

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 241 – 255, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Business Process Modeling: Defining Domain Specific
Modeling Languages by Use of UML Profiles

Steen Brahe and Kasper Østerbye

IT University of Copenhagen, Copenhagen, Denmark
stbr@itu.dk, kasper@itu.dk

Abstract. General-purpose modeling languages are inadequate to model and
visualize business processes precisely. An enterprise has its own vocabulary for
modeling processes and its specific tasks may have attached data that define the
tasks precisely. We propose using Domain Specific Modeling (DSM) languages
to model business processes, such that an enterprise can define its own DSM
language(s) capturing its vocabulary and data requirement. We suggest using
UML profiles and UML activity diagrams as the semantic base for these DSM
languages and present tools that are able to create a DSM language and tool
support for a given domain. One tool, called ADSpecializer, can generate a
UML profile and its tool support of a given application domain. The other tool,
ADModeler, is used to create UML activity diagrams within such a domain-
specific UML profile. The two tools enable an enterprise to efficiently define
and utilize their own DSM language.

1 Introduction

Model Driven Engineering (MDE), as an approach for describing and implementing
business processes, is believed to speed up the development time and be less error
prone compared to traditional software development. Several standards have been
proposed for modeling and implementing business processes [2]. Based on experi-
ences at using MDE for describing and implementing business processes in a large
Scandinavian bank, we recognize a need to have domain specific modeling languages
to be able to succeed using the MDE approach. Each enterprise has its own terms for
modeling business processes and has enterprise specific implementation patterns for
these terms. The development of a common vocabulary in a large enterprise is crucial
for efficiency. To tailor modeling tools efficiently to this common vocabulary is
therefore a prerequisite for us to apply MDE.

A general language is too abstract to be used by people working in a specific do-
main. As Bézivin and Heckel state [1 p. 1], “model-driven approaches to software
development require precise definitions and tool support for modeling languages,
their syntax and semantics”.

We see at least three obstacles to use a general purpose modeling language com-
pared to a domain specific modeling (DSM) language for business process modeling:

• Semantics. Specific semantics for custom tasks like RegisterInvoice cannot be
defined. A modeler has to remember to define necessary data when using the task

242 S. Brahe and K. Østerbye

in models and there is no tool support for providing and validating the data. A
transformation engine does not recognize a task like RegisterInvoice because it is
modeled as a general task.

• Visualization. There is no customized visual presentation of the model. Visualiza-
tion is important because different people such as users, business analysts, archi-
tects and developers all have to understand the model.

• Abstraction. A business process may be modeled at a high abstraction level. A task
such as RegisterInvoice may not have a simple implementation as e.g. a web ser-
vice invocation. Instead, it could have an implementation pattern, for instance a se-
quence of three web service calls, and mechanisms for handling exceptions. These
details are not relevant for the model, but have to be modeled when using a general
language to make transformation to an implementation possible.

The primary argument against using DSM languages and customized tasks for each
enterprise or even each business unit inside the enterprise is that the set of necessary
languages and tasks to define will continue to evolve. We address this argument by
providing tool support for definition and generation of custom tasks and new
languages.

This is in line with Bézivin and Heckel [1, p. 1] who state “In order to support
model-driven development in a variety of contexts, we must find efficient ways of
designing languages, accepting that definitions are evolving and that tools need to be
delivered in a timely fashion”. Software systems are evolving all the time and enter-
prises will also have to extend and enrich their DSM languages. To do this efficiently
they need ways to get customized modeling tools for the extended DSM languages.

We have developed two Eclipse-based UML2 tools, ADModeler and ADSpecial-
izer. ADModeler is a plug-in that implements a UML activity diagram editor.
ADSpecializer can define and generate UML profiles and data entry wizards encapsu-
lated as Eclipse plug-ins for ADModeler. The modeler who uses a DSM language
generated by ADSpecializer is not aware that she is modeling in UML. Both the lan-
guage and tool support appear domain specific.

