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Abstract. In object-oriented software development, UML artefacts are
used to illustrate and define the structure and the behaviour of the soft-
ware system, while the semantics is usually described in a formal or in-
formal specification language. The specification often consists of sets of
constraints defined over the software components. When implementing
the model, the specification is taken into consideration by the imple-
mentor. Since a significant proportion of the implementation consists of
human-generated code, errors may be introduced in the implementation
model. To detect these errors, the specified constraints need to be checked
in the implementation. In this paper, we present Limes, an imperative
constraint implementation language, which adopts aspect-oriented pro-
gramming to describe constraint checking in a non-invasive way. Limes
can be used at the design level, and can add constraint checking to the
implementation.

1 Introduction

The Unified Modeling Language (UML) is a language for specifying and
constructing the artefacts of software systems, and thereby allows to create
models of systems. While UML models specify the structure and behaviour of
systems, the semantics of the individual artefacts are usually captured in spec-
ifications expressed in a number of languages, most of them being declarative.
Often specifications consist of sets of constraints specified over the artefacts.
One specification language is the Object Constraint Language (OCL). Origi-
nally developed by IBM, the OCL is now part of the UML specification. In
model driven engineering (MDE), UML models are often transformed directly
into an implementation language. Since the transformation from the model to
the implementation is not fully automated, some level of manual implementation
is required. However, human-generated code might deviate from the specifica-
tion, due to possible programming errors, or a misinterpretation or disregard of
it. It is, therefore, desirable to be able to automatically check the implementation
against the specification. However, an automatic translation of the specified con-
straints into executable code, and an instrumentation of this code into the target
program is not a straightforward task. This is due to the large gap between the
abstraction level of the specification language and that of the implementation
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language. While the former is normally a declarative language specificly designed
for writing specifications, the latter is normally an imperative general-purpose
language. Even though tools exist to instrument OCL constraints to the tar-
get program, these tools are language specific and they often make assumptions
about implementation details.

In this paper we introduce Limes1, a language which allows to imperatively
specify how and when to check the constraints of a model in a platform indepen-
dent way. It provides information to add constraint checking to the implementa-
tion of the model, and by adopting aspectual behaviour it is able to perform the
checking in a non-invasive way, i.e. without the need to manipulate the imple-
mentation. Limes code does not rely on any implementation specific information,
and can therefore be written while still being a the design level. The specifica-
tion of Limes is confined within the domain of constraint checking. Alltogether,
Limes allows to narrow the gap between specification and implementation and
integrates well with MDE. Limes code provides all the information necessary to
put the constraints into operation, and thus can be considered an implementa-
tion of the constraint checking.

The remainder of this paper is organised as follows: Section 2 provides a
discussion on the fundamental concepts behind aspect-oriented programming.
Section 3 forms the main part of the paper and provides an overview of the
language, demonstrating its main features with examples. Section 4 outlines
the architecture of our current prototypical Limes compiler. Section 5 discusses
related work, followed by Sect. 6 discussing some general aspects of Limes . Sec-
tion 7 concludes the paper and sketches some areas of future work.

2 Background: Aspect-Oriented Programming (AOP)

Despite the success of object-orientation in the effort to achieve separation of
concerns, certain properties cannot be directly mapped in a one-to-one fashion
from the problem domain to the solution space, and thus cannot be localised
in single modular units, but their implementation cuts across other units. This
crosscutting phenomenon manifests over the inheritance hierarchy. As a result,
developers are faced with a number of problems including a low level of co-
hesion of modular units, strong coupling between modular units and difficult
comprehensibility, resulting in programs that are more error prone. Crosscut-
ting concerns include persistence, authentication, synchronisation and logging.

Aspect-Oriented Programming (AOP) [1,2] addresses those concerns by intro-
ducing the notion of an aspect definition, which is a modular unit that explicitly
captures and encapsulates a crosscutting concern, and therefore “can not be
cleanly encapsulated in a generalized procedure (i.e. object, method, procedure,
API)” [1]. Even though AOP is neither limited to object-oriented programming
nor to the imperative programming paradigm, we will restrict this discussion to
the adoption of AOP in that context. There is currently a growing number of
1 ["li:m@s], named after the ancient Roman wall built to keep out “barbarians”. Limes

was designed to keep out bugs.
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approaches and technologies to support AOP. Our work is based on the linguis-
tic model introduced by the general-purpose aspect-oriented language AspectJ
[3] which is perhaps the most notable technology today, with a collection of
supporting tools and an active developer community.

