
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 226 – 240, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Methodology for Database Reengineering
to Web Services

Ignacio García-Rodríguez de Guzmán, Macario Polo, and Mario Piattini

ALARCOS Research Group
Information Systems and Technologies Department

UCLM-Soluziona Research and Development Institute
University of Castilla-La Mancha

Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain
{Ignacio.GRodriguez, Macario.Polo, Mario.Piattini}@uclm.es

Abstract. Databases are one of the most important components of information
systems, since they keep all the information of organizations. Although new
standards in databases have appeared in the last years, most databases are still
based on SQL-92, and are thus true legacy systems. Most of the services offered
by information systems are based on the information stored in their databases.
In order to allow interoperability, current trends advise exposing some of these
services to the Web, making them available for other users and also for the
information system itself. Since dealing with old databases and their associated
software is difficult, a methodology to discover services from SQL-92
databases and to offer them via Web Services is proposed. This methodology is
based on the MDA approach and implements a reengineering process, which
starts from an SQL-92 database and obtains a set of services that can be
exposed as Web Services.

Keywords: reengineering, reverse engineering, metamodel, Web Service,
QVT, patterns, MDA.

1 Introduction

Information systems are composed of many elements, for example documentation,
programs, hardware, databases, etc. Of these, the database can be considered as the
cornerstone. This importance is due to the role played by databases: they store all the
information required for system operation.

Despite the fact that new versions of the SQL standard are being developed (i.e.
SQL-99, SQL-2003), many systems are still working with relational databases [1],
mainly based on the SQL-92 paradigm [2] .

Programs that use legacy databases are sometimes also legacy programs with low
maintainability. Because of that, the effort spent on improving these systems (adding
new features, integration into the web, etc.) can be taxing [3] .

Any attempt to deal with this kind of legacy system is difficult for many reasons,
such as the size of both the applications and the databases [4] , lack of experience in
the source code language, lack of documentation, etc.

 A Methodology for Database Reengineering to Web Services 227

Reengineering is a very useful tool for dealing with this kind of problem.
According to [5] , reengineering is a process composed of two sub-stages: reverse and
forward engineering.

Recently, reverse engineering (the most important stage of reengineering) has
become closely related to MDA [6] . In just a few words, MDA makes is possible to
separate business logic from the implementation platform [6] . MDA proposes to
work at both model and metamodel levels: thus, the implementation stage is not as
critical as in the earlier times, because this step can be performed by means of
automatic transformations. The relation of reverse engineering and MDA has been
strengthened by ADM (Architecture-Driven Modernization), which aims to integrate
reverse engineering and MDA. Many metamodels have been standardized to support
legacy systems, such as CWM [7] . It is essential to represent this kind of systems by
means of these metamodels by a reverse engineering stage.

According to [6, 8] , the basic elements of the MDA approach are PIMs (Platform
Independent Models), PSMs (Platforms Specific Models), and PDMs (Platform
Description Models). When MDA is applied, the software engineer works at a
business level with one or more PIMs. Later, and by means of some transformations,
one or more PSMs are generated depending on the target platform. If the starting
point is not a PIM but a PSM (the legacy system), the process involves two
transformations, one to obtain a PIM (representation of the legacy platform) and a
second transformation to obtain the target PSM from the PIM [8] . The latter situation
is what leads to the aforementioned term “Architecture-Driven Modernization”. In
this situation, reverse engineering is required to pass from the starting PSM to the
PIM: therefore, reverse engineering is a core element in the application of the MDA
approach.

In this respect, a methodology based on the idea of reengineering and focusing on
databases, using the concepts of MDA and ADM has been developed. The starting
PSM is the SQL-92 database; the different PIMs are the set of metamodels used
during the process; while the target PSM is the final set of Web Services to be
generated.

The methodology also takes into account the fact that, as happens in many
applications, the domain layer used is a reflection of the structure of the database
which supports the information managed by the application. In other words, having a
multi-tier application [9] , the domain (or business) tier is chiefly responsible for
implementing the operations required to achieve the objective for which the system
was developed. Because of this, the database can be used not only to extract the static
structure in a reengineering process, but also to infer many of the original system
functionalities.

The development of a general and partially-automated reengineering process for
relational databases requires specifying which kind of relational databases are
involved. As far as we know, despite the fact that SQL-2003 is the current standard,
most databases are still defined in SQL-92 (or the corresponding subset of SQL-
2003). For this reason, we are now mainly focused on obtaining all the characteristics
of SQL-92 based databases. By means of a set of inference patterns, it is possible to
find potential services in the schema of the database, using a model-driven pattern
matching process as a sub-step of our general reengineering process.

