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Abstract. We provide a complete description of the Wadge hierarchy for deter-
ministically recognizable sets of infinite trees. In particular we give an elementary
procedure to decide if one deterministic tree language is continuously reducible
to another. This extends Wagner’s results on the hierarchy of ω-regular languages
to the case of trees.

1 Introduction

Two measures of complexity of recognizable languages of infinite words or trees have
been considered in literature: the index hierarchy, which reflects the combinatorial com-
plexity of the recognizing automaton and is closely related to μ-calculus, and the Wadge
hierarchy, which is the refinement of the Borel/projective hierarchy that gives the deep-
est insight into the topological complexity of languages. Klaus Wagner was the first to
discover remarkable relations between the two hierarchies for finite-state recognizable
(ω-regular) sets of infinite words [14]. Subsequently, elementary decision procedures
determining an ω-regular language’s position in both hierarchies were given [4, 7, 15].

For tree automata the index problem is only solved in the deterministic case [9, 13].
As for topological complexity of recognizable tree languages, it goes much higher than
that of ω-regular languages, which are all Δ0

3. Indeed, co-Büchi automata over trees
may recognize Π1

1 -complete languages [8], and Skurczyński [12] proved that there are
even weakly recognizable tree languages in every finite level of the Borel hierarchy.
This may suggest that in the tree case the topological and combinatorial complexities
diverge. On the other hand, the investigations of the Borel/projective hierarchy of deter-
ministic languages [5, 8] reveal some interesting connections with the index hierarchy.

Wagner’s results [14, 15], giving rise to what is now called the Wagner hierarchy
(see [10]), inspire the search for a complete picture of the two hierarchies and the rela-
tions between them for recognizable tree languages. In this paper we solve the Wadge
hierarchy problem in the deterministic case. The obtained hierarchy has the height
(ωω)3 + 3, which should be compared with ωω for regular ω-languages [15], (ωω)ω

for deterministic context-free ω-languages [1], (ωCK
1 )ω for ω-languages recognized by

deterministic Turing machines [11], or an unknown ordinal ξ > ε0 for nondeterministic
context-free ω-languages [2].

The key notion of our argument is an adaptation of the Wadge game to tree lan-
guages, redefined entirely in terms of automata. Using this tool we construct a col-
lection of canonical automata representing the Wadge degrees of all deterministic tree
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languages. Finally, we give a procedure calculating the canonical form of a given de-
terministic automaton, which runs within the time of finding the productive states of
the automaton (the exact complexity of this problem is unknown, but not worse than
exponential).

In presence of space limitations we omit some of the proofs; they can be found in
the full version of the paper (see [6] for a draft).

2 Automata

A binary tree over Σ is a partial function t : {l, r}∗ �→ Σ with a prefix closed
domain. A tree t is full if dom t = {l, r}∗. Let TΣ denote the set of full binary trees
over Σ, and let T̃Σ be the set of all binary trees over Σ.

A partial deterministic automaton is a tuple A = 〈Σ, Q, qI , δ, rank〉 where Σ is
the input alphabet, Q is the set of states with a specified initial state qI , the func-
tion rank maps states to naturals, and the transition relation δ is a partial function
δ : Q × Σ × {l, r} �→ Q. A run of a partial automaton over t ∈ TΣ is a binary
tree ρt ∈ T̃Q such that ρt(ε) = qI and for v ∈ dom ρt, ρt(v) = p, d = l, r it holds that
δ(p, t(v), d) = q if and only if vd ∈ dom ρt and ρt(vd) = q. An infinite path q1, q2, . . .
in a run is accepting if lim supi rank(qi) is even. A run ρt is infinitely accepting if all
its maximal paths are infinite and accepting. A state q is productive if there exists an
infinitely accepting run starting in that state. A run is accepting if all its infinite paths
are accepting and all finite maximal paths end in productive states. The language recog-
nised by A, in symbols L(A), is the set of trees that admit an accepting run of A. Partial
deterministic automata over ω-words are defined analogously.

In classical deterministic automata the transition relation is a complete function.
Consequently, all the paths in a run are infinite, and a run is accepting if and only if
all the paths are accepting. Our definition is only a slight extension of the classical one.
Adding transitions to an all-accepting state � or an all-rejecting state ⊥ accordingly,
we may transform a partial deterministic automaton A into a classical deterministic
automaton Ã recognizing the same language.

A branching transition is a pair p
σ,l−→ pl, p

σ,r−→ pr. For branching transitions we
will sometimes write p

σ−→ pl, pr. Transitions with one branch undefined will be called
non-branching. We will also say that a partial deterministic automaton is non-branching
if it contains only non-branching transitions.