1.1 Background

The Model Driven Architecture (MDA) initiative by the Object Management Group
(OMG) is an implementation of the general MDE approach for developing software
around a set of standards like MOF, UML, CWM etc. [5]. UML is a visual language
for specifying, constructing and documenting software systems [4]. It is a broad-
spectrum language and consists of several diagram types. One of these, the activity
diagram, has modeling of organizational processes as one of its purposes. UML is
defined by the Meta Object Facility (MOF) [3]. MOF is a meta-meta model because it
is used for defining other meta-models like UMF. MOF is defined by itself.

When using MDA standards, there are two possible approaches for creating DSM
languages. The first approach is the definition of a new language based directly on
MOF. Such a language becomes an alternative to UML. The Common Warehouse
Meta model (CWM) is an example of such a language. The syntax and semantics of
the elements of the new language can be defined to match the specific domain.

 Business Process Modeling: Defining DSM Languages by Use of UML Profiles 243

The second approach is based on specialization of the existing UML entities using
UML profiles. The intention of profiles is to give a straightforward mechanism for
adapting UML with constructs that are specific to a particular domain, platform, or
method. A profile is constructed by using the extensibility elements: stereotypes,
tagged values, and constraints. Stereotypes are specific meta-classes, tagged values
are standard meta-attributes, and constraints are restrictions on how an element can be
used in models. Using profiles is considered a lightweight method of defining a DSM
language, while basing the language on MOF is considered a heavyweight method.

UML Profiles have been made for many specific purposes. For example several
profiles have been defined for business process modeling [13, 18] or for implementa-
tion technologies such as J2EE, where refined UML Class diagram differentiate
between home and remote interfaces. Each of these profiles defines UML for a
particular context.

Meta-modeling tools like MetaEdit+ [12] and GME [7] show that it is possible to
provide generic tool support for domain specific modeling languages. At present such
tools do not exist for MOF although work is going on in projects like GMF (Graphical
Modeling Framework)[22]. In contrast, the use of UML profiles for customizing the
modeling language is supported by several UML modeling tools.

Business process models are sufficiently similar to the fundamental abstractions of
activity diagrams so that we believe using profiles for defining DSM languages is
feasible. UML Activity diagrams can model most of the workflow patterns described
in [9] and have more expressive power than most of the industrial workflow manage-
ment standards [10, 11] for implementing business processes. It is therefore a natural
choice to use activity diagrams for modeling business processes.

1.2 Our Work

We use UML activity diagrams and UML profiles to create domain specific modeling
languages for business processes. Activity diagrams have the formal expressive power
to formulate the business processes we want to model. UML is a specification and is
supported by general tools such as Rational and Poseidon, which support creation and
use of profiles.

However, using profiles for domain specific modeling in general modeling tools
requires good knowledge of both UML and profiles as the general tools do not sup-
port modeling directly in domain specific terms. The usability of the tools remains
low, in particular:

1. The abstract notion of actions lies far from concrete tasks like “change reserva-
tion”. This makes the tools less useful to domain experts.

2. There is no way to customize how attributes for a particular stereotype such as
“RegisterInvoice” should be entered.

3. There is no design-time validation of attribute values or model element
relationships.

The general tools do not support these requirements, and the commercial tools are
not sufficiently open to tailor them. We will therefore work with the open source tool
Eclipse [19]. The UML2 eclipse project [20] provides an implementation of the

244 S. Brahe and K. Østerbye

UML2 specification and is based on the Eclipse Modeling Framework (EMF) [21]
which implements a subset of MOF.

We address the vision of providing enterprise specific process modeling tools in a
two-step fashion. First, our ADModeler is a general-purpose extensible and open
source UML activity-diagram editor, and is to our knowledge the first such for the
Eclipse framework. Special emphasis has been placed on rendering UML profiles
containing specification of icons for each stereotype, and the definition and manage-
ment of mandatory auxiliary data.

Secondly, our ADSpecializer enables efficient development of enterprise specific
profiles. It can generate a profile for use by ADModeler. It creates icons, images and
text to present the specific profile in ADModeler, and wizards to enter data for the
specific tasks. The Eclipse framework provides a rapid and seamless profile-
development cycle for testing plug-ins, which we leverage by making ADSpecializer
generate the profile as an Eclipse plug-in. ADSpecializer is a no-coding-required tool
and requires only limited knowledge of UML activity diagrams.

