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Abstract. We design a core language of principals running distributed programs
over a public network. Our language is a variant of the pi calculus, with secure
communications, mobile names, and high-level certificates, but without any ex-
plicit cryptography. Within this language, security properties can be conveniently
studied using trace properties and observational equivalences, even in the pres-
ence of an arbitrary (abstract) adversary.

With some care, these security properties can be achieved in a concrete set-
ting, relying on standard cryptographic primitives and computational assump-
tions, even in the presence of an adversary modeled as an arbitrary probabilis-
tic polynomial-time algorithm. To this end, we develop a cryptographic imple-
mentation that preserves all properties for all safe programs. We give a series
of soundness and completeness results that precisely relate the language to its
implementation.

1 Secure Implementations of Communications Abstractions

When designing and verifying security protocols, some level of idealization is needed
to provide manageable mathematical treatment. Accordingly, two views of cryptog-
raphy have been developed over the years. In the first view, cryptographic protocols
are expressed algebraically, within simple languages. This formal view is suitable for
automated computer tools, but is also arguably too abstract. In the second view, cryp-
tographic primitives are probabilistic algorithms that operate on bitstrings. This view
involves probabilities and limits in computing power; it is harder to handle formally,
especially when dealing with large protocols. Getting the best of both views is appeal-
ing, and is the subject of active research that aims at building security abstractions with
formal semantics and sound computational implementations.

In this work, we develop a first sound and complete implementation of a distributed
process calculus. Our calculus is a variant of the pi calculus; it provides name mobility,
reliable messaging and authentication primitives, but neither explicit cryptography nor
probabilistic behaviors. Taking advantage of concurrency theory, it supports simple rea-
soning, based on labeled transitions and observational equivalence. We precisely define
its concrete implementation in a computational setting. We establish general soundness

� Partially supported by FCT grant SFRH/BD/8148/2002, FEDER/FCT project Fiblog
POCTI/2001/MAT/37239, and FEDER/FCT project QuantLog POCI/MAT/55796/2004.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 83–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



84 P. Adão and C. Fournet

and completeness results in the presence of active adversaries, for both trace properties
and observational equivalences, essentially showing that high level reasoning accounts
for all low-level adversaries. We illustrate our approach by coding security protocols
and establishing their computational correctness by simple formal reasoning.

We implement high-level functionalities using cryptography, not high-level views of
cryptographic primitives. Following recent related works, we could instead have pro-
ceeded in two steps, by first compiling high-level communications to an intermediate
calculus with ideal, explicit cryptography (in the spirit of [3, 2]), then establishing the
computational soundness of this calculus with regards to computational cryptography.
However, this second step is considerably more delicate than our present goal, inasmuch
as one must provide a sound implementation for an arbitrary usage of ideal cryptogra-
phy. In contrast, for instance, our language keeps all keys implicit, so no high-level
program may ever leak a key or create an encryption cycle. (We considered targeting
existing idealized cryptographic frameworks with soundness theorems, but their reuse
turned out to be more complex than a direct implementation.)

Our concrete implementation relies on standard cryptographic primitives, computa-
tional security definitions, and networking assumptions. It also combines typical
distributed implementation mechanisms (abstract machines, marshaling and unmarshal-
ing, multiplexing, and basic communications protocol.) This puts interesting design
constraints on our high-level semantics, as we need to faithfully reflect their proper-
ties and, at the same time, be as abstract as possible. In particular, our high-level en-
vironments should be given precisely the same capabilities as low-level probabilistic
polynomial-time (PPT) adversaries. For example, our language supports abstract reli-
able messaging: message senders and receivers are authenticated, message content is
protected, and messages are delivered at most once. On the other hand, under the con-
servative assumption that the adversary controls the network, we cannot guarantee mes-
sage delivery, nor implement private channels (such that some communications may be
undetected). Hence, the simple rule c〈M〉.P | c(x).Q → P | Q{M/x}, which models
silent communication “in the ether” for the pi calculus, is too abstract for our purposes.
(For instance, if P and Q are implemented on different machines connected by a public
network, and even if c is a restricted channel, the adversary can simply block all com-
munications.) Instead, we design high-level rules for communications between explicit
principals, mediated by an adversary, with abstract labels that enable the environment
to perform traffic analysis but not forge messages or observe their payload. Similarly,
process calculi feature non-deterministic infinite computations, and we need to curb
these features to meet our low-level complexity requirements.