AspectJ has influenced the design dimensions of several other general-purpose
aspect-oriented languages, and provided the community with a common vocab-
ulary based on its own linguistic constructs. In the AspectJ model, an aspect
definition provides behaviour to be inserted over functional components. This
behaviour is defined in method-like blocks called advice blocks. However, unlike
a method, an advice block is never explicitly called. Instead, it is activated by
an associated construct called a pointcut expression. A pointcut expression is
a predicate over well-defined points in the execution of the program which are
referred to as join points. When the program execution reaches a join point cap-
tured by a pointcut expression, the associated advice block is executed. Even
though the specification and level of granularity of the join point model differ
from one language to another, common join points in current language specifica-
tions include calls to methods and execution of methods. Most aspect-oriented
languages provide a level of granularity which specifies exactly when an advice
block should be executed, such as executing before, after, or instead of the code
defined at the associated join point. As a result, with an aspect-oriented lan-
guage we are able to make quantified statements such as “whenever there is a
call to a particular method (or a group of methods), before running the code
that should run, execute the code in a given advice block.”

A program in any general-purpose aspect-oriented language is essentially two-
dimensional: One dimension describes the functional components written as de-
finitions of classes, while another dimension describes aspect definitions written
in an aspect language [1]. Like a class definition, an aspect definition can also
contain state and behaviour (variables and methods). Additionally it can contain
pointcut expressions and advice blocks. Furthermore, much like functional com-
ponents must be composed to perform a computation, functional components
and aspects must also be composed. This composition is referred to as “weaving”
and it is performed by a special tool called a weaver. The weaver evaluates the
pointcut expressions and determines the join points where the code of the advice
block is inserted. The weaving process (Fig. 1) may take place either statically
or dynamically.

As an example, consider a system where all calls to any method of some
target classes should be logged. The implementation of logging would be scat-
tered over a number of modules. In this example, the method calls constitute
the join points where logging behaviour must be executed. An aspect definition
encapsulating the logging behaviour would contain an advice block to perform
the logging—perhaps creating an entry in a log file—and bind the advice block
to a pointcut expression defined as a disjunction over relevant method calls.
Once any of the methods captured by the pointcut expression is called, the as-
sociated advice block executes. The join point model and the related pointcut
expression mechanism of AspectJ is highly expressive, including support
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Fig. 1. The weaving process

for pattern expressions. In the example, pattern expressions would allow the
definition of a logging aspect with such a complex behaviour as: “log all calls of
set* methods in subclasses of a certain base class.”

3 Limes: A Constraint Checking Language

Limes is a language to specify how and when to check constraints. It allows
the description of constraint checking for a model, relying exclusively on struc-
tural information. Therefore Limes code can be written independently of the
particular implementation of the model, and provides a platform independent
model (PIM) for the constraint checking. In order to transform it to a platform
specific model (PSM), we can follow either one of the following two approaches:
First, constraints written in Limes can be transformed into the implementation
language of the program to be checked, and second, these constraints can be
transformed directly into executable code.

In the subsequent subsections we will first discuss the requirements for Limes
and then provide an overview of the language, demonstrating its main features
with examples. We will also discuss the problem of invariant checking and list
conditions which an implementation of a system must fulfil in order to allow
for the instrumentation of the model generated from its corresponding Limes
definitions. The core specification of the Limes grammar is listed in the appendix
of this paper.

3.1 Requirements for Limes

Our objective in building the requirements of Limes was to create a language
which allows the specification of constraint checking for an implementation of a
model without knowledge about implementation details. We aimed at the con-
straints defined by the types of assertions in the Design by Contract (DbC) prin-
ciple [4]: preconditions, postconditions and invariants. Additionally, we placed
the following requirements:

Describe constraints separately. Constraint checking should be described
separately, without the need to modify the model or its implementation.
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Free of side effect. The instrumentation of constraints should not affect the
normal execution of the program, except for some unavoidable overhead in
the execution speed of the program.

Platform independence. Limes code should not rely on any platform specific
features.

Customisability. To allow the refinement of the constraint checking with im-
plementation specific code, constraint checking specified in Limes should be
modifiable in a non-invasive way.

Detailed context information. When detecting a violation of a constraint,
as much information about the location of the error as possible should be
made available.

Transformable. Limes should be easily transformable into different aspect-
oriented languages. This allows to rapidly develop a transformation into
various target languages, and thereby support a transformation to PSMs.