We define two different roles, a tool developer and a modeler. The tool developer
is a person responsible for developing tools in an enterprise. He uses ADSpecializer
to create DSM languages. The modeler is a domain expert. She uses ADModeler with
extensions created by the tool developer to model business processes precisely in
domain specific terms.

The usability of ADModeler is enabled for a particular domain as the specific tasks
are available directly from the editor’s tool palette, addressing point one above. When
adding a task, the modeler is presented a wizard to define data for the attributes of the
task. This addresses point two above. Point three is addressed by allowing a tool de-
veloper to define validation rules in the generated wizards for the different tasks, so
consistency in the model is ensured.

A tool developer can use ADSpecializer to create a DSM language and customized
tool support for it with only limited insight into UML. Further, using the ADModeler
it is possible for a modeler to work with domain specific terms without any knowl-
edge of UML.

The rest of the paper is structured as follows: In section 2, we give an example of
using our tools to model processes in a human family. We first identify domain spe-
cific tasks for modeling processes in the family, then we create a new language for
modeling processes using the ADSpecializer, and last we create a model of the proc-
ess of getting home from work using the newly generated DSM language. In section
3, we describe the architecture of the tools, and in section 4 and 5 we describe related
work, give a summary, and outline future work.

2 Example: DSM Language for Processes in a Family

We illustrate the power of defining a DSM language and a customized tool for a par-
ticular domain by looking at the processes in a human family. The family domain has
been chosen since it is well known to all and easy to illustrate. Example of processes
in a family are Getting home from work, Go to the cinema and Drive on vacation.

 Business Process Modeling: Defining DSM Languages by Use of UML Profiles 245

First, we define the language. We ask: what specialized tasks do we require to
model processes in the family, what are the attributes for these tasks, and what new
data types do we need. Secondly, we use the ADSpecializer to define the language
and to generate a plug-in to the ADModeler. Thirdly, we use the generated plug-in
together with the ADModeler to model the process of getting home from work.

2.1 Language Definition

We limit the language for modeling processes in the family to deal with six different
task types. These are Transport, Clean, Cook, Shop, Relax and Nurse Kid, and are
described below in table 1 including the images used for their graphical representation.

Table 1. Custom tasks for the Family DSML

Task Icon Description
Transport

Transport family members to a destination using
some kind of transportation, e.g. a car, a bus or a
train

Clean

Clean a room. The cleaning can be of different types,
e.g. vacuum cleaning, wash the floor etc.

Cook

Cook a meal. It must be specified which kind of meal
should be created; breakfast, lunch or dinner

Shop

Do some specific shopping, such as groceries or
clothes.

Relax

Take some time for watching TV, exercise or sleep.
For the task it must also be specified for how long
time relaxation can be done.

Nurse kid

Take care of the children, play with them, put them
to bed, etc.

To be able to define these tasks and their attributes we must also define some data

types. For example we must have a data type defining that we can choose between the
kitchen, the toilet and the living room when we use the Clean task and have to decide
which room to clean. Table 2 lists the different data types for our new language. Here
we define only Enumeration data types, although we could also have defined compos-
ite data types containing attributes of other data types. When we have specified the
required data types, we can define the custom tasks and their attributes. These can be
found in table 3.

246 S. Brahe and K. Østerbye

Table 2. Data types for family DSML

Data type Possible values
TransportationType Car, Bicycle, Train, Bus

CleanType Vacuum clean, Wash floor
RoomType Kitchen, Toilet, Living room
MealType Breakfast, Lunch, Dinner
ShoppingType Grocery, Clothes, Lumberyard
ActivityType Sleep, Play soccer, Watch TV
NurseType Play, Bath, Change nappies, Put to bed

Now, after having described the custom tasks, their attributes, and the required data

types, we can generate the language using the ADSpecializer.