Contents. This extended abstract is organized as follows. Section 2 defines our low-
level target model. Section 3 presents our high-level language and semantics. Section 4
defines and illustrates high-level equivalences. Section 5 outlines our concrete imple-
mentation. Section 6 states our soundness and correctness theorems. Section 7 con-
cludes.

A technical report [6] provides additional details and definitions, including the defi-
nition of our cryptographic implementation, examples and applications, and all proofs.

Related Work. Within formal cryptography, process calculi are widely used to model
security protocols. For example, the spi calculus of Abadi and Gordon [4] neatly models
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secret keys and fresh nonces using names and their dynamic scopes. Representing ac-
tive attackers as pi calculus contexts, one can state (and prove) trace properties and
observational equivalences that precisely capture the security goals for these protocols.
Automated provers (e.g. [10]) also help verify these goals.

Abadi, Fournet, and Gonthier develop distributed implementations for variants of
the join calculus, with high-level security but no cryptography, roughly comparable
to our high-level language. Their implementation is coded within a lower-level calcu-
lus with formal cryptography. They establish full abstraction for observational equiv-
alence [3, 2]. Our approach is similar, but our implementation is considerably more
concrete. Also, due to the larger distance between high-level processes and low-level
machines, our soundness results are more demanding. Abadi and Fournet also propose
a labeled semantics for traffic analysis, in the context of a pi calculus model of a fixed
protocol for private authentication [1].

The computational soundness of formal cryptography is an active area of research,
with many recent results for languages that include selected cryptographic primitives.
Abadi and Rogaway initially consider formal encryption against passive attackers [5]
and establish the soundness of indistinguishability. Backes, Pfitzmann and Waidner [8]
achieve a first soundness result with active attackers, initially for public-key encryption
and digital signatures. They extend their result to symmetric authentication [9] and
encryption [7]. Micciancio and Warinschi [16] also establish soundness in the presence
of active attacks, under different simpler assumptions.

Other works develop computationally sound implementations of more abstract secu-
rity functions on top of cryptography. For example, Canetti and Krawczyk build compu-
tational abstractions of secure channels in the context of key exchange protocols, with
modular implementations, and they establish sufficient conditions to realize these chan-
nels [11]. Targeting the idealized cryptographic model of Backes et al. [8], Laud [14]
implements a deterministic process calculus and establishes the computational sound-
ness of a type system for secrecy.

Another interesting approach is to supplement process calculi with concrete prob-
abilistic or polynomial-time semantics. Unavoidably, reasoning on processes becomes
more difficult. For example, Lincoln, Mitchell, Mitchell, and Scedrov [15] introduce a
probabilistic process algebra for analyzing security protocols, such that parallel contexts
coincide with probabilistic polynomial-time adversaries. In this framework, further ex-
tended by Mitchell, Ramanathan, Scedrov, and Teague [17], they develop an equational
theory and bisimulation-based proof techniques.

2 Low-Level Target Model

Before presenting our language design and implementation, we specify the target sys-
tems. We rely on standard notions of security for cryptographic primitives (CCA2 for
encryption [18], CMA for signing [13]) recalled in the technical report.

We consider systems that consist of a finite number of communicating principals
a, b, c, e, u, v, . . . ∈ Prin. Each principal runs its own program, written in our high-level
language and executed by the PPT machine outlined in Section 5. Each machine Ma has
two wires, ina and outa, representing a basic network interface. When activated, the
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machine reads a bitstring from ina, performs some local computation, then writes a bit-
string on outa and yields. The machine embeds probabilistic algorithms for encryption,
signing, and random-number generation—thus the machine outputs are random vari-
ables. The machine is also parameterized by a security parameter η ∈ N—intuitively,
the length for all keys—thus these outputs are ensembles of probabilities.

