
Definition and Generation of Data Exchange Formats
in AUTOSAR

Mike Pagel1 and Mark Brörkens2

1 BMW AG, Knorrstr. 147, 80788 München, Germany
mike.pagel@bmw.de

2 Carmeq GmbH, Carnotstr. 4, 10587 Berlin, Germany
mark.broerkens@carmeq.com

Abstract. In this paper we present a methodology supporting the definition of
data models on basis of a limited set of well-known UML features, thereby al-
lowing these models to be created and discussed by a large group of domain ex-
perts. A transformation is then defined from such a platform independent UML
model to XML schema, which exceeds the configuration possibilities of com-
parable approaches like XMI. This enables the generic reproduction of a wide
range of existing XML languages and hence supports reverse-engineering legacy
schemas and DTDs into well-structured UML models. The overview of an ac-
tual implementation of the generic methodology finally demonstrates the practi-
cal applicability or our approach. The work described in this paper is part of the
AUTOSAR development partnership, an international effort to standardize auto-
motive software infrastructure. The resulting XML schema is used today as the
official AUTOSAR XML data exchange format.

1 Introduction

AUTOSAR (short for: automotive open system architecture) is an international develop-
ment partnership [1] consisting of a multitude of car manufacturers, suppliers and tool
vendors, defining concepts and workflows, how electronic automotive systems can be
formally specified and processed. Currently, AUTOSAR is mainly focusing on software
and addresses issues like hardware independence, design-by-contract, system scalabil-
ity, reuse and so forth.

The definition of AUTOSAR concepts (which themselves are not in scope of this
paper) in form of a metamodel leads to a domain specific language (DSL). While
this language is specifically designed to describe distributed real-time software, it still
is platform-independent in terms of processing platforms like XML, databases or a
programming language. System descriptions written in this language must be inter-
changeable between various authoring, visualization and processing tools as well as the
different organizational entities involved in an AUTOSAR-oriented project. One of the
main goals of AUTOSAR is therefore the definition of an (automatically generated)
XML-based data exchange format.

While generating XML schema from UML is not new, a number of problems were
encountered with approaches and methods typically applied in the industry so far. For
instance:

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 52–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Definition and Generation of Data Exchange Formats in AUTOSAR 53

– XMI [2][3], OMG’s specification how to map UML models to XML schema, lacks
certain configuration possibilities, thereby preventing the reproduction of already
existing XML schemas from reverse engineered UML models. Furthermore, XMI
uses particular schema features like xsi:type, which in the XML community are
discussed as problematic [4][5].

– The MSR partnership [6] defined an XML DTD to describe automotive systems.
The underlying data structures have not been formally modeled; but instead were
designed directly at DTD level.

– The ASAM association introduced another modeling approach for the ASAM ODX
standard [7], leading to an XML description for automotive diagnostic and pro-
gramming systems. The corresponding schema is in fact generated from a UML
model. However, the applied UML profile is highly specific for the XML domain
and therefore alleviates the applicability of the metamodel as an MDA PIM, e.g. to
produce a database schema.

Our transformation of the AUTOSAR metamodel to XML schema exceeds the con-
figuration capabilities of current approaches. It is defined as a set of transformation
patterns and model markings. The actual implementation of our tool-chain is based on
the Eclipse Modeling Framework (EMF).

Outline of this Paper. The next section gives an overview of how our approach is aligned
with general MDA concepts. The remaining sections then follow the logical order of
applying our methodology. We begin with the description of our concepts to define a
platform independent model. The following section explains our requirements for a new
transformation from UML to XML schema and specifies the configuration capabilities
of our approach. Next, we describe our implementation of the schema generator. The
paper closes with a final summary of our results and an outlook of possible next steps.

2 Alignment with MDA Concepts

Fig. 1 gives an overview how our modeling and generation approach is aligned with
the concepts defined by MDA, which are shown as stereotypes of our corresponding
AUTOSAR artifacts.

