
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 188 – 197, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Model Driven Integration Architecture
for Ontology-Based Context Modelling and
Context-Aware Application Development

Shumao Ou1,2, Nektarios Georgalas1, Manooch Azmoodeh1,
Kun Yang2, and Xiantang Sun3

1 British Telecom Group, Ipswich, UK
{shumao.ou, nektarios.georgalas, manooch.azmoodeh}@bt.com

2 University of Essex, Colchester, UK
{smou, kunyang}@essex.ac.uk

3 University of Aberdeen, Aberdeen, UK
xsun@csd.abdn.ac.uk

Abstract. Context-awareness is a very important feature for pervasive services
to enhance their flexibility and adaptability to changing conditions and dynamic
environments. Using ontologies to model context information and to reason
about context at a semantic level has attracted a lot of interest in the research
community. However, most of the proposed solutions are ad hoc or proprietary.
Therefore, employing standard approaches to formulate the development process
becomes of importance. In this paper we examine how OMG’s Model Driven
Architecture (MDA) can be applied to tackle the issues of context modelling and
Context-Aware Application (CAA) modelling and development. A Context On-
tology Model (COM) is presented to model context information at two levels:
upper-level and extended specific level. A Model Driven Integration Architec-
ture (MDIA) is then proposed to integrate rigorous model specifications and
generate CAA implementations either semi-automatically or automatically.

1 Introduction

In order to flexibly adapt to changing conditions and dynamic environments, perva-
sive services need to become more context-aware. A pervasive service can be a
simple service such as helping a user on a mobile device (such as a PDA or a smart-
phone) to find their favourite restaurant in the immediate vicinity around their current
location. The challenges of context semantic representation, inference and interopera-
tion in pervasive computing environments are well recognised. Earlier research work
focused on context information gathering and integration aiming to achieve reusabil-
ity for higher level pervasive applications [1, 2]. Other work studied the modelling of
information from types of context in a platform independent way in order to support
context management and interoperation [3, 9]. More recently, the notion of ontology,
which is often used by Artificial Intelligence practitioners for knowledge representa-
tion, has emerged as a new approach to context modelling. Ontologies can model
context at a semantic level establishing a common understanding of terms and mean-
ing and enabling context sharing, reasoning and reuse in pervasive environments [9,
10, 11, 15].

 A MDIA for Ontology-Based Context Modelling and CAA Development 189

Languages such as W3C’s OWL [13] or RDF Schema can be used to specify on-
tologies in a machine-interpretable way. Without loss of generality, we consider both
of them in this paper. An ontology includes definitions of commonly understood vo-
cabularies and of logic statements that specify what each term in the vocabularies
mean and how they relate to each other. An ontology removes ambiguity and is se-
mantically independent to context. Ontology is, therefore, useful in bridging termi-
nology differences thus enhancing interoperability. The concepts and logic expressed
by ontologies are commonly accepted and can be communicated between human
users and computer programs from different vendors. These features make ontologies
the right mechanism for modelling context information in support of Context-Aware
Application (CAA) development for pervasive computing environments, as they
tackle heterogeneity introduced by diverse device technologies, the multiplicity of
vendors developing CAAs and various operating systems that CAAs run on.

The use of ontologies to model context augments the development process of per-
vasive services with additional complexity introduced by the work required for ontol-
ogy specification and management. Therefore, to make the use of ontologies viable,
development approaches need to be applied those are capable of tackling this com-
plexity. Such an approach cannot be ad-hoc and proprietary but rather it must allow
for rigorous/precise modelling of context ontology and for automatic development of
ontology-based context-aware applications. To this end, we have been investigating
the use of Model Driven Architecture (MDA) [12], the emerging standard by the
Object Management Group (OMG) for software systems design and development in
order to evaluate benefits of this approach in ontology development.

MDA aims at providing clear separation between technology-neutral and technol-
ogy-specific concerns involved in the different stages of a system’s development
process. MDA [12] consists of a set of standards, namely, MOF, OCL, XMI and QVT
[18] that enable the definition of Domain Specific Languages (DSLs) used to specify
a system’s structure and behaviour. DSLs are represented as meta-models based on
the Meta-Object Facility (MOF) and can be precisely defined using the Object Con-
straint Language (OCL). OCL allows the definition of constraints over meta-models
as well as actual models for a specific system.

