absolute fixity [see CP 5.416].  These definitions 
become the foundation of his "conditional idealism,” in which the concept of 
truth becomes the ideal (or hope) that motivates inquiry to persist indefinitely 
[see CP 5.494, 5.358 fn.].  It is much more important to frustrate the false 
hypothesis, than to confirm true ones, since we make more false ones than true 
ones.  Hence, although it is not solely by surprise, it is primarily by surprise that 
experience teaches us [CP 5.51]. 
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9) In order for experience to perform this function most efficiently, the 
inquirer should endeavor to submit all of his hypotheses and belief-habits to 
constant experimental test.  We should make efforts to expose our hypotheses to 
the effects of experience, and reject those methods of fixing belief which attempt 
to shield our beliefs from those effects.  The best effort is to conduct planned 
experimentation.  An explanatory hypothesis must be verifiable; which is to say 
that it is "little more than a ligament of numberless possible predictions 
concerning future experience, so that if they fail, it fails" [CP 5.597].  We then 
submit these predictions to active test, by means of these actions: first, the act of 
choice by which the experimenter singles out certain identifiable objects to be 
operated upon; next, the external (or quasi-external) act by which the 
experimenter modifies those objects; and next, the subsequent reaction of the 
world upon the experimenter in a perception; and finally, the experimenter's 
recognition of the teaching of the experiment.  "While the two chief parts of the 
event itself are the action and the reaction, yet the unity of essence of the 
experiment lies in its purpose and plan" [CP 5.424]. 

4.4   Self-correction as the Inquirer's Habit of Mind 

10) This endeavor requires, in turn, that all inquirers have a "will to learn" 
and a constant dissatisfaction with their state of opinion at any time.  Finally, 
"inquiry of every type, fully carried out, has the vital power of self-correction and 
of growth," but only if the inquirer has an intense desire to learn: a 
"dissatisfaction with one's present state of opinion," and a "sense that we do not 
know something" [CP 5.584; see 5.582; 5.583; also see 6.428].  Here can be the 
danger of the complacency when we get confirmation rather than surprise.  An 
"indispensable ingredient" in any experiment is "sincere doubt in the 
experimenter's mind" concerning the truth of any hypothesis [see CP 5.424].  We 
should desire to know and be willing to work to find out [see CP 5.584].  While 
opinions that naturally suggest themselves are more often wrong than right, they 
can be corrected provided that we have a genuine dissatisfaction with them.  
Consequently we should not regard any as finally settled or certain, which is the 
basis of Fallibilism.  "The first condition of learning is to know that we are 
ignorant.  A man begins to inquire and to reason with himself as soon as he really 
questions anything and when he is convinced he reasons no more" [CP 7.322]. 

5   The Essential Open Mind 

Peirce's persistent questioning took him well beyond his original pragmatism, as we 
have seen.  And yet, his theory maintains the initial distinction that he says logic 
supposes in any investigation, between doubt and belief, which later became the 
distinction between a question and a proposition [see CP 7.313].  He explicitly relates 
these distinct elements in various expressions as his theory advances, beginning in his 
1878 essays: "The object of reasoning is to find out, from the consideration of what 
we already know, something else which we do not know" [CP 5.365].  Meanwhile, 
his progress in developing relative logic gave him increasingly more insight into the 
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strategic fine points of this relationship in the process of inquiry and, as Weiss 
concludes in one example, the critical balances to be maintained. 

The most satisfactory inference [according to Peirce's theory] is one which 
enables us with the least risk to make the furthest advance beyond our present 
position.  It must evidently move as far from the initial position as possible, 
but only to what is relevant.  If we violate the first condition, we unnecessarily 
limit the range of application of the result; if we violate the second, we risk 
losing control over whatever material or truth we originally had.  The 
combination of these two considerations enables us to preserve the past in the 
future, to extend the range, enrich the meaning while preserving the 
achievements of our inherited position. [13: 179] 

By 1905, after he changed "pragmatism" to "pragmaticism," Peirce's maxim 
explicitly incorporated his realist insight, to balance the earlier idealist insight that 
true ideas are revealed by an "a priori evolutionism of the mind" (or because mind 
has evolved to be attuned to nature).  According to pragmaticism, for the ultimate 
meaning of concepts to be true, they must represent their objects in the form of 
conditional resolutions consisting of conditional propositions and their antecedents, 
which he concludes amounts to saying "that possibility is sometimes of a real kind" 
[CP 5.453].  This realist outlook was the basis of his prolonged harangue against 
nominalism.  From his early studies in the history of philosophy, he understood that 
nominalism had historical alliance with idealism and, by 1893, he had formulated his 
realist criticism of the nominalists' subtle problem: "they merely restate the fact to be 
explained under another aspect; or, if they add anything to it, add only something 
from which no definite consequences can be deduced.  A scientific explanation ought 
to consist in the assertion of some positive matter of fact, other than the fact to be 
explained, but from which this fact necessarily follows; and if the explanation be 
hypothetical, the proof of it lies in the experiential verification of predictions deduced 
from it as necessary consequences" [see CP 8.30; 6.273].  Accepting a nominalist 
explanation as sufficient "would be to block the road of inquiry" [CP 6.273]. 

By 1906, he realized: "According to the nominalistic view, the only value which an 
idea has is to represent the facts, and therefore the only respect in which a system of 
ideas [or a generalization] has more value than the sum of the values of the ideas of 
which it is composed is that it is compendious" [CP 4.1].  But then, while insisting 
that hypothetical generalizations should be "submitted to the minutest criticism before 
being employed as premisses," he declares, "It appears therefore that in scientific 
method the nominalists are entirely right.  Everybody ought to be a nominalist at first, 
and to continue in that opinion until he is driven out of it by the force majeure of 
irreconcilable facts.  Still he ought to be all the time on the lookout for these facts, 
considering how many other powerful minds have found themselves compelled to 
come over to realism" [CP 4.1].  From all this, we conclude that though a nominalist 
explanation is not sufficient, it could be at least necessary? 

5.1   Nominalism as a Game of Inquiry 

Peirce formulated a question to distinguish realists and nominalists by their opposite 
answers: "Do names of natural classes (such as man and horse) correspond with 
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anything which all men, or all horses, really have in common, independent of our 
thought, or are these classes constituted simply by a likeness in the way in which our 
minds are affected by individual objects which have in themselves no resemblance or 
relationship whatsoever" [CP 8.13].  Pursuing inquiry with the latter, nominalist, form 
of investigation would result in reducing knowledge to a sort of "map" for the 
"unknowable territory" of existential being, and then accepting that representation as 
all we can know.  Inquiry then becomes a sort of "game," in which we "take the map 
to be the territory."  The advantage of "map-making" is that we can construct coherent 
accounts or stories to satisfy some conceived purposes, and submit those 
representations to "the minutest criticism" with respect to those purposes before 
admitting them as serious hypotheses to be tested [see 15].   

We propose that KR researchers, instead of being unconsciously nominalistic in 
their conduct [see 11], should adopt nominalism consciously, as a formal method of 
inquiry by which to continue building and submitting to minutest criticism "their 
maps," (or what Chein and Genest have referred to as "essential internal 
characteristics" of software), while remaining "on the outlook for the facts," just as 
Peirce recommends (which are external to what Chein and Genest call that software 
"black box").  The strategic refinement made possible by Peirce's logic, especially his 
Existential Graphs (EG), suggests to us what sort of game could be constructed for 
instituting that method [see details in 15].  As Peirce says, "relative logic shows that 
from any proposition whatever, without a second, an endless series of necessary 
consequences can be deduced; and it very frequently happens that a number of 
distinct lines of inference may be taken, none leading into another" [CP 3.641].  The 
object of the game would be to "prune, filter, and select" the worthy hypotheses to test 
(or the essential internal characteristics to validate), among all the possible ones 
players might "wager" in the game.   

A game method would be particularly appropriate for creating test-worthy hypo-
theses collaboratively. First, in explicitly (but sportively) formalizing the process of 
inquiry; second, by encouraging participants to make strategic contributions respon-
sive to the progress of collaboratively formulating verifiable hypotheses that can be 
reconciled into testable predictions. The game must be "open-ended," as Peirce's 
theory mandates, and as simple to play as possible, leaving the challenge of building 
the "fail-proof ligaments in the construction" to KR processing.  The analogy of a 
children's game of building blocks, comes to mind.  In the game of inquiry, the forms 
of the "building blocks" would be propositional rather than physical, with conditional 
propositions establishing the "dimensions," in place of the physical dimensions of 
blocks. Rather than geometrical and gravitational (forceful) constraints, they would be 
logical and evidential (factual).  These, conditionally-related, building blocks would 
"behave" as complex systems adapting to an "environment," in which fallibility would 
serve as "gravity" does in physical systems [see 15]. 

Peirce's fallibilism (identified with all three stages of inquiry, unlike Popper’s 
falsificationism) reminds us that nothing is known for certain, that we should conduct 
inquiries so that sooner or later experience will catch up with any unstable (that is, 
invalid or unreliable) belief-habits and eliminate them.  And since possible 
predictions are "numberless," fallibilism entails that no hypothesis can be completely 
verifiable" [see CP 1.149, 1.404, 2.663].  If inquiry's purpose is to find belief-habits 
that are reliable enough to serve as stable strategies in its evolution, then within the 
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game context for investigation, complexity theory could apply.  The building blocks 
for evolving the stable strategies of complex adaptive systems, composed of 
interacting agents, are described in terms of rules.  Holland explains: "a major part of 
the environment of any given adaptive agent consists of other adaptive agents, so that 
a portion of any agent's efforts at adaptation is spent adapting to other adaptive 
agents" [16: 10].  Agents adapt their behavior by changing their rules as experience 
accumulates, just as improving hypotheses must do.  We are exploring this framework 
for the game, in future work. 

If, as Peirce predicts, "belief gradually tends to fix itself under the influence of 
inquiry," then a game strategy in which players are "always on the outlook for the 
facts" should prove successful [CP 2.693].  The nominalist game of inquiry must 
therefore be played in context where the facts can be found. 

5.2   Realism in the Context for Inquiry 

Returning to Hovy's paper on methodology, we find that his analysis and examples of 
current methodological deficiencies pinpoint the need for both minute criticism of 
ideas and for expanded scope in responding to external realities.  He describes an 
ideal methodological objective for ontology creation that would reconcile the 
identified concept-creation procedures, and even assign relative priorities to their 
various methods and justification criteria a priori.  But Hovy would agree with 
Peirce's caution that although there are universal presuppositions operative in the 
thinking of scientific investigators which may be essentially valid, "the history of 
science illustrates many of the stumbling blocks created by a priori dicta" [CP 1.114].  
We have argued that something like the "nominalist game" should be instituted for 
such idealistic abduction and deduction, to accomplish collaborative reconciliation, 
but also as a game to remind us that the reconciled hypotheses and their predictions 
must not "block the road of inquiry." 

Hovy then describes a more realistic approach.  His general methodology: 
continual graduated refinement [CGR] for building domain models proceeds in seven 
steps [1: 97-98].  CGR builders would begin by selecting "the principal criteria" for 
concept-creation and justification methods, and specify their order — which he insists 
must be determined by the specific task or enterprise to be served.  He suggests basic 
questions to be answered in this preliminary step, with refinements to follow in a two-
step process.  These include: “Is this domain model to be used in a computational 
system?  Or is it a conceptual product for domain analysis and description?  Who are 
the intended users/readers of the ontology?  What is their purpose for it?  What 
justification criteria will they find most understandable?  Do these criteria match the 
purpose or task in mind?”  [1: 98] 
    These could be formulated as pragmatic questions, but typically in computer 
system development they are answered in the manner of traditional realism, rather 
than investigated in the manner that Peirce's critical realism demands.  The traditional 
realist would be concerned with logical self-consistency and a "cognitive reality" of 
answers to these questions, rather than experientially by scientific induction.  The 
result would be a logical construction of what the builder's finite intellect can 
apprehend as answers, rather than an outcome of the process of scientific inquiry.  
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Peirce identified this as the "nominalistic tendency" that distinguished traditional 
realism from his thorough-going realism [CP 1.29 (1869)]. 

We have previously described a testbed context [see 15, 17, 18] in which the 
answers to such questions could be experimentally obtained, where tool versions 
would be proposed as hypothetical solutions and these predictions tested on real tasks 
to solve.  As Peirce says: "the entire meaning of a hypothesis lies in its conditional 
experiential predictions," to the extent that its predictions are true, the hypothesis is 
true [CP 1.29].  Why not build a context in which tools can be evaluated according to 
his scientific methodology?  The very task of representing and managing the 
knowledge in such a context would be a healthy challenge for KR tool development.  
We think it is the appropriate challenge for any technology based in Peirce's logical 
theory, especially in his Existential Graphs (EG).   

Peirce's EG have a central function in his philosophy, as instruments for observing 
experiments in reasoning.  Greaves explains that they were designed to fill that role: 
“they would make both the logical structure and the entailments of propositions 
directly observable, in the same way that ... molecular diagrams make both the atomic 
structure and possible combinations of organic compounds observable" [19: 172].  
Computer technology has given us Geographical Information Systems (GIS), we now 
need comparable technology for visualizing Peirce’s pragmatic conduct of inquiry, 
and the CG community needs to pursue such an outlook. 

6   Conclusions 

At the beginning of Peirce's work on pragmatism, he briefly outlined what he 
conceived as the evolution of ways to establish beliefs, which he later advanced in his 
famous essays of 1877-8. 

Men's opinions will act upon one another and the method of obstinacy will 
infallibly be succeeded by the method of persecution and this will yield in time 
to the method of public opinion and this produces no stable result.  
Investigation differs entirely from these methods in that the nature of the final 
conclusion to which it leads is in every case destined from the beginning, 
without reference to the initial state of belief. ... But this will not be true for 
any process which anybody may choose to call investigation, but only for 
investigation which is made in accordance with appropriate rules.  Here, 
therefore, we find there is a distinction between good and bad investigation.  
This distinction is the subject of study in logic. [CP 7.318-20 (1873)] 

In the end, his theory of inquiry retains the objective of explaining a method for 
finding stable belief, but not at the cost of settling for what we call a "nominalist 
game."  And yet, he came to realize that what is most wonderful about the mind is the 
ability to create ideas for which there is yet no existing prototype and "by means of 
this utter fiction it should manage to predict the results of future experiments and by 
means of that power should during the nineteenth century have transformed the face 
of the globe?" [CP 7.686]  Clearly, the open-ended creation of ideas is also essential.   

In Feibleman's evaluation of the lessons to be learned from Peirce's philosophy for 
those who might carry on his work (but not be blinded by it), the final lesson is 
something that Peirce was first to see: "the possibility of constructing an open 
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system."  All systems conceived by philosophers before Peirce had been ipso facto 
closed, he explains: "there is no real reason why there must be a limit to the size of 
our hypotheses. ... to maintain a single proposition tentatively should be no easier than 
to maintain a consistent set" [13: 325, 334]. 

We think that tools created with technology that is theoretically based in Peirce's 
work should be developed as open-ended experiments, relying on Peirce's minutely-
critical logical instruments and his realistic outlook, for a suitably pragmatic (self-
corrective) methodology that can cope with the challenges of their necessarily 
collaborative development. 
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161, rue Ada, F-34392 Montpellier cedex, France

{leclere, mugnier}@lirmm.fr

Abstract. This paper studies the introduction of atomic negation into
simple conceptual graphs. Several semantics of negation are explored
w.r.t. the deduction problem and the query answering problem. Sound and
complete algorithm schemes based on projection (or coref-projection) are
provided in all cases. The processing of equality/inequality is added to the
framework.

1 Introduction

Simple conceptual graphs (SGs) form the keystone of conceptual graphs (CGs).
They are equivalent to the positive conjunctive existential fragment of first-order-
logic [BM02]. The issue tackled in this paper is their extension with a restricted
form of negation, namely atomic negation (in logical terms, negation of form ¬p,
where p is an atom). Atomic negation allows to express knowledge as “this kind
of relation does not hold between these entities”, “this entity does not have this
property” or “this entity is not of this type”. This issue is studied both from
semantic and computational viewpoints.

The framework. The reader is assumed to be familiar with basic notions about
SGs. For further details about definitions and results used in this paper please
see [CM04]. SGs are defined w.r.t. a vocabulary, called a support and denoted
by S. A support includes partially ordered sets of concept types and relations
TC and TR. In the first sections we consider SGs without explicit coreference
links ; coreference will be introduced as the same time as difference (section
4). Note however that a SG may include several concept nodes with the same
individual marker, which is a case of implicit coreference. A SG is denoted by G =
(C, R, E, l), where C and R are respectively the concept and relation nodes, E
is the family of edges and l is a mapping labeling nodes and edges (edges incident
to a relation node are labeled from 1 to the arity of the relation). r(c1...ck) is a
short notation for a relation node with type r and argument list (c1...ck), where
c1...ck are (not necessarily distinct) concept nodes. Φ is the classical translation
from SGs (and the support) into FOL and � denotes classical FOL deduction.
Given two SGs Q and G, it is known that when G is in normal form, there
is a projection from Q to G if and only if Φ(S), Φ(G) � Φ(Q). With natural
conditions on coreference, a SG always possesses a unique normal form (which
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c© Springer-Verlag Berlin Heidelberg 2006



332 M. Leclère and M.-L. Mugnier

we note nf(G) for a SG G). However, in case the normal form does not exist or
cannot be computed, coref-projection can be used instead of projection [CM04].
In the sequel we use projection as the basic notion (knowing that it can be
replaced by coref-projection if necessary). We note G ( Q (or Q + G) if there
is a projection from Q to G. The deduction problem is then defined as follows.

Definition 1 (SG Deduction Problem). The SG deduction problem takes
two SGs G and Q as input and asks whether Q + G.

Another important problem is query answering. This problem takes as input
a knowledge base (KB) composed of SGs representing facts and a SG Q rep-
resenting a query, and asks for all answers to Q in the KB. The query Q is
seen as a “pattern” allowing to extract knowledge from the KB. Generic nodes
in the query represent variables to instantiate with individual or generic nodes
in the base. With this interpretation, each projection from Q to G defines an
answer to Q. An answer can be seen as the projection itself, or it can be seen
as the subgraph of G induced by this projection. We call it the image graph of
Q by π.

Definition 2 (Image graph). Let π a projection from Q to G. The image
graph of Q by π, denoted by Image(Q, π), is the subgraph of G induced by the
images of the nodes in Q by π.

Distinct projections from Q to G may produce the same image graph, thus
defining answers as image graphs instead of projections induces a potential loss
of information. One advantage however of this answer definition is that the set
of answers can be seen as a SG. We thus have the property that the results
returned by a query are in the same form as the original data. This property is
mandatory to process complex queries, i.e. queries composed of simpler queries.

Definition 3 (SG query answering problem). Let Q be a query and G be
a KB. The query answering problem asks for the set of image graphs of Q by all
projections to G.

If we consider the query answering problem in its decision form (“is there an
answer to Q in the KB?”) we obtain the deduction problem (“is Q deducible
from the KB?”).

Results. Several understandings of negation are explored in this paper, which
are all of interest in real world applications. Briefly, when a query asks “find the
x and y such that not r(x, y)”, “not” can be understood in several ways. It might
mean “the knowledge r(x, y) cannot be proven” or “the knowledge not r(x, y)
can be proven”. The first view is consistent with the closed-world assumption,
the second one with the open-world assumption. In turn, the notion of proof can
have several meanings. We point out that, as soon as negation is introduced, the
deduction problem is no longer equivalent with the query answering problem
in its decision form. Indeed, there are cases where classical deduction can be
proven but no answer can be exhibited. These situations exactly correspond to
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cases where the law of excluded middle (“either A is true or not A is true”) is
used in the proof. This observation shifts the attention to logics in which the
law of excluded middle does not hold. We have chosen to consider one of these
logics, intuitionistic logic [Fit69]. It is shown that intuitionistic deduction exactly
captures the notion of an answer. Furthermore, we establish that projection
is sound and complete with respect to intuitionistic deduction in the logical
fragment corresponding to SGs with atomic negation. It follows that atomic
negation can be introduced in SGs with no overhead cost for the query answering
problem. We also give a projection-based algorithm scheme for deduction with
classical interpretation of negation. Finally, the processing of inequality is added
to this framework.

Related works. One may wonder why bother about atomic negation, as general
CGs (obtained from SGs by adding boxes representing negation, lines represent-
ing equality, and diagrammatic derivation rules, following Peirce’s existential
graphs) include general negation [Sow84] [WL94] [Dau03]. The main point is
that checking deduction becomes an undecidable problem. Another important
point is that, notwithstanding the qualities general CGs might have for dia-
grammatic logical reasoning, they are not at the application end-user level (see
f.i. [BBV97]). Indeed, most applications are based on SGs and extensions that
keep their intuitive appeal such as nested graphs, rules and constraints (f.i. the
SG-family in [BM02]). Note that these latter extensions do not provide negation.

Few works have considered SGs with atomic negation. Simonet exhibited ex-
amples showing that projection is not complete anymore and proposed an algo-
rithm based on an adaptation of the resolution method (unpublished note, 1998;
see also [Mug00]). In [Ker01] simpler examples were exhibited and it was shown
that projection remains complete in a very particular case (briefly when posi-
tive and negative relations are separated into distinct connected components).
[Kli05] gave examples of problems related to the introduction of negation on
relations (including equality) in the framework of protoconcept graphs (which
can be translated into the conceptual graphs considered in the present paper).
Moreover, as far as we know the problem of atomic negation in relationship with
query problems had never been explored.

Paper organization. Section 2 introduces atomic negation into SGs, leading
to polarized SGs. In section 3, several meanings of negation are discussed and
related with the projection notion. Algorithm schemes for solving all the deduc-
tion and query problems are provided. In section 4, the results are extended to
the processing of inequality. Due to space limitations, proofs are not included in
this paper. The reader is referred to [ML05].

2 Polarized SGs

In this paper, we define atomic negation on relations only, but as explained below
the results can easily be translated to concept types. Besides positive relation
nodes, we now have negative relation nodes. A positive node is labeled by (r) or
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(+r), and a negative one by (−r), where r is a relation type. As in [Ker01], we
call polarized SGs (PGs) such SGs. A negative relation node with label (−r)
and neighbors (c1...ck) expresses that “there is no relation r between c1...ck” (or
if k = 1, “c1 does not possess the property r”); it is logically translated by Φ
into the literal ¬r(e1...ek), where ei is the term assigned to ci. Let us consider
the very simple example of figure 1. G describes a situation where there is a pile
of three cubes A, B and C; A is blue and C is not blue. Whether B is blue or
not is not specified.
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Fig. 1. Atomic negation

Projection on PGs is similar to projection on SGs with a simple extension
of the order on relation node labels. The opposite type order is considered for
negative labels: we set −r1 ≤ −r2 if r2 ≤ r1.

Definition 4 (Extended order on relation labels). Given two relation la-
bels l1 and l2, l1 ≤ l2 if, either l1 and l2 are both positive labels, say l1 = (r1)
and l2 = (r2), and r1 ≤ r2, or l1 and l2 are both negative labels, say l1 = (−r1)
and l2 = (−r2), and r1 ≥ r2.

Since negation is introduced a PG can be inconsistent.

Definition 5 (inconsistent PG). A PG is said to be inconsistent if its nor-
mal form contains two relation nodes +r(c1...ck) and −s(c1...ck) with r ≤ s.
Otherwise it is said to be consistent.

Property 1. For any PG G on a support S, G is inconsistent iff Φ(S) ∪ {Φ(G)}
is (logically) inconsistent.

Negation on concept types. Negation in concept labels can be defined in
a similar way. A concept node labeled by −t (and a marker) is interpreted as
“there is an entity that is not of type t”, and not as “there is not an entity of
type t”, that is we keep an existential interpretation. Since the universal concept
type is supposed to represent all entities, it cannot be negated. Let us point
out that, if negation on concept types is interesting from a modeling viewpoint,
it does not add expressiveness. Indeed concept types can be processed as unary
relation types. More precisely, consider SGs on a support S. Let S′ be the support
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built by translating all concept types, except the universal type �, into unary
relation types (keeping the same partial order). The concept type set of S′ is
composed of the single type �. Then, SGs on S can be transformed into SGs on
S′, while preserving projections and logical deduction: each concept node with
label (∼ t,m), where ∼ t can be positive or negative and t �= �, is translated
into a concept node with label (�,m) and one neighboring relation node with
label (∼ t). A simple and uniform way of processing negation on concepts and
relations thus involves applying the transformation sketched above, processing
the obtained graphs with algorithms given in this paper and, if needed, applying
the reverse transformation to present the results. Another solution is to adapt
the algorithms, which is straightforward.

3 Different Kinds of Atomic Negation

In this section we study three ways of understanding negation in relation with
the notions of query and answer.

3.1 Closed-World Assumption

A first way of understanding “not A” is “A is not present in the KB” (and
more generally A cannot be obtained from the KB by inference mechanisms).
Such a view is consistent with the “closed-world assumption” generally made in
databases and the “negation by failure” in logic programming. Although only
positive information needs to be represented in the KB, we will not forbid a PG
representing facts to contain negative relations. A completed PG is obtained from
a PG by expliciting in a negative way all missing information about relations.
Then a query is not mapped to the original KB but rather to its completed
version.

Definition 6 (completed PG). The completed PG of a PG G, denoted by
completed(G), defined over a support S, is the only PG obtained from the normal
form of G by adding all possible negative relations: for all relation type r of arity
k in S, for all concept nodes c1...ck, if there is no relation r′(c1...ck) in nf(G)
with r′ ≤ r, add the relation −r(c1...ck).

Definition 7 (CWA-PG deduction problem). The PG deduction problem
with closed-world assumption semantics takes two PGs Q and G as input and
asks whether Q + completed(G).

The mapping to classical logical deduction is obtained via the completed KB:

Property 2. Let Q and G be PGs defined on a support S, with G being consis-
tent. Q + completed(G) if and only if Φ(S), Φ(completed(G)) � Φ(Q).

Definition 8 (CWA-PG query answering problem). Let Q be a (polarized)
query and G be a (polarized) KB. The query answering problem asks for the
image graphs of Q by all projections to completed(G).
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Obviously the completed PG (or the part of it concerning the negated relations
of the query) does not have to be computed in practice. Indeed, let Q+ be
the subgraph obtained from Q by considering concept nodes and solely positive
relations. We have to select the projections from Q+ to G that do not lead to
“map” a negative relation in Q to a contradictory positive relation in G.

Definition 9. A negative relation −r(c1...ck) in a PG Q is satisfied by a projec-
tion π from Q+ to a PG G if G does not contain a positive node +s(π(c1)...π(ck))
with s ≤ r.

Property 3. Let Q and G be two PGs defined over a support S, with G being
consistent. There is a bijection from the set of projections from Q+ to G satisfy-
ing all negative relations in Q to the set of projections from Q to completed(G).

Algorithms 1 and 2 take advantage of this property. In algorithm 2, Ans(Q, π)
is the PG obtained from Image(Q+,π) by adding negative relations corre-
sponding to negative relations in Q (i.e. for each −r(c1...ck) in Q, one adds
−r(π(c1)...π(ck)) to Image(Q+,π)). In other words, Ans(Q, π) is the image of
Q by a projection (extending π) to completed(G) and not to G. Indeed, the
closed-world assumption cannot be made on answer graphs, as the absence of
a relation in an answer graph could come from the absence in the KB but also
from its absence in the query. For instance, consider figure 2, which shows the
only answer obtained by applying the query Q to the KB G in figure 1; the
relation of label (−prop) is added whereas it does not appear in G.

Algorithm 1. CWADeduction
Data: PGs Q and G
Result: true if Q can be deduced from G with CWA, false otherwise
begin

Compute P the set of projections from Q+ to G;
forall π ∈ P do

Good ← true;
forall negative relation −r(c1 ... ck) in Q do1

if there is s(π(c1) ... π(ck)) in G with s ≤ r then
Good ← false ; // π is not good
exit this for loop ;

if Good then return true;2

return false;
end

3.2 Open-World Assumption

Let us now interpret the example in figure 1 with open-world assumption:
nothing is known about the color of the cube B. Seen as a yes/no question,
Q asks whether there is a blue cube on top of a non-blue cube. Seen as a
query, Q asks for exhibiting objects having these properties. In both cases, what
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Algorithm 2. CWAQueryAnswering
Data: PGs Q and G
Result: the set of answers to Q in G with closed-world assumption
begin

Compute P the set of projections from Q+ to G;
Answers ← ∅;
forall π ∈ P do

Good ← true;
forall negative relation −r(c1 ... ck) in Q do1

if there is s(π(c1) ... π(ck)) in G with s ≤ r then
Good ← false ; // π is not good
exit this for loop ;

if Good then Answers ← Answers ∪ {Ans(Q,π)};2

return Answers;
end
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Fig. 2. Single result obtained by applying the CWA-PG query answering in figure 1

should be answered to Q? Let us first point out that spontaneously a non-
logician (an end-user for instance) would say that the answer to the yes/no
question is no. This intuition corresponds to the observation that there is no
answer to the query. However, in classical FOL, the answer to the yes/no
question is yes. Indeed the logical formulas assigned to Q and G by Φ are
respectively of form Φ(Q) = ∃x∃y (p(x,Blue) ∧ ¬p(y,Blue) ∧ r(x, y)) and
Φ(G) = p(A,Blue)∧r(A,B)∧r(B,C)∧¬p(C,Blue) (where p = prop, r = onTop
and atoms assigned to concept nodes are ignored). Φ(Q) can be deduced from
Φ(G) using the valid formula p(B,Blue) ∨ ¬p(B,Blue) (every model of Φ(G)
satisfies either p(B, blue) or ¬p(B, blue) ; Φ(Q) is obtained by interpreting x
and y as B and C if p(B, blue) holds, and as A and B in the opposite case).
Classical deduction thus ensures that there is a “solution” to Q but it is not able
to construct it. Hence, there is no answer to Q as a query. This example leads
to the following observations:

– The assertions “Q is (classically) deducible from G” and “the set of answers
to Q in G is not empty” might disagree. In other words, deduction and
the decision problem associated with query answering are different problems
(which was not the case for SGs).

– The difference between the notions of deduction and the existence of an
answer is due to the use of the law of excluded middle, which states here
that “either B is blue or it is not blue”.
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Trying to formalize the preceding observations led us to distinguish two seman-
tics for negative relations, namely according to intuitionistic logic and to classical
logic. In intuitionistic logic, the law of excluded middle does not hold. In fact,
this logic appears to br completely in line with the notion of answer, as detailed
later: Q is intuitionistically deducible from G if and only if the set of answers to
G is not empty. Note we do not claim that intuitionistic logic is the only logic
suitable to our framework. Another candidate would have been 3-value logic, in
which 3 truth vales are considered instead of 2: true, false and undetermined.

Intuitionistic negation. Intuitionistic logic is a well-established logic belong-
ing to constructive mathematics [Fit69]. It is built upon the notion of construc-
tive proof, which rejects the reductio-ad-absurdum reasoning. For instance, a
proof of (A∨B) is given by a proof of A or a proof of B; a proof that the falsity
of (A∨B) leads to a contradiction does not yield a proof of (A∨B) since it does
not determine which of A or B is true. Intuitionistic (natural) deduction rules
are those of classical logic except that the absurdity rule (from Γ,¬A  ⊥ deduce
Γ  A) does not hold. Clearly each theorem of intuitionistic logic is a theorem
of classical logic but not conversely. Some characteristic examples of classical
logic theorems not provable in intuitionistic logic are (A∨¬A), (¬¬A→ A) and
((A→ B)→ (¬A ∨B)). We denote by �� intuitionistic deduction (recall that �
is classical deduction). The relationship between classical and intuitionistic logic
in the logical fragment of PGs can be expressed as follows:

Property 4. For any predicate r with arity k, let E(r) be the formula ∀x1 ... xk

(r(x1, ..., xk)∨¬r(x1 , ..., xk)). Given a support S, let ES be the set of formulas
E(r) for all predicates r corresponding to relation types in S. Then: Φ(S), ES ,
Φ(G) �� Φ(Q) if and only if Φ(S), Φ(G) � Φ(Q).