The head component of an automaton A is the root of the directed acyclic graph
(DAG) of strongly connected components (SCCs) of A. In the definitions of automata
we will often specify the tail components, always a subset of the leaf SCCs.

3 Reductions and Games

TΣ and the space of ω-words over Σ are equipped with the standard Cantor-like topol-
ogy. For trees it is induced by the metric

d(s, t) =
{

2−min{|x| : x∈{0,1}∗, s(x) �=t(x)} if s �= t ,
0 if s = t .
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L is Wadge reducible to M , in symbols L ≤W M , if there exists a continuous function
ϕ such that L = ϕ−1(M). M is C-hard if for all L ∈ C, L ≤W M . If M is C-hard and
M ∈ C, then M is C-complete.

Let us introduce a tree version of Wadge games (see [10]). For any pair of tree lan-
guages L, M the game GW (L, M) is played by Spoiler and Duplicator. Each player
builds a tree, tS and tD respectively. In every round, first Spoiler adds at least one level
to tS and then Duplicator can either add some levels to tD or skip a round (not forever).
Duplicator wins the game if tS ∈ L ⇐⇒ tD ∈ M . Just like for the classical Wadge
games, a winning strategy for Duplicator can be easily transformed into a continuous
reduction, and vice versa.

Lemma 1. Duplicator has a winning strategy in GW (L, M) if and only if L ≤W M .

For regular languages we find it useful to interpret the game in terms of automata. Let
A, B be partial deterministic tree automata. The automata game G(A, B) starts with
one token put in the initial state of each automaton. In every round players perform a
finite number of the following actions:

fire a transition – for a token placed in a state q choose a transition q
σ−→ ql, q2,

remove the old token from q and put new tokens in q1 and q2 (similarly for non-
branching transitions),

remove – remove a token placed in a productive state.

Spoiler plays on A and must perform one of these actions at least for the tokens pro-
duced in the previous round. Duplicator plays on B and is allowed to postpone per-
forming an action for a token, but not forever. During such a play the paths visited by
the tokens of each player define a run of the respective automaton. Removing a token is
interpreted as a declaration that this part of the run will be accepting: simply complete
the run in construction by any accepting run starting in this state. Duplicator wins the
game if both runs are accepting or both are rejecting.

Lemma 2. Duplicator has a winning strategy in G(A, B) iff L(A) ≤W L(B).

Proof. Let Acc(C) denote the language of accepting runs of an automaton C. For de-
terministic automata, Acc(C) ≡W L(C). It is enough to observe that G(A, B) is in
fact GW (Acc(A), Acc(B)). �

We will write A ≤ B for L(A) ≤W L(B), A ≡ B for L(A) ≡W L(B), and
A < B for L(A) <W L(B). For q ∈ QA let Aq:=B denote the automaton obtained

by replacing each A’s transition of the form p
σ,d−→ q with p

σ,d−→ qB
I . Recall that by

Aq we denote the automaton A with the initial state changed to q. Note that Aq:=Aq is
equivalent to A. The following fact, which will be used implicitly throughout the paper,
follows easily from Lemma 2.

Corollary 1. Let A, B, C be deterministic partial automata and p ∈ QC . If A ≤ B,
then Cp:=A ≤ Cp:=B .
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4 Gadgets

A partial automaton A′ is a transformation of A if it was obtained from A by a finite
number of the following operations:

relabeling – replacing p
σ−→ q1, q2 with p

σ′
−→ q1, q2 for a fresh letter σ′ (analogously

for non-branching transitions),
swapping directions – replacing p

σ−→ q1, q2 with p
σ−→ q2, q1, or replacing a non-

branching transition p
σ,d−→ q with p

σ,d′

−→ q.

edge subdivision – replacing p
σ,d−→ q with p

σ,d−→ p′
σ,d−→ q, where p′ is a fresh state

and rank(p′) = rank(p),

moving entering points in SCC – replacing p
σ,d−→ q with p

σ,d−→ q′ for q, q′ ∈ X ,
p /∈ X , where X is a SCC of A (or replacing qI with a different state from the head
component),

moving exit points in SCC – replacing p
σ−→ q1, q2 with p′ σ′

−→ q1, q2 for p, p′ ∈ X ,
q1, q2 /∈ X , and a fresh letter σ′ (analogously for non-branching transitions).

Partial automata A and B over Σ are called isomorphic if there exists a bijection η :
QA → QB , preserving the initial state, such that p

σ,d−→ q if and only if η(p)
σ,d−→ η(q),

and for each loop p1 → . . . → pn, maxi rankA(pi) and maxi rankB(η(pi)) have the
same parity. In particular, L(A) = L(B).

