
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 316 – 330, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Algebraic Specification of Generic OCL Queries
Within the Eclipse Modeling Framework*

Artur Boronat, Joaquín Oriente, Abel Gómez, Isidro Ramos, and José Á. Carsí

Department of Information Systems and Computation
Technical University of Valencia

C/Camí de Vera s/n
46022 Valencia-Spain

{aboronat, joriente, agomez, iramos, pcarsi}@dsic.upv.es

Abstract. In the Model-Driven Architecture initiative, software artefacts are
represented by means of models that can be manipulated. Such manipulations
can be performed by means of transformations and queries. The standard
Query/Views/Transformations and the standard language OCL are becoming
suitable languages for these purposes. This paper presents an algebraic
specification of the operational semantics of part of the OCL 2.0 standard,
focusing on queries. This algebraic specification of OCL can be used within the
Eclipse Modeling Framework to represent models in an algebraic setting and to
perform queries or transformations over software artefacts that can be
represented as models: model instances, models, metamodels, etc. In addition, a
prototype for executing such OCL queries and invariants over EMF models is
presented. This prototype provides a compiler of the OCL standard language
that targets an algebraic specification of OCL, which runs on the term rewriting
system Maude.

Keywords: MDA, OCL queries and invariants, metamodeling, algebraic
specification.

1 Introduction

Model-Driven Development is a field in Software Engineering that, for several years,
has represented software artefacts as models in order to improve productivity, quality,
and economic income. Models provide a more abstract description of a software
artefact than the final code of the application. A model can be built by defining
concepts and relationships. The set of primitives that permit the definition of these
elements constitutes what is called the metamodel of the model.

Interest in this field has grown in software development companies due to several
factors. Previous experiences with Model Integrated Computing [1] (where embedded
systems are designed and tested by means of models before generating them
automatically) have shown that costs decrease in the development process. The
consolidation of UML as a design language for software engineers has contributed to

* This work was supported by the Spanish Government under the National Program for Re-

search, Development and Innovation, DYNAMICA Project TIC 2003-07804-C05-01.

 An Algebraic Specification of Generic OCL Queries Within the EMF 317

software Model-Driven Development by means of several CASE tools that permit the
definition of UML models and automated code generation. The emergence of
important model-driven initiatives such as the Model-Driven Architecture [2], which
is supported by OMG, and the Software Factories [3], which is supported by
Microsoft, ensures a model-driven technology stock for the near future.

Model-Driven Development has evolved into the Model-Driven Engineering field,
where not only design and code generation tasks are involved, but also traceability,
model management, metamodeling issues, model interchange and persistence, etc. To
fulfil these tasks, model transformations and model queries are relevant tasks that
must be solved. In the MDA context several open-standards are proposed to handle
this. The standard Meta-Object Facility (MOF) [4] provides a way to define
metamodels. The standard proposal Query/Views/Transformations (QVT) [5] will
provide support for both transformations and queries. While model transformation
technology is being developed [6-8], the Object Constraint Language (OCL) remains
as the best choice for queries.

OCL [9] is a textual language that is defined as a standard “add-on” to the UML
standard. It is used to define constraints and queries on UML models, allowing the
definition of more precise and more useful models. It can also be used to provide
support for metamodeling (MOF-based and Domain Specific Metamodeling), model
transformation, Aspect-Oriented Modeling, support for model testing and simulation,
ontology development and validation for the Semantic Web, among others. Despite its
many advantages, while there is wide acceptance for UML design in CASE tools,
OCL lacks a well-suited technological support.

In this paper, we present an algebraic specification of generic OCL queries, by
using Maude [10], that can be used in a MOF-like industrial tool. Maude is a high-
level language and a high-performance system supporting executable specification
and declarative programming in rewriting logic. From a technological point of view,
Maude provides a flexible parser, reflection, parameterization and an efficient
implementation of associative-commutative-pattern matching that permits obtaining
efficient executable specifications, among many other features. From a theoretical
point of view, rewriting logic is an expressive logical framework, in which many
other logics can be naturally expressed due to its reflective character. In addition,
several formal analysis tools have been build for Maude taking advantage of its
reflective features: the Maude Church-Rosser Checker, the Maude Inductive Theorem
Prover, the Maude Sufficient Completeness Checker, the Maude termination tool,
among others (see [11] for a roadmap).

The algebraic specification of OCL has been developed in the MOMENT
framework (MOdel manageMENT) [12], which provides a set of generic operators to
deal with models. The MOMENT operators use OCL queries to perform model
queries and transformations, so that the part of OCL that provides support for
methods and messages has not been taken into account.