Let us come back to the example in figure 1. According to intuitionistic logic,
formula p(B,Blue) ∨ ¬p(B,Blue) can be considered as true only if it can be
shown that p(B,Blue) is true, or that ¬p(B,Blue) is true. Since none of these
two statements can be proven, Q cannot be deduced; hence the answer to Q as
a yes/no question is no, which corresponds to the fact that there is no answer
to Q as a query. Such an interpretation of a yes/no question can be seen as the
query answering problem in its decision form which asks for the existence of
an answer, that is the existence of a projection. This problem is equivalent to
intuitionistic deduction checking, as shown by the next theorem.

Property 5. A polarized SG G defined on a support S is inconsistent iff Φ(S) ∪
{Φ(G)} is intuitionistically inconsistent.

Theorem 1. Let Q and G be two polarized SGs defined on a support S, with
G being consistent. Q + nf(G) if and only if Φ(S), Φ(G) �� Φ(Q).

This theorem yields the following property, which shows that intuitionistic nega-
tion is completely in line with the notion of answer to a query.

Property 6. Given two PGs Q and G, when Q is deducible from G with classical
negation but not with intuitionistic negation, there is no answer to Q in G.
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We are now able to define the intuitionistic deduction problem as well as the
query answering problem in terms of projection.

Definition 10 (OWA-PG intuitionistic deduction problem). The PG in-
tuitionistic deduction problem takes two PGs Q and G as input and asks whether
Q + G.

Definition 11 (OWA-PG query answering problem). The OWA-PG
query answering problem takes two PGs Q and G as input and asks for the
set of image graphs of Q by all projections to G.

Classical negation. The classical semantic of negation leads to a case-based
reasoning: if a relation is not asserted in a fact, either it is true or its negation is
true. We thus have to consider all ways of completing the knowledge asserted by
a PG. The next definition specifies the notion of the completion of a PG relative
to a support S.

Definition 12 (Complete PG). A complete PG on a support S is a consistent
(normal) PG satisfying the following condition: for each relation type r of arity k
in S, for each k-tuple of concept nodes (c1...ck), where c1...ck are not necessarily
distinct nodes, there is a relation +s(c1...ck) with s ≤ r or (exclusive) there is
a relation −s(c1...ck) with s ≥ r. A PG is complete w.r.t. a subset of relation
types T ⊆ TR if the completion considers only elements of T .

Property 7. If a relation node is added to a complete PG, either this relation
node is redundant (there is already a relation node with the same neighbor list
and a label less or equal to it) or it makes the PG inconsistent.

A complete PG is obtained from G by repeatedly adding positive and negative
relations as long as adding a relation brings new information and does not yield
an inconsistency. The so-called completed PG defined for closed-world assump-
tion (cf. section 3.1) is a particular case of a complete PG obtained from G by
adding negative relations only. Since a PG G is a finite graph defined over a
finite support, the number of different complete PGs that can be obtained from
G is finite. We can now define deduction on PGs.

Definition 13 (OWA-PG (classical) deduction problem). The PG (clas-
sical) deduction problem with open-world assumption semantics takes two PGs
Q and G as input and asks whether each complete PG Gc obtained from G is
such that Q + Gc.

This problem is known to be Π2
p -complete (Π2

p is co-NPNP ) whereas deduction
on SGs is NP-complete. The following property expresses that the PG deduction
is sound and complete with respect to the classical deduction in FOL.

Theorem 2. Let Q and G be two PGs defined on a support S. G is a consistent
PG. Then Q can be (classically) deduced from nf(G) if and only if Φ(S), Φ(G) �
Φ(Q).
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Algorithm 3 presents a brute-force algorithm scheme for OWA deduction. Let us
recall that the other OWA problems (intuitionistic deduction and query answer-
ing) are directly based on projection. An immediate observation for generating
the Gc is that we do not need to consider all relations types but only those
appearing in Q. The algorithm generates all complete PGs relative to this set
of types and for each of them checks whether Q can be projected to it. A com-
plete graph to which Q cannot be projected can be seen as a counter-example
to the assertion that Q is deducible from G. Although algorithm improvments
are beyond the scope of this paper, let us outline an improved way of checking
deduction. Consider the space of graphs G leading from G to its completions
(and ordered by subgraph inclusion). The question “is there a projection from Q
to each Gc ∈ G?” can be reformulated as “is there a set of (incomparable) SGs
{G1 , ..., Gk} in this space, which covers G, i.e. each Gc ∈ G has one of the Gi

as subgraph, and such that there is projection from Q to each Gi?”. The brute-
force algorithm takes G as the covering set. A more efficient method consists in
building a covering set by incrementally completing G, one relation node after
another.

Algorithm 3. OWAClassicalDeduction
Data: PGs Q and G, G being consistent
Result: true if Q can be (classically) deduced from G, false otherwise
begin

Compute G the set of complete PG obtained from G w.r.t. relation types in
Q;
forall Gc ∈ G do

if there is no projection from Q to Gc then
return false ; // Gc is a counter-example

return true;
end

4 Equality and Difference

In this section we extend previous framework to equality and inequality, also
called coreference and difference. Equality is classically represented in concep-
tual graphs by a special feature called a coreference link. A coreference link
relates two concept nodes and indicates that these nodes represent the same
entity. See figure 3: coreference links are represented by dashed lines; in addition
there is an implicit coreference link between two nodes with the same individual
marker (here c1 and c5). Formally, coreference can be defined as an equivalence
relation, denoted by coref, added to a SG, such that nodes with the same individ-
ual marker necessarily belong to the same equivalence class. As most knowlegde
representation formalisms, conceptual graphs make the “unique name assump-
tion” (UNA). Consequently, nodes with different individual markers necessarily
belong to different equivalence classes. In addition, coreferent concepts must have
compatible types (see the discussion in [CM04]). Let us point out that equality
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does not bring more expressiveness to SGs (at least in the context of UNA).
Indeed a SG with coreference, say G, is logically equivalent to the normal SG
nf(G) obtained by merging all nodes belonging to the same coreference class
(see figure 3). We present it for clarity reasons, since difference is naturally seen
as the negation of coreference.
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Fig. 3. Coreference: coref = {{c1, c3, c5}, {c2, c4}}

Let us introduce inequality (or difference) as a special element of the SG
syntax, called a difference link. A difference link between two nodes c1 and c2
expresses that c1 and c2 represent distinct entities. See Figure 4: difference links
are represented by crossed lines. Due to the unique name assumption, there is
an implicit difference link between nodes having distinct individual markers.
Formally, difference is added to SGs as a symmetrical and antireflexive relation
on concept nodes, called dif. In next definitions, we distinguish between the set
of explicit coreference and difference links (Ecoref and Edif ) and the relations
(coref and dif) obtained from explicit and implicit links.
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Fig. 4. PG�=: Q is classically deducible from G

Definition 14 (PG �=). A (polarized) SG with equality and inequality (notation
PG�=) is a 6-tuple (C, R, E, l, Ecoref , Edif ) where:

– (C,R, E, l) is a (polarized) SG;
– Ecoref and Edif are sets of specific edges between distinct nodes of C.

Definition 15 (coref relation). The relation coref on a PG�= G =
(C, R, E, l, Ecoref , Edif ) is the equivalence relation over C defined as the
reflexive and transitive closure of the union of:

– the symmetrical relation induced by Ecoref over C;
– implicit links due to multiple occurrences of individual markers:
{{c, c′} | c, c′ ∈ C, marker(c) �= ∗ and marker(c) = marker(c′)};

Before defining dif , we introduce a relation Dif on the equivalence classes of
coref .
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Definition 16 (Dif relation). The relation Dif on a PG�= G =
(C, R, E, l, Ecoref , Edif ) is the symmetrical relation over equivalence classes
of coref defined as the union of:

1. the symmetrical relation induced by Edif : {{C1, C2} | there are c1 ∈ C1, c2 ∈
C2 with {c1, c2} ∈ Edif};

2. implicit links due to unique name assumption: {{C1, C2} | there are c1 ∈
C1, c2 ∈ C2 with marker(c1) �= ∗, marker(c2) �= ∗ and marker(c1) �=
marker(c2)};

3. implicit links due to incompatible types (in the sense of [CM04]):
{{C1, C2} | there are c1 ∈ C1, c2 ∈ C2 such that type(c1) and type(c2)
are incompatible };

4. implicit links due to contradictory relations: {(C1, C2) | there are c1 ∈
C1, c2 ∈ C2 and r1 = +t(d1...dq), r2 = −s(e1...eq) ∈ R such that t ≤ s
and for all k ∈ {1..q}, one has {dk, ek} ∈ coref except for exactly one value
of k.

Sets 2, 3 and 4 could be deduced from set 1 and knowledge in the support but
we prefer adding them explicitely in Dif . Set 4 is illustrated by figure 5: the
relation nodes have opposite labels and coreferent neighborhood except for c and
c′; making c and c′ coreferent would lead to an inconsistent graph.

Definition 17 (dif relation). The relation dif on a PG�=G = (C, R, E,
l, Ecoref , Edif ) is the symmetrical relation over C defined as the cartesian
product of all pairs of coref classes belonging to Dif (i.e. if {C1, C2} ∈ Dif then
for all c1 ∈ C1 and c2 ∈ C2, {c1, c2} ∈ dif).
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Fig. 5. Implicit dif link

For a PG�= in normal form, one has dif = Dif . A PG�= is consistent if it does
not contain contradictory information, i.e. it is consistent as a PG and coref
and dif are not contradictory (coref ∩ dif = ∅). Note that dif and Dif are
then antireflexive.

The FOL formula assigned to a PG�= translates coreference by assigning the
same term (variable or constant) to coreferent nodes, or equivalently, by adding
an atom e1 = e2 for each pair of coreferent nodes with assigned terms e1 and e2.
dif is translated by �=. Every consistent PG�= possesses a normal form which is
obtained by merging all concept nodes of the same coref class (note that this is a
generalization of the normal form of SGs, where coref is implicitly defined, two
nodes being in the same coref class if and only if they have the same individual
marker). The obtained PG�= is logically equivalent to the original one.
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Let us come back to (positive) SGs and consider the processing of corefer-
ence and/or difference. A projection π from Q to G has to respect coreference:
for all nodes c1 and c2 of Q, if {c1, c2} ∈ corefQ then {π(c1), π(c2)} ∈ corefG

(note π(c1) and π(c2) can be the same node). As for positive SGs without coref-
erence, completeness is obtained only if the target SG is in normal form. Re-
call that projection can be replaced by coref-projection to ensure completeness
without this condition. If difference is added to SGs, projection has to respect
the dif relation as well: for all nodes c1 and c2 of Q, if {c1, c2} ∈ difQ then
{π(c1), π(c2)} ∈ difG. Concerning completeness, the same discussion as for neg-
ative relations about the use of the law of excluded middle can be brought as
illustrated by figure 4. The formulas assigned to G and Q are respectively Φ(G) =
∃x∃y∃z (r(x, z) ∧ r(y, z) ∧ ¬(x = y)) and Φ(Q) = ∃x∃y (r(x, y) ∧ ¬(x = y)).
Φ(Q) can be (classically) deduced from Φ(G), using the law of excluded mid-
dle for x = z and/or y = z, while there is no projection from Q to G. As for
PGs, projection is sound with respect to classical deduction and intuitionistic
deduction, and it is complete for intuitionistic deduction only.

The extension to PG �=s of algorithms designed for PGs is easy. In the CWA
case, nodes of the KB G not known as being coreferent are considered as be-
ing connected by a dif link. Thus a projection π from Q+ to G has to satisfy:
for all nodes c1 and c2 in Q, if {c1, c2} ∈ difQ then {π(c1), π(c2)} �∈ corefG

(or simply π(c1) �= π(c2) if G is in normal form). The algorithms 1 (deduc-
tion) and 2 (query answering) are extended by insertion of a new step checking
this condition between steps 1 and 2. In the OWA case, no changes are to be
done for query answering and intuitionistic deduction: the fact that projection
preserves coreference and difference is sufficient. Concerning classical deduction,
case-based reasoning has to be done as for negative relations. Algorithm 4 is a
brute-force algorithm computing all dif -complete PG�= (i.e. forall c, c′ distinct
concept nodes, either {c, c′} ∈ dif or {c, c′} ∈ coref). Computing completions
incrementally during deduction checking would of course be more efficient. Note
that case 1 updates coref but may also involve updating dif (due to potential
contradictory relations as illustrated in figure 5), while case 2 updates dif only.

Algorithm 4. AllCompleteGraphsForDif
Data: a PG�= G
Result: the set of all (normal) dif-complete PG �= obtainable from G
begin

CompleteSet ← ∅;
CompleteRec(G);
return CompleteSet ;

end

5 Perspectives

In this paper we study separately three kinds of negation. In practice it may be
useful to combine them. An interesting approach in this perspective is that of G.
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Procedure CompleteRec(G)

Data: a PG�= G
Result: this procedure computes recursively the completion of G; it has access

to all data of the main algorithm (alg. 4)
begin

if dif ∪ coref is complete then
// all pair of distinct concept nodes are in dif or coref
CompleteSet ← CompleteSet ∪ {G};

else
Choose two (distinct) nodes c, c′ in G such that {c, c′} �∈ dif ∪ coref ;
// case 1: make them coreferent
let G1 be obtained from G by adding {c, c′} to Ecoref

CompleteRec(G1);

// case 2: make them ‘‘different’’
let G2 be obtained from G by adding {c, c′} to Edif

CompleteRec(G2);

end

Wagner [Wag03] who, after an analysis of different kinds of negation that can be
found in existing systems and languages, as well as in natural language, proposes
to distinguish between several kinds of predicates. Predicates are separated into
total predicates and partial predicates that may have “truth value gaps” (that
is it may be the case that neither P nor ¬P is true). The law of excluded middle
applies to the first ones but not the second ones. Total predicates can be open or
closed, according to the underlying completeness assumption, namely OWA or
CWA. A kind of negation corresponds to each kind of predicate. The proposed
logic for distinguishing between these three kinds of predicates is a partial logic
with three truth values (true, false and undefined). Although we do not consider
the same logical framework, the above three kinds of predicates correspond to
the three cases analyzed in the present paper. Similar to Wagner’s proposal,
we could combine the three ways of processing negation. If information about a
relation type is assumed to be complete, closed-world negation is used. If it is not,
the question is whether the law of excluded middle applies or not. If the answer
is yes, the negation for this relation type is the classical negation, otherwise it is
the intuitionistic negation. Since all mechanisms defined in this paper are based
on projection (or coref-projection), combining them is not difficult.
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Abstract. This paper presents a novel approach to Conceptual Clus-
tering in First Order Logic (FOL) which is based on the assumption
that candidate clusters can be obtained by looking for frequent asso-
ciation patterns in data. The resulting method extends therefore the
levelwise search method for frequent pattern discovery. It is guided by
a reference concept to be refined and returns a directed acyclic graph
of conceptual clusters, possibly overlapping, that are subconcepts of the
reference one. The FOL fragment chosen is AL-log, a hybrid language
that merges the description logic ALC and the clausal logic Datalog.
It allows the method to deal with both structural and relational data in
a uniform manner and describe clusters determined by non-hierarchical
relations between the reference concept and other concepts also occur-
ring in the data. Preliminary results have been obtained on Datalog
data extracted from the on-line CIA World Fact Book and enriched with
a ALC knowledge base.

1 Introduction

Conceptual clustering is a form of unsupervised learning that aims at determin-
ing not only the clusters but also their descriptions expressed in some represen-
tation formalism [17]. Related to Conceptual Clustering is Concept Formation
[8]. The difference between the two is substantially in the methods: The former
applies bottom-up batch algorithms whereas the latter prefers top-down incre-
mental ones. Very few works on Conceptual Clustering and Concept Formation
in the representation framework of (fragments of) First Order Logic (FOL) can
be found in the literature [22, 2, 11, 10, 3, 24, 23, 7]. They differ in the approaches
(distance-based, probabilistic, etc.) and/or in the representations (description
logics, conceptual graphs, E/R models, etc.) adopted.

This paper presents a novel approach to Conceptual Clustering which follows
a recent trend in cluster analysis: using frequent association patterns as candidate
clusters [26, 25]. A frequent (association) pattern is an intensional description,
expressed in a language L, of a subset of a given data set r whose cardinal-
ity exceeds a user-defined threshold (minimum support). Each frequent pattern
emphasizes a regularity in the data set, therefore it can be considered as the
clue of a cluster. The method we propose for conceptual clustering extends the
levelwise search method [16] for frequent pattern discovery with an additional
post-processing step to turn frequent patterns into clusters.
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The representation framework chosen is the one offered by the hybrid knowl-
edge representation and reasoning (KR&R) systemAL-log [6] (see also Appendix
for a brief introduction). It allows for the specification of both relational and
structural data: the former is based on Datalog [4] whereas the latter is based
on the description logic ALC [20]. The integration of the two forms of represen-
tation is provided by the so-called constrained Datalog clause, i.e. a Datalog
clause with variables eventually constrained by concepts expressed in ALC. Fre-
quent pattern discovery in AL-log has been already investigated in [14]. In this
paper we extend [14] towards conceptual clustering under the assumption that
frequent patterns can be considered as the clue for clusters.

The paper is organized as follows. Section 2 defines our problem of Conceptual
Clustering, first in general then within the KR&R framework ofAL-log. Section 3
illustrates our solution method whereas Section 4 presents the algorithm together
with a theoretical and an empirical evaluation. Section 5 concludes with final
remarks and directions of future work.

2 The Problem Statement

In conceptual clustering each cluster C defines a new concept therefore it consists
of two parts: an intension int(C) and an extension ext(C). The former is an
expression belonging to a logical language L whereas the latter is a set of objects
that satisfy the former.

The conceptual clustering problem we face is a semi-supervised learning prob-
lem. Indeed we are interested in finding subconcepts of a known concept, called
reference concept. More formally, given

– a reference concept Cref ,
– a data set r,
– a language L

our conceptual clustering problem is to find a directed acyclic graph (DAG) G
of concepts Ci such that (i) int(Ci) ∈ L and (ii) ext(Ci) ⊂ ext(Cref ). Note that
Cref is among both the concepts defined in (the structural part of) r and the
symbols of L. Furthermore ext(Ci) relies on a notion of satisfiability of int(Ci)
w.r.t. r.

Within the KR&R framework of AL-log, the data set r is represented as a
AL-log knowledge base.

Example 1. As a running example, we consider an AL-log knowledge base BCIA

that enriches Datalog facts1 extracted from the on-line 1996 CIA World Fact
Book2 with ALC ontologies. The structural subsystem Σ of BCIA focus on the
concepts Country, EthnicGroup, Language, and Religion. Axioms like

1 http://www.dbis.informatik.uni-goettingen.de/Mondial/
mondial-rel-facts.flp

2 http://www.odci.gov/cia/publications/factbook/



348 F.A. Lisi

AsianCountry � Country.
MiddleEasternEthnicGroup� EthnicGroup.
MiddleEastCountry≡ AsianCountry� ∃Hosts.MiddleEasternEthnicGroup.
IndoEuropeanLanguage� Language.
IndoIranianLanguage� IndoEuropeanLanguage.
MonotheisticReligion� Religion.
ChristianReligion� MonotheisticReligion.
MuslimReligion� MonotheisticReligion.

define four taxonomies, one for each concept above. Note that Middle East coun-
tries (concept MiddleEastCountry) have been defined as Asian countries that
host at least one Middle Eastern ethnic group. Two of the 15 countries classified
as Middle Eastern are Armenia (’ARM’) and Iran (’IR’). Assertions like

<’ARM’,’Armenian’>:Hosts.
<’IR’,’Arab’>:Hosts.
’Armenian’:IndoEuropeanLanguage.
’Persian’:IndoIranianLanguage.
’Armenian Orthodox’:ChristianReligion.
’Shia’:MuslimReligion.
’Sunni’:MuslimReligion.

belong to the extensional part of Σ.
The relational subsystem Π of BCIA consists of Datalog facts like

language(’ARM’,’Armenian’,96).
language(’IR’,’Persian’,58).
religion(’ARM’,’Armenian Orthodox’,94).
religion(’IR’,’Shia’,89).
religion(’IR’,’Sunni’,10).

and constrained Datalog clauses such as

speaks(CountryID, LanguageN)← language(CountryID,LanguageN,Perc)&
CountryID:Country, LanguageN:Language

believes(CountryID, ReligionN)← religion(CountryID,ReligionN,Perc)&
CountryID:Country, ReligionN:Religion

that can deduce new Datalog facts when triggered on BCIA.

The language L contains expressions, called O-queries, relating individuals
of Cref to individuals of other concepts (task-relevant concepts). These concepts
also must occur in r. An O-query is a constrained Datalog clause of the form

Q = q(X)← α1, . . . , αm&X : Cref , γ2, . . . , γn,

which is compliant with the properties of linkedness and connectedness [18] and
the bias of Object Identity (OI)3 [21]. The O-query
3 The OI bias can be considered as an extension of the unique names assumption

from the semantics of ALC to the syntax of AL-log. It boils down to the use of
substitutions whose bindings avoid the identification of terms.
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Qt = q(X)← &X : Cref

is called trivial for L because it only contains the constraint for the distinguished
variable X . Furthermore the language L is multi-grained, i.e. it contains expres-
sions at multiple levels of description granularity. Indeed it is implicitly defined
by a declarative bias specification which consists of a finite alphabet A of Data-
log predicate names and finite alphabets Γ l (one for each level l of description
granularity) of ALC concept names. Note that αi’s are taken from A and γj ’s
are taken from Γ l. We impose L to be finite by specifying some bounds, mainly
maxD for the maximum depth of search and maxG for the maximum level of
granularity.

Example 2. We want to describe Middle East countries (individuals of the ref-
erence concept) with respect to the religions believed and the languages spo-
ken (individuals of the task-relevant concepts) at three levels of granularity
(maxG = 3). To this aim we define LCIA as the set of O-queries with Cref =
MiddleEastCountry that can be generated from the alphabet A= {believes/2,
speaks/2} of Datalog binary predicate names, and the alphabets

Γ 1= {Language, Religion}
Γ 2= {IndoEuropeanLanguage, . . . , MonotheisticReligion, . . .}
Γ 3= {IndoIranianLanguage, . . . , MuslimReligion, . . .}
of ALC concept names for 1 ≤ l ≤ 3, up to maxD = 5. Examples of O-queries
in LCIA are:

Qt= q(X) ← & X:MiddleEastCountry
Q1= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:Language
Q2= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:IndoEuropeanLanguage
Q3= q(X) ← believes(X,Y)& X:MiddleEastCountry, Y:MuslimReligion

where Qt is the trivial O-query for LCIA, Q1 ∈ L1
CIA, Q2 ∈ L2

CIA, and Q3 ∈ L3
CIA.

In our context, a cluster has an O-query Q as intension and the set
answerset(Q,B) of correct answers to Q w.r.t. B as extension. Note that
answerset(Q,B) contains the substitutions θi’s for the distinguished variable of
Q such that there exists a correct answer to body(Q)θi w.r.t. B. In other words,
the extension is the set of individuals of Cref satisfying the intension.

Example 3. The cluster havingQ1 as intension has extension answerset(Q1,BCIA)
= {’ARM’, ’IR’, ’SA’, ’UAE’}. In particular, the substitution θ ={X/’ARM’} is
a correct answer to Q1 w.r.t. BCIA because there exists a correct answer σ={Y/
’Armenian’} to body(Q1)θ w.r.t. BCIA.

The DAG G is structured according to the subset relation between cluster ex-
tensions.

3 The Method

The conceptual clustering problem stated in Section 2 can be decomposed in
two subproblems:
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I. discovery of frequent patterns in data
II. generation of clusters from frequent patterns

In particular, the subproblem I is actually a variant of frequent pattern discov-
ery which aims at obtaining descriptions of the data set r at different levels
of granularity [9]. Here r typically encompasses a taxonomy T . More precisely,
the problem of frequent pattern discovery at l levels of description granularity,
1 ≤ l ≤ maxG, is to find the set F of all the frequent patterns expressible in
a multi-grained language L = {Ll}1≤l≤maxG and evaluated against r w.r.t. a
set {minsupl}1≤l≤maxG of minimum support thresholds by means of the evalu-
ation function supp. In this case, P ∈ Ll with support s is frequent in r if (i)
s ≥ minsupl and (ii) all ancestors of P w.r.t. T are frequent in r.

The method proposed for solving one such decomposed problem extends the
levelwise search method [16] for frequent pattern discovery with an additional
post-processing step to solve the subproblem II. This method searches the space
(L,+) of patterns organized according to a generality order + in a breadth-first
manner, starting from the most general pattern in L and alternating candidate
generation and candidate evaluation phases. The underlying assumption is that
+ is a quasi-order monotonic w.r.t. supp. For L being a multi-grained language
of O-queries, we need to define first supp, then +. The support of an O-query
Q ∈ L w.r.t. an AL-log knowledge base B is defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |

and supplies the percentage of individuals of Cref that satisfy Q.

Example 4. Since | answerset(Q1,BCIA) |= 3 and | answerset(Qt,BCIA) |= 15 =
| MiddleEastCountry |, then supp(Q1,BCIA) = 20%.

Patterns are ordered according to B-subsumption [14] which can be tested by
resorting to constrained SLD-resolution: Given two O-queries H1, H2 ∈ L, B an
AL-log knowledge base, and σ a Skolem substitution for H2 w.r.t. {H1} ∪ B,
we say that H1 B-subsumes H2, denoted as H1 +B H2, iff there exists a substi-
tution θ for H1 such that (i) head(H1)θ = head(H2) and (ii) B ∪ body(H2)σ �
body(H1)θσ where body(H1)θσ is ground. It has been proved that +B is a quasi-
order that fulfills the condition of monotonicity w.r.t. supp [14].

Example 5. It can be checked that Q1 +B Q2 by choosing σ={X/a, Y/b} as a
Skolem substitution for Q2 w.r.t. BCIA∪{Q1} and θ = ∅ as a substitution for Q1.
Similarly it can be proved that Q2 �+B Q1. Furthermore, it can be easily verified
that Q3 B-subsumes the following O-query in L3

CIA

Q4= q(A) ← believes(A,B), believes(A,C)&
A:MiddleEastCountry, B:MuslimReligion

by choosing σ={A/a, B/b, C/c} as a Skolem substitution for Q4 w.r.t. BCIA∪{Q3}
and θ={X/A, Y/B} as a substitution for Q3. Note that Q4 �+B Q3 under the OI
bias. Indeed this bias does not admit the substitution {A/X, B/Y, C/Y} for Q4
which would make possible to verify conditions (i) and (ii) of the +B test.
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AL-CoClust(r, L, {minsupl}1≤l≤maxG)
1. G ← ∅;
2. Qt ← {generateTrivialPattern(L)};
3. l ← 1;
4. while l ≤ maxG do
5. Il ← ∅;
6. k ← 1;
7. Cl

k ← {Qt};
8. F l

k ← ∅;
9. while k ≤ maxD and Cl

k �= ∅ do
10. F l

k ← evaluateCandidates(r, Cl
k, Il, minsupl);

11. G ← updateGraph(G, F l
k);

12. k ← k + 1;
13. Cl

k ← generateCandidates(F l
k−1, Ll, Il);

14. endwhile
15. l ← l + 1;
16. endwhile
return G

Fig. 1. The algorithm AL-CoClust

Due to the features of the levelwise search, the resulting conceptual clustering
method is top-down and incremental. Note that it is not hierarchical because it
returns a DAG instead of a tree of concepts.

The choice criterion for cluster descriptions plays a key role in defining the
subproblem II. Being the method top-down and incremental, we can adopt a sim-
ple yet not trivial heuristic: for each cluster, keep the first generated description
that fulfills some user-defined constraints. This heuristic can cope successfully
with cases in which other criterions fail. E.g., a criterion such as ’choose the
most-general w.r.t. +B’ is not reliable because +B is not a total order.

4 The Algorithm

The algorithm AL-CoClust reported in Figure 1 implements our extension
of the levelwise search method. The search starts from the trivial O-query in
L (procedure generateTrivialPattern() at step 2.) and iterates through the cycle
of:

– generation of candidate patterns (procedure generateCandidates() at step 13.);
– evaluation of candidate patterns (procedure evaluateCandidates() at step 10.);
– update of the graph of clusters (procedure updateGraph() at step 11.)

for a number of times up to maxG (step 4.) and maxD (step 9.). Let us de-
scribe an iteration of this cycle for a given level l, 1 ≤ l ≤ maxG, of description
granularity and a given level k, 1 ≤ k ≤ maxD, of search depth.

The procedure generateCandidates() builds the set Cl
k of candidate k-patterns

starting from the set F l
k−1 of frequent (k − 1)-patterns and the language Ll
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by taking the set Il of infrequent patterns at level l into account. It consists
of a refinement step followed by a pruning step. The former derives new pat-
terns from patterns previously found frequent by applying the rules of a spe-
cialization operator proposed to search (L,+B) and proved to be ideal [13].
The pruning step allows some infrequent patterns to be detected and discarded
prior to evaluation by testing the following conditions arisen from the mono-
tonicity of +B w.r.t. supp: A k-pattern Q in Ll, 1 ≤ l ≤ maxG, is infre-
quent if it is B-subsumed w.r.t. an AL-log knowledge base B by either (i)
an infrequent (k − 1)-pattern in Ll or (ii) an infrequent k-pattern in Ll−1

[14].
The procedure evaluateCandidates() computes the setF l

k of frequent k-patterns
by starting from the set Cl

k of candidate k-patterns. It is responsible for filtering
out those candidate patterns with insufficient support. Furthermore it exploits
the +B relations between patterns to make the computation of answer sets more
efficient [12].

For each frequent pattern P ∈ F l
k that fulfills the user-defined constraints,

the procedure updateGraph() checks whether a cluster C with extension ext(C) =
answerset(P ) already exists in G. If one such cluster is not retrieved, a new node
C with intension int(C) = P and extension ext(C) = answerset(P ) is added to
G. Note that the insertion of a node can imply the reorganization of the DAG
to keep it compliant with the subset relation on extents. If the node is already
present in G, no action is performed.

4.1 Theoretical Evaluation

The algorithm AL-CoClust terminates bulding a graph G of subconcepts of
Cref . Note that G can be empty, meaning that no cluster has been detected in
r with the current parameter settings.

Proposition 1. AL-CoClust is correct.

Proof. The algorithm consists of two nested loops. First, we concentrate on the
inner loop (steps 9.-14.). Given a fixed l, we prove that the following properties
hold invariantly at the beginning of each iteration (step 9.):

R1: G contains nodes having frequent patterns Q ∈ Ll up to depth level k− 1 as
intents.

R2: Cl
k is the superset of frequent k-patterns Q ∈ Ll.

R3: frequent patterns Q ∈ Ll from depth level k + 1 onwards are specializations
of queries in F l

k.
R4: all patterns in Il are infrequent.