Table 3. The custom tasks and their attributes

Task Attributes Type Description
Transport meansOfTransport

destination
TransportationType
String

Which transport?
Where to go?

Clean room
cleanWhat

RoomType
CleanType

What room to clean?
What to clean?

Cook Meal
Persons

MealType
Integer

Which meal to cook?
Number of persons.

Shop shopKind ShopType What to shop?
Relax activity

duration
ActivityType
integer

What to do?
How many minutes?

Nurse kid activity
duration

NurseType
integer

What to do?
How many minutes?

2.2 Language Creation

The ADSpecializer creates an extension to the ADModeler after a tool developer has
used a wizard to define the previously described language. The wizard contains three
steps. First, the language or the profile is named and described. Then the tasks are
defined, and at last, the custom data types and attributes for the tasks are defined.

Completing the wizard, a new Eclipse plug-in project is created containing an
UML profile with stereotypes, attributes and data types as defined in the wizard. Fur-
ther, the plug-in extends the ADModeler so the defined tasks can be used within
ADModeler. The generated plug-in project also contains generated wizards for each
task to be used to collect data for the defined attributes when a modeler inserts a task
of a given type into a model.

2.3 The Process of Getting Home from Work

While it would have been useful to demonstrate a process from an industrial applica-
tion, we have chosen to show a process from the domain of a human family because it

 Business Process Modeling: Defining DSM Languages by Use of UML Profiles 247

is well known to all. Here we describe a simplified process of getting home from
work and try to model it by using our domain specific language.

After getting off from work, you drive to the daycare to pick up your child. Then
you go to the grocery shop to buy food for dinner and, then you drive home. At home
a lot of things now happen in parallel; you start cooking dinner, you have to check the
nappies on your kid and optionally change it, also you have to play with the kid, and
you have to clean the floor. When dinner is ready, you stop cleaning, and the family
eats. After dinner, you put your kid to bed, and exhausted, go to relax in front of the
television for an hour before going to sleep.

This process has been modeled in ADModeler using the Family language and can
be found in figure 1, which also illustrates the ADModeler working with the gener-
ated plug-in containing the Family language. In the tool palette to the right, all the
customized tasks as defined in table 1 can be found. A task instance can be dragged
from the palette onto the model. As the figure illustrates, we have also customized the
general UML decision and merge nodes to use a question mark as image. Doing this
makes the tool more intuitive to use by a domain expert.

Fig. 1. ADModeler with the Family DSM language extension and modeling the Getting home
from work process

Still the modeler could be customized further, e.g. unnecessary menus and toolbars
could be removed from the tool, and a special view for accessing attribute data could
be created.

Whereas the customized diagram is syntactic sugar over plain UML, the semantics
of the task instances is the real force of our approach. When a task instance is added
to the model, the modeler is presented with a customized wizard for collecting data

248 S. Brahe and K. Østerbye

Fig. 2. Generated wizard pages for defining data for the Transport Task attributes

for the attributes defined for the task. Figure 2 shows the two generated wizard pages
for entering attribute data for a Transport task, which are the transportation type and
the destination. A tool developer can customize these pages if the generated ones are
insufficient for a particular task, e.g. if some specific validation is required or data has
to be retrieved from a database.

The example illustrates having a DSM language when modeling and having tool
support for this DSM Language. We gain a more intuitive model, precise semantics
and guided definition of required data. Our tools have made the process of creating
DSM languages and tool support for them automatic with no need for technical in-
sight into UML and eclipse plug-in development. The example shows that using ac-
tivity diagrams and profiles for creating DSM languages using our tools is straight
forward. Using the generated tools hides the complexity and generality of UML and
instead provides domain specific terms, symbols and wizards to be used directly by
the modeler.

3 Tool Details

In this section, we give an overview of the ADModeler and ADSpecializer tools, how
they use meta-models, how ADModeler can be extended, and how ADSpecializer
automates the task of creating such extensions.