The structure of the paper is as follows: Section 2 provides an example; Section 3
describes the algebraic specification of OCL, indicating the support for basic data
types and collection types, and the support for collection operations; Section 4
presents the integration of the algebraic specification of OCL within an industrial
modelling framework; Section 5 provides the architecture of the prototype; Section 6
presents some related works; Section 7 provides some conclusions and ongoing work.

318 A. Boronat et al.

2 The Coach Company Example

The Meta-Object Facility standard (MOF) [4] provides a metadata management
framework and a set of metadata services to enable the development and inter-
perability of model and metadata-driven systems. The main achievement of this
standard is the definition of a common terminology in the Model-Driven Architecture
initiative, which can be used conceptually in other model-driven approaches.

As an example we have modelled a simple coach company in UML. In this design,
a coach has a specific number of seats and can be used for regular trips or for private
trips. In regular trips, the tickets are bought individually. In private trips, the whole
coach is rented for a trip. The model is shown in UML notation in Fig. 1. The
example provides a specific UML model, and the queries are applied to its instances.
The OCL-like specification that is presented can also be used for queries over any
software artefact that might be defined following the MOF conceptual framework:
metamodels, regular models, and instances of models.

Fig. 1. Coach company model

OCL queries1 permit a more precise definition of the model above by adding
constraints. For instance, we can indicate that overbooking is not allowed in a regular
trip by means of the following invariant:

context Coach:
inv: self.trips -> select(t:Trip | t.oclIsType(RegularTrip))

-> forAll(r:Trip | r.oclAsType(RegularTrip).passengers -> size()
<= r.coach.numberOfSeats -> sum())

3 Algebraic Specification of Generic2 OCL Queries

In this section, we describe the parameterized algebraic specification of OCL that
permits the query of either metamodels or UML models. The Maude term rewriting
system [10] has been used for this purpose. Maude provides an algebraic specification
language that belongs to the OBJ family3. Its equational rewriting mechanism

1 We consider that an invariant is built on an OCL query that returns a Boolean value. Thus,

although we talk about invariants, we are also using OCL queries.
2 In this work, OCL genericity refers to the possibility of reusing the OCL specification for any

software artefact that can be represented as a model, including metamodels.
3 In this paper, we assume some basic knowledge about algebraic specifications and OBJ-like

notation. We refer to [12] for more details.

 An Algebraic Specification of Generic OCL Queries Within the EMF 319

animates the OCL algebraic specification over a specific model instance, providing
the operational semantics for OCL expressions. We have developed a plug-in that
embeds the Maude environment into the Eclipse framework so that we can use it for
our purposes.

3.1 Overview of the Parameterized OCL Algebraic Specification

In Maude, functional modules describe data types and operations on them by means
of membership equational theories. Mathematically, such a theory can be described as
a pair (Σ, E ∪ A), where: Σ is the signature that specifies the type structure (sorts,
subsorts, kinds, and overloaded operators); E is the collection of equations and
memberships declared in the functional module; and A is the collection of equational
attributes (associativity, commutativity, and so on) that are declared for the different
operators. Computation is the form of equational deduction in which equations are
used from left to right as simplification rules, with the rules being Church-Rosser and
terminating.

OCL collection types and their operations have been defined in a parameterized
algebraic specification, called OCL-SUPPORT{X :: TRIV}. Fig. 2 shows the elements
involved in the parameter passing mechanism diagram. TRIV is the algebraic
specification of the formal parameter, which is called theory in Maude.

p

MM

p’

h

TRIV OCL-SUPPORT{X::TRIV}

SigMM OCL-SUPPORT{MM}

Formal parameter inclusion

Actual parameter inclusion
Actual parameter
specification

Value
specification

parameter
passing
morphism

induced
passing
morphism

Formal parameter
specification

Parameterized
specification

Fig. 2. Parameter passing diagram for the OCL-SUPPORT{X :: TRIV} parameterized module

SigMM is an algebraic specification that is obtained from a specific metamodel
automatically. The SigMM specification constitutes the actual parameter for the OCL-
SUPPORT{X :: TRIV} module and provides a constructor for each type that is defined
in the metamodel and an inheritance hierarchy among the types that appear in the
metamodel. The MM view is the morphism that relates the elements of the TRIV
formal parameter to the elements of the SigMM actual parameter.

OCL collection types and related operations have been generically specified in the
parameterized module OCL-SUPPORT{X :: TRIV}, where the formal parameter X has
the trivial theory as type. The trivial theory only contains a sort Elt (referred to as
X$Elt in the OCL specification) that represents the sort of elements that can be
contained in an OCL collection. This sort represents the OCLAny type of the standard
OCL specification. The OCL-SUPPORT{X::TRIV} module imports the basic data
types and provides the constructors that are needed to define collections of elements.
It provides collection operations as well.