228 I. García-Rodríguez de Guzmán, M. Polo, and M. Piattini

This paper is organized as follows: Section 2 provides a brief description of the
related work; Section 3 overviews our proposal; Section 4 summarizes the reengi-
neering task to be performed until the services are discovered; Sections 5 and 6
depicts the service discovery; Section 7 deals with service implementation, Section 8
puts forth some conclusions and possibilities for future work.

2 Background

Until recently, data reengineering (and more specifically data reverse engineering)
had not been one of the most important topics in reengineering for two straight-
forward reasons: (1) the traditional partition of software engineering and database
systems, and (2) source code reverse engineering seemed more interesting in many
aspects in the academic environment [10] . Database reverse engineering can be
performed for the following purposes [11-13] : redocumentation, model migration,
restructuring, maintainance or improvement, tentative requirements, software
assessment, integration, conversion of legacy data, and assessment of the state-of-
the-art.

Recovering metadata from databases is a very important issue, because our process
starts with a database from which no documentation is available. Here, much research
has been done on algorithms and techniques to recover metadata stored in database
catalogs. In [14, 15] the authors studied algorithms to extract information about the
structure of relational databases. In [16] J.L. Hainaut also made a deep study of the
database reverse engineering field.

[17, 18] present a reengineering database project named DB-MAIN. DB-MAIN is
a generic methodology supported by a tool of the same name, with the following
steps: (1) database structure extraction, and (2) data structure conceptualization.

The MIDAS framework [11] tackles the migration of databases, specifically from
net databases to relational databases. This framework also allows for the replacement
of database access subroutines by SQL code.

In the field of migration, not all the research tries to tailor the original database to
the new model in order to adapt it to a new technology. Wrapping can be seen as
another kind of migration, in which a logical layer is displayed between the databases
and the system. This technique used to be implemented by means of wrappers which
can be seen as a kind of component, such as an adapter. Wrappers make it possible to
transform queries for a particular data model into another one, for example from a
particular DMS (Data Management System) into a different model [19] . Wrappers
are used not only to adapt one data model to another, but also for other purposes, for
example adapting a relational database to a distributed environment [20] . In this case,
the wrappers work as a façade between the database and any external system which
attempts to access the information.

However, databases are not always subjects of transformations or migration in
reengineering, that is, of operations that (sometimes) modify their structure and
require complex data transformations. In [21] , the authors implement a whole

 A Methodology for Database Reengineering to Web Services 229

reengineering process in a tool, RelationalWeb. This tool takes a relational database
as input (nowadays it accepts four sorts of DBMS, namely Microsoft Access, SQL
Server, Caché Intersystems and Oracle) and generates a full operational application to
manage it.

Traditionally, research in database reengineering has focused on the tasks
discussed above (migration, restructuring, etc.), but not much research has been done
(to our best knowledge) on generating services from relational databases. As with
[21], our intention is not to generate applications but rather Web Services, offering
operations based on the structure of the database.

Our methodology starts with a particular sort of relational database (as noted
above), SQL-92. This is due to the fact that industrial studies show that many
information systems are still running over relational databases [1, 22] .

3 An Overview of the Methodology

Fig. 1 illustrates the different steps of the methodology. The first step reverse engi-
neers the SQL-92 database in order to obtain its structure. It obtains an instance of a
relational database metamodel representing its complete logical schema.

In the next step, the instance (a model) of the database metamodel is transformed
into an instance (also a model) of a metamodel describing an object-oriented
representation. This model is instrumented with basic operations and state machines
to define its behavior.

Then, the engineer guides the process of service discovery, applying different
techniques. As a result, a set of services are shaped in an abstract manner.

SQL-92
DATABASE

SQL-92
Metamodel

Object Oriented
Representation

Service
Discovering

Service
Generation

Class
Instrumentation

Behaviour
Adding

Reverse
Engineering

Model
Transformation

Code
Generation

Fig. 1. Process overview

The last stage is the service generation. By means of transformations, a code
implementation of the abstract service description is generated. All the stages are
explained in the following sections.

4 Preparing the Environment: A Reverse Engineering Task

This section explains the different steps of the methodology in detail.

230 I. García-Rodríguez de Guzmán, M. Polo, and M. Piattini

4.1 Database Metadata Extraction for Schema Representation

An effective strategy for recovering the database schema is used in [23, 24], where
database metadata is extracted via specific queries thrown against the database data
dictionary.

All these metadata are stored and represented via the SQL-92 metamodel in Fig. 2,
proposed by [25] , which considers all the elements of the SQL-92 standard [2]. By
means of this metamodel, all the metadata stored in the original database can be
represented. From now on we call this sub-metamodel SQL92Schema.