We say that A and B are similar, in symbols A ∼ B, if there exist transformations A′

and B′ that are isomorphic. It can be checked easily that ∼ is an equivalence relation.
The equivalence class of A will be denoted by [A] and called a gadget represented by A.

An easy inductive argument shows that A ∼ B implies L(A) ≡W L(B) (the con-
verse need not hold). For a gadget Γ , we will denote by L(Γ ) the Wadge degree of
the language recognized by an automaton representing Γ . The meaning of the sym-
bols <, ≤, ≡ introduced for partial automata extends to gadgets in the natural way. By
abusing notation we will write L(Γ ) ≤W L(A), Γ ≤ A, etc.

Note that the transformations preserve the structure of the DAG of SCCs up to trivial
components (singletons with exactly one parent and one child). Therefore, the head
component of a gadget is well defined. Analogously, the tail components of a gadget are
the tail components of any of the representing automata. Note also that for a single SCC
the notion of similarity coincides with the classical notion of graph homeomorphism (up
to relabeling and swapping directions).

It follows from the above that non-branching gadgets are well-defined. A
non-branching gadget Γ can be represented by a (partial deterministic) ω-automaton
over Σ: take any representing tree automaton and ignore the second coordinate of the ar-
row labels. Obviously, the ω-language recognized by the obtained automaton is Wadge
equivalent to L(Γ ).

B is a subautomaton of A if QB ⊆ QA, δB ⊆ δA, rankB = (rankA)�QB (the ini-
tial states need not be equal). A partial automaton A contains a gadget Γ if A contains
a (productive) subautomaton B such that [B] = Γ . A admits Γ if it contains a pro-
ductive subautomaton B which can be obtained from an automaton representing Γ by
identifying some states. It follows easily that in both cases [A] ≥ Γ .
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5 Operations

The alternative [A1] ∨ [A2] is a gadget represented by an automaton consisting of dis-

joint copies of A1 and A2, and a fresh initial state qI with the transitions qI
σ1,d1−→ qA1

I

and qI
σ2,d2−→ qA2

I , with σ1 �= σ2. The tail components are inherited from [A1] and
[A2]. Note that L([A1] ∨ [A2]) is Wadge equivalent to the disjoint sum of L([A1])
and L([A2]). Consequently, ∨ is associative and commutative up to Wadge
equivalence.

The parallel composition [A1] ∧ [A2] is defined analogously, only now σ1 = σ2
and d1 �= d2. Note that, while in [A1] ∨ [A2] the computation must choose one of the
branches, here it continues in both. The language L([A1] ∧ [A2]) is Wadge equivalent
to {t : t.l ∈ L([A1]), t.r ∈ L([A2])} and ∧ is associative and commutative up to
Wadge equivalence. Multiple parallel compositions are performed from left to right:
[A1] ∧ [A2] ∧ [A3] ∧ [A4] = (([A1] ∧ [A2]) ∧ [A3]) ∧ [A4]. We will often write ([A])n

to denote [A] ∧ . . . ∧ [A]︸ ︷︷ ︸
n

.

A (ι, κ)-flower F(ι,κ) is a gadget represented by an automaton A(ι,κ) with states

p, qι, qι+1, . . . , qκ, rank(p) = ι, rank(qi) = i, and transitions p
σi,di−→ qi

σ′
i,d

′
i−→ p for

i = ι, ι + 1, . . . , κ such that σi �= σj for i �= j. The only SCC of the (ι, κ)-flower is
both the head component and the tail component.

The (ι, κ)-composition [A]
(ι,κ)−→ [Aι], . . . , [Aκ] is a gadget represented by an au-

tomaton obtained from the A(ι,κ) above by adding (a single copy of) A, Aι, . . . , Aκ

and transitions p
σ,d−→ qA

I , p
σi,d̄i−→ qAi

I such that σ �= σi and d̄i �= di for i = ι, . . . , κ,
where di, σi and p are the ones from the definition of A(ι,κ). The head component
is simply the (ι, κ)-flower but for the tail components we choose only the tail com-
ponents of A. Again, using Corollary 1 it is easy to see that the Wadge degree of
the defined automaton depends only on (ι, κ) and the Wadge degrees of L(A), L(Aι),
. . . , L(Aκ), and so the (ι, κ)-composition also defines an operation on Wadge
degrees.

Let C1, . . . , Ck be the tail components of [A1]. The sequential composition [A1] ⊕
[A2] is represented by an automaton consisting of (a single copy of) A1 and A2 with

transitions pi
σi,di−→ qA2

I , i = 1, . . . , k, such that pi ∈ Ci and σ1, . . . , σk are fresh let-
ters. [A1] ⊕ [A2] inherits its head component from A1 and the tail components from
[A2]. The operation ⊕ is associative, but it need not be commutative even up to Wadge
equivalence. For any gadget Γ and n < ω let nΓ = Γ ⊕ . . . ⊕ Γ︸ ︷︷ ︸

n

.

