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Abstract. In the Model-Driven Architecture initiative, software artefacts are 
represented by means of models that can be manipulated. Such manipulations 
can be performed by means of transformations and queries. The standard 
Query/Views/Transformations and the standard language OCL are becoming 
suitable languages for these purposes. This paper presents an algebraic 
specification of the operational semantics of part of the OCL 2.0 standard, 
focusing on queries. This algebraic specification of OCL can be used within the 
Eclipse Modeling Framework to represent models in an algebraic setting and to 
perform queries or transformations over software artefacts that can be 
represented as models: model instances, models, metamodels, etc. In addition, a 
prototype for executing such OCL queries and invariants over EMF models is 
presented. This prototype provides a compiler of the OCL standard language 
that targets an algebraic specification of OCL, which runs on the term rewriting 
system Maude. 

Keywords: MDA, OCL queries and invariants, metamodeling, algebraic 
specification. 

1   Introduction 

Model-Driven Development is a field in Software Engineering that, for several years, 
has represented software artefacts as models in order to improve productivity, quality, 
and economic income. Models provide a more abstract description of a software 
artefact than the final code of the application. A model can be built by defining 
concepts and relationships. The set of primitives that permit the definition of these 
elements constitutes what is called the metamodel of the model. 

Interest in this field has grown in software development companies due to several 
factors. Previous experiences with Model Integrated Computing [1] (where embedded 
systems are designed and tested by means of models before generating them 
automatically) have shown that costs decrease in the development process. The 
consolidation of UML as a design language for software engineers has contributed to 
                                                           
* This work was supported by the Spanish Government under the National Program for Re-
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software Model-Driven Development by means of several CASE tools that permit the 
definition of UML models and automated code generation. The emergence of 
important model-driven initiatives such as the Model-Driven Architecture [2], which 
is supported by OMG, and the Software Factories [3], which is supported by 
Microsoft, ensures a model-driven technology stock for the near future. 

Model-Driven Development has evolved into the Model-Driven Engineering field, 
where not only design and code generation tasks are involved, but also traceability, 
model management, metamodeling issues, model interchange and persistence, etc. To 
fulfil these tasks, model transformations and model queries are relevant tasks that 
must be solved. In the MDA context several open-standards are proposed to handle 
this. The standard Meta-Object Facility (MOF) [4] provides a way to define 
metamodels. The standard proposal Query/Views/Transformations (QVT) [5] will 
provide support for both transformations and queries. While model transformation 
technology is being developed [6-8], the Object Constraint Language (OCL) remains 
as the best choice for queries. 

OCL [9] is a textual language that is defined as a standard “add-on” to the UML 
standard. It is used to define constraints and queries on UML models, allowing the 
definition of more precise and more useful models. It can also be used to provide 
support for metamodeling (MOF-based and Domain Specific Metamodeling), model 
transformation, Aspect-Oriented Modeling, support for model testing and simulation, 
ontology development and validation for the Semantic Web, among others. Despite its 
many advantages, while there is wide acceptance for UML design in CASE tools, 
OCL lacks a well-suited technological support.  

In this paper, we present an algebraic specification of generic OCL queries, by 
using Maude [10], that can be used in a MOF-like industrial tool. Maude is a high-
level language and a high-performance system supporting executable specification 
and declarative programming in rewriting logic. From a technological point of view, 
Maude provides a flexible parser, reflection, parameterization and an efficient 
implementation of associative-commutative-pattern matching that permits obtaining 
efficient executable specifications, among many other features. From a theoretical 
point of view, rewriting logic is an expressive logical framework, in which many 
other logics can be naturally expressed due to its reflective character. In addition, 
several formal analysis tools have been build for Maude taking advantage of its 
reflective features: the Maude Church-Rosser Checker, the Maude Inductive Theorem 
Prover, the Maude Sufficient Completeness Checker, the Maude termination tool, 
among others (see [11] for a roadmap). 

The algebraic specification of OCL has been developed in the MOMENT 
framework (MOdel manageMENT) [12], which provides a set of generic operators to 
deal with models. The MOMENT operators use OCL queries to perform model 
queries and transformations, so that the part of OCL that provides support for 
methods and messages has not been taken into account. 