It is easy to verify that R1, R2, R3, and R4 hold at the beginning of the first
iteration, i.e. after initialization (steps 1. and 5.-8.). Let us now assume that
R1, R2, R3, and R4 hold up to the n-th iteration, n < maxD and prove that
these relations still hold at the beginning of the (n + 1)-th iteration.
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– After step 10., R2 and R4 are still valid, since the patterns added to Il are
infrequent, and F l

k is equal to the set of frequent k-patterns. Also R3 still
holds, since, due to the monotonicity of +B w.r.t. supp, none of the frequent
patterns from depth level k + 1 onwards are specializations of the infrequent
patterns moved to Il. Finally, R1 is valid since F nor k have been modified.

– After step 11., G contains nodes with frequent patterns up to depth level k
as intents, and R2, R3, and R4 still hold.

– With the increment of k in step 12. R1, R2, R3, and R4 again hold.
– In step 13., the (k + 1)-patterns are generated, and since R3 holds at that

moment, Cl
k+1 is the superset of F l

k+1.

The loop terminates if either the depth bound maxD has been reached or Cl
k is

empty. If the latter is the case, then it follows from R2 and R3 that language Ll

contains no frequent patterns at depth level k or from level k+1 onwards. Since
G contains nodes with frequent patterns in Ll up to depth level k − 1 as intents,
G at that moment contains all clusters with intents chosen among the frequent
patterns in Ll as required. The depth bound assures termination of AL-CoClust
in case of infinite languages.

The outer loop (steps 4.-16.) also terminates because step 15. makes l con-
verge to maxG.

The main source of complexity in AL-CoClust are the B-subsumption tests
during candidate generation and evaluation phases. In [13, 12] it is shown how ap-
propriate algorithmic and implementation choices can help mitigating the com-
putational cost of these phases. More generally, incrementality and top-down
direction of search are properties desirable when dealing with FOL formalisms.

4.2 Empirical Evaluation

In this section we report the results of two experiments with the following pa-
rameter settings: maxD = 5, maxG = 3, minsup1 = 20%, minsup2 = 13%,
and minsup3 = 10%. Both returned 53 frequent patterns out of 99 candidate
patterns. The two experiments differ as for the form of the frequent patterns to
be considered as descriptions of candidate clusters.

In the first experiment we have required descriptions to have all the variables
constrained by concepts of any granularity level. In this case AL-CoClust
returns the following 14 clusters:

C0 ∈ F1
1

q(A) ← A:MiddleEastCountry
{ARM, BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE, YE}

C1 ∈ F1
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:Religion
{ARM, BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE}

C2 ∈ F1
3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:Language
{ARM, IR, SA, UAE}
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C3 ∈ F1
5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:Religion, C:Religion

{BRN, IR, IRQ, IL, JOR, RL, SYR}

C4 ∈ F1
5

q(A) ← speaks(A,B), believes(A,C) &
A:MiddleEastCountry, B:Language, C:Religion

{ARM, IR, SA}

C5 ∈ F2
3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:AfroAsiaticLanguage
{IR, SA, YE}

C6 ∈ F2
3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:IndoEuropeanLanguage
{ARM, IR}

C7 ∈ F2
5

q(A) ← speaks(A,B), believes(A,C) &
A:MiddleEastCountry, B:AfroAsiaticLanguage, C:MonotheisticReligion

{IR, SA}

C8 ∈ F3
3

q(A) ← believes(A,’Druze’) & A:MiddleEastCountry
{IL, SYR}

C9 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:JewishReligion
{IR, IL, SYR}

C10 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:ChristianReligion
{ARM, IR, IRQ, IL, JOR, RL, SYR}

C11 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:MuslimReligion
{BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE}

C12 ∈ F3
5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:ChristianReligion, C:MuslimReligion

{IR, IRQ, IL, JOR, RL, SYR}

C13 ∈ F3
5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:MuslimReligion, C:MuslimReligion

{BRN, IR, SYR}
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organized in the DAG GCIA. They are numbered according to the chronological
order of insertion in GCIA and annotated with information of the generation step.
From a qualitative point of view, clusters C54 and C11 well characterize Middle
East countries. Armenia, as opposite to Iran, does not fall in these clusters.
It rather belongs to the weaker characterizations C6 and C10. This proves that
AL-CoClust performs a ’sensible’ clustering. Indeed Armenia is a well-known
borderline case for the geo-political concept of Middle East, though the Armenian
is usually listed among Middle Eastern ethnic groups. Modern experts tend
nowadays to consider it as part of Europe, therefore out of Middle East. But
in 1996 the on-line CIA World Fact Book still considered Armenia as part of
Asia.

The second experiment further restricts the conditions imposed by the first
one. Here only descriptions with variables constrained by concepts of granularity
from the second level on are considered. In this case the algorithmAL-CoClust
returns the following 12 clusters:

C′
0 ∈ F1

1

q(A) ← A:MiddleEastCountry
{ARM, BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE, YE}

C′
1 ∈ F2

3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:MonotheisticReligion
{ARM, BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE}

C′
2 ∈ F2

3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:AfroAsiaticLanguage
{IR, SA, YE}

C′
3 ∈ F2

3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:IndoEuropeanLanguage
{ARM, IR}

C′
4 ∈ F2

5

q(A) ← speaks(A,B), believes(A,C) &
A:MiddleEastCountry, B:AfroAsiaticLanguage, C:MonotheisticReligion

{IR, SA}

C′
5 ∈ F2

5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:MonotheisticReligion, C:MonotheisticReligion

{BRN, IR, IRQ, IL, JOR, RL, SYR}

C′
6 ∈ F3

3

q(A) ← believes(A,’Druze’) & A:MiddleEastCountry
{IL, SYR}

4 C5 is less populated than expected because BCIA does not provide facts on the lan-
guages spoken for all countries.
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C′
7 ∈ F3

3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:JewishReligion
{IR, IL, SYR}

C8 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:ChristianReligion
{ARM, IR, IRQ, IL, JOR, RL, SYR}

C′
9 ∈ F3

3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:MuslimReligion
{BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE}

C′
10 ∈ F3

5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:ChristianReligion, C:MuslimReligion

{IR, IRQ, IL, JOR, RL, SYR}

C′
11 ∈ F3

5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:MuslimReligion, C:MuslimReligion

{BRN, IR, SYR}

organized in a DAG G′
CIA which partially reproduces GCIA. Note that two scarsely

significant clusters in GCIA, C2 and C4, do not belong to G′
CIA thanks to the stricter

constraints.

5 Conclusions and Future Work

The form of conceptual clustering considered in this paper can be cast as a
problem of Ontology Refinement. Indeed the method takes an ontology as input
and returns subconcepts of one of the concepts in the ontology. This is done
by discovering strong associations between concepts in the input ontology. The
hybrid FOL formalism AL-log enables the uniform treatment of both struc-
tural and relational data. The closest work to ours is Vrain’s proposal [24] of a
top-down incremental but distance-based method for conceptual clustering in a
mixed object-logical representation. Several application areas, notably the Se-
mantic Web [1], can benefit from our proposal. Indeed the interpretability of
clustering results and the expressive power of FOL are desirable properties in
the Semantic Web area. Yet previous works in this area either apply conceptual
clustering systems which do not deal with FOL, e.g. [5, 19], or propose clustering
methods for FOL which are not conceptual, e.g. [15].

For the future we plan to extensively evaluate the method. Experiments will
show, among the other things, how clusters depend on the minimum support
thresholds set for the stage of frequent pattern discovery. Also a comparison
with other approaches (if available) to conceptual clustering in FOL on a larger
hybrid dataset (if available) would be of great interest. Finally we wish to inves-
tigate other choice criterions for concept descriptions.
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Appendix: The KR&R System AL-log

The system AL-log [6] integrates two KR&R systems: Structural and relational.
The structural subsystem Σ is based on ALC [20] and allows for the spec-
ification of knowledge in terms of classes (concepts), binary relations between
classes (roles), and instances (individuals). Complex concepts can be defined
from atomic concepts and roles by means of constructors (see Table 1). Also
Σ can state both is-a relations between concepts (axioms) and instance-of re-
lations between individuals (resp. couples of individuals) and concepts (resp.
roles) (assertions). An interpretation I = (ΔI , ·I) for Σ consists of a domain
ΔI and a mapping function ·I . In particular, individuals are mapped to ele-
ments of ΔI such that aI �= bI if a �= b (unique names assumption). If O ⊆ ΔI

and ∀a ∈ O : aI = a, I is called O-interpretation. The main reasoning task for
Σ is the consistency check. This test is performed with a tableau calculus that
starts with the tableau branch S = T ∪M and adds assertions to S by means of
propagation rules until either a contradiction is generated or an interpretation
satisfying S can be easily obtained from it.

The relational subsystem Π extends Datalog [4] by using the so-called
constrained Datalog clause, i.e. clauses of the form

α0 ← α1, . . . , αm&γ1, . . . , γn
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Table 1. Syntax and semantics of ALC

bottom (resp. top) concept ⊥ (resp. �) ∅ (resp. ΔI)
atomic concept A AI ⊆ ΔI

role R RI ⊆ ΔI × ΔI

individual a aI ∈ ΔI

concept negation ¬C ΔI \ CI

concept conjunction C � D CI ∩ DI

concept disjunction C � D CI ∪ DI

value restriction ∀R.C {x ∈ ΔI | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ΔI | ∃y (x, y) ∈ RI ∧ y ∈ CI}

equivalence axiom C ≡ D CI = DI

subsumption axiom C � D CI ⊆ DI

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

where m ≥ 0, n ≥ 0, αi are Datalog atoms and γj are constraints of the
form s : C where s is either a constant or a variable already appearing in
the clause, and C is an ALC concept. A constrained Datalog clause of the
form← β1, . . . , βm&γ1, . . . , γn is called constrained Datalog query. For anAL-
log knowledge base B = 〈Σ,Π〉 to be acceptable, it must satisfy the following
conditions: (i) The set of predicate symbols appearing in Π is disjoint from the
set of concept and role symbols appearing in Σ; (ii) The alphabet of constants
used in Π coincides with O; (iii) For each clause in Π , each variable occurring in
the constraint part occurs also in the Datalog part. The interaction between Σ
and Π allows the notion of substitution to be straightforwardly extended from
Datalog to AL-log. It is also at the basis of a model-theoretic semantics for
AL-log. An interpretation J for B is the union of an O-interpretation IO for
Σ and an Herbrand interpretation IH for ΠD (i.e. the set of Datalog clauses
obtained from the clauses of Π by deleting their constraints). The notion of
logical consequence paves the way to the definition of correct answer and answer
set similarly to Datalog. Reasoning for anAL-log knowledge base B is based on
constrained SLD-resolution, i.e. an extension of SLD-resolution with the tableau
calculus to deal with constraints. Constrained SLD-refutation is a complete and
sound method for answering queries, being the definition of computed answer
and success set analogous to Datalog. A big difference from Datalog is that
the derivation of a constrained empty clause does not represent a refutation
but actually infers that the query is true in those models of B that satisfy
its constraints. Therefore in order to answer a query it is necessary to collect
enough derivations ending with a constrained empty clause such that every model
of B satisfies the constraints associated with the final query of at least one
derivation.



Karl Popper’s Critical Rationalism
in Agile Software Development

Mandy Northover, Andrew Boake, and Derrick G. Kourie

Espresso Research Group, Department of Computer Science,
School of Information Technology, University of Pretoria,

Pretoria, 0001, South Africa
mandy.northover@siemens.co.za,

andrew.boake@up.ac.za,
dkourie@cs.up.ac.za

Abstract. Sir Karl Popper’s critical rationalism – a philosophy in the
fallibilist tradition of Socrates, Kant and Peirce – is applied systemat-
ically to illuminate the values and principles underlying contemporary
software development. The two aspects of Popper’s philosophy, the nat-
ural and the social, provide a comprehensive and unified philosophical
basis for understanding the newly emerged “agile” methodologies. It is
argued in the first four sections of the paper – Philosophy of Science,
Evolutionary Theory of Knowledge, Metaphysics, and The Open Society
– that the agile approach to software development is strongly endorsed
by Popper’s philosophy of critical rationalism. In the final section, the
relevance of Christopher Alexander’s ideas to agile methodologies and
their similarity to Popper’s philosophy is demonstrated.

1 Introduction

Karl Popper was one of the leading philosophers of science in the 20th century. His
theories have been applied to many different fields of human inquiry and have influ-
enceddiversedisciplines.While somewriters [1, 2, 3, 4] haveappliedPopperian con-
cepts successfully to aspects of the software engineering discipline, this paper aims
todo so farmore systematically. Inparticular,Popper’s ideas areused inanattempt
to understand the philosophical basis of the newly emerged “agile” methodologies.

The two aspects of Popper’s philosophy, the natural and the social, are unified
in a single philosophy – critical rationalism – which belongs to the tradition
of fallibilism1 . Philosophers in this tradition reject the quest for certainty in
1 Fallibilism emphasizes the uncertainty of knowledge. Philosophers who belong to the

fallibilist tradition include Socrates, Kant, Peirce and Popper. Peirce, in particular,
anticipates some of Popper’s essential ideas: Peirce’s “abduction” resembles Popper’s
falsificationism and his conjectures resemble Popper’s hypotheses. Furthermore, as
does Popper, Peirce stresses the importance of inquiry – open inquiry – to the de-
velopment of useful and reliable knowledge and states, “Do not block the way to
inquiry - our survival depends on it” [5]. It is also arguable that Peirce’s principle
of unfettered inquiry can only be realised in the open society that Popper envisages.
Since Peirce’s death in 1914, these ideas, unpublished in his lifetime, have become
increasingly influential in various disciplines.

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 360–373, 2006.
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knowledge and maintain, instead, that knowledge is always hypothetical, always
a tentative approximation to the truth. Consequently, the emphasis of Popper’s
philosophy is on hypothesis formation as the way knowledge advances, and on
critical arguments as the way knowledge is controlled. This leads naturally to
an evolutionary approach to the progression of knowledge.

In the natural sciences, Popper promotes critical rationalism through a se-
ries of falsifiable conjectures and attempted refutations. In the social sciences,
he promotes a piecemeal approach to social reform through the application of
critical rationalism to the problems of social life.

This paper argues that Popper’s critical rationalism can illuminate the un-
derlying values and principles of the “lightweight” software methodologies that
emerged during the Internet era. Traditional software methodologies seem un-
able to cope with the challenges of this era, which include shortened market
time windows, rapid technological change and increasingly volatile business re-
quirements. Arguably, all these challenges can be reduced to the problem of
accommodating change. As a result, a number of “lightweight” methodologies
have emerged: Adaptive Software Development, Extreme Programming2, Scrum,
Crystal, Feature-Driven Development, Dynamic System Development Method,
and “pragmatic programming”.

In February 2001, seventeen representatives of these methodologies met to
discuss the similarities of their approaches. The meeting resulted in the repre-
sentatives agreeing to adopt the name “agile” instead of “lightweight” and issue
the Manifesto for Agile Software Development which includes a statement of the
following four central values underlying the agile approach [6]:

“Individuals and interactions over processes and tools,
Working software over comprehensive documentation,
Customer collaboration over contract negotiation,
Responding to change over following a plan.”

Later, in order to support these four values, a further dozen principles were
formulated which emphasize: prompt customer satisfaction, flexible response
to change, frequent delivery of software, daily interaction between customers
and developers, motivated individuals, face-to-face communication, measuring
progress through working software, sustainable development, technical excel-
lence, simplicity, self-organising teams, and reflection. All this culminated in the
formation of The Agile Alliance, a non-profit organisation whose stated mission
it was to promote these principles and values.

This paper applies Popper’s philosophy to deepen an understanding of the
values and principles underlying agile software development in four main sec-
tions: Philosophy of Science, Evolutionary Theory of Knowledge, Metaphysics,
and The Open Society. At the end of the paper, the ideas of the philosopher
and architect, Christopher Alexander, will be discussed. Alexander had a pro-
found influence on the agile movement: he initiated the patterns movement in
2 Kent Beck’s methodology, Extreme Programming (XP), undoubtedly established the

popularity of “lightweight” methods, hence the discussion in this paper of certain
principles specific to XP.
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architecture which inspired the leaders of the design patterns movement in soft-
ware, many of whom became the leaders of the agile movement. Alexander’s
philosophy also contains many ideas which have a strong affinity with Popper’s.

2 Philosophy of Science

In this section, Popper’s principle of falsificationism is transferred from the do-
main of physical science to the domain of computer science. It is applied to
software testing in general and to agile software development in particular.

2.1 Falsificationism

Popper rejects the traditional view of scientific method – the inductive method
of verification – in favour of the deductive scientific method of falsification.
He also rejects the inductivists’ quest3 for firm foundations in science believ-
ing, instead, that scientific theories are only tentative approximations to the
truth.

Falsificationists argue that general statements, like the laws of physics, can
never be conclusively verified but can, however, be conclusively falsified by a
single counter-instance. Popper uses the following simple example to indicate
the difference between falsification and verification: no number of singular ob-
servation statements of white swans, however large, can empirically verify the
statement “All swans are white” but the first observation of a black swan can
falsify it. If we had attempted to find verifying instances of this statement, we
would not have had much difficulty. But this would only have confirmed – but
not verified – the general statement.

According to Popper, a theory belongs to science only if it is testable.4 And a
theory is testable only if some imaginable observation can falsify it. Falsifiability,
therefore, is Popper’s criterion of demarcation between science and non-science.

Popper believed that scientific theories should be formulated as clearly and
precisely as possible so as to expose them most unambiguously to falsification.
They should also make bold claims because the bolder a theory, the greater its
informative and predictive content. Bold theories also have a greater likelihood
of being disproven.

Popper’s principle of falsificationism requires us to test our theories rigorously,
to search for our errors actively, and to eliminate our false theories ruthlessly.
It is a process which emphasizes criticism: tests should be designed critically to
falsify theories, not to support them. There are three important ways of using
criticism to establish a theory as defective:

3 Inductivists believe that knowledge develops as a result of observation and exper-
iment. They base general statements on accumulated observations of specific in-
stances and search for evidence to verify their theories.

4 Theories which cannot be empirically tested, according to Popper, do still have
meaning and can still be critically discussed. These theories are part of Metaphysics
which is discussed in Section 4.
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1. find experimental conditions under which the theory fails;
2. demonstrate that the theory is inconsistent with itself or some other theory;
3. demonstrate that the theory is “unfalisifiable”.

Amongst the falsifiable theories that survive repeated attempts at refutation,
the best corroborated5 one is chosen.

2.2 Falsificationism and Software Testing

The susceptibility of software to testing demonstrates its falsifiability, and thus,
Popper would no doubt agree, the scientific nature of software development.
Software developers, on the one hand, resemble theoretical scientists. They are
responsible for establishing an overall theory that guides the development of
working programs. Software testers, on the other hand, resemble experimental
scientists. Each test case they write is like a “scientific experiment” which at-
tempts to falsify a part of the developer’s overall theory.

Coutts, in [1], uses many Popperian ideas to trace the similarities between
software testing and the scientific method. He concludes that falsification is just
as essential to software development as it is to scientific development: whereas in
science the falsification criterion is often used as a demarcation between science
and non-science, in software the falsification criterion demarcates the testing
discipline from the analysis and development disciplines.

Popper’s falsificationism is also useful in providing a philosophical under-
standing of the view that no amount of software testing can prove a program
correct.6 Consequently, software testers should not strive to prove that programs
are error-free. They should rather try to eliminate as many errors as they can
by writing critical test cases with the purpose of detecting failures rather than
demonstrating the absence of errors. To aid this process of rigorous testing,
software developers should write software that better supports falsification.

2.3 Falsificationism and Agile Software Development

This section will show that many agile practices support falsificationism and the
related ideas of criticism and error elimination.

One of the fundamental differences between agile methodologies, especially Ex-
treme Programming (XP), and traditional software methodologies is their ap-
proach to software testing. Traditional methodologies usually leave testing until
5 Corroboration is a failed attempt at refutation, which is not equivalent to a successful

attempt at confirmation, since confirmation aims at proving theories, whereas Popper
argues that no matter how well corroborated a theory may be, it remains a tentative
approximation to the truth.

6 The famous mathematician, E.W. Dijkstra, agrees with this view: “Testing can only
demonstrate the presence of errors, not their absence.”. Some have considered this
statement to be a special case of Popper’s falsifiability principle [3]. However, despite
the apparent similarity between their views regarding testing, Popper and Dijkstra
draw radically different conclusions. Dijkstra advocates that programs should be
deductively verified whereas Popper rejects verification completely.
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the end of a project while agile methodologies advocate test-driven development.
One of the problems with the traditional approach is evident when projects run
late. The testing phase is shortened which invariably results in incomplete or poor-
quality testing. Agile developers avoid this problem through their practice of test-
driven development. The main focus of this approach is on developers defining test
cases before writing any code. A failing automated test case is written which points
out lacking functionality. Then the functionality is implemented to ensure the test
case passes. This cycle is repeated, in order of priority of the most valuable busi-
ness requirements, until all the required functionality is implemented. The prac-
tice of test-driven development can be understood, from a Popperian perspective,
as continuous attempts at falsification. The fact that test-driven development is
the basis of the development approach of agile methodologies like XP, means that
Popper would consider these methodologies to be pre-eminently scientific.

Another of the agile practices which encourages falsificationism is the col-
lective ownership of code. Individual contributions to source code are stored in
collectively owned repositories and, through a democratic peer review process,
the functioning of the source code in these repositories is thoroughly assessed.7

Thus, the code is more open to falsificationism.
In line with Popper’s falsificationism, agile methodologies acknowledge that

people invariably make mistakes. Embracing this fact, they adopted an iterative
and incremental approach to development. This approach, which derives from
the Rational Unified Process (RUP), is now central to all agile methodologies. It
allows for mistakes to be detected early and repaired, by reworking pieces of the
software. This is similar to Popper’s method of error detection and elimination.

The agile practice involving an on-site customer also resembles the role of
falsificationism in Popper’s method. Agile methodologies, being people-oriented,
advocate strongly the importance of continuous and frequent collaboration be-
tween customers, developers and stakeholders. Customers form an integral part
of the agile team and remain on-site throughout development. They provide
feedback which helps the team to detect and eliminate errors as early as pos-
sible. Popper would view the transparency of this development process both as
scientific and democratic.

Finally, pair programming, where two people sit together and co-write a pro-
gram, also supports and encourages falsificationism because the source code is
subjected to a critical peer review process.

It is clear, from the discussion above, that Popper’s principle of falsificationism
is crucial to optimal software testing and to many agile practices.

3 Evolutionary Theory of Knowledge

In this section, Popper’s evolutionary theory of knowledge is applied to agile’s
iterative development paradigm.
7 This ethic is also central to Open Source Software (OSS) development where com-

peting designs, analogous with Popper’s competing scientific hypotheses or theories,
are available for extensive peer review.
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According to Popper, all knowledge, of which scientific knowledge is the ex-
emplar, begins with problem-solving. He uses the following four-stage model to
describe the way scientific knowledge advances:

P1 → TS → EE → P2 . (1)

P1 is the initial problem, TS the proposed trial solution, EE the process of error
elimination applied to TS, and P2 the resulting solution with new problems [7].
This model holds that complex structures can only be created and changed in
stages, through a critical feedback process of successive adjustments. It is an
evolutionary model concerned with continuous developments over time instead
of full-scale development based on an unchanging model or blueprint.8 According
to this model, scientific knowledge is perpetually growing. There is no state of
equilibrium because the tentative adoption of a new solution which solves one
problem (P1), invariably exposes a whole set of new problems (P2).

The order of the four stages suggests that we always start with a problem and
then use the method of trial and the elimination of error to solve this problem.
Although this problem-solving process is continually iterated, it is not merely
cyclic because P2 is always different from P1.

Applied to the development of knowledge in the individual, each iteration is to
some degree informed by memories of what survived prior iterations. If we trace
this process backwards, we find unconscious expectations that are inborn. This
shows how Popper’s theory of knowledge merges with a theory of biological evo-
lution. What distinguishes the evolution of scientific knowledge from biological
evolution is the conscious application by human beings of the critical method.
Whereas lower organisms often perish with their false theories, humans can use
language to present their theories objectively: “by criticizing our theories we can
let our theories die in our stead” [8].

Popper’s evolutionary theory of knowledge has been applied to many fields
of human inquiry besides science, including music, art, economics, logic and
learning.9 In fact, virtually all forms of organic development can be understood
in this way. In the rest of this section, Popper’s four-stage model is applied to
agile software development.

The advocates of agile methodologies recognise that software development is
a non-linear process which requires short cycles and continuous feedback. As
a result, they advocate an iterative and incremental approach to development
which controls unpredictability and allows for adaptability. Each iteration is like
a miniature software project, and includes all the tasks necessary to release a
subset of the required functionality in a short time period. During this iterative
process, software applications evolve incrementally, in small steps.

Altogether, the four stages in Popper’s evolutionary model can be understood,
from an agile perspective, as a single development iteration: P1 corresponds
to a subset of the customer’s requirements that are to be implemented during
the iteration – these are the problems that the developer has to solve; TS is
8 Popper applies this idea to his social philosophy which is described in Section 5.
9 This model is applied to the field of architecture in the final section of this paper.
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equivalent to the solution proposed by the developer and EE with the attempt,
by the software tester, to eliminate errors by writing critical test cases; finally,
P2 is parallel to the tested software that contains a subset of the customer’s
requirements – P2 usually gives rise to unanticipated problems or requirements
that must be addressed in one of the future iterations.

Before the start of the following iteration, agile proponents use reflection to
make refinements and to reprioritise the project’s requirements. At this stage,
changes can easily be incorporated into the project. Agile teams also refactor the
code, if necessary, at the end of an iteration to eliminate errors and improve the
design and quality of software. Both reflection and refactoring further support
error elimination in Popper’s model. Thus, in much the same way that scientific
knowledge advances through this evolutionary process, software approximates
more and more closely the required solution over repeated iterations.

4 Metaphysics

In this section, it is argued that Popper’s three worlds epistemology provides a
more adequate framework for knowledge management, especially in agile organ-
isations, than Polanyi’s paradigm of “tacit” knowledge which currently pervades
the knowledge management discipline.

Popper divides existence and the products of cognition into three ontologically
related domains called Worlds:

1. World 1, the world of physical objects or of physical states, independent of
any perceptions;

2. World 2, the subjective world of private mental states;
3. World 3, the objective but intangible world of products of the human mind.

Popper further distinguishes between two types of knowledge: knowledge in the
subjective sense and knowledge in the objective sense. The first type of knowledge
belongs to World 2, the world of subjective belief, and the second type to World
3, the world of objective knowledge.

Worlds 1 and 2 are the familiar worlds of matter and mind. It is World 3
that requires further explanation. Knowledge in World 3 consists of spoken,
written or printed statements – critical arguments, artistic and literary works,
scientific problems, logical contents of books – that are open to public criticism
and can be experimentally endorsed or disputed. Knowledge in World 2, by
contrast, is private and barely criticizable. This is the kind of knowledge studied
by traditional epistemology. The fact that knowledge in World 3 is objective and
open to public scrutiny, establishes the superiority of World 3 knowledge over
World 2 knowledge. Furthermore, according to Popper, knowledge in World 3 is
essential to the growth of scientific knowledge.

Although World 3 knowledge is a product of the human mind, it is largely
autonomous of World 2. The autonomy of World 3 knowledge can be understood
if we consider that this knowledge will continue to exist, will remain rediscov-
erable, even if all knowing subjects are temporarily destroyed. Another unique
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property of World 3 is the exclusive existence in it of certain types of objects.
For example, the fact that calculus was discovered independently by Newton
and Leibniz shows that it was not merely created by a subjective mind but that
calculus pre-existed in World 3 awaiting discovery. In terms of World 2, Leibniz
made the discovery first, but in terms of World 1, Newton was the first to publish
the discovery in physical form. The interaction and feedback between Worlds 1,
2 and 3 commonly occur in this way – World 3 indirectly influences World 1
through the mental World 2.

Popper’s three worlds epistemology can be used as a framework for managing
knowledge in organisations. To date, the knowledge management discipline has
focused most of its attention on knowledge in World 2 of Popper’s epistemology.
This focus is possibly due to the reliance of pioneers in knowledge management,
Nonaka and Takeuchi, on the work of scientist and philosopher Michael Polanyi.
Polanyi’s work focuses primarily on personal or tacit10 knowledge, which Popper
places in World 2, and neglects Popper’s, more important, World 3 of objec-
tive knowledge. Furthermore, Polanyi’s paradigm addresses only the one type of
knowledge identified by Popper: knowledge in the subjective sense. Polanyi relies
solely on this type of knowledge because he regards truth to be what the major-
ity of experts subjectively believe to be true. Consequently, he believes only in
subjective truth. He dismisses knowledge in the objective sense and, therefore,
objective truth.

Popper disagrees with Polanyi’s view of truth. He believes that human knowl-
edge is fallible and argues that in all sciences, even the experts are sometimes
mistaken. So we cannot rely merely on subjective knowledge.11 Furthermore,
Popper believes that it can only be on the basis of objective tests and criticism
of theories that scientists come to an agreement about the truth.

The fallibility of human knowledge necessitates the rigorous questioning of
our knowledge and our assumptions. New knowledge is produced as a result of
this questioning process. Therefore, it is crucial to the knowledge management
discipline that open questioning is possible. In order to achieve this, we must
endeavour to change our subjective, World 2 knowledge into objective, World 3
knowledge where it is open to public scrutiny.

Popper’s three worlds epistemology provides a more comprehensive frame-
work for understanding the approach taken by different organisations towards
managing knowledge. Organisations that adopt process methodologies like the
Capability Maturity Model (CMM), by focussing on the importance of docu-
mentation, overemphasize Worlds 1 and 3 while neglecting World 2. They also
fail to recognise the dynamic nature of knowledge in World 3. Organisations that
adopt Polanyi’s paradigm, on the other hand, overemphasize World 2 and dis-
miss World 3. The rest of this section argues that, while knowledge management

10 The notion of tacit knowledge was introduced by Polanyi to mean “a backdrop
against which all actions are understood”. Nonaka and Takeuchi use the term dif-
ferently from Polanyi to denote “knowledge that is intrinsic to individuals and not
easily articulated or shared”.

11 In fact, Popper did explicitly raise these arguments against Polanyi in [9].
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in agile organisations seems to be adequately explained by Polanyi’s paradigm, it
does in fact require a more balanced explanation that acknowledges the existence
of World 1 and the equal importance of Worlds 2 and 3.

Knowledge creation and sharing is a crucial part of agile software develop-
ment. Agile teams derive much of their agility by relying on the tacit knowledge
embodied in the team, rather than on explicitly writing the knowledge down
in documents. Their frequent use of informal communication channels such as
co-located teams, customer collaboration, pair programming and regular stand-
up meetings, facilitates tacit knowledge transfer and fosters a culture of knowl-
edge sharing in the organisation. The enhanced informal communication between
team members compensates for the reduction of documentation and other forms
of explicit knowledge. All this seems to suggest that Polanyi’s model of tacit
knowledge is sufficient to explain the means by which agile organisations man-
age knowledge.