320 A. Boronat et al.

In Fig. 2, p and p’ are inclusion morphisms that indicate that the formal parameter
specification is included in the parameterized specification, and that the actual
parameter specification is included in the value specification, respectively. The h
morphism is the induced passing morphism that relates the elements of the
parameterized module to the elements of the OCL-SUPPORT{MM} value specifi-
ation by using the MM parameter passing morphism.

3.2 Algebraic Specification of OCL Types

Types in OCL are divided into basic data types, collection types, and user-defined
types. In this section, the algebraic support for the first two kinds of types is
presented.

3.2.1 Basic Data Types
In OCL, there are four basic data types that have a direct correspondence to Maude
basic data types. In Table 1, we show the correspondences between OCL 2.0 and the
Maude data-type system and their corresponding primitives. In the table, when the
operations have different symbols in OCL and Maude, we indicate the Maude symbol
in brackets.

Table 1. OCL and Maude data-type correspondences

OCL 2.0 Maude Common operators
Boolean Bool or, and, xor, not, = (==), <> (=/=), implies, if-then-else-endif (if-then-else-fi)
Integer Int = (==), <> (=/=), <, <=, >, >=, +, -, *, / (quo), mod (rem), abs, max, min
Real Float /, round (ceiling), floor
String String concat (+), size (length), substring(substr), = (==), <> (=/=)

3.2.2 Collection Types
OCL provides four specific collection types that are defined as follows:

− A Set is a collection that contains instances of a valid OCL type, where order is not
relevant and duplicate elements are not allowed.

− An OrderedSet is a set whose elements are ordered.
− A Bag is a collection that may contain duplicate elements. Elements in a bag are

not ordered.
− A Sequence is a bag whose elements are ordered.

To take into account the uniqueness and order features of an OCL collection, we
introduce two intermediate sorts and their constructors (shown in Table 2):
Magma{X} and OrderedMagma{X}. Basically, we define the sort Magma{X} as the
sort of the term that represents a group of elements that are not ordered by means of
the association and the commutativity attributes. The constructor for this sort has the
symbol “,” and is associative and commutative. Thus, working with integers, “1, 2, 3”
is a term that represents a valid Magma{Int}. In addition, we can state that “1,2,3” and
“3,2,1” represent the same group of elements modulo the commutative and asso-iative
attributes.

Instead, the constructor of the sort OrderedMagma{X} does not have the commu-
ativity property, producing terms that represent ordered concatenations of elements.

 An Algebraic Specification of Generic OCL Queries Within the EMF 321

The constructor for this sort has “::” as symbol and permits building ordered groups
of elements by using the common syntax for lists in functional programming. Thus,
the term “1 :: 2 :: 3” represents a valid ordered magma of integers, and “1 :: 2 :: 3” is
different from “3 :: 2 :: 1” because the constructor “::” is not commutative.

Table 2. Specification of groups of elements

Terms of the sort Magma{X} are used to define sets (line 8), while terms of the sort

OrderedMagma{X} are used in ordered sets (line 10). In Table 2, we show the Maude
code that specifies the Set and OrderedSet types. In our specification, collections of
collections are allowed by indicating that one collection can be an element of another
collection (line 4). The sort Collection{X} can be considered as an abstract concept on
the grounds that there is no specific constructor for it. Each collection has a constant
constructor that defines an empty collection (lines 9, 11). The types Bag and Sequence
have also been specified, similarly to the Set and OrderedSet types, respectively. In
this specification, the uniqueness property of both the collection Set and the collection
OrderedSet is checked in the operations that join two collections: union, inter-
section and including for Set, and union, append, prepend, insertAt and including for
OrderedSet.

A view has been defined for each Maude simple data type in order to deal with
collections of simple data types. For instance, to deal with collections of integers, the
following view is defined: view Int from TRIV to INT is sort Elt to Int . endv

This view is used to instantiate the OCL-SUPPORT{X} module as OCL-
SUPPORT{Int}. This way, the following example is a valid collection of integers:

OrderedSet{ Set{1, 2, 3} :: Bag{1, 2, 3, 3} :: Sequence{3 :: 3 :: 2 :: 1}}

3.3 Loop Operations or Iterators

Two kinds of operations on collection types can be distinguished in OCL 2.0: regular
operations and loop operations or iterators. Regular operations provide common func-
tionality over collections. Loop operations or iterators permit looping over the
elements in a collection while performing a specific action. In this paper, we focus on
the second type of operations.