3.1 ADModeler

The ADModeler is a general-purpose UML activity diagram editor but provides an
Eclipse extension point that enables tool developers to extend the editor for specific
purposes, i.e. they can define their own domain specific languages and customize the
editor and tool palette. ADModeler will appear as if it was created for the specific
domain. A model can be defined by adding instances of the domain specific tasks
directly from the palette. A domain specific task represents a specific UML Activ-
ityNode, for instance an Action or a DecisionNode with an applied stereotype such as
Transport which indicates an action of transporting oneself from one destination to
another. The stereotype is defined in a profile that is contained in the plug-in that
extends ADModeler.

 Business Process Modeling: Defining DSM Languages by Use of UML Profiles 249

Furthermore, the tool developer is able to define how a modeler is supported in
providing attribute data for the specific tasks. This is done by creating a wizard con-
taining a number of wizard pages for each custom task. The wizard is able to validate
input from a modeler before an element is inserted into the model. The validation
check can be everything ranging from simple validation of text strings to validation
against values in databases or from web services. Wizards are not always considered a
good strategy for providing tool support [23, p. 126] so this approach may be revised
in the future.

ADModeler provides a graphical editor for creating and editing UML2 activity
diagrams. We have built the editor using a number of open source eclipse plug-ins
providing a framework for making graphical editors and implementations of MOF
and UML 2.0 specifications. These plug-ins are

• Graphical Editor Framework (GEF). The project provides an easy way to create a
rich graphical environment based on a model.

• Eclipse Modeling Framework (EMF). The EMF project provides an implementa-
tion of a subset of the MOF specification. Using this project enables a tool devel-
oper to define his own modeling languages based on MOF.

• UML2. The project provides an implementation of the UML2 specification and
builds on EMF. The project makes it possible to create models which conform to
the UML2 specification although it does not provide any graphical annotations or
possibilities of making visual diagrams of models.

3.1.1 Meta-models in ADModeler
Because the Eclipse UML2 project contains no implementation of the UML2 Dia-
gram Interchange Specification or other visual data, we have to decide how to define
visual information for an activity diagram. We could define a profile containing the
visual information and apply it to all model elements. But a lot of irrelevant informa-
tion would pollute the model. Another approach could be to create a new meta-model
which contains both visual and semantic information and from which UML could be
exported. We have chosen neither of these. Instead we have created a new MOF
based meta-model called ADModel representing all visual information about the
activity diagram. This meta-model does not contain any semantics. Instead it wraps or
links to the UML2 meta-model, which represents the semantic model of activity dia-
grams. The ADModel meta-model could be thought of as a decorator of the UML2
meta-model.

When creating a model in ADModeler two models are produced. One model based
on the ADModel meta-model contains all visual information and one model based on
the UML2 meta-model contains all semantic information. The strengths of this ap-
proach are:

• Separation of visual and semantic information in two models.
• Semantic model is directly available from file system for other UML tools like

modeling tools or transformation engines, which do not require visual information.
• Simple visual model extensible for plug-ins.

Because the UML model is not encapsulated in another model, no extraction or ex-
port has to be done from the visual model. The UML model can be edited directly,

250 S. Brahe and K. Østerbye

except actions like adding or deleting elements, in another tool and the corrections
will be reflected in the editor when shown in ADModeler.

UML

ADModel
«import»

Fig. 3. Meta-model dependency from the UML meta-model

The meta-model used by ADModeler is illustrated in figure 3 and figure 4. Each
element in the meta-model has a reference to an element in the UML meta-model.
The most interesting part of the meta-model is the Node element which represents the
ActivityNodes, or the building blocks, in the activity diagram.

It contains attributes for various visual presentations like coordinates and size. It
further contains a typeId attribute and has a link to the abstract UML class ActivityN-
ode. Concrete implementations of the ActivityNode class include classes like Action,
Decision-, Join-, Fork-, and Merge nodes. An instance of a Node in a concrete model
will have a reference to an instance of one of these concrete ActivityNode types.