Some of these machines may be corrupted, under the control of the attacker; their
implementation is then unspecified and treated as part of the attacker. We let a, b ∈ H
with H ⊂ Prin range over principals that comply with our implementation, and let
M = (Ma)a∈H describe our whole system. Of course, when a interacts with u ∈ Prin,
its implementation Ma does not know whether u ∈ H or not.

The adversary, A, is a PPT algorithm that controls the network, the global scheduler,
and some compromised principals. At each moment, only one machine is active: when-
ever an adversary delivers a message to a principal, this principal is activated, runs until
completion, and yields an output to the adversary.

Definition 1 (Run). A run of A and M with security parameter η ∈ N goes as follows:

1. key materials are generated for every principal a ∈ Prin;
2. every Ma is activated with 1η, the keys for a, and the public keys for all u ∈ Prin;
3. A is activated with 1η, the keys for e ∈ Prin \ H, and the public keys for a ∈ H;
4. A performs a series of low-level exchanges:

– A writes a bitstring on wire ina and activates Ma for some a ∈ H;
– upon completion of Ma, A reads a bitstring on outa;

5. A returns a bitstring s, written s ←− A[M].

To study their security properties, we compare systems that consist of machines run-
ning on behalf of the same principals H ⊆ Prin, but with different internal programs
and states. Intuitively, two systems are equivalent when no adversary, starting with the
information normally given to the principals e ∈ Prin\H, can distinguish between their
two behaviors, except with negligible probability (written neg (η)). This is the notion
of computational indistinguishability introduced by Goldwasser and Micali [12]. Our
goal is to develop a simpler, higher-level semantics that entails indistinguishability.

Definition 2. Two systems M0 and M1 are indistinguishable, written M0 ≈ M1, when
for every PPT adversary A, we have | Pr[1 ←− A[M0]]−Pr[1 ←− A[M1]]| ≤ neg (η).

3 A Distributed Calculus with Principals and Authentication

We now present our high-level language. We successively define terms, patterns, pro-
cesses, configurations, and systems. We then give their operational semantics. Although
some aspects of the design are unusual, the resulting calculus is still reasonably abstract
and convenient for distributed programming.

Syntax and Informal Semantics. Let Name be a countable set of names disjoint from
Prin. Let f range over a finite number of function symbols, each with a fixed arity
k ≥ 0. Terms and patterns are defined by the following grammar:
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V, W ::= Terms
x, y variable
m, n ∈ Name name
a, b, e, u, v ∈ Prin principal identity
f(V1, . . . , Vk) constructed term (when f has arity k)

T, U ::= Patterns
?x variable (binds x)
T as ?x alias (binds x to the term that matches T )
V constant pattern
f(T1, . . . , Tk) constructed pattern (when f has arity k)

Names and principals identities are atoms, or “pure names”, which may be compared
with one another but otherwise do not have any structure. Constructed terms represent
structured data, much like algebraic data types in ML or discriminated unions in C.
They can represent constants and tags (when k = 0), tuples, and formatted messages.
As usual, we write tag and (V1, V2) instead of tag() and pair(V1, V2). Patterns are
used for analyzing terms and binding selected subterms to variables. For instance, the
pattern (tag, ?x) matches any pair whose first component is tag and binds x to its
second component. We write for a variable pattern that binds a fresh variable.