3.2 Features of Limes

Limes offers the following features:

Encapsulation of constraint checking. Constraint checking information is
encapsulated in aspect definitions.

Minimisation of side effects. Though imperative by nature, Limes prevents
the introduction of any side effects other then changing terminating to non-
terminating behaviour, and changes in exectution speed and ressource usage.

Semantic checking at Design Level. The semantic analysis of Limes code
is based exclusively on structural model information and hence it can be
performed with only a PIM available. It is not necessary to defer the semantic
checking until the source code is generated.

Non-invasive customisability. It is possible to customise how and when to
perform the constraint checking in the implementation of the main program
using aspect inheritance.

Transformable. The specification of Limes was held as simple as possible. Ad-
ditionally, we added only language features which can be mapped to existing
aspect-oriented languages such as AspectC++ [5], AspectJ and Eos [6] (an
aspect-oriented extension for C#). Therefore, transformation of Limes to
common aspect-oriented languages should be straightforward.

3.3 An Overview of Limes

Limes is an imperative aspect-oriented language to implement constraint check-
ing. It uses the notion of aspect definitions, pointcut expressions and advice
blocks to encapsulate the checking of constraints. The constraint checking code
relies on type information from the model which can be available in various
forms, e.g. as a UML model, as the source of the implementation or as the byte
code of the checked program.

In this subsection, we will provide an overview of Limes, illustrating its main
features with examples. The examples will implement constraints for the class
shown in Fig. 2.
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Fig. 2. Example class diagram

Aspects to Encapsulate Constraint Checking. Limes uses aspect defini-
tions to encapsulate the checking of constraints. One aspect specifies the con-
straints for a single class. The name of the class to be checked is given in square
brackets after the aspect name. Listing 1 shows the basic syntax of an aspect.

1 aspect PersonConstraints [Person] {
2 // constraint checking code here
3 }

Listing 1. Aspect stub

Pointcuts and Advices to Attach the Constraint Checking Code. A
pointcut expression specifies the points in the execution where a constraint must
be checked, and an advice block specifies the checking policy. The deployment
of the pointcut and advice mechanism allows a non-invasive addition of the
constraint checking to the corresponding class. Listing 2 shows the grammar
rule specifying the syntax for the definition of an advice block. The syntax is
specified in EBNF according to the rules provided in the appendix.

1 advice_def = advice_type ( typed_parameter_list ) [[
2 pointcut_expr ]] advice_body.
3 advice_type = ������ | ����� | ������ ����� | ����	
.

Listing 2. Grammar rule for an advice definition

The typed parameter list specifies the pointcut signature, a list of parameters
available in the advice body. The parameters must be bound by (i.e. provided by)
the pointcut expression. A pointcut expression is a predicate of atomic pointcut
expressions.Amongothers, the following atomicpointcut expressions are available:

1. execution(methodPattern): matches the execution of any method matching
the specified method pattern.

2. this(identifier): binds the current object (this) to the parameter of the
pointcut signature named identifier.
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3. args(identifier1, identifier2,. . .): binds the parameters of the matched
methods to the parameters named identifier1, identifier2, . . . of the pointcut
signature.

The body of the advice block contains the code performing the checking of
constraints. An advice block can be executed before, after, before and after,
or instead of (around) the code corresponding to the join point(s) specified in
the pointcut expression. During the execution of an around-advice, the original
behaviour defined by the join point can be invoked through a call to the spe-
cial function proceed(). Listing 3 shows an advice definition implementing the
checking of a precondition of the divorce() method. The pointcut expression
given in line 2 together with the type of the advice (before) specify that the ad-
vice is executed before the execution of the divorce() method in class Person.
Additionally, the current Person instance is bound to the parameter self. The
meaning of the keyword const in line 1 is explained subsequently. To check the
precondition, the advice calls the special function precondition() which tests
the condition given as the first argument.

1 before(const Person self)
2 [[ this(self) && execution(void Person.divorce()) ]] :
3 { precondition(self.spouse != null , "divorce()"); }

Listing 3. Demonstrating precondition checking

Concepts to Prevent Side Effects. The specification of Limes provides var-
ious concepts to avoid the introduction of side effects through code written in
Limes into the checked program.

To reduce the possibility of introducing an infinite loop, no conditional loop
construct was added. The only type of loop in Limes is a foreach loop which
allows the iteration over a collection with a fixed set of elements. However, it is
still possible to create infinite loops by using recursive function calls.