The typeId attribute at the node indicates which kind of ActivityNode and optional
stereotype the Node represents. Using a typeId and a reference to the abstract Activ-
ityNode enables us to make the model extensible for others. For example, the Trans-
port task contained in the Family language has a typeId equal Family.Transport and
extends an Action node. It also represents the stereotype Transport. When a Transport
task is inserted into a model, a Node and an Action instance is created. The Transport

Activity
{From IntermediateActivities}

ActivityNode
{From IntermediateActivities}

Model
{From Models}

ADModel

Diagram

Connection ControlFlow
{From BasicActivities}

1

*

1

*

1

*

1

*

1

*

1

*

1 1

1 1

1
1

1

1

-x : int
-y : int
-height : int
-width : int
-typeId : String
-desc : String

Node

Fig. 4. The ADModel meta-model and references to elements in the UML meta-model

 Business Process Modeling: Defining DSM Languages by Use of UML Profiles 251

stereotype is applied to the action. The Node instance has a link to the Action instance
and a typeId equal Family.Transport.

The tool provides standard typeId’s for the most common ActivityNodes; Initial-
Node, ActivityFinalNode, Action, DecisionNode, MergeNode, ForkNode and Join-
Node. Next section provides more information about how to define an extension to
the ADModeler.

3.1.2 Extension Point
ADModeler provides an extension point for extending the editor and its underlying
meta-model. By default, the modeler supports modeling with seven different node
types as described above. These are registered in a NodeRegistry which maps a typeId
to a specific kind of UML ActivityNode, an optional stereotype, an icon, image, label,
description and group, and a wizard for collecting data for stereotype attributes. When
opening the editor, its tool palette is built by reading the NodeRegistry and creating a
tool for each entry.

Each element in the palette contains a typeId. When an element is dragged onto the
editor, ADModeler from the NodeRegistry retrieves the kind of ActivityNode to in-
stantiate, the stereotype to apply at the ActivityNode, a wizard, etc. based on the
typeId. After looking up the typeId it presents the wizard to the modeler to collect
data. Then it instantiates the concrete ActivityNode type, optionally applies the
stereotype, sets stereotype attributes and at last presents the Node in the diagram us-
ing the image registered in the NodeRegistry.

To extend ADModeller, one has to provide the data described in table 4.

Table 4. ADModeler extension point attributes

Attribute Description
PaletteLabel The label to be used in the tool palette, e.g. Transport.
PaletteTip The tool tip text for the palette, e.g. Transportation to

somewhere.
Group (Optional) The tool group in which the extension should be present.
PaletteIcon path A relative path to the icon for the palette.
EditorImage path A relative path to the image for the editor.
ActivityNode type The type of UML activity node, e.g. Action.
Profile path A relative path to the profile containing the required

stereotype.
Stereotype name The name of the stereotype to be applied to the Activ-

ityNode
Wizard class name A wizard class for collecting data for the stereotype

attributes.
typeId A unique Id for this type to be used in the NodeRegistry,

e.g. org.mda4bpm.homeprofile.Transport.

One limitation of the tool is that only the control flow part of activity diagrams can

be modeled. Modeling of the object flow is not implemented. Furthermore, it does not
support defining restrictions in e.g. OCL or Java for how new tasks may be used in

252 S. Brahe and K. Østerbye

Fig. 5. Wizard pages for ADSpecializer

the model or how to validate stereotype attributes. Attribute validation can be done in
the wizard class, but one has to do this in plain Java code.

3.2 ADSpecializer

To extend ADModeler, a tool developer has to create a new plug-in project and define
the extension. As part of defining the extension, he has to create a wizard and an
UML profile. This requires good technical insight into both the Eclipse platform and
into UML. Further, it requires a UML tool supporting profiles to be able to define the
profile. To aid in this task we have developed the ADSpecializer tool.

To define a new DSM language, a tool developer is guided though a wizard.
Figure 5 shows the pages used to define a new stereotype. The first page defines the
graphical appearance, and which UML-type that is extended. The second page is used
to define the custom attributes to be associated with this new stereotype. Currently
attributes of type integer, Boolean, and string, and user defined enumerations are
supported. In addition, it is possible to define aggregations of such values, which we
call complex types.

