
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 78 – 89, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MDD Maturity Model: A Roadmap for Introducing
Model-Driven Development

Erkuden Rios1, Teodora Bozheva1,
Aitor Bediaga1, and Nathalie Guilloreau2

1 European Software Institute, Parque Tecnológico de Zamudio, #204
E-48170 Zamudio Spain

{Erkuden.Rios, Teodora.Bozheva, Aitor.Bediaga}@esi.es
http://www.esi.es

2 Thales Research & Technology, RD128
E-91767 Palaiseau cedex France

nathalie.guilloreau@thalesgroup.com
http://www.thalesgroup.com

Abstract. Experience reports show that MDD reduces time-to-market and in-
creases productivity by means of platform independent business logic model-
ling and automation. Achieving these two concepts in the organisation is not a
one step process. This paper explains the MDD Maturity Model developed to
drive this task in a structured way. The MDD Maturity Model establishes five
capability levels towards the progressive adoption of MDD within an organisa-
tion. Each level describes a coherent set of engineering, management and
support practices involved in the MDD approach, and characterizes the MDD
artefacts, called MDD elements, used in or resulted from those practices. The
paper presents also the validation process that the model will undergo in two
large organisations and two SMEs.

1 Introduction

Several examples can be found of satisfactory MDD introduction in organisations,
such as Interactive Objects’ report on MDA experimentation in DainmlerChrysler
TSS and M1 Global’s own case study report, both available at Object Management
Group’s (OMG) MDA web site (www.omg.org/mda).

As seen in experiences of the like, successfully introducing MDD methods and
tools in a project is not simple, and obviously deploying them throughout the organi-
sation is much more complex because it implies serious changes in the organisation’s
culture and processes: start treating models as first class citizens (which means keep-
ing them updated and on-track), adapt the roles, provide staff with the necessary tool-
ing and methodological training, and so on.

Maximising the benefits of MDD for time-to-market reduction and productivity in-
crement is achieved through two key factors: abstracting from platform specificities
when modelling business logic and exploiting automation possibilities.

 MDD Maturity Model: A Roadmap for Introducing Model-Driven Development 79

In this paper we explain the MDD Maturity Model developed within the MODEL-
WARE project1 aimed to help organisations in the MDD approach adoption, until the
whole process automation is reached, and organisation acquires the sufficient capabil-
ity for business knowledge capitalisation in reusable models.

The Model has been developed to be used as reference model for identifying and
appraising the level of maturity of a given organisation with respect to MDD technol-
ogy implementation. The validation of the model will be done through using the
model in assessments of MDD implementations by different companies.

The remainder of this paper is organised as follows. The next section explains the
concepts used in the MDD Maturity Model, and Section 3 explains the Model itself.
Section 4 summarises its major contributions for the industry and Section 5 describes
the validation process the model will undergo. In section 6 we deal with some related
works and finally, we present our conclusions and future work.

2 The MDD Maturity Model Concepts

The MDD Maturity Model consists of five maturity levels. The maturity levels
provide a general characterization of the organisations with respect to the degree of
adoption and implementation of MDD; this means that each maturity level indicates a
step forward in the MDD improvement path of the organisation. For each maturity
level goals associated to both MDD practices and MDD elements status are defined.

2.1 MDD Practices

MDD practices describe only activities specific for the model-driven development
and typical practices in traditional software development are deliberately excluded
from this Model.

Three categories of MDD practices are defined in the MDD Maturity Model:

• Engineering practices (ENG) cover development activities in the model-driven
software engineering discipline.

• Project management practices (PJM) address activities that are directly related
to management decisions absolutely necessary to setup and manage an MDD
project. The typical practices such as planning a project, milestone definition
and resource assignment are not considered.

• Support practices (SUP) cover activities that support the implementation of the
engineering and the project management practices.

2.2 MDD Elements

MDD elements are the basic artefacts used in the MDD technology such as models,
transformations, MDD tools and so on. The following MDD elements are identified:

1 The work presented here has been developed within the MODELWARE project.

MODELWARE is a project co-funded by the European Commission under the “Information
Society Technologies” Sixth Framework Programme (2002-2006). Information included in
this document reflects only the author’s views. The European Community is not liable for
any use that may be made of the information contained herein.