Constraint

SchemaObject SQLSchema

1..* 11..* 1

SQLSchema_SQLSchemaObject

Catalog

1..* 11..* 1

Catalog_SQLSchema

Table

Column

1..*

1

1..*

1

Table_Column

DataType

0..1

*

0..1

* Column_Data_Type

Domain0..1

*

0..1

*

is_Defined_On

1

1

1

1

Domain_Data_Type

XOR

Predefined

Fig. 2. General View of the SQL-92 metamodel

4.2 An Object-Oriented Representation of the Database

Once the structure of the database has been recovered, the next step in the process
translates the instance of the database metamodel (SQL92Schema) into an instance of
an object-oriented metamodel, representing the conceptual schema corresponding to
the database. This object-oriented representation is the starting point for inferring and
building services, establishing a layer between the exposed services and the database
itself.

The object-oriented metamodel is extracted from the UML 2 specification [26].
This metamodel has been made up by a subset of the Classes package of UML2, but
has not been included here due to the lack of space.

4.3 Transforming the SQL92Schema into the OOSv2 Metamodel

This section explains how to obtain an object-oriented representation from a database
schema by means of a QVT composed transformation.

All the elements managed are models: thus, the reengineering process is platform-
independent and the database service discovery is performed in a conceptual level. In
this way, the generation of source code is deferred to the final stage, when the
artifacts implementing the services must be generated.

The QVT language [27] was chosen to perform the transformations. QVT is a
powerful language to specify transformations among models (and in the same fashion

 A Methodology for Database Reengineering to Web Services 231

metamodels). QVT includes both a syntactical and graphical notation to define
transformations.

Due to the extension of the complete transformation, Table 1 shows only a small
part of the QVT algorithm to transform an instance of the SQL92Schema metamodel
into an instance of the OOSv2 metamodel.

Table 1. QVT transformation to obtain an object-oriented system from an SQL-92 Schema

transformation SQLSchemaToOOSv2
(sql92db: SQL92Schema, oos2: OOSv2){

key Class{name, owner};
key Association{name, owner};
key Property{name, owner};

top relation SQL92SchemaToOOSv2{…}
top relation TableToUMLElement{…}
top relation ConstraintToUMLElement{…}
relation

ReferentialConstraintToAssociation{…}
relation UniqueConstraintToProperty{…}
relation BaseTableToClass{…}
relation ColumnToProperty{…}

relation DomainToUMLConstraint{…}
relation ViewToClass{…}
relation AssertToConstraint{…}
relation TableCheckConstraintToUMLConstraint{…}
//Funciones
function SQL92_ValueToOOSv2V_Value
 (domain sql92 col:Column{}):
 domain oos2 val:ValueSpecification{}
function SQL92_TypeToOOSv2_Type
 (domain sql92 type: DataType{}):
 domain oos2 type:DataType{}
function DomConstraintToUMLClassInvariant
 (domain sqp92 cons:Constraint{}):
 domain oos2 cons:Constraint{}

ReferentialConstraint
ToAssociationname = rcName name = rcName

rc:ReferentialConstraint
assoc:Association

C E

sql92db oos2

<<domain>> <<domain>>

where

secColumn:
Column mainColumn:

Column

secTable:Table

mainTable:Table
memberEnd:
ExProperty

ownedEnd:Ex
Property

MEMD->size() = 2;
OEND->size() = 1;
let counter:Integer = 0 in
let propTemp: Property in
let mainClass:Class = oos2.classes->select
 (c:Class | c.name = mainTable.name)in
let secClass:Class = oos2.classes->select
 (c:Class | c.name = secTable.name) in
MEND->exist(secClass) and MEND->exist(mainClass) and OEND->exist(mainClass);
SECCOL->iterate(colTemp:Column; counter = counter +1|
 propTemp = secClass.columns->select(name = colTemp.name);
 propTemp.orderInRC = counter;
 propTemp.mainClassAssoc = mainClass;
 propTemp.mainPropertyAssoc = mainClass.select (name = (MAINCOL->at(counter).name)))

ReferentialConstraintToAssociation

Fig. 3. QVT transformation to obtain a UML association from an SQL-92 foreign key

The algorithm here is a composed function that triggers the functions shown in
Figs. 3 and 4 (graphical representation): for example, View2Class, ReferentialConst-
raint2Association, BaseTable2Class, Assertion2UMLConstraint, etc. In the same
way, other transformations are triggered later, as a consequence of the execution of
the main transformation (Table 1).

