
Harvesting Software Systems
for MDA-Based Reengineering

Thijs Reus1, Hans Geers2, and Arie van Deursen3

1 Interactive Objects, Freiburg
Thijs.Reus@interactive-objects.com

2 Delft University of Technology, The Netherlands
H.J.A.M.Geers@ewi.tudelft.nl

3 Delft University of Technology and CWI, The Netherlands
A.vanDeursen@ewi.tudelft.nl

Abstract. In this paper we report on a feasibility study in reengineer-
ing legacy systems towards a model-driven architecture (MDA). Steps
in our approach consist of (1) parsing the source code of the legacy
system according to a grammar; (2) mapping the abstract syntax trees
thus obtained to a grammar model that is defined in the Meta-Object
Facility (MOF); (3) using model to model (M2M) transformations to
turn the grammar model into a generic meta-model, called Generic-
AST, in which information about software systems can be stored in a
language-independent way; (4) mapping the GenericAST models, again
using M2M transformations, to UML models that can be either used
for code generation or for documentation purposes. The steps have been
implemented in a prototype model harvesting tool that is based on Arc-
Styler, the MDA environment provided by Interactive Objects. Our pa-
per presents this approach, and reports on our experiences in applying
the method to a 178 KLOC production system from the insurance do-
main written in PL/SQL.

1 Introduction

Model Driven Architecture (MDA) provides a promising basis for keeping soft-
ware maintainable by using a series of models in the development process: models
are the main software assets, as opposed to source code. In this paper we ex-
plore how MDA concepts can be applied to existing software systems. The key
problem here is that usually no adequate models of actual systems are available.
In order to overcome this gap, we investigate to what extent reverse engineering
techniques can be used to extract adequate models from source code.

It is very unlikely that a fully automatic approach will ever be able to recon-
struct models that are (1) at an appropriate level of abstraction; and (2) can be
used to (re)generate the full functionality of the original application. Therefore,
we will aim at the interactive reconstruction of models that serve the following
purposes:

– The models can be used for system understanding and software exploration
in order to support a transition to a model-driven reimplementation;

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 213–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

214 T. Reus, H. Geers, and A. van Deursen

– The models can be used to generate code templates, that can subsequently
be refined to include deeper application knowledge.

A distinctive characteristic of reengineering to an MDA context is that
MDA provides a flexible environment for manipulating models, using open stan-
dards such as the Meta-Object Facility (MOF) [20], transformations using the
Query/View/Transformation approach (QVT) [19] and the Unified Modeling
Language UML. For that reason, we will investigate a reengineering approach
which switches to the MDA “technological space” [15] as quickly as possible,
after which model to model transformations are used to refine the initial raw
results.

The work presented in this paper was carried out within a pilot study con-
ducted at a major Dutch insurance company. The objective of this pilot study
is to investigate the feasibility of adopting MDA techniques for their legacy sys-
tems, in order to safeguard the future maintainability of these systems. Within
the study, tools were built to reverse engineer models from code —a process
called “harvesting” — and these tools have been applied to the source code of a
production system written in PL/SQL. Steps in our approach consist of

1. Parsing the source code of the legacy system according to a grammar;
2. Mapping the abstract syntax trees thus obtained to a grammar model that

is defined in the Meta-Object Facility (MOF);
3. Using model to model (M2M) transformations to turn the grammar model

into a generic meta-model, called GenericAST, in which information about
software systems can be stored in a language-independent way;

4. Mapping the GenericAST models, again using M2M transformations, to
UML models that can be either used for code generation or for documenta-
tion purposes.

The paper is structured as follows. We start out with a survey of related work
in the area of reengineering to model-driven architectures. We then describe our
approach (Section 3) as well as the prototype workbench we developed to support
our approach (Section 4). The application of our approach to the PL/SQL pro-
duction system is described next (Section 5) followed by a discussion of lessons
learned (Section 6). We conclude by summarizing our main contributions as well
as suggestions for future work.