However, agile organisations do recognise the importance of explicit, World
3 knowledge in certain scenarios [10]. What makes explicit knowledge in agile
organisations unique is that it is collectively owned by the team. Collective own-
ership facilitates the advancement of knowledge because team members share
responsibility for keeping the information up-to-date. Collective ownership of
information cannot be adequately characterised as subjective, or even inter-
subjective, as in Polanyi’s model, since it involves knowledge that exists outside
and independently of each team member. Instead, this relation is more ade-
quately described in terms of Popper’s three worlds epistemology: what is owned
are the objective products of the team’s collective endeavours, which cannot be
reduced to the sum of their individual tacit knowledge contributions.

5 The Open Society

Popper’s social philosophy, which is described in this section, is seamlessly inter-
woven with his philosophy of science: “Rationality, logic and a scientific approach
all point to a society which is ‘open’ and pluralistic, within which incompatible
views can be expressed and conflicting aims pursued.” [7]. According to Popper,
all life is a process of problem-solving and the best societies should support this
process by protecting their citizens’ freedom of thought and right to criticise.

Popper considers two opposing approaches to social change, piecemeal so-
cial engineering and utopian social engineering. He firmly advocates the former
approach and believes it is essential to achieving a state of liberal democracy
which he calls The Open Society12. Popper stresses the importance of openness
and transparency in human social systems. He believes all discourse should flour-
ish within open societies, free from forms of totalitarian political control that

12 The Open Society is “an association of free individuals respecting each others’ rights
within the framework of mutual protection supplied by the state, and achieving,
through the making of responsible, rational decisions, a growing measure of humane
and enlightened life.” [7].
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might try to engineer a society’s development according to supposedly absolute
laws of development.

In what follows, Popper’s distinction between utopian and piecemeal social
engineering is used to illuminate the differences between traditional and agile
methodologies in terms of their divergent approaches to software development.

5.1 Utopian Social Engineering

Utopian social engineering aims at remodelling the “whole of society” according
to an idealistic, unchanging plan or blueprint. Utopian societies are controlled
centrally by a few, powerful, individuals who believe that social experiments are
only valuable if carried out holistically.

The utopian approach, which is based on the following apparently rational
reasoning, seems to be very scientific:

– Any action must have a particular aim.
– The action is considered rational if it seeks its aim consciously and deter-

mines its means according to this aim or end.
– In order to act rationally, therefore, the first thing to do is to choose the end.
– There must be a clear distinction between the intermediate ends and the

ultimate end.

The utopian approach to social engineering develops a blueprint of society before
considering ways for its realisation. By assuming that societies can be designed
according to an unchanging plan, this approach incorporates the same mistaken
notion of certainty as does the traditional, inductivist view of science. Despite
the apparently rational reasoning of the utopian approach, several of its premises
are questionable and can be criticised as follows:13

– Even scientists cannot predict everything, therefore, the idea of a totally
planned society is impossible.

– The notion of an unchanging blueprint of society is untenable because change
is continuous.

– Since social life is too complicated to predict, unintended consequences are
inevitable. The greater the holistic changes, the greater the unintended con-
sequences, thus forcing the holistic engineer, ultimately, into piecemeal im-
provisation.

– So much is reconstructed at once that it is unclear which measures are re-
sponsible for which results. And if the goal is distant, it is difficult to say if
the results are in the direction of the goal or not.

There are remarkable similarities between utopian social engineering, as charac-
terised by Popper, and the traditional approach to software development.

The mistaken assumption that underlies many traditional software method-
ologies is that project requirements are fixed before implementation begins. This
is a fondly held assumption because fixed requirements allow a project to be
13 The following critique is adapted from [11].
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planned with more certainty from the start. As a result, traditional methodolo-
gies advocate comprehensive up-front design as a prerequisite to implementation.
It is evident that this approach to design shares many similarities with ideal-
istic blueprint planning. However, software engineering projects are usually too
complex to guarantee comprehensive up-front design using a blueprint. Further-
more, project requirements are seldom static which means there will inevitably
be deviations from the blueprint.

Much like the utopian engineer’s approach to social engineering, traditional
methodologists believe in the infallibility of their approach which, if followed
strictly, will lead to the success of the project. The tendency towards inflexi-
bility and software bureaucracy in this approach can stifle both creativity and
innovation. Moreover, this approach often leads to blind adherence to a process,
which is incompatible with the critical attitude that Popper advocates.

5.2 Piecemeal Social Engineering

Agile software development shares many similarities with Popper’s piecemeal
approach to social engineering and builds on what Christopher Alexander14 calls
“piecemeal growth”.

Piecemeal social engineering, in contrast to utopian social engineering, does
not aim to redesign society “as a whole”. Instead, it tries to achieve its aim in
a humane and rational manner by small adjustments and re-adjustments which
can be continually improved upon. It is a cautious, critical approach that ac-
knowledges the uncertainty introduced by the “human factor”.

The main premise of the piecemeal approach is that “We do not know how to
make people happy, but we do know ways of lessening their unhappiness.” [7]15.
It draws attention to solving social problems instead of the pursuit of an ideal
or utopian society.

Consequently, the task of the piecemeal social engineer is to identify and rem-
edy the most urgent problems in society instead of searching for and imposing
on society the elusive ideal of the greatest common good. The piecemeal so-
cial engineer makes her way cautiously, step by step, consciously and actively
searching for mistakes in her method. She is aware that she can learn from her
mistakes and knows that if anything goes wrong, her plan can be terminated or
even reversed. The damage would not be too great and the re-adjustment not
too difficult.

The most striking similarity between the agile approach to software develop-
ment and Popper’s piecemeal approach to social engineering is their rejection
of an overall blueprint for design. Agile methodologies are adaptive rather than
anticipatory, which means they place less emphasis on comprehensive up-front
design. They do not believe in planning new projects in their entirety nor do
they believe in redesigning existing projects from scratch. Instead, agile develop-
ers believe that software should be built in a piecewise fashion through a series
of short iterations with continuous feedback. Feedback makes the development
14 Alexander’s philosophy is discussed in the final section of this paper.
15 This approach is analogous with the falsification of scientific hypotheses.
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process flexible and reversible which means that the developers can accommo-
date change more easily and correct mistakes as early as possible. This is why
agile methodologies embrace, rather than avoid, change. Through this process,
software is built in a “bottom-up” fashion, in small steps rather than the large
leaps that occur in blueprint planning.

Another similarity between the two approaches is their focus on the present
rather than the future. Agile methodologies emphasize simplicity in their designs.
To achieve simplicity, they implement only those requirements which are certain.
They do not implement functionality for potential future requirements because of
the inherent uncertainty of the future. Their focus on the immediate problem is
similar to the piecemeal engineer’s focus on identifying the most urgent problems
in society.

5.3 The Agile Team and the Open Society

The agile team can be described both in terms of a scientific community within
the open society and in terms of an open society as a whole.

The practices and principles that regulate an agile team, as well as the en-
vironment in which they work, encourage open and critical discussion, qualities
which Popper believes are essential to the progression of knowledge in a scientific
community. In particular, face-to-face communication, pair programming and
white-board discussions encourage the free exchange of ideas as well as creative
hypothesis formation. Furthermore, the presence of on-site customers, facilitates
openness and courage, which Popper believes are essential to democratic citizens
and scientists.

It may seem that by emphasizing the importance of the team over the individ-
ual members, agile methodologies contradict Popper’s belief in the supremacy
of the individual. However, Popper believes that “The objectivity of science ...
[is] in the hands not of individual scientists alone, but of scientists in a scientific
community.” [8].

In terms of the open society as a whole, the manager of the agile team has
similar responsibilities to the team members as the state has to its citizens.
Teams are not managed by an authoritarian leader. Rather, project responsibil-
ity is shared equally between developers and managers: managers ensure that
conditions are conducive to productive software development and give develop-
ers the responsibility for making all the technical decisions, trusting them to get
the work done. Like responsible citizens in an open society, agile team members
develop a sense of community and accountability through their shared goals and
responsibilities as well as their self-organising nature.

6 Christopher Alexander’s Social Engineering
Architecture

Many of Popper’s ideas are evident in the field of architecture in the approach
to design espoused by the architect and philosopher, Christopher Alexander.
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Alexander is best known for his observations on the design process and is
recognised as the “father” of the patterns movement in architecture. His ideas
have proved influential far beyond the field of architecture: he inspired the design
patterns movement in software which indirectly influenced the agile movement
because many of the current leaders of the agile movement were leaders of the
design patterns movement.

Alexander promotes a philosophy of incremental, organic and coherent archi-
tectural design by which facilities emerge in an evolutionary fashion into commu-
nities of related buildings. Alexander believes architects should be accountable
to their clients who should be able to criticise the architect’s designs before they
are implemented. Inherent in this philosophy are several of Popper’s principles
including his evolutionary epistemology, and his principles of social openness,
democracy, criticism and rationalism.

Alexander’s approach to architectural design, which has often been referred to
as social engineering architecture, also shares certain principles in common with
Popper’s piecemeal social engineering. Just as Popper rejects the master plan
of utopian social engineering in favour of piecemeal social engineering, Alexan-
der rejects a master plan for architectural design. According to Alexander, the
development of a master plan for architectural design is the first and fatal devi-
ation from the Timeless Way of Building16. Instead of a master plan, Alexander
proposes a meta-plan which constitutes three parts [13]:

1. a philosophy of piecemeal growth;
2. a set of patterns or shared design principles17 governing growth; and
3. local control of design by those who will occupy the space.

Under Alexander’s meta-plan, communities grow in an evolutionary fashion
through a series of small steps, in an ongoing and iterative fashion18 which
results in what Alexander calls organic order. Consequently, Alexander would
agree with the piecemeal engineer who, according to Popper, recognises that
“only a minority of social institutions are consciously designed while the vast
majority have just ‘grown’, as the undesigned results of human actions.” [8].

It is significant that many of Popper’s ideas appear to be inherent in Alexan-
der’s approach to architectural design. For, if Popperian ideas influenced Alexan-
der, then these ideas may have indirectly influenced some of the leaders of the
agile movement.

7 Conclusion

This paper has used Popper’s critical rationalist philosophy to illuminate the val-
ues and principles underlying software development, with a particular emphasis
16 XP founder, Kent Beck, acknowledges Alexander in [12] by entitling one of the

chapters “The Timeless Way of Programming”.
17 It is no coincidence that the software design principles in the The Agile Manifesto

resemble Alexander’s shared design principles for architecture.
18 There are clear links between this process and Popper’s evolutionary epistemology.
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on the agile approach to software development. In the first section, Popper’s
criterion of falsificationism provided a scientific justification for rigorous soft-
ware testing, and it was shown how several agile practices support falsifica-
tionism. In the second section, Popper’s model of the evolutionary growth of
scientific knowledge accounted for the iterative development paradigm of agile
methodologies. It was argued, in the third section, that Popper’s three worlds
epistemology provided a more comprehensive framework for knowledge man-
agement than Polanyi’s paradigm of “tacit” knowledge. In the fourth and final
section, Popper’s distinction between utopian and piecemeal social engineering
was used to illuminate the divergent approaches to software development of tra-
ditional and agile methodologies. The agile team was also favourably described
in terms of Popper’s notion of an open society. Finally, it was shown that Pop-
per’s piecemeal social engineering is endorsed by Alexander’s social engineering
architecture.
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Abstract. Lattices have been extensively used for implementing manda-
tory access control policies. Typically, only a small sublattice of the sub-
set lattice of a certain alphabet is used in applications. We argue that
attribute exploration from formal concept analysis is an appropriate tool
for generating this sublattice in a semiautomatic fashion. We discuss how
two access control models addressing different (in a sense, opposite) re-
quirements can be incorporated within one model. In this regard, we pro-
pose two operations that combine contexts of the form (G, M, I) and
(N, G, J). The resulting concept lattices provide most of the required
structure.

1 Introduction

Multiuser computer systems must ensure that information they contain is ac-
cessible only to those who are authorized to use it. Therefore, choosing and
implementing an access control model suitable for a particular computer system
is an important part of its development.

Some of the most well-know access control models make heavy use of lat-
tices [1]. They are based on Denning’s Axioms formulating assumptions under
which an information flow policy can be regarded as a lattice [2]. Due to relative
complexity of their creation and maintenance, these models have enjoyed only
limited use in practice.

In the access control setting, one speaks about active subjects (such as users
or processes) accessing passive objects (such as files or resources). This separation
is not absolute: an object such as a program can become a subject when trying
to access another object such as a file.

In lattice-based control models, security labels are assigned to entities (sub-
jects and objects). These security labels are partially ordered and, in fact, form
a lattice. There are good reasons for it to be a lattice rather than just a partial
order: the supremum and infimum operations play a role in, for instance, some
versions of the Biba model [3,4]. Information is allowed to flow only in one di-
rection, e.g., from entities with security labels that are lower in the lattice to
entities with security labels that are higher. Section 2 describes the lattice-related
aspects of the Bell-LaPadula model [5].

A security label is usually a combination of a security level (secret, confidential,
etc.) and a subset of categories (project names, academic departments, etc.). In
practice, only a small fraction of all possible labels is used. In Section 3, we argue
that attribute exploration from formal concept analysis (FCA) can help effectively
identify such useful labels. We describe attribute exploration rather informally
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(since formal definition is available elsewhere [6]) and, perhaps, more than nec-
essary for the general ICCS audience, but this is to give security experts without
FCA background an idea of how they can benefit from using this technique.

A lattice-based access control model typically addresses some particular se-
curity concerns, such as confidentiality (the Bell-LaPadula model [5]) or integrity
(the Biba model [3]). In terms of formal concept analysis, the two models can be
expressed by two formal contexts such that the object set of one context is the
attribute set of the other: (G,M, I) and (N,G, J). Some researchers combine
the lattices of the two models into one lattice [7] to obtain a unified information
flow policy. In Section 4, we discuss the resulting structure, which arises from
a combination of the contexts mentioned above. Then, we outline an attribute
exploration procedure to get the necessary components of this structure.

2 Lattices in Access Control Models

Definition 1. Let H denote a totally ordered set of classifications or security
levels (we use standard notation for this order: e.g., < and ≤) and let C denote a
set of categories such as names of departments within a company, project names,
etc. Then, a compartment is defined as a subset of categories, and a security
label is a pair (h,D) consisting of a security level h ∈ H and a compartment
D ⊆ C.

Security labels are partially ordered: (h,D) ≤ (g, E) if and only if h ≤ g and
D ⊆ E. It is easy to see that this partial order is a lattice: it is the product of
two lattices, (H,≤) and (P(C),⊆). Such lattices are common in military security
models. Sometimes, only a subset of the product is used in practice.

Example 1. Suppose that there are three security levels: unclassified, secret, top
secret. Let C = {a, b, c} contain the names of three different projects in the
system. Figure 1 presents a security lattice built from H and C. Subjects with
the label (secret, {a}) can access objects with the same label and objects labeled
(unclassified,Ø), but cannot access objects labeled, e.g., (top secret, {a, b}) or
(secret, {b}).

It should be noted that by accessing we mean essentially reading (rather than
writing or modifying). Thus, an access control model, such as the one from
Example 1, addresses the confidentiality requirement [4]:

Confidentiality: Prevention of unauthorized disclosure of information.

One of the most popular models dealing with confidentiality issues is the Bell-
LaPadula model [5]. There exist many variants of this model; we concentrate only
on its lattice-related aspects and follow the presentation in [1].

Assuming that λ(e) is the security label of the subject or object e, the simple-
security property is formulated as follows:

– Subject s can read object o only if λ(o) ≤ λ(s).
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(top secret, {a, b, c})

(top secret, {a, b}) (top secret, {c})

(secret, {a}) (secret,{b}) (secret, {c})

(unclassified, {c})

(unclassified, Ø)

Fig. 1. An example of a security lattice

With security labels defined as above, a subject can read an object only if
the subject is at the same security level as the object or higher and the subject
has access to all categories associated with the object. However, the simple-
security property is not enough: some restrictions are necessary on how subjects
can write or modify objects. If there are no restrictions, a secret subject can
read a secret document and create an unclassified copy of it, thus providing
unclassified subjects with access to secret information. To avoid this, the  -
property is introduced:

– Subject s can write object o only if λ(s) ≤ λ(o).

According to these two rules, information can flow only upwards: from less secure
objects to more secure subjects and from less secure subjects to more secure
objects.

The  -property implies that higher-level subjects cannot send messages to
lower-level subjects. This is not always acceptable. To avoid this problem, sub-
jects are sometimes granted downgrading capabilities: they are allowed to tem-
porarily change their security label to one that is lower in the lattice. For ex-
ample, a secret user may be associated with a secret subject and an unclassified
subject. Then, the user can write an unclassified document by logging in as an
unclassified subject. During this session, the user will not be able to read any
secret documents. It is trusted that the user will not betray the information she
got during a previous session when logged in as a secret subject. In the case of
a subject with downgrading capabilities being a program rather than a human,
previous sessions are not an issue.
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From Example 1, it is clear that not all possible combinations of security
levels and categories make sense as security labels. For instance, Smith describes
a lattice from military practice based on four security levels and eight categories,
which potentially gives rise to 1024 labels [8]. However, the actual lattice con-
tains only 21 elements: there are no compartments consisting of more than three
categories (apart from the compartment associated with the top element) and
compartments are used only in combination with two top-most security levels.
Hence, development of an access control model would involve identification of
meaningful combinations of security levels and categories. In the next section, we
argue that attribute exploration from formal concept analysis can help organize
this process in a semiautomatic fashion and, in some sense, ensure the validity
of its results.

3 Building Access Control Models by Attribute
Exploration

First, we recall some basic notions of formal concept analysis (FCA) [6].

Definition 2. A formal context is a triple (G,M, I), where G is a set of ob-
jects, M is a set of attributes, and I ⊆ G×M is the incidence relation providing
information on which objects have which attributes.

Formal contexts are naturally represented by cross tables, where a cross for a
pair (g,m) means that this pair belongs to the relation I.

Definition 3. For A ⊆ G, B ⊆ M , the following derivation operators are
defined:

AI := {m ∈M | gIm for all g ∈ A}
BI := {g ∈ G | gIm for all m ∈ B}

If the relation I is clear from context, one writes A′ and B′ instead of AI and
BI .

Derivation operators are used to define concepts:

Definition 4. The pair (A,B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A
is called a (formal) concept (of the context K) with extent A and intent B.
A concept (A,B) is more general ( less specific, etc.) than a concept (C,D), if
C ⊆ A (equivalently, B ⊆ D).

For g ∈ G and m ∈ M the sets {g}′ and {m}′ are called object intent and
attribute extent, respectively.

The operation (·)′′ is a closure operator [6], i.e., it is idempotent (X ′′′′ = X ′′),
extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆ Y ′′). Sets A ⊆ G, B ⊆M
are called closed if A′′ = A and B′′ = B. Obviously, extents and intents are
closed sets. Since the closed sets form a closure system [9], the set of all formal
concepts of the context K forms a lattice called a concept lattice and usually
denoted by B(K) in FCA literature.
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Definition 5. A many-valued context is a quadruple (G,M,W, I), where G and
M are object and attribute sets, respectively; W is a set of attribute values; and
I ⊆ G×M ×W is a ternary relation satisfying the following condition:

(g,m,w) ∈ I and (g,m, v) ∈ I ⇒ w = v.

Thus, every object has at most one value for every attribute. For our purposes,
it is convenient to assume that every object has exactly one value for every
attribute.

To apply FCA methods to many-valued contexts, one first needs to transform
them into one-valued contexts (i.e., contexts in the sense of Definition 2). A stan-
dard transformation technique here is plain conceptual scaling. We replace every
many-valued attribute m with a set of one-valued attributes Mm by building
a one-valued context (Gm,Mm, Im), where Gm is the set of all possible values
of m, i.e., {w | w ∈ W and ∃g ∈ G : (g,m,w) ∈ I)} ⊆ Gm. The relation Im

translates every value of m into a subset of Mm. Then, the many-valued context
(G,M,W, I) is replaced by a one-valued context

(G,
⋃

m∈M

{m} ×Mm, J),

where (g, (m,n)) ∈ J if and only if there is w ∈ W such that (g,m,w) ∈ I and
(w, n) ∈ Im.

Now, we can easily express the Bell-LaPadula model in terms of FCA. The set
H of security levels and the set C of categories (see Definition 1) constitute our
attribute set. In fact, security level is a many-valued attribute, but the scaling
is pretty straightforward: we use the context (H,H,≥) as a scale. In the case of
Example 1, we get the following (ordinal) scale:

unclassified secret top secret
unclassified ×

secret × ×
top secret × × ×

The attribute unclassified is clearly redundant; so, in principle, we do not have
to include the smallest security level as an attribute in the one-valued context.

The elements of G in our context are subjects and objects and the incidence
relation should assign categories and levels to them. Then, security labels corre-
spond to concept intents, and the security label of an entity (subject or object)
is the intent of the least general concept covering the entity (i.e., containing
the entity in its extent). The concept lattice we get is the reverse of the Bell-
LaPadula lattice, since larger intents correspond to less general concepts; the set
of concept intents with usual subset order is precisely the Bell-LaPadula lattice1.

The problem here is that a complete list of subjects and objects is usually
unknown at the moment when the access control model is being developed (and,
1 To get the same order in the concept lattice, we can also consider categories as

objects of the context and entities (subjects and objects of the access control model),
as attributes. Then, security labels are concept extents.
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if a system is open to new users or new documents, a complete list never becomes
available). To construct the lattice of security labels, the developer of the system
must envision all types of potential subjects and objects and describe them in
terms of security levels and compartments. It would be good to have a way of
verifying that all possible cases have been considered. Besides, it would not make
harm to bring some order to the process of selecting these relevant combinations.
Attribute exploration is a technique that does precisely this.

Definition 6. An expression D → B, where D ⊆ M and B ⊆ M , is called an
(attribute) implication. An implication D → B holds in the context (G,M, I) if
all objects from G that have all attributes from the set D also have all attributes
from the set B, i.e., D′ ⊆ B′.

There is a connection between implication sets and closure operators.

Definition 7. An attribute set F ⊆M respects an implication D → C if D � F
or C ⊆ F . A set F respects an implication set Σ if it respects all implications
from Σ. If every set that respects an implication set Σ also respects the implica-
tion D → C, then we say that D → C (semantically) follows from Σ.

All sets that respect some implication set form a closure system (and, hence,
there is a closure operator corresponding to every implication set). A minimal
(in terms of size) set of implications from which all other implications of a context
semantically follow was characterized in [10]. It is called the Duquenne-Guigues
basis or stem base in the literature.

Note that, having the Duquenne-Guigues basis of the context, we are able to
construct the lattice of concept intents even without knowing the actual objects
of the context. The join-irreducible2 elements of this lattice correspond to object
intents that have to be in the context. Such necessary object intents form the
representation context of the concept lattice.

The goal of attribute exploration is to find this representation context and
construct its lattice. The attribute exploration process is quite standard [6] and,
perhaps, does not have to be formally explained here. In its simplest version, it
can be outlined as follows. Given some initial (possibly empty) set of objects of a
subject domain, which is known to have considerably more (perhaps, an infinite
number of) such objects, and their intents, attribute exploration aims to build
an implicational theory of the entire domain (summarized by the Duquenne–
Guigues basis) and a representation context. Obviously, an object of the repre-
sentation context must respect all implications from the generated implication
basis and provide a counterexample for every implication that does not follow
from the basis. It means, in particular, that the concept lattice of the domain is
isomorphic to the concept lattice of this relatively small representation context.

The process of attribute exploration is interactive. In the general setting, the
process is as follows: the computer suggests implications one by one; the user
2 We are working under the assumption that the order is that of concept generality,

i.e., the reverse of the intent subset order. Therefore, join-irreducible intents are
those that cannot be presented as intersections of other intents.
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(the expert) accepts them or provides counterexamples. Attribute exploration is
designed to be as efficient as possible, i.e., to suggest as few implications as possi-
ble without any loss in completeness of the result. This is achieved by generating
implications from the Duquenne-Guigues basis in the order consistent with the
subset ordering of implication premises (from smaller to larger premises). Then,
if the user rejects an implication D → B at some step, it does not affect impli-
cations whose premise is not a superset of D: if such implications were in the
basis, they will remain there.

Advanced versions of attribute exploration allow the user to input back-
ground knowledge, e.g, in form of implications the user knows to be true. Note
that background knowledge is not limited to implications [11]. The presence
of background knowledge usually decreases the number of questions the user
has to answer, since if the answer to a certain question follows from the back-
ground knowledge (combined with already accepted implications), this question
is not asked.

Background knowledge is particularly useful in the case of many-valued at-
tributes. Moreover, it is readily available in this case: it can be automatically
generated from scales. Indeed, a scale completely specifies all possible combi-
nations of the corresponding new one-valued attributes. If we want to limit
ourselves to implicational background knowledge, all that is necessary is to gen-
erate the Duquenne-Guigues basis for each scale. A method for generating the
complete propositional axiomatization of the scale (with attributes interpreted
as propositional variables) also exists [12] and is surprisingly similar to a method
for generating the implication basis [13].

In our case, there is only one many-valued attribute: security level. It can
be shown that the Duquenne–Guigues basis provides the axiomatization for the
whole propositional theory of an ordinal scale, which is the type of the scale we
used above for this attribute. If H is the set of security levels and l ∈ H is the
lowest level, the Duquenne–Guigues basis consists of the following implications:

Ø → {l}

and
{l, h} → {k | k ≤ h}

for all h ∈ H such that ∃j ∈ H(l < j < h). Therefore, in our case, we can do
with only background implications. The basis for the context in Example 1 is as
follows:

Ø → {unclassified};

{unclassified, top secret} → {unclassified, secret, top secret}.

By entering these implications as background knowledge we avoid questions on
implications between these attributes. In the case of Example 1, we would start
with the context (Ø,M,Ø), where M = {top secret, secret, unclassified, a, b, c}
and the two background implications above. The first question asked by the
system would be:
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(unclassified, Ø)

(secret,Ø)

(unclassified, {c})

(secret, {a}) (secret, {b}) (top secret,Ø) (secret, {c})

(top secret, {a, b}) (top secret,{c})

(top secret, {a, b, c})

Fig. 2. The lattice obtained by attribute exploration based on Example 1. The order is
the subset order of intents. Smaller nodes correspond to nodes absent from the lattice
in Figure 1.

Is it true that all objects must have all attributes?

This is the most strong implication, and there are no counterexamples to
it in our so far empty context. However, the answer is clearly “no”, and we
have to enter an object that lacks some attributes. Suppose that we enter an
object with the intent {top secret, secret, unclassified, a, b}. Since this will be
the only object of our context, the system assumes that all objects from the
domain are like that and asks if it is true that every entity is labeled as at
least (top secret, a, b), to which we have to enter another counterexample, say,
{top secret, secret, unclassified, c}. Then, we may have to enter object intents
{secret, unclassified, a} and {unclassified, c}. The system is not going to ask
us whether every object is labeled as at least unclassified, as it knows from the
background implications that this is so.

It is obvious that the process always stops at some point. In fact, the number
of questions we are going to answer is equal to the sum of the sizes of the
implication basis and representation context. The latter, however, depends on
what objects we enter as counterexamples.

The resulting lattice may (and in the case of Example 1, will) contain more
elements than it is necessary, that is, there may be some concepts that do not cor-
respond to any realistic security labels (see Figure 2). This is because the concept
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lattice is closed under intersection of intents, whereas the security lattice, gener-
ally speaking, does not have to be closed under intersection of security labels. For
instance, the lattice we obtain from attribute exploration on Example 1 will con-
tain an intent {top secret, secret, unclassified} obtained as the intersection of
{top secret, secret, unclassified, a, b} and {top secret, secret, unclassified, c}.
In the lattice of Figure 1, the meet of the labels corresponding to these two
intents is the bottom element. Some additional effort on the side of the system
developer is required if they want to decrease the size of the lattice. On the other
hand, the existence of such extra concepts suggests that the choice of security
levels and categories or their distribution among security labels might not be
optimal. For example, all labels in Figure 1 that do not contain c can easily be
marked as unclassified: this would not affect the information flow policy, but
would simplify the model.

As a matter of fact, we can even argue that the labeling is optimal only if
there is a one-to-one correspondence between security categories and levels, on
the one hand, and join-irreducible3 elements of the lattice, on the other hand, and
the lattice is closed under intersection. In other words, a node should contain a
category or a level if and only if it is the one that corresponds to this category or
level or if it is above such unique corresponding node. In the case of Example 1,
the level secret corresponds to the node (secret, {c}) and, consequently, should
not co-occur with compartments {a}, {b}, and {a, b}. Such approach ensures
that the number of categories and levels is minimal and that the labels are as
small as possible.

4 Combining Confidentiality and Integrity Models

As said above, the Bell-LaPadula model is concerned with confidentiality. An-
other issue that requires attention is integrity:

Integrity: Prevention of unauthorized modification of information.

One of the most common models dealing with integrity is the Biba model [3].
Biba proposed several integrity models, of which the best known is strict in-
tegrity. This model is dual to the Bell-LaPadula model: again we have a lat-
tice of (integrity) labels, but this time the information is allowed to flow only
downwards—from entities with higher integrity to entities with lower integrity—
this is to prevent corruption of “clean” high-level entities by “dirty” low-level
entities [4]. Assuming that ω(e) is the integrity level of the entity e, the rules of
the model are formulated as follows [1]:

Simple-integrity property: Subject s can read object o only if ω(s) ≤ ω(o)
Integrity  -property: Subject s can write object o only if ω(o) ≤ ω(s)

Of course, it is generally not very important whether the information flows only
upwards or only downwards. However, it becomes important if we want to com-
bine the Bell-LaPadula and Biba models in order to address both confidentiality
3 Assuming the subset order as in Figure 1.



On Lattices in Access Control Models 383

and integrity issues. In the combination of these two models, the rules of infor-
mation flow are as follows [1]:

– Subject s can read object o only if λ(o) ≤ λ(s) and ω(s) ≤ ω(o).
– Subject s can write object o only if λ(s) ≤ λ(o) and ω(o) ≤ ω(s).

If the same security labels are used both for Bell-LaPadula and Biba models,
then the information flow policy boils down to allowing subjects to read and
write only objects from their own security level and compartment. The case
when labels are different for the two models is more interesting (and useful).

Let K1 = (G,M, I) and K2 = (N,G, J) be formal contexts. By using G as the
object set of K1 and as the attribute set of K2, we address the difference in the
information flow direction of the two models. We want to combine these contexts
into one structure in a way that preserves both orders of the corresponding
concept lattices. The largest possible combination of the concept lattices is their
product: (B(K1) × B(K2),≤), where (c1, c2) ≤ (d1, d2) if and only if c1 ≤ d1
and c2 ≤ d2 (with respect to the usual “generality” order on concepts). The join
and meet operations of the lattice (B(K1)×B(K2),≤) are obvious:

(c1, d1) ∨ (c2, d2) = (c1 ∨ c2, d1 ∨ d2)

(c1, d1) ∧ (c2, d2) = (c1 ∧ c2, d1 ∧ d2)

Here, joins and meets of concept pairs are taken in their respective lattices.
However, the product is too large for our purposes: it reflects the structure of

each of the component lattices, but it fails to capture the dependencies between
the elements of different lattices. These dependencies are given via the relations
between the set G and corresponding sets (M and N) in the two contexts.

So, we are looking for an adequate subset B♦(K1,K2) of B(K1) × B(K2).
The first observation is that B♦(K1,K2) must contain concept pairs of the form

(({g}II , {g}I), ({g}J , {g}JJ)) (1)

for every g ∈ G. That is, every element of G must get exactly the same descrip-
tion as it is given by the two initial contexts.