Local processes represent the active state of principals, with the following grammar:

P, Q, R ::= Local processes
V asynchronous output
(T ).Q input (binds bv(T ) in Q)
∗(T ).Q replicated input (binds bv(T ) in Q)
match V with T in Q else Q′ matching (binds bv(T ) in Q)
νn.P name restriction (“new”, binds n in P )
P | P ′ parallel composition
0 inert process

The asynchronous output V is just a pending message; its data structure is explained
below. The input (T ).Q waits for an output that matches T then runs Q with the bound
variables of T substituted by the matching subterms of the output message. The repli-
cated input ∗(T ).Q behaves similarly but it can consume any number of outputs that
match T and fork a copy of Q for each of them. The match process runs Q if V
matches T , and runs Q′ otherwise. The name restriction creates a fresh name n then
runs P . Parallel composition represents processes that run in parallel, with the inert
process 0 as unit. Free and bound names and variables for terms, patterns, and processes
are defined as usual: x is bound in T if ?x occurs in T ; n is bound in νn.P ; x is free in
T if it occurs in T and is not bound in T . An expression is closed when it has no free
variables; it may have free names.

Our language features two forms of authentication, represented as constructors plus
well-formed conditions on their usage in processes. Due to space constraints, this ex-
tended abstract only describes message authentication—the technical report also de-
scribes high level certificates that provide transferable data authentication.

Authenticated messages between principals are represented as terms of the form
auth(V1, V2, V3), written V1:V2〈V3〉, where V1 is the sender, V2 the receiver, and V3
the content. We let M and N range over messages. The message M is from a (respec-
tively to a) if a is the sender (respectively the receiver) of M . Authenticated messages
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are delivered at most once, to their designated receiver. As an example, a:b〈Hello〉 is
an (authentic) message from a to b with content Hello, a constructor with arity 0.

Finally, configurations represent assemblies of communicating principals, with the
following grammar:

C ::= configurations
a[P ] principal a with local state P
M/i intercepted message M with index i
C | C′ distributed parallel composition
νn.C name restriction (“new”, binds n in C)

A configuration is an assembly of running principals, each with its own local state,
plus an abstract record of the messages intercepted by the environment and not for-
warded yet to their intended recipients. A system S is a top-level configuration (plus an
abstract record of the certificates available to the adversary, omitted here).

We rely on well-formed conditions. In local processes, P is well-formed for a ∈ Prin
when no pattern used for input in P matches any message from a. This condition pre-
vents that messages sent by P be read back by some local input. In configurations,
intercepted messages have distinct indices i and closed content M ; principals have dis-
tinct identities a and well-formed local processes Pa. In systems, let H be the set of
identities for all defined principals, called compliant principals; intercepted messages
are from a to b for some a, b ∈ H with a = b.

Operational Semantics—Local Reductions. We define our high-level semantics in two
stages: local reductions between processes, then global labeled transitions between sys-
tems and their (adverse) environment. Processes, configurations, and systems are con-
sidered up to renaming of bound names and variables.

Structural equivalence, written P ≡ P ′, represents structural rearrangements for lo-
cal processes. As in the pi calculus, it is defined as the smallest congruence such that
P ≡ P | 0, P | Q ≡ Q |P , P |(Q | R) ≡ (P |Q) | R, (νn.P ) | Q ≡ νn.(P | Q) when
n /∈ fn(Q), νm.νn.P ≡ νn.νm.P , and νn.0 ≡ 0. Intuitively, structural rearrange-
ments are not observable (although this is quite hard to implement).

Local reduction step, written P → P ′, represents internal computation between local
processes. It is defined as the smallest relation such that

(LCOMM) (T ).Q | Tσ → Qσ
(LREPL) ∗(T ).Q | Tσ → Qσ | ∗(T ).Q
(LMATCH) match Tσ with T in P else Q → Pσ
(LNOMATCH) match V with T in P else Q → Q when V �= Tσ for any σ

(LPARCTX)
P → Q

P | R → Q | R

(LNEWCTX)
P → Q

νn.P → νn.Q

(LSTRUCT)
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

where σ ranges over substitutions of closed terms for the variables bound in T . The
local process P is stable when it has no local reduction step, written P →. We write
P � Q when P →∗≡ Q and Q →.