Transformation in Fig. 4 is in charge of transforming a column from a table to a
property of a class. In the same way, we have developed another transformation

232 I. García-Rodríguez de Guzmán, M. Polo, and M. Piattini

which is also invoked by the SQL92S_2_OOSv2, the ReferentialConstraint2-
Association transformation in Fig. 3. This takes a foreign key (which is composed of
one set of referencing columns and one of referenced columns) and generates a UML
Association (between one class representing the referencing table and other class
representing the referenced table).

name = cName

nullability_characteristic = nc
default_option = dop
ordinal_position = orp
is_updateable = isupd

column_data_type = cdtype:DataType{}
colDefValue = cdv

name = cName
visibility = `protected
orderInTable = orp
propertyType =

propType:DataType{}
isreadonly = TRUE

default = colDefValue

col:Column
prop:ExProperty

defValue = domDefValue

mDom:Domain

propType:DataType

column_data_Type:
DataType

ColumnToPropertyC E

sql92db oos2

<<domain>>
<<domain>>

ColumnToProperty

if (col->sqlType = null)
 then{ propType = SQL92_TypeToOOS2_Type(col->mdomaintype->mtype,DomainToUMLConstraint(col, prop)}
else propType = SQL92_TypeToOOSv2_Type(cdtype)

where

Fig. 4. QVT transformation to obtain a UML property from an SQL Column

5 Class Instrumentation

At this stage of the process, all the work is focused on the instance of the OOSv2
metamodel (that is, the representation of the relational database schema). That means
that all classes involved in a service are in fact an object-oriented representation of the
relational database tables and the parameters of a service are required to perform an
operation over the database.

Before performing any task for service discovery, the set of obtained classes must
be instrumented with methods. Up to now classes have been created from tables, and
each class owns properties but no methods. Thus, before composing any service,
methods must be assigned to all classes.

The basic CRUD operations (Create, Read, Update and Delete, shown in Fig. 5)
are added to all classes.

In addition, other operations may be required to add extra behavior to our classes.
Imagine the class Account representing a banking account (previously recovered from
a table). It is very likely that this class would require operations such as deposit,
withdraw or getBalance. In other words, many classes would require operations to
shape their behavior.

In addition to these operations, a state machine for some classes is also provided in
order to give the class a more similar behavior than it has in reality. See [21] for
further explanations.

The set of states corresponding to each class can be assigned by hand or be inferred
from the data saved in the database. Transitions, however, must always be designed
by the engineer, since there is no information about them.

 A Methodology for Database Reengineering to Web Services 233

 create
 create (void)
 create (in:PK)
 create (in:PK, in:custom_ record)
 read
 read (in:PK, out:record)
 read (in:PK, out:custom_record)
 read (in:custom_PK, in:custom_record, out:record*)

 update
 update (in:PK, in:{}{\values})
 update (in:custom_PK, in:custom_record, in:{})
 delete
 delete(in:PK)
 delete(in:custom_PK)

PK: primary key
custom_PK: partial PK, used to select a set of records
record: set of columns to be assigned to a table

CRUD OPERATIONS

Fig. 5. CRUD operations to be added

Fig. 6. Obtaining a state machine from a FK

The automation of state discovery inside classes relies on some heuristics. Some of
these rules are the following:

• Use of limit values: in numeric columns (later transformed to properties), limit
values are suggested in order to identify intervals that, at the end, can be seen as

234 I. García-Rodríguez de Guzmán, M. Polo, and M. Piattini

states. For example, remember our Account table. The Balance column (repre-
senting the money in the banking account) must be of a numeric data type. Three
limit values can be obtained, namely negative values, zero and positive values.
According to this, any account would be in any of these intervals: Balance-
Negative (-∞ < Balance <0), BalanceZero (Balance = 0) and BalancePositive (0
< Balance < ∞).

• Now suppose a table, and one of its columns referencing via a foreign key
another table with just one column (with a short set of values, such as an
enumeration). It is possible that these values are defining the state of the
corresponding table record and class instance. For example, in Fig. 6 (a) two
tables are observed, the first one representing projects developed by students and
the second representing the possible stages a project may have: thus, the stage
column in the first table is constrained by the second table via referential
constraint (Fig. 6 (b)). Taking the values of the Proj_Stage table as possible
states, a suitable state machine results from this supposition (Fig. 6 (c)).

In order to integrate the class instrumentation inside the full process, the State
Machine metamodel of the UML2 specification has been taken into account.

6 Extracting Services for SQL-92 Databases

6.1 Service Extraction

A service is a function that is well-defined, self-contained, and does not depend on the
context or state of other services [28] . Also, a service can be seen as an operation
which may need a set of parameters and that may return a result.

One of the first issues before generating services automatically is how to build
these services in a generic manner. Since a metamodel is an abstract language for
some kind of metadata [29] , a service metamodel has been developed to represent
any database-based service.