Another provision is that every around advice must contain exactly one
proceed() call which must not be conditional2. This ensures that the original
behaviour defined by the join point is executed.

Finally we added a const concept similar to the one supported by the C++
programming language [7]. This concept allows to define an object as being
constant, i.e. denoting that its fields cannot be modified and none of its mutator
methods (methods that modify its object) can be called. This relies on the model
to provide the information which methods are mutators. In our implementation
which utilises the UML model, every non-query method is assumed to be a
mutator. Similarly, a constant object can only be given as an argument to a
method, if the method declares that parameter not to be modified, which again
relies on the model providing this information. Furthermore, whenever a call to
2 A less restrictive condition would be that in every execution path proceed() must

be called exactly once, but this is harder to check at compile time.
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a method of a constant object returns an object, the returned object is assumed
to be constant to prevent exposing internal objects. The const keyword can be
added as a modifier to a variable definition, marking its referenced object to be
constant. Advice parameters bound by pointcut expressions must be defined as
const, since they expose objects of the main program. Consequently a constant
variable can only be assigned to another constant variable.

Special Functions to Perform the Condition Checking. Limes offers a
number of special functions to support the implementation of constraint check-
ing. First, there are precondition(),postcondition(), and invariant(), each
of them checking the corresponding constraint. As the first argument they re-
quire a boolean expression specifying the condition to be checked. Additional
arguments can be given to specify context information about the constraint. To
allow transformations to a target implementation language to implement differ-
ent strategies in order to handle constraint violations, the semantics of those
functions is only partially defined Only that the constraint is violated if the first
argument evaluates to false, that those functions do not return a value, and the
meaning of the additional arguments is defined by Limes . For example, while
one transformation might raise an exception, another might choose to merely
log the constraint violation. A possible Java implementation corresponding to
the precondition() call given in Listing 3 line 3 is shown in Listing 4.

1 if (!(self.spouse != null))
2 System.err.println("Precondition " + expression.toString()+
3 " for "+class+"."+method+" violated");

Listing 4. Transformed precondition call

Other special functions available in Limes include copy() and equals().
Function copy() is defined to return a non-constant, deep copy of a given object.
Function equals() performs a value comparison of its two arguments. Addition-
ally there is an == operator, which checks whether its operands refer to the same
object. Listing 5 shows an advice definition using copy() to save the old state
of an object.

1 around(const Person self)
2 [[ this(self) && execution(void Person.birthday()) ]] :
3 {
4 Person old = copy(self);
5 proceed();
6 postcondition(old.getAge()+1==self.getAge(), "birthday()");
7 }

Listing 5. Advice definition utilising the copy() function

������� to Deal with Collections. Associations with a multiplicity greater
than one are common in software models and therefore a constraint language
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must support this concept. For Limes a small hierarchy of Collection classes
including Collection, Bag, Set and Sequence is defined. Those classes provide
a small interface allowing the convenient implementation of the most common
constraints. Additionally, we introduced a foreach loop which iterates over a
Collection and allows to check more complex conditions. An advice definition
implementing the invariant that each sibling’s siblings must contain the self-
object is shown in Listing 6. The information on whether a variable refers to a
collection, must be provided by the model providing the type information. The
UML model utilised by the current Limes implementation provides this informa-
tion by explicitly illustrating collections through associations with a multiplicity
greater than one.

1 before after(const Person self) [[ publicFunction(self) ]] : {
2 foreach(const Person current : self.siblings) {
3 invariant(current.contains(self));
4 }
5 }

Listing 6. Advice definition utilising foreach

Function and Pointcut Overriding to Support Customisability. Limes
was designed to support the implementation of complex constraints. However,
unanticipated needs occur in practice, which would usually lead to unconven-
tional, error prone and unreadable workarounds (i.e. hacks). To reduce the
need for those hacks, Limes supports aspect inheritance which enables the non-
invasive customisation of constraint checking specified in Limes . If Limes proves
not to be powerful enough to specify how to perform the constraint checking,
virtual methods can be used to allow the target implementation language to
refine the constraint checking code. If Limes proves not to be powerful enough
to specify when to perform the constraint checking, pointcut definitions can be
overridden in the target implementation. An example to illustrate this is given
in Listing 7.