The AUTOSAR metamodel is a PIM. Its definition is independent of the tooling
and processing platforms (e.g. programming languages, databases, XML formats, ...)
that eventually will be involved in creating, editing or persisting AUTOSAR models.
This platform independence is strongly required to allow automotive domain experts to
contribute efficiently without consideration of how modeled concepts eventually will
be mapped to a certain platform.

Our primary platform is XML schema, i.e. that we are generating the AUTOSAR
XML schema from the AUTOSAR metamodel.

The mapping is defined as a set of transformations, which are combinations of
type and instance mappings. For each relevant PIM type a template is defining the de-
fault purely type-based mapping. If a certain element in the AUTOSAR metamodel
requires different transformation, this is controlled by assigning values to platform
specific marks which leads to the annotated metamodel, a marked PIM. A modeling

54 M. Pagel and M. Brörkens

guideline prescribes tagged values as the only UML feature allowed to express such
PIM markings.

The target of our mapping is not a separate PSM. Instead, we follow the alterna-
tive path also mentioned in [8] by directly generating the actual XML schema file from
the marked PIM, for two reasons: While research projects [9][10] start providing tools
to perform model transformations, frequently as an implementation of the MOF QVT
specification [11], we did not find sufficient transformation support as part of commer-
cial UML tools available to AUTOSAR members. Having an explicit PSM does not
seem to add much value to our methodology. Instead, performing the extra transforma-
tion step adds a potential error source, resulting from defects in the used tooling as well
as problems introduced by improper usage.

<<PIM>>

AUTOSAR
Metamodel

<<Code>>

AUTOSAR
XML Schema

<<Marked PIM>>

Tagged AUTOSAR

Metamodel

<<Marks>>

Tag Definitions

<<Mapping>>

Persistence Rules
for XML

<<Platform>>

W3C XML Schema

Fig. 1. The alignment between the MDA methodology and the AUTOSAR modeling and schema
generation approach is shown in this figure. For each depicted AUTOSAR artifact the stereotype-
like annotations indicate the corresponding MDA concept.

3 Definition of the AUTOSAR PIM

The language to describe AUTOSAR systems is a DSL enabling the definition of au-
tomotive software and hardware systems. It therefore contains specialized entities like
certain types of software components that are responsible for handling hardware sen-
sors or entities like communication protocols used on automotive bus systems. While
the usage of UML to describe this metamodel was not disputed, a number of additional
requirements had to be taken into account.

Definition and Generation of Data Exchange Formats in AUTOSAR 55

In the automotive industry the practical application of UML is not yet as widely
adopted as in other, more traditional IT domains. To overcome this psychological barrier
the AUTOSAR methodology had to limit itself in terms of used UML features. On
the other hand, certain features required to describe AUTOSAR systems are not well
supported in UML. In those cases, we had to extend the existing modeling capabilities.
Finally, practical reasons like existing tool support forced us to sometimes deviate from
pure MDA and UML approaches.

This section explains those limitations and extensions of UML.

3.1 Usage of a UML Subset

Even when using UML, still a number of alternative approaches can be considered for
the definition of the AUTOSAR metamodel. First, the metalevel the AUTOSAR DSL is
associated with or is build upon needs to be determined. Corresponding to OMG’s four-
layer metamodel hierarchy [12], AUTOSAR user models, e.g. the model of a concrete
windshield wiper system, live on M1. Therefore, the underlying AUTOSAR metamodel
that defines the language to express such M1 models is defined on M2.

To stay completely aligned with OMG’s metalevel hierarchy, this suggests two well-
known alternatives for the definition of the AUTOSAR metamodel: it can be defined as
an instance of MOF [8], or as a UML profile. Unfortunately, both approaches have
practical disadvantages.

The formal usage of MOF as modeling language was not well supported by tools
when work on the AUTOSAR metamodel was started in the end of 2003. This means
that limiting our modeling capabilities to the EMOF subset [8] was not possible through
available tools. This is different today, as tools like IBM’s RSM [13] and Sparx’ Enter-
prise Architect [14] start providing metamodeling capabilities.