The structure of the paper is as follows: Section 2 provides an example; Section 3 
describes the algebraic specification of OCL, indicating the support for basic data 
types and collection types, and the support for collection operations; Section 4 
presents the integration of the algebraic specification of OCL within an industrial 
modelling framework; Section 5 provides the architecture of the prototype; Section 6 
presents some related works; Section 7 provides some conclusions and ongoing work. 
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2   The Coach Company Example 

The Meta-Object Facility standard (MOF) [4] provides a metadata management 
framework and a set of metadata services to enable the development and inter-
perability of model and metadata-driven systems. The main achievement of this 
standard is the definition of a common terminology in the Model-Driven Architecture 
initiative, which can be used conceptually in other model-driven approaches.  

As an example we have modelled a simple coach company in UML. In this design, 
a coach has a specific number of seats and can be used for regular trips or for private 
trips. In regular trips, the tickets are bought individually. In private trips, the whole 
coach is rented for a trip. The model is shown in UML notation in Fig. 1. The 
example provides a specific UML model, and the queries are applied to its instances. 
The OCL-like specification that is presented can also be used for queries over any 
software artefact that might be defined following the MOF conceptual framework: 
metamodels, regular models, and instances of models. 

 

Fig. 1. Coach company model 

OCL queries1 permit a more precise definition of the model above by adding 
constraints. For instance, we can indicate that overbooking is not allowed in a regular 
trip by means of the following invariant: 

context Coach: 
inv: self.trips -> select( t:Trip | t.oclIsType(RegularTrip))  

-> forAll(r:Trip | r.oclAsType(RegularTrip).passengers -> size()  
<= r.coach.numberOfSeats -> sum())  

3   Algebraic Specification of Generic2 OCL Queries 

In this section, we describe the parameterized algebraic specification of OCL that 
permits the query of either metamodels or UML models. The Maude term rewriting 
system [10] has been used for this purpose. Maude provides an algebraic specification 
language that belongs to the OBJ family3. Its equational rewriting mechanism 

                                                           
1 We consider that an invariant is built on an OCL query that returns a Boolean value. Thus, 

although we talk about invariants, we are also using OCL queries. 
2 In this work, OCL genericity refers to the possibility of reusing the OCL specification for any 

software artefact that can be represented as a model, including metamodels. 
3 In this paper, we assume some basic knowledge about algebraic specifications and OBJ-like 

notation. We refer to [12] for more details. 
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animates the OCL algebraic specification over a specific model instance, providing 
the operational semantics for OCL expressions. We have developed a plug-in that 
embeds the Maude environment into the Eclipse framework so that we can use it for 
our purposes. 

3.1   Overview of the Parameterized OCL Algebraic Specification 

In Maude, functional modules describe data types and operations on them by means 
of membership equational theories. Mathematically, such a theory can be described as 
a pair (Σ, E ∪ A), where: Σ is the signature that specifies the type structure (sorts, 
subsorts, kinds, and overloaded operators); E is the collection of equations and 
memberships declared in the functional module; and A is the collection of equational 
attributes (associativity, commutativity, and so on) that are declared for the different 
operators. Computation is the form of equational deduction in which equations are 
used from left to right as simplification rules, with the rules being Church-Rosser and 
terminating.  

OCL collection types and their operations have been defined in a parameterized 
algebraic specification, called OCL-SUPPORT{X :: TRIV}. Fig. 2 shows the elements 
involved in the parameter passing mechanism diagram. TRIV is the algebraic 
specification of the formal parameter, which is called theory in Maude.  

p

MM

p’

h

TRIV OCL-SUPPORT{X::TRIV}

SigMM OCL-SUPPORT{MM}

Formal parameter inclusion

Actual parameter inclusion
Actual parameter
specification

Value
specification

parameter
passing
morphism

induced
passing
morphism

Formal parameter
specification

Parameterized
specification

 

Fig. 2.  Parameter passing diagram for the OCL-SUPPORT{X :: TRIV} parameterized module 

SigMM is an algebraic specification that is obtained from a specific metamodel 
automatically. The SigMM specification constitutes the actual parameter for the OCL-
SUPPORT{X :: TRIV} module and provides a constructor for each type that is defined 
in the metamodel and an inheritance hierarchy among the types that appear in the 
metamodel. The MM view is the morphism that relates the elements of the TRIV 
formal parameter to the elements of the SigMM actual parameter.  