1 aspect PersonConstraints [Person] {
2 abstract void checkComplexPrecondition(const Person self);
3 before(const Person self) [[ this(self) &&
4 execution(void Person.marry(Person)) ]] :
5 {
6 checkComplexPrecondition(self);
7 }
8 abstract pointcut underageCheck(const Person self);
9 before(const Person self) [[ underageCheck(self) ]] : {

10 invariant(self.age>=18 || self.spouse==null, "notUnderage");
11 }
12 }

Listing 7. Customisable aspect
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Here, the advice definition to check the precondition of the marry() method
(lines 3–7) calls the abstract method checkComplexPrecondition(). This re-
quires that the method is implemented in a derived aspect. In line 8 we define
an abstract pointcut named underageCheck, which is used in the second advice
definition (lines 9–11) to specify when to check the invariant notUnderage. Be-
cause the pointcut is abstract, it must be implemented in a derived aspect. The
derived aspect can be defined in the implementation language used for the main
program, and thereby use its full feature set for both the pointcut definition and
the implementation of the abstract method. Listing 8 shows an AspectJ defin-
ition of an aspect that extends and customises the aspect PersonConstraints
shown above. It is also possible to override method and pointcut definitions.
The concept of overriding pointcut definitions is similar to the overriding of
methods. Note that when overriding or implementing pointcut definitions, the
pointcut signatures must match.

1 aspect PersonConstraintsRefine extends PersonConstraints {
2 void checkComplexPrecondition(Person self)
3 { /* an AspectJ precondition check */ }
4 pointcut underageCheck(Person self) : <an AspectJ pointcut expression> ;
5 }

Listing 8. Customising an aspect in AspectJ

3.4 Invariant Checking with Limes

While specifying when to check pre- and postconditions is rather straightforward,
specifying when to check invariants requires careful consideration. According to
Bertrand Meyer, “[an] invariant must be satisfied after the creation of every in-
stance of the class, (and) be preserved by every exported routine of the class (that
is to say, every routine available to clients)”[4]. Most often this is interpreted
as an invariant must be satisfied after the constructor execution, and before and
after the execution of every public method. However, we believe that it is valuable
to also be able to specify invariants which must hold true before and after the
execution of protected methods. The example in Listing 9 shows the code for
checking the constraint that a married person should not be underage.

1 aspect PersonConstraints [Person] {
2 pointcut protectedPublic(const Person self) [[
3 (execution(* Person.ctor(..)) || execution(protected+ * Person.*(..)))
4 && this(self) && !cflow(within(PersonConstraints)) ]];
5 before after(const Person self) [[ protectedPublic(self) ]] : {
6 invariant(self.getAge()>=18 || self.spouse==null, "notUnderage");
7 }
8 }

Listing 9. Demonstrating invariant checking
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In lines 2–4 the pointcut protectedPublic is defined. It captures the exe-
cution of the constructor (ctor) and the execution of every method specified
protected or less restrictive (i.e. protected and public). The !cflow(within(
PersonConstraints)) pointcut expression excludes every join point where the
control flow is within the execution of any code in the PersonConstraints. It
avoids invoking the advice when calling getAge() from the advice itself which
would trigger an infinite loop. The before after advice in lines 5–7 executes
before and after the join points captured by protectedPublic. This is equiva-
lent to defining the same advice twice, once as a before, and once as an after
advice. Note that even though this seems to execute the advice before a con-
structor call, Limes defines that before after does not execute advice blocks
before constructor calls.

While it is easy to provide a pointcut expression to check invariants after
the constructor execution and before and after the execution of every (public)
method, this has two major drawbacks. First, it results in checking invariants
unnecessarily frequently, and second it does not necessarily detect invariant vi-
olations at the points in the execution of the program where these violations
take place. Consider, for example, an object A containing a reference to an
object B. Now, if an invariant is specified for A which involves B, and B is
changed outside of A, this constraint might be violated. The violation will go
undetected until a (public) method of A is called. Using the pointcut language,
it is possible to give a more sophisticated definition of when to check an invari-
ant. Through abstract pointcuts it is also possible to delegate the definition of
when to perform the checking to the implementation of the model. There the
implementation language might provide a sophisticated join point model. Since
a fine-grained specification of the condition under which invariants must be eval-
uated normally requires intimate knowledge of the implementation, we believe
it would be justified to delegate this task to the implementor of the model in
this case.

3.5 Target Language Requirements

When Limes should be transformed into the general-purpose implementation
language used for the rest of the system, the target implementation must meet
some requirements to allow for an easy transformation, the most notable of which
are listed below:

1. The implementation must be written in an aspect-oriented language (or an
aspect-oriented extension for the language must exist) which supports the
notion of aspect definitions, pointcut expressions and advice blocks.