Creating a UML profile has the strong advantage that even standard UML tools
are able to handle the corresponding UML instance models. However, tool support for
creation and especially formal application of a UML profile was again too weak for
us. While this also has been overcome by recent tools, the formal definition of such
a profile is not trivial and naturally requires deep insight into UML’s own metamodel.
Such deep analysis of UML is typically not part of the daily business of automotive
engineers and hence only sparsely available. Therefore, requiring the definition of a
formal UML profile for the AUTOSAR metamodel was not possible.

As a consequence AUTOSAR is following a mixed approach. The original AU-
TOSAR metamodel is created as an instance of UML. From UML we only allow using
basic class diagrams, essentially the concepts defined in EMOF or the UML infrastruc-
ture’s Core::Basic package [12]. We further restrict the allowed set of modeling fea-
tures, e.g. classes defined in the AUTOSAR model must not own any operations. These
limited class-modeling capabilities are formally specified in form of its own UML pro-
file. Since the AUTOSAR metamodel exists at M2, the underlying profile is defined at
M3. Currently, the AUTOSAR metamodel itself is mapped to a formal UML profile by
a small group of experts, who are involved in both, AUTOSAR development and UML
inner workings. For simplicity and due to growing tool support the rest of the paper
will assume the AUTOSAR metamodel residing at OMG’s metalevel M2, i.e. either as
direct MOF instance or in form of a UML profile, as shown in Fig. 2.

56 M. Pagel and M. Brörkens

MOF

UML AUTOSAR UML Profile AUTOSAR Metamodel

AUTOSAR Metamodel UML Profile

M3

M2

«extends»

«instanceOf» «apply»

«trace»«extends»

«instanceOf»

Fig. 2. The (AUTOSAR Metamodel) is effectively an instance of (MOF), which applies the
(Metamodel UML Profile) to provide required extensions and enforce our limitations. Eventu-
ally, the (AUTOSAR Metamodel) is translated into its own (AUTOSAR UML Profile) to allow
AUTOSAR modeling in standard UML tools.

3.2 Definition and Structure of PIM Markings

Platform-dependent information may be added to the model in form of tagged values
only. Vice versa, tagged values are exclusively used to specify platform- dependent
information. The names of the tag definitions are following a namespace scheme. E.g.
a tag called xml.name specifies how a (platform-independent) model element will be
called in a (platform-dependent) XML file, whereas a tag db.name could specify the
same for a database platform. For an overview of available marks see table 1.

3.3 Stereotypes of the AUTOSAR Metamodel UML Profile

The AUTOSAR metamodel UML profile defines a handful of new stereotypes to either
explicitly underline concepts already available in UML or to add modeling capabili-
ties that are not part of standard UML. Those stereotypes are usually prefixed by ‘atp’
(AUTOSAR template profile; a synonym for AUTOSAR metamodel UML profile).

Types and Typed Elements. UML supports types and typed elements as one of the
most fundamental modeling concepts expressed in the Types diagram of the UML in-
frastructure’s Core::Basic package [12]. While modeling of reusable types and their
later use in form of roles and instances is typical in many IT domains, automotive soft-
ware models are very often rather instance oriented. In those models, reuse is provided
in form of creating copies and changing them if required.

One of the main goals of AUTOSAR in fact is the reuse of software and correspond-
ing models. To make the distinction between types and typed elements more explicit,
we enable this feature at M3, in the metamodel profile, in form of three new stereotypes:

– «atpType» is applied to classes in the AUTOSAR metamodel that are defining a
type. This directly corresponds to classes being derived from UML’s Type meta-
class, in most cases those classes are refined forms of UML’s StructuredClassifier.