80 E. Rios et al.

Table 1. MDD Elements and associated attributes

MDD Element: Attribute: Attribute description:
Models Model purpose The extent to which the model is defined

according to established organisational
policies and standards.

 Adherence to organ-
isational policies
and standards

The objective for which the model is de-
fined.

 Scope of the model The extent of the matters defined in the
model.

 Integration degree The extent to which the model is integrated
in the development process, if the model is
defined in isolation or it is linked to other
MDD elements by means of formal and
consistent relationships.

 Verification degree To which extent the verification activities
are focused on this model.

 Traceability depth Extent of details addressing the traceability
of the model to other MDD elements.

 Simulability Ability of being simulated by means of a
model simulator.

 Executability Ability of being executed by means of a
model executor or virtual machine.

Transforma-
tions and code
generation
mechanisms

Transformation type Horizontal (generation of another model
view at same level of abstraction) or Verti-
cal (generation of another model or artefact
at another level of abstraction).

 Round-trip engi-
neering support

Degree of support for round-trip engineer-
ing (forward and backward transforma-
tion). The implementation of this aspect
supports synchronisation among models.

 Platform depend-
ency

Degree of dependency with the specific
target platform of the system.

Tools Integration facility Capability of the tool to be integrated with
other tools supporting the MDD process.

Documentation Automation extent Average ratio of automatically generated to
manually written part in documentation.

• Models: A model represents an abstraction (simplification) of something in the real

world and captures its essential characteristics. The following types of models are
distinguished:
• Domain metamodel: is the metamodel or language that captures the abstract

structure of the business domain identifying fundamental domain entity types
and the relationships between them.

• Architecture-centric metamodel: is the metamodel that captures the concepts of
the technical platform.

 MDD Maturity Model: A Roadmap for Introducing Model-Driven Development 81

• Domain model: is the model that defines how a business works without refer-
ence to software systems, similarly to OMG’s Computation Independent Model.

• Business model: is the model that resolves business requirements through purely
problem-space terms and it does not include platform specific concepts, as the
OMG’s Platform Independent Model.

• Technical model: is a solution model that resolves both functional and non-
functional requirements through the use of platform specific concepts. This
model is equivalent to the OMG’s Platform Specific Model.

• Code: is the final asset in the development, which can be considered as a model
because it conforms to a specific metamodel, the programming language.

• Model transformations and code generation mechanisms: are mechanisms for
converting a model to another model of the same system. Model to model, Model
to text and Model to code transformations are examples of this MDD element type.

• Modelling tools: are tools that are used in modelling activities, e.g. model editors,
model simulators, model executors, model repositories, transformation editors,
transformation repositories, transformers…

• Documentation: is the set of text documents which describe all the development
process and/or the assets generated and, thus, is linked to other MDD elements.

While MDD practices do not, MDD elements do have MDD attributes associated
to them. Each attribute describes an essential characteristic of the MDD element. The
next table summarizes the attributes identified in the Model.
 The maturity level of an organisation is given by the assessment of two factors:

• whether the MDD practices and MDD elements corresponding to that maturity
level exist or not and

• whether those MDD elements’ attributes take the appropriate values corresponding
to that maturity level.

3 The MDD Maturity Model

One of the major requirements of the MDD Maturity Model developed inside
MODELWARE project is to be compliant with the Capability Maturity Model® Inte-
gration (CMMI®), which is a recognised and widely spread model, implemented in
lots of software intensive organisations.

One approach to developing the MDD Maturity Model is to define how the MDD
activities amplify the CMMI® specific practices. This approach could be useful for
organisations that have experience and knowledge in applying CMMI®. However,
organisations interested in adopting MDD without implementing CMMI® will get
little benefit from an MDD Maturity Model represented as an amplification of
CMMI®. Besides, lots of Small and Medium Size (SME) companies do not apply
CMMI®, yet are interested in increasing the effectiveness of their software engineer-
ing processes by means of MDD. The MDD Maturity Model is developed as an inde-
pendent model, which, however, complements CMMI.

82 E. Rios et al.

Additionally, the MDD Maturity Model is aligned with the model developed
within the FAMILIES (IP02009) project, with respect to the domain capitalization
dimension, because the goals of the two upper levels in the MDD Maturity Model fit
very well in it.