Every loop operation has an OCL expression as parameter. This is called the body,
or body parameter, of the operation. As a guiding example, we use a standard OCL
expression that permits obtaining the odd numbers from a set of integers:

Set{1,2,3,4,5,6} -> select(i | i.mod(2) <> 0)

1. sort Magma{X} OrderedMagma{X} .
2. subsort X$Elt < Magma{X} OrderedMagma{X} .
3. sorts Collection{X} Set{X} OrderedSet{X} .
4. subsort Collection{X} < X$Elt .
5. subsorts Set{X} OrderedSet{X} < Collection{X} .
6. op _,_ : Magma{X} Magma{X} -> Magma{X} [assoc comm ctor] .
7. op _::_ : Magma{X} Magma{X} -> Magma{X} [assoc ctor] .
8. op Set{_} : Magma{X} -> Set{X} [ctor] .
9. op empty-set : -> Set{X} [ctor] .
10. op OrderedSet{_} : OrderedMagma{X} -> OrderedSet{X} [ctor] .
11. op empty-orderedset : -> OrderedSet{X} [ctor] .

322 A. Boronat et al.

In this expression, select is the iterator operation and the expression (i | i.mod(2)
<> 0) is the body. Both iterator operations and body expressions are considered in the
algebraic specification separately. This separation is needed to simulate higher-order
functions in Maude by considering body functions as terms that can be passed as
arguments to iterator operations.

Using the example of the selection of odd numbers from an integer set, we study
first how to specify the body of the select expression i | i.mod(2) <> 0. Expression
bodies can be evaluated to several types depending on the kind of operator in which
they are used. For instance, the body expression of a select evaluates to a boolean
value. Depending on the return type of the body expression, a symbol is associated to
it indicating the name of the body expression. For the example, we obtain:

 op isOdd : -> BoolBody{Int} [ctor] .

The body expression is built by using the following operation:

op _::_`(_;_`) : Magma{X} BoolBody{X} ParameterList Collection{X} -> Bool .

where the first argument is a term that represents a magma of elements, the second
argument is the corresponding body symbol, the third argument is a variant list of
parameters that can be empty, and the fourth argument is the whole initial collection
to which the first argument belongs. To define a body function, the axioms must be
provided by the user in Maude notation. For the example, we define the following
equation:

var intN : Int . var intCol : Collection{Int} . var PL : ParameterList .
eq intN :: isOdd (PL ; intCol) = ((intN rem 2) =/= 0) .

Once the body expression has been defined, we provide an algebraic specification
of the operational semantics of the select operation for sets. The different collection
operations have been defined as function symbols (terms of the sorts that are shown in
Table 3), depending on the return type of each operation. For instance, the select
operation, which returns a collection of elements, is defined as follows:

op select : -> Fun{X} [ctor] .

The operational semantics of iterator operations is defined independently of body
operations. This fact permits the reuse of the algebraic specification of iterator
operations simulating them as higher-order functions. Three axioms constitute the
algebraic specification of the select operator for sets (as shown in Maude notation in
Table 4). These are the arguments of select: BB is a variable that contains the boolean
body expression, PL is a parameter list for the body operator, and Col is the original
set. The first axiom considers the recursion case where there is more than one element
in the set. If the body function validates to a true value, the element is added to the
resulting set. Finally, the recursion over the rest of the elements continues. The
second axiom considers the recursion case when only one element remains in the set
so that the recursive trail ends. The third axiom considers the case where the set is
empty.

To invoke an iterator in an OCL-like way, the following operation is used:

op _->_`(_;_;_`) : Collection{X} Fun{X} BoolBody{X} ParameterList Collection{X} ->
Collection{X} .

 An Algebraic Specification of Generic OCL Queries Within the EMF 323

where the first argument is the collection to be looped, the second argument is an
iterator symbol, the third argument is the body operation, the fourth argument is a list of
arguments for the body operation, and the fifth argument is the proper collection that is
looped. The fifth argument is useful when the collection must be navigated in the body
operation. When the iterator is processed, if this argument is not added, the recursion
mechanism consumes the elements of the collection, and queries over the whole
collection would not be complete. To invoke the select iterator over a set of integers
with the body isOdd we use: Set{1, 2, 3, 4, 5, 6} -> select(isOdd ; empty-params ; empty-set) .

Table 3. OCL collection operations that have been specified

Collection operator symbols Iterator
symbols

 Return
type

Collection Set Ordered-
Set

Bag Sequence Collection

Fun{X} Collec-
tion

union,
flatten,
including,
excluding,
iterate

--,
inter-
secti-on

--,
insertAt,
append,
prepend

intersection insertAt,
append,
prepend

select,
reject, any,
sortedBy,
collect,
collectNest
ed, iterate

EltFun{X} Element first, last,
at

 first, last,
at

BoolFun{X} Boolean
value

includes,
includesAll,
excludes,
excludesAll,
isEmtpy,
notEmpty

 one, forAll,
forAll2

4
,

exists,
isUnique

IntFun{X} Integer
value

count, size,
sum, product

 indexOf indexOf

Table 4. Axiomatic specification of the select operation for sets

4 Algebraic Specification of Metamodels and Models

The advantage of OCL is that user-defined types can be used in expressions to
perform queries on software artefacts (namely models). User-defined types are the
types that can be used in a model: classes, associations, enumerations, and so on. One
of the keys to success in the use of the OCL algebraic specification is the integration
with an industrial modelling environment. In this way, OCL expressions can be