Definition and Generation of Data Exchange Formats in AUTOSAR 57

– «atpPrototype» is applied to all typed classes. Again, this is a very explicit form of
deriving a class from UML’s TypedElement metaclass, in most cases these classes
correspond to UML’s Property. The name prototype was chosen because of compat-
ibility concerns regarding MSRSW [6], an existing description format for automo-
tive electronic systems. Additionally, since classes with stereotype «atpPrototype»
are roles of a certain type, they in fact are prototypes for instances that are created
at runtime.

– «isOfType» is finally applied to the relation between a prototype and a type. Every
«atpPrototype» can reference at most one «atpType», just as in UML.

Through those stereotypes modelers are forced to explicitly distinguish types and typed
elements. The following figure shows a small excerpt from the AUTOSAR metamodel
where the aforementioned stereotypes are applied.

«atpType»

ComponentType

«atpType»

AtomicSoftwareComponentType

«atpType»

CompositionType

«atpPrototype»

ComponentPrototype
*«isOfType»

+type

1

+component 1..*

Fig. 3. The (AUTOSAR Metamodel Profile) defines new stereotypes for the explicit definition
of types and the corresponding typed elements (called prototypes here for historical reasons).
The figure shows a small example from the AUTOSAR metamodel demonstrating the stereotype
application.

Deep References to Parts of Parts. The fact that AUTOSAR strongly supports the
definition/usage dichotomy through its types and prototypes introduces a challenge in
situations, where an element needs to be referenced that is deeply nested in a part-of-
parts hierarchy as shown in Fig. 4. To ease understanding the chosen example is not
a software problem but describes a bicycle; not just any bicycle, but yours! Your bike
consists of two wheels of a certain type. Those wheel types in turn consist of their own
parts like a tube and a tire of some kind. If you now take your bicycle out on a trip and
blow the front tube you later will need to tell a mechanic what to fix. You can’t just ask
to repair a tube of type TubeX, because possibly every RacingWheel in the shop, and
for sure the two wheels on your bike both have that tube. If you mention that the tube of
a frontWheel needs to be fixed, there may still be multiple RacingBikes having this part.
The work order is precise enough once you specify that the tube of the frontWheel of
yourBike needs to be repaired as indicated in Fig. 5. In technical terms TubeX, TireY,
RacingWheel and RacingBike are all types, while tube, tire, front- and rearWheel as
well as yourBike are usages of those types. A type consisting of parts of certain other
types, which in turn consist of more parts and so on is a typical pattern in object-oriented
languages. The bike example shows that for an exact reference of a leaf (or intermedi-
ate) part in the hierarchy the containing parts must also be specified. In AUTOSAR

58 M. Pagel and M. Brörkens

yourBike : RacingBike

frntWhl : RacingWheel rearWhl : RacingWheel

tube : TubeX tube : TubeX

tire : TireY tire : TireY

Fig. 4. Example for a typical part-of-parts hierarchy. A (RacingBike) is a type of bike that contains
two wheels: (frontWheel) and (rearWheel). Those two wheels are usages of the same wheel type
(RacingWheel). Some parts of that wheel type are a (tube) of tube type (TubeX) as well as a (tire)
of tire type (TireY).

yourBike : RacingBike

frntWhl : RacingWheel rearWhl : RacingWheel

tube : TubeX tube : TubeX

tire : TireY tire : TireY

fix

2.

1.

3.

Fig. 5. To refer to a particular tube, the owning wheel as well as the bicycle must be specified.
Complete references to parts-of-parts require the containing context. In AUTOSAR this is called
in instance reference and consists of an ordered list of part references.