Complex types as well as enumerations are defined in the right hand window
shown in figure 5. An additional page (not shown) is used to define the name of the
profile. The data model behind the wizards conforms to a MOF based meta-model
that we call ADProfile, which is shown in figure 6. In particular, complex types and
enumerations are represented in the underlying model. Based on this model, ADSpe-
cialiser generates an eclipse plug-in that contains one extension to ADModeler for
each custom task defined. Further, it generates all resources required for the extension
point defined by ADModeler.

 Business Process Modeling: Defining DSM Languages by Use of UML Profiles 253

ADProfile

Literal

ADStereotype

EnumType BooleanType IntegerType

ComplexTypeType

Multiplicity

Attribute

StringType

1

*

1 *

1

1

1 1

1*

1*

Fig. 6. Meta-model used by ADSpecializer

In the next section, we describe related work in the area of business process model-
ing notations and particular the use of activity diagrams.

4 Related Work

Many standards have been proposed for modeling business processes and their im-
plementations. Two notations are dominating the modeling field. The Business Proc-
ess Modeling Notation (BPMN) [15] is a graphical notation intended for business
analysts. The UML activity diagrams, on the other hand, are part of the UML suite of
technical diagramming notations. Both notations are able to model most of the work-
flow patterns described in [9] which means they are feasible for modeling business
processes [10, 14]. On the implementation side, the most important standard is
 the Business Process Execution Language for Web services (BPEL4WS or just
BPEL) [6].

Transformation rules have been proposed for both the BPMN notation [15] and
UML activity diagrams [8, 13] to BPEL, so an implementation can be generated di-
rectly from a business process model.

Several others before us have used UML activity diagrams for business process
modeling. Heckel and Voigt [8] suggest using a profile for UML activity diagrams for
modeling business processes with the purpose of generating BPEL code. Combined
with graph transformation as a meta-language for defining model transformations
such models are transformed into BPEL. Heckel also presents techniques to analyze
the models. Staikopoulos and Bordbar [16] have studied how the UML meta-model
and the Web-services meta-models can be integrated so transformations can be facili-
tated. They present a method to support meta-model integration and interoperability
and exemplify this with the BPEL meta-model. In [17] the same authors have used
activity diagrams to capture the behavioral aspects of composing web-services and to
transform these diagrams into BPEL. Eriksson and Penker have written a complete
book about using UML for business modeling and have among other thing defined a
profile to be used for business process modeling [18].

254 S. Brahe and K. Østerbye

Common to the above-mentioned work on using UML activity diagrams and pro-
files for business process modeling is that they suggest using one profile for process
modeling regardless of application domain. Our contribution is to enable enterprise
specific tailoring of the modeling tools, and to give tool support for the tailoring proc-
ess. We believe this tailoring is necessary to ensure the semantics, visualization, and
abstraction of business process modeling as mentioned in the introduction.

5 Summary and Future Work

We have suggested UML activity diagrams as a general-purpose business process
modeling language and using UML profiles for creating DSM languages for a specific
enterprise.

We presented the general-purpose UML activity-diagram modeling tool ADMod-
eler, and the ADSpecializer that automates the process of defining DSM languages
and create customized tool support for them. The effectiveness and efficiency of these
tools to model a solution in domain specific terms were demonstrated in the human
family domain.

Several open issues remain. Currently, presence of mandatory attribute data is
validated. However, we lack mechanisms to define restrictions on their values. In
addition, it should be possible to constrain the manner in which concrete task types
are combined (e.g. invalidate concurrent cleaning and transport by the same person).
The modeling tool should be able to interpret these constraints and guide the modeler.
Further, it should be possible to model object flows and to extend already defined
languages with new even more specialized languages, i.e. specialize profiles.

A motivation for this work has been a wish to combine domain specific modeling
with model transformations toward an implementation. For each custom task type
defined in a profile, we need to define custom transformation rules and model tem-
plates representing patterns at lower abstraction levels.