4 The forAll2 operation has been included to provide support when two iterators are being used

in the forAll operation.

eq Set{ N , M } -> select (BB ; PL ; Col) =
if (N :: BB (PL ; Col)) then

Set{ N } -> including ((Set{ M } -> select (BB ; PL ; Col))) -> flatten
else Set{ M } -> select (BB ; PL ; Col) fi .

eq Set{ N } -> select (BB ; PL ; Col) = if (N :: BB (PL ; Col)) then Set{ N } else empty-set fi .
eq empty-set -> select (BB ; PL ; Col) = empty-set .

324 A. Boronat et al.

evaluated in a graphical model without having to prepare the information in a specific
format manually.

In our case, we have chosen the Eclipse Modeling Framework (EMF) [13]. EMF is
a modeling environment that is plugged into the Eclipse platform and provides a sort
of implementation of the MOF. It brings code generation capabilities and enables the
automatic importation of software artefacts from heterogeneous data sources.

Within the EMF, Ecore is the set of primitives that is used as metametamodel.
Ecore can be viewed as an implementation of a subset of the class diagram of the
MOF metamodel (or of the UML metamodel). An Ecore model is mainly constituted
by EClass instances (informally called classes) that are related to each other by means
of inheritance relationships and EReference instances (informally called references in
Ecore and associations in UML)5. Using the MOF terminology, an Ecore model may
represent either a metamodel at the M2-layer (for instance, the UML metamodel) or a
model at the M1-layer (for instance, a UML model). Similarly, an Ecore model
instance may represent either a model that conforms to a metamodel at the M1-layer
(for instance, a UML model) or a model instance at the M0-layer (for instance, the
instances of a UML model). From now on, the OCL support is explained by using the
example of the UML model, although it would be exactly the same as defining OCL
queries over Ecore metamodels.

To perform OCL queries over EMF software artefacts, three types of projection
mechanisms have been specified. The first obtains an algebraic specification from a
metamodel. The second represents a model as a term in Maude. Finally, the third is
the OCL expression compiler that targets Maude code.

4.1 A Model as an Algebraic Specification

The first projection mechanism obtains the algebraic specification6 that corresponds to
a specific Ecore model automatically by assigning a code template to each concept of
the Ecore metamodel. The algebraic specification that is generated by means of these
templates is used as an actual parameter for the OCL-SUPPORT{X::TRIV} module
(see Fig. 2).

As example, we explain the code that is generated for an Ecore class. An Ecore
class is constituted by attributes and references. This information is used to generate
an algebraic sort that represents the collection of instances of this class and a
constructor, whose arguments are: an internal identifier (represented by the type Qid7
in Maude), a group of arguments that represent the attributes (basic data types in
Maude) and a group of identifier collections (representing references). For instance,

5 For further information on the Ecore metamodel and the representation of Ecore models we

refer to [13].
6 The algebraic specification that is generated for a given metamodel (defined in EMF as an

Ecore model) permits the representation of models as algebraic terms. Thus, models can be
manipulated by our model management operators. Algebraic specifications of this kind do not
specify operational semantics for the concepts of the metamodel; they only permit the
representation of information for model management issues.

7 A Qid value is defined by a quote followed by an string (see [12] for further details). For
instance, ‘trip1 is a valid Qid value. Qid values are used to define implicit instance identifiers
in our framework.

 An Algebraic Specification of Generic OCL Queries Within the EMF 325

when this code template is applied to the RegularTrip class in Fig. 1, we obtain the
following Maude code:

sort RegularTrip .
op `(RegularTrip_ _ _ _ _`) : Qid Int Int OrderedSet {QID} OrderedSet {QID} -> RegularTrip [ctor] .

where the first argument is the internal identifier of the instance, the second argument
is the inherited tripnr attribute, the third argument is the availableSeats argument, the
fourth argument is the inherited coach reference (UML role), and the fifth argument is
the passengers reference (UML role). This template is only applied to specific
classes. When a class is defined as abstract, the code only contains the declaration of
the sort and no constructor is generated, indicating that this class cannot be
instantiated.

4.2 An Instance of a Model as an Algebraic Term

The second projection mechanism permits us to serialize an Ecore model instance as a
term of the algebraic specification that corresponds to the Ecore model. The instance
of a model is represented as a set of instances of the classes that constitute the model
MM. This second projection mechanism is constituted by several code templates that
serialize each class instance to a term of the sort that has been generated from the
corresponding class by means of the first projection mechanism.