We have applied MDA in a number of case-studies that demonstrated the advan-
tages the approach offers in the development process of systems and services [3, 4, 5].
In [3] and [4] we discussed the use of MDA for context-aware pervasive service mod-
elling, provisioning and service composition. In [5] we presented how MDA is used
for the design, development and integration of telecommunications Operations Sup-
port Systems (OSS) and the benefits gained in terms of improved quality, rapid deliv-
ery and lower development costs.

The above experiences lead to the conclusion that MDA can be a beneficial para-
digm for capturing context ontologies with a number of advantages. Modelling on-
tologies as Platform Independent Models (PIMs) can be a one-off activity as these
PIMs (models of roles, devices, and tasks) can be re-used in the development of other
CAAs. Heterogeneity is also catered for since ontology and CAA PIMs can be trans-
formed into implementations suitable for the platforms and devices at hand. MDA can
facilitate the semi-automatic or automatic generation of ontology-based CAAs with
significant reductions in time and costs during the development and maintenance
phases.

190 S. Ou et al.

This paper presents an MDA-based approach for context ontology modelling to-
wards the development of context-aware applications for pervasive systems. To the
best of our knowledge, no previous work has made use of MDA in this field. The
primary contributions of our work are: 1) a context ontology model (COM) for perva-
sive services based on the RDFS and OWL meta-models; 2) a model driven integra-
tion architecture (MDIA) for ontology-based CAA development.

The rest of the paper is organized as follows. The next section presents related
work in ontology based context modelling for pervasive services. Section 3 describes
the context ontology models developed using MDA. Section 4 illustrates our Model
Driven Integration Architecture (MDIA) for ontology-based CAA development. Sec-
tion 5 provides some concluding remarks and plans for future work.

2 Related Work

Related research has dealt with the issue of ontology-based context modelling and
reasoning in a number of perspectives. Wang et al [9] proposed an OWL-encoded
ontology (CONON) for modelling and reasoning about context in pervasive comput-
ing environments. Chen et al [10] proposed an architecture called Context Broker
Architecture (CoBra) that uses OWL to define ontology in intelligent environments.
Furthermore, they proposed a Standard Ontology for Ubiquitous and Pervasive Com-
puting Applications (SOUPA) [15]. Henricksen et al [11] proposed a hybrid approach
for context modelling, reasoning and interoperation between object-oriented context
models and ontology-based context models. All the above referenced research illus-
trated the advantages of handling context at a semantic level by using different solu-
tions. However, no evidence was found of any solutions trying to model ontology in
the context of MDA.

Other research work focuses on ontology-based CAA development. Biegel and Ca-
hill proposed a framework to develop CAAs based on their sentient object model. They
focus on fusing data from disparate sensors to ease context-aware application devel-
opment by simple coding [16]. McFadden et al [17] proposed a model driven approach
to develop CAA based on their object-oriented Context Modelling Language (CML).
These practices are aiming to reduce the development effort or to automate the CAA
development process through specific and proprietary mechanisms.

In our work, a pure MDA-based approach has been applied for context ontology
modelling that is based on well-recognized OMG standards, such as MOF, OCL, and
XMI and on OMG’s recent efforts regarding ontology modelling, the Ontology Defi-
nition Meta-Model (ODM) [8], which deals with modelling and engineering of con-
text information in the pervasive services domain.

3 Context Ontology Modelling

This section presents how ontologies are captured using the four layers of abstraction
that MDA adopts. In the MDA paradigm, ontology languages need to be abstracted
and expressed using MOF in the form of meta-models. Based on these meta-models,
we then construct our Context Ontology Model (COM). COM consists of the

 A MDIA for Ontology-Based Context Modelling and CAA Development 191

Upper-Level Context Ontology Model (ULCOM) and the Extended Specific Context
Ontology Model (ESCOM) and is used to model context information. We employed
an MDA tool, XMF, from Xactium1 in our modelling work.

3.1 Ontology Meta-modelling

MDA is based on four layers of abstraction, M0 through M3. M0 contains application
run-time data; M1 contains application models designed for a specific problem do-
main; M2 contains meta-models that capture domain specific languages (DSLs) used
in the application designs of M1; M3 hosts the Meta-Object Facility (MOF), which
serves as a language to specify DSLs.