6 Canonical Gadgets

Let C1 = F(0,0), D1 = F(1,1). Note that in this case we simply get an accepting and
a rejecting loop. L(C1) is Wadge equivalent to the whole space and L(D1) ≡W ∅.
Let E1 = C1 ∨ D1. Let Cωω+k = F(1,k+2), Dωω+k = F(0,k+1), and Eωω+k =
Cωω+k ∨ Dωω+k . The above gadgets are called simple non-branching gadgets.
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Let Γ → Γ ′ denote Γ
(1,1)−→ Γ ′. Let Eω = C1 → C3 and Eωk+1 = C1 → (C1⊕Eωk)

for k ≥ 1. Let Eωω·2 = C1 → F(0,2) and Eωω·2+k+1 = C1 → (C1 ⊕ Eωω·2+k) for
k ≥ 1. These in turn are called simple branching gadgets.

For every non-zero ordinal α < ωω·3 we have a unique presentation

α = ωω·2+klk + . . . + ωω·2+0l0 + ωω·+kmk + . . . + ωω·+0m0 + ωknk + . . . + ω0n0 ,

where at least one of lk, mk, nk is non-zero (ω0 =1, by convention). Let us define

Eα =n0Eω0⊕. . .⊕nkEωk⊕m0Eωω·+0⊕. . .⊕mkEωω·+k ⊕l0Eωω·2+0⊕. . .⊕lkEωω·2+k .

For α = ωω·2α2 + ωωα1 + n + 1, with α1, α2 < ωω, n < ω (at least one non-zero),
let

Cα = C1 ⊕ Eωω·2α2+ωωα1+n , Dα = D1 ⊕ Eωω·2α2+ωωα1+n

and for α = ωω·2α2 + ωω+k(α1 + 1), with α1, α2 < ωω (at least one non-zero) and
k < ω, let

Cα = Cωω+k ⊕ Eωω·2α2+ωω+kα1 , Dα = Dωω+k ⊕ Eωω·2α2+ωω+kα1 .

Let G denote the family of all the gadgets defined above.

By ∅ (ι,κ)−→ Γι, . . . , Γκ we understand a gadget obtained from C1
(ι,κ)−→ Γι, . . . , Γκ by

removing the tail loop and the path joining it with the head loop. Let Eωω·3 denote a

gadget consisting of an accepting loop λ0 and ∅ (1,1)−→ F(0,2), such that λ0 and the head

loop of ∅ (1,1)−→ F(0,2) form a (0, 1)-flower. Let Cωω·3+1 = ∅ (0,0)−→ F(0,1).
The gadgets defined in this section are called canonical. Observe that in a play in-

volving any of the canonical gadgets there is always at most one token which can reach
a tail component. Let us call such a token critical. Whenever a critical token splits in
two, exactly one of its children can reach a tail component. We shall identify it with its
parent and the other one will be treated as new.

7 Effective Hierarchies

The index of an automaton A is a pair (min rank, max rank). Scaling down the ranks
by an even integer, we may assume that min rank is 0 or 1. A is a (ι, κ)-automaton
if L(A) can be recognized by a deterministic automaton with index (ι, κ). The (ι, κ)-
automata form the deterministic index hierarchy. The following theorem shows that
the deterministic index hierarchy is effective for tree automata and ω-automata. Let
(0, m) = (1, m + 1), (1, m) = (0, m − 1).

Theorem 1 (Niwiński & Walukiewicz [7]). A deterministic automaton over words or
trees is a (ι, κ)-automaton iff it does not admit a (ι, κ)-flower.

Let Σ0
n, Π0

n denote the finite levels of the Borel hierarchy. As usually, Δ0
n = Σ0

n ∩ Π0
n.

The class of co-analytical sets (which need not be Borel) is denoted by Π1
1 . We showed

in [5] that the Borel hierarchy is effective for deterministic tree languages. The proof
relies on two facts, which will also be useful here. By a split we will understand a gad-

get Ω represented by p
σ,l−→ p0 −→ p, p

σ,r−→ p1 −→ p, with rank p = rank p0 = 0,
rank p1 = 1.
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Theorem 2 (Niwiński & Walukiewiecz [8]). Let A be a deterministic automaton. If
A admits a split, L(A) is Π1

1 -complete (and hence, non-Borel). If A does not admit a
split, L(A) ∈ Π0

3 .

Theorem 3 (Murlak [5]). For a deterministic automaton A, L(A) ∈ Π0
2 iff A does not

admit F(0,1), L(A) ∈ Σ0
2 iff A admits neither F(1,2) nor ∅ (0,0)−→ D2, and L(A) ∈ Σ0

3 iff
A does not admit Cωω·3+1.