For example, the instance of the model Trip (shown in Fig. 3) is serialized as a set,
where all the elements are instances of the classes of the model, by using the
constructors of the serialized algebraic specification sigMM, as follows:

Set { (Coach ‘coach1 1 10 OrderedSet { ‘person1 }),
(RegularTrip ‘trip1 1 9 OrderedSet {‘coach1 } OrderedSet { ‘person1}),
(Person ‘person1 "Peter" OrderedSet { ‘trip1 }) }

The internal structure of a term is transparent to the user of the algebraic specifi-
cation due to some navigation operations, which permit the user to navigate in an
OCL-like way throughout the roles and attributes of the objects of the model instance.

tipnr : int = 1
availableSeats : int = 9

trip1 : RegularTrip

name : string = Peter

person1 : Person
id : int = 1
numberOfSeats : int = 10

coach1 : Coach

Fig. 3. Object diagram defined as an instance of the model defined in Fig. 1

Finally, the OCL-SUPPORT{MM} module provides all the operations that are
needed to define an instance of a model (constructors to define collections, to define
basic data type values and user-defined types) and to apply OCL queries to instances
of any model (collection operations, iterators, and user-defined navigation
operations).

4.3 Translation of OCL Expressions into Maude Code

The third projection mechanism compiles standard OCL code to Maude code that
uses operations of the OCL-SUPPORT{MM} module, which have been introduced in

326 A. Boronat et al.

Section 3. As example of this compilation process, we show that the query that is used
in the invariant in Section 2 can be written by defining the body expression of the
forAll iterator as a body operation. This body operation checks that all regular trips
have a lower number of passengers than the number established by the
numberOfSeats attribute of the corresponding Coach instance. The Maude code that is
automatically obtained for the body expression of the forAll operator (by using the
operator that is explained in Section 3.3) in the example is as follows:

var self : trip-Trip . var tripModel : Set{trip} .
op notOverbooked : -> BoolBody{trip} [ctor].
ceq self :: notOverbooked (PL ; tripModel) =
 ((((self :: oclAsType (? "RegularTrip" ; tripModel)) :: passengers (tripModel))
 -> size) <= ((self :: coach (tripModel) :: numberOfSeats) -> sum))
if self :: trip-Trip .
eq self :: notOverbooked (PL ; tripModel) = false [owise].

where: self is a variable of type Trip and tripModel is a set that represents the model
instance to be queried; expressions with the form c :: att permit the navigation of an
attribute att of the class instance c; and expressions with the form c :: ref (
ModeInstance) are used to navigate the instances associated to the class instance c
through the reference ref in the model instance ModelInstance. The invariant is coded
as follows:

red tripModel -> select (oclIsTypeOf ; ? "Coach" ; tripModel) -> forAll(notOverbooked; empty-params ;
tripModel) .

where tripModel is a variable that contains the model instance to be checked, and the
select and the forAll operation provide the body expression of the invariant in Maude
code by using the oclIsTypeOf operator and the above body expression notOver-
booked. Thus, we check if all the instances of the class Coach hold the notOver-
booked invariant.

5 MOMENT-OCL: A Prototype for Executing Algebraic OCL
Expressions Within the Eclipse Modeling Framework

The OCL algebraic specification that has been presented in the paper permits both the
representation of models as sets and the use of queries and invariants over them. This
permits the use of OCL expressions in algebraic model transformations, such as those
presented in [6]. In addition, we have developed a simple OCL editor that permits the
evaluation of OCL queries and invariants over EMF models or model instances. In
this section, we provide a brief description of the architecture of this prototype, which
is called MOMENT-OCL.

Fig. 4 shows the components of the MOMENT-OCL prototype that permit the
execution of algebraic OCL expressions over EMF models:

− The OCL Projector component is the module that projects the OCL expression to
Maude code. It makes use of the Kent OCL library [14] to validate the syntax and
the semantics of the expression. The process of compilation from OCL to Maude
follows the typical structure of a language processor. The process is divided in two
phases: an initial analysis phase and a second synthesis phase.

 An Algebraic Specification of Generic OCL Queries Within the EMF 327

In the first phase, we have reused the OCL support of the Kent Modelling
Framework (KMF) [14], which provides lexical, syntactical and semantical
analysis of OCL expressions over an EMF model. KMF analyzes an OCL
expression, taking into account the semantics of the model, and produces an
Abstract Syntax Tree (AST) to represent the data that is needed in the synthesis
phase.