OCL collection types and related operations have been generically specified in the 
parameterized module OCL-SUPPORT{X :: TRIV}, where the formal parameter X has 
the trivial theory as type. The trivial theory only contains a sort Elt (referred to as 
X$Elt in the OCL specification) that represents the sort of elements that can be 
contained in an OCL collection. This sort represents the OCLAny type of the standard 
OCL specification. The OCL-SUPPORT{X::TRIV} module imports the basic data 
types and provides the constructors that are needed to define collections of elements. 
It provides collection operations as well. 
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In Fig. 2, p and p’ are inclusion morphisms that indicate that the formal parameter 
specification is included in the parameterized specification, and that the actual 
parameter specification is included in the value specification, respectively. The h 
morphism is the induced passing morphism that relates the elements of the 
parameterized module to the elements of the OCL-SUPPORT{MM} value specifi-
ation by using the MM parameter passing morphism. 

3.2   Algebraic Specification of OCL Types 

Types in OCL are divided into basic data types, collection types, and user-defined 
types. In this section, the algebraic support for the first two kinds of types is 
presented. 

3.2.1   Basic Data Types 
In OCL, there are four basic data types that have a direct correspondence to Maude 
basic data types. In Table 1, we show the correspondences between OCL 2.0 and the 
Maude data-type system and their corresponding primitives. In the table, when the 
operations have different symbols in OCL and Maude, we indicate the Maude symbol 
in brackets. 

Table 1. OCL and Maude data-type correspondences 

OCL 2.0 Maude Common operators 
Boolean Bool or, and, xor, not, = (==), <> (=/=), implies, if-then-else-endif (if-then-else-fi) 
Integer Int = (==), <> (=/=), <, <=, >, >=, +, -, *, / (quo), mod (rem), abs, max, min  
Real Float /, round (ceiling), floor 
String String concat (+), size (length), substring(substr), = (==), <> (=/=) 

3.2.2   Collection Types 
OCL provides four specific collection types that are defined as follows: 

− A Set is a collection that contains instances of a valid OCL type, where order is not 
relevant and duplicate elements are not allowed. 

− An OrderedSet is a set whose elements are ordered. 
− A Bag is a collection that may contain duplicate elements. Elements in a bag are 

not ordered. 
− A Sequence is a bag whose elements are ordered. 

To take into account the uniqueness and order features of an OCL collection, we 
introduce two intermediate sorts and their constructors (shown in Table 2): 
Magma{X} and OrderedMagma{X}. Basically, we define the sort Magma{X} as the 
sort of the term that represents a group of elements that are not ordered by means of 
the association and the commutativity attributes. The constructor for this sort has the 
symbol “,” and is associative and commutative. Thus, working with integers, “1, 2, 3” 
is a term that represents a valid Magma{Int}. In addition, we can state that “1,2,3” and 
“3,2,1” represent the same group of elements modulo the commutative and asso-iative 
attributes. 

Instead, the constructor of the sort OrderedMagma{X} does not have the commu-
ativity property, producing terms that represent ordered concatenations of elements. 
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The constructor for this sort has “::” as symbol and permits building ordered groups 
of elements by using the common syntax for lists in functional programming. Thus, 
the term “1 :: 2 :: 3” represents a valid ordered magma of integers, and “1 :: 2 :: 3” is 
different from “3 :: 2 :: 1” because the constructor “::” is not commutative. 

Table 2. Specification of groups of elements 

 
 
Terms of the sort Magma{X} are used to define sets (line 8), while terms of the sort 

OrderedMagma{X} are used in ordered sets (line 10). In Table 2, we show the Maude 
code that specifies the Set and OrderedSet types. In our specification, collections of 
collections are allowed by indicating that one collection can be an element of another 
collection (line 4). The sort Collection{X} can be considered as an abstract concept on 
the grounds that there is no specific constructor for it. Each collection has a constant 
constructor that defines an empty collection (lines 9, 11). The types Bag and Sequence 
have also been specified, similarly to the Set and OrderedSet types, respectively. In 
this specification, the uniqueness property of both the collection Set and the collection 
OrderedSet is checked in the operations that join two collections: union, inter- 
section and including for Set, and union, append, prepend, insertAt and including for 
OrderedSet.  