A service can be divided into two basic parts: the static and the dynamic compo-
nent. The static component of the metamodel represents all the artifacts involved in
the service such as classes, parameters, etc. The dynamic component of the service is
related to the behavior of the service, that is, the execution flow of the service. This
dynamic component lets the engineer model the set of steps that must be taken to
achieve the goal of the service.

In the methodology, a service will be translated into an (more or less) complex
SQL sentence. That is, both the result of the Model-Driven Pattern Matching (see
section 6.2) and the CRUD operations (see section 5).

Due to the SQL representation of services, a dynamic description is not required,
but a complete one of the structural elements of the service is essential. With this aim
in mind, a service metamodel has been developed. This metamodel does not cover the
full syntax of the SQL-92 standard but the required the methodology. Instead of the
BNF description of SQL-92 standard this metamodel has been build because (1) it is
easier to manage and integrate in the MDA process, (2) also to have a service
representation compatible with the other metamodels involved in the process, (3)
because this metamodel contains all the required elements to generate the requited

 A Methodology for Database Reengineering to Web Services 235

source code to implement services in the code generation stage, and is more suitable
than the SQL-92 BNF notation to represent services.

Together with this metamodel, a complete OCL set of invariants has been added to
many of the classes in order to specify with are the correct models (of services) that
could be generated having the kind of service and the operations involved in the service.
Due to the lack of space, these OCL invariants will be studied in further publications.

Service_Kind

$ SELECT_SERVICE : String = SELECT
$ INSERT_SERVICE : String = INSERT
$ DELETE_SERVICE : String = DELETE
$ UPDATE_SERVICE : String = UPDATE

SQLOperator

$ LESS_THAN : String = <
$ GREATER_THAN : String = >
$ LESS_OR_EQUAL_THAN : String = <=
$ GREATER_OR_EQUAL_THAN : String = >=
$ EQUAL_TO : String = =
$ NOT_EQUAL_TO : String = <>
$ IN : String = IN
$ LIKE : String = LIKE
$ EXISTS : String = EXISTS
$ UNIQUE : String = UNIQUE
$ ALL : String = ALL
$ SOME : String = SOME
$ ANY : String = ANY
NONE : String

La semántica v aría en
f unción del t ipo de
serv icio

SQLSetFunction

$ COUNT : String = COUNT
$ MAX : String = MAX
$ MIN : String = MIN
$ AVG : String = AVG
NONE : String

ReferentialConstraint

update_rule : Enum
delete_rule : Enum
match_option : Enum
mMainMult : Multiplicity
mSecMult : Mutiplicity

(from SQL-92 MM)

Column
(f rom SQL-92 MM)

Service_Parameter

name : String
type : Type

Return_Element

Table

name : String

(from SQL-92 MM)

#mMainTable
#mSecTable

1..* #mCol1..*

#mOwner

Required_Expression

mSetOperator : String

Value
mType : DataType
isParameter : Boolean

#mParameterValue

defined_by

Service
name : String
kind : String

0..*
#mParameter

0..*

#mReturn 1..*
#mMember

1..*

0..1

*

#mNestedService
0..1

#mReqExp *

Item
mTable : Table
mColumn : Column

0..1#mItem 0..1

Constraint_Expression

mOperator : String
isNot : Boolean
isAND : Boolean
isOR : Boolean

0..* #mValue0..*

0..1

*

#mNestedService

0..1

#mConsExp *

0..*
#mSecItem

0..*
#mMainItem

Fig. 7. Service component metamodel

6.2 Model-Driven Pattern Matching

As noted above, the database schema is considered as the reflection of the domain
layer, so it is very possible that many of the functionalities of the application are
reflected in the schema of the relational databases.

Being MA the set of elements that could take part in a service, it is possible to
match this model against a bigger model, namely MB, in order to find occurrences of
MA. That is, MA may be used as a pattern to search inside MB.

In our context, MB could be either the SQL92Schema or the OOSv2. The goal of
this process would be to obtain a set with all the occurrences of the elements of the
model that matches the given specification, and choose among them those that fit our
intention.

236 I. García-Rodríguez de Guzmán, M. Polo, and M. Piattini

The idea explained above corresponds to the model-driven pattern matching (from
now on, MDPEM) concept. This idea is briefly outlined in the MDA specification
[6], but emphasized more in the QVT specification [27]: “The essential idea behind
pattern matching is to allow the succinct expression of complex constraints on an
input data type; data which matches the pattern is then picked out and returned to
the invoker”.