we find this requirement e.g. in case of a software component hierarchy. Composite
components may consist of further composites and so on, which eventually consist of
what in AUTOSAR is called an atomic software component. Only those leaf compo-
nents contain actual code and use up resources like CPU time or memory, and exactly
those leaf components must be deployed to the processing nodes (ECUs, electronic
control units) of the system, i.e. they must be referable from a top level deployment
element. UML 2 addresses this requirement only for exactly one hierarchy level in case
of the UML connector connecting two ports of a structured classifier’s parts: in addition
to the port which is defined by its owning type the UML connector end also references
the corresponding part through the attribute ConnectorEnd.partWithPort [15]. However,
AUTOSAR requires this issue to be addressed for the general case of arbitrary depth.
Therefore, we extended the UML 2 approach by not just specifying a single contextual
part, but an ordered list of those, starting with the outermost and ending with the inner-
most part, just as shown in Fig. 5. A short form of this reference type is presented in
Fig. 6 to once more allow our domain experts to express their concepts in a convenient
and simple way. The corresponding stereotype «instanceRef» for the association got
its name from the fact that the reference is indeed specifying an instance-like occur-
rence of the reference target instead of just a part in the context of its owning type. A

Definition and Generation of Data Exchange Formats in AUTOSAR 59

yourBike : RacingBike

frntWhl : RacingWheel rearWhl : RacingWheel

tube : TubeX tube : TubeX

tire : TireY tire : TireY

fix

<<instanceRef>>

Fig. 6. AUTOSAR introduced an abbreviation for instance references in form of a regular associ-
ation stereotyped («instanceRef»)

comparable motivation led to a similar concept in SysML in form of the SysML «Bind-
ing» stereotype, which also allows referencing a list of parts through the Binding.path
attribute [16]. However, the SysML solution targets a different use-case.

4 Transformation of the PIM to XML Schema

This section describes our transformation of the AUTOSAR metamodel to an XML
schema. Especially we motivate why and how our approach exceeds the possibilities
provided by existing methods like XMI.

4.1 Design Patterns of the AUTOSAR XML Schema

Several approaches for translating UML or MOF based metamodels into XML Schema
or XML DTD [3][2][17] have been evaluated. None of them fulfilled all requirements
on the AUTOSAR data exchange format, the most important of which are listed
below:

– unambiguous mapping between instances of the XML Schema and instances of the
AUTOSAR metamodel,

– reuse of XML patterns well established in the automotive domain, and
– support of tools in the XML and the model domain.

The AUTOSAR XML schema fulfills these requirements by combining the strengths
of several existing XML patterns: Our XML schema is a dialect of XMI 1.2 that is ex-
tended by legacy XML patterns, which are harmonized between several data exchange
formats frequently used in the automotive industry.

The following sections describe the requirements and how they are fulfilled in more
detail. After that the configuration possibilities and translation rules are explained.

Unambiguous Mapping. The seamless exchange of data between tools requires un-
ambiguous mapping of information stored in the model domain to the XML domain
and vice versa. AUTOSAR follows the concept used in XMI: By default all navigable

60 M. Pagel and M. Brörkens

association ends, attributes and types in the model domain are explicitly represented by
XML elements or attributes in the XML domain.

The default mapping rules used by AUTOSAR are inspired by XMI 1.2: navigable
association ends, attributes and types in the metamodel are all represented as XML el-
ements. Fig. 7 shows a typical metamodel fragment and an instance of the AUTOSAR
XML schema created using the default mapping rules. The type information is re-
quired in order to manage inheritance: it must be possible to distinguish between ClassB
and SubClassB. Additionally, the names of the navigable association ends (roleB1 and
roleB2) are required in case of multiple associations with the same type. In case a model
fragment doesn’t make use of multiple association or inheritance it is allowed to over-
write the default mapping rules, as explained later in this section.

<CLASS-A>

 <ROLE-B-1S>

 <CLASS-B>...</CLASS-B>

 <SUB-CLASS-B>...</SUB-CLASS-B>

 </ROLE-B-1S>

 <ROLE-B-2>

 <SUB-CLASS-B>...</SUB-CLASS-B>

 </ROLE-B-2>

</CLASS-A>

ClassA ClassB

SubClassB

+roleB1

0..*

+roleB2

1

Fig. 7. A typical metamodel fragment, including classes, multiple composite associations, and
a corresponding sample instance of the AUTOSAR XML schema created using the default
mapping rules

Support for Tools in the XML and Model Domain. The AUTOSAR data exchange
format will be used by a wide variety of different tools such as primitive XML editors,
legacy tools and graphical tools explicitly optimized for the AUTOSAR methodology.
Most tools internally implement their own data model with a structure different from
the AUTOSAR metamodel. While XMI strives to satisfy the requirement to find a very
simple transformation from a metamodel to its XML representation, we see no great
advantage in pursuing this goal, as the resulting direct transformation is not possible
for tools and their proprietary models. We therefore trade the straightforwardness of the
XMI transformation against high configurability.