Then, we have several options for how to proceed. We can adopt a minimalist
approach and add to B♦(K1,K2) only those concepts from B(K1) × B(K2)
that are required to make our initial set of concepts a lattice. This makes sense
if we know that G is the entire object set of our domain (rather than a set
that gives rise to representation contexts for K1 and K2) and if all we need
is to properly order elements from G. In the case of combining access control
models, this is indeed all we need (ideally, every concept of the lattice should be
a meaningful security label for some subject or object), but, unfortunately, the
set G does not necessarily contain all possible entities, but only those enough to
get a representation context for each of the two models. Therefore, we choose a
different approach.

The (almost) maximalist approach we choose is to take the sublattice of
B(K1) × B(K2) generated by concept pairs from (1), i.e., the smallest subset
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of B(K1)×B(K2) containing all object pairs (1) and closed under the join and
meet operations. From now on, B♦(K1,K2) denotes this lattice. This approach
ensures, in particular, that every concept of each component has a counterpart
in the resulting lattice:

1. For every c ∈ B(K1), there is d ∈ B(K2) such that (c, d) ∈ B♦(K1,K2);
2. For every d ∈ B(K2), there is c ∈ B(K1) such that (c, d) ∈ B♦(K1,K2);

This is useful if we believe that every concept of the initial lattices corresponds
to a (complete w.r.t. the given attributes) description of some entity (for the
combination of the Bell-LaPadula and Biba models, to a security label to be
attached to some subject or object)—then, we cannot discard any concept.

We consider two important subsets of B♦(K1,K2):

B�(K1,K2) := {((AII , AI), (BJJ , BJ)) | A ⊆ G,B =
⋃
a∈A

{a}J}

and

B�(K1,K2) := {((BI , BII), (AJ , AJJ )) | A ⊆ G,B =
⋃
a∈A

{a}I}

It can be easily seen that each of the sets B�(K1,K2) and B�(K1,K2) is a
lattice, and (possibly, without the bottom and top elements, respectively) they
are the set of all joins and the set of all meets of subsets of pairs (1), respectively.

We now define two contexts whose concept lattices are isomorphic to the
lattices B�(K1,K2) and B�(K1,K2).

Definition 8. Let K1 = (G,M, I) and K2 = (N,G, J) be formal contexts. Then,

K1 ,K2 := (G,G ∪M, I ∪ I�),

where I� = {(g, h) | g ∈ G, h ∈ G, and {g}J ⊆ {h}J}, and

K1 -K2 := (G ∪N,G, J ∪ J�),

where J� = {(g, h) | g ∈ G, h ∈ G, and {h}I ⊆ {g}I}.

Proposition 1. The concept lattice B(K1 , K2) is isomorphic to the lattice
B�(K1,K2) and the concept lattice B(K1 - K2) is isomorphic to the lattice
B�(K1,K2).

Proof. We define a mapping f� : B(K1 , K2) → B�(K1,K2) as follows. For
A,C ⊆ G,

f�((A,AI ∪ C)) = ((AII , AI), (CJ , C)).

To show that this mapping is well-defined we need to prove that, for every
concept (A,B) of B(K1 , K2), there is C ⊆ G such that B = AI ∪ CJJ .
It is obvious that B ∩ M = AI . One can see that B ∩ G is (·)J -closed, as
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B ∩ G = {h | h ∈ G and ∀g ∈ A({g}J ⊆ {h}J)} = (
⋃

g∈A{g}J)J . Note that
((AII , AI), (CJ , C)) ∈ B�(K1,K2), since C = (

⋃
g∈A{g}J)J .

Clearly, f� is order-preserving. The inverse mapping is as follows:

f−1
� ((AII , AI), (BJJ , BJ)) = ({a ∈ AII | {a}J ⊆ BJJ}, AI ∪BJ).

Without loss of generality, we may assume that B =
⋃

a∈A{a}J . Then, A ⊆
{a ∈ AII | {a}J ⊆ BJJ}, and it is easy to see that f−1

� ((AII , AI), (BJJ , BJ )) is
indeed a concept of K1 ,K2.

The mapping f� : B(K1-K2)→ B�(K1,K2) and the inverse mapping are
given below:

f�((AJ ∪C,A)) = ((C,CI), (AJ , AJJ ));

f−1
� ((BI , BII), (AJ , AJJ)) = (AJ ∪BI , {a ∈ AJJ | {a}I ⊆ BII}).

We omit the rest of the proof. ��

Let us consider implications in these contexts. How should they be interpreted?
An implication of K1,K2 may contain elements of G, as well as elements of M .
An implication A→ B holds in K1,K2 if and only if, for all g ∈ G, B∩M ⊆ gI

and gJ ⊆ (B ∩G)J whenever A ∩M ⊆ gI and gJ ⊆ (A ∩G)J . In words:

If (in the two initial contexts) an element of G is related to all elements
from A∩M and no elements from N \ (A∩G)J , then it is related to all
elements from B ∩M and no elements from N \ (B ∩G)J .

An (object) implication C → D over G ∪ N in the context K1 - K2 reads as
follows:

If (in the two initial contexts) an element from G is related to all elements
from C ∩N and no elements from M \ (C ∩G)I , then it is related to all
elements from D ∩N and no elements from M \ (D ∩G)I .

These implications express the relation between the attributes of M and nega-
tions of attributes from N (and vice versa). Note however that the implication
system of, e.g., K1 , K2 is different from the implication system of (G,M ∪
N, I ∪ (G × N) \ J−1), the context obtained by combining attributes from M
and negations of attributes from N . The difference is due to the fact that, in
the case of K1 , K2, our additional attributes are only certain conjunctions of
negated attributes from N .

Now, we outline how attribute exploration can be organized in the case when
the set G described by two contexts (G,M, I) and (N,G, J) is not completely
available. We take the problem of combining Bell-LaPadula and Biba model as
an example.

Suppose that the elements of M are confidentiality categories and confiden-
tiality levels (of the Bell-LaPadula model) and the elements of N are integrity
categories and levels (of the Biba model).
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We start by constructing K1 = (G,M, I) and K2 = (N,G, J) using stan-
dard attribute exploration and object exploration4, respectively. The user is
asked to verify implications over M and implications over N (but not impli-
cations over M ∪ N). However, when providing a counterexample to one of
these implications, the user must enter its complete description in terms of both
M and N .

Now, we know all confidentiality labels and all integrity labels. What we
do not know is what combinations of confidentiality and integrity labels are
possible. We construct contexts K1 , K2 and K1 - K2. At this stage, the con-
cept lattices of these contexts might not be exactly what we need, but they do
contain every combination of confidentiality and security labels attached to at
least one element from G. To explore other possibilities, we use attribute ex-
ploration on K1 , K2 and object exploration on K1 - K2 to build appropriate
lattices.

Questions asked during attribute exploration of K1,K2 sound more natural
than one could imagine by looking at the previously given formulas. If M =
{a, b, c} and N = {d, e, f}, we may be asked to verify an implication {¬d} →
{b,¬e}, which can be understood as “if a subject may not write to d, it may not
write to e, either, but may read from b instead”.

Having built K1,K2 and K1-K2, we can construct B♦(K1,K2) by applying
the join and meet operations to f�(B(K1 ,K2)) ∪ f�(B(K1 -K2)).

5 Conclusion

We have discussed some lattice-related aspects of access control models. It seems
likely that attribute exploration can be useful in their construction. The process
may take long, but it is worth the effort in serious applications: attribute ex-
ploration explicitly forces the system developer to consider issues that can be
overlooked otherwise. Although a lattice produced by attribute exploration can
contain more elements than it is necessary for a given set of security labels and
categories, it is a better starting point than the lattice of all subsets and it
still contains all necessary elements. In fact, the presence of extra elements may
indicate that the choice of security labels and categories is not optimal.

We have also shown how a model addressing confidentiality and a model
addressing integrity can be combined within one lattice and how this lattice can
be obtained with the help of attribute exploration. This is only a step towards
formalizing the combined model and further research is necessary to estimate
the benefits of the proposed approach and to evaluate other possibilities.

4 Object exploration is a process dual to attribute exploration: the user is asked to
confirm an implication between objects (also defined dually to the attribute implica-
tion) or enter a new attribute as a counterexample. The only reason we are talking
about object exploration is that the set N is the object set of K2. One can think of
object exploration as attribute exploration in the transposed context (where objects
and attributes change places).
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Abstract. This paper presents an application of relation algebra to lexical data-
bases. The semantics of knowledge representation formalisms and query lan-
guages can be provided either via a set-theoretic semantics or via an algebraic
structure. With respect to formalisms based on n-ary relations (such as relational
databases or power context families), a variety of algebras is applicable. In stan-
dard relational databases and in formal concept analysis (FCA) research, the al-
gebra of choice is usually some form of Cylindric Set Algebra (CSA) or Peircean
Algebraic Logic (PAL). A completely different choice of algebra is a binary Re-
lation Algebra (RA). In this paper, it is shown how RA can be used for modelling
FCA applications with respect to lexical databases.

1 Introduction

Formal Concept Analysis (FCA) is a method for data analysis and knowledge repre-
sentation that provides visualisations in the form of mathematical lattice diagrams for
data stored in “formal contexts”. A formal context consists of a binary relation between
what are named “formal objects” and “formal attributes” (Ganter & Wille, 1999). FCA
can, in principle, be applied to any relational database. Lexical databases, which are
electronic versions of dictionaries, thesauri and other large collections of words pro-
vide a challenge for FCA software because the formal contexts of lexical databases
tend to be fairly large consisting of 100,000s of objects and attributes. An overview of
FCA applications with respect to lexical databases can be found in Priss & Old (2004).
That paper also provides pointers to future research, for example, with respect to spe-
cific implementations of a construct called a “neighbourhood lattice”. In this paper, we
are continuing the thread of that research and provide a further mathematical analysis
supported by empirical data from Roget’s Thesaurus.

For the development of a mathematical analysis of structures in lexical databases it
is beneficial to make use of existing relational methods. In particular, this paper elab-
orates on how methods from relation algebra (RA) can be applied. RA is a perfect
companion for FCA because, while FCA facilitates visualisations of binary relations,
RA defines operations on binary relations. Thus RA seems a natural candidate for a
context-relation algebra as defined in Sect. 3. Section 2 compares RA to other alge-
bras of relations and explains why RA is more suitable for FCA applications than the
other methods. Section 4 focuses on the applications of RA/FCA in the area of lexical
databases using examples from Roget’s Thesaurus.

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 388–400, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Algebras as a Representation of Logical Structures

Logicians usually employ set-theoretic models for the formal semantics of formal
languages. But it is also possible to use algebraic structures instead of set-theoretic
models because a formal language can be first interpreted as an algebra, which then
further can be interpreted as a set-theoretic structure. The advantage of this approach
is that additional structures are represented in the algebra. Historically, the develop-
ment of formal logic has been closely tied to the development of algebras of relations
(cf. Maddux (1991)) as is evident in Peirce’s work in both fields. The modern field
of Algebraic Logic studies the relationship between different types of logics and dif-
ferent types of algebras (cf. Andreka et al., 1997). Surprisingly many structures from
logic can be translated into algebraic structures and vice versa. The translations are
beneficial because theorems and methods from either field become available in the
other.

With respect to relational databases and other structures based on n-ary relations
(such as power context families in FCA (Wille, 2002)), traditionally the most popu-
lar algebras use n-ary relations as basic units. Codd’s (1970) modelling of relational
databases with relational algebra (RLA) is well known. With respect to power context
families, the algebra of choice is usually Peirce Algebraic Logic (PAL), such as in the
modelling suggested by Eklund et al. (2000). Both RLA and PAL and a third algebra
called Krasner algebra (cf. Hereth Correia & Pöschel, 2004) are very similar in nature
to Henkin & Tarski’s (1961) Cylindric Set Algebras (CSA). CSA, RLA, PAL and Kras-
ner algebra all have the expressive power of first order logic (FOL) with equality (cf.
Van den Bussche (2001) for CSA and RLA and Hereth Correia & Pöschel (2004) for
PAL and Krasner). It is quite possible that they are equivalent or even isomorphic to
each other in some sense (for CSA and RLA this is investigated by Imielinski & Lipski
(1984); for PAL and Krasner, by Hereth Correia & Pöschel (2004)).

In addition to CSA, Tarski (1941) also studied an algebra which is quite different
and goes back to Peirce, De Morgan and Schroeder (cf. van den Bussche (2001) for
an overview). This algebra is called relation algebra (RA) – the similarity in name to
Codd’s relational algebra (RLA) is unfortunate, but these names are established in the
literature. The difference between RA and CSA is that RA uses exclusively binary rela-
tions, whereas CSA and the other algebras use n-ary relations. At first sight, this appears
to be a limitation of RA. But in fact, RA is quite powerful and has the expressive power
of FOL with up to three variables. If one adds a form of projection operation to RA,
one can obtain what is called a Fork algebra (FRA)1 which has the expressive power
of full FOL, but still only uses binary relations (Frias et al. 2004). In FRA, n-ary re-
lations are encoded as a part-whole structure among binary relations. For example, a
ternary relation consists of a binary relation, whose left or right element contains two
parts which can be retrieved using the projection operation. While this may sound com-
plicated, the operations of RA are overall much simpler (and easier to implement) than

1 For the purposes of modelling FCA contexts with RA (Priss, 2006), only two elements that
contain information about projections are required from FRA but none of the other operations.
Thus in the remainder of this paper, the abbreviation RA is used to mean “RA including FRA
elements if needed”.
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the operations of CSA; and RA has many interesting properties that can be calculated
on an abstract level (cf. Pratt (1992) and (1993) for an overview).

We believe that RA is currently under-valued among computer scientists, although
there has recently been an increased interest in relational methods in computer science
as evidenced by the recent creation of a new journal in this field2. Part of the reason
for RA’s lack of popularity may be the fact that any university student who learns some
mathematics is likely to learn some linear algebra. But not even every full time math-
ematics student learns about universal algebra, algebraic logic and lattice theory. With
respect to physical space, linear algebra and vector spaces are useful models, but we
would argue that, with respect to information spaces, perhaps other algebras than linear
algebra can be more useful3. This claim is supported by the results of algebraic logic,
which demonstrate the close connection between logic and algebra. An elaboration of
this claim with respect to the use of non-linear algebra-based methods in information
retrieval can be found in Priss (2000).

Apart from the availability of simpler operations in RA, another advantage of RA
is the availability of visualisations. There are several types of visualisations for differ-
ent algebras: Venn Diagrams for set-based Boolean algebras, n-dimensional coordinate
systems for vector spaces and CSA-style operations (cf. Andreka et al. 1997), Peirce’s
Existential Graphs for PAL-style operations. But all of these have the limitation that
they become difficult or impossible to draw as the complexity increases. They tend to
be suitable for instances of relations (the relationship between a few points in space
or between a few Existential Graphs), but not for an overview of a larger system of
relations. On the other hand, because RA uses solely binary relations, the visualisation
methods of FCA are instantly available (i.e. concept lattices). Although FCA visualisa-
tions also have a limit with respect to how much complexity can be represented, that
limit is much higher than for n-dimensional vector spaces. For example, it is already dif-
ficult to represent 3-dimensional vector spaces on paper, but a concept lattice can easily
represent a (Boolean) lattice with up to 5 independent co-atoms (corresponding to 5 di-
mensions), and many more if they are not completely independent. Methods of zooming
and nesting are available for larger systems using the software TOSCANA (Eklund et
al., 2000). In that manner, FCA visualisations enable users to obtain an overview of
larger sets of data and to explore hidden structures among the data.

Of course, FCA visualisations have always been applied to power context families
and many-valued contexts. The strategy that is normally used is to first apply PAL op-
erations to formal contexts and then to extract a binary relation from the n-ary relations,
by selecting two columns with or without scaling and applying combination operations
to columns before selecting them. But that implies that it is also conceivable to reverse
these two steps and to construct a binary encoding of the n-ary relations right away and
then to use RA to operate on these formal contexts.

2 www.jormics.org
3 An anonymous reviewer of this paper remarked that a similar dichotomy can be found in

other areas of mathematics: “in topology, Hausdorff spaces are convincing models of real
geometries, but T0 spaces are more interesting from a logical viewpoint. Likewise, classical
metric spaces are nice generalizations of Euclidian distances, while ultrametrics are often more
appropriate to measure the ‘distance’ between pieces of information”.
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3 Context-RAs and Context Algebraic Structures

This section provides a brief introduction into how relation algebra can be applied to
FCA. A more detailed explanation of this topic can be found in Priss (2006), from which
the definitions below are taken. The cross table of a formal context can be considered
a Boolean (or binary) matrix in the sense of Kim (1982), for which matrix operations
are defined as follows: with (i, j)I denoting the element in row i, column j in matrix I
and ∨, ∧ and ¬ denoting Boolean OR, AND and NOT: (i, j)I∪J := (i, j)I ∨ (i, j)J ;
(i, j)I := ¬(i, j)I ; (i, j)I◦J := 1 iff ∃k : (i, k)I ∧ (k, j)J ; (i, j)Id := (j, i)I . The

operations ∩ and ⊆ are as usual: I ∩ J := I ∪ J and I ⊆ J :⇐⇒ I ∩ J = I . A matrix
containing all 0’s is denoted by nul; a matrix with all 1’s is one, a matrix with 1’s on
the diagonal and 0’s otherwise is dia. A matrix is symmetric if I = Id, reflexive if
dia ⊆ I , transitive if I ◦ I ⊆ I .

To distinguish between operations on sets and on matrices, we use typewriter font
(e.g. A, B) for sets and italics (e.g. A,B) for matrices. A formal context normally con-
sists of two sets and a matrix: (G, M, I). In this paper, all formal contexts of an applica-
tion are assumed to be defined with respect to a finite, linearly ordered set ACT called
an active domain. That means that for all sets of objects and attributes: G, M ⊆ ACT. A
set A is defined as the set of all Boolean |ACT| × |ACT| matrices together with an inter-
pretation that ensures that, semantically, for I ∈ A and 1 ≤ n ≤ |ACT|, the nth row and
column in I corresponds to the nth element in ACT. It is then said that I is based on A
denoted by IA (although the subscript can be omitted if it is clear which active domain
is meant).

Definition 1. A matrix-RA based on A is an algebra (R,∪,− , one, ◦,d , dia()) where
one ∈ R is a reflexive, symmetric and transitive matrix; R := {IA|IA ⊆ one} is a set
of Boolean matrices; ∪,− , ◦,d are the usual Boolean matrix operations; and for any set
S ⊆ ACT and a(n) denoting the nth element in ACT, dia(S) is defined by (i, j)dia(S) = 1
iff i = j and a(i) ∈ S (but only if dia(S) ⊆ one).

It can be shown that a matrix-RA is an RA and fulfills all the axioms of an RA, such
as (R,∪,∩,− , nul, one) is a Boolean algebra; ◦ is associative and distributive with ∪;
dia is a neutral element for ◦ (but unique inverse elements need not exist); (Id)d = I;
(I ∪ J)d = Id ∪ Jd; (I ◦ J)d = Jd ◦ Id; and so on (see Priss (2006)).

With G, M ⊆ ACT, a formal context can be represented “based onA”: the sets can be
represented as dia(G) and dia(M) or combined as sqr(G, M) := dia(G) ◦ one ◦ dia(M).
A formal context can then be represented using three matrices: (dia(G), dia(M), IA) or
using two matrices (sqr(G, M), IA), in both cases with IA ⊆ sqr(G, M). A formal context
without empty rows or columns can be represented by a single matrix: IA. A natural
RA can be defined for any set of formal contexts:

Definition 2. A context-RA based on A for a set of formal contexts is the smallest
matrix-RA based on A that contains these contexts.

Instead of representing every formal context using |ACT|×|ACT|matrices, it is also pos-
sible to represent formal contexts in the usual way, but in that case, the RA operations
need to be modified (see the next definition). The sets G, M ⊆ ACT are assumed to be
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linearly ordered according to ACT. This linear order ensures that operations can be de-
fined among formal contexts which have different sets of objects and attributes. In this
representation, a formal context (G, M, I) based on ACT contains a Boolean matrix I of
size |G| × |M| where the ith row corresponds to the ith element in G and the jth column
corresponds to the jth element in M. This can be denoted as IG,M. But in the remainder
of this paper the subscript of I is omitted, if the formal context is denoted using sets
of objects and attributes (not matrices). In these cases, it is always assumed that I’s
dimensions correspond to its sets of objects and attributes.

Definition 3. For formal contexts K1 := (G1, M1, I) and K2 := (G2, M2, J) based on
ACT the following context operations are defined:
K1 � K2 := (G1 ∪ G2, M1 ∪ M2, I � J) with gI � Jm :⇐⇒ gIm or gJm
K1 � K2 := (G1 ∪ G2, M1 ∪ M2, I � J) with gI � Jm :⇐⇒ gIm and gJm
K1 . K2 := (G1, M2, I . J) with gI . Jm :⇐⇒ ∃n∈(M1∩G2) : gIn and nJm

K1 := (G1, M1, I); Kd
1 := (M1, G1, I

d).

Definition 4. A context algebraic structure (CAS) based on ACT is a three sorted al-
gebra (R1, R2, R3,�,− , .,d , dia(), set(), (·, ·, ·)) where R2 is a set of subsets of ACT,
R3 is a set of Boolean matrices, R1 is a set of formal contexts based on ACT and con-
structed using the partial function (·, ·, ·) : R2

2 × R3 → R1; �,− , .,d are according
to Definition 3; setG(I) := {g ∈ G | ∃m∈M : gIm}; setM(I) := {m ∈ M | ∃g∈G : gIm};
and diaG(S→) is defined by (i, j)diaG(S→) = 1 iff i = j and for the ith element in G:
g(i) ∈ S; diaM(S↑) is defined analogously.

If G1 = G2, M1 = M2, then ∪ and ∩ can be used instead of � and �. If M1 = G2, then
◦ can be used instead of .. Using these definitions, the normal FCA operations can
be defined, such as the prime operator (cf. Priss (2006)), using either context-RAs or
CAS. For many-valued contexts and power context families, a fork algebraic extension
is required (Priss, 2006), but that is not relevant for this paper.

For implementation purposes, it should be noted that it is not suggested that by
using matrix-RAs for modelling contexts that these actually have to be represented as
giant matrices in a computer. In FCA applications, giant formal contexts are usually
sparse matrices or contain many duplicate rows or columns. When dealing with sparse
matrices, non-RA-based algorithms might be faster, but RA can be used as an underly-
ing theory for proving theorems. This is shown using examples from lexical databases
in the next sections. On the other hand, with respect to small contexts (i.e. less than
100 objects and attributes), RA operations can be directly implemented. RA software
already exists4 and could possibly be combined with existing FCA software. RA oper-
ations could then be used as an additional query interface.

4 Lexical Databases

A lexical database is defined here as an organised collection of words in electronic
form. That includes dictionaries such as Webster’s or the Oxford English Dictionary,

4 RelView: www.informatik.uni-kiel.de/∼progsys/relview.shtml
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with formal definitions and glosses; semantic lexicons such as Roget’s Thesaurus (Ro-
get, 1962) and WordNet (Miller et al. (1990)), organised by conceptual categories and
lexical relations; and bilingual dictionaries, where the primary structure is a conceptual
mapping between languages. Previously, Priss & Old (2004) developed methods for
suitable representations for lexical databases – a set of guidelines for visualising lexical
relations using FCA.

Roget’s Thesaurus (ROGET), in particular in the form of a lexical database5, is the
source of examples used in this paper. ROGET consists of a conceptual hierarchy, at the
bottom of which are words grouped by shared meaning. These groups are referred to
as senses, and members of a particular group are commonly referred to as synonyms.
The relationship between words and senses can be represented as a formal context where
instances (actual entries of particular words in particular senses) are represented by a cross
in the context (e.g. Fig. 1). In this paper, the term “entry” is reserved for this relationship
between words and senses. A word has usually more than one sense (several entries in
ROGET);and each sense isusually represented by (and contains)more thanonesynonym.
The word “over”, for example, has 22 senses in ROGET, represented by 22 entries in the
thesaurus; and the number of entries in those 22 senses (synonyms sharing a sense with
over) ranges from 3 to 37. The question which arises is: which words and senses should
be included in a formal context for a given word? A possible answer to this question is
provided by neighbourhood contexts and lattices as discussed in the next section.

in excess of
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Fig. 1. Words, senses and entries in Roget’s Thesaurus

4.1 A Formalisation of Neighbourhood Lattices Using RA

A mathematical definition of “neighbourhood lattices” of Roget’s Thesaurus was orig-
inally defined in an unpublished manuscript by Rudolf Wille and can be found in Priss
(1998). But, although neighbourhood lattices have been produced for numerous exam-
ples over the years, so far the underlying theory has not been further investigated. This
section shows how RA can be used to analyse and model the structures of neighbour-
hood lattices. A neighbourhood lattice starts with a word w, collects all the senses that w

5 The relational database used in this paper is based on Roget (1962), which was converted to
electronic format by Dr. W. A. Sedelow and Dr. S. Yeates Sedelow and edited and enhanced by
L. J. Old.
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has, then collects all other words that also have these senses and so on. Or, alternatively,
the process can be started with a sense, collecting all its words and so on. The operation
of collecting all objects that an attribute has (or vice versa) is called a “plus operator”
(Priss & Old, 2004). Under different names, the idea of the plus operator can be found
in many linguistic applications, such as starting with a word in one language, then re-
trieving all the translations in another language, and so on (e.g. Wunderlich (1980) or
Dyvik (1998)). Using RA, the plus operator is defined as follows:

Definition 5. For a context (G, M, I), H ⊆ G, N ⊆ M, a column matrix H that has a 1 in
the position of each element of H (i.e., H := diaG(H→) ◦ oneG,{}), and N an analogous
row matrix, a plus operator is defined as H+ := Hd ◦ I and N+ := I ◦Nd.

It follows that H+ is a row matrix and N+ is a column matrix. Applying the plus oper-
ator twice yields H++ = I ◦(Hd◦I)d = I ◦Id◦H and N++ = N ◦Id◦I; three times:
H+++ = Hd◦I◦Id◦I andN+++ = I◦Id◦I◦Nd, and so on. A neighbourhood context
can utilise the plus operator any number of times and can be started with sets of objects
or attributes. A typical neighbourhood context is (setG(H++), setM(H+++), I). The
RA representation of the plus operator implies that the operator is essentially formed
by repeated composition of I and Id. For finite matrices repeated composition leads
to a “transitive closure”, normally defined as Itrs := I ∪ (I ◦ I) ∪ (I ◦ I ◦ I) ∪ ....
It should be noted that the calculation of a transitive closure is not an FOL operation,
but an additional operation that cannot axiomatically be derived from the other RA
operations.

If a matrix I is reflexive in all rows that are not empty, then Itrs = I ◦ I ◦ I ◦ ...
because ∀x,y : (xIy ⇒ xIx, xIy) ⇒ ∀x,y∃z : (xIy ⇒ xIz, zIy) ⇐⇒ I ⊆ I ◦ I .
The matrix (I ◦ Id) which is used in neighbourhood contexts is reflexive for non-empty
rows, i.e. xIy⇒ x(I ◦ Id)x, because x(I ◦ Id)y⇐⇒ ∃z : xIz, yIz. Thus (I ◦ Id)trs =
(I◦Id)◦(I◦Id)◦.... The matrix is also symmetric because I◦Id = (I◦Id)d according to
the rules for d. This implies the following lemma and leads to the definition of a context
which uses this matrix. Figure 2 provides an illustration.

Lemma 1. If I is a matrix of a formal context without empty rows and without empty
columns, then (I ◦ Id)trs is an equivalence relation on objects and (Id ◦ I)trs is an
equivalence relation on attributes.

Definition 6. With Idec := I ◦ (Id ◦ I)trs, the neighbourhood closure context of a set
H of objects is defined as (setG((I ◦ Id)trs ◦H), setM(Hd ◦ Idec), I) and of a set N of
attributes as (setG(Idec ◦ Nd), setM(N ◦ (Id ◦ I)trs), I). Its corresponding lattice is
called the neighbourhood closure lattice.

Idec (where “dec” stands for “decomposition”) has some interesting properties. For ex-
ample, it does not matter whether one starts the calculation with objects or attributes.
The properties are summarised in the next lemma. A horizontal decomposition of a
lattice is a decomposition into components whose horizontal sum (Ganter & Wille,
1999) is the original lattice. If one removes the top and bottom nodes from a lat-
tice, then the remaining connected graphs are the components of the horizontal
decomposition.
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Fig. 2. An example illustrating Lemma 1 and Lemma 2

Lemma 2. For finite matrices I:

1. Idec = (I ◦ Id)trs ◦ I = I ◦ (Id ◦ I)trs.
2. I ⊆ Idec.
3. Idec implies a horizontal decomposition of the concept lattice of I .

Proof: 1) If, for example, (Id ◦ I)trs = (Id ◦ I) and (I ◦ Id)trs = (I ◦ Id) ◦ (I ◦ Id) but
(I◦Id)◦(I◦Id)◦I �= I◦Id◦I then this would be a contradiction to Id◦I◦Id◦I = Id◦I
because of (Id ◦ I)trs.
2) xIy ⇒ ∃z1,...,zn : xIz1, z2Iz1, z2Iz3, ..., znIy ⇐⇒ x(I ◦ Id ◦ ... ◦ Id ◦ I)y with
x = zi for even i and y = zi for odd i.
3) Because of Lemma 1 and Lemma 2.2.

Thus the neighbourhood closure lattice of an object or an attribute is the compo-
nent of the horizontal decomposition of the original lattice that contains the object or
attribute. This is, of course, what was to be expected given the definition of the plus op-
erator – but the RA modelling provides an interesting representation of how the neigh-
bourhood closure context is computed.

For small formal contexts, it is trivial to calculate neighbourhood closure contexts
because one simply needs to decompose the lattice. But for large formal contexts, it is
not efficient to first calculate the whole lattice if one is only interested in the neighbour-
hood of some objects or attributes. In that case, it is much more feasible to calculate only
neighbourhood closure lattices because these contain the complete information about an
object or attribute. This is especially the case if a lattice contains a few large components
and many small components and one is interested in objects or attributes that belong to
the small components (see the next section). In some cases, even neighbourhood closure
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lattices may be too big, in which case simple neighbourhood lattices may be a sufficient
approximation. Future research should be conducted to develop heuristics to determine
which neighbourhood lattice is best for which type and size of context. It might also be
of interest to obtain heuristics for estimating how many iterations are needed to reach
the transitive closure.

4.2 Empirical Results for a Neighbourhood Closure Context of ROGET

Using the RA formalisation as a guideline, we have calculated the neighbourhood clo-
sure context for ROGET. Considering that the full ROGET context consisting of all
words and senses has about 113,000 objects, 71,000 attributes and 200,000 crosses,
calculating a transitive closure is not trivial. Calculating the neighbourhood closure con-
text for the full ROGET database results in 26,314 equivalence classes, or components,
ranging from one largest component of 138,919 entries (belonging to 38,621 senses),
to 22,206 single-entry components. This means that the majority of entries in ROGET
(about 70%) are connected, either by words with shared senses (synonymy) or by senses
having shared words (polysemy). The majority of the single-entry components derive
from ROGET lists, a classification type where words representing such objects as ship
parts, species of animal, or capital cities, each occupy a single sense and have no syn-
onyms. The components with 10 to 28 senses typically contain words that are fairly
specialised, but still somewhat polysemous, such as belief systems (“freethinker”, “ni-
hilist”), occupations (“moneylender”), musical forms (“serenade”), temporal adjectives
(“dayly”) and countries and capital cities, which happen to occur in more than one list.
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The distribution of component sizes is shown in Fig. 3. To display the number of
components (y-axis), a log2 function was used. A distribution consisting of one large
component, a large number of tiny components and a smaller number of exponentially
distributed components in between has been called a “power law distribution” by Stro-
gatz (2001). Power law distributions are a phenomenon found among such diverse areas
as word or letter frequency in text, strength of earthquakes, connectivity in the brain and
HIV epidemics (Barabasi, 2002), the distribution of forest fires, species group size in
biology, and web sites on the Internet. There has been some debate as to the actual
significance of power distributions but Barabasi (p. 77) makes the claim that: “Nature
normally hates power laws. In ordinary systems all quantities follow bell curves, and
correlations decay rapidly, obeying exponential laws. But all that changes if the system
is forced to undergo a phase transition. Then power laws emerge – nature’s unmistak-
able sign that chaos is departing in favor of order.” Thus it is of potential significance
that components in ROGET follow this particular distribution.