A view has been defined for each Maude simple data type in order to deal with 
collections of simple data types. For instance, to deal with collections of integers, the 
following view is defined: view Int from TRIV to INT is sort Elt to Int . endv   

This view is used to instantiate the OCL-SUPPORT{X} module as OCL-
SUPPORT{Int}. This way, the following example is a valid collection of integers: 

OrderedSet{ Set{1, 2, 3} :: Bag{1, 2, 3, 3} :: Sequence{3 :: 3 :: 2 :: 1}} 

3.3   Loop Operations or Iterators 

Two kinds of operations on collection types can be distinguished in OCL 2.0: regular 
operations and loop operations or iterators. Regular operations provide common func-
tionality over collections. Loop operations or iterators permit looping over the 
elements in a collection while performing a specific action. In this paper, we focus on 
the second type of operations.  

Every loop operation has an OCL expression as parameter. This is called the body, 
or body parameter, of the operation. As a guiding example, we use a standard OCL 
expression that permits obtaining the odd numbers from a set of integers: 

Set{1,2,3,4,5,6} -> select(i  | i.mod(2) <> 0) 

1. sort Magma{X} OrderedMagma{X} . 
2.  subsort X$Elt < Magma{X} OrderedMagma{X} . 
3.  sorts Collection{X} Set{X} OrderedSet{X} . 
4.  subsort Collection{X} < X$Elt . 
5.  subsorts Set{X} OrderedSet{X} < Collection{X} . 
6.  op _,_ : Magma{X} Magma{X} -> Magma{X} [assoc comm ctor] . 
7. op _::_ : Magma{X} Magma{X} -> Magma{X} [assoc ctor] . 
8.  op Set{_} : Magma{X} -> Set{X} [ctor] . 
9. op empty-set : -> Set{X} [ctor] . 
10.  op OrderedSet{_} : OrderedMagma{X} -> OrderedSet{X} [ctor] . 
11. op empty-orderedset : -> OrderedSet{X} [ctor] .
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In this expression, select is the iterator operation and the expression (i | i.mod(2) 
<> 0) is the body. Both iterator operations and body expressions are considered in the 
algebraic specification separately. This separation is needed to simulate higher-order 
functions in Maude by considering body functions as terms that can be passed as 
arguments to iterator operations.  

Using the example of the selection of odd numbers from an integer set, we study 
first how to specify the body of the select expression i  | i.mod(2) <> 0. Expression 
bodies can be evaluated to several types depending on the kind of operator in which 
they are used. For instance, the body expression of a select evaluates to a boolean 
value. Depending on the return type of the body expression, a symbol is associated to 
it indicating the name of the body expression. For the example, we obtain: 

 op isOdd : -> BoolBody{Int} [ctor] . 

The body expression is built by using the following operation: 

op _::_`(_;_`) : Magma{X} BoolBody{X} ParameterList Collection{X} -> Bool  . 

where the first argument is a term that represents a magma of elements, the second 
argument is the corresponding body symbol, the third argument is a variant list of 
parameters that can be empty, and the fourth argument is the whole initial collection 
to which the first argument belongs. To define a body function, the axioms must be 
provided by the user in Maude notation. For the example, we define the following 
equation: 

var intN : Int .  var intCol : Collection{Int} .  var PL : ParameterList . 
eq intN :: isOdd ( PL ; intCol ) = ((intN rem 2) =/= 0) . 

Once the body expression has been defined, we provide an algebraic specification 
of the operational semantics of the select operation for sets. The different collection 
operations have been defined as function symbols (terms of the sorts that are shown in 
Table 3), depending on the return type of each operation. For instance, the select 
operation, which returns a collection of elements, is defined as follows: 

op select : -> Fun{X} [ctor] . 

The operational semantics of iterator operations is defined independently of body 
operations. This fact permits the reuse of the algebraic specification of iterator 
operations simulating them as higher-order functions. Three axioms constitute the 
algebraic specification of the select operator for sets (as shown in Maude notation in 
Table 4). These are the arguments of select: BB is a variable that contains the boolean 
body expression, PL is a parameter list for the body operator, and Col is the original 
set. The first axiom considers the recursion case where there is more than one element 
in the set. If the body function validates to a true value, the element is added to the 
resulting set. Finally, the recursion over the rest of the elements continues. The 
second axiom considers the recursion case when only one element remains in the set 
so that the recursive trail ends. The third axiom considers the case where the set is 
empty. 