In fact, L(F(1,2)) and L(∅ (0,0)−→ D2) are Π0
2 -complete, L(F(1,2)) is Σ0

2-complete, and
L(Cωω·3+1) is Π0

3 -complete.
Let G′ denote the set of all non-branching canonical gadgets {Cα, Dα, Eα : α =

ωωγ + m, γ < ωω, m < ω}. In [15] Wagner showed that the Wadge hierarchy for
regular ω-languages is constituted by the Wadge degrees of gadgets from G′ and that
the hierarchy is effective.

Theorem 4 (Wagner [15]). For an ω-automaton A and Cα, Dα, Eα ∈ G′ it holds that
L(A) ≤W L(Eα) iff A admits neither Cα+1 nor Dα+1, and L(A) ≤W L(Cα) iff A
does not admit Dα (and dually).

Let us state our main result. The remaining of the paper is devoted to the proof of it.

Theorem 5. The Wadge hierarchy of deterministic tree languages is as follows

C1 C2 · · · Cωω Cωω+1 · · ·
� � � �

E1 Eω − Eω+1 · · · Eωω Eωω+ω − Eωω+ω+1 · · ·
� � � �

D1 D2 · · · Dωω Dωω+1 · · ·

8 Closure Properties

The main result of this section is that the family G is closed by the basic operations.

Proposition 1. The family G is closed by the operations ∨, ∧, ⊕, → up to Wadge equiv-
alence, and the equivalent gadget may be found in polynomial time.

Instead of giving the whole proof, which is quite technical (see [6]), we present a hand-
ful of special cases in which the result of the operation can be given explicitly and which
will turn out useful later.

Lemma 3. Eγ ⊕ Cωωα ≡Cωωα and Eγ ⊕ Dωωα ≡Dωωα for all 0<γ, α<ωω.

Proof. We shall only consider the case of Cα; the Dα case is dual. A strategy for Du-
plicator in G(Eγ ⊕ Cα, Cα) is as follows. While Spoiler keeps inside Eγ , stay in the
first flower of Cα. If one of Spoiler’s tokens is inside a rejecting loop, loop a rejecting
loop in your flower, otherwise loop an accepting one. When he enters Cα, simply copy
his actions moving from one flower to another. Only when one of his tokens in Eγ is
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in a rejecting loop, choose a rejecting loop in your current flower (instead of copying
Spoiler’s move in Cα). Since a path in Eγ can only be rejecting if one of the tokens
stays forever in a rejecting loop, this strategy is winning. �

A pair (i, i′) ∈ ω × ω is called even if both i and i′ are even. Otherwise (i, i′) is odd.
Let [ι, κ] denote the set {ι, ι + 1, . . . , κ} ⊆ ω with the natural order. Consider the set
[ι, κ] × [ι′, κ′] with the product order: (x1, y1) ≤ (x2, y2) if x1 ≤ x2 and y1 ≤ y2 . A
(m, n)-alternating chain is a sequence (xm, ym) < (xm+1, ym+1) < . . . < (xn, yn),
such that (xi, yi) is even iff i is even. It is enough to consider (0, n) and (1, n) chains.
Suppose we have a (m, n)-alternating chain of maximal length in [ι, κ] × [ι′, κ′]. The
parity of n is equal to the parity of (κ, κ′), as defined above, for otherwise we could
extend the alternating chain with (κ, κ′) and get a (m, n + 1)-alternating chain. Conse-
quently, the following operation is well-defined: (ι, κ)∧ (ι′, κ′) = (m, n) if the longest
alternating chain in [ι, κ] × [ι′, κ′] is of the type (m, n).

The following auxiliary gadgets will be called weak flowers:

WF(0,n) = C1 ⊕ D1 ⊕ C1 ⊕ D1 ⊕ . . .︸ ︷︷ ︸
n+1

, WF(1,n+1) = D1 ⊕ C1 ⊕ D1 ⊕ C1 ⊕ . . .︸ ︷︷ ︸
n+1

.

In fact, WF(0,n) ≡Cn+1, WF(1,n+1) ≡Dn+1, but we find the notation convenient.

Lemma 4. For all i, j, m, n < ω it holds that F(i,m) ∧ F(j,n) ≡ F(i,m)∧(j,n) and
WF(i,m) ∧ WF(j,n) ≡ WF(i,m)∧(j,n).