Pattern ReferentialConstraint
(from SQL-92 MM)

+mPKs

Column
(f rom SQL-92 MM)

0..*

1..*

0..*

+mMainPK
1..*

1..*

0..*

+mSecRef
1..*

0..*

Table
(from SQL-92 MM)

#mMainTable

#mSecTable

1..*

+mPK

1..*

Pattern Association
1..*

Class
(f rom OOSv 2 MM)

+mMainClass

1..* +mSecClass

Property
(f rom OOSv 2 MM)

+mPKFieldSet

#mAssocs

1..*

#mClasses
1..*

Fig. 8. Pattern metamodels

In this context, the pattern (or the mechanism to shape something that could be
offered as a service) is a generic description of a pattern to do the matching against a
model. In this respect, the metamodels in Fig. 8 are proposed. These metamodels does
not work in the same way as the one proposed in [30], which is more general.

SQL92Schema
MM Instance

OOSv2
MM Instance

SQL92S_2_OOSv2
Transformation

<<QVT>>

MDPEM
SQL92Schema

MM Pattern

MDPEM
OOSv2

MM Pattern

MDPEM
Schema-M

Pattern

MDPEM
UML-M
Pattern

MDPEM
over

Schema

MDPEM
Schema

Matchings

MDPEM
Schema

Matchings
MDPEM

over
OOS

SQL92S_2_OOSv2
Transformation

<<QVT>>

Service_1

Service_2

Service_n

....

Ingeniero

<<results_in>>

<<results_in>>

Engineer

Fig. 9. MDPEM: inputs and results

Because MDPEM can be performed at two different levels of abstraction (namely
the SQL92Schema and the OOSv2 level), a pattern metamodel has been designed for
each one. While Fig. 8 (a) depicts the metamodel for building a pattern at a OOSv2
level, Fig. 8 (b) depicts a metamodel for builing patterns at the SQL92Schema level.

 A Methodology for Database Reengineering to Web Services 237

Looking at the metamodels, it can be seen that both of them represent the same
concepts, but at the two different levels of abstraction. This fact means that the
MDPEM can be performed over the two models without distinction. Since there is a
QVT transformation to obtain an OOSv2 instance from a SQL92Schema instance (see
Section 0), this mechanism can be also applied to transform results from MDPEM at
the SQL92Schema level to OOSv2 results. This means that the engineer can choose to
apply MDPEM to any of the abovementioned levels.

Fig. 9 helps explain the MDPEM process. As Fig. 9 shows, MDPEM is guided by
the engineer in charge of the reengineering process. Having both the instance of the
SQL-92 metamodel and the object oriented system metamodel, the engineer can
choose where to apply the MDPEM technique, depending on the skill of the engineer
and his/her preferences, because at the end, all matchings found in the SQL92Schema
instance could be transformed to OOSv2 ones by means of our QVT transformations.
An example of this process is presented below.

6.2.1 An Example of the Application of MDPEM
Given the relational database in Fig. 10 (b), a pair of patterns (Fig. 10 (a)), which will
be applied later, are going to be proposed, both over the SQL92Schema and OOSv2
metamodel instances.

The pattern of Fig. 10 expresses four tables (namely Cp, Dp, Ep and Mp) and three
foreign keys (namely FKp1, FKp2 and FKp3), where FKp1 is a foreign key from Mp to
Cp, FKp2 is a foreign key from Mp to Dp, and Fkp3 is a foreign key from Mp to Ep.
These elements belong to a conceptual set, namely S, which represents all the
elements of the recovered schema. The MDPEM process could be also be expressed
by means of a pseudo-SQL query:

),(),(
),(.,,,,,,

32

1321

SSSSSS

SSSSSSSSSS

MEFKMDFK
MCFKSFKFKFKMEDCSELECT

∧∧
∈

In this pseudo-SQL query, AS, BS, CS and MS represents tables and FKS1, FKS2 and
FKS3 represents foreign keys, both from the recovered schema. The result of the
MDPEM over the schema represented by Fig. 10 will be composed of two occur-
rences. One of these results (which is only a view of the whole model) will be
composed of Classroom, Academic_Year, Teacher and Give tables (which match the
Cp, Dp Ep and Mp tables of the pattern respectively) and their corresponding foreign
keys (which have no names in the schema but probably numerical identifiers). It is
important to note that the result of the MDPEM can be represented by the service
metamodel proposed in Fig. 7.

Implementing the patterns with an abstract description of an operation, in which all
the elements of the pattern are involved, could be very useful for the semi-automatic
generating of source code in further steps. In this way, after matching is done, the
result is the abstract specification of an operation where the elements involved are real
elements of the schema and not abstract entities of the pattern. Obviously, many parts
of the abstract operation must be customized before the services are generated. This
point is currently being researched and we think that would be useful to provide a
special language to express these abstract operations together with our proposal.

At the end of the MDPEM process, each instance of the patterns is susceptible to
being transformed to a Web Service (see the following section). Because the entire

238 I. García-Rodríguez de Guzmán, M. Polo, and M. Piattini

process revolves around models and views of these models, the target implementation
platform does not matter, because it is automatically generated. It only depends on the
available factories to generate code in different platforms (such as J2EE, .NET, etc.).