To invoke an iterator in an OCL-like way, the following operation is used: 

op _->_`(_;_;_`) : Collection{X} Fun{X} BoolBody{X} ParameterList Collection{X} -> 
Collection{X} . 
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where the first argument is the collection to be looped, the second argument is an 
iterator symbol, the third argument is the body operation, the fourth argument is a list of 
arguments for the body operation, and the fifth argument is the proper collection that is 
looped. The fifth argument is useful when the collection must be navigated in the body 
operation. When the iterator is processed, if this argument is not added, the recursion 
mechanism consumes the elements of the collection, and queries over the whole 
collection would not be complete. To invoke the select iterator over a set of integers 
with the body isOdd we use: Set{1, 2, 3, 4, 5, 6} -> select(isOdd ; empty-params ; empty-set) . 

Table 3. OCL collection operations that have been specified 

Collection operator symbols Iterator 
symbols 

 Return 
type 

Collection Set Ordered-
Set 

Bag Sequence Collection 

Fun{X} Collec-
tion 

union, 
flatten, 
including, 
excluding, 
iterate 

--, 
inter-
secti-on

--, 
insertAt, 
append, 
prepend 

intersection insertAt, 
append, 
prepend 

select, 
reject, any,  
sortedBy, 
collect, 
collectNest
ed, iterate 

EltFun{X} Element   first, last, 
at 

 first, last, 
at 

 

BoolFun{X} Boolean 
value 

includes, 
includesAll, 
excludes, 
excludesAll, 
isEmtpy, 
notEmpty 

    one, forAll, 
forAll2

4
, 

exists, 
isUnique 

IntFun{X} Integer 
value 

count, size, 
sum, product 

 indexOf  indexOf  

Table 4. Axiomatic specification of the select operation for sets 

 

4   Algebraic Specification of Metamodels and Models 

The advantage of OCL is that user-defined types can be used in expressions to 
perform queries on software artefacts (namely models). User-defined types are the 
types that can be used in a model: classes, associations, enumerations, and so on. One 
of the keys to success in the use of the OCL algebraic specification is the integration 
with an industrial modelling environment. In this way, OCL expressions can be 
                                                           
4 The forAll2 operation has been included to provide support when two iterators are being used 

in the forAll operation. 

eq Set{ N , M } -> select ( BB ; PL ; Col ) = 
if (N :: BB ( PL ; Col )) then  

Set{ N } -> including ( ( Set{ M } -> select ( BB ; PL ; Col )) ) -> flatten 
else Set{ M } -> select ( BB ; PL ; Col ) fi . 

eq Set{ N } -> select ( BB ; PL ; Col ) = if (N :: BB ( PL ; Col )) then Set{ N } else empty-set fi . 
eq empty-set -> select ( BB ; PL ; Col ) = empty-set .
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evaluated in a graphical model without having to prepare the information in a specific 
format manually. 

In our case, we have chosen the Eclipse Modeling Framework (EMF) [13]. EMF is 
a modeling environment that is plugged into the Eclipse platform and provides a sort 
of implementation of the MOF. It brings code generation capabilities and enables the 
automatic importation of software artefacts from heterogeneous data sources. 

Within the EMF, Ecore is the set of primitives that is used as metametamodel. 
Ecore can be viewed as an implementation of a subset of the class diagram of the 
MOF metamodel (or of the UML metamodel). An Ecore model is mainly constituted 
by EClass instances (informally called classes) that are related to each other by means 
of inheritance relationships and EReference instances (informally called references in 
Ecore and associations in UML)5. Using the MOF terminology, an Ecore model may 
represent either a metamodel at the M2-layer (for instance, the UML metamodel) or a 
model at the M1-layer (for instance, a UML model). Similarly, an Ecore model 
instance may represent either a model that conforms to a metamodel at the M1-layer 
(for instance, a UML model) or a model instance at the M0-layer (for instance, the 
instances of a UML model). From now on, the OCL support is explained by using the 
example of the UML model, although it would be exactly the same as defining OCL 
queries over Ecore metamodels.  

To perform OCL queries over EMF software artefacts, three types of projection 
mechanisms have been specified. The first obtains an algebraic specification from a 
metamodel. The second represents a model as a term in Maude. Finally, the third is 
the OCL expression compiler that targets Maude code. 