Proof. For ω-regular languages L, M , let AL×M be the canonical product automaton
recognizing L × M = {(v1, w1)(v2, w2) . . . : v1v2 . . . ∈ L, w1w2 . . . ∈ M}. Let
L = L(F(i,m)), M = Lω(F(j,n)). Since flowers are non-branching gadgets, we may
assume that L, M are ω-regular. It holds that AL×M ≡ F(i,m) ∧ F(j,n). It is easy to
see that alternating chains of loops in AL×M correspond directly to alternating chains
in [i, m] × [j, n]. Hence, AL×M admits a (i, m) ∧ (j, n)-flower, and does not admit a
(i, m) ∧ (j, n)-flower. From Thm. 4 it follows that AL×M ≡ F(i,m)∧(j,n). The proof
for weak flowers is analogous. �

Lemma 5. For all 0 < k, l < ω and all m < ω it holds that C1⊕Eωmk∧C1⊕Eωml =
C1 ⊕ Eωm(k+l) and C1 ⊕ Eωω·2+mk ∧ C1 ⊕ Eωω·2+ml = C1 ⊕ Eωω·2+m(k+l).

Proof. We will only give a proof of the first equivalence. Let us consider G(C1 ⊕
Eωmk ∧ C1 ⊕ Eωml, C1 ⊕ Eωmk ⊕ Eωnl). Duplicator has only one critical token
which can move along WF(0,2(k+l)) formed by the alternating head and tail loops of
consecutive copies of Eωm . Spoiler’s starting token splits in the first move into two
critical tokens which continue moving along WF(0,2k) and WF(0,2l). The strategy
for Duplicator is to loop his critical token inside an accepting loop as long as both
Spoiler’s critical tokens loop inside accepting loops; if at least one of them moves
to a rejecting loop, Spoiler should also move to a rejecting loop, and so on (c. f.
Lemma 4). This way, whenever Spoiler produces a new token x using one of the crit-
ical tokens, Duplicator can produce its doppelgänger y, and let it mimic x. Hence,
C1 ⊕ Eωmk ∧ C1 ⊕ Eωml ≤ C1 ⊕ Eωm(k+l). The converse inequality is obvious. �
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9 Wadge Ordering

In this section we will investigate the Wadge ordering of the canonical gadgets. First,
let us see what the use of the operation → is.

Lemma 6. For all gadgets Γ, Δ and all 0<k<ω, Γ → Δ≥(Γ → Δ)∧(Δ)k .

Proof. Consider G((Γ → Δ) ∧ (Δ)k, Γ → Δ). Spoiler’s initial moves produce a
token x in the head loop of Γ → Δ, and tokens x1, . . . , xk, each in the head com-
ponent of a different copy of Δ. Duplicator should loop his starting token y around
the head loop of Γ → Δ exactly k times producing tokens y1, . . . , yk and move
them to the head component of Δ. From now on y mimics x, and yi mimics xi for
i = 1, . . . , k. �

Corollary 2. For all k, ι, κ < ω and all 0 < n < ω, Eω > WF(ι,κ), Eωk+1 ≥ Eωkn,
Eωω·2 > F(ι,κ), Eωω·2+k+1 ≥ Eωω·2+kn.

Proof. It is easy to see that (0, 2m)∧(0, 2n) = (0, 2m+2n). Consequently, by Lemma
6 and Lemma 4, Eωω ≥ (WF(0,2))m ≡ WF(0,2m) and by the strictness of the hier-
archy for ω-languages Γωω > WF(ι,κ). Similarly, using Lemma 6 and Lemma 5 we
get Eωk+1 ≥ (C1 ⊕ Eωk)n ≡ C1 ⊕ Eωkn ≥ Eωkn. The remaining inequalities are
analogous. �

From the facts above we obtain the following lemma (see [6] for details).

Lemma 7. If 0 < α ≤ β ≤ ωω·3 then Eα ≤ Eβ and whenever Cα and Dα are defined,
Cα ≤ Eβ , Dα ≤ Eβ . If α < β then Eα ≤ Cβ , Eα ≤ Dβ .

Now we can show that the hierarchy induced on the family of the canonical gadgets by
the Wadge ordering actually coincides with the one described in Sect. 7.

Theorem 6. Let 0 < α ≤ β ≤ ωω·3. Whenever the respective gadgets are defined, it
holds that Cα � Dα, Cα � Dα, Cα < Eβ , Dα < Eβ , and for α < β, Eα < Eβ ,
Eα < Cβ , Eα < Dβ .

Proof. By Lemma 7 it is enough to prove Eα < Eα+1, Cα < Eα, Dα < Eα,
Cα � Dα, Cα � Dα. We will only give a proof of the first inequality; the others can
be argued similarly. We will proceed by induction on α. If α < ω, the claim follows by
the ω-languages case.