Additionally, we limit used XML schema features to a subset that is generally ac-
cepted within the XML community and is implemented by most off-the-shelf XML
tools and libraries. E.g. we do not use XML schema inheritance because it is limited
to single inheritance and makes use of features like xsi:type, the usefulness of which is
debated among XML experts [4][5].

Inheritance in the AUTOSAR metamodel is mapped to the AUTOSAR XML schema
using the copy-down-approach of XMI 1.2. However, instead of repeating inherited

Definition and Generation of Data Exchange Formats in AUTOSAR 61

properties in the declaration of XML elements, (see e.g. the repetition of ModelEle-
ment.name in the XMI 1.2 MOF DTD [2]) we use element and attribute groups, which
are referenced if needed. Polymorphism is made explicit in the schema by listing all
concrete subtypes.

Support of Existing DTD Based XML Formats. Some concepts used in AUTOSAR
are already well defined by existing XML formats used in the automotive industry. For
selected contents the translation of the AUTOSAR metamodel to the XML Schema
shall be flexible enough to reproduce such a standardized format. AUTOSAR addresses
this requirement by providing the advanced configuration possibilities explained
below.

Configuration of XML Schema Production Rules. The AUTOSAR XML schema
production rules are configured by UML tagged values attached to the metaclasses and
owned properties of the AUTOSAR metamodel. Default tagged values are implied in
(the very typical) case, where no explicit values have been added to a model element.
Tagged values on roles (references, composition and attributes) control which XML
elements or attributes are generated for representing the given role. Additionally order
and multiplicity is configurable.

ClassA ClassB

xml.name = ROLE-B-1
xml.namePlural = ROLE-B-1S
xml.attribute = false
xml.roleElement = false
xml.roleWrapperElement = true
xml.typeElement = true
xml.typeWrapperElement = false

xml.name = CLASS-A
xml.namePlural = CLASS-AS

xml.name = CLASS-B
xml.namePlural = CLASS-BS

SubClassBxml.name = SUB-CLASS-B
xml.namePlural = SUB-CLASS-BS

+roleB1

0..*

Fig. 8. The platform independent UML model is annotated with a set of predefined tagged values:
our model marks. The tags specify how a model entity is translated to the XML schema plat-
form, e.g. whether an XML element or XML attribute has to be generated, in which order XML
elements have to appear, or whether wrapper elements for multiple classes need to be generated.

Fig. 8 shows the default configurations for a composition relationship with
unbounded upper multiplicity. Table 1 lists the most important tagged values that are
part of our schema production configuration.

62 M. Pagel and M. Brörkens

Table 1. List of the most relevant tagged values used in our transformation from the AUTOSAR
metamodel to XML schema. The values refer to roles as synonym for UML properties.

Tag name Applicable to Description

xml.name role, class Provides the name of a schema fragment rep-
resenting the role or class.

xml.namePlural role, class Provides the plural name of a schema frag-
ment.

xml.attribute role If set to true, the role is represented as at-
tribute. This tag is only applicable for roles
typed by a primitive datatype with an upper
multiplicity of 1.

xml.roleElement role If set to true, the xml.name of the role shows
up as XML element.

xml.roleWrapperElement role If set to true, the xml.namePlural of the role
shows up as XML element. This XML ele-
ment is typically generated in case the multi-
plicity of the role is greater than 1.

xml.typeElement role If set to true, the xml.name if the role’s type
shows up as XML element.

xml.typeWrapperElement role If set to true, the xml.namePlural of the role’s
type shows up as XML element.