4.1   A Model as an Algebraic Specification 

The first projection mechanism obtains the algebraic specification6 that corresponds to 
a specific Ecore model automatically by assigning a code template to each concept of 
the Ecore metamodel. The algebraic specification that is generated by means of these 
templates is used as an actual parameter for the OCL-SUPPORT{X::TRIV} module 
(see Fig. 2). 

As example, we explain the code that is generated for an Ecore class. An Ecore 
class is constituted by attributes and references. This information is used to generate 
an algebraic sort that represents the collection of instances of this class and a 
constructor, whose arguments are: an internal identifier (represented by the type Qid7 
in Maude), a group of arguments that represent the attributes (basic data types in 
Maude) and a group of identifier collections (representing references). For instance, 
                                                           
5 For further information on the Ecore metamodel and the representation of Ecore models we 

refer to [13]. 
6 The algebraic specification that is generated for a given metamodel (defined in EMF as an 

Ecore model) permits the representation of models as algebraic terms. Thus, models can be 
manipulated by our model management operators. Algebraic specifications of this kind do not 
specify operational semantics for the concepts of the metamodel; they only permit the 
representation of information for model management issues. 

7 A Qid value is defined by a quote followed by an string (see [12] for further details). For 
instance, ‘trip1 is a valid Qid value. Qid values are used to define implicit instance identifiers 
in our framework. 
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when this code template is applied to the RegularTrip class in Fig. 1, we obtain the 
following Maude code: 

sort RegularTrip . 
op `(RegularTrip_ _ _ _ _`) : Qid Int Int OrderedSet {QID} OrderedSet {QID}  -> RegularTrip [ctor] . 

where the first argument is the internal identifier of the instance, the second argument 
is the inherited tripnr attribute, the third argument is the availableSeats argument, the 
fourth argument is the inherited coach reference (UML role), and the fifth argument is 
the passengers reference (UML role). This template is only applied to specific 
classes. When a class is defined as abstract, the code only contains the declaration of 
the sort and no constructor is generated, indicating that this class cannot be 
instantiated. 

4.2   An Instance of a Model as an Algebraic Term 

The second projection mechanism permits us to serialize an Ecore model instance as a 
term of the algebraic specification that corresponds to the Ecore model. The instance 
of a model is represented as a set of instances of the classes that constitute the model 
MM. This second projection mechanism is constituted by several code templates that 
serialize each class instance to a term of the sort that has been generated from the 
corresponding class by means of the first projection mechanism. 

For example, the instance of the model Trip (shown in Fig. 3) is serialized as a set, 
where all the elements are instances of the classes of the model, by using the 
constructors of the serialized algebraic specification sigMM, as follows: 

Set { (Coach ‘coach1 1 10 OrderedSet { ‘person1 } ), 
(RegularTrip ‘trip1 1 9 OrderedSet {‘coach1 } OrderedSet { ‘person1} ), 
(Person ‘person1 "Peter" OrderedSet { ‘trip1 } )  }  

The internal structure of a term is transparent to the user of the algebraic specifi-
cation due to some navigation operations, which permit the user to navigate in an 
OCL-like way throughout the roles and attributes of the objects of the model instance. 

tipnr : int = 1
availableSeats : int = 9

trip1 : RegularTrip

name : string = Peter

person1 : Person
id : int = 1
numberOfSeats : int = 10

coach1 : Coach

 

Fig. 3. Object diagram defined as an instance of the model defined in Fig. 1 

Finally, the OCL-SUPPORT{MM} module provides all the operations that are 
needed to define an instance of a model (constructors to define collections, to define 
basic data type values and user-defined types) and to apply OCL queries to instances 
of any model (collection operations, iterators, and user-defined navigation 
operations).  

4.3   Translation of OCL Expressions into Maude Code 

The third projection mechanism compiles standard OCL code to Maude code that 
uses operations of the OCL-SUPPORT{MM} module, which have been introduced in 
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Section 3. As example of this compilation process, we show that the query that is used 
in the invariant in Section 2 can be written by defining the body expression of the 
forAll iterator as a body operation. This body operation checks that all regular trips 
have a lower number of passengers than the number established by the 
numberOfSeats attribute of the corresponding Coach instance. The Maude code that is 
automatically obtained for the body expression of the forAll operator (by using the 
operator that is explained in Section 3.3) in the example is as follows: 

var self : trip-Trip . var tripModel : Set{trip} .  
op notOverbooked : -> BoolBody{trip} [ctor]. 
ceq self :: notOverbooked ( PL ; tripModel ) = 
 ((((self :: oclAsType ( ? "RegularTrip" ; tripModel )) :: passengers ( tripModel))  
 -> size) <= ((self :: coach ( tripModel ) :: numberOfSeats) -> sum))  
if self :: trip-Trip . 
eq self :: notOverbooked ( PL ; tripModel ) = false [owise]. 