Suppose α = ωk + α′, k ≥ 1. Let α′ ≥ 1 (the remaining case is similar). We
shall describe a winning strategy for Spoiler in G = G(Eωk+α′+1, Eωk+α′). Spoiler
should first follow the winning strategy for G(Eα′+1, Eα′), which exists by the induc-
tion hypothesis. When Duplicator enters the head loop of Eωk , Spoiler removes all his
non-critical tokens, moves his critical token to the (accepting) tail loop of Eα′+1 and
loops there until Duplicator leaves the head loop. If Duplicator stays forever in the head
loop of Eωk , he looses. After Duplicator has left the head loop, the play is equivalent
to G′ = G(C1 ⊕ Eωk , Γ ) for Γ = Γ1 ∧ . . . ∧ Γr, where Γj is the part of Eα acces-
sible for the Duplicator’s jth token. If k = 1, then Γj ≤ WF(0,2) for each j. Hence



The Wadge Hierarchy of Deterministic Tree Languages 417

Γ ≤ WF(0,2r) and G′ is winning for Spoiler by Corollary 2. Let us suppose k > 1.
Then Γj ≤ C1 ⊕ Eωk−1 for j = 1, . . . , r. Again, by Corollary 2, Γ ≤ Eωω·2+k−1r+1.
Since ωk−1r + 1 < ωk−1r + 2 ≤ α, we may use the induction hypothesis to get a
winning strategy for Spoiler in G′. In either case Spoiler has a winning strategy in G as
well.

Now, assume ωω ≤ α < ωω·2. Let α = ωωα1 + α0 with α0 < ωω, 1 ≤ α1 < ωω.
Again, we describe a strategy for Spoiler in G = G(Eωωα1+α0+1, Eωωα1+α0) only for
α0 ≥ 1, leaving the remaining case to the reader. First follow the winning strategy from
G(Eα0+1, Eα0). If Duplicator does not leave the Eα0 component, he will lose. After
leaving Eα0 , Duplicator has to choose Cωωα1 or Dωωα1 . Suppose he chooses Cωωα1 .
By Lemma 3, Eα0 ⊕ Cωωα1 ≡ Cωωα1 , and Eωωα1 > Cωωα1 . Therefore, Spoiler has a
winning strategy in GC = G(Eωωα1 , Eα0 ⊕ Cωωα1). Imagine a play in GC in which
Duplicator ignores Spoiler’s move in the first round and copies the token pattern from
the stopped play we were considering above. Of course Spoiler’s strategy must work in
this case too. The strategy for Spoiler in G is to move the critical token to the first node
of the Eωωα1 component, take all the other tokens away, and then follow the strategy
from GC merging the first two moves into one.

For α = ωω·2+k + α′ argue like for α = ωk + α′. �

10 Completeness

In this final section we show that the canonical gadgets represent Wadge degrees of all
deterministically recognizable tree languages. To this end we will need the following
technical lemma which follows from the closure properties [6].

Lemma 8. Let A be a deterministic automaton A whose SCCs contain no complete
transitions. If A admits neither Eωω·3 nor Cωω·3+1, one can find effectively a gadget
Γ ∈ G such that Γ ≡ A.

Theorem 7. For a deterministic tree automaton A admitting neither Eωω·3 nor
Cωω·3+1, one can find effectively an equivalent gadget Γ ∈ G.

Proof. We may assume that A has a tree form, by which we mean that the DAG of SCCs
of A is a tree and that the only components containing unproductive states are leaves
containing only one all-rejecting state. We will proceed by induction on the structure of
this tree. Let X denote the head component of A. Suppose first that X contains a branch-
ing transition with one of its branches lying on an accepting loop. Should A admit
F(0,1), it would also admit Cωω·3+1, which is excluded by the hypothesis. Consequently,

A is a (1, 2)-automaton. If A admits F(1,2) or ∅ (0,0)−→ D2, then A ≡ F(1,2). Otherwise,
X contains no rejecting loops and canonical forms of the subtrees rooted in the child
components of X are at most C2. If A contains D1, then A ≡ C2, otherwise A ≡ C1.