The following listing shows how the aforementioned metamodel fragment is
mapped to XML schema:

<xsd:element name="CLASS-A" type="CLASS-A"/>

<xsd:complexType name="CLASS-A" abstract="false" mixed="false">
<xsd:sequence>
<xsd:group ref="CLASS-A"/>

</xsd:sequence>
</xsd:complexType>

<xsd:group name="CLASS-A">
<xsd:sequence>
<xsd:element name="ROLE-B-1S" minOccurs="0">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="CLASS-B" type="CLASS-B"/>
<xsd:element name="SUB-CLASS-B" type="SUB-CLASS-B"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:group>

<xsd:complexType name="CLASS-B" abstract="false" mixed="false">
<xsd:sequence>
<xsd:group ref="CLASS-B"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="SUB-CLASS-B" abstract="false" mixed="false">
<xsd:sequence>
<xsd:group ref="CLASS-B"/>
<xsd:group ref="SUB-CLASS-B"/>

Definition and Generation of Data Exchange Formats in AUTOSAR 63

</xsd:sequence>
</xsd:complexType>

<xsd:group name="CLASS-B">
<xsd:sequence>
...

</xsd:sequence>
</xsd:group>

<xsd:group name="SUB-CLASS-B">
<xsd:sequence>
...

</xsd:sequence>
</xsd:group>

5 Implementation of the Schema Generator

Our tool chain links a number of publicly available modeling and processing tools. The
complete process is depicted in Fig. 9.

We have two important sources defining AUTOSAR concepts: (a) the AUTOSAR
workgroups directly specifying particular content of the metamodel and (b) an exist-
ing standard for automotive software systems, the ASAM MSRSW harmonized objects
[7]. The original AUTOSAR concepts were directly modeled utilizing our UML subset
with Sparx System’s Enterprise Architect. In order to incorporate the MSRSW models,
which at that time did not exist in UML, but were available as DTD only, we realized
a simple reverse-engineering script, which creates a model compliant with the AU-
TOSAR modeling guidelines from the MSRSW DTD. Explicit import statements start-
ing at the original AUTOSAR metamodel specify, which parts of the complete MSRSW
need to be available as part of the joint AUTOSAR metamodel.

AUTOSAR
Concepts

1a: Metamodeling with
Enterprise Architect

2: Transformation of tool
specific UML model to

EMF ecore

3: Generation of XSD
through EMF JET

1b: Rev erse engineering
DTD -> UML

MSRSW XML DTD

Ecore
Representation of

AUTOSAR
Metamodel

AUTOSAR
Metamodel in

UML

AUTOSAR XML
Schema

Fig. 9. Overview of the implemented AUTOSAR metamodel tool-chain. The applied process
steps are numbered in their order of execution. (1a) and (1b) indicate the two possible sources
for models: original AUTOSAR concepts as well as existing standard formats like the MSRSW
DTD.

64 M. Pagel and M. Brörkens

The second processing step transforms the modeling tool dependent metamodel into
an independent Java representation. Here we found the Eclipse Modeling Framework
(EMF) [18] most useful, with a very clean API and extremely good support for meta-
modeling tasks through arbitrarily deep access to all metalevels of a model in a sin-
gle application. The conversion step includes a number of mechanisms that allow for
graceful degradation in case the model is not fully following the AUTOSAR metamodel
rules. While the final model of course must be compliant, the sheer number of people
contributing to it requires a resilient algorithm in order to create and verify results early
in the process.

Finally, we use EMF’s Java Emitter Templates (JET) to translate the EMF based
metamodel into its final representation: the AUTOSAR XML schema.

6 Summary and Outlook

The Model Driven Architecture approach is well suited for defining the AUTOSAR
domain specific language and the corresponding data exchange format. While using
standard UML modeling techniques, we limit the expressive power of UML to a degree
allowing automotive engineers to actively contribute to the metamodel. This is further
supported by the strict platform independence of the model. No XML knowledge is
required to work on the AUTOSAR metamodel and finally get new concepts into the
exchange format.