where: self is a variable of type Trip and tripModel is a set that represents the model 
instance to be queried; expressions with the form c :: att permit the navigation of an 
attribute att of the class instance c; and expressions with the form c :: ref ( 
ModeInstance ) are used to navigate the instances associated to the class instance c 
through the reference ref in the model instance ModelInstance. The invariant is coded 
as follows: 

red tripModel -> select ( oclIsTypeOf ; ? "Coach" ; tripModel ) -> forAll(notOverbooked; empty-params ; 
tripModel) . 

where tripModel is a variable that contains the model instance to be checked, and the 
select and the forAll operation provide the body expression of the invariant in Maude 
code by using the oclIsTypeOf operator and the above body expression notOver-
booked. Thus, we check if all the instances of the class Coach hold the notOver-
booked invariant. 

5   MOMENT-OCL: A Prototype for Executing Algebraic OCL 
Expressions Within the Eclipse Modeling Framework 

The OCL algebraic specification that has been presented in the paper permits both the 
representation of models as sets and the use of queries and invariants over them. This 
permits the use of OCL expressions in algebraic model transformations, such as those 
presented in [6]. In addition, we have developed a simple OCL editor that permits the 
evaluation of OCL queries and invariants over EMF models or model instances. In 
this section, we provide a brief description of the architecture of this prototype, which 
is called MOMENT-OCL. 

Fig. 4 shows the components of the MOMENT-OCL prototype that permit the 
execution of algebraic OCL expressions over EMF models: 

− The OCL Projector component is the module that projects the OCL expression to 
Maude code. It makes use of the Kent OCL library [14] to validate the syntax and 
the semantics of the expression. The process of compilation from OCL to Maude 
follows the typical structure of a language processor. The process is divided in two 
phases: an initial analysis phase and a second synthesis phase.  
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In the first phase, we have reused the OCL support of the Kent Modelling 
Framework (KMF) [14], which provides lexical, syntactical and semantical 
analysis of OCL expressions over an EMF model. KMF analyzes an OCL 
expression, taking into account the semantics of the model, and produces an 
Abstract Syntax Tree (AST) to represent the data that is needed in the synthesis 
phase. 

 

Fig. 4. MOMENT-OCL Architecture 

In the second phase, once an OCL expression has been analyzed by KMF 
correctly, the AST is parsed and Maude code for body expressions, queries and 
invariants are produced in order to evaluate OCL expressions over EMF models in 
Maude.  

− The Module Loader component obtains the algebraic specification from a meta-
model, by instantiating the OCL-SUPPORT{X::TRIV} module with the signature 
obtained for a specific metamodel. This algebraic specification is extended with the 
Maude code obtained from the compilation of OCL expressions by means of the 
OCL Projector component. The Module Loader uses three other components: the 
M2 Projector, which projects a metamodel MM (the Coach model in the example) 
as the signature SigMM; the M1 Bridge, which projects a model (model instance in 
the example) as a term of the corresponding algebraic specification OCL-
SUPPORT{MM}; and the Kernel Loader, which instantiates the parameterized 
algebraic specification of OCL with the signature SigMM, providing the formal 
environment where OCL expressions for the model MM can be evaluated. 

− The OCL Editor permits the definition of OCL queries and invariants over EMF 
models and provides syntactical and semantical analyses of the expressions by 
reusing this functionality from the KMF. It permits the evaluation of queries and 
invariants. If we consider an invariant or query, we can analyze the expression 
syntactically and semantically, evaluate it by showing the result, or parse it to 
Maude code, as indicated in Fig. 4. 

6   Related Works 

Although OCL is not as well supported as UML in some CASE tools, there is a 
growing interest in providing support for OCL in order to achieve different goals. In 
[15], several tools that support OCL are studied. Taking them and others into account, 
some technological examples, which are classified by their main goal, are provided: 
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− Model transformation: MOMENT, ATL, YATL. 
− Model verification: the KeY System. 
− Requirements validation: ITP/OCL, the USE tool, the Dresden OCL Toolkit,  

Borland Together, OSLO, Rational Software Modeller. 
− Code generation (also for requirements validation): Octopus, OCLE, Kent OCL 

tool. 
− OCL Testing: HOL/OCL. 