Suppose that the above does not happen, but there is a branching transition with one
of its branches lying on a rejecting loop and X contains an accepting loop. It follows
immediately that X admits F(0,1) and A does not admit F(0,2), which means it is a (1, 3)

automaton. If A admits neither F(1,2) nor ∅ (0,0)−→ D2, then A ≡ F(0,1). If A admits one



418 F. Murlak

of this two gadgets, it follows easily that F(1,3) ≤ A. Without loss of generality we
may assume that only states lying on (0, 1)-flowers may have rank 3. Let rank′(q) =
(rank(q))′, where 1′ = 1, 2′ = 2, 3′ = 1, and rank′′(q) = (rank(q))′′, where 1′′ = 0,
2′′ = 0, 3′′ = 1. Let A′ = 〈Σ, Q, qI , δ, rank′〉, A′′ = 〈Σ, Q, qI , δ, rank′′〉. It is ob-
vious that A ≤ A′ ∧ A′′: a winning strategy for Duplicator in G(A, A′ ∧ A′′) is to
copy Spoilers behaviour both in A′ and A′′. A′ is a (1, 2)-automaton, so by Theorem 3,

A′ ≤ F(1,2). Since A does not admit ∅ (0,0)−→ F(0,1), A′′ will not admit ∅ (0,0)−→ D2, and
hence A′′ ≤ F(0,1). It follows that A ≡ F(1,3).

If X contains a branching transition but contains no accepting loops proceed as fol-
lows. Let qi

σi−→ q′i, q
′′
i , i = 1, . . . , n be all the transitions such that qi ∈ X and q′i, q

′′
i /∈

X . Let pj
σi,d−→ p′j j = 1, . . . , m be all the remaining transitions such that pj ∈ X and

p′j /∈ X . By the induction hypothesis we may assume that (A)q′
i
, (A)q′′

i
and (A)p′

j
are in

canonical forms. Let Δ = ((A)q′
1
∧(A)q′′

1
)∨. . .∨((A)q′

n
∧(A)q′′

n
)∨(A)p′

1
∨. . .∨(A)p′

m
.

It is not difficult to see that A is equivalent to C1 → Δ. By Proposition 1 we get a
canonical gadget equivalent to C1 → Δ.

Finally, let X contain no branching transitions. By induction hypothesis we may
assume that the subtrees rooted in the children of X are in the canonical form. Conse-
quently, no SCC of A contains a branching transition and we may use the lemma. �
Theorem 8. L(Eωω·3) is Wadge complete for deterministic Δ0

3 tree languages.

Proof. Take a deterministic automaton A recognizing a Δ0
3-language. By Thm. 3, A

does not admit ∅ (0,0)−→ F(0,1). When a token splits in a branching transition, we will
imagine that it goes left, and bubbles a new token to the right. Thus, in every transition
only one token is produced. Let us divide the states of A into two categories: a state q

is blue if there exists a (productive) accepting loop p
σ,d−→ p′ → . . . → p and a (produc-

tive) path p
σ,d̄−→ p′′ → . . . → q, d �= d̄. The remaining states are red. The tokens get

the color of their birth state. The essential observation is that during an accepting run
the occurrences of red states may be covered by a finite number of infinite paths (see
[5], the proof of Thm. 4). Consequently, only finitely many red tokens may be produced
during an accepting run.

Let A′ be the automaton A with the ranks of red states set to 0, and let A′′ be A with
the ranks of the blue states set to 0. Like before, A ≤ A′ ∧ A′′. Since A does not admit

∅ (0,0)−→ F(0,1), it follows that all (0, 1)-flowers in A are red. Consequently, A′ does not
admit F(0,1), and A′ ≤ F(1,2).

Let Λ denote a gadget produced out of Eωω·3 by replacing F(0,2) with F(ι,κ), where
(ι, κ) is the index of A. Consider the game G(A′′, Λ). In A′′ the blue tokens are always
in the states with rank 0, so they do not influence the result of the computation. When-
ever Spoiler produces a new red token (including the starting token), Duplicator should
loop once around the head 1-loop producing a new token in F(ι,κ), and keep looping
around the head 0-loop. The new token is to visit states with exactly the same ranks
as the token produced by Spoiler. Using the assertion on red tokens, one checks easily
that the strategy is winning. Hence A′′ ≤ Λ. By Lemma 6 and Lemma 4 it follows that
Λ ∧ F(1,2) ≤ Eωω·3 . �

The following corollary sums up the results of this section and the whole paper.
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Corollary 3. For a deterministic tree automaton A the exact position of L(A) in the
Wadge hierarchy of deterministic tree languages (see Thm. 5) can be calculated within
the time of finding the productive states of the automaton.

Proof. From Thm. 2 it follows that if A admits Ω, A ≡ Ω. If A does not admit Ω, then
by Thm. 3 if A admits Cωω·3+1, A ≡ Cωω·3+1. Otherwise L(A) ∈ Δ3 and if A admits
Eωω·3 , then A ≡ Eωω·3 (Thm. 8). The remaining case is settled by Thm. 7.

If the productive states are given, checking if an automaton admits Ω, Cωω·3+1, or
Eωω·3 can be done in polynomial time. The algorithm sketched in the proof of Thm. 7
can be implemented polynomially as well, by realizing the described procedure bottom-
up on the original DAG of SCCs without constructing the tree form of A explicitly. �
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