4.3 Antonymy

A second example is the treatment of antonymy. Antonyms are generally known as words
with opposite meanings. Antonymy is interesting for two reasons. First, antonymy is
what is called a “lexical relation” in WordNet (Miller et al., 1990). That means that it is
a relationship between senses of words and not between words. For example, “big” and
“small” can be considered antonyms. But synonyms of “big” (such as “huge”) need not be
antonyms of “small” and its synonyms. To model this using RA and the ROGET context
from the previous section, it would be necessary to use a Fork relational (FRA) matrix
and projections. This is because a binary relation among antonyms would correspond to
a relation among word/sense pairs which would need to be encoded using FRA. For the
purposes of this paper, we are treating antonymy as a relation among words (similar to
synonymy), thus avoiding the need for FRA.

Second, even though antonyms express some form of contrast, negation or duality,
they are also usually quite close in meaning. For example, “hot” and “cold” both de-
scribe temperature; “up” and “down” both describe direction. Word association studies

go

2. IV. D motion with reference to direction

294 regression

retreat

293 progression

progress

289 direction

Fig. 4. Antonymous categories share meaning
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(where a person is told a word and has to name the first word that comes to mind) show
that antonyms are as closely associated in the mental lexicon as are synonyms (Miller
et al., 1990).

ROGET does not identify antonyms on a sense-level. The first edition of the book
version of Roget’s Thesaurus identified antonymous categories by arranging them op-
posite to each other in the table of contents. A similar structure on the category-level has
been included in ROGET. Furthermore, we have included in ROGET some data that is
available from word association tests (Nelson et al., 1998) in the form of an antonymy
relation among words.

The goal of this section is to detect and analyse this second feature of antonymy
(contrast versus shared synonyms) in ROGET. For example (cf. Fig. 4), on a category

Table 1. Antonyms that share synonyms

antonym 1 shared synonym antonym 2
give yield accept
add compute subtract

descend slope ascend
editor reviewer author
after then before
white bleak black
sweet brisk bitter
suck snuffle blow
sharp abrupt blunt
effect sequence result
major elective minor
future sometime past

Fig. 5. Overlapping neighbourhoods for antonyms
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level, “293 progression” (containing “progress”) and “294 regression” (containing “re-
treat”) are antonyms in ROGET. They share the higher-level class of “Motion With
Reference To Direction”. They also share a synonym “go” in category “289 direction”.
Table 1 shows a (manually compiled) list of antonyms from word association data,
which share a synonym in ROGET. It should be noted that in this case, synonymy is not
only evaluated on the sense-level but also on the paragraph level. That means that all
words in a paragraph of ROGET are considered synonyms for this purpose.

One approach to studying shared meanings among antonyms is to identify those
neighbourhood contexts of antonyms where the sets of attributes are not disjoint. In this
case, again it is useful to consider paragraphs as attributes instead of senses because oth-
erwise there would not be much overlap. But because the sets of synonyms at that level
are large, the plus operator is used only once. Thus, ifH denotes the column matrix which
contains exactly one 1 in the position of a word w and J denotes the column matrix which
contains one 1 in the position of the antonym of w and ifH++∩J++ �= ∅ then the neigh-
bourhood context (setG(H∪J∪(H++∩J++)), setM(H+∪J+∪(H++∩J++)+), I)
is formed. Figure 5 shows the example of “hot” and “cold”, which share “keen” as a syn-
onym if synonymy is evaluated at the paragraph level. In this case the shared synonym
refers to metaphoric senses of the original words. It would be of interest to conduct a
more detailed investigation of all such cases in ROGET in future research.

5 Conclusion

This paper demonstrates the applicability of RA formalisations for modelling lexical
databases with FCA by using “neighbourhood contexts and lattices”. Specific exam-
ples are neighbourhood closure contexts of the complete ROGET context and neigh-
bourhood lattices for antonymous words. The examples show that different types of
neighbourhood contexts are relevant for different aspects of lexical databases. But the
research presented in this paper is not restricted to linguistic applications. Similar struc-
tures could be investigated in concept lattices in other application areas.
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Abstract. Software has become an integral part of many people’s lives, whether 
knowingly or not.  One key to producing quality software in time and within 
budget is to efficiently elicit consistent requirements.  One way to do this is to 
use conceptual graphs.  Requirements inconsistencies, if caught early enough, 
can prevent one part of a team from creating unnecessary design, code and tests 
that would be thrown out when the inconsistency was finally found.  Testing 
requirements for consistency early and automatically is a key to a project being 
within budget.  This paper will share an experience with a mature software pro-
ject that involved translating software requirements specification into a concep-
tual graph and recommends several actors that could be created to automate a 
requirements consistency graph. 

1   Introduction 

We use software to record TV shows.  We use software to search the internet.  We use 
software to write papers.  We use software to communicate with other people far away 
from us.  We use software to plan trips.  We use software to track our spending.  We use 
software to write software.  And when our compilers don’t work, we can’t do our jobs.  
We rely on some form of software almost every day of our life. 

Eliciting requirements, in some form, is the first step in most software development 
cycles.  If an error were found in the requirements phase, the cost to detect and repair 
that error is five to ten times less than the cost of detecting and repairing that error in 
the development phase [1].  It is therefore the purpose of this paper to suggest one 
way of strengthening requirements gathering procedures.  This method involves using 
conceptual graphs, as popularized by Sowa [2], to build a graph that can be tested 
automatically for inconsistencies by using actors. 

There are several reasons that we care about modeling requirements.  In a suffi-
ciently complex system, it’s important to know which requirements are related to each 
other, and how strong those relationships are.  If a requirement is considered for 
changing, the overall impact on cost and schedule need to be analyzed to make sure 
that that is the right choice to make.  By using a tool with well-modeled conceptual 
graphs of requirements, someone can see the interdependencies of the requirements, 
and what effects adding to, deleting from, or modifying that requirement has on the 
entire project. 
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In a sufficiently complex system, requirements don’t stop changing until the project’s 
end of life.  It’s also not possible for one person to completely understand every detail 
of every requirement.  Since multiple people would be working on different portions of 
the specification, it’s conceivable that inconsistencies could be inserted without the 
other people’s knowledge of it.  This causes inconveniences if caught early, and expen-
sive complications if caught too late.  An automated logical system can catch some 
inconsistencies as soon as they are developed, saving both time and effort. 

Conceptual graphs provide a visual representation of the relationships between de-
tails of requirements that a text document does not.  Some conceptual graph tools 
offer the visual representation of concepts that a human can inter from.  We would 
like the tools to do the inferencing themselves, and we’re on the verge of that now.  
With data driven software, we use certain concepts’ referents, along with actors, to 
show consistencies within a requirement and then within the entire graph. 

Conceptual graphs have been shown to be helpful in modeling requirements in 
the past [3].  This work takes a medium scale mature project, and while graphing 
this project, a way was found to evaluate the consistency of certain parts of the 
requirements. 

2   General Approach 

This work modeled the requirements from a medium scale mature project.  The soft-
ware produced by this medium size project acted as a graphical user interface to an 
aircraft’s radio.  This graphical user interface constrained the data available to a pilot 
based on what configuration he was operating his radio.  To accurately graph the 
project software’s requirements, we had to locate the original representation.  This 
original representation was an Interface Control Document that detailed what the 
radio expected in different configurations and a Software Requirements Specification 
that generalized the configurations of the Interface Control Document.  After finding 
the main software specification and the supporting documentation, we had to parse 
the document by hand to isolate the important concepts and relations needed for an 
accurate graph of the system.  This was cumbersome and time consuming.  The com-
plexity of the specification and supporting document severely limited automated pars-
ing.  The requirement that we will detail concerns security.  Our requirement is found 
in the Software Requirements Specification and is as follows: 
 

There shall be one and only one Security Level for our system.  Valid values of 
the security level shall be None, Medium, and High. 

 
From the Interface Control Document, we learn that there are two key indexes associ-
ated with the security levels.  They are named LP12_Key_Index and LP3_Key_Index.  
LP12_Key_Index can have values between 0 and 20, inclusive.  LP3_Key_Index can 
have values between 0 and 10, inclusive.  There also exists an enumerated control 
over the indices:  LinkProtection1 can have a value between 0 and 3, inclusive, de-
pending upon the Security Level. Fig. 1  represents these facts. 
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SecurityLevel

attribute

LP3_Key_IndexLP12_Key_Index

Int: {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}@1

attributeattribute

LinkProtectionType1

Int: {0,1,2,3}@1Level: {None, Medium, High}@1

attribute

Int: {0,1,2,3,4,5,6,7,8,9,10}@1

 

Fig. 1.  Each concept has individual constraints as represented above 

Furthermore, these keys have constraints with respect to each other as follows: 

• When the Security Level is None, the data that it sends has no encryption. 
• When the Security Level is Medium, the data that it sends has a level of en-

cryption that is found on the piece of hardware itself. 
• When the Security Level is High, the data that it sends has a level of encryp-

tion that is supplied by an additional piece of hardware. 

Further research into the hardware interface explains that as these security level states 
change, several other fields are affected. 

• When the Security Level is None, the two key indexes, LP12_Key_Index and 
LP3_KeyIndex, will both have values of 0. 

• When the Security Level is Medium, LP12_Key_Index must have values be-
tween 1 and 20, inclusive, and LP3_Key_Index must have a value of 0. 

• When the security level is High, LP3_Key_Index must have a key index be-
tween 1 and 10, inclusive, and LP12_Key_Index must have a key index of 0. 

An example of how constraints between concepts and states that are not allowed are 
graphed using conceptual graphs is presented in Fig.  2. 
This graph would read in text form: 

• If Security Level is None, then LinkProtectionType1 must be 0, LP12_ 
Key_Index must be 0 and LP3_Key_Index must be 0. 

• If Security Level is Medium, then LinkProtectionType1 can be 1 or 2, LP12_ 
Key_Index must not be 0, and LP3_Key_Index must be 0. 

• If Security Level is High, then LinkProtectionType1 must be 3, LP12_ 
Key_Index must be 0, and LP3_Key_Index must not be 0. 

To check for consistency within the facts asserted in this conceptual graph, another 
graph needs to be created.  This graph uses actors and a text file (called a “database” 
in Charger[7]) to check for consistency within the graph.  Before we discuss the rep-
resentation of the test graph of this requirement, we propose the invention of at least 
two new actors and the modification of one existing actor for this graph to be effec-
tive as described.  A more thorough demonstration of the use of these actors together 
will be shown later.  These two new actors, <2key_lookup> and <counter>, are 
described, and the modified actor, <lookup> is described later in this paper.  The 
<counter> and <2key_lookup> actors work together to search for all instances of a 
key inside of a database.  This is important because these database files are what hold 
the data constraints, and we need to find every relationship between the independent 
and dependent data. 
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Fig.  2.  The constraints of the security level requirement 

A <2key_lookup> actor takes three inputs and produces one output. 

• Database: file – input – file is a tab-delimited file with column headings.   
• Input1: Referent1 – Input1 is the name of one of the column headers being 

searched, and Referent1 is the value searched for under the column header 
Input1. 

• Input2: Referent2 – Input2 is the name of another of the column headers be-
ing searched, and Referent2 is the value searched for under the column 
header Input2. 

• Output: Referent3 – the value of Referent3 is  
o Null if there do not exist three different column headers named Input1, 

Input2, and Output inside of the database file.   
o Null if there do not exist a single row that has all three referents Refer-

ent1, Referent2, and Referent3 from the corresponding types Input1, In-
put2, and Output in it inside of the database file. 

o the value at the location in the Output column that corresponds to the 
same row as Input1’s referent (Referent1) and Input2’s referent (Refer-
ent2) inside the database file. 
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An example of the use of a <2key_lookup> actor is shown below in Fig. 3.  In this 
figure we assume that the Input1 column has values of 5 and 5, the Input2 column has 
values of 6 and 7, and the Output column has values of 1 and 2.  Note that in the 
graph where Input1 is 4 and Input2 is 7, we could have Output equal to 2, since this is 
unambiguous.  However, we have defined this <2key_lookup> actor to require both 
keys to be present.  Further research could create the case to relax this restriction. 

Database: TwoKeyLookup.txt Input2: 7

Output: 1

2key_lookup

Output: 2

2key_lookup

Output: null

Input1: 4Database: TwoKeyLookup.txt Input2: 7

2key_lookup

Input2: 1Input1: 5

Output: null

Database: TwoKeyLookup.txt

Input1: 5 Input2: 6Database: TwoKeyLookup.txt

2key_lookup

Input1: 5

 

Fig. 3.  Four examples using the <2key_lookup> actor 

A <counter> actor takes two inputs and produces one output. 

• Interval – the referent is the time in between increments of a change to the 
output.  This value should be large enough so that the count does not change 
until all activity has completed downstream. 

• Reset – if the referent is T then the next output will be reset to 1.  If the referent 
is null (or more generally not T), then the next output will be incremented by 1. 

• Counter – after time elapses (based on the interval’s referent), the Counter’s 
referent increases by 1. 

An example of the use of <counter> is shown below in Fig. 4.  In this figure we as-
sume that the Input column of the test file has values 1 and 2, and the Output column 
of the test file has corresponding values of 3 and 4. 

Database: ResetTest.txt

lookup

Input: 3

lookup

Database: ResetTest.txt

Output: 4

Input: 2

counter

Interval: 10

equal

T: null

null

Reset?Reset?

Output: null T

Interval: 10

counter

T: null

equal  

Fig. 4.  Two examples using the <counter> actor 
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The <lookup> actor could be modified to output multiple values, based upon the 
concepts’ names.  During the writing of this paper, this feature was instituted into 
CharGer.  This will allow multiple outputs to be populated from one lookup actor, 
cleaning the graph. 

SecurityLevel: None

Reset?: nullInterval: 10

LP3_Key_Index: 0LP12_Key_Index: 0

LinkProtectionType: 0Database: LPIndex.txt

Interval: 10

lookup

counter

Reset?: null

RequirementInconsistency: 0

Count: 1

LinkProtectionType: 0

notequal_1_0

SecurityLevel: None

2key_lookup

2key_lookup

counter

Count: 1

Database: LP.txt

Database: LP.txt

Count: 1

2key_lookup

Database: LP.txt

Interval: 10

Reset?: null

counter

plus

ProgramInconsistency: 0
 

Fig. 5.  Requirement checking graph using actors and lookups 

The graph represented in Fig. 5 looks up the Security Level from the LP.txt data-
base.  The sequence of the graph follows: 

1. The first <2key_lookup> actor retrieves the first (Count: 1) instance of Link-
ProtectionType that matched SecurityLevel: None.  The LinkProtectionType 
Value that is returned is 0.   

2. The <lookup> actor then retrieves the first (Count: 1) instance of LP12_ 
Key_Index and LP3_Key_Index that matched LinkProtectionType: 0. 
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3. The second <2key_lookup> actor then retrieves the SecurityLevel that 
matched both LP12_Key_Index: 0 and LP3_Key_Index: 0. 

4. The <notequal_1_0> actor produces RequirementInconsistency: 1 if the 
SecurityLevel at the start of the graph (from the LP.txt database) does not 
match the SecurityLevel at the end of the graph (from the LPIndex.txt data-
base).    

5. The plus actor adds the referent of RequirementInconsistency to the referent 
of ProgramInconsistency and put the result in the referent of ProgramIncon-
sistency. 

6. After this thread is completed, the second <counter> actor activates and the 
second part of the graph runs again.  The first counter only runs again until all 
<counter> actors downstream are completed (signified by the Reset? concept 
being set to T).   

This graph could indicate that there is a requirement inconsistency.  Further, if there 
were a requirement inconsistency, then the accumulation of requirement inconsis-
tencies is the total number of program inconsistencies, so that at the end of the run 
of this graph, we count how many total requirement inconsistencies there were in 
the entire graph.  To demonstrate this, we created two concepts, RequirementIncon-
sistency and ProgramInconsistency.  Their values both start at 0.  RequirementIn-
consistency can only have a referent (value) of 0 or 1.  RequirementInconsistency 
can have a integer value greater than or equal to 0.  These two referents are popu-
lated as follows: 

• When the SecurityLevel referent that we expect is not the actual Securi-
tyLevel referent, the <notequal1_0> actor’s value becomes (or stays at) 1. 

• When the SecurityLevel referent that we expect is the actual SecurityLevel 
referent, the <notequal1_0> actor’s value becomes (or stays at) 0. 

• Whenever the <notequal1_0> actor’s value changes, that value is added to 
the ProgramInconsistency referent.  (If the two SecurityLevel values are 
the same, then 0 is added to the ProgramInconsistency value, changing 
nothing.) 

The inputs and output to the accumulating <plus> actor are as follows: 

• RequirementInconsistency – can have a value of 0 or 1. 
• ProgramInconsistency – can have a integer value greater than or equal to 0. 
• ProgramInconsistency – result of adding either 0 or 1 (RequirementInconsis-

tency referent) to ProgramInconsistency’s referent. 

In the future, we would prefer that all the data that is useful in determining consis-
tency be represented within the conceptual graph itself.  However, with current tools, 
this is even less possible than using actors and databases.  More actors are needed to 
take advantage of sets, instead of using a database.  An example implementation is 
presented in Fig.  6. 
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Fig.  6.  A graph testing the consistency of requirements without the use of databases 

This graph introduces several new actors.  These actors are <ref_rel>, 
<2_ref_rel>, <combine>, and <iterate>.  A <ref_rel> actor takes at least two inputs 
(numbered 1 through N) and produces one less than the number of inputs as outputs 
(numbered 1 through N-1). 

• Input1 – this referent is the pointer to the other inputs’ (Input2 through In-
putN) referents.  

• Input2 through InputN – this referent will be the value that the Input1 refer-
ent points to. 

• Output1 through OutputN-1 – this referent consists of two values inside of its 
set.  The values to the left of the colon (:) are the available pointer values that 
point to the values to the right of the colon. 

An example of the use of <ref_rel> is shown below in Fig. 7. 

LP3_Key_Index: {1,2:0}

LinkProtectionType: {1,2}@1

LP12_Key_Index: {1,2:1..20}

LinkProtectionType: 0

ref_rel

SecurityLevel: None

LinkProtectionType: {None:0}

LP3_Key_Index: 0LP12_Key_Index: {1..20}@1

ref_rel

 

Fig. 7.  Two examples using the <ref_rel> actor 
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In the graph on the left, we take the two referents, and create a referent relationship 
between them, to form what could be considered a pointer (None), and the value that it 
points to (0).  The output of the <ref_rel> actor is the Type of the value that the pointer 
points to.  In the graph on the right, we take three referents, and create two referent 
relationships.  The first arc will always be inside of the output of the <ref_rel> actor.  
The other inputs will be the Types of the outputs of the <ref_rel> actor. 

A <2_ref_rel> actor takes at least three inputs (numbered 1 through N) and 
produce two less than the number of inputs as outputs (numbered 1 through N-2). 

• Input1 and Input2 – these referents, together, will be the pointer to the other 
inputs’ (Input3 through InputN) referents. 

• Input3 through InputN – this referent is the value that the Input1 and Input2 
referent points to. 

• Output1 through OutputN-2 – this referent consists of three values inside of its 
set.  The values to the left of the semicolon (:) are the available pointer values 
that point to the values to the right of the colon.  The values to the left of the 
semicolon (;) are the referents of the Input1 concept, and the values to the 
right of the semicolon (;) are the referents of the Input2 concept. 

 
A <combine> actor takes any number of inputs (numbered 1 through N) and pro-
duces one output. 

• Input1 through InputN – input – these referents will each be a different ele-
ment in the output set. 

• Output – output – the type is the same as the inputs’ type, and the referent 
will be the set of all of the inputs’ referents. 

An example of the use of <combine> actor is shown below in Fig. 8. 

LP12_Key_Index: {3:0}LP12_Key_Index: {0:0}

LP12_Key_Index: {0:0, 1:1..20, 2:1..20, 3:0}

combine

LP12_Key_Index: {1,2:1..20}

 

Fig. 8.  An example of the use of the <combine> actor 

In the graph the combine actor takes any number of inputs, all with the same Type, 
and create an output whose referent is a set of the referents that are inputs to the 
<combine> actor. 
An <iterate> actor takes at least one input and produce one output.  If there is only 
one input, then it functions as follows: 

• Input – to be useful, the referent should be a set. 
• Output – the referent of Output takes on each of the values of Input’s refer-

ent; the referent changes to the next value of the set once the thread com-
pletes.  The Output’s type is the same type as Input. 
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If there are two inputs, then the actor functions as follows: 

• Input1 – the referent of this concept will be used to search Input2 
• Input2 – to be useful, the referent should be a set, and the set will consist of 

ordered pairs.  You could consider the ordered pairs to be pointers on the left 
of the colon, and the value at the address of the pointer to be the value on the 
right side of the colon. 

• Output – if the referent of Input1 matches the value to the left of the colon 
(“:”) of Input2, then the Output’s referent is the value to the right of the co-
lon; the referent changes to the next value that matches once the thread com-
pletes.  The Output’s type is the same type as Input2. 

An example of the use of <iterate> is shown below in Fig. 9. 

iterate

SecurityLevel: None

SecurityLevel: {None, Medium, High}@1

SecurityLevel: None

LinkProtectionType: {None:0, Medium:{1,2}, High:3}@1

iterate

LinkProtectionType: 0
 

Fig. 9.  An example of the use of the <iterate> actor 

This section described several actors that can be used in conjunction with require-
ments in conceptual graphs that will allow some automatic consistency checking of 
the requirements. Assuming that these actors are well-defined, they can be easily 
added to the current CharGer architecture and used by software developers. 

3   Background (or Previous Work) 

With a sufficiently large software project, many people are involved with the creation 
and approval of project artifacts before the software is released to the customer.  Even if 
some of those people felt comfortable modeling with conceptual graphs, not everyone 
would understand the full meaning of the graphs, and because of this, requirements are 
often modeled according to simple descriptions, and if we’re lucky, primitive diagrams.  
Many of these types of requirements are vague and informal; such methods already in 
wide use to represent requirements are Block Diagrams, Flowcharts, Timing Diagrams 
and natural languages.  A way to translate these requirements into conceptual graphs is 
covered by Cyre [5].  Other methods used to represent requirements include OMT ob-
ject diagrams and Data Flow Diagrams.  A way to translate these requirements into 
conceptual graphs is covered by Delugach [6]. 

Cyre [5] also demonstrates a way to show inconsistencies in conceptual graphs.  Their 
method involves comparing definitions of graphs to the actual graphs, and looking for 
missing relations and concepts.  Our proposed approach of showing inconsistencies lies 
more with inconsistencies in the data being represented, and less with the topology of the 
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graph’s components.  For example, if we take a university domain where a freshman has 
between 0 and 32 credit hours and a sophomore has between 33 and 64 credit hours, 
Cyre’s method would determine that the following graph is consistent, because it as-
sumes definitions are consistent and does not take into account dependency between data. 

Level: SophomoreInt: 22

ClassLevel

attribute

characteristic

Hours

attribute

characteristic

Student: Jessica

 

Fig. 10.  A simple inconsistent graph 

Conceptual graphs are based upon our interpretation of natural language. Sowa 
[2] has shown that conceptual graphs can be mapped directly to first-order logic. 
With many commonly used requirement representations able to be mapped to con-
ceptual graphs, our process to test for the consistency of data can be applied widely 
to existing translations. 

4   Conclusion and Summary 

We have shown that real requirements consistency checking can be achieved with a 
few modifications to current tools.  One such modification is an <ifthen> actor that 
fires if its input is true (easily done by comparing a dynamic value to a static value 
such as IF var == NULL or IF var == Bob).  Another addition is an <ifnotthen> actor 
that fires if its input is NULL (or 0). Further research could address these problems.  
Without these actors, we would need to duplicate much of a graph. 

This approach still does not answer the perhaps more important question of “Are 
these the requirements that we really want?”  This work does not address that issue, 
except that this supports the human activity of finding inconsistencies, which clearly 
mean that something was incorrect and needs to be examined by humans. 
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Abstract. In [7], we introduced the query-based multicontext theory,
which allows to define a virtual space of views on ontological data. Each
view is then materialised as a formal context. While this formal context
can be visualised in a usual formal concept analysis framework such as
Conexp or ToscanaJ, [7] also briefly described how the approach allowed
the creation of a novel navigation framework for knowledge bases. The
principle of this navigation is based on supporting the user in defining
pertinent views. The purpose of this article is to discuss the benefits of
the browsing interface. This discussion is performed, on the one hand,
by comparing the approach to other Formal Concept Analysis based
frameworks. On the other hand, it exposes the preliminary evaluation of
the visualisation of formal contexts by comparing the display of a lattice
to two other approaches based on trees and graphs.

1 Introduction

Semantic technologies have matured in recent years with many new advances
concerning the creation, management and application of ontologies and knowl-
edge bases (see [8]). Diverse paradigms have been proposed to interact with
knowledge bases. One of these paradigms uses diagrams representing concept
lattices 1 (see [5]) to visualise and interact with a knowledge base (related ap-
proaches can be found in [1,3,10]). Moreover, a overview of the tool support for
Formal Concept Analysis can be found in [12]2

The use of formal concept lattices for the display and interaction with knowl-
edge has some interesting features and some major drawbacks. Though concept
lattices are suitable structures to represent binary relations and hierarchical
knowledge, they suffer from mainly two limitations. First, the reading of a con-
cept lattice requires some training. But, the evaluation found in [4] and the one
presented in this paper showed that novices could read lattice diagrams with a
minimum of training. The second limitation lies in the increasing difficulty of
drawing a readable concept lattice diagram for larger lattices.
1 In this paper, we assume that the reader is acquainted with the basic definitions of

traditional Formal Concept Analysis such as: formal contexts, formal concepts and
concept lattices.

2 See also Uta Priss’ FCA home page: http://www.fcahome.org.uk/

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 413–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In [7], we proposed a new approach to knowledge browsing using concept lat-
tices. This approach relies on the use of queries to define and manipulate views
over a knowledge base. In order to give a meaning to the views used, we devel-
opped the Query-Based Multicontext theory. This theory allows the manipulation
of surrogate objects to represent the formal contexts underlying the concept lat-
tices used by the browsing tool. Knowledge browsing in this framework consists
in supporting the user in defining relevant views. To help the reader in grasping
the principle of this approach, we illustrate it by some examples of views which
can be defined. For example, the tool allows a user to define a lattice showing
the distribution of the publications of researchers of a given group working on
the topics Formal Concept Analysis, logic or text-mining. The concept lattice of
this view is presented in Figure 1.

The purpose of this article is to discuss the benefits of our approach in two
ways. First, the features of our approach are compared with those of other Formal
Concept Analysis based approaches in Section 2. Then Section 4 presents an
evaluation we performed with a prototype of the tool. This evaluation compares
the selection mechanism of three visualisation paradigms: the lattice view, the
tree view and the graph view.

The plan of this article is as follows. In Section 2, we give a short intu-
itive motivation for semantical views on data, comparing our approach to other
Formal Concept Analysis based frameworks. In Section 3, we recapitulate the
main aspects of the Query-Based Multicontext approach necessary for a full
understanding of the rest of the article. In Section 4, we discuss the results
of our evaluation of the visualisation aspects of the Query-Based Multicon-
text navigation paradigm. We finally draw some conclusions from our work in
Section 5.

2 Motivation

In [7], we introduced the Query-Based Multicontext theory. This theory is a new
approach to interacting with data based on a combination of Formal Concept
Analysis and knowledge base querying. In the next section, we reintroduce the
necessary formalism to understand this paper, but to give the reader a general
idea we expose in this section the general principle in an intuitive way. We also
introduce an example which we use for illustration purposes throughout this
paper. The main idea is to support and guide the user in defining views on the
data to be visualised with a given paradigm.

Suppose Katharina is a researcher interested in the research fields of For-
mal Concept Analysis, text-mining and logic. While studying related works in
her area, she notes that the AIFB Institute has proposed some interesting ap-
proaches. She would like to get an overview of the researchers working onthis
topic at AIFB. The AIFB portal3 offers the possibility to download a knowledge
base representing many aspects of this institution. To give an idea of the content
3 See http://www.aifb.uni-karlsruhe.de/about.html. We refer to this web site for

more information on this knowledge base and its associated ontology.
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Table 1. Table displaying the kind of elements in the knowledge base

type example
concepts persons, projects, publications, research group, research topics...
relations author, isWorkedOnBy, memberOf, isCarriedOutBy, hasProject
instances Julien Tane, Pascal Hitzler, FCA, Logic...
relation instances isWorkedOnBy(FCA, Julien Tane), isWorkedOnBy(Logic, Pascal

Hitzler)...

of this knowledge base, we illustrate parts of its content in Table 1. For example,
the instance of research topic Formal Concept Analysis is worked on by the PhD
Student Julien Tane. To query and interact with the knowledge base, there exists
an ontology API (the current implementation is based on KAON4). We showed
in [11] that it is possible to create a query language on top of this API.

The portal contains some information on more than 900 publications and
around 900 authors. Displaying the formal concept lattice of the binary relation
author as a Hasse diagram would be hardly practical since this lattice contains
996 formal concepts. Let us consider diverse options to cope with this issue:

– use an iceberg concept lattice
– use conceptual scaling
– select the context objects and attributes to be used for the displaying of the

lattice5

– define queries to create object and attribute sets and their incidence relation

The first technique is based on frequent item sets. Using the TITANIC algorithm
(see [9]), it is possible to construct the lattice of the frequent item sets of the
formal context. Setting a threshold on the number of publications would reduce
the size of the lattice to be displayed. While this can return interesting results,
some relevant authors might be missing from the lattice because they do not
have enough publications. Moreover, for large lattices with a small number of
layers, this does not ease the visualisation very much.

The second technique uses the traditional technique of conceptual scaling (see
[6]). Scaling is a powerful technique when the object set can be studied according
to orthogonal sets of attributes and where these attribute sets are organised in a
lattice. The choice of the scales has a great influence on the form of the lattice.
In the present case, several different scales are imaginable. A possible scale could
be to consider the type of the authors of the publications: professor, assistant
professor, PhD Student. Another possible scale could be the research group to
which the authors of the publications are affiliated. The scales are useful because
they offer a powerful means of factorising the search space but there is in general

4 See http://kaon.semanticweb.org .
5 Like in the Concept Explorer, where objects and attributes can be selected or de-

selected using check boxes. You can download and use the Concept Explorer from
http://sf.net/projects/conexp.
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no reason that this factorisation corresponds to an interesting view on the data.
The conceptual scaling lacks the facility for choosing the attribute set flexibly.