Fig. 1 shows how the ontology models and meta-models are positioned around the
above four layers. M2 hosts the MOF-based Ontology Definition Meta-model (ODM)
and the UML profile for Ontology. Domain Ontology Models are situated on M1 and
are instances of ODM representing models of domain-specific ontologies. An exam-
ple of a domain ontology model is the Context Ontology Model (COM) introduced in
the next section. M0 contains models that are instances of M1 domain-specific
ontologies.

MOF
M3 Layer

meta-metamodel

M0 Layer
Instance

M2 Layer
Meta-model

M1 Layer
Model

UML Ontology
UML
Profile

Ontology
Definition
Metamodel

<<instanceOf>> <<instanceOf>>

<<instanceOf>>

Instances (expressed by Java, XML, C#,…)

UML
Model

<<instanceOf>>
<<instanceOf>>

Domain Ontology
Models (e.g. COM)

Fig. 1. Ontology Modelling in MDA Four-layer Architecture

To enable ontologies become machine-interpretable, they need to be represented as
software artifacts. To achieve this in MDA, the primary elements of ontology need to
be abstracted out and be represented as a meta-model using MOF.

Several efforts have already been made towards ontology meta-modelling in the
MDA paradigm. Fuchs et al proposed a meta-model specification for OWL DL [6];
Duric et al proposed a meta-model for Semantic Web ontology [7]. OMG launched a
request for proposals (RFP) regarding an Ontology Definition Meta-model (ODM).
The latest adopted submission of ODM proposal is available on [8]. All this work
aims to use MDA standards for ontology engineering. Our ontology meta-modelling
work presented in this section is compliant to [8].

1 Xactium: www.xactium.com

192 S. Ou et al.

Based on RDF, RDFS, OWL and ODM, we constructed the RDFS Meta-Model
and OWL Meta-Model; both are MOF-based meta-models that allow users to define
ontology models using the same terminology and concepts as those are defined in
RDFS and OWL, respectively.

One challenge that characterizes the definition of MOF-based ontology meta-
models is how to make these meta-models precise enough so that ontology model
definitions on M1 are unambiguous. We tackle this by means of the Object Constraint
Language (OCL) that is used to specify constraints on ontology meta-model elements
against which ontology models’ consistency can be checked.

context OWLClass
 @Constraint SameParent
 superClass->select
 (s|s.isKindOf(OWLMeta::OWLClass))
 ->forAll(s|s.of()=self.of())

end

context RDFSClass
 @Constraint SameParent
 superClass->select
 (s|s.isKindOf(RDFSMeta::RDFSClass))
 ->forAll(s|s.of()=self.of());
 end

@Constraint URIDefined
 self.URI<>””

end

Fig. 2. Example of Constraints in Meta-models

Fig. 2 depicts two examples of constraints in ontology meta-models. OWLClass,
an entity of the OWL meta-model, is augmented with constraint SameParent. This
constraint coerces any OWLClass instance A to only subclass a class B if and only if
B is also an instance of OWLClass and does not instantiate any other meta-model
entity. In the OCL scripts, s.of() is used to get the superclass of an entity. Fig. 2 also
shows constraint URIDefined imposed on class RDFSClass, which specifies every
RDFSClass must have a non-empty URI (Uniform Resource Identifier) defined.

3.2 Context Ontology Model (COM)

An ontology of context represents knowledge about the context domain and com-
prises definitions of a set of context entities, the entity attributes, the functions the
entities provide, the relationships between context entities, the instances of context
entities and the axioms used for context reasoning.

We have defined COM that describes context for pervasive services. COM consists
of two parts, namely, the Upper-Level Context Ontology Model (ULCOM) and the
Extended Specific Context Ontology Model (ESCOM). ULCOM captures an ontol-
ogy of concepts that are essential for generically characterizing context in the perva-
sive services domain. The ULCOM specification uses the RDFS/OWL meta-models.
ESCOM defines specific concepts for context as extensions of ULCOM entities.
Fig. 3 depicts a part of COM.