Fig. 4. MOMENT-OCL Architecture

In the second phase, once an OCL expression has been analyzed by KMF
correctly, the AST is parsed and Maude code for body expressions, queries and
invariants are produced in order to evaluate OCL expressions over EMF models in
Maude.

− The Module Loader component obtains the algebraic specification from a meta-
model, by instantiating the OCL-SUPPORT{X::TRIV} module with the signature
obtained for a specific metamodel. This algebraic specification is extended with the
Maude code obtained from the compilation of OCL expressions by means of the
OCL Projector component. The Module Loader uses three other components: the
M2 Projector, which projects a metamodel MM (the Coach model in the example)
as the signature SigMM; the M1 Bridge, which projects a model (model instance in
the example) as a term of the corresponding algebraic specification OCL-
SUPPORT{MM}; and the Kernel Loader, which instantiates the parameterized
algebraic specification of OCL with the signature SigMM, providing the formal
environment where OCL expressions for the model MM can be evaluated.

− The OCL Editor permits the definition of OCL queries and invariants over EMF
models and provides syntactical and semantical analyses of the expressions by
reusing this functionality from the KMF. It permits the evaluation of queries and
invariants. If we consider an invariant or query, we can analyze the expression
syntactically and semantically, evaluate it by showing the result, or parse it to
Maude code, as indicated in Fig. 4.

6 Related Works

Although OCL is not as well supported as UML in some CASE tools, there is a
growing interest in providing support for OCL in order to achieve different goals. In
[15], several tools that support OCL are studied. Taking them and others into account,
some technological examples, which are classified by their main goal, are provided:

328 A. Boronat et al.

− Model transformation: MOMENT, ATL, YATL.
− Model verification: the KeY System.
− Requirements validation: ITP/OCL, the USE tool, the Dresden OCL Toolkit,

Borland Together, OSLO, Rational Software Modeller.
− Code generation (also for requirements validation): Octopus, OCLE, Kent OCL

tool.
− OCL Testing: HOL/OCL.

Fig. 5. MOMENT-OCL screenshot

Nevertheless, only a few of them rely on formal methods to provide support for the
operational semantics of OCL, and even fewer tools are integrated in (commercial)
CASE tools. We focus on some tools that rely on formal methods in this section.

The KeY system [16] provides functionality for formal specification and deductive
verification within a commercial CASE tool (Together Control Center). In this
approach, the user defines a software artefact in UML that can be annotated with OCL
constraints. The OCL constraints are translated into formulas of JavaDL (a dynamic
logic for Java) that can be reduced by means of an interactive theorem prover.

The USE tool [17] provides interactive validation of OCL constraints over a
model. This tool reads the input model and the OCL constraints from textual
resources, supporting class diagrams, object diagrams and sequence diagrams. After-
wards, objects and links can be graphically created to define a snapshot of a running
system. This tool has been extended for the automatic generation of test cases and
validation cases.

The ITP/OCL tool [18] provides automatic validation of UML static class dia-
grams with respect to OCL constraints. It provides an algebraic OCL specification
using Maude, where UML class diagrams and object diagrams are formalized by
means of algebraic specifications in membership equational logic and where OCL
constraints are defined as formulas in membership equational logic theories. A
graphical front-end is being developed for the ITP/OCL tool, which permits the
definition of class diagrams and the definition of correct object diagrams.

 An Algebraic Specification of Generic OCL Queries Within the EMF 329

In these last approaches, only UML diagrams are considered for validating OCL
expressions. In the MOMENT-OCL specification, OCL queries can be automatically
applied either to metamodels or to models that may be defined in EMF by making use
of the Maude parameterization mechanism, following a more automated model-driven
oriented approach. In our approach, while Maude is used to execute OCL expressions,
the OCL expressions can be applied to graphical model-based software artefacts
through the EMF. Whenever EMF, and related support, is used to develop a (domain
specific or UML) modelling environment, we can use MOMENT-OCL to provide
invariant checking and query evaluation. Thus, our philosophy does not consist in
developing a new modelling environment to provide OCL support, we provide it for
other existing modelling approaches. Other java-based approaches that integrate OCL
within the EMF are [14, 19, 20], from which we took the Kent library to reuse the
analysis phase for the ocl compilation.

By using Maude, we avoided the development of a new plugin for providing
support for OCL from scratch. We specified many first-order properties in member-
ship equational logic by means of operators that are applied modulo associativity and
commutativity. In addition, the underlying membership equational logic enjoys a
precise mathematical semantics [21] and an efficient implementation in Maude [22].

7 Conclusions and Further Work

OCL is becoming a de-facto standard for defining constraints and queries in the
Model-Driven Engineering field. The number of tools that provide support for this
language is growing, and although the operational semantics of OCL is said to be
formal, only a few tools rely on formal methods to define its operational semantics.