Cp

Dp

EpMp

Fkp2

Fkp1

Fkp3

(a)

(b)

Fig. 10. Two patterns for searching in an SQL-92 Schema

7 Service Implementation: The Last Step

In the previous sections, a methodology to reengineer SQL-92 databases to discover
services was explained. The main goal of this work is to develop a method to help the
software engineer expose services from a legacy system, in our case an SQL-92
database.

Our choice for publishing these services is Web Services technology. The reason
for using Web Services instead of other types of component or software artifacts is
that Web Services were created for system integration and to wrap legacy systems
[31]. Specifically, the use of Web Services for legacy system integration is a fact [32].
So, on one hand, Web Services were chosen because the target of the methodology is
true legacy systems such as an SQL-92 database which is still widely in use and on
the other hand, Web Services work over any technology due to the fact that this
technology lean on standard protocols such as SOAP, WSDL and UDDI.

Currently, QVT transformations to generate Web Services from abstract service
specifications are being defined. In this case, the core of the transformation is the
obtained services and the WSDL specification of a Web Service. The WSDL
documents work as a contract between the provider and the customer, because this
specification is where the customer can learn which operations the Web Service
provides, along with the signature of each operation. Different strategies to perform
this transformation are being studied.

The source models for the last transformation in our process are the services, while
the target model is the WSDL document metamodel and the implementation of the
services as well. Different versions of transformations would be created in order to
generate Web Services in different platforms.

 A Methodology for Database Reengineering to Web Services 239

8 Conclusions and Future Work

Up to now, a complex but fully functional environment for database reengineering
(Relational Web) has been developed, and its efficiency has been proven in many
projects [21] .

Despite the fact that SQL-92 technology is obsolete, most legacy systems and most
companies are still working over this kind of database. For this reason, an effective
process for reengineering this kind of database towards the web, exposing function-
alities and operations, is being designed.

In section 4.1, the SQL-92 part of the metamodel presented in [25] was chosen to
work with, but current results will be extended to subsequent versions of SQL
(namely 1999 and 2003 versions).

Our research is mainly focused on discovering hidden functionalities by means of
pattern matching and state machines. These functionalities are exposed by means of
Web Services, which are also automatically generated inside the reengineering process.

Transformations are described using QVT as transformation language. Due to the
novelty of this language, not too much tools support the full syntax of QVT.
However, until a suitable QVT engine could be used, transformations will be repre-
sented by means of an implemented algorithm.

Acknowledgements. This work is partially supported by the MÁS project (Manten-
imiento Ágil del Software), Ministerio de Ciencia y Tecnología/FEDER, TIC2003-
02737-C02-02, and the ENIGMAS project, Plan Regional de Investigación Científica,
Desarrollo Tecnológico e Innovación, Junta de Comunidades de Castilla La Mancha,
PBI-05-058.

References

1. Blaha, M. A Retrospective on Industrial Database Reverse Engineering Projects-Part 1. in
Proceedings of the 8th Working Conference on Reverse Engineering (WCRE´01). 2001.
Suttgart, Germany: IEEE Computer Society.

2. ISO/IEC, ISO/IEC 9075:1992, Database Language SQL. 1992.
3. Zimmermann, O., M. Tomlinson, and S. Peuser, Perspectives on Web Services. Applying

SOAP, WSDL and UDDI to Real-World Projects. Primera Edición ed. Springer
Professional Computing. 2003, Germany: Springer. pp. 645.

4. Wang, X., et al. Business Rules Extraction from Large Legacy Systems. in Proceedings of
the Eighth Euromicro Working Conference on Software Maintenance and Reengineering.
2004. Tampere, Finland.

5. Chikofsky, E.J. and J.H. Cross, Reverse Engineering and Desing Recovery: A Taxonomy.
IEEE Software, 1990(January): p. 13-17.

6. OMG, MDA Guide Version 1.0.1. 2003, Object Management Group. p. 62.
7. Favre, J.-M., M. Godfrey, and A. Winter. Integrating Reverse Engineering and Model

Driven Engineering. in Proceedings of the Second International Workshop on Meta-
Models and Schemas for Reverse Engineering (ateM 2004). 2004. Delft, The Netherlands.

8. Bézivin, J. Model Engineering for Software Modernization. in Guest Talk in the 11th
IEEE Working Conference of Reverse Engineering. 2004.