2. The implementation language must be able to express the pointcut expres-
sions available in Limes .

3. The implementation must allow to perform a value comparison of objects.
4. The implementation must provide a consistent way to iterate over collections.
5. The implementation must provide a consistent way to create deep-copies of

objects.
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4 Implementation

We have implemented a parser and analyser for Limes in AspectJ. Together they
create an abstract syntax tree (AST) decorated with type information. The AST
can be used as the basis for further transformations, and is accessible through
a Java API using the Visitor design pattern, but could also be serialised and
read using another programming language. The parser is generated using the
Java Compiler Compiler (JavaCC) [8] and creates the initial AST. The analyser
decorates the AST with type information, accessing the type information of
the model through a type information provider. Information providers based on
different types of models can be implemented. We have only implemented one
provider, based on the UML model. Other possible models include various inter-
nal models of CASE tools, but also the source code of a program or some kind
of byte code. The support of different model types allows for an easy integration
of Limes support into existing CASE tools, which often have their own internal
model format. It also allows to add constraint checking to existing applications
without any high-level models available.

We have also implemented a Limes to AspectJ converter, which transforms the
decorated AST into AspectJ. The implementation was mostly straightforward.
The only major difficulty was the transformation of the atomic return pointcut
expression available in Limes which exposes the return value of a method, since
there is no such pointcut expression in AspectJ.

5 Related Work

Besides DbC, Unit testing [9] is another approach that aims at detecting im-
plementation errors. It is used to test software artefacts by calling operations
of them with a fixed set of input data, and checking assertions about the state
after the operation. However, unit testing can only test with input data provided
by the test case designer, who might not forsee all the input data possible dur-
ing the execution of the program. On the other hand, constraint checking can
check the constraints during the whole test cycle of the software. Nevertheless,
unit testing provides a valuable addition to constraint checking, as it allows the
specification of a fixed set of input data which is consequently tested. In fact,
the combination of unit testing and automated constraint checking provides a
powerful method for error detection [10].

Even though for many major programming languages without native DbC
support frameworks and tools exist to add this missing feature, limited support
exists for an automatic instrumentation of constraints specified for a model.
Java is a notable exception here, where OCL is the main target for research
dealing with constraint instrumentation. For example, the Dresden OCL Toolkit
(DOT) [11,12] provides support for parsing and semantic checking of OCL ex-
pressions. Through a generator, the DOT is capable of generating Java code. In
his work, Wiebicke [13] extends the DOT with the capability to instrument con-
straints to Java programs. To achieve this, the original source code is modified
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and the constraint checking code is added. Wiebicke also lists a number of other
tools dealing with the instrumentation of constraints. Since the DOT can also
be utilised by other code generators, we feel it could also provide the basis for
transforming OCL expressions to Limes code.

Another approach towards monitoring OCL constraints is proposed by Rich-
ters and Gogolla [14]. It is based on the USE tool [15] which allows to validate
OCL constraints for an instance of a UML model. In order to test and validate
an implementation, the authors use aspect orientation to detect changes in the
implementation objects, and map those back to the modelling level, keeping
an instance of the UML model synchronised with the implementation objects.
They then validate the OCL constraints for the model instance. This approach
requires a duplication of the application data and is implemented for the Java
language.

Briand et al. [16] propose the adoption of grammar rules to transform OCL
constraints into aspects, which instrument the constraint checking to the target
program. Even though the approach is based on AspectJ and on some assumption
about the implementation of the UML model, it could be adapted to transform
OCL constraints to Limes code. In [17] the authors generalise their ideas and
explain how AspectJ can be used to instrument constraints in general. Since the
join point model used in Limes is similar to the one of AspectJ, this work could
provide valuable guidelines for implementing constraint checking in Limes .

The issue when to check invariants and how to achieve this using AspectJ
is discussed in [18]. The authors analyse OCL invariants and classify them ac-
cording to the navigation paths. For each type, they provide a pattern to create
aspects to check the invariants, focussing on specifying when to perform the
check. The work provides guidelines for defining more sophisticated pointcut ex-
pressions for the check of invariants, then simply checking before and after every
(public) method call. However, some of those patterns rely on per-instance as-
pects which are not available in Limes .

In [19] the authors facilitate AspectJ to implement internal and external oper-
ation contracts. Since the contracts are defined on the design level, Limes seems
to be well suited to implement the operation contracts, and thereby enforcing
operation semantics independently of the implementation language.