The third technique is implemented in the Concept Explorer by Serhiy Yev-
tushenko. The interface offers the possibility to decide for each attribute and
for each object of the context whether it is visible or not. While this technique
allows for a fine granular decision of what should be visualised, it is tedious to
choose the given elements.

The final option corresponds to our approach. We support the user in the
creation of the concept lattice to be displayed. For this, the user can define
precisely the three parts of the formal context: the object set, the attribute set
and the incidence relation. Section 3.4 shows how a template mechanism helps
simplify the creation of complex views.

Fig. 1. The lattice representing the distribution of the publications published by mem-
bers of the Knowledge Management Group among the researcher working on Formal
Concept Analysis, logic or text-mining

For example, our researcher may be particularly interested in the research
papers published by the Knowledge Management Group who are working on
some topics relevant for his own research: Formal Concept Analysis, logic or
text-mining. The resulting concept lattice has only 28 concepts. It can be created
using a special kind of query primitive: the role query which is introduced in
Section 3.2. Figure 1 shows the lattice resulting from the view creation process.
Two comments should be made about this diagram. First, it has been edited for
this paper in order to make it more readable. The editing took much longer than
the creation process which took less than a minute6. The editing phase is not
essential when using the tool because of the highlighting mechanism. The other
observation is that the object labels are not shown in the diagram. The reason
for this lies in the higher number of publications than persons. Displaying them

6 This is fairly complex view to create many views require less time.



Query-Based Multicontexts for Knowledge Base Browsing:An Evaluation 417

would make the diagram much less readable. This is not a limitation when using
the browser, since the labels can be displayed on demand.

Finally, it is crucial to ensure that the lattice paradigm is suitable for knowl-
edge browsing, we performed the evaluation presented in Section 4. Before that,
we reintroduce the basic elements behind our approach in the following sections.

3 Query-Based Multicontext

In this section, we first give a formal definition of the Query-Based Multicontext.
Then we illustrate this definition with a very simple example. In this section,
we recall the formal definition of the Query-Based Multicontext, and illustrate
it using a simple example. Finally, we discuss briefly the knowledge browsing
paradigm based on the Query-Based Multicontext theory.

3.1 Definition: Query-Based Multicontext

Each of the views of the system corresponds to a triple p of queries which can
be interpreted to a formal context by means of an evaluation function κ.

p := (q1, q2, q3) −→ Kp := κ(p)

Each triple p is called a context index, whereas the result κ(p) of the inter-
pretation of p is called the realised (formal) context of p. In the Query-Based
Multicontext approach, navigating means going from one realised context to a
new one. We reintroduce here a simplified7 version of the formal definition given
in [7]. For this, we call a query language a set L together with an evaluation
mapping eval. The latter is a mapping from L to P(Ω) or to P(Ω × Ω), where
Ω is some given set and P(X) denotes the power set of the set X . By usual
abuse of terminology, we will call L itself a query language if the corresponding
evaluation mapping is understood.

The following definition formalises the idea of a Query-Based Multicontext:

Definition 1 (Query-Based Multicontext). Let Ω be a set called universe
and let L1 and L2 be two query languages with evaluation mappings eval1 for L1,
with eval1(q1) ⊆ P(Ω), and eval2 for L2, with eval2(q3) ⊆ P(Ω ×Ω). Elements
of L1 are sometimes called set queries, whereas elements of L2 are called relation
queries. Let P := L1 × L1 × L2. We call an element p of P a context index.

For a context index p = (q1, q2, q3) ∈ P, we define its induced query-based
context as Kp := (eval1(q1), eval1(q2), eval2(q3) ∩ (eval1(q1) × eval1(q2))). We
call QBMC:={Kp|p ∈ P} a Query-Based Multicontext. We call the mapping from
P in QBMC the context realisation function and we denote it by κ. So, for all
p ∈ P, κ(p) = Kp.

7 Only one query infrastructure and one instance of this query infrastructure is con-
sidered in the present definition.
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Given the choice of the two mappings eval1 and eval2, a context index fully spec-
ifies the content of a formal context. Note that the incidence relation is defined
as the pairs common to the relation returned by the third query (returning a set
of pairs) and to the cross product of the two others. The idea behind this con-
struction is that the relation desired is only between the objects and attributes
of the resulting context. The relation between other objects and attributes is
not relevant at that point. In other words, only those relation elements are kept
which are between the object set and the attribute set. For instance, if the goal
of the formal context is to display the relation between professors and their re-
search topics, then the pairs of the relation between PhD Students and research
topics are not relevant. The underlying database, however, might not make any
difference and return all the pairs.

In [7] we introduced operators on queries and context indices, the next section
introduces three operators necessary for the context indices used for the eval-
uation presented in this paper. However, we refer to [7,11] for other primitives
useful when dealing with knowledge bases.

3.2 Query Operators

In order to illustrate the importance of query primitives for flexible context
index creation, we introduce three operators8: the set operator, the inverse op-
erator and finally the role operators. These are all the query operators needed
to construct the context index used in this paper and for the evaluation.

Set Operator. The set operator allows a fine granular selection of instances.
For elements i1, . . . , in in Ω, the set query expression“{i1, . . . , in}” is a query
element. The evaluation of a set expression returns the set itself. Let Set(Ω) be
the set of all set query expressions.

Inverse Operator. The inverse operator is an operator for elements of L2
swapping the components of the answers of a given query. For example, for
qr in L2 and eval2(qr) = {(a, b), (c, d)} we have that q−1

r is also a query and
eval2(q−1

r ) = {(b, a), (d, c)}. For a query language L2, the set of all inverse queries
is denoted by Inv(L2).

Role Operator. We consider now an important query operator: the role opera-
tor. This query operator takes two arguments: a relation query qr (i.e. an element
qr ∈ L2, which returns per definition a set of pairs) and a set query qi (i.e. an
element qi ∈ L1, which returns per definition a set of singletons). For every qr and
qi, the expression: “∃Iqr(qi)” is called a role query for the elements for the rela-
tion qr with parameters qi – the subscript I of the existential quantifier serves as
a reminder that the operator returns sets of instances9, defined as follows:

eval1(∃Iqr(qi)) := {x ∈ Ω|∃y ∈ eval1(qi), (x, y) ∈ eval2(qr)}.
8 The original idea behind these operators comes from description logics. However,

they are not restricted to description logics.
9 This emphasizes the difference with another operator introduced in [7] which returns

sets of concepts.
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From the mathematical definition, it can easily be seen that the role query
selects only the elements verifying the following statement: the first component
of the pairs resulting from the evaluation of qr, where the second component is
in the result of the evaluation of qi. For two query languages L1 and L2, the set
of relation queries Role(L2, L1) is the set consisting of all the role queries which
can be constructed using the following recursion rule:

– ∀qr ∈ L2, ∀qi ∈ L1, “∃Iqr(qi)”∈ Role(L2, L1)
– ∀qi ∈ L1, ∀qrole ∈ Role(L2, L1), “∃Iqrole(qi)”∈ Role(L2, L1)

For example, the role query ∃Ibrothers({mymother,myfather}) returns my
uncles, if the evaluation {mymother,myfather} returns my father and mother,
and the brothers query returns all the brotherhood pairs of my family. The use
of the ∃ quantifier allows to retrieve the uncles from both sides of the family
whereas the ∀ quantifier would have returned an empty set since no brother of
my mother is a brother of my father.

3.3 Example

We now present an example of Query-Based Multicontext related to the evalu-
ation of this paper.

As a toy example, we consider four concept names: person, publication,
project, research group and research topic as well as binary relations names:
isWorkedOnBy, memberOf, projectInfo, hasProject, isCarriedOutBy and author.

We can specify the languages L1 and L2 in the following way, let L1C and
L2R be two sets.

– L1C corresponds to concept names:
L1C := {person, research topic, research group, project, publication}

– L2R corresponds to relation names:
L2R := {isWorkedOnBy, member, author, projectInfo, hasProject,
isCarriedOutBy}

– L2 := L2R ∪ Inv(L2R)
– L1 := L1C ∪ Set(Ω) ∪Role(L2, L1C ∪ Set(Ω))

L1 and L2 can be seen as query languages. We consider the following evaluation
functions:

– eval1
• eval1(research group) = {Chair 1, Chair2, Chair 3, Chair 4 } ⊆ Ω
• eval1(research topic) = {E-Learning, Semantic Web, Logic, Genetic Al-

gorithms, Complexity Theory, Petri Nets, . . .} ⊆ Ω
• eval1(person) = {Julien Tane, Phillip Cimiano, Daniel Sommer, Andreas

Hotho, . . .} ⊆ Ω
• eval1(project) = {SEKT, DIP, SESAM, VIROR, . . .} ⊆ Ω
• eval1(publication) = {tane-icfca05, hotho-icml02, stumme-fcamerge01,
. . .} ⊆ Ω
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– eval2: The evaluation functions of the relations projectInfo, isCarriedOutBy,
isWorkedOnBy, memberOf and author can be understood as formal contexts
since they return sets of pairs of elements.

Figure 1 displays the relation between authors of the topic of text mining, logic
and Formal Concept Analysis, and the publications of the Knowledge manage-
ment group as discussed in Section 2. The context index corresponding to this
view is:

(∃Iauthor(∃ImemberOf(Chair3)), ∃I isWorkedOnBy−1(text mining, data min-
ing, knowledge discovery),author).

Using this Query-Based Multicontext infrastructure, it is possible to define
many context indices. But it has mainly been chosen because all the context
indices used in the evaluation presented Section 4 can be expressed.

3.4 Knowledge Browsing

In [7], we presented a navigation framework for ontologies based on the use of
context indices. Before discussing in the next section the evaluation we per-
formed, we explain the principle behind our navigation mechanism.

In our browsing paradigm, context indices can be seen as the conceptual
representation of views. Browsing the knowledge base corresponds to changing
the view, that is generating a new context index. In [7], we presented a simple
way of creating relevant views by parameterising some function, called construc-
tor, in order to return a pertinent context index. We presented diverse kinds of

Fig. 2. The lattice representing the author-publication relation of the coauthors of
Jürgen Branke
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constructors for common types of views to be displayed: relation, joins, sub-
sumption hierarchies, etc.

In order to use a constructor, the parameters of the function need to be
set. For example, the CoRelation constructor CoR takes two parameters: a set
query qi (in L1) and a relation query qr (in L2). The evaluation of CoR returns
a context index (i.e. a triple of queries)

CoR(qi, qr) := (∃Iqr(qi), ∃Iq
−1
r (∃Iqr(qi)), qr).

This constructor has been used at the end of Section 3.3 for the second
context index. The realised context of this context index represents the author-
publication relation of the coauthors of Jürgen Branke and Figure 2 shows the
corresponding lattice. In order to create the context index, the user only needs
to set the parameters of the CoRelation constructor. In that special case, these
parameters are: the instance parameter {Jürgen Branke} and the relation pa-
rameter author−1.

In the following section, we investigate three different means of presenting
the content of a realised context to a user.

4 Evaluation

We now present the results of our evaluation which compared the efficiency of user
performance when answering certain type of question on three different paradigms.
The rationale behind this is to find criterias as to which view paradigm is the most
suitable for certain types of questions. Before describing the evaluation’s method-
ology and results, we briefly describe the visualisation paradigms.

4.1 Visualisation Paradigms

Our evaluation used three kinds of visualisation paradigms. We introduce them
briefly. During the evaluation, the three visualisation paradigms displayed the
realised context of the context index corresponding to the question.

Lattice View: The lattice view shows the Hasse diagram of a certain context
index. Diverse types of interaction are possible. A user can select objects of a
node using the double middle click. He can also move nodes and label or display
the objects and/or attributes10 in a specific panel. Figure 2 shows the appearance
of the lattice view.
Tree View: The tree view of the questions used in the experiment of Section
4 displays the binary relation of the realised context index. In the case of a
normal11 context index, the tree has only a height of 212. Figure 3 shows the
appearance of the tree view when answering a training question.

10 [7] presented the diverse selection and interaction modes for the lattice.
11 For a subsumption and subsumption-instance context index, it corresponds more to

the usual tree view of the subsumption hierarchies.
12 The root node does not carry any information and is therefore hidden.
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Fig. 3. The tree view of the content of a realised context used in the experiment

Graph View: The graph view shows the relations between instances. It has
been adapted from the visualisation used in the OIModeller as part the KAON
project13. For the purpose of the evaluation, we adapted it in the following way:
attributes of the realised context are marked in different colours. Figure 4 shows
the graph for one of the realised contexts used in the experiment. The graph
view offered the possibility to hide nodes or to pin them, that is they do not
move with the other elements when these are moved.

Fig. 4. The graph view of one of the realised context used as training in the experiment

4.2 Evaluation Methodology

The methodology we used for our experiment consists in a comparion of the
performance of our test persons on the task of answering certain questions using
the lattice against using one of the other paradigms. Due to the small amount of
13 See http://sf.net/projects/kaon .
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data, we used the T-test distribution (see [2]) to determine the significance of the
difference in testers’ performance when using the lattice against using one of the
two other paradigms. For each of these tests, we formulate the null-hypothesis as:

The time need by users to answer the given question does not differ in a
significant manner between the two paradigms (i.e, lattice and tree or lattice

and graphs).

We compare the average time in seconds needed by the diverse views to answer
the questions.

The number of users had been chosen in order to ensure the statistical rel-
evance of the test. A group of eighteen testers were chosen. Each tester was
asked seven questions: Four training questions and three evaluation questions.
Of the four training questions, three were presented to the user as lattice view
and the last one as graph view. The idea behind this was to allow the user to
familiarise themselves with the diverse paradigms. No training was used for the
tree view, because it was assumed that users were already acquainted with the
paradigm. This small training was introduced in the evaluation after we found
out in a preliminary evalution that users without training had difficulties with
the lattice paradigm and usually performed much better with the tree view.

Each tester was asked the three evaluation questions in a different paradigm.
For each question and each paradigm, six testers were presented that question
with that paradigm. For example, to person1 first the lattice view was presented,
then the tree view and finally the graph view. Five other testers were presented
this combination.

The test individuals were all academic people, who had already heard of
Formal Concept Analysis, but were not used to reading concept lattices. A very
short crash course in reading concept lattices was given to them.

We now give the original wording of the three questions used in the evaluation
as well as the corresponding context indices:

– Question 1. The panel above displays the relation between the projects and
research groups of the Institute.
Task: Please select the projects carried out by the two groups ”Efficient
Algorithms” and ”Knowledge Management” at the same time.
Context Index: (∃I isCarriedOutBy(research group), research group,

isCarriedOutBy−1)
– Question 2. This panels shows the persons working on the text mining field

at the institute as well as their publications.
Task: Please select the publications of the author who did not share any
publication with any other of this group of authors.
Context Index: (∃Iauthor(∃I isWorkedOn−1({text-mining})),

∃I isWorkedOn−1 ({text mining}), author)
– Question 3. The panel above displays the distribution of the publications

of the SEKT project among the members of the Knowledge Management
group.
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Task: Select all the publications where at least two of the following persons
are authors:
• Arthur Judson Brown
• Roger Wilson
• Arthur Lehning

Context Index: (∃IprojectInfo({SEKT}),∃ImemberOf(Chair3),author)

All the three evaluation questions required the user to select some objects of the
context.

4.3 Evaluation Conclusions

Diverse conclusions could be drawn from this evaluation. First, as shown in
Table 2, the users performed in average quicker with the lattice paradigm than
with the other paradigms. We computed the t-value for each question, and de-
termined the corresponding significance level α of the Null hypothesis. The cor-
responding results are found in Table 3. The low significance level (inferior to
0.10) for all tests shows that the differences in the time needed to answer the
questions are unlikely to be due to chance.

Moreover, this performance also proves that the training restricted to four
preliminary questions is enough for user to perform the tasks. Observe that
without the training phases, users tended to be slower than the tree view.

Table 2. Time in s needed for the three evaluation questions in the three paradigms

Another important result is that there were more errors using the two other
paradigms. This is mainly due to the cumbersome nature of the chosen tasks
for the tree and graph paradigms. For all questions, the amount of interaction
needed to answer the question with the lattice view was much smaller than with
the other paradigms. The evaluation confirms the intuition that users should
perform better with the lattice paradigm if the number of elements to select is
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Table 3. T-values and significance levels of each of the lattice-tree and lattice-graph
comparisons

Question Tree Graph
Question 1 3.94 (α = 0.05) 3.69 (α = 0.05)
Question 2 1.99 (α = 0.10) 2.29 (α = 0.05)
Question 3 1.86 (α = 0.10) 2.27 (α = 0.05)

large or the number of elements which have to be examined for a given selection
is large.

Note that for the diverse tasks to be performed, the performance of the
selection using the lattice could have been greatly improved if an additive high-
lighting mechanism had been available. Therefore, there seems to be still room
for improvement. Finally, it should be made clear that the questions asked are
not representative of all the possible tasks occuring when visualising a view.
However, for these kinds of tasks, the lattice approach is more advantageous.

5 Conclusion

In this article, we discussed the benefits of the Query-Based Multicontext ap-
proach to knowledge browsing. In Section 2, we first discussed the added value
of the approach compared to other Formal Concept Analysis based knowledge
browsing solutions. Then we presented a comparison of the visualisation of re-
alised contexts for diverse paradigms. The evaluation has shown that novice
users could answer questions using the lattice paradigm more quickly than with
the other paradigms, as long as they had been given some preliminary training
in Formal Concept Analysis. However, our experiment remained quite limited,
and supplementary tests should be performed.
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Abstract. This paper focuses on two aspects of access control: graphi-
cal representation and reasoning. Access control policies describe which
permissions are granted to users w.r.t. some resources. The Role-Based
Access Control model introduces the concept of role to organize users’
permissions. Currently, there is a need for tools allowing security offi-
cers to graphically describe and reason on role-based policies. Thanks to
conceptual graphs we can provide a consistent graphical formalism for
Role-Based Access Control policies, which is able to deal with specific
features of this access control model such as role hierarchy and con-
straints. Moreover, once a policy is modeled by CGs, graph rules and
inference procedures can be used to reason on it; This allows security
officers to understand why some permissions are granted or not and to
detect whether security constraints are violated.

1 Introduction

Opening our information systems to the world-wide web is really seducing, but
highlights a problem which becomes more and more crucial: security. Nowadays,
every on-line computer must be equipped with security update agent, firewall,
anti-virus software and even anti-spyware, otherwise within a few minutes infor-
mation system can become the target of automated scanning scripts, hackers,
malicious websites, etc.: security is now of main importance. In this paper, we
are dealing with a particular aspect of security process: access control.

1.1 Reasoning on Access Control Policies

Access control denotes the fact of determining whether a user (process, com-
puter, human user, etc.) is able to perform an operation (read, write, execute,
delete, etc.) on an resource (a tuple in a database, a table, an object, a file, etc.).
An operation right on a resource is called permission. Access control policies de-
fine the users permissions in order to enforce security of an organization.

As a matter of fact, a large part of flaws in information systems are due
to administration mistakes or security misconceptions. The number of users is
increasing, and rules become more complex. Moreover, in order to deal with
border-line cases and organizational peculiarities, security constraints have been

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 427–440, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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introduced. Security constraints define states in which policies are inconsistent.
As policy engineering is considered to be of high pratical importance [3], there
is a need for tools facilitating design and maintenance of security policies, which
can be a though job with large constrained policies. According to [4], we do think
that such tools cannot be designed without a proper formal framework. Policy
engineering tools need to meet several requirements:

– have an appropriate graphical interface,
– be able to capture access control model mechanisms and constrained policies,
– be able to check consistency of policies,
– be able to answer queries for particular permissions or relation holdings in

the policies,
– have comprehensible inference mechanism, even by non-logicians.

1.2 Why Conceptual Graphs?

Rather than tailoring a dedicated fragment of first-order logic [9](FOL) or using
a pure logic-based approach [4,3] with traditional resolution methods (such as
Robinson principle), we focused on Conceptual Graphs (CGs) and their dedi-
cated inference procedures. CGs has been proposed as a mathematically well
founded knowledge and reasoning model [15,6,1]. The CGs framework meets the
requirements described in section 1.1:

– CGs is a formal system (the function Φ gives a straight equivalence in
FOL [17]),

– the CGs support can model complex structures such as hierarchies,
– individual markers and graph rules are expressive enough to capture autho-

rization mechanisms of access control models,
– chaining procedures [12] allow direct graphical-based inferences on graphs.

The following section presents fundamentals on CGs and Role-Based Access
Control policies. Section 3 presents how to use the CGs framework to capture
RBAC concepts, relations, constraints and authorization mechanisms. Last sec-
tion survey related work and presents some perspectives.

2 Fundamentals

2.1 Role Based-Access Control Policies

The Role-Based Access Control (RBAC) model is an access control model in
which permissions are associated with roles (roles can be seen as collections of
permissions), and users are made members of appropriate roles. The definition of
a role is quoted from [13]: “A role is a job function or job title within the organi-
zation with some associated semantics regarding the authority and responsibility
conferred on a member of the role”.

Figure 1 is the common representation of the RBAC model. In this figure,
“URA” is a short for “User-Role Assignment” and “PRA” for “Permission-Role
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Fig. 1. RBAC Model from [13]

Assignment”. In the RBAC model, permissions are not directly assigned to users.
Thus, a user is authorized to perform an operation on a resource only if he/she
endorses a role which is granted this permission (possibly through inheritance).
This authorization principle is referred to as the core rule of RBAC. The role
hierarchy is a way of minimizing the number of roles in RBAC policies: a role
specializing another one inherits all its permissions.

As the major part of access control decisions is based on user functions or
jobs, the introduction of roles greatly simplifies policies management. Since roles
in an organization are usually stable with respect to users turnover and tasks
reassignment, RBAC provides a powerful mechanism for reducing complexity
and cost of security management [4]. RBAC was found to be among the most
attractive solutions for providing access control in e-commerce, e-government or
e-health, and is also a very active research field [8].

However, organizations may involve thousands of roles and administration of
RBAC policies can still be complex. Graphical based modeling and reasoning is
a step beyond easy-to-use policy administration interfaces and better compre-
hension of policies.

2.2 Representation and Reasoning with Conceptual Graphs

The following definitions are quoted from [12,1].
We call a support the structure that represents the ontological knowledge

for a specific domain application. The support is composed of a concept type
lattice, a relation type set, a set of invidual markers and a mapping from marker
to concept type. A simple graph G defined over a support S is a finite non
oriented bipartite graph of concepts and relations, not necessarily connected.

A rule R: G1 ⇒ G2 is composed of two simple CGs G1 and G2, respectively
called hypothesis and conclusion. There may be co-reference links between con-
cepts of G1 and G2, which can be set only between vertices having the same
type. A rule express knowledge of form “If G1 is present, then G2 can be added
to the knowledge base”. In this paper we do not use the colored graph represen-
tation of rules (one color for the hypothesis and another one for the conclusion)
but the arrowed representation. A knowledge base is composed of a set of simple
CGs defined over a support S (facts) and a set of rules.
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The deduction problem asks whether there is a sequence of rules applications
enriching the knowledge base such that a goal Q can be reached. Two reasoning
strategies has been developed for this problem: forward and backward chaining
of graph rules.

Forward chaining is typically used in order to enrich knowledge base with
new facts, implicitly present in the base [12]. It is used to prove a goal graph
Ggoal is implied by a knowledge base KB. Main idea is to calculate the closure
of the set of facts of KB by the set of rules of KB to infer all the deductible
knowledge. Basic outline of procedure is:

– choose a rule R from KB,
– let be G a fact from KB. If G fulfils the hypothesis of R, then the conclusion

of R can be added to KB, if it is not already present (to avoid redundant
information),

– repeat until no new facts can be produced,
– if there exists a projection from Ggoal to facts from KB, then Ggoal is implied

by the knowledge base.

This knowledge addition principle is the graph dual of bottom-up resolution
approach in first-order logic. This procedure is not goal-directed, thus generates
information that may not be useful. This procedure is sound and complete if
Ggoal and KB are in normal form and is semi-decidable: all positive answers
can be computed in finite time, but not for all negative answers.

Backward chaining is typically used to find a linear resolution of a goal (a
request). Whereas forward chaining acts from facts to goal, backward chaining is
top-down: from conclusion to hypothesis. The goal G and a rule R from KB are
analyzed in order to detect if R may have produced G. If an unification is found,
the procedure constructs a new goal G′. If the new goal is deductible from KB,
then G is deductible too. This basic operation is called piece unification [12].
The basic outline of this procedure is:

– set Ggoal as the current goal G (initialization step),
– choose a rule R from KB such as its conclusion is piece unifiable with G,
– remove the unified conclusion of R from G,
– add the specialized rule hypothesis of R to produce a new subgoal G′,
– repeat until the empty subgoal is obtained.

The philosophy of this procedure is close to the classical SLD-resolution (Se-
lected, Linear, Definite), though it is more complex. Like the forward chaining,
this procedure is sound and complete and semi-decidable.

3 Conceptual Graphs for Graphical Representation and
Inference on Role-Based Policies

In section 2, we described the RBAC model and we outlined two inference pro-
cedures. In this section we present how a knowledge base can model a RBAC
policy.
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3.1 Modeling Basic Concepts of RBAC

The core elements of RBAC models are described in figure 1. For sake of read-
ability, we do not include sessions (which lead to more complex authorization
rules) in this paper. Sessions express which roles are currently endorsed by users.
According to [2], it is possible to model sessions by adding a new relation between
users and roles.

The support must include the following concepts and relations:

– Role concept type,
– Resource concept type,
– Operation concept type,
– User concept type,
– ura of arity 2 (User,Role) relation type,
– pra of arity 3 (Role,Operation,Resource) relation type.

Once the RBAC model is translated into a conceptual graph support, we need
to add the different roles, users, operations and resources involved in the policy:

– for each resource within the policy, add a conformity relation resource id :
Resource,

– for each role within the policy, add a conformity relation role id : Role,
– for each operation within the policy, add a conformity relation operation id :

Operation,
– for each user within the policy, add a conformity relation user id : User.

Once the basic concepts and relations are created, the next step towards a
complete modeling of the RBAC model (figure 1) is to translate user-role and

Fig. 2. A graph of user-role and role-permission assignments
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permission-role assignment. The assignments are translated into the knowledge
base by a set of simples CGs, called facts. The facts describe which roles are
granted to users, and which operations are granted to roles. The figure 2 is an
example of these assignments. In this graph, the user Bob is made member of
roles Student and PhdStudent (multiple user-role assignment), the user Charly
is made member of the role Lecturer, and the user Alice is made member of the
role PostPhD. The role Teacher is granted Write access on resource Test and
the role Student is granted Execute access on resource Test.

Thus, we need to add some facts to the knowledge base:

– for each permission-role assignment in the policy, add to the knowledge base
a pra relation between the role, the operation and the resource,

– for each user-role assignment in the policy, add to the knowledge base a ura
relation between the user and his/her roles.

3.2 Modeling Role Hierarchy

Figure 3 is a sample role hierarchy. For example, a user assigned to a role Se-
niorLecturer will be granted every permissions granted to role Lecturer, Teacher
and Researcher. Graph rules are used to represent the inheritance relation prop-
erties. Direct inheritance (e.g. Lecturer directly inherits permissions from both
Teacher and Researcher roles) is modeled by an annex relation seniorDirect.
The complete inheritance relation is modeled with the senior relation (reflexive
and transitive closure of the seniorDirect relation).

To model the RBAC inheritance in conceptual graphs, we need to:

– add the relation type seniorDirect of arity 2 (Role,Role) to the support,
– add the relation type senior of arity 2 (Role,Role),
– add an order relation seniorDirect ≤ senior,
– add a graph rule (figure 4) settling that the inheritance relation is reflexive,
– add a graph rule (figure 5) settling that the inheritance relation is transitive,
– add direct inheritance relations between roles to the knowledge base (e.g. to

model edges from the figure 3).

Fig. 3. A sample role hierarchy, arrow is from least to most privileged role
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Fig. 4. A role inherits itself

Fig. 5. Role inheritance is transitive

3.3 Modeling Authorization Decision Mechanism and RBAC
Constraints

The last step for modeling RBAC policies is to create a rule in the knowledge
base for authorization decision. A relation permitted of arity 3 (User, Operation,
Resource) is added to the support. The graph rule given in figure 6 expresses
how users are granted access on resources. This graph rule can be referred to as
the core rule of the RBAC model (section 2.1).

In the RBAC model, constraints have been introduced to reflect peculiarities
of organizations [8]. Examples of such constraints are mutually exclusive roles
(e.g. no user can be assigned both Student and Lecturer), mutually exclusive
operations (e.g. figure 7) or prerequisites (e.g. if a user is granted Write access on
a resource, he must be granted Read access too). Other organizational constraints
can be expressed with CGs. For example, we can add a rule stating that a
Root role inherits all other ones. We have chosen to model these constraints by
graph rules producing an Inconsistency concept. Thus, checking the policy is
consistent is to infer if an Inconsistency can be produced through chaining of
graph rules. We do not use the notion of constraints from [1] because they implies
definition of multiple constraints when only one rule may be sufficient (e.g. for
symmetric organizational constraints). For example, to capture that “Execute
and Write are mutually exclusive operations on resource Test” (figure 7), we
must set two constraints: “if a user is granted Execute operation then he cannot
be granted Write operation” and “if a user is granted Write operation then he
cannot be granted Execute operation”.
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Fig. 6. The authorization decision rule

Fig. 7. No user can be permitted both Execute and Write operations on Test

3.4 Reasoning on Policies

The knowledge base includes:

– the set of RBAC concepts,
– the set of RBAC relations, used to model hierarchy, assignments and autho-

rizations,
– the set of rules, modeling properties of role inheritance, authorization core

rule and constraints,
– the set of facts, modeling the users, roles, operations, resources and inheri-

tance relations present in the policy.

Given a query, graph rules inferences allow Security Officers (SOs):

– to know granted permissions,
– to query the policy on more complex statements (e.g. figure 8),
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Fig. 8. A sample query

– to find inconsistencies,
– to graphically follow the authorization mechanism,
– to check if settling new assignments or organizational constraints do not

introduce inconsistencies.

Let us consider a SO working on the university toy RBAC policy. Role hierarchy
is described in figure 3, facts are pictured in figure 2, rules governing role inheri-
tance and authorization mechanism are included in the knowledge base too. Let
us suppose the SO is defining a constraint on the RBAC policy, to fit as best
as possible the policy to his organization. In order to avoid any student from
enter his/her own mark on a test, the SO adds the exclusion rule “no user can
be both granted Execute and Write access on Test” (figure 7). He then runs an
inference procedure on his policy to know if this new constraints produces an
inconsistency . . . And it does!

Following the steps of the inference, the SO is able (without specific require-
ments on resolution principle) to understand why this constraint can not be
added to the policy. We illustrate here the backward chaining inference proce-
dure, which starts with a graph goal modeling the inconsistency. The procedure
is outlined as follows (the complete illustration can be found in annex):

– there is an inconsistency if a user is both granted Execute and Write access
on tests (step 1 to 2),

– a user is granted access through his/her roles (step 2 to 4),
– role Student is Execute granted access on Test (step 4 to 5)
– role Teacher is Write granted access on Test (step 4 to 5),
– a role inherits permissions of its ancestors,
– role PostPhD inherits from both roles Student and Teacher (step 5 to 9),
– Alice is granted role PostPhD (step 9 to 11),
– thus, as the empty subgoal is obtained, the policy is not consistent according

to the new constraint.