ULCOM includes three core concepts, namely, Entity, EntityProperty, and
EntitySpecification:

 A MDIA for Ontology-Based Context Modelling and CAA Development 193

• Entity, stereotyped as OWLClass, represents five types of context concepts that
are usually involved in a typical pervasive service – person, device, communica-
tion-channel (ComChannel), function, and event.

• EntityProperty: Apart from the proprietary attributes an entity may have, Enti-
tyProperty is also used to characterize general attributes, such as, time, identity,
activity, and location. These attributes are necessary to determine the when,
who, what, and where type of knowledge relating to an entity. EntityProperty is
a type of OWLProperty.

• EntitySpecification models the configuration of each entity and entity property
in terms of constraints. It is an instance of OWLRestrictions and contains
OCL scripts for constraints definition and model checking.

For simplicity, there are only a few of relationships depicted in Fig. 3. For instance,
a person owns devices and a person is nearby another person.

Upper-
Level
Context
Ontology
Model
(ULCOM)

Extended
Specific
Context
Ontology
Model
(ESCOM)

Fig. 3. A Part of the Context Ontology Model (COM)

ESCOM and ULCOM are M1 layer models. ESCOM is used to define more spe-
cific context entities and their corresponding properties and specifications. Some
examples of ESCOM entities are PDA, laptop, PC, mobile-phone and TV which are
devices normally used in a pervasive computing environment. These devices have
specifications that define certain constraints on device features, e.g. ScreenSpec, or
configurations of the device to support different types of network access e.g. Blue-
toothSpec and IEEE80211Spec. Further concepts in the ESCOM include different
types of activities, such as ScheduledActivity or PredictedActivity, different types of
locations, such as home, office or café, types of events that may emerge, e.g. Sub-
scribedEvent and UnexpectedEvent, and types of communication channels supported
by the devices or the user locations, e.g. WLAN and GPRS.

4 MDA-Based Context-Aware Application Development

This section presents our MDA-based approach for Context-Aware Application
(CAA) development. Context ontology alone is useful but not sufficient to entirely

194 S. Ou et al.

support CAA development as it only captures knowledge about the CAA context. For
CAA it is necessary to further specify models describing the application logic, the
graphical user interfaces (GUI), the application data and the way the CAA integrates
with other systems and services. Therefore, alongside COM, more meta-models have
been developed to facilitate the automatic generation of CAAs.

Fig. 4 gives an overview of our Model Driven Integration Architecture (MDIA) for
CAA development. At the meta-model layer there are three categories of artifacts:
CAA integration related meta-models, implementation languages meta-models, and
mappings between the meta-models.

Meta
Model
Layer

Model
Layer (ULCOM)

PIM (ESCOM)

PSM

Fig. 4. Model Driven Integration Architecture (MDIA) for Context-Aware Application
Development

The CAA integration related meta-models category includes the following six
packages:

• ComponentMetaModel defines a language to model functional interfaces of
existing functional components (such as ontology reasoning components in our
application domain, or inventory components in OSS systems [5]). Using this
language we can model at the M1 level ontology handling functionality of Com-
mercial-Off-The-Shelf (COTS) components (or libraries) which we can then in-
tegrate into the models of CAAs.

• ProcessMetaModel represents a language that can be used on M1 to specify sys-
tem logic in the form of a process. The meta-model defines elements of a UML
activity diagram.

• RDFSMetaModel and OWLMetaModel are used to define context-aware on-
tology data in our architecture.

• GUIMetaModel defines basic elements of a language to describe a graphical
user interface, such as window, label and textbox and an event-based model de-
scribing the dynamic way GUI elements can trigger logic associated with them.

• DataMetaModel describes a language for the specification of application-
related data on M1. This meta-model is based on the UML class diagram.

 A MDIA for Ontology-Based Context Modelling and CAA Development 195

• IntegrationMetaModel is fundamental as it defines the way all previous meta-
models associate and integrate. It serves as the glue that brings all necessary

elements together in order to compose a CAA. More specifically, this meta-
model defines how (1) a flow of process activities integrates different compo-
nents by invoking certain operations on each component to deliver an activity;
(2) GUIs integrate with processes by events GUI elements generate and trigger
process activities or entire processes representing the logic behind these ele-
ments; (3) data integrates with both components and processes that consume and
produce information of different types.