6 Discussion

There are two elements in Limes which will probably have a significant impact
on the performance of the program where the constraints are checked. The first
is the special function copy(), used to create a deep copy of an object. This
can become very expensive for deep object hierarchies. Note that the problem
of circular references must be addressed by Limes compilers implementing a
deep copy mechanism. The second is the iteration over a collection, as this can
lead to a large number of iterations. Particularly in combination with a frequent
invariant checking (e.g. after every public method), this might significantly slow
down the program. Even though this is not a problem for the program deployed



312 B. Mesing, C. Constantinides, and W. Lohmann

to the end user since the constraint checking can be disabled, it will become a
problem if the program becomes so slow that it cannot be tested anymore.

The avoidance of introduction of side effects is a major concern for a con-
straint checking language. When using a fully compliant Limes compiler and
having a model that truthfully provides information about its components, the
only side effect that can be introduced through Limes code is changing terminat-
ing into non-terminating behaviour. However, in reality this might not always
be given. We therefore discuss possible limitations that might lead to an in-
troduction of side effects. First, there is the information about a method not
modifying the object. For UML models this is defined by the modeller through
the isQuery-attribute, but its enforcement is not supported in most implemen-
tation languages. Therefore, the implementation of a supposedly non-modifying
method might not hold up to its promise and modify some properties of the ob-
ject, allowing to introduce side effects through Limes code calling such a method.
In the same way, the const-information about method parameters might not be
honoured in the implementation. Another source for a potential introduction of
side effects is the case where the implementation of the special function copy()
does not create a full deep copy, but copies some parts flat.

One might argue about the use of a high-level, imperative constraint checking
language. After all, there exist formal specification languages like OCL or Z and
general-purpose aspect-oriented languages capable of implementing constraints.
Especially so, since techniques exist for the automatic conversion from OCL to
AspectJ. However, we believe that it would be valuable to have a platform inde-
pendent language specifically designed for the specification of constraint check-
ing. First, there are persons more comfortable with using imperative languages
which might find writing Limes code easier than writing a declarative speci-
fication. Second, the conversion from a declarative to an imperative language
requires a complex transformation which must be written once for each speci-
fication language to each implementation language. Here, Limes could serve as
an intermediate language, first converting the specification language into Limes ,
and then converting Limes into the implementation language. For each specifi-
cation language, this requires the complex transformation from the declarative
to an imperative language to be implemented only once, leaving only the easier
transformations from Limes to the target implementation language to be done
multiple times. Compared to implementing the constraints manually in the tar-
get implementation language, Limes provides the advantage of being platform
independent and being specifically designed for this task.

7 Conclusion and Future Work

In this paper we provided an overview of Limes . By demonstrating its main fea-
tures with examples, we discussed how Limes can be utilised to implement DbC
constraints. Conceptually, Limes is located between an expression based speci-
fication language like OCL, and a general-purpose implementation language. It
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can help bridging the semantic gap between the high level expression and the
low level implementation language.

Even though we have tested Limes in a small scale, a test in a real system
including measurements of the runtime performance needs to be done in or-
der to see how well Limes can scale up. Furthermore, until now we have only
implemented a translator of Limes to AspectJ. To prove that our approach
is not limited to that particular language, we plan to implement translations
to AspectC++ and Eos. The current specification of Limes provides the ba-
sic features necessary to implement constraint checking. However, there are a
number of improvements to be done. For example, an atomic pointcut expres-
sion to match query methods could be used to avoid invariant checking for
methods which cannot modify the state of the object. In case of well known
error conditions, e.g. signalled by exceptions, it might be reasonable to allow
a violation of certain constraints. Hence, allowing to restrict constraint check-
ing to take place only if methods exit normally is another desirable feature.
Also, we plan to provide access for the advice definitions to context informa-
tion about the current join point. This can provide valuable information, like
the called method, in case of a constraint violation, and thereby support the
detailed context information requirement listed in Sect. 3.1. Currently this in-
formation must be explicitly handed in the form of an argument to the checking
functions.
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A Grammar

In this appendix we provide the grammar for Limes . The grammar is described
in EBNF, as defined by the ISO 14977 standard [20], with the following two
deviations from the standard: First a sequence of terminals and non-terminals is
not separated by commas, and second we use a “+” to denote that the proceeding
group must be repeated one or more times. Besides, we mark terminals by setting
them in bold font or by underlining them.