To define the MDD Maturity Model, literature and early adopters’ MDD processes
has been studied and the following approach was adopted:

• Analysis of the MDD practices and grouping them in levels representing different
degree of profundity of the implementation of MDD

• Analysis of technical means: how they can be characterised, what are the different
possible extents for using and deploying these means in a development process

• Study of the dependencies between the MDD practices and the technical means
• Identification of discrete levels of the MDD adoption that combine MDD practices

and relevant technical means.

As shown in Figure 1, the MDD Maturity Model defines five maturity levels dis-
tributed bottom up, from less mature to more mature MDD adoption. The lower level
MDD practices and elements are a basis for the implementation of the activities on
the upper levels.

Fig. 1. MDD Maturity Model levels

3.1 Maturity Level 1: Ad-Hoc Modelling

The Ad-hoc modelling level corresponds to situations where modelling practices are
sporadically used or not used at all in the organisation. This means that the organisa-
tion is performing traditional software development, and individuals may use some
models for their own help, but no policy or common understanding applies to those
scarce models. Obviously, the organization has no specific goals on modelling activi-
ties or artefacts.

Level 1: Ad-hoc Modelling

Level 2: Basic MDD

Level 3: Initial MDD

Level 4: Integrated MDD

Level 5: Ultimate MDD

 MDD Maturity Model: A Roadmap for Introducing Model-Driven Development 83

3.2 Maturity Level 2: Basic MDD

In this level of maturity, the organisation is more mature in modelling and in each
project developed in the organisation a Technical model is created with which the
final code and system documentation have to be in line. In this level, the Technical
model combines business and technical aspects of the system to be developed, with
no distinction between them.

The final code and documentation shall comply with the system specification mod-
elled. This alignment is done by means of basic automatic code generation and docu-
mentation generation mechanisms which generate (parts of) them from the Technical
model.

In Level 2, the fact that models are used for guiding implementation and produc-
tion of documentation is an organisational premise and not an individual initiative. In
the projects, it is necessary to take decisions upon the modelling tools and techniques
that will be used in the development, in accordance with project objectives.

The next table defines the goals in this level and the MDD practices aimed to
achieve them.

Table 2. MDD Maturity Level 2 goals and practices

Goals:
Goal 1 Develop technical model and use it to build up software
Goal 2 Include all business and technical requirements in models
Goal 3 Select MDD tools aligned to project objectives
MDD Practices:
Engineering ENG 1 Identify modelling techniques
 ENG 2 Define Technical model
 ENG 3 Generate code from the Technical model
 ENG 4 Generate documentation from the Technical model
 ENG 5 Complete code to comply with all req.
Project Management PJM 1 Decide upon modelling tools
Support N/A

Figure 2 shows the key elements in the MDD maturity level 2.

Fig. 2. MDD elements in MDD Maturity Level 2

84 E. Rios et al.

Note that in all figures, a thick dashed arrow stands for “manual or automatic trans-
formation”, whereas a thick continue arrow means “automatic transformation”.

3.3 Maturity Level 3: Initial MDD

The organisation starts developing systems in a more model-driven approach when,
besides aligning the code and the models, it develops business models which address
the business logic of the system separately from the technical models which cover the
technical requirements. This is done for capitalising the business knowledge over all
the projects.

Business models are then manually converted to technical models, but these
technical models are represented by means of a tool and are converted to code auto-
matically. The Business models can be directly converted to code also, which means
that the Technical model with platform specifics resides implicit in this direct
transformation.

In addition to business logic and platform specifics differentiation, in this level of
maturity, the models are exchanged between different stakeholders for communica-
tion, which implies the need of models are checked with respect to well-formedness
rules, and metrics on modelling activities are consistently defined, collected and
analysed.

The next table defines the goals in this level and the MDD practices aimed to
achieve them.

Table 3. MDD Maturity Level 3 goals and practices

Goals:
Goal 1 Separate business and technical aspects in MDD elements
Goal 2 Define rules for modelling linked to organisation’s strategy
Goal 3 Exchange system knowledge with other stakeholders

through models
MDD Practices:
Engineering ENG 6 Define Business model
 ENG 7 Define transformations from Technical model to

text
 ENG 8 Separate generated from non-generated code
 ENG 9 Check models
Project Management PJM 2 Define MDD-project workflow
 PJM 3 Decide upon coverage of modelling activities
Support SUP 1 Establish and maintain repositories for models and

transformations
 SUP 2 Define, collect and analyze measures with respect

to the modelling activities

The next figure depicts the MDD elements of the level 3 and their relationships.