2 Related Work

The Object Management Group is actively involved in the “reverse engineer-
ing to MDA” area, with the Architecture Driven Modernization (ADM) task
force [11, 22]. A total of seven Requests for Proposal aim at standardizing an
extensive reverse engineering framework towards an MDA target environment.
Part of ADM are two generic intermediate models, for supporting analysis and
refactoring. The generic models we use are inspired by but significantly simpler
than the wide spectrum ADM models.

Harvesting Software Systems for MDA-Based Reengineering 215

Mansurov and Campara [16] argue that a first step in the migration towards
the MDA is the introduction of modeling in the software development process.
They propose an approach to raise the maturity of software architectures to a
level where software maintenance and evolution are driven by the architecture
instead of by the code. For this they introduce so-called Container Models. They
focus on the extraction of these Container Models from existing code.

A framework for language neutral representation of source code is presented
by Al-Ekram and Kontogiannis [1]. A generic abstract syntax tree (AST) is part
of the program representation framework. XML is used as the main language. It
has the advantage of being a light weight solution, but comes with meta-model
discovery problems. The meta-model must be hardwired into the programs that
use it.

A view on language support for MDA also requiring a generic representa-
tion is discussed by Cepa and Mezini [4]. They propose a generic annotated
abstract syntax tree that can be used to support domain-specific but platform-
independent models. An explicit meta-representation is advocated for programs
in an AST-like structure, together with the possibility for users to add their own
annotations to this AST using a dedicated language.

Boronat et al. present a framework for automatic legacy system migration in
MDA [3], using rewriting logic as their transformation engine. The results are
UML models of the legacy system.

An approach aiming at incremental adoption of model-driven technologies is
provided by Gannod and Carey [13], who rely on Java annotations that support
the creation of models that fit in the Eclipse Modeling Framework EMF.

Harvesting MDA models from existing proprietary models is discussed by
Doyle [9]. His starting point are models as used in a 4GL application genera-
tor also in use at Fortis. His approach involves reconstructing and normalizing
models from database representations, which are subsequently transformed into
MOF representations using EMF.

Reengineering from code towards the MDA involves a combination of parsing
and model transformation. Kurtev et al. [15] refer to this as building bridges
between technological spaces, in this case between the grammar-ware and MDA
spaces. A very generic framework for bridging between technological spaces is
discussed by Wimmer and Kramler [24]. In this framework a compiler-compiler is
used that, based on an attributed grammar mapping EBNF to MOF, generates
a so-called grammar parser. This grammar-parser not only transforms EBNF
grammars into MOF-based metamodels, but also generates a tool to transform
programs associated with that EBNF grammar into models associated with the
generated metamodel.

A general introduction to reengineering and system renovation is provided
in [5,7]. Reengineering generally consists of a series of reverse engineering steps
that reconstruct system representations at a higher level of abstraction. These
representations can subsequently be used for code generation. Since fully au-
tomated reengineering often is not feasible, much reverse engineering research
focuses on supporting system exploration, i.e., helping software engineers in

216 T. Reus, H. Geers, and A. van Deursen

Serialized

Representation

Model

Meta-Model

Textual

Source code

Grammar

(EBNF)

AST

Grammar Model

(MOF)

GenericAST

Model

GenericAST

(MOF)

UML

Model

UML

(MOF)

AST

Parse

Populate M2M M2M

Defines Defines Defines Defines

Source specific Target specificGeneric

Generate Map to Map to

Fig. 1. Reengineering Framework

understanding the legacy system at hand [17]. A reverse engineering process
tailored towards reconstructing software architectures from source code is pro-
vided in [6].

3 Harvesting Approach

The approach we used for harvesting models from the source code of an existing
application is depicted in Figure 1. It consists of the following steps.

The starting point is a grammar of the legacy language, expressed in an
EBNF-like formalism. We first of all use this grammar to generate a parser
capable of processing the system’s source code and representing it by means of
abstract syntax trees (ASTs).

Existing parser generators generally produce proprietary AST representa-
tions. In order to benefit from standards and available tool support from MDA
technologies, we therefore need to transfer these abstract syntax trees to a MOF-
based representation. To that end, we use the EBNF grammar to generate:

1. A MOF-based Grammar Model, i.e., a metamodel of the Grammar defined
with MOF, that offers a one-to-one mapping between EBNF-based ASTs
and MOF-based ASTs; and

2. A series of transformations coded in Java mapping EBNF-based AST nodes
to their Grammar Model counterparts.

Following the terminology of Kurtev et al., we thus switch from the grammar-
ware technological space to the MDA technological space [10, 15].

Our next step consists of mapping the source language abstract syntax trees
to a generic, domain-independent model, which we have dubbed GenericAST.
From this generic model, we subsequently generate models that can be used
either for documentation or for code generation purposes. In some cases these

Harvesting Software Systems for MDA-Based Reengineering 217

models will be based on UML, whereas in other situations these models will be
domain specific. The main reason for introducing such a generic layer is that it
increases opportunities for reuse when, for example, extending the framework
with additional source languages.

The GenericAST meta-model is based on UML, especially for representing
structural information such as containers, entities, features, constraints, or types.
Regarding behavioral constructs, various meta-classes have been defined for
representing common programming language constructs, such as a conditional-
statement (similar to an if-statement or switch-statement) and a loop-statement
(similar to a for-loop or while-loop). Note that these statements can be rep-
resented independent of a specific concrete syntax, which is abstracted in the
transformations to a GenericAST model. UML support for representing behav-
ioral constructs is limited (we used version 1.4), which is another reason for us-
ing a GenericAST as intermediate model in the transformation process, instead
of transforming directly to UML. The GenericAST meta-model furthermore in-
cludes facilities for storing custom information in model elements by using tagged
values, and for including references to the original source code.

4 Harvesting Workbench Developed and Used

We created a prototype tool set implementing the approach described that al-
lowed us to harvest models from PL/SQL applications. This tool set makes use
of the following components.

– The basis for our tool set is Interactive Objects’ MDA environment Arc-
Styler.1 ArcStyler is an extensible platform for MDA-based software archi-
tecting and engineering. It integrates a UML modeling environment with
a collection of model transformations with can generate models or textual
output base on UML models. It provides an open, flexible environment for
tasks relating models, such as visualization, transformation (both model to
model, and model to text), and manipulation. We mostly used the model to
model transformation and visualization facilities, and to a lesser extend the
model to text transformation facilities offered.

– We used the Grammatica2 parser generator to obtain a PL/SQL parser. We
have been able to reuse an existing PL/SQL grammar, which we tuned for
our purposes.

– The mapping from grammars to MOF was set up according to the method
proposed by [2], with some extensions in order to turn Grammatica parse
trees into true abstract syntax trees.

– The MOF repositories were generated and manipulated using Interactive
Objects’ MDA-environment ArcStyler. In particular, ArcStyler’s Carat.MOF
functionality was used to generate a Java repository implementation, con-
forming to the Java Metadata Interface JMI [14], from a repository model
represented in the UML profile for MOF.

1 http://www.arcstyler.com
2 http://grammatica.percederberg.net

http://www.arcstyler.com
http://grammatica.percederberg.net

218 T. Reus, H. Geers, and A. van Deursen

GenericAST

GUI

Analysis

Framework

Processor

Framework

Annotation

Framework

Various

Tools
extends

Java Reflection

Harvester

Meta-model

XMI Generator

Classification

Model

Statistics

Contents

Printer

Expression

Compactor

Scope

Processor

Scope

Verifier

General Frameworks & Tools

Specializations & Implementations

Core

Dataflow

Fig. 2. GenericAST Framework and Tools

– The language independent analysis and transformation facilities offered at
the GenericAST level are illustrated in Figure 2. They include tree traversals,
transformations, a user interface for manipulating models, and an annotation
framework.

– Model to model transformations (M2M) (e.g. from GenericAST to UML)
were implemented in ArcStyler’s prototype M2M-transformation engine
called AIM – Atomistic Information Mapping. AIM provides a graphical
user interface for defining transformations, which can be expressed in the
Jython3 scripting language.

5 Case Study

We have applied the harvester tools to HiBob, a 178 KLOC production system
at De Amersfoortse Verzekeringen, a major insurance company based in The
Netherlands. The system has been developed in Oracle’s PL/SQL4 and consisted
of a data model with business logic that calculates insurance offers. The size of
the application is shown in Table 1, both in KLOC PL/SQL and in the number
of items.

For each main construct a grammar has been developed that describes part of
the PL/SQL language, to generate parsers and meta-models that can process the
input. The GenericAST has been used as an intermediate model, to reuse previ-
ously developed analyses and M2M-transformations to UML. ArcStyler has been

3 http://www.jython.org
4 http://www.oracle.com/technology/tech/pl_sql

http://www.jython.org
http://www.oracle.com/technology/tech/pl_sql

Harvesting Software Systems for MDA-Based Reengineering 219

Table 1. System size per main construct

Main Construct Size (KLOC) Item count
Tables with fields 70 163 with 4052
Triggers 28 468
Stored procedures (global) 7 46
Packages with procedures 73 23 with 538

used as MDA-environment for executing M2M-transformations and presenting
the generated UML models.

Before commencing harvesting, the anticipated architecture of HiBob was
determined. This first of all gives suggestions for the specific harvesting approach.
Secondly, it will help to determine where there are mismatches between the
current and the target architecture.

Only a small part of the harvesters is specific for HiBob, which is imple-
mented in the model to model transformations from a grammar model to a
GenericAST model. Using HiBob specific information, we were able to au-
tomatically modularize the application, based on known naming conventions.
The modularization was implemented in one transformation rule, whereas all
other transformation rules (more than 100) can be reused for harvesting other
PL/SQL applications. The grammars can be completely reused for harvesting
other PL/SQL applications. A grammar only regards syntax, which is not ap-
plication specific.

Although there is no conceptual restriction on what target models are gen-
erated, in the case study only UML models were generated, including class di-
agrams, state-chart diagrams and collaboration diagrams. Class diagrams (such
as in Figure 3) were used to gain insight in the data structure of the applica-
tion (tables, fields, relations, triggers and constraints) and the structure of the
behavior (stored procedures, packages with stored procedures, direct call depen-
dencies). The generated model can be used for both documentation and code
generation purposes.

Collaboration diagrams (such as in Figure 4) were derived to obtain insight
in all required methods for executing a certain initial method, which is derived
from direct call dependencies. The example diagrams shown here are relatively
simple, there are for example collaboration diagrams with over 10 objects and
more than 1000 method invocations required for more complex calculations.

Table 2 shows several performance measurements from the case study, per-
formed on a Pentium4 3.0 GHz computer with 1 GB RAM. The measurements
give an indication on the performance of parsing and populating a generated
MOF repository. The table also shows that the cost of compressing and sav-
ing models by means of XMI are substantial. No explicit measurements have
been done for the M2M-transformations, because we used a prototype M2M-
transformation engine with known scalability issues. M2M-transformations ran
for hours before completing which is due to the current implementation of the
engine. A custom (Java) transformation may run much faster, but it is harder
to keep a good overview of the transformation implementation.

220 T. Reus, H. Geers, and A. van Deursen

Fig. 3. Harvested Data Structures

Fig. 4. Harvested Collaboration Diagram showing Required methods for executing
method pp bereken opti variant

Table 2. Performance measurements from Text to MOF-based model

Property Unit Tables Triggers Stored Procedures Packages
Grammar size LOC 190 240 250 250
Input size KLOC 70 28 7 73
Parse time Sec 6 13 3 33
Population time Sec 9 42 7 144
Compressed XMI file size KB 2580 15600 1800 41000
XMI save time Sec 117 827 103 2660

The case study has shown the feasibility of harvesting existing source code (in
this case 178 KLOC PL/SQL) to UML models, although the current prototype
implementation suffers from scalability issues regarding M2M-transformations.
Using the GenericAST has successfully enabled transformation reuse as intended,

Harvesting Software Systems for MDA-Based Reengineering 221

although being an extra step in the extraction process. The extracted models
have successfully been used for documentation and forward engineering
purposes. Although currently no full migration has been done, experiments have
been conducted in generating J2EE code from the harvested UML models, using
standard model to text transformations shipped with ArcStyler. For data struc-
tures (tables with fields) complete J2EE code has been generated, whereas for
the business logic (e.g. trigger implementations, stored procedures, and PL/SQL
packages) only structural code has been generated (e.g. classes with methods,
with an empty body).

Further details of the case study conducted can be found in [21].

6 Lessons Learned

Have a clear picture of what to harvest. It is important to have a specific question
to answer or problem to solve before harvesting, and to know how to find the
answer or solution: if you don’t know where you’re going, any road will take
you there. In other words, constructs of interest that appear in the input must
be specified, such that a harvester can recognize them. For example, if for a
database system a question is ’what is the data structure?’ then constructs of
interest are table definitions, field definitions and relations between the tables.

Know the anticipated target models in detail. Having good knowledge on the
target models that need to be harvested increases usability of the harvested
models. For example, if the harvested models will be used for code generation
and the code generator requires that associations have names then association
should be given names during harvesting, which might not be necessary when
generating models solely for documentation. This results in models that can be
used directly for their purpose.

Make use of coding guidelines and naming conventions. The more system-specific
information is used during harvesting, the better quality the initial models have.
For example, if a table name contains a number that indicates the module it is
part of, it can be used to automatically relocate the table to the right module.
It improves the usability of the initial models.

Keep grammars small and focused. Smaller grammars are easier to maintain than
bigger grammars. When a complete grammar is not available for a harvesting
project, a minimal grammar should be developed. A minimal grammar has ex-
actly the right information to describe the anticipated input, but not a complete
language. This approach, which is based on the notion of island grammar [8,18]
has been taken while harvesting HiBob.

Modularize grammars. Modular grammars improve reusability of commonly
used grammar parts, such as statement and expression definitions. In the case
study, four different grammars were composed from several grammar parts. Not

222 T. Reus, H. Geers, and A. van Deursen

only does this save work while developing grammars, it also allows reuse of sev-
eral M2M-transformation parts, which correspond with the grammar parts. This
has successfully done in the case study.

Design grammar towards a target meta-model. Grammars should be developed
with a certain target meta-model in mind, including how to map the grammar to
the target meta-model. This improves reusability of M2M-transformation parts.
For example, if in a target meta-model statements are all contained by a certain
container, this should be reflected in the grammar. This could be done by having
a production statement_container which contains other statements and acts
the entry-point for statements in the grammar. This creates an extra node in
the AST that can be mapped to the statement container model element in the
target meta-model.

Avoid usage of XMI to store model contents. Persistence of harvesting results
using XMI should be avoided, because it is a slow mechanism. Instead of saving
and loading every time to and from XMI, as much as possible should be done
without XMI. In the case study, parsing and populating a repository took in the
order of seconds, while streaming to XMI took in the order of minutes. Therefore,
it is more efficient to parse the input every time the models are needed for M2M-
transformations. Because generation of a GenericAST model takes more time
than saving and loading XMI, it should be used to save a generated GenericAST
model.

Optimize M2M-transformations. M2M-transformations should be optimized
everywhere possible. In the case study, M2M-transformations were the longest
operations, which took in the order of days to complete. Simple optimizations
could improve the performance, for example by doing calculations once, pass on
the results to child rules where filtering takes place. In the case study, calcula-
tions where done at the same time as filtering, requiring each calculation to be
executed multiple times instead of once.

Genericity Mismatch. The genericity (or expressiveness) of the GenericAST
could be inadequate for a given harvesting project. It means that the Generic-
AST cannot represent constructs that appear in the project’s source code. This
risk is hard to identify and predict; it will show up during individual harvesting
projects.

Possible ways of minimizing or dealing with the consequences are:

– Provide extension points in meta-model: Currently each element can be ex-
tended by tagged-values, which is a light-weight, pragmatic extension mech-
anism. This will not be sufficient for all situations, but it is a start.

– Extend GenericAST meta-model: Evolving the meta-model requires exten-
sive testing in both the meta-model and tools, because it is a heavy-weight
extension mechanism. It has impact on compatibility with existing models
and transformations.

Harvesting Software Systems for MDA-Based Reengineering 223

The genericity (or expressiveness) of the GenericAST could be too large. It
happens when a semantic construct can be represented in more than one way.
If this is true it is harder to create generic transformations and analyses on
GenericAST models, because there could be two semantically equal models that
do not result in the same target model and/or analysis result. This risk is hard
to identify and predict.

Possible ways of minimizing the consequences are:

– Thorough meta-model review: For each meta-model element make sure why
it exists and what can be represented with it. It should not be able to rep-
resent the same construct with any other element.

– Definition of well-formed model guidelines: Identified ambiguities must be
resolved by making one option ’preferred’ and the other options ’illegal’,
which can be done with a guideline. Any model that violates a guideline is
not a valid GenericAST model. It may be enforced by providing a model-
checker which detects and reports violations.

7 Concluding Remarks

Reverse engineering to an MDA target context requires a flexible, automated
process that uses open standards as propagated by the OMG. Our reverse engi-
neering framework provides an abstract process with minimal transformations to
generate UML models from textual source code. The process consists of several
transformations: textual source code is parsed into an AST, which is populated
into a MOF-based repository with a meta-model conforming to the grammar
that describes the structure of the textual source code. The contents of the
MOF-based repository are transformed to an initial target model, which can be
a UML model. The benefits of MDA can now be used to their full potential: gen-
erated models can be used for documentation, or even for MDA-based forward
engineering.

To automate the process our prototype implementation uses generators. The
source code structure is described in a grammar and from the grammar a spe-
cialized harvester and repository are generated. An improved mapping from an
EBNF grammar to a MOF meta-model results in concise and usable repositories.

The generic intermediate model allows us to reuse M2M-transformations and
analyses. For specific harvesters a transformation can be developed to generate
a generic model. Available transformations and analyses can then be applied to
the generic model to get the desired target models.

The case study has shown that the prototype implementation of the reverse
engineering framework is able to extract models from a production system of
178 KLOC: UML models have been generated that give insight in structure and
behavior. These models can be used for documentation purposes as well as for
(partial) forward engineering: in our case Java classes have been generated from
the harvested models that represent the application’s structure.

Future work firstly regards solving scalability issues for our prototype imple-
mentation with the current M2M-transformation engine. An improved version

224 T. Reus, H. Geers, and A. van Deursen

of such an engine is required to support larger M2M-transformations without
running into performance problems. A functional extension of the prototype im-
plementation is replacing the parser generator with a more powerful one, such as
a Generalized LR parser generator [23] or an expression grammar parser genera-
tor [12]. A more powerful parser generator enables usage of island grammars [18],
which is a powerful technique to quickly develop grammars for complex struc-
tured source code. In an island grammar constructs of interest can be specified
in detail while the parser is told to ignore any other construct encountered in
the input.

Secondly, it should be investigated whether information in GenericAST mod-
els is sufficient to generate target source code, such that method implementations
can be generated as much as possible (at least for several constructs this expected
to be feasible). A particular challenge is how to represent business logic. It is an
open issue to what extend UML Action Semantics can help for the case at hand.
To fully evaluate the current GenericAST prototype implementation should be
tested on more source languages and evolved accordingly.

Last but not least, a full system migration should be attempted to assess fea-
sibility of using reverse engineered models in an MDA-based forward engineering
track. This might require transformation to specific UML profiles, domain spe-
cific languages and/or abstraction of platform dependent constructs to platform
independent constructs.

References

1. R. Al-Ekram and K. Kontogiannis. An XML-based framework for language neu-
tral program representation and generic analysis. In CSMR ’05: Proceedings
of the Ninth European Conference on Software Maintenance and Reengineering
(CSMR’05), pages 42–51, Washington, DC, USA, 2005. IEEE Computer Society.

2. M. Alanen and I. Porres. A relation between context-free grammars and meta ob-
ject facility meta-models. Technical Report 606, TUCS Turku Center for Computer
Science, 2003.

3. A. Boronat, J. A. Carsi, and I. Ramos. Automatic reengineering in MDA using
rewriting logic as transformation engine. In CSMR ’05: Proceedings of the Ninth
European Conference on Software Maintenance and Reengineering (CSMR’05),
pages 228–231, Washington, DC, USA, 2005. IEEE Computer Society.

4. V. Cepa and M. Mezini. Language support for model-driven software develop-
ment. Science of Computer Programming, 2006. Special issue on model-driven
architectures; to appear.

5. E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: a taxon-
omy. IEEE Software, pages 13–17, January 1990.

6. A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva. Sym-
phony: View-driven software architecture reconstruction. In Proceedings Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA’04), pages 122–134.
IEEE Computer Society Press, 2004.

7. A. van Deursen, P. Klint, and C. Verhoef. Research issues in software renovation.
In J.-P. Finance, editor, Fundamental Approaches to Software Engineering (FASE
’99), Lecture Notes in Computer Science, pages 1–21. Springer-Verlag, 1999.

Harvesting Software Systems for MDA-Based Reengineering 225

8. A. van Deursen and T. Kuipers. Building documentation generators. In Proceedings
International Conference on Software Maintenance, pages 40–49. IEEE Computer
Society, 1999.

9. D. Doyle. Transforming proprietary domain-specific modeling languages to model-
driven architectures. Master’s thesis, Delft University of Technology, 2005. URL:
swerl.tudelft.nl.

10. J.-M. Favre and T. Nguyen. Towards a megamodel to model software evolution
through transformations. Electr. Notes Theor. Comput. Sci., 127(3):59–74, 2005.

11. ADM Task Force. Architecture-driven modernization roadmap. Technical report,
OMG, 2006. Draft #1 dated 1/12/2006, adm.omg.org.

12. B. Ford. Parsing expression grammars: a recognition-based syntactic foundation.
In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 111–122. ACM, 2004.

13. G. Gannod and M. Carey. Evolution of java programs to a model-driven environ-
ment using EMF. In Proceedings EDOC Workshop on Model-Driven Evolution of
Legacy Systems (MELS). IEEE Computer Society Digital Library, 2004.

14. Java Specification Requests. JSR 040: Java Metadata Interface (JMI) Specification
Version 1.0, 2002.

15. I. Kurtev, J. Bézevin, and M. Aksit. Technological spaces: An initial appraisal.
In CoopIS, DOA 2002 Federated Conferences. Springer-Verlag, 2002. Industrial
Track.

16. N. Mansurov and D. Campara. Managed architecture of existing code as a practical
transition towards MDA. In UML Modeling Languages and Applications: �UML�
2004 Satellite Activities, volume 3297 of Lecture Notes in Computer Science, pages
219–233. Springer-Verlag, 2005.

17. L. Moonen. Exploring Software Systems. PhD thesis, Faculty of Natural Sciences,
Mathematics, and Computer Science, University of Amsterdam, December 2002.

18. L. Moonen. Lightweight impact analysis using island grammars. In Proceedings of
the 10th International Workshop on Program Comprehension (IWPC 2002). IEEE
Computer Society Press, June 2002.

19. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
2002. Final Adopted Specification, ptc/05-11-01.

20. OMG. Meta Object Facility (MOF) Specification Version 1.4, 2002.
21. T. Reus. Harvesting existing software systems for MDA-based reengineering. Mas-

ter’s thesis, Delft University of Technology, 2006. URL: swerl.tudelft.nl.
22. W. Ulrich. A status on OMG architecture-driven modernization task force. In Pro-

ceedings EDOC Workshop on Model-Driven Evolution of Legacy Systems (MELS).
IEEE Computer Society Digital Library, 2004.

23. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, September 1997.

24. M. Wimmer and G. Kramler. Bridging grammarware and modelware. In
Satellite Events at the MoDELS 2005 Conference: MoDELS 2005 International
Workshops, volume 3844 of Lecture Notes in Computer Science, pages 159–168.
Springer-Verlag, 2006.

swerl.tudelft.nl
adm.omg.org
swerl.tudelft.nl

	Introduction
	Related Work
	Harvesting Approach
	Harvesting Workbench Developed and Used
	Case Study
	Lessons Learned
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