 

Fig. 5. MOMENT-OCL screenshot 

Nevertheless, only a few of them rely on formal methods to provide support for the 
operational semantics of OCL, and even fewer tools are integrated in (commercial) 
CASE tools. We focus on some tools that rely on formal methods in this section. 

The KeY system [16] provides functionality for formal specification and deductive 
verification within a commercial CASE tool (Together Control Center). In this 
approach, the user defines a software artefact in UML that can be annotated with OCL 
constraints. The OCL constraints are translated into formulas of JavaDL (a dynamic 
logic for Java) that can be reduced by means of an interactive theorem prover.  

The USE tool [17] provides interactive validation of OCL constraints over a 
model. This tool reads the input model and the OCL constraints from textual 
resources, supporting class diagrams, object diagrams and sequence diagrams. After-
wards, objects and links can be graphically created to define a snapshot of a running 
system. This tool has been extended for the automatic generation of test cases and 
validation cases. 

The ITP/OCL tool [18] provides automatic validation of UML static class dia-
grams with respect to OCL constraints. It provides an algebraic OCL specification 
using Maude, where UML class diagrams and object diagrams are formalized by 
means of algebraic specifications in membership equational logic and where OCL 
constraints are defined as formulas in membership equational logic theories. A 
graphical front-end is being developed for the ITP/OCL tool, which permits the 
definition of class diagrams and the definition of correct object diagrams. 
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In these last approaches, only UML diagrams are considered for validating OCL 
expressions. In the MOMENT-OCL specification, OCL queries can be automatically 
applied either to metamodels or to models that may be defined in EMF by making use 
of the Maude parameterization mechanism, following a more automated model-driven 
oriented approach. In our approach, while Maude is used to execute OCL expressions, 
the OCL expressions can be applied to graphical model-based software artefacts 
through the EMF. Whenever EMF, and related support, is used to develop a (domain 
specific or UML) modelling environment, we can use MOMENT-OCL to provide 
invariant checking and query evaluation. Thus, our philosophy does not consist in 
developing a new modelling environment to provide OCL support, we provide it for 
other existing modelling approaches. Other java-based approaches that integrate OCL 
within the EMF are [14, 19, 20], from which we took the Kent library to reuse the 
analysis phase for the ocl compilation. 

By using Maude, we avoided the development of a new plugin for providing 
support for OCL from scratch. We specified many first-order properties in member-
ship equational logic by means of operators that are applied modulo associativity and 
commutativity. In addition, the underlying membership equational logic enjoys a 
precise mathematical semantics [21] and an efficient implementation in Maude [22]. 

7   Conclusions and Further Work 

OCL is becoming a de-facto standard for defining constraints and queries in the 
Model-Driven Engineering field. The number of tools that provide support for this 
language is growing, and although the operational semantics of OCL is said to be 
formal, only a few tools rely on formal methods to define its operational semantics. 

In this paper, we have introduced an algebraic specification of part of the 
operational semantics of OCL 2.0 from an implementation point of view. This specifi-
cation takes advantage of several features of Maude for the sake of reuse: parameter-
ization, associative-commutative-pattern matching, a flexible parser, among others.  

In the specification we have taken into account the Ecore metamodel8 and part of 
the OCL standard that permits the definition of queries and invariants. This 
specification is used to perform model queries in the EMF and to represent EMF 
software artefacts as algebraic specifications or as terms. Such terms can be 
manipulated by means of model management operators in the MOMENT framework 
(MOdel manageMENT) [12], which provides a set of generic operators to deal with 
models. The MOMENT operators use OCL queries to perform model queries and 
transformations, so that the part of OCL that provides support for methods and 
messages has not been taken into account. 

The OCL specification has been developed generically so that it can be used for 
any kind of metamodel, model or model instance. Thus, not only can OCL be studied 
in an algebraic setting, it can also be used in the well-known modelling environment 
EMF. Further work consists in exploiting the formal features of the OCL specification 
from a more-theoretical point of view and its application to real case studies.  

                                                           
8 Interface and simple data type definition has not been addressed yet in the specification. 
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