Operational Semantics—System Transitions. We define a labeled transition semantics
for systems. Each labeled transition, written S

γ−→ S′, represents a single interaction
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with the adversary. We let α and β range over input and output labels (respectively from
and to the adversary), let γ range over labels, and let ϕ range over series of labels. We
write S

ϕ−→ S′ for a series of transitions with labels ϕ. Labeled transitions are defined
by the following rules on configurations:

(CFGOUT)
u �= a

a[a:u〈V 〉 | Q]
a:u〈V 〉−−−−→ a[Q]

(CFGIN)
u:a〈V 〉 | P � Q u �= a

a[P ]
(u:a〈V 〉)−−−−−→ a[Q]

(CFGBLOCK)
C

b:a〈V 〉−−−−→ C′ i not in C

C | a[P ] νi.b:a−−−→ C′ | b:a〈V 〉/i | a[P ]
(CFGFWD)

C
(M)−−→ C′

C | M/i
(i)−−→ C′

(CFGPRINCTX)
C

γ−→ C′ γ not from/to a

C | a[P ]
γ−→ C′ | a[P ]

(CFGMSGCTX)
C

γ−→ C′ i not in γ

C | M/i
γ−→ C′ | M/i

(CFGOPEN)
C

β−→ C′ n free in β

νn.C
νn.β−−−→ C′

(CFGNEWCTX)
C

γ−→ C′ n not in γ

νn.C
γ−→ νn.C′

(CFGSTR)
C ≡ D D

γ−→ D′ D′ ≡ C′

C
γ−→ C′

where structural equivalence on configurations, written C ≡ C′, is defined by the same
rules as for processes plus Rule νn.a[P ] ≡ a[νn.P ].

Rules (CFGOUT) and (CFGIN) represent “intended” interactions with the environ-
ment, as usual. They enable local processes to send messages to other principals, and to
receive their messages. The transition label conveys the complete message content.

Rules (CFGBLOCK) and (CFGFWD) reflect the actions of an active attacker that in-
tercepts, then selectively forwards, messages exchanged between compliant principals;
unlike the (COMM) rule of the pi calculus, they ensure that the environment mediates all
communications between principals. The label produced by (CFGBLOCK) signals the
message interception; the label conveys partial information on the message content that
can be observed from its wire format: the environment learns that an opaque message
is sent by b, with intended recipient a. In addition, the intercepted message content is
recorded within the configuration, using a fresh index i. Later on, when the environment
performs an input with label (i), Rule (CFGFWD) restores the original message content
and consumes M/i; this ensures that intercepted messages are delivered at most once.

The local-reduction hypothesis in Rules (CFGIN) makes local computations atomic,
as they must complete immediately upon receiving a message and lead to some updated
stable process Q. Intuitively, this enforces a transactional semantics for local steps, and
prevents any observation of their transient internal state. (Otherwise, the environment
may for instance observe the order of appearance of outgoing messages.) On the other
hand, any outgoing messages are kept within Q; the environment can obtain all of them
via rules (CFGOUT) and (CFGBLOCK) at any time, since those outputs commute with
any subsequent transitions.

The rest of the rules for configurations are standard closure rules with regards to
contexts and structural rearrangements: Rule (CFGOPEN) is the scope extrusion rule
of the pi calculus that opens the scope of a restricted name included in a message sent
to the environment. In contrast with intercepted messages, messages sent to a principal
not defined in the configuration are transmitted unchanged to the environment, after
applying the context rules. In Rule (CFGPRINCTX), condition γ not from a excludes
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inputs from the environment that forge a message from a, whereas condition γ not to a
excludes outputs that may be transformed by Rule (CFGBLOCK).

We define auxiliary notions of transitions, used to describe our implementation. We
say that S is stable when all local processes are stable and S has no output transition.
(Informally, S is waiting for any input from the environment.) We say that a series of
transitions S

ϕ−→ S′ is normal when every input is followed by a maximal series of
outputs leading to a stable system, that is, ϕ = ϕ1ϕ2 . . . ϕn, ϕi = αi

˜βi, and S =
S0

ϕ1−→ S1
ϕ2−→ S2 . . .