In this paper, we have introduced an algebraic specification of part of the
operational semantics of OCL 2.0 from an implementation point of view. This specifi-
cation takes advantage of several features of Maude for the sake of reuse: parameter-
ization, associative-commutative-pattern matching, a flexible parser, among others.

In the specification we have taken into account the Ecore metamodel8 and part of
the OCL standard that permits the definition of queries and invariants. This
specification is used to perform model queries in the EMF and to represent EMF
software artefacts as algebraic specifications or as terms. Such terms can be
manipulated by means of model management operators in the MOMENT framework
(MOdel manageMENT) [12], which provides a set of generic operators to deal with
models. The MOMENT operators use OCL queries to perform model queries and
transformations, so that the part of OCL that provides support for methods and
messages has not been taken into account.

The OCL specification has been developed generically so that it can be used for
any kind of metamodel, model or model instance. Thus, not only can OCL be studied
in an algebraic setting, it can also be used in the well-known modelling environment
EMF. Further work consists in exploiting the formal features of the OCL specification
from a more-theoretical point of view and its application to real case studies.

8 Interface and simple data type definition has not been addressed yet in the specification.

330 A. Boronat et al.

References

1. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. IEEE Computer Society Press
30 (1997) 110-111

2. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture--
Practice and Promise. (2003)

3. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. John Wiley & Sons (2004)

4. OMG: Meta Object Facility (MOF) 2.0 Core Specification, ptc/04-10-15. (2004)
5. OMG: MOF 2.0 QVT final adopted specification (ptc/05-11-01). (2005)
6. Boronat, A., Carsí, J.A., Ramos, I.: Algebraic Specification of a Model Transformation

Engine. Fundamental Approaches to Software Engineering, FASE'06 Springer
LNCS.Vienna, Austria (2006)

7. Bézivin, J., Dupe, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the ATL
model transformation language: Transforming XSLT into XQuery. OOPSLA 2003
Workshop.Anaheim, California (2003)

8. The Model Transformation Framework. http://www.alphaworks.ibm.com/tech/mtf
9. Warmer, J., Kleppe, A.: The Object Constraint Language, Second Edition, Getting Your

Models Ready for MDA. Addison-Wesley (2004)
10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.:

Maude: specification and programming in rewriting logic. Theor. Comput. Sci. 285 (2002)
187-243

11. Martí-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theoretical
Computer Science 285 (2002) 121-154

12. Boronat, A., Carsí, J.A., Ramos, I.: Automatic Support for Traceability in a Generic
Model Management Framework. Model Driven Architecture - Foundations and
Applications, First European Conference, ECMDA-FA 2005 Springer LNCS.Nuremberg,
Germany (2005)

13. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison Wesley Professional (2003)

14. Kent, U.o.: Kent Object Constraint Language Library. http://www.cs.kent.ac.uk/ projects/
ocl/index.html

15. Toval, A., Requena, V., Fernández, J.L.: Emerging OCL tools. Software and System
Modeling 2 (2003) 248-261

16. Ahrendt, W., Baar, T., Beckert, B., Giese, M., Hähnle, R., Menzel, W., Mostowski, W.,
Schmitt, P.H.: The KeY System: Integrating Object-Oriented Design and Formal Methods.
Fundamental Approaches to Software Engineering. 5th International Conference, FASE
2002 Springer.Grenoble, France (2002)

17. Richters, M.: The USE tool: A UML-based Specification Environment. (2001). http://
www. db.informatik.uni-bremen.de/projects/USE/

18. Egea, M., Clavel, M.: The ITP/OCL tool. (2006). http://maude.sip.ucm.es/itp/ocl/
19. Vanwormhoudt, G.: EMF OCL Plugin. (2006). http://www.enic.fr/people/ Vanworm-

houdt/ siteEMFOCL/maven-reports.html
20. Eclipse Modeling Framework Technologies. (2006). http://www.eclipse.org/emft/projects/
21. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.:

Maude 2.2 manual and examples. (2005)
22. Eker, S.: Associative-Commutative Rewriting on Large Terms. Proceedings of the 14th

International Conference on Rewriting Techniques and Applications (RTA 2003),Lecture
Notes in Computer Science (2003)

	Introduction
	The Coach Company Example
	Algebraic Specification of Generic2 OCL Queries
	Overview of the Parameterized OCL Algebraic Specification
	Algebraic Specification of OCL Types
	Loop Operations or Iterators

	Algebraic Specification of Metamodels and Models
	A Model as an Algebraic Specification
	An Instance of a Model as an Algebraic Term
	Translation of OCL Expressions into Maude Code

	MOMENT-OCL: A Prototype for Executing Algebraic OCL Expressions Within the Eclipse Modeling Framework
	Related Works
	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