This example points out how an adequate graphical tool for RBAC policy can
be useful for modeling purposes. Without such an inference tool, an SO can
happen to add some constraints which can be violated but not detected, until
he receives a complain from PostPhD users who may not login in the system
anymore. We have validated our approach with the CoGITaNT toolkit [7]: We
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have implemented the RBAC policy presented in this paper and we have used
forward chaining to check for inconsistencies (using the closure operator from
the toolkit to implement the proof procedure). Unfortunately, we were not able
to validate our approach on a large real policy because most of organizations do
not provide such sensitive information.

4 Discussion

In this paper, we have shown how to use the CGs framework to design and infer
on RBAC policies. Such inferences can be used to check policies consistency
and to answer queries in order to formally test or debug policies. CGs have an
appropriate graphical interface useful for specifying policies and especially for
explaining inferences to security engineers.

4.1 Graphical Representation of Role-Based Access Control Policies

In [11], the authors point out that in order to avoid inconsistencies, it is appro-
priate to have a precise modeling of access control rules (their work is based on
RBAC examples), and a visual modeling to make administration tasks easier.

Their paper compare readability and checking ability of three approaches.
The first approach is based on UML. The second model studied is Alloy: a
structural modeling language based on first-order logic, for expressing complex
structural constraints and behaviour. Finally, the third model is Graph Trans-
formations. It is a graph model where transformation rules, which are rewriting
rules, are used to deduce all possible knowledge.

When a new constraint (e.g. mutually exclusive roles) is added to a given
policy, these models can verify if the resulting policy is inconsistent, and give
a counterexample. Nevertheless, the paper mainly focused on constraints: those
tools do not answer questions such as which roles are allowed to execute this
operation on this object, or other more complex queries. Indeed, UML is only
a semi-formal model, Allow Constraint Analyzer is a consistency checker, and
Graph Transformations do not have FOL logical semantics.

In [16], the authorization schema is described using Dynamically Types Ac-
cess Control (DTAC) graphical formalism. The authors aim at graphically rep-
resent RBAC schemas. However they do not propose an inference method in
order to ask queries or to check for inconsistencies.

4.2 Reasoning on Role-Based Access Control Policies

In [2], constraint logic programming (first order predicate calculus + constraints,
e.g. Prolog + CLP library) is used to express and infer on RBAC policy. The
authors describe access control programs able to deal with roles hierarchy and
objects hierarchy.

The authors of [9] describe a fragment of FOL which is tractable and suffi-
ciently expressive to capture policies for many applications. This work is really
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interesting and points out tractability and complexity results on their logic. Un-
fortunately, the authors did not investigate deeply some emerging problems when
dealing with complex access control models involving abstract container between
users and permissions (e.g.: groups, roles, tasks, etc.) and their hierarchies.

We do agree with the authors statement about the use of logic program-
ming by non-logicians, but we do not agree that a “filling the blank on English
sentences” interface is sufficient for security administrators. We think that ad-
ministrators must have a computer-aided software engineering (CASE) interface
to design and check policies built on a consistent graphical model. Moreover such
CASE should provide a comprehensible reasoning trace, which can be provided
through graph operations (e.g. projection of a query onto the set of facts)

4.3 Modeling Extensions of RBAC Models

For sake of clarity the example exposed in this paper does not include sessions.
We are investigating the interest of chase procedure to check RBAC policies
involving sessions. For example, using chase procedure we might answer queries
like “Are the policies consistent for all possible sessions ?”. Moreover, incor-
porating the model for administration of roles exposed in [14] is promising for
distributed policies verification purpose.

The RBAC family includes some extensions, for example GTRBAC [10]
which provide a temporal framework for specifying an extensive set of tempo-
ral constraints. Such extensions cannot be taken in considerations in the present
CGs model. Indeed, it may require the expression of built-in (i.e. whose semantics
is hard-coded) concepts and relations such as linear arithmetic constraints, set
constraints, etc. Therefore we plan to study the extension of the CGs graphical
formalism and inferences to arbitrary built-in elements.

4.4 Modeling Role Hierarchy Using Concept Lattice

One could notice that the conceptual graphs concept lattice might be useful to
model the RBAC role hierarchy. While it is indeed well suited for role hierarchy
modeling, some problems arise when it comes to describing relations between
roles, resources and users. For example, a graph rule is not well-suited for mod-
eling the fact that if a user is assigned two different roles, then an inconsistency
holds. Indeed, it may require a coreference link between two generic markers
within the same hypothesis, which adds additional graphical elements. We think
is it not desirable, however it is still possible.
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Annex: A Graphical Backward Reasoning

We here show the backward inference steps of section 3.4. The dotted lines show
the pieces which are removed in every step by application of backward chaining.
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Abstract. The influence of Part-Whole relationship (partof) on ontol-
ogy languages is weak because the special semantics of partof is missed
in both representations and interpretations. In this paper, we first ex-
emplify the complexity and limitation of using partof for representing
wholes. We then investigate the special semantics of partof by analyz-
ing the properties of parts and wholes. The conclusion is that a part
should be regarded as something internal to certain whole and a whole is
a structured thing which is comprised of some internal things. The spe-
cial semantics are achieved by introducing some new constructs which
are whole structure, part type, role type, Ontology, defined-in relation and
play relation. Because the whole structure possesses inherent modularity
and local semantics, the representation is very natural and simple. We
show the generality and applicability of the presented approach in terms
of the problems pointed out in the paper.

1 Introduction

Ontology is a conceptualization of a domain and plays a crucial role in many
communities. Typically, ontology consists of entities, attributes, relationships
and axioms [6]. Ontology languages are, different from logic languages, generally
based on the understanding of the world and provide intuitive syntax and con-
structs. Without exceptions, all ontology languages provide the is-a relationship
by which a domain can be organized based on hierarchical structures.

Another relationship that has received considerable attention is part-whole re-
lationship (partof) [1,3,7,4,10,12,17]. Psychological experiments [17] have shown
that parts play an important role in the thought process of human and some
researchers supposed that partof should be given the “first class” dignity [1].
However, so far it ranks far behind the concept of is-a [10]. The use of partof
can not make knowledge representation evidently intuitive and simple.

As an ubiquitous phenomena in real world, part-whole relations have not been
abstracted in the powerful constructs in ontology and conceptual languages. One
of the reasons is that traditional languages are short of an important construct
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to embody the special semantics of part-whole relation. We consider this con-
struct is corresponding to the so called Thirdness in the trichotomy principle of
Peirce (see 4.1). In conceptual graphs (CGs), the construct context is provided for
representing Thirds as noted by Sowa [14]. In another notable language UML2.0
[11], a similar construct called composite structure is newly introduced. However,
these constructs are both from syntax but not semantics.

In this paper, we first exemplify the complexity and limitation of using partof
for representing wholes. Then the special semantics of part-whole relation is
investigated by analyzing the interpretations and the properties of parts and
wholes. The important finding is that a part should be regarded as something
internal to certain whole and a whole is a structured thing which is comprised of
some internal things. To achieve this, we shift the emphasis to the structure of
whole. The special semantics of part-whole relation is embodied by introducing
some new constructs: whole structure, part type, role type, Ontology, defined-
in relation and play relation. The result is a novel language by extending the
traditional ones with these constructs. In this language, the structure of whole
possesses inherent modularity and local semantics, whereby the representation is
natural and simple. We show the generality and applicability of the introduced
approach in terms of the problems pointed out in the paper.

2 Definitions and Terms

There are some characteristics [3,7] related to partof relations. We only introduce
some relatively important ones used in this paper.

The first one is transitivity. In the formal theory mereology, partof is defined
as a partial ordering relation; proper partof is defined as a strict ordering rela-
tion. However, it is well known that the transitivity does not always hold [17].
The other definitions and terms used in this paper are shareability, existential
dependence, essential dependence, configuration and role.

Definition 1 (Shareability). Shareability is a property of partof relation and
denotes the ability of the part belonging to two or more wholes between which
there are no partof relations at the same time. The parts possessing the ability
are called shareable parts (Spart), else exclusive parts (Epart).

Definition 2 (Existential dependence [13]). Let P and Q be object types.
P is existence dependent on Q if and only if the life of each occurrence p of type
P is embedded in the life of one particular and always the same occurrence q of
type Q. p is called the dependent object, and is existence dependent on q. The
parts possessing the property of P are called existential dependence parts (Dpart)

Definition 3 (Essential dependence). Let P and Q be object types. P is
essentially dependent on Q if, in order the occurrence p of type P to exist, an
occurrence q of type Q has to exist.

Definition 4 (Configuration, Integrity constraints). Configuration is some
constraints among the parts of a whole for characterizing its integrity.
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Another related notion is role. The nature of roles and the way of representing
them have been discussed for a long time in different fields. In the field of knowl-
edge representation, Sowa distinguished between natural types “that relate to the
essence of the entities” and role types “that depend on an accidental relationship
to some other entity” [14]. Developing Sowa’s ideas further, Guarino[5] presented
an ontological distinction between role and natural types: a role type must be an
anti-rigid concept whose instances can enter and leave the extent of the concept
without losing their identity; a natural type is a rigid concept whose instances
cannot drop this type without losing its identity. As noted by Loebe [8], most ap-
proaches consider roles as determined by some external entities. Loebe tries to
characterize different approaches on the basis of the ontological nature of the con-
texts that determine roles, and he individuates and analyzes in detail three kinds
of role: relational roles, processual roles, and social roles. In [9], Masolo et al. es-
tablish a formal framework for representing social roles based on definitional de-
pendence. The definition of definitional dependence can be formulated as follows:
“a property is definitionally dependent on a property if, necessarily, any definition
of ineliminably involves”. There are some other characteristics of roles discussed
in other literature. In [16], Steimann individuates 15 fundamental characteristics
of roles at both the class and the instance levels. These characteristics can be used
to evaluate a role model. For a detailed discussion of various approaches the reader
is referred to [15,8,9,16]. Summing up, roles are commonly regarded as external
things to context, and roles are dependent on context and their players.

3 Motivation

In this section, we point out some problems on the representation of parts and
wholes. They are our motivation to focus on the structure of whole.

3.1 Some Problems on the Representation of Parts and Wholes

Problems on Representing Shareable Parts. We show that it is not ade-
quate to express some facts with partof relation only. For example, the Father
and Child in a family are disjoint. It perhaps be wrongly expressed as formula (1).

Family(x) ∧ P (y, x) ∧ P (z, x) ∧ Father(y) ∧ Child(z)→ y �= z (1)

In this formula, P is the abbreviation for partof. Substituting b for x, a for y and
z, we have the inference:

Family(b) ∧ P (a, b) ∧ P (a, b) ∧ Father(a) ∧ Child(a)→ a �= a.

The premise is satisfiable because a person a can be both the father of family
b and the child of another family. Formula (1) is wrong because partof relation
cannot fix the roles played by a part. In fact, the meaning of (1) is that every
person cannot be both a father and a child.

To solve the problem, we can introduce a special relation called partnameof
which is comprised of a part (or role) name and “of”. Intuitively, partnameof
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relation specializes from partof by binding the role played by part. With part-
nameof relations we can correctly express the constraint as:

Family(x) ∧ Fatherof(y, x) ∧ Childof(z, y)→ y �= z.

It seems that there are no general finite classifications of partof relation
because of the necessary of using partnameof relations.

Definitional Dependence between Parts and Wholes. We exemplify defi-
nitional dependence between parts and wholes by the example of car. For simplic-
ity, we regard car as a composite comprised of one engine and four wheels in which
there are two front wheels (FW) and two rear wheels (RW). For some kind of cars
(called Car1), their front wheels are driving wheels (DrW) which connect with
their engines; for some others (called Car2), their rear wheels are driving wheels.

It is impossible to define part concepts without using whole concepts. For
example, we can say little about FW besides being a wheel. To make things
more clear, we give two constraints related to FW and RW expressed in FOL:

FW (x) ∧ P (x, y) ∧Car(y) → DrW (x), RW (x) ∧ P (x, y) ∧ Car(y) → DrW (x).

It is apparent that whether FW or RW is DrW is dependent on Car1 and
Car2. So the definitions of part types is not fixed. The problem pointed out
above also holds for sharable parts. For example, the definitions of student in
different universities are different from each other.

Exclusiveness and Sharability. Another general property related to Dpart
and Epart is that any instance of them belongs to just one whole without con-
sidering transitivity. Because different types of wholes can own the same type of
parts, it is difficult to express this kind of constraints: for instance, to express
that an engine can be part of just one instance of Car, Truck, Cropper, and
others, we have to enumerate all of them. Note that this constraint is dependent
on whic concepts are defined in the knowledge base.

A Spart can belong to more than one whole. However, this view will lead to
some difficulties. For example, if a person works for several companies simulta-
neously, he has several ID and Salary attributes; we cannot use a person instance
to collect all these attributes due to property conflicts.

Complexity of Representing Integrity Constraints. When defining a
whole concept, we should not only specify which parts its instance should con-
tain, but also specify the configuration among parts to characterize its integrity.
These integrity constraints are often expressed in lengthy formulae. For example,
the configuration between Engine and Driving Wheel is partially expressed as:

DrW (x) ∧ P (x, y) ∧ Car(y) → ∃z(Eng(z) ∧ P (z, y) ∧ Car(y) ∧ Connect(x, z)).

In this formula, we must use Car(y), P (x, y), and P (z, y) to bind DrW(x) and
Eng(z) in order to ensure that this constraint can be applied only to a car and
its parts. The complexity mainly results from integrity constraints.
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Fig. 1. Representing whole with CGs

3.2 Representing Wholes with CGs

“Conceptual Graphs (CGs) are an extension of C. S. Peirce’s existential graphs
with features adopted from linguistics and AI” [15]. In a conceptual graph, the
boxes are called concepts, and the circles are called conceptual relations. On the
left of each concept box is a type field, which contains a type label. On the right
is a referent field, which may contain a name, a quantifier like ∀ , or a plural
specification {*} which may be followed by a qualifier to indicate the count of
elements in the set (we write number in brackets for simplicity). If no other
quantifier is specified, the default quantifier for the variable is the existential ∃.

An outstanding capability of CGs is that it can represent logical formulae
in a more natural, simple, and readable way: i) they eliminate variables used
in logic formulae; ii) they can remarkably simplify the representation, especially
when using context; iii) they can be automatically translated into first order logic
(FOL). The simplicity mainly results from the construct context. For example,
the configuration between driving wheels and engine mentioned in the previous
section is dramatically simplified as the right graph shown in Fig. 1.

However, there are still three questions related to context unclear: i) what
context is used to represent; ii) when the context should be used; and iii) how
the context is used. In CGs, the usage of context is dependent on the things
expressed. For example, if we do not need to express the integrity constraint
mentioned above, we can represent Car as the left graph shown in Fig. 1; or
else we have to use context construct because the constraint cannot be correctly
expressed without context in CGs. Another problem is that the simplicity is lost
when CGs are translated into FOL.

4 Understanding Wholes and Parts

4.1 The Principle of Peirce

The underlying categories we adopt are based on Peirce’s trichotomy principle
which is used by Sowa in [15]. The principle can be summarized with three basic
categories called Firstness, Secondness, and Thirdness: “First is the conception
of being or existing independent of anything else. Second is the conception of
being relative to, the conception of reaction with, something else. Third is the
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conception of mediation, whereby a first and a second are brought into rela-
tion” [15]. As noted by Sowa, “Peirce’s principle is a metalevel distinction for
generating new categories by viewing entities from different perspectives”.

The terms used in this paper are based on the principle of Peirce. We use
object type (Class) to denote Firstness, and role type (Role) Secondness. It should
be noted that object type and role type are both pure types: an object type is
defined by only its inherent qualities, and an object can independently exist
without other things; a role type is defined by only extrinsic qualities, and a role
instance is existentially dependent on its player and context. From class and role
we derive another important type called part type (Part) which is a hybrid from
object type and role type. A part type, for instance, RearWheel is defined by
not only inherent qualities but also extrinsic properties.

Thirdness is often denoted with context although what exactly is a con-
text still remains to be clarified. Because the ontological natural of different
context is quite heterogeneous, the classification of context is necessary. In this
paper, we use three kinds of contexts called relation, collaboration and composite
object type which are roughly corresponding to the context of three kinds of roles
presented by Loebe respectively, i.e., relational roles, processual roles, and social
roles [8].

4.2 Are Parts Internal or External to Wholes?

A fundamental question worth more attention is whether parts are internal or
external to wholes. It is widely acknowledged that Dpart, Epart and Features
are internal to their owner. However, this property is not directly entailed and
embodied by traditional representation and interpretations.

The difference between “externalness” and “internalness” is illustrated in
Fig. 2: the cup c is external to the table t and vice versa; the wheel w1, w2, and
body b are internal to the car c2. However, this difference cannot be directly
embodied by the interpretations in FOL. For instance, the interpretations of the
example in Fig. 2 are: ,I ={ Cup: c; Table: t; Car: c1; Wheel: w1, w2, w3, w4;
Body: b}; on(c, t), partof(w1, c1), partof(w2, c1), partof(w3, c1), partof(w4, c1),
partof(b, c1). Because partof relation has no special status in set theory, the
meaning of “externalness” is missed. In fact, every individual in the domain can
be regarded as an external thing to the others. This kind of interpretations is
not natural because a whole individual is divided into several individuals. For
example, when we say there is a car, there must be a car, a body and four wheels
in the domain.

Fig. 2. Difference between “externalness” and “internalness”
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It is obvious that the special semantics of partof pertains to the property of
“internalness”. To achieve this semantics, a part should be regarded as something
internal to certain whole and a whole as a structured thing which is comprised
of some internal things. The difference between a structured individual and a
traditional individual is similar to the one between c1 and c2 shown in Fig. 2.

There still remains a question whether roles are internal to wholes. To the
best of our knowledge, all related works on role in knowledge representation
[5,15,9] advocate that roles are external to whole. It should be noticed that all
these works regard role as a hybrid from Firstness and Secondness, and this view
of role is similar to Spart.

In this paper, we regard role type as a pure Secondness and as internal
property of Thirdness. The main reason is that the connection between role and
context is tighter than that one between role and object. For instance, student is
an external property to human because the later can exist without the former.
Furthermore, the definition of student is independent from the one of human.
On the other hand, the definition of student is dependent on and determined by
university. In addition, the definition of university is also dependent on student
because there is no university without students.

Another reason comes from the principle of unification. Our strategy is to
apply the successful principle as long as it provides benefits. By this principle, we
can have a uniform view on parts, roles and wholes. As shown in the remainder
sections, the unification advantages outweigh the loss (if any), whether from a
theoretical or ontological point of view.

4.3 Understanding Wholes

The axiom relating mereology to the theory of dependence asserts that “a whole
is strictly dependent on its parts [12].” Furthermore, a whole exists only if its
parts exist. “It makes sense to say that a whole is nothing over and above its
strict part [4].” In common, a whole is necessarily dependent on its parts.

Intuitively, a whole is comprised of some parts which are interconnected
in term of some integrity constraints. The intuitive understanding of wholes
means that a whole is not a set of parts because of integrity constraints. Just
because of falling short of expressing the integrity constraints of wholes, the
formal theory mereology cannot tell an integral whole from a scattered sum of
disparate entities.

The immediate question is how to represent whole. Because a whole is not
a set, we turn to regard a whole as a structured thing called whole structure.
Whole structure is similar to algebra structures such as Group, Ring and so
on. Typically, a structure is comprised of a set of constituents, some relations
and some axioms among these constituents. Then, the special semantics of partof
relation is implicitly embodied by a whole structure and its constituents. Because
inherent qualities are also “internalness” but not parts, we substitute defined-in
relation for partof relation as shown in Fig. 3.

Whole structure is a construct corresponding to Thirdness. The ontology
natural of whole structure is determined by its type (called whole type) which
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Fig. 3. The metamodel of whole structure

is corresponding to certain kind of Thirds. The metamodel of whole structure is
expressed as a UML class diagram in Fig. 3. Its meaning is that a whole structure
is a namespace (which is a named element also) with some types and can define
some other types and constraints in it: for instance, in the declaration Composite
Class Car {RearWheel}, the Car is a namespace and at the same time the name
of whole structure, the Composite Class is the type of Car, and RearWheel is
defined in the structure of Car.

4.4 Understanding Part

Intuitively, a part must be a constituent of some whole. In other words, parts
are essentially dependent on wholes at least. A Dpart is existentially dependent
on a whole; and all of its external properties are obtained from or by this whole
only. Differing from Dpart, an Epart has the freedom of dropping its Epart
type and becoming an object by departing from a whole, that is, Epart pos-
sesses the property of separability [10]. Being quite different from Dpart and
Epart, a Spart has further freedom of obtaining external properties from other
wholes.

At first glance, all parts should be “internalness” of wholes. To check this
view, we should first consider the properties of “internalness”. Intuitively, the
internalness mean that they are exclusively owned by others. We call this prop-
erty of “internalness” exclusivity. This property is proper to Dpart, Epart and
Features but fails to Spart (hybrid from class and role). Some examples re-
garding Dpart, Epart and Spart are shown in Tab. 1. From these examples, we
can draw a conclusion that only Spart does not satisfy the exclusivity prop-
erty. Another problem is also revealed: the Dpart Brain has no correspond-
ing Firstness concept. We leave this problem aside here and discuss it in
section 5.

Table 1. Some examples on internal parts and external parts

Contex Class/Player Part Inter/Exter
Car Wheel RearWheel Epart, Internal

Company Human Employee Spart, External
Body ? Brain Dpart, Internal
Trade Company Buyer, Seller Spart, External

hasChild Human Mother, Child Spart, External
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Fig. 4. The metamodel of class, role type and part type

To distinguish Spart from the other two, we resort to role type. We separate
the internal properties (i.e. object) of Spart from wholes and leave its external
properties (i.e. role) in wholes. A Spart is denoted by several roles which are
existentially dependent on wholes and are played by the same object outside
these wholes. In another words, we use role type as a substitute for Spart. By
this, any Second is internal to a certain Third.

The metamodel of these types are expressed as a UML class diagram in
Fig. 4. We use defined-in relationship to connect the “internalness” with their
owner. The defined-in relationship is essential for the integrated representation
and will be discussed further in the next section. Note that Feature is widely
acknowledged as “internalness”, and thereby added in Fig. 4. Another important
thing is the difference between Epart and Dpart. As pointed out above, Epart
possesses the property of separability. This property is embodied by the is-a
relation denoted with dashed line1 between Epart and Class.

5 Whole Structure

The previous sections have introduced quite a few concept types and relations.
Here, we mainly focus on the whole structure and defined-in relation.

5.1 The Definition of Whole Structure

Before defining whole structure, we first define a crucial concept called Ontology.

Definition 5 (Ontology). Ontology is a concept type. An instance of Ontology
serves as a root concept in which some other concepts are defined.

Ontology plays a crucial role for representing whole structure (see section 5.2).
The instance of Ontology, for example, O is used as a root to define other con-
cepts. All concepts except O should be defined in some whole structure or O.
All classes defined in O must satisfy the property that their instances can exist
independently. The inference from this is that all features and Seconds must be
defined in whole structure.

Definition 6 (Whole Structure). A whole structure is a description of some
type which is a Third2. A whole structure consists of: {Features, Parts:〈 DParts,
1 The dashed line is-a relation is used because Epart is not Class (pure Firstness).
2 Currently, the types of Thirdness are only relation, collaboration, and composite

class.
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Eparts, Roles 〉, Relations, Axioms:〈HasParts, Dependences, Configuration, Qual-
ifications 〉, Others} where

1. Features are a set of attributes and behaviors. They are optional and are
often needed when the type of whole structure is a composite class.

2. Parts are a set of concept names which is divided into three subsets.
(a) DParts are a set of concept names whose type is Dpart.
(b) EParts are a set of concept names whose type is Epart.
(c) Roles are a set of concept names whose type is role type.

3. Relations are a set of names whose type is relation type. Every relation has
a nonnegative integer n called its valence and n is not less than 2.

4. HasParts is a set of restrictions which describe how many instances of the
concepts of Parts may exist in the whole.

5. Dependences are a set of restrictions which describe the dependence relations
between the properties of the whole and the properties of the parts.

6. Configuration is a set of integrity constraints of the whole.
7. Qualifications are a set of restrictions which specify the concepts outside the

whole from which the concepts of EParts are specialized or by which the
concepts of Roles are played.

The above definition of whole structure is incomplete and extensible. What a
concrete whole structure consists of is determined by its type. Generally speak-
ing, we should elaborate the concrete whole structure for any Thirdness.

There are still some issues things should be noted. Firstly, we regulate that
all concepts and constrains defined in a whole structure are local to this structure
and make sense only in it. By this, whole structure possesses inherent modularity
and local semantics. Secondly, all axioms except the ones in Qualifications can
only use the features, concepts and relations defined in the same whole structure.
Last but not least, we define whole structure without explicitly using defined-in
relation. We can implicitly embody it with the syntax elements brackets (see
section 5.2).

Some Constraints on Whole Structure. In order to give a formal language,
we should first formalize the new constructs introduced in this paper. In this
subsection, we only informally give the constraints with defined-in relation.

The constraints related to whole structure, part type and role type include:

1. If a concept w has a whole structure, then its type is one of composite class,
relation, and collaboration (or other introduced types)

2. If a concept c is defined in concept w, then w has a whole structure.
3. Every concept whose type is part type or role type must be defined in another

concept that is not an instance of Ontology.

The constraints related to generalization include:

1. If there is a generalization relationship between two concepts, then all the
concepts and constrains defined in the super are also defined in subconcept.
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2. If a concept c is both defined in concept w1 and w2, then there is a general-
ization relationship between w1 and w2.

3. If concept c1 which is defined in w1 is a generalization of concept c2 which
is defined in w2, then w1 must be a generalization of w2.

The constraints related to part type or role type include:

1. For the instance x of concept c, if the type of c is part or role, then there is
only one instance y of concept w whose type has a whole structure, satisfying
defined-in(c, w) and partof(x, y).

2. For an object or part instance x of concept c and a role instance y of role
concept r which is defined in w, if play(x, y), then c is defined outside w.

For any concept w, its upper concepts, denoted with Upper(w), is defined as:
Upper(w) .= {c|defined-in ∗ (w, c)} , where defined-in* denotes the transitive
closure of defined-in. The outer concepts of w, denoted with Outer(w), is defined
as: Outer(w) .= {c|defined-in ∗ (c, s)∧ s ∈ Upper(w)}. That c is defined outside
w means that c is an outer concept of w.

5.2 Representation and Interpretations

In this section, we briefly show the applicability of whole structure by some ex-
amples. For clarity, we use curly brackets to denote defined-in relation without
explicitly using it: every concept which occurs in a pair of curly brackets is de-
fined in the direct outer concept which is followed by a colon mark. An Epart
example is shown below.

O: { Class: Wheel, Engine,
Car:{Eparts: PEngine(1, 1), RW (2, 2), FW (2, 2), DrW (2, 2);

Config: DrW (x) → ∃y(PEngine(y) ∧ Connect(x, y)),
DrW (x) → RW (x) ∨ FW (x);

Qualif: PEngine(x)→ O.Engine(x); };
}

In the representation of Car, PEngine(1, 1) means that every car has at least
one and at most one engine as part. The others are similar to this.

In the example, the axiom PEngine(x) → O.Engine(x) ensures that
PEngine is separable from Car. In CGs, the above example can be represented as
shown in Fig. 5. It should be noted that part types must occur in whole types and
partof relations are eliminated. In addition, when translating them into formal
language the structures are preserved and the same as the expressions above.
The instance of Car is similar to CGs as shown in Fig. 5.

From the definition of Car, we can define its subconcept Car1 as: is-a
(Car1, Car) ∧ Car1{Configuration : FW (x) → DrW (x)}, that is, the defi-
nition of Car1 is obtain by adding the above constraint to the one of Car. Simi-
larly, we can define Car2 as: is-a(Car2, Car)∧Car2{Configuration : RW (x) →
DrW (x)}. These two constraints hold in Car1 and Car2 respectively but not in
the both.
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Fig. 5. An example of Epart

Another example is about the Dpart Brain which is defined as:

O : {Class : Body : {Heart, Brain};Heart}.

For Brain, there is no concept C defined in O satisfying that Brain(x) →
O.C(x). This means that Brain is unseparable from Body. These two examples
adequately show the significance of Ontology in the language.

The last example is about the Spart Employee which is defined as:

O: { Class: Person, Man, Woman, Company:
{Sparts: Employee(3, ∗),Manager(1, 1), Secretary(1, 2);
Config: Mng(x) ∨ Sec(x) → Emp(x);
Qualif: Emp(x) → ∃!y(O.Person(y) ∧ play(y, x)),

Mng(x) ∧ Play(y, x) ∧Obj(y)→ ¬play(y, z) ∧ Sec(z); };
Axiom: Person(x) ↔Man(x) ∨Woman(x), Man(x)→ ¬Woman(x);} .

Now, we briefly discuss the interpretations of wholes by the Spart example
shown above. Our main goal is to present appropriate interpretations which
can embody wholes as integrated things. Remind that a whole is comprised
of some internal things, the internal structure of whole is determined by itself.
Furthermore, because any “internalness” is exclusively owned by a certain whole,
the extensions of the former can be determined by the extensions of the later. In
terms of this understanding, we allow wholes to have their own interpretations.
The key point is that any internal thing can not occur outside its context, and
thereby any thing in the outermost domain is external to the others.

For example, the interpretations of the above Spart example are:
,I ={Person: Tom, Bob, Alice; Company: C1}; further, the company C1 has its
own interpretations:,I

C1
={ Employee: E1, E2, E3; Manager: E2; Secretary: E3;

playedby: (E1, Bob), (E2, Tom), (E3, Alice)}. The interpretations of play relation
embody the dependence between Company and Person. It is even simpler to apply
the interpretations to Epart and Dpart because play relation are not used.

The benefits obtained from the language are summarized as following:

1. The representation is natural because context can be immediately identified
and dependence between concepts is directly embodied by whole structure.
Especially, the “internalness” is explicitly represented and embodied.
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2. The problematic relation partof is almost eliminated from representation
language. We need not use the subcategories of partof and partnameof.

3. This kind of representations possesses inherent modularity, i.e. all concepts
and constraints defined in a whole structure make sense only in it. By this,
we can overcome the main drawback of the representation in FOL, namely,
numerous flatten axioms. Secondly, the expression of the configuration of
a whole is simplified because all parts are implicitly qualified by the same
whole. Thirdly, the different definitions of the same part concept are sepa-
rated into and defined in different wholes.

4. The merit of this kind of representation is preserved in formal language,
although the goal has not been completely achieved in this paper.

6 Conclusions and Future Work

In this paper we present a novel approach to describing conceptual structures.
CGs is the original inspiration for our work. An outstanding capability of CGs
is that it can keep representation natural and simple, which lies in the construct
context which implicitly employs the property of exclusivity. In order to explicitly
embody this intuition, we substitute role type for Spart to achieve this property
and further introduce a new construct called whole structure to represent con-
texts (owners). For the integrated representation of whole structure, some other
constructs part type, Ontology, defined-in and play relation are presented. The
result is a novel language which extends the traditional ones with these new
constructs. Whole structure possesses inherent modularity and local semantics,
and can be viewed as a fine-grained context, whereby the representations and
interpretations of context and parts are natural and simple.

The ongoing work is to formalize the play and defined-in relations, and give a
formal syntax and semantic of the language presented. Another interesting work
is to investigate which sort of ontological dependence can be embodied by whole
structure.
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