The metamodel is optionally marked up with tagged values for configuring the
translation to XML schema. The configuration possibilities allow for powerful adap-
tation of the resulting XML format. If the default XMI 1.2-like translation is not suf-
ficient it may be customized to suite individual needs. This allows for reproduction of
XML fragments out of the AUTOSAR metamodel, which are already established in
the automotive domain as part of other standard data exchange formats. We proved the
applicability of our approach by describing the Java implementation of our EMF-based
schema generator. Future work may happen in the following areas:

– Additional transformations can be added. For instance, we are currently creating
generators that realize persistence code to read and write the format defined by
AUTOSAR. Since commercial tools typically will not be based directly on the
AUTOSAR metamodel, but much rather will instantiate their own, tool- optimal
model, such generators will therefore be specific for the target tool environment.

– Since many tools and projects start supporting formal model transformations as
prescribed by the OMG QVT specification we will start evaluating available plat-
forms and eventually switch over to begin using more formal methods instead of
our handcrafted transformation code. This applies to both, the description of the
transformations as well as the actual implementation.

– The AUTOSAR metamodel is annotated with OCL constraints [19] where required.
But as of now, we are not automatically evaluating those. With the recent releases
of more capable OCL processors we will start to implement automatic constraint
checking in upcoming versions of our tool-chain.

Definition and Generation of Data Exchange Formats in AUTOSAR 65

References

1. AUTOSAR: Homepage http://www.autosar.org (2006)
2. OMG: XML Metadata Interchange (XMI) specification version 1.2 (2002)
3. OMG: XML Metadata Interchange (XMI) specification version 2.1 (2005)
4. Dubinko, M.: chapter 4. In: XForms Essential, XML Schema in XForms. Volume 1. O’Reilly

Media Inc. (2003)
5. Walsh, N.: xsi:type train wreck. In: Norman Walsh Weblog. Volume 7. (2004)

http://norman.walsh.name/2004/01/29/trainwreck.
6. Manufacturer Supplier Relationship (MSR): MSRSW V2.2.2, element and attribute docu-

mentation (2002)
7. Association for Standardization of Automation- and Measuring Systems (ASAM): ASAM

MCD-2D (ODX) version 2.0, data model specification (2004)
8. OMG: Meta Object Facility (MOF) specification version 2.0 (2006)
9. IBM alphaWorks: Model transformation framework (2006)

http://www.alphaworks.ibm.com/tech/mtf.
10. UMT-QVT: an open-source project targeting the QVT RFP (2006)

http://umt-qvt.sourceforge.net/.
11. OMG: Meta Object Facility (MOF) query/view/transformation specification version 2.0

(2005)
12. OMG: UML Infrastructure specification version 2.0 (2004)
13. IBM Rational: Rational software modeler product page (2006)

http://www-306.ibm.com/software/awdtools/modeler/swmodeler/.
14. Sparx Systems: Enterprise architect product page (2006)

http://www.sparxsystems.com.au/.
15. OMG: UML Superstructure specification version 2.0 (2005)
16. SysML Partners: Systems modeling language specification version 1.0 alpha (2005)
17. Carlson, D.: Modeling XML Applications with UML, Practical e-Business Applications.

Addison Wesley (2001)
18. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling Mrame-

work, A Developer’s Guide. Addison Wesley (2005)
19. OMG: UML OCL specification version 2.0 (2005)

	Introduction
	Alignment with MDA Concepts
	Definition of the AUTOSAR PIM
	Usage of a UML Subset
	Definition and Structure of PIM Markings
	Stereotypes of the AUTOSAR Metamodel UML Profile

	Transformation of the PIM to XML Schema
	Design Patterns of the AUTOSAR XML Schema

	Implementation of the Schema Generator
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