In the future, we expect to evaluate the strength and weaknesses of the proposed
tools for modeling business processes. We will evaluate it using real business proc-
esses together with our industrial partner. Further, we will start to work on customized
model transformations and the use of model templates to automate the development
of implementation specific code like BPEL.

We believe that having the combination of domain specific modeling languages,
customized model transformations, model templates, and tool support for these for a
single enterprise will be a crucial step towards the MDE vision: To heighten the ab-
straction level in software development.

References

1. Bézivin, J., Heckel, R.: Language Engineering for Model-driven Software Development.
Dagstuhl Seminar Proceedings 04101(2005) 1-8

2. Havey, M: Essential Business Process Modeling. O´Reilly Media, Inc. (2005)
3. OMG: Meta Object Facility 2.0 Specification. Document id: ptc/04-10-15 (2003)
4. OMG: UML 2.0 Superstructure Specification. Document id : formal/05-07-04 (2005)

 Business Process Modeling: Defining DSM Languages by Use of UML Profiles 255

5. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture- Prac-
tice and Promise. Addison-Wesley (2003)

6. BPEL: BEA, Microsoft, IBM, SAP, Siebel, Business Process Execution Language for
Web Services, Version 1.1. (2003)

7. GME, Generic Modeling Environment, http://www.isis.vanderbilt.edu/Projects/gme, last
accessed 29 Jan 2006

8. Heckel, R., Voigt, H.: Model-Based Development of Executable Business Processes for
Web Services. Lecture Notes in Computer Science, Vol. 3098. Springer-Verlag (2003)
559-584.

9. van der Aalst, W.M.P., Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Pat-
terns. Distributed and Parallel Databases, 14(1) (2003) 5-51

10. Wohed, P, van der Aalst, W.M.P., Dumas, M., Hofstede, A.H.M., Russell, N.: Pattern-
based Analysis of UML Activity Diagrams. Technical report #129, Beta Research School,
Eindhoven University of Technology, December 2004

11. Dumas, M., Hofstede, A.H.M: UML Activity Diagrams as a Workflow Specification Lan-
guage. Lecture Notes in Computer Science, Vol. 2185, Springer-Verlag (2001) 76-90

12. MetaEdit+, MetaCase modeling tool, http://www.metacase.com. last accessed 29 Jan 2006
13. Gardner, T.: UML Modelling of Automated Business Processes with a Mapping to

BPEL4WS. Presented at 17th European Conference on Object-Oriented Programming
(ECOOP), Darmstadt, Germany (2003)

14. White, S.: Process Modeling Notations and Workflow Patterns. In L. Fischer, editor,
WorkflowHandbook 2004. Future Strategies Inc., Lighthouse Point, FL, USA (2004)
265–294

15. White, S.: Business Process Modeling Notation, Version 1.0 http://www.bpmn.org/Docu-
ments/BPMN%20V1-0%20May%203%202004.pdf May 2004. Last accessed 29 Jan.
2006.

16. Staikopoulos, A., Bordbar, B.: A Comparative Study of Meta-model Integration and Inter-
operability in UML and Web Services. Lecture Notes in Computer Science, Vol. 3748,
Springer-Verlag (2005) 145-159.

17. Bordbar, B. Staikopoulus, A.: On behavioural Model Transformation in Web Services.
Proc. Conceptual Modelling for Advanced Application Domain (eCOMO), Shanghai,
China (2004) 667-678

18. Eriksson, H.E., Penker, M.: Business Modeling with UML. Business Patterns at Work.
John Wiley & Sons, Inc. (2000)

19. Eclipse Project, http://www.eclipse.org/
20. Eclipse UML2 project, http://www.eclipse.org/uml2/
21. Eclipse EMF project, http://www.eclipse.org/emf/
22. Eclipse GMF project, http://www.eclipse.org/gmf/
23. Lauesen, S.: User Interface Design: A Software Engineering Perspective. Addison Wesley

(2005)

	Introduction
	Background
	Our Work

	Example: DSM Language for Processes in a Family
	Language Definition
	Language Creation
	The Process of Getting Home from Work

	Tool Details
	ADModeler
	ADSpecializer

	Related Work
	Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