 MDD Maturity Model: A Roadmap for Introducing Model-Driven Development 85

Fig. 3. MDD elements in MDD Maturity Level 3

3.4 Maturity Level 4: Integrated MDD

The organisation begins integrating the models when domain modelling is performed.
This means that the domain concepts are represented by means of a domain model.
Business models are derived from the domain models and are developed by means of
a tool. Then, they are automatically transformed to technical models and these techni-
cal models into code. Domain, business and technical concepts are separated.

In this maturity level, two types of technical models are developed: the ones that
model the core infrastructure shared by all products in a product family, and the tech-
nical models for a specific application development. This ensures reusability of infra-
structure models.

At Level 4, the organisations are more mature in modelling and they simulate the
models created with a tool, in order to verify them for early correcting possible design
errors.

The next table defines the goals in this level and the MDD practices aimed to
achieve them.

Figure 4 shows the MDD elements involved in the level 4 and the relationships
among them.

3.5 Maturity Level 5: Ultimate MDD

To achieve a complete MDD adoption and reap its benefits, there is a need to have a
system family engineering mindset, which means to have a common set of MDD
assets (transformations, domain models, metamodels,...) that are reusable organisa-
tion-wide. Therefore, the ultimate maturity level is reached when the transformations
between all the models are made automatically and models are fully integrated
between them and with code. Executable models are developed so the focus of the
organisation efforts is on the models and not on code programming. The whole life
cycle becomes model-driven.

86 E. Rios et al.

Table 4. MDD Maturity Level 4 goals and practices

Goals:
Goal 1 Separate domain, business and technical aspects in

MDD elements
Goal 2 Ensure efficient modelling performance
Goal 3 Share integrated development environment
MDD Practices:
Engineering ENG 10 Define architecture centric metamodel
 ENG 11 Define domain model
 ENG 12 Define transformations from Business model

to Technical model
 ENG 13 Simulate models
 ENG 14 Separate the technical models of the product

and the system family infrastructure
Project Management PJM 4 Manage common infrastructure development.
Support N/A

Fig. 4. MDD elements in MDD Maturity Level 4

Hence, the main characteristic of the ultimate MDD level is that the entire organi-
sation’s know-how is capitalised in models and transformations. The domain engi-
neering practices are put in place and Domain Specific Languages (DSL) are created
in order to make strategic assets reusable. Even the system verification and validation
(V&V) knowledge is stored in models that are used for V&V of the implementation.

The next table defines the goals in this level and the MDD practices aimed to
achieve them.

 MDD Maturity Model: A Roadmap for Introducing Model-Driven Development 87

Table 5. MDD Maturity Level 5 goals and practices

Goals:
Goal 1 Ensure complete model-centric development
Goal 2 Ensure organisation's knowledge is capitalised in models

and transformations
MDD Practices:
Engineering ENG 15 Define domain specific languages
 ENG 16 Continuously improve and validate the meta-

models
 ENG 17 Define transformations from Domain model to

Business model
 ENG 18 Model-based V&V
Project Management PJM 5 Establish and maintain strategic MDD elements
Support N/A

Figure 5 shows the MDD elements involved in the level 5.

Fig. 5. MDD elements in MDD Maturity Level 5

4 MDD Maturity Model Benefits for the Industry

The main benefits that the MDD Maturity Model can offer to the industry are:

• Provides understanding of the steps towards a complete and efficient MDD
adoption.

88 E. Rios et al.

• Makes easier to further improve MDD practices and work products in the
organisations.

• Establishes a common integrated vision of all MDD dimensions to improve in the
organisation.

• Facilitates to accomplish the cultural and organisational changes that MDD implies
simultaneously with the learning of a common language on modelling activities
understood by all process participants.

The MDD Maturity Model complements other maturity models, such as the
CMMI®, allowing the adoption of MDD specific practices within the CMMI® im-
provement initiative.

The MDD Maturity Model is the first step for building the standardized framework
for categorizing the organisations’ capabilities on MDD, for either internally identify
or externally claim their maturity level.