ϕn−−→ Sn = S′ for some stable systems S0, . . . , Sn.
By design, our semantics is compositional, as its rules are inductively defined on the

structure of configurations. For instance, we obtain that interactions with a principal
that is implicitly controlled by the environment are at least as expressive as those with
any principal explicited within the system.

4 High-Level Equivalences and Safety

Now that we have labeled transitions that capture our implementation constraints, we
can apply standard definitions and proof techniques from concurrency theory to rea-
son about systems. Our computational soundness results are useful (and non-trivial)
inasmuch as transitions are simpler and more abstract than low-level adversaries. In
addition to trace properties (used, for instance, to express authentication properties as
correspondences between transitions) , we consider equivalences between systems.

Intuitively, two systems are equivalent when their environment observes the same
transitions. Looking at immediate observations, we say that two systems S1 and S2
have the same labels when, if S1

γ−→ S′
1 for some S′

1 (and the name exported by γ are
not free in S2), then S2

γ−→ S′
2 for some S′

2, and vice versa. More generally, bisimilarity
demands that this remains the case after matching transitions:

Definition 3 (Bisimilarity). The relation R on systems is a labeled simulation when,
for all S1 R S2, if S1

γ−→ S′
1 (and the names exported by γ are not free in S2) then

S2
γ−→ S′

2 and S′
1 R S′

2. Labeled bisimilarity, written ≈, is the largest symmetric
labeled simulation.

In particular, if S ≈ S′, then S and S′ define the same principals and have the same
intercepted-message indices. We also easily verify some congruence properties: our
equivalence is preserved by name restrictions, definitions of additional principals, and
deletions of intercepted messages.

Lemma 1. 1. If C1 ≈ C2, then νn.C1 ≈ νn.C2.
2. If C1 ≈ C2, then C1 | a[P ] ≈ C2 | a[P ] if these systems are well-formed.
3. If νñ1.(C1 | M1/i) ≈ νñ2.(C2 |M2/i), then νñ1.C1 ≈ νñ2.C2.

As we quantify over all local processes, we must at least bound their computational
power. Indeed, our language is expressive enough to code Turing machines and, for
instance, one can easily write a local process that receives a high-level encoding of the
security parameter η (e.g. as a series of η messages) then delays a message output by 2η

reduction steps, or even implements an ‘oracle’ that performs some brute-force attacks
using high level implementations of cryptographic algorithms.
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Similarly, we must restrict non-deterministic behaviors. Process calculi often feature
non-determinism as a convenience when writing specifications, to express uncertainty
as regards the environment. Sources of non determinism include local scheduling, hid-
den in the associative-commutative laws for parallel composition, and internal choices.
Accordingly, abstract properties and equivalences typically only consider the existence
of transitions—not their probability. Observable non-determinism is problematic in a
computational cryptographic setting, as for instance a non-deterministic process may
be used as an oracle to guess every bit of a key in linear time.

We arrive at the following definitions. We let �·� compute the (high level) size of
systems, labels, and transitions, with for instance �S γ−→ S′� = �S� + �γ� + �S′� + 1,
and let input(ϕ) be the input labels of ϕ.

Definition 4 (Safe Systems). A system S is polynomial when there exists a polyno-
mial p such that, for any ϕ, if S

ϕ−→ S′ then �S ϕ−→ S′� ≤ p(�input(ϕ)�).
A system S is safe when it is polynomial and, for any ϕ, if S

ϕ−→ S1 and S
ϕ−→ S2

then S1 and S2 have the same labels.

Hence, starting from a safe process, a series of labels fully determines any further obser-
vation. Safety is preserved by all transitions, and also uniformly bounds (for example)
the number of local reductions and new names.