All above CAA integration related meta-models are tools/languages that facilitate
the technology-neutral specification of CAAs. In order to enable the generation of
technology-specific CAA implementations, it is important to introduce another
category of meta-models, namely, implementation languages meta-models. In this
category, we defined JavaLanguageMetaModel, XMLLanguageMetamodel, and CSharp-
MetaModel, which constitute specifications of the respective languages’ syntax, in-
cluding grammars, expressions, statements and programming structures (classes,
operations, variables etc). It is worth to note that J2SEMetaModel and J2MEMeta-
Model are defined which are extensions of JavaLanguageMetaModel. They are speci-
fying to two sub-sets of Java language meta-data for generating the Java implementa-
tions for Standard and Micro Edition platforms, respectively.

What is still missing before MDIA is completely enabled to automatically generate
CAA implementations is specifying precise transformations of technology-neutral
into technology specific meta-models. More specifically, we define two types of
mappings in the architecture:

• Mappings between integration and implementation language meta-models,
namely, Integration2Java, Integration2XML, and Integration2CSharp. These are
used to generate CAA implementations.

• Mappings between ontology language (RDFSMetaModel and OWLMetaModel)
and implementation language meta-models, namely, Ontology2Java, Ontology-
2XML, and Ontology2CSharp. These are used to generate technology-specific
representations of ontological artifacts in the specified implementation languages.

@Mapping OWLClass2JAVAClass
 (OWL::OWLMetaModel::OWLClass)
 :JavaLanguageMetaModel::Structure::Class
 @Clause OWLClass2JAVAClass
 OWLClass[name = N, property = P]
 do
 Class [name = N, slots = S]
 where
 S = P->collect(p|PropertyOf(N))
end

Fig. 5. A Mapping Example

Fig. 5 shows an example of a mapping specification that transforms OWLClass, of
the OWLMetaModel, into Class, of the JavaLanguageMetaModel. The mapping

196 S. Ou et al.

script is written in XMap, the proprietary language of the XMF tool to define trans-
formations. XMap uses pattern matching and the particular script of the example
maps an OWLClass with a name and properties onto a Java class that has the same
name and variables (slots) as the OWLClass.

Utilising the meta-models presented above, a designer can now specify the model
of a CAA at the M1 layer. Fig. 4 illustrates the model layer being populated by
generic forms of integration related model packages, corresponding to the CAA inte-
gration related category of meta-models that specify all aspects of a platform inde-
pendent model for the CAA. These aspects are application logic (ProcessModel that
can reuse and integrate COTS capabilities described in OntologyComponentModel),
data (DataModel), context (ULCOM and ESCOM), GUIs (GUIModel) and the ways
all aspects integrate (IntegrationModel). Rigorous specification of the CAA PIM
allows for the automatic generation of complete PSMs represented in various imple-
mentation languages. Fig. 4 illustrates packages JavaSourceCode, CSharpCode, and
XMLCode in the PSM of the model layer, that respectively include the code in Java,
C# and XML representation of the CAA PIM as they are automatically generated by
the correspondent transformations defined in the meta-model layer. For instance,
JavaSourceCode results from the execution of the Integration2Java mapping that
transform instances of the integration related meta-models into Java code. Similarly,
the Ontology2Java mapping generates a Java code representation of an ontology.

5 Conclusion and Future Work

Our primary goal in this paper is to explore the feasibility of amalgamating UML, MDA
and ontology languages (such as RDFS and OWL) towards context ontology modelling
and an MDA-based integration architecture for automatic development of context-aware
applications aiming at improving the accuracy and reducing time and costs.

We presented our Context Ontology Model (COM) which can be validated against
precise meta-models. The Model Driven Integration Architecture (MDIA) is designed
to integrate different types of DSLs and technologies. For instance, under the
umbrella of the MDIA, GUI models, process models and ontology models can be
integrated to build a platform independent CAA model representing user interfaces,
business logic and ontology-based context data involved in the CAA.

This paper only presents the first step of our work towards a model driven ontology-
based pervasive service engineering platform. As part of our future work, a compre-
hensive case study on ontology-based pervasive service provisioning is to be carried
out to evaluate the new challenges introduced by ontology and MDA amalgamation.
Our next big step will be the application of our MDA-based ontology approach to the
design and integration of enterprise information systems in the telecom OSS domain.