5 Validation Process

The MDD Maturity Model described above is going to be used as the reference model
for performing assessments of companies or project teams with respect to MDD. In
particular, the model will be used to assess the MDD implementation by four leading
companies: Thales ATM (France), France Telecom (France), WM-data (Estonia) and
Enabler (Portugal). The first two are well known large businesses, WM-data is a SME
branch of the leading supplier of design and IT services in the Nordic regions and
Enabler is the SME branch of an international IT solution provider for retailing. These
four companies are industrial partners in MODELWARE and the assessments’ work
is also part of the project results.

The assessment consists in rating the capability in each of the MDD practices and
evaluating the status of the MDD elements in the Model, and therefore highlighting
both strengths and areas candidate for improvement.

The MDD Maturity Model will be valid if it enables to distinctively characterize
the maturity level of each organisation and if it helps organisations in effectively
implementing MDD and improving its weak areas in MDD. Besides, the terminology
used in the model shall be understandable for all these companies and it should em-
brace all the key modelling practices experimented by them.

After the validation process a refined version of the MDD Maturity Model will be
issued. The improvement brought will mainly consist in refining the goals and prac-
tices in each of the levels and integrate them with appropriate MDD metrics to collect
in each case.

6 Related Work

Assessing the capability of an organisation with regards to MDD technology is a
relatively new subject, with limited material available and experimented in the MDD
community.

Some partial attempts have been made in MDD maturity degrees definition, which
focus on specific aspects of MDD. This is the case of Kleppe and Warmer’s

 MDD Maturity Model: A Roadmap for Introducing Model-Driven Development 89

Modelling Maturity Levels [2] or the IBM approach [3], which uses some form of a
MDD technological capability model as commercial support for their proprietary
tools. Whereas neither of these models has formal specification of the MDD practices
and assets inside each maturity level, nor is validated by the industry yet, our Model
makes a formal definition of both MDD practices and elements for unambiguously
characterising the maturity levels. Besides, our model will undergo a validation proc-
ess by the industry in near future.

7 Conclusion and Future Work

The MDD Maturity Model described has been developed inside the MODELWARE
project to complement the existing models for quality and process improvements by
putting the focus on how to execute software engineering activities applying the
MDD technology.

The Model describes five maturity levels in the roadmap for improving MDD
practices and MDD artefacts, from the lowest level (Ad-hoc modelling level) to the
highest level-5 (Ultimate MDD level). Each level describes a consistent set of engi-
neering, management and support practices within the MDD approach. Additionally,
it provides a characterization of the MDD elements created or used at each level.

The MDD Maturity Model is the tool for organisations to establish the correct
roadmap for the adoption of MDD. It provides them a means for identifying their
strengths and weaknesses with respect to MDD. Therefore, the MDD Maturity Model
serves to support industry in improving their MDD development processes, technol-
ogy and organisation. A final, refined iteration of the model will follow after the
model is validated in the industrial partners in MODELWARE in June 2006.

Acknowledgments

We would like to thank the contributions to the development and refinement of the
MDD Maturity Model: as co-developers Veronique Normand (Thales Research &
Technology) and Jason Xabier Mansell (European Software Institute); and as main
reviewers Asier Azaceta (European Software Institute) and Robert Pastor (Thales
Research & Technology).

References

1. Bettin Jorn, Patterns for Model Driven Software Development, (2004),
2. Kleppe, Aneke, Warmer, Jos: Getting started with Modeling Maturity Levels, (2004), http://

www.devx.com/enterprise/Article/26664
3. A Roadmap for Agile MDA, http://www.agilemodeling.com/essays/agileMDA.htm
4. Family Evaluation Framework overview & introduction, Families project http://www.esi.es/

en/ Projects/Families/
5. CMU/SEI-2002-TR-012 Capability Maturity Model Integration ver. 1.1
6. Kleppe, Aneke, Warmer, Jos, Bast, Wim: MDA Explained, ISBN 032119442X (2004)
7. Bézivin, Jean: In Search of a Basic Principle for Model Driven Engineering. Upgrade. Vol

V, No. 2. (2004)

	Introduction
	The MDD Maturity Model Concepts
	MDD Practices
	MDD Elements

	The MDD Maturity Model
	Maturity Level 1: Ad-Hoc Modelling
	Maturity Level 2: Basic MDD
	Maturity Level 3: Initial MDD
	Maturity Level 4: Integrated MDD
	Maturity Level 5: Ultimate MDD

	MDD Maturity Model Benefits for the Industry
	Validation Process
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