These restrictions are serious, but they are also easily established when writing sim-
ple programs and protocols. (Still, it would be interesting to relax them, maybe us-
ing a probabilistic process calculus.) Accordingly, our language design prevents trivial
sources of non-determinism and divergence (e.g. with pattern matching on values, and
replicated inputs instead of full-fledged replication); further, most internal choices can
be coded as external choices driven by the inputs of our abstract environment.

We can adapt usual bisimulation proof techniques to establish both equivalences
and safety: instead of examining all series of labels ϕ, it suffices to examine single
transitions for the systems in the candidate relation.

Lemma 2 (Bisimulation Proof). Let R be a reflexive labeled bisimulation such that,
for all related systems S1 R S2, if S1

γ−→ S′
1 and S2

γ−→ S′
2, then S′

1 R S′
2.

Polynomial systems related by R are safe and bisimilar.

We illustrate our definitions using basic examples of secrecy and authentication stated
as equivalences between a protocol and its specification (adapted from [2]). Consider a
principal a that sends a single message. In isolation, we have the equivalence
a[a:b〈V 〉] ≈ a[a:b〈V ′〉] if and only if V = V ′, since the environment observes V
on the label of the transition a[a:b〈V 〉] a:b〈V 〉−−−−→ a[0].

Consider now the system S(V, W ) = a[a:b〈V, W 〉] | b[(a:〈?x, 〉).P ], with an ex-
plicit process for principal b that receives a’s message and, assuming the message is
a pair, runs P with the first element of the pair substituted for x. For any terms W1
and W2, we have S(V, W1) ≈ S(V, W2). This equivalence states the strong secrecy
of W , since its value cannot affect the environment. The system has two transitions
S(V, W ) νi.a:b−−−→ (i)−→ a[0] | b[P{V/x}].

Further, the equivalence S(V, W ) ≈ a[a:b〈〉] | b[(a:〈 〉).P{V/x}] captures both the
authentication of V and the absence of observable information on V and W in the
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communicated message, since the protocol S(V, W ) behaves just like another protocol
that sends a dummy message instead of V, W .

5 A Concrete Implementation (Outline)

We systematically map high-level systems S to the machines of Section 2, mapping
each principal a[Pa] of S to a PPT machine Ma that executes Pa. Due to space
constraints, we only give an outline of our implementation, defined in the technical
report. The implementation mechanisms are simple, but they need to be carefully spec-
ified and composed. (As a non-trivial example, when a machine outputs several mes-
sages, possibly to the same principals, we must sort the messages after encryption so
that their ordering on the wire leaks no information on the computation that produced
them.)

We use two concrete representations for terms: a wire format for (signed, encrypted)
messages between principals, and an internal representation for local terms. Various bit-
strings represent constructors, principal identities, names, and certificates. Marshaling
and unmarshaling functions convert between internal and wire representations. When
marshaling a locally restricted name n for the first time, we draw a bitstring s of length η
uniformly at random, associate it with n, and use it to represent n on the wire. When
unmarshaling a bitstring s into a name, if s is not associated with any local name, we
create a new internal identifier n for the name, and also associate s with n.

Local processes are represented in normal form for structural equivalence, using
internal terms and multisets of local inputs, local outputs, and outgoing messages. We
implement reductions using an abstract machine that matches inputs and outputs using
an arbitrary deterministic, polynomial-time scheduler.

To keep track of the runtime state for our machines, we supplement high-level sys-
tems S with shadow states D that record sufficient information so that each machine is
a function Ma(S, D). For instance, D records maps from names and intercepted mes-
sages to bitstrings, and from principals to their keys and the content of their anti-replay
caches. The shadow D also determines the information available to the attacker, coded
as a bitstring public(D). The structure of public(D) sets the interface between attack-
ers and low-level systems, called the shape of D. For instance, the shape fixes the free
names that may occur in S, and public(D) provides their associated bitstrings.