References

1. A.K. Dey, D. Salber and G.D. Abowd, “A Conceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-Aware Applications”, Anchor article of a special
issue on context-aware computing in the Human-Computer Interaction (HCI) Journal, Vol-
ume 16 (2-4), pp. 97-166, (2001)

 A MDIA for Ontology-Based Context Modelling and CAA Development 197

2. P.J. Brown, J.D. Bovey and X. Chen, “Context-Aware Applications: From the Laboratory
to the Marketplace”, IEEE Personal Communications, 4(5), 58-64 (1997)

3. K. Yang, S. Ou, A. Liotta and I. Henning, “Composition of Context-aware Services Using
Policies and Models”, Proc. of IEEE GlobeCom 2005, IEEE Press, Dec. 2005, St. Louis,
USA (2005)

4. K. Yang, S. Ou, M. Azmoodeh and N. Georgalas, “Policy-based Model-driven Engineer-
ing of Pervasive Services and the Associated OSS”, BT Technical Journal (BTTJ), Vol 23,
No 3, pp. 162-174 (2005)

5. N. Georgalas, M. Azmoodeh and S. Ou, “Model Driven Integration of Standard Based
OSS Components”, Proc. of the Eurescom Summit 2005 on Ubiquitous Services and
Applications, Heidelberg, Germany (2005)

6. F. Fuchs,I. Hochstatter,M. Krause and M. Berger, “A Meta-model Approach to Context
Information”, Proc. of the 3rd Int’l Conf. on IEEE Pervasive Computing and Communica-
tions Workshops, pp. 8-14 (2005)

7. D. Duric, D. Gasevic and V. Devedzic, “A MDA-based Approach to the Ontology Defini-
tion Meta-model”, Proc. of a 4th Workshop On Computational Intelligence And Informa-
tion Technologies,Serbia (2003)

8. IBM and Sandpiper Software, Inc., “Ontology Definition Meta-model”, http:// www.
omg.org/docs/ad/05-08-01.pdf (2005)

9. X.H. Wang, T. Gu, D.Q. Zhang and H.K. Pung, “Ontology-Based Context Modelling and
Reasoning using OWL”, Context Modelling and Reasoning Workshop at PerCom (2004)

10. H. Chen, T. Finin and A. Joshi, “Using OWL in a Pervasive Computing Broker”, In Proc.
of Workshop on Ontologies in Open Agent Systems (AAMAS 2003) (2003)

11. K. Henricksen, S. Livingstone, and J. Indulska, “Towards a hybrid approach to context
modelling, reasoning, and interoperation”, Proc. of the 1st Int’l Workshop on Advanced
Context Modelling, Reasoning And Management, UbiComp’2004 (2004)

12. Object Management Group (OMG), Model Driven Architecture, http://www.omg.org/mda
13. D.L. McGuinness and F. Harmelen, “OWL Web Ontology Language Overview”, W3C

Recommendation, http://www.w3.org/TR/owl-features/ (2004)
14. D. Brickley and R.V. Guha, “RDF Vocabulary Description Language 1.0: RDF Schema”,

W3C Recommendation, http://www.w3.org/TR/rdf-schema/ (2004)
15. H. Chen, F. Perich, T. Finin and A. Joshi, “SOUPA: Standard Ontology for Ubiquitous

Pervasive Applications”, Proc. Of the 1st Int’l Conf. on Mobile and Ubiquitous System,
IEEE (2004)

16. G. Biegel, V. Cahill, “A Framework for Developing Mobile, Context-aware Applications”,
Proc. of 2nd IEEE Conf. on Pervasive computing and Communications (2004)

17. T. McFadden, K. Henricksen, J. Indulska, “Automating context-aware application devel-
opment”, First Int’l workshop on Advanced Context Modelling, Reasoning and Manage-
ment, UbiComp 2004, England (2004)

18. QVT Partners. Initial Submission for MOF 2.0 Query/View/Transformations RFP, QVT-
Partners, http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf (2003)

	Introduction
	Related Work
	Context Ontology Modelling
	Ontology Meta-modelling
	Context Ontology Model (COM)

	MDA-Based Context-Aware Application Development
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