9. Larman, C., Applying UML and Patterns. 1998, New York: Prentice Hall, Upper Saddle
River.

240 I. García-Rodríguez de Guzmán, M. Polo, and M. Piattini

10. Müller, H.A., et al. Reverse Engineering: A Roadmap. in International Conference on
Software Engineering - Proceedings of the Conference on The Future of Software Engi-
neering. 2000. Limerick, Ireland.

11. Cohen, Y. and Y.A. Feldman, Automatic High-Quality Reengineering of Database
Programs by Abstraction, Transformation and Reimplementation. ACM Transactions on
Software Engineering and Methodology, 2003. 12(3): p. 285-316.

12. Blaha, M. Dimensions of Database Reverse Engineering. in Fourth Working Conference
on Reverse Engineering (WCRE '97). 1997. Amsterdam, The NETHERLANDS.

13. Henrard, J. and J.-L. Hainaut. Data dependency elicitation in database reverse engineering.
in Fifth European Conference on Software Maintenance and Reengineering (CSMR´01).
2001. Lisbon, Portugal: IEEE Computer Society.

14. Soutou, C., Relational database reverse engineering: algorithms to extract cardinality
constraints. Data & Knowledge Engineering, Elsevier Science Publishers B. V., 1998.
28(2): p. 161-207.

15. Sousa, P.M.A., et al. Clustering Relations into Abstract ER Schemas for Database Reverse
Engineering. in Proceedings of the Third European Conference on Software Maintenance
and Reengineering. 1999. Amsterdam, Netherlands: IEEE Computer Society.

16. Hainaut, J.-L., et al. Database Design Recovery. in Eighth Conferences on Advance
Information Systems Engineering. 1996. Berlin.

17. Henrard, J., et al. Program understanding in database reverse engineering. 2002.
18. Hick, J.-M. and J.-L. Hainaut, Strategy for Database Application Evolution: The DB-

MAIN Approach. LNCS 2813, 2003: p. 291-306.
19. Thiran and J.-L. Hainaut. Wrapper Development for Legacy Data Reuse. in Eighth

Working Conference on Reverse Engineering (WCRE'01). 2001. Suttgart, Alamania: IEEE
Computer Society.

20. Bychkov, Y. and J.H. Jahnke. Interactive Migration of Legacy Databases to Net-Centric
Technologies. in Proceedings of the Eighth Working Conference On Reverse Engineering
(WCRE´01). 2001: IEEE Computer Society.

21. García-Rodríguez de Guzmán, I., M. Polo, and M. Piattini. An Integrated Environment for
Reengineering. in Proceedings of the 21st International Conference on Software
Maintenance (ICSM 2005). 2005. Hungary, Budapest: IEEE Computer Society.

22. Blaha, M. A Retrospective on Industrial Database Reverse Engineering Projects-Part 2. in
Proceedings of the 8th Working Conference on Reverse Engineering (WCRE´01). 2001.
Suttgart, Germany: IEEE Computer Society.

23. Polo, M., et al., Generating three-tier applications from relational databases: a formal and
practical approach. Information & Software Technology, 2002. 44(15): p. pp. 923-941.

24. García-Rodríguez de Guzmán, I., M. Polo, and M. Piattini. An integrated environment for
reengineering. in 21st IEEE International Conference on Software Maintenance. 2005.
Budapest, Hungría: IEEE Computer Society.

25. Calero, C., et al., An Ontological Approach To Describe the SQL:2003 Object-Relational
Features. Accepted in "Computer Standards and Interfaces", 2005: p. 28.

26. OMG, Unified Modeling Language: Superstructure. Versión 2.0. 2005.
27. QVTP, Revised submission for MOF 2.0 Query / Views /Transformations RFP (Version

1.1). 2003, QVT-Partners (http://qvtp.org/).
28. WSSOA, Web Services and Service-Oriented Architectures. 2005.
29. OMG, Meta Object Facility (MOF) Specification. 2002.
30. Pagel, B.-U. and M. Winter. Towards Pattern-Based Tools. in Proceedings of EuropLop.

1996.
31. Alonso, G., et al., Web Services. Concepts, Architectures and Applications, ed. M.J. Carey

and S. Ceri. 2004, Berlin: Springer. pp. 354.
32. Lavery, J., et al. Laying the Foundations for Web Services over Legacy Systems. in

Proceedings of the Fourth International Workshop on Web Site Evolution (WSE'02). 2002.
Montreal, Canada.

	Introduction
	Background
	An Overview of the Methodology
	Preparing the Environment: A Reverse Engineering Task
	Database Metadata Extraction for Schema Representation
	An Object-Oriented Representation of the Database
	Transforming the SQL92Schema into the OOSv2 Metamodel

	Class Instrumentation
	Extracting Services for SQL-92 Databases
	Service Extraction
	Model-Driven Pattern Matching

	Service Implementation: The Last Step
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