In general, a system S may contain restricted names shared between local processes
and intercepted messages, making it non-trivial to describe a concrete initialization
mechanism that produces M(S, D) and public(D). Instead of explicitly coding low-level
initialization, we define it as the run of a high-level initialization protocol S◦ ϕ◦

−−→ S that
lets the principals exchange names and yield intercepted messages to the environment.
In the initialization protocol, S◦ is a system with no intercepted messages and no free
names in local processes. For any system S, there are such transitions S◦ ϕ◦

−−→ S and,
applying a variant of Theorem 1, there is a PPT algorithm Aϕ◦ that simulates ϕ◦ and
produces public(D) from some public(D◦), where D◦ is the shadow produced by Defi-
nition 1(1–3). Thus, we define a run of M(S, D) with adversary A, written A[M(S, D)],
as a run of (Aϕ◦ ; A)[M(S◦, D◦)] where Aϕ◦ ; A first runs Aϕ◦ then starts A with input
public(D). We then say that D is a valid shadow for S.
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6 Soundness and Completeness Results

In this section we show that properties that hold with the high-level semantics can be
carried over to the low-level implementation, and the other way around. Due to space
constraints, most auxiliary results and all proofs appear in the technical report [6].

Our first theorem expresses the soundness of the high-level operational semantics:
every series of transitions can be executed (and checked) by a low-level attacker. Said
otherwise, the high-level semantics does not give too much power to the environment.

Theorem 1. For any shape of D and labels ϕ, there is a PPT algorithm Aϕ such that,
for any safe stable system S with valid shadow D where the new names of ϕ are not
free in D, one of the following holds with overwhelming probability:

– 1 ←− Aϕ[M(S, D)] and there exists S′ with normal transitions S
ϕ−→ S′; or

– 0 ←− Aϕ[M(S, D)] and there are no normal transitions S
ϕ−→ S′.

Since we can characterize any trace using an adversary, we also obtain completeness
for trace equivalence: low-level equivalence implies high-level trace equivalence.

Theorem 2. Let S1 and S2 be safe stable systems with valid shadow D such that
M(S1, D) ≈ M(S2, D). If there are normal transitions S1

ϕ−→ S′
1 and the new names

of ϕ are not free in D, then there are normal transitions S2
ϕ−→ S′

2.

Our next theorem expresses the completeness of our high-level transitions: every low-
level attack can be described in terms of high-level transitions. More precisely, the prob-
ability that an interaction with a PPT adversary yields a machine state unexplained by
any high-level transitions is negligible.

Theorem 3. Let S be a safe stable system with valid shadow D and A a PPT algorithm.
The probability that A[M(S, D)] completes and leaves the system in state M′ with

M′ = M(S′, D′) for any normal transitions S
ϕ−→ S′ with valid shadow D′ is negligible.

Finally, our main result states the soundness of equivalence: to show that two stable
systems are indistinguishable, it suffices to show that they are safe and bisimilar.

Theorem 4. Let S1 and S2 be safe stable systems with valid shadow D. If S1 ≈ S2,
then M(S1, D) ≈ M(S2, D).

7 Conclusions and Future Work

We designed a simple, abstract language for secure distributed communications.
Our language provides uniform protection for all messages; it is expressive enough
to program a large class of protocols; it also enables simple reasoning about security
properties in the presence of active attackers, using labeled traces and equivalences. We
implemented this calculus as a collection of concrete PPT machines embedding stan-
dard cryptographic algorithms, and established that low-level PPT adversaries that con-
trol their scheduling and the network have essentially the same power as (much simpler)
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high-level environments. To the best of our knowledge, these are the first cryptographic
soundness and completeness results for a distributed process calculus.

We also identified and discussed difficulties that stem from the discrepancy between
the two models, and developed proofs that combine techniques from process calculi
and cryptography. It would be interesting (and hard) to extend the expressiveness of our
calculus, for instance with secrecy and probabilistic choices.

Acknowledgments. This paper benefited from discussions with Martı́n Abadi, Tuomas
Aura, Karthik Bhargavan, Andy Gordon, and David Pointcheval.
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