
Ontology-Based Composition and
Transformation for Model-Driven Service

Architecture

Claus Pahl

Dublin City University
School of Computing

Dublin 9, Ireland
cpahl@computing.dcu.ie

Abstract. Building service-based architectures has become a major area
of interest since the advent of Web services. Modelling these architectures
is a central activity. Model-driven architecture is a recent approach to
developing software systems based on the idea of making models the cen-
tral artifacts for design representation, analysis, and code generation. We
propose an ontology-based composition and transformation approach for
model-driven service architecting. Ontology technology as a logic-based
knowledge representation and reasoning framework can provide answers
to the needs of sharable and reusable models and descriptions needed
for service engineering. Based on UML-style visual modelling of service
architectures and their mapping into an ontology representation, our
approach enables ontology-based semantic modelling based on represen-
tation, analysis, and code-generation techniques for Web services.

Keywords: Service-oriented Architecture, Service Process Composition,
Model-Driven Architecture, Service Ontology, Web Services.

1 Introduction

Model-driven architecture (MDA) is an approach to the development of soft-
ware systems that has gained wide support over the past years [1]. MDA is
supported by major standardisation bodies such as the Object Management
Group (OMG). MDA emphasises the importance of modelling in the software
development process. Detailed models in MDA serve as design specifications
that support the maintainability of systems and can also provide the basis for
automated code generation. Service-oriented architecture (SOA) [2] is a specific
development and platform approach for service engineering that would benefit
from a tailored MDA solution in order to realise the MDA objectives.

Our focus is here on central development activities in service-oriented ar-
chitecture [3,4]. Composition is central in a paradigm that addresses architec-
tures of orchestrated services [2]. Service orchestration refers to the assembly or
composition of services to service processes [5]. Within the Web Services plat-
form [3]– which is the concrete platform for service-oriented architecture that we

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 198–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ontology-Based Composition and Transformation 199

target here – the business process execution language WS-BPEL [6] is the most
widely used implementation language for service processes.

Services description and composition has been combined with ontology tech-
nology [7,8]. Model-driven architecture has been enhanced to ontology-driven
architecture [9]. However, the integrated application of both ontology technol-
ogy and MDA to service architecture has so far not been adequately addressed.
We propose an approach for architecting service-based software systems that
embraces the MDA-philosophy. UML-based dynamic modelling is the starting
point. A tailored UML profile based on activity diagrams provides the modelling
notation for service process orchestration. The orchestration of services occurs in
two forms. Firstly, the composition of services to processes at the abstract level
using process operators. Secondly, the association of concrete provided services
that match the requirements of abstract service process elements.

Supporting service engineering using MDA and ontologies is beneficial for
the composition activity. For the SOA context, in particular Web services where
compositions across organisations and network boundaries are the norm, explicit
semantic descriptions of services are a prerequisite for the reliable composition of
services [10]. We introduce an ontology framework, i.e. a logic-based knowledge
representation framework, to enable sharable representations of semantic service
and process descriptions. Various attempts in this direction include service on-
tologies such as OWL-S [11] and WSMO [12]. The OMG has also recognised the
importance of logic-supported semantic modelling using ontologies, which is re-
flected in the OMG’s Ontology Definition Metamodel (ODM) initiative [13]. The
need for service providers to publish their services in an accepted, standardised
format is another argument in favour of ontologies.

Our solution is UML-based service process modelling supported through a
UML profile and a mapping from this profile into a semantic service ontology.
The ontology acts as a service architecting engine for both forms of composi-
tion and also supports code generation for the process execution and service
publication aspects. The aim is to apply the MDA philosophy to a specific soft-
ware technology. Service-oriented architecture focusses on architectural problems
such as process composition through service orchestration and the Web Services
platform is characterised by specific languages such as WS-BPEL [6] for ser-
vice process execution. Therefore, our solution will be dominated by semantic
modelling techniques for these specific aspects.

We start with an overview of the service engineering process in our con-
text in Section 2. In Section 3, we introduce UML-based modelling of service
processes. Ontology-based composition is the topic of Section 4. We discuss the
deployment of service processes in Section 5. We end with related work and some
conclusions.

2 Engineering of Service-Based Software Architectures

In [4], a Web service is defined as a software system, whose public interfaces are
defined and described using XML. Other systems can interact with the Web

200 C. Pahl

process:Choice

process:hasInput

process:...

process:hasOutput

process:..."

BPEL

<process>

<flow> ...

</flow>

</process>

WSMO

<interface>

...

<capabilities>

...

Fig. 1. Overview of the Ontology-based Service Architecture Technique

service in a manner prescribed by its definition, using XML based messages
conveyed by Internet protocols. The composition of services to orchestrated
processes is a major concern in current Web service research [14,15,2]. These re-
cent developments have strengthened the importance of architectural questions
such as service composition. Behaviour and interaction processes are central
modelling concerns for service-based software architectures. Explicit semantic
descriptions and exchangable models enable developers and clients of services
to create reliable service architectures using tool support.

We embed our proposed service composition technique into an ontology-
supported, MDA-based development approach for the platform-independent
layer (PIM). Our service-specific software process model for ontology-driven se-
mantic service architecture is based on the following steps, see Fig. 1:

– Service Process Modelling. This activity is about visual UML modelling of
process activities. Activity diagrams with service-oriented semantic exten-
sions form the notation. Individual actions represent services.

– Abstract Process Composition Analysis. The analysis activity part of the
process modelling addresses the integrity of a process composition based on
semantical model enhancements in an ontological representation; here we use

Ontology-Based Composition and Transformation 201

Fig. 2. UML Profile (Metamodel) for Semantic Service Process Modelling

the Web Service Process Ontology WSPO [16,17] – which we will motivate
later on – to analyse for instance the integrity of service process definitions.

– Service Process Implementation. The focus of this activity is the discovery
of individual services in repositories and directories that match the require-
ments of the actions specified in the process model. These concrete services
can then be associated to the abstract services from the process model.

– Service Process Deployment. The deployment activity enables the implemen-
tation of the process as an executable WS-BPEL process [6] based on the
associated services. Deployment also includes the publication of the over-
all process as a service in a service ontology; here we use the Web Service
Modelling Ontology WSMO [12].

An ontology-based service architecting engine supports the composition activi-
ties within the platform-independent (PIM) layer and also guides the necessary
transformations to the Service Deployment, i.e. platform-specific (PSM) layer.

3 Modelling of Service Processes

Service processes are assemblies of individual services or other service processes.
This form of service composition is part of what is often called service orchestra-
tion [5] – the other aspect of orchestration is the association of concrete services
to abstract service placeholders in the composed process description. It describes
the control and data flow between services using basic flow operators.

UML activity diagrams capture activities that are to be performed as exe-
cutable activity nodes in a graph-like structure. The overall system flow based
on the activities is modelled. The basic diagram elements are executable activ-
ity nodes, called actions, and edges between these activity nodes that represent

202 C. Pahl

Fig. 3. Semantic Service Process Model based on UML Activity Diagrams

flow. Control flow nodes allow the description of choice (decision) or concur-
rency (fork) with their joining counterparts. The control flow can be enhanced
by explicit objects and input and output pins that represent input and output
elements at activities.

We require some extensions to activity diagrams, which we will capture in
form of a UML profile, to address the needs of semantic service process descrip-
tion. This metamodel is defined in Fig. 2. White rectangles denote the standard
UML activity diagram elements; medium grey ones denote our service-specific
extensions; dark grey ones associated elements of a possible domain ontology1. A
service is an activity. A service’s input and output objects are linked to the input
and output pins of activities. In addition to input and output elements, we need
to add semantic service descriptions, here in the form of pre- and postconditions.

The application of the profile is presented in Fig. 3. It represents an online
bank account application. The process of using such an account is described.
This application is based on four individual services, each described in terms of
input, output, precondition, and postcondition.

The following textual representation summarises the syntactical aspects in
an IDL-style service interface format.

application AccountProcess
service login (user:string, account:int) : ID

balance enquiry (account:int) : real
money transfer (account:int, destination:int, amount:real) : void
logout (sessionID:ID) : void

process login; !(balance enquiry + money transfer); logout

1 Often, a domain ontology or model captures central concepts, i.e. key objects and
processes, of an application context [16]. The architecture model here is linked to
the domain model. Although we do not discuss this aspect further, the integration
with a domain model is central for a coherent ontology-based modelling approach.

Ontology-Based Composition and Transformation 203

The services are composed to a process, here using the combinators sequence
(;), iteration (!), and choice (+) in the textual representation above, which is
also captured in UML notation in Fig. 32.

4 Composition of Service Processes

Composition occurs, as already mentioned, in two forms in service architectures:

– Process composition. The assembly of services to processes is the first form
of composition. The visual modelling of this composition form is supported
by the UML profile. The semantic consistency of the process composition
needs to be addressed at a different level.

– Refinement. The composition of the abstract service process as the client and
individual concrete services as providers of functionality is the second form
where the provider properties refine the required properties. The problem is
the discovery of services in service repositories or directories that match the
semantic requirements.

Both forms together are usually refered to as orchestration.
We introduce in this section an ontology-based engine to support the ar-

chitecting of service-based systems based on these two composition forms. The
notion of a service architecting engine – emphasising the focus on architecture
development – captures semantic properties of services and processes, and sup-
ports process- and refinement-style composition. An operator calculus for process
composition and inference rules to support matching are integral elements of this
engine. As we will see later on, a service composition ontology can also provide
the foundations for the generation of deployment code. We start with the com-
position ontology itself (Section 4.1), before looking at mappings between UML
and this ontology (4.2) and process composition (4.3) and implementation (4.4).

4.1 A Service Composition Ontology

A number of service ontologies have been proposed, with OWL-S [11] and WSMO
[12] as two prominent examples. The central aim of service ontologies is the
semantic annotation of services. While OWL-S also supports service composi-
tion to a degree through its process model, we use the Web Service Process
Ontology WSPO – whose foundations are presented in [17,18] and which we
developed specifically to support service composition and architecture ontologi-
cally. WSPO is an OWL-DL (the Web Ontology Language – Description Logic
variant) ontology. It uses description logic [19], which also provides the foun-
dation of OWL, to capture composition techniques. WSPO is actually an en-
coding of a dynamic logic (a modal logic of programs) in a description logic
format, which enables reasoning about dynamic service process properties such

2 We have used iteration as an explicit control flow abstraction here, even though it
is not part of the UML notation, since its simplifies expressions on the textual level.

204 C. Pahl

as safety and liveness, making WSPO the most suitable candidate for ontology
that supports the MDA PIM layer. The ontology can be used to check the in-
tegrity of service process definitions (a safety condition), e.g. determine if the
output of a service satisfies the semantic requirements of the next service in the
process.

Ontologies are knowledge representation frameworks formalised in an ontol-
ogy language (such as OWL) [20,21], which is usually based on a terminological
logic (such as description logic). Knowledge is represented in form of concepts
and (quantified) relationships between these concepts to characterise them se-
mantically. Services (and processes) in WSPO are not represented as concepts, as
one might intuitively assume, but as relationships denoting accessibility relations
between states of the system. The states are represented as concepts.

– The central concepts in this approach are states (pre- and poststates) for
each service. Other concepts are parameters (input- and output-parameters)
and constraints (pre- and postconditions).

– Two forms of relationships are provided. The services themselves or their
composition to processes are called transitional relationships. These processes
are based on operators such as sequence, choice (decision), and concurrency
(fork) – other operators not present in activity diagrams, such as the iterator,
could also be added as control flow abstractions. Essentially, the transitional
relationships define a (labelled) transition system. Syntactical and seman-
tical descriptions – here input and output parameter objects (syntax) and
constraints (semantics) – are associated to individual services through de-
scriptional relationships.

The benefit of this non-standard approach are improved reasoning capabilities
for dynamic properties such as lifeness and safety. WSPO can be distinguished
from other service ontologies by two specific properties.

– Firstly, although based on description logics, it adds a relationship-based
process sublanguage enabling process expressions based on iteration, choice,
and sequential and parallel composition operators.

– Secondly, it adds data to processes in form of in- and output parameters –
introduced as constant process elements into the process sublanguage.

We will present WSPO here in a pseudo-OWL notation to avoid the full ver-
bosity of XML-based descriptions, see e.g. Fig. 4. The @-construct used in some
constraints refers to the attribute in the prestate, cf. [22].

A service process template with a central process element (the transitional
relationship) and associated services (descriptional relationship) defines the ba-
sic structure of states and service processes. Syntactical parameter information
in relation to the individual activities and also semantical information such as
preconditions are attached to each activity as defined in the template. The pre-
and poststates will remain implicit in the notation.

The three services on the right-hand side of Fig. 4 are part of a composed
process, shown on the left-hand side. The process is based on a choice construc-
tion (based on the decision control flow operator of the UML activity diagrams).

Ontology-Based Composition and Transformation 205

process:Choice

process:hasInput

process:Input rdfID="login"

process:hasOutput

process:Output rdfID="balance enquiry"

process:Output rdfID="money transfer"

process:Service rdfID="login"

service:hasInput

service:Input rdfID="user"

service:Input rdfID="account"

service:preCondition rdfConstr="valid(user,account)"

service:hasOutput

service:Output rdfID=“sessionID"

service:postCondition rdfConstr=“valid(sessionID)"

process:Service rdfID="money transfer"

service:hasInput

service:Input rdfID="source"

service:Input rdfID="destination“

service:Input rdfID="amount"

service:preCondition

rdfConstr=" valid(sessionID) and balance(source)>0"

service:hasOutput

service:Output rdfID="void"

service:postCondition

rdfConstr="balance = balance@pre - amount"

process:Service rdfID=“balance enquiry"

service:hasInput

service:Input rdfID=“account"

service:preCondition

rdfConstr=" valid(sessionID)"

service:hasOutput

service:Output rdfID=“result"

service:postCondition

rdfConstr=“result = balance(account)"

Fig. 4. WSPO Process and Service Model

The left-hand side is a transitional relationship expressing the composed process
itself. The three services login (as input) and balance enquiry and money
transfer (both as output of the control flow operator) are combined. Input and
precondition are (implicitly) associated to the prestate and output and post-
condition are (implicitly) associated to the poststate. Although the pre- and
poststates are not explicit in the WSPO notation, their presence is necessary
as the overall process specification is interpreted by labelled transition systems.
The transitional relationships, i.e. the process specification itself, defines the
accessibility relationship between pre- and poststates.

Pre- and postconditions for the composed process can be derived from the
individual service specifications – once the overall consistency of the abstract
composed process definition is established – in order to represent the process as
a single service to potential users.

4.2 Mapping Activity Diagrams to Service Ontology

In our framework, UML activity diagrams and our extension to model service
processes based on the UML profile serve mainly as a tool for visual mod-
elling. The ontology framework provides the service architecting engine for the
platform-independent and platform-specific model layers. It performs composi-
tion checks and creates executable process implementations.

The mapping from the activity diagrams based on the profile into the WSPO
is straightforward. The ontology representation in Fig. 4 is the result of the trans-
formation of the UML model in Fig. 3. WSPO is based on a standard template.
A process specification forms the core, to which individual service specifications

206 C. Pahl

of services that participate in the process are associated. The standard activ-
ity nodes and edges from UML activity diagrams are mapped onto the process
template:

– The activity nodes of services connected by the activity edges to processes
(see Fig. 3) with their input and output elements are mapped onto the
process part of the template. The UML control flow operators, such as
decision and fork, are represented by the WSPO process combinators, such
as choice and concurrency.

– For each service (activity node), a separate service part with input and
output, precondition and postcondition information is generated, where each
of the individual information elements is considered as attached through a
descriptional relationship. The UML input and output pins are mapped to
WSPO service input and output concepts. Pre- and postconditions of the
UML extension are equally mapped to WSPO concepts.

We currently work with a subset of activity diagram features as shown in Fig. 3,
which is sufficient to express abstract functional service and process properties.
The transformation between this subset and WSPO is straightforward. Other
diagram elements, such as activity partitioning mechanisms (swimlanes), could
be used in extensions of this approach to consider non-functional aspects such
as service distribution. We have investigated modelling of service distribution
in [23].

The ontology acts as a formally defined internal representation that enables
transformation, composition, and reasoning activities. UML provides an interface
for visual modelling, but also interoperability, which allows existing UML models
to be reused and integrated into our proposed framework.

4.3 Process Composition

Services that are visually composed do not necessarily match semantically. A
semantical analysis of the composition between these abstract specifications is
required. The excerpt of the bank account model.

The login service produces an output object sessionID that satisfies the
postcondition valid(sessionID). Although the sessionID is not required as
an input element for the subsequent balance enquiry service, the validity of
the sessionID is still required and guards this service. This case, even though
a simple one, illustrates the need to check the consistency of the composition
– both in terms of input elements in and output elements out and also the
semantic matching of postcondition of the predecessor postP and precondition
preS of the successor service. A required input element in of an output service
of a composition must be provided as an output element of the preceding ser-
vice in the process composition (cf. pipes) or must be supplied by the overall
process instance (cf. calls). An implication postP → preS is the semantic consis-
tency constraint for the composition. This applies to all composition operators
(sequence, choice, concurrency).

Ontology-Based Composition and Transformation 207

This type of composition can be characterised as horizontal, whereas in the
following section, we will address the vertical dimension of composition by asso-
ciating concrete provided services to abstract process models.

4.4 Composing Service Providers and Clients

The service process defined by modelling the control and data flow characteris-
tics visually and by checking its consistency using the ontology engine is still an
abstract description. Concrete services need to be found that match the require-
ments expressed in the abstract models, called service orchestration. Matching
is often based on the so-called IOPE (Input Output Precondition Effect) char-
acteristics. A refinement relation (e.g. weakening the precondition and strength-
ening the postcondition or effect, which we use here) defines the matching
notion.

Ontologies enable reasoning about models and their properties. In [17], a
refinement notion is integrated into an ontological framework, based on the on-
tological subsumption (subclass) relationship. There, we have presented an on-
tological matching notion that can be applied to determine whether a service
provider can be connected to a service user based on their individual service and
process requirements.

Assume that in order to implement an account process, an implementation
for the money transfer service with input parameter amount needs to be in-
tegrated. For any given state, the process developer might require (using the
balance enquiry)

service:preCondition rdfConstr="balance() > amount"
service:postCondition rdfConstr="balance()= balance()@pre-amount"

which would be satisfied by a provided service

service:preCondition rdfConstr="balance() > 0"
service:postCondition rdfConstr="balance()= balance()@pre- amount

and lastActivity = ’transfer’"

The provided service would weaken the required precondition assuming that the
transfer amount is always positive and strengthen the required postcondition as
an additional result is delivered by the provided service. Note, that we have used
a pseudo-RDF notation here to simplify the example.

5 Deployment of Service Processes

The deployment of services at the platform-specific layer involves two perspec-
tives – clients invoking and executing service processes (5.1) and providers pub-
lishing abstract descriptions and making the process services available (5.2).

208 C. Pahl

Rule Aspect Description
P1 WS-BPEL The complex WSPO process relationships can be mapped to

BPEL processes.
P1.1 WS-BPEL For each process create a BPEL partner process.

process partners
P1.2 WS-BPEL Convert each process expression into BPEL-invoke activities

orchestration and the client side BPEL-receive and -reply activities at the
server side.

P1.3 WS-BPEL Convert the process combinators ’;’, ’+’, ’ !’, and ’||’ to the
process activities BPEL combinators sequence, pick, while, and flow, resp.

Fig. 5. Transformation Rules – Executable Processes

5.1 Code Generation for Service Process Invocation and Execution

Automated code generation is one of the central objectives of MDA. In the
context of SOA, code generation essentially means the generation of exectu-
able service processes. WS-BPEL [6], which has been looked at from a semantic
perspective [24], has emerged as the most widely accepted process execution
language for Web services.

A summary of the transformation rules from WSPO to WS-BPEL is pre-
sented in Fig. 5. WSPO defines a simple language that can be fully translated
into WS-BPEL. BPEL process partners are the client and the different ser-
vice providers. The WSPO specification is already partitioned accordingly. Flow
combinators can also be mapped directly.

5.2 Description and Publication of Services and Service Processes

The Web Services architecture proposes a specific platform based on services
provided at certain locations, which can be located using directory information
provided in service registries. The description of services – or service processes
made available as a single service – is therefore of central importance. Infor-
mation represented in the process model and formalised in the service process
ontology can be mapped to a service ontology. Both OWL-S and WSMO would
be suitable here. This transformation would only be a mapping into a subset,
since these ontologies capture a wide range of functional and non-functional prop-
erties, whereas we have focussed on architecture-specific properties in WSPO.

We have chosen WSMO here to illustrate this type of code generation. A
summary of the transformation rules from WSPO to WSMO is presented in
Fig. 6. Some correspondences guide this transformation. WSPO input and out-
put elements correspond to WSMO messageExchange patterns, which are used
in WSMO to express stimuli-response patterns of direct service invocations, and
WSPO pre- and postconditions correspond to their WSMO counterparts.

Ontology-Based Composition and Transformation 209

Rule Aspect Description
D1 WSMO Based on the WSPO model, map process relationships to

WSMO service concept and fill messageExchange and pre/
postCond properties accordingly.

D1.1 WSMO Map the WSPO in and out objects onto WSMO message-
messageExchange Exchange descriptions.

D1.2 WSMO Map the WSPO pre- and postconditions onto WSMO pre-
pre-/postconditions and postconditions.

Fig. 6. Transformation Rules – Semantic Service Descriptions

6 Related Work

Some developments have started exploiting the connection between ontologies
– in particular OWL – and MDA. In [25], an MDA-based ontology architecture
is defined. This architecture includes aspects of an ontology metamodel and a
UML profile for ontologies. A transformation of the UML ontology to OWL
is implemented. The work by [9,25] and the OMG [1,13], however, needs to
be carried further to address the ontology-based modelling and reasoning of
service-based architectures. In particular, the Web Services architecture needs
to be addressed in the context of Web-based ontology technology. Some of the
reasoning tasks we used ontologies for, could have also been addressed using
OCL [22]. However, ontologies provide a full-scale logic and additionally allow
XML-based sharing and exchange in a Semantic Web framework.

Grønmo et.al. [26] introduce – based on ideas from [25] – an approach similar
to ours. Starting with a UML profile based on activity diagrams, services are
modelled. These models are then translated into OWL-S. Although the paper
discusses process composition, this aspect is not detailed. We have built on [26]
in this respect by considering process compositions in the UML profile and by
mapping into a service ontology that focusses on providing explicit support for
service processes. Other authors [27,28] have directly connected UML modelling
with WS-BPEL code generation, without the explicit ontology framework. In-
tegrating ontologies, however, enhances the semantic modelling and reasoning
capabilities in the context of service architectures.

WSMO [12] and OWL-S [11] are the two predominant examples of service
ontologies. Service ontologies are ontologies to describe Web services, aiming
to support their semantics-based discovery in Web service registries. WSMO is
not an ontology, as OWL-S is, but rather a framework in which ontologies can
be created. The Web Service Process Ontology WSPO [17,18] is also a service
ontology, but its focus is the support of description and reasoning about service
composition and service-based architectural configuration. An important current
development is the Semantic Web Services Framework (SWSF), consisting of a
language and an underlying ontology [29], which takes OWL-S work further and

210 C. Pahl

is also linked to convergence efforts in relation to WSMO. The FLOWS ontology
in SWSF comprise process modelling and it equally suited to support semantic
modelling within the MDA context.

Our framework has to be seen in the context of MDA initiatives. The OMG
supports selected modelling notations and platforms through an adoption
process. While Web technologies have not been adopted so far, the need for
a specific MDA solution for the Web context is a concern. The ubiquity of the
Web and the existence of standardised and accepted platform and modelling
technology justify this requirement. The current OMG initiative to define and
standardise an ontology metamodel (ODM) will allow the integration of our
framework with OMG standards [13]. ODM will provide mappings to OWL-DL
and also a UML2 profile for ontologies. ODM, however, is a standard address-
ing ontology description, but not reasoning. The reasoning component, which
is important in our framework, would need to be addressed in addition to the
standard.

7 Conclusions

Service-oriented architecture is developing into a service engineering paradigm
with its own specific techniques. The development of a service engineering
methodology should – similar to other approaches – adopt accepted technologies:

– MDA provides, based on UML, a modelling approach that can satisfy the
modelling requirements necessary to develop service architectures and that
emphasises tool support and automation.

– Ontology and Semantic Web technologies provide semantic strength for the
modelling framework necessary for a distributed and inter-organisational
environment.

Our main contribution is an ontology-based engine that supports the process of
service architecting. The central element is a service ontology tailored to sup-
port service composition and transformation. An ontology-based technique is
here beneficial for the following reasons. Firstly, ontologies define a rigourous,
logic-based semantics modelling and reasoning framework thats support archi-
tectural design activities for services. Secondly, ontologies provides a knowledge
integration and interoperability platform for multi-source semantic service-based
software systems. Thirdly, service ontologies can also be integrated with domain
ontologies to integrate different software development activities – for instance at
the computation-independent layer of MDA. Our aim here was to demonstrate
the suitability of ontologies for this environment – for both WSPO to support ar-
chitectural issues but also for WSMO here to support service discovery. We have
embedded this service composition ontology into an architecture modelling tech-
nique integrating visual UML-based modelling, transformation, ontology-based
reasoning, and code generation.

In this approach ontologies replace the classical UML models, except that
we keep the visual UML notation, but give semantics to a UML profile for

Ontology-Based Composition and Transformation 211

service architecture by mapping UML models to ontologies. This approach has
in addition to the visualisation of models also the benefit of allowing the reuse
of existing models. Ontologies add rigorous semantic modelling and reasoning.

While we have outlined the core of an ontology-driven service architecture
framework, a number of aspects have remained unaddressed. The integration
of a wider range of UML models could be discussed in order to improve the
reusability of UML models. For instance, interaction and sequence diagrams ex-
press aspects of relevance to service composition and interaction. Composition
aspects such as time or error handling could be considered. A reversed mapping
from ontologies into UML models could also be considered. A standardised ontol-
ogy definition model (ODM) can be expected in the near future. The integration
of our approach with this standard is necessary for interoperability reasons and
will facilitate model reuse, but should turn out to be feasible due to OWL-DL
as the common underlying ontology language.

References

1. Object Management Group. MDA Model-Driven Architecture Guide V1.0.1. OMG,
2003.

2. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd
Edition). SEI Series in Software Engineering. Addison-Wesley, 2003.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,
Architectures and Applications. Springer-Verlag, 2004.

4. World Wide Web Consortium. Web Services Architecture. http://www.w3.org/
TR/ws-arch, 2006. (visited 28/02/2006).

5. C. Peltz. Web Service orchestration and choreography: a look at WSCI and
BPEL4WS. Web Services Journal, 3(7), 2003.

6. The WS-BPEL Coalition. WS-BPEL Business Process Execution Language for
Web Services – Specification Version 1.1. http://www-106.ibm.com/ developer-
works/webservices/library/ws-bpel, 2004. (visited 08/04/2005).

7. S. McIlraith and D. Martin. Bringing Semantics to Web Services. IEEE Intelligent
Systems, 18(1):90–93, 2003.

8. T. Payne and O. Lassila. Semantic Web Services. IEEE Intelligent Systems, 19(4),
2004.

9. D. Gašević, V. Devedžić, and D. Djurić. MDA Standards for Ontology Development
– Tutorial. In International Conference on Web Engineering ICWE2004, 2004.

10. J. Rao, P. Küngas, and M. Matskin. Logic-Based Web Services Composition: From
Service Description to Process Model. In International Conference on Web Services
ICWS 2004, pages 446–453. IEEE Press, 2004.

11. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

12. R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web Service
Modeling Ontology. Applied Ontology, 1(1):77–106, 2005.

13. Object Management Group. Ontology Definition Metamodel - Request For Proposal
(OMG Document: as/2003-03-40). OMG, 2003.

14. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

212 C. Pahl

15. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. ACM
Transactions on Software Engineering, 28(11):1056–1075, 2002.

16. C. Pahl. Layered Ontological Modelling for Web Service-oriented Model-Driven
Architecture. In European Conference on Model-Driven Architecture ECMDA2005.
Springer LNCS Series, 2005.

17. C. Pahl. An Ontology for Software Component Matching. International Journal on
Software Tools for Technology Transfer (STTT), Special Edition on Component-
based Systems Engineering, 7, 2006. (in press).

18. C. Pahl and M. Casey. Ontology Support for Web Service Processes. In Proc. Eu-
ropean Software Engineering Conference and Foundations of Software Engineering
ESEC/FSE’03. ACM Press, 2003.

19. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

20. M.C. Daconta, L.J. Obrst, and K.T. Klein. The Semantic Web. Wiley, 2003.
21. W3C Semantic Web Activity. Semantic Web Activity Statement, 2004.

http://www.w3.org/2001/sw. (visited 06/11/2005).
22. J.B. Warmer and A.G. Kleppe. The Object Constraint Language – Precise Modeling

With UML. Addison-Wesley, 2003. (2nd Edition).
23. R. Barrett, L. M. Patcas, J. Murphy, and C. Pahl. Model Driven Distribution Pat-

tern Design for Dynamic Web Service Compositions. In International Conference
on Web Engineering ICWE06. Palo Alto, US. ACM Press, 2006.

24. D.J. Mandell and S.A. McIllraith. Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. In D. Fensel, K.P.
Sycara, and J. Mylopoulos, editors, Proc. International Semantic Web Conference
ISWC’2003, pages 227–226. Springer-Verlag, LNCS 2870, 2003.

25. D. Djurić. MDA-based Ontology Infrastructure. Computer Science and Informa-
tion Systems (ComSIS), 1(1):91–116, 2004.

26. R. Grønmo, M.C. Jaeger, and H. Hoff. Transformations between UML and OWL-
S. In A. Hartman and D. Kreische, editors, Proc. Model-Driven Architecture –
Foundations and Applications, pages 269–283. Springer-Verlag, LNCS 3748, 2005.

27. K. Mantell. From UML to BPEL –Model Driven Architecture in a Web services
world. IBM, http://www-128.ibm.com/developerworks/webservices/library/ws-
uml2bpel/, 2005.

28. T. Ambühler. UML 2.0 Profile for WS-BPEL with Mapping to WS-BPEL. Uni-
versity of Stuttgart, 2005. Diploma Thesis.

29. Semantic Web Services Language (SWSL) Committee. Semantic Web Services
Framework (SWSF). http://www.daml.org/services/swsf/1.0/, 2006.

	Introduction
	Engineering of Service-Based Software Architectures
	Modelling of Service Processes
	Composition of Service Processes
	A Service Composition Ontology
	Mapping Activity Diagrams to Service Ontology
	Process Composition
	Composing Service Providers and Clients

	Deployment of Service Processes
	Code Generation for Service Process Invocation and Execution
	Description and Publication of Services and Service Processes

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