unit = [package] {aspect}.
package = ������� identifier {. identifier}.
aspect = ������ identifier [ type ] { aspect_body }.
aspect_body = {variable_def | method_def | pointcut_def | advice_def}.

full_qualified_name = identifier {. identifier}.
type = full_qualified_name.
simple_method_call = identifier ( argument_list ).
argument_list = [expr {, expr}].
nested_identifier = {(identifier | simple_method_call) .} identifier.
identifier = letter alphanum*.
alphanum = letter | digit.
letter = � | 	 | .. | 
 | � | � | .. | 
 | _.
digit = � | � | .. | �.

method_def = abstract_method_def | concrete_method_def.
abstract_method_def = �	������ method_signature ;.
concrete_method_def = method_signature block.
method_signature = ([�����] type | ����) identifier ( typed_parameter_list ) [�����].

http://dresden-ocl.sourceforge.net/
http://www.db.informatik.uni-bremen.de/projects/USE/
http://www.db.informatik.uni-bremen.de/projects/USE/
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variable_def = variable_decl [ = expr() ] ;.
variable_decl = [�����] type identifier.
typed_parameter_list = [variable_decl {, variable_decl}].
untyped_parameter_list = [identifier {, identifier}].

advice_def = advice_type ( typed_parameter_list ) [[ pointcut_expr ]] advice_body.
advice_type = 	����� | ����� | 	����� ����� | ������.
advice_body = block.

pointcut_def = abstract_pointcut_def | concrete_pointcut_def.
abstract_pointcut_def = �	������ �������� pointcut_signature ;.
concrete_pointcut_def = �������� pointcut_signature [[ pointcut_expr ]] [;].
pointcut_signature = identifier ( typed_parameter_list );

expr = unary_expr {binop unary_expr}.
unary_expr = simple_expr | ( expr ) | unop unary_expr.
simple_expr = method_call | nested_identifier | real_literal | integer_literal |

string_literal | bool_literal | ����.
method_call = {(identifier | simple_method_call) .} simple_method_call.
binop = logical_binop | arithmetical_binop.
unop = logical_unop | arithmetical_unop.
arithmetical_unop = ++ | -- | -.
arithmetical_binop = + | - | * | / | < | > | <= | >= | == | !=.
logical_binop = && | ||.
logical_unop = !.
bool_literal = ���� | �����.
real_literal = digit+ . digit+.
integer_literal = digit+.
string_literal = " any_char_not_quote* ".

pointcut_expr = unary_pc_expr {logical_binop unary_pc_expr}.
unary_pc_expr = simple_pointcut_expr | ( pointcut_expr ) | logical_unop unary_pc_expr.
simple_pc_expr = call_pc | execution_pc | within_pc | cflow_pc | target_pc |

this_pc | args_pc | return_pc | pointcut_reference.
call_pc = ���� ( method_pattern ).
execution_pc = ��������� ( method_pattern ).
within_pc = ������ ( type_pattern ).
cflow_pc = ����� ( pointcut_expr ).
target_pc = ������ ( full_qualified_name ).
this_pc = ���� ( full_qualified_name ).
result_pc = ������ ( full_qualified_name ).
args_pc = ���� ( full_qualified_name {, full_qualified_name} ).
pointcut_reference = identifier ( untyped_parameter_list ).
method_pattern = [access_pattern] (type_pattern | ����) [type_pattern .]

id_pattern (signature_pattern) [�����].
id_pattern = wildcard_literal.
type_pattern = wildcard_literal {. wildcard_literal} [+].
signature_pattern = [type_pattern {, type_pattern} [, ..] | ..].
access_pattern = [!] access_modifier [+].
access_modifier = ��	��� | ��������� | ������� | �������.
wildcard_identifier = * {alphanum+ [*]} | letter {alphanum} {* alphanum+} [*].

block = { command_sequence }.
command_sequence = (block | try_block | statement)+.
try_block = ��� block (����� ( variable_decl ) block)+.
statement = foreach_stmt | if_stmt | expr_stmt | assign_stmt | return_stmt |

loop_control_stmt | skip_stmt.
foreach_statement = ������� ( variable_decl : expr ) block.
if_else_statement = �� ( expr ) block [���� block].
expr_stmt = expr ;.
assign_stmt = (variable_decl | nested_identifier) = expr ;.
return_stmt = ������ [expr] ;.
loop_control_stmt = (	���� | ��������) ;.
skip_stmt = ���� ;